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Definitions

The R language (R Core Team 2017; Cham-
bers 2008; Matloff 2011) is currently the most
popular tool in the general data science field. It
features outstanding graphics capabilities and a
rich set of more than 10,000 library packages
to draw upon. (Other notable languages in data
science are Python and Julia. Python is popular
among those trained in computer science. Julia,
a new language, has as top priority producing
fast code.) Its interfaces to SQL databases and
the C/C++ language are first rate. All of this,
along with recent developments regarding mem-
ory issues, makes R well poised as a highly
effective tool in Big Data applications. In this
chapter, the use of R in Big Data settings will be
presented.
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It should be noted that Big Data can be “big”
in one of two ways, phrased in terms of the
classical n x p matrix representing a dataset:

¢ Big-n: Large number of data points.
Big-p: Large number of variables/features.

Both senses will come into play later. For now,
though, back to R. Some general information
about the language will be presented first, as
foundation for the Big Data aspects.

Overview

In terms of syntax, R, along with Python, C/C++,
and many others, is ultimately a descendant of
ALGOL, and thus a programmer in one of those
languages can quickly pick up at least a rough
“reading knowledge” of R.

As with Python, R is an interpreted language,
meaning it is not translated to machine code, un-
like the C/C++ language. The interpreted nature
of R brings up possible performance issues, a
topic to be discussed in section “Uniprocessor
Performance Issues”.

From a programming style point of view, R
(to various degrees) follows the object-oriented
and functional programming philosophies. Some
computer scientists believe that they lead to
clearer, safer code, and this has influenced the
design of R. This in turn will have implications
for all R users, as will be explained.
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Vectors and matrices are similar to one- and
two-dimensional arrays in C. A list is like a
vector, but with possibly different modes. A data
frame looks like a matrix, but its columns can
be of different modes, e.g., numeric in some,
character in others, and logical in still others.
These structures are intrinsic parts of the R lan-
guage, as opposed to add-ons in the case of
Python.

Subsetting is a major operation in R. For
instance,

>
> da <— d[c(1,3),]
> d
S y
1 5 8
2 12 88
3 13 888
> da
X y
1 5 8
3 13 888
> row.names(da)
(r; "1 "3"
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m[c(1,4,5),]

is the submatrix of the matrix m consisting of
rows 1, 4, and 5 of that matrix.

A seldom cited but widely used and very
handy feature of R is the ability to set names of
various data elements. For an example of how this
can be useful, suppose one has a large data frame,
and then split it into chunks of rows according to
some criterion. The original row names will be
retained:

d <— data.frame(x=c(5,12,13), y=c(8,88,888))

Such information could be quite useful and
is attained without adding an extra column in
the data frame that may need to be excluded in
subsequent statistical computations.

One of R’s most lauded features is its ability
to produce beautiful, highly expressive graphics,
in a manner accessible to even nonspecialists.
Base R graphics is used for simpler plots
or for advanced applications operating at
a more finely detailed level (Murrell 2011;
Chang 2013). For higher-level applications,
the  ggplot2 (Wickham 2016) and lattice
(Sarkar 2008) packages are quite powerful
and are widely used. Another notable graphics
package is Plotly (Plotly Technologies Inc.
2015), which produces especially esthetically
appealing figures. A quite usable R interface is
available.

Uniprocessor Performance Issues

As mentioned, R is an interpreted language,
which raises performance concerns. The chief
remedy is vectorization, referring to the fact that
vector operations should be used instead of loops.

Vectorization and R as a Functional

Language

First, the functional language nature of R is re-
flected in the fact that, for instance, the + operator
is actually a function. The expression x+y, for
vectors X and y, is actually the function call
’+’(x,y). The key point is that function is written
in C, not in R. (This should not be confused with
the fact that R itself — meaning the R interpreter
—is written in C.) Thus C-level speed is attained,
which could be an issue for very long vectors.
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By the way, <— is a function too. So,
7Z <— X + y is actually

<=(z,7+7(x,y))

It turns out that many R expressions can be
vectorized. For instance, the ifelse() function vec-
torizes the classical if—then—else construct:

> x <— 1:3

>y <— ¢(5,12,13)

> ifelse(y > 8,x,x+1)
[1] 2 2 3

Interfacing R to C/C++

But in some R applications, vectorization is not
enough; the general speed of C must be obtained
directly, i.e., entire R functions must be written in
C. For instance, dplyr, a popular R package for
manipulation of data frames, is written partly in
C, and data.table, an extremely fast (but compat-
ible) alternative to data frames (section “Data In-
put/Output, etc. with data.table”), is based largely
on C++.

This is a standard approach in the use of
scripting languages such as R and Python. Typi-
cally only a portion of one’s code requires high
performance. It thus makes sense to write that
portion in C/C++ while retaining the convenience
and expressiveness of R/Python for most of one’s
code.

R has two main functions, .C() and .Call(), for
calling C/C++ functions from R code. They are
fairly easy to use, and many R programmers use
another popular R package, Repp, that aims to
further simplify the R/C interface process (Eddel-
buettel 2013).

Interfaces that allow R code and Python to call
each other are also available, such as the rpy2
package.

R and Big Data

The sheer size of Big Data calls for parallel
computation, either on multicore machines or
clusters. (Define a physical cluster to be a set of
independent machines connected via a network.
Later, virtual clusters will be introduced, which
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will consist of a number of R invocations running
independently. They may be running on a physi-
cal cluster, a multicore machine, or a combination
of the two.)

Note carefully that the issue is not only one of
computation time but also of memory capacity.
The latter point is just as important as the former;
an application may be too large for a single
machine, but if the data is broken into chunks
and distributed to the nodes in a cluster, the
application might be accommodated.

A detailed treatment of parallel computation
in R is given in Matloff (2015). An overview is
presented here.

Memory Issues

Earlier versions of R, 2.x.x, set a limit of 23! — 1
bytes for object size. For modern 64-bit ma-
chines, this limited vectors, for instance, to about
250 million numbers, which was not sufficient in
certain Big Data contexts. R 3.x.x changed this
limit to about 2°2, more than enough for even the
biggest of Big.

Thus the constraint faced by most people in
the R community is not in R limitation on object
size, but in the memory sizes of their machines.
R stores all objects in memory, so memory size
may be an issue in R applications in Big Data.

The bigmemory Package

One solution is the bigmemory package (Kane
et al. 2013), which offers programmers a choice
between storing objects in memory or on disk,
with the latter option being attractive on machines
with only moderate amounts of RAM. The key
point is that from the programmer’s point of view,
the data look like they are in memory.

Objects of class bigmemory must be of matrix
type. A vector is represented as a one-row or one-
column matrix and a scalar as a 1 X 1 matrix.

Recall that operators like + are actually imple-
mented as functions. The array indexing operator
[ is another example of this. What big.memory
does is replace R’s [ function by special-purpose
C++ code that relays the requested data reference
to either memory or disk, according to what the
user’s code originally requested.
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Another advantage of bigmemory among
many of its users is that it provides a workaround
to R’s “no side effects” policy, which comes from
R’s status as a functional language. What this
means is that a function call should not change
any of its arguments.

For example, the statement

sort (x)

will not change x. It returns the sorted version of
x, but x itself doesn’t change. If one wants that
change, one needs to write

X <— sort(x)

Now consider the innocuous-looking state-
ment

z[5] <— 8

As noted, assignment is a function call, in this
to the function ’[<—’. Under a no-side-effects
policy, this would be implemented internally as

[<="(z,5.,8)

with the right-hand side returning a new copy of
z. In a Big Data context, the creation of this new
vector could be quite costly in execution time.

Recent versions of R try to avoid this to some
extent, but by placing z in a bigmemory object,
the problem is definitely avoided.

7 <—

Other Ways to Circumvent Memory Size

Problems

As noted, one solution to this problem is to ex-
ploit the fact that bigmemory can store an object
on disk but have it appear to the programmer
as if it were in memory. Two other methods are
common:

e If one is running on a cluster, one can use the
data in distributed form, with one chunk of the
data at each cluster node. The chunks may fit
into memory even if the full data does not.

e If the data is stored on disk in an SQL
database, various R packages for interfacing
to SQL are available, such as RMySQL.

In such settings, it may also be useful to
then use a Software Alchemy approach; see sec-
tions “Distributed Computation” and “Software
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Alchemy”. Or in the cases in which the appli-
cation algorithm needs only sums, such as linear
regression models, one can read in data chunk-
by-chunk, updating the sums at each stage.

Threaded Code

The standard mechanism used for parallel
computation by multicore programs in C/C++
is threaded code (Matloff 2015; Breshears 2009).
Here several copies of one’s code run simultane-
ously, sharing global data. That latter trait is key.
For many algorithms, efficient parallelization
requires shared-memory computation. If one has
a multicore machine (or a manycore coprocessor,
such as the Intel Xeon Phi) and the problem can
fit into available memory, threaded programming
of some kind is needed.

Roughly, here is how threads work. Say, for
instance, the threads are executing some iterative
algorithm. At the end of each iteration, each
thread will need to know the results of the execu-
tions of the various threads, as this will determine
the course of action in the next iteration. Access-
ing shared variables for this kind of action is the
essence of threaded programming.

Threads systems must have some form of
“lock” variables to avoid race conditions. That
term refers to a situation in which two threads
attempt to change a certain variable at approxi-
mately the same time, possibly resulting in incor-
rect results. A lock variable assures that only one
thread at a time can access the sensitive variable.

Threads in C/C++

Say one wishes to find the sum of a very long
array x of length n, with four threads. Each
thread would have an ID, 0, 1, 2, or 3, stored in
the variable myID. Each thread would have its
own running sum, stored in mySum. The code
would look something like this:

parfor (i = 0; 1 < n; i++) {
if (i % 4 == ID) mySum +
= x[1i];

// lock the lock
tot += mySum;
// unlock the lock

(not shown)

(not shown)
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Here “parfor” means that all the threads would
execute the loop simultaneously. (The variables
myID and mySum would be local to each thread,
while tot would be global to all.)

Typically one does not write threaded code
directly, opting instead to use a higher-level in-
terface to threads, the most widely used be-
ing OpenMP (Breshears 2009). Intel’s Threads
Building Blocks (Reinders 2007) may produce
faster code, but requires more programming skill
(and patience), as it is more complex and uses
C++ templates.

Threads in R
Scripting languages typically do not offer true
threads programming. Python threads, for in-
stance, must use something called the global in-
terpreter lock, which prevents parallel execution
of threads. Julia threads are, as of this writing,
experimental.

R does not offer threading at all. However, one
can still write threaded applications, in one of two
ways:

e If one wants to limit one’s code to R, a
quasi-threading environment is provided by
the Rdsm package (Matloff 2015). It runs on
top of the bigmemory system discussed ear-
lier, as well as atop the parallel package that
is included with base R (section “partools”).

To see how this works, let’s again consider
our earlier example. Rdsm, in creating a
shared variable z — in memory, not on disk
— will save on disk information as to where
in memory z resides. If one then has multiple
invocations of R running simultaneously, they
can all access that same memory location,
and thus share z, thus attaining the essence of
threaded code.

In the array-summing example above, the
programmer would call a parallel function,
splitIndices(), to explicitly assign values of i
to the various threads. Instead of an explicit
loop, the code would be vectorized, looking
something like this, using the built-in R func-
tion sum():

mylIndices <— splitlndices
(etc .)[[myID]]
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mySum <— sum(x[1,myIndices])

# lock the lock variable

(not shown)

totx[1,1] <— totx[1,1] + mySum
# unlock the lock variable
(not shown)

Here x and totx are variables in shared
memory.

* One can have one’s R code access C/C++ code
that does threading, say using OpenMP. In
the above array-summing example, the C code
could be used without change. (The R system
file R.h must be included.)

The data.table package is written largely
in C++ and makes use of OpenMP.

Another important example is the Basic
Linear Algebra Subroutines (BLAS) library.
Lots of BLAS libraries exist, and when build-
ing R one has the option of using one other
than what is included in the R source code.
One that is very fast is OpenBLAS, which
again uses OpenMP to run threads.

Message-Passing Parallel Code in R

In addition to the shared-memory world view
seen above, another paradigm of parallel compu-
tation is message-passing. Here, instead of hav-
ing different processes communicate via shared
variables, they explicitly send information to each
other.

This approach is generally used on clusters
rather than multicore machines, though many
users do use it on the latter as well. In either case,
it must be kept in mind that a major source of
speed-sapping overhead is the time spent sending
the messages, especially in the cluster case. For
this reason, these approaches are generally effi-
cient only in settings in which the time between
network accesses is long. This in turn means
the application is such that a large amount of
computation is done between network accesses,
a situation known as coarse-grained parallelism.

It should be repeated, though, that for many
large problems, memory size is the overriding
constraint. In such cases, a message-passing ap-
proach on a cluster may be the only feasible
solution.
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The “parallel” Package

A workhorse of parallel computation in R is
the built-in parallel package. Its main virtue is
its conceptual simplicity; users can readily write
their own parallel code after seeing a few exam-
ples.

The package was adapted from the previous
user-contributed packages snow and multicore.
The focus here will be on the former case, which
implements scatter/gather operations.

As with Rdsm (and ddr below), there will be
many independent invocations of R. When the

library (parallel)

cls <— makeCluster (2)
X <— ¢(5,12,13,8,88)
clusterExport(cls,’x’)
clusterApply (cls, 1:2,
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user starts R, let’s refer to that as the “manager”
invocation. It launches new invocations of R,
termed “workers.” One writes code to run on the
manager that distributes data to the workers — the
scatter phase — and sends the workers commands
to execute on the data given them. They return
results, which are gathered at the manager. The
latter pieces them together to obtain the desired
outcome.

Here is a simple example, again involving
an array-summing operation, in parallel over the
workers:

function (i) myID <<— i)

clusterEvalQ (cls ,library (parallel))

clusterEvalQ (cls ,mylIndices <—
splitIndices (5,2)[[myID]])

Reduce (sum(clusterEvalQ (cls ,sum(x[ mylIndices ]))

All this runs on the manager. It first makes a
virtual cluster of two workers, meaning two new
invocations of R connected to the manager. It
then creates an example vector x and “exports”
it to the workers. (This is not very efficient, as
each worker needs only part of x.) Next, it sets
up an ID at each worker, by applying the given
function to (1,2) at the workers. Then it loads
the parallel package at each worker; the function
clusterEvalQ() simply instructs each worker to
execute the given code locally. Next it runs

clusterEvalQ (cls ,myIndices
<— splitlndices (5,2)[[myID]])
This instructs each worker to assign to
mylIndices as indicated. The call to splitIndices()
returns

[[1]]
[1] 1 2

([21]]
[1] 3 45

i.e., an R list whose first component is (1,2) and
the other (3,4,5). The purpose of this is to have
Worker 1 handle elements 1 and 2 of x, while
Worker 2 will handle the rest. After execution of
the above statement, the variable myIndices will
have the value (1,2) at Worker 1 and (3,4,5) at
Worker 2.

Finally, there is the Reduce() call. Inside is a
call to clusterEvalQ(), which has each worker
sum its portion of x. That call returns to the
manager an R list consisting of the two sums, 17
and 109. Reduce() then repeatedly applies sum()
to each element of that list, resulting in the full
sum 126.

As can be seen, compared to the shared-
memory paradigm, the programmer must do
quite a bit of work just for this simple operation.
This is typical of message-passing systems. Many
programmers use the foreach package (Weston
2017) as a simpler, more convenient wrapper for
parallel in situations in which the main goal is to
parallelize a loop.
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Rmpi
A major limitation of parallel is that communi-
cation is possible only between a worker and the
manager. The Rmpi package (Yu 2014), based on
the famous C/C++/FORTRAN message-passing
library MPI (Nielsen 2016), is much more gen-
eral, allowing direct communication from any
worker to any other. For some applications, this
can increase performance tremendously.

Rmpi is more complex to program (and to
configure) and thus is too involved to present in
further detail here.

Distributed Computation

One sees much in the press about the Hadoop
and Spark frameworks. These have been proven
quite effective on very large systems for simple
tabulatory computations such as sums, counts,
and data grouping. And they do have R interfaces
for then, e.g., sparklyr (Luraschi et al. 2017).

However, a major drawback to these frame-
works is that one essentially must do a global
sort after each operation, whether needed or not,
potentially quite a drain on speed. Though Spark
is a major improvement over Hadoop, neither is
well-suited to the more complex statistical and
data-wrangling operations typical in data science.
Here two alternatives are presented.

Both of the packages in this section operate
with distributed data. For instance, say z is a
data frame with 10 million rows, and one has 4
workers in a cluster in the above sense. One could
store 2.5 million rows at each worker, and to the
degree possible and as long as possible, the data is
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kept distributed in that manner, over the course of
many data and statistical operations. In the above
scatter/gather terms, one scatters but then avoids
gathering for as long as possible. The goal, of
course, is to avoid costly network communication
delays. Informally let’s call this policy “Leave It
There” (LIT).

LIT is a very simple idea, yet a very powerful
one.

partools

Both Hadoop and Spark are typically run on
distributed file systems. The partools package
(Matloff et al. 2017a), which runs on top of
parallel, is predicated on the view that this is the
best approach, but that the operation structures
of Hadoop and Spark, with frequent network
communication and disk read/writes, are unsuited
for statistical/data science applications.

Again, consider a simple example of four
workers. One might store the data in four files,
x.1, x.2, and so on. The manager code would
execute something like

s

fileread (cls,’x’,’x’,1)

Here cls is the name of the virtual cluster; the
basename of the distributed file is “x”; and one
wishes the distributed data frame at the virtual
cluster nodes to also be named “x.”

Execution of the distributed program proceeds
mainly with manager calls to clusterEvalQ(),
instructing the workers to perform certain tasks.
For instance, in a linear regression problem, the
code at the manager might look like this:

clusterEvalQ(cls, convert factors to dummy variables)
clusterEvalQ(cls, replace NA values by means)

clusterEvalQ(cls, remove outliers,

calm(cls, regression formula)

say by a "3 sigma" rule)

That last function call implements Software
Alchemy, to be explained in section “Software
Alchemy”. It runs the R Im() linear model func-
tion at each cluster node and combines the re-
sults to obtain the overall estimated regression
coefficients.

Note that the data, even after various oper-
ations have been performed, is szill distributed,
available for further distributed operations, again
following the LIT philosophy. And at the end
of the session, the user can save the modified
distributed data frame to a distributed file.
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Numerous utility functions are available, in-
cluding ones to convert data between distributed
and monolithic forms: distribsplit(), to convert a
monolithic data frame to a distributed one, and
distribcat(), to go in the opposite direction.

The package also includes a number of sta-
tistical and tabulatory functions to do non-LIT
operations, such as distribagg(), which performs
the R aggregate() function at each node and then
combines appropriately.

In addition, partools offers direct point-to-
point communication between cluster nodes,
which greatly extends the ability to write
fast parallel code. One of the applications
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ddR

In designing a package for distributed computa-
tion, one desirable trait would be (at least near)
compatibility with existing serial code, enabling
software reuse. The ddR package (distributed
data in R) satisfies this criterion, defining
distributed versions of some R data structures,
including arrays, lists, and data frames.
Several algorithms have been implemented
in this framework, such as generalized linear
models and random forests. The package runs
on top of parallel or another HP product,
distributedR.

Here is an example of ddR code to

of that facility is an implementation of the initialize and subtract two  distributed
Hyperquicksort distributed sorting algorithm. matrices.
library (ddR)
chunk <— 2
nc <— 5
n <— chunk =* nc
X <— as.darray (matrix (rnorm(n)), psize = c(nc, 1))
y <— as.darray (matrix (rnorm(n)), psize = c(nc, 1))
setMethod ("—", signature(el = "ParallelObj",
e2 = "ParallelObj"),
function (el , e2) {
dmapply(‘—°, el, e2, output.type = "darray",
combine = "cbind")

1))

delta <— x — y
as.vector(collect(delta))

The package uses R’s S4 object-oriented pro-
gramming model to define operations on dis-
tributed objects, in this case subtraction. The
S4 function setMethod() is shown above to de-
fine subtraction between two objects of class
ParallelObj, creating a third object of that
class.

Software Alchemy

Real-world Big Data applications on parallel plat-
forms tend not to be “embarrassingly parallel,”
due to inter-process communication costs. This
can severely limit potential speedup.

Fortunately, for statistical/machine learning
applications, this frequently can be resolved by a
method also known as “Software Alchemy” (SA)
in Matloff (2016). Here the data is divided up into
chunks which are distributed to each available
cluster node, and one averages all the results of
the same computation from each process. In this
way we “alchemically” transform the original
problem into an embarrassingly parallel problem
that produces a statistically equivalent result:
The asymptotic covariance matrix of the SA
estimator can be shown to be the same as that of
the estimator based on the full set, i.e., it achieves
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the same accuracy. (It should be noted that the
speed of convergence of the asymptotics may
depend on p, the number of variables/features in
the full dataset (Biihlmann et al. 2016).)

Theoretically, the speedup can be derived in
time complexity terms. Suppose the complexity
of the full algorithm is known to be O(n?),
where n is the number of data points. Let r de-
note the number of worker threads. Then the SA
complexity will be approximately O[(n/r)?] =
0n?/r?), a speedup of about r?. If d > 1,
this would be a superlinear speedup, a rarely seen
event in the parallel computation world, but that
has appeared experimentally in plots of the output
using SA (Matloff 2016). (The same analysis
shows, interestingly, that one obtains a speedup
even in the serial case, ford > 1.)

Our experiments so far have shown SA to be
useful for several widely used machine learning
algorithms. For example, consider the famous
Forest Cover dataset in the UCI Machine Learn-
ing Data Repository (Lichman 2017), consisting
of half a million samples for classification into
one of seven classes. Using the random forests al-
gorithm, we can produce a speedup of 4.2 without
loss in accuracy. This reduces computation time
by over 10 min by just taking advantage of a stan-
dard four-core machine with six processes. (The
machine used here has hyperthreading, which
makes it perform in some settings as if it has eight
cores.)

In the classification case, one must use a vari-
ation of SA. In predicting the class of a new case,
each cluster node produces its own prediction.
Then “voting” is used: The final predicted class
is the one predicted the most often among the r
cluster nodes.

The major advantages of SA are its simplicity
and generality. One can use it to attain a good
speedup on almost any statistical/machine learn-
ing algorithm.

Data Input/Output, etc. with data.table

As mentioned, data.table is an extension of the
data frame construct (Dowle 2017). In Big Data
contexts, the use of the data.table package
is indispensable. For most operations — reading
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from/writing to disk, data grouping, and so on —
it is much faster than the standard R counterparts.

Graphics

Though one might at first think, “The more data,
the better,” Big Data can present real problems
in terms of graphics. With so many points to
plot, there is a real risk of encountering the
“black screen problem,” with the points solidly
filling major areas of the computer screen, thus
rendering the graph meaningless. A number of
techniques have been developed to deal with this
(Unwin et al. 2007).

In addition, with even moderate values of p,
the number of variables/features in our dataset,
plotting the data in a visually interpretable way
is challenging. Data can readily be visualized in
the case p = 2, and possibly p = 3, but it is
difficult for p > 2. One method to address this
problem is parallel coordinates (Inselberg 2009).
Here each data point is displayed as a segmented
line connecting dots at heights given by the values
of the variables in that data point.

Direct use of parallel coordinates with Big
Data will typically lead to the “black screen prob-
lem.” The cdparcoord package (Matloff et al.
2017b; Yang et al. 2017) aims to solve this
problem by plotting only the most frequently
appearing data tuples.

Conclusions

R is a very powerful tool for data science,
developed by statisticians, for statisticians. It
has truly excellent graphics packages, built-in
matrix and linear algebra operations, several
types of object-oriented programming models
to choose from, and so on. The tremendous
repository of contributed packages, CRAN, is
a huge advantage by itself.

Care must be taken with speed and memory
issues. These are handled by the use of vector-
ization and taking advantage of several good R
facilities for parallel programming, as well as the
availability of the bigmemory package. Properly
used, R is a very strong tool for taming Big Data.
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Cross-References

Julia

Python

Parallel Graph Processing
Parallel Processing with Big Data
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RDF Compression

Definitions

RDF compression can be defined as the prob-
lem of encoding an RDF dataset using less bits
than that required by text-based traditional seri-
alization formats like RDF /XML, NTriples, or
Turtle, among others. These savings immedi-
ately lead to more efficient storage (i.e., archival)
and less transmission costs (i.e., less bits over
the wire). Although this problem can be eas-
ily solved through universal compression (e.g.,
gzip or bzip?2), optimized RDF-specific com-
pressors take advantage of the particular features
of RDF datasets (such as semantic redundancies)
in order to save more bits or to provide retrieval
operations on the compressed information. RDF
self-indexes are focused on this latter task.

RDF self-indexes are RDF compressors that
provide indexing features in a space close to that
of the compressed dataset and can be accessed
with no prior (or partial) decompression. These
properties enhance scalability (i.e., less resources
are required to serve semantic data) and speed up
access as more information can be managed in
higher levels of the memory hierarchy (typically,
main memory or cache). In addition, efficient
search algorithms have been proposed to resolve
basic queries on top of self-indexed datasets. As
a result, RDF self-indexes have been adopted as
a core component of semantic search engines and
lightweight Linked Data servers.

Finally, RDF stream compressors specifically
focus on compressing a (continuous) stream of
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RDF data in order to improve exchange pro-
cesses, typically in real time. This constitutes a
more recent trend that exploits different trade-
offs between the space savings achieved by the
compressor and the latency introduced in the
compression/decompression processes.

This entry introduces basic notions of RDF
compression, RDF self-indexing, and RDF
stream compression and discusses how existing
approaches deal with (and remove) redundant
information in semantic datasets.

Overview

RDF (Schreiber and Raimond 2014) stands for
Resource Description Framework, which allows
information about resources (documents, people,
physical/logical objects, etc.) to be easily ex-
pressed in the form of triples. Each triple com-
prises the resource being described (referred to as
subject), a property of that resource (predicate),
and the corresponding value (object). Assuming
infinite, mutually disjoint sets U (RDF Uniform
Resource Identifiers, URIs), B (blank nodes),
and L (RDF literals), a triple (s, p,0) € (U U
B) x U x (U U B U L) is called an RDF triple
(Gutiérrez et al. 2004). A triple (s, p, 0) is usually

represented as a labeled directed graph: s Zo.
Figure 1 shows an RDF graph that comprises
three triples about the Spanish writer Miguel de
Cervantes. The node named as <http://example.
org/Cervantes> declares the corresponding RDF
resource, while the labeled edges provide his

http://example. o:‘g/p/nam.eL

“"Miguel de Cervantes”

http://example.org/p/birthDate

http: //example.oxrg/ CED

A 4

“1547-09-29"

http: //dbpedia.org/resource/Migue l_de_Cervant>

F

http: //www.w3.0rg/TR/2004 /REC-owl-semantics-20040210 /#owl_samehs

RDF Compression, Fig. 1 RDF graph which comprises three triples about Miguel de Cervantes


http://example.org/Cervantes
http://example.org/Cervantes
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name and birth date as literals and a same as link
pointing to a similar resource <http://dbpedia.
org/resource/Miguel_de_Cervan-tes>, described
in DBpedia, a partial conversion of Wikipedia to
RDF.

RDF is an extremely simple, but powerful
logical model, which can be used to describe
and integrate a variety of data from different
domains. This flexibility has motivated the adop-
tion of RDF as one of the mainstream semi-
structured data model in life sciences, geogra-
phy, or open-government projects, among other
fields of knowledge. Cross-domain datasets, like
the aforementioned DBpedia, demonstrate how
heterogeneous data can be effectively integrated
regardless of its (lack of) structure.

RDF excels at logical level, but important
scalability issues arise at physical level. The
case of DBpedia is exemplary. The latest
edition of this dataset (DBpedia 2016-10)
consists of roughly 13 billion triples which
describe people, places, organizations, films,
species, or diseases, among other information
available at Wikipedia, Wikipedia Commons,
and Wikidata. These descriptions also exploit
that the source information is commonly
expressed in different languages to consolidate
a multilingual RDF-based encyclopedia. The
resulting knowledge base is extensively used for
multiple purposes and services (e.g., semantic
search, entity disambiguation, translation, etc.),
and it constitutes a valuable resource for
academics and semantic web practitioners.
However, although DBpedia can be queried
online via different APIs, some applications and
services require a complete view of the dataset;
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hence, consumers must deal with the high-cost
requirements of this huge dataset in terms of
space (its current dump needs several hundreds
of gigabytes) and the required processing power
to operate on this data volume.

These numbers endorse RDF compression as
a scalable technique to alleviate the costs of RDF
management, which are particularly relevant in a
resource-constrained scenario (e.g., light clients
or low-performance networks) and Big Semantic
Data applications. But, why are RDF compres-
sors so effective? Attending to the foundations
of data compression, compression is possible be-
cause data is normally represented in a form that
is longer than absolutely necessary (Salomon
2007). This situation is particularly significant in
semantic data. An example is depicted in Fig. 2,
which shows the previous RDF graph serialized
in NTriples (Beckett 2014) and Turtle (Beckett
et al. 2014). RDF files are plenty of redundancy,
and three different classes are considered (Pan
et al. 2014):

Symbolic redundancy is due to symbol repe-
titions. The main contributors of this significant
source of redundancy are the large and highly
repetitive URIs used for naming purposes. In
practice, an RDF dataset comprises many differ-
ent URIs, but they are usually defined from a
small group of domains and tend to have common
long prefixes. Note, for instance, that the prefix
http://example.org/ is shared by three URIs in
our example. Some RDF serialization formats,
like Turtle, introduce the eprefix constructor to
partly address this issue. This allows the orig-
inal URI to be rewritten as a short reference
to the shared prefix (e.g., ns0 or ns1 in Fig.2)

NTriples
o
5

RDF Compression, Fig. 2 Example of RDF serializations (NTriples & Turtle)


http://dbpedia.org/resource/Miguel_de_Cervan-tes
http://dbpedia.org/resource/Miguel_de_Cervan-tes
http://example.org/
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and the remaining suffix. Symbol repetitions are
also present in infixes/suffixes of URISs, but their
impact is much lower. On the other hand, sym-
bolic redundancy from literals depends on the do-
main being described, and it can be more difficult
to predict. Finally, note that no restrictions are
made on blank node serialization, but they also
tend to share substrings (as in URIs) (Martinez-
Prieto et al. 2012b).

Universal compressors, like gzip or bzip2,
remove this class of redundancy and generate
files which are suitable for storage and exchange.
However, this class of compression prevents
other purposes, like random access to the
compressed data. String dictionaries (Martinez-
Prieto et al. 2016) arise as an alternative
that provides (slightly) less compression than
universal techniques but efficient RDF retrieval
operations. Dictionary compression identifies
all different strings (vocabulary) in an RDF
dataset and assigns an integer identifier (ID)
to each one (typically and ID i € [1,n] being
n the vocabulary size). This simple decision
allows for replacing each term occurrence in
the RDF dataset by its corresponding ID, thus
shifting from managing potential large strings
to small-/medium-size integers. In other words,
the original RDF graph is re-encoded as a string
dictionary, organizing the vocabulary, and an ID-
graph. It is worth noting that RDF vocabularies
reach non-negligible sizes and must be also
compressed (Martinez-Prieto et al. 2012b).

Syntactic redundancy underlies to the graph-
shaped structure of RDF datasets and how this
structure is serialized. The simplest serialization
formats, like NTriples, write one triple per line
and serialize explicitly all its components (e.g.,
the subject URI is written three times, once per
triple, in Fig. 2). In contrast, syntaxes like Turtle
introduce subject-based encoding to alleviate this
issue, i.e., it allows triples to be encoded as
adjacency lists of (predicate, object) pairs related
to each subject. Similar observations can be done
for predicates and objects. Predicates tend to be
repeated across different subjects, but they are
often restricted to a domain and range of applica-
tion, whether explicitly described in a vocabulary
(ontology) or implicitly in the data. For example,

1371

the salary predicate is not typically related to a
book but a person, while the converse applies
to the pages property. Grouping and splitting
the description of books and persons may save
repetitions. In turn, some objects are paired with
some particular predicates (e.g., 25 °C is tight to
a temperature predicate), but these pairs could be
reused for different subjects.

Particular graph compressors should be used
to minimize this class of redundancy. These tech-
niques rearrange graphs in terms of their adja-
cency information and encode it using list or
matrix compression approaches. The most well-
known techniques come from web or social graph
compression scenarios (Boldi and Vigna 2004),
but some of them (Brisaboa et al. 2014) have
been tuned to address the particular needs of RDF
graphs. It is worth noting that graph compressors
often operate on integer representations, so an
initial dictionary compression stage is first per-
formed to obtain the corresponding ID-graphs.

Semantic redundancy, in contrast to the pre-
vious ones, appears at the logical level. It arises
when less triples can be used to provide the
same knowledge. Thus, the redundancy does not
depend on how triples are encoded, but on the
knowledge they provide.

This redundancy cannot be removed using
traditional compression approaches. In this case,
specific RDF compressors must be designed from
scratch in order to obtain the minimal subset of
“canonical triples” that allows the original knowl-
edge to be effectively reconstructed. Thus, the
compression is achieved by reducing the number
of unnecessary encoded triples. It is worth noting
that symbolic and syntactic redundancies may be
still present on the canonical graph; hence, other
forms of compression can be applied on top of the
semantic-compressed dataset in order to achieve
better compression ratios.

Key Research Findings

RDF compression has emerged as an active
research and development field over the past
years, and some lossless compressors (i.e.,
techniques that can exactly recreate the original



1372

dataset from its compressed representation)
have been proposed. RDF compressors can be
classified into physical and logical: the former
exploits symbolic/syntactic redundancy, while
the latter focuses on semantic-based redundancy.
Finally, hybrid compressors perform at physical
and logical levels.

The simplest form of physical compression
is universal compression, i.e., using any general-
purpose technique (e.g., gzip or bzip2) to
directly compress an RDF file. This choice is
simple and efficient in terms of compression ratio
and delays (fast to process), and it can be easily
integrated in other workflows as it makes use
of standard and widespread techniques. In turn,
RDF-specific physical compressors can be de-
signed from scratch in order to deal with specific
RDF characteristics and achieve better perfor-
mance than general-purpose techniques.

RDF-specific physical compressors usually
perform dictionary compression. That is, they
translate the original RDF graph into a new
representation which includes a string dictionary
and an ID-graph encoding:

e The dictionary organizes the RDF vocabu-
lary, which comprises all different terms used
in the dataset.

e The ID-graph replaces the original terms by
their corresponding IDs in the dictionary.

Figure 3 shows a dictionary-compressed rep-
resentation of the graph example. In this case,

m Subject Term

1 <http://example.org/Cervantes>

m Predicate Term

1 <http://example.org/p/birthDate>
2 <http://example.org/p/name>

3 <http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_ sameAs> 4

m Object Term 1 3

1 <http://dbpedia.org/resource/Miguel de Cervantes>

2 “1547-09-29"
3 "Miguel de Cervantes”
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the dictionary comprises three independent
mappings by subjects, predicates, and objects, but
other configurations are possible. Triples are then
encoded as (1,1,2) (1,2,3) (1,3,1), where
the original terms can be easily retrieved by
using the corresponding mapping; e.g., (1,2,3)
is translated into:

* S.get(1l) = <http://example.org/Cervantess>.
* P.get(2) = <http://example.org/p/name>.
® 0O.get(3) = “Miguel de Cervantes”.

Physical compressors propose different ap-
proaches to organize and compress RDF dictio-
naries and to encode the corresponding ID-graph
representations.

Dictionary compression has not received
much particular attention, in spite that repre-
senting the RDF vocabulary usually takes more
space than the ID-graph encoding (Martinez-
Prieto et al. 2012b). As in our example, RDF
vocabularies can be intuitively partitioned by
term roles (subjects, predicates, and objects).
However, this approach is not totally effective
because terms that perform subject and object
roles are encoded twice, and these terms can sum
up to 60% of the vocabulary terms (Martinez-
Prieto et al. 2012b). Thus, a four-vocabulary
configuration (Atre et al. 2010) is massively used,
where the dictionary holds independent mappings
for (i) shared subjects-objects, (ii) single subjects
(not occurring as objects), and (iii) single objects
(not occurring as subjects) and predicates.

= Dictionary

2

2.(2)

- ID-graph

RDF Compression, Fig. 3 Dictionary-compressed representation


http://example.org/Cervantes
http://example.org/p/name
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Vocabularies are further splitted by URIs,
blank nodes, and literals for choosing the best
compression technique for each collection of
RDF terms. Martinez-Prieto et al. (2016) propose
different approaches to compress these RDF
vocabularies. URI (and blank node) vocabularies
can be effectively compressed using Front-
Coding, a differential encoding mechanism that
exploits shared long prefixes and reduces URI
space requirements up to 20 times. On the
other hand, literal vocabularies are, in general,
less predictable, hampering their compression.
Thus, dictionaries that combine grammar-based
compression with Front-Coding or hashing can
report huge space savings of up to six to ten times
the original space. Besides space reductions,
these dictionary compression techniques must
be able to efficiently translate IDs into the
corresponding RDF terms, ensuring efficient
decoding performance, most of them working
at microsecond level. These techniques often
support the inverse search functionality to
translate an RDF term into its corresponding
ID, which is essential for RDF self-indexing. In
addition, they can provide prefix- and substring-
based retrieval of RDF terms.

Once removed symbol repetitions, ID-graph
compression looks for syntactic redundancy on
the resulting ID-graph. These techniques model
the graph in terms of adjacency lists or matri-
ces, and look for regularities or patterns, which
are succinctly encoded. HDT (Ferndndez et al.
2013) proposes BitmapTriples, one of the pioneer
approaches for (RDF) ID-graph compression. In
essence, it transforms the graph into a forest of
three-level trees: each tree is rooted by a subject
ID, having its adjacency list of predicates in the
second level and, for each of them, the adjacency
list of related objects in the third (leaf) level. The
whole forest is then compressed using two ID
sequences (for predicates and objects) and two bit
sequences which encode the number of branches
and leaves of each tree. This simple encoding
reports interesting compression ratios (10-25%
of the original space), while supporting efficient
triple decoding. Furthermore, BitmapTriples al-
lows subject-based queries to be resolved by
traversing subject trees from the root. HDT con-
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solidates a binary serialization format by join-
ing Front-Coding and BitmapTriples to compress
dictionaries and ID-graphs, respectively.

OFR (Swacha and Grabowski 2015) proposes
another compression scheme for ID-graphs. It
first performs dictionary compression (terms are
organized into a multi-dictionary using differ-
ential encoding), and the resulting ID-graph is
sorted by objects and subjects. In this case, run-
length and delta compression (Salomon 2007) are
applied to exploit multiple object occurrences,
and the non-decreasing order of the consecu-
tive subjects, respectively. OFR compressed files
are then recompressed using universal techniques
like gzip or 7zip. The resulting OFR effective-
ness improves HDT, but its inner data organiza-
tion discourages any chance of efficient retrieval.

Efficient RDF retrieval is addressed by RDF
self-indexes. These approaches do not just
compress the ID-graph, but also provide indexing
capabilities over it. HDT-FoQ (Martinez-
Prieto et al. 2012a) enhances HDT to also
support predicate- and object-based queries,
adding inverted indexes for predicate and
object adjacency lists that, all together, provide
excellent performance for resolving SPARQL
triple patterns. k2-triples (Alvarez-Garcia et al.
2014) provides an alternative organization of
the ID-graph, encoding a (binary) adjacency
matrix of (subject, object) pairs per predicate.
These matrices are very sparse and can be easily
compressed using k2-trees (Brisaboa et al. 2014).
The k2-triples approach improves HDT-FoQ
compression ratios, and reports competitive
numbers for all triple patterns binding the
predicate, but results in a poor performance in
those queries with unbounded predicates. This
is mitigated by adding two additional indexes
to store the predicates related to each subject
and object, but the pattern that only binds the
predicate remains slow. RDFCSA (Brisaboa et al.
2015) is the most recent RDF self-index, which
encodes the ID-graph as a compressed suffix
array (CSA). RDFCSA also ensures efficient
lookup performance, competing with k2-triples
at the cost of using more space.

Logical compressors look for (redundant)
triples that can be inferred from others. These
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triples are removed from the original graph,
and only the resulting canonical subgraph is
finally serialized. Different approaches have been
followed to obtain these canonical subgraphs.
The initial approaches (Iannone et al. 2005;
Meier 2008) are based on the notion of lean
subgraph. The lean subgraph is a subset of the
original graph that has the property of being
the smallest subgraph that is instance of the
original graph. The number of removed triples by
a lean subgraph strongly depends on the graph
features, but a reasonable lower limit is two
removed triples per blank node (Iannone et al.
2005). Nevertheless, some triples of a lean graph
can still be derived from others; hence, some
semantic redundancy can still be present (Meier
2008).

The rule-based (RB) compressor (Joshi et al.
2013) uses mining techniques to detect objects
that are commonly related to a particular pred-
icate (intra-property patterns) and to group fre-
quent predicate-object pairs (inter-property pat-
terns). These patterns are then used as generative
rules to remove triples that can be inferred from
such patterns. RB is not so effective by itself,
and only inter-property patterns enable signifi-
cant amount of triples to be removed. Venkatara-
man and Sreenivasa Kumar (2015) state that
frequent patterns are not so expressive to capture
semantic redundancy and suggest that effective-
ness can be improved using more expressive
rules. In this case, Horn rules are mined from the
dataset, and all triples matching their head part
are removed. The resulting canonical subgraph
is then compressed using RB. This Horn-rule-
based compressor outperforms RB effectiveness,
but it introduces latencies in compression and
decompression processes.

Hybrid compressors compact the RDF graph
by first using a logical approach to remove
redundant triples and then performing physical
compression at serialization level. Although these
techniques could combine the best of logical
and physical compression, their application has
received relatively little attention until now.

HDT++ (Hernandez-Illera et al. 2015) revisits
HDT to introduce some methods to detect syntac-
tic and semantic redundancy. HDT++ brings out
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the inherent structure of RDF by detecting and
grouping the different set of predicates (predicate
families) used to describe subjects. The original
RDF graph is encoded as a set of subgraphs, one
per predicate family. The rdf : type values are at-
tached to each predicate family, hence removing
these triples from the subgraphs. Finally, HDT++
uses local IDs for the terms in each subgraph,
thus reducing the number of required bits. As
a result, HDT++ reduces the original HDT ID-
graph space requirements up to two times for
more structured datasets and reports significant
improvements even for highly semi-structured
datasets.

The graph pattern-based (GPB) compressor
(Pan et al. 2015) shares some common features
with HDT++, also grouping subjects by predi-
cate families, called entity description patterns
(EDPs). Each EDP is encoded as a pair which in-
cludes the corresponding pattern and all instances
matching it. This policy consolidates the simplest
GPB encoding scheme (LVO0), but patterns are
then merged to obtain better patterns (LV1), and
the merging process can be recursively performed
(LV2). GPB results are not compared with other
physical compressors, but they excel at logical
level, where GPB-LV2 is able to remove more
triples than RB.

Finally, RDF2NormRDF (Ticona-Herrera
et al. 2015) is not a compressor, but an approach
to normalize RDF data. It applies different
transformation rules to remove duplicated edges
and nodes and also deals with particular blank
node features. At physical level, RDF2NormRDF
focuses on namespace issues and normalizing
types and language tags encodings. As expected,
RDF2NormRDF does not generally remove more
redundancy than other compressors, such as
HDT, but it reports better compression ratios
for small datasets.

Real-Time Compression

All previous compressors share a common fea-
ture: they are designed to perform in batch pro-
cessing scenarios where time requirements are
not so strict. That is, the target system can wait
areasonable time to receive the compressed data,
and the compression process is performed offfine.
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However, more and more systems perform online
data processing (in real time), where delays must
be minimized. In these cases, the volume of RDF
is traditionally smaller, but triples are continu-
ously generated, and these semantic streams must
be efficiently distributed over a network.

Thus, a key challenge for RDF stream pro-
cessing systems is the ability to consume in-
creasingly large volumes of data with varying
and potentially high input rates. This scenario
also claims for RDF compression that, in this
case, put the focus on minimizing the elapsed
time since the original piece of data is available
at the producer, until it is ready to be used at
the consumer. This process encompasses three
tasks: (i) data compression (at the producer),
(i1) data transmission over a network, and (iii)
data decompression (at the consumer). The real
challenge for RDF stream compressors is finding
the right space/time trade-off which optimizes
the overall workflow performance. RDF-specific
compression over streaming data is usually per-
formed at physical level and mostly as adapta-
tions of existing RDF compressors.

Streaming HDT (Hasemann et al. 2012)
adapts HDT to simplify the associated metadata
and restrict the number of terms managed by
the dictionary; hence, shorter IDs are used.
The approach is then tailored to constrained
devices, where the vocabulary of terms is very
limited. In turn, RDSZ (Ferndndez et al. 2014a)
uses differential encoding to take advantage
of the similarities between consecutive triples
sent over the wire. In addition, the resultant
scheme is compressed with Zlib to exploit
additional redundancies. Overall, RDSZ gains
in compression (17% on average) are at the cost
of increasing the processing time.

ERI (Fernandez et al. 2014b) is an RDF stream
compressor that adapts the W3C Efficient XML
Interchange (EXI) format (Schneider et al. 2014)
for RDF data. Similarly to HDT++ and GPB,
ERI tries to detect and encode the predicate
families but in a dynamic fashion. In addition,
highly repeated object values (besides the values
for rdf:type) are also encoded in the families.
Then, the non-repeated values for each particular
predicate in the family are encoded in a channel,
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where specific compression can be applied (the
concept is then similar to leveraging the locality
in column-based databases). As a result, ERI
achieves a slightly better compression than
general-purpose stream-enabled compressors
(such as Zlib) with limited latency overhead.
Note that the XML-based compression of EXI
can also be adapted to RDF streams by (i) forcing
the serialization format of RDF to RDF/XML
and, optionally, (ii) generating an application-
specific grammar that encodes the repeated
values.

The pattern-based approach of ERI has been
also followed by two recent techniques, PatBin
(Lhez et al. 2017) and FSSD (Karim et al.
2017). PatBin approach performs dictionary-
based compression and then splits the graph
in ID-patterns (essentially predicate families)
and value/variable bindings. The Factorizing
Semantic Sensor Data (FSSD) technique uses a
deductive database system to encode the repeated
predicate families and object values as datalog
rules, which are then applied on the input data
to achieve important size reductions. However,
although FSSD has been tested on sensor data,
the factorization is still performed in an offline
fashion. In general, finding patterns in RDF
Streams efficiently can be seen as an orthogonal
approach.

Examples of Application

RDF compression has been widely adopted by
the Semantic Web community as a standard tech-
nique to reduce storage and transmission costs
when downloading RDF datasets. Most of the
publishers in the Linked Open Data (LOD) cloud
make use of universal compression, given its
simplicity, usability, and widespread adoption.
This is particularly true for projects publishing
massive amounts of RDF data, such as DBpedia
or Bio2RDF.

Nonetheless, RDF-specific compressors, and
in particular RDF self-indexes, are receiving in-
creased attention. Projects like LOD Laundromat
(Beek et al. 2014) or Triple Pattern Fragments
(TPF) (Verborgh et al. 2016) describe two in-
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teresting use cases exploiting compressed RDF.
LOD Laundromat is an initiative to crawl and
clean (removing syntax errors) RDF data from
the LOD cloud. As a result, it exposes more than
650K cleansed datasets which are delivered in
HDT format and can be queried using TPF in-
terfaces. TPF focuses on alleviating the burden of
endpoints by serving simple SPARQL triple pat-
terns, paginating the results. This simplification
allows servers to scale, while clients can always
execute more complex SPARQL queries on top
of TPFs by taking care of integrating and filtering
the results. Given the simplicity of the required
infrastructure at the server, TPF interfaces can
make use of RDF self-indexes to serve low-cost
operations, being HDT the most used backend
in practice. The recently published LOD-a-lot
dataset (Ferndndez et al. 2017) combines the
benefits from both projects to provide a prac-
tical example of efficient management of com-
pressed Big Semantic Data. LOD-a-lot integrates
all data from LOD Laundromat into a cross-
domain mashup of more than 28 billion triples
and several terabytes of space (in NTriples). This
dataset is then exposed as HDT and the cor-
responding TPF interface. The queryable self-
indexed HDT of such large portion of the LOD
cloud takes 524 GB and can serve fast triple pat-
tern resolution with an affordable memory foot-
print (in practice, 15.7 GB). These numbers are
a strong evidence of how RDF compression con-
tributes to make Big Semantic Data management
feasible in most Linked Data servers (for online
consumption) and clients (for downloading and
offline consumption).

RDF compression and self-indexes have also
been actively used in other Semantic Web areas
such as (i) SPARQL querying and recommender
systems (Martinez-Prieto et al. 2012a; Heitmann
and Haye 2014), leveraging the retrieval opera-
tions supported by self-indexes to support more
complex queries; (ii) reasoning (Cure et al. 2015),
optimizing the RDF dictionary and triples encod-
ing to serve inference capabilities; (iii) versioned
RDF or RDF archives (Ferndndez et al. 2016),
where RDF compression is used to preserve (and
query) the history of an RDF dataset; and (iv)
constrained and mobile devices (Kibisch et al.
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2015) in order to maximize the exploitation of
their storage/processing capabilities.

Finally, RDF compression has also been
highlighted by RDF stream processing systems:
CQELS Cloud (Le-Phuoc et al. 2013) uses
a basic dictionary-based approach to process
and move IDs (integers) between nodes, and
Ztreamy (Fisteus et al. 2014) exploits the
Zlib compressor with similar purposes. A last
trend regards querying on compressed RDF
streams (without prior decompression). A recent
approach (Déme et al. 2017) extends RDFSZ to
resolve basic SPARQL queries, as well as filters
and aggregations.

Future Directions for Research

The state of the art of RDF compression shows
many and varied techniques which exploit
symbolic, syntactic, and semantic redundancy
from different perspectives. They (i) save much
storage space, (ii) reduce network latencies,
or (iii) improve RDF retrieval performance,
among other achievements. Nonetheless, RDF
compression still remains an open challenge.
We can categorize future directions in three
categories, low-level optimization, scalable
management, and applications.

First, physical and logical compression should
be independently explored to determine more
effective approaches which, desirably, should
be plugged into powerful hybrid compressors.
These achievements should be aligned with
recent advances in succinct data structures and
self-indexes, which try to squeeze the space
requirements while providing additional retrieval
operations. Querying compressed RDF is a main
direction for research to consolidate scalable
and efficient semantic search engines. These
additional low-level optimizations can boost the
adoption of RDF compression and self-indexing,
which is already at the edge of conforming
a core component of scalable Semantic Web
applications.

In general, RDF compression has already
proved its ability for storing, exchanging,
processing, and querying Big Semantic Data.
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However the scalable management of com-
pressed RDF datasets has room for optimization.
On the one hand, the compression of Big
Semantic Data, as well as the creation of RDF
self-indexes, suffers from scalability problems,
as they can require high amounts of memory
and processing power. Although this process is a
one-off task in many scenarios, it can introduce
unaffordable costs for publishers. Current efforts
focus on exploring computation models like
MapReduce or Spark to alleviate this burden,
yet additional research must be conducted to
consolidate a scalable approach for Big Semantic
Data compression. On the other hand, most of
RDF self-indexes are mainly static or costly to
update; hence, dynamic techniques for succinct
data structures and self-indexes are an active area
of research.

Finally, RDF compression and its applications
have many unexplored directions. Adoption of
RDF compressed techniques in combination with
existing triple stores and reasoners, integration
within semantic data warehouses, resolution of
temporal queries on compressed RDF archives,
or integration within natural language processing
tasks (e.g., entity discovering and linking) are
only some prominent applications which claim
for innovative RDF compression techniques to
scale in a Big Semantic Data scenario.
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Definitions

In the context of this chapter, an RDF dataset is
defined in accordance with the dataset definition
in the Vocabulary of Interlinked Datasets (VoID),
(http://vocab.deri.ie/void), namely, “A Dataset is
a set of RDF triples that are published, main-
tained or aggregated by a single provider.” Ac-
cording to VoID, a dataset represents a mean-
ingful collection of triples as envisioned by its
provider. An RDF dataset profile is a formal
representation of a set of dataset characteris-
tics (features). It describes the dataset and aids
dataset discovery, recommendation, and compar-
ison with regard to the represented features. A
dataset profile feature is a characteristic describ-
ing a certain attribute of the dataset. For instance,
“dataset conciseness” is a dataset profile feature
providing information on the degree of redun-
dancy of the information contained in the dataset.
A dataset profile is extensible with respect to the
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features it contains. Usually, the relevant feature
set is application-oriented and depends on the
envisaged application scenarios.

Overview

A number of popular dataset registries have
emerged, which tackle the problem of dataset
discovery through the curation of lightweight
dataset descriptions, often also exposing
structured metadata according to the state-of-the-
art vocabularies such as DCAT (http://www.w3.
org/TR/vocab-dcat/) or VoID. Popular examples
include DataHub (http://www.datahub.io) or
DataCite (https://www.datacite.org/), while the
LinkedUp Catalog (http://data.linkededucation.
org/linkedup/catalog/) (for education) represents
a domain-specific example. However, while such
metadata is usually edited and curated manually,
it is often sparse, not in sync with the constant
evolution of the actual datasets, and prone to
erTors.

On the one hand, as the Web of Data as a
whole is evolving along with the constant evo-
lution of individual datasets, manual assessment
and representation of a large variety of dataset
features is neither feasible nor sustainable. On
the other hand, a wide variety of competing as
well as complementary approaches exist, aimed
at automatic assessment and description of ar-
bitrary datasets. This body of work is spanning
several research communities and includes works
in fields such as dataset characterization, data
summarization, dataset assessment, or dataset
profiling. While the problem of dataset profil-
ing is of particular importance in the context
of the Web of Data, it has been identified and
approached already in other related fields, such as
general database and data management research.

Emerging from the aforementioned works, a
wealth of tools, methods, vocabularies, and ap-
plications for assessing, describing, and profiling
datasets has become available throughout the past
few years, where Ben Ellefi et al. (2017) provides
an initial overview and classification.

The aim of this chapter is to provide re-
searchers, dataset providers, and application de-
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velopers with an overview of dataset profiling
and closely related approaches, including dataset
profile features, feature extraction methods and
tools, vocabularies, and example applications
to encourage experimentation and facilitate the
broader use of RDF datasets.

Key Findings

In order to provide an overview of RDF dataset
profiling, we structure key findings into types of
features, related methods and tools, vocabularies
for their representation, and actual applications.

Features, Methods, and Tools

This section provides an inventory of dataset
features of relevance for dataset profiling, orga-
nized in an extensible feature taxonomy, depicted
in Fig. 1. This taxonomy reflects the authors’
consensus and provides one of several possible
categorization systems. In particular, the features
are organized into the following top-level cate-
gories: General, Qualitative, Provenance, Links,
Licensing, Statistical, and Dynamics. This taxon-
omy guides the categorization of the extraction
methods and tools, of which we provide examples
for each category. The taxonomy also serves
as a backbone for the classification of profiling
vocabularies and applications, introduced in the
following section. For a complete overview, the
reader is referred to the survey (Ben Ellefi et al.
2017).

General features. Features in this category
carry high-level semantic information, including
the domain (field of knowledge) or topic of the
dataset; its contextual connectivity, understood
as the extensional and/or topical overlap with
other datasets; the index elements that are
pointing to the dataset in a given index or a set
of indices; as well as the dataset representative
elements, i.e., the sets of most descriptive types,
properties, or instance samples to characterize
the entire dataset.

Extraction Methods and Tools. General fea-
tures typically require domain knowledge with
respect to the content of the dataset. As a best
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Fig. 1 A taxonomy of
dataset profile features

Dataset Profile Features

practice, these features should be provided by
the data domain experts (e.g., data providers
or maintainers) to ensure a high-quality profile.
The topic and the contextual connectivity of the
dataset can be described through named enti-
ties (NE) extracted from the literal values, as
well as categories and clusters of these entities.
Furthermore, RDF dataset profiles can include
selected index elements from the instance-level
and schema-level indices or data summaries such
as a QTree (Harth et al. 2010). Representative
elements of an RDF dataset can be the entities
with thorough descriptions or predicates obtained

RDF Dataset Profiling

« Domain/Topic
» Contextual Connectivity

« General - » Index Elements

~ Representative Elements

» Trust

. Qualitative - » Accessibility

* Context

* Representativity

» Provenance

* Links
* Licensing
» Schema Level
* Statistical
* Instance Level
« Global
* Dynamics » Instance-specific

* Semantics-specific

using key discovery approaches. Tools in this cat-
egory include Linked Data Observatory (Fetahu
et al. 2014) and voiDge (Bohm et al. 2011).

Qualitative features. The Qualitative features
category groups together a number of features
known from the long-going study of data quality
in computer science in general and the Web of
Data in particular (Zaveri et al. 2016; Bizer and
Cyganiak 2009). These features are organized
into the following subcategories: (1) Trust, (2)
Accessibility, (3) Representativity, and (4) Con-
text/Task Specificity. Trust features relate to the
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verifiability of information, its correctness or be-
lievability, and the reputation of the publisher and
that of the dataset. Accessibility regards the facil-
ity of access to information and the versatility of
access methods, but also the degree of security
of information transactions, as well as the access
performance.

The features in the Representativity group pro-
vides information in terms of completeness, un-
derstandability, semantic accuracy, conciseness
(or redundancy), and consistency (i.e., presence
of contradictory information).

Finally, the Context/Task Specificity group in-
cludes features that measure data quality with
respect to a specific task.

Extraction Methods and Tools. For the features
in the Accessibility category, assessment methods
include: (1) exploiting dataset metadata and user
annotations to assess trust; (2) querying SPARQL
endpoints and analysing URIs to measure avail-
ability; (3) analyzing use of digital signatures
and provenance information to assess security;
(4) assessing latency and scalability in response
to the user requests to measure performance; and
(5) analyzing available serialization formats and
languages to assess versatility.

Representativity features can be assessed
through: (1) exploiting statistical distributions
to measure completeness; (2) detection of
human-readable labeling, metadata availability,
as well as communication channels to assess
understandability; (3) statistical methods and
crowdsourcing to measure semantic accuracy/-
correctness; (4) measuring the proportion of
unique elements at the schema and instance level
to assess conciseness; and (5) verification of the
schema definitions, correctness of the schema
usage, and identification of data inconsistencies
(e.g., through semantic constraints) to measure
consistency.

Context features can be assessed through rele-
vance, sufficiency, and timeliness (e.g., the age of
the data and its temporal validity as it is delivered
to the user) for a specific task or query.

Example tools to generate qualitative features
in several categories include WIQA (Bizer and
Cyganiak 2009) and ODPW (Umbrich et al.
2015).
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Provenance features. These features are seen as
contextual metadata that provide indicators about
the origin, timeliness, currency, and update cycles
of datasets. These are important characteristics
that allow to understand the origins of data, to
trace errors, and, ultimately, to establish trust.
Extraction Methods and Tools. Provenance
features can be extracted from the annotations
specified by the data provider via provenance
vocabularies using tools like WIQA and ODPW.

Links features. Links features are understood
as either the number of datasets, with which a
dataset is interlinked, or the number of triples in a
dataset, in which the subject and the object refer
to different datasets. We distinguish between (i)
explicit links (when datasets have linked instances
via owl:sameAs statements) and (ii) implicit
links (when datasets share topics or contexts, ex-
pressed, e.g., by an rdf s : seeAlso statement).

Extraction Methods and Tools. Features re-
lated to schema-level and instance-level links can
be accessed through the number of interlinked
external instances or datasets. These features can
be extracted by tools like voiDge (Bohm et al.
2011).

Licensing features. Licensing features com-
prise the type of license under which a dataset
is published, indicating whether reproduction,
distribution, modification, or redistribution is
permitted.

Extraction Methods and Tools. Features in the
licensing group are meant to be augmented man-
ually by the data provider and can be collected
from the dataset metadata using tools like ODPW.

Statistical features. This type of features may
refer to the size of a dataset, its coverage, average
number of triples, property co-occurrence, and
others. These characteristics can be measured at
the schema level (class/properties usage count (in
general, per subject and per object) or class/prop-
erties hierarchy depth) and at the instance level
(URI usage per subject (/object), triples having
a resource (/blanks) as subject (/object), triples
with literals, min(/max/avg.) per data type, etc.).
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Extraction Methods and Tools. Features from
this group can be extracted automatically by
applications like LODStats using statement-
streaming approaches (Auer et al. 2012). Exam-
ple statistics include frequencies of vocabulary
usage, average length of literals, and number of
namespaces used. ProLOD++ (Abedjan et al.
2014) supports different granularities of statistics
using clustering approaches prior to the statistics
generation.

Dynamics features. This category reflects
the dynamic aspects of a dataset and includes
features in the global, instance-specific, and
semantics-specific  categories. In principle,
every dataset feature can be dynamic, i.e.,
changing over time. However, the dynamic
aspects of a dataset are considered as separate
features describing data, while nonetheless
acknowledging their transversal nature (the
fact that they span over several of the feature
categories described above). These features
are organized into three subcategories. Global
features concern dynamicity aspects related to
life span, stability (as an aggregation of the
stability of multiple dataset characteristics), and
history of update (frequency, degree, and patterns
of change). Instance-specific features refer to
the level of growth of the entities in a dataset,
the stability of the identifiers (URIs), and the
links between entities. Finally, semantic-specific
features reflect changes related to structure,
domain, and vocabulary.

Extraction Methods and Tools. Global
dynamic features can be extracted automatically
from the SPARQL endpoints via tracking
changes using broadcasting or query techniques
as well as by regular crawling of LOD data
sources and statistical analysis of the crawls,
e.g., in Dyldo (Kifer et al. 2013). Instance-
specific dynamic features include observation
of resource referencing through notification
services, monitoring of links stability, and time-
travel tools to access archived representations of
the URIs. Note that the extraction of dynamic
features, as well as statistical, qualitative,
and links features, would in general require
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less domain expertize and can be extracted
automatically by applications in many cases. To
cope with the large scale of data during automatic
feature extraction, various sampling techniques
can be applied (Fetahu et al. 2014).

Vocabularies

Vocabularies for representing dataset profiles
range from general dataset metadata vocabularies
to specific vocabularies aimed at representing
particular features or feature categories.

The Vocabulary of Interlinked Datasets
(VoID) (Alexander et al. 2009) provides a core
vocabulary for describing datasets and their
links, following a similar rationale as the Data
Catalog (DCAT) vocabulary (http://www.w3.org/
TR/vocab-dcat/), which is partly derived from
Dublin Core. Both are widely used to generate
basic profiles (Ben Ellefi et al. 2017) and are
commonly extended with more feature-specific
vocabularies.

With respect to quality, the dataset quality
(daQ) vocabulary (http://purl.org/eis/vocab/daq)
(Debattista et al. 2014) and the Data Quality
Vocabulary (DQV) (https://www.w3.org/TR/
vocab-dqv/) provide complementary terms for
annotating DCAT dataset descriptions with
quality aspects and metrics. Fiirber and Hepp
(2011) describes the DQM Ontology (http://
semwebquality.org/dqm-vocabulary/vl/dgm), a
general vocabulary for representing data quality
features.

Regarding provenance, voidp (Omitola et al.
2011) builds on and extends VoID to describe
the provenance relationships of data across linked
datasets, while the provenance vocabulary (http://
trdf.sourceforge.net/provenance/ns.html) was de-
veloped to describe provenance of Linked Data.

From the perspective of archiving and long-
term preservation of data, the Data Dictionary

for Preservation Metadata (PREMIS) (http://bit.

ly/premisOntology) set of terms can be used
to describe the provenance of archived, digital
objects (e.g., files, bitstreams, aggregations, and
datasets).

Most notably, the PROV Ontology (PROV-0)
(http://www.w3.org/TR/prov-o/) was published
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as a W3C Recommendation to be a new quasi-
standard for representing provenance and is part
of a larger PROV Family of Documents (Missier
et al. 2013) created to support “the widespread
publication and use of provenance information of
Web documents, data, and resources.”

Links as important features of Linked Data
datasets are represented through a variety of
means, covering both schema-level and entity-
level links, e.g., instantiating VoID linksets
or using SKOS (https://www.w3.org/TR/2009/
REC-skos-reference-20090818/) as a formal
vocabulary for defining taxonomic and mapping
relations among both concepts and entities.
In addition, the Expressive and Declarative
Ontology Alignment Language (EDOAL) (http://
alignapi.gforge.inria.fr/edoal.html) enables the
representation of correspondences between
entities and concepts in different datasets
beyond mere mapping relationships (equivalence,
subsumption) using complex formalisms.

General resource metadata vocabularies
provide basic features to indicate licensing
information, including the DCMI Metadata
(http://dublincore.org/documents/dcmi-
terms), featuring dedicated license and rights
properties.

These are complemented through dedicated
licensing vocabularies, such as ccREL (REL, or
rights expression language) vocabulary (https://
wiki.creativecommons.org/wiki/CC_REL), which
facilitates the representation of Creative
Commons licenses in RDF. Similarly, the
Open Digital Rights Language (ODRL) vocab-
ulary (http://www.w3.org/community/odrl/two/
model/) enables the fine-grained specification
of licensing terms (rights, policies, etc.) in a
machine-readable format.

To support the representation of dataset
statistics, vocabularies such as the RDF Data
Cube vocabulary (http://www.w3.org/TR/vocab-
data-cube), SDMX (http://sdmx.org), or SCOVO
(http://vocab.deri.ie/scovo) are used. The VolD
guidelines, for instance, recommend the use
of SCOVO to share statistical dataset features
(Alexander et al. 2009). Auer et al. present
LODStats (Auer et al. 2012), a framework
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for dataset analytics, which introduces a set
of 32 statistical features and uses the most
recommended combination of VoID and the Data
Cube vocabulary.

While there does exist a wealth of methods
for assessing characteristics related to the
dynamic and evolution of datasets, including
the Talis Changeset vocabulary (http://vocab.
org/changeset/schema.html), the Delta vocab-
ulary  (http://www.w3.0rg/2004/delta), RMO
introduced by Graube et al. (2014), or the
Triplify Update vocabulary (http://triplify.org/
vocabulary/update), most vocabularies in this
area are dedicated to representing the actual
evolution of a dataset, rather than higher-level
observations about dynamics. A more abstract
approach is offered by the Dataset Dynamics
(DaDy) vocabulary (http://vocab.deri.ie/dady),
which allows the representation of more abstract
dynamics-related observations for a specific
dataset, to be used in conjunction with VoID.

Applications

This section illustrates the use of RDF dataset
profiles in several cross-domain applications
without being exhaustive.

Data linking applications aim to annotate,
disambiguate, and interlink entities and events by
often using natural language processing (NLP)
techniques and external sources including Linked
Data. In this context, popular services include
DBpedia Spotlight (Daiber et al. 2013) and Ba-
belfy (Moro et al. 2014). Data linking appli-
cations typically use features from the General
category, such as topics, domains, or representa-
tive elements.

Applications for data curation, cleansing,
and maintenance rely on or generate profile
features in order to improve the overall data
quality. This includes the application of statistical
methods for outliers detection (correcting errors
in numerical values) (e.g., in Paulheim and Bizer
2014), link correction, as well as error detection
and correction by using existing links. Features
from the Statistical, Provenance and Dynamics


https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html
http://dublincore.org/documents/dcmi-terms
http://dublincore.org/documents/dcmi-terms
https://wiki.creativecommons.org/wiki/CC_REL
http://www.w3.org/community/odrl/two/model/
http://www.w3.org/community/odrl/two/model/
http://www.w3.org/TR/vocab-data-cube
http://www.w3.org/TR/vocab-data-cube
http://sdmx.org
http://vocab.deri.ie/scovo
http://vocab.org/changeset/schema.html
http://vocab.org/changeset/schema.html
http://www.w3.org/2004/delta
http://triplify.org/vocabulary/update
http://triplify.org/vocabulary/update
http://vocab.deri.ie/dady
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categories are largely used in this group of ap-
plications. Note that new features can also be
generated as an outcome of these applications.

Schema inference applications have been
developed recently, aiming at filling the gap gen-
erated by the lack of explicit vocabularies or
by incomplete specifications (e.g., Paulheim and
Bizer 2014; Konrath et al. 2012). Statistical char-
acteristics of datasets, together with Provenance
features, play an important role for this type of
applications.

Applications for query answering over dis-
tributed data comprise the generation of ordered
query plans against the mediated schema on a
number of data sources. In order to guide dis-
tributed query processing, existing applications
rely on indices of varying granularity including
schema-level indices and data summaries (e.g.,
Harth et al. 2010). The majority of existing query
applications rely on the General and Statistical
characteristics at the schema and data levels. Fi-
nally, quality-aware query applications also take
into account features from the Qualitative cate-
gory (e.g., completeness and accuracy).

Reuse of datasets can become apparent when
datasets are linked to from other datasets. In this
context, Links features can provide an indication
of dataset reuse (Endris et al. 2017).

Future Challenges

Overall, applications of the whole spectrum
of dataset profile feature categories can be
found, including general, qualitative, statistical,
and dynamic features discussed in this entry.
However, individual applications as well as tools
commonly use or support only a very limited
number of features. Typical stakeholders of the
discussed techniques are both data providers,
such as archival organizations, libraries, or
individual data hosters, and data consumers,
for instance, application developers or (domain-
specific) data retrieval and search engines. In
addition, with respect to Web-scale dataset
discovery, the heterogeneous and fragmented
landscape of feature definitions and applied
vocabularies hinders the automated interpretation
of dataset profiles, requiring further effort for
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consumers of dataset profiles for interpreting,
mapping, and disambiguating existing profiles.

The growing adoption of schema.org markup,
particularly of scientific, datasets, driven
also by existing community efforts such as
the W3C community group on schema.org
for Datasets (https://www.w3.org/community/
schemaorg4datasets/) has led to a widespread
availability of semi-structured dataset annota-
tions. However, while this constitutes an unprece-
dented source of dataset-centric information, the
diverse and often poorly structured nature of
embedded markup (Yu et al. 2017) poses the need
for further processing of such dataset profiles, for
instance, through disambiguating, resolving, and
augmenting dataset descriptions.

While reconciliation of dataset profiles
is a general issue of relevance beyond just
embedded Web markup, future work has to
provide a stronger emphasis on obtaining,
resolving, consolidating, and cleaning datasets
profiles from a wide variety of signals, including
structured RDF dataset annotations, embedded
Web page markup, but also less explicit indicators
observable on the Web, for instance, in dataset
registries, unstructured Web pages, or scientific
publications.

Cross-References
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Data Quality and Data Cleansing of Semantic
Data
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Definitions

RDF serialization is the process of writing down
RDF graphs into a machine-readable format.
RDF formats mainly differ in the concrete
syntax to serialize RDF statements (called
“triples”) and how to group or nest a set of
statements, influencing the amount of storage
space and bandwidth required for preserving and
exchanging such data. These differences can be
rather marginal for small RDF graphs, where the
selection of a particular format is mostly driven
by user preferences, the set of tools managing
the RDF format, and the interoperability with
other applications. In contrast, choosing an
adequate serialization format can affect the
overall performance and present important
scalability issues when managing Big Semantic
Data collections.

Additional challenges arise in scenarios where
triples must be annotated with information about
their context, such as provenance, trust, or qual-
ity information, to name but a few. The most
standard solution in RDF is to consider named
graphs, i.e., different RDF graphs are managed
under a single RDF dataset. Diverse RDF formats
have been proposed to cover this scenario and
serialize annotated statements (called “quads”),
at the cost of paying additional costs to represent
triples that can be repeated across graphs.

This situation is particularly challenging when
different versions of an RDF graph must be
preserved, given that graphs can be near-copies
of others. This problem is commonly referred to
as RDF archival, where specific archival policies
have been proposed in recent literature.

This entry provides a historical review of RDF
serialization formats to understand their evolution
over the years. Basic features are covered for
each format, paying special attention to its ca-
pabilities for quad serialization. XML-based and
text-oriented formats are first introduced to illus-
trate how RDF was originally used for metadata
description. Their limitations led to JSON-based
syntaxes, which overcome some processing chal-
lenges, but do not scale to the high demanding
needs of Big Semantic Data management. This
fact motivates the proposal of binary formats,
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able to deal with the storing and exchanging
needs of large RDF collections. Finally, RDF
archival proposals are surveyed and we conclude
presenting open research trends.

Overview

RDF  (Resource Description Framework)
(Schreiber and Raimond 2014) proposes a
logical model for expressing information about
physical (e.g., people, buildings, vehicles, or
pictures, among others) and abstract (e.g., films,
songs, cities, etc.) resources. The information
is represented as ternary relations, called RDF
triples (or statements), which are organized into
hyperlinked clouds, referred to as RDF graphs.
The resulting knowledge is typically oriented for
machine consumption. In the following, the main
RDF concepts are briefly introduced.

RDF Triple. RDF statements are built on a sim-
ple (subject, predicate, object) structure called
RDF triple (aka statement), which sets a par-
ticular value (the “object”) for a given feature
(“predicate”) of the resource (“subject”) being
described. For instance, an informal represen-
tation of a triple which sets the birth date of
the singer Bruce Springsteen can be (Bruce
Springsteen, is born on, 1949-09-23).

The RDF data model (Cyganiak et al. 2014)
establishes some restrictions about the universe
of possible values for each component of a triple.
Thus, a triple (s, p,0) € ({UB)xIx(IUBUL),
where [ stands for IRIs, B for blank nodes, and
L for literals. These mutual disjoint sets of RDF
terms are described as follows:

IRIs. International Resource Identifiers (IRIs)
are used to identify resources in RDF. For
instance, <http://example.org/Springsteen> is
used to name the aforementioned resource
about Bruce Springsteen. Note that IRIs can
also be used to identify predicate and object
values of a triple; e.g., <http://example.org/p/
birthDate> is a valid IRI to identify the corre-
sponding “birth date” property. IRIs are global
identifiers, so they can be reused to provide
additional information about a resource or to


http://example.org/Springsteen
http://example.org/p/birthDate
http://example.org/p/birthDate
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convey the same meaning, e.g., a birth date
feature in a different context.

Blank Nodes. RDF uses blank nodes (also
called anonymous nodes) to declare the
existence of a resource without using a
particular IRI. Blank nodes can play both
subject and object roles, while they never
mean that the IRI is unknown for the
corresponding resource. In turn, the scope
of the blank node is limited to the RDF graph
where it is used.

Literals. Final values (numbers, names, dates,
etc.) are expressed as RDF literals, always
used as objects. Literals are declared by de-
fault as strings (a language tag can optionally
be associated in this case), but other datatypes
can be used. The value “1949-09-23” is an
example of an RDF literal.

Figure 1 illustrates the above RDF concepts.
It comprises three triples that describe a new
resource about Bruce Springsteen, identified
by the aforementioned IRI <http://example.
org/Springsteen>. Two of these triples set his
birth name and birth date (using IRIs <http://
example.org/p/name> and  <http://example.
org/p/birthDate>, respectively), i.e., “Bruce
Frederick Joseph Springsteen” and “1949-
09-23.” The third triple connects the new resource
with an existing description of Bruce Springsteen
in DBpedia (<http://dbpedia.org/page/Bruce_
Sprinsgteen>), a conversion of Wikipedia to
RDF. Note that the predicate reuses the sameAs
property, described in the OWL ontology.
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RDF is traditionally modeled as a labeled
directed graph (as seen in the previous figure) be-
cause it provides an easy-to-understand (visual)
explanation of the RDF data. This fact motivates
the adoption of this concept as part of the RDF
model.

RDF Graph. An RDF graph G is a set of triples
declared under the same scope. Thus, a triple
belongs to an RDF graph, and a graph contains
a well-determined set of triples.

It is worth noting that an RDF graph is only a
“mental model,” and its triples must be serialized
for preservation or exchanging purposes. Each
serialization format has its particular features, but
all ensure RDF graphs to be effectively written
down.

RDF 1.1 extends the original model to sup-
port grouping RDF graphs within a single RDF
dataset, enabling triples from different contexts
to be managed together.

RDF Dataset. An RDF dataset D is a collec-
tion of RDF graphs, where one of them is
considered the ‘“default graph.” The dataset
contains zero or more “named graphs.” Each
named graph is a pair consisting of an IRI or
a blank node (the graph name) and an RDF
graph. Graph names are unique within the
RDF dataset, and blank nodes can be shared
between graphs.

Figure 2 shows an RDF dataset which com-
prises two RDF graphs (note that a prefix notation
is used to compact their IRIs). The first graph

http://example.org/p/name

v

“Bruce Frederick Joseph Springsteen”

xhttp: //example.org/p/birthDate

http: //example. org/&pri_nﬂ/

http: //www.w3.0xrg/2002/07/owl#sameis

“1949-09-23~

http://dbpedia.org/page/B ruc'.e_s:p@

-

RDF Serialization and Archival, Fig. 1 RDF graph which comprises three triples about Bruce Springsteen


http://example.org/Springsteen
http://example.org/Springsteen
http://example.org/p/name
http://example.org/p/name
http://example.org/p/birthDate
http://example.org/p/birthDate
http://dbpedia.org/page/Bruce_Sprinsgteen
http://dbpedia.org/page/Bruce_Sprinsgteen

1388
PREFIX ex: <http://example.org>
PREFIX exp: <http://example.org/p/>
PREFIX db: <http://dbpedia.org/page/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dc: <http://dublincore.org/2012/06/14/dcterms#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
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1

1

1

: -
I .
T db:Bruce_Springsteen
1

<http://example.org/graph/dbpedia/>

RDF Serialization and Archival, Fig. 2 RDF dataset which comprises two RDF graphs

(dashed) is identified by the IRI <http://example.
org/graph/artists> and includes the set of three
triples showed in Fig. 1. The new named graph
(solid background) declares three more triples
about Bruce Springsteen, one of them shared with
the original graph: (ex:Springsteen, owl:sameAs,
db:Bruce_Springsteen).

The notion of RDF dataset also applies to a
logical level. However, serializing triples from a
dataset brings an additional requirement, as their
context must be preserved.

RDF Quad. An RDF quad is an extended state-
ment that includes the corresponding triple
and the name of the graph that declares it
(aka context). More formally, an RDF quad
g is a quadruple (subject, predicate, object,
graph), where graph refers to the name of a
graph which exists in the dataset. Thus, a quad
(s,p,0,8) e {UB)xIx(UUBUL)X
(I U B).

Serialization Formats

The RDF model describes the previous concepts
using an abstract syntax, but it does not restrict
how they are effectively serialized. Thus, RDF
data can be written down in different ways, while

several serialization formats are standards and
widely accepted by the Semantic Web commu-
nity. These formats allow RDF graphs to be
effectively serialized, but only some of them are
able to cover particular RDF dataset needs.

RDF /XML (Gandon and Schreiber 2014) was
released hand in hand with the initial W3C RDF
Recommendation. In early dates, RDF/ XML was
meant to be an ideal first serialization for RDF
graphs as it could leverage all XML-based solu-
tions. However, RDF/XML overloads the repre-
sentation with verbose human-focused informa-
tion, which can serve the intended exchanging
purposes, but only on a small scale. Nonethe-
less, RDF/XML includes some naive compacting
features, such as the possibility to (i) implicitly
create blank nodes without giving a concrete
identifier, (ii) omit nodes and place values as
property attributes in XML, (iii) abbreviate IRI
references via base IRIs (namespaces) and rel-
ative references, and (iv) create collections to
define a set of terms related to a subject.

Figure 3 shows an example of an RDF/XML
serialization that encodes triples from Fig. 1. In
practice, the result is an XML document, which
can be parsed, processed, and queried using well-
established technologies (DOM, XPath, XSLT,


http://example.org/graph/artists
http://example.org/graph/artists
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etc.). However, its document orientation is an
important weakness to deal with large amounts of
RDF triples. Besides, it does not support named
graphs.

Trix (Carroll and Stickler 2004) proposes an-
other XML syntax for RDF which organizes
triples by graphs, allowing multiple graphs to be
serialized into the same document. It is a first ap-
proximation to an RDF dataset serialization, but
the resulting format shows the same drawbacks
that RDF/XML.

XML-based formats have lost relevance, and
their usage is limited to small RDF graph serial-
izations (e.g., descriptive metadata about a Web
page).

N3 (Notation3) (Berners-Lee and Con-
nolly 2011) is a format designed with human
readability in mind. Although it may makes sense
in the first times of RDF, managing and process-
ing Big Semantic Data are far from any human
capability. However, this format breaks with the
XML predominance and introduces some inter-
esting constructors which tackle particular RDF
features.

sN3 proposes the use of namespaces, as in
XML. It is an effective compaction mechanism
which allows relative IRIs to be declared to
their corresponding namespace. On the other
hand, N3 also introduces constructors for triples
encoding in the form of adjacency lists: predicate
lists allow subjects to be written only once
for all triples containing it, while object lists
concatenate all object values related with a
pair (subject, predicate), which is written
once.

This format proposes some other constructors
which goes beyond the needs of RDF serializa-
tion, making the format relatively complex for
such purpose. N3 does not support quads.

N-Triples (Becket 2014) is an extremely
simple line-based syntax, easy to parse and gener-
ate. In essence, the subject, predicate, and object
terms are separated by a white space, and the
triple is terminated with a “” followed by a
new line. IRIs are enclosed in “<” and “>" and
literals in “” )’ and blank nodes start with “_:.”
Figure 3 shows an N-Triples serialization that
basically lists the corresponding triples. Note that
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N-Triples writes down each full term as many
times as it is used in a triple, resulting in a
simple but extremely verbose serialization due to
long-term repetitions. As a result, N-Triples files
need much more space than others, which can
result in scalability issues for Big Semantic Data
management.

On the other hand, N-Triples can be easily
extended to support quad serialization. It only
needs the graph name to be appended to the triple.
N-Quads (Carothers 2014) formalizes this ap-
proach, featuring the same characteristics and
limitations as N-Triples.

Turtle (Beckett et al. 2014) is a widely used
format that exploits the previous experience of
N3 and N-Triples. On the one hand, it delimits
the expressive power of N3 to only serialize valid
RDF graphs. On the other hand, it addresses
N-Triples drawbacks to consolidate a more prac-
tical format.

Figure 3 also shows a Turtle excerpt that
illustrates some of its more relevant features.
For instance, it shows the use of namespaces.
Note that each one is declared by the eprefix
constructor, while IRIs in the terms are rewritten
in relative form to their corresponding names-
paces. The figure also illustrates the predicate list
encoding proposed in N3; e.g., http://example.
org/Springsteen is written once, but it plays the
role of a subject for three different triples. Turtle
supports object lists too, and it introduces more
constructors and different kinds of syntactic sugar
to alleviate RDF verbosity.

Although Turtle is a popular format, it does
not support quads. As in the previous case, a new
format, called TriG (Bizer and Cyganiak 2014),
extends Turtle to allow RDF dataset serialization.
It basically encloses triples that belong to each
named graph in the dataset.

JSON-LD (Sporny et al. 2014) exploits JSON
features to serialize RDF. It comes with the ad-
vantage of using a well-established scheme that is
easy to parse and widely accepted by Web APIs.
The main focus, then, is to be easy for humans to
read and write and easy for machines to parse and
generate automatically. JSON-LD is designed to
be usable directly as JSON, with no knowledge of
RDF. Note that JSON-LD supports named graphs
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natively, and it is gaining increasingly attention
by the community.

Key Research Findings

The above serialization formats have been suc-
cessfully used for managing small- and medium-
sized RDF graphs. However, the steady adoption
of RDF, in particular in the context of linked data
(Bizer et al. 2009), brings larger graphs including
hundreds of millions and even billion triples. For
instance, the latest version of DBpedia (2016—
10), an RDF conversion of Wikipedia, consists
of roughly 13 billion triples, and LOD Laun-
dromat (Beek et al. 2014), a service crawling
RDF datasets, reports that around 4000 datasets
contain more than 1 million triples.

In addition, named graphs are increasingly in-
corporated to consolidate complex RDF datasets.
However, formats for quads are less mature and
also suffer from the lack of scalability. This
problem is particularly challenging when the cor-
responding RDF dataset is a historical archive of
a graph, containing its different states over the
time.

This section delves into detail of the most
innovative binary serialization formats, designed
with volume issues in mind in order to solve the
aforementioned scalability issues. Some of them
also cover quad management, although manag-
ing context information is a challenge by it-
self, which is also reviewed below. Finally, RDF
archival foundations are introduced, summarizing
the most recent approaches.

Binary Serialization and Compression

Traditional RDF formats were not designed
for a scenario of large-scale and machine-
understandable Web of data. Their syntaxes
have constructors which organizes RDF
statements in a human-readable way that adds
unnecessary overheads for storing, exchanging,
and consuming RDF graphs. Although this
scalability issue can be partially solved through
universal compression (e.g., gzip or bzip2) over
such formats, specific RDF binary serializations
and compressors have been also proposed.
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These tailored solutions mostly focus on taking
advantage of particular features of RDF data
in order to reduce the verbosity and produce
important space savings at large scale. In the
following, the three most prominent binary
serializations are briefly reviewed: HDT, RDF
Binary, and RDF4J. We then list solutions
focused on streaming and provide a summary
of RDF compression techniques to provide a
big picture of the current state of the art (the
interested reader can find a chapter specifically
devoted to RDF compression).

The HDT (Fernandez et al. 2011, 2013) format
proposes a binary syntax for RDF data focused on
producing very compact serializations to speed
up data exchange, but also efficient data pars-
ing and access. HDT minimizes the repetition
of terms (IRIs, blank nodes, and literals) using
the so-called HDT Dictionary, which assigns a
numerical ID to each different term. Then, the
graph structure of the dataset is managed as a
graph of (term) IDs, in the HDT Triples com-
ponent. Both dictionary and triples components
are then compacted (e.g., looking for common
string prefixes in the terms) and partially indexed.
HDT is one of the most widespread RDF binary
formats, mainly due to the HDT adoption as a
compact data store for LOD Laundromat (Beek
et al. 2014), and the data back end of lightweight
APIs such as Triple Pattern Fragments (Verborgh
et al. 2016).

HDT traditionally focuses on representing
single RDF graphs. A recent approach, named
HDTQ (Fernandez et al. 2018), extends HDT to
represent named graphs, keeping compact and
retrieval features.

The RDF binary format (RDF Binary
2017) is an alternative solution proposed by the
well-known Jena semantic framework. It consists
of very simple mappings to encode triples in
Apache Thrift (Apache Thrift 2017), which
provides a scalable cross-language platform. In
this case, rather than compactness, RDF binary
mostly focuses on avoiding to parse the textual
RDF triples; hence, the overall processing is
sped up. RDF binary supports both RDF graphs
and RDF datasets (named graphs) encoded as a
stream of quads.



1392

The RDF47j (RDF4j 2017) binary format is
proposed and used within the Eclipse RDF4]
framework. The RDF4j format partially com-
bines both previous strategies. On the one hand, it
mostly tackles parsing and processing efficiency,
providing a concrete syntax to delimit the extent
of each term and triple. On the other hand, it
allows for an in-line declaration of a dictionary,
where a term is mapped to an ID which can be
referred in another triple. Nonetheless, terms are
not compressed themselves (e.g., using prefixes
such as in HDT); hence, only partial compression
is achieved.

Compression is another way of serializing
RDF. As explained, combining universal
compression and any serialization format is a
common practice, but different compressors have
been designed from the scratch to deal with
particular RDF requirements. RDF compressors
can be classified into physical and logical
compressors. Physical compressors (Ferndndez
et al. 2013; Swacha and Grabowski 2015;
Alvarez-Garcia et al. 2014; Brisaboa et al.
2015) exploit symbolic/syntactic redundancy,
removing term repetitions and compacting
repetitive subgraph structures underlying to the
dataset. In contrast, logical compressors (Iannone
et al. 2005; Meier 2008; Joshi et al. 2013;
Venkataraman and Sreenivasa Kumar 2015)
focus on semantic-based redundancy, avoiding
to represent triples that can be inferred from
others in the RDF graph.

In addition, diverse binary formats and com-
pressors have been proposed for RDF streams,
i.e., a continuous flow of RDF data. In this case,
the challenge consists of exploiting the trade-
offs between the space savings achieved by the
format and the latency introduced in the creation
and parsing processes. Streaming HDT (Hase-
mann et al. 2012) adapts HDT to simplify the
process by restricting the carried metadata and
the maximum length of the dictionary; hence,
shorter IDs are used. RDSZ (Fernandez et al.
2014b) uses differential encoding to compact the
similarities between consecutive triples in the
stream. ERI (Ferndndez et al. 2014a) is an RDF
stream compressor that adapts the W3C Efficient
XML Interchange (EXI) format (Schneider et al.
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2014) for RDF data. Note that EXI encoding can
also be directly applied over an RDF/XML or
JSON serialization. PatBin (Lhez et al. 2017) and
FSSD (Karim et al. 2017) perform dictionary-
based compression together with pattern-based
encoding.

Context Information

As stated, graph names are increasingly used
to capture additional information such as trust,
provenance, temporal information and other an-
notations (Carroll et al. 2005; Zimmermann et al.
2012). Although there exist standard RDF syn-
taxes (such as N-Quads, Trig or JSON-LD) that
represent RDF named graphs, serializing anno-
tated RDF data (quads) efficiently remains an
open challenge.

In spite of general approaches, such as AnQL
(Zimmermann et al. 2012), most solutions focus
on managing provenance information, as this is
at the core of the linked data distributed philos-
ophy (Bizer et al. 2009). Besides the aforemen-
tioned named graphs and the standard RDF reifi-
cation (Schreiber and Raimond 2014), i.e., using
the RDF vocabulary (rdf:Statement, rdf:subject,
rdf:predicate, and rdf:object) to refer to state-
ments, the main proposals are singleton prop-
erties (Nguyen et al. 2014) and N-ary relations
(Noy et al. 2006). The former introduces unique
predicates that are then annotated with the meta-
data of the triple it belongs to. The latest, used in
Wikidata, represents a relation between a subject
and object with a new resource, which is then
connected to the subject, on the one hand, and
predicate and object, on the other. Further infor-
mation can be attached to the new resource in
order to annotate the statement.

In addition, two recent solutions have been
proposed. (Hartig 2017) extends RDF with a no-
tion of embedded triples (encoded between ‘<’
and >>’), which can be directly used as subject
or object of other triples. NdFluents (Giménez-
Garcia et al. 2017) creates unique versions of
the subject and the object for each annotated
triple, which are then linked to a context re-
source and to the original subject and object
resources.
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RDF Archival

RDF archival is a particular instance of the prob-
lem of managing context information. In this
case, the context is set by the moment when a new
version of an RDF graph is released. In general,
RDF data are not static but evolve naturally, with-
out centralized monitoring nor further advise,
following the scale-free nature of the Web. Thus,
RDF archiving emerges as a novel challenge
aimed at assuring quality and traceability of RDF
data over time.

On a high level, the World Wide Web Con-
sortium (W3C) provides basic guidelines on how
to perform data versioning on datasets published
in the Web (Léscio et al. 2017). The set of
recommendations includes (i) providing a version
indicator (e.g., via owl:versionlnfo); (ii) serving
different versions via the Memento framework
(de Sompel et al. 2010), which can provide access
to prior states of RDF resources using date-
time negotiation in HTTP; and (iii) providing the
changes made in each version. Nonetheless, these
recommendations are generic and do not restrict
how RDF data versions are stored or queried
across time. Initial works on RDF archiving poli-
cies and systems are starting to address these
issues, proposing different solutions to efficiently
archive and query different versions of RDF data.

Main efforts on RDF archiving fall in one of
the following four storage strategies: independent
copies (IC) and change-based (CB) and
timestamp-based (TB) and hybrid-based (HB)
approaches.

Independent copies (IC) (Klein et al. 2002;
Noy and Musen 2004) is the most naive approach
where each version (aka snapshot) is managed as
a different, complete graph. On the one hand, IC
faces scalability problems as static information is
duplicated across the versions. In addition, some
operations such as knowing the difference be-
tween versions require non-negligible processing
efforts. On the other hand, version materialization
(retrieve certain version) is as efficient as query-
ing a single snapshot.

Change-based approach (CB) (Volkel et al.
2005; Dong-Hyuk et al. 2012; Zeginis et al. 2011)
partially addresses the space issues of IC by
storing the differences (deltas) between versions.

1393

In contrast, CB requires additional computational
costs for retrieving a particular version given that
deltas need to be propagated.

Timestamp-based approach (TB) (Cerdeira-
Pena et al. 2016; Gutierrez et al. 2007;
Zimmermann et al. 2012) annotates each triple
with its temporal validity, i.e., the version.
Compression techniques can be used to minimize
the space overheads, e.g., using self-indexes, such
as in v-RDFCSA (Cerdeira-Pena et al. 2016), or
delta compression in B+Trees (Zaniolo 2016).

Hybrid-based approaches (HB) (Stefanidis
et al. 2014; Neumann and Weikum 2010; Zaniolo
2016) combine previous policies to inspect
other space/performance trade-offs. In particular,
the hybrid IC/CB approach (Dong-Hyuk et al.
2012; Meinhardt et al. 2015; Stefanidis et al.
2014) follows a CB solution where full version
materialization is additionally provided in some
intermediate steps; hence, delta propagation is
mitigated. In contrast, other practical approaches
(Graube et al. 2014; Neumann and Weikum
2010; Vander Sander et al. 2013; Zaniolo 2016)
follow a TB/CB approach in which triples can
be time-annotated only when they are added
or deleted. Although this reduces the space
needs (as it manages less annotations), version
materialization requires to rebuild the delta
similarly to CB.

Future Directions for Research

As a result of standardization efforts by the
Semantic Web community, there are many
diverse standard “plain” RDF serializations
available. Despite potential future trends that may
result in adaptations for RDF (such as JSON-LD,
adapted from JSON), most research efforts focus
on efficient representation of annotated triples,
in particular to model provenance information
(Giménez-Garcfia et al. 2017; Hartig 2017).

RDF binary formats and compression have
also emerged as active research and development
fields over the past years. The main reason is
that (i) current plain RDF formats are dominated
by a human-centric view and suffer from scal-



1394

ability problems at large scale and (ii) general
compressed solutions still miss some types of
redundancy underlying to RDF data. In this re-
gard, there is still room for hybrid compressors
leveraging syntactic and semantic redundancies.
Then, RDF self-indexing (i.e., compressed and
indexed RDF data) is still a main direction for
research, in particular in the unexplored field of
RDF streaming.

Finally, the community is just starting to face
serious scalability issues for RDF archival. In
the absence of a scalable archival approach at
Web scale, RDF data change and vanish without
further notice nor trace of previous versions.
Future directions in this regard include further re-
search on scalable archival methods (potentially
distributed) as well as efficient mechanisms to
resolve structured cross-time queries.
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Knowledge

Definitions

Reasoning is the process of deriving new conclu-
sions from knowledge bases using a series of log-
ical steps. Reasoning at scale refers to the ability
of applying this process to very large knowledge
bases, such as modern knowledge graphs that are
available on the Web.

Overview

The Web contains a very large amount of semi-
structured datasets that cover encyclopedic
knowledge, social or co-authorship networks,
experimental results, etc. This data is encoded
using RDF (Brickley et al. 2014), and it is
interlinked to each other following the principles
of linked open data, thus forming a large network
of datasets called the Web of Data (WoD) (Bizer
et al. 2009).

Automated reasoning can derive a wealth of
nontrivial knowledge from these datasets, which
can be used, for instance, to augment the WoD
with new knowledge or to detect inconsistencies.
Unfortunately, the large size of the WoD makes
reasoning a challenging task. In fact, the datasets

Real-Time Streaming Benchmarks

might be too large to be stored in a single ma-
chine, requiring thus some form of distributed
computing. Moreover, parallelizing the compu-
tation is not trivial due to factors like the input
skewness or special corner cases that require
sequential processing.

What constitutes the state of the art for rea-
soning on a large scale? To answer this question,
this chapter offers a broad overview of the most
recent efforts to execute rule-based reasoning on
large inputs. More in particular, it describes the
most important optimizations that can be applied
to improve the efficiency of reasoning. Some
of these optimizations work only with specific
rules, while others are more generic. Even though
none of them work with all possible inputs, in
practice they turned out to be very effective as
they enabled reasoning on large knowledge bases,
with up to 100 billion triples in the largest exper-
iments.

What Is Scale?

Generally speaking, the term scalability refers to
the ability of a system to handle larger instances
of a given problem. There can be several reasons
that hinder the scalability of a system. First,
the problem might have an unfavorable compu-
tational complexity which precludes termination
within a reasonable time. Second, the algorithms
might be poorly implemented. In this case, the
system cannot scale well despite the problem is
tractable. Third, the hardware might not have
enough resources to carry on the computation.
Scalability is thus a property that can be judged
from three different angles: the theoretical com-
plexity, the implementation, and the hardware
requirements.

Before discussing the state of the art and de-
scribe how it deals with these challenges, it is im-
portant to define more precisely what reasoning is
supposed to compute. Let KB be a generic RDF
dataset, that is, a set of RDF statements. This
dataset can be represented as a labeled directed
graph where each triple (s, p, o) maps to an edge
that connects s to o and is labeled with p. These
graphs are typically called knowledge graphs. Let
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KG = (V, E) be such a knowledge graph where
V is the set of entities and E the labeled edges
that connect the entities. Given in input a knowl-
edge graph KG, the goal of reasoning is to derive
new knowledge that can be inferred from KG.
This knowledge takes the form of new triples
which can be logically deduced from the KG. For
now, it is assumed that V' is complete, i.e., KG
already contains all the entities of interest. With
this assumption in mind, then the triples derived
from reasoning can be represented by new edges
in KG.

The derivation of new triples is determined by
a set of rules, which must be provided as input.
Rules are expressions of the form

By,....,B, - H (1)
where B, ..., B, are called atoms. An atom is
an expression p(x) where p is a predicate and
X1,...,Xm 1s a tuple of terms that
can be either variables or constants. A
fact is an atom without any variable. In
our context, facts are used to represent the
KG. They can be unary (e.g., to express
the isA relation — Person(Mark)), binary
(e.g.,livesIn(Mark, Amsterdam)), or ternary
(e.g., T(Mark,livesIn, Amsterdam)). The
set of atoms By, ..., By is called the rule’s body,
while H is the rule’s head.

Notice that rules can be more complex than
in (1). For instance, some body atoms might be
negated, or the head might contain a conjunction
of multiple atoms. All scalable approaches which
will be discussed in this chapter assume that
rules only contain positive atoms and only one
atom occurs in the head of the rule. Moreover,
they assume that every variable in the head must
also appear in the body (safeness condition).
The reason behind these constraints is that they
simplify the computation. For instance, negation
can introduce non-determinism, while dropping
safeness might lead to nontermination.

The computation of the rules can be formal-
ized as follows. Let I be a generic database of
facts (i.e., the input KG); o be a substitution,
i.e., a partial mapping from variables to other
variables or constants; and » € P be a rule of the

X =
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form (1) in the program P. Then, r(I) = {Ho |
Bio,...,B,o € I} is the set of derivations that
can be derived from [ using r and P(I) =
U,ep r(1) is its extension to all rules in the pro-
gram. The exhaustive application of all rules can
be defined recursively by setting P°(/) = I and
Pit(I) = Pi(I) U P(P(I)). Since the rules
are safe and the set of constants is finite, there
will be a j s.t. P/*1(I) = P/(I). In this case,
P/ (1) is called the closure or materialization of
I with P.

Materialization with Fixed Rules

Ontological languages are used to serialize
semantic relations in RDF knowledge bases in
a machine-readable format. For instance, they
allow the user to define various semantic relations
like subsumption between classes (e.g., Student
is a subclass of Person) or specify that a relation
is transitive (e.g., ancestorOf or partOf).

Ontological statements like the previous two
examples can be translated into rules by either
considering the standard constructs of the lan-
guage or by also including the ontology at hand.
The following example is useful to understand
this difference.

Example 1 Let us assume that the KG

contains the following ontological statements:

(:Bob, isA, :Actor) and (:Actor,soc,:

Man) where soc is an abbreviation for the

standard RDF schema IRI of class subsumption.
A rule of the first type could be

T(A,isA, B), T(B,soc,C)

— T(A,isA,C) 2)
while a rule of the second type could be
isA(A, :Actor) — isA(A, :Man) (3)

In the first case, rule (2) simply translates the
inference that it is possible to obtain considering
the isA and soc relations. The rule is domain-
independent and can be applied to any KG. In
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contrast, rule (3) is simpler because it does not
require any data join but it has the disadvantage
that it can be applied only to the input dataset.

In this chapter, rules of the first type are called
standard rules since they are derived by standard
ontological languages like RDF schema (Brick-
ley et al. 2014) or OWL (Motik et al. 2009).
Standard rules are important because they are
universal in the sense that they do not depend
on a particular input. Therefore, it is possible
to introduce tailor-made optimizations to speed
up their execution without any loss of generality.
However, there are cases when nonstandard rules
are preferable since they might be easier to exe-
cute. The remaining of this section will describe
five optimizations which are crucial to enhance
the scalability of reasoning using standard rules.
The next section will address scalability with
nonstandard rules.

Split instance/schema triples. The first,
and perhaps most effective, optimization on
current knowledge bases consists of splitting
the input statements between the ones that
describe instances and the ones that describe the
schema. The last type of statements is typically
ontological statements that use constructs from
the language (e.g., OWL). One key property of
current large KGs is that they contain many more
instance statements than schema ones, and this is
important because there are many standard rules
which have two body atoms, one which matches
instance statements while the other matches
schema ones (Urbani et al. 2012). Rule (2) is
such an example: Here, typically there will be
many more triples of the form 7(A4,isA, B)
than of the form T'(B, soc, C).

A strategy to parallelize the computation of
such rules is to simply range-partition the in-
stance triples and assign each range to a different
processor. If the processors operate in separated
memory spaces (e.g., different machines), then
schema triples can be replicated on each space.

After the partitioning is done, the rule can
be executed in parallel without any intermediate
node communication. An example of such com-
putation is graphically depicted in Fig. 1a.
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Reducing duplicates. There are cases where

different rules might produce the same derivation.
For instance, the two standard rules

T(A,P,B), T(P,domain,C)

—T(A,1is2n,C) @)

T(B,P,A), T(P,range,C)
—T(A,1is2n,C) ®))
can derive the same information for an

entity which is used both as a subject
and as an object in different triples. For
instance, (Bob,worksIn, Amsterdam) and
(Alice,daughterOf, Bob) can both lead to the
derivation (Bob,isA, Person) if the domain
and range of the two predicates are Person.

A strategy to remove these types of duplicates
is to group instance triples by the list of terms
which are used in the head. In the previous case,
triples can be grouped either by subject of by
object, depending on the rule. Then, rules can
be executed in parallel on each group. In this
way, it is impossible that two different groups
will produce the same derivation because the
grouping criterion ensures that derivations must
differ by at least one term (i.e., the grouping key).

During the rule computation, duplicates can
still be produced within the same group. How-
ever, in this case they can be removed in parallel
without any synchronization between the various
processors. Figure 1b shows an example of such
computation for rules (4) and (5).

sameAs table. One category of rules which is
widely used in modern knowledge bases encodes
reasoning over the equality of concepts, which
is a relation that is stated with the predicate
owl:sameAs. Equality is transitive (if a is the
same as b and b is the same as c, then a is the
same as c¢) and symmetric (if a is the same as
b, then b is the same as a); thus rules in this
category produce a large number of materializa-
tions.

To improve the performance, reasoners typi-
cally avoid materializing all conclusions but in-
stead build a dedicated table where groups of
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Schema triples
| <a> <subClassOf> <b>
<c> <subProp.Of> <d> .
X Derivations

Instance triples
<e> <isA> <b>

<e> <isA> <a>

<f> <isA> <c> <f> <isA> <d>

Knowledge Base

()

Reasoning at Scale, Fig. 1 (a) Parallel execution of a
rule that requires a join between schema and instance
triples. (b) Execution of a group of rules: in this example,

equal terms receive a unique representative 1D,
and all occurrences of these terms in the KB
are replaced by the corresponding ID. During the
materialization, the reasoner might derive more
equality relations. If this happens, then the table
needs to be updated, and more occurrences must
be replaced with the corresponding ID. Notice
that also rules need to be rewritten if they contain
constants in the table.

After the materialization is computed, the aug-
mented P/ (1) will contain a compressed version
of the full materialization since further deriva-
tions can be obtained by simply replacing the
occurrences of representative IDs with each of
the members of their equality group. However,
in practice this operation is often omitted as it
can be trivially computed on-the-fly whenever is
needed.

Sorting rule execution. For some standard rule-
sets like the rules from RDF schema, it is possible
to define a rule application order to reduce to the
minimum the chance that the output of one rule
can be used as input for another one. Unfortu-
nately, this optimization guarantees a complete
output only on some specific cases, and it is
not possible to define an execution order which
avoids repeated executions with more complex
rulesets like, for instance, the OWL2 RL/RDF
ruleset (Motik et al. 2009).
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Schema triples
<p> <domain> <b>

<q> <range> <b> Derivations

Instance triples

omam p, range q }
\ :
'

<e> isA <b>

<e> <p> <a>
<f> <g> <e>
<g> <Qg> <C>

<c> isA <b>

Knowledge Base

(b)

processor 0 receives all information regarding the entity
“e,” which allows it to apply both rules (4) and (5) and
remove duplicates locally

Memoization. Another technique that can be
applied to improve the performance is memo-
ization (Urbani et al. 2014). Memoization is a
special type of caching which consists of storing
the output of expensive functions to reduce the
cost of repeated executions. For the problem of
reasoning, memoization can be used to precom-
pute all answers of some particular atoms. This
enables a faster computation of data joins.

An example is useful to clarify this optimiza-
tion. Let us consider, once again, rule (2). This
rule contains two body atoms: One atom matches
instance triples while the other matches schema
triples. During the materialization, the number
of facts that match the second atom will change
if other rules derive new triples with soc as
predicate. With memoization, before the mate-
rialization starts a query-driven materialization
procedure like QSQR (Abiteboul et al. 1995)
or Magic set (Bancilhon et al. 1985), two well-
known query-driven algorithms are invoked to
compute all answers for the query T (B, soc, C).
Once this procedure is terminated, we can safely
assume that the collection of facts that match this
atom is immutable; thus the engine can index this
collection more efficiently to facilitate the execu-
tion of the rule. In some cases, memoization does
not lead to any reduction of the materialization
runtime, while in other cases, the advantage is
significant.
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Materialization with Generic Rules

Nonstandard rules are typically easier to execute
since they require less joins and predicates have
a smaller arity (i.e., they are unary or binary
only). On these rules, however, the previous op-
timizations might not be applicable. Still, the
execution can be improved in two ways: Either
by applying more general parallel algorithms or
by considering multiple facts at the same time.
Both types of improvements are described below.

Parallelizing rule execution. Three different
types of parallelism can be applied to the rule
execution: [Intra-rule parallelism,
parallelism, and instance-based parallelism.

With intra-rule parallelism, the goal is to dis-
tribute the execution of a single rule among dif-
ferent processors. For example, let us consider
rule (1). In this case, facts that match B; could be
partitioned into n different partitions depending
on the value of the terms that should be joined
with B,. Similarly, facts that match B, could be
partitioned in an equivalent number of partitions
in so that “B;” and “B,” facts with the same join
terms will be in the same partition. In this way,
each partition can be processed simultaneously
by concurrent processors.

With inter-rule parallelism, the idea is to let
concurrent processors execute different rules at
the same time. For instance, one processor could
execute rule (4) while another one execute rule
(5). Notice that neither of these two types of
parallelism is perfect: With intra-rule parallelism,
the computation could be unbalanced if some
partitions are much bigger than others. With inter-
rule parallelism instead, the maximum number of
concurrent processors is bound by the number of
rules.

Intra- and inter-based parallelism are well
known in literature and are also used in other
scenarios. The third type of parallelism is a more
recent variant which was first introduced in the
RDFox system (Nenov et al. 2015). The idea
is to let a number of concurrent processors to
continuously pull not-yet-considered facts from
a queue and verify whether they instantiate the
body of a rule. If this occurs, then the system

inter-rule
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searches for other atoms in the database to
compute a full rule instantiation. If this process
succeeds, then the processor produces a new
derivation and puts it back in the queue and
database so that it can be further considered,
possibly by other processors.

This type of parallelism is significantly differ-
ent than the other two because here the processors
do not receive a predefined amount of work but
are free to “steal” computation from each other
whenever they become idle. A limitation of this
technique is that it requires a number of data
structures that allow a fast concurrent access.
While hash tables can provide this functionality,
they have the disadvantage that they are not
cache-friendly, that is, they do not use efficiently
the CPU cache.

Set-based rule execution. Another technique
for improving the performance consists of
generating meta-facts which represents multiple
sets of facts. This technique can be intuitively
explained with a simple example. Let us consider
the rule:

P(X,Y)— Q(,X) (6)
and assume that the input database does not
contain any g-facts. In this case, it is clear that
each fact that matches the body will generate a
new g-fact. Thus, the engine can simply create
one single fact ¢(y*,x*) where x* and y*
are special terms which point to set of terms,
namely, all first and second terms that appear
in p-facts. For instance, if the database equals
to {p(a,b), p(c,d)}, then y* — (a,c) and
x* — (b,d). Notice that the engine does not
need to explicitly materialize the lists (a,c)
and (b,d) but can simply store instructions
to compute this list on-the-fly in case it is
needed.

This technique was first introduced in the
VLog system (Urbani et al. 2016), and empirical
results show excellent performance against the
state of the art, especially because this technique
becomes more effective with larger databases as
potentially larger sets of facts can be compressed
in a single meta-fact.
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* Online machine learning covers methods that
update their models after observing a new
event and can immediately serve predictions
based on the updated model.

Overview

In this chapter, we investigate online learning
based recommender algorithms that can
efficiently handle nonstationary datasets. We
show that online learning for recommendation
is rather usual than the exceptional task: For
example, if no user history is available, we have
to build a user model on the fly, based on the
interactions in the live user session.

To the best of our knowledge, this is the first
survey with a comprehensive overview of the
ideas for recommendation over streaming data
and their implementation in various distributed
data stream processing systems.

The chapter is based on the notions of
online learning, as introduced in the chapter
“Overview of Online Machine Learning in Big
Data Streams” of this Encyclopedia.

Introduction

Recommender systems (Ricci et al. 2011) serve
to predict user preferences regarding items such
as music tracks (Spotify), movies (Netflix),
products, books (Amazon), blogs, or microblogs
(Twitter), as well as content on friends’ and
personal news feeds (Facebook).

Recommenders give a clear, industry-relevant
example of the requirements for online machine
learning introduced in the Chapter “» Overview
of Online Machine Learning in Big Data
Streams” of this Handbook. In a typical
implementation, users interact with the system by
requesting recommendations and then providing
feedback by clicking on some of the displayed
items. In this way, the users produce a continuous
stream of events that can be used for model
update and immediate evaluation, for example,
by click-through rate. Note that in Zliobaite et al.
(2012), it is observed that adaptive learning
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models are still rarely deployed in industry.
Recommender systems are the main exception: A
special class, the session-based recommendation
task appears frequently in practice when no past
user history is available and user models are
built on the fly, using recent interactions in the
session.

Recommender systems can be categorized
by the type of information they infer about
users and items. Collaborative filtering (Linden
et al. 2003; Sarwar et al. 2001) builds models
of past user-item interactions such as clicks,
views, purchases, or ratings, while content-
based filtering Lops et al. (2011) recommends
items that are similar in content, for example,
share phrases in their text description. Context-
aware recommenders (Adomavicius and Tuzhilin
2011) use additional information on the user
and the interaction, for example, user location
and weather conditions. Recent events in a user
session (Koenigstein and Koren 2013) serve as a
special context.

A milestone in the research of recommen-
dation algorithms, the Netflix Prize compe-
tition (Bennett and Lanning 2007), had high
impact on research directions. The target of the
contest was based on the one- to five-star ratings
given by users, with one part of the data used for
model training and the other for evaluation. As
an impact of the competition, tasks now termed
batch rating prediction were dominating research
results.

Recommendation models rely on the feedback
provided by the user, which can be explicit,
such as one- to five-star movie ratings on Netflix
(Adhikari et al. 2012). However, most recommen-
dation tasks are implicit, as the user provides no
like or dislike information. Implicit feedback can
be available in the form of time elapsed viewing
an item or listening to a song, or in many cases,
solely as a click or some other form of user
interaction. In Pildszy et al. (2015), the authors
claim that 99% of recommendation industry tasks
are implicit.

As a main difference between recommenda-
tion and classification, classifiers usually work
independently of the event whose outcome they
predict. Recommender systems, on the other
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hand, may directly influence observations: They
present a ranked top list of items (Deshpande
and Karypis 2004), and the user can only provide
feedback for the items on the list. Moreover, real
systems process data streams where users request
one or a few items at a time and get exposed
to new information that may change their needs
and taste when they return to the service next
time. Furthermore, an online trained model may
change and return completely different lists for
the same user even for interactions very close in
time.

By the above considerations, real recom-
mender applications fall in the category of top
item recommendation by online learning for
implicit user feedback, a task that has received
less attention in research so far. In this section,
we show the main differences in evaluating such
systems compared to both classifiers and batch
systems, as well as describe the main data stream
recommender algorithms.

Online recommenders seem more restricted
than those that can iterate over the data set sev-
eral times, and one could expect inferior quality
from the online methods. By contrast, in Pdlovics
et al. (2014) and Frig6 et al. (2017), surpris-
ingly strong performance of online methods is
measured.

As an early time-aware recommender system
example, the item-based nearest neighbor (Sar-
war et al. 2001) can be extended with time-decay
(Ding and Li 2005). Most of the early models,
however, are time-consuming to compute and dif-
ficult to update from a data stream and hence need
periodical batch training. Probably the first result
in this area, the idea of processing transactions
in chronological order to incrementally train a
recommendation model first appeared in Takécs
et al. (2009, Section 3.5). Streaming gradient
descent matrix factorization methods were also
proposed in Isaacman et al. (2011) and Ali and
Johnson (2011), who use Netflix and MovieLens
data and evaluate by root mean square error
(RMSE).

The difficulty of evaluating streaming
recommenders was first mentioned in Lathia
et al. (2009), although the authors evaluated
models by offline training and testing split.
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Ideas for online evaluation metrics appeared
first in Pédlovics and Benczdr (2013), Vinagre
et al. (2014), and Pédlovics et al. (2014). In
Vinagre et al. (2014), incremental algorithms are
evaluated using recall. In Pdlovics et al. (2014),
recall is shown to have undesirable properties,
and other metrics for evaluating online learning
recommenders are proposed.

Finally, we note that batch distributed recom-
mender systems were surveyed in Karydi and
Margaritis (2016).

Prequential (Online) Evaluation for
Recommenders

To train and evaluate a time-sensitive or online
learning recommender, we can use the prequen-
tial or online evaluation framework that is de-
scribed in detail for classifier evaluation in the
chapter “» Online Machine Learning Algorithms
over Data Streams” of this Handbook. As seen
in Fig. 1, online evaluation for a recommender
system includes the following steps:

1. We query the recommender for a top-k recom-
mendation for the active user.

2. We evaluate the list in question against the
single relevant item that the user interacted
with.

3. We allow the recommender to train on the
revealed user-item interaction.

Since we can potentially retrain the model after
every new event, the recommendation for the
same user may be very different even at close
points in time, as seen in Fig. 1. The standard

Recommender Systems
Over Data Streams, Fig. 1
Prequential evaluation of
the online ranking
prediction problem

1403

recommender evaluation settings used in research
cannot be applied, since there is always only a
single relevant item in the ground truth.

In one of the possible recommender evaluation
settings, the rating prediction problem, which is
popular in research, we consider a user # and an
item i. The actual user preference in connection
with the item is expressed as a value r,;, for
which the system returns a prediction 7,;. This
explicit rating can be a scale such as one to five
stars for a Netflix movie, while implicit rating
can be the duration of viewing a Web page in
seconds. Implicit rating is binary when the only
information is whether the user interacted with
the item (clicked, viewed, purchased) or not.
Depending on whether r,; is binary or scale, the
same prequential metrics, such as error rate or
mean squared error (MSE), can be applied as
for classification or regression. For example, in
the Netflix Prize competition, the target was the
square root of MSE between the predicted and
actual ratings.

Another possible way to evaluate rec-
ommenders is ranking prediction, where
performance metrics depend on the list of
displayed items. We note that given rating
prediction values 7,; for all i, in theory, ranking
prediction can be solved by sorting the relevance
score of all items. For certain models, heuristics
to speed up the selection of the highest values
of 7,; by candidate preselection exist (Teflioudi
et al. 2015).

To evaluate ranking prediction, we have to
take into consideration two issues that do not
exist for classifier evaluation. In the case of pre-
quential evaluation, as shown in Fig. 1, the list
for user u may change potentially after every

user - item interactions in chronological order

i, i

10

top lists for user u at different times
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interaction with u. As soon as u provides feed-
back for certain item i, we can change model
parameters and the set of displayed items may
change completely. Most of the batch ranking
quality measures focus on the set of items con-
sumed by the same user, under the assumption
that the user is exposed to the same list of items
throughout the evaluation. As this assumption
does not hold, we need measures for individual
user-item interactions.

Another issue regarding ranking prediction
evaluation lies in a potential user-system interac-
tion that affects quality scores. Typically, the set
of items is very large, and users are only exposed
to a relatively small subset, which is usually pro-
vided by the system. The form of user feedback
is usually a click on one or more of these items,
which can be evaluated by computing the click-
through rate. Since users cannot give feedback
on items outside the list, the fair comparison of
two algorithms that present different sets for the
user can only be possible by relying on live user
interaction. This fact is known by practitioners,
who use A/B testing to compare the performance
of different systems. In A/B testing, the live set
of users is divided into groups that are exposed to
the results of the different systems.

Most traditional ranking prediction metrics, to
a certain level, rely on the assumption that the
same user is exposed to the same list of items,
and hence the interactions of the same user can be
considered to be the unit for evaluation. For on-
line evaluation, as noted in Pdlovics et al. (2014),
the unit of evaluation will be a single interaction,
which usually contains a single relevant item.
Based on this modification, most batch metrics
apply in online learning evaluation as well. Note
that the metrics below apply not just in A/B
testing but also in experiments with frozen data,
where user feedback is not necessarily available
for the items returned by a given algorithm. For
example, if the item consumed by the user in
the frozen data is not returned by the algorithm,
the observed relevance will be 0, which may
not be the case if the same algorithm is applied
in an A/B test. Note that attempts to evaluate
research results by A/B testing have been made
in the information retrieval community (Balog
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et al. 2014); however, designing and implement-
ing such experiments is cumbersome.

Next, we list several metrics for the qual-
ity of the ordered top-K list of items L =
{i1,i2,...,ig} against the items E consumed by
the user. We will also explain how online evalua-
tion metrics differ from their batch counterparts.
For the discussion, we mostly follow Palovics
etal. (2014).

Click-through rate is commonly used in the
practice of recommender evaluation. It is defined
as the ratio of clicks received for L:

1 ifENL#0;

Clickthrough@K = ]
0 otherwise.

ey

For precision and recall, similar to click-through,
the actual order within L is unimportant:

Precision@K = %,
Recall@K = 'Elgl“. )

For batch evaluation, E is the entire set of items
with positive feedback from a given user who
is exposed to the same L for each interaction.
The overall batch system performance can be
evaluated by averaging precision and recall over
the set of users. For online evaluation, typically
|E| = 1, where Precision@K is 0 or 1/K and
Recall@K is 0 or 1 depending on whether the
actual item in FE is listed in L or not. Precision
and recall are hence identical to click-through, up
to a constant. As a consequence, the properties
of online precision and recall are very different
from their batch counterparts. The main reason
for the difference lies in the averaging procedure
of prequential evaluation: We cannot merge the
events of the same user; instead, we average over
the set of individual interactions.

Measures that consider the position of the
relevant item i in L can give more refined perfor-
mance indication. The first example is reciprocal
rank:

if rank(i) > K;

RR@K = .
otherwise.

1 (3)
rank(7)
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Discounted cumulative gain (DCG) is defined
similarly, as

rel(ig)

K
DCG@K = _
Z log, (1 + k)

k=1

“

where rel(iz) indicates the relevance of the i-th
item in the list. For the implicit task, relevance is
1 if the user interacted with the item in the evalua-
tion set, 0 otherwise. For batch evaluation, we can
consider all interactions of the same user as one
unit. If we define iDCG@K, the ideal maximum
possible value of DCG@K for the given user, we
can obtain nDCG @K, the normalized version of
DCG@K, as

DCG@K

nDCG@K = ————.
iDCG@K

&)
Note that for online learning, there is only one
relevant item, hence iDCG = 1. For emphasis,
we usually use the name nDCG for batch and
DCG for online evaluation.

Session-Based Recommendation

Previous items in user sessions constitute a very
important context (Hidasi and Tikk 2016). In e-
commerce, the same user may return next time
with a completely different intent and may want
to see a product category completely different
from the previous session. Algorithms that rely
on recent interactions of the same user are called
session-based item-to-item recommenders. The
user session is special context, and it is the only
information available for an item-to-item recom-
mender. In fact, several practitioners (Koenig-
stein and Koren 2013; Pilaszy et al. 2015) argue
that most of the recommendation tasks they face
are without sufficient past user history. For exam-
ple, users are often reluctant to create logins and
prefer to browse anonymously. Moreover, they
purchase certain types of goods (e.g., expensive
electronics) so rarely that their previous pur-
chases will be insufficient to create a meaningful
user profile. Whenever a long history of previous
activities or purchases by the user is not available,
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recommenders may propose items that are similar
to the most recent ones viewed in the actual user
session.

Session-based recommendation can be served
by very simple algorithms, most of which are
inherently online. A comparison of the most im-
portant such online algorithms in terms of per-
formance is available in Frig6 et al. (2017). Data
stream processing algorithms can retain items
from the most recently started sessions as long
as they fit in their memory. Recommendation is
based on the recent items viewed by the user in
the actual shopping session. For example, we can
record how often users visited item i after visiting
another item j. Since fast update to transition
frequencies is usually possible, the method is
online.

In an even simpler algorithm that is not strictly
session-based, we recommend the most popular
recent items. This method can be considered
batch or online depending on the granularity of
the item frequency measurement update. Both
algorithms can be personalized if we consider
the frequency of past events involving the user.
If items are arranged hierarchically (e.g., music
tracks by artist and genre), personal popularity
and personal session data can involve the fre-
quency of the artists or genres for recommend-
ing tracks. More session-based algorithms are
described in Koenigstein and Koren (2013).

Online Matrix Factorization

Most nontrivial online recommender algorithms
are based on matrix factorization (Koren et al.
2009), a popular class of collaborative filtering
methods. Given the user-item utility matrix R =
[rui] shown in Fig. 2, we model R by decompos-
ing it into the two dense matrices P and Q. For a
given user u, the corresponding row in P is user
vector p,. Similarly, for item i, the corresponding
column of Q is item vector ¢;. The predicted
relevance of item i for user u is then

(6)

~ T
Tui = Pud; -
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Recommender Systems Over Data Streams, Fig. 2
Utility matrix R and the matrix factorization model built
from matrices P and Q

Note that we can extend the above model by
scalar terms that describe the biased behavior of
the users and the items (Koren et al. 2009).

One possibility to train model parameter ma-
trices P and Q is by gradient descent (Koren
et al. 2009; Funk 2006), which can be applied to
online learning as well (Pdlovics et al. 2014). For
a set of interactions E, we optimize Eq. (6) for
MSE as target function:

N
1 .
MSE = N Z(rui - rui)zy (7)

i=1

where r,; is the actual and 7,; is the predicted
rating for user « and item i and N is the current
size of the data stream.

In one step of gradient descent, we fit P and
0 in Eq. (6) to one of the ratings in E. Unlike
in batch training, where we can use the ratings
several times in any order, in online learning,
we have the most recent single item in E. In
other words, in online gradient descent, we fit the
model to the events one by one as they arrive in
the data stream.

For a given (explicit or implicit) rating r,;,
the steps of gradient descent are as follows. First,
we compute the gradient of objective function F
with respect to the model parameters:

aF
apu

oF
q;

- _z(rui _fui)pu-
®

= —2(rui—7ui)qi,
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Next, we update the model parameters in opposite
direction of the gradient, proportionally to learn-
ing rate 7, as

Pu < n(rui —fm')%',
qi < n(rui _fui)pu-

Overfitting is usually avoided by adding a regu-
larization term in the objective function (Koren
et al. 2009).

In the case of implicit feedback, the known
part of the utility matrix only contains elements
with positive feedback. To fit a model, one re-
quires negative feedback for training as well.
Usually, such elements are selected by sampling
from those that the user has not interacted with
before Rendle and Freudenthaler (2014). We can
also introduce confidence values for ratings and
consider lower confidence for the artificial nega-
tive events (Hu et al. 2008).

Gradient descent can also be used in a mix
of batch and online learning, for example, train-
ing batch models from scratch periodically and
continuing the training with online learning. We
can also treat users and items differently, for
example, updating user vectors more dynamically
than item vectors, as first suggested by Takacs
et al. (2009).

Another use of online gradient descent
is to combine different recommendation
models (Pdlovics et al. 2014). We can express
the final prediction as the linear combination of
the models in the ensemble whose parameters are
the linear coefficients and the individual model
parameters. In Pélovics et al. (2014), two online
gradient descent methods are described with
regard to whether the derivative of the individual
models is available, where all parameters can be
trained through the derivative of the final model
or otherwise by learning the coefficients and the
individual models separately.

Variants of Matrix Factorization

Several variants of matrix factorization that can
be trained by gradient descent both for batch
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and online learning tasks have been proposed.
Bayesian Personalized Ranking (Rendle et al.
2009) has top list quality as target instead of
MSE. In asymmetric matrix factorization (Pa-
terek 2007), we model the user by the sum of the
item vectors the user rated in the past.

Recently, various factorization models have
been developed that incorporate context informa-
tion (Hidasi and Tikk 2016). Context data can be
modeled by introducing data tensor D instead of
the rating matrix R. In a simplest case, the data
includes a single piece of additional context infor-
mation (Rendle and Schmidt-Thieme 2010): for
example, music tracks can have artist as context.

Alternating least squares (Koren et al. 2009;
Pilaszy et al. 2010) (ALS) is another optimization
method for matrix factorization models, in which
for a fixed Q, we compute the optimal P, then for
a fixed P, the optimal Q, repeatedly until certain
stopping criteria are met. Hidasi et al. Hidasi
and Tikk (2012); Hidasi (2014); Hidasi and Tikk
(2016) introduced several variants of ALS-based
optimization schemes to incorporate context in-
formation. By incremental updating, ALS can
also be used for online learning (He et al. 2016).

Conclusions

Recommendation differs from classification in
that in recommendation, there are two types of
objects, users, and items, and a prediction has to
be made for their interaction. A practical recom-
mender system displays a ranked list of a few
items for which the user can give feedback. In an
online learning system, the list shown to the same
user at different times may change completely for
two reasons. First, as in the prequential classifier
training and evaluation setting described in detail
for classifier evaluation in the chapter “» On-
line Machine Learning Algorithms over Data
Streams” of this Handbook, the list of recommen-
dations may change because the model changes.
Second, the user feedback we use for evaluation
depends on the actual state of the model, since
the user may have no means to express interest in
an item not displayed. Hence for online learning
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evaluation, metrics that involve the notion of a
volatile list have to be used.

Online learning, as introduced in the chap-
ter “» Overview of Online Machine Learning in
Big Data Streams” of this Handbook, is very
powerful for recommender systems due to their
advantage of having much more emphasis on
recent events. For example, if we update models
immediately for newly emerged users and items,
trends are immediately detected. The power of
online learning for recommendation may also be
the result of updating user models with emphasis
on recent events, which may be part of the current
user session. User session is a highly relevant
context for recommendation, and most session-
based methods are inherently online.

Cross-References

Online Machine Learning Algorithms over
Data Streams

Overview of Online Machine Learning in Big
Data Streams

Reinforcement Learning, Unsupervised Meth-
ods, and Concept Drift in Stream Learning

Acknowledgements Support from the EU H2020 grant
Streamline No 688191 and the “Big Data—Momentum”
grant of the Hungarian Academy of Sciences.

References

Adhikari VK, Guo Y, Hao F, Varvello M, Hilt V, Steiner
M, Zhang ZL (2012) Unreeling netflix: understanding
and improving multi-cdn movie delivery. In: INFO-
COM, 2012 Proceedings IEEE. IEEE, pp 1620-1628

Adomavicius G, Tuzhilin A (2011) Context-aware rec-
ommender systems. In: Ricci F, Rokach L, Shapira
B, Kantor PB (eds) Recommender systems handbook.
Springer, Boston, pp 217-253

Ali M, Johnson CC, Tang AK (2011) Parallel collabora-
tive filtering for streaming data. University of Texas
Austin, Technical Report

Balog K, Kelly L, Schuth A (2014) Head first: living
labs for ad-hoc search evaluation. In: Proceedings of
the 23rd ACM international conference on conference
on information and knowledge management. ACM,
pp 1815-1818

Bennett J, Lanning S (2007) The netflix prize. In: KDD
Cup and workshop in conjunction with KDD 2007


https://doi.org/10.1007/978-3-319-77525-8_329
https://doi.org/10.1007/978-3-319-77525-8_100249
https://doi.org/10.1007/978-3-319-77525-8_329
https://doi.org/10.1007/978-3-319-77525-8_100249
https://doi.org/10.1007/978-3-319-77525-8_327

1408

Deshpande M, Karypis G (2004) Item-based top-n rec-
ommendation algorithms. ACM Trans Inf Syst (TOIS)
22(1):143-177

Ding Y, Li X (2005) Time weight collaborative filtering.
In: Proceedings of the 14th ACM international con-
ference on Information and knowledge management.
ACM, pp 485-492

Frig6 E, Pdlovics R, Kelen D, Benczir AA, Kocsis L
(2017) Online ranking prediction in non-stationary
environments. In: Proceedings of the 1st workshop
on temporal reasoning in recommender systems, co-
located with 11th international conference on recom-
mender systems

Funk S (2006) Netflix update: try this at home. http://
sifter.org/simon/journal/20061211.html

He X, Zhang H, Kan MY, Chua TS (2016) Fast matrix
factorization for online recommendation with implicit
feedback. In: Proceedings of the 39th international
ACM SIGIR conference on research and development
in information retrieval. ACM, pp 549-558

Hidasi B (2014) Factorization models for context-aware
recommendations. Infocommun J VI(4):27-34

Hidasi B, Tikk D (2012) Fast ALS-based tensor factoriza-
tion for context-aware recommendation from implicit
feedback. In: Machine learning and knowledge discov-
ery in databases. Springer, pp 67-82

Hidasi B, Tikk D (2016) General factorization framework
for context-aware recommendations. Data Min Knowl
Discov 30(2):342-371

Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering
for implicit feedback datasets. In: Eighth IEEE inter-
national conference on data mining, 2008. ICDM’08.
IEEE, pp 263-272

Isaacman S, Ioannidis S, Chaintreau A, Martonosi M
(2011) Distributed rating prediction in user generated
content streams. In: Proceedings of the fiftth ACM
conference on recommender systems. ACM, pp 69-76

Karydi E, Margaritis K (2016) Parallel and distributed
collaborative filtering: a survey. ACM Comput Surv
(CSUR) 49(2):37

Koenigstein N, Koren Y (2013) Towards scalable and
accurate item-oriented recommendations. In: Proceed-
ings of the 7th ACM conference on recommender
systems. ACM, pp 419-422

Koren Y, Bell R, Volinsky C (2009) Matrix factoriza-
tion techniques for recommender systems. Computer
42(8):30-37

Lathia N, Hailes S, Capra L (2009) Temporal collaborative
filtering with adaptive neighbourhoods. In: Proceed-
ings of the 32nd international ACM SIGIR conference
on research and development in information retrieval.
ACM, pp 796-797

Linden G, Smith B, York J (2003) Amazon.com recom-
mendations: item-to-item collaborative filtering. Inter-
net Comput IEEE 7(1):76-80

Lops P, De Gemmis M, Semeraro G (2011) Content-
based recommender systems: state of the art and trends.
In: Ricci F, Rokach L, Shapira B, Kantor, PB (eds)
Recommender systems handbook. Springer, Boston,
pp 73-105

Recommender Systems Over Data Streams

Palovics R, Benczir AA (2013) Temporal influence over
the Last.fm social network. In: Proceedings of the
2013 IEEE/ACM international conference on advances
in social networks analysis and mining. ACM, pp 486—
493

Palovics R, Benczir AA, Kocsis L, Kiss T, Frigé E (2014)
Exploiting temporal influence in online recommenda-
tion. In: Proceedings of the 8th ACM conference on
recommender systems. ACM, pp 273-280

Paterek A (2007) Improving regularized singular value
decomposition for collaborative filtering. In: Proceed-
ings of KDD Cup workshop at SIGKDD’07, 13" ACM
international conference on knowledge discovery and
data mining, pp 39-42

Pilaszy I, Serény A, Dézsa G, Hidasi B, Sari A, Gub
J (2015) Neighbor methods vs matrix factorization
— case studies of real-life recommendations. In:
LSRS2015 at RECSYS

Pildszy 1, Zibriczky D, Tikk D (2010) Fast ALS-based
matrix factorization for explicit and implicit feedback
datasets. In: Proceedings of the fourth ACM conference
on recommender systems. ACM, pp 71-78

Rendle S, Freudenthaler C (2014) Improving pairwise
learning for item recommendation from implicit feed-
back. In: Proceedings of the 7th ACM international
conference on web search and data mining. ACM,
pp 273-282

Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme
L (2009) Bpr: Bayesian personalized ranking from
implicit feedback. In: Proceedings of the twenty-
fifth conference on uncertainty in artificial intelligence.
AUAI Press, pp 452461

Rendle S, Schmidt-Thieme L (2010) Pairwise interaction
tensor factorization for personalized tag recommenda-
tion. In: Proceedings of the third ACM international
conference on web search and data mining. ACM,
pp 81-90

Ricci F, Rokach L, Shapira B (2011) Introduction to
recommender systems handbook. In: Ricci F, Rokach
L, Shapira B, Kantor PB (eds) Recommender systems
handbook. Springer, Boston

Sarwar B, Karypis G, Konstan J, Reidl J (2001) Item-
based collaborative filtering recommendation algo-
rithms. In: Proceedings of the 10th international
conference on World Wide Web (WWW’01). ACM
Press, New York, pp 285-295. https://doi.org/10.1145/
371920.372071. http://portal.acm.org/citation.cfm?id=
372071

Takdcs G, Pilaszy I, Németh B, Tikk D (2009) Scal-
able collaborative filtering approaches for large recom-
mender systems. J Mach Learn Res 10:623-656

Teflioudi C, Gemulla R, Mykytiuk O (2015) Lemp: fast
retrieval of large entries in a matrix product. In:
Proceedings of the 2015 ACM SIGMOD international
conference on management of data. ACM, pp 107-122

Vinagre J, Jorge AM, Gama J (2014) Evaluation of recom-
mender systems in streaming environments. In: Work-
shop on recommender systems evaluation: dimensions
and design (REDD 2014), held in conjunction with
RecSys 2014, Silicon Valley, Oct 10, 2014


http://sifter.org/simon/journal/20061211.html
http://sifter.org/simon/journal/20061211.html
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
http://portal.acm.org/citation.cfm?id=372071
http://portal.acm.org/citation.cfm?id=372071

Record Linkage

Zliobaite I, Bifet A, Gaber M, Gabrys B, Gama J, Minku
L, Musial K (2012) Next challenges for adaptive learn-
ing systems. ACM SIGKDD Explor Newsl 14(1):
48-55

Record Linkage

Anja Gruenheid
Google Inc., Madison, WI, USA

Synonyms

Duplicate detection; Entity resolution

Definitions

Record linkage refers to the task of extracting
record information from various input data
sources and combining them in such a way that
each output record corresponds a distinct real-
world entity.

Overview

Record linkage is part of the broader area of data
integration and more specifically data cleaning.
It is most commonly used as a means to identify
duplicates in a dataset or multiple datasets. The
biggest challenge when executing record linkage
algorithms is the trade-off between quality and
performance. That is, record linkage is often
run on high- volume datasets for which even
sophisticated algorithms will not be able to pro-
vide high- quality results in a suitable timeframe.
Thus, techniques such as blocking or incremental
computation are applied to improve performance
at the cost of decreased result quality. Additional
challenges in record linkage include various types
of input sources that are not necessarily struc-
tured. For example, human-generated data for
record linkage has been extensively studied in
recent years under the assumption that human-
generated data on the similarity of records has
better quality than machine-generated data.
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Key Research Findings

Record linkage is a decades- old problem that
has been studied extensively. It can be split into
several key research areas. First, similarity com-
putation describes the challenge of identifying
whether two records are similar. Second, there
exists a variety of algorithms that take these
similarities as input and output (sets of) records
where each record represents a real-world entity.
Finally, performance challenges are have arisen
in the context of record linkage due to an increase
in data volume and velocity and the inherent
quadratic scaling of exhaustive record linkage
algorithms.

Similarity Computation

To identify whether two records refer to the same
entity, it is crucial to measure their similarity.
For example, Table 1 shows different business
addresses that can be found in datasets obtained
from (semi-)manually curated business listings.
Here, different records r; have different formats,
some have erroneous values, and others may
have missing data. This exemplifies that com-
parable similarity computation is not trivial. For
example, is r; as similar to r, (different for-
matting) as it is to r3 (wrong phone number)?
The most common similarity computation tech-
niques are based on the similarity of the char-
acters in the record strings, Elmagarmid et al.
(2007), when comparing two input records. Ex-
amples for pair-wise character-based similarity
computation techniques are edit distances such
as the Levenshtein distance, Levenshtein (1966),
or metrics such as the Jaro similarity metric,
Jaro (1978). Alternatively, some record linkage
systems also use token-based similarity, first pro-
posed by Monge et al. (1996), or phonetic simi-
larity, Russell (1922). The chosen similarity met-
ric often depends on the use case that the record
linkage mechanism is applied in.

Given these similarity metrics, it is obvious
that resolving the similarity between records r;
and r; is not always certain. That is, independent
of the actual metric, the pair-wise similarity of
records r; and r; is typically represented as a
probability p € [0, 1] where p(r;,r;) = 1 signi-
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Record Linkage, Table 1 Example business addresses

ID Name Address

r1 Peet’s coffee 2124 Vine St Stel
2} Peet’s coffee 2124 VINE ST

r3 Peet’s coffee 2124 Vine St

74 Peet’s 2501 Telegraph Ave
s Peet’s 2501 Telegraph Ave
re Peet’s coffee

fies that both records are identical. Uncertainty in
the similarity computation can thus be expressed
explicitly, i.e., p(r;,r;) ~ 0.5.

Algorithms

Algorithms for record linkage take as input the
pair-wise similarity values, evaluate them, and
output a partitioning of records R = | J Rg. In
this partitioning, each record rl.k € Ry points to
the same real-world entity ex. This problem has
been approached from various angles. Amongst
the most significant are techniques such as
probabilistic modeling, graph clustering, and
(semi-)supervised learning described in detail
next. Note that this is not a complete list of record
linkage algorithms many of which are explained
and evaluated by Hassanzadeh et al. (2009) or
discussed in Dong and Srivastava (2015).

Probabilistic Modeling. First formalized by
Fellegi and Sunter (1969), the core idea of
probabilistic modeling for record linkage is to
assign a record pair y = (r;,r;) to either a
set of matches M or non-matches U based on
the computational similarity of y. Specifically,
assigning the pair to M signifies that r; = r},
while if the pair is in U, then r; # r;
holds. The record pair is assigned to M if the
probability of assigning y to M based on the
agreement m(y) is higher than the probability of
assigning y to U based on disagreement u(y),
ie., P(M|m(y) > P(U|u(y))). Using the Bayes
rule, this can be rewritten as

£ Pen()IM) P
M. it oy > Pl

U otherwise.

y (1)

Record Linkage

City Phone

Berkeley (510) 841-0564

BERKELEY 5108410564

Berkeley 5102257700

Berkeley (510) 225-7700
(510) 225-7700

Berkeley

Probabilistic modeling assumes, as the name
indicates, that the decision whether y is a
match is non-trivial and has to be expressed
as a likelihood. Thus, by design, there will be
cases where there exists evidence for y being
in M and U at the same time. To resolve this
problem, probabilistic modeling assumes that
assigning y to M even though there exists some
evidence that it should be in U incurs an error
reflected in a penalty. Finding the assignment of
all possible record pairs thus becomes an error
minimization problem. Furthermore, Fellegi
and Sunter (1969) observed that the similarity
functions that determine the agreements and
disagreements of y may contain errors. Thus,
they loosened their categorization of y to allow
it to be classified as a possible pair if there is
evidence for both a match and a non-match.
Pairs in that group are confirmed by human
workers after the automated record linkage has
concluded.

Correlation Clustering. Correlation clustering
is a popular graph clustering technique for record
linkage, Bansal et al. (2004). At its core, it builds
upon the idea of probabilistic modeling to deter-
mine whether a record pair is a match or non-
match, but instead of assigning the pair to distinct
classes, correlation clustering assigns them to
distinct record clusters where each cluster rep-
resents a real-world entity. The assignment is
done analogous to the idea of error minimization
in probabilistic modeling, i.e., if the penalty of
adding a record r; to a cluster cg is smaller than
the penalty of adding it to any other cluster or
keeping it as a singleton cluster, then the record is
added to cg. Note that correlation clustering can
also be formulated as an agreement maximization
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problem which may be easier to implement for
some use cases.

Formally, correlation clustering works as fol-
lows. Assume that F' is the penalty for the a
clustering C and p(r;,r;) is the probability of
r; and r; belonging to the same cluster ¢x €
C. An optimal clustering C* is the clustering
that has the smallest value of F, i.e., F*, given
any possible clustering. Recall that its value is
computed as the global penalty. In other words,
if records 7; and r; are in the same cluster cx
but p(r;,r;) < 1, then this clustering incurs a
penalty of 1 — p(r;,r;). Similarly, if 7; and r;
are not in cg, the clustering incurs a penalty of
p(ri,r;). F is thus computed as:

F(C)ZchEC/\ri,rjECk l_p(ri’rj) 2)
+ chGCArieckArjgéck p(ri’ rj)

Note that there may exist multiple clusterings
that all have the same value F* and are thus
considered optimal.

Calculating C* exhaustively is computation-
ally infeasible. Thus, Bansal et al. (2004) propose
an approximation algorithm called cautious cor-
relation clustering with an approximation param-
eter §. It proceeds iteratively as follows on a set
of records R:

1. Pick anode r; € R at random.
2. Add the neighborhood of r;, i.e., all records
connected to r;, to cluster c.
. Remove all records in ¢ that are not 3§-good.
4. Add all records in the neighborhood of ¢ that
are 78-good.
5. Remove all records in cx from R. Jump to 1.

W

The parameter 6 is specific to cautious correlation
clustering and is used to give a guarantee of how
much the approximated solution diverges from
the optimal solution. Specifically, the authors
show that with the above algorithm, a 9(55 + 1)
approximation can be found in O(R?).

(Semi-)Supervised Learning. Learning tech-
niques have shown potential for improvement
of record linkage solutions especially for record
linkage scenarios where the similarity of records
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cannot be captured with simpler similarity
comparison techniques such as character-based
similarities. Amongst others, there has been work
on applying SVMs, Bilenko et al. (2003), and
learning how to cluster records that refer to the
same real-world entity in a supervised manner,
Cohen and Richman (2002). More recently,
research in the area of record linkage has seen
an increase in work combining crowdsourcing,
i.e., human responses, and automated entity
resolution techniques. For example, Wang et al.
(2012) and as follow-up Wang et al. (2014)
discuss strategies to minimize the number of
crowd requests while at the same time increasing
the quality of the record linkage solution.
Specifically, the idea in this line of work is to
leverage positive responses of the crowd workers
to reduce the search space based on transitivity.
That is, if records r; and r; represent the same
real-world entity, and r; and r; refer to different
entities, then the crowd does not need to confirm
the relationship of r; and r;. Other work in
this area has also utilized similar techniques as
applied for probabilistic modeling to maximize
the quality of a crowdsourced record linkage
solution, Verroios and Garcia-Molina (2015).

Performance Improvements

With an increase in stored data and processing
capabilities, new challenges have arisen for ex-
ecuting traditional record linkage efficiently. For
example, large datasets in the 1960s for which
some of the original record linkage algorithms
were developed, are multiple orders of magnitude
smaller than current linkage datasets. Thus, sev-
eral performance improvement techniques such
as blocking or incremental data processing have
been applied in the context of record linkage to
make this process computationally feasible. A
drawback of these algorithms and mechanisms is
that they often trade off quality for performance.

Blocking. The purpose of blocking is to par-
allelize computationally expensive steps in the
record linkage process. Basically, blocking parti-
tions the record set R according to a pre-defined
input function f that maps a record r; € R to
a block By, Jaro (1989). The goal of f is to
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map all records that point to the same real-world
entity to the same Bj. Techniques such as simi-
larity comparison which would have to be run in
O(R?) before can then be run in O(|Bg|?). The
applied mapping function is either based on the
record characteristics such as the words, tokens,
or k-grams it contains, domain knowledge of the
record linkage context, user-specified constraints,
Arasu et al. (2009), or techniques such as sorted
neighborhood, Herndndez and Stolfo (1998). The
drawback of defining such functions is that there
are no guarantees whether any blocking function
will correctly map all records of the same real-
world entity to the same block. Approaches to
address this problem are, for example, to deploy
multiple blocking functions or compute overlap-
ping canopies instead of distinct blocks, McCal-
Ium et al. (2000).

Incremental Record Linkage. Datasets that are
deduplicated are often static and only occasion-
ally updated. The idea behind incremental record
linkage is to leverage that observation and to
only (re)compute those parts of the record link-
age solution that have been directly or indirectly
modified by updates in the input dataset. First
discussed by Benjelloun et al. (2009) as agglom-
erative clustering, the basic idea of incremental
record linkage was extended by Gruenheid et al.
(2014) to allow any kind of data modification
of the input dataset and to provide theoretical
guarantees for graph record linkage techniques.

In practice, incremental record linkage does
not modify the idea of the original batch linkage
algorithm, for example, correlation clustering,
but modifies these algorithms to fit an iterative
linkage use case. Depending on the applied batch
linkage algorithm, this may lead to a decrease
in the quality of the linked results if the record
linkage computation is global and cannot be lo-
calized, i.e., when the whole dataset is required
as input to form an optimal solution.

Applications of Record Linkage

Entity resolution is a task important for many
different data integration and more recently ma-

Record Linkage

chine learning systems. Thus, there exist dedi-
cated systems such as IBM InfoSphere that have
been commercializing record linkage for many
decades as part of so-called ETL (extract, trans-
form, load) processes. The most common use
case for commercial system is that legacy data
in companies is stored in various places such
as databases, file systems, etc. and needs to be
combined efficiently and without losing any of
the input data. Deduplication issues arise also if
companies merge and the data of the acquired
company has to be integrated into the existing
internal database. Next to commercial systems,
there also exist open source alternatives that can
be used for entity resolution such as Konda et al.
(2016).

Furthermore, record linkage is part of
pipelines used for data cleaning. The goal is
to find “dirty” data which is the same record
inserted into the system multiple times with
slight variations,; see Table 1 for an example.
It is crucial to have good- quality linkage results
for such pipelines as the consolidated entities
are often shown in user interfaces. For example,
information about restaurants, attractions, etc.
can be obtained from a number of input data
sources such as the place’s website, community
boards discussing the place, or third parties
storing information on businesses. Thus, it needs
to be consolidated before appearing on platforms
such as Facebook or Google Maps.

Future Directions for Research

Although record linkage has been extensively
studied, developments in data processing and
learning continuously change its scope. For
example, with the construction of knowledge
bases, record linkage became a focus of those that
wanted to interpret user feedback and content.
They then developed new techniques for the new
context in which record linkage was applied in.
Next to specific applications of record linkage,
there also exists a general trend to make record
linkage part of existing data integration pipelines
and to provide tools that enable users to execute
record linkage with low overhead and in near
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real -time. As a result, one of the challenges and
still an open problem of such an integration
is interactive record linkage given that most
traditional linkage algorithms have been designed
for offline processing.
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Definitions

e Data stream algorithms process a continuous
stream of data with only a limited possibility
to store past records.

¢ Online machine learning covers methods that
update their models after observing a new
event and can immediately serve predictions
based on the updated model.

Overview

In this chapter, we give a brief overview the
following special topics in online machine learn-
ing: Reinforcement learning; unsupervised data
mining methods, including clustering, frequent
itemset mining, dimensionality reduction, and
topic modeling; finally, we list the most important
concept drift adapting learning methods.

This Chapter is an extension of the other
chapters in this Handbook, “Overview of Online
Machine Learning in Big Data Streams” , “Online
Machine Learning Algoriths over Data Streams”,
and “Recommender systems over Data Streams”

Reinforcement Learning

Reinforcement learning is an area of machine
learning concerned with agents taking actions in
an environment with the aim of maximizing some
cumulative reward. It is different from supervised
learning in that the environment does not provide
a target behavior, only rewards depending on the
actions taken.

The environment is typically assumed to be a
Markov decision process (MDP). Formally, we
assume a set of states, S; a set of actions, A; and
a transition probability function P (s, a, s”) denot-
ing the probability of reaching state s’ after taking
action « in state s and a reward function R(s, a)
denoting the immediate reward after taking action
a in state s.

While there is a wide range of reinforcement
learning algorithms (see, e.g., Sutton and Barto
1998), we focus here on algorithms that fit the
streaming model and (possibly) deal with non-
stationary environments. The streaming model of
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reinforcement learning is constrained not only by
a continuous flow of input data but also by a
continuous requisite to take actions.

Algorithms for Stationary Environments

Most reinforcement learning algorithms estimate
the value of feasible actions and build a policy
based on that value (e.g., by choosing the actions
with the highest estimates with some additional
exploration). An alternative to value prediction
methods are policy gradient methods that update
a parameterized policy depending on the perfor-
mance.

Value Prediction

The value of a state is the expected cumulative
reward starting from a given state and following
a particular policy. In a similar way, the action
value is the expected reward starting from a given
state with a particular action.

Value prediction methods estimate the value
of the state or the value of the actions in partic-
ular states. In the former case, to build a policy
from the estimated values, an additional transi-
tion model is needed as well. Such a model is
provided for some domains (e.g., by the rules of
a game), but in many cases, the transition model
needs to be learned as well. Action values can be
used directly for constructing a policy without the
need for a model.

Temporal difference (TD) learning learns the
state value estimate V'(s) by the following update
rule after each state transition (S;, Sy+1):

V(S:) < (1 —a)V(Sy) + (R + yV(St41)).

where o is a step-size and y is the discount
factor. TD learning was used in one of the first
breakthroughs for reinforcement learning, that is,
Tesauro’s backgammon program (Tesauro 1995).

The best-known action-value prediction
algorithm is Q-learning (Watkins and Dayan
1992). For each occurrence of a transition
(St, Ay, St+1), the algorithm updates the action-
value Q(Sy, Ay) by

0S8, Ay) < (1 =) Q(S;, Ay)
+a(R; + y max O(Si41,a)).
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Q-learning using deep neural network to approx-
imate the action-values has been successfully
applied to playing some Atari games at human
expert level (Mnih et al. 2015).

Another algorithm that learns action-values
is Sarsa (Sutton 1996). For each sequence
St, As, St41,andAs4q, the algorithm updates
its estimates by

0S8, A) <~ (1 —a)Q(S;, Ay)
+a(Ry + yO(St+1, Ar+1))-

Sarsa was successfully used by Ipek et al. (2008)
for optimizing a DRAM memory controller.

The value prediction algorithms above were
described with update rules for a tabular repre-
sentation. In most cases, function approximation
is used, and the update rules rely on a gradient
step. Online enhancements of gradient descent as
well as eligibility traces (Sutton and Barto 1998)
can be applied to all variants.

Policy Gradient

While using value functions is more widespread,
it is also possible to use a parameterized policy
without relying on such functions. Parameter-
ized policies are typically optimized by gradient
ascent with respect to the performance of the
policy.

A policy gradient algorithm, the REINFORCE
algorithm (Williams 1992), was used to optimize
policy in a Go playing program that outperforms
the best human players (Silver et al. 2016).

Algorithms for Nonstationary
Environments
Most reinforcement learning algorithms, includ-
ing those discussed in the previous section, as-
sume that the environment does not change over
time. While incremental algorithms such as Q-
learning can adapt well to nonstationary environ-
ments, it may be necessary to devise more explicit
exploration strategies that can cope with changes,
for example, in reward distribution.

A special case of reinforcement learning is
the multiarmed bandit problem. In this case, the
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agent repeatedly selects an action from K possi-
ble choices, obtaining a reward after each choice.
This problem retains the notion of reward; how-
ever, there are no states and consequently no state
transitions. In the non-stochastic variant (Auer
et al. 2002), the distribution of the rewards may
change over time arbitrarily. Standard algorithms
for this problem are Exp3 and its variants (Auer
et al. 2002), which rely on an exponential selec-
tion algorithm, including some exploration terms
as well. Contextual bandits extend the bandit set-
ting with the notion of state (or context); however,
state transitions are still missing. This framework
was used, for instance, in (Li et al. 2010) to select
personalized new stories. We note that the distin-
guishing feature of recommendation in a bandit
setting is that the user can provide feedback only
on the recommended items.

Unsupervised Data Mining

The most prominent class of unsupervised learn-
ing methods is clustering where instances have
to be distributed into a finite set of clusters such
that instances within the cluster are more similar
to each other than to others in different clus-
ters (Pang-Ning 2006). Batch clustering algo-
rithms have been both studied and employed as
data analysis tools for decades (Jain et al. 1999;
Waunsch 2008). One frequently applied clustering
method is k-means (Hartigan and Hartigan 1975)
where cluster center selection and assignment
to nearest centers are iteratively performed until
convergence. Another is DBSCAN (Ester et al.
1996), a density-based method that groups points
that are closely packed together.

Online clustering algorithms are surveyed
among other places in Mahdiraji (2009), Kavitha
and Punithavalli (2010), Aggarwal (2013), and
Silva et al. (2013). The majority of the most
relevant methods are data stream versions of k-
means or its variants such as k-medians (Zhang
et al. 1996; Bradley et al. 1998; Farnstrom et al.
Farnstrom; O’callaghan et al. 2002; Guha et al.
2003; Aggarwal et al. 2003; Zhou et al. 2008;
Gama et al. 2011; Kranen et al. 2011; Ackermann
et al. 2012). Another set of results describes the
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data stream implementation of DBSCAN (Cao
et al. 2006; Chen and Tu 2007; Kranen et al.
2011). Finally, an online hierarchical clustering
algorithm that maintains similarity measures and
hierarchically merges closest clusters is described
in Rodrigues et al. (2006).

Finding frequent itemsets Agrawal et al.
(1993) is another central unsupervised data
mining task, both static and streaming. In
brief, for a table of transactions and items, the
task is to find all subsets of items that occur
together in transactions with at least a prescribed
frequency. Several variants of the task are
described in Aggarwal and Han (2014). Online
frequent itemset mining algorithms are surveyed
in Cheng et al. (2008b). Algorithms based on
counts of all past data in the stream (Chang and
Lee 2003; Giannella et al. 2003; Li et al. 2004;
Yu et al. 2004; Lee and Lee 2005) are also called
landmark window-based approaches. In some of
these algorithms, time adaptivity is achieved by
placing more importance on recent items (Chang
and Lee 2003; Giannella et al. 2003; Lee and Lee
2005). Sliding window-based approaches (Chang
and Lee 2003; Chi et al. 2006; Chang and Lee
2006; Song et al. 2007; Cheng et al. 2008a;
Li et al. 2009; Yen et al. 2011; Calders et al.
2014) are particularly suitable for processing data
with concept drift. For a comparative overview,
see, for example, how MOA’s algorithm was
selected (Quadrana et al. 2015). Note that a
special subtask, finding frequent items in data
streams, is already challenging and requires
approximate data structures (Charikar et al.
2004).

Principal component analysis (PCA) is
a powerful tool for dimensionality reduction
(Jolliffe 1986) based on matrix factorization.
Online variants are based on ideas to incremen-
tally update the matrix decomposition (Bunch
and Nielsen 1978; Hall et al. 2000; Brand 2002).
The first PCA algorithms suitable for online
learning are based on neural networks (Oja
1982; Sanger 1989; Oja 1992). Similar to linear
classification and regression models, PCA can
also apply the kernel trick to involve nonlinear
modeling (Scholkopf et al. 1998). Iterative kernel
PCA is described in Kim et al. (2005) and Giinter
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et al. (2007) and online kernel PCA in Honeine
(2012). We note that for nearest neighbor search
in the low-dimensional space provided by PCA,
the heuristics for selecting large inner products is
applicable (Teflioudi et al. 2015).

Probabilistic topic modeling fits complex hi-
erarchical Bayesian models to large document
collections. A topic model reveals latent semantic
structure that can be used for many applica-
tions. While PCA-like models can also be used
for latent semantic analysis (Deerwester et al.
1990), recently the so-called Latent Dirichlet
Allocation (LDA) (Blei et al. 2003) has gained
popularity. Most topic model parameters can only
be inferred based on Markov Chain Monte Carlo
sampling, a method difficult to implement for
online learning. LDA inference is possible based
on either online Gibbs sampling (Song et al.
2005; Canini et al. 2009) or online stochastic
optimization with a natural gradient step (Hoff-
man et al. 2010). Several online LDA variants are
described in Smola and Narayanamurthy (2010),
Ho et al. (2013), Li et al. (2014), Yuan et al.
(2015), Yu et al. (2015), Jagerman et al. (2017).

Concept Drift and Adaptive Learning

In dynamically changing and nonstationary
environments, we often observe concept drift
as the result of data distribution change over
time. The phenomenon and mitigation of concept
(or dataset) drift for online learning are surveyed
in several articles (Widmer and Kubat 1996;
Tsymbal 2004; Quionero-Candela et al. 2009;
Zliobaite et al. 2012; Gama et al. 2014). The area
of transfer learning where the (batch) training and
the test sets are different (Pan and Yang 2010) is
closely related to concept drift (Storkey 2009)
but more difficult in the sense that adaptation by
learning part of the new data is not possible.
Adaptive learning refers to the technique of
updating predictive models online to react to
concept drifts. One of the earliest active learning
systems is STAGGER (Schlimmer and Granger
1986). In Zliobaite (2009), the main steps of
online adaptive learning are summarized as (1)
making assumptions about future distribution, (2)
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identifying change patterns, (3) designing mech-
anisms to make the learner adaptive, and (4)
parameterizing the model at every time step.

A comprehensive categorization of concept
drift adaptation techniques is found in Gama
et al. (2014). Online learning algorithms can nat-
urally adapt to evolving distributions. However,
adaptation happens only as the old concepts are
diluted due to the new incoming data, which is
more suitable for gradual changes (Littlestone
1988; Domingos and Hulten 2000). For sud-
den changes, algorithms that maintain a sliding
window of the last seen instances perform bet-
ter (Widmer and Kubat 1996; Gama et al. 2004,
Kuncheva and Zliobaité 2009). Another option is
to include explicit forgetting mechanisms (Koy-
chev 2000; Klinkenberg 2004; Elwell and Po-
likar 2009). The most important distinction is
whether changes are explicitly or implicitly de-
tected: Trigger-based methods aim at detecting
when concept drift occurs to build a new model
from scratch (Gama et al. 2004). Evolving learn-
ers, by contrast, do not aim to detect changes
but rather maintain the most accurate models at
each time step. Evolving learners are method-
specific, most of them are based on ensemble
methods (Wang et al. 2003; Kolter and Maloof
2003).

A few papers (Minku et al. 2010; Moreno-
Torres et al. 2012) give overviews of differ-
ent types of environmental changes and concept
drifts based on speed, recurrence, and severity.
Drift can happen gradually or suddenly, in isola-
tion, in tendencies or seasonally, and predictably
or unpredictably, and its effect on classifier per-
formance may or may not be severe. In Schlim-
mer and Granger (1986), Gama et al. (2004),
several artificial data sets with different drift
concepts, sudden or abrupt, and gradual changes
are described.

A large variety of single classifier and en-
semble models capable of handling concept drift
are described in Tsymbal (2004). Perhaps the
majority of the results consider tree-based meth-
ods Alberg et al. (2012). For example, concept
drift adaptive online decision trees based on a sta-
tistical change detector that works on sliding win-
dows are described in Bifet and Gavald (2009),
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Bifet (2010). More examples include Bayesian
models (Gama et al. 2003; Bach and Maloof
2010), neural networks (Gama and Rodrigues
2007; Leite et al. 2013), and SVM (Syed et al.
1999; Klinkenberg and Joachims 2000). Concept
drift adaptation methods exist for clustering (Ro-
drigues et al. 2006; Silva et al. 2013). Sliding
window-based data stream frequent itemset min-
ing is also adaptive (Quadrana et al. 2015). Some
of the results do not follow the data stream com-
putational model but rather use computational
resources with little restriction. One class of such
methods are incremental algorithms with partial
memory (Maloof and Michalski 2004). We also
note that there is a MOA-based software system
for concept drift detection (Bifet et al. 2013).

Cross-References

Overview of Online Machine Learning in Big
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Definitions

Rendezvous architectures are a class of stream-
ing microservice architecture designed to manage
multiple implementations of a streaming func-
tion so that new implementations can be de-
ployed easily and accurately, input data can be
archived precisely, and past operations can be au-
dited while maintaining strict service-level guar-
antees. Although suitable for more general appli-
cation, rendezvous architectures are particularly
useful for the special case of managing machine
learning models. The discussion here follows the
trend of associating rendezvous architecture with
machine learning and is largely limited to that
context.

Historical Background

The management of logistics in machine learning
systems has always been notoriously difficult,
particularly when there are multiple data sources
and, as is almost always the case, multiple models
being iteratively developed, evaluated, and de-
ployed at the same time. Requirements include
stability and reliability in production along with
agility in response to changes. The challenges
are even greater when this needs to be done at
large scale, in a production setting, and in such a
way as to meet critical service-level agreements
that increasingly include guaranteed low latency
(Bose et al. 2017; Dunning and Friedman 2017).
People who are new to machine learning may
think that machine learning models can be man-
aged in the same way as normal software, by
using continuous integration techniques to deploy
a single high-quality model, but the reality for
machine learning systems is far different. Suc-
cessful projects involve a large number of models
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both in development and in production simul-
taneously. Simply determining which model is
more accurate is difficult. Moreover, the prolif-
eration of machine learning frameworks means
that production models may not share common
base technologies. Maintaining strict availability
and latency service levels while simultaneously
dealing with these other difficulties can be partic-
ularly difficult.

Another source of challenges lies in the fact
that the process of machine learning model de-
velopment and evaluation is iterative and needs
to operate in a sufficiently flexible and agile
way that allows for experimentation and timely
response to the need for new or retuned models
without compromising operational characteris-
tics like worst-case latency or failure tolerance.
Even when models are running well in produc-
tion, there is still a need for continuous deploy-
ment in part because external conditions change.
For example, customer behavior may change,
fraudsters may develop new tricks, or business
goals and requirements may be realigned, thus
degrading the performance of a once-effective
model.

Additional challenges in machine learning
logistics arise from the need for consistency of
conditions relative to the production environment
during experimentation and evaluation. Even
apparently trivial environmental differences
between development and production can result
in unwanted surprises upon deployment.

It is also important to allow large amounts of
experimentation and trials in production settings,
but at the same time, it is critical to bound the risk
of failed experiments.

Solving these logistical problems with
bounded risk is the primary motivation for
rendezvous architectures.

Foundations

Rendezvous architectures are best understood
in the context of managing machine learning
logistics in large-scale systems even though they
can be applied to any streaming transformation.
In order to meet the challenges of handling
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input and output data and managing models, the
rendezvous design takes advantage of several
key techniques. These include stream-based
architecture, a microservice approach, and the
use of containers for isolation. The major
goals of rendezvous architectures are to be
able to:

* Preserve raw data that exactly reflects opera-
tional reality.

* Make it easier to manage multiple model ver-
sions.

* Provide for smooth and predictable model
deployment into production.

* Meet stringent latency and availability guar-
antees with no planned violations and no ac-
cidental violations except under major failure
scenarios.

*  Work in an iterative and agile fashion.

Overview of Rendezvous Architecture

The distinctive architectural features of ren-
dezvous architectures are the decomposition
of a query-response microservice into a set of
streaming microservices, the rendezvous server
itself, and the way that all live models take inputs
from and put their results to common streams.

The main rationale for using streaming as the
backbone of the rendezvous architecture is that
new models can start reading requests from the
input stream and writing results into the output
stream with no configuration or service discovery
burden. This means that the overall management
of running models is very simple and dynamic.
New model implementations merely need to be
told where to get their input and where to put
results, and they can start operation. If a model
is slow as it warms up or has other problems that
prevent it from keeping up with production loads,
there is no problem with partial results.

The rendezvous server itself is what makes
this work. Results from models for each incoming
request are buffered by the rendezvous server
until one of the results is received that meets
the requirements of a schedule that defines the
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trade-off between model preference and latency
guarantees. That is, we might have a favored
model, but we will only wait for a certain amount
of time for that model to give us a result before
using a less-favored model. The schedule can
even specify a default result to be used in case
no model produces a result in the required time.

The overall design of a rendezvous architec-
ture is depicted in Fig. 1. In this figure, a request
is accepted by any of a number of proxies and
inserted into the input stream. All live models
run in containers, evaluate as many requests as
they can, and put all responses into the scores
stream. The rendezvous server sees all incoming
requests and starts a timer for each such request.
As results are received from the live models,
they are correlated against pending requests. The
rendezvous server has a schedule of preferred
model priorities versus latencies, and as soon as
a result meets the requirements of the schedule,
that result is put into the results stream and
returned by the original proxy. All other results
are ignored by the rendezvous server, although
they are preserved in the scores stream for a
configurable amount of time.

The final step of deploying a new model into
production after it has been started and is evalu-
ating requests is for the rendezvous server to stop
ignoring the new model’s results. This design
makes it easy to roll out new models or to roll
back to a previous model if performance of the

Model 1 Rendezvous

Model 2 —> Scores
request f
N P Model 3
o Proxy
response

Results

Rendezvous Architectures, Fig. 1 The general struc-
ture of a rendezvous architecture. Incoming requests are
handled by one or more proxies that inject requests into a
stream so that multiple models can evaluate each request.
The rendezvous server sees the original request and selects
a result to return to the proxy from the scores stream
according to a policy designed to ensure service levels
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new model is not as expected. Moreover, if the
new model crashes or slows down unacceptably,
the rendezvous schedule will allow other models
to take up the slack and avoid violation of service-
level guarantees.

Note that this design also allows raw data to
be augmented by additional variables or features
before use as input data. This is illustrated in
Fig.2 where the raw request stream is trans-
formed by the addition of common features or
insertion of external state information before the
models evaluate the requests. By adding common
features or injecting external state at this point, all
models are guaranteed to have exactly the same
inputs.

In order to manage the conflicting environ-
mental requirements for different models, it is a
best practice to run each model in a container.
This decreases the likelihood that the model be-
havior will change as it is put into production
due to changes in the execution environment.
Typically, an orchestration system such as Ku-
bernetes (Burns et al. 2017) is used to manage
such containers, but the very simple coordination
and discovery for models in a rendezvous ar-
chitecture make almost any orchestration system
acceptable.

Versioning of the Rendezvous

Components

All of the components of the rendezvous archi-
tecture can be upgraded during operation with

request External
N
Proxy _> state ->
" <] probe
esponse
S—

Results

Rendezvous Architectures, Fig. 2 The incoming re-
quests can be augmented with the result of probing ex-
ternal state (such as user profiles). The same module
could be used to compute commonly used input features.
This approach avoids race conditions between different
models’ probes of the external state and makes it easier
to maintain exact consistency of all model inputs
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no downtime or latency disturbances. This can
be done by injecting transition tokens into the
input of the system. As these tokens pass through
the system, old versions of each component stop
processing of messages, and new components
take over. For elements such as the feature ex-
traction or external state access which are pure
transformations, this is straightforward since all
messages are processed entirely by one version or
the other. Figure 3 illustrates the more complex
case of upgrading the rendezvous server itself.
Extra complexity arises because the old ren-
dezvous server has to keep track of any pending
requests that arrived before the transition even if
the results arrive after the transition, while the
new rendezvous server must be sure to keep track
of only requests that arrive after the transition to-
ken. The process starts with the token at position
1 in the figure at the input to the system. At this
point, a shadow rendezvous server will have been
started and will be listening to the same inputs
as the production server. The token propagates to
all models and to the inputs of the current and
shadow rendezvous servers at the points marked
2. The models each pass the transition token
unchanged so that multiple copies appear in the
scores stream.

The production rendezvous server buffers re-
sults for all requests that arrive before the tran-
sition token is seen on the input stream. The

Shadow
rendezvous

Rendezvous

©))
Model 2 | ) Scores )

Model 3

®

Model 1

Rendezvous Architectures, Fig. 3 Upgrading the ren-
dezvous server using a transition token that passes through
the system to locations marked 1, 2, and 3 at times ?1,
12, and t3, respectively. Control over processing transi-
tions in stages from the production rendezvous server to
the shadow server that will become the new production
server after the transition token has passed all the way
through
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shadow server takes over the production role
by initiating coverage on all requests that are
received after the transition token. The overall
result is that only one rendezvous server ever
produces a result for each request even if a
rendezvous server is restarted during the upgrade.
The old production rendezvous server can be
retired once it reports results for all pending
requests. In fact, it may be preferable to keep the
old server around for a time in case it becomes
necessary to fail back.

Since maximum response latencies for sys-
tems where a rendezvous server makes sense are
typically less than a second, the hand-off process
will appear to be nearly instantaneous once the
transition token is introduced to the system.

This upgrade process is related to the Chandy-
Lamport (Chandy and Lamport 1985) check-
pointing algorithm and to the process that Apache
Flink (Friedman and Tzoumas 2016) uses to up-
grade program versions but is somewhat simpler.

Key Properties of Rendezvous

Architectures

The rendezvous architecture uses streaming
microservices (Dunning and Friedman 2016)
internally to build a microservice that exposes
a query-response interface externally. A ren-
dezvous architecture is characterized primarily
by a few properties:

Synchronous requests are evaluated internally
in a streaming microservice style. This is
highly unusual in large-scale machine learning
systems. Much more common is to use a load
balancer that distributes individual requests
to individual models that evaluate requests
synchronously. The use of streams to distributed
requests is unusual, and it makes many operations
in the rendezvous architecture much easier,
largely because persistent streams allow simpler
handling of failure modes.

Input requests are sent to all live models iden-
tically. In machine learning systems that do not
use rendezvous techniques, secondary requests
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may be made by the load balancer to fallback
models, mostly as hedges against latency viola-
tions. Similarly, requests are sometimes broken
into pieces and sent to shared decision engines.
Results are collected until complete or until a
deadline looms and the results are “complete
enough.” Doing this with streaming and nearly
universally for all queries as in the rendezvous
server is very unusual but it deployment of mod-
els and the framework itself. It also makes it
relatively easy to guarantee response latencies
even in the presence of process failures or during
the deployment and warmup of new models or the
retirement of old ones.

All input requests are evaluated by multi-
ple models. In non-rendezvous systems, evalu-
ation of individual requests by multiple models
at the same time, sometimes known as spec-
ulative evaluation, is the exception rather than
the rule. Historically, high degrees of speculative
execution were avoided due to worries about
computational capacity, but this is much less of a
consideration now, so the aggressive speculative
execution of the rendezvous architecture is more
viable.

All model results are put into a common
stream of results. This is a unique characteristic
of rendezvous architectures which allows the
implementation of the rendezvous server to be
substantially simplified.

A rendezvous server selects which result
for each request to return Allowing the
rendezvous server to select which result to
return according to a trade-off schedule allows
the concerns of accuracy and reliability to be
separated. Accuracy, the primary goal of the
model developer, is embodied in the models
themselves. Reliability, particularly with respect
to the satisfaction of service-level guarantees,
is the focus of site reliability engineers and
operations staff and is the key purpose of the
rendezvous server. Separating these concerns
makes it easier to satisfy both.
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Key Applications

The primary application of rendezvous archi-
tectures is to allow continuous integration of
machine learning models while maintaining
promised service levels.

The types of machine learning for which
the rendezvous pattern of architecture is most
appropriate are those that involve decision-
ing, that is to say, applications that should
return a “correct” answer as estimated by
a model without much correlation between
different decisions. These systems generally
are synchronous in design in that they
involve a query-response pattern of interaction
with bounded request and response sizes.
Examples include predictive analytics, image
or speech recognition using deep learning
techniques such as medical image analysis
or speech-to-text, fraud detection in financial
transactions, and IoT sensor data processing
for manufacturing or for churn prediction in
telecommunications and for web-based decision
systems.
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hoc in nature and do not have any upfront query
workload.

Overview

Data partitioning is a well-known technique for
improving the performance of database applica-
tions. By splitting data into partitions and only
accessing those that are needed to answer a query,
databases can avoid reading data that is not rel-
evant to the query being executed, often sig-
nificantly improving performance. Additionally,
when partitions are spread across multiple ma-
chines, databases can effectively parallelize query
processing across them.

This chapter summarizes traditional data par-
titioning techniques, motivates the need for a
more robust data partitioning over modern ad
hoc query workloads, introduces the concept of
hyper-partitioning for creating a robust partition-
ing tree and hyper-join to process join queries
over such a partitioning tree, and finally discusses
repartitioning techniques for adapting the parti-
tioning tree in a robust manner.

Traditional Partitioning Approaches

The traditional approach to data partitioning is to
split a table on some key, using hash or range
partitioning. This helps queries that have selec-
tion predicates involving the key go faster, by
only accessing the relevant portions of data. Like-
wise, for queries with joins, queries will benefit
when the database is partitioned on attributes
involved in the join, due to local co-partitioned
join processing in each partition. Because of these
performance gains, many techniques have been
proposed in the literature.

Workload-Based Partitioning

The typical approach is to find a good data
partitioning for a given query workload. These
approaches assume that the query workload is
either provided upfront or collected over time,
and try to choose the best partitioning for that
workload. Examples include fine-grained parti-
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tioning (Curino et al. 2010), hybrid of fine- and
coarse-grained partitioning (Quamar et al. 2013),
skew-aware partitioning (Pavlo et al. 2012), deep
integration of partitioning with the query opti-
mizer (Nehme and Bruno 2011), interdependence
of different physical design decisions (Zilio et al.
2004), integrating vertical and horizontal par-
titioning decisions (Agrawal et al. 2004), and
partitioning a B*-Tree on primary keys (Graefe
2003). Workload-based partitioning need to be
reconfigured every time the workload changes.

Multidimensional Partitioning

Several partitioning techniques have been
proposed for multidimensional data, e.g., k-d
trees, R-trees, and quadtrees. These are typically
used for spatial data with two dimensions.
Other approaches include binary search trees
such as splay trees (Sleator and Tarjan 1985)
and MAGIC to decluster data on multiple
attributes (Ghandeharizadeh and DeWitt 1994).
Recent approaches layer multidimensional index
structures over distributed data in large clusters.
This includes SpatialHadoop (Eldawy and
Mokbel 2015), MD-HBase (Nishimura et al.
2011), and epiC (Wang et al. 2010) or adapting
the multidimensional index to the workload
in TrajStore (Cudré-Mauroux et al. 2010).
Commercially, Oracle and MySQL support
sub-partitioning to create nested partitions
on multiple attributes. IBM DB2 supports
multidimensional clustering tables to cluster data
along multiple dimensions and build block-based
indices on them.

Big Data Partitioning

Big data storage systems, such as HDFS, par-
tition datasets based on size. Developers can
later create attribute-based partitioning using a
variety of data processing tools, e.g., Apache
Hive and SCOPE (Zhou et al. 2012). However,
such a partitioning is no different than traditional
database partitioning since (i) partitioning is a
static one time activity and (ii) the partitioning
keys must be known a priori and provided by
users. Recently, Sun et al. (2014) proposed to
create data blocks in HDFS based on the features
extracted from each input tuple. Again, the fea-
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tures are selected based on a workload, and the
goal is to cluster tuples with similar features in
the same data block. AQWA looks at adaptive
data partitioning for spatial data (two dimen-
sions). Their techniques do not scale to higher
dimensions (Aly et al. 2015). Apart from sin-
gle table partitioning, Hadoop++ (Dittrich et al.
2010) and CoHadoop (Eltabakh et al. 2011) pro-
pose to co-partition datasets in HDFS to speed
up join queries. These systems still assume a
workload.

Database Cracking

Database cracking (Idreos et al. 2007) is a tech-
nique to adapt the layout of data and indexes
as queries arrive. Partial sideways cracking ex-
tends this idea to generate adaptive indexes on
multiple columns (Idreos et al. 2009). Cracking
is designed for in-memory column stores, and it
adapts the data to every query in the system. It
does not naturally apply to a distributed setting
for two main reasons. First, the cost of reparti-
tioning in a distributed setting is higher than in
a main memory system. So, it is very expensive
to repartition data on every access as cracking
does. Second, cracking splits the data on every
new predicate it encounters, which can result in a
large number of blocks. However, in a distributed
setting, the number of data blocks that can be cre-
ated is limited because blocks must be a certain
size to amortize latencies of disk and network
access. As a result, adding a split for a new
predicate involves merging existing partitions and
re-splitting them to keep the number of blocks
constant.

Robustness

Modern data analytics has newer data partitioning
needs. Data science, for instance, often involves
looking for anomalies and trends in data. There
is no representative workload for this kind of ad
hoc, exploratory analysis, and the set of tables
and predicates of interest will often shift over
time. For example, an analyst may look for pat-
terns in a database of multidimensional web click
events (with user history, demographic informa-
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tion, and platform information as dimensions).
The analyst may want to view this data according
to any of its dimensions — e.g., they may want to
query according to the user’s past browsing pat-
terns, by their age or income or by whether they
are using a mobile phone or a laptop. As the spe-
cific set of attributes of interest is not necessar-
ily known upfront, workload-based partitioning
techniques cannot be applied. Furthermore, as the
workload is ad hoc in nature, database cracking
cannot be applied as well. Figure 1a illustrates the
data partitioning dilemma that analysts face with
modern workloads.

Analysts are either stuck with naive size-based
partitioning that offers no data skipping capa-
bility and hence very poor performance (full
scan). Or, alternatively, they could pick one of
the more recent adaptive partitioning techniques,
e.g., cracking (Idreos et al. 2007) that would
make the first few queries even slower than full
scan, but will gradually improve if successive
queries are on the same dimension, i.e., having a
selection predicate on the same attribute. In case
the query dimension changes, the performance
again goes back worse than full scan before
gradually improving with successive queries on
the new dimension (referred to as naive adaptive
partitioning). This is really painful for an analyst
exploring multiple dimensions: analysts want a
data partitioning scheme that is robust fo the
ad hoc nature of the modern workloads and
provides good performance from the first query
itself, adaptively improving from there on.

Hyper-partitioning

Distributed storage systems, such as HDFS, sub-
divide a dataset into chunks, called blocks, based
on size (usually 128 MB). Workload-based par-
titioning techniques for such systems, including
content-based chunking (Bhatotia et al. 2011)
and feature-based blocking (Sun et al. 2014),
create blocks such that irrelevant blocks could be
quickly skipped for the specific query workload.
Hyper-partitioning goes a step further by creating
blocks based on a partitioning tree that allows
to skip data over almost all ad hoc queries,
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without having any information about the query
workload. Such a partitioning also serves as a
good starting point for an adaptive query executor
to improve upon.

Since hyper-partitioning partitions the data
along several dimensions, it could end up de-
clustering the data blocks across machines
and performing random I/Os for each block.
However, this is still fine; large block sizes
in distributed file systems (Ghemawat et al.
2003) combined with fast network speeds lead
to remote reads being almost as fast as local
reads (Ananthanarayanan et al. 2011; Binnig
et al. 2016). Essentially, hyper-partitioning
sacrifices some data locality in order to quickly
locate the relevant portions of the data on each
machine in a distributed setting.

The rest of this section first introduces the
notions of robust partitioning tree and attribute
allocations in that tree and then describes how to
construct and query such a tree.

Robust Partitioning Tree

The hyper-partitioning partitioning tree, or sim-
ply the robust tree, is represented as a balanced
binary tree, i.e., the dataset is successively par-
titioned into two until it reaches the maximum
partition size. For HDFS, hyper-partitioning takes
the block size as the maximum partition size.
The choice of binary tree is deliberate as it is
more general (a four-way partitioning can be
achieved by two successive two-way partitioning)
as well as fine-granular when adapting the tree

to workload changes later. Each node in the tree
is represented as A,, where A is the attribute
being partitioned on and p is the cut point. All
tuples with A < p go to the left subtree and
rest go to the right subtree. A leaf node in the
tree is a bucket, having a unique identifier and
a file name in the underlying file system. This
file contains the tuples that satisfy the predicates
of all nodes traversing upwards from the bucket
to the root of the tree. Note that an attribute
can appear in multiple nodes in the tree. Having
multiple occurrences of an attribute in the same
branch of the tree increases the number of ways
the data is partitioned on that attribute.

Traditional binary partitioning trees, such as
k-d tree (Bentley 1975), partition the space by
considering the attributes in a round robin fash-
ion, until the smallest partition size is reached.
Hence, the tree can only accommodate as many
attributes as the depth of the tree. Figure 2 shows
a k-d tree where the three levels of the tree
divide the dataset on attributes 4, B, and C,
respectively. In general, for a dataset size D,
minimum partition size P, and n way parti-
tioning over each attribute, the partitioning tree
contains Llogn%J attributes. Withn = 2, D =
1TB, and P = 64MB, only 14 attributes can
be accommodated in the partitioning tree. How-
ever, many real-world schemas have way more
attributes.

In contrast to k-d tree, the robust tree
performs heterogeneous branching in order to
accommodate more attributes by partitioning
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Robust Data Partitioning, Fig. 2 Multidimensional
partitioning tree. (a) k-d tree. (b) Robust tree

different branches of the partitioning tree on
different attributes. In other words, robust tree
sacrifices the best performance on a few attributes
to achieve robustness, i.e., improved performance
over more attributes. This is reasonable as
without a workload, there is no evident reason to
prefer one attribute over another. Figure 2b shows
a robust partitioning tree. After partitioning on
attribute A, the left side of the tree partitions on
B, while the right side partitions on C. Thus, the
tree is now able to accommodate four attributes,
instead of three. However, attributes B and
D are each partitioned on 75% of the data,
while attribute C is partitioned on 50%. Ad hoc
queries would now gain partially over all four
attributes, which makes the partitioning more
effective.

The number of attributes in the robust parti-
tioning tree, with ¢ as the minimum fraction of
the data partitioned by each attribute and r as
the number of replicas, is given as % - |log, %J.
Withn = 2, D = 1TB, P = 64MB, and
¢ = 50%, the number of attributes that can
be partitioned is 28. Note that the number of
attributes that can be partitioned increases with
the dataset size. This shows that with larger
dataset sizes, hyper-partitioning is even more
useful for quickly finding the relevant portions of
the data.

Robust tree can further leverage the data repli-
cation in distributed storage systems, e.g., 3x
replication in HDFS. Such replication mecha-
nisms first partition the dataset into blocks and
then replicate each block multiple times. Instead,
first, the entire dataset is replicated, and then each
replica is partitioned using a different partition-
ing tree. While the system is still fault tolerant
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(because it has the same degree of replication),
recovery becomes slower because it needs to read
several or all replica blocks in case of a block
failure. Essentially, fast recovery time is sacri-
ficed for improved ad hoc query performance.
Such a scheme can either increase the number
of attributes in the partitioning tree, or increase
the data fraction covered per attribute. Both of
these lead to improved query performance due to
greater partition pruning.

Attribute Allocation

The goal of robust tree is to allocate attributes
to nodes in the tree such that all attributes have
similar advantage in terms of data skipping or
parallel processing. Therefore, the allocation of
an attribute is defined as the weighted sum of
its fanout on each of the nodes it appears in the
partitioning tree 7', i.e., the allocation of attribute
i is given as:
Alloc; (T) = Z DataFraction,, - Fanout,

nenodes(T,i)

The allocation defined above gives the
granularity of data partitioning over an attribute.
Higher allocation means more data skipping is
possible. For example, in Fig.2b, attribute B
appears on two nodes, one covering 50% of the
data while the other covering 25% of the data.
Thus, B has an allocation of (0.5%240.25%2) =
1.5. With no query workload, the goal is to
balance the benefit of partitioning across all
attributes in the dataset. This means that same
selectivity predicates on any two attributes X
and Y should have similar speedups, compared
to scanning the entire dataset. To achieve this,
the total allocation is distributed equally among
all attributes. Each attribute gets an allocation of
bYI1Al where |A| is the number of attributes and b
is the number of buckets. For instance, if there are
eight buckets, and three attributes, the allocation
(average fanout) per attribute is 8!/ = 2. In case
of prior workload information, users can provide
relative weights of the attributes, and the attribute
allocation will be distributed proportional to these
weights. The intuition is then to compute the
maximum per-attribute allocation and then place
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attributes into the tree so as to approximate this
ideal allocation.

Hyper-partitioning Algorithm

Algorithm 1 shows the pseudocode to generate
the robust partitioning tree. It first calculates the
depth of the tree to be created (Line 3), then
initializes the queue with the root node of the
tree (Line 4), and starts a breadth-first traversal to
assign an attribute to every node. The attribute to
be assigned at a given node is given by the func-
tion LeastAlloc, which returns the attribute
which has the highest allocation remaining. If two
or more attributes have the same highest alloca-
tion remaining, the algorithm randomly chooses
among the ones that have occurred the least
number of times in the path from the node to
the root. Med returns the median of the attribute
assigned to this node by finding the median in the
sampled data which comes to this branch. The
algorithm starts with an allocation of 2 for the
root node, since it partitions the entire dataset
into two. Each time it goes to the left or the
right subtree, it reduces the data it operates on
by half. Once an attribute is assigned to a node,

Algorithm 1: CreateRobustTree

Input :Int D, Int maxPartitionSize, Float[] alloc,
Tuple[] initSample

Tree tree;

numBuckets < | D/maxPartitionSize];
treeDepth <— [ og> (numBuckets) ;

Queue queue < {(tree.root, treeDepth,
initSample)};

B W N -

5 while gueue.size > 0 do
6 node,depth,sample <— queue.first();
7 if depth = 0 then
8 node <— NewBucket ();
9 L Continue;
10 node.attr <— LeastAlloc (alloc) ;
11 node.val <— Med (sample,node.attr) ;
12 IS, 1S <— SplitSample (node.attr,
node.val) ;
13 node.left <~ CreateNode () ;
14 node.right <— CreateNode () ;
15 alloc[node.attr] -= 2 /2maxDepth - depth,
16 depth -=1;
17 queue.add((node.left, depth, 1S));
18 queue.add((node.right, depth, rS));
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it subtracts from the overall allocation of the
attribute (Line 13). The algorithm creates a leaf-
level bucket in case it reaches the maximum depth
(Line 18).

Query Processing

A hyper-partitioning query processor considers
the filter predicates in incoming queries and fil-
ters out partitions that do not match any of the
query predicates. For example, if there is a node
As in the tree and one of the predicates in the
query is A < 4, then any of the partitions in right
subtree of the node don’t need to be scanned.

Using Spark, for instance, a job can be con-
structed where relevant partitions are split into
tasks, a set of partitions such that the total size
is not more than 4 GB. Each task reads the blocks
from HDFS in bulk and iterates over the tuples in
main memory. A tuple is returned if it matches
the predicates in the query. Tasks are executed
independently by the Spark job manager across
all machines, and the result is exposed to users
as a Spark RDD. Users can use these RDDs to
do more analysis using the standard Spark APIs,
e.g., run an aggregation.

This section described hyper-partitioning
and processing selection queries over a hyper-
partitioned input. The following section describes
techniques for processing join queries over two
or more hyper-partitioned inputs.

Hyper-joins

Hyper-partitioning may end up partially parti-
tioning tables on several different attributes, such
that when two tables A and B are joined, a
partition in A may join with several partitions
in B, each located on HDFS. One option is to
simply perform a shuffle join, i.e., repartition
both A and B so that each partition of A joins
with just one partition of B. However, this can
be suboptimal if each partition of A only joins
with a few partitions on B; instead, building a
hash table over some partitions of A (or B) and
probing it with partitions from B (or A) can result
in significantly less network and disk I/O.
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Example 1 Suppose table A has three partitions
and table B has three partitions. Suppose A; joins
with By and Bj; A, joins with By, B,, and B3;
and A3 joins with B, and B3, and each machine
; has memory to hold 2 partitions to build hash
tables on A. Consider building a hash table over
A1 and A3 on .#;; we will need to read By, B>,
and B3. We then build another hash table over A,
on /> and again read Bj, B;, and Bj. In total,
we read six blocks. As an alternative, building a
hash table over A; and A, on .#; and another
one over A3 on .#, requires reading just By, 2 *
B,,2 x B3 = 5 blocks.

Thus, building hash tables over different sub-
sets of partitions will result in different costs. Un-
fortunately, finding the optimal collection of par-
titions to read is NP-Hard. However, heuristically,
solving the problem can still provide significant
performance gains over shuffling. To obtain these
gains, partitions must be constructed such that,
for a join between tables A and B, each partition
of A only joins with a subset of the partitions
of B. Hyper-join provides this property and is
designed to move fewer blocks throughout the
cluster than a complete shuffle join when tables
are not co-partitioned.

The rest of this section formulates hyper-join
as an optimization problem, presents an optimal
solution based on mixed integer programming,
introduces an approximate algorithm which can
run in a much shorter time, discusses hyper-
joins for multiple join predicates, and finally
shows a two-phase partitioning technique to
add join attributes into the robust partitioning
tree.

Problem Definition

Consider relations R and S, which can join
on attribute t. Let R = {ry,r2,...,rn} and
S = {s1,52,...,5m} be the collection of
data blocks obtained from hyper-partitioning.
Let V = {v1,v2,...,0,} be a collection
of m-dimensional vectors, where each vector
corresponds to a data block in relation R. The
Jj-th bit of v;, denoted by v;;, indicates whether
block r; from relation R overlaps with block
s; from relation S on attribute ¢ (these are the
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blocks that must be joined with each other). Let
Range, (x) be a function which gives the range
(min and max values) of attribute ¢ in data block
x and 1(s) be a function which gives 1 when
statement s is true. Given two relations R and
S, and for each block r; from R and s; from S,
let v;; = 1(Range,(r;) N Range,(s;) # 9). A
straightforward algorithm to compute V' has a
time complexity of O(nm). The Range, values
for each block are stored with each block in the
partitioning tree. Let P = {p1, p2,..., px} be a
partitioning over R, where P is a set of disjoint
subsets of the blocks of R and its union is all
blocks in R. Each p; is constrained to be able to
fit into memory of the node performing the join.
v(p;) is used to denote the union vector of all
vectors in p;, i.e., V(p;) = \/r,-Em v;, where v;
is the vector for block r;. Let 8(1},-) =) ke1 Vik
indicate the number of bits set in v;. Given a
partition p;, C(p;) defines the cost of joining p;
with all partitions in S as the number of bits set in
v(pi), i.e., C(p;) = 8(v(p;)). This corresponds
to the number of blocks to be read to join p;.
Next, the cost function C(P) over a partitioning
is defined as the sum of C(p;) overall p;
in P:
C(P)= ) Cpi)

p[GP

Thus, the problem of computing hyper join is
finding the optimal partitioning P of relation R.

Consider the example in Fig. 3, with table R =
{ri,ra,r3,rq} and table S = {s1, 52, 53, 54} and
assume | P| = 2, i.e., that there is sufficient mem-
ory to store |R|/|P| = 4/2 = 2 blocks of R in
memory at a time. The interval on each partition
indicates the minimum and maximum value on
the join attribute from all the records. The ar-
rows in the figure indicate the two corresponding
partitions overlapping on the join attribute. From
the figure, r; needs to join with s, r» needs to
join with sq, s», etc. Therefore, V = {v; =
1000, v, = 1100,v3 = 0110,v4 = 0011}. A
hash table could be built over multiple yellow
partitions to share some disk access of green
partitions. For example, a hash table could be
built over the first two yellow blocks (r; and r»)
and another one over the last two yellow blocks
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Robust Data Partitioning, Fig. 3 Illustrating hyper-join

(r3 and r4), so that only 5 green blocks need to be
read from disk, assuming only one green block is
in memory at a time. In this way, the partition
P = {p1 = {r1,r}, po = {rs,rq}}, which
is optimal. The overall cost C(P) = 5, since
U(p1) =2and v(p2) = 3.

Intuitively, the objective function C(P) is the
total number of blocks read from relation S, with
some blocks being read multiple times. From the
perspective of a real system, the size of p; is con-
strained, both due to memory limits and to ensure
a minimum degree of parallelism (the number
of partitions should be larger than a threshold).
If memory is sufficient to hold B blocks from
relation R, then we need ¢ = [n/B] partitions.
We now define the minimal partitioning problem.

Problem 1 Given a set of data blocks from re-
lation R, find a partitioning P over R such that
C(P) is minimized, i.e.,

c(pP)

arg min
P

subjectto |P|=c,

|pi| < B,Vp; € P.

Optimal Algorithm

This section describes a mixed integer program-
ming formulation which can generate the mini-
mal partitioning. Given the maximum number of
data blocks B that can be used to build a hash
table due to available worker memory, the total
number of hash tables to be built are ¢ = [n/B].

[0,150) .
[150,250) *

[250,350) »

[350,400) *

For each data block r; from relation R and each
partition pg, the assignment of r; to partition
Pk is indicated with a binary decision variable
Xix € {0,1}. Likewise, for each data block s;
from relation S, a binary decision variable y; x €
{0, 1} indicates if the j-th bit of O(py) is 1.

The first constraint in Problem 1 requires that
the size of each partition pj is under the memory
budget B:

n
in,k <B

i=1

vk,

The second constraint requires that each data
block r; from relation R is assigned to exactly
one partition:

C
Vi, D xix=1
k=1

Given a partitioning P, for each partition py,
every overlapping data block from relation S
must also be in partition pg. Let Ji be the set of
data blocks from relation R which overlaps with
data block sy from relation S'.

Vi,Vk,Vj € J. Yik Z Xi,j

We seek the minimal input size of relation S:

m c
min Z Z Vik

Jj=1lk=1
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Solving integer linear programming (ILP) of
this form is generally exponential in the number
of decision variables; hence the running time of
this algorithm may be prohibitive. The proof for
NP-hardness of the problem can be found in Lu
et al. (2017).

Approximate Solution

Taking B data blocks from relation R with small-
est §(0(<)) is NP-hard, and there is no algorithm
for n'~€-approximation for any constant € > 0.
However, an approximate bottom-up algorithm,
as shown in Fig.4, can provide practical run-
times.

The algorithm starts from an empty set of
partitions P and an empty partition 2. It itera-
tively adds a data block r; into &7 with smallest
8(r; V 0(£2)) until there are B blocks in partition
& or no data block left in relation R. It then
adds & into P until P contains all blocks from
relation R. A straightforward implementation of
this algorithm has a time complexity of O(n?)
(where n is the number of blocks of R), since the
minimum cost block (requiring a scan of the non-
placed blocks) needs to be computed n times.

Joins Over Multiple Relations

Hyper-join technique can be extended to multiple
inputs. Consider TPC-H query 3. If the join order
is (lineitem > orders) b customer
and the intermediate result of the first two
tables is denoted by tempLO, then the relation
customer needs to join with tempLO on
custkey. If custkey is the join attribute in
the customer partitioning tree, only tempLO
needs to be shuffled based on custkey,
and then hyper-join can be used instead of an
expensive shuffle join, in which both tempLO
and customer need to be shuffled.
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With more relations to join, shuffle join over
two intermediate outputs of hyper joins could
be more efficient. Consider TPC-H query 8. If
the join order is (( lineitem p< part) p<
orders) < customer, then the intermedi-
ate result with relation 1ineitem needs to be
shuffled twice. Instead, changing the join or-
der to (Lineitem < part) < (orders b
customer) can use hyper-join twice and a shuf-
fle join over the intermediate results.

Two-Phase Hyper-partitioning
Hyper-join leverages hyper-partitioning; how-
ever, the robust partitioning tree described so
far partitions data based solely on the selection
predicates. Thus, it’s unlikely to have the join
attribute in very many nodes in the tree, and it’s
highly possible that every partition will overlap
with a large number of partitions. Two-phase
partitioning tackles this challenge by injecting
the join attributes into the partitioning tree, as
depicted in Fig.5. The first phase splits on join
attributes (shown in orange), while the second
phase splits on selection attributes (shown in
blue). During the first phase, median values of
the join attributes are used to recursively split the
dataset into two. During the second phase, the
join partitions are further partitioned on selection
attributes using the standard hyper-partitioning.
Consider the left partitioning tree in Fig.3
as an example. There are two levels in the tree
which are reserved for the join attribute, which,
assuming data is uniformly distributed in the
range [0,400], leads to four disjoint partitions
with range [0, 100), [100,200), [200, 300), and
[300, 400). The same procedure is also applied
to the right partitioning tree, which creates four
disjoint partitions with range [0, 150), [150, 250),
[250, 350), and [350, 400).

Robust Data
Partitioning, Fig. 4 A
bottom-up approximate
solution

R+ {ri,ra,...,iy}, P+ 0,7 0
while R is not empty:
merge & with data block »; with smallest o (r; vV 7(4?))

if | #2| = B or r; is the last one in R:
add ZtoPand &2 « 0
remove data block r; from R

return P




1434

Robust Data
Partitioning, Fig. 5
Illustrating two-phase
partitioning

Robust Repartitioning

Hyper-partitioning and hyper-join allow an
analyst to quickly get started with her ad
hoc queries. However, the analyst also wants
the partitioning to adapt as her analysis
progresses, e.g., drilling down web click data into
successively smaller age groups, to provide even
better query performance. Robust repartitioning
provides the mechanisms to achieve this. When
a query is submitted, a repartitioning optimizer
explores alternative partitioning trees to find
the best one and decides whether repartitioning
is worthwhile. The optimized plan only accesses
data which is to be read by input queries, i.e., data
that is not read by queries during repartitioning
is not accessed. This has two benefits: (i) data
that is not touched by any query is never
repartitioned and (ii) query processing and
repartitioning share scans reducing the cost of
repartitioning.

The rest of this section describes the cost
model used, introduces three basic transforma-
tions used to transform a given partitioning tree,
describes a divide-and-conquer approach to con-
sider all possible alternatives generated from the
transformation rules for inserting a single pred-
icate, discusses how to handle multi-predicate
queries, and lastly shows a smooth repartitioning
technique to adapt to changing join predicates. It
is worth noting that the entire optimization pro-
cess is transparent to users, i.e., users do not have
to worry about making repartitioning decisions
and their queries remain unchanged with the new
access methods.

Cost Model
Consider a window (W) of queries that hap-
pened in the past X hours. X is a parameter in

Robust Data Partitioning

o

adaptive query executor, and it determines how
quickly the system reacts to workload changes.
For each query ¢ in the query sequence, the
cost of processing ¢ using partitioning tree 7" is
given as:

Two-phase
partitioning

—>

Cost(T, q) =

> w

belookup(T,q)

where lookup(7,q) returns the set of relevant
buckets for query ¢ in T and np is the number
of tuples in bucket b. The cost of the query
window is the sum of the cost of individual
queries. For a query being executed, the optimizer
might want to transform the partitioning tree to
a new partitioning tree 7’ resulting in a set of
buckets B C lookup(T, q) being repartitioned.
The benefit of this transformation is

Benefit(T') = Z Cost(T, q) — Z Cost(T', q)
qew qew

and the added cost of repartitioning is given as

RepartitioningCost(7, ¢) = ¢ Z np
beB

where ¢ is the write multiplier, i.e., how expen-
sive writes are compared to a read. Repartitioning
is expensive; however, it only happens when
the resulting decrease in the cost of the query
window (benefit) is greater than the repartitioning
cost. This check prevents constant re-paritioning
due to a random query sequence and bounds
the worst case impact. To illustrate, consider a
single node in the tree and a query sequence
of the form 04<>,08<2,04<2,0B<> .... In this
case, the data is not constantly repartitioned.
After doing it once, say on A, the total cost
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goes down, and hence the repartitioning on B
would not happen as Benefit < Repartitioning-
Cost.

Tree Transformations

A set of transformation rules allow exploring
the space of possible plans when repartitioning
the data. Consider a query predicate of the form
A < p, denoted as A,. Only partitioning trans-
formations that are local, i.e., that do not involve
rewriting the entire tree, are considered. These
local transformations are cheaper and amortize
the repartitioning effort over several queries. The
three basic transformations are discussed below.
(1) Swap. Replaces an existing node in the par-
titioning with the incoming query predicate 4.
As only the accessed data is repartitioned, we
consider swapping only those nodes whose left
and right children are fully accessed by the in-
coming query. Applying swap on an existing
node involves reading both sub-branches, and
restructuring all partitions beneath the left sub-
tree to contain data satisfying A, and the right
subtree to contain data that does not satisfy A4.
Swaps can happen between different attributes
(Fig. 6a), in which case both branches are com-
pletely rewritten in the new tree. Swaps can
also happen between two predicates of the same
attribute (Fig. 6b), in which case the data moves
from one branch to the other. For example, in the
Fig. 6b, if node A, is Ajo and predicate 4, is
A < 5, then data moves from the left branch to
the right branch, i.e., the left branch is completely
rewritten while the right branch just has new data
appended.

Swaps serve the dual purpose of un-
partitioning an existing (less accessed) attribute
while refining on another (more accessed)
attribute. As both the swap attributes as well
as their predicates are driven by the incoming
queries, they reduce the access times for the
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incoming query predicates. Finally, note that it
is cheaper to apply swaps at lower levels in the
partitioning tree because less data is rewritten.
Applying them at higher levels results in a much
higher cost.

(2) Push-up. Pushes a predicate as high up the
tree as possible. This can be done when both the
left and the right child of a node contain the in-
coming predicate, as a result of a previous swap,
as shown in Fig. 7. This is a logical partitioning
tree transformation, i.e., it only rearranges the
internal nodes without any modification to the
leaf nodes.

A push-up transformation is checked every time
a swap transformation is performed. The idea
is to move important predicates (ones that have
recently or frequently appeared in the query se-
quence) progressively up the partitioning tree,
from the leaves right up to the root. This makes
important predicates less likely to be swapped
immediately, because swapping a node higher
in the partitioning tree is much more expensive.
Another advantage of push-up is that it causes a
churn of the attributes assigned to higher nodes
in the upfront partitioning. When such a dormant
node is pushed down, subsequent predicates can
swap them in an incremental fashion, affecting
fewer branches, thus making the tree transforma-
tions more robust.

(3) Rotate. Transformation rearranges two predi-
cates on the same attribute such that more impor-
tant (recently accessed or frequently appearing
in the query sequence) predicate appears higher
up in the partitioning tree. Figure 8 shows a
rotate transformation involving predicates p and
p’ on attribute A. The goal here is to churn
the partitioning tree such that predicates on less
important attributes are more likely to be re-
placed first. Similar to the push-up transforma-
tion, rotate is a logical transformation, i.e., it
only rearranges the internal nodes of the parti-

Robust Data Partitioning, Fig. 6 Node swap in the partitioning tree (a) Different attribute. (b) Same attribute
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Robust Data Partitioning, Fig. 7 Node pushdown in
partitioning tree

Robust Data Partitioning, Fig. 8 Node rotation in par-
titioning tree

tioning tree and it is always performed wherever
possible.

Above three partitioning tree transformations
can be combined to capture a fairly general set
of repartitioning scenarios. Figure 9 shows an
example, where first nodes D4 are swapped with
incoming predicate A, at the lower level, then
A, is pushed up one level above, and finally it
is rotated with nodes As and Cj3. In the process,
only half the leaves are repartitioned. Thus, in
larger trees, repartitioning mostly happens on
small fractions of the data modifying a few sub-
trees locally.

Divide-and-Conquer Repartitioning

Given a query with predicate A, and a partition-
ing tree T, there are many different combinations
of transformations that need to be considered.
However, observe that the data access costs over
a subtree T,, rooted at node n, could be broken
down into the access costs over its subtrees, i.e.,

Cost(Ty, qi) = Cost(Ty,,;» qi) + Cost(Th,,» i)
where Ty, and Ty, are subtrees rooted re-
spectively at the left and the right child of n.
Thus, finding the best partitioning tree can be
broken down into recursively finding the best left
and right subtrees at each level and considering

parent node transformations only on top of the
best child subtrees. For each transformation, the
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benefit and cost of that transformation is con-
sidered, and the one which has the best benefit-
to-cost ratio is picked. Table 1 shows the cost
and benefit estimates for the different transfor-
mations. For the swap transformation, denoted
as Pgyap(n,n’), the query costs are recalculated.
However, push-up and rotate transformations, de-
noted as Pswap (n, n/) and Ppushup (n, npefe, nright),
respectively, inherit the costs from children sub-
trees. Applying none of the transformations at a
given node is denoted as Py (7). This approach
helps to significantly reduce the candidate set of
modified partitioning trees.

Above divide-and-conquer algorithm has a
complexity of O(QNlogN), where N is the
number of nodes in the tree and Q is the number
of queries in the query window. More details on
the algorithm can be found in Shanbhag et al.
(2017).

Repartitioning with Multiple Predicates
A predicate of the form A < p gets inserted in the
tree as A, and on insertion, only the leaf nodes
on the left side of the node are accessed. 4 > p
is also inserted as A, with the right side of the
node being accessed. For A > p and 4 < p, let
p’ be p—3§ where § is the smallest change for p’s
data type. We insert A,/ into the tree. A = p is
treated as combination of A < pand A > p/.
Now consider a query with two predicates 4,
and A 5. The brute force approach is to consider
choosing a set of accessed nonterminal nodes
to be replaced by A, and then for every such
choice, choose a set of remaining nodes to be
replaced by Ap,. Thus, the number of choices
grows exponentially with the number of predi-
cates. A greedy approach is to try to insert each
predicate in the query into the partitioning tree.
The best among the best plans obtained for dif-
ferent predicates is picked, and the corresponding
predicate is removed from the predicate set. Like-
wise, the remaining predicates are inserted into
the best plan obtained so far. The algorithm stops
when either all predicates have been inserted or
when the tree stops changing. Doing this adds a
multiplicative complexity of O(|P|?) where P is
the set of query predicates.
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Robust Data Partitioning, Fig. 9 Introducing predicate A, into the partitioning tree

Robust Data Partitioning, Table 1 The cost and benefit estimates for different partitioning tree transformations

Transformation Notation Cost (C)

Swap Pyyop(n,n’) > per, € Nb

Pushup Prushup (725 Mieses right) | C (P (Megr)) + C (P (signt))
Rotate Prowe(p, P')

None Prone(n)

Smooth Repartitioning
A key limitation of the repartitioning techniques
presented so far is that they do not adapt
in response to join queries. Instead, each
table adapts independently, and tables end
up being partitioned on different attributes
and ranges, such that hyper-join would not
provide a performance advantage over shuffle
joins. After the initial two-phase partitioning,
with new incoming queries containing a new
join attribute, the partitioning tree should
also shift to the new join attribute. However,
repartitioning all of the data immediately would
introduce a potentially very long delay and,
when the workload is periodic, could lead to
oscillatory behavior where it switches from
one partitioning to another. Furthermore, a
table with multiple foreign keys may join
with multiple tables. For example, in TPC-
H, queries join lineitem and orders on
order_key, and lineitem and supplier
join on supplier_key. Smooth repartitioning
addresses these challenges by maintaining
multiple partitioning trees, building each when
a new popular join attribute is seen, and
migrating blocks between them. The key goal
is to adapt partitioning trees in a way that
facilitates joins while still maintaining the
performance advantages of partitioning for
selection queries.

Smooth partitioning creates a new partition-
ing (initially empty) tree, when it observes a

Benefit (B)
> o[Cost(T}, 47) — Cost(Tyr, )]
B(P(nlefl)) + B(P(nright))

C(P(nlefl\righl))a for p’ on Ajef | right B(P(nlefllrighl))> for p” on Ajef | right
C(P(nen) + C(P (nrign))

B(P(n]efl)) + B(P(nright))

query with a new join attribute. The new tree’s
join attribute comes from the new query, and
its predicates are used to build the lower levels
of the tree. Smooth repartitioning also reparti-
tions 1/|W/| of the dataset from the old tree to
the new tree, where |W| is the length of the
query window. This is accomplished by randomly
choosing 1/|W| of the blocks in the old tree and
inserting them into the new tree (because files
are only appended in HDFS, it is possible to
do this without affecting the correctness of any
concurrent queries). To avoid doing repartitioning
work when rare queries arrive, smooth reparti-
tioning can be configured to wait to create a
new partitioning tree until the query window con-
tains some minimum frequency f;, of queries
for a new join attribute; in this case once the
tree is created, fmin/|W| of the blocks will be
moved.

As more queries arrive with the new join
attribute, smooth repartitioning repartitions more
data into the new partitioning tree using the fol-
lowing algorithm. It first calculates the percent-
age of two types of queries in the query window
and the data in each of the partitioning trees. If the
incoming query’s join attribute is the same as the
newly created partitioning tree and the fraction
of data in the new partitioning tree is less than the
fraction of its type in the query window, data from
the old partitioning tree is moved to the new one,
again by randomly selecting blocks and moving
them.
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(2) Smooth repartitioning from Ato B
(1) A partitioning tree on A

A new partitioning tree B is created. Some data blocks under tree A are repartitioned after running each query.

(3) Repartitioning completes

Robust Data Partitioning, Fig. 10 Illustrating smooth repartitioning

Consider the example in Fig. 10. The algo-
rithm starts from a partitioning tree optimized
for join attribute A. When a query with new
join attribute B comes, a new partitioning tree
for B is created with two-phase partitioning and
repartitions 1/|W| of the dataset from the old
partitioning tree. The color of nodes from the
lower levels of the partitioning trees indicates the
size of data. The darker the color is, the larger
the size of data is. After the new tree is created,
both the partitioning trees are maintained with
different join attributes. As more queries with
join attribute B appear in the query window, more
data from the old partitioning tree is repartitioned
to the new one. The above procedure is iterated
until the query window only includes queries
with join attribute B. After the dataset finishes
repartitioning, the old partitioning tree for join
attribute A is removed, and only the partitioning
tree for join attribute B is maintained, which is
depicted by the last sub-figure in Fig. 10. (Of
course, in many applications, there will not be a
complete shift from one join to another, in which
case multiple trees will be preserved.)

Conclusion

This chapter described new advancements in
data partitioning for modern applications that are
ad hoc in nature and do not have any upfront
query workload. The key ideas presented include
the notion of robustness, the concept of hyper-
partitioning for creating a robust partitioning
tree without upfront query workload, a hyper-
join technique to efficiently process join queries
over hyper-partitioned data, and a set of robust
repartitioning techniques to steadily adapt the
partitioning tree to changes in the workload.

Robust data partitioning revisits the design of
a database in the face of modern ad hoc query
workloads, recalibrating the database systems to
the expectations of modern users — good perfor-
mance from the first query itself and adaptively
improving from there on.
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