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Definitions

Scala is a statically typed General-purpose Pro-
gramming Language (GPL) which blends object-
oriented and functional programming features.
Scala source code compiles to bytecode that runs
on the Java Virtual Machine (JVM) and is fully
interoperable with code written in Java.

Overview

Scala was designed by Martin Odersky at
the École polytechnique fédérale de Lausanne
(EPFL) in 2001 and first released in 2003 (Oder-
sky 2006). The original design goal was to
combine features from object-oriented and
functional programming in a programming
language that can be used in practice. The
following paragraphs summarize the main
features of Scala in comparison to Java.

Objects and Classes
Scala distinguishes between classes – which can
be instantiated multiple times using the new

keyword (as in Java) – and objects, which can be
understood as a singleton instance of an implic-
itly derived class definition. An object and a class
that share the same name are called companions.
Methods and fields that would be declared static
in Java must be defined within the companion
object of the corresponding class in Scala. For
example, the bar method in the following code
snippet corresponds to a static method declara-
tion in Java.

class Foo {
...

}
object Foo {
def bar(): Unit = ...

}

Scala also supports Java-like abstract classes
using the abstract keyword.

Inheritance and Traits
Instead of interfaces, Scala relies on the concept
of traits. Similar to a Java interface, a Scala trait
defines methods and fields that can be attached
to an object or a class by means of inheritance.
In contrast to Java interfaces, however, traits
.a/ can be partially implemented (which is also
possible in Java since version 8) and .b/ allow
for multiple inheritance – an object or a class can
inherit from multiple traits at the same time. The
following code snippet defines a class Cat which
inherits from Animal, Eyes, and Mouth. Cat
instances therefore can call the blink and eat
methods defined in their parent traits.
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abstract class Animal
trait Eyes {
def blink(): Unit = ...

}
trait Mouth {
def eat(f: Food): Unit = ...

}
class Cat extends Animal
with Eyes
with Mouth

Type System
Scala’s type system offers more principled sup-
port for generics with declaration-site variance,
whereas Java allows only for use-site variance.
For example, since Cat inherits from Animal,
a covariant type parameter A in the generic type
List (indicated with +) allows for assigning
instances of type List[Cat] to a variable of
type List[Animal].

class List[+A] { ... }
var xs: List[Animal] = null
xs = List.empty[Cat]

In addition, Scala also supports type members
and path-dependent types. For example, the fol-
lowing trait defines a trait for comparators for an
abstract element type T

trait Cmp {
type T
def cmp(a: T, b: T): Int

}

and the sort method below accepts a compara-
tor c and a sequence of comparable elements of
type c.T and returns them as a sorted sequence.

def sort
(c: Cmp)
(s: Seq[c.T]): Seq[c.T]

The type c.T in the method declaration is
path-dependent as it depends on the parameter
value c.

Implicits
Scala implicits encompasses a range of language
features that enable a number of idiomatic encod-
ings.

Implicit method parameters can be omitted
from method applications. The Scala compiler

automatically provides arguments for implicit pa-
rameters from the set of implicit values available
at the call site. For example, the sort method
from the previous section can be also declared as
follows.

def sort[T]
(s: Seq[T])
(implicit c: Ord[T]): Seq[T]

The above declaration permits incomplete
method calls such as

sort(Seq(3,4,1,5))

if an implicit value of type Ord[T] is available
in the surrounding lexical scope. A shorthand
notation which expands to the above method
definition can be used to encode F-bounded poly-
morphism (Canning et al. 1989) in Scala.

def sort[T: Ord]
(s: Seq[T]): Seq[T]

While an unconstrained type parameter T cor-
responds to universal quantification, the Ord type
constraint corresponds to existential quantifica-
tion: for all types T, the existence of an instance
of type Ord[T] implies that given a value of type
Seq[T] we can produce a sorted value of type
Seq[T].

TODO

Implicit classes provide a language facility for
automatic type conversion. An idiomatic use of
this feature is the so-called “pimp my library”
pattern. It allows to attach methods and fields to
types provided by external libraries in an ad hoc
manner. To illustrate the pattern, assume that the
Cat type from the previous section is provided
by an external library that we cannot modify,
but we want to add walking facility to Cat
instances. Implicit classes allow us to achieve that
as follows.

implicit class CatOps(c: Cat) {
def walk(): Unit = ...

}
val tom = new Cat
tom.walk()

Because the CatOps class is declared
as implicit, the Scala compiler will
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automatically wrap the Cat instance in the
tom.walk() call into a CatOps constructor
call.

new CatOps(tom).walk()

Implicit conversions are another feature that
can be used to encode the “pimp my library”
pattern. To that end, instead of declaring
the CatOps class as implicit, we define an
implicit method called cat2ops which
converts a Cat instance into a CatOps instance.

implicit def cat2ops(c: Cat) =
new CatOps(c)

The expanded version of tom.walk() now
uses the cat2ops method instead.

cat2ops(tom).walk()

Metaprogramming
Metaprogramming is the ability of a program-
ming language to reflect on its own terms and
types, manipulate those, and generate new
terms and types. Since version 2.10, Scala
ships with experimental support for compile-
time and run-time metaprogramming in the
form of Scala macros (Burmako 2013) and
Scala reflection (Coppel et al. 2008). These
metaprogramming facilities are extensively
used to reduce boilerplate code when designing
Domain Specific Languages (DSLs) embedded in
Scala, especially in combination with F-bounded
polymorphism.

Actor Model and Akka
Akka is a widely used third-party Scala library
that implements the actor model for concurrent
computation. In the actor model, computation is
modeled by actors which exchange messages in
an asynchronous manner. Akka hides specifics
regarding actor placement behind a uniform
API. This allows programmers to run Akka code
within same process, within multiple processes
on same machine and on different machines
without any modifications.

Key Research Findings

From a programming language perspective, the
essence of Scala’s type system has been recently
formalized in terms of the Dependent Object
Types (DOT) calculus and proven sound using a
mechanized proof by Rompf and Amin (2016).
An influential line of research in Scala-based
Embedded Domain Specific Languages (eDSLs)
is based on the Lightweight Modular Staging
(LMS) framework by Rompf and Odersky
(2010). In the domain of Big Data analytics, LMS
has been used in the Delite framework (Sujeeth
et al. 2014) and a DSL called Jet (Ackermann
et al. 2012).

From a data management perspective, Scala
has been successfully used as implementation
language for a number of research systems for
Big Data analytics, most notably Spark (Zaharia
et al. 2010) and Stratosphere/Flink (Alexandrov
et al. 2014).

Examples of Application

Due to its concise and flexible syntax and its
built-in interactive shell, Scala is a popular choice
for a host language for eDSLs. In the domain
of Big Data analytics, Scala has been popular-
ized by Apache Spark and its Resilient Dis-
tributed Dataset (RDD) and Dataset/DataFrame
DSLs (Armbrust et al. 2015; Zaharia et al. 2010),
by Apache Mahout and its Samsara DSLs (Schel-
ter et al. 2016), and by the Scala DSLs offered
by systems such as Summingbird (Boykin et al.
2014) and Apache Flink (Carbone et al. 2015).

Embedded DSLs can be either shallow or deep
(Gibbons and Wu 2014). In shallow embedding,
eDSL terms evaluate themselves directly at run-
time. Contrary, deeply embedded DSLs evaluate
themselves in a two steps, first reflecting on their
structure in an Intermediate Representation (IR)
and then interpreting (and possibly optimizing)
this IR. The DSLs mentioned above can be clas-
sified as deep, and their embedding mechanism
as type-based. The following paragraphs illus-
trate how the Scala features outlined above are
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commonly applied in these DSLs based on their
implementation methodology.

Type-based DSLs are structured around a col-
lection of domain-specific types, realized as Scala
classes with possible companion objects. The
core types in Spark are RDD (in the RDD DSL)
and Dataset (in the Dataset/DataFrame DSL)
which represent a distributed collection managed
by the Spark runtime. The core types in Apache
Mahout are Matrix which represents an in-
core matrix and DrmLike which represents a
Distributed Row Matrix (DRM). The core type
in Summingbird is Producer, which represents
a streaming or batch data producer. Finally, the
core types for the various DSLs exposed by
Apache Flink are DataSet, DataStream, or
Table.

Implicit classes and conversions are often
used in the design of type-based DSLs in
order to provide ad hoc methods for a specific
kind of instances of the associated core DSL
types. For example, RDDs in Spark offer a
set of operators that are only available on an
RDDs of key-value pairs. The implicit method
rddToPairRDDFunctions converts value of
type RDD[(K,V)] into a value of an RDDOps-
like type PairRDDFunctions[K,V].
This allows to leverage the existing Scala
infrastructure in order to statically ensure that
expressions such as

val rdd: RDD[Int, Int] = ...
rdd.countByKey()

are valid, while expressions such as

val rdd: RDD[Int] = ...
rdd.countByKey()

fail with a Scala type error due to a missing
implicit conversion.

Embedded DSLs for data-intensive analytics
hosted in Scala also rely on Scala’s metapro-
gramming facilities, usually in conjunction with
F-bounded polymorphism. For example, in or-
der to reduce the pressure on the JVM garbage
collector, the Dataset DSL in Spark and the
DSLs offered by Flink rely on engine-specific
memory management on serialized data. This

means that for a distributed collection of type
Dataset[A] (in Spark) or DataSet[A] (in
Flink), the runtime needs to know how to serialize
and deserialize instances of the generic element
type A. To ensure that, every DSL method that
changes the element type of the enclosing dis-
tributed collection is constrained by an associated
type that provides the encoding and decoding
functionality for the new element type. For ex-
ample, the map method in Spark is constrained
by an Encoder[B] instance

def map[B: Encoder](
f: A => B

): Dataset[B]

and the corresponding method in Flink by a
TypeInformation[B] instance.

def map[B: TypeInformation](
f: A => B

): Dataset[B]

The frameworks also provide generic
implementations that can implicitly synthesize
Encoder[A] and TypeInformation[A]
instances based on reflected type information
about the type argument A. Spark’s implementa-
tion is based on Scala’s runtime reflection library,
while Flink’s implementation is based on Scala
macros.

Future Directions for Research

In the area of core language development, current
and future research in Scala is mostly related to
the next-generation Scala compiler called Dotty
developed at the EPFL (Odersky et al. 2016,
2018; Odersky 2006). The Dotty design aims for
a combination of faster compilation times and
more principled and sound language design based
on the DOT calculus.

In the area of DSL development, future re-
search aims to provide a more stable founda-
tion and better tooling for rapid development of
optimizing DSLs embedded in Scala. An im-
portant milestone in this direction is the Squid
metaprogramming framework by Parreaux et al.
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(2018). Squid combines the flexibility of dy-
namic quasiquotes (in the style offered by Lisp)
with the typing and scoping guarantees of static
quasiquotes (in the style offered by MetaML).

Cross-References

�Apache Flink
�Apache Kafka
�Apache Mahout
�Apache Spark
� Spark SQL
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Overview

The era of big data is upon us. However, tra-
ditional data management and analysis systems,
which are mainly based on relational database
management system (RDBMS), may not be able
to handle the ever-growing data volume. There-
fore, it is important to design scalable system
architectures to efficiently process big data and
exploit their value. This chapter discusses various
horizontal and vertical scaling big data platforms,
focusing on their architectural principle for big
data analysis applications, such as machine learn-
ing and graph processing. This chapter could
aid users to select right system architectures or
platforms for their big data applications.

Introduction

This is an era of big data, evidenced by the sheer
volume of data from a variety of sources and
its growing rate of generation. According to a
report from the International Data Corporation
(IDC), the global data volume will grow by a
factor of 300, from 130 exabytes (1 exabyte =
106 terabytes) to 40,000 exabytes, from 2005
to 2020 (Gantz and Reinsel 2007). These data
come from everywhere (Hu et al. 2014), such as
user-generated contents (e.g., images and videos)
posted to social media sites, transaction records,
and embedded sensors used to gather information
for IoT (Internet of Things) applications.

The concept of big data has been defined
as early as 2001. META group (now Gartner)
analyst Doug Laney presented a “3Vs” model
(Laney 2001) to define challenges and oppor-
tunities of data growth, i.e., increasing volume,

velocity, and variety. Although this description
was not originally used to define big data, many
industries continue to use this “3Vs” model to
describe big data 10 years later (Chen et al. 2014).
In 2012, Gartner updated the definition of big
data as follows: “Big data is high volume, high
velocity, and/or high variety information assets
that require new forms of processing to enable
enhanced decision making, insight discovery and
process optimization” (Beyer and Laney 2012).

Traditional data management and analysis
systems are mainly based on the relational
database management system (RDBMS), which
could not efficiently handle big data. Specifically,
RDBMSs could only support structured data,
while big data typically includes masses of semi-
structured and unstructured data. Also, the ever-
growing data volume could easily extend beyond
the ability of average RDBMSs to capture, store,
manage, and analyze big data.

To address these challenges and exploit the
value of big data, the research community and
industry have proposed various scalable big data
analysis platforms. Scalability is the ability of
a data analysis system to process increasing
amounts of data in an appropriate manner.
Typically, a big data analytic system should be
able to support very large datasets and could be
capable of scaling to address the ever-growing
size of complex datasets generated in the future
(Hu et al. 2014).

This article discusses various big data
analysis platforms and focuses on the scalability
and the architectural design. Specifically, we
categorize existing big data analysis platforms
into two types of scaling: horizontal and
vertical scaling. For each type of scaling, we
illustrate the architectural principle of several
representative general-purpose and dedicated
big data platforms. Moreover, this article also
discusses the advantages and drawbacks of
horizontal and vertical scaling to aid users to
select the appropriate platforms for specific big
data applications or algorithms.

The rest of this article is organized as fol-
lows. Section “Scalability in Big Data Analysis”
presents the fundamental concept of scalability
for big data analytics. Section Horizontal Scaling
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Platforms introduces various horizontal scaling
big data analysis platforms, including general-
purpose systems like Hadoop and Spark and ded-
icated systems for machine learning and graph
processing. Section “Vertical Scaling Platforms”
describes vertical scaling big data analysis plat-
forms using graphics processing units (GPUs)
and field-programmable gate arrays (FPGAs). A
brief conclusion with recommendations for future
studies is presented in section “Summary”.

Scalability in Big Data Analysis

To capture, manage, and analyze exploding
datasets, scaling has become a key technique
for big data analysis. A scalable big data analysis
platform could adapt to rapid changes in the
growth of data. Different platforms incorporate
different scaling techniques to support big data
analysis.

Horizontal and Vertical Scaling
Popular big data platforms usually use the follow-
ing two types of scaling to handle big data:

• Horizontal Scaling: Horizontal scaling,
which is also known as “scaling out,” involves
distributing the computation workload across
a cluster with multiple commodity servers.
With this approach, a big data analysis
platform could easily improve its processing
capability by adding independent machines.
Typically, each machine runs its own
operating system and could communicate
with other machines via network to exchange
intermediate data and controlling information
for big data analysis.

• Vertical Scaling: Vertical scaling, which is
also known as “scaling up,” involves adding
more resources, such as processors and mem-
ory, to a single server for improving its data
processing capability. With this approach, a
big data analysis job runs in a single ma-
chine with a single operating system. Note
that vertical scaling is often done through
multi-threading computation and in-process
message passing.

Comparison of Horizontal and Vertical
Scaling
Table 1 compares the advantages and drawbacks
of horizontal and vertical scaling. Most of the ex-
isting single-node data analysis tools could take
advantage of faster hardware to improve the pro-
cessing capability. However, it is hard to continu-
ously scale up vertically after a certain limit (Hu
et al. 2014). As a comparison, horizontal scaling
could continuously increase system performance
by installing new machines. Note that network
could easily be the performance bottleneck for
big data analysis when scaling out. Horizontal
scaling big data analysis platforms must take
care of this issue to reduce the communication
overhead.

The initial investment costs of horizontal scal-
ing big data platforms are relatively less than
vertical scaling platforms. Specially, users could
build a small commodity cluster to deal with the
current big data analysis workload and install
more machines to handle exploding datasets gen-
erated in the future. As a comparison, when a
data analysis system is designed for vertical scal-
ing only, users are locked into certain minimum
initial investment costs driven by the hardware,
which could handle current and future workload.

Regarding maintenance costs, vertical scal-
ing big data platforms have an advantage than
horizontal scaling platforms. Specifically, when
users select vertical scaling platforms, they only
need to cool a single server. As a compression,
when using horizontal scaling platforms with
multiple servers and network components, the
cooling system may consume a huge amount of
energy, which could significantly increase the
maintenance costs (Dayarathna et al. 2016).

Horizontal Scaling Platforms

Many horizontal scaling platforms have been
proposed for big data analysis. Message Passing
Interface (MPI), MapReduce, and Spark are thee
widely used general-purpose big data platforms.
There are also a lot of dedicated platforms that
are proposed for machine learning or graph pro-
cessing.
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Scalable Architectures for Big Data Analysis, Table 1 Advantages and drawbacks of horizontal and vertical scaling
for big data analysis

Scaling Advantages Drawbacks

Horizontal scaling � Increase processing capability by adding
machines

� Network could easily be the performance
bottleneck

� Could avoid the single point of failure
problem

�May have high power consumption to cool a
cluster

� Could handle big data with commodity
machines

� Time-consuming to configure multiple
machines

Vertical scaling � Existing data analysis tools and softwares
could easily take advantage of faster
hardware in a single machine

� High financial investment to improve the
processing capability of a single-node data
analysis system

� Easy to manage the hardware within a
single machine

� Hard to scale up vertically after a certain
limit

� Lower power consumption with just one
machine

�May have the single point of failure problem

General-Purpose Big Data Analysis
Platforms

MPI
MPI (Gropp et al. 1999) is a standard com-
munication protocol for programming parallel
computers using the peer-to-peer architecture.
Typically, MPI is used to set up the commu-
nication channel between different computation
nodes. Thus, each node could exchange data and
control information with each other to execute
big data analysis applications. MPI is available
for many programming languages and has several
well-tested and efficient implementations, such as
Open MPI (Gabriel et al. 2004), MPICH (Karonis
et al. 2003) and MVAPICH (Panda et al. 2013).

MPI supports both point-to-point and collec-
tive communication. More specifically, point-to-
point communication is the method to send and
receive messages between two individual nodes.
Collective communication is a method of com-
munication which involves the participation of
all selected nodes. For example, “Broadcast,”
one of the standard collective communication
techniques, sends the same data to all selected
nodes. MPI also provides a set of methods to
control the progress of each node. For example,
the “Barrier” method puts a barrier and allows all
computation nodes to synchronize (reaching up
to a certain point) before proceeding further. With
these APIs, users could implement their own big
data analysis applications and run them in an

MPI-enabled cluster with the specified amount of
resources.

Although MPI offers high flexibility for users
to develop big data analysis applications, it has
some major drawbacks. First, MPI has no mech-
anism to handle faults. Thus, when running MPI-
based big data analysis applications with unre-
liable hardware (e.g., commodity machines), a
single-node failure could cause the whole appli-
cation to crash. Thus, it is users’ responsibility to
design and implement fault-tolerance mechanism
when processing big data with MPI. Second, MPI
requires more programming changes to design
and implement a distributed data analysis ap-
plication. Hadoop MapReduce and Spark have
been designed to addresses these challenges and
become popular for big data analysis.

Hadoop MapReduce
Apache Hadoop (White 2012) is an open source
project for storing, managing, and processing
large-scale datasets using clusters of commod-
ity machines. Hadoop is designed to scale out
to hundreds or even thousands of computation
nodes. Hadoop contains various components, in-
cluding Hadoop Distributed File System (HDFS)
for reliable big data storage, Hadoop Yarn for ef-
ficient cluster resource management, and Hadoop
MapReduce for big data analysis.
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MapReduce, which was firstly proposed by
Google (Dean and Ghemawat 2008), is the pro-
gramming model used in Hadoop. As shown in
Fig. 1, there are two types of nodes in a MapRe-
duce cluster: master node and worker. Specif-
ically, the master node (i.e., JobTracker) is in
charge of scheduling the submitted MapReduce
jobs: partitioning each job into two types of tasks
(i.e., Map tasks and Reduce tasks) and assigning
them to available workers for execution. Current
Hadoop MapReduce uses slots, which is usually
configured by the number of CPU cores, to par-
tition the computation resources of a worker. For
example, if one server is configured to have two
Map slots and two Reduce slots, it could run two
Map tasks and two Reduce tasks in parallel.

To perform big data analysis, users just need
to write two functions: Map function and Reduce
function. When a job is submitted, the underlying
MapReduce execution engine will automatically
parallelize, distribute, and execute the job on a
cluster and process data with two phases, Map
phase and Reduce phase, as shown in Fig. 1.
Specifically, during the Map phase, workers read
input, generate a number of intermediate data,
and send them to corresponding workers. During

the Reduce phase, workers process each group of
intermediate data in parallel and generate the final
results.

One of the major drawbacks of MapReduce is
its inefficiency for executing iterative algorithms.
Specifically, when executing iterative algorithms
with MapReduce, workers would read the same
input data from disks at the beginning of each
iteration. After each iteration, the results should
be written into disks, which may be loaded into
memory again in the following iteration. As a
result, disk access could be a major performance
bottleneck, which significantly degrades the data
processing performance. To address this problem,
HaLoop (Bu et al. 2010) and Twister (Ekanayake
et al. 2010) extend Hadoop MapReduce and im-
prove the performance of executing iterative al-
gorithms by caching input, output, and interme-
diate data.

Spark
Spark (Zaharia et al. 2012) was developed in
2012 in response to limitations in MapReduce. It
offers a programming model similar to MapRe-
duce but extends it with a data-sharing abstrac-
tion called resilient distributed datasets (RDDs).
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RDDs are fault-tolerant, parallel data structures
across multiple machines, which let users persist
input, output, and intermediate results in memory
(if the data does not fit in memory, RDD would
also spill it to disk), control their partitioning to
optimize data placement, and manipulate them
using a rich set of operators. With the help of
RDD, Spark could eliminate the disk I/O over-
head of Hadoop MapReduce for running iterative
big data analysis applications.

The Spark developers have also proposed the
Berkeley Data Analytics Stack (BDAS) as an
open source software stack to make sense of
big data. In BDAS, Alluxio (formerly Tachyon)
is a reliable, memory speed, distributed stor-
age system. It could help to reduce data access
overhead for big data analysis platforms. BDAS
contains a cluster resource management systems
called Mesos (Hindman et al. 2011), which could
efficiently share cluster resources with multiple
distributed computing systems. Spark is the pro-
cessing engine of BDAS. BDAS also contains
many Spark wrappers to optimize the perfor-
mance Spark for certain applications. For ex-
ample, Spark Streaming (Zaharia et al. 2013) is
used for large-scale stream processing. GraphX
(Gonzalez et al. 2014) is proposed for high-
performance distributed graph processing. MLlib
(Meng et al. 2016) focuses on distributed ma-
chine learning.

Dedicated Big Data Analysis Platforms
Many big data analysis platforms have been
proposed for dedicated purposes, such as
machine learning and graph processing.
Compared to aforementioned general-purpose
platforms like Hadoop MapReduce and Spark,
these dedicated platforms usually could offer
much higher performance for certain applications
or algorithms.

Machine Learning
Machine learning (ML) builds models from train-
ing data and use them to make predictions on new
data. It is used in a wide range of applications,
including image recognition, object detection,
natural language processing, and recommender
systems. Typically, an ML model consists of a

large number of parameters, represented as dense
or sparse vectors and matrices. To minimize the
prediction error, an ML application usually uses
an iterative-convergent algorithm to iteratively
compute updates from training datasets and to
aggregate updates with the current version of
parameters.

In industrial ML applications, the size of train-
ing data sets could be hundreds to thousands of
terabytes. For example, the Yahoo News Feed
dataset stands at roughly 110 billion lines of user-
news interaction data; ImageNet contains approx-
imately 14 million labeled images; ClueWeb12
has 733 million web pages. Due to the limitation
in storage and computation resource, modern
single-node ML systems, such as Caffe (Jia et al.
2014) and Theano (Bergstra et al. 2011), cannot
cope with such large training datasets.

To handle big training datasets, various dis-
tributed ML systems have been proposed based
on the parameter server (PS) architecture (Li et al.
2014), such as Petuum (Xing et al. 2015), MXNet
(Chen et al. 2015b), Project Adam (Chilimbi
et al. 2014), SINGA (Wang et al. 2015), Fac-
torbird (Schelter et al. 2014), and TensorFlow
(Abadi et al. 2016). As shown in Fig. 2, the PS
architecture can scale to large cluster deploy-
ments by having worker nodes performing data-
parallel computation and having server nodes
maintaining globally shared parameters. When
training ML models, worker nodes continuously
pull latest parameters from server nodes, perform
computation on partitions of the training dataset,
and push generated updates to server nodes,
which aggregate them and return a new version
of parameters. This is done iteratively to bring
parameters closer to the optimal value.

Graph Processing
Graphs are immensely useful for data mining
applications, such as social influence analysis,
recommendations, clustering, and anomaly de-
tection. As graph sizes increase exponentially,
industrial graph processing applications need to
process massive graphs at the scale of millions
of vertices and hundreds of billions (or even a
trillion) edges (Ching et al. 2015). These massive
graphs might not fit in the memory of a single
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The PS architecture. In PS, worker nodes are in charge
of computing updates, and server nodes manage globally

shared parameters. PS uses a pull/push communication
model to exchange data between worker nodes and server
nodes

machine and cannot be processed by existing
single-node in-memory graph computation sys-
tems, such as Ligra (Shun and Blelloch 2013) and
Ligra+ (Shun et al. 2015).

To address single node’s memory limit
problem, many distributed in-memory graph
computation systems have been proposed for
fast graph analytics at scale. They usually
follow the “think-like-a-vertex” philosophy and
abstract graph computation as vertex-centric
programs. Specifically, Pregel (Malewicz et al.
2010), Giraph (Ching et al. 2015), Pregel+ (Yan
et al. 2014), GPS (Salihoglu and Widom 2013),
MOCGraph (Zhou et al. 2014), and HuSky (Yang
et al. 2016) adopt the Pregel model: they assign
the input graph’s vertices to multiple machines
and provide interaction between vertices by
message passing along out-edges. PowerGraph
(Gonzalez et al. 2012), PowerLyra (Chen et al.
2015a), GraphX (Gonzalez et al. 2014), and
LiGraph (Zhao et al. 2016) use the Gather-
Apply-Scatter (GAS) model: they split a vertex
into multiple replicas and could parallelize the
computation for a single vertex in different
machines. GraphPad (Anderson et al. 2016)
and CombBLAS (Buluç et al. 2011) express
common graph analyses in generalized sparse
matrix-vector multiplication (SpMV) operations
and leverage high-performance computing (HPC)
techniques to speed up large-scale SpMV. These
distributed in-memory approaches, including
Pregel-based, GAS-based, and SpMV-based
systems, proceed in iterations, where an iteration

is called a superstep. In each superstep, several
user-based function (UDFs) are called by
active vertices to update their values. A lot of
benchmarking results (Hu et al. 2014; Iosup
et al. 2016) have shown that these dedicated
distributed in-memory systems could offer much
better performance than general-purpose cluster
computing systems like Hadoop MapReduce and
Spark.

To further reduce memory footprint of dis-
tributed graph processing, researchers have pro-
posed several out-of-core systems to enable large-
scale graph processing beyond the memory limit,
such as GraphD (Yan et al. 2017), Pregelix (Bu
et al. 2014), and Chaos (Roy et al. 2015) which
could handle big graph analytics in a small com-
modity cluster. Typically, these systems manage
all or part of vertices in memory and stream edges
from disks to reduce memory footprint.

Vertical Scaling Platforms

This section introduces vertical scaling platforms
utilizing heterogeneous devices: GPU and FPGA.

GPU
GPUs started out as graphics accelerators. In
recent years, due to their massively parallel
architecture, researchers started to use graphics
adapters for non-graphics applications. In this
context, many programming frameworks start to
give rise to GPGPU (general-purpose computing
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on graphics processing units). For example,
in 2006, NVIDIA released the first version of
CUDA (Compute Unified Device Architecture),
a parallel computing platform and programming
model for general-purpose algorithms on GPUs.

Take NVIDIA’s Pascal architecture as an ex-
ample, GPUs are connected to RAM via PCIe.
A GPU contains multiple streaming multiproces-
sors (SM). Each SM consists of several single-
precision arithmetic logic units (ALUs) (“CUDA
Cores”). Therefore, compared to multi-core CPU,
GPU usually contains a large number of pro-
cessing cores. For example, TITAN X, featuring
the NVIDIA Pascal architecture, contains 3584
CUDA cores. In addition, GPU also has its own
high-throughput DDR5 memory, which is much
faster than typical DDR3 memory. Thus, GPUs
could offer much higher performance than typical
CPUs when executing certain big data analysis
algorithms.

Nowadays, GPU is playing an important role
in big data analysis, especially when execut-
ing machine learning and graph processing algo-
rithms. In a single server, GPU could help Caffe
(Jia et al. 2014) and Theano (Bergstra et al. 2011)
to speed up the training process of deep learning
models by a factor of up to 100. Gunrock (Wang
et al. 2016), Medusa (Zhong and He 2014), and
CuSha (Khorasani et al. 2014) enable fast and
simple graph processing on GPUs.

FPGA
FPGAs contain arrays of programmable logic
blocks and a hierarchy of reconfigurable inter-
connects, which allow the blocks to be “wired
together.” The FPGA configuration is specified
using a hardware description language, such as
VHDL or Verilog. Due to customized hardware,
FPGAs can be highly optimized for certain big
data analysis applications. One of the drawbacks
of FPGAs is the high development cost, since
FPGAs require developers to have a low-level
knowledge of the hardware.

FPGAs are used in various big data analy-
sis applications. For example, FPGAs now are
widely used to accelerate deep convolutional neu-
ral networks (Zhang et al. 2015; Qiu et al. 2016;
Ovtcharov et al. 2015). Graphgen (Nurvitadhi

et al. 2014) and Fpgp (Dai et al. 2016) start to
perform vertex-centric graph computation over
FPGAs.

Summary

This article surveys various big data analysis plat-
forms and discusses their architectural design and
scaling technique. Existing big data platforms
could be categorized into two types of scaling:
horizontal and vertical scaling. This article il-
lustrates several representative big data analysis
platforms for each scaling type and discusses the
advantages and drawbacks of these two scaling
techniques. This article could aid users to select
right platforms for certain applications.
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Overview

Processing big data to drive useful information
has been in spotlight in recent years. Numerous
approaches have been proposed to explore dif-
ferent ways to analyse the big data. However,
data privacy has been an issue during the pro-
cess because data could have been from various
sources and they may contain sensitive personal
information of individual. Hadoop MapReduce
has been considered as one of the most promising
approaches for big data processing. This chapter
provides an overview of MapReduce environ-
ment, privacy challenges faced during the pro-
cessing of data in MapReduce cluster, existing
approaches adopted by various researchers to
mitigate these issues. We also provide future
guidelines for anonymized data processing to
ensure individual privacy in MapReduce.
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Introduction

Big data analytics is an emerging technology for
finding new insights from large amounts of data.
Processing and analyzing these large amounts
of data require an extra set of tools and ser-
vices. Traditional approaches for processing such
data unfortunately are no longer effective be-
cause of its inherent limitations like computation
power, storage capacity, analyzing, visualizing,
searching, and sharing (Adnan et al. 2014). For
example, Google searching is accessed 38,000
times in 1 s, more than 2.2 billion users send
144 billion emails in 1 day, Facebook manages
its users’ 40 billion photos, and Walmart stores
approximately 2.5 petabytes of data and man-
ages more than million customer transactions
per hour (Patel et al. 2012). In the past years,
the requirement for processing and storing data
used in traditional approaches was quite different
than they are today. For example, the traditional
approaches did not provide scalability to com-
plete the processing requirement within a given
time (Peralta et al. 2015). Scalability is essential
when the dataset is too large to be processed
on a single machine or the processing becomes
unacceptably slow. A careful plan was needed
ahead of time to avoid unnecessary hassles, for
example, processing the data in a multiple nodes.
Similarly, some tasks are simply too time con-
suming as often computation required to process
the data is too complex and resource hungry
to run on a single computer. Running machine
learning algorithms on large datasets is one of
such tasks.

Fortunately, the commodity hardware has
become cheaper, and putting several computers
together to provide a high processing power
has become easier in many cases. Even more,
many third-party companies, such as Cloud,
offer an hourly rental of hardware/software
resources which has made the horizontal
scaling very attractive lately. Many frameworks
have been designed to use on the commodity
hardware/software for specific computing which
include MapReduce and Apache Spark among
other choices (Dean and Ghemawat 2008;
Zaharia et al. 2010).

Data owners are continuing in search of multi-
node cluster platform which provides a powerful
parallel and distributed architecture to process
the big data fast and more efficiently (Aggarwal
and Philip 2008). However, the privacy of data
processed in such platform has given a data
mining community a new concern. There are
various techniques to achieve the privacy which
includes perturbation, cryptographic-based
techniques such as homomorphic encryption
and secure multiparty computation, and data
anonymization-based techniques such as k-
anonymity and differential privacy. However,
these techniques exist in isolation from each
other in which often are tailored to address
a specific problem of a specific domain. This
chapter will highlight current big data platform
architecture through MapReduce programming
model, privacy issues found while processing
big data in such architecture, and how existing
approaches can (or can’t) mitigate the privacy
concern. Finally, this chapter will conclude with
the future research directions which can provide
more advanced approaches to address current
privacy concerns.

What Is MapReduce?

The MapReduce-based solutions are considered
to be better suited for big data analytics by some
as it provides both flexibility and scalability.
The MapReduce framework consists of two main
functions, mapper and reducer. The mapper func-
tion is responsible for splitting an input job (typi-
cally large) into a number of smaller manageable
jobs. The reducer function collects the divided
smaller jobs and processes it further then writes
the result to an output file. Figure 1 shows a dia-
gram for the MapReduce programming model.

The mapper function is responsible for split-
ting an input file into smaller jobs where each
job is defined by a key (i.e., an id to a job)
and value (i.e., actual job) pairs. The map phase
consists of multiple mappers – the same map
function is carried out on each mapper. Mappers
are executed independently, meaning that there
are no interactions among them. There is no
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relationship between the input and output types.
Figure 1 shows the input to the mapper phase
which is abstract as < ki ; Vj > and the output of
the map phase which is abstract as < kx ; vy >.
The mapper functions produce partial results, and
these partial results are shuffled and sorted by re-
spective key once the mapper function execution
is completed. An intermediate data is stored in a
local disk which contain the results of shuffled
and sorted key value pairs.

Reducer functions collect the intermediate
data and perform aggregation on it. Once the
mapper tasks are complete, each reducer function
accepts a list of values for a same key. The inputs
for the reducer function are from the intermediate
data. For the list of values, the programmer can
define their own process. Finally, the final outputs
of the reduce function are emitted at last. The
output is still in tuple format (i.e., key and their
values) where the key remains the same as input
key, while the value is usually the aggregation
of all the values in the input. Output tuples
are written to their respective files in the file
system.

Mapper and reducer functions execute
their respective parts separately on different
nodes which are often distributed and run in
parallel. Hadoop (White 2012) implements
MapReduce with Hadoop Distributed File
System (HDFS) for an open-source project. This

project automatically handles task distribution,
fault tolerance, and other aspects of distributed
computing. This makes it much easier for
programmers to write parallel processing. It
also enables Google to develop a large number
of commodity computers to achieve high
performance computing at a fraction of the
cost compared to a system that is built from
a fewer but more expensive high-end servers.
MapReduce scales performance by scheduling
parallel tasks on several nodes that store the
task inputs. Each node executes the tasks with
loose communication with other nodes. HDFS
is an open-source DFS inspired by Google File
System (GFS) and designed to run Hadoop’s
batch jobs in massive parallelism. HDFS does
not implement leases and users can choose which
data replica is to be written. HDFS does data-
balancing during writes and not periodically like
GFS.

Privacy Concern

Unfortunately, distributed data and replicated na-
ture in the MapReduce processing opens up an
opportunity for a new huge variety of threats and
attacks. While these threats share similarities for
attacks in cloud computing models, the effects
of attacks for the MapReduce framework are
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quite different (Derbeko et al. 2016). MapRe-
duce deployed in public clouds is more open
to threats and attacks compare when it is de-
ployed in private clouds. The private cloud de-
ployment is more secure because it is deployed
in a trusted boundary of a company. This can
reduce the danger of attacks and can also prevent
company’s resources from the threats. Executing
the MapReduce jobs in public clouds introduces
new challenges in the form of data privacy. In
MapReduce, there are multiple mappers and re-
ducers involved in processing data. If one of the
many mappers or reducers is compromised by
an adversary, it may provide incorrect outputs.
A powerful adversary can compromise mapper
and reducer function to access information from
input, intermediate process, or final output. In
these situations, it becomes increasingly diffi-
cult to protect individual’s privacy in mapper
or reducer function. In addition, in MapReduce
operations, mappers transform input original key
and value pairs to calculate an intermediate key
and value pairs, while reducers aggregate an
intermediate values set, compute, and write to
the output. The output however can bring serious
privacy concerns. Firstly, the output can directly
leak sensitive information because it contains the
global view of the final computation. Secondly,
the output can also indirectly leak information
via composite attacks where the adversary can
link it with public information published via
different sources such as Facebook or Twitter.
Due to these reasons cloud users hesitate to up-
load their private information in public clouds.
A Cloud computing client may delete sensitive
information of individuals present in dataset to
ensure their privacy and process the dataset in the
public clouds because of its size and convince of
computing in the said cloud platform. A Cloud
user can delete their sensitive information if the
user thinks their data is at risk. However, this
is still not enough to protect the user data pri-
vacy because third-party administrator controls
the public cloud. Third party administrator can
easily monitor and eavesdrop client information,
and the MapReduce code. Ensuring privacy pro-
tection in a compromised cloud service provider
is a big concern and can breach the primary

aim of privacy which is to allow clients to use
MapReduce services without compromising their
data privacy.

Critiques on Emerging Approaches

The conventional anonymization approaches
were applied on the output of MapReduce to
provide privacy protection. Although it ensures
the privacy of data but if the adversary has any
access to MapReduce, processing it may leak
private information before anonymization is
applied to the data. The MapReduce processes
data in plain text which is venerable from
unauthorized monitoring and modification
if data operations are executed in untrusted
boundaries. In recent years, researchers have
adopted anonymization approaches not only on
the output but in different stages of MapReduce
platform to ensure privacy. In Fig. 2, the areas
highlighted in gray are used for anonymization.
More number of research is done in the reducer
function like Airavat (Roy et al. 2010), Sedic
(Zhang et al. 2011), and others. However, the
some studies also focus on mapper function to
ensure privacy before exaction in plain text and
explained as follows.

The current MapReduce framework cannot
fully fulfill the requirement for privacy and secu-
rity features for various applications and infras-
tructures. One of the cryptographic approaches
for privacy-preserving computations is the homo-
morphic encryption. The technique, considered
to be the holy grail of cryptography (Micciancio
2010), allows to perform computation on the
cipher text itself without requiring any decryp-
tion. The usefulness of such a scheme is evident
in the era of cloud computing, particularly in
scenarios where organizations are worried about
the privacy of their data contents. In traditional
cryptographic schemes, the actual data, called
plaintext, is encrypted to a distorted representa-
tion, called the ciphertext, which is not suitable
for direct computations. In such schemes, we
must decrypt the ciphertext to the actual data so
that we can perform meaningful computations.
This, however, is not the case with homomorphic
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encryption schemes where, even after convert-
ing to the ciphertext, we can perform certain
evaluations without seeing the plaintext. In this
way, the plaintext can be kept secret from a
third party who can perform calculations on the
ciphertext and still provide the correct results.
Another most common approach for protecting
the security and privacy of data would be to use
secure multiparty protocols for computation. This
approach has long been studied as in Goldreich
et al. (1987). In this technique, a protocol is
established between the parties involved such that
they all participate in calculating a desired result
but without knowing the inputs of other parties
(Goldreich 1998). The major cryptographic tech-
niques used in MPC are homomorphic encryption
(Cramer et al. 2001) and garbled circuits (Yao
1982). Kamal et al. (Dankar and El Emam 2012)
introduce a cryptographic cloud storage service
that enables search operation on encrypted data
in the cloud, while also ensuring that no infor-
mation is leaked in the process, and also allows
users to verify the integrity of the data at any
time. The proposed solution utilizes the com-
bination of attribute-based encryption, search-
able encryption, and proof of storage. Mayberry
et al. proposed a private information retrieval for
MapReduce (PIRMAP). PIRMAP uses mapper
phase for parallel computation while homomor-
phic aggregation is performed in reducer function

(Mayberry et al. 2013). PRISM, a MapReduce
technique introduced by Blass et al. (2012), can
be efficiently computed in MapReduce. However,
these approaches do provide privacy during the
execution process but also significantly increase
time to encrypt and decrypt the data during com-
putation and do not support many operations on
encrypted data.

HybrEx (Ko et al. 2011) and Sedic (Zhang
et al. 2011) use MapReduce framework in hy-
brid cloud to provide privacy for computation
data. The HybrEx model presents four execution
models for providing privacy to data in a hybrid
cloud, that is, map hybrid, horizontal partitioning,
vertical partitioning, and hybrid. Each execution
model is designed for different setting of map,
reducing function execution in multiparty cloud
environment. However, the paper does not pro-
vide any implementation for any of the proposed
model. Sedic implemented the map hybrid model
on top of Hadoop, in which reducer operation
is only executing in the private cloud without
utilizing the public cloud resources. However, the
sensitivity of given dataset should be defined in
the system before the execution, which elimi-
nates the chances of using chained or iterative
MapReduce process. Roy et al. (2010) present
Airavat, a security and privacy preservation plat-
form for MapReduce. Airavat ensures individ-
ual’s data privacy using differential privacy by
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adding calculated noise to each query in MapRe-
duce. There are two approaches proposed by
the authors. First, it provides mandatory access
control (MAC) to ensure only authorized users
have access to authorized tasks and resources.
The MAC is activated when privacy leakage ex-
ceeds a defined limit. Tran and Sato (2012),
however, if adversary, manage to sneak reducer
code by changing user rights as a trusted user; the
proposed solution fails to provide privacy guar-
antee. Zhang et al. (2012) proposed a privacy-
preserving layer over MapReduce, which satis-
fies privacy demands itemized by data publishers
built on diverse MapReduce privacy models. Mo-
han et al. then present GUPT (Mohan et al. 2012)
which is another improved version of Airavat.
GUPT defines the differentially private parame-
ters in such a way that it automatically chooses
and distributes the privacy parameter. However,
Airavat add p reconfigured noise for query which
limits its application. Clifton and Tassa (2013)
observed that Airavat, unable to pick a suitable
privacy budget and sensitivity value for selective
quarry, leaves the privacy choice up to the user.
In addition, Xiao and Xiao (2014) assign the
executing task to new worker node and compare
both results to eliminate the malicious node. The
existing schemes have certain limitations such
as inefficiency to handle incremental data, time
taken to update records is more, experiences poor
scalability, absence of parallelization, poor exe-
cution time, higher rate for loss of information,
and inequity between data utility and anonymiza-
tion.

Future Direction

Processing big data for multi-node cluster in-
volved many vulnerabilities, for example, admin-
istrative control of data processing environment,
distribution of data on an untrusted node in a
public cloud for processing, etc. Victor et al.
(2016). To address this limitation, state-of-the-
art privacy protection methodologies, such as k-
anonymity and differential privacy, have received
great attention from the scientific community in
recent years, and there are few implementations

offered in the area (Bello-Orgaz et al. 2016).
However, these approaches were adopted in the
earlier versions of big data processing platform
like earlier version of Hadoop. Since the archi-
tecture and design for these approaches have
been improved radically, the data anonymization
algorithm used for previous deployments also
needs to be updated to work efficiently (Jain et al.
2016).

K-anonymity ensures the privacy of data
where perturbation and cryptographic approaches
failed with well-known datasets such as AOL,
adult dataset, and Netflix (Bayardo and Agrawal
2005). K-anonymity is the first data anonymiza-
tion technique with formal mathematical support
as a proof. Latanya Sweeney in 2002 (Sweeney
2002) introduced k-anonymity by stating that
without ensuring k individuals in aggregation
single aggregate statistic should not be published.
The formal definition of k-anonymity formalized
as each release of the data must be such
that every combination of values of quasi-
identifiers can be indistinguishably matched to
at least k respondents. Quasi-identifiers (QID)
are attributes in dataset which may be linked
from publicly available dataset by join linkage.
The main goal to achieve k-anonymity is to
replace QID values with more general values,
e.g., generalizing 15, 17, and 19 into a 15–
20 value. K-anonymity provides the balance
between privacy and utility. It provides more
flexibility to data publisher for choosing the
desired level of privacy. Most importantly, the
anonymized data can be used for processing for
analytical data operations even after applying
data anonymization technique. Bazai et al.
(2017a) proposed an algorithm to use k-
anonymity on k-NN classifier for MapReduce
operations. The algorithm transformed the
plaintext data into anonymized data and executed
k-NN classifier on anonymized data. The results
provide better data utility for veracious degrees
of anonymity. Differential privacy approach has
been widely used in statistical queries (Inan et al.
2010). Differential privacy ensures the privacy
of individual by answering the query in such
a way that the query result does not contain
any information about individual’s presence in
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that data. Differential privacy (Dwork 2008)
was formally presented by Dwork in 2006,
the idea of adding carefully calibrated noise
to the data. The noise level is controlled in
such a way that if the records are correlated
with other datasets, then an adversary is not
able to trace the data subject. The addition
of noise in the original data is calibrated so
that the noisy data acquired must be usable
for data processing in the same way as the
original. The noise is not allowed to increase
beyond a level where the noisy data becomes so
different from the original data that its utilization
(accuracy) is impractical. Differential privacy has
many advantages over other privacy techniques.
Firstly, the mathematical definition of differential
privacy is based on two properties: sensitivity
and privacy budget. The sensitivity focuses on
record closeness to each other, and the privacy
budget is calculated based on how much privacy
is required for a given query. Secondly, also only
unique to this technique, it does concern with
adversary computational power and background
knowledge (i.e., even if the adversary knows
the individual’s publicly available details and
then uses it for de-anonymization of the query,
the adversary cannot de-anonymize it because
of random anonymization mechanism used
by differential privacy). Thirdly, it maintains
composability which ensures that it does not leak
privacy even an adversary holds and combines
two differentially private results. These properties
free data providers from the concern of privacy
leakage of their data. Vernica et al. describe
KNN processing approach for computing set
resemblances on textual documents (Vernica
et al. 2010). Their focuses are with document
processing rather than business data analytics,
and they do not address any implication of
privacy; therefore, no data anonymization
strategies were mentioned.

In big data processing platforms, computa-
tion is done on data in different executions in
plaintext; any information leakage while process-
ing the data may disclose sensitive information.
Bazai et al. (2017b) mainly focus on addressing
this limitation and intended to explore how data
anonymization techniques (k-anonymity and dif-

ferential privacy) can be applied in big data pro-
cessing environment, using MapReduce, which
provides a well-known basic set of big data pro-
cessing architecture and infrastructure, to validate
the proposed approach.

Big datasets usually contain many different
data types; for example, information is stored
in the textural data containing categorical and
continuous value, while others are stored in
the numerical data. Previous studies show
(Fletcher and Islam 2017) that different
data types impose different constraints when
applying data anonymization techniques. This
is true when each privacy parameter has
a different impact on the data type. For
example, k-group size provides the better
utility and privacy with categorical values,
while differential privacy works better with
well-distributed numerical values (Blum et al.
2013). Many different approaches for using
different privacy parameters have been found
in the literature for categorical values and
numerical data in traditional data processing
approaches (Natwichai et al. 2006); however,
these implementations do not support multi-node
cluster.

Summary

Big data is a very popular term nowadays and has
opened a big data era. Distributed and parallel ap-
plications are designed to process this huge data
to drive new insights and knowledge. Although
the design of these applications ensures the data
security in a certain level, individual privacy is at
a great risk. This chapter illustrates the privacy
concern of big data processing platform and pro-
vides critiques for existing approaches that are
supposed to prevent MapReduce privacy leakage.
Although researchers are addressing the privacy
concern with various approaches for data analyt-
ics in big data processing platforms with pertur-
bation, cryptographic techniques, k-anonymity,
and differential privacy, most of the studies are
still are in early stages. The practical implemen-
tation of anonymity with data analytics will help
number of privacy and security challenges.



Scalable Big Data Privacy with MapReduce 1461

S

References

Adnan M, Afzal M, Aslam M, Jan R, Martinez-
Enriquez A (2014) Minimizing big data problems us-
ing cloud computing based on hadoop architecture.
In: 2014 11th annual high-capacity optical networks
and emerging/enabling technologies (HONET). IEEE,
pp 99–103

Aggarwal CC, Philip SY (2008) A general survey of
privacy-preserving data mining models and algorithms.
In: Privacy-preserving data mining. Springer, Dor-
drecht, pp 11–52

Bayardo RJ, Agrawal R (2005) Data privacy through
optimal k-anonymization. In: Proceedings of the 21st
international conference on data engineering (ICDE
2005). IEEE, pp 217–228

Bazai SU, Jang-Jaccard J, Wang R (2017a, in press)
Anonymizing k-nn classification on mapreduce. In:
The 9th EAI international conference on mobile net-
works and management. Springer

Bazai SU, Jang-Jaccard J, Zhang X (2017b) A privacy
preserving platform for mapreduce. In: International
conference on applications and techniques in informa-
tion security. Springer, pp 88–99

Bello-Orgaz G, Jung JJ, Camacho D (2016) Social big
data: recent achievements and new challenges. Inf
Fusion 28:45–59

Blass EO, Di Pietro R, Molva R, Önen M (2012)
Prism-privacy-preserving search in mapreduce. In:
Privacy enhancing technologies, vol 7384. Springer,
pp 180–200

Blum A, Ligett K, Roth A (2013) A learning theory
approach to noninteractive database privacy. J ACM
(JACM) 60(2):12

Clifton C, Tassa T (2013) On syntactic anonymity and
differential privacy. In: 2013 IEEE 29th international
conference on data engineering workshops (ICDEW).
IEEE, pp 88–93

Cramer R, Damgård I, Nielsen J (2001) Multiparty
computation from threshold homomorphic encryp-
tion. In: Advances in cryptology-EUROCRYPT 2001,
pp 280–300

Dankar FK, El Emam K (2012) The application of dif-
ferential privacy to health data. In: Proceedings of the
2012 joint EDBT/ICDT workshops. ACM, pp 158–166

Dean J, Ghemawat S (2008) Mapreduce: simplified
data processing on large clusters. Commun ACM
51(1):107–113

Derbeko P, Dolev S, Gudes E, Sharma S (2016) Security
and privacy aspects in mapreduce on clouds: a survey.
Comput Sci Rev 20:1–28

Dwork C (2008) Differential privacy: a survey of results.
In: International conference on theory and applications
of models of computation. Springer, pp 1–19

Fletcher S, Islam MZ (2017) Differentially private random
decision forests using smooth sensitivity. Exp Syst
Appl 78:16–31

Goldreich O (1998) Secure multi-party computation.
Manuscript preliminary version, pp 86–97

Goldreich O, Micali S, Wigderson A (1987) How to play
any mental game. In: Proceedings of the nineteenth an-
nual ACM symposium on theory of computing. ACM,
pp 218–229

Inan A, Kantarcioglu M, Ghinita G, Bertino E (2010)
Private record matching using differential privacy. In:
Proceedings of the 13th international conference on
extending database technology. ACM, pp 123–134

Jain P, Gyanchandani M, Khare N (2016) Big data privacy:
a technological perspective and review. J Big Data
3(1):25

Ko SY, Jeon K, Morales R (2011) The hybrex model
for confidentiality and privacy in cloud computing. In:
HotCloud, pp 1–8

Mayberry T, Blass EO, Chan AH (2013) PIRMAP: effi-
cient private information retrieval for mapreduce. In:
International conference on financial cryptography and
data security. Springer, pp 371–385

Micciancio D (2010) A first glimpse of cryptography’s
holy grail. In: Commun ACM 53(3):96–96

Mohan P, Thakurta A, Shi E, Song D, Culler D (2012)
GUPT: privacy preserving data analysis made easy.
In: Proceedings of the 2012 ACM SIGMOD inter-
national conference on management of data. ACM,
pp 349–360

Natwichai J, Li X, Orlowska ME (2006) A reconstruction-
based algorithm for classification rules hiding. In: Pro-
ceedings of the 17th Australasian database conference,
vol 49. Australian Computer Society, Inc., pp 49–58

Patel AB, Birla M, Nair U (2012) Addressing big data
problem using hadoop and map reduce. In: 2012
Nirma University international conference on engineer-
ing (NUiCONE). IEEE, pp 1–5

Peralta D, del Río S, Ramírez-Gallego S, Triguero I,
Benitez JM, Herrera F (2015) Evolutionary feature
selection for big data classification: a mapreduce ap-
proach. In: Math Probl Eng, pp 1–12

Roy I, Setty ST, Kilzer A, Shmatikov V, Witchel E (2010)
Airavat: security and privacy for mapreduce. In: NSDI,
vol 10, pp 297–312

Sweeney L (2002) Achieving k-anonymity privacy protec-
tion using generalization and suppression. Int J Uncer-
tain Fuzziness Knowl Based Syst 10(05):571–588

Tran Q, Sato H (2012) A solution for privacy protection
in mapreduce. In: 2012 IEEE 36th annual computer
software and applications conference (COMPSAC).
IEEE, pp 515–520

Vernica R, Carey MJ, Li C (2010) Efficient parallel set-
similarity joins using mapreduce. In: Proceedings of
the 2010 ACM SIGMOD international conference on
management of data. ACM, pp 495–506

Victor N, Lopez D, Abawajy JH (2016) Privacy models
for big data: a survey. Int J Big Data Intell 3(1):61–75

White T (2012) Hadoop: the definitive guide. O’Reilly
Media, Inc., Sebastopol

Xiao Z, Xiao Y (2014) Achieving accountable mapreduce
in cloud computing. Futur Gener Comput Syst 30:1–13

Yao AC (1982) Protocols for secure computations. In:
23rd annual symposium on foundations of computer
science, SFCS’08. IEEE, pp 160–164



1462 Scalable SPARQL Query Processors

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica
I (2010) Spark: cluster computing with working sets.
HotCloud 10(10–10):95

Zhang K, Zhou X, Chen Y, Wang X, Ruan Y (2011)
Sedic: privacy-aware data intensive computing on hy-
brid clouds. In: Proceedings of the 18th ACM confer-
ence on computer and communications security. ACM,
pp 515–526

Zhang X, Liu C, Nepal S, Dou W, Chen J (2012) Privacy-
preserving layer over mapreduce on cloud. In: 2012
second international conference on cloud and green
computing (CGC). IEEE, pp 304–310

Scalable SPARQL Query
Processors

�Native Distributed RDF Systems

Scaling up OLTP on Multicores
and Many Cores

�Hardware-Assisted Transaction Processing

Schema Mapping

Paolo Papotti
Campus SophiaTech – Data Science
Department, EURECOM, Biot, France

Synonyms

Mapping

Definitions

Several data management tasks require to
precisely establish associations between data
structured under different schemas. Schema
mappings allow the definition of semantic
connections between schemas with structural
differences. A schema mapping M is a

specification of a relation between instances of a
source schema S and instances of a target schema
T . Given a source instance I for S and a target
instance J for T , they satisfy the mapping if
.I; J / ˆ M . Schema mappings are used both
for virtual and materialized integration, and they
have been studied in many aspects, including
their specification, semantics, and user-assisted
generation.

Overview

There are many applications that need to ex-
change, correlate, and integrate heterogeneous
data sources. These information integration tasks
have long been identified as important problems,
and unifying theoretical frameworks have been
advocated by database researchers (Bernstein and
Melnik 2007). To solve these problems, a fun-
damental requirement is that of manipulating
mappings among data sources. The application
developer is typically given two schemas – one
called the source schema S and the other called
the target schema T – that can be based on
radically different models and structures. Schema
mappings are logical expressions that specify the
semantic connection between the instances for
the source and the target schemas. Given a source
instance I and a target instance J that satisfy the
schema mapping, we can say that .I; J / ˆ M .

A mapping is usually represented as a triple <
S; T;M >, and its semantics is defined with re-
spect to the setting where only the source instance
I (for S ) is given. Before introducing the seman-
tics, it is useful to distinguish the two main prob-
lems for which mappings play a key role: data
exchange (Fagin et al. 2005a) and data integra-
tion (Lenzerini 2002). The two problems share
the same goal: support users in retrieving source
data by posing queries on the target, which is
also known as global or mediated schema in data
integration. The main difference is in the way that
such goal is achieved. Data exchange formally
studies the semantics of generating an instance
of a target database given a source instance, a
mapping, and constraints on the target schema.
It has formalized the notion of a data exchange

https://doi.org/10.1007/978-3-319-77525-8_226
https://doi.org/10.1007/978-3-319-77525-8_178
https://doi.org/10.1007/978-3-319-77525-8_100209


Schema Mapping 1463

S

problem and has established a number of results
about its properties. In data exchange, the source
data is transformed into a materialized instance
that conforms to the target schema. Users define
queries on the target schema, and these are then
answered by using the target instance. Data inte-
gration is the problem of combining data residing
at different sources and providing the user with a
unified view of these data. The main difference
with data exchange is that the query is part of
the input and only the answer to such query is
materialized. The source data is queried in situ,
i.e., the target queries are rewritten to compute
answers using the source data only. Despite the
differences in the execution, in both approaches
the goal is to reason about the possible instances
J such that .I; J / ˆ M .

The most popular logical specification for
schema mappings are source-to-target tuple-
generating dependencies (s-t TGDs), with the
following form:

8x.˚S .x/ ! 9y�T .x; y// (1)

where ˚S .x/ and �T .x; y/ are conjunctions of
atomic formulas over S and T , respectively. Con-
sider, for example, a source schema with two rela-
tions Patient (SSN, Name, Phone, HosDate) and
Surgery (PatName, Insurance, Treatment, Date)
and the target schema with two relations Cus-
tomer (Id, Name, Phone, BirthDate, Insurance)
and Claim (CustId, Treatment, Date). A s-t TGD
defined over these two schemas is

8p; i; t; d Surgery.p; i; t; d / !

9Y1; Y2; Y3.Customer.Y1; p; Y2; Y3; i / ^

Claim.Y1; t; d //

Assume the TGD above is the only constraint
in our mapping M . Consider now a given in-
stance I for the source schema, such as I =
Surgery(Mark,Axa,Eyes,2/21/17), and three tar-
get instances:

J0DCustomer.10;Mark; 978; 3=3=79;Axa/;

C laim.20;Eyes; 2=21=17/

J1DCustomer.11;Mark; 978; 3=3=79;Axa/;

C laim.11;Eyes; 2=21=17/

J2DCustomer.12;Mark; 978; 3=3=79;Axa/;

C laim.12;Eyes; 2=21=17/ (2)

It is easy to see that the pair of instances (I; J0)
does not satisfy the s-t TGD specification, be-
cause of the different values for the customer id.
In this case, we say that J0 is not a solution for
the given I and mapping M . On the other hand,
both instances J1 and J2 satisfy the TGD together
with I . Since .I; J1/ ˆ M and .I; J2/ ˆ M ,
we say that each of the two target instances is a
solution for I . One may observe that these two
target instances have different customer ids, but
this is not in contradiction with neither the source
instance, which does not have this information,
nor the mapping, as the s-t TGD only states that
the id value should the same in the Customer and
Claim relations.

The example represents a mapping that speci-
fies what source data must be in the solutions, but
does not specify what must not be in any solution.
For example, a fourth target instance J3

Customer.12;Mark; 978; 3=3=79;Axa/;

C laim.12;Eyes; 2=21=17/;

C laim.12;Liver; 10=1=2010/ (3)

is also a solution for I and M above. The s-t
TGDs above are in fact called open mappings and
compose the most studied class of mappings in
the literature (Bernstein and Melnik 2007). These
mappings always allow a solution and can be
specified with no requirements on the target or
other sources (i.e., other open mappings cannot
conflict). However, there are more constrained
settings where exact mappings have been stud-
ied (Fuxman et al. 2006b).

Another important characterization of schema
mappings is with respect to their structure (Lenz-
erini 2002). This comes from data integration
systems, which assumed that the schema map-
ping is a function, e.g., a view. In one setting,
known as global-as-view (GAV), mappings have
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one relation symbol in �T .x; y/ and no repeated
variables. In the opposite modeling, each rela-
tion of the source schema is defined in terms
of the target schema. In this setting, known as
local-as-view (LAV), mappings have one rela-
tion symbol in ˚S .x/ and no repeated variables.
GAV and LAV have been largely studied and
adopted because of their tractable data complex-
ity when answering queries in data integration
systems.

Key Research Findings

One important property of schema mappings is
that they can be generated from graphical user
interfaces (GUI). In fact, manually designing a
schema mapping between schemas can be chal-
lenging. Even if the schemas represent similar
data, they very often use different names and
structures to describe the information. This is es-
pecially true when the schemas are independently
designed. Manually crafting schema mappings is
a difficult task, which requires technical experts
that have deep understanding of both source and
target schemas. When the size of the schemas
increases, with dozens of relations and hundreds
of attributes, it is also easy to make errors in the
mappings, which can then lead to incorrect results
in the ultimate application.

Since understanding the design of the schemas
and manually writing schema mappings is time-
consuming and prone to human errors, map-
ping generation tools have been created to make
the process more abstract and user-friendly, thus
easier to handle for a larger class of people.
Most of these tools have been designed with
data exchange in mind and directly compared to
other solutions for the design of data transfor-
mation, such as ETL systems (Dessloch et al.
2008; Mecca et al. 2012). However, the same
tools can be used to create schema mappings in
data integration settings. Schema mapping gen-
eration tools include primarily Clio, which is
the first tool able to generate logical mappings
and corresponding scripts from high-level user
input (Fuxman et al. 2006a; Haas et al. 2005;

Miller et al. 2000; Popa et al. 2002). Three main
features characterize mapping generation tools.

High-level interface. The goal of simplifying
the mapping specification was pursued by
introducing a GUI that allows users to draw
arrows, or correspondences, between schemas
in order to define the desired transformation.
Such correspondences can also be discov-
ered and suggested to the users by schema
matching algorithms (Bernstein et al. 2011).
Correspondences represent associations between
elements across different schemas in the form
of attribute pairs and are discovered by profiling
the attribute values and by mining the schema
structures.

Consider the example shown in Fig. 1, with
the relations described earlier and a foreign key
from Claim to Customer in the target schema.
Correspondences, represented as solid arrows in
the figure, map atomic elements of the source
schema to elements of the target schema, inde-
pendently of the underlying data model or of the
design choices. Due to the heterogeneity of the
databases, the same concept could be represented
differently across different schemas. At the same
time, portions of the schemas with similar struc-
ture may actually model different entities. In
the figure, the customer name in the target is
encoded as the name of a patient in the source.
However, multiple date attributes are present in
both schemas, but they have different semantics
across the relations, e.g., hospitalization date is

Schema Mapping, Fig. 1 Schema mapping scenario
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different from birth year. While correspondences
are easy to create and understand, they do not
represent the full semantic relationship between
source and target instances. In the example, the
correspondences from the source relation Surgery
to the target relations specify the constraint over
the names and the treatments, but do not spec-
ify the relationship between the instances in re-
lation Customer and Claim. This relationship
is expressed explicitly by the foreign key and
is part of the semantic specification, but it is
lost in the attribute to attribute granularity of
the correspondences. As we have seen in the
schema mapping (2), a more complex formula
is needed to capture precisely the semantic as-
sociations at the schema level. Correspondences
are therefore taken as input by a schema mapping
tool.

Automatic Mapping Generation. Based
on value correspondences, mapping systems
generate the logical dependencies that specify
the mapping. In an operational interpretation, the
resulting TGDs can be seen as a specification
of how to translate data from the source
to the target. It has been shown that the
mapping generation is sound and complete with
respect to the given correspondences, that is,
all the relevant schema mappings are part of
the output and none of them contradicts the
correspondences (Fuxman et al. 2006a; Popa
et al. 2002). Based on the correspondences
drawn in Fig. 1, a mapping system would
generate the following schema mapping with
two dependencies:

SOURCE-TO-TARGET TGDS

m1:8 s; n; p; h Patient.s; n; p; h/ !

9Y1; Y2; Y3 .Customer.Y1; n; p; Y2; Y3//

m2:8p; i; t; d Surgery.p; i; t; d / !

9Y1; Y2; Y3 .C laim.Y1; p; Y2; Y3; i / ^

Account.Y1; t; d // (4)

Mapping Execution via Scripts. Given a
source instance and a mapping, to produce a

target instance that is a solution, it suffices to
execute the traditional chase procedure (Fagin
et al. 2005a). The chase is a fixpoint algorithm
which tests and enforces implication of data
dependencies, such as TGDs, in a database. After
the mappings had been generated, a schema
mapping system translates the s-t TGDs under
the form of an SQL script. When executed on any
DBMS, the script implements the chase, i.e., it
can be applied to a source instance I to create a
new instance J that is a solution. Given a TGD,
in order to chase it over I , we may see its ˚.x/
as a first-order query Q� with free variables
x over the source database. We execute Q�.I /

using SQL in order to find all vectors of constants
that satisfy the premise, and we then insert the
appropriate tuple into the target instance to satisfy
�.x; y/. Skolem functions (Popa et al. 2002) are
typically used to automatically generate new
values for the existential variables y.

Given mappings written by users or generated
from tools, a number of approaches have been
proposed to optimize schema mappings in order
to improve the efficiency of their execution and
manipulation in real-world applications. In fact,
schema mappings may present redundancy in
their expressions, due, for example, to the pres-
ence of unnecessary atoms or unrelated variables,
thus negatively affecting the data management
process at hand (Fagin et al. 2008). The following
efforts have aimed at optimizing such dependen-
cies by identifying two kinds of equivalence aside
from standard logical equivalence: the relaxed
notions of data exchange (DE) equivalence and
conjunctive query (CQ) equivalence. DE and CQ
equivalences coincide with logical equivalence
when the mapping scenario is made only of s-t
TGDs, but differ on richer classes of equiva-
lences, such as second-order TGDs, and scenar-
ios with target constraints. Mapping rewriting has
also been studied to compute a different class of
data exchange solutions that reduces the redun-
dancy in the target instances. Given a mapping
scenario composed of s-t TGDs, these algorithms
rewrite them to generate a runtime script that, on
input instances, materializes compact solutions
at scale (Mecca et al. 2009; Ten Cate et al.
2009). These works exploit the use of negation
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in the premise of the s-t TGDs to rewrite them
intercepting possible redundancy.

Schema mapping tools have proven to be
effective in easing the burden of manually
specifying TGDs and have been successfully
transferred into commercial (Haas et al. 2005)
and open-source systems (Marnette et al. 2011).
Other commercial tools that generate some form
of schema mappings from correspondences
include Stylus Studio and Microsoft’s BizTalk
Mapper and internal mapping modules in ETL
systems. Given the large number of systems that
have been proposed to create schema mappings,
benchmarks for their systematic evaluation have
been proposed (Alexe et al. 2008; Arocena et al.
2016).

Examples of Application

Schema mappings have been successfully
adopted for data exchange and for data
integration. They are popular because of their
trade-off between expressiveness – as they
can handle several real-world scenarios – and
performance; formal results can be guaranteed
with execution times that nicely scale over
the size of the instances. However, many data
management problems involve not only the
design and execution of schema mappings but
also their subsequent manipulation in a general
framework (Bernstein and Melnik 2007). In
this framework, other database applications,
such as object-to-relational mappings and data
warehousing, can be handled. This is achieved
by introducing high-level algebraic operators that
enable to build programs that directly manipulate
schema mappings. One important application is
schema evolution, where two of these operators
play a key role. Consider a mapping M between
schemas S and T , and assume that schema S
evolves into a schema S 0 because of changes in
the data organization or for performance reasons.
The evolution can be expressed as a mapping
M 0 from S to S 0. Therefore, the relationship
between the new schema S 0 and schema T can
be obtained by first inverting the mapping M 0

and then composing the result with the original
mapping M . In this scenario inversion and
composition are operators that take mappings
as input and return new mappings. This high-
level view of schema mappings exploits the
intuition that they can be the building blocks
for systems that save considerable effort to the
final users.

Following this vision, the composition opera-
tor has been identified as one of the fundamental
operators for the development of a framework for
managing schema mappings, and its semantics
has been studied (Fagin et al. 2005b). The main
results show that first-order (FO) logic is not suf-
ficient to express composition and that a second-
order (SO) fragment of logic can be used as a
mapping language for expressing this operator.
Interestingly, SO TGDs can still be executed
by means of scripts, and FO schema mappings
can always be translated into this more general
language, thus enabling composition. There are
several other operators that have been defined for
schema mappings, including several proposals on
how to compute the inverse of a mapping (Arenas
et al. 2009) and how to merge multiple map-
pings with the same target schema (Alexe et al.
2010).

Future Directions of Research

Emerging trends are encouraging the developing
of more systems based on schema mappings. On
one side, theoretical results are paving the way to
the creation of innovative applications for which
schema mappings show potential positive impact,
such as data pipelines and graph data (Francis and
Libkin 2017; Kolaitis et al. 2016). On the other
side, new algorithms for the creation and opti-
mization of schema mappings are widening the
opportunities offered by such technology, with
contributions such as mapping inference from
data examples and probabilistic approaches (Ten
Cate et al. 2017; Kimmig et al. 2017). These
recent results show opportunities for enlarging
the application of schema mappings to more data
management tasks, including data fusion, data
cleaning, and ETL scenarios.
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SciDB

Philippe Cudre-Mauroux
eXascale Infolab, University of Fribourg,
Fribourg, Switzerland

Definitions

SciDB is a distributed database management sys-
tem for managing and processing multidimen-
sional arrays in scientific applications. It was first
designed and developed by a group of academics
led by Michael Stonebraker before being produc-
tized by Paradigm4.

Overview

The first XLDB workshop (1st Extremely Large
Databases Workshop 2007) in 2007 brought
together a group of scientists and industry
members to discuss the capabilities of database
management systems (DBMSs) at managing non-
relational data at extreme scales. A number of

https://doi.org/10.1007/978-3-319-77525-8_6
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key shortcoming were identified, which were
presented the following year at XLDB-2 (2nd
Extremely Large Databases Workshop 2008).
The lack of support for managing scientific data
was in particular discussed. Consensus emerged
that many Big Science projects presented unique
challenges that could not be handled through
generic DBMSs and would require a complete
rewrite approach (Stonebraker et al. 2007).

As a result, a group of scientists led by
Michael Stonebraker embarked on a new
project to design and develop a new system for
handling scientific arrays, as arrays represented
a prominent data type for many science
users (including astronomers, oceanographers,
seismologists, or climate researchers). The
resulting system, SciDB, was first presented at
VLDB 2009 (Cudré-Mauroux et al. 2009). This
first version supported a number of important
features for science users, including:

1. native storage for nested, multidimensional
arrays;

2. scientific operators built as user-defined func-
tions (UDFs) to manipulate both the structure
and the values of the arrays;

3. a shared-nothing design (Stonebraker 1986)
allowing the system to scale out to many nodes
and petabytes of data;

4. initial support for advanced features required
by science users such as data versioning,
provenance, and uncertainty.

The team continued the development of SciDB
as an open source data management solution for
Big Science projects. In 2011, Michael Stone-
braker and Marilyn Matz co-founded Paradigm4
to further support the development of SciDB.

Architecture

SciDB is at its core a distributed array manage-
ment system. The system takes as input large,
multidimensional arrays potentially considering
several values for each cell in the array. SciDB
natively stores such arrays as a collection of
chunks, each handling a portion of an array (e.g.,

a chunk or 10 � 10 � 5 k array cells). Chunks
are typically of equal size (e.g., 64 MB) and
store attribute values vertically (i.e., a chunk only
stores the values of a given attribute).

Chunks partition the array spatially but can be
overlapping to ease some operations like object
detection, which would otherwise often involve
stitching together multiple chunks. Chunks are
written using various compression mechanisms
on disk. The system adopts a no-overwrite stor-
age strategy meaning that arrays cannot be up-
dated in place (they can however be appended or
updated by creating a new version of the array).
A system catalog keeps track of the attributes and
the spatial position of each chunk.

SciDB distributes the chunks among a set of
worker nodes. Queries consist of a tree of oper-
ators over one or multiple arrays. Operators can
modify both the structure of an array (e.g., its size
or dimensions) as well as its contents (attribute
values). The system comes with a number of
standard operators such as Filter, which filters
cell values based on a threshold, or SJoin, which
combines attributes from different cells. The sys-
tem is extensible and allows the definition of
both user-defined types (UDTs) and user-defined
functions (UDFs).

Many queries, such as filter or object detec-
tion, can be processed fully in parallel on each
worker node. Specific operations might however
require to exchange, share, or redistribute the
chunks dynamically. SciDB defines a dedicated
operator, called ScatterGather, to help support
such cases. Scatter/Gather is a powerful operator
allowing to dynamically redistribute the array
over the nodes. Queries execution is orchestrated
by a central node called the coordinator.

Academic Prototype
The first prototype of SciDB was developed as
an open source project by a group of researchers
from MIT, Brow University, SLAC, NIISI RAS,
the University of Washington, Portland State
University, and Microsoft. The group was led
by Michael Stonebraker. The system was first
demonstrated at VLDB in 2009 (Cudré-Mauroux
et al. 2009).
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This academic prototype adopted the archi-
tecture described above, with a non-overwrite,
native array storage system and distributed query
execution. It also featured initial support for array
versioning, data provenance and uncertainty, as
well as a simple query optimizer.

The main use case for this prototype was
loosely modeled on an astronomy workload and
was later extended to a full benchmark for scien-
tific data management systems (Cudre-Mauroux
et al. 2010). The use case considered the end-to-
end ingestion and processing of raw data from
a sensor system. It included three types of op-
erations: (i) manipulation of raw imagery, in-
cluding processing pixels to extract geo-spatial
observations; (ii) manipulation of observations,
including spatial aggregation and grouping into
related sets; and (iii) manipulation of groups,
including a number of relatively complex geo-
metric operations in several dimensions.

The academic prototype was the basis of sev-
eral research projects in array data management,
including:

- A new storage manager to efficiently encode
and access versioned arrays (Seering et al.
2012);

- A new storage manager for complex,
parallel array processing implementing
various partitioning and query execution
strategies (Soroush et al. 2011);

- A hybrid analytic system for array-structured
data integrating R and SciDB (Leyshock et al.
2013);

- A new structure to store and model multi-
dimensional arrays supporting efficient infer-
ence processes (Ge and Zdonik 2010);

- Techniques to handle fine-grained lineage in
scientific databases (Wu et al. 2013);

- Techniques to incrementally add nodes and to
optimize data placement for n-dimensional ar-
ray systems (Duggan and Stonebraker 2014).

Paradigm4 Development
In 2011, Michael Stonebraker and Marilyn
Matz co-founded Paradigm4 to further support
the development of SciDB (Paradigm4 2011).

The company hired Paul Brown to oversee the
development of the system.

The system developed by Paradigm4 follows
the architecture described above but adds a num-
ber of key features and libraries to SciDB (Stone-
braker et al. 2011, 2013). It supports both a
SQL-like, declarative language called AQL and a
functional language (AFL). The system includes
a full-fledged optimizer and an executor able to
distribute queries to thousands of nodes. Support
was also added for handling variable-size chunks,
various encoding schemes (e.g., delta encoding,
run-length encoding, or LZ encoding), uncertain
data, and coarse-grained provenance.

A number of optimized operators come
built-in with the system, including common
linear algebra operators. The system also adds
a number of dedicated operators for several
vertical domain, e.g., for life sciences (to
support genomic analysis, digital biomarker
discovery, or biomedical images) and finance
(for multifactor model generation or transaction
cost analysis). Further use cases that have been
explored include sensor analytics, insurance, and
E-commerce.
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Search and Query Processing

Search and query processing involves translation
of high-level queries or user requests into low-
level operations which can be executed on phys-
ical hardware to retrieve relevant results from a
database. The process generally involves conver-
sion of the high-level query into an intermediate
representation, optimization of the intermediate
representation to generate an optimal evaluation
plan and finally the execution of the optimized
plan on physical hardware to retrieve relevant
results (Markl 2009). Figure 1 shows the major
steps involved in query processing for relational
databases.

The performance of search and query pro-
cessing is essential for our daily life and work
productivity. Besides relational databases, every-
day applications of search and query processing
range from simple Google search to complex
deep learning systems. Other common examples
include online shopping, supporting internal op-
erations of organizations, and even simple file
searches on personal computers.

Accelerators for Query Processing

Most current query processing systems made use
of CPUs to evaluate queries submitted by users.
However, the explosive growth in the amount of
available data and the huge demand for high-
throughput and low-latency query processing
have resulted in the adoption of specialized
hardware devices to accelerate query processing.
These accelerators act as an add-on to CPUs and
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Search and Query Accelerators, Fig. 1 Query process-
ing steps

are used only for running specialized tasks like
query processing. Some of the most common
accelerators used for query processing include
GPUs, FPGAs, and x86 based accelerators like
Xeon Phi.

GPU
Graphics processing units (GPUs) were initially
designed to accelerate the rendering of images
for video editing and gaming. However more
recently, GPUs have evolved as a powerful ac-
celerator for processing huge amounts of data in
parallel. There are already a number of query
processing systems available for GPUs including
GPUQP (Fang et al. 2007), Ocelot (Heimel et al.
2013), GPL (Paul et al. 2016), MapD (MapD
2016), and Voodoo (Pirk et al. 2016).

Hardware Design
Similar to CPUs, GPUs also contain processing
cores, registers, multiple levels of cache, and a
global memory unit (the equivalent of the main
memory for CPUs). However, GPUs differ from
CPUs in terms of the design of each one of
these components. Instead of a small number of
complex cores available on the CPUs, GPUs use a
large number of relatively simpler cores that work
in a SIMD fashion to process large amounts of
data. For example, the latest Pascal GPUs from
NVIDIA contain more than 3500 individual cores

which can work in parallel. This is more than
100� the number of cores in a modern CPU.
GPUs are able to fit such a large number of cores
in a single silicon die due to the relative simplicity
of each individual core. These cores lack complex
components such as branch prediction unit and
even have much smaller cache than CPUs. How-
ever, they do have much larger number of regis-
ters and a higher bandwidth global memory unit,
which is usually smaller (in size) than the main
memory available on CPUs. The High Bandwidth
Memory (HBM) units available in modern GPUs
can provide close to 10� the bandwidth of the
main memory accessible to CPUs. This high
bandwidth and large number of cores help the
modern Pascal GPUs from NVIDIA to achieve
up to 9 TFLOPs of compute power using a single
GPU. Figure 2 shows an overview of the internal
architecture of the latest Pascal generation of
GPUs from NVIDIA (2016).

Most modern GPUs are available as a separate
hardware unit which can be connected to the CPU
over the PCIe bus. Any data that needs to be
processed by the GPU needs to be first copied
to the GPU global memory over the PCIe bus.
However, the 16 GB/s memory bandwidth of the
current generation of PCIe bus (3.0) has proved
to be a bottleneck to processing large amounts
of data on GPUs. Hence, vendors like NVIDIA
have started looking into better interconnects like
NVLink which is capable of providing up to 5x
the bandwidth of the PCIe bus.

Advantages and Limitations
The main advantage of GPUs for query process-
ing tasks comes in the form of the availability of
large number of parallel cores which work in a
SIMD fashion. This is mostly because query pro-
cessing operations largely involve applying the
same operation to a large number of data items in
parallel. Further, the availability of larger number
of registers and the much higher global memory
bandwidth of GPUs ensure fast data access to the
large number of parallel cores, thus making it
possible to achieve much better throughput than
CPUs.

However, the need to use specialized lan-
guages like CUDA or OpenCL to program the
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GPUs has proved to be a major limiting factor in
ensuring widespread adoption of GPUs. This is
because existing query processing systems need
to be rewritten in these languages to take advan-
tage of GPUs. Further, the low bandwidth of the
PCIe bus also dampens the overall performance
of GPU-based systems due to the high overhead
of data movement between the CPU main mem-
ory and GPU global memory. This coupled with
the relatively small size of GPU memory limits
the performance gains achieved by addition of
GPUs to large query processing systems.

FPGA

Field-programmable gate arrays (FPGAs) are
specialized semiconductor devices that consist
of a collection of logic blocks which can
be connected together using programmable
interconnects based on the operation that
needs to be executed on the FPGA. Due to its
unique hardware design, FPGAs can achieve
significantly better energy efficiency than other
hardware accelerators and even CPUs when
performing most tasks. This has led to services
like Microsoft Bing search adopting FPGAs in
their servers (Allison Linn 2016).

Hardware Design

An FPGA hardware consists of four main hard-
ware units: logic blocks, registers, block RAM,
and digital signal processors (DSPs). These hard-
ware devices can be connected together based
on the computation that needs to be executed
on the FPGA. This means that FPGAs execute
operations based on the interconnection in the
hardware instead of decoding individual instruc-
tions as in the case of other hardware devices like
CPUs or GPUs. Hence, FPGAs have the ability to
process data more efficiently than other hardware
devices making them significantly more energy
efficient. FPGAs can be connected to CPUs over
PCIe bus or Ethernet. Figure 3 shows an overview
of architectural design of FPGAs.

In spite of being highly energy efficient, FPGA
hardware usually falls behind other accelerators
like GPUs when it comes to operating frequency
and global memory bandwidth. Even though
modern FPGAs have started adopting High
Bandwidth Memory instead of traditional
DDR RAM, these systems are still unable to
achieve the same level of bandwidth as GPUs.
FPGAs also lack additional on-chip cache which
significantly impacts its performance when
running programs written in high-level languages
like OpenCL. Recent studies (Wang et al. 2016;
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Woods et al. 2014) have demonstrated some
promising results on accelerating query and
search performance on FPGAs.

Advantages and Limitations
The major advantage of using FPGAs for query
processing is its lower power consumption, which
is very important in large data warehouses which
spend a significant amount of money on power
and cooling. Further, the use of hardware inter-
connections and the reliance on pipeline paral-
lelism allow FPGAs to process data with much
lower latency than other hardware devices like
CPUs and GPUs. This is especially beneficial
when querying data streams.

The major limitation of using FPGAs is the
difficulty involved in programming them. Most
FPGAs can be programmed only using low-level
hardware description languages (HDLs) like Ver-
ilog or VHDL, making it extremely tedious to de-
velop and maintain large-scale query processing
systems on FPGAs. FPGA vendors have recently
tried to address this issue by releasing OpenCL-
based FPGAs which can be programmed us-
ing high-level languages like OpenCL. However,
converting an operator written in OpenCL into
an FPGA hardware implementation takes hours,
and debugging these applications is extremely
tedious. Further, the limited amount of resources
available on the FPGA makes it difficult to fit a
large number of operators on a single FPGA. All
this makes it difficult to adopt FPGAs for systems
that need to constantly adapt to user queries or
changes in data streams.

Xeon Phi

The Xeon Phi accelerator was first introduced
in 2012 by Intel as an alternative to accelerators
like GPUs. The attraction of Xeon Phi is the use
of traditional x86 cores which allow the use of
standard programming languages and APIs such
as OpenMP. This means that most existing query
processing implementations designed for CPUs
can be ported over to the Xeon Phi accelerator
without the need for any modification. Due to
the use of traditional x86 architecture, the latest
generation of Xeon Phi can even run an operating
system and work without CPUs.

Hardware Design
The Xeon Phi follows a many-core design that
uses the x86 architecture. The accelerator tries
to offer a device which contains much larger
number of cores than modern CPUs while be-
ing architecturally similar to existing CPUs. The
recent release of Xeon Phi, known as Knights
Landing (Avinash Sodani 2016), contains over 70
cores which make use of SIMD intrinsics to pro-
cess large amounts of data in parallel. These cores
are arranged in a 2D mesh and have access to L1
and L2 cache, but it lacks an L3 cache. Further,
due to power and area limitations, each individual
core has much lower operating frequency and a
much simpler pipeline design when compared to
modern CPUs. The Xeon Phi accelerator also has
access to high-speed memory stacks integrated
into the same silicon die. Figure 4 shows the
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architectural design of the Knights Landing pro-
cessor.

Further, in addition to operating as a stand-
alone device (without the need for a CPU), the
Xeon Phi can also be used in conjunction with
traditional CPUs by connecting it to the CPU over
the PCIe bus. Recent studies have demonstrated
significant performance improvement by tuning
and optimization on those platforms (Jha et al.
2015; Cheng et al. 2017).

Advantages and Limitations
The major advantage of the Xeon Phi acceler-
ator is the much larger number of x86 cores
available for processing data in parallel. This
design enables the execution of existing query
processing systems on the Xeon Phi accelerator
without any modification and at the same time
makes it possible to achieve much higher levels
of parallelism than traditional CPUs.

However, the simpler design and lower op-
erating frequency of each individual core limit
the performance of the accelerator when execut-
ing single-threaded workload. This is especially
problematic due to the relatively low performance
of individual cores. The lack of an L3 cache can
also have a significant negative impact in such
cases. Further, connecting the Xeon Phi to the
CPU over PCIe bus leads to the PCIe interconnect
becoming a bottleneck for data transfer.

Future Hardware

A recent trend in query processing hardware
seems to be the development of coupled archi-
tectures which consist both CPUs and special-
ized accelerators in the same physical die or

on the same physical board. In such cases the
accelerators are connected to CPUs using much
faster interconnects like QPI or NVLink. Such a
design allows the specialized hardware to access
data residing in the system main memory without
being bottlenecked by the lower-bandwidth PCIe
bus. Some designs even allow the specialized
hardware to access the L3 cache of CPUs, allow-
ing for more fine-grained and faster movement
of data between CPUs and hardware accelera-
tors. Another recent trend in this area seems to
be the emergence of database processing units
(DPUs), which are specialized devices with hard-
ware support for execution of relational operators
(Wu et al. 2014).
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Definitions

Cloud computing: It is a system model that pro-
vides services on demand from a shared pool of

resources (CPU, main memory, secondary stor-
age, bandwidth, etc.) without violating service
level agreement (SLA) and maintaining a certain
level of quality of service (QoS). SLA: The agree-
ment done between the cloud service provider
and cloud user before accessing the services.

Big data: It is an emerging area applied to
store, manage, and analyze the data whose vol-
ume is large.

Virtualization: It is a technology that facil-
itates multiple virtual machines (VMs) over a
single physical machine (host) with the help of
a hypervisor or virtual machine monitor (VMM).

Virtual machine: A VM is a software program
that emulates a real (physical) computing envi-
ronment where an operating system is installed
and can run different applications.

Introduction

The big data (explosion of data) problem aroused
over the last 5–8 years as a result of the wide area
network access, proliferation of next-generation
applications, and advent of social media. Diverse
sectors like finance, retail, smart sensor networks
(IoT), physical and life science, etc., generate
large data sets that need significant storage and
computational implications. The bursty nature of
data set spurred the use of cloud computing,
where users can rent infrastructure on a “pay-
as-you-go” basis. Virtualization technology, the
basis of cloud computing, customized hardware
and computational power of physical machines
(PM), thus creating an illusion of several ma-
chines (virtual machines (VM)). Virtualization
ensures the maximum of resource utilization and
capital investment (Mishra et al. 2018b). A VM
is a software application that emulates a physical
computing environment, and multiple VMs can
run on a single physical machine. Thus, virtu-
alization reduces large capital infrastructure and
maintenance cost. Cloud computing provides a
scalable and cost-efficient solution to the big data
challenge. Traditional computing (grid) technol-
ogy had put a significant effort on resilience and
robustness instead of solving the actual problem.
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Modern big data technologies use scalable and
cost-efficient methods to overcome such limita-
tions.

The big data technology, though extremely
powerful, was built for the technically savvy and
needs applications to be parallelized in nature
(ODriscoll et al. 2013). Big data with cloud
technology makes several applications (e.g., bio-
logical problem) into reality to provide solutions.
The implication of cloud computing to big data
is due to the scalable and fault tolerance features
of cloud computing toward big data computing.
Addressing big data is a challenging and time-
demanding task that requires a sizeable compu-
tational infrastructure to ensure reliable data pro-
cessing and analysis. Since users are transmitting
their data through the Internet, it gives rise to
privacy issues, concerning profiling, stealing, and
loss of control (Puthal et al. 2015). Although
cloud computing transformed modern ICT tech-
nology, there exist security threats that can be
elaborated by the volume, velocity, and variety of
big data (Hashem et al. 2015).

Some drawbacks associated with utilization
of cloud computing are (1) data transfer rate:
data from some applications may take long trans-
mission time, even a week (e.g., genomic data)
over the Internet. (2) Security and protection:
Even though cloud computing is capable of han-
dling big data sets, there is a loophole in terms
of security and protection of data. Many appli-
cations such as cloud-based health-care system
must provide enough security and protection of
sensitive data from intruders. (3) Data tenancy:
cloud infrastructures provide very little capability
on data, application, and service back to an on-
premise IT environment.

The big data processing capabilities of cloud
computing generates a new area of computing
system research. The requirement of secured big
data computing in cloud is more essential due to
the rise of the Internet of things (IoT). Gartner es-
timates that 26 billion of IoT devices (connected
in mobiles, cars, TVs, security systems, etc.) will
be installed by 2020 (Rivera and van der Meulen
2014). This will be responsible for a significant
security challenge; however, it presents huge ben-
efits for end users.

The big data not only deal with terabytes of
data but also need to handle the issue of managing
data under a traditional framework. The high-
speed connectivity era permit movement of large
sets of data that may contain sensitive informa-
tion like credit/debit card numbers, addresses,
and other details, raising data security concerns.
Security issues in the cloud are a major concern
for businesses and cloud providers today. The
remaining of the paper is arranged as follows.
The next section outlines an overview of secured
challenges of big data computing in cloud; after
that the next section reviews various solutions
for security challenges in cloud followed by the
conclusion and future direction.

Secured Challenges of Big Data
Computing in Cloud

The complex infrastructure of cloud computing
system increases various challenges for the IT
industries and researchers. The volume of data
collection, storage, and processing in the cloud
system increases day by day, which brings new
challenges in terms of the information security.
Due to the stretching of security mechanisms
out of the perimeter of the requirements, general
firewalls cannot be used in the big data infras-
tructure (Kune et al. 2016). The challenges for
secure big data computing may be organized into
different big data aspects such as infrastructure
security, data privacy, data management, and re-
active security (Moura and Serrão 2016). Each
of these mentioned security aspects face different
security challenges as presented in Fig. 1. The
security functions are compelled to operate over
the heterogeneous composition using big data.
Different technologies introduced abstraction that
can enable the big data secure services on top of
the heterogeneous infrastructure and separate the
control from the system infrastructure. The pro-
duction rate of data has been rising exponentially
due to various sources like sensors. Thus, data
privacy plays an important role due to the risk
of erroneous data in every field. For example, the
patient data; the content of patient medical record
possess high-risk on the health-care system. The
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Secure Big Data Computing in Cloud: An Overview, Fig. 1 Four different aspects of secure challenges of big data
computing in cloud

big data computing has a set of risk areas that
includes the ownership and classification of data,
the process of creation, and collection of data. It
would be more challenging in terms of research
point of view to develop techniques to delegate
encrypted data so that third parties can analyze it.

Some sensitive data require more security for
the sake of the client; there should be an agree-
ment (i.e., specified in SLA) upon the location of
data, as its data may be considered illegal for oth-
ers and lead to prosecution. Data encryption is re-
quired to solve security and privacy issues. There-
fore, researchers have focused on the generation
of new systems that must ensure the quick access
of data where there is no effect of encryption on
processing. To improve the system performance,
various mechanisms (task allocation, VM consol-
idation, etc.) has to be improvised (Mishra et al.
2018a). To optimize the performance parameters
like energy consumption, makespan, throughput,
SLA violation, etc., the profit for the CSP as
well as for the cloud user reduced (Mishra et
al. 2018b). Due to the complexity of the system
with the aim of optimizing various performance

parameters, the security level also has to be im-
proved, which leads to a huge cost.

Solutions to the Security Challenge

For an efficient big data management and
processing, the cloud system needs a high-
speed transport mechanism that addresses two
significant bottlenecks: (1) the degradation in
the speed of WAN transfer that occurs over
distance through traditional transfer protocols
and (2) the last foot bottleneck caused by the
HTTP interfaces in the cloud data center to the
underlying object based cloud storage.

The new era of computing technology allows
companies to store and analyze the vast amount
of data (e.g., company, business, customer). So,
it becomes a challenging task to make the data
secure. To make the big data secure, various
techniques are used for encryption, honeypot de-
tection, logging, etc. The challenge of detecting
and preventing advanced threats and malicious
intruders must be solved using big data style
analysis. With the rise in the use of big data,
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companies must have to deal with both secu-
rity and privacy issues. The big data issues are
most acutely felt in certain industries, such as
telecoms, web marketing and advertising, retail
and financial services, and certain government
activities. So, resource allocation and memory
management algorithms used in the cloud for
big data also have to be secure. Numerous data
mining techniques can be used in the malware
detection in cloud (Inukollu et al. 2014).

Kune et al. have elaborated the differences
between the traditional data warehousing and big
data and also discussed various solutions for the
security issues in big data computing (Kune et al.
2016). Several areas of big data computing (i.e.,
scientific explorations, health care, governance)
have been explained in Kune et al. (2016). The
collected data from different sensors are extracted
by analyzing those data for societal benefits.

Attackers also keep inventing new ideas of
attacking to a secure system. Other issues like
ransomware profoundly affect a company’s
reputation and resources, denial of service
attacks, phishing attacks, and cloud abuse.
Globally, 40% of businesses experienced a
ransomware incident during the past year. Both
clients and cloud providers have their own
share of risks involved when agreeing on cloud
solutions. Insecure interfaces and weak APIs
can give away valuable information to hackers,
which can be misused. Fraud detection patterns,
encryptions, and smart solutions are immensely
valuable to combat attackers. At the same time,
it is the responsibility of the user to own data
and keep it safe while looking for intelligent
answers that can assure a steady ROI (return on
investment) as well (Riaz 2017).

Conclusion and Future Directions

This chapter presents some of the most
significant security and privacy issues that
affect big data computing in cloud environment
and also discusses the information security,
methodologies, and tools to provide security
and privacy to the system. It also presents some
relevant solutions for these security issues.

This chapter does not point to directions and
technologies that contribute to solve some of the
relevant security issues.
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Definitions

Access control is a mechanism used to restrict ac-
cess to data or systems, based on rules that grant
subjects (e.g., individuals, groups, roles) access
rights to resources (e.g., data or systems) (Sandhu
and Samarati 1994). Enforcement is usually bro-
ken into two stages: authentication and autho-
rization. Authentication involves the verification
the data subjects identity or attributes, whereas
authorization is a mechanism used to determine
if the requester (i.e., the subject) has the access
rights necessary to carry out the request.

Encryption is an effective means of ensur-
ing the confidentiality and integrity of informa-
tion stored locally or transferred over a network
(Menezes et al. 1996). Encryption involves the
translation of data into an unintelligible form
through the use of a secret key. Decryption is
the process of restoring data to its original form
through the use of a key (which may or may
not be the same as the key used to encrypt the
data). Encrypted data is referred to as cipher or ci-
pher text, whereas unencrypted data is commonly
known as plain text.

Trust mechanisms are used to verify the
validity of a claim (e.g., the identity/attributes
of an individual or the correctness of data).
The most widely used trust mechanisms include
policies and reputation (Artz and Gil 2007).
Policies are used to govern the exchange of
credentials that are often certified by trusted
third parties. Reputation mechanisms take the
form of provenance information and metrics
that are calculated from previous actions and
behaviors. Where no such data is available, trust
may be established via referral from other trusted
parties.

Anonymization involves the removal of per-
sonally identifiable information from datasets.
One of the most well-known anonymization tech-
niques, k-anonymity, involves the use of suppres-
sion (i.e., masking sensitive data) and generaliza-
tion (i.e., choosing broader classification terms
for sensitive data), in order to group individuals
into equivalence classes, whereby each individual
in a class is indistinguishable from k-1 other
individuals (Samarati and Sweeney 1998).

Overview

The Resource Description Framework (Manola
and Miller 2004) is designed to facilitate data
integration and reuse by representing distributed
data in a machine-readable format. RDF vocab-
ularies (otherwise known as ontologies) are col-
lections of RDF triples that can be used to de-
scribe both schema and instance data. Each triple,
which is composed of a subject-predicate-object
expression, asserts a binary relationship between
two pieces of information. Internationalized Re-
source Identifiers (IRIs) and literals are used
to represent information, which can be either
physical or abstract in nature. The RDFSchema
(RDFS) ontology (Brickley and Guha 2014) is
composed of a set of classes and properties com-
monly used to describe RDF data. RDFS does not
describe the structure of an RDF graph but rather
provides a framework that can be used to denote
classes, properties, and relations. Vocabularies
are often placed in a common namespaces, ref-
erenced via prefixes. In the examples that follow,
the default prefix : is used to denote an ex-
ample enterprise ontology <http://example.org/
ex/>. In addition, well-known rdf and foaf
prefixes are used for the RDF built-in vocabu-
lary and FOAF social network ontology, respec-
tively. Example 1 demonstrates how RDF can be
used to represent information pertaining to Joe
Bloggs.

Example 1 (RDF triples) The following triples
state that the entity:JBloggs is a person whose
first name is Joe, last name is Bloggs, and
salary is 60,000:

:JBloggs rdf:type foaf:Person.
:JBloggs foaf:givenName "Joe".
:JBloggs foaf:lastName "Bloggs".
:JBloggs :salary 60000.

An RDF graph is a finite set of RDF triples,
with subjects and objects represented as nodes
and predicates represented as edges. Figure 1
demonstrates how the triples in Example 1 con-
verge to form a graph, with IRIs represented as
ovals and literals represented as rectangles. A
collection of RDF graphs, which can include a

http://example.org/ex/
http://example.org/ex/
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:JBloggs

“Bloggs”

“Joe”foaf:givenName
foaf:lastName

foaf:Person
rdf:type

60000

:salary

Security and Privacy Aspects of Semantic Data, Fig. 1
Triples represented as an RDF graph

default graph and one or more named graphs, is
known as an RDF dataset.

In a recent survey by Fernandez Garcia et al.
(2016), the authors analyzed topics appearing
in papers that were published in Semantic Web
conference proceedings and journals from 2006
to 2015 inclusive. The results of the conducted
text analysis confirmed that traditional Semantic
Web topics, such as knowledge representation,
data management, system engineering, searching,
browsing and exploration, and data integration,
dominated the field up to 2015.

According to Fernandez Garcia et al. (2016),
although topics relating to security and privacy
have shown a minor increase over the years, the
topics remain under-represent in comparison to
traditional topics.

Much of the early research on security and
privacy in the context of the Semantic Web fo-
cused on using RDF to represent existing access
control models and standards and demonstrating
how the technology could be used to develop
general policy languages. Later the focus moved
to the development of access control strategies
for RDF and the Semantic Web. Other popular
topics over the years include demonstrating how
existing encryption mechanisms can be used to
protect RDF data and establishing trust mecha-
nisms for the Semantic Web. More recently, the
landscape has broadened to include the encryp-
tion and anonymization of RDF data.

Key Research Findings

The goal of this section is to introduce the reader
to key research findings in relation to Semantic
Web security and privacy, and as such it focuses

on the predominant topics within the community,
namely, access control, encryption, trust, and
anonymization.

Access Control
Access Control (AC) for the RDF data model
has predominately focused on using patterns to
specify authorizations, enabling inference based
on semantic relations between policy entities, and
demonstrating how RDF can be used to form
general policy languages.

Reddivari et al. (2005) demonstrate how ac-
cess control rules can be used to manage access
to an RDF store. Two predicates permit and
prohibit are used to grant and deny access
rights based on common database actions (e.g.,
INSERT, DELETE, SELECT) to one or more
triples using triple patterns (cf. Example 2). A
triple pattern is composed of an RDF triple with
optionally a variable (denoted by a ?) in the
subject, predicate, and/or object position.

Example 2 (AC rules with triple patterns) The
following rule states that a subject Alice can
create instances of any class (denotes as ?y) if
there is an assertion that subject Alice created
that class.

permit(INSERT(Alice,
(?x,rdf:type,?y)))
:- createdNode(Alice,?y)

Jain and Farkas (2006) build on the approach
proposed by Reddivari et al. (2005), by demon-
strating how RDFS entailment rules can be used
to derive authorizations for inferred triples. While
Kirrane et al. (2013) demonstrate how authoriza-
tions based on quad patterns (where the fourth
element denotes the named graph) can be used
to enforce Discretionary Access Control (DAC),
where users can pass their access rights on to
other users. Like Jain and Farkas (2006), the
authors derive access rights for derived data using
RDFS entailment rules.

When it comes to access control enforcement,
typical enforcement strategies involve filtering
unauthorized data based on access control
policies and executing queries against the
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filtered dataset or using query rewriting
techniques to inject access control filters into
queries.

Dietzold and Auer (2006) and Gabillon and
Letouzey (2010) demonstrate how graph patterns
(i.e., sets of triple patterns) constrained by a
WHERE clause can be used to create a new dataset
that only contains data the subject is permitted
to access. The authorized dataset is created
using SPARQL the standard query language
for RDF (Seaborne and Prud’hommeaux
2008). Essentially, authorizations contain filters
that refer to sparql CONSTRUCT queries
that are used to generate the authorized
dataset. In Gabillon and Letouzey (2010) a
rule such as Permit(Alice, SELECT,
foafview.txt) can be used to permit
subject Alice, access right SELECT on
resource foafview.txt. The resource
foafview.txt simply contains a CONSTRUCT
query such as that presented in Example 3). When
a requester submits a query, a new dataset is
created based on the matched authorizations. The
query is executed against the new dataset, which
only contains data that the requester is permitted
to access.

Example 3 (Construct view) The following
query creates a dataset that contains all data
relating to people with Bloggs as a last name.

CONSTRUCT {?x ?p ?y}
WHERE {
?x ?p ?y .
?x foaf:lastName "Bloggs"}

An alternative enforcement strategy proposed
by Abel et al. (2007) uses query rewriting to cre-
ate bindings for variables that are subsequently
added to the query WHERE clause. In the case of
negative authorizations, the bindings are added to
a MINUS clause, which is appended to the query.
A simple SPARQL SELECT query is presented
in Example 4, and sample rewritten queries con-
taining positive and negative filters are presented
in Examples 5 and 6, respectively. When a re-
quester submits a query, the enforcement frame-
work rewrites the query according to the match-
ing authorizations, and the rewritten query is

subsequently executed against the new dataset,
ensuring that the requester is only returned data
that they are permitted to access.

Example 4 (SELECT query) The following
query returns all data.

SELECT *
WHERE { ?s ?p ?o }

Example 5 (Positive filter) The following query,
which contains a positive filter, only returns the
information for :JBloggs.

SELECT *
WHERE { ?s ?p ?o .
FILTER ( ?s = :JBloggs ) }

Example 6 (Negative filter) The following
query, which contains a negative filter, returns
everything except the :salary information.

SELECT *
WHERE { ?s ?p ?o .
MINUS { ?s ?p ?o .
FILTER ( ?p = :salary ) }}

In addition to the access control mechanisms
described above, there have been a number of
standardization initiatives that could be used
to limit access to RDF data. Web Identity and
Discovery (WebID) (Sporny et al. 2011) is
a mechanism that can be used to uniquely
identify and authenticate a person, company,
organization, or other entity, by means of a
Uniform Resource Identifier (URI), while Web
Access Control (WAC) W3C (n.d.) is an RDF
vocabulary and access control framework that can
be used for policy specification and enforcement.
Both Villata et al. (2011) and Sacco and Passant
(2011) extend WAC to cater for access control
over the RDF data model. Using the extended
vocabularies, it is possible to associate access
control with individual RDF resources (subjects,
predicates, and objects) and also collections of
RDF resources (named graphs). In addition,
the authors extend the vocabulary to cater for
a broader set of access privileges.

An alternative policy language, called the
Open Digital Rights Language (ODRL) (Iannella
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and Villata 2018), is a general rights language
that can be used to define rights for limiting
access to digital resources. When it comes to
ODRL and RDF, primary research efforts to date
focus on demonstrating how ODRL can be used
to express a variety of access policies (Steyskal
and Polleres 2014; Steyskal and Kirrane 2015)
and using ODRL vocabularies to specify RDF
licenses (Cabrio et al. 2014).

A comprehensive survey of existing access
control strategies for RDF is presented in Kirrane
et al. (2017).

Encryption
Encryption techniques for RDF have received
very little attention to date, with work primarily
focusing on the partial encryption of RDF data,
the querying of encrypted data, and the signing
of RDF graphs.

Giereth (2005) demonstrates how public-key
encryption can be used to partially encrypt RDF
fragments (i.e., subjects, objects, or predicates).
The ciphertext and the corresponding metadata
(algorithm, key, hash, etc.) are represented us-
ing a literal that they refer to as an encryption
container. When only the object is encrypted,
the object part of the triple is replaced with a
blanknode (i.e., an anonymous resource), and a
new statement is created with the blanknode as
the subject, the encryption container as the object,
and a new renc:encNLabel as the predicate
(cf. Fig. 2). The treatment of encrypted subjects is
analogous. The encryption of predicates is a little
more difficult, as reification (a technique used
to make statements about resources) is needed

:JBloggs

“xfx....hhg” renc:encNLabel

“Bloggs”

“Joe”foaf:givenName
foaf:lastName

foaf:Personrdf:type

:salary

Security and Privacy Aspects of Semantic Data, Fig. 2
Partially encrypted RDF graph

to associate the new blanknode with the relevant
subject, object, and encryption container.

Rather than simply storing the encrypted data
and metadata in a literal, Gerbracht (2008) dis-
cusses now the metadata that can be represented
using multiple triples using their crypto ontology.
The encrypted element or subgraph is replaced
with a new unique identifier, and new statements
are added for the encrypted data and the corre-
sponding metadata (cf. Fig. 3).

Kasten et al. (2013) in turn focus on querying
encrypted data. In the proposed framework, each
triple is encrypted eight times according to the
eight different triple pattern binding possibilities.
The proposed approach allows for graph pattern
queries to be executed over the ciphertext, at the
cost of storing multiple ciphers for each state-
ment. An alternative approach by Fernández et al.
(2017) demonstrates how functional encryption
can be used to generate query keys based on triple
patterns, whereby each key can decrypt all triples
that match the corresponding triple pattern. Other
work by Kasten et al. (2014) investigates enabling
of the signing of graph data at different levels of
granularity.

Trust
In 2007, Artz and Gil (2007) conducted a survey
of existing trust mechanisms in computer science
in general and the Semantic Web in particular.
The authors highlight that traditional approaches
focused primarily on authentication via asser-
tions by third parties; however, in later years,
the topic evolved to include historical interaction
data, the transfer of trust from trusted entities,

:JBloggs

crypto:equal

crypto:rsa
crypto:2048

crypto:algorithm
crypto:keyLength

“Bloggs”

“Joe”foaf:givenNamefoaf:lastName

foaf:Personrdf:type

“zhk....kjg” crypto:_87439

Security and Privacy Aspects of Semantic Data, Fig. 3
Partially encrypted RDF graph and metadata
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and decentralized trust mechanisms (e.g., voting
mechanisms or other consensus decision-making
mechanisms).

Existing work on trust and semantic data fo-
cuses primarily on demonstrating how existing
trust metrics can be applied to Semantic Web
Data, the development of policy languages to
support trust and negotiation, and the identifica-
tion of trust architectures and frameworks.

Ding et al. (2003, 2005) discuss how vari-
ous trust mechanisms can be combined in order
to determine the reliability of information pub-
lished on the Semantic Web. The proposed trust
mechanism combines historical data, information
obtained directly from trusted semantic agents,
and information based on referrals from trusted
agents.

The PeerTrust policy language and frame-
work (Gavriloaie et al. 2004) demonstrate how
together semantic annotations and access control
rules can be used to support automated trust nego-
tiation and access control. An alternative policy
language called Protune is described in Bonatti
and Olmedilla (2005, 2007). Although Protune
is in fact a general policy language, the authors
focus primarily on trust negotiation and policy
explanations.

Bizer and Oldakowski (2004) propose a trust
architecture that combines reputation, content,
and context-based trust mechanisms. The infor-
mation integration layer aggregates data from
several sources and adds the relevant provenance
metadata. The repository layer is used to store the
information and associated metadata in named
graphs. The query and trust evaluation layer
uses trust policies to make trust decisions. Here
the authors rely on a query language TriQL.P
that is used to return the query results together
with a justification tree that can be used to un-
derstand how the query results fulfill the trust
requirement. Finally the application and expla-
nation layer receives requests and provides the
trust decision together with the relevant explana-
tions.

More recently, Laufer and Schwabe (2017)
propose a framework that can be used to describe
the trust process. Inputs to be considered include
the data and associated metadata and contextual

information relating to the action that needs to be
taken, together with trust policies specified by the
agent. Like Ding et al. (2003), the trust process
relies on historical data, along with direct and
indirect sources of information.

Anonymization
The anonymization of RDF data has recently
emerged as a popular research topic, with work to
date focusing on the application of k-anonymity
(Samarati and Sweeney 1998) or differential pri-
vacy (Dwork 2006) to RDF data.

Radulovic et al. (2015) propose a framework
called k-RDFanonymity, which includes an
anonymization model, generalization and sup-
pression operations, and distortion metrics that
are specifically tailored for the anonymization of
RDF data. The authors highlight the fact that
RDF differs from tabular data as identifiers,
quasi-identifiers, and sensitive attributes can
appear in the subject, predicate, and object
positions. Additionally the anonymization needs
to be able to handle data represented as literals
and IRIs. In the proposed model, generalization
involves the replacement of resources (i.e.,
literals or IRIs) with more general resources
based on domain hierarchies, while suppression
involves either the removal or replacement of
resources.

Heitmann et al. (2017) build on this work to
ensure protection against neighborhood attacks.
The proposed approach, which is known as k-
RDF-Neighborhood anonymity, ensures that one-
hop neighbors of an anonymized resource are
indistinguishable from k-1 one-hop neighbors of
other resources.

Other work in relation to RDF anonymization
includes adopting graph or statistical database
approaches. Lin (2016) takes inspiration from
existing graph isomorphism-based anonymiza-
tion techniques, discussing their suitability for
RDF data from both a security and a compu-
tational complexity perspective. Whereas, Silva
et al. (2017) explore the application of existing
differential privacy mechanism to RDF data and
propose a framework that can be used to compute
differential privacy parameters.
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Examples of Application

Semantic Web technologies have a solid founda-
tion in open standards as evidenced by the various
World Wide Web Consortium (W3C) recommen-
dations; however, the layers of the Semantic Web
technology stack (Berners-Lee 2000) that relate
to security and privacy (i.e., unifying logic, proof,
trust, and cryptography) are still very immature.
Although the application of the key research find-
ings described in the previous section is still very
exploratory, several of the articles are guided by
real-world use cases and practical applications.

For instance, the Protune policy lan-
guage (Bonatti and Olmedilla 2005, 2007), which
was developed by the Research Network of
Excellence on Reasoning on the Web, known
as REWERSE, was tasked with building the
foundations for the advanced of Web systems
and applications by developing inter-operable
reasoning languages.

Fernández et al. (2017) are motivated by a
real word use case that involves the combination
of open and closed data in a data market sce-
nario. In order to demonstrate the suitability of
the proposed encryption mechanism, the authors
conduct a performance evaluation over two real-
world datasets: Jamendo a large dataset contain-
ing licensed music and the AEMET metereologi-
cal dataset.

Although the initial evaluation of the trust
framework proposed by Ding et al. (2003) was
conducted using simulated data, the authors later
discussed how trust mechanisms could be used
in the context of homeland security, in order
to identify suspicious individuals, relationships,
activities, or events (Ding et al. 2005). Similarly,
Laufer and Schwabe (2017) describe how the pro-
posed trust framework can be used to evaluate the
trustworthiness of claims in relation to political
agents in Brazil coming from a variety of public
sources (e.g., news stories, tweets, social media
postings).

Existing work on anonymization appears to
be less applied that the other topics with authors
simply motivating their work by referring to pri-
vacy concerns in domains, such as healthcare and
energy (cf. Radulovic et al. 2015).

Future Directions for Research

From a community perspective, it is well known
that privacy is a multidisciplinary research area,
which brings with it the need for closer col-
laboration between computer scientists, human-
ities, and social scientists and legal scholars.
Although initiatives such as the Society, Privacy
and the Semantic Web – Policy and Technol-
ogy (PrivOn) workshop, which was collocated
with the International Semantic Web Conference
(ISWC) from 2013 to 2017, provides a forum for
multidisciplinary research, stronger collaboration
between different research communities is still
needed.

From a technical perspective, there is a need
for more applied work and a focus on attacker
models across all privacy and security topics. Ad-
ditionally there are many open research questions
concerning the topics presented in this paper,
several of which are outlined below.

When it comes to information security, there
is still no standard access control strategy for
the Semantic Web. Considering the array of ac-
cess control specification and enforcement mech-
anisms proposed to date, a necessary first step is
to develop a framework that can be used to eval-
uate existing offerings in terms of correctness,
completeness, and robustness.

As for encrypted RDF, it is still not possible to
execute complex queries and computations over
encryption RDF data. One interesting avenue for
future work is the application of homomorphic
encryption to RDF; however, it brings with it
performance and scalability issues that still need
to be tackled. Another open research topic is the
simplification of key management for multiple
datasets, federated querying over encrypted data,
and providing support for the revocation of exist-
ing keys.

In terms of trust, a recent article by Beek
et al. (2016) highlights several issues with
respect to the quality of existing data and
datasources, claiming that the Semantic Web
is neither traversable nor machine-processable
and consequently arguing that the Semantic Web
needs centralization. A counterargument, which
is more in keeping with the goals of the Semantic
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Web, would be to argue for the application of trust
mechanisms into the fabric of the Semantic Web,
which could be brought about by the realization
of the upper layers and vertical layers of the
Semantic Web technology stack.

Anonymization is a relatively new topic
within the Semantic Web community with works
primarily focusing on k-anonymity. However,
it is well known that k-anonymity is prone
to homogeneity and background knowledge
attacks. Common extension mechanisms include
l-diversity (Li et al. 2007), which ensures that
sensitive attributes within an equivalence class
are suitably different, and t-closeness, which
ensures that the distribution of each equivalence
class is representative of the distribution of the
entire dataset (Machanavajjhala et al. 2006).

Other promising privacy and security research
directions that remain underdeveloped and as
such have not been presented in this article in-
clude usage control, which is defined as an exten-
sion of access control that enables data publishers
to dictate not only who can access their data
but also what they are permitted to do with this
data (Bonatti et al. 2017). Related topics include
transparency, which involves being open with re-
spect to data processing and sharing, and account-
ability, which involves making data consumers
responsible for their actions. Here, interesting
avenues for future work include the adoption and
extension of non-repudiation and fair exchange
protocols.

Cross-References

�Big Data for Cybersecurity
� Privacy-Aware Identity Management
� Privacy-Preserving Data Analytics
� Privacy-Preserving Record Linkage
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Format Definition

We come across data in every possible form,
whether through social media sites, sensor net-
works, digital images or videos, cell phone GPS
signals, purchase transaction records, weblogs,
medical records, archives, military surveillance,
e-commerce, complex scientific research, and nu-
merous fields. This amount could reach to some
quintillion bytes of data! This data is what we call
: : : BIG DATA! (Venkatram and Geetha 2017).
“Big data is nothing but an assortment of huge

and complex data that it becomes very tedious
to capture, store, process, retrieve and analyze
with the help of on-hand database management
tools or traditional data processing techniques.”
We live in the Age of Big Data where everything
that surrounds us is connected to a data source
and everything is captured digitally (Matturdi et
al. 2014). In the past few years, the total amount
of data created by human has been exploded (Mc-
Cune 1998). From 2005 to 2020, the amount of
data is predicted to increase 300 times, from 130
exabytes to 40,000 exabytes (Gantz and Reinsel
2012). These data are generated by scientific re-
search, finance and business informatics, govern-
ment, Internet search, social networks, document,
photography, audio, video, logs, click streams,
mobile phones, sensor networks, and so on, and
Big Data is the result of this dramatic increase of
data.

Overview of Big Data
Big Data can be represented by 5Vs – volume,
velocity, variety, veracity, and value (Kadhiwala
2017). It is defined by five characteristics of
Big Data, including five levels of meaning. Ini-
tially, volume refers to huge amount of data.
Secondly, velocity refers to fast processing speed.
Thirdly, variety refers to different varieties of
data categories. Big Data is taken from multiple
data sources, and data types contain structured,
semi-structured, and unstructured data, such as
network log, video, pictures, geographic location
information, and so on. Fourthly, veracity refers
to the authenticity of data. Finally, value refers to
the worth of Big Data (Fang et al. 2017) (Fig. 1).

As the amount of data is increasing day by
day, cloud has become a perfect solution to store
data by providing virtually unlimited storage that
can be accessed over the Internet. By outsourcing
large volume of data to cloud storage, such as
Google Drive, Dropbox, and Amazon Simple
Storage Service, users can simplify their data
management and reduce data maintenance costs
through the pay-as-you-use model (Shu et al.
2018). Cloud services provide the necessary in-
frastructure by reducing the cost of storing, pro-
cessing, and updating information with improved
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efficiency and quality. However, privacy of Big
Data is a major hurdle while outsourcing private
data in third-party cloud as there is a possibility of
leaking/sharing sensitive information contained
in Big Data with unauthorized entities. As most
of the data is sensitive and strictly confidential,
security of stored data is a major concern in Big
Data environment. Since Big Data often contains
sensitive information that needs to be protected
from unauthorized access, therefore release of
several techniques has to be devised immediately
to protect it (Fig. 2).

The content of the chapter is enumerated as
follows: Section “Format Definition” describes
an overall view of big data. Section “Historical
Background” describes challenges and issues of
big data security and privacy. Section “Need for
Data Security” reveals the need for big data
security via some real examples. Section “Key
Applications” describes one of the applications

related to big data security and privacy and some
solutions to enforce big data security and privacy.
Section “Future Research Directions” briefly in-
troduces future research areas, and finally, Sec-
tion “Conclusion” concludes this chapter.

Historical Background

The term “Big Data” is used to indicate the
exponential growth and availability, the variety of
data, and the speed at which the data is produced
and transferred. The rise of Big Data contributes
enormous opportunities for individuals, organi-
zations, and society (Huang et al. 2017). An
important notion is privacy for Big Data, since it
contains sensitive information about individuals.
Several privacy models, such as k-anonymity
(Sweeney 2002), l-diversity (Machanavajjhala et
al. 2007), t-closeness (Li et al. 2007), and dif-
ferential privacy (Dwork 2011), can be used to
anonymize data. It also raises some privacy and
ethical issues. Big Data brings some challenges
such as heterogeneity, data life cycle manage-
ment, data processing, scalability, data visualiza-
tion, security and privacy, etc.

Challenges of Big Data Security
and Privacy
Undoubtedly the most challenging and concerned
problem in Big Data is security and privacy. Gov-
ernmental agencies, healthcare industry, biomed-
ical researchers, and private businesses invest
enormous resources into the collection, aggre-
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gation, and sharing of large amounts of per-
sonal data for the tremendous benefit of Big
Data. Many facts [section 3] show that Big Data
will harm the user’s privacy if it is not prop-
erly handled (Matturdi et al. 2014). The security
and privacy issues which should be concerned
in Big Data context include: “1. The personal
information of a person when combined with
external large data sets, leads to the inference
of new facts about that person whereby these
facts about the person are sometimes secretive
and the person might not want the data owner
to know or any person to know about them;
2. Information regarding the users (people) is
collected and exploited in order to add value to
the business of any organization. This is done
by creating insights into their lives which they
are unaware of; 3. Another consequence is of
Social stratification where a literate person would
be taking advantages of the Big data predictive
analysis whereas the illiterate/ underprivileged
will be worse off it is high in developing countries
where ‘Digital Divide’ is very much prevalent; 4.
Big Data used by law enforcement will increase
the chances of certain tagged people to suffer
from adverse consequences who never have the
ability to defend nor have the knowledge of being
discriminated against” (Katal et al. 2013). The
field of privacy in Big Data which contains a
host of challenges involves interaction with in-
dividuals, re-identification attacks, probable and
provable results, and economic effects (Jensen
2013; Zhang et al. 2014).

Privacy and Security Issues of Big Data
Data is the most crucial part in Big Data. Hence,
assuring data security and privacy during ei-
ther data transition or data storage is the core
need of Big Data (Kadhiwala 2017; Zhang et
al. 2017). Generally, data is treated as secure,
when confidentiality, integrity, and availability,
i.e., the CIA triad model, are satisfied (Xu and
Shi 2016). PAIN is another measure to ensure
data security and privacy benchmark (Sudarsan
et al. 2015; Sun et al. 2011a). Hence, favoring
literature studies, the main security and privacy
issues of Big Data are confidentiality, integrity,

availability, monitoring and auditing, key man-
agement, and data privacy (Cheng et al. 2017).

Data Confidentiality:Research Directions
Confidentiality relates to applying some rules
and restrictions to data against illegal disclosure.
Confidentiality can be assured by limiting access
to the data and also by employing various cryp-
tographic techniques. There are three different
ways to ensure confidentiality in typical security
mechanism as follows (Sudarsan et al. 2015):

• Data is encrypted during transition and stored
as plaintext.

• Authentication is used on stored plaintext data
to grant access.

• Data is encrypted when stored and decrypted
when in use.

Several data confidentiality techniques exist,
and the most significant techniques among those
are access control and encryption. Both tech-
niques have been widely investigated (Bertino et
al. 2011; Nabeel et al. 2013; Shang et al. 2010),
and both are needed to assure data confidentiality.
Confidentiality can also be assured using authen-
tication, one of the AAA security concepts (Li et
al. 2011; Ulusoy et al. 2014). Authentication is
referred as user identity establishment, whereas
authorization is used to grant resource access to
the authenticated user. Access control refers to
enforcing resource access permission for autho-
rized use to authenticated users. Several access
control mechanisms such as mandatory access
control (MAC) (Balamurugan et al. 2015), RBAC
(Balamurugan et al. 2015; Wang et al. 2005), and
ABAC (Ruj 2014) can be used to ensure data
privacy.

Integrity
Data integrity provides protection against altering
of data by an unauthorized user in an unau-
thorized manner. Hardware errors, user errors,
software errors, or intruders are main reasons
for data integrity issues (Sudarsan et al. 2015).
Salami attacks, data diddling attacks, trust rela-
tionship attacks, man in the middle attack, and
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session hijacking attacks are most well-known at-
tacks on data integrity (Types of Network Attacks
against Confidentiality, Integrity and Availability
2017). Integrity can be maintained using data
provenance, data trustworthiness, data loss, and
data deduplication. Data provenance is related
to information about creation process as well as
sources of data through which it is transformed.
It is the process to check all states of data from
initial state to current state. Debugging, secu-
rity, and trust models are various applications
of data provenance (Azmi 2015; Glavic 2014).
Without data provenance information, the user
never comes to know from where the data came
and what and which transformations have applied
to data. This affects the value or originality of
data (Alguliyev and Imamverdiyev 2014).

Availability
Data availability ensures that data must be avail-
able for use whenever authorized users require it.
However, the emergence of cloud computing has
narrowed down issues of data availability for Big
Data due to high uptime of cloud. Denial of ser-
vice (DoS) attack, DDoS attack, and SYN flood
attack are known attacks to breach data availabil-
ity; therefore, there is a need of revised solutions
(Types of Network Attacks against Confidential-
ity, Integrity and Availability 2017).

Key Management
Key management and key sharing between users,
servers, and data centers are emerging security
issues for Big Data. Wen et al. (Jeong and Shin
2016) have explained various approaches for key
management such as secret sharing, server-aided
approach, and encryption with signature. In key
management with RSSS, users do not need to
maintain any key on their own, but instead, they
have to share secrets among multiple servers. Key
can be reconstructed using a minimum defined
number of secrets using RSSS.

Data Privacy
Data privacy intends to assure personally iden-
tifiable information (PII) should not be shared
without informed assent of related data owner
(Kabir et al. 2012; Sun et al. 2011b). In some

cases, even though receiving user’s consent to
use and share the data, the use of PII could be
restrained for a specific reason. For example,
to develop effective treatment or medicine, the
study of patient’s medical record is essential.
Hence, PII of the patient must be anonymized to
protect privacy. In order to ensure data privacy,
several encryption techniques and access control
mechanisms can be employed.

Need for Data Security: Looking
at the Bigger Picture

With the proliferation of data, cyber attacks and
data breaches are increasing exponentially (Shen
et al. 2017). The growing spate of incidents due
to the proliferation and careless handling of data
increases the vulnerability of data leakage. With
the advent of cloud, the data has become more
vulnerable to cyber attacks. With the growth of
data and its insensitive management, it has come
under various sorts of threats that compromise
the privacy and security of nations in general
and individuals in particular. Recent happenings
across the world revealed the vulnerability of data
to threats and greater ramifications that followed.
Nowadays, no sector is free from data threats and
breach. From US presidential elections (where
private server of the presidential candidate was
hacked) to the recent attack on UIDAI (Unique
Identity Development Authority of India) which
allots UIN (unique identity number for its cit-
izens), the threat on Big Data is continuing.
The incident that shook the conscience of global
cyber community was the Ransomware attack
that threw bare computers and systems across
more than 150 countries at the mercy of cyber
thieves. Though some breaches such as “Wik-
iLeaks” and “Panama Papers” expose various
irregularities in public domain, these are viewed
as great thefts in the literature of data security
which put the privacy and security of nations and
individuals at stake. Hence there is an imminent
need to develop a comprehensive and full proof
mechanism to secure the Big Data from unautho-
rized intrusions.
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Key Applications

There are diverse privacy and security concerns in
various sectors such as social media, banking sec-
tors, healthcare systems, energy industries, and
other online database systems. In this study, we
discuss one of the research applications related to
Big Data in healthcare or EHD that explains how
to enforce privacy and security of Big Data.

Application of Privacy and Security
in Electronic Health Data (EHD)
EHD (also known as electronic health records,
EHR) is a systematic collection of electronic
health information about individual patients or
populations (Yi et al. 2013). Such records include
a whole range of data including demographics,
medical histories, medication and allergies,
immunization status, laboratory test results,
radiology images, billing information, and all
sensitive patient information. According to a
national survey, 94% of providers report that their
EHR makes records readily available at point
of care, 88% report that their EHR produces
clinical benefits for the practice, and 75% of
providers report that their EHR allows them
to deliver better patient care (Clemens et al.
2017). However, the transition from paper-based
to EHR systems poses some unique challenges
for privacy and confidentiality, security, data
integrity, and availability. As cloud computing
is emerging as a new computing paradigm
in healthcare sector (Griebel et al. 2015), it
not only facilitates the exchange of electronic
medical records among healthcare providers or
organizations but also acts as a medical record
storage center (Li et al. 2016). Cloud services
provide the infrastructure to healthcare providers
and patients by reducing the cost of storing,
processing, and updating information with
improved efficiency and quality. As computerized
medical records are integrated into one place,
data can be accessed from different places by
different users, and this increases the risk of
invasion of privacy. Since most of the data are
sensitive and strictly confidential and stored on
a third-party server where the owner doesn’t
have direct access, it demands serious threats in

terms of data privacy and security (Abbas and
Khan 2014; Vimalachandran et al. 2017). This
work focuses on identifying the most appropriate
method to share private information between
multiple healthcare providers in the patient’s
care team and the patient and their family or
carers in the cloud environment.

Hence, EHR in healthcare is facing problems
with privacy breaches and unauthenticated record
access in the recent years, and the most prime
one is related to privacy and security of med-
ical data (Abbas and Khan 2014). The issues
range from malware attacks that compromise the
integrity of systems and privacy of patients to
distributed denial of service (DDoS) which can
disrupt facilities’ ability to provide patient care.
In healthcare systems, for instance, cyber attacks
like Ransomware can have ramifications beyond
financial loss and breach of privacy (Ahmed and
Ullah 2017). Earlier this year, hackers broke
into the databases of Community Health Systems
(CHS), one of the largest hospital groups in
the United States, and accessed personal health
information, name, address, and personal data in-
cluding social security numbers from around 4.5
million patients. Hackers from Internet vigilante
group Anonymous also targeted several hospitals,
launching a DDoS attack on the hospital website
as an act of “hacktivism” (AbuKhousa et al.
2012).

Therefore, there is an indispensable need to
protect the privacy, security, confidentiality, in-
tegrity, and availability of sensitive information
pertaining to individuals’ data in general. In this
context, cybersecurity is utmost required to pre-
vent, detect, and act on unauthorized access to
a health system and its information. Therefore,
the primary aim is to strengthen the security
infrastructure by providing a strong protection
mechanism in “e-healthcare” aiming toward pa-
tients’ confidence and thereby providing secu-
rity and privacy (Wu et al. 2012) to electronic
health data. Therefore, in order to protect the
privacy of patient data, access control mecha-
nisms and encryption techniques will be a better
solution. Some of the cryptographic approaches
are mentioned in Fig. 3. Narayan et al. (2010)
proposed an attribute-based infrastructure for the
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in Big Data Environment,
Fig. 3 Taxonomy of the
privacy-preserving
approaches in the e-Health
cloud

EHR where the patients encrypt their EHR files
using the bABE. This approach solves the key
management issues by using the users’ attribute
for data encryption allowing every user to have
only one private key for their attribute set for de-
cryption. This approach also allows users to carry
and healthcare providers to perform keyword-
based searches on the encrypted patients’ records
without revealing the keywords or partial matches
to the cloud system. The keyword search func-
tionality is provided by combining the bABE and
the public key encryption with keyword search
(PEKS). Ibraimi et al. (2009) proposed a multi-
authority scheme for protecting EHD (electronic
health data) across different domains. The limita-
tion of the work is that they are not designed for
database federations of many medical organiza-
tions.

Narayan et al. (2010) proposed a patient-
centric cloud-based EHR system by incorpo-
rating symmetric key cryptography, public key
cryptography, and an attribute-based architecture.
This method includes encrypting the patient
health data being encrypted by the patient using a
symmetric key and also a metadata file which
includes a description of the file, attribute-
based access policy, and location information
encrypted using broadcast CP-ABE and stored in
a cloud platform. This method supports direct
revocation without re-encryption of data but
has a higher computational cost on the patient
end where all re-encryption and updating of
access policies are handled by the patient side
(Narayan et al. 2010). Another downside is
that the Trusted Authority can access all the

encrypted files. Barua et al. (2013) used the
mechanisms of proxy re-encryption and ABE
to develop a more sophisticated cloud-based
solution. However it does not require external
party for key distribution; it leads to a single
point of failure and also creates key escrow
while managing all attributes with a single
authority. In order to resolve the issue, Li et
al. (2013) introduced a cloud-based health record
sharing scheme using both KP-ABE and MA-
ABE schemes. This solution exerts some level of
computational cost on the user side.

In EHR systems as most of the data are strictly
confidential and stored in a third-party cloud,
access control mechanisms are equally ineludible
and vital as encryption techniques (Zhang et al.
2015). Access control is a fundamental security
barrier for data privacy in a healthcare informa-
tion system, which limits who can access and
operate the documents in an EHR system (Wang
et al. 2005, 2009; Zhang et al. 2014). Some access
control mechanisms are mentioned in Fig. 4.

Several access control mechanisms such as
RBAC and its variants are currently used, and
newer approaches such as ABAC have been pro-
posed in healthcare domain to restrict access to
electronic health data (Khalil et al. 2007, Wang
et al. 2002). However, both of these have few
inherent inadequacies as an individual approach.
However, by combining the advantages of both
RBAC and ABAC, a new approach can be pro-
posed (Alshehri and Raj 2013). This dual-layer
access control model being proposed integrates
attributes with roles combining the strength of
RBAC and ABAC and thereby aims at assuring
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two fundamental security properties, confiden-
tiality and integrity, of the sensitive data in the
healthcare domain. Several research aspects of
privacy and security in EHD are categorized and
discussed in this study. However, among sev-
eral encryption techniques, ABE and combina-
tion of several access control mechanisms are
profoundly important for enforcing security and
privacy to EHD.

Future Research Directions

Privacy and security of Big Data is gaining mo-
mentum in research community due to emerging
technologies like cloud computing, analytics en-
gines, and social networks. There are a number of
open problems and future research perspectives
related to privacy and security of Big Data (Cuz-
zocrea 2014, Wang et al. 2015).

1. Privacy-Preserving Big Data Analytics – Big
Data are valuable because they are treasured
source of knowledge that is useful for deci-
sion making and prediction purposes. It pos-
sesses challenging research hurdles, because
analytics process huge volumes of Big Data,
and hence privacy of target data sets is not
preserved yet.

2. Privacy-Preserving Social Network Mining –
Social network data are the most reliable

sources of real-life Big Data, with well-
known web social networks like Facebook,
Twitter and Instagram. Here, data mining is of
primary interest, but the need for privacy and
security very often limits the real impact of
these tasks.

3. Privacy-Preserving Electronic Health Data –
Electronic health data stores sensitive and con-
fidential patient information in large datasets.
Hence, there is a high need to preserve the
privacy and security of stored data sets to
protect the confidentiality of patient.

4. Security Issues of (Big) Outsourced
Databases – In cloud infrastructures,
databases are often outsourced based on the
DaaS (Database as a Service) approach. This
elevates more problematic security concern
as query-processing procedures may easily
access sensitive data sets and determine
privacy breaches.

Conclusion

Privacy and security of Big Data is gaining
prominence nowadays due to its high prolifera-
tion and utility as a result of recent developments
in information and communication technology
(ICT) such as social networking, IoT (Internet of
things), Big Data analytics, and cloud computing.
Big Data is a treasure trove of knowledge due
to its potential for large-scale use and utility
across various fields. This paper discusses scopes,
challenges, and various techniques employed to
secure privacy and security of Big Data. There is
ample scope for further research in Big Data
security and privacy of which few areas are
discussed under the heading “Future Research
Directions” of this write-up. However, in light of
existing bottlenecks in data privacy and security,
future research directions call for deliberate
attention and immense contribution of research
scholars and practitioners.
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Definitions

Semantic interlinking is defined as the estab-
lishment of links and relations between multiple
structured datasets.

Overview

Motivation
The exponential growth of data is becoming
pervasive across different areas of business and
science. Despite its wide availability in large
amounts, data is typically stored in standalone
silos where different datasets are represented
using different formats, stored and indexed within
different system architectures, and maintained
following different business processes. For
example, in certain organizations it is possible to
encounter customer databases, technical reports,
product images, and other datasets that need to
be used in conjunction. Such data integration
problems are a long-standing open research
challenge in the data management area. The
recent rise of big data with its volume and variety
dimensions has magnified already existing issues.

Similar challenges are also often present in
Open Data where datasets are published and
made freely available (typically by governmental
organizations) without paying much attention at
data quality issues such as the lack of appropriate
data format usage and the provision of datasets
out of their context.

These situations make data integration an open
challenge. Semantic data interlinking can be gen-
erally defined as the establishment of links and
relations between multiple structured datasets.
This entry presents an overview of semantic tech-
niques for the interlinking of big data.

Linked Open Data
An important application domain of semantic
interlinking is Linked Open Data (LOD) where
the goal is to publishing data openly, in a struc-
tured format, and interlinked together (Bizer et al.
2007). The aim of the LOD initiative is to fix the
challenges that open data comes with, by means
of using a common data representation model and
by interlinking datasets together.

Tim Berners-Lee suggested a 5-star model for
LOD (http://5stardata.info) where he claims that
data shared on the Web should ideally be (1)
available under an open license, (2) provided
as structured data, (3) published using nonpro-
prietary formats, (4) described using unique re-
source identifiers (URIs), and (5) linked to other
data to provide context.

Existing datasets that have been published fol-
lowing such principles are depicted in the LOD
cloud (see Fig. 1) where each bubble represents
a dataset following LOD principles and edges
between nodes represent links across items de-
scribed in the datasets.

Other than domain-specific datasets (many
of which are in the biomedical field), popular
datasets in the LOD cloud include DBpedia
(Auer et al. 2007) and Wikidata (Vrandečić and
Krötzsch 2014).

DBpedia is a structured dataset automatically
extracted from Wikipedia infoboxes that con-
tains factual statements about notable entities
described in Wikipedia. On the other hand, Wiki-
data is a crowdsourcing effort aiming at creating a
knowledge base of facts. The original motivation
to start Wikidata was to supply a central reposi-
tory for the structured information to be displayed
in Wikipedia infoboxes.

Key Research Findings

Research in the area of semantic interlinking
focuses on different problems: First, given two
datasets to be interlinked, there is the need to
align the underlying ontologies used to describe
the instances present in the datasets; Next, there
is the need to align the instances described in the
two datasets, that is, to identify which entities

http://5stardata.info
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Semantic Interlinking, Fig. 1 Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul
Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

referred to are the same across the datasets. This
section first discusses these two problems and
present some methods proposed in the litera-
ture designed to address them. It then presents
the more specific problem of entity linking, that
is, performing semantic interlinking between a
document and a structured dataset. Finally, it
introduces more recent human-in-the-loop ap-
proaches.

Semantic Schema Alignment
The problem of schema alignment (also known
as ontology matching Shvaiko and Euzenat 2013)
consists in identifying which schema elements of
a datasets are equivalent to those of a different

dataset. This is a classic problem in the area of
semantic interlinking for which a large number
of approaches have been proposed.

For example, Jain et al. (2010) focus on meth-
ods to find alignments between ontologies used
by different LOD datasets. The approach they
propose is based on using the Wikipedia category
hierarchy to bootstrap the schema alignment pro-
cess. Similarly, Parundekar et al. (2010) align dif-
ferent ontologies used in different LOD datasets.
Their approach is based on existing equivalence
statements at the instance level on which they
reason about possible schema alignments. To
evaluate such methods, standard benchmarks ex-
ist. The most popular and commonly used ones

http://lod-cloud.net/
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have been created in the context of the Ontology
Evaluation Alignment Initiative (Euzenat et al.
2011).

Semantic Record Linkage
Record linkage is defined as the identification
of the same real-world entity mentioned across
different datasets. In the semantic interlinking
domain, this translates into identifying which
instances in two LOD datasets refer to the same
object.

Approaches for this problem include, for ex-
ample, Rong et al. (2012) who look at this as a bi-
nary classification problem (i.e., a candidate pair
of instances matches or not) and solve it using
standard supervised machine learning models.

The main challenge of record linkage is scal-
ability: When aiming at identifying duplicates
across two datasets, it would be necessary to
perform a quadratic number of comparisons to
check every possible pair of instances. In a big
data context, where the volume of data is pro-
hibitive, performing all possible comparisons is
not a scalable option. To deal with this chal-
lenge, a number of indexing techniques to make
more efficient comparisons have been proposed
(Christen 2012). Another common approach to
deal with this is blocking where the idea is to
first use computationally inexpensive methods to
create groups of similar objects based on approx-
imate methods (e.g., by means of clustering) and
then to perform all possible comparisons using
a computationally expensive similarity measure
only for the members of a group thus removing
a large number of false positives (Bilenko et al.
2006; Papadakis et al. 2013).

Entity Linking
A third problem related to the two main semantic
interlinking problems described above is that of
entity linking (Rao et al. 2013). This is defined as
uniquely disambiguating an entity mentioned in
a textual document by linking it to a background
knowledge graph (Shen et al. 2015). For example,
given a document mentioning the entity “Tom
Cruise," the goal is to create a link from it to
the URI of an instance of a LOD dataset (e.g.,
DBpedia).

Common approaches for entity linking
include, for example, graph-based approaches
(Moro et al. 2014) able to look at the coherence
of linking decisions based on sub-graph density.

When run at scale, entity linking can benefit
from collection features like, for example, entity
frequency as an indicator of linking accuracy (Lin
et al. 2012). That is, an entity which appears
several times in a coherent document collection
is likely to be referring to the same concept. It is
also easier to use contextual information (e.g., all
the sentences where an entity appears) to better
decide about which instance of the knowledge
graph to link to.

Human-in-the-Loop Semantic Interlinking
A more recent family of approaches to semantic
interlinking makes use of the crowdsourcing
methodology. This implies the development
of human-in-the-loop systems that leverage
machine-based computation to scale interlinking
to large datasets but make also use of
crowdsourcing to solve difficult cases where
humans outperform machine-based algorithms.

An early approach to crowd-based schema
alignment was presented by Sarasua et al. (2012)
where they compared a human-in-the-loop ap-
proach with purely machine-based schema align-
ment methods showing significant improvements
in alignment effectiveness.

For the problem of entity linking, human-
in-the-loop solutions include ZenCrowd by De-
martini et al. (2012) where authors propose to,
given a document and background LOD dataset,
collect entity linking decisions from algorithms
and from a crowdsourcing platforms. Then, they
propose a factor graph model to effectively com-
bine the machine-based and human-based deci-
sions. Again, experimental results show that such
combined approach results in better quality entity
linking.

A similar human-in-the-loop approach has
been proposed by Demartini et al. (2013) for
semantic record linkage where the crowdsourcing
step is used last after the machine-based blocking
and alignment methods described above. For the
same problem of semantic record linkage, Wang
et al. (2012) investigated the use of grouping
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record linkage crowdsourcing tasks together
showing how crowd workers perform better
as compared to when they are presented with
individual record linkage tasks.

Examples of Application

Potential applications where semantic interlink-
ing can provide benefits include information ex-
traction, information retrieval, and knowledge
base population.

Applications domains where LOD datasets
and semantic interlinking have been used
successfully include cultural heritage (Knoblock
et al. 2017), manufacturing (Petersen et al. 2017),
smart cities (Egami et al. 2016), and others.

Future Directions for Research

As this entry has shown, research in the area
of semantic interlinking has been focusing on
a number of diverse problems (i.e., semantic
schema alignment, semantic record linkage,
and entity linking). The current focus of the
research community is on the scalability of such
approaches to large heterogeneous datasets (e.g.,
by means of blocking and indexing techniques)
and on improving interlinking accuracy by means
of human-in-the-loop systems.

Future work should be looking at issues like,
for example, semantic interlinking for dynamic
LOD datasets (i.e., datasets that are not con-
sidered static but rather evolving over time) for
which already existing interlinking decisions may
need to be updated as ontologies used by the LOD
datasets may change (Kuhn et al. 2017).

Cross-References

�Linked data management
�Record Linkage
� Schema Mapping
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Definitions

Semantic Search regroups a set of techniques de-
signed to improve traditional document or knowl-
edge base search. Semantic Search aims at better
grasping the context and the semantics of the user
query and/or of the indexed content by leveraging

natural language processing, Semantic Web, and
machine learning techniques to retrieve more
relevant results from a search engine.

Overview

Semantic Search is an umbrella term regroup-
ing various techniques for retrieving more rel-
evant content from a search engine. Traditional
search techniques focus on ranking documents
based on a set of keywords appearing both in the
user’s query and in the indexed content. Seman-
tic Search, instead, attempts to better grasp the
semantics (i.e., meaning) and the context of the
user query and/or of the indexed content in order
to retrieve more meaningful results.

Semantic Search techniques can be broadly
categorized into two main groups depending on
the target content:

• techniques improving the relevance of classi-
cal search engines where the query consists of
natural language text (e.g., a list of keywords)
and results are a ranked list of documents (e.g.,
webpages);

• techniques retrieving semi-structured data
(e.g., entities or RDF triples) from a
knowledge base (e.g., a knowledge graph or an
ontology) given a user query formulated either
as natural language text or using a declarative
query language like SPARQL.

Those two groups are described in more de-
tail in the following section. For each group, a
wide variety of techniques have been proposed,
ranging from natural language processing (to
better grasp the contents of the query and data)
to Semantic Web (to guide the search process
leveraging declarative artifacts like ontologies)
and machine learning (typically to learn models
from large quantities of data).

Main Approaches

We give below an overview of the various tech-
niques that have been proposed in the context of
Semantic Search for improving document search
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as well as knowledge base search. A number
of surveys delve into more detail in this con-
text: Mangold (2007) focuses on natural language
queries on RDF knowledge bases or ontologies.
Madhu et al. (2011) and Mäkelä (2005) are two
brief surveys covering both topics. Bast et al.
(2016) is an extensive survey covering Semantic
Search in its broadest sense.

Document Search
Classical search engines take as input a user
query formulated as a list of keywords and return
as output a ranked list of documents relevant to
those keywords. A number of Semantic Search
methods have been suggested in that context.

Natural language processing (NLP) tech-
niques have long been applied to better grasp
the semantics of the query or documents. Often,
Part-of-Speech (POS) tagging is first applied on
the textual content in order to assign grammatical
tags (such as noun, conjunction, or verb) to
individual words. Such assignment is highly
accurate for well-formed sentences (Manning
2011) but much more challenging for short
texts such as queries (Hua et al. 2015). POS
tags can then be used to better discriminate
textual keywords, for example, for named-
entity recognition (NER), where the task is to
identify which keywords correspond to real-
world entities, or for co-reference resolution,
where the task is to identify all keywords
referring to the same entity in the text. Sentence
parsing takes NLP analyses to the next level
by aiming at capturing the overall structure of
sentences, typically through a dependency parse
tree.

NLP methods are often combined with lexical
resources or third-party sources to retrieve more
relevant results. The main idea in this context
is to identify entities in the textual query or
content and to match them to their counterpart
in a third-party resource to improve the search
results. Voorhees (1993) proposed an early ap-
proach in the sense that leverages WordNet to
disambiguate word senses and hence improve
search results. Pehcevski et al. (2008) analyze
the structure of Wikipedia to better rank relevant
entities in response to a search request. Kaptein

et al. (2010) use Wikipedia to better characterize
and identify entities when searching for entities in
document collections, while Schuhmacher et al.
(2015) combine different features from the docu-
ments, the entity mentions, and Wikipedia using a
learning-to-rank approach to improve the search
results.

Conceptually similar approaches have been
proposed in the context of the Semantic Web,
by leveraging the structure or contents of a
knowledge base to better grasp the context
of queries or entities appearing in textual
documents. Tran et al. (2007), for instance,
propose an ontology-based interpretation of
natural language queries for Semantic Search.
The authors translate a keyword query into a
description logic, conjunctive query that can
then be evaluated with respect to an underlying
knowledge base. Schuhmacher and Ponzetto
(2013) exploit entities and semantic relations
from the DBpedia knowledge base to cluster the
results of a search engine into more meaningful
groups. Prokofyev et al. (2015) leverage
an ontology to better resolve co-references
in textual documents for Semantic Search
tasks.

Machine learning techniques are often
used for Semantic Search, to power some
of the approaches described above but also
to capture the context and semantics of the
words or entities appearing in documents.
One of the main intuitions in this context
is that words that occur in similar contexts
are likely to be semantically similar. Early
approaches leveraging this observation built
high-dimensional matrices capturing the co-
occurrence of words in a certain context (e.g.,
within a window of a few words) and hence the
similarity between words (Lund and Burgess
1996). Each word is in that case represented
by a sparse vector in a high-dimensional
space. Lower-dimensional embeddings can
then be created by applying standard matrix
factorization techniques like principal component
analysis.

More recently, Mikolov et al. (2013)
suggested a new word embedding technique to
generate dense vector representations of words
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efficiently. The method works by maximizing
the co-occurrence probability of words appearing
within a certain context window using a relatively
simple neural network. This opened the door to
numerous applications, by efficiently generating
vector representations of words from large
text corpora and feeding them into subsequent
machine learning models. Approaches to improve
entity recognition (Siencnik 2015), web search
query expansion (Grbovic et al. 2015), or web
search ranking (Nalisnick et al. 2016) have,
for example, been explored in the context of
Semantic Search.

Knowledge Base Search
A number of Semantic Search approaches target
large and declarative knowledge bases (a.k.a
ontologies or knowledge graphs) instead of
document collections. Such knowledge bases
can be expressed in many different ways that are
typically derived from Semantic Web standards
such as RDF or OWL. Google’s Knowledge
Graph, DBpedia (Bizer et al. 2009), Yago (Rebele
et al. 2016), or Wikidata (Vrandecic and Krötzsch
2014) are well-known examples of that trend.
Users can express their queries through two main
modalities in this case: either as structured (e.g.,
SPARQL) queries or as natural language (e.g.,
keyword) queries.

Horrocks and Tessaris (2002) introduced
an early formal approach to answer structured
queries posed against ontologies. Their algorithm
returns sound and complete results to conjunctive
queries leveraging reasoning techniques and
description logics. Stojanovic et al. (2003)
present a method to rank results in ontology-
based search. The authors consider conjunctive
queries and combine logical inference with an
analysis of the contents of the knowledge base
to retrieve more relevant results. Maedche et al.
(2003) introduce a meta-ontology and a registry
to improve search queries targeting ontologies.
Their solution leverages WordNet to match
entities appearing in the ontology to lexical
entries and to guide the search process.

Pound et al. (2010) introduce the ad hoc object
retrieval task for searching for resources (e.g.,
entities, types, or relations) over knowledge bases

using natural language queries. The authors also
propose a baseline technique for answering such
queries based on term frequencies as well as an
evaluation methodology. Tonon et al. (2012) pro-
pose an improved search technique for ad hoc ob-
ject retrieval exploiting sequentially an inverted
index to answer keyword queries and a graph
database to improve the search effectiveness by
automatically generating declarative queries over
an RDF graph.

Hybrid approaches leveraging both textual and
structured contents have also been suggested.
Rocha et al. (2004), for instance, combine a
traditional search engine with graph exploration
techniques to answer keyword queries on an on-
tology. Zhang et al. (2005) suggest a new model
to search semantic portals, where both documents
and structured data are available. Their method
is based on creating textual representations for
all entities in the structured repository such that
they can also be indexed and searched through
classical information retrieval techniques.

Word embedding techniques (see above) have
also been adapted to power Semantic Search
on knowledge bases. RDF2Vec (Ristoski and
Paulheim 2016), for instance, learns vectorial
representations of entities in RDF graphs. Wang
et al. (2017) provide a survey of embedding
approaches for knowledge bases and classify
the models into two main families: translation-
based techniques, which interpret relations in the
knowledge base as a translation vector between
the two entities connected by the relation,
and semantic matching models, which exploit
similarity-based scoring functions to create the
embeddings.

Systems

Leading industrial search engines, such as Bing,
Yandex, or Google, all implement Semantic
Search in one way or another but typically do not
describe in detail the techniques they leverage. A
number of Semantic Search systems have been
described or open-sourced, however, and are
summarized below.
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TAP (Guha et al. 2003) is an early Seman-
tic Search framework. TAP focuses on entity
search queries expressed as keywords and aug-
ments traditional results (documents) with semi-
structured data returned from a knowledge base.
The knowledge base is also used to better filter
and sort the list or returned documents in that
context.

A number of Semantic Search systems focus-
ing on RDF and ontologies have been proposed.
Swoogle (Ding et al. 2004) offers semantic search
over a knowledge base represented in RDF thanks
to an inverted index and a database storing meta-
data about all entities. SWSE (Hogan et al. 2011)
follows the typical architecture of a search engine
but operates on RDF data also. SWSE results
are ranked by running a classical PageRank algo-
rithm on a graph connecting the URIs appearing
in the RDF triple to their source on the web.

SemSearch (Lei et al. 2006) is a search engine
for the Semantic Web that hides the complexity of
the underlying RDF data to the user. SemSearch
accepts keyword queries from the user, translates
the user queries into formal queries by exploiting
the labels of the entities in the knowledge base,
runs the resulting query in the knowledge base,
and finally ranks the results by taking into ac-
count the number of keywords the search results
satisfy. Sindice (Oren et al. 2008) is a Semantic
Search engine and look-up service that focuses on
scaling to very large quantities of semi-structured
data. It supports keyword and URI-based search
as well as structured queries.

SHOE (Heflin and Hendler 2000) is an
early Semantic Search system collecting
semi-structured annotations from the web
and storing them in a knowledge base. It
offers a GUI to formulate ontology-based
structured queries to find webpages. The Watson
system (d’Aquin and Motta 2011) works
similarly by collecting, analyzing, and giving
access to ontologies and semantic data available
online. It supports both keyword and SPARQL
search queries.

SCORE (Sheth et al. 2002) is a platform sup-
porting the creation and maintenance of large
knowledge bases. It supports ontology-driven Se-
mantic Search capabilities by extracting facts

and metadata from web sources via text mining
techniques.

Nordlys (Hasibi et al. 2017) is an open-
source toolkit for Semantic Search. The toolkit
supports a number of features including detecting
entities in natural language queries, cataloging
entities from a knowledge base (by default
DBpedia), interlinking entities, and retrieving
entities.

Schema.org (Mika 2015), finally, is not a sys-
tem per se but rather a standardization effort
founded by leading search engines (including
Google, Microsoft, Yahoo, and Yandex). Its mis-
sion is to create and promote schemas to em-
bed semi-structured data in web documents (and
beyond) in order to facilitate Semantic Search
capabilities online.

Cross-References

�Knowledge Graph Embeddings
�Reasoning at Scale
� Semantic Interlinking
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Definitions

Semantic stream processing (SSP) refers to a set
of models, principles, and techniques for ana-
lyzing and processing stream data by exploiting
semantic structures which are explicitly or im-
plicitly embedded in stream data elements. Such
“semantic streams” are represented as sequences
of temporal graphs linking human-machine un-
derstandable semantics and computational prim-
itives. Semantic stream processing approaches
leverage reasoning capabilities through formally
defined rules to automate and optimize their con-
tinuous processing flows formulated in high-level
abstract concepts and relationships.

Overview

Billions of sensors being distributed across the
globe are continuously streaming data about the
physical world around us. The stream data gener-
ated by networks of sensors enables us to detect
and identify a multitude of things, from simple
phenomena to complex events and situations.
However, the lack of integration and communica-
tion between these networks and the lack of con-
textual information and background knowledge
often isolate important data streams and intensify
the existing problems of too much data and not
enough knowledge about implicit meaning of
such data and user intentions. As a potential rem-
edy for such problems, Whitehouse et al. (2006)
proposed the concept of “semantic streams” that
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represent stream data associated with logic rules.
Such logic rules represented in Prolog allow
users to pose declarative queries over semantic
interpretations of sensor data. Interestingly, the
Prolog-based query model of Whitehouse et al.
(2006) from the wireless sensor network com-
munity is adopted itself from the semantic Web
services paradigm. This paradigm is similar to
the concept of “semantic sensor Web” Sheth
et al. (2008a) from the semantic Web commu-
nity. Sheth et al. (2008a) claimed that sensors
annotated with semantic metadata will increase
interoperability and provide contextual informa-
tion which is essential for situational knowledge.

As a result, sensor data published as semantic
data sources (in RDF models) along with dy-
namic web data sources (social network, web
blogs, etc.), which can be viewed as a variant
of sensor data, introduced several research chal-
lenges in addressing their highly dynamic and
low-latency processing nature. This then opened
a new research trend in the semantic Web com-
munity, called RDF stream processing (RSP) or
Linked Data stream processing (Le-Phuoc et al.
2012b), dealing with heterogeneous stream data
sources that can be modeled by means of the RDF
model. The choice of RDF as the data model, in
combination with ontological profiles for repre-
senting stream data elements, offers not only in-
teroperability but also well-understood semantics
based on Datalog, Description Logics (DLs), and
Answer Set Programming (ASP). Following this
design choice, several RSP engines were built by
extending existing semantic Web software stacks,
e.g., triple storage and SPARQL query engines.
Consequently, minimizing differences to “static”
RDF and “static” SPARQL became the common
goal for a majority of approaches in this line
of work. Despite a significant amount of work
dedicated to modeling stream data in RDF- and
SPARQL-like continuous query languages in the
last 10 years, none of them can provide a compre-
hensive, clean ,and sound theoretical foundation
along with a robust implementation.

However, amid the disagreement on a unified
data model and query language, there are a lot of
parallel efforts in building applications and pro-
cessing engines in this domain. This movement

has started a new research trend of trying to real-
ize reasoning features as offered in conventional
RDF engines also for streams, called stream rea-
soning (Margara et al. 2014; Dell’Aglio et al.
2017). This research domain advocates stream
reasoning as the common theme for enabling
logic entailment profiles (RDFS, OWL, etc.) of
RSP engines as well as other kinds of reason-
ing over RDF streams, e.g., statistical reasoning.
There are few attempts toward this direction,
however. The stream reasoning research area re-
mains vastly unexplored, both from a theoretical
point of view and also from the perspective of
systems and tools supporting it. Notably, the
implementations often are done before having a
sound theoretical foundation.

In our context, a stream may consist of any
kind of raw data with the restriction of discrete
elements, e.g., we do not consider “normal” video
or audio streams, but discrete pieces of such
data. The same holds true for any other data
which is discrete in nature, e.g., sensor readings.
Semantic streams consist of such discrete ele-
ments which are semantically annotated. These
annotations can be done manually or by way
of automatic annotation through data analysis
or hybrid approaches, e.g., the stream and its
characteristics are described manually, whereas
the individual stream elements are annotated by
software. An example for this is monitoring of
parking spaces with a camera, where the raw
data is not interesting but only if a parking space
is occupied or not. Thus the data is “lifted,”
and this process is called semantic lifting which
benefits greatly from the broad availability of
machine learning tools, e.g., object recognition
with convolution neural networks and entity ex-
traction with natural language processing (NLP)
tools. In fact, semantic lifting can tap into a wide
range of semantic computing pipelines (Sheu
et al. 2010) that has been around more than a
decade. It is important to question whether it
is trivial to seamlessly integrate these two types
into a single processing pipeline. The constituting
parts of stream reasoning are grounded in well-
understood formal semantics and can usually be
expressed via straightforward sets of rules. As
such, they do not exhibit the complexity and the
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opacity of artificial intelligence approaches that
are based on machine learning and neural models.

In semantic stream processing, meaning
and relationships do not have to be predefined
and “hardwired” into data formats and the
application program code at design time.
Semantic technology enables encoding and
extracting meaning separately from stream data
elements and stream sources and separately from
application code. With the interlinked nature
of semantic data associated with stream data,
a software agent can directly search topics,
concepts, and associations that span a vast
number of stream data sources linked with
knowledge graphs. This automatic discovery
capability fosters the dynamic composability
in a semantic stream processing pipeline.
Hence, adding, changing, and implementing
new relationships or interconnecting sub-stream
processing pipelines in a different way can be
done on the fly at run-time after deploying the
application logic. In this fashion, a semantic
stream processing pipeline can be federated
across autonomous processing agents which
expose their self-describing stream sources and
processing capabilities. Via automatic discovery,
the software agent does not have to have full
a priori knowledge about input data sources to
deploy its application logic. For instance, an
autonomous vehicle can continuously discover
stream data sources available via its current
network connections without knowing them or
their types in advance. It can then subscribe the
corresponding continuous queries to the relevant
stream sources, e.g., to get notifications about
traffic jams on the roads and junctions nearby its
locations without having to hard-code the data
sources and queries.

Key Research Findings

The most consolidated group of research
findings on semantic stream processing includes
contributions from RSP engines and stream
reasoners. These contributions aim at enabling
the semantic integration of heterogeneous stream
data sources with (large) static datasets stored

in relational databases or triple stores through
declarative continuous queries based on RDF
and SPARQL. By adding window operators
to SPARQL and extending the RDF model to
capture temporal aspects of stream elements,
RSP engines such as C-SPARQL (Barbieri
et al. 2010b), CQELS (Le-Phuoc et al. 2011)
and SPARQLstream (Calbimonte et al. 2010)
integrate the features of data stream management
systems (DSMSs) and SPARQL engines. For
their implementation, different approaches were
chosen based on the features or performance
criteria of interest. In the top-down approach,
query features are broken down for delegation
to the underlying processing engines. The
extreme case following the top-down approach
is rewriting a continuous query in SPARQL
form to SQL queries on traditional relational
database or relational data stream management
systems. This approach is called ontology-
based data access (ODBA), and ODBA-based
engines (Calbimonte et al. 2010; Kharlamov
et al. 2017) use the ontologies as the semantic
guidelines for rewriting their queries to a
targeted database schema. EP-SPARQL (Anicic
et al. 2010) is another variant of this rewriting
approach which translates its unified language
for event processing and reasoning as logic
expressions to Prolog rules. These are then
executed in a Prolog engine. In contrast to
this, the bottom-up approach builds or reuses
physical query operators to construct execution
engines which coordinate and control the query
execution process. It takes considerably more
effort to build query engines of this kind, e.g.,
CQELS and C-SPARQL. However, it is easier to
improve the performance and add more features
as the implementation is under full control.
For example, C-SPARQL extended reasoning
features, and CQELS implemented more
efficient data structures to improve processing
throughputs.

To offer a high processing throughput, the sys-
tem implementers need to spend significant engi-
neering efforts on optimizing and tuning physical
data structures (Le-Phuoc 2017; Ren et al. 2017)
and query executors (Le-Phuoc et al. 2013; Ren
et al. 2017; Bazoobandi et al. 2017) tailored to the
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RDF graph nature of stream elements. To scale
out the processing to multiple processing nodes,
generic cloud-based stream platforms are used:
For example, CQELS Cloud (Le-Phuoc et al.
2013) uses Apache Storm and Strider (Ren et al.
2017) uses Apache Spark. The scaling strategy of
Strider offers a good solution for handling com-
putationally expensive operations like continuous
reasoning on RDFS+ profiles.

In the continuous query setting, the incremen-
tal reasoning approach is the obvious choice for
materializing the logic entailments of the RDF
data within a window. With the observation that
deletions can be foreseen and are not random,
expiration time annotations are associated with
all the axioms involved in the materialization,
and such information is exploited to identify only
the facts to be deleted. Sparkwave (Komazec
et al. 2012) makes use of the RETE (Forgy 1982)
algorithm to maintain RDFS entailments with
sliding windows defined in C-SPARQL whereby
RDFS axioms are encoded as RETE rules and
organized in a network. A different approach is
adopted by INSTANS (Rinne et al. 2016) which
adopts SPARQL 1.1 with an extension to its
query evaluation model to continuously query
data streams. The implementation of INSTANS
also relies on the RETE algorithm: Tasks are
expressed as networks of queries and compiled
in RETE-like structures to evaluate the results.
When new facts are added to the system, they are
matched against these rules.

When stream reasoning started to take off in
the scientific community, various efforts tried to
unify the query language primitives to promote
a query model with a sound formalization which
can generalize existing query languages such as
C-SPARQL, CQELS-QL, and EP-SPARQL. For
example, Dell’Aglio et al. (2014) targeted uni-
fying query languages for RSP engines and ex-
tended the support for CEP (Dell’Aglio et al.
2016). In parallel, Beck et al. (2015) proposed
the LARS framework as a unified way to express
stream reasoning primitives under ASP founda-
tions. LARS was later implemented in Laser
(Bazoobandi et al. 2017). From a Datalog per-
spective, windowing operators are just a special
case of temporal Datalog variants, so Ronca et al.

(2018) recently proposed a Datalog-based logic
framework for stream reasoning with a compre-
hensive complexity analysis.

An additional and noteworthy extension to
logic-based reasoning is presented in Barbieri
et al. (2010a) where the authors focus on induc-
tive stream reasoning. Inductive stream reasoning
involves mining of large portions of data and
applying statistical and machine learning tech-
niques to extract new knowledge. The authors
propose combining inductive reasoning with de-
ductive reasoning to increase accuracy of the
inductive reasoning. The technique has been ap-
plied and validated on a real scenario derived
from social media analysis, showing the accuracy
of the reasoning algorithm in this context. In a
similar effort, Chen et al. (2017) showed that
DL-based reasoning can integrate efficiently with
online streaming mining for traffic data.

Benefiting from the semantic Web adoption,
Le-Phuoc et al. (2012a) and Arias Fisteus et al.
(2014) proposed middleware solutions transform-
ing and enriching unstructured data streams or
raw sensory data to RDF streams by reusing
existing tools from the semantic Web stack. To-
gether with other trends on exposing IoT streams
using ontologies (Barnaghi et al. 2012), the re-
search community is working very actively on
defining suitable ontologies for capturing seman-
tics of sensor data and its contextual informa-
tion. Examples are the W3C Semantic Sensor
Network Ontology (Haller et al. 2017) and the
Thing Description (Kaebisc and Kamiya 2018)
and Time Ontology (Cox and Little 2017). This
lays a solid foundation for semantic lifting which
can use available tools for detecting semantic
events (Rea et al. 2004; Wang et al. 2006; Chang
et al. 2015) and extracting semantic relationships,
e.g., from video scenes (Baier et al. 2017), to
generate semantic streams.

Examples of Application

Internet of Things (IoT) and Smart Cities:
IoT and smart cities have an extremely wide ap-
plication range where the ideas of semantic sen-
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sor Web (Sheth et al. 2008b) and semantic sensor
stream (Barnaghi et al. 2013) can be applicable
for various applications. In smart cities, most of
the applications try to process and understand
information relevant for the life of people in a city
and use it to make the city more efficient, friendly
to the environment, etc. Such applications have
access to a huge amount of heterogeneous stream
sensor sources. For example, traffic events from
social streams (Anantharam et al. 2015) and event
streams of big cities (Anantharam et al. 2016),
traffic streams (Chen et al. 2017; Eiter et al.
2017), and other IoT streams (Puschmann et al.
2017) are extremely dynamic data sources which
demand efficient and scalable algorithms for pro-
cessing data in near-real-time at the semantic
level. In this context, the semantic stream pro-
cessing must provide enough expressiveness to
abstract and derive high-level concepts from low-
level and time-annotated data. Moreover, smart
cities require the large-scale integration of dif-
ferent data types and sources: As an example,
traffic information can be retrieved from sensors,
through tracking cell phones in GSM cells, as
well as from navigation systems, or posts on
social networks.

Another interesting concept is citizen sens-
ing which is social sensing enabled by mobile
sensors and human computing whereby humans
and their devices act as “sensors” and share their
observations and views using mobile devices and
Web 2.0 services (Sheth 2009). Together with live
social semantics (Alani et al. 2009) and social
media stream (Balduini et al. 2012), the appli-
cations of this type requires semantic analysis
of social media by extending traditional analysis
based on graphs enriching the connections be-
tween people and concepts with semantic anno-
tations. One of the goals of the analysis of social
media is to capture hidden relations between
people and concepts. Some experiments on the
use of social media analysis have been reported
in Balduini et al. (2013), where the authors focus
on the processing of Twitter posts to extract new
information, e.g., how the mood changes during
the day, which are the trending topics, etc., during
large-scale events (London Olympic Games 2012
and Milano Design Week 2013).

Predictive Maintenance: Sensing devices al-
low industrial applications to actively and con-
stantly monitor machines to predict maintenance
cycles. Such applications include a large number
of sensor sources with a wide variety of sensing
platforms and types of measurements, not to
mention large enterprise knowledge bases, that
need to be correlated with stream data to enrich
such time series data. For instance, in Khar-
lamov et al. (2016) the data processing task re-
quires to extract, aggregate, and correlate static
data about turbine structure, streaming data pro-
duced by up to 2,000 sensors installed in dif-
ferent parts of the turbine, and historical oper-
ational data of the reference sensors stored in
multiple data sources. Similarly, the application
scenarios from Siemens Energy (Kharlamov et al.
2017) and the DEBS challenge 2017 (Gulisano
et al. 2017) need efficient and scalable semantic
stream processing pipelines to detect abnormal
behavior in manufacturing machines and pro-
vide actionable insights based on the observations
in time.

Future Directions for Research

As an increasing number of semantic streams
is made available for a new generation of ap-
plications, practitioners are building more and
more engines supporting SSP or integrate SSP
into current stream engines or RDF stores. To
comprehensively support all features of current
RSP engines, CEP, and stream reasoning en-
gines, a top-down approach would provide the
theoretical foundations associated with feasible
implementations for a new generation of SSP
engines in the years to come. As shown in the
surveys of Margara et al. (2014) and Dell’Aglio
et al. (2017), a unified data model associated
with well-formulated semantic processing prim-
itives is a vital prerequisite for building a generic
execution framework for SSP. The analysis of
computational complexity of the resulting pro-
cessing models should be done at a fine-grain
level to give effective guidelines for designing
and implementing the underlying engines.
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The first challenging problem in generalizing
the data model for stream elements or atomic
events is capturing their order in the most generic
way. As shown in Margara et al. (2014) and
Dell’Aglio et al. (2017), current time models
based on logical timestamps have their own short-
comings in terms of expressivity and practical
implementations. A solution for enforcing causal
order in both windowing operators and sequence
patterns of events has to be seamlessly integrated
with soft-orders entailed by semantic rules. This
solution has to take into account out-of-order
streams/events, distributed settings, and impre-
cise timestamps and imprecise clocks. Then the
uncertainty properties need to be captured along
with semantic relationships and concepts, espe-
cially, since there are more and more symbolic
values/entities generated by machine learning al-
gorithms from discrete noisy data as semantic
streams. Uncertainty can be modeled together
with other provenance information which can be
represented as ontological contextual informa-
tion.

Together with accommodating traditional
computing primitives from CEP, SPARQL,
DSMS, etc., interleaving reasoning primitives
without violating the decidability of the whole
processing pipeline is a challenging research
problem in designing a declarative query
language or domain-specific languages (DSLs)
for SSP. Some proposals (Barbieri et al. 2010a;
Chen et al. 2017) have started investigating the
use of inductive and/or statistical reasoning.
Also, recent developments in natural language
understanding and computer vision have paved
the way for a new generation of semantic query
capabilities over stream data, e.g., social streams
and video streams. Specifically, the visual
reasoning capabilities as proposed in Johnson
et al. (2017) and Jang et al. (2017) enable
the integration of visual question answering
(VQA) query fragments into a SSP pipeline.
Interestingly, there are various potential links
among VQA and NLP and semantic Web.
For instance, to improve some state-of-the-
art techniques of VQA, Baier et al. (2017)
model scene descriptions through RDF triples

which are used to answer the queries about
visual relationships in human language form as
specified in the Visual Genome dataset (Krishna
et al. 2016). It is worth noting that the data and
queries of the Visual Genome can be naturally
expressed in RDF graphs and SPARQL queries,
respectively. On the other hand, there are plenty
of works on question answering in human
language form for RDF or knowledge graphs,
e.g., Unger et al. (2012) and Bordes et al. (2014).
The aforementioned features are quite appealing
for developers amid the rise of transfer learning
with a plethora of free pretrained models, but the
computational complexity implications need to
be investigated thoroughly as well, as they are
not yet well understood.

Increasing the expressiveness of how to define
a query or a processing pipeline on semantic
streams will incur further research and engineer-
ing challenges as achieving good performance,
and scalability will be necessary and the progress
in this domain is rather modest at the moment.
For improving performance, the research prob-
lems are not limited to designing more efficient
algorithms for certain types of computation prim-
itives, e.g., incremental reasoning in windowing
data collections, but also include the execution
settings such as processing load, resource con-
straints, and parallelization and coordination as-
sumptions. For instance, continuous optimization
considering several dynamic processing aspects
such as multiple queries, volume of static data,
and input rates is rather challenging even with
traditional relational data stream processing. On
top of that, a common assumption of processing
stream data is that the processing state can be
completely loaded into main memory. This might
be overly optimistic, and standard techniques like
storing to disks or shifting the data and processing
to other computing nodes should be considered
as optimization strategies. This new working as-
sumption is advocated by the edge computing
paradigm which matches the distributed nature
of a majority of stream applications. Also and in
particular, the federated processing model of RSP
will bring new challenges for current informa-
tion systems, such as the Web. Uniform parallel
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computing settings like cloud/private clusters and
high-performance computing nodes with large
numbers of CPUs and GPUs will play an im-
portant role for continuously handling intensive
workloads triggered by stream data at Web scale.
This provides more options and capabilities along
with technical and research challenges in realiz-
ing them.
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Overview

Similarity between a pair of objects, usually ex-
pressed as a similarity score in Œ0; 1�, is a key
concept when dealing with noisy or uncertain
data, as is common in big data applications.

The aim of similarity sketching is to estimate
similarities in a (high-dimensional) space using
fewer computational resources (time and/or stor-
age) than a naïve approach that stores unpro-
cessed objects. This is achieved using a form of
lossy compression that produces succinct repre-
sentations of objects in the space, from which
similarities can be estimated. In some spaces,
it is more natural to consider distances rather
than similarities; we will consider both of these
measures of proximity in the following.
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Definitions

Formally, consider a space X of objects and
a function d W X � X ! RC. We refer
to d as a distance function for X . Similarity
sketching with respect to .X; d/ is done by using
a sketching function c W X ! f0; 1gs such
that for every pair of objects x1; x2 2 X , the
distance d.x1; x2/ can be approximated from the
knowledge of c.x1/ and c.x2/. Most forms of
similarity sketching are randomized and produce
an estimate Od.c.x1/; c.x2// such that with prob-
ability 1 � ı, it holds that:

.1 � "/ d.x1; x2/ � Od.c.x1/; c.x2//

� .1C "/ d.x1; x2/; (1)

where "; ı > 0 are user-specified parameters.
Often c.x/ itself represents an object in X , in-
tuitively one that is close to x, and Od is just
distance function evaluation. In some cases, it is
not possible to achieve the kind of multiplicative
error guarantee as in (1), and it is instead the case
that Od.c.x1/; c.x2// differs from d.x1; x2/ by an
additive constant in Œ�"; "�.

If X is finite, we note that the probability that
some distance in X is not within the interval (1)
is at most

�
jX j
2

�
ı. If this probability is strictly less

than 1, it is possible to fix a choice of sketch-
ing function c such that all distances estimated
fulfill (1). In the case where X is a data set
of interest, data-dependent similarity sketching
methods can improve performance when esti-
mating distances in X ; we do not describe such
methods here – for more information, see Wang
et al. (2017).

Key Techniques

Quantization
In signal processing, an object x from a large or
infinite spaceX can be mapped to a nearby object
c.x/ in a smaller, finite subset of the space, to
enable a succinct representation. Such a mapping,
referred to as quantization, can be used for sim-
ilarity sketching by estimating d.x; y/ simply as

d.c.x/; c.y//. An efficient quantization method
for Euclidean and angular distances is product
quantization by Jégou et al. (2011).

MinHash
An early form of similarity sketching targeted
Jaccard similarity of sets. The technique, now
known as MinHash, was introduced in Broder
et al. (1997) and Broder (1997). It works as
follows: For a random permutation r W X ! X ,
map a set S to the “MinHash value” hr .S/ D

minx2S r.x/, where the minimum is over an
arbitrary, fixed ordering of X . In practice it is
hard to construct random permutations, so instead
one uses a hash function r W X ! R where R is
a large range (e.g., the 64-bit integers) ensuring
that collisions in S are unlikely.

It can be shown that if sets S1 and S2 have Jac-
card similarity J , the probability that hr .S1/ D

hr .S2/ (i.e., that the MinHash values collide)
is J . MinHash is a so-called locality-sensitive
hash function (LSH) for which collision proba-
bility depends on similarity (or distance). Com-
puting hr independently k times, with different
hash functions r , we expect that the number t
of collisions is close to kJ with high probability.
Thus, we can estimate J well as OJ D t=k, with
precision that grows with k.

Improvements. MinHash can be improved in
several ways. First of all, the space usage can
be reduced by a method called b-bit MinHash,
which consists of storing a b-bit hash signature
rather than the MinHash value itself, yielding
collision probability J C .1 � J /=2b . The larger
collision probability can be taken into account to
derive an unbiased estimator for J . Ultimately,
b-bit MinHash has greater precision at the same
space usage compared to MinHash; see Li and
König (2011).

The value of b used in practice is often 1 or 2,
with space typical usage of k D 32 or k D 64

bits. Larger values of b are relevant when esti-
mating Jaccard similarities close to 0. For b D 1,
it is particularly efficient to compute the number
of hash collisions, using bitwise exclusive or in
conjunction with a popcnt that computes the
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number of nonzero bits. When the Jaccard sim-
ilarity of interest is above 0:8, there are methods
that are more precise than b-bit MinHash, for
example, Odd Sketch due to Mitzenmacher et al.
(2014).

The time required for computing k MinHash
values (or b-bit MinHash values) can be reduced
by the so-called one-permutation method that
works by initially splitting the set S into k parts
and then computing a MinHash value for each
part as described by Li et al. (2012). Another ap-
proach is bottom-k sampling, where the k small-
est hash values of a single hash function are
used to select a sample; see Thorup (2013) and
its references. These methods have been further
improved by Dahlgaard et al. (2017).

LSHable Distance Measures
Jaccard similarity is an example of an LSHable
similarity measure, namely, it allows a random
hash function r such that the collision probabil-
ity equals the similarity. In fact, the MinHash
method extends to any LSHable similarity mea-
sure by simply replacing the hash function r . An
important LSHable distance measure is angular
distance as shown by Charikar (2002). Angular
distance, in turn, can be used to estimate co-
sine similarity. For more discussion of LSHable
similarity measures, see Chierichetti and Kumar
(2015).

For distance measures that allow an LSH, a
similar result can be achieved since the probabil-
ity of an LSH collision r.x/ D r.y/ is a decreas-
ing function of d.x; y/. The highest accuracy is
achieved around distances for which the collision
probability is not far from 1=2, say, in the range
Œ1=3; 2=3�. Functions of this form, for example,
for Hamming distance or Euclidean distance, are
usually found in the literature on search data
structures using locality-sensitive hashing; see,
e.g., Andoni and Indyk (2008) and its references.

We observe that these similarity sketches can
be efficiently computed in a streaming setting
where only a single element of S is considered at
a time. More information on approximate com-
puting for stream analytics can be found else-
where in this volume.

Dimension Reduction and Embeddings
A special case of similarity sketching is
dimension reduction: mapping objects to a
lower-dimensional space, reducing the repre-
sentation size, while approximately preserving
distances. We refer to the article on dimension
reduction in this encyclopedia for more details.

We mention a particular form of dimension re-
duction called kernel approximations where dis-
tances after the embedding reflect a distance
measure (called a kernel) on the original space.
Such mappings are possible for a wide class of
distance measures defined on Euclidean space;
see, e.g., Rahimi and Recht (2007).

Some spaces X 0 can be embedded into a space
X for which similarity sketching is possible, gen-
erally introducing a distortion of distances. For
example, Manhattan (or `1) distances on Œ0; 1�d

can be embedded into Hamming space by unary
encoding of (quantized) coordinate values; see,
e.g., Gionis et al. (1999). An embedding implies
a similarity sketch on X 0 obtained by combining
the embedding with a similarity sketch for X . Of
course, the precision that can be obtained in this
way is limited by the precision of the embedding.

Applications

Similarity sketching is used, for example:

• in situations where exact distance computation
is not possible for reasons of space (e.g.,
main memory indexes supporting near neigh-
bor search, where the set of vectors is too large
to fit in the memory),

• when exact computation is undesirable for
reasons of time (e.g., when considering a large
set of candidate very high-dimensional objects
in an algorithm for nearest neighbor search),

• as a preprocessing step in machine learning
applications where it serves to reduce dimen-
sionality as well as data size.

Since similarity sketching distorts distances, it
will generally change the output compared to
an exact algorithm and might introduce false
positives as well as false negatives in search
applications.
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Software Libraries

Similarity sketching is often implemented as
part of a particular application, and as such
there does not seem to be many general-purpose
libraries available. For Euclidean distances
among a fixed set of points, the QuadSketch C++
library (https://github.com/talwagner/quadsketch)
provides state-of-the-art performance with a data-
dependent mapping. The DataSketch library
(https://github.com/ekzhu/datasketch) provides
Python implementations of variants of MinHash.

Cross-References

�Approximate Computing for Stream Analytics
�Dimension Reduction
�Query Processing – kNN
�Record Linkage
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Definitions

An aggregation is a function from a collection
of data items to an aggregate value. In sliding-
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Sliding-Window Aggregation Algorithms, Fig. 1
Sliding-window aggregation definitions

window aggregation, the input collection consists
of a window over the most recent data items in
a stream. Here, a stream is a potentially infinite
sequence of data items, and the decision on which
data items are most recent at any point in time is
given by a window policy. A sliding-window ag-
gregation algorithm updates the aggregate value,
often using incremental-computation techniques,
as the window contents change over time, as
illustrated in Fig. 1.

Overview

Sliding-window aggregation summarizes a col-
lection of recent streaming data, capturing the
most recent happenings as well as some history.
Including some history provides context for deci-
sions, which would be missing if only the current
data item were used. Using the most recent data
helps identify and react to present trends, which
would be diluted if all data from the beginning of
time were included.

Aggregation is one of the most fundamental
data processing operations. This is true
in general, not just in stream processing.
Aggregation is versatile: it can compute counts,
averages, or maxima, index data structures,
sketches such as Bloom filters, and many more.

In databases, it shows up as a basic relational
algebra operator called group-by-aggregate
and denoted � (Garcia-Molina et al. 2008). In
spreadsheets, it shows up as a function from a
range of cells to a summary statistic (Sajaniemi
and Pekkanen 1988). In programming languages,
it shows up as a popular higher-order function
called fold (Hutton 1999). In MapReduce,
it shows up as reduce (Dean and Ghemawat
2004), which has been leveraged in many tasks,
including computations that do not diminish the
volume of data.

In stream processing, aggregation plays a sim-
ilarly central role. But unlike the abovementioned
cases, which focus on data at rest, streaming
aggregation must handle data in motion. In par-
ticular, sliding-window aggregation must handle
inserting new data items into the window as
they arrive and evicting old data items from the
window as they expire. Supporting this efficiently
poses algorithmic challenges, especially for non-
invertible aggregation functions such as max,
for which there is no way to “subtract off” ex-
piring items. From an algorithmic perspective,
handling sliding windows with both insertion and
eviction is more challenging than handling just
insertion. Yet, there are two cases where eviction
does not matter: unbounded and tumbling win-
dows. Unbounded windows appear, for instance,
in CQL (Arasu et al. 2006). Because they grow
indefinitely, it is sufficient to update aggregations
upon insert and not keep the data item itself
around; they never need to call evict. Tumbling
windows are more common; because they clear
the entire contents of the window at the same
time, there is no need to call evict on individual
elements of the window.

Sliding windows are most commonly first-
in, first-out (FIFO), resembling the behavior of a
queue. What to keep in a sliding window and how
often the aggregation is computed are controlled
by policies, cataloged elsewhere (Gedik 2013);
they may be count-based (e.g., the past 128
elements) or time-based (e.g., the past 12 min),
among others. Regardless of policies, FIFO
sliding-window aggregation (SWAG) can be
formulated as an abstract data type with the
following operations:
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• insert.v/ appends the value v to the win-
dow.

• evict./ removes the “oldest” value in the
window.

• query./ returns the aggregation of the values
in the window.

Metrics of interest in SWAG implementations
are throughput, latency, and memory footprint.
SWAG implementations also differ in general-
ity: to enhance efficiency, aggregation operations,
when feasible, are applied incrementally – that
is, modifying a running sum of sort in response
to data items arriving or leaving the window. To
what extent this can be exploited depends on the
nature of the aggregation operation.

Past work (Gray et al. 1996; Tangwongsan
et al. 2015) cast most aggregation operations
as binary operators, written ˚, and has catego-
rized them based on algebraic properties. Table 1
lists common aggregation operations with their
properties and groups them into categories. An
aggregation operator is invertible if there exists
some function � such that .x ˚ y/ � y D x

for all x and y. Using �, SWAGs can implement
eviction as an undo. A function is associative if
x ˚ .y ˚ ´/ D .x ˚ y/ ˚ ´ for all x, y, and ´.
SWAGs can take advantage of associativity by
applying ˚ at arbitrary places inside the window.
Without associativity, SWAGs are restricted to
applying ˚ only at the end, upon insertion. A
function is commutative if x ˚ y D y ˚ x for all
x and y. SWAGs are able to ignore the insertion
order of data items for commutative aggregation
operators. An aggregation operator is rank-based
if it relies upon an ordering by some attribute
of each data item, for instance, to find the i th-
smallest.

Table 2 presents an overview of the SWAG
algorithms presented in this article, with their
asymptotic complexity, space usage, and restric-
tions. The most straightforward SWAG algorithm
is called Recalc, since it always recalculates all
values. Upon any insert or evict, Recalc
walks the entire window and recomputes the
aggregation value by using all available elements.
Its performance is obviously O.n/, where n is

the current number of elements in the window.
Recalc serves as the baseline comparison for
all other SWAG algorithms. Subtract-on-evict
(SOE) is a O.1/ algorithm, but it is not general:
it can only be used when the aggregation is
invertible. Upon every insert, SOE updates
the current aggregation value using ˚, and upon
every evict, SOE updates that value using �.
The order statistics tree (OST) adds subtree
statistics to the inner nodes of a balanced search
tree (Hirzel et al. 2016). Values are put in both
a queue and the tree, making both insert and
evict O.logn/. But query calls for aggre-
gations such as the median or pth percentile
become O.logn/ because such information can
be derived by traversing a path that is no longer
than the height of the tree.

This section gave a brief overview with back-
ground and some simple aggregation algorithms.
In general, research into SWAG algorithms tries
to avoid O.n/ costs (unlike Recalc) but main-
tain generality (unlike SOE and OST). The next
section will discuss the more sophisticated al-
gorithms from Table 2 that offer improvements
toward this goal.

Key Research Findings

The most successful techniques in speeding
up sliding-window aggregation have been data
structuring and algorithmic techniques that yield
asymptotic improvements. They are the most
effective when the aggregation function meets
certain algebraic requirements. For instance,
there are important aggregation operations that
are associative, but not necessarily invertible nor
commutative.

Pre-aggregation of data items that will be
evicted at the same time is a technique that can
be applied together with all SWAG algorithms
discussed in this article. When data items are
co-evicted, the window need not store them in-
dividually but can instead store partial aggre-
gations, reducing the effective window size n

in Table 2. Pre-aggregation algorithms include
paned windows (Li et al. 2005), paired win-
dows (Krishnamurthy et al. 2006), and Cutty
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Sliding-Window
Aggregation
Algorithms, Table 1
Aggregation operations.
Check marks (X),
crosses (�), and question
marks (?) indicate that a
property is true for all,
false for all, or false for
some of the given group,
respectively

Invertible Associative Commutative Rank-based

� Sum-like: sum, count, average,
standard deviation, . . .

X X X �

� Collect-like: collect list,
concatenate strings, i th-youngest,
. . .

X X � ?

�Median-like: median,
percentile, i th-smallest, . . .

X X X X

�Max-like: max, min, argMax,
argMin, maxCount, . . .

� X ? �

� Sketch-like: Bloom filter
(Bloom 1970),
CountMin (Cormode and
Muthukrishnan 2005),
HyperLogLog (Flajolet et al.
2007)

� X X �

Sliding-Window
Aggregation
Algorithms, Table 2
Summary of aggregation
algorithms and their
properties, where n is the
window size and nmax is
the size of the smallest
contiguous range that
contains all the shared
windows

Algorithmic complexity Restrictions

Time Space

Recalc Worst-case
O.n/

O.n/ None

Subtract-on-Evict
(SOE)

Worst-case
O.1/

O.n/ Sum-like or
collect-like

Order Statistics Tree
(OST) (Hirzel et al.
2016)

Worst-case
O.log n/

O.n/ Median-like

Reactive Aggregator
(RA) (Tangwongsan
et al. 2015)

Average
O.log n/

O.n/ Associative

DABA
(Tangwongsan et al.
2017)

Worst-case
O.1/

O.n/ Associative,
FIFO

B-Int (Arasu and
Widom 2004)

Shared
O.log nmax/

O.nmax/ Associative,
FIFO

FlatFIT (Shein et al.
2017)

Average
O.1/

O.n/ Associative,
FIFO

windows (Carbone et al. 2016). Windows are
sometimes coarsened to enable pre-aggregation,
improving performance at the expense of some
approximation.

B-Int (Arasu and Widom 2004), designed
to facilitate sharing across windows, stores a
“shared” window S that contains inside it all the
windows being shared. To facilitate fast queries,
B-Int maintains pre-aggregated values for all base
intervals that lie within S . Base intervals (more
commonly known now as dyadic intervals) are
intervals of the form Œ2`k; 2`.k C 1/ � 1� with
`; k � 0. The parameter ` defines the level of
a base interval. This allows a query between the

i -th data item and j -th data item within S to be
answered by combining at most O.log ji � j j/

pre-aggregated values, resulting in logarithmic
running time.

The Reactive Aggregator (RA) (Tang-
wongsan et al. 2015) is implemented via
a balanced tree ordered by time, where
internal nodes hold the partial aggregations of
their subtrees, and offers O.logn/ amortized
time. Instead of the conventional approach
to implementing balanced trees by frequent
rebalancing, RA projects the tree over a complete
perfect binary tree, which it stores in a flat array.
This leads to higher performance than other
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tree-based SWAG implementations in practice,
since it saves the time of rebalancing as well
as the overheads of pointers and fine-grained
memory allocation.

For latency-sensitive applications, the
aggregation algorithm cannot afford a long
pause. DABA (Tangwongsan et al. 2017)
ensures that every SWAG operation takes O.1/
time in the worst-case, not just on average.
This is accomplished by extending Okasaki’s
functional queue (Okasaki 1995) and removing
dependencies on lazy evaluation and automatic
garbage collection. FlatFIT (Shein et al.
2017) is another algorithm that achieves O.1/
time although in the amortized sense. This is
accomplished by storing pre-aggregated values
in a tree-like index structure that promotes reuse,
reminiscent of path compression in the union-find
data structure.

There are a number of other generic
techniques that tend to apply broadly to sliding-
window aggregation. Window partitioning is
sometimes used as a means to maintain group-by
aggregation and obtain data parallelism through
fission (Schneider et al. 2015). When stream
data items arrive out of order, a holding buffer
can be used to reorder them before they enter
the window (Srivastava and Widom 2004).
Alternatively, in the case that the stream is formed
by merging multiple sub-streams, out-of-order
streams may be solved by pre-aggregating each
data source separately and consolidating partial
aggregation results as late as possible when doing
an actual query (Krishnamurthy et al. 2010).

Examples of Application

Many applications of stream processing depend
heavily upon sliding-window aggregation. This
section describes concrete examples of apply-
ing sliding-window aggregation to real-world use
cases. Understanding these examples helps ap-
preciate the problems and guide the design of
solutions.

Medical service providers want to save lives
by getting early warnings when there is a high
likelihood that a patient’s health is about to de-

teriorate. For instance, the Artemis system an-
alyzes data from real-time sensors on patients
in a neonatal intensive care unit (Blount et al.
2010). Among other things, it counts how often
the blood oxygen saturation and the mean arterial
blood pressure fall below a threshold in a 20-
s sliding window. If the counts exceed another
threshold, Artemis raises an alert.

Financial agents engaged in algorithmic trad-
ing want to make money by buying and selling
stocks or other financial instruments. Treleaven
et al. review the current practice for how that
works technologically (Treleaven et al. 2013).
Streaming systems for algorithmic trading make
their decisions based on predicted future prices.
One of the inputs for these predictions is a mov-
ing average of the recent history of a price, for
example, over a 1-hour sliding window.

Road traffic can be regulated using variable
tolling to implement congestion-pricing policies.
One of the most popular benchmarks for stream-
ing systems, linear road, is based on variable
tolling (Arasu et al. 2004). The idea is to regulate
demand by charging higher tolls for driving on
congested roads. To do this, the streaming system
must determine whether a road is congested. This
works by using sliding-window aggregation to
compute the number and average speed of vehi-
cles in a given road segment and time window.

The above list of use cases is by no means
exhaustive; there are many more applications
of sliding-window aggregation, for instance, in
phone providers, security, and social media.

Future Directions for Research

Research on sliding-window aggregation has fo-
cused mainly on aggregation functions that are
associative and on FIFO windows. Much less
is known for other nontrivial scenarios. Is it
possible to efficiently support associative aggre-
gation functions on windows that are non-FIFO?
Besides associativity and invertibility, what other
properties can be exploited to develop general-
purpose algorithms for fast sliding-window ag-
gregation? How can SWAG algorithms take bet-
ter advantage of multicore parallelism?
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Introduction

An increasing number of enterprise applications,
particularly those in financial trading and IoT
(Internet of Things), produce mixed workloads
with all of the following: (1) continuous
stream processing, (2) online transaction
processing (OLTP), and (3) online analytical
processing (OLAP). These applications need to
simultaneously consume high-velocity streams
to trigger real-time alerts, ingest them into a
write-optimized transactional store, and perform
analytics to derive deep insight quickly. Despite
a flurry of data management solutions designed
for one or two of these tasks, there is no single
solution that is apt for all three.

SQL-on-Hadoop solutions (e.g., Hive,
Impala/Kudu and SparkSQL) use OLAP-style
optimizations and columnar formats to run
OLAP queries over massive volumes of static
data. While apt for batch processing, these
systems are not designed as real-time operational

This article is based on Mozafari et al. (2017), authored by
Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yo-
gesh Mahajan, Soubhik Chakraborty, Hemant Bhanawat,
Kishor Bachhav

databases, as they lack the ability to mutate data
with transactional consistency, to use indexing
for efficient point accesses, or to handle high-
concurrency and bursty workloads.

Hybrid transaction/analytical processing
(HTAP) systems, such as MemSQL, support both
OLTP and OLAP queries by storing data in dual
formats (row and columns) but need to be used
alongside an external streaming engine (e.g.,
Storm (Toshniwal et al. 2014), Kafka, Confluent)
to support stream processing. They also lack
approximation features required for interactive-
speed analytics or visualization workloads (Park
et al. 2016).

Finally, there are numerous academic (Chan-
drasekaran et al. 2003; Mozafari et al. 2012;
Thakkar et al. 2011) and commercial (Apache
Samza; Toshniwal et al. 2014; TIBCO; Akidau
et al. 2013) solutions for stream and event
processing. Although some stream processors
provide some form of state management or
transactions (e.g., Samza (Apache Samza),
Liquid (Fernandez et al. 2015), S-Store (Meehan
et al. 2015)), they only allow simple queries on
streams. However, more complex analytics, such
as joining a stream with a large history table,
need the same optimizations used in an OLAP
engine (Liarou et al. 2012; Braun et al. 2015;
Thakkar et al. 2011). For example, streams in
IoT are continuously ingested and correlated
with large historical data. Trill (Chandramouli
et al. 2014) supports diverse analytics on
streams and columnar data but lacks transactions.
DataFlow (Akidau et al. 2015) focuses on logical
abstractions rather than a unified query engine.

Consequently, the demand for mixed work-
loads has resulted in several composite data ar-
chitectures, exemplified in the “lambda” archi-
tecture, which requires multiple solutions to be
stitched together – a difficult exercise that is time-
consuming and expensive.

In capital markets, for example, a real-time
market surveillance application has to ingest
trade streams at very high rates and detect
abusive trading patterns (e.g., insider trading).
This requires correlating large volumes of data
by joining a stream with (1) historical records,
(2) other streams, and (3) financial reference

https://doi.org/10.1007/978-3-319-77525-8_33
https://doi.org/10.1007/978-3-319-77525-8_204
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data which can change throughout the trading
day. A triggered alert could in turn result in
additional analytical queries, which will need
to run on both ingested and historical data. In
this scenario, trades arrive on a message bus
(e.g., Tibco, IBM MQ, Kafka) and are processed by
a stream processor (e.g., Storm) or a homegrown
application, while the state is written to a key-
value store (e.g., Cassandra) or an in-memory
data grid (e.g., GemFire). This data is also stored
in HDFS and analyzed periodically using a SQL-
on-Hadoop or a traditional OLAP engine.

These heterogeneous workflows, although far
too common in practice, have several drawbacks
(D1–D4):

D1. Increased complexity and total cost of
ownership: The use of incompatible and au-
tonomous systems significantly increases their to-
tal cost of ownership. Developers have to master
disparate APIs, data models, and tuning options
for multiple products. Once in production, op-
erational management is also a nightmare. To
diagnose the root cause of a problem, highly paid
experts spend hours to correlate error logs across
different products.

D2. Lower performance: Performing analyt-
ics necessitates data movement between multi-
ple non-colocated clusters, resulting in several
network hops and multiple copies of data. Data
may also need to be transformed when faced with
incompatible data models (e.g., turning Cass-

andra’s ColumnFamilies into Storm’s domain ob-
jects).

D3. Wasted resources: Duplication of data
across different products wastes network
bandwidth (due to increased data shuffling), CPU
cycles, and memory.

D4. Consistency challenges: The lack of a sin-
gle data governance model makes it harder to
reason about consistency semantics. For instance,
a lineage-based recovery in Spark Streaming may
replay data from the last checkpoint and ingest

it into an external transactional store. With no
common knowledge of lineage and the lack of
distributed transactions across these two systems,
ensuring exactly once semantics is often left
as an exercise for the application (Exactly-once
processing with trident).

Challenges

SnappyData’s goal is to reduce complexity and
improve performance by offering streaming,
transaction processing, and interactive analytics
in a single cluster (Ramnarayan et al. 2016).
Realizing this goal involves overcoming several
challenges. The first challenge is the drastically
different data structures and query processing
paradigms that are optimal for each type of
workload. For example, column stores are
optimal for analytics, transactions need write-
optimized row-stores, and infinite streams are
best handled by sketches and windowed data
structures. Likewise, while analytics thrive with
batch processing, transactions rely on point
lookups/updates, and streaming engines use
delta/incremental query processing. Marrying
these conflicting mechanisms in a single system
is challenging, as is abstracting away this
heterogeneity from programmers.

Another challenge is the difference in expec-
tations of high availability (HA) across differ-
ent workloads. Scheduling and resource provi-
sioning are also harder in a mixed workload of
streaming jobs, long-running analytics, and short-
lived transactions. Finally, achieving interactive
analytics becomes nontrivial when deriving in-
sight requires joining a stream against large his-
torical data (Makin’ Bacon and the Three Main
Classes of IoT Analytics).

Approach Overview
To support mixed workloads, SnappyData care-
fully fuses Apache Spark, as a computational en-
gine, with Apache GemFire, as a transactional store.

Through a common set of abstractions, Spark
allows programmers to tackle a confluence of dif-
ferent paradigms (e.g., streaming, machine learn-
ing, SQL analytics). Spark’s core abstraction, a
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Resilient Distributed Dataset (RDD), provides
fault tolerance by efficiently storing the lineage
of all transformations instead of the data. The
data itself is partitioned across nodes and if any
partition is lost, it can be reconstructed using its
lineage. The benefit of this approach is twofold:
avoiding replication over the network and higher
throughput by operating on data as a batch. While
this approach provides efficiency and fault toler-
ance, it also requires that an RDD be immutable.
In other words, Spark is simply designed as a
computational framework and therefore (i) does
not have its own storage engine and (ii) does not
support mutability semantics. (Although Indexe-
dRDD (Indexedrdd for apache spark) offers an
updatable key-value store (Indexedrdd for apache
spark), it does not support colocation for high-
rate ingestions or distributed transactions. It is
also unsuitable for HA, as it relies on disk-based
checkpoints for fault tolerance.)

On the other hand, Apache GemFire (Apache
Geode) (a.k.a. Geode) is one of the most widely
adopted in-memory data grids in the industry,
which manages records in a partitioned row-
oriented store with synchronous replication. It en-
sures consistency by integrating a dynamic group
membership service and a distributed transaction
service. GemFire allows for indexing and both
fine-grained and batched data updates. Updates
can be reliably enqueued and asynchronously
written back out to an external database. In-
memory data can also be persisted to disk using

append-only logging with offline compaction for
fast disk writes (Apache Geode).

Best of two worlds – To combine the best of
both worlds, SnappyData seamlessly integrates
Spark and GemFire runtimes, adopting Spark as the
programming model with extensions to support
mutability and HA (high availability) through
GemFire’s replication and fine-grained updates.
This marriage, however, poses several nontrivial
challenges. For instance, when ingesting a
stream, SnappyData processes the incoming stream
as a batch, avoids replication, and replays from
the source on a failure. To avoid a tuple-at-a-time
replication, the processed state can be written to
the store in batches. Recovery from failure will
thus be limited to the time needed to replay a
single batch.

Architecture

Figure 1 depicts SnappyData’s core components
(the original components from Spark and GemFire

are highlighted).
SnappyData’s hybrid storage layer is primarily

in-memory and can manage data in row, col-
umn, or probabilistic stores. SnappyData’s column
format is derived from Spark’s RDD implemen-
tation. SnappyData’s row-oriented tables extend
GemFire’s table and thus support indexing and
fast reads/writes on indexed keys. In addition to

SnappyData, Fig. 1
SnappyData’s core
components
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these “exact” stores, SnappyData can also summa-
rize data in probabilistic data structures, such as
stratified samples and other forms of synopses.
SnappyData’s query engine has built-in support for
approximate query processing (AQP), which can
exploit these probabilistic structures. This allows
applications to trade accuracy for interactive-
speed analytics on streams or massive datasets.

SnappyData supports two programming mod-
els – SQL (by extending SparkSQL dialect) and
Spark’s API. Thus, one can perceive SnappyData

as a SQL database that uses Spark’s API as
its language for stored procedures. Stream pro-
cessing in SnappyData is primarily through Spark

Streaming, but it is modified to run in situ with
SnappyData’s store.

SQL queries are federated between Spark’s
Catalyst and GemFire’s OLTP engine. An
initial query plan determines if the query is a
low-latency operation (e.g., a key-based lookup)
or a high-latency one (scans/aggregations).
SnappyData avoids scheduling overheads for
OLTP operations by immediately routing them to
appropriate data partitions.

To support replica consistency, fast point
updates, and instantaneous detection of failure
conditions in the cluster, SnappyData relies on
GemFire’s P2P (peer-to-peer) cluster membership
service (Apache Geode). Transactions follow
a two-phase commit protocol using GemFire’s
Paxos implementation to ensure consensus and
view consistency across the cluster.

A Unified API

Spark offers a rich procedural API for querying
and transforming disparate data formats (e.g.,
JSON, Java Objects, CSV). Likewise, to retain
a consistent programming style, SnappyData of-
fers its mutability functionalities as extensions
of SparkSQL’s dialect and its DataFrame API.
These extensions are backward compatible, i.e.,
applications that do not use them observe Spark’s
original semantics.

A DataFrame in Spark is a distributed
collection of data organized into named
columns. A DataFrame can be accessed from

a SQLContext, which itself is obtained from
a SparkContext (a SparkContext is
a connection to Spark’s cluster). Likewise,
much of SnappyData’s API is offered through
SnappyContext, which is an extension of
SQLContext. Listing 1 is an example of using
SnappyContext.

1 // Create a SnappyContext from a SparkContext
2 val spContext = new org.apache.spark.

SparkContext(conf)
3 val snpContext = org.apache.spark.sql.

SnappyContext (spContext)
4

5 // Create a column table using SQL
6 snpContext.sql("CREATE TABLE MyTable (id int,

data string) using column")
7

8 // Append contents of a DataFrame
into the table

9 someDataDF.write.insertInto("MyTable");
10

11 // Access the table as a DataFrame
12 val myDataFrame: DataFrame = snpContext.

table("MyTable")
13 println(s"Number of rows in MyTable = {

myDataFrame.count()}")

Listing 1 Working with DataFrames in SnappyData

Stream processing often involves maintain-
ing counters or more complex multidimensional
summaries. As a result, stream processors to-
day are either used alongside a scale-out in-
memory key-value store (e.g., Storm with Redis

or Cassandra) or come with their own basic form
of state management (e.g., Samza, Liquid (Fer-
nandez et al. 2015)). These patterns are often
implemented in the application code using simple
get/put APIs. While these solutions scale well,
most users tend to modify their search patterns
and trigger rules quite often. These modifications
require expensive code changes and lead to brittle
and hard-to-maintain applications.

In contrast, SQL-based stream processors
offer a higher-level abstraction to work with
streams but primarily depend on row-oriented
stores (e.g., IBM; TIBCO; Meehan et al. (2015))
and are thus limited in supporting complex
analytics. To support continuous queries with
scans, aggregations, top-K queries, and joins
with historical and reference data, some of the
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same optimizations found in OLAP engines must
be incorporated in the streaming engine (Liarou
et al. 2012). Thus, SnappyData extends Spark

Streaming to allow declaring and querying
streams in SQL. More importantly, SnappyData

provides OLAP-style optimizations to enable
scalable stream analytics, including columnar
formats, approximate query processing, and co-
partitioning (SnappyData 2016).

Hybrid Store: Row and Column Tables

Tables can be partitioned or replicated and are
primarily managed in memory with one or more
consistent replicas. The data can be managed in
Java heap memory or off-heap. Partitioned tables
are always partitioned horizontally across the
cluster. For large clusters, SnappyData allows data
servers to belong to one or more logical groups,
called “server groups.” The storage format can be
“row” (either partitioned or replicated tables) or
“column” (only supported for partitioned tables)
format. Row tables incur a higher in-memory
footprint but are well suited to random updates
and point lookups, especially with in-memory
indexes. Column tables manage column data in
contiguous blocks and are compressed using dic-
tionary, run-length, or bit encoding (Xin and
Rosen).

SnappyData extends Spark’s column store to
support mutability. Updating row tables is trivial.
When records are written to column tables, they
first arrive in a delta row buffer that is capable
of high write rates and then age into a columnar
form. The delta row buffer is merely a partitioned
row table that uses the same partitioning strategy
as its base column table. This buffer table is
backed by a conflating queue that periodically
empties itself as a new batch into the column
table. Here, conflation means that consecutive
updates to the same record result in only the final
state getting transferred to the column store. For
example, inserted/updated records followed by
deletes are removed from the queue. The delta
row buffer itself uses copy-on-write semantics
to ensure that concurrent application updates
do not cause inconsistency (Abadi et al. 2013).
SnappyData extends Spark’s Catalyst optimizer

to merge the delta row buffer during query
execution.

Probabilistic Store
Achieving interactive response time is challeng-
ing when running complex analytics on streams,
e.g., joining a stream with a large table (Mozafari
and Zaniolo 2010). Even OLAP queries on
stored datasets can take tens of seconds to
complete if they require a distributed shuffling
of records or if hundreds of concurrent queries
run in the cluster (Agarwal et al. 2012). In such
cases, SnappyData’s storage engine is capable
of using probabilistic structures to dramatically
reduce the volume of input data and provide
approximate but extremely fast answers. In this
regard, SnappyData can be seen as the first full-
fledged commercial AQP engine (see Mozafari
(2017) for why the adoption of AQP has not
previously slowed). SnappyData’s probabilistic
structures include uniform samples, stratified
samples, and sketches (Mozafari and Niu 2015).
Unlike VerdictDB (Park et al. 2018; He et al.
2018) and Database Learning (Park et al.
2017), which are agnostic of the underlying
query engine, SnappyData’s probabilistic store is
tightly integrated into its query processing logic.
SnappyData’s approach is also different from other
AQP engines (Zeng et al. 2014a; Agarwal et al.
2012; Zeng et al. 2014b), in the way that it creates
and maintains these structures efficiently and
in a distributed manner. However, given these
structures, SnappyData uses off-the-shelf error
estimation techniques (Agarwal et al. 2014).
SnappyData’s sample selection and maintenance
strategies are discussed next.

Sample selection – Unlike uniform samples,
choosing which stratified samples to build is a
nontrivial problem. The key question is which
sets of columns to build a stratified sample on.
Prior work has used skewness, popularity, and
storage cost as the criteria for choosing column
sets (Agarwal et al. 2012, 2013). SnappyData ex-
tends these criteria as follows: for any declared
or foreign-key join, the join key is included in
a stratified sample in at least one of the par-
ticipating relations (tables or streams). However,
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SnappyData never includes a table’s primary key in
its stratified sample(s). Furthermore, SnappyData

uses an open-source tool, called WorkloadMiner,
which automatically analyzes past query logs
and reports a rich set of statistics (CliffGuard).
These statistics guide SnappyData’s users through
the sample selection process. WorkloadMiner is
integrated into CliffGuard. CliffGuard guarantees
a robust physical design (e.g., set of samples),
which remains optimal even if future queries
deviate from past ones (Mozafari et al. 2015).

Once a set of samples is chosen, the challenge
is how to update them, which is a key differ-
entiator between SnappyData and previous AQP
systems that use stratified samples (Chaudhuri
et al. 2007; Agarwal et al. 2013; Zeng et al.
2015).

Sample maintenance – Previous AQP engines
that use offline sampling update and maintain
their samples periodically using a single scan
of the entire data (Mozafari and Niu 2015).
This strategy is not suitable for SnappyData with
streams and mutable tables for two reasons. First,
maintaining per-stratum statistics across different
nodes in the cluster is a complex process.
Second, updating a sample in a streaming fashion
requires maintaining a reservoir (Vitter et al.
1985; Al-Kateb and Lee 2010), which means the
sample must either fit in memory or be evicted
to disk. Keeping samples entirely in memory
is impractical for infinite streams unless the
sampling rate is perpetually decreased. Likewise,
disk-based reservoirs are inefficient as they
require retrieving and removing individual tuples
from disk as new tuples are sampled.

To solve these problems, SnappyData always
includes timestamp as an additional column in
every stratified sample. Uniform samples are
treated as a special case with only one stratified
column, i.e., timestamp. As new tuples arrive in a
stream, a new batch (in row format) is created for
maintaining a sample of each observed value
of the stratified columns. Whenever a batch
size exceeds a certain threshold (1M tuples by
default), it is evicted and archived to disk (in a
columnar format), and a new batch is started for
that stratum.

Treating each micro-batch as an independent
stratified sample has several benefits. First, this
allows SnappyData to adaptively adjust the sam-
pling rate for each micro-batch without the need
for internode communications in the cluster. Sec-
ond, once a micro-batch is completed, its tuples
never need to be removed or replaced, and there-
fore they can be safely stored in a compressed
columnar format and even archived to disk. Only
the latest micro-batch needs to be in-memory and
in row format. Finally, each micro-batch can be
routed to a single node, reducing the need for
network shuffles.

State Sharing
SnappyData hosts GemFire’s tables in the executor
nodes as either partitioned or replicated tables.
When partitioned, the individual buckets are pre-
sented as Spark RDD partitions, and their access
is therefore parallelized. This is similar to the way
that any external data source is accessed in Spark,
except that the common operators are optimized
in SnappyData. For example, by keeping each par-
tition in columnar format, SnappyData avoids ad-
ditional copying and serialization and speeds up
scan and aggregation operators. SnappyData can
also colocate tables by exposing an appropriate
partitioner to Spark.

Native Spark applications can register any
DataFrame as a temporary table. In addition to
being visible to the Spark application, such a
table is also registered in SnappyData’s catalog –
a shared service that makes tables visible across
Spark and GemFire. This allows remote clients
connecting through ODBC/JDBC to run SQL
queries on Spark’s temporary tables as well as
tables in GemFire.

In streaming scenarios, the data can be
sourced into any table from parent stream RDDs
(DStream), which themselves could source
events from an external queue, such as Kafka.
To minimize shuffling, SnappyData tables can
preserve the partitioning scheme used by their
parent RDDs. For example, a Kafka queue listen-
ing on Telco CDRs (call detail records) can be
partitioned on subscriberID so that Spark’s
DStream and the SnappyData table ingesting these
records will be partitioned on the same key.
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Locality-Aware Partition Design
A major challenge in horizontally partitioned
distributed databases is to restrict the number of
nodes involved in order to minimize (i) shuffling
during query execution and (ii) distributed
locks (Helland 2007; Zamanian et al. 2015).
In addition to network costs, shuffling can also
cause CPU bottlenecks by incurring excessive
copying (between kernel and user space) and
serialization costs (Ousterhout et al. 2015). To
reduce the need for shuffling and distributed
locks, SnappyData’s data model promotes two
fundamental ideas:

1. Co-partitioning with shared keys – A com-
mon technique in data placement is to take
the application’s access patterns into account.
SnappyData pursues a similar strategy: since
joins require a shared key, it co-partitions re-
lated tables on the join key. SnappyData’s query
engine can then optimize its query execution
by localizing joins and pruning unnecessary
partitions.

2. Locality through replication – Star schemas
are quite prevalent, wherein a few ever-
growing fact tables are related to several
dimension tables. Since dimension tables are
relatively small and change less often, schema
designers can ask SnappyData to replicate
these tables. SnappyData particularly uses these
replicated tables to optimize joins.

Dynamic rebalancing of data – When access
is non-uniformly distributed across the keys, a
load imbalance occurs where a few servers end
up performing most of the work. For instance,
when tracking users’ browsing behavior on a
website, a few popular pages will dominate the
rest. SnappyData provides metrics on which nodes
are being accessed heavily and also provides
administrative APIs that can be used to move
“hot buckets” of data to a different node. If the
imbalance is a memory usage imbalance, admin
APIs can be used to trigger a rebalance which
is a non blocking operation that moves buckets
of data to less loaded nodes in the background
and restores memory balance. Used effectively,

rebalancing prevents hotspots from developing in
the system and avoid performance bottlenecks.

Hybrid Cluster Manager

Spark applications run as independent processes
in the cluster, coordinated by the application’s
main program, called the driver program. Spark

applications connect to cluster managers (YARN
or Mesos) to acquire executor nodes. While
Spark’s approach is appropriate for long-running
tasks, as an operational database, SnappyData’s
cluster manager must meet additional re-
quirements, such as high concurrency, high
availability, and consistency.

High Availability
To ensure high availability (HA), SnappyData

needs to detect faults and be able to recover from
them instantly.

Failure detection – Spark uses heartbeat com-
munications with a central master process to
determine the fate of the workers. Since Spark

does not use a consensus-based mechanism for
failure detection, it risks shutting down the entire
cluster due to master failures. However, as an
always-on operational database, SnappyData needs
to detect failures faster and more reliably. For
faster detection, SnappyData relies on UDP neigh-
bor ping and TCP ack timeout during normal data
communications. To establish a new, consistent
view of the cluster membership, SnappyData relies
on GemFire’s weighted quorum-based detection
algorithm (Apache Geode). Once GemFire estab-
lishes that a member has indeed failed, it ensures
that a consistent view of the cluster is applied to
all members, including the Spark master, driver,
and data nodes.

Failure recovery – Recovery in Spark is based
on logging the transformations used to build an
RDD (i.e., its lineage) rather than the actual
data. If a partition of an RDD is lost, Spark

has sufficient information to recompute just that
partition (Zaharia et al. 2012). Spark can also
checkpoint RDDs to stable storage to shorten
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the lineage, thereby shortening the recovery time.
The decision of when to checkpoint, however, is
left to the user. GemFire, on the other hand, relies
on replication for instantaneous recovery but at
the cost of lower throughput. SnappyData merges
these recovery mechanisms as follows:

1. Fine-grained updates issued by transactions
avoid the use of Spark’s lineage altogether and
instead use GemFire’s eager replication for fast
recovery.

2. Batched and streaming micro-batch opera-
tions are still recovered by RDD’s lineage,
but instead of HDFS, SnappyData writes
their checkpoints to GemFire’s in-memory
storage, which itself relies on a fast P2P
(peer-to-peer) replication for recovery. Also,
SnappyData’s intimate knowledge of the load
on the storage layer, the data size, and the
cost of recomputing a lost partition allows
for automating the choice of checkpoint
intervals based on an application’s tolerance
for recovery time.

Hybrid Scheduler and Provisioning
Thousands of concurrent clients can simulta-
neously connect to a SnappyData cluster. To
support this degree of concurrency, SnappyData

categorizes incoming requests as low- and high-
latency operations. By default, SnappyData treats a
job as a low-latency operation unless it accesses
a columnar table. However, applications can
also explicitly label their latency sensitivity.
SnappyData allows low-latency operations to
bypass Spark’s scheduler and directly operate
on the data. High-latency operations are
passed through Spark’s fair scheduler. However,
among the low-latency operations, SnappyData

still relies on a simple FIFO policy (other
systems, such as MariaDB or MySQL, use
more sophisticated algorithms for transaction
scheduling, e.g., VATS (Huang et al. 2017) or
MySQL’s CATS (Tian et al. 2018)). For low-
latency operations, SnappyData attempts to reuse
their executors to maximize their data locality
(in-process). For high-latency jobs, SnappyData

dynamically expands their compute resources
while retaining the nodes caching their data.

Consistency Model
SnappyData relies on GemFire for its consistency
model. GemFire supports “read committed” and
“repeatable read” transaction isolation levels us-
ing a variant of the Paxos algorithm (Gray and
Lamport 2006). Transactions detect write-write
conflicts and assume that writers rarely conflict.
When write locks cannot be obtained, transac-
tions abort without blocking (Apache Geode).

SnappyData extends Spark’s SparkContext
and SQLContext to add mutability semantics.
SnappyData gives each SQL connection its own
SQLContext in Spark to allow applications to
start, commit, and abort transactions.

While any RDD obtained by a Spark program
observes a consistent view of the database, multi-
ple programs can observe different views when
transactions interleave. An MVCC mechanism
(based on GemFire’s internal row versions) can be
used to deliver a single snapshot view to the entire
application.

In streaming applications, upon faults, Spark

recovers lost RDDs from their lineage. This
means that some subset of the data will be
replayed. To cope with such cases, SnappyData

ensures the exactly once semantics at the
storage layer so that multiple write attempts
are idempotent, hence relieving developers of
having to ensure this in their own applications.
SnappyData achieves this goal by placing the
entire flow as a single transactional unit of
work, whereby the source (e.g., a Kafka queue)
is acknowledged only when the micro-batch is
entirely consumed and the application state is
successfully updated. This ensures automatic
rollback of incomplete transactions.

Conclusion

SnappyData is a unified platform for real-time
operational analytics, which supports OLTP,
OLAP, and stream analytics in a single integrated
solution. SnappyData’s approach is a deep
integration of a computational engine for high-
throughput analytics (Spark) with a scale-out in-
memory transactional store (GemFire). SnappyData
extends SparkSQL and Spark Streaming APIs
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with mutability semantics and offers various
optimizations to enable colocated processing
of streams and stored datasets. SnappyData

has integrated approximate query processing
for enabling real-time operational analytics
over large (stored or streaming) data. Overall,
SnappyData’s goal is to yield a significantly lower
TCO for mixed workloads compared to using
disparate products that are managed, deployed,
and monitored separately.
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Definitions

SQL is a highly scalable and efficient relational
processing engine with ease-to-use APIs and
mid-query fault tolerance. It is a core module
of Apache Spark, which is a unified engine
for distributed data processing (Zaharia et al.
2012). Spark SQL can process, integrate, and
analyze the data from diverse data sources (e.g.,

Hive, Cassandra, Kafka, and Oracle) and file
formats (e.g., Parquet, ORC, CSV, and JSON).
The common use cases include ad hoc analysis,
logical warehouse, query federation, and ETL
processing. It also powers the other Spark li-
braries, including structured streaming for stream
processing, MLlib for machine learning (Meng
et al. 2016; Michael et al. 2018), GraphFrame for
graph-parallel computation (Dave et al. 2016),
and TensorFrames for TensorFlow binding.
These libraries and Spark SQL can be seamlessly
combined in the same application with holistic
optimization by Spark SQL.

Overview

Spark is a general purpose big data processing
system. It was originally developed in the
AMPLab at UC Berkeley and donated to
Apache Software Foundation in 2013. Now,
Apache Spark is one of the most popular
open-source projects in data analytics and
query processing. Spark SQL (Armbrust et al.
2015) (its predecessor, Shark (Xin et al.
2013)) was introduced in 2014 and became the
core of Apache Spark ecosystem. It enables
Spark to perform efficient and fault-tolerant
relational query processing with analytics
database technologies. The relational queries
are compiled to Resilient Distributed Dataset
(RDD) transformations and actions, which are
executable in Spark.

Spark SQL follows the classic query
processing and federation architecture with
adoption of the recent research (e.g., whole-
stage code generation). Through the user-facing
APIs (SQL, DataFrame, and Dataset), the user
queries are converted to unresolved abstract
syntax trees (called unresolved logical plans).
The plans are then analyzed using the session-
specific temporary view manager, and the cross-
session cache manager and catalog. Logical
optimizer and physical planner optimize the
resolved plans by applying heuristics-based
and cost-based transformation rules. During the
query planning phase, the sub-plans are pushed
down to the underlying data sources for more

http://www.streambase.com/
http://tinyurl.com/mzw7hew
https://doi.org/10.1007/978-3-319-77525-8_28
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efficient processing, if possible; the logical plans
are converted to the executable physical plans
consisting of transformations and actions on
RDDs with the generated Java code. The code is
compiled to Java bytecode, executed at runtime
by JVM and optimized by JIT to native machine
code at runtime.

Declarative APIs

Prior to Spark SQL, Spark offers low-level pro-
cedural APIs for operating RDDs and building
DAGs that are executable in Spark. Spark SQL
introduces three declarative APIs (DataFrame,
Dataset, SQL language), which are complemen-
tary to the low-level Spark APIs (i.e., RDD APIs).
It facilitates tight integration of relational queries
and complex procedural processing.

The SQL API is based on ANSI SQL:2003
standard with full compliance to Hive query
language (HiveQL). For the existing Hive
users, the compliance facilitates migration to
Spark SQL. Spark SQL also provides language-
integrated and lazily evaluated DataFrame/-
Dataset APIs. The DataFrame API provides
untyped relational operations, while the Dataset
API provides a typed version for better type
safety. The DataFrame API is available in Scala,
Java, Python, and R. The Dataset API is only
available in Scala and Java since Python and R
are dynamically typed languages.

Compared with SQL, DataFrame/Dataset
APIs provide richer and user-friendly interfaces,
since the APIs are not limited by ANSI SQL
compliance and also fully integrated with the
programming languages (Java/Scala/Python/R).
Using DataFrame/Dataset APIs, a complex data-
flow logics can be split to multiple simpler
modular host-language functions and then build
up a single logical plan for holistic query
optimization. All these three APIs are internally
represented by the same Catalyst logical plans.
They can be mixed, combined, optimized, and
executed holistically, thanks to the lazy execu-
tion. The execution is triggered until users call
the action APIs (e.g., collect, save, and show).

Query Optimization

Spark SQL optimizes the plans using the
stratified search strategy that are widely
used in the commercial database vendors
(e.g., Oracle and DB2). First, the optimizer
rewrites the query plans using heuristics-based
rules. The typical transformation rules include
predicate pushdown, column pruning, outer
join elimination, constraint propagation, and
predicate inference. Then, the cost-based plan
enumeration and method selection are executed.
The cost-based optimizer framework is initially
shipped with Spark 2.2 and still rapidly evolving.
Histogram was introduced for cardinality
estimation in Spark 2.3. More accurate
cost model, demand-driven enumerators, and
adaptive query optimization are in the road
map.

Spark SQL optimizer is extensible. Custom
optimizer rules can be injected. For example,
the users can add extra optimization rules for
pushing more operators into the external data
source systems or supporting the new data
types.

Query Execution

Memory and CPU, rather than disk and network
I/O, are the major performance bottlenecks of
query execution in Apache Spark (Ousterhout
et al. 2017), thanks to the progress in related hard-
ware and data compression. The project Tung-
sten speeds up query execution by optimizing
the efficiency of CPU and memory. The major
focuses include off-heap memory management
and runtime code generation.

Memory Management
The overhead of JVM objects and GC are
significant for data intensive Java applications.
Apache Spark leverages the application
semantics to explicitly manage the memory
using the sun.misc.Unsafe feature. This feature
provides the C-style direct access to off-heap
memory. The memory managed by Spark
is invisible to the garbage collector. Tuning
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GC for higher performance is not needed.
The compiled/interpreted operations directly
manipulate the binary data represented in the
Tungsten specialized format. Compared with
JVM objects, it has less memory footprint and
thus reduces the processing time.

Runtime Code Generation
On the driver, Spark generates Java source code
specialized to each query. On the executors, the
generated code is compiled to Java bytecode by a
lightweight Java compiler, which runs directly on
the JVM and can be further compiled to native
code by the just-in-time (JIT) compiler in the
JVM. It strikes a good balance between perfor-
mance and readability (and thus debuggability) of
generated code.

Runtime code generation is performed on two
levels: (1) expressions are generated into straight-
forward Java code to reduce interpretation over-
head, and (2) where possible, multiple adjacent
physical plan operators, along with the expres-
sions involved, are fused together using a push-
based model and generated into a single code
generation unit (called a stage). Compared with
the original iterator-based pull model (Volcano),
this reduces the overhead of virtual function calls
and materialization of intermediate results be-
tween operators, improves data locality, and en-
ables further specialization with the context of
multiple operators.

The same code generation framework is also
used to speed up serialization/deserialization.
As a unified data processing framework, Spark
SQL supports flexible use of UDFs and type-safe
Dataset APIs, both of which involve conversions
between domain objects and Spark SQL internal
data representations.

Data Sources

Spark separates computation and storage. The
data sources are autonomous and can be shared
with the other processing engines. The data
schema is dynamic. The schema is just a virtual
view that can be predefined or derived when
reading it. For example, the built-in file source

connectors, including JSON, CSV, Parquet, and
ORC, offer read-time schema inference. All the
inferred or predefined schemas can be stored in a
global persistent catalog, which is Hive metastore
by default. The Hive metastore can also be shared
with the other engines (e.g., Hive).

Thanks to the rich interoperability with
external data sources, Spark SQL can read from,
integrate with, and write to a variety of data
sources. Users can use the built-in connectors
and also plugin other third-party connectors.
Through the data source APIs, third parties can
build customized connectors to access the data
stores.

Highly efficient vectorized readers are pro-
vided for columnar file sources (e.g., Parquet and
ORC). Such complicated I/O operations are not
fused into the whole-stage codegen. Bulk reading
and processing can reduce the per-tuple inter-
pretation overhead and leverage compiler opti-
mization. The built-in cache mechanism is also
columnar. The external sources and intermediate
results can be explicitly cached in memory or
local disk for reuse.

Conclusion

Since the initial release, Apache Spark has
quickly become the largest open-source
community in big data. It is the work of over
1000 contributors from over 250 companies.
Spark SQL is the most active component in
Apache Spark. Spark SQL brings end-to-end
optimization in the sophisticated applications,
which use one or multiple Spark libraries (e.g.,
SQL, MLlib, and structured streaming). More
breakthroughs are expected in the coming years,
as Spark SQL is growing to be a compiler of the
unified analytics engine.
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Synonyms

Apache Spark benchmarking; Spark-Bench;
CODAIT/spark-bench

Overview

SparkBench is a flexible framework for bench-
marking, simulating, comparing, and testing ver-

sions of Apache Spark and Spark applications. It
provides users three levels of parallelism and a
variety of built-in data generators and workloads
that allow users to finely tune their setup and get
the benchmarking results they need.

Definitions

A framework for benchmarking Apache Spark.

Historical Background

Apache Spark began in 2010 as a research project
by Matei Zaharia and others in the Berkeley
AMPLab. Following the landmark success of
Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing
by Zaharia et al. (2012), Spark continued to
gain popularity and usage as its performance
gains over traditional MapReduce workflows
became evident. Spark continued to grow as
well, introducing Python and R APIs, machine
learning, graph computation, SQL, and streaming
computation.

In 2015, a group of researchers at IBM identi-
fied a need in the growing Spark ecosystem for a
benchmarking solution that focused specifically
on Spark. While benchmarking systems such as
the AMPLab Big Data Benchmark and Intel’s
HiBench, to name just two, focused primarily on
comparisons of Spark to other big data compute
engines, the researchers at IBM chose to focus
more specifically on Spark. In their 2015 paper
SPARKBENCH: A Comprehensive Benchmark-
ing Suite For In Memory Data Analytic Platform
Spark, they wrote,

While Spark has been evolving rapidly, the com-
munity lacks a comprehensive benchmarking suite
specifically tailored for Spark. The purpose of
such a suite is to help users to understand the
tradeoff between different system designs, guide
the configuration optimization and cluster provi-
sioning for Spark deployments. Existing big data
benchmarks... are either designed for other frame-
works such as Hadoop or Hive, or are too general
to provide enough insights on Spark workload
characteristics. (Li et al. 2015)

https://doi.org/10.1007/978-3-319-77525-8_225
https://doi.org/10.1007/978-3-319-77525-8_100051
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SparkBench Versus Other Tools
Intel’s HiBench and other similar tools bench-
mark select Spark algorithms against implemen-
tations in other frameworks. These tools focus
on a small selection of algorithms that are run
in the style of traditional benchmarks. They are
not focused specifically on Apache Spark, nor
do they claim to be. Instead, they are useful
for differentiating Spark against frameworks such
as MapReduce, Storm, Hive, and others. Spark-
Bench was designed to exercise various subsys-
tems of Spark in a detailed way, not to compare
Spark against other frameworks.

There are a number of projects that
provide detail profiling information on Spark
performance in a particular job. These, in most
cases, can be combined with SparkBench to
great effect by using SparkBench to build
the simulation or benchmark in question and
also drive the profiler. Some projects in this
category include CODAIT/spark-tracing (https://
github.com/CODAIT/spark-tracing) and the
commercially available YourKit (http://spark.
apache.org/developer-tools.html#profiling).

Many production users of Spark have also
observed the need for a production-grade Spark
job scheduling tool. Some examples include Air-
flow by Airbnb and Azkaban by LinkedIn. While
SparkBench provides the ability for users to com-
pose suites of jobs to simulate use cases, it is
not a production tool. Airflow and Azkaban pro-
vide feature-filled DAG schedulers and produc-
tion monitoring for Spark jobs. They may be used
as drivers for SparkBench to further enable com-
plex simulation of real-world Spark use cases.

SparkBench Version 1.x Structure
The first version of SparkBench included a suite
of individually compiled Spark applications.
Each contained an application for generating data
and an application containing the implementation
of the algorithm in question. These applications
were largely written in a mix of Java and Python
and stitched together through a plethora of bash
scripts that provided configuration and coalescing
of results. The applications were designed to be
individually compiled and run one at a time on a
given cluster.

Key to the design of SparkBench 1.0 was
the breadth of applications. In 2015, some of
the now more widely used components of Spark
including Spark SQL and Streaming were only
just debuting. The authors of SparkBench 1.0
were careful to include representative workloads
for each major piece of Apache Spark.

The source code for the first version of Spark-
Bench was released on Bitbucket. It was eventu-
ally ported to GitHub under the umbrella of the
CODAIT organization where contributors contin-
ued to update the code for subsequent releases of
Apache Spark.

Motivation for Rewrite
Since the initial release of SparkBench in 2015,
the adoption and number of use cases for Spark
have continued to grow at a rapid pace. Note-
books now provide data scientists and analysts
new ways of collaborating; cloud services pro-
vide businesses new ways of leveraging and ac-
cessing the cluster compute power of Spark; and
Apache Spark itself has gone from version 1.4.0
to version 2.x in just 2 short years.

In 2017, a team at IBM working on
performance improvements to core components
of Apache Spark realized the need for a
benchmarking tool that could do more than
benchmarking. A simple run of traditional
algorithms could not capture the complex nature
of multiuser user cases that were the focus of the
new improvements. To that end, Scala developer
Emily May Curtin embarked on a major rewrite
of SparkBench.

Project Structure
The new version of SparkBench (2.x) is a com-
plete, ground-up rewrite of version 1.x. While
version 1.x was a series of individually compiled
Java or Scala programs with their own main()
functions, the new version is a single Scala frame-
work compiled using one SBT build file. Rather
than algorithm implementations living alone in
their own jar stitched together through bash, each
is an implementation of the abstract workload
class. All configurations are done in a single
configuration file rather than a series of scattered
variables in various bash scripts.

https://github.com/CODAIT/spark-tracing
https://github.com/CODAIT/spark-tracing
http://spark.apache.org/developer-tools.html#profiling
http://spark.apache.org/developer-tools.html#profiling
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Old version New version

Project design Series of shell
scripts calling
individually built
jars

Scala project built
using SBT

Build/release Built manually,
released manually

SBT, Travis CI,
auto-release to
GitHub releases on
PR merge

Configuration Scattered in shell
script variables

Centralized in one
configuration file
with many new
capabilities

Parallelism None Three different
levels

Custom
workloads

Requires writing
a new subproject
with all
accompanying
bash

Bring your own jar,
plug it into existing
framework with all
configuration
included

The new version of SparkBench features three
independent levels of parallelism to enable users
to dial in accurate settings for their particular
simulation.

Foundations

SparkBench provides three levels of parallelism
in which users can compose workloads and data
generators to accomplish their benchmarking
goals quickly and easily.

Workloads, Spark configuration, and other ex-
periment structure are defined in one single con-
fig file written in HOCON, a superset of JSON.
They have a nested structure that starts with
spark-submit configs and then goes down into
workload suites and finally workloads at the bot-
tom of the nested structure.

Workloads
The atomic unit of organization in SparkBench is
the workload. Workloads are stand-alone Spark
jobs that read their input data, if any, from disk,
and write their output, if the user wants it, out to
disk.

Some workloads are designed to exercise a
particular algorithm implementation or a particu-

lar method. Others are designed to simulate Spark
use cases such as multiple notebook users hitting
a single Spark cluster.

Some existing categories of workloads
include:

• ML workloads: Logistic Regression, K-
Means, etc.

• “Exercise” workloads: designed to examine
one particular portion of the Spark pipeline.
A good example is SparkPi, a compute-heavy
workload with very little disk IO.

• Data generators: SparkBench has the capabil-
ity to generate data according to many dif-
ferent configurable generators. Generated data
can be written to any storage addressable by
Spark, including local files, HDFS, S3, etc.

Workloads can be composed with one another.
They can be launched serially or in parallel.

Workload Suites
Workload suites are logical groups of workloads.
Workload suites can be composed with each other
for benchmarking tasks or to simulate different
cluster use cases.

Workload suites control the benchmark results
output and repetition of workloads. They can be
composed with each other in serial or parallel
fashion. The level of parallelism of the workload
suite does not affect the level of parallelism for
the workloads contained within each suite.

Spark-Submit Configuration
Under the hood, SparkBench converts users’
configuration files into a series of spark-submit
scripts. The spark-submit-config section of the
configuration file allows users to change the
parameters of those spark-submits.

Spark-submits, like other parts of the Spark-
Bench configuration, can be composed serially
or in parallel in order to accurately simulate
different use cases. Multiple spark-submits addi-
tionally allow users to test different versions of
Spark, different clusters, different configuration
settings on the same cluster, and much more.
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As with workloads and workload suites, spark-
submits can be composed with each other and can
be launched serially or in parallel. These three
levels of parallelism (spark-submits, workload
suites, and workloads) allow users fine-grained
control over the setup of their simulation, so they
can dial in the conditions to be as true to life as
possible.

Example Configuration File
This is a configuration file used to benchmark
performance of SQL queries against the same
dataset stored in Parquet and CSV.

The first workload suite generates the data
in CSV format, then picks up the CSV it just
generated and rewrites it to Parquet format.

The second workload suite runs a total of four
different workloads using the cross product of
the two parameter lists. These four workloads are
repeated ten times.

spark-bench D f
spark-submit-config D [f
spark-home D “XXXXXXX” // PATH TO
YOUR SPARK INSTALLATION

spark-args D f
master D “XXXXXXX” // FILL IN
YOUR MASTER HERE

executor-memory D “XXXXXXX” //
FILL IN YOUR EXECUTOR MEMORY

g
conf D f

// Any configuration you need
for your setup goes here,
like:

// “spark.dynamicAllocation.
enabled” D “false”

g
suites-parallel D false
workload-suites D [
f
descr D “Generate a dataset,
then take that same dataset
and write it out to
Parquet format”
benchmark-output D “hdfs:///
tmp/csv-vs-parquet/results-
data-gen.csv”
// We need to generate the
dataset first through the data
generator, then we take that
dataset and convert it to
Parquet.
parallel D false
workloads D [

f
name D “data-generation-

kmeans”
rows D 10000000
cols D 24
output D “hdfs:///tmp/csv-

vs-parquet/kmeans-
data.csv”

g,
f
name D “sql”
query D “select * from

input”
input D “hdfs:///tmp/csv-

vs-parquet/kmeans-
data.csv”

output D “hdfs:///tmp/csv-
vs-parquet/kmeans-
data.parquet”

g
]

g,
f
descr D “Run two different SQL
queries over the dataset in
two different formats”
benchmark-output D “hdfs:///
tmp/csv-vs-parquet/results-
sql.csv”
parallel D false
repeat D 10
workloads D [
f
name D “sql”
input D [“hdfs:///tmp/csv-
vs-parquet/kmeans-data.
csv”, “hdfs:///tmp/csv-vs-
parquet/kmeans-data.
parquet”]
query D [“select * from
input”, “select ‘0‘, ‘22‘
from input where ‘0‘ <
-0.9”]
cache D false

g
]

g
]

g]
g

Key Applications

SparkBench is in active use by developers work-
ing on contributions to Spark core. These devel-
opers use the project to compare the runtimes of
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standard algorithms in the latest official version
of Spark against their branch with changes.

Other developers have used the custom work-
load plugin capability of SparkBench to create
custom workloads that exercise a very specific
subsystem of Spark such as the caching mecha-
nisms in core as they relate to dynamic allocation.

SparkBench additionally provides mech-
anisms for developers to simulate notebook
environments such as Jupyter or Apache
Zeppelin. By inserting a Sleep workload between
workloads, SparkBench users can build up a
simulation of a notebook user. It is a simple
extension to copy this workload suite to simulate
multiple users.

This notebook simulation technique has been
used to great effect by developers in the IBM
Spark Technology Center who used SparkBench
to debug and benchmark changes to Spark core
involving resource contention settings.

Future Work

SparkBench is under active development by IBM
and contributors from all over the world. Planned
future work centers around several efforts.

1. Launching through interfaces other than
spark-submit (Livy, other REST services).
The structure of SparkBench should reflect
the myriad of ways that users can interface
with Spark. Adding REST capability to
SparkBench allows for a new variety of use
cases to be covered such as Spark as a service
setups and other remote architectures.

2. Expanding selection of built-in workloads. At
the time of publication, IBM developers are
working on porting many workloads from ver-
sion 1.x to 2.x.

3. Allowing tighter integration with pluggable
listeners and profilers. SparkBench sits at the
level of the application. To get more detailed
profiling data on specific functions and do
system profiling, users can employ a variety of
profilers and tracers. In the future the output of

SparkBench should be synced and packaged
with the output of tracers.

4. Increase the number of standard big data
benchmarks available by default, particularly
TPC-DS. The TPC-DS dataset and associated
100 SQL queries are a key standard bench-
mark for SQL systems. At the time of publica-
tion, developers at IBM are in progress adding
workloads for TPC-DS data generation as well
as the standard queries.

Cross-References

�Apache Spark
� SparkBench
�TPC-DS
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Synonyms

Geospatial data integration; Spatiotemporal Data
Integration

Definitions

Spatial data integration is a process in which
different geospatial datasets, which may or may
not have different spatial coverages, are made
compatible with one another (Flowerdew 1991).
The goal of spatial data integration is to facilitate
the analysis, reasoning, querying, or visualization
of the integrated spatial data. Figure 1 illustrates
the integration of three layers or themes: major

Spatial Data Integration, Fig. 1 Spatial data integra-
tion (Chi 2017)

streets, hospitals, and police districts of the City
of Chicago (Chi 2017).

Spatial data (often used synonymously with
geospatial data and geographical data) refers to
the information – location, shape, and relation-
ships among geographic features – that describes
the distribution of things on the surface of the
Earth (DeMers 2008; Walker 1993).

Geospatial datasets that relate to physical ge-
ography, such as land and ocean boundaries,
topography, weather, hydrology, natural disasters,
land cover, and to human geography, such as
administrative boundaries, land use, population,
crime, buildings, water pipes, roads, points of
interest, and many more, are freely available
from a wide variety of sources (e.g., Socrata,
data.gov). Many of those datasets vary both with
respect to time and space. While each dataset
may be important in its own right, it is often

https://doi.org/10.1007/978-3-319-77525-8_228
https://doi.org/10.1007/978-3-319-77525-8_68
https://doi.org/10.1007/978-3-319-77525-8_69
https://doi.org/10.1007/978-3-319-77525-8_66
https://doi.org/10.1007/978-3-319-77525-8_100140
https://doi.org/10.1007/978-3-319-77525-8_80
https://doi.org/10.1007/978-3-319-77525-8_100316
https://doi.org/10.1007/978-3-319-77525-8_100316
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their joint analysis that makes them critical for
decision-making. Examples include finding the
lakes in Maine (Egenhofer 2002), returning the
towns affected by fires (Kyzirakos et al. 2014),
or estimating the number of people affected by a
water main break (Balasubramani et al. 2017).

Overview

Data are generated by various sources and differ-
ent stakeholders, and they correspond to different
locations and times. This section discusses such
characteristics of spatial data that influence the
techniques for spatial data integration.

Spatial and Spatiotemporal Data Types
Spatial data can be associated with (Flowerdew
1991):

Points: Sample points, selected randomly or
for convenience (points in a survey, rain
gauges), or points representing real objects
(trees, buildings, cities).

Lines: Sample lines (paths for ecological sam-
pling) or real phenomena (streets, rivers, geo-
logical faults).

Areas: With natural boundaries (islands,
marshes) or artificial boundaries (land parcel,
census tract).

Surfaces: A phenomenon defined across a
region but measured only at discrete points
(rainfall). Values at other points can be
estimated (e.g., by interpolation).

For spatiotemporal data, we consider a single
data type (Zheng 2015; Yoon and Shahabi 2008):

Trajectories: A trajectory of a moving object
is a sequence of spatial points sampled
at discrete instances of time. It is repre-
sented by a series of chronological points,
.p1; t1/; .p2; t2/; : : : ; .pn; tn/; where pi

is a two- or three-dimensional vector
corresponding to the geospatial position
observed at a time stamp ti , where i D

1; : : : ; n.

Spatial Data Formats
Spatial data are represented using one of the two
data formats (Maffini 1987):

Vector: A coordinate-based data format that rep-
resents spatial data in the form of points,
lines, and polygons. This format allows for
the efficient encoding and operations to deter-
mine, for example, the eight basic topological
relationships (Egenhofer 1993), namely, dis-
joint, meet, overlap, contains, inside, covers,
covered by, and equal.

Raster: A data format that is composed of cells
distributed in a regular grid, each contain-
ing an attribute value and location coordi-
nates (Bishr 1998). This format encodes con-
tinuous data efficiently, such as in a topo-
graphic map that represents elevation using a
color scale.

Conflation is the process of combining
two or more sources representing the same
geographic information so as to retain accurate
data, minimize redundancy, and reconcile
data conflicts (Longley 2005). The techniques
for conflation vary based on the spatial data
formats (Saalfeld 1988; Cobb et al. 1998). For
example, vector-to-vector conflation involves
matching vector data based on the similarities of
the shapes of the vectors, geometric information,
or the vector attributes. Vector-to-raster confla-
tion exploits auxiliary spatial information (e.g.,
coordinates from a satellite image) and nonspatial
information (e.g., the image resolution or color)
and performs image processing to determine the
correspondence among the datasets. Raster-to-
raster conflation involves data-specific image
processing techniques to extract and match
various features (e.g., edges) across images (Dare
and Dowman 2000).

Spatial Transformations
Spatial transformations are functions that obtain
new spatial data from existing data, for exam-
ple (Longley et al. 2015):

Buffering: Produces a new geometry by adding
an area around the original objects (points,
lines, areas).
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Point-in-Polygon: Determines whether a given
point lies inside or outside a given polygon.

Polygon Overlay: Outputs the polygons result-
ing from the intersections of two polygons.

Spatial Interpolation: Uses information from
sampled points to guess the values at other
points.

Density Estimation: Constructs an estimate
of an unknown probability density function,
based on observed data.

Heterogeneity
Differences in spatial data types and formats lead
to two forms of heterogeneity that need to be
resolved when integrating spatial data. Other ob-
stacles for integrating data stem from differences
in syntax, schema, or semantics (Bishr 1998). In
addition, different data models, update frequency,
resolution, and scale are also to be considered.

Spatial data exhibit various kinds of
heterogeneity (Beck et al. 2008; Hakimpour
2003; Bishr 1998):

Syntactic Heterogeneity: Spatial data is stored
in different formats (e.g., shapefile, KML).
The data format dictates the tools and ap-
proaches to query, integrate, and analyze the
data.

Structural or Schematic Heterogeneity: This
kind of heterogeneity arises when the data
model is the same (e.g., relational) but the
schemas differ, including the type of an
attribute (for example, oF vs. oC). Further
heterogeneities occur when the same concept
is in one of the table names in a schema and is
a name of an attribute in another schema.

Semantic Heterogeneity: Semantic hetero-
geneities occur when the same entity has
different names, or when different entities
have the same name. For example, Chicago
and Windy City represent the same entity,
whereas Square represents a geometry with
four sides of equal length or a City Square.

Spatial Modeling Heterogeneity: The same
geographical phenomena may be modeled
differently, for example, street as a line in one
dataset, and as a polygon in another dataset.

Resolution or Granularity: There are three
kinds of resolution: spatial, temporal, or
semantic. Spatial resolution is the grain size or
the cell size of spatial data, and represents the
amount of detail that can be observed in the
spatial dataset (Longley 2005). For instance,
satellite imagery with a resolution of 2.4 m
is more detailed than a satellite imagery with
a resolution of 1.1 km. Temporal resolution
is the time interval during which the value
remains the same, for example, temperature
that is published every hour, but the estimated
time of arrival for a flight may be updated
every five minutes. Semantic resolution refers
to the level of specification of a real-world
entity (Fonseca et al. 2002). For example, a
body of water may be perceived as a lake or
as a water body, depending on the application.
Semantic similarity can be measured by the
distance that separates two concepts in a
classification hierarchy (e.g., an ontology).

Scale: Often used synonymously with reso-
lution, scale describes the dimensions of
spatial phenomena and determines its object
type (Longley 2005). The details of the spatial
phenomena represented in the spatial dataset
heavily depends on scale. For example, the
New York city is represented as a one-
dimensional point on the world map, but is
represented as a two-dimensional area on the
city map, which is more detailed.

Key Research Findings

Designing spatial data integration systems is
characterized by various challenges that spatial
data exhibit. Quite justifiably, significant research
effort has been invested over the past decades in
the spatial data integration problem. This section
discusses some of the most important works that
focus on integrating spatial data in a seamless
manner.

Spatial Entity Resolution
Entity resolution in spatial data integration refers
to the process that determines whether two loca-
tions referenced by two or more different data
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sources correspond to the same real-world en-
tity (Sehgal et al. 2006). Some common ap-
proaches for entity resolution in spatial data in-
tegration are as follows:

One-Sided Nearest-Neighbor Join: This method
associates data with location a in dataset A to
data with location b in dataset B, if b is the
closest location to a among all other locations
in B (Batini and Scannapieco 2016).

Image Processing Techniques: Integration of
digital maps (Doytsher et al. 2001; Saalfeld
1988) involves image processing techniques
and requires complete information about the
spatial entity. Satellite imagery has long been
used to integrate maps.

Feature-Based Matching: These algorithms
use location features, that is, attributes
such as spatial coordinates, location name,
and location type independently, and find
mappings based on a similarity metric such as
edit distance or coordinate similarity.

Feature-Based Integration: This method com-
bines different similarity measures. For exam-
ple, a feature vector consisting of the similar-
ity metrics for spatial and nonspatial features
(e.g., edit distance and coordinate similarity)
is associated with each pair of locations. Final
similarity is determined using is performed us-
ing machine learning techniques like logistic
regression or neural networks.

Uncertainty
Uncertainty, which is the difference between an
occurrence in reality and its representation in
a database (Zhang et al. 2014), is omnipresent
in geospatial data. Uncertainty occurs in several
phases ranging from geographical abstraction,
data acquisition, limited observations, different
but equally valid interpretations of the geography,
geo-processing techniques, and representation of
the results of geographic computations to the use
of the results (Devillers and Jeansoulin 2006;
Zhang and Goodchild 2002). When datasets are
integrated, the resulting uncertainty stems from
the individual datasets as well as from the inte-
gration process itself.

Spatial Data Integration: Observations
This section highlights some details observed
during spatial data integration (Goodchild et al.
1992; Cruz and Xiao 2008; Mohammadi et al.
2006; Cruz et al. 2007):

1. The set of functions that can be applied or
the type of analysis that can be performed
on spatial data heavily depends on the data
models and probability distribution functions.
For example, interpolation can be performed
on point samples of mineral deposits to deter-
mine the distribution of mineral reserves for
an area. However, one cannot interpolate the
point samples representing occupancy in high-
rise buildings to estimate the population of a
city.

2. Data comes from various sources such as
social media, private and public organizations,
and government agencies. Each of these
sources handles data using different database
management techniques, formats, and scales.
Even in the same organization, for example,
in a city, the boundaries of the various districts
(school, asphalting, sanitation, forestry) may
not coincide, thus complicating correlations
across different datasets.

3. The same data can be heterogeneously repre-
sented depending on the data provider, either
because of the data collection method, storage
and management techniques, or, sometimes,
the functions used to derive the data.

4. The availability of metadata does not guaran-
tee in itself that data will be correctly inte-
grated. The semantics of the different datasets,
the target model in the case of cross-domain
data integration, the goal of the integration,
and other factors are important.

5. Attribute-level metadata, which contains the
data accuracy, date collected/updated, or
source of a particular attribute, is usually more
useful than the generic theme-based metadata,
which focuses on the domain of the spatial
data (e.g., agriculture, environmental) and
consists of information including the spatial
extent, content type, and publisher.

6. Sources with different privacy requirements
further add to the data heterogeneity and to
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the complexity of the data integration process.
For example, data may have to be previously
transformed to a coarser detail or integrated
using privacy-preserving techniques. Another
known risk stems from the fact that the inte-
grated datasets may allow for a more detailed
analysis than was previously possible for each
dataset.

State-of-the-Art Techniques for Spatial
Data Integration
Due to the complex nature of spatial data, a data
integration framework cannot be generalized to
all spatial data integration cases. Geostatistical
techniques are specific to spatial data (Gotway
and Young 2002), while others that use
ontologies can be used for the integration of
spatial (Fonseca et al. 2002) and nonspatial
datasets (Cruz and Xiao 2005). Ontologies are
knowledge representation structures that define
concepts and their relationships explicitly.

Geostatistical Techniques
Geostastical techniques for data integration aim
to allow for the synthesis of data at different
scales. One of the problems is the fact that spatial
data is organized, subdivided, and stored based
on spatial units (e.g., land parcel, grid cell of size
1 km2), which may differ across datasets.

Spatial data transformations are special cases
of the change of support problem (COSP), where
support includes the geometrical size and shape
of a region associated with a measurement (Got-
way and Young 2002). Examples of COSPs in-
clude block kriging and areal interpolation. For
example, block kriging applies to the case where
point values are observed but the nature of the
process is associated with an area, whereas areal
interpolation applies to the case where area val-
ues are observed for a set of source polygons
(e.g., school districts) but need to be converted
to a set of target polygons (e.g., census tracts).

Ontology-Based Approaches
To integrate datasets that exhibit different spatial
(or temporal) resolutions and are different in
terms of schema (structure that represents the
organization of data) and semantics, an ontology

can act as a mediator between the two datasets so
as to establish relationships among the attributes
of the datasets (Tran et al. 2015). For example,
an urban spatial ontology can be used to establish
relationships such as Chicago is inside Illinois.
It is also possible to use an ontology for each
dataset and establish correspondences between
the ontologies, using rules defined by the domain
experts (Mena et al. 2000). Also, there are dif-
ferent types of ontologies with respect to their
expressiveness.

A set of mappings, which defines the corre-
spondences among the concepts in the ontologies,
are established to describe topological relations
(such as disjoint, meet, or overlap). For resources
with rich quantitative spatial information, the
focus is on obtaining mappings between spatially
colocated regions. The similarity between two
geometric shapes is then obtained using the Haus-
dorff distance, which is defined as the maximum
distance of a set to the nearest point in the other
set (Rote 1991).

However, two concepts may be matched even
if there are other pairs that are better matched.
Structural methods (Cruz and Sunna 2008; Mel-
nik et al. 2002) consider the structure around each
of the two concepts being matched, that is, the
concepts that are adjacent to them. Then, the two
concepts match if their adjacent concepts also
match.

Examples of Application

Apart from facilitating complex geospatial data
analytics, spatial data integration also enables
data accessibility (i.e., data storage and retrieval)
and data interoperability (i.e., compatibility with
other datasets). Some applications that benefit
from spatial data integration are described next:

Utility Data Integration: This application facili-
tates the exploration and analysis of the impact
of disruptions in urban infrastructure systems.
There are several frameworks that address
the challenges in integrating utility data from
different perspectives (Beck et al. 2007, 2008;
Psyllidis et al. 2015).
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Land-use Matching: This application maps two
different land-use ontologies (Cruz and Xiao
2008; Cruz et al. 2007), which classify land
parcels based on their usage, for example, resi-
dential, industrial, agricultural, or commercial,
so that a single query can retrieve those parcels
across different classifications.

Spatial Phenomena Correlation: This appli-
cation computes the correlations between
different spatial phenomena such as crop
rotations and biodiversity (Tran et al. 2015)
by integrating a land-use dataset and a biology
dataset.

Environmental and Disaster Analysis: This
application uses the query language SPARQL
extended with geometric objects, set
operations on those objects (e.g., union), and
the result of spatial transformations on those
objects (e.g., buffer), to ask queries that return
the names of the towns that have been affected
by fire and to construct new geometric objects,
for example, the burnt areas in coniferous
forests (Kyzirakos et al. 2014).

Future Directions for Research

Each of the challenges associated with big
data – volume, variety, variability, velocity, and
value – is patent in geospatial data integration.
A comprehensive environment for integrating
and analyzing geospatial data has several
layers, each being conceptually complex when
considered on its own and even more so when
considering the interactions among them. Those
layers include data extraction, data translation,
ontology extraction, syntactic and semantic
matching, spatiotemporal matching, application,
visualization, and analytics, together with
two crosscutting layers: machine learning and
querying (Cruz et al. 2013).

Ontology-based approaches resolve structural
and semantic heterogeneities. These are expres-
sive techniques that enable cross-database queries
and reasoning on the spatial, temporal, as well
as the spatiotemporal relationships. However, on-
tologies are often not available for the domain of
interest and even when available can be location

dependent. For example, an ontology of crime in
Chicago may not apply to New York City. Land-
use ontologies also vary across municipalities
and counties (Wiegand et al. 2002) but can be
created from the corresponding taxonomies. It is,
however, nontrivial to incorporate the associated
unstructured information in the ontology. Hence,
the creation, reuse, and evolution of ontologies
need to be streamlined.

In addition to the expressiveness issues, other
issues pertain to the computational efficiency,
for example, of record linkage (Fellegi and
Sunter 1969; Kelley 1984), large ontology
matching (Faria et al. 2017), or geostatistical
scale mapping (Gotway and Young 2002). When
several of these strategies need to be applied,
their optimization is necessary, possibly along
with the determination of the order of execution
of the various layers to improve overall efficiency.

Cross-References

�Data Integration
�Holistic Schema Matching
� Probabilistic Data Integration
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Synonyms

SDM theory; Spatial data

Definitions

The growth of spatial data which plays a part
in the agricultural products, sustainable develop-
ment, and human society development is accumu-
lated continuously. Not only the size and volume
are immense, the structure is also convoluted
with the abundant and deep of their contents.
The spatial dataset is full of the information
and experience collection from geomatics that
relates to Remote Sensing (RS), Global Posi-
tioning System (GPS) and Geographic Informa-
tion System (GIS). A wide variety of databases
consist of electronic maps and planning network
from their infrastructure. With the increase in the
spatial data collection, the processes of gather-
ing, management, and transmission data require
the powerful techniques. The traditional meth-
ods lag of the ability of big data query. Thus,
the Spatial Data Mining (SDM) becomes the
suitable technique. The Knowledge Discovery
from Geographical Information System database
(KDG) approach can support SDM to be more
developed in data mining and geomatics (Li and
Cheng 1994). The discovered knowledge from
spatial datasets can support a decision-making
system on various areas such as urban planning

and construction, transportation, resource alloca-
tion, capital optimization, marketing, and med-
ical treatment. Then, SDM benefits the global
sustainability. However, the large volume of spa-
tial datasets will impact definitely the execution
time. Then, the computerization which is com-
posed of a computer chip, a power of a central
processing unit, and a transfer rate of commu-
nication channel will boost up an acceleration
of an interactive process. Presently, the artificial
intelligence (AI) and machine learning (ML) are
important roles instead of the manual process.
AI is in charge with the human deterministic
intelligence simulation by three strategies which
are symbolism, connectionism, and behaviorism.
While the ML supervises on the human learning
simulation which obtains the knowledge form
expert systems automatically, SDM will request
the AI and ML to improve the data mining capa-
bility.

Recently SDM is popular to present the dis-
covered knowledge through the real-world ap-
plication but should concern over the crisp data
or uncertain data. In that case, the probability
theory, spatial statistics, rule induction, clustering
analysis, spatial analysis, fuzzy set, data fields,
rough sets, genetic algorithms, visualization de-
cision trees can support those issues (Ester et al.
2000).

Overview

SDM Concepts
The SDM can enhance the human ability for
extracting, applying, and transforming the spatial
data in the real-world application. Because the
ML and AI belong to the SDM procedure, the
SDM is more understandable by both mathematic
and non-mathematic theories. So, the SDM is a
technique to clean, sample, and convert a vast and
complex spatial data.

The SDM Pyramid is a symbol of SDM
Concepts which concentrates on transforming
from the spatial data to information and
knowledge. The process starts with the data
preparation, data mining, and post-processed of
data mining. If the description is more abstract,
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coherent, and general, the technologies will
be more deep and advanced. Piatetsky-Shapiro
(1994) reviewed the concept of data, information,
and knowledge pyramid (DIKP). The study
proposed that the different levels of data
presented the different concept element. So, it
was impossible to make the association between
each concept. Han et al. (2012) demonstrated
the visual process of data mining by different
graphics. However, their work was imperfect
to present the role and difference of elements.
It implied that the complexity of spatial data
was difficult to depict the levels of data. It is
compulsory to integrate DIKP and the process of
SDM in order to clarify the concept and roles
of SDM. Thus, the SDM Pyramid in Fig. 1
is presented as a result. The SDM Pyramid
specifies the level of spatial data from bottom
to top. Each level of data presents the different
element concept. The SDM pyramid is the
main solution of transferring and managing data
between layers. For example, the RS images,
the images data are analysed and usually take
the resolution in distinct layers. The top layer is
the coarsest resolution and small scale, while
the bottom layer is the finest resolution and
largest scale. Then, the data is indexed and
well-organized can browse in the multi-source,
multi-scale, and cross-resolution image. The
SDM pyramid manifests the data characteristics
from spatial knowledge to the spatial data in
real world. The amount of spatial data directs
variation to the data complexity. The more
simple data is, the more spatial data quantity
contains.

Spatial Data to Spatial Knowledge
The SDM applies an interdisciplinary method-
ology to acquire spatial knowledge effectively.
Each unit of spatial numerical values, spatial
data, spatial information, and spatial knowledge
presents the dissimilar concepts but connects in
detail.

• Spatial Numerical

The spatial numerical represents between a
specific value and a measurement unit. The spa-

tial numerical is a transmission when the spatial
objects are gathered, transformed, and applied by
the computerized SDM.

• Spatial Data

The spatial data can represent raw data or pro-
cessed data. The processed data illustrates digital
and nondigital data such as numbers, words,
symbols, graphics, images, video, and language
which utilizes the raw data. The spatial data can
be a reference in order to know spatial objects and
numerical nature with various attributes.

• Spatial Concept

The spatial objects together with their impli-
cation and extension describe the spatial concept.
The spatial concept may involve in the problem-
solving and indicate the states of spatial objects

• Spatial Information

The analysis of spatial objects in the dataset
can determine the spatial information. The spa-
tial information demonstrates the meaningfulness
and eliminates the possible uncertainty. It is im-
perative to be the decision-maker.

• Spatial Knowledge

The spatial knowledge is built from one or
more parts of the spatial information. The spatial
knowledge is depicted through the processes
of correlation, association, classification,
and clustering. Both spatial information and
spatial knowledge require SDM in the data
processing.

• Unified Action

The spatial data carries information to specify
their properties, quantities, location, and relation-
ship. So, the unified actions of spatial numerical
values, spatial data, spatial concept, and spatial
information become the spatial knowledge.
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Spatial Knowledge

Interpreting & evaluating

Discovered patterns

Spartal data mining

Target objects

Target focusing

Spatial information

Spatial database systems

Spatial data

Spatial data cleaning

Observed spatial data

Spatial data acquiring

The spatial real world

Spatial Data Mining, Fig. 1 SDM Pyramid (Li et al. 2015)

Spatial Knowledge to Discover
In an effort to discover the various spatial knowl-
edge, SDM requires various techniques under
“rule plus exception” with different views. The

miscellaneous preset rules have already qualified
on the practical manipulation such as General Ge-
ometric Rule and Spatial Association Rule, Spa-
tial Characteristics Rule and Discriminate Rule,
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Spatial Clustering Rule, Classification Rule, Spa-
tial Predictable Rule and Serial Rule and Spa-
tial Exception or Outlier. Therefore, the spatial
knowledge is extracted properly to be the Dis-
cover (Li and Du 2007).

Spatial Knowledge Representation
SDM promotes the spatial knowledge represen-
tation in order to demonstrate the knowledge.
The integration of traditional expression methods
can enhance the conversion of the knowledge ex-
pression method efficiently. When the knowledge
extraction finishes, the knowledge measure can
bound the level to depict the discovered pattern
which is meaningful and interesting. A natural
language, predicates logic, function model, char-
acteristic table, semantic network, and Petri net
are fundamental representations. For example,
the natural language which is a general knowl-
edge recognition of uncertainty can interpret spa-
tial datasets based on human thinking. It is an
effective tool to reorganize the thinking process.
The concept is to map the object from the objec-
tive to the subjective cognition. Hence, the more
the knowledge is abstract, the more the natural
language is proper.

SDM Data Source

Contents and Characteristics of Spatial
Data
The primitive data sources of spatial data are
geographic contents. The spatial data acquisi-
tion gathers from radar, infrared, photoelectric,
satellite, digital cameras and telescopes. There
are three acquisition methodologies which are
point acquisition, area acquisition, and mobility
acquisition. The point acquisition is performed by
the GPS receivers which collect the coordinates
and attributes of surface points on Earth. The
area acquisition targets the large areas of images
which are geometrical and physical features. The
mobility acquisition incorporates with GPS, RS,
and GIS to observe the Earth system.

After gathering data, the main characteristics
of spatial data which are size, complexity,
dimension, and certainty definitely differentiate

from the common data. The location-based
spatial and no-spatial data imply the implication
of objects. The spatial object is a core of an
object-oriented data model such as point, line,
area, or complex objects in the large dataset. A
point can be a single, directed, and grouped point
which presents the location on the Earth surface
without shape and size in the computerized
system. Then the interconnection between points
presents a line as rivers and roads. The line
presents the spatial curve of Earth surface as
linear from point-to-point or the reticulated
pattern. After that, the shape and size of lines
illustrate an area as the curved surface of Earth.
Finally, a complex object combines more than
two objects of point, line, and area.

To enhance the efficiency of the target,
three main characteristics of spatial data are
time, location, and theme. Due to dynamic
changes, time is sensitive to collect and compute
the spatial data. The gathered data should be
affirmative and reliable such as weather forecast.
Next, the location determines the location
relationship. The topology and relationship are
demonstrated by position, azimuth, shape, and
size of a spatial object. Then, the theme is
an extraordinary characteristic which defines
the land endurance, pH value, land cover, and
population density. Some developed technology
such as RS is necessary to request more thematic
data acquisition. The spatial data is compulsory
to utilize carefully because their characteristics
impact the occurrence of spatial data fusion
easily. However, the spatial data uncertainty
is ubiquitous during the implementation. To
maintain the consistency and the integration of
spatial data for bringing out spatial objects, all
techniques are required to solve those issues.

Spatial Data Model
A common use of spatial data models are hier-
archical model, network model, relational model,
and object-oriented model. Both hierarchical and
network models address the relationship between
objects which consider the path of data, storage,
and accessibility. The hierarchical model of 1
or more than 1 root node(s) and leaf node(s)
can store and access the hierarchical database
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efficiently although users’ interaction are incon-
venient. The network model relationship is the
connection between arbitrary records with others.
Then, the occurrence of multiple relationships is
possible to depict as an undirected graph even if
it is the irregular structure. The relational model
composes of row as an entity record and column
as an entity attribute. When the model concerns
the relationship between two connected dimen-
sional tables with conditions, the unique and
foreign keywords require. The unique keyword
is a single or composited attribute for indicat-
ing the entity, while the foreign keyword is the
relationship between entities. If relational model
contains the Boolean logic and arithmetic rules,
the Structured Query Language (SQL) has to
manage the data. The Object-Oriented model has
been highly valued in GIS application since late
1980s and early 1990s. The spatial objects rela-
tionship is expressed by the generalization, union,
and aggregation. After that the model was inte-
grated between the object-oriented and database
techniques. When the complicated relationship or
nested relationship exists, it is better to present as
a table structure.

Spatial Databases
The spatial database is built for being a tool
equipment and data manipulation. The definition,
representation, and storage of spatial data diverge
the common transactional data. The spatial data
can be collected by the data manipulation of sur-
veying and mapping database. The different pur-
poses will be fulfilled with the different database.
There are general database, graphic database, and
image database. In addition, the digital elevation
model (DEM) database is productive data ar-
rangement. When a unified spatial index is devel-
oped, users can find the data of any domain fast.
The large-scale databases are also not against the
performance of data display. The spatial index
allows users to access data by retrieving and
transferring among different levels effortlessly.

From GGDI to Big Data
The GGDI which stands for Global Geospatial
Data Infrastructure can run on the Digital

Earth. GGDI to Big data is from 1970s which
published the “Information Society.” The study
discussed on a global information infrastructure
with the telecommunication infrastructure. After
10 years, the “Centralized Land Information
Database” introduced a more complex network
of distributed land information. The data
resource management was adopted from a
common approach to a computer based. Then
in 1990s, the Spatial Data Infrastructure (SDI)
was originated to support and accelerate the
geographic data exchange standards. The local
interests, demands, and constraints of country
or organization are effected by the developed
GGDI.

Presently, developers who usually apply
the new technology for supporting their work,
study and life, the digital contents are invented
to present in form of internet of things and
cloud computing. Thus, the big data seems to
be an essential source for the digital content
applications. The simulation of digital earth
becomes popular in many countries. Most of
the services utilize the technology of RS, GIS,
ML, AL, and Internet of thing. The applications
on network mapping, Web 2.0, and mobile
sensors on vehicles impact significantly to
the users’ experience. Therefore, the spatial
information system is obvious different from
a traditional information system. The new
geo-information systems are professional to
serve the data and publish to all users. Hence,
the new geo-information era improves the
whole system of the geospatial information
industry to prosperity. Soon the geo-information
benefits for all aspects and leads to smart city
definitely.

Key Research Findings

Bottleneck of SDM
Because of complex spatial entities, geographic
location of features, boundaries, and relationship,
SDM is capable to identify. However, the bottle-
neck of SDM is attentive. Some researches were
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achieved with those goals but some difficulties
need to be solved.

• Excessive Spatial Data

The geo-graphical information is imperative
to accomplish the application development. The
data source comes from RS, digital techniques,
networks, multimedia, and images. So, the spatial
database expands and grows rapidly. With the
issues of immense dataset, the traditional imple-
mentation cannot manipulate with tons of spatial
data such as the enumeration method of data
analysis. Therefore, the data mining (DM) was
introduced and capable to improve.

• High-Dimensional Spatial Data

The spatial data grows in both horizontal and
vertical attributes, but the GIS information is still
inadequate to illustrate the spatial data with high-
dimension structure. The discovered knowledge
can resolve the challenged. For example how to
accelerate for searching and query the target data
or how to decline the number of dimensional data.

• Polluted Spatial Data

The spatial entities may contain both useful
and polluted data. The organized spatial data
should concern about position accuracy, attribute
accuracy, consistency, lineage, and integrity. The
polluted spatial data is in a form of incomplete-
ness, dynamic changes, noise, redundancy, and
sparsity. They can cause a low-quality standard
of data accuracy.

• Uncertain Spatial Data

The uncertain spatial data in SDM is impossi-
ble to avoid because of the approximate sample
data and abstract mathematical models. Due to
the crisp set, probability theory, GIS model, the
sensitivity analysis for SDM can normalize to be
a certain data. However, a related special entity of

every single attribute can be emphasized instead
of spatial data uncertainty.

• Mining Differences

The SDM utilization succeeds in understand-
ing and gathering the different cognitive hierar-
chy of spatial dataset. The different mining on
different aspects will return the different results
from the results of discovered knowledge despite
the same database. In addition, the making use of
SDM can present a hierarchical decision-maker’s
awareness among those differences.

• Problems to Represent the Discovered Knowl-
edge

The natural language is the best way to illus-
trate the conceptual knowledge which is a kind of
the discovered knowledge. An exclusion of data
uncertainty in SDM process will return incom-
plete knowledge and be full of errors although the
adequate techniques are provided.

Methods and Techniques in SDM
The variety of methods and techniques impact
directly the discovered knowledge in SDM. Each
method supports the different characteristics
based on the context. The SDM also concerns
the evolution of human thinking network and
optimal solution processes.

Crisp Set Theory
The Crisp Set Theory was introduced by Cantor
in nineteenth century based on the modern math-
ematics. The theory approaches on probability,
evidence theory, spatial statistics, spatial analysis,
and data field. The probability which was con-
ducted by Arthurs in 1965 works properly in the
stochastic probabilities with randomness spatial
data. Actually, the probability is unlike from the
likelihood. The big probability does not present
the high likelihood and vice versa.

Then, the evidence theory is known as
Dempster-Shafer theory or significance theory.
When the evidence exists, the hypothesis



1552 Spatial Data Mining

evaluates a minimum of the belief function.
Hence, the hypothesis cannot be denied because
the plausibility function measures the maximum
degree. However, the evidence is null by the
unsupported interval. The evidence theory can
also be an identification to probability theory. It
implies that the evidence theory is the extension
of the probability theory. The evidence theory
is divided into two parts by the SDM technique
which are the certainness measures confidence
and the uncertainness measures likelihood.
So, the framework of evidence data mining
(EDM) concentrates on mass functions and mass
operators to discover the knowledge.

Moreover, the spatial clustering presents the
concept of similarity. The cluster determines the
dataset to maximize the similarity and minimize
the dissimilarity between clusters. The data is
clustered by the object characteristics through
spatial raw data. Only the basic object attributes
can figure directly the meaningful clusters in a
spatial dataset. Then, the data point in a multi-
dimensional feature space can also cluster for the
pattern recognition.

Extended Set Theory
SDM is capable on the similarity of human think-
ing on certainty and uncertainty. The crisp set
examines the certainty, while the extended crisp
set considers the uncertainty. To classify which
group elements belong to, the crisp set bounds the
binary logic of 0 and 1 as the full membership
or no membership. However, the indeterminate
boundaries are not accurate with the crisp set
methods. Hence, SDM enhances the crisp set
theory on uncertainty by using fuzzy set, rough
set, and cloud model.

The fuzzy set is the fuzziness on a fuzzy mem-
bership. A close interval as [0, 1] of the partial
membership defines an uncertainty probability.
Two main fuzzy techniques are the fuzzy compre-
hensive evaluation and fuzzy clustering analysis.
The fuzzy set is more proper to classify the
spatial heterogeneous distribution of geographi-
cal uncertainty. The more fuzziness is created,
the more difficult and complex system is. The
approximation of the elements is close to 1 means
the more possible belong to the target class.

Next, a rough set focuses on an incomplete-
ness of the lower and upper approximations
in SDM. An incompleteness-based reasoning
method fulfills a decision-making by the
characteristic of certainty and uncertainty data.
The rough set favors on the partial membership
with a set of an open interval and two different
terminals as f0, (0, 1), 1g. The difference between
lower approximation and upper approximation
sets is the indeterminate boundary whether the
sufficient information of objects can classify the
class belongs to. The more information of the
equivalent class is classified, the more accurate
objects description is.

Finally, the cloud model requires the partial
membership with the random close intervals. The
data distributes stochastically in the space as
random [0, 1]. The randomness integrates with
the fuzziness in order to conduce a model of
mutual information between qualitative concepts
and quantitative data.

Bionic Method
The Bionic method is the representative of Ar-
tificial Neural Network (ANN) and genetic al-
gorithm. The neural network simulates a human
brain as the networked patterns by a self-adaptive
nonlinear dynamic system. The ANN contains
many neurons which are connected with the im-
mense and sophisticated junctions. The classi-
fication, clustering, and prediction GIS data of
SDM with the complicate system and connected
plentiful of neurons are successful by ANN. The
ANN implements more precisely than the sym-
bolic classification. The numerous neurons pro-
cessing seems as a network that creates the non-
linear function of a complex system. The infor-
mation processing of neuron network involves
with three layers which are input, middle, and
output. The three layers operate depending on the
dynamic response from the network status to the
external data input. If between input and output
layers have multiple hidden layers of units, ANN
turns to be a deep neural network with the given
method of deep learning. ANNs can reduce the
noise disturbance in pattern recognition. So, the
network is efficient on the high fault tolerance
and robustness. If ANN is the nonlinear system
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with many input variables, their convergence, sta-
bility, local minimum, and parameter adjustments
of the network will be affected.

Others Related
• Rule Induction

The rule induction focuses on searching
generic rule from the massive empirical data.
The induction relates the basic statistical facts
and instance of a big data while the deduction
involves with axioms or basis reasoning on
acknowledge knowledge (Clark and Niblet
1987). A concept tree and the rule induction
which are the high-level patterns manipulate
on uncovering the patterns among the spatial
dataset.

• Decision Tree

The decision tree evolves the classification
or decision set as a tree under certain spatial
features. A test function on the tree structure
of SDM generates the training object sets. Ev-
ery created branch sets contain lower-nodes and
sub-branches which generate iteratively. The leaf
nodes are possible to be positive and negative
examples.

• Visualization Techniques

In SDM, the spatial data and knowledge are
better to explore and present visually. The form
of visualization is worth than the words. The ab-
stract patterns, relations, and tendencies of spatial
data can be converted into the visualization by
the computerized mechanism. The final results
of visualization can be clarified by charts, maps,
animations, graphics, images, trees, histograms,
table, multimedia, and data cubes.

SDM Software
The SDM software implements the functions for
discovering the spatial knowledge. The spatial
data is truly existent the immense volume in
the database. The implementation techniques are
made use to instruct the computer understand

what is knowledge to find and how to find the
spatial knowledge. The SDM software has to
manipulate with the data mining system. The
decision-making system is supported by the ex-
traction of high level information. The Knowl-
edge Discovery and data mining are invented as
a technique to reveal the strategic information
hidden.

Not all tools can support the knowledge dis-
covery and data mining, the proper tool will be
selected based on the data characteristics. As a
feature classification scheme, was purposed and
studied by Goebel and Gruenwald (1999). The
researchers extracted the features of 43 different
tools based on 3 groups that are general charac-
teristics, database connectivity, and data mining
characteristics. The results showed that first 2
groups describe the ability of each tool supports
what kind of data. Then the third group showed
that rule induction, decision trees, and statistical
methods are the standard data mining techniques
while the fuzzy and rough sets or genetic al-
gorithms started developing on the knowledge
discovery software.

The software can interact with the database
and data warehouse. After that, the distributed
and heterogeneous data are needed to operate
from offline-based to online-based (cloud com-
puting). The technology of Google or Baidu have
to accelerate the services for end-users which
support the location-based, positioning, recom-
mendation and manufacturing. The application
started with toolkit that is ready-to-use software.
Their functions provide the variety of data mining
algorithms such as IBM Intelligent Miner, SPSS
Clementine, SAS Enterprise Miner.

The SDM software for the spatial data mainly
focuses on the GIS data and RS images. Li et
al. (2016) studied and implemented the GIS-
DBMiner for GIS data and the RSImageMiner
for imagery data. The GISDBMiner supports
the common structured data which is stored
in the database. Users start by sending the
knowledge discovery command and the signals
to spatial DBMS which enable to access the
spatial database. Then, the algorithm performs
and returns the discovered knowledge as the
output. For the RSImageMiner is powerful of
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the data management and data mining on image
features such as shape, color, texture and pattern.
The RSImageMiner manipulates the RS imagery
data which working on the mining process to
discover the feature knowledge. Then, continue
with the knowledge-based image classification,
retrieval and object recognition (Li et al 2015).

Examples of Application

The methods and techniques in SDM are pow-
erful to increase the quality of the discovered
knowledge. As the mathematical foundation of
those algorithms, the classification, clustering,
and prediction on the spatial data mining are
interesting. Koperski (1999) reviewed a two-step
decision classification by first spatial predicates
extraction with the relief algorithm of ML. Both
spatial (which refers to the data of geographic
location, size and shape objects on the planet)
and non-spatial (which refers to a creation of text,
image, multi-media data for linking with the spa-
tial data to specific the location) (Diwakar 2013)
predicate the integrated with knowledge of classi-
fication decision. Then, the regional classification
rules with a fuzzy decision tree in an object-
oriented spatial database are examined (Marsala
and Bigolin 1998). Moreover, the rough set ap-
plications also apply the various fields of approx-
imate reasoning, ML, AI, pattern recognition, and
knowledge discovery. The further improvement
of rough set can be continued with the studying of
the field of geospatial information sciences such
as geo rough space.

The developed SDM applications focus on
the behavioral data in the system due to the
continuous growth in volume of the spatial
data. The Internet-based geographic information
(Goodchild 2007) and location-based sensing
services are important to update the spatial
information. The spatial data is employed in
the electrical maps, planning networks, land use
construction, and protection on farmland. Hence,
the making use of GPS, GIS, remote sensing,
radar, infrared computerized tomography
imaging, etc. can be the merging techniques
to rise up the application performance.

Future Directions for Research

From the SDM concepts and techniques
mentioned above, there are previous researches
that studied and applied the spatial data on
geographical information to solve problems of
resources changes (Berger 2001), environment
changes (Mannion 1995), and land-use allocation
effect (Carsjens and Van Der Knaap 2002).
Hence, the possible future directions for research
can adjust to an agriculture aspect. The trend of
agricultural product is advertent and proposed.
Since the main occupation in the agricultural
countries works on the cultivation which can crop
yearly. The mass volume of agricultural products
is continuous growth. Then, the economic trend
of each country and the world in both short and
long-term can be driven by those farm produce.
The product’s popularity is the major impact for
forecasting the demand and supply in the real
market. If the quantity of agricultural product can
be predictable, it definitely benefits to various
clients. In term of investor, they can consider
on the investment. While in term of government,
they can determine the policy direction to support
the agriculturists.

Cross-References

�Big Data Analysis for Social Good
�Big Data Analysis Techniques
�Data Cleaning
� Spatial Data Integration
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Synonyms

Spatial networks big data; Spatiotemporal graphs
big data; Spatiotemporal networks big data

Definitions

Digital modeling of real-world networks (e.g.,
road networks, river network) to accurately rep-
resent geographic information is done using spa-
tial graphs. Spatial graphs can represent n-ary
relationships to model complex relations in the
network. They differ from existing geographical
models that can only represent binary relation-
ships. Spatial graph is formally defined using the
concepts of Xnodes and Xedges and Xgraphs in
the following paragraph.

Xnode represents a real-world network fea-
ture (e.g., road intersection) that can have scalar
or structured values (e.g., an array of scalars).
Xedge is a tree of Xnodes that can have scalar or
structural values. Further, Xedge can be classified
based on the type of network features being
modeled (e.g., turn-Xedges) as shown in Fig. 1.
Xgraph can be defined as a set of Xnodes and
a set of Xedges. Spatial graph is an ensemble
of Xgraphs, which can represent n-ary relation-
ships or discontinuity in a real-world network.
Spatial graphs differ from hypergraphs because
it consists of Xedge that can have a tree structure,
whereas hypergraphs do not adhere to any spe-
cific structure.

Spatial graph big data is defined as a dataset
with the following properties: (a) it describes the
attributes of an Xgraph including attributes of its
Xnodes, Xedges, and other substructures and (b)
its volume, velocity, or variety exceeds the capac-
ity of current data platforms. Examples include
the longitudinal traffic volume associated with
transportation networks such as road maps, as
well as routes of airlines, buses, trains, ships, etc.
as detailed in section “Examples of Application”
on applications.

Figure 1 depicts a spatial graph big data
with four nodes representing road intersections,
namely, N1, N2, N3, and N4. The graph has
seven Xedges including four binary Xedges (N1
! N2), (N2 ! N4), (N1 ! N3), and (N3 ! N4)
representing road segments connecting adjacent
road intersections. The graph has an all-successor
Xedge (N1 ! (N2, N3)) to represent the group
of binary edges (N1 ! N2) and (N1 ! N3)
from Xnode N1 to its children Xnodes N2 and

https://www.slideshare.net/SumantDiwakar/spatial-vs-non-spatial
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Spatial Graph Big Data,
Fig. 1 Example of spatial
graph big data

N3. It also has two turn-Xedges (N1!N2!N4)
representing a right turn and (N1!N3 !N4)
representing a left turn. The time series associated
with the turn-Xedges represent turn delays. In
this example, the right turn (i.e., N1!N2!N4)
has no wait. However, the left turn has a wait
of 3 for start-time 1, 2 for start-time 2, 1 for
start-time 3, and no wait for start-time 4. Note
that, in the figure, there are seven Xedges but six
time series, because all-successor Xedges do not
have a time series associated with it. For brevity
“spatial graph” term is used in place of “spatial
graph big data” in the following text.

Overview

City development aims to connect existing re-
sources to ensure a productive environment for
prospective citizens. Historically, the urban de-
velopment has been driven by the stability of
the major roadways that form the backbone of
the urban infrastructure (Strano et al. 2012). In
modern times, urban dwellers and goods are in-
creasingly connected by multiple networks sup-

porting different means of transportation. The
road networks have been augmented by rail net-
works (intercity, intracity), airport networks, and
the port networks found located in cities near
major rivers or navigable water bodies. These net-
works heavily influence many aspects of modern
society, and they are implicated in many modern
problems such as disease spread, congestion, and
urban sprawl (Barthélemy 2011). Therefore, it is
important to know how to model and analyze
these types of transportation networks. In this re-
gard, technology plays an important role to model
the networks and understand their utilization.

Technological advancements, especially in the
field of satellite systems, the Internet, and smart-
phones have had a major impact on the use and
modeling of urban networks. GPS (Masumoto
1993) one of the Global Navigation Satellite Sys-
tem (GNSS) technologies (Lechner and Baumann
2000), is now used extensively for navigation on
road networks. Further, Internet accessibility to
smartphone users has been made possible by the
advancement in electronics. Furthermore, when
monitored at regular intervals, the location data
from these devices allows us to digitally map
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various movement activities (e.g., travel routes)
to their physical locations, using map-matching
techniques (Jensen and Tradišauskas 2009) for
every user to perform different types of analysis
(e.g., generating historical profiles of driver be-
havior).

Proliferation of technologies and the loca-
tion data they generate is growing exponentially.
In 2015, there were already around 2.6 billion
smartphone subscriptions globally, and this num-
ber will continue to rise in the future especially
in developing countries where the market is still
maturing (Lunden 2015). In addition, commer-
cial vehicles are using more sophisticated GPS
devices that can monitor a variety of engine
parameters (e.g., fuel usage, speed, etc.) in ad-
dition to location. Therefore, it is necessary to
build technologies which can accurately and ef-
fectively model location-based data that are ever-
growing size, variety, and update rate. In a big
data paradigm, these issues correspond to the
standard three Vs, i.e., volume, velocity, and vari-
ety (Zikopoulos and Eaton 2011). New database
management systems are required to effectively
harness these datasets.

In general, database applications are mod-
eled using a three-step design process begin-
ning with a conceptual data model (e.g., entity-
relationship model), a logical data model (e.g.,
relational schema), and finally a physical design
(e.g., R-Tree). To handle spatial features, the
entity-relationship (ER) models were modified
to pictogram-enhanced ER (PEER) to improve
the geographical representation of the data in the
model. The relational schema was modified by
incorporating appropriate data types from SQL3
onward and translating the spatial relationship
into spatial integrity constraints (Shekhar et al.
2004). Spatial graphs represent the physical mod-
eling phase for modeling spatial network data,
where, traditional graphs were modified to be-

come a spatial graph to represent complex net-
work properties with scalar or structural values.

To illustrate the limitations of simple graphs
while modeling turns, consider the example road
map as shown in Fig. 2a. Figure 2b shows a
graphical representation of the road map where
every node represents a road intersection and
every directed edge represents a left or right lane
of the road segment. In the original graph, the
right turn at node N5 can be modeled as N6
�> N5 �> N8, which requires the use of three
nodes and two edges (3N, 2E). Consider, Fig. 2c,
where the node N5 is expanded to six sub-nodes
to model the turns at the intersection. Now the
turn can be represented using N5a �> N5e, i.e.,
with just two sub-nodes and one edge, and no
information is required from the other intersec-
tions. It is useful to be able to model turns at an
intersection independent of other intersections.
Finally, consider Fig. 2d that shows spatial graphs
of segments and turns as turn-Xedges to represent
the road map. The red-colored Xedge represents
the turn; thus, with spatial graph, the turns can be
modeled using a single Xedge.

Spatial graphs have been extensively stud-
ied in three main areas, namely, data modeling,
database storage, and data mining algorithms.
The research in spatial graph modeling is moti-
vated to develop simple and effective represen-
tations of the data. For example, network size
can grow rapidly as new nodes are added, and
a simple model should easily accommodate and
adapt to the changes. The spatial graph research
in data storage is motivated to provide efficient
graph-based operations (e.g., node retrieval, edge
retrieval). The operations require data related to
the same route; therefore, techniques (Evans et
al. 2010) that store data on routes together helps
to reduce the number of data page access. The
research in the area of data mining uses spatial
models to solve problems such as finding shortest

Spatial Graph Big Data,
Fig. 2 Modeling turns
(Shekhar et al. 2012) [Best
in Color]
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cost (e.g., shortest travel time) to different des-
tinations or route planning to maximize traffic
flow or crowd movement toward a destination
(George et al. 2007). Section “Research Areas”
describes each of these domains in further detail.
Readers interested in example applications or
future directions may consult section “Examples
of Application” or section “Future Directions of
Research” of this entry, respectively.

Research Areas

Modeling Spatial Graphs
Spatial graphs typically represent transportation
networks that can be viewed from one of two
frames of reference, Eulerian or Lagrangian
(Batchelor 2000). In the Eulerian frame of
reference, traffic is observed as it travels past
specific locations in the space over a period of
time. It is similar to sitting on the side of a
highway and watching the traffic pass a fixed
location. In the Lagrangian frame of reference,
the observer follows an individual moving object
as it moves through space and time. This can
be visualized as sitting in a car and driving
down a highway. The following text discusses
three spatial graph models: the snapshot and the
time-aggregated graph (TAG) models, which use
the Eulerian frame of reference, and the time-
expanded graph (TEG) model, which uses the
Lagrangian frame of reference (George et al.
2007).

1. Snapshot Model

A snapshot model represents a spatial graph
with temporal attributes using a finite set of nodes
and a finite set of edges connecting the nodes.
Temporal attributes are represented by discrete
time steps, each represented by a snapshot as
shown in Fig. 9. The figure shows three time
steps, t D 1 to t D 3, and shows the effect of
temporal change on an edge, indicating travel
time. For example, at time t D 1, edge N2-N1
has a value of 1. In the next time step, t D 2, the
edge value increases to 5, indicating an increased
travel cost for the edge.

2. Time-Expanded Graphs

A time-expanded graph (TEG) (Köhler et al.
2002) model replicates each node along the time
series such that a time-varying attribute (e.g.,
travel time) is represented between replicated
nodes. Figure 4 shows the TEG corresponding to
the spatial graph displayed earlier (Fig. 3). From
the figure, observe that for edge N1-N2, weight
of 1 is represented by an edge from N1 at t D 1
to N2 at t D 2. Further, the recurrence of similar
edge across time between N1 and N2 at t D 2
mimics the invariance of edge weight over this
time period. It is also interesting to see that N2
at t D 1 has an edge to N1 at t D 2 and that
N2 at t D 2 has an edge to N1 at t D 7. This is
because the edge weight for N2-N1 changes from
1 at t D 1 to 5 at t D 2 (Fig. 4).

Spatial Graph Big Data, Fig. 3 Snapshot model (George et al. 2007)
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Spatial Graph Big Data,
Fig. 4 Time-expanded
graph (George et al. 2007)

3. Time-Aggregated Graphs

A time-aggregated graph (TAG) stores a spa-
tial graph with temporal attributes as the tuple fN,
E, Map(N, TSN), Map(E,TSE), Wg, where N is
a set of nodes, E is a set of edges (E), Map(N,
TSN) is the mappings from nodes to the time
series associated with the nodes, Map(E,TSE)
is the mappings from edges to the time series
associated with the edges, and W is the time-
dependent weights (e.g., travel time). Figure 5
shows the corresponding TAG for the networks
as shown in Figs. 3 and 4. Observe that that node
N1 has two time series associated with it for edge
N1-N2 (1, 2) and N1-N3 (1, 3). Then, observe
that the time-dependent weights for these edges
are [1,1, �] and [2, �, 2], respectively. The “-”
symbol represents the time t D 3 when the edge
N1-N2 does not exist.

Storage of Spatial Graphs
Large-scale spatial graphs with temporal attribute
have hundreds of thousands of nodes and millions
of time steps, amounting to terabytes of data. It
is appropriate therefore to focus on secondary
techniques for the storing of time-attributed spa-
tial graphs for database systems. Figure 6 shows
the process of storing a spatial graph. These
methods make use of data files consisting of data
pages and an indexing method. These methods
employ an indexing method to output a data file
containing the spatial graphs partitioned across

Spatial Graph Big Data, Fig. 5 Time-aggregated graph
(George et al. 2007)

a set of data pages. Incorporating temporal data
into a spatial graph poses significant challenges
to their storage and analysis of disk I/O. Network
topology and temporal access patterns add further
constraints to the accessibility of data records.

One solution is to physically store topologi-
cally related nodes in the same data page, re-
ducing the cost of data-page retrieval. Further,
as the storage size decreases, the I/O cost is
reduced due to a fewer number of pages contain-
ing the same data. The following texts describe
three methods for storing spatial graphs: snap-
shot partitioning, longitudinal partitioning, and
non-orthogonal partitioning. First, however, it is
necessary to explain the concept of orthogonal
storage vs. non-orthogonal storage, also known
as synchronous time grouping vs. asynchronous
time grouping.
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Spatial Graph Big Data, Fig. 6 Process of storing spatiotemporal networks (STN)

Synchronous vs. Asynchronous Time Grouping
Synchronous time grouping is the clustering of
data within a set time series, whereby some
numbers of nodes and edges are stored within
a set time interval. Each page is a snapshot,
and longitudinal scheme represents a continuous
time interval, either one time step or the entire
time series. An example is storage of A1, B1,
C1, and D1 in the same data page for snapshot
partitioning as shown in Fig. 7a and storage of
A1, A2, A3, and A4 in the same data page for
longitudinal partitioning as shown in Fig. 7b.
Asynchronous time data grouping allows storing
data for disjoint time intervals. Thus, data from
different time intervals are grouped and stored
on the same data page. This model is known
as sub-node model. It is useful for queries that
retrieve the traversal times beginning at each
time instant where temporal data is mostly not
accessible orthogonally. An example is storage
of A1, B2, C3, and D4 in the same data page
as shown in Fig. 7c for Lagrangian-connectivity
partitioning.

1. Snapshot Partitioning

Snapshot partitioning stores the data in pages
using quad tree-based geometrical structures
(e.g., R-Trees, RC�Trees, etc.). Figure 7a
shows an example of snapshot partitioning,
where a spatial graph with temporal attributes
is represented as a snapshot model partitioned
across the disk pages. As can be seen, the
model preserves the graph state for a given
time instant (say time t D 1). Further, the graph
states are strictly partitioned based on time; thus,
when traversing through the graph across time,

multiple-disk access needs to take place. For
example, if a car’s route has to be evaluated from
A to D via C starting from time t D 1, it will
require an access to edge AC at t D 1 stored
in data page 1 and then access to edge CD at
t D 3 stored in data page 3. Thus, the evaluation
requires access to two data pages.

2. Longitudinal Partitioning

Longitudinal partitioning stores spatial graphs
with temporal attributes based on the storage
structure of the adjacency-list main memory.
Figure 7b shows the longitudinal storage. As can
be seen, each node is stored with its attribute
information and all outgoing edges with their
attribute information as an adjacency list. This
orthogonal storage solution suffers from the
increasing disk I/O to evaluate routes in large
spatiotemporal networks. The example network
has a short time series compared to its graph size,
allowing multiple node records (with adjacency
list) to fit inside a data page. However, if the time-
series length was larger, then all the nodes may
need multiple pages for storage. This is due to
the long time series being stored with each node,
resulting in only a small number of storable nodes
on each data page. Consider the evaluation of the
route ACD using longitudinal partitioning. First
it requires accessing the traversal time attribute
of edge AC at t D 1, stored on data page 1. Then,
it requires accessing edge CD at t D 3, stored on
data page 3, to complete the evaluation. Thus, for
longitudinal partitioning, the evaluation requires
two data pages.
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Spatial Graph Big Data, Fig. 7 Spatial graph storage techniques (Evans et al. 2010)

3. Lagrangian-Connectivity Partitioning

Lagrangian-connectivity partitioning (LCP)
uses time-expanded graphs (TEG) to store spatial
graphs with temporal attributes. Each partition
stores the non-orthogonal patterns of route
evaluation operations along with a novel data
record based on sub-nodes. By representing
a spatiotemporal network as a modified time-
expanded graph, focusing on the Lagrangian
connections between nodes (movement edges),
a min-cut graph partitioning algorithm creates
partitions clustering nodes by minimizing the
cuts of these movement edges. This allows
the algorithm to collocate connected temporal
nodes together on data pages, stored as sub-
node records as shown in Fig. 7c. This further
reduces the I/O cost for the operations (described
earlier). This can be seen by looking again at the
evaluation of route ACD. Traversing from node

A1 to C3 and then C3 to D4 requires only one
data page as all relevant sub-node records are on
the same data page.

Data Mining Algorithms on Spatial Graphs
Spatial graphs with temporal attributes are used
in emergency traffic planning and route-finding
services. These applications require routes with
the smallest duration for a given start time (useful
for known events) and the route with the small-
est duration that can occur at any of the start
time. Developing efficient algorithms for finding
such routes in a time-varying spatial network is
challenging because these journeys do not always
display a greedy property or optimal substructure,
making techniques like dynamic programming
inapplicable. The following text will outline al-
gorithms for finding a route with the smallest
duration for a given start time followed by an
algorithm that finds routes with the smallest du-
ration that can occur at any of the start times.
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Spatial Graph Big Data, Fig. 8 Example spatial graph with temporal attributes

1. Shortest Path Computation for Time-
Aggregated Graphs (SP-TAG)

The SP-TAG algorithm (George et al. 2007)
uses the time-aggregated graphs to represent spa-
tial networks, where each node (road intersec-
tion) has a node presence time series and each
edge (road segment) has an edge presence time
series annotated with travel time. The algorithm
keeps track of the earliest time a node can be
reached and updates the values as optimal values
are found. The algorithm assigns tstart to the
first node and puts the node in a priority queue
(Cormen 2009). The steps are repeated until the
priority queue is empty. At each step, the lowest-
cost node is extracted from the queue. Then, the
values for all its adjacent nodes are updated, and
the extracted node is marked as closed. For each
update, the minimum between the previous value
and the new value of current time C traversal
time is chosen. Then, the adjacent node is added
to the queue. The time complexity of the SP-TAG
algorithm is O(m(logTClogn)), where T is the
number of nodes and m is the number of edges
in the time-aggregated graph.

Figure 8 shows an example spatial graph hav-
ing nodes with node presence time series and
edges with edge presence time series, travel time
series. Table 1 shows the SP-TAG algorithm trace
on this graph, which shows the computation of

Spatial Graph Big Data, Table 1 Trace of the SP-TAG
algorithm (George et al. 2007)

Iteration N1 N2 N3 N4 N5

1 1
(closed)

1 1 1 1

2 1 2
(closed)

3 1 1

3 1 2 3
(closed)

3 1

4 1 2 3 3
(closed)

6

5 1 2 3 3 6
(closed)

the shortest path from N1 to N5. Each row rep-
resents an iteration of the algorithm that updates
the values to newly found optimal values. For
example, at iteration 2, node N2 is closed, and
the N4 gets updated as shown in iteration 3.

2. Best Start Time Shortest Path (BEST) Al-
gorithm

The BEST algorithm uses time-aggregated
graphs to represent the network, where every
node has a node presence time series and every
edge has an edge presence time series and travel
time series. In the output, each node has a time
series, with the ith entry representing the current,
least travel time to the destination node for the
start time ti. The algorithm uses an iterative label
correcting approach (Ahuja et al. 1993), and each
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entry in a node time series is modified according
to the following condition:

Cu[t] D minimumfCu[t],¢uv(t) C C[t C ¢uv(t)]g,
where uv 2 E,

Cu[t] – Travel time from u 2 N to the destination
for the start time t.

¢uv(t) – Travel time of the edge uv at time t.

The algorithm maintains a list of all nodes that
change its cost according to the condition and
terminates when there is no further improvement
indicated by an empty list. The algorithm uses
two-Q-based implementation (Pallottino 1984).
The computational complexity of the BEST al-
gorithm is O(n2mT), where n is the number of
nodes, m is the number of edges, and T is the
length of the time series.

Figure 9 shows an example with a figurative
trace. At each step, the distance list from destina-
tion gets updated to show the shortest distance for
all the time instants. Further, the parent pointer
list gets updated to show the corresponding par-
ent. Table 2 shows the trace for the algorithm
showing shortest distance from N4 (destination)
to all the nodes for each of the time instance.
Further, the table shows the queue state. Note
that in Fig. 9 edge presence time series and node
presence time series are omitted because all the
edges and nodes are present at all times.

Examples of Application

This section elaborates on three existing appli-
cations that rely on spatial graphs. Two of the
applications show the use of different frames of
reference (described in section “Modeling Spatial
Graphs”) to the real-world applications. Section
“Historical Speed Profiles for Roadways” de-
scribes the use of vehicle trajectory from a Eule-
rian frame of reference, and section “GPS Trace
Data for Improving Fuel Efficiency” describes
the use of vehicle trajectory from a Lagrangian
frame of reference. Section “Evacuation Route
Planning” discusses an important societal prob-
lem that talks about the use of spatial graphs in
disaster management.

Historical Speed Profiles for Roadways
Traditionally, digital road maps have consisted of
center lines and topologies of the road networks.
These maps are used by navigation devices and
web VTEQ, probe vehicles, and highway sensors
to compile travel time information across road
segments for all times of the day and week at
fine temporal resolution (seconds or minutes).
The profiles have data for every 5 min, which can
then be applied to the road segment, building up
an accurate picture of speeds based on historical
data. An example distribution is shown in Fig. 10
(Shekhar et al. 2012). Such temporally detailed
(TD) road maps contain much more speed infor-
mation than traditional road maps. While tradi-
tional road maps have only one scalar value of
speed for a given road segment (e.g., EID 1), TD
road maps may potentially list speed/travel time
for a road segment (e.g., EID 1) for thousands
of time points (Fig. 10a) in a typical week. This
allows a commuter to compare alternate start
times in addition to alternate routes. It may even
allow comparison of (different) start time and
route combinations to select distinct preferred
routes and distinct start times. For example, route
ranking may differ across rush hour and non-rush
hour and in general across different start times.
However, TD road maps are big, and their size
may exceed 1013 items per year for the 100 mil-
lion road segments in the USA when associated
with per-minute values for speed or travel time.
Thus, industry is using speed profiles that are a
lossy compression based on the idea of a typical
day of a week, as illustrated in Fig. 10b, where
each road segment and day of the week pair is
associated with a time series of speed values for
each hour of the day.

GPS Trace Data for Improving Fuel
Efficiency
GPS trajectories are available for a large col-
lection of vehicles due to rapid proliferation of
cell phones, in-vehicle navigation devices, and
other GPS data-logging devices such as those
distributed by insurance companies. According to
Shekhar et al. (2012), GPS traces allow indirect
estimation of fuel efficiency and GHG emissions
via estimation of vehicle speed, idling, and con-
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Spatial Graph Big Data, Fig. 9 Trace of the BEST algorithm (George et al. 2007)

Spatial Graph Big Data, Table 2 Trace of the BEST algorithm (George et al. 2007)

Iteration N1 N2 N3 N4 Queue

1 1 : : : 1 1 : : : 1 1 : : : 1 [0, 0, 0, 0, 0] N1

2 1 : : : 1 [1, 1, 2, 2, 1] [4, 4, 2, 4, 3] [0, 0, 0, 0, 0] N2, N3

3 1 : : : 1 [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N3

4 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N1

5 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] –
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Spatial Graph Big Data, Fig. 10 Spatial big data on historical speed profiles (Shekhar et al. 2012)

gestion. They also make it possible to provide
personalized route suggestions to users to reduce
fuel consumption and GHG emissions. For exam-
ple, Fig. 11 shows 3 months of GPS trace data
from a commuter with each point representing a
GPS record taken at 1 min intervals, 24 h a day,
7 days a week. As can be seen, three alternative
commute routes are identified between home and
work from this dataset. These routes can be com-
pared for engine idling which are represented by
darker (red) circles. Assuming the availability of
a model to estimate fuel consumption from speed
profiles, one may even rank alternative routes for
fuel efficiency. Again, a key hurdle is the dataset
size, which can reach 101313 items per year given
constant minute-resolution measurements for all
100 million US vehicles.

Evacuation Route Planning
Large public gatherings require effective
management to preserve public safety. One of
the key responsibilities of a civil administration
is the capability to manage adverse conditions
(e.g., terrorist acts, accidents) that may require
finding efficient routes to evacuate all or a
portion of a population. The evacuation route
planning problem (Yang et al. 2012) finds
routes that minimize evacuation time given a
transportation network, a population, and a set
of observations. To be effective and timely,
evacuation planning methods need to adhere
to network capacity constraints and provide
reasonable computation time. Evacuation route
planning involves (taking) a big data perspective
due to the size of transportation networks (order
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Spatial Graph Big Data, Fig. 11 A commuter’s GPS tracks over 3 months reveal preferred routes (Shekhar et al.
2012)

of 103 nodes and 106 edges), the large number of
evacuees (order of 106), as well as the capacity
constraints for every node and edge.

Future Directions of Research

The section describes two future directions of
research related to spatial graphs. The first is
driven by the increased use of sensors that can
measure every aspect of vehicles including its

surroundings. This would potentially allow to
make variety of profiles for a vehicle. The second
is driven by the need to identify city areas that
are affected due to multiple reasons (e.g., natural
calamities, adverse neighborhood) based on tra-
jectory data.

Time Annotated Engine Measurement
Spatial Data
Engine measurement datasets may be used to
study the impacts of the environment (e.g., ele-
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Spatial Graph Big Data, Fig. 13 Case study on identification (Eftelioglu et al. 2018)

vation changes, weather), vehicles (e.g., weight,
engine size, energy source), traffic management
systems (e.g., traffic light timing policies), and
driver behaviors (e.g., gentle acceleration or brak-
ing) on fuel savings and greenhouse gas emis-
sions. Fuel efficiency can be estimated from fuel
levels and distance traveled as well as engine
idling from engine RPM. These attributes may be
compared with geographic contexts such as (e.g.,
elevation changes) to improve understanding of
fuel efficiency and greenhouse gas emission.

For example, Fig. 12 shows heavy truck fuel
consumption as a function of elevation from a
study (Capps et al. 2008) at Oak Ridge Na-
tional Laboratory. Notice how drastically fuel
consumption changes drastically with elevation

slope changes. Commercial fleet owners have
studied such datasets to fine-tune routes to reduce
unnecessary idling. It is tantalizing to explore the
potential of these datasets to help consumers gain
similar fuel savings and reductions in greenhouse
gas emission. However, these datasets can grow
big. Measurements of 10 engine variables, once
a minute, over the 100 million US vehicles in
existence, may have 1014 data items per year.

Distressed Area Identification
Distressed area identification uses GPS trajec-
tories on a road network to identify distressed
areas or the regions that are usually avoided by
the commuters. This emerging area is important
to applications such as sociology, city/transporta-
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tion planning, and crime mitigation, where it
can help domain users to understand the driver
behavior under varying adverse conditions (e.g.,
rush hour, congestion, dangerous neighborhoods,
etc.).

For example, Fig. 13 shows results from a
recent case study (Eftelioglu et al. 2018) on
a real dataset consisting of 1312 vehicle GPS
trajectories in Italy over a period of 3 years.
The study used the input trajectory data and
road network data to output interesting avoidance
regions as shown in Fig. 13a. The zoomed-in
view (Fig. 13b) shows that drivers avoid areas
with increased security measures (e.g., important
government buildings) or increased congestion
(e.g., hospitals or tourist locations).
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Synonyms

GeoSocial data; Spatial data

Definitions

In the past decade, social networking services,
e.g., Facebook and Twitter, managed to unprece-
dentedly connect hundreds of millions of people
all over the world. Users register to online social
networks in order to keep in touch with their
friends and family, learn about their news, get
recommendations from them, and engage in on-
line social events. Thanks to the widespread use
of mobile and wearable devices, popular social
networks, e.g., Facebook, prompt users to add
spatial attributes to social entities, e.g., check-
ins, posts, and geo-tagged photos. Such spatial
attributes are already being tied to social network-
ing data to form what we call, Spatio-Social
Data. Spatio-Social data brings both the physical
space, social relationships, user interactions, and
social media content into effect together, which
led to the rise of many interesting applications.
For instance, users in a location-based social net-
working service (e.g., Foursquare and Facebook
Places) are associated with a geo-location and
might alert friends when visiting a place (e.g.,
restaurant, bar) by checking in on their mobile
phones.

Overview

Figure 1 gives an example of how Spatio-Social
data looks like. The figure depicts a social graph
in which there exist three types of entities: (i) per-
son (e.g., Alice, Bob, Carol, Dan, etc.) with a
name and age attributes, (ii) place (e.g., restau-
rants) with a name and a spatial location at-
tributes, and (iii) content (e.g., tweet) with id,
social media content (e.g., Tweet text), and loca-
tion attributes. The graph consists of four types
of social connections: (i) friend of that represents
the social relationship between persons, e.g., Al-
ice is a friend of Dan; (ii) visited that represents
the users’ visits to places, e.g., Dan visited Pita
Jungle restaurant in Tempe AZ; (iii) posted that
represents the relationship between people and
social media content, e.g., Mat posted a tweet
within the ASU stadium area; (iv) rated that
represents the users’ interactions with the phys-
ical space, e.g., Kate gave a five-star rating to
Sushi 101.

Spatio-Social Graph
In a GeoSocial graph, a user may issue the fol-
lowing query: “Find Restaurants in Phoenix that
are visited by Alice’ s Friends.” In addition, such
data can be utilized to process GeoSocial analytic
tasks, e.g., “Report restaurants in Phoenix that
are visited by teenagers (13 < age < 18).” We
call such queries that search the social graph
with both social and spatial predicates, GeoSocial
Graph Search (G2S ) queries. We can formally
define a GeoSocial Graph Search G2S query as a
regular path query with geospatial predicates per-
formed on the social graph. A G2S query takes
as input a sequence of social graph predicates as
well as a spatial predicate. The social predicate is
applied to traditional social graph entities and/or
connections with nonspatial attributes, e.g., per-
son, whereas the spatial predicate is performed on
social entities that possess spatial attributes, e.g.,
restaurants.G2S then returns a set of social graph
paths that match the social predicates as well
as satisfy the spatial predicate. Existing graph
database systems, e.g., Neo4j, allow users to
define spatial properties on graph elements. Mon-
goDB is utilized by Armenatzoglou et al. (2013)

https://doi.org/10.1007/978-3-319-77525-8_222
https://doi.org/10.1007/978-3-319-77525-8_100139
https://doi.org/10.1007/978-3-319-77525-8_100312
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Spatio-social Data, Fig. 1 GeoSocial graph data

to manage both social and geographic data. Each
user in the GeoSocial graph is assigned a spatial
location. A Range Friends query searches for
friends within a given distance from the user. The
Nearest Friend query searches the nearest friend
of a user.

Geo-tagged Social Media
Social media content is rich in content, e.g., text,
video, hyperlinks, photos, and spatial location.
Existing work studied keyword search on stream-
ing social media data (Busch et al. 2012; Wu et al.
2013; Yao et al. 2012). Other newly emerging
applications on GeoSocial media include event
detection (Abdelhaq et al. 2013; Li et al. 2012;
Marcus et al. 2011; Watanabe et al. 2011), news
extraction (Sankaranarayanan et al. 2009), and
analysis (Tweet Tracker 2013). Bao et al. (2012)
propose a GeoSocial news feed, which ranks the
news feed based on both the social and geospatial
proximity of each post to the user.

User Check-In Data
Myriad Web applications produce location-based
ratings that embed user and/or item locations. For
example, applications like Foursquare and Yelp
allow users to “check in” at spatial destinations

(e.g., restaurants) and rate their visit and thus
are capable of associating both user and item
locations with ratings. Existing recommendation
techniques assume ratings are represented by
the (user, rating, item) triple and thus are ill-
equipped to produce location-aware recommen-
dations.

Recent systems produce three main types of
location-based user interactions (Sarwat et al.
2014; Levandoski et al. 2012a): (1) Spatial
ratings for nonspatial items, represented as a
four-tuple (user, ulocation, rating, item), where
ulocation represents a user location. Items are
nonspatial in nature (e.g., movies) and thus
do not have an associated location. As an
example, traditional e-commerce applications
(e.g., Netflix) may use a user’s home address
as ulocation, while mobile applications may
associate the location where the user rated
the item as the ulocation. (2) Nonspatial
ratings for spatial items, represented as a four-
tuple (user, rating, item, ilocation), where
ilocation represents an item location. Examples
of applications that produce such ratings
are e-commerce applications that gather user
opinions on venues/destinations (e.g., restaurant
review websites), but do not collect user
locations.
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Key Research Findings

Spatio-Social Graph Queries
Basic approaches that answer GeoSocial Graph
Search (G2S ) queries fall into two main cate-
gories, listed as follows:

(1) Social-Then-Spatial (SoSpa) approach This
approach leverages the query processor of an
existing graph data management system (Ky-
rola et al. 2012; Prabhakaran et al. 2012; Sar-
wat et al. 2012, 2013b; Shao et al. 2013). It
first traverses the social graph to find match-
ing paths (Chen and Chen 2008; Fan et al.
2011; Jin et al. 2010). When a spatial entity is
encountered during the social graph traversal,
SoSpa tests these entities against the spatial
predicate. Finally, SoSpa returns only paths
that satisfy both the social path predicates and
the spatial range predicate.

(2) Spatial-Then-Social (SpaSo) approach This
approach runs in two sequential phases:

(a) Spatial filtering: This phase employs a
state-of-the-art spatial database manage-
ment system that harnesses a spatial index,
e.g., R-tree, to first retrieve the social
graph entities that satisfy the spatial pred-
icate.

(b) Social filtering: This phase traverses the
social graph to only return social graph
paths that match the social predicates and
contains only the spatial entities retrieved
in the spatial filtering phase. Even though
both approaches correctly answer G2S

queries, nonetheless they may lead to per-
formance penalties by traversing unneces-
sary graph paths that incur extra I/O and
CPU overhead which increases the overall
latency of G2S queries (Sarwat and Sun
2017).

Spatio-Social Media Queries
Existing systems provide scalable indexing
mechanisms that allow users to interactively
explore spatio-textual data at scale. Various
spatial and spatio-textual indexing techniques
are explored in the literature (Budak et al. 2014;
Magdy et al. 2014; Skovsgaard et al. 2014) to

support spatial queries on geo-tagged social
media. Novel systems extend those techniques
to reduce the indexing latency and increase the
digestion rate. Existing research work addresses
the problem of tuning the in-memory part of
the spatio-textual index to minimize the overall
index storage and maintenance overhead. Initial
studies show that space-partitioning spatial
indexes achieve better performance in processing
real-time social media, e.g., spatial grid index
or spatial quad tree. On the contrary to data-
partitioning spatial indexes, e.g., R-tree, cell
boundaries in space-partitioning indexes do not
change with the incoming data. Instead, each
cell covers a specific area of the space and holds
whatever data it contains. Recent research work
also studies the problem of real-time geo-tagged
social media content insertion in the spatio-
textual, spatio-visual index by employing lazy
batch updates so that the amortized insertion
cost per social media content is minimized. A
large body of work investigates compression
techniques to minimize the memory footprint of
geo-tagged social media to efficiently utilize
main memory and storage resources. Such
systems investigate storing only necessary
information in main memory, e.g., recent tweets
or local top frequent keywords, and get rid of
any other information so that incoming spatial
exploration queries can fetch its answers in main
memory and avoid hitting the relatively slower
secondary storage.

Spatio-Social Recommendation
Existing spatial database systems allow users to
look up spatial data that matches exactly the
designated query and hence do not leverage the
user interaction with the physical space. Recom-
mendation (Sarwat et al. 2017; Levandoski et al.
2012b; Herlocker et al. 2004; Koutrika et al.
2009) is the process of suggesting useful data
to the user based on a large pool of historical
user interaction data (e.g., a user rating a venue
on Yelp). To take into account the user interac-
tion with the physical space, existing approaches
extend spatial data structures with user interac-
tion data to support spatial data recommendation.
The straightforward approach constructs a spatial
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index, e.g., R-tree, on all spatial data objects and
calculates the similarity between different items
and data points. When the user asks for a set
of spatial objects in a certain boundary region,
the system first searches for all the points lying
within the region. It is not feasible to go through
all the data point outcomes from the search. For
this purpose, the system filters huge data ignoring
all those points that may not interest him based on
his previous interactions with the system. Then,
only the items with top-k recommendation scores
are displayed to the user. The performance can be
further optimized to give faster recommendations
by augmenting existing spatial indexes to filter
spatial data using both their spatial attributes and
their recommendation scores.

The system produces recommendations
by employing an adaptive hierarchical grid
structure to partition data ratings by their
user location attribute into spatial regions of
varying sizes at different hierarchies. For a
querying user located in a region R, we apply
an existing collaborative filtering technique
that utilizes only the ratings located in R.
Existing systems can dynamically balance
scalability and recommendation locality. In this
case, the system produces recommendations by
using travel penalty, a technique that penalizes
recommendation candidates the further they are
in travel distance to a querying user (Sarwat et al.
2013a). The challenge here is to avoid computing
the travel distance (Hjaltason and Samet 1999)
for all spatial items to produce the list of k
recommendations, as this will greatly consume
system resources. Existing systems address
this challenge by employing an efficient query
processing framework capable of terminating
early.

Future Direction for Research

Spatio-Social data is rich in semantics. The graph
model can carry structure information, spatial
information, textual information, and user data at
the same time. Such data is inherently heteroge-
neous; hence there is always room for novel ap-
plications that combine a variety of Spatio-Social

aspects. Another direction of future research is
to explore the appropriate approach to analyze
and explore Spatio-Social data using visual map
interfaces. The challenge is that Spatio-Social
data is growing at a staggering rate. In that
case, an interesting area of research will be to
extend de facto distributed computing systems
and streaming engines to support fast and scal-
able processing of Spatio-Social data.
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Spatiotemporal Data
Integration

� Spatial Data Integration

Spatiotemporal Data:
Trajectories

Xiaofang Zhou and Lei Li
School of Information Technology and Electrical
Engineering, University of Queensland,
Brisbane, QLD, Australia

Synonyms

Moving objects; Routes; Spatiotemporal repre-
sentation; Traces

Definitions

Let p.l; t/ be a spatiotemporal point with loca-
tion l at time t . A trajectory is defined as � D<

p1; p2 : : : pn > where pi :t � pj :t if i < j . That
is, a trajectory is a sequence of spatiotemporal
points ordered by time.

Location l can be represented as a longitude
and latitude pair in geographical space or a road
segment ID and distance offset in a road net-
work. A trajectory without temporal information
is often called route or path, and a collection of
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trajectories of an object is called its trace. The
trajectory with a specific origin and destination
pair (OD pair) is also called a trip.

Overview

A trajectory records how an object moved in a
space. Such information is easier than ever to
acquire with the prevalence of location-capturing
devices such as GPS nowadays. Therefore, large
volumes of trajectory data are being accumulated
from various sources every day, for animals,
human, vehicles, and natural phenomena (Zheng
2015). Animal trajectory data can be obtained by
attaching tracking devices to animals, for envi-
ronment protection and animal behavior studies.
Movebank has collected animal movement data
from thousands of studies at millions of locations.
Human trajectories are collected from travelers,
cyclists, and joggers, due to the recent popularity
of electronic fitness tracking devices and mobile
devices. Transport-related trajectory data, which
by far are the most voluminous, most interest-
ing, and most useful type of trajectory data,
are generated by GPS devices and fixed-location
data-capturing devices from vehicles, airplanes,
and ships. Taxi service providers like Uber and
DiDi create terabytes of trajectory data every
single day. Natural phenomena trajectory data
are also collected for scientific studies. NOAA
Air Resources Laboratory (Draxler and Rolph
2003) stores a massive amount of meteorology
trajectories that can be used to better understand
the causes and impacts of natural disasters and to
protect the natural environment.

The works on trajectory data can be catego-
rized into several topics (Zheng and Zhou 2011).
The first one is trajectory preprocessing, includ-
ing noise removal to improve data quality, map
matching that aligns points to road segments for
road network-constrained moving objects (such
as cars), data compression, and trip segmentation
that prepares data for further uses like clustering
and classification. The second one is related to
trajectory data management, which aims at an-
swering retrieval queries efficiently by building
indexes and developing query algorithms. The

third one is trajectory mining, which involves
finding the patterns among the trajectories, clas-
sifying them into different categories, detecting
outliers, and reducing the uncertainty between
two consecutive points. Finally, based on all the
previous steps, trajectory data can be used to
solve problems ranging from more conventional
applications such as traffic condition prediction
and route planning to the more recent applica-
tions such as fuel and pollution emission mini-
mization in a city.

Key Research Findings

Trajectory Preprocessing
Essentially, the raw trajectory is an array of .l; t/
data, which can be noisy, too dense, or too coarse
in terms of sampling rates and cannot be directly
used for a variety of applications. Therefore, like
any other types of raw data, preprocessing is
needed before actual uses.

Noise Removal
Due the accuracy of the devices, the data col-
lected are not always accurate. Some of the data
points obviously drift off the course. The simplest
approach is using the mean or median value of
a sliding window to filter out the noise point.
However, it fails when there are multiple con-
secutive noise points. More practical approaches
apply outlier detection methods, like computing
the travel speeds of the points and removing those
that surpass the threshold (Yuan et al. 2013).

Map Matching
If there exists an underlying road network that
confines object movement (e.g., for cars), it is
always beneficial to attach the GPS points to the
corresponding roads. Based on the time when the
matching is executed, it can be categorized into
real-time mode and post-processing mode. The
real-time map matching is widely applied in real-
time turn-by-turn navigation systems. It requires
fast computation and can only use the previous
few points (i.e., no future points can be used),
while it cannot guarantee the continuity on the
path during the trip. The post-processing map
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matching can utilize the entire trajectory, so it is
more accurate but time-consuming.

The techniques used in map-matching meth-
ods can be divided into four groups. The first one
mainly considers the geometry distance between
GPS point/trajectory segment and the candidate
map points/map edges that could be possibly
aligned on. The second group also considers
topology of a map such as connectivity and con-
tiguity of roads. The third group further improves
the accuracy by using probability-based meth-
ods like the Hidden Markov Model and Kalman
Filter. More advanced approaches combine the
existing methods with additional information like
Wi-Fi, Bluetooth, and cellular fingerprint on mo-
bile phones, driver behaviors, and other semantic
information about the road network, the objects,
and other related information.

Compression
The amount of trajectory data increases at an
increasing pace, leading to gigantic storage over-
head as well as computation and communication
costs. However, not many applications need the
trajectory data to be that precise, so compression
is necessary in many cases.

A simple approach to reduce the size is to
remove some points if they do not affect the
precision dramatically. In this way, the new and
more compact trajectory is an approximation of
the original one. Another approach takes advan-
tages of the road network if applicable. Data size
can be reduced significantly after using consec-
utive matched road segments to represent points
because normally there are multiple GPS points
along the same road segment. Further compres-
sion can be achieved with the help of frequent
sequential pattern mining and Huffman Coding
(Song et al. 2014), or using other string compres-
sion methods like Burrows-Wheeler Transform,
because a series of roads can be viewed as a string
with each road representing a character in the
alphabet (Koide et al. 2017).

Segmentation
In many high-level applications where trajec-
tory data are used (such as traffic and traveler
behavior analytics), shorter trajectory segments

make more sense than the original long trajectory.
This is not only because shorter trajectories can
better support similarity-based analysis but also
improve computation efficiency (many trajectory
similarity measures are of quadratic complexity).
Further, segmentation based on OD pairs can
also bring semantic information to trajectories.
Trajectory segmentation (or trip segmentation) is
the process that breaks a long trajectory into a
series of short trajectories.

The segmentation processing has three
main categories. Firstly, the trajectory can be
segmented based on time interval. It is like
resampling the original trajectory on a lower
sampling rate. Secondly, it can be segmented
based on the shape (Lee et al. 2007), which
involves finding the turning points. Finally,
semantic meaning of the points (like walk
segment, driving segment, and segments between
taxi waiting time) can also serve as segmentation
points.

Trajectory Management
Querying and processing directly on a large
volume of trajectories are actually very time-
consuming. Therefore, how to organize and index
the trajectory data to support trajectory query
answering efficiently becomes a research topic,
which is called trajectory management (Deng
et al. 2011).

Trajectory Query
Based on the type of query entity (i.e., points,
regions, and trajectories), trajectory queries can
be classified into three types. P-Query asks for
points which satisfy a given spatiotemporal rela-
tionship to specified trajectory segment(s) (e.g.,
top-k nearest neighbors) or reversely. Similarly,
R-Query asks for regions, and T-Query asks for
trajectories. An example of a spatiotemporal rela-
tionship is “within 500 m of a gas station between
9:00pm and 9:30pm.”

Trajectory Index
Compared with other general data types,
trajectory data has unique characteristics like
continuous long time span. Meanwhile, queries
on trajectory also often ask for information
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in a continuous time window. Based on these
characteristics, three types of indexes are
proposed.

The first type augments the existing multi-
dimensional index with a temporal dimension,
like 3D R-Tree. The second type further breaks
the temporal dimension down to multi-version
structures, such as HRC-Tree and MV3R-Tree
(Tao and Papadias 2001). The third type focuses
on dividing the spatial dimension into grids and
then building a separate temporal index on each
grid. This category includes SETI and MTSB-
Tree.

Trajectory Similarity
Like any other data types, a similarity (or dis-
tance) measurement is needed to compare be-
tween trajectories.

The simplest scenario is the distance from a
point to a trajectory, which is measured by the
distance to the nearest point in the trajectory.
As for the distance between a set of nodes and
a trajectory, the closer matched pair of points
is assigned with larger weights using the sum
of distance, while those faraway pairs are given
much lower value typically in an exponential
way.

The similarity between two trajectories is usu-
ally measured by some kind of aggregation of
distances between trajectory points (Wang et al.
2013). Along this line, several typical similar-
ity functions for different applications include
Closest Pair Distance, Sum-of-Pairs Distance,
Dynamic Time Warping, Longest Common Sub-
sequence, Edit Distance with Real Penalty, and
Edit Distance on Real Sequences. It is worth
noting that some of those similarity functions
were originally proposed for time series data.
But as trajectories can be regarded as a special
kind of time series in a multidimensional space,
these similarity functions can also be applied to
trajectory data.

Trajectory Uncertainty
Because trajectory data is always a sample of the
object’s actual movement trace, the uncertainty
exists between any two points in a trajectory
especially when the sampling rate is low (Zheng

et al. 2012). On one hand, some works aim to
reduce the uncertainty of the trajectory. On the
other hand, other works try to add more uncer-
tainties for privacy protection reasons.

The first group of researches focuses on pro-
viding conservative bounds for the positions of
uncertain objects between two points, which is
achieved by employing geometric cylinders or
beads. Independent probability density functions
can be used to model the uncertain positions
(Cheng et al. 2004).

The other group of approaches aim at pro-
viding the most k likely routes between sample
points with the help of a set of uncertain trajecto-
ries, because these trajectories that share similar
routes can often supplement each other to make
themselves more complete (Su et al. 2013).

Contrary to the previous attempts, techniques
are developed to work on preventing user privacy
leaking by blurring the published trajectory while
preserving the utility of the data.

Trajectory Mining

Trajectory Pattern Mining
Trajectory pattern mining aims at discovering
trajectory groups based on their proximity in
either a spatial or a spatiotemporal sense. There
are four main categories of patterns that can be
discovered from a single trajectory or a group of
trajectories.

The first one is the moving together pattern,
which discovers a group of objects that move to-
gether for a certain time period. A flock is a group
of objects that travel together within a disk of
some user-specified size for at least k consecutive
timestamps. Apparently, the fixed disk shape with
a fixed size can be too strict and rigid to use in
practice, so convoy is proposed by finding pat-
terns based on density. In this way, patterns of any
shape and size can be discovered. However, both
flocks and convoys are strict on period, so swarm
(Li et al. 2010a) is proposed to further generalize
the cluster with objects lasting for at least k
timestamps. To cope with stream data, traveling
companion uses a data structure (called traveling
buddy) to continuously find convoy-/swarm-like
patterns from trajectories and can work online.
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By allowing the membership of a group to evolve
gradually, gathering (Zheng et al. 2014) can be
used to detect events and incidents.

The second one is trajectory clustering. Un-
like general clustering tasks that use feature vec-
tors to represent objects, it is hard to generate a
uniform feature vector because different trajec-
tories contain different and complex properties,
such as length, shape, sampling rate, number
of points, and their orders. A number of works
have been done using the trajectory similarity.
Although some of them work on the entire tra-
jectory, it is rare for two objects traveling to-
gether for the entire journey. So more practical
approaches partition trajectories into segments
before clustering. If the trajectories are matched
to map, the trajectory clustering task can be done
by applying graph clustering algorithms.

The third one is mining sequential patterns
from trajectories. A sequential pattern means a
certain number of moving objects travel a com-
mon sequence of locations in a similar time
interval and the locations of the sequence do
not have to be consecutive. A general solution
is using trajectory clustering first and then re-
forming trajectories with cluster IDs. In this way,
existing sequential pattern mining algorithms like
PrefixSpan can be used. If the trajectory can
be matched on map, the resulting sequence of
road IDs can use Suffix Tree to find the frequent
patterns (Song et al. 2014).

The last one is mining periodical patterns from
trajectories. Some object movements have peri-
odical patterns over the long history. For exam-
ple, people go to work in the morning and go back
home at night. Animals migrate from one place to
another at different time of the year. A straight-
forward approach is to use general frequent pat-
tern mining methods. However, real-life periodic
behaviors are complicated and involve multi-
ple interleaving periods, partial time span, and
spatiotemporal noises and outliers. Therefore, a
more advanced two-stage method is proposed
(Li et al. 2010b). In the first stage, it mines all the
frequent visiting places by density-based cluster-
ing algorithms. The temporal data corresponding
to entering and leaving these places can be used
to find the period values. In the second stage,

larger periodic patterns are created by applying
hierarchical clustering algorithms on the partial
movement sequences.

Trajectory Classification
Trajectory classification helps divide trajectories
into different statuses. For example, taxi trajecto-
ries can be occupied, non-occupied, and parking.
A cell phone user can be stationary, walking, and
driving or even driving, biking, commuting by
bus, and walking. In general, the classification has
three steps. First of all, trajectories are divided
into segments in preprocessing stage. After that,
features of each segment are extracted. Finally,
existing sequence inference models (such as Dy-
namic Bayesian Network, Hidden Markov Model,
and Conditional Random Field) can be used.

Outliers Detection
Outliers of trajectory data can be points signif-
icantly different from others spatially or tempo-
rally and can also be observations that do not
follow the expected patterns or constraints. One
general approach is to leverage standard frequent
pattern mining methods. If the trajectory cannot
fall into any cluster, it might be an outlier (Lee
et al. 2007).

Examples of Application

Trajectory data can be found in many applica-
tions; here we just list a few as examples.

Travel Recommendation. It aims to find inter-
esting locations and travel sequences from trajec-
tories generated by many people. (Zheng and Xie
2011) identifies staying points from users’ trajec-
tories and clusters these points into locations of
interest. After that, it can identify the top-k most
interesting locations and travel experts in a city
and do the recommendations based on their data.
Moreover, it can recommend trajectories them-
selves, because historical traveling experiences
can also reveal valuable information on how other
people usually choose routes between locations.

Traffic Condition Estimation. The trajectories
of vehicles on the road can reflect the traffic
condition (Yang et al. 2013). It needs a series of
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processing to generate a speed profile from trajec-
tories: map matching, speed generation, missing
value estimation, and compression. The result not
only can be used for finding the fastest path from
one place to another at different departure time
but also can help find the congestion of road
network and provide decision support for urban
planning.

Map Inference. Normally, vehicle trajectories
can always be matched to some roads on a map.
However, when a new road is developed and the
map has not been updated, or if there is even no
map for the current region, map matching will
fail. Map inference works under this scenario to
infer new maps or update existing maps based on
trajectories.

Diagnosing Traffic Anomalies. Such examples
can be that a taxi driver takes a malicious detour,
that an unexpected road change occurs, or that
people travel a wrong path. They can all be
discovered by trajectory outlier detection using
trajectory clustering.

Future Movement Prediction. Periodic trajec-
tory pattern mining can be used to predict the next
direction or destination of the current moving
objects, like a group of animals or a commuter.
The prediction can further help compress the
trajectory data itself.

User Similarity Estimation. There are
many aspects of similarity between users, like
connections from social network, point of
interest, check-in history, and any other logs,
that can be obtained. Besides them, trajectory
data, which reveals the life patterns of the users
by trajectory classification and clustering, can
also help improve the accuracy of similarity
comparison.

Sport Tactic Analysis. For many team games
like soccer, basketball, hockey, and rugby, the
players’ movements are essentially trajectories.
By analyzing the video data from different cam-
eras, the trajectory of each player can be recon-
structed and are used in tactic analysis by many
professional clubs nowadays. Some of them even
hire a data analyst as a coaching staff.

Airspace Monitoring and Aircraft Guiding.
A large volume of aircraft trajectory data is
managed by an air traffic controller. They use

these trajectories to monitor the “health” of the
airspace, which is implemented by trajectory
clustering and outlier detection.

Scientific Study. Meteorologists use trajectory
of SO2 and NOx in an isentropic and constant
level to analyze the contributions of acidic de-
position. Zoologists use the trajectory of animals
to study their movement patterns. Biologists use
proteomic trajectories to study mouse retina de-
velopment.

Future Directions for Research

As summarized above, there exists a rich body of
research on all aspects of trajectories, from data
capturing, cleaning, compression, and indexing
to processing. We have witnessed an accelerating
trend of research activities form both academic
and industry on this topic. There are three main
drivers in today’s big data landscape, which will
also drive the research in trajectory data manage-
ment, processing, and analytics in the foreseeable
future.

First, it is about volume. Not only the volume
of trajectory data now can reach TB level daily
for some large navigation or taxi-/car-sharing
companies, but also the number of queries has
increased dramatically. What is the best way
to process map matching for one billion points
every day? How can we reduce the processing
costs if we have 10,000 shortest path queries in
the same region? This is a scenario that exists
already, as when a user opens a map-based app
and inputs a location, it issues a shortest path
query. For every problem we solved before, it
is the time to revisit them, to see how they can
become scalable using new computing platforms
and how better algorithms can be designed to
support batch query processing (for a very large
number of streaming queries on streaming data).

Second, it is about semantics. After all, trajec-
tory data are low-level data which can be noisy
and with a high level of redundancy (among
consecutive points of one moving object, among
the history data of one moving object over a long
period, and among objects with similar moving
patterns). There is a dilemma between justifying
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the high costs of storing all data available and the
fear that some data which we only find useful in
the future for some purposes we do not know yet
might be lost if we do not store them. Clearly,
a new way of thinking is needed to manage
trajectory data based on a semantic hierarchy,
from raw data, calibrated data, events detected,
summarization of data for a basic set of require-
ments, patterns discovered, and general statistics.
Data can be gradually reduced over time and
eventually removed. In such a way, trajectory data
can be at the center for data integration and data
analytics, as location and time are two ubiqui-
tous dimensions for most information useful to
us. Trajectory will no longer be considered as
specialized data with limited applications; rather,
it is an enabler data asset underpinning the future
of a data-rich society.

Third, trajectory data can reveal so much about
a person. With so much location and move-
ment data about a person captured and accessed
so easily, security and privacy become an ex-
tremely serious issue for trajectory data. Simple
facts about one visiting or not visiting a place
can be highly sensitive. This problem can be-
come much more significant when the trajecto-
ries are used with other data sources including
social network data. Some research has already
started on this topic, but much more is needed
urgently.
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Synonyms

Geo-textual data; Spatial and textual data

Definitions

With the proliferation of GPS-equipped mobile
devices, notably smartphones, massive volumes
of geo-located, or geo-tagged, text content are be-
coming available. For example, Foursquare hosts
over 105 million locations around the world with
over 12 billion check-ins (https://foursquare.com/
about accessed January 2018), where each loca-
tion is associated with both a geographical loca-
tion and text content and similarly each check-in

is also associated with a location and text. Face-
book also supports location check-ins. We refer to
such data as geo-textual, or spatio-textual, data.
Other examples of such data include points of
interest (POIs) with descriptive text, geo-tagged
microblog posts (e.g., tweets), geo-tagged photos
with text tags (e.g., as found at Flickr and In-
stagram), geo-tagged news, and geo-tagged web
pages. Spatio-textual data can be divided into (i)
streaming spatio-textual data that arrives at a high
rate, exemplified by geo-tagged tweets, and (ii)
static spatio-textual data that is relatively stable,
exemplified by collections of POIs.

Overview

Massive volumes of spatio-textual data are avail-
able from many sources. Furthermore, as new
spatio-textual data is being generated, the vol-
umes will continue to grow at rapid pace as mo-
bile devices continue to proliferate. Additionally,
spatio-textual data often comes with rich context
information, such as temporal information. With
this development as the backdrop, many research
problems and solutions have been proposed for
managing, analyzing, and mining spatio-textual
data. We proceed to cover three representative
types of research problems.

Spatial keyword queries To support the query-
ing or search of spatio-textual data, many types
of spatial keyword queries have been proposed.
In general terms, a spatial keyword query takes a
location and keywords and arguments and finds
the spatio-textual objects that best match the
location and keywords. For example, a user may
want to find a nearby place whose textual de-
scription is relevant to “fine arts.” A number of
index structures and query processing algorithms
(Zhou et al., 2005; Hariharan et al., 2007; Fe-
lipe et al., 2008; Cong et al., 2009, 2012; Wu
et al., 2012a, b; Rocha-Junior et al., 2011; Kho-
daei et al., 2010; Vaid and Jones, 2005; Zhang
et al., 2013a, b; Chen et al., 2006; Christoforaki
et al., 2011) have been developed for efficiently
processing different kinds of spatial keyword
queries.
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Querying spatio-textual streams Spatio-
textual data may arrive at a high rate (e.g., geo-
tagged tweets, photos, or check-ins) and can then
be modeled as data streams. In such streaming
settings, continuous queries are of particular
interest as users may want to be notified when
interesting spatio-textual objects arrive. Several
solutions (Chen et al., 2013, 2015; Li et al.,
2013; Wang et al., 2015; Hu et al., 2015) for
continuously querying spatio-textual streams
have been proposed. For example, a user may
want to be notified when tweets arrive that
contain the term “flu” and are posted from within
5 km of the user’s home.

Exploring spatio-textual data When users do
not have clear ideas about what to query or
search for, it is beneficial to provide functionality
that enables users to search, navigate, and dis-
cover new facts from spatio-textual data. Several
proposals exist on exploring spatio-textual data
(Feng et al., 2016; Skovsgaard et al., 2014; Zhao
et al., 2016). For example, when a use r is explor-
ing a region on a map, the user can be shown the
top-k most frequent terms in the region, and the
result can be updated interactively when the user
slides over the map.

Key Research Findings

Spatial keyword queries Consider a set D of
spatio-textual objects. An object p 2 D is a two-
tuple: h�; i, where � encodes a geo-location
and  is a text value. Many types of spatial
keyword queries on spatio-textual data exist that
target different applications. The most standard
spatial keyword queries generalize fundamen-
tal queries from spatial databases and informa-
tion retrieval. In spatial databases, the arguably
most fundamental queries are range and k nearest
neighbor queries. In information retrieval, queries
may be Boolean keyword expressions, returning
results that satisfy the Boolean expressions, or
ranking-based, returning the k objects that are
most similar to query keywords according to

some text similarity function. Basic spatial key-
word queries return a set or ranked list of objects
from D.

Four types of basic queries are covered below.
Let � be a spatial region, � be a point location,
� be a Boolean keyword expression,  be a set
of keywords, and k be the number of objects to
return. (1) A Boolean range query q D h�; �i

returns all objects in D that are located in region
� and that satisfy the Boolean expression � .
An example is “Retrieve all objects whose text
description contains the keywords vegetarian,
pi´´a, and lat te and whose location is within
1 km of the query location.” (2) A Boolean kNN
query q D h�; �; ki returns up to k objects from
D, each of which satisfies the Boolean expression
� , ranked in increasing spatial distance from �.
An example is “Retrieve the k objects nearest
to the query location such that each object’s text
description contains the keywords vegetarian,
pi´´a, and lat te.” (3) A top-k range query q D

h�;  ; ki returns up to k objects from D that
are located in the query region �, now ranked
according to their text relevance to the set of
keywords  . Here, an example is “Retrieve up
to k objects whose locations are within 1 km
of the query location, and that have the highest
ranking scores, measured by the relevance of
their text descriptions to the query keywords
vegetarian, pi´´a, and lat te.” (4) A top-k
kNN query q D h�; ; ki retrieves k objects
fromD, ranked according to a function that takes
into consideration both spatial proximity and text
relevance. This functionality is exemplified by
the query “Retrieve the k objects with the high-
est ranking scores according to a function that
combines their distance to the query location (a
point) and the relevance of their text description
to the query keywords vegetarian, pi´´a, and
lat te.”

Index structures and algorithms have been
developed to enable efficient processing of spatial
keyword queries. Existing spatial keyword in-
dexing techniques often combine a spatial index
and a text index so that both textual and spatial
information can be utilized to prune the search
space when processing spatial keyword queries.
The existing indices can be categorized according
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to the spatial index they utilize: (i) R-tree-based
indices (Zhou et al., 2005; Hariharan et al., 2007;
Felipe et al., 2008; Cong et al., 2009; Wu et al.,
2012a, b; Rocha-Junior et al., 2011), (ii) grid-
or quad-tree-based indices (Khodaei et al., 2010;
Vaid and Jones, 2005; Cong et al., 2012; Zhang
et al., 2013a, b), and (iii) space-filling curve-
based indices (Chen et al., 2006; Christoforaki
et al., 2011).

The grid-based indices combine a spatial grid
index and an inverted index for handling spatio-
textual data, with two obvious ways of combin-
ing the two types of indices being the spatial
primary index and the text primary index (Vaid
and Jones, 2005). In the spatial primary index,
spatio-textual objects are first organized by a grid
index based on their spatial information. Then,
for each grid cell, an inverted file is built for the
objects that fall in the cell. In contrast, the text
primary index extends the inverted index with
the spatial information. Specifically, in the text
primary index, each word is associated with a
postings list, in which postings, each representing
id of an object containing the word, are organized
by a grid cell based on their locations. Each
posting in a postings list contains the id of an
object that contains the word of the postings
list, and the postings are organized in a grid
according to the locations of their objects. Using
the example set of spatio-textual objects shown in
Fig. 1a, b, the structure of the text primary index
is exemplified in Fig. 2. The two index struc-

tures are proposed for tackling the problem of
retrieving web documents relevant to a keyword
query within a prespecified spatial region, i.e.,
the Boolean range query. For example, using the
spatial primary index, at query time a set of cells
that intersects with the query region is retrieved
first. Then, the objects in these cells whose doc-
uments satisfy the query keywords are returned
as the result. There exists no method to extend
the two indices to efficiently handle the other
three types of basic queries. A straightforward
extension would not work better than using only
an inverted file.

The R-tree-based geo-textual indices typically
combine the R-tree index and the inverted index.
The IR-tree (Cong et al., 2009) is a representative
structure in this category. The index augments
each node of the R-tree with a summary of
the text content of the objects under the node.
Specifically, each node contains a pointer to an
inverted file that summarizes the text content of
the objects in the subtree rooted at the node. The
inverted file for a node contains (1) a vocabulary
of all distinct terms in the text descriptions of the
objects in the node’s subtree and (2) each term
t that is associated with a postings list, which is
a sequence of pairs hc;wtcp;t i. Here, if the node
is a non-leaf node, c is a child node of the node,
and wtc;t is the number of times term t occurs
in the object in the subtree that contains t the
most times. If the node is a leaf node, c is an
object in the node, and wtc;t is the frequency of

o4

Q

o1
o6

o3

o5

o2
o7

o8

R1

R2

R3

R4

R5

R6

R7

Spatio-textual objects and their
bounding rectangles

object terms and term frequencies
o1 (Italian, 2)(restaurant, 2)(pasta, 1)
o2 (coffee, 3)(restaurant, 3)(tasty, 1)
o3 (Italian, 1)(pizza,1)(tasty, 1)
o4 (restaurant, 1)(pizza, 1)(tasty, 1)
o5 (coffee, 4)(restaurant, 3)
o6 (Italian, 4)(restaurant, 4)
o7 (Italian, 1)(coffee, 1)(restaurant, 4)(pasta, 1)
o8 (coffee, 3)(restaurant, 3)(tasty, 1)

Text information of objects in (a)

a b

Spatio-textual Data, Fig. 1 Example. (a) Spatio-textual objects and their bounding rectangles. (b) Text information
of objects in (a))
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term t in the object. The structure of an IR-tree is
illustrated in Fig. 3.

The IR-tree supports all the four types of
basic queries. We proceed to use the Boolean
range query and top-k kNN query to illustrate
how the IR-tree can be used to handle the basic
queries. The high-level algorithm for using the
IR-tree to handle the Boolean range query starts
at the root node of an IR-tree and checks each
entry in the node. If an entry overlaps the query

o1
o6

o3 o7

Italian . . . tasty

Spatio-textual Data, Fig. 2 Grid structure for keyword
Italian

region and satisfies the keyword expression, the
algorithm will check the entry’s child node. The
checking is done recursively over the IR-tree.
When a leaf node is reached, the spatio-textual
objects in the leaf nodes are checked, and ob-
jects satisfying both the spatial condition and
the Boolean keyword condition are returned as
results. Note that each non-leaf node contains
summary information on both the spatial location
and the terms of the objects in the node’s subtree.
For example, in node R5 in Fig. 3 tells which
terms the inverted file associated with the node
will tell what keywords are contained in the
objects in the node’s subtree. If a query targets
objects containing the term “rice,” the inverted
file tells that there is no need to search R5’s
subtree.

The key idea of employing the IR-tree to
compute the top-k kNN query is that each tree
node on the summary information for each entry
can be used to estimate a good upper bound on the
relevance score, considering both spatial prox-
imity and keyword relevance, to the query. This
makes it possible to extend the best-first traversal
algorithm, a standard algorithm for efficiently
computing spatial kNN queries using the R-tree,
to compute the top-k kNN query. The algorithm

Spatio-textual Data,
Fig. 3 IR-tree and its
inverted files

R1 R2

O1 O6 O2 O8O7

R5:

R1 : R2:

Italian <R1,4> <R2,1>

restaurant <R1,4> <R2,4>

coffee <R2,3>

tasty <R2,1>

pasta <R1,1> <R2,1>

Italian <O1,2> <O6,4>

restaurant <O1,2> <O6,4>

pasta <O1,1> 

Italian <O7,1>

restaurant <O2,3> <O7,4> <O8,3>

coffee <O2,3> <O7,1> <O8,3>

tasty <O2,1> <O8,1>

pasta <O7,1> 

Inverted file

Inverted file Inverted file



1584 Spatio-textual Data

starts at the root and maintains a priority queue
to keep track of the nodes and objects that have
yet to be visited, for which the estimated upper
bounds for each node, or the spatio-textual rele-
vance score for each object, are used as the keys
of nodes or objects, respectively. When deciding
which node to visit next, the algorithm picks the
node with the best key value from the set of
nodes that have yet to be visited. The algorithm
stops when the upper bounds of the remaining
nodes are smaller than the currently k best results.
The benefit of using the IR-tree for computing
spatial keyword queries is that both spatial and
textual information can be used in a combined
fashion to prune the search space during query
processing.

There also exist spatio-textual indices that
combine a space-filling curve, e.g., the Z-order
curve, and the inverted file. A typical example
is the SFC-QUAD index (Christoforaki et al.,
2011), which extends the inverted file with spatial
information using space-filling curve. Specifi-
cally, the docIDs in each inverted list are assigned
and ordered based on their spatial positions along
a Z-order curve. SFC-QUAD is designed for
Boolean range query. When processing a query
with a given spatial region, a set of object ID
ranges that fall in the query region are found.
Then, these ranges are merged into a smaller
number of ranges for reducing random disk I/O
costs. Subsequently, the corresponding parts of
the inverted lists of the query keywords within the
ID ranges are retrieved, and then existing tech-
niques for checking the Boolean expression of
query keywords can be employed on the retrieved
inverted lists. There exists no method to extend
this type of index to efficiently handle the other
three types of basic queries.

Beyond the basic spatio-textual queries, many
other types of spatio-textual queries exist that are
designed for different types of user needs. For
example, the m-closest keywords (mCK) query
(Zhang et al., 2009, 2010; Guo et al., 2015) re-
trieves a set of objects whose text content together
contains a set of m query keywords and such that
the maximum distance between any two objects
is minimized. Another example is the collective
keyword query (Cao et al., 2011, 2015; Long

et al., 2013), which takes a location � and a set of
keywords  as arguments. Its search space is all
subsets of the set of objectsD, and it returns a set
of objects such that (i) the textual descriptions of
these objects collectively cover  , (ii) the result
objects are all close to �, and (iii) the result
objects are close to each other. These problems of
retrieving a group of objects satisfying keyword
covering condition while minimizing the distance
within the group or between the group and query
are NP-hard, and heuristic and approximation
solutions are developed to answer these queries
efficiently.

Querying streaming spatio-textual data On
streaming spatio-textual data, the four kinds of
spatial keyword queries can be posed as snapshot
queries. Furthermore, subscription queries on
streaming spatio-textual data are often of great
interest. A typical type of subscription query
on spatio-textual data streams is the Boolean
subscription query (Chen et al., 2013; Li et al.,
2013; Wang et al., 2015), in which both spatial
and keyword conditions serve as Boolean filters.
For example, a user may want to subscribe to
tweets that are posted within 500 m of the user’s
office and that contain the terms “sales” and
“clothing,” to receive such tweets continuously.

Other kinds of subscription queries also ex-
ist. Specifically, top-k subscription queries re-
turn a subscriber only the top-k results, which
are ranked by considering text relevance, spatial
proximity, and the freshness of the object with
respect to the query. For example, a subscrip-
tion query may be submitted for a POI (e.g., a
hotel) over streaming geo-tagged tweets, where
the location of the POI is the query location and
selected keywords from the POI’s text description
(e.g., service, cleanliness, free Wi-Fi) can be used
as the query keywords. Such a subscription query
may be of interest to a management team of a POI
that wants to be continuously fed with the top-k
tweets, ranked based on the their relevance to the
query keywords, their proximity of tweets to the
query location, and their freshness.

Each user may submit multiple subscription
queries, and the number of Internet users is huge.
Hence, the number of subscription queries may
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be large. Thus focus has been on developing
efficient solutions to handle large numbers of
spatial keyword subscription queries over spatio-
textual streams (Chen et al., 2013; Li et al., 2013;
Mahmood et al., 2015; Wang et al., 2015; Chen
et al., 2015).

The high-level idea of existing solutions is to
group queries such that the queries in one group
can be processed together over the spatio-textual
data stream, rather than being processed indi-
vidually, which is much more computationally
expensive. Intuitively, similar queries should be
grouped together so that good filtering conditions
for a group can be designed to check whether a
new spatio-textual object can be a result for some
queries in the group. In addition to being able to
efficiently process a large number of subscription
queries over spatio-textual data streams where
spatio-textual objects arrive at a high rate, such
solutions must be capable of efficiently handling
the arrival of new subscriptions and the discon-
tinuation of existing subscriptions. The existing
solutions also involve index structures to organize
subscription queries for efficient query process-
ing.

Exploring spatio-textual data There exist at
least two types of research for exploring spatio-
textual data. First, the region search problem aims
to identify a region of a user-specified shape
and size that maximizes or minimizes some ag-
gregate score of the objects inside it (e.g., the
sum of relevance of objects to a query), for
user exploration. For certain aggregation scores
like SUM, algorithms (Imai and Asano, 1983;
Nandy and Bhattacharya, 1995; Choi et al., 2012)
with complexity O.n logn/ have been proposed,
where n is the number of objects in D. For more
general aggregation function, such as submodular
monotone score function, a solution with the
worst-case complexity O.n2/ exists (Feng et al.,
2016). To improve the efficiency, an approximate
algorithm is proposed to select a set T of spatial
points from the space for representing spatial ob-
jects in D. The selected points together preserve
some properties of D such that the result region
found on the set of points T can be an approx-

imation of the result on D with performance
guarantees (Feng et al., 2016).

Second, rather than finding a region that
satisfies a user’s needs, the problem of region
exploration aims to explore and discover
properties of user-specified regions. Given a user-
specified region, one study (Skovsgaard et al.,
2014) considers the problem of retrieving the
top-k frequent words over the geo-textual data
stream for the region. A new indexing technique
is proposed for counting frequent items in static-
sized summaries to allow the summaries to grow
and shrink dynamically to adapt to changes in
the incoming data. At query time, relevant sum-
maries are merged to provide answers of the top-
k frequent words with correctness guarantees.

Another example study of region exploration
(Zhao et al., 2016) aims to efficiently discover
topics in the spatio-textual data in a user-specified
query region. Instead of learning a topic model
for each query region, which is time-consuming,
a two-phase approach to the exploratory topic
mining task is advanced: (1) Indexing and Pre-
Computation To support efficient online learning,
the geographical space is partitioned into cells,
and a grid-based index is constructed to organize
the spatio-textual data. Then, by considering the
memory constraint and accuracy guarantee of
the online topic learning algorithm in the second
phase, some cells are selected for learning latent
Dirichlet allocation (LDA) models. (2) Online
Topic Learning For a given query region, the
pretrained topic models on the cells that overlap
with the query region are combined as approxi-
mate topics for the spatio-textual data in the query
region.

Examples of Application

Querying, mining, and exploring spatio-textual
data have many applications. The basic types
of spatial keyword queries are being supported
in many online services that host large amounts
of spatio-textual data, such as geo-tagged web
pages, points of interest, geo-tagged tweets, and
check-in. Other types of spatial keyword queries
are designed to serve users for scenarios that
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the basic queries are not sufficient. For example,
consider a query with keywords “hotel, sports
shop, and beach.” Perhaps no nearby single place
is a good match for all the keywords. Instead, a
group of places that are close to each other and
are close to the query location may together meet
the user’s needs better than any single object.
Furthermore, it is expected that more applications
will arise as more and more spatio-textual data is
being generated in huge amount.

Querying streaming spatio-textual data is also
very useful. For example, one application can
be annotation of POIs with up-to-date geospatial
social updates, such as geo-tagged tweets, as a
manager of a POI may be interested in up-to-
date tweets whose locations are close to the POI
and whose text is relevant to the description of
the POI. As another example, Groupon customers
register their locations and keywords describing
their interests. Then Groupon pushes Groupon
messages to those customers that are near the
messages and that have keywords that are rele-
vant to the text of the messages.

Exploration of spatio-textual data is a desir-
able function as the amount of spatio-textual data
continues to grow. The region research function-
ality can be used to find most influential regions
for exploration, e.g., finding the best location for
a billboard to influence as many consumers as
possible to adopt a product, where the consumers
may belong to a social network. Another example
application of the region search is to find a region
with most dense or diverse collection of services
and attractions. One application of region explo-
ration is to see what is happening in a region of
interest.

Future Directions for Research

First, apart from spatial proximity and text rel-
evance, many factors such as the quality of a
spatio-textual object, click-throughs, and diver-
sity can be considered in the ranking of spatial
keyword query results. It is natural to consider
whether these factors are useful for the ranking
of query results and how important they are in
ranking results. Reliable evaluation of ranking

functions for spatio-textual data is essential to
answer these questions. However, the utility of
a result is dependent on the individual user. It
is thus challenging to establish a reliable ground
truth for the results of ranking queries.

Second, personalized location recommenda-
tion (Liu et al., 2017) aims to understand users’
topical interests and mobility preferences from
the users’ historical data. Existing work on spatial
keyword queries does not consider personaliza-
tion, while personalized location recommenda-
tion does not consider spatial keyword search. It
is of interest to attempt to bridge this gap, thus
enabling personalized search on spatio-textual
data.

Third, it is an open problem to effectively and
efficiently support continuous queries on spatio-
textual streams. For example, instead of receiving
individual tweets from a stream, users may want
to be notified in real time of relevant trending
events or even of causal relationships among
events. Furthermore, high-velocity spatio-textual
data streams call for distributed systems to sup-
port querying and data analytics.
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Motivation

Big data applications usually have to rely on
a combination of storage media to achieve an
economic balance between the capabilities of
different media types and application needs.

Applications requirements vary significantly
in data lifetime, number of concurrent data pro-
ducers/consumers, fraction of active to passive
data volume, sharing between parallel processing
units, and the relative balance between CPU and
IO requirements.

Storage media properties vary by several or-
ders in price per capacity, latency for sequen-
tial and random access patterns, aggregate and
single stream bandwidth, power requirements,
endurance, and reliability. Several methods exist
to further adapt these capabilities by combining
several storage devices of the same type, but
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larger and economically efficient setups are con-
structed by combining several different storage
technologies.

In addition, larger storage deployments typi-
cally provide services to more than one appli-
cation and hence aim to achieve an economic
compromise between total cost of ownership and
functional capabilities matching the ensemble of
their applications.

Tiered Storage and HSM Systems
The above trade-off has since the mainframe days
led to storage systems covering several layers
in the traditional memory hierarchy (see Fig. 1)
and integrate multiple technologies (e.g., disk and
tape, disks of different capabilities) into tiered
storage systems.

In addition to combining technology capabili-
ties, these systems usually provide an abstraction
for accessing data independent of the storage
media and mechanisms allowing to move data
between the different media.

Hierarchical storage management (HSM) sys-
tems extend the above abstraction and automatize
the data movement between different media or
quality of service based on the measured or pre-
dicted access patterns.

The resulting storage systems facilitate
also the use of different storage technologies
over the life cycle of larger data sets. Since
they reduce the operator effort for data
movements, they can diminish the risk of
data loss due to human manipulation errors.
Typical examples of HSM systems for data
life cycle management are archive and backup
systems, which manage access to one or more
consistent data snapshots across different storage
technologies.

Additional end-user benefits are a single con-
sistent system interface and a stable abstraction
from a, potentially evolving, back-end implemen-
tation of the storage system. This abstraction
is particularly important in large shared storage
installations, which usually need to operate with-
out downtime and hence require the replacement
of faulty components and storage media to take
place with minimal impact on normal opera-
tion.

Automated data migration between storage
technologies can conceptually take place at dif-
ferent data granularity – from small groups of
data blocks within a user file to large groups of
files that span multiple tape volumes. The domi-
nating implementation choice though are systems
that consider complete, individual data files as
management granularity.

Storage Hierarchies for
Big Data, Fig. 1 Memory
and storage hierarchy
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Hybrid Disk Drives and Multitiered File
Systems
Conceptually similar, but at small volume scale,
also hybrid disk drives implement a tiered storage
system. These devices combine the fast random
access characteristic of NAND-flash with the
more economical storage capacity of magnetic
disks in a single unit. Based on the measured
access patterns, the device dynamically replicates
often used data blocks in its small flash cache
area, which can greatly improve application per-
formance without adverse effects on volume cost
or total unit capacity. These hybrid devices are
most useful in deployments with space or con-
nectivity constraints (e.g., laptops and small or
embedded servers).

In contexts free of the above constraints, a
similar hybrid combination can be constructed
via multitier file systems such as FusionDrive
(Apple Core Storage) or Hybrid Storage Pools in
ZFS (Bonwick and Moore, 2003; Gregg, 2009)
that combine the fast access of NAND-flash with
the large capacity of magnetic disks.

Challenges for Hierarchical Storage
Systems
HSM systems can greatly improve resource uti-
lization in particular in environments with stable,
organized workflows and established prioritiza-
tion between concurrent applications.

In more complex environments, with many
concurrent interdependent applications and many
users with differing or conflicting priorities, HSM
system can show visible limitations. In these
cases both storage system operation and user ex-
perience become complex and less predictable –
up to the point that the HSM automation benefits
are out-weighted by additional human effort to
stabilize operation (by manually partitioning the
resources and throttling concurrent user activity)
and artificial storage operations by the user side
to “trick” the system into the desired behavior.

A further challenge in large-scale deployments
can arise from a mismatch between the gran-
ularity of HSM data movements (e.g., individ-
ual files) and the conceptual entities of a user
workflow (e.g., larger groups of files in a typical
big data application). This granularity mismatch

leads to difficulties let HSM data migrations ap-
pear as complete, atomic operations in the prob-
lem space of the user. A HSM with a purely file-
based interface can only incomplete information
of the user intention to access (or abandon) a
larger group of files. The system may hence fail
to properly predict the resource and time re-
quirements to complete the intended operation or
to predict the interference with data movements
on behalf of other users/applications in a shared
storage system.

Storage Hierarchies in Practical
Applications

Tiered storage and hierarchical storage systems
are today used in a variety of environments and
are one of the key mechanisms to construct
large-scale, cost-efficient storage systems that
can adapt to changing access patterns over the
lifetime of larger data set deployments. Data-
intensive sciences such as high-energy physics,
astrophysics, astronomy, and life sciences have
constructed massive scientific data repositories
(Bird et al., 2005; Pace, 2014) of several
hundreds of petabytes by combining robotic
tape archives, distributed disk clusters, and
fast solid-state storage. The availability of
reliable, high-bandwidth networks enabled to
build large, distributed data repositories that
enable collaborative scientific discovery and
result sharing across dispersed communities.
In data-intensive sciences, resource efficiency
is of particular importance since computing
budget constraints for storage media could limit
the achievable statistical precision and hence
relevance of a study.

On the commercial side during the last decade,
large data amounts from legacy sources and
databases and an increasing volume of envi-
ronmental or commercial sensors have become
the basis for many analytical applications.
Hadoop with HDFS as location-aware storage
environment for parallel processing and S3 as
archive storage with disk or tape as back-end
have become increasingly popular. Recently
also, the large available amount of directly
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addressable memory has allowed to move
previously big data analytical problems entirely
into memory or nonvolatile solid-state storage to
avoid the latency of magnetic media access and
TCP networking round trips for much of their
execution. In this context Apache Spark (Zaharia
et al., 2010) plays an important role in combining
parallel data selection on a large disk-based
repository with large distributed in-memory
caches in the same run-time environment.

Expected Technology and Market
Changes

The established role of storage hierarchies in big
data applications is expected to continue also in
the future, when several new technologies will
become available and market changes will shift
the price balance between the available media
types. On the magnetic disk side, one can since
several years observe a slowdown of the areal
media density evolution (see Fig. 2 from Kryder
rate Walter, 2005; Gupta et al., 2014; Mellor,
2014; Klein, 2017) as the R&D effort increases
to productize new magnetic recording techniques
like shingled magnetic recording (Feldman and
Gibson, 2013) (SMR), microwave-assisted mag-
netic recording (Zhu et al., 2007) (MAMR), and

heat-assisted magnetic recording (Kryder et al.,
2008) (HAMR).

Recording technologies such as SMR further
imply a shifted balance between update and
read performance, which will limit scalability
in some use cases, unless combined with
fast memory- or flash-based cache. Another
influence on the media price balance may arise
from the increasing consolidation of magnetic
disk deployments to only a few, larger cloud
providers, who are seeking increased influence on
the design of magnetic disk units (Brewer et al.,
2016). For the small number of vendors in the
disk market, it will likely become more important
to suit large computer center deployments than to
maintain compatibility with the traditional form
factor of previous desktop computer generations.
The home and mobile markets are already
largely based on devices with NAND-flash
storage, which will see increasing competition
from direct accessible persistent memory with
higher durability and reduced write amplification
(Intel 2015; https://arstechnica.com/information-
technology/2017/03/intels-first-optane-ssd-375gb-
that-you-can-also-use-as-ram/). This storage
technology, if their advertised price point and
functional capabilities are confirmed, would
allow to further extend the problem space
reachable by in-memory processing. Together
with DRAM these new media would also enable

Storage Hierarchies for
Big Data, Fig. 2 Magnetic
disk price evolution

https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram/
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faster hybrid storage devices with NAND-
flash or magnetic disks. Tape at the high
volume end of the storage hierarchy has but
due to very low media and power cost been
remarkably successful – despite its for many
applications problematic combination of high
sequential rate and high access latency. Also
here, visible market consolidation is influencing
the continued technology evolution, and archive
storage hierarchies involving tape will get
increasing competition from disk- and flash-
based alternatives (Gupta et al., 2014).

Conclusion

In conclusion, the use of tiered or hierarchi-
cal media combinations from several layers of
the storage hierarchy will continue, and the re-
cent fast, high-density, direct-access solid-state
storage will allow to enlarge the problem size
accessible to big in-memory applications. For
problems that require larger volume scalability,
the parallel cloud processing environments will
benefit from some continued media density (and
hence volume) growth but at lower Kryder rate.
The performance gap between sequential read
and other access methods (e.g., random access,
write/update access) will continue to increase
on the magnetic disk side. The benefits of inte-
grating magnetic media with direct-access solid-
state storage will therefore for many big data
applications get even more important.
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Overview

This article introduces big data storage systems.
It first describe the development of storage tech-
niques for big data. Then, it compares the dif-
ferent storage models and their most suitable use
cases. Finally, it talks about the impact of emerg-
ing hardware on the big data storage techniques
and introduces some hot research topics.

Introduction and Background

In the big data era, data are increasingly
gathered from heterogeneous devices like IoT
devices, sensor networks, scientific experiments,
websites, and many other applications producing
data in various formats. The data sets are
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so voluminous and complex that traditional
relational databases are inadequate to deal with
them. Thus, innovative research and development
of storage systems that can provide highly
scalable, reliable, and efficient storage for
dynamically increasing data is required. A
movement to NoSQL (Not only SQL) occurs, and
many NoSQL databases are proposed. They have
simplicity of design, simpler “horizontal” scaling
to clusters consists of thousands of servers, and
more fine-grained control over availability. The
data structures used by NoSQL databases are
optimized for target data formats and sources,
which are different from those used in relational
databases, making some operations faster in
NoSQL. Many NoSQL stores compromise
consistency (in the context of CAP theory (Seth
and Nancy, 2002)) in favor of partition tolerance,
availability, and performance. These NoSQL
stores also lack true ACID transaction supported
by traditional relational databases, although a few
databases, such as Google spanner (David et al.,
2017), start to embrace the relational model.

Relational databases have been widely used
efficiently for transaction processing in terms of
storage and processing for many decades. The
relational databases support ACID transaction
that also limits their horizontal scalability. To
achieve availability and better scalability, most
NoSQL databases compromise consistency and
do not support true ACID transaction support as
traditional relational databases. The strengths and
weakness for traditional relational database and
NoSQL database are summarized in Table 1.

The NoSQL databases mainly consists four
types of data models: key-value, column-
oriented, document-oriented, and graph. These
NOSQL systems are being used to handle
exponentially growing data but cannot tolerate
the performance degradation caused by data
persistence. On the other hand, these systems face
the challenges posed by the inherent difficulties
in scaling DRAM and the cost of the DRAM.
To address these challenges, new emerging
hardware technologies like nonvolatile main
memory (NVRAM) have lately received a great
deal of attention in the database community.
NVRAM is positioned between DRAM and
secondary storage (such as SSD), both in
terms of performance and cost. NVRAM can
fundamentally change in-memory databases as
data structures do not have to be explicitly
backed up to hard drives or SSDs but can be
inherently persistent in main memory (David
et al., 2015; Jasmina et al., 2015; Mihnea et al.,
2017; Sudarsun et al., 2016; Colaso et al., 2017).
In section “Taxonomy of Big Data Storage
Technologies”, we introduce these NoSQL
systems based on the data model and how the
emerging hardware impacts the design of the
NOSQL systems.

Taxonomy of Big Data Storage
Technologies

NoSQL databases mainly consist four types
of data models: key-value, column-oriented,

Storage Technologies for Big Data, Table 1 Strengths and weakness for traditional relational database and NoSQL
database

DB Strength Weakness

Traditional relational database Support highly structured data;
Efficient storage and processing in
auxiliary server; ACID transaction
support; Vertical scalability;
Specialized data manipulation
languages; Specialized data schema

Performance and processing delay
bottleneck with growth of data; ACID
support which hinders scalability;
Limitation for schema-less and
unstructured data

NoSQL database Support heterogeneous structured
data; Horizontal scalability with
extendible commodity servers; High
reliability; High availability

No compliance with ACID in order to
achieve high scalability and high
availability for most NoSQL databases
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Storage Technologies for
Big Data, Table 2
Performance, scalability,
flexibility and complexity
of different data models for
NoSQL databases

Data model Performance Scalability Flexibility Complexity

Key-value High High High None

Column-oriented High High Moderate Low

Document-oriented High Variable High Low

Graph Variable Variable High High

Relational Variable Variable Low Moderate

Storage Technologies for
Big Data, Fig. 1
Taxonomy of big data
storage technologies based
on data models

document-oriented, and graph (Michael, 2014).
The performance, scalability, flexibility, and
complexity for different data models are different
that is shown in Table 2. We classify NoSQL
databases based on the data models and introduce
some representing systems for each category.

We classify the current representing big data
storage system according to data models as
shown in Fig. 1 and introduce them one by one
in detail. We also discuss the recent development
on emerging storage techniques with nonvolatile
memory (NVRAM).

Key-Value Data Model
The key-value type, basically, uses a hash table
in which there exist a unique key and a pointer
to a particular item of data. A bucket is a log-
ical group of keys, but they don’t physically
group the data. There can be identical keys in
different buckets. This in-memory data structure
design needs to explicitly backup in case of
system crashes in DRAM which degrades the

performance. NVRAM guarantees data persis-
tency even across power outages while it comes
with new challenges as the consistency and per-
sistency of in-memory data structures have to
be guaranteed even across system crashes. Data
structure and algorithms of the hash table espe-
cially on NVRAM need to be redesigned for the
use in NV-persisted in-memory databases (David
et al., 2015).

Column-Oriented Data Model
In column-oriented NoSQL database, data is
stored in cells grouped in columns of data rather
than as rows of data. Columns are logically
grouped into column families. Column families
can contain a virtually unlimited number of
columns that can be created at runtime or the
definition of the schema. Read and write is done
using columns rather than rows. To increase the
scalability and reduce the cost of using DRAM,
SAP starts to explore the new column-based in-
memory data structures and efficient algorithms
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which are directly stored and used in NVRAM
blocks (Mihnea et al., 2017).

Document-Oriented Data Model
The data which is a collection of key-value pairs
is compressed as a document store quite simi-
lar to a key-value store, but the only difference
is that the values stored (referred to as “doc-
uments”) provide some structure and encoding
of the managed data. XML, JSON (Java Script
Object Notation), and BSON (which is a binary
encoding of JSON objects) are some common
standard encodings. In order to provide efficient
memory access for these objects, cost-effective
memory placement mechanisms are proposed on
NVRAM (Sudarsun et al., 2016).

Graph Data Model
In a Graph Base NoSQL database, you will
not find the rigid format of SQL or the tables
and columns representation; a flexible graphical
representation is instead used which is perfect
to address scalability concerns. Graph structures
are used with edges, nodes, and properties which
provide index-free adjacency. Data can be easily
transformed from one model to the other using a
Graph Base NoSQL database. With the increase
of the scale of the graph, the capacity of scaling of
DRAM is not able to satisfy the requirements of
analytics over graph with trillions of connections.
Explores of replacing DRAM with emerging
nonvolatile memories (NVRAM) on large-scale
graph analytics framework are performed. Some
hybrid memory systems with NVRAM and
DRAM are proposed in a cost-effective manner
and the performance it can achieve is close
to DRAM-only performance (Jasmina et al.,
2015).
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Synonyms

Stream performance evaluation

Definitions

Stream benchmarks deal with performance eval-
uation techniques and define related metrics for
stream data processing systems.

Overview

Firstly, we discuss background information on
database benchmarking, foundations, main met-
rics, and main features for stream data bench-
marking. Then, we provide related stream bench-
marks and categorize them with respect to the
application area.

Historical Background

Lee et al. (1997) initiated one of the first works
in the related area, MediaBench, by evaluating
and synthesizing multimedia and communica-
tions systems. Abadi et al. (2003) and Motwani
et al. (2003) pioneered one of the first stream data
processing systems, Aurora and STREAM, re-
spectively. The need to compare the performance
characteristics of streaming systems relative to
each other and to alternative (e.g., Relational
Database) systems endorsed the development of
Linear Road benchmark (Arasu et al., 2004).

Foundations

Stream data processing is key when the large
volumes of input data have to be processed fast

to quickly adapt and react to changes. Therefore,
stream data processing has gained significant at-
tention.

The main intuition behind stream benchmarks
is to define a standard to compare streaming
systems, which has different characteristics, in a
various use-cases. Stream benchmarks simulate
an environment with different workloads and ana-
lyze the behavior of the systems to be tested. The
more similar the benchmark to the real produc-
tion environment, the more realistic and valuable
it is.

In the high level, stream benchmark frame-
work consists of two main components: system
under test and driver. Driver is responsible for
simulating the production environment w.r.t. a
given use-case. System under test is actual tested
streaming system which can be out-of-the-box or
tuned.

Accurately representing the system under
test is important when designing benchmarks.
Schroeder et al. (2006) categorize benchmarks
into closed, open, and partly open models. In
a closed system model, the input arrivals are
triggered after the completion of the previous
input processing and some thinking time delay.
In an open system model, on the other hand, new
input arrivals and the completion of the previous
input processing are independent. In a partly
open system model, we specify the settings for
which partly open model behaves like a closed or
an open model.

Below, we categorize existing stream bench-
marks in literature. Firstly, we talk about the main
metrics in stream benchmarks and their defini-
tions. Secondly, we analyze stream benchmarks
which concentrate on specific features such as
fault tolerance and state management. Lastly,
we analyze stream benchmarks built for specific
industrial use-cases.

Metrics

Main metrics for stream benchmarks are latency
and throughput. Achieving high throughput while
preserving low latency is the main goal for
streaming systems.

https://doi.org/10.1007/978-3-319-77525-8_100325
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Latency
Defining a standard latency metric definition for
streaming systems is a challenging task. One
reason is significant architectural and computa-
tional differences among stream data processing
engines. Another reason is calculating latency for
stateful operators in nontrivial.

Chintapalli et al. (2016a) use Redis for stateful
computations as part of the system under test. The
authors calculate the event-time latency by sub-
tracting the window start time and duration time
from the last updated time of a particular input
record. Perera et al. (2016) propose reproducible
benchmarks for Apache Spark and Flink on pub-
lic clouds. The authors do not use a standard la-
tency definition, as, in this case, the latency mea-
surement is experiment and application specific.
Lu et al. (2014) propose a new stream benchmark
by separating the data generator and system under
test. The authors put a mediator layer between
the two components. They define latency as an
average time span from the arrival of a record till
the end of processing of the record. Qian et al.
(2016) also adopted a similar approach. Karimov
et al. (2018) develop stream benchmark frame-
work that overcome overhead of a mediator layer.
The authors show how processing-time latency
might mislead when compared with event-time
latency.

Throughput
Throughput is another essential metric for stream
data processing systems. Similar to latency, mea-
suring and defining a standard throughput metric
for all streaming systems is nontrivial.

Chintapalli et al. (2016a) separate the data
generator and system under test with an interme-
diate layer between them. The authors calculate
the throughput by configuring the speed of data
generator for a specific workload. Lopez et al.
(2016a), on the other hand, rely on Kafka’s sam-
pled throughput rates. Lu et al. (2014) measure
the overall system under test throughput and
throughput per node. The authors define overall
throughput metric by count (average count of
records per second) and size (average data size in
terms of bytes processed per second). Shukla and
Simmhan (2016) define throughput as the rate of

output tuples emitted from the output operators
in a unit time. Dayarathna and Suzumura (2013)
define job throughput in two ways. First, the
authors measure the time required to process a
specific amount of events. Second, the authors
measure the number of tuples processed in a
given amount of time. The throughput compu-
tation is performed based on both time periods.
Samosir et al. (2016), on the other hand, adopt the
throughput metric used in batch processing sys-
tems. Karimov et al. (2018) propose maximum
sustainable throughput throughout the whole ex-
periment.

Benchmarking the energy consumption of
stream data processing engines is another
important aspect of stream benchmarks.
Dayarathna et al. (2017) adopt Linear Road
benchmark for testing the energy efficiency
of S4, Storm, ActiveMQ, Esper, Kafka, and
Spark Streaming. The key finding of this work is
that better power consumption behaviors in the
context of data stream processing systems can
be achieved by setting tuple sizes to be moderate
and scheduling plans to have balanced system
overhead.

Features

Besides focusing on metrics computations,
stream benchmarks also concentrate on specific
features of stream data processing engines.

Fault Tolerance
Lopez et al. (2016a) study streaming systems’
tolerance to failures by analyzing the system
behavior after detecting the failure. The system
behavior includes the message losses and
latency/throughput change during node failure.
Gradvohl et al. (2014) categorize fault tolerance
behavior in stream data processing systems
into replication components, upstream backup,
checkpoint, and recovery and analyze the
system utilization of these strategies. Mohamed
et al. (2017) propose a driver which allows
programmatic specification of complex fault
scenarios. Chauhan et al. (2012) measure the
systems’ tolerance to faults by (i) measuring the
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number of events handled and (ii) checking the
number of events that were missed when nodes
go down in cluster. Qian et al. (2016) adopt
identity workload and consider only one node
failure at a time. The benchmark suite collects
the performance metrics in node-failure workload
and compares it with non-faulty workload.

State Management
Linear Road benchmark, Arasu et al. (2004) and
Jain et al. (2006), consists of continuous queries
which update operator state by processing the in-
coming stream. Kipf et al. (2017) analyze the lim-
itation of efficiently exposing the state to analyt-
ical queries for stream data processing systems.
The authors compare main-memory databases
and streaming engines and propose new methods
to advance state management in streaming sys-
tems.

Key Applications

In this section we categorize stream benchmarks
based on different industrial use-cases.

Data mining. Zhang et al. (2012) and Le-Phuoc
et al. (2012) are the pioneers to propose SR-
Bench and LSBench, the first benchmarks for
RDF streaming and Linked Stream Data process-
ing. The authors adopt wide range of queries
including simple graph pattern matching queries
and the ones with complex reasoning tasks. Del-
lAglio et al. (2013) propose CSRBench, an ex-
tension for SRBench. The authors overcome the
main shortcoming of SRBench and LSBench,
which is inability to assess the correctness of
query evaluation results, by analyzing the oper-
ational semantics of the particular processors. Ali
et al. (2015) address another limitation of SR-
Bench and LSBench, addressing the dynamic ap-
plication requirements and data-dependent prop-
erties. The authors propose the workloads which
include fluctuating streaming rates during query
execution and changing the application require-
ments over a some time duration. Implement-
ing, modeling, and evaluating the provisioning
algorithms for stream processing applications is

another related work, in which authors propose
VISP Testbed (Hochreiner, 2017). The toolkit
provides a common runtime for stream process-
ing applications.

E-commerce. Teng et al. (2017) analyze stream-
ing system behavior in e-commerce scenarios.
The authors provide a data generator, as part of
the benchmark suite, with certain user models,
which adopt a certain user habits in e-commerce
platforms. Tucker et al. (2008) propose NEX-
Mark, an extension of XMark, Schmidt et al.
(2001), based on online auction system. Cur-
rently, NEXMark is used as a benchmark suite in
Apache Beam, Buzzwords (2017).

IoT. Shukla and Simmhan (2016) develop a
benchmark suite for streaming systems for
IoT applications. The authors classify 13
common IoT tasks with functional categories.
Moreover, the benchmark suite provides two IoT
applications being statistical summarization and
predictive analytics. CityBench is the benchmark
to evaluate RDF stream processing systems in
IoT scenarios, Ali et al. (2015). The authors
use traffic vehicles, parking, weather, pollution,
cultural, and library events, with changing event
rates and playback speeds as part of the data
generator. Shukla et al. (2017) extend the existing
stream benchmarks in IoT proposing RIoTBench.
The benchmark includes 27 common IoT
tasks. Moreover, the authors propose four IoT
application benchmarks composed from the
proposed tasks.

Network. Nazhandali et al. (2005) propose
stream benchmark for sensor network systems,
suitable for sensor processors. The authors
propose new metrics being EPB (Energy Per
Bundle) and CFP (Composition Footprint)
to evaluate and compare systems under test.
Lopez et al. (2016b) analyze the performance
of Virtualized Network Function for real-time
thread detection using stream processing. Wolf
and Franklin (2000) propose telecommunication
benchmark for network processors. The authors
adopt four workloads for data stream processing
in telecommunications scenario. Trivedi et al.
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(2016) analyze yet another interesting aspect, the
(ir)relevance of network bandwidth to modern
streaming engines. The key finding of this paper
is that current streaming engines need significant
architectural improvements as they cannot benefit
from high bandwidth networks.

Multi-core processors. Zhang et al. (2017)
benchmark the current design of stream data
processing engines on multi-core processors
analyzing the possible bottlenecks of massively
parallel JVM-based streaming engines.

CEP. Mendes et al. (2009) were among the
pioneers to propose a benchmark for CEP
systems. The authors provide series of queries
to exercise factors such as window size and
policy, selectivity, and event dimensionality.
Mendes et al. (2013) propose BiCEP, the
domain-specific benchmark suite, to evaluate
different performance aspects of event processing
platforms. Alevizos and Artikis (2014) adopt
existing techniques to analyze widely used Esper
system which employs a SQL-based language
and RTEC which is a dialect of the Event
Calculus.

Machine learning. Gama et al. (2009) propose
a general framework for assessing predictive
stream learning algorithms. Gama et al. (2013)
focus on decision models and develop a
benchmark suite to evaluate continuously
evolving streaming and to detect and react to
real-time input data. Imai et al. (2017) utilize a
machine learning model to predict the maximum
sustainable throughput in streaming systems.

Bottlenecks. When designing a system, it
is important to detect and avoid bottlenecks.
For streaming systems, Chintapalli et al.
(2016b) show the Zookeeper being a main
performance bottleneck for Storm. For stream
benchmarks, Friedrich et al. (2017) show the
limitations of existing benchmark designs and
the possible biased results. Moreover, Artisans
(2017) makes a disclaimer for the original
implementation of Chintapalli et al. (2016a),
showing an intermediate message layer, Kafka,

and external state management system, Redis,
are actually being a bottleneck for Flink’s overall
performance.
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Synonyms
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Definitions

A stream processing language is a programming
language for specifying streaming applications.
Here, a stream is an unbounded sequence of data
items, and a streaming application is a com-
puter program that continuously consumes input
streams and produces output streams. This arti-
cle surveys recent streaming languages designed
around the user’s mental model, the stream data
model, or the execution model, as illustrated
in Fig. 1. In addition to specific languages, this
article also discusses abstractions for stream pro-
cessing, which are high-level language constructs
that make it easy to express common stream
processing tasks.

Overview

Continuous data streams arise from many di-
rections, including sensors, communications, and
commerce. Stream processing helps when low-
latency responses are of the essence or when
streams are too big to store for offline analy-
sis. Programmers can of course write stream-
ing applications in a general-purpose language
without resorting to a dedicated domain-specific
language (DSL) for streaming. However, using
a streaming language makes code easier to read,
write, understand, reason about, modularize, and
optimize. Indeed, a suitable streaming language
can help developers conceive of a solution to their
streaming problems.
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Stream Processing Languages and Abstractions, Fig. 1 Stream processing languages

This article provides definitions, surveys
concepts, and offers pointers for more in-
depth study of recent streaming languages.
The interested reader may also want to refer
to earlier papers for historic perspective: the
1997 survey by Stephens focuses on streaming
languages (Stephens, 1997), the 2002 survey by
Babcock et al. focuses on approximate streaming
algorithms (Babcock et al., 2002), and the 2004
survey by Johnston et al. addresses dataflow
languages, where streaming is a special case of
dataflow (Johnston et al., 2004).

The central abstractions of stream processing
are streams, operators, and stream graphs. A
stream is an unbounded sequence of data items,
for example, position readings from a delivery
truck. A streaming operator is a stream trans-
former that transforms input streams to output
streams. From the perspective of a streaming
application, an operator can also have zero input
streams (source) or zero output streams (sink).
Finally, a stream graph is a directed graph whose
nodes are operators and whose edges are streams.
Some literature assumes that the shape of stream
graphs is restricted, e.g., acyclic, but this article
makes no such assumption. While only some
streaming languages make the stream graph ex-
plicit, others use it as an intermediate representa-
tion. For example, the query plan generated from
streaming SQL dialects is a stream graph.

The field of streaming languages is diverse
and fast-moving. To understand where that
diversity comes from, it is instructional to classify
streaming languages by their raison d’être. Some
streaming languages are based on the attitude

that since streams are data in motion, data is most
central, and the language should be built around
a data model (relational, XML, RDF). Other
streaming languages focus on the execution
model for processing the dataflows efficiently,
by enforcing timing constraints or exploiting
distributed hardware (synchronous, big-data). A
third class of streaming languages focus more
on enabling the end user to develop streaming
applications in high-level or familiar abstractions
(complex events, spreadsheets, or even natural
language). Section “Findings” surveys languages
in each of these classes, and section “Examples”
gives concrete examples for two languages.

Findings

This section gives an overview of the field of
stream processing languages by surveying eight
prominent approaches. Each approach is exem-
plified by one concrete language. The approaches
are grouped along the lines of the previous sec-
tion into approaches driven by the data model, by
the execution model, or by the target user.

Data-Model Driven Streaming Languages
The success of the relational data model for
database systems has inspired streaming dialects
of the SQL database language. These dialects
benefit from developers’ familiarity with SQL
and from its relational algebra underpinnings. A
prominent example is the CQL language, which
complements standard relational operators with
operators to transform streams into relations and
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vice versa (Arasu et al., 2006). CQL lends itself
to strong static typing, cf. Figure 10 of Soulé et al.
(2016). Efforts toward standardizing streaming
SQL focused on clarifying semantic corner cases
(Jain et al., 2008).

The success of XML as a universal
exchange format for events and messages has
inspired XML-based streaming languages. These
languages take advantage of a rich ecosystem
of XML tools and standards and of the fact that
XML documents are self-describing. The lan-
guages come in different flavors, from view main-
tenance over XML updates in NiagaraCQ (Chen
et al., 2000) to languages that process streams
where each data item is a (part of an) XML doc-
ument (Diao et al., 2002; Mendell et al., 2012).

The Resource Description Framework (RDF)
is a versatile data format for integration
and reasoning, based on triples of the form
hsubject, predicate, objecti. A popular language
for querying static RDF knowledge bases is
SPARQL (Prud’hommeaux and Seaborne, 2008),
and C-SPARQL (Barbieri et al., 2009) extends
SPARQL for continuous queries, just like
CQL extends SQL. A stream is a sequence of
timestamped triples, but a query can also return a
graph by emitting multiple triples with the same
timestamp.

Execution-Model Driven Streaming
Languages
Dataflow synchronous languages (Benveniste
et al., 2003) were introduced in the late 1980s as
domain-specific languages for the design of em-
bedded control systems. A dataflow synchronous
program executes in a succession of discrete
steps, and each step is assumed to be instanta-
neous (the synchronous hypothesis). A program-
mer writes high-level specifications in the form
of stream functions specifying variable values
at each step or instant. Section “Synchronous
Dataflow in Lustre” illustrates this approach with
the language Lustre (Caspi et al., 1987).

Streaming big data is motivated by the
“4 Vs”: a lot of data (volume) streams quickly
(velocity) into the system, which must deal with
diverse data and functionality (variety) and with
uncertainty (veracity). Languages for big-data

streaming let users specify an explicit stream
graph that can be easily distributed with minimal
synchronization and are extensible by operators
in widely adopted general-purpose languages.
Section “Big-Data Streaming in SPL” elaborates
on this for the concrete example of SPL (Hirzel
et al., 2017).

Target-User Driven Streaming Languages
Complex event processing, or CEP, lets users
compose events hierarchically to span the gap
between low-level and high-level concepts. There
are various pattern languages for CEP that com-
pile to finite automatons. Recognizing this, the
MATCH-RECOGNIZE SQL extension proposal
simply adopts familiar regular expressions as
the CEP pattern language (Zemke et al., 2007).
While the SQL basis focuses on a relational
model, regular expressions can also be used for
CEP in big-data streaming (Hirzel, 2012).

Since there are many more spreadsheet users
than software developers, a spreadsheet-based
streaming language could reach more target
users. Furthermore, spreadsheets are reactive:
changes trigger updates to dependent formulas.
ActiveSheets hooks up some spreadsheet cells to
input or output streams, with normal spreadsheet
formulas in between (Vaziri et al., 2014). When
the two-dimensional spreadsheet data model is
too limiting, it can be augmented with windows
and partitioning (Hirzel et al., 2016).

A streaming language based on natural lan-
guage might reach the maximum number of tar-
get users. However, since natural language is am-
biguous, a controlled natural language (CNL) is a
better choice (Kuhn, 2014). For instance, the lan-
guage for META is a CNL for specifying event-
condition-action rules, temporal predicates, and
data types (Arnold et al., 2016). The data model
includes events and entities with nested concepts
and can be shown to be equivalent to the nested
relational model (Shinnar et al., 2015).

Examples

This section gives details and concrete code
examples for two out of the eight approaches
for languages surveyed in the previous section:
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the synchronous dataflow approach exemplified
by Lustre (Caspi et al., 1987) and the big-data
streaming approach exemplified by SPL (Hirzel
et al., 2017).

When it comes to implementing streaming
languages, there is a spectrum from basic to
sophisticated techniques. At the basic end of the
spectrum are configuration files in some existing
markup format such as XML. The streaming en-
gine interprets the configuration file to construct
and then execute a stream graph. An intermediate
point is a domain-specific embedded language
(EDSL or sometimes DSEL) (Hudak, 1998). As
the name implies, an EDSL is a domain-specific
language (DSL) that is embedded in some host
language, typically a general-purpose language
(GPL). The line between simple libraries and ED-
SLs is blurred, but in general, EDSLs encourage
a more idiomatic programming style. Recently,
EDSLs have gained popularity as several GPLs
have added features that make them more suitable
for hosting EDSLs. At the sophisticated end of
the spectrum are full-fledged, stand-alone DSLs
with their own syntax, compiler, and other tools.
While stand-alone streaming DSLs are not em-
bedded in a GPL, they often interface with a GPL,
e.g., for user-defined operators.

For clarity of exposition, the following exam-
ples use stand-alone streaming languages. Stand-
alone languages are the norm for synchronous
dataflow, because self-contained code is easier
to reason about. On the other hand, for big-data
streaming, EDSLs that specify an explicit stream
graph are popular, because they are easier to
implement. But as the example below illustrates,
once implemented, stand-alone languages also
have advantages for big-data streaming.

Synchronous Dataflow in Lustre
Synchronous dataflow languages were introduced
to ease the design and certification of embedded
systems by providing a well-defined mathemat-
ical framework that combines a logical notion
of time and deterministic concurrency. It is then
possible to formally reason about the system,
simulate it, prove safety properties, and generate
embedded code. The synchronous dataflow lan-
guage Lustre is the backbone of the industrial lan-

guage and compiler Scade (Colaco et al., 2017)
routinely used to program embedded controllers
in many critical applications.

In Lustre a program is a set of equations
defining streams of values. Time proceeds by dis-
crete logical steps, and at each step, the program
computes the value of each stream depending
on its inputs and possibly previously computed
values. Consider the example of Fig. 2 adapted
from Bourke et al. (2017). The function counter
takes three input streams, two integer streams
init and incr , and one boolean stream reset. It
returns the cumulative sum of the values of incr
initialized with init and similarly reset when reset
is true (Line 5). The variable pn (Line 4) stores
the value of the counter n at the previous step
using the initialization operator (�>) and the non-
initialized delay pre.

A stream is not necessarily defined at each
step. The clock of a stream is a boolean se-
quence giving the instants where it is defined.
Streams with different clocks can be combined
via sampling (when) or stuttering (current). For
instance, the tracker function of Fig. 2 tracks the
number of times the speed of a vehicle exceeds
the speed limit. The when operator samples a
stream according to a boolean condition. The
function counter is thus only activated when x is
true (Line 12). The current operator completes a
stream with the last defined value when it is not
present (Line 13). The value of t is thus sustained
when x is false. The execution of such a program
can be represented as a timeline, called a chrono-
gram (illustrated in Fig. 2), showing the sequence
of values taken by its streams at each step.

Specific compilation techniques for syn-
chronous languages exist to generate efficient
and reliable code for embedded controllers.
Compilers produce imperative code that can
be executed in a control loop triggered by
external events or on a periodic signal (e.g.,
every millisecond). The link between logical and
real time is left to the designer of the system.

Since the seminal dataflow languages Lus-
tre (Caspi et al., 1987) and Signal (Le Guernic
et al., 1991), multiple extensions of the dataflow
synchronous model were proposed. Lucid Syn-
chrone (Pouzet, 2006) combines the dataflow
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1 node counter ( init , incr : int ; reset : bool) returns (n: int );
2 var pn: int ;
3 let
4 pn = init −> pre n;
5 n = if reset then init else pn + incr ;
6 tel
7
8 node tracker (speed, limit : int ) returns (t : int );
9 var x: bool; cpt : int when x;

10 let
11 x = (speed > limit );
12 cpt = counter((0, 1, false ) when x);
13 t = current(cpt);
14 tel

speed 28 29 32 30 44 53 58 48 33 28 29 . . .
limit 30 30 30 30 55 55 55 30 30 30 30 . . .

x F F T F F F T T T F F . . .
cpt 1 2 3 4 . . .

t 0 0 1 1 1 1 2 3 4 4 4 . . .

Stream Processing Languages and Abstractions, Fig. 2 Lustre code example with a possible execution

synchronous approach with functional features à
la ML, the n-synchronous model (Mandel et al.,
2010) relaxes the synchronous hypothesis by al-
lowing communication with bounded buffers, and
Zélus (Bourke and Pouzet, 2013) is a Lustre-
like language extended with ordinary differential
equations to define continuous-time dynamics.

Recent efforts focus on the compilation, ver-
ification, and test of dataflow synchronous pro-
grams. New techniques have been proposed to
compile Lustre programs for many-core systems
(Rihani et al., 2016) or improve the computation
of the worst-case execution time (WCET) of the
compiled code (Bonenfant et al., 2017; Forget
et al., 2017). Kind2 (Champion et al., 2016) is a
verification tool based on SMT solvers to model-
check Lustre programs, and the Vélus compiler
(Bourke et al., 2017) tackles the problem of
verifying the compiler itself using a proof as-
sistant. Lutin (Raymond and Jahier, 2013) (and
its industrial counterpart, the Argosim Stimulus
tool Argosim, 2015) is a DSL to design non-
deterministic test scenarios for Lustre programs.

Big-Data Streaming in SPL
Big-data streaming languages are designed to
handle high-throughput streams while at the same
time being expressive enough to handle diverse
data formats and streaming operators. A popular

way to address the requirement of high through-
put is to make it easy to execute the streaming
application not just on a single core or even a
single computer, but on a cluster of computers.
And a popular way to address the requirement
of high expressiveness is to make it easy for
programmers to define new streaming operators,
possibly using a different programming language
than the stream processing language they use for
composing operators into a graph.

SPL is a big-data streaming language designed
for distribution and extensibility (Hirzel et al.,
2017). It was invented in 2009 and is being
actively used in industry (IBM, 2008). An SPL
program is an explicit stream graph of streams
and operators. Unlike dataflow synchronous lan-
guages, and like other big-data streaming lan-
guages, SPL uses only minimal synchronization:
an operator can fire whenever there is data avail-
able on any of its input ports, following seman-
tics formalized in the Brooklet calculus (Soulé
et al., 2010). Since synchronization across differ-
ent cores and computers is hard to do efficiently,
reducing synchronization simplifies distribution,
giving the runtime system more flexibility for
which operators to co-locate in the same core or
computer. There is no assumption of simultaneity
between different operator firings. When down-
stream operators cannot keep up with the data
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1 stream<float64 len, rstring caller> Calls = CallsSource() { }
2
3 stream<float64 len, int32 num, rstring who> CallStats = Aggregate(Calls) {
4 window Calls: sliding , time(24.0 ∗ 60.0 ∗ 60.0), time(60.0);
5 output CallStats: len = Max(Calls.len),
6 num = MaxCount(Calls.len),
7 who = ArgMax(Calls.len, Calls.caller );
8 }

Stream Processing Languages and Abstractions, Fig. 3 SPL code example

rate, they implicitly throttle upstream operators
via back-pressure.

Figure 3 shows an example SPL program.
Line 1 defines a stream Calls as the output of
invoking an operator CallsSource. In SPL, streams
carry tuples that are strongly and statically typed
and whose fields can hold simple numbers or
strings as in the example but can also hold nested
lists and tuples. The CallsSource operator has
no further configuration (empty curly braces);
for this example, assume it is user-defined
elsewhere. Programmers can define their own
operators either in SPL or in other languages
such as C++ or Java. Lines 3–8 define a stream
CallStats by invoking an operator Aggregate. The
code configures the operator with an input stream
Calls, with a window clause for a 24-h sliding
window with 1-minute granularity, and with an
output clause. While many operators support
these and other clauses, they can also contain
code restricted to the operator at hand. The
Aggregate operator in SPL’s standard library
supports intrinsic functions for Max, MaxCount,
and various other aggregations. Programmers
can extend SPL with new operators that, like
Aggregate, support various configurations and
operator-specific intrinsic functions.

SPL was influenced by earlier big-data
streaming systems such as Borealis (Abadi
et al., 2005) and TelegraphCQ (Chandrasekaran
et al., 2003), generalizing them to be less
dependent on relational data and more extensible.
Various other streaming systems after SPL, such
as Storm (Toshniwal et al., 2014) and Spark
Streaming (Zaharia et al., 2013), also target
big-data streaming. Like SPL, they use explicit
stream graphs as their core abstraction, but
unlike SPL, they use embedded (not stand-alone)
domain-specific languages.

While the examples of Lustre and SPL draw
a stark contrast between synchronous dataflow
and big-data streaming, there are also commonal-
ities. For instance, the StreamIt language is syn-
chronous, but like big-data streaming languages,
it uses an explicit stream graph as its core ab-
straction (Thies et al., 2002). And Soulé et al.
show how to reduce the dependence of StreamIt
on synchrony (Soulé et al., 2013).

Future Directions for Research

The landscape of streaming languages is far from
consolidating on any dominant approach. New
languages keep coming out to address a variety
of open issues. One active area of research is
the interaction between streams (data in mo-
tion) and state (data at rest). While CQL gave a
conceptually clean answer (Arasu et al., 2006),
people are debating alternative approaches, such
as the Lambda architecture (Marz, 2011) and the
Kappa architecture (Kreps, 2014). Another active
area of research is how to handle uncertainty,
such as out-of-order data, missing fields, erro-
neous sensor readings, approximate algorithms,
or faults. On this front, streaming languages have
not yet reached the clarity of databases with
their ACID properties. When it comes to im-
plementation strategies, there has been a recent
surge in embedded domain-specific languages.
But while EDSLs have fewer tooling needs and
are less intimidating for users familiar with their
host language, they are less self-contained and
offer less static optimization and error-checking
than stand-alone languages. We hope this article
inspires innovation in streaming languages that
are well-informed by those that came before.
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Synonyms
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Definitions

Stream query optimization is the process of mod-
ifying a stream processing query, often by chang-
ing its graph topology and/or operators, with
the aim of achieving better performance (such
as higher throughput, lower latency, or reduced
resource usage), while preserving the semantics
of the original query.

Overview

A stream query optimization modifies a stream
query to make it faster. Users want stream queries
to be fast for several reasons. They want to grasp
opportunities or avert risks observable on the
input streams before it is too late. They want any
views derived from the input streams to be up-
to-date and not stale. And they want their system
to keep up with the rate of input streams without
falling behind, which would require shedding
load or saving data to disk for later processing.

Knowing about stream query optimizations
helps developers at all layers. Application
developers who know about stream query
optimizations can get the most out of the
optimizations built into their streaming platform
and can supplement them by hand-optimizing
their application where necessary. Streaming
platform developers can use knowledge about
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stream query optimizations to make their
platform faster by implementing additional
optimizations or by generalizing their existing
optimizations to apply in more situations. Finally,
researchers who invent new optimizations need
to know the state-of-the-art optimizations to
channel their efforts into the most innovative
and impactful direction.

The rest of this section introduces some basic
concepts and gives a high-level overview and
categorization of the most common stream query
optimizations.

An optimization should be both safe and
profitable. An optimization is safe if it can be
applied to a stream query without changing
what it computes, as determined by the user’s
requirements. An optimization is profitable if
it makes the stream query faster, as measured
by metrics that matter to the user, such as
throughput, latency, or resource efficiency. There
is a substantial literature on different stream
query optimizations, with different safety and
profitability characteristics. This entry lists the
most common optimizations along with short
descriptions. More in-depth descriptions can be
found in our survey paper and tutorial on stream
processing optimizations (Hirzel et al., 2014;
Schneider et al., 2013).

Stream query optimizations are best under-
stood with respect to stream graphs. A stream
graph is a directed graph whose edges are streams
and whose nodes are operators. Root and leaf
nodes are called sources and sinks, respectively.

This entry uses terminology that makes only few
assumptions so as not to unnecessarily restrict its
scope. For instance, this entry does not assume
restrictions on the shape of the stream graph:
unless specified otherwise, it does not assume
that stream graphs are acyclic, or are single-
source-single-sink, or are trees. A stream is an
ordered sequence of data items, which are values
that can range from simple numbers to flat tuples
to more elaborate structured data that may be
deeply nested and have variable size. Streams
are conceptually infinite, in the sense that as
the streaming computation unfolds over time, the
sequence of data items is unbounded in length.
Operators are primarily stream transformers but
can also have state and side effects beyond the
output streams they produce. Indeed, sources and
sinks are operators that typically have the side
effect of continuously consuming input from and
producing output to the external world outside of
the stream graph.

Figure 1 lists the most popular stream query
optimizations. Each optimization has a symbol
(e.g., B), a name (e.g., Batching), and two anno-
tations indicating its effect on the graph and the
semantics. The optimizations to the left (shown
in orange and red) leave the stream graph un-
changed. This means the graph still contains
the same nodes and edges, and any changes are
limited to the behavior of individual operators.
The optimizations on the right (shown in blue
and green) change the stream graph. The opti-
mizations on the top (shown in orange and blue)

Stream Query Optimization, Fig. 1 Overview of stream query optimizations discussed in this entry
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keep the semantics stable. This means that as
long as their safety preconditions are satisfied,
the observable behavior of the stream query is
the same before and after applying the optimiza-
tion. These optimizations are safe in the sense
discussed above. The extreme case is batching
and fusion at the very top, which are not only
safe, but have safety preconditions that are trivial
to satisfy. Only the threeoptimizations at the very

bottom have unstable semantics: load shedding,
which always changes the semantics, and al-
gorithm selection and fission, which sometimes
change semantics if the algorithm is approximate
or if the fission perturbs the order of data items.
These forms of semantic changes are sometimes
tolerable depending on application requirements.

The following section will elaborate on each
of the optimizations from Fig. 1 with illustrations,
definitions, and literature references.

Key Research Findings

B 1

Batching

Unchanged graph
Stable semantics

A A'

Batching Definition: Batching reduces over-
head by processing multiple data items together.
This optimization improves throughput by
amortizing the cost of operator-firing and
communication over several data items. However,
this throughput gain is usually at the expense of
additional latency, as an operator cannot fire until

it has received a batch-size number of data items.
References: In the literature, batching is also
called train scheduling (Carney et al., 2003) and
execution scaling (Gordon et al., 2006). Batching
can be dynamic, as in SEDA (Welsh et al., 2001),
or static, as in StreamIt (Gordon et al., 2006).

Fusion combines

Fu 2

Fusion

Changed graph
Stable semantics

BA
q0 q1 q2 A

q0 B
q2

Fusion Definition: Fusion combines smaller op-
erators into a larger one, to avoid the overhead
of data serialization and transport. Operators may
be fused in many ways, for example, by placing
the operators into the same thread or by keeping
operators in separate threads that share a common
address space. Fusion may come at the cost

of decreased pipeline parallelism. References:
StreamIt (Gordon et al., 2002) aggressively fuses
fine-grained operators, followed by fission. In
Aurora, fusion is referred to as superbox schedul-
ing (Tatbul et al., 2003). System S uses the COLA
fusion optimizer (Khandekar et al., 2009), which
balances safety and profitability constraints.

P 3

Placement

Unchanged graph
Stable semantics

B

D

A

E

C B

D

A

E

C

Placement Definition: Placement assigns oper-
ators to hosts and cores to reduce communica-
tion costs or better utilize available resources.
Frequently, these two goals are at odds. When

multiple operators are placed on the same host,
they communicate at lower cost, but they com-
pete for common resources, such as disk, mem-
ory, or CPU. On the other hand, when operators
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are placed on different hosts, that reduces con-
tention but incurs higher communication costs.
References: StreamIt uses placement to optimize
streaming applications deployed on multi-core
machines with nonuniform memory access (Gor-

don et al., 2002). Pietzuch et al. use metrics
gathered from network conditions to place op-
erators in a distributed setting (Pietzuch et al.,
2006). SODA incorporates job admission with
the placement decisions (Wolf et al., 2008).

Ss 4

State
sharing
Unchanged graph
Stable semantics

BA BA

State sharing Definition: State sharing attempts
to avoid unnecessary copies of data. While the
main goal of the optimization is to reduce the
memory footprint of a streaming application, it
can also impact performance by reducing stalls
due to cache misses or disk I/O. References:
State sharing can be applied generally between

streaming operators, such as in the work of Brito
et al. (2008). Or, it can be applied in more
restricted forms, such as in CQL, which shares
only window state (Arasu et al., 2006), or in the
work of Sermulins et al., which shares queue
state between two pipelined operators (Sermulins
et al., 2005).

Os 5

Operator
separation
Changed graph
Stable semantics

A2A1A

Operator separation Definition: Operator sep-
aration splits a large computation into smaller
steps. In some cases, this optimization can result
in reduced resource consumption. Often, this op-
timization is used to enable other optimizations,
such as operator reordering. References: Using
algebraic equivalences for separating operators is

a common technique in database query execution
planning (Garcia-Molina et al., 2008). Yu et al.
(2009) present a stream query compiler that uses
explicit annotations to determine when to sep-
arate aggregate operators. Decoupled software
pipelining separates general code by analyzing
data dependencies from first principles (Ottoni
et al., 2005).

Or 6

Operator
reordering
Changed graph
Stable semantics

BA
q0 q1 q2 AB

q0 q1 q2

Operator reordering Definition: A reordering
optimization moves more selective operators,
which reduce the data volume, upstream. This
has the benefit of reducing the data flowing
into downstream computation, thus eliminating
unnecessary work. However, care must be taken

to preserve the desired semantics, and operators
should only be re-ordered if the operations are
commutative. References: Reordering based on
the properties of relational algebra is common in
database query planning (Garcia-Molina et al.,
2008). The Volcano (Graefe, 1990) system
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implements a particularly profitable case of
reordering: swapping split and merge operators
in a data-parallel pipeline to avoid choke-points.

Eddies (Avnur et al., 2000) is a dynamic
technique for finding the most profitable ordering
of operators with independent selectivities.

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Dup
Split

A C

A B

C

B

A
Dup
Split

Redundancy elimination Definition: Re-
dundancy elimination eliminates superfluous
computations. This optimization must ensure
that removing a given computation does not
change the resulting output. While, in general,
determining program equivalence is undecidable,
in practice, streaming languages are often based
on an algebra, which makes the optimization

feasible. References: The Rete algorithm
(Forgy, 1982) is a highly-influential approach
to detecting and eliminating redundancies
in a multi-tenant system. NiagaraCQ (Chen
et al., 2000) applied similar ideas to processing
streaming XML. Pietzuch et al. (2006) eliminate
redundancy at application launch time.

Lb 8

Load
balancing
Unchanged graph
Stable semantics

A1

A2

A3

Split

A1

A2

A3

Split

Load balancing Definition: Load balancing
attempts to distribute workload evenly across
resources. To be effective, a load-balancing
optimization must adapt to workload skew, e.g.,
when there are many accesses to a popular
data item. References: River uses intelligent
routing for load balancing in a cluster (Arpaci-
Dusseau et al., 1999). Caneill et al. use online

adaptive routing, which considers downstream
communication (Caneill et al., 2016). In contrast,
Amini et al. use operator placement for load
balancing in a cluster (Amini et al., 2006).
StreamIt also uses placement for load balancing,
but targets multi-core machines (Gordon et al.,
2002).

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

A A

Algorithm selection Definition: Algorithm se-
lection uses a different algorithm to implement
an operator. There are various reasons to change
the algorithm. For example, one algorithm may
be more general than another. One algorithm may

optimize for different criteria. Or, one algorithm
may perform better than others under different
circumstances. References: Changing the opera-
tor algorithm for particular workloads is common
in database systems (e.g., using a hash join vs.
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a nested loop join Garcia-Molina et al., 2008).
In streaming systems, SEDA allows an operator
to pick a different algorithm to provide degraded
service (Welsh et al., 2001). Borealis allows an

operator to switch to a different algorithm based
on a control input (Abadi et al., 2005). And,
SODA offers algorithm selection at the granular-
ity of entire jobs (Wolf et al., 2008).

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

A Shedder A

Load shedding Definition: Load shedding
copes with high load by dropping data items
to process. Load shedding may change the
expected results of a computation, and therefore
the semantics of the streaming application.
References: Aurora implements priority-based

load shedding (Tatbul et al., 2003). Compact
Shedding Filters perform load-shedding at data-
generating sensors, rather than the server, to avoid
unnecessary network communication (Gedik
et al., 2008).

Fi 11

Fission

Changed graph
Unstable semantics

A
q0 q1

A

A

A

Split Merge
q0 q1

Fission Definition: Fission, often referred
to as data parallelism, attempts to process
multiple data items in parallel by replicating an
operator. Note that when parallelizing operators,
the optimizer must respect ordering or state
constraints to ensure the correctness of the
computation. References: The StreamIt compiler
applies fission to stateless operators with static
selectivity (Gordon et al., 2006). Schneider et al.
explored how to make fission safe in the more
general case of partitioned-stateful and selective
operators (Schneider et al., 2015). Finally, Brito
et al. propose using transactional memory to
make fission safe in the case of arbitrary operator
state (Brito et al., 2008).

Examples of Application

We illustrate the use of the three most popu-
lar optimizations, namely, fission, fusion, and
batching, in the context of real-world streaming
applications from the literature.

Fission One application that benefits a lot from
fission is streaming radio astronomy, which forms
evolving imaging maps of radio emission from
the sky over a wide range of frequencies (Biem
et al., 2010b). High-performance processing is
a critical requirement in this application, due to
the sheer volume of sensor data that flow in real-
time from a very large array of antennas, which is
typical of phased array radio telescopes (see SKA
2000). The application’s flow graph is organized
as a split-merge topology. An initial operator
performs frequency mapping and blocking so that
a subsequent operator splits the data into blocks
of frequency channels. Each such block is then
processed in parallel by performing indexing and
convolution operations, forming a costly stateless
parallel region that highly benefits from fission.
Finally, the results are merged via an aggregation
to form the complete imaging map.

Fusion In Biem et al. (2010a), a streaming ap-
plication is presented for maintaining live traffic
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status information using GPS sensor data. The
application processes floating car data originating
from public transportation vehicles to extract up-
to-date traffic information, such as speed and
traffic flow measurements at the level of streets
within a city, traffic volume measurements by
region, estimates of travel times between differ-
ent points, etc. The application is organized as
a graph of streams and operators, where differ-
ent operators perform individual tasks, such as
data parsing and cleaning, snapping GPS points
to roads, aggregation and statistics maintenance,
prediction of travel times, etc. The operators in
the flow graph of the application are grouped into
processing elements, which are then distributed
across machines. The operators that are assigned
to the same processing element are fused inside a
shared address space, in order to reduce the data
transfer latency.

Batching The batching optimization is particu-
larly useful when interacting with external sys-
tems. A common use case for such interaction
is managing state. For instance, LinkedIn, which
is a business- and employment-oriented social
networking service, runs several streaming ap-
plications that manage state, such as user pro-
files and aggregate counts. These applications
include email digest generation, top-k relevant
category detection, and profile update standard-
ization, among others (Noghabi et al., 2017). In
these applications, the state needs to be accessed
from either the local disk-based or remote state
management systems. Similarly, many of these
streaming applications write their output to an ex-
ternal system, such as a message queue. When an
external interaction is to be performed on a per-
tuple basis, batching is an effective optimization
that can amortize the overheads and significantly
improve the performance.

Future Directions for Research

In an ideal world, programmers would code their
streaming applications at the most natural level
of abstraction without having to worry about
runtime performance, and the streaming system

would automatically execute the applications
with consistently high performance. While
stream query optimizations have made significant
advances toward this goal, they still fall short on
automation and predictability.

It is still difficult to fully automate stream-
ing optimizations, because automatic optimizers
may not find the most profitable setting. Finding
the most profitable setting ahead-of-time, be-
fore executing the streaming application, is tricky
because the performance model may be compli-
cated (e.g., when multiple optimizations interact)
or some information required by the performance
model may be missing or hard to predict. An al-
ternative to ahead-of-time optimization is online
feedback-directed optimization, which is subject
to the trade-offs inherent in the SASO properties
of feedback control (stability, accuracy, settling,
and no overshoot) (Hellerstein et al., 2004). Work
such as that of De Matteis and Mencagli, which
uses a control-theoretic approach to perform on-
line adaptations to optimize for latency (De Mat-
teis et al., 2016), is a promising direction.

When streaming applications fall short of their
expected peak performance, programmers often
optimize them by hand. This has the advantage of
giving programmers more control over squeezing
the last bit of performance out of their applica-
tion. Unfortunately, it can also clutter their code,
can make the performance brittle by over-fitting
to the current workload and execution environ-
ment, and may even inhibit automated optimiza-
tions. One approach to address these issues is to
decouple the optimizer hints and directives from
the core application logic (Hirzel et al., 2017).

Overall, there is still much work to be done
in developing more effective optimizations,
more reliable performance models, and more
unintrusive language features for giving
optimizer hints. This entry represents a snapshot
of the state of the art, and we encourage the
reader to venture beyond it.

Cross-References
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� Introduction to Stream Processing Algorithms
� Sliding-Window Aggregation Algorithms
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Definitions

Sliding windows are bounded sets which
evolve together with an infinite data stream of
records. Each new sliding window evicts records
from the previous one while introducing newly

arrived records as well. Aggregations on win-
dows typically derive some metric such as an
average or a sum of a value in each window. The
main challenge of applying aggregations to slid-
ing windows is that a naive execution can lead to
a high degree of redundant computation due to a
large number of common records across different
windows. Special optimization techniques have
been developed throughout the years to tackle re-
dundancy and make sliding window aggregation
feasible and more efficient in large data streams.

Overview

Data stream processing has evolved significantly
throughout the years, both in terms of system
support and in programming model primitives.
Alongside adopting common data-centric opera-
tors from relational algebra and functional pro-
gramming such as select, join, flatmap, reduce,
etc., stream processors introduced a new set of
primitives that are exclusive to the evolving na-
ture of unbounded data. Stream windows are
perhaps the most common and widely studied
primitive in stream processing which is used to
express computation on continuously evolving
subsets out of a possibly never-ending stream.
In essence, stream windows grant control on the
granularity and the scope of stream aggregations.

Several early stream processing systems (e.g.,
TelegraphCQ (Chandrasekaran et al., 2003),
STREAM (Arasu et al., 2004)) provided support
for windowing through a predefined set of
primitives to construct time- and count-based
sliding windows. For example, periodic tumbling
and sliding windows were already standardized
as early as the SQL-99 standard and studied
thoroughly in the Continuous Query Language
(CQL) (Arasu et al., 2006) as well as the stream
processing language (SPL) (Hirzel et al., 2009)
among others. A tumbling window is a simple
case of a stream window type, which is defined
as a sequence of periodic consecutive sets of
records in a stream with a fixed length that
is termed range. For example, if we assume a
stream of car speed events, the following simple
query in CQL would discretize that stream into

https://skatelescope.org
https://doi.org/10.1007/978-3-319-77525-8_287
https://doi.org/10.1007/978-3-319-77525-8_157
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windows of every 30sec interval and compute the
maximum speed per window:

SELECT max(speed)
from CarEvents
[RANGE 30 Seconds]

In principle, in tumbling windows each record
can only belong to a single window. As a result,
the evaluation of each window can be performed
trivially by grouping records by the window they
belong to and executing each window aggrega-
tion independently. However, sliding windows
add a challenging twist to the formula, namely,
the “slide.” As an example consider the following
sliding window query in SQL-99:

SELECT AVERAGE(speed)
FROM CarEvents
[WATTR timestamp
RANGE 7 minute
SLIDE 3 minute]

The slide represents “when” or “how often” a
window has to be evaluated while including all
records defined in its range in the computation
of the average speed. In this sliding window ex-
ample, there is an overlap of 5 min between each
consecutive window, and thus, a naive execution
would result into redundant operations in its great
majority. Beyond periodic windows, today’s
Apache open-source systems such as Flink
(Carbone et al., 2015, 2017), Beam, and Apex
provide support for more advanced, often user-
defined, sliding window definitions such as
session (Akidau et al., 2015) or content-driven
windows (Bifet and Gavalda, 2007), among
others.

Sliding windows have their own set of opti-
mization techniques that aim to reduce the re-
dundant computations caused by the intersection
of events between neighboring windows. In this
paper we categorize optimization techniques into
slicing, pre-aggregation, and hybrid and analyze
them throughout the rest of this chapter.

Basic Concepts

There are many interpretations of window seman-
tics, from simple range and count event-time win-
dows (Arasu et al., 2006) to policy-based (Hirzel

et al., 2009) and composite event-time windows
with retraction for out-of-order processing (Li
et al., 2008b). The SECRET model (Botan et al.,
2010) aimed to subsume most of the windowing
semantics proposed in academia and commercial
systems. However, for the sake of brevity, a more
simplified description is used here, with a heavy
focus on window aggregation, based on the recent
work on the Cutty aggregator (Carbone et al.,
2016) and FlatFat (Tangwongsan et al., 2015).

Stream Discretization
Data streams are unbounded sequences of records
which are described by a given schema T . More
formally, a stream s 2 Seq.T / is a sequence out
of all possible sequences Seq.T / over T . Win-
dows are finite subsequences reflecting intervals
of a stream s. An interval sŒa; b� is simply a set
of records from index a to b over a stream s and
the set of all possible intervals Str.T / � Seq.T /.

In their most general form, windows can be
derived by discretizing an unbounded stream. A
Discretizer transforms a stream s 2 Seq.T /
into a sequence w 2 Seq.Str.T // of (possi-
bly overlapping) windows. In the most system-
agnostic manner, every possible discretization of
a stream can be aided through a discretization
function provided to a special Discretize or Win-
dowing stream operator.

Definition 1 Discretize Wfdisc � Seq.T / !

Seq.Str.T //

Figure 1 depicts a simple example of a dis-
cretization function fd applied on a stream of
elements which forms count windows with a
“range” of 5 records and a “slide” of 2 records.

Aggregating Sliding Windows
Conceptually, in data stream programming mod-
els, an Aggregate operator computes an ag-
gregation on each window derived after a stream
discretization, given an aggregation function fa.

Definition 2 Aggregate W.fa W Str.T / !

T 0/ � Seq.Str.T // ! Seq.T 0/
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Stream Window Aggregation Semantics and Opti-
mization, Fig. 1 Discretization of a count window of
range 5 and slide 2
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Stream Window Aggregation Semantics and Opti-
mization, Fig. 2 Aggregation of a count window of
range 5 and slide 2

Examples of fa is a SUM or AVG, but also
more complex aggregations can be executed in
a window, such as building a machine learn-
ing model. Figure 2 shows how aggregates are
formed on each consecutive window of a dis-
cretized stream. The main reason for optimizing
the window aggregation process stems from two
issues that can be observed in this example. First,
a consecutive execution of the aggregation opera-
tion after discretization can be inefficient both in
terms of space needed to log all elements of each
window as windows can be very large in size. At
the same time, the response time has to be min-
imized when iterating through all window con-
tents in order to calculate an aggregate. Finally,
and most importantly, as highlighted in Fig. 2,
sliding windows might involve a large amount of
overlapping across consecutive windows. In this
example there is an overlapping of three records
between every two windows.

The first problem is solved by simply pipelin-
ing discretization with aggregation and thus, ef-
fectively providing a partial evaluation of window
aggregates. Partial aggregation is described in
section “Partial Window Aggregation”. The over-
lapping problem is more complex, and its opti-
mization techniques are further classified by win-
dow types into slicing, general pre-aggregation,
and hybrid techniques, covered thoroughly in
sections “Window Slicing”, “General Pre-aggre-
gation”, and “Cutty: A Hybrid Approach”, re-
spectively.

Partial Window Aggregation
A complete partial window aggregation scheme
has been proposed in both FlatFat (Tangwongsan
et al., 2015) and Cutty (Carbone et al., 2016).
According to that scheme, an aggregation fa

can be decomposed into partial aggregation op-
erations in order to pipeline the process during
discretization. A window aggregation function is
therefore decomposed into lift and lower and
a combine functions as such:

lift : T ! A maps an element of a window to
a partial aggregate of type A.

combine ˚ : A � A ! A combines two
partial aggregates into a new partial aggregate
(equivalent to a reduce function).

lower : A ! T 0 maps a partial aggregate into
an element in the type T 0 of output values.

The main and only requirement for partial
aggregation is to have an associative combine
function so that aggregation can be used to eval-
uate a full window aggregate in discrete steps
(Arasu and Widom, 2004; Krishnamurthy et al.,
2006; Tangwongsan et al., 2015).

An example of partial aggregation of a win-
dow is depicted in Fig. 3. The goal in this example
is to partially compute the average value out of a
set of records with values 1 to 5. The invariant is
that only one partial aggregate is kept in memory
(initially an empty aggregate). That aggregate is
incrementally updated by each record that arrives
in a window. To compute an average, two values
have to be maintained in the aggregate type: a
sum and a count. lift function, each record is
first mapped into an aggregate type of its value
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Stream Window Aggregation Semantics and Optimization, Fig. 3 Partial aggregation example for window
average

and a count of 1. The combine function updates
the partial aggregate with the new sum and count
until all elements of a window have arrived.
Then finally, the lower function transforms the
aggregate into the window average, in this case
this is 3.

Window Slicing

The amount of overlapping across sliding win-
dows introduces additional space and computa-
tional complexity that partial aggregation itself
cannot solve.

In the case of windows with predefined peri-
odic characteristics such as a time or count slide,
a family of optimization techniques is used to
further decompose windows into nonoverlapping
partial aggregates which can be shared and com-
bined to calculate full window aggregates. This
technique is typically named “slicing” or “buck-
eting.” The two most popular slicing techniques
that have also been deployed in production stream
processing systems in the past are panes (Li et al.,
2005a) and pairs (Krishnamurthy et al., 2006).

Panes
The main idea behind Panes is that if we have a
periodic window query with a fixed slide and a

range, it is trivial to break down the aggregation
process into partials with a constant size, equal
to the greatest common denominator of the re-
spective range and slide. For example, if we have
a sliding window with a range of 9 min and a
slide of 6 min, the stream would be sliced and
pre-aggregated into buckets, each of which cor-
responds to 3 min of the ingested stream (greatest
common denominator of 6 and 9).

Panes have been criticized (Krishnamurthy
et al., 2006) for their lack of general applicability,
yielding unbalanced performance that depends
highly on the combination of range and slide. For
example, a window of range 10 s and a slide of 3 s
would break down to slices of a single second, no
longer exploiting the amount of nonoverlapping
segments in a stream (as depicted in Fig. 4).

Pairs
The pairs technique (Krishnamurthy et al.,
2006) splits a stream into two alternating slices:
p2 D range mod slide and p1 D slide � s2.
This technique utilizes better nonoverlapping
segments in a stream and seems to work well with
most combinations of range and slide. Intuitively,
pairs break slicing only when a stream window
starts or ends. This is visualized in Fig. 4 where
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Stream Window Aggregation Semantics and Optimization, Fig. 4 Example of different slicing techniques

it results into a lower number of slices for the
same window compared to using panes. Contrary
to panes, pairs has also been proposed for multi-
query aggregation sharing where a large sequence
of shared slices is decided at compilation time
across shared sliding window aggregation queries
in the same operator.

Slicing Limitations
While slicing offers the best known space and
computational performance in sliding window
aggregation, its applications are limited to peri-
odic window queries since this is the only type
of windows for which their beginning and end
are predefined. The Cutty technique (Carbone
et al., 2016) which is further analyzed in sec-
tion “Cutty: A Hybrid Approach” avoids this
strong assumption by letting user-defined func-
tions signify during runtime when windows start
or end. In the same work slicing is also com-
bined with general pre-aggregation techniques
(analyzed in section “General Pre-aggregation”)
in order to combine the strongest characteristics
of both domains of window optimization.

General Pre-aggregation

The main incentive of general pre-aggregation
techniques is to be able to allow for arbitrary

segment lookups in a stream (e.g., from external
user queries) as depicted in Fig. 5.

The earliest work on general pre-aggregation
was presented in B-int (Arasu and Widom, 2004)
which precomputes eagerly higher-order partials
on different segments of a stream. The appli-
cation of B-int was meant to be fast aggregate
retrieval for ad hoc stream queries (i.e., using
CQL); however, the applicability of general pre-
aggregation makes such techniques convenient
for aggregating continuous sliding windows with-
out a known range or slide or other periodicity
assumptions. The Reactive Aggregator by IBM
Research (Tangwongsan et al., 2015) exploits the
properties of B-Int and introduces FlatFat: a fixed
size circular heap binary tree of higher-order
partials that “slides” together with the records of
the stream.

General Pre-aggregation Limitations
General pre-aggregation offers fast retrievals of
arbitrary windows on a stream at the cost of addi-
tional space and incremental update computation
requirements. That is due to the fact that every
time a new aggregate is added to the binary tree
a sum of log.N / additional partial aggregations
need to be employed in order to update all higher-
order aggregates of the tree (givenN : the number
of active records/leaves in the tree). In summary,
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the runtime costs of employing eager aggrega-
tion, which are also visualized in Fig. 5 are the
following:

space: 2N partials need to always be kept on
heap to hold the full aggregation binary tree.

update/lookup: both update and full window
lookup have O.logN/ computational com-
plexity. In the case of updates, the complexity
is fixed (logN ) against slicing which typically
involves a single aggregation per record.

All these costs pose an interesting trade-off
when eager aggregation is employed per record
in a data stream, which often results in more op-
erations than a naive execution of each redundant
window aggregation separately. As a result, it is
likely that if general pre-aggregation is de facto
applied, its runtime cost would never be amor-
tized across a full run of a continuous application.

Nevertheless, the power of general pre-
aggregation lies at the observation that it can
be generally applied to any type of windows,
thus, covering a large space of nonperiodic
window types used within research and industrial
applications, as depicted in Fig. 6.

Cutty: A Hybrid Approach

Slicing and general pre-aggregation are orthogo-
nal techniques that can be potentially combined
to support a wider variety of stream windows
for aggregation. The Cutty aggregator (Carbone
et al., 2016) employs such a hybrid approach
that can lead to efficient aggregation of a broader
number of window types than simply periodic.
The main observation behind its design is that
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Delta-based

FCA

slicing
generic, high-cost
pre-aggregation
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Periodic

Stream Window Aggregation Semantics and Opti-
mization, Fig. 6 Applicability of slicing and general pre-
aggregation

there is an implicit class of windows (a superclass
of periodic ones), termed deterministic which can
be obtained by using the right core primitives
in the programming model. Deterministic win-
dows can be used to enable efficient shared ag-
gregation without limiting window expressivity.
Figure 7 shows the expressive power of deter-
ministic windows, being able to provide optimal
pre-aggregation to more than the limited periodic
windows.

Deterministic Windows
The concept of deterministic windows stems
from the observation that all it takes to achieve
optimal slicing is not the a priori knowledge
of the periodicity of windows (if any) but the
runtime knowledge of where a new window
starts. While partial aggregation is employed,
as described in section “Partial Window
Aggregation”, a single partial result can be kept
in active memory until we receive a record
that marks the beginning of a new window.
Conceptually, a new window start means that
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we will later need a partial aggregate (or slice)
starting at that point to evaluate the window that
started there.

Cutty proposes user-defined windowing
through the use of a discretization function fdisk,
defined as follows:

fdisc W T ! hWbegin W N;Wend W Ni

where for each record r 2 T : (i) Wbegin is the
number of windows beginning with r and (ii)
Wend the number of windows ending with r .

Overview of Cutty
Optimal slicing with deterministic windows min-
imizes but does not eliminate redundancy. As an
example, consider the slices produced by Cutty
during the example execution of Fig. 4. A detailed
observation of the slices used per window reveals
a level of redundancy that cannot be handled
by slicing. For example, slices sŒ4; 6� and sŒ7; 9�
would have to be combined together twice: once
for computing fa.sŒ1; 10�/ itself and once for
computing fa.sŒ4; 13�/. Instead, if somehow the
evaluation of fa.sŒ4; 9�/ was stored, it would not
be necessary to repeat that aggregation.

Cutty utilizes general pre-aggregation
(FlatFat) in order to further reduce the cost of
full window aggregate evaluation and compute
higher-order combinations of aggregates only
once. This idea gives a new purpose to general
pre-aggregation techniques and grants a low
memory footprint since the space complexity of

the aggregation tree is bounded by the number of
active slices (which is equivalent to the minimum
number of nonoverlapping segments in a stream).
A full example run of Cutty is visualized in Fig. 8,
showing both slicing of deterministic windows
and general pre-aggregation and evaluation on
stored partials. In the same example, notice
that the partial P.sŒ6; 7�/ is computed once and
reused for both fa.sŒ1; 5�/ and fa.sŒ1; 6�/.

For nondeterministic windows, Cutty falls
back to general pre-aggregation (simply using
FlatFat) since slicing cannot be applied.
Nevertheless, the generality and flexible (runtime
specific) nature of this aggregation technique
also enables the prospect of using it for applying
operator sharing (Hirzel et al., 2014) on data
streams. A full complexity and performance
analysis and comparison are provided in the
original Cutty paper (Carbone et al., 2016).

Further Works

Window aggregation is an interesting research
topic, and there are many relevant proposed
ideas to the ones presented here. For example,
Li et al. (2005b, 2008a) classified window
types by their evaluation context requirements,
leaving the characterization of each class as
an open research question. Performing certain
types of aggregates in constant-time was
recently proposed (Tangwongsan et al., 2017).
Deterministic functions in Cutty subsume all
forward-context-free windows (no future records
are required to know when a window starts),
while nondeterministic discretization functions
are forward-context-aware. Heuristic-based
plan optimizers have also been proposed (e.g.,
TriWeave Guirguis et al. 2012) to fine-tune the
execution of periodic time queries dynamically
using runtime metrics (i.e., input rate and shared
aggregate rate).

Future Directions

Windowing semantics are becoming increasingly
more complex and sophisticated as data stream
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processing is widely adopted. Aggregation
techniques will have to follow the trends
in windowing semantics and adapt to more
dynamic, data-centric window types. One
of the most prominent future directions in
stream windowing is its standardization and
encapsulation in stream SQL standards that are
undergoing in open-source communities (e.g.,
the Calcite project and Google Dataflow Akidau
et al. 2015). However, no significant efforts have
been made to apply relational optimizations in
stream windowing. Another future direction is to
extend slicing capabilities beyond deterministic
windows (if possible) and cover cases of fully
data-driven windows without FIFO guarantees
such as ADWIN (Bifet and Gavalda, 2007).
Finally, general pre-aggregation data structures
have to employ the notion of out-of-orderness
(Traub et al., 2018). Currently, with existing
out-of-the-box solution such as FlatFat, it is not
possible to retract already evaluated window

aggregates, thus, making it impossible to use for
systems like Beam and Flink with out-of-order
logic.

Conclusions

Windows over streaming data continue to be
the most central abstraction in data stream
processing. Aggregation techniques aim to
reduce the computational redundancy to the
maximum extent possible for sliding windows.
Most often, approaches to efficient aggregation
are entangled with actual windowing semantics,
such as assuming periodic queries to provide
efficient pre-aggregation. Slicing techniques
provide low memory footprint and generally
good performance at the cost of limited
applicability, while general pre-aggregation
techniques can be employed for any window
lookup at the cost of high computational and
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memory footprint. Recent approaches aim for a
hybrid solution by generalizing slicing further
while combining data structures from general
pre-aggregation. Sliding window aggregation
remains a challenging topic today, and new
challenges will arise with the adoption of richer
and more complex windowing semantics and
out-of-order streams.
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Synonyms

Distributed spatial data streaming; Real-time big
spatial data processing

Definitions

Recently, several big data stream management
systems (DSMS, for short) have been developed
to provide an infrastructure to process streamed
big data. Big spatial DSMSs constitute a spe-
cial class of big DSMSs that are optimized to
process large amounts of spatial data streams.
The main idea behind most big spatial DSMSs
is to leverage the spatial properties of the in-
coming data stream to fairly distribute the work-
load across multiple distributed processes. When
processing big spatial data streams, it is impor-
tant to maintain high throughput and low la-
tency.

Overview

Spatial data is ubiquitous. It is continuously
being generated at a large scale. This is due
to the popularity of GPS-enabled devices,
e.g., smartphones, smart-watches, personal
activity trackers, and GPS-navigation devices.
Efficient processing of this streamed big spatial
data requires higher computational resources
than the resources that exist in a centralized
system.

Big spatial DSMSs can be classified into the
following two main categories: (1) dedicated
big spatial DSMSs and (2) spatial extensions to
general-purpose big DSMSs.

• Dedicated big spatial DSMSs. These systems
are the first step toward scalable spatial data

stream processing. These distributed big spa-
tial DSMSs are built from scratch with the
sole purpose of processing streamed big spa-
tial data. These systems often lack impor-
tant features that exist in general-purpose big
DSMSs, e.g., fault tolerance, and the abil-
ity to perform non-spatial data processing.
Also, designers of these systems implement
the communication protocols between the dis-
tributed processes. These communication pro-
tocols often require serialization, synchroniza-
tion, and encryption. These requirements are
orthogonal to big spatial data stream pro-
cessing and require a substantial development
overhead.

• Spatial extensions to general-purpose
big DSMSs. In this widely adopted ap-
proach, general-purpose big DSMSs, e.g.,
Storm (Toshniwal et al., 2014), Spark-
Streaming (Zaharia et al., 2012), and Yahoo
S4 (Neumeyer et al., 2010), are extended with
spatial distribution approaches to optimize
the processing of spatial queries over spatial
data streams. When extending an existing
big DSMS with spatial capabilities, one
inherits the features of the underlying general-
purpose big DSMS, e.g., high scalability,
fault-tolerance, and robust communication
protocols.

The streamed spatial data is often associated
with textual data, e.g., as in the case of tweets. A
tweet contains textual data as well as the user’s
location where the tweet is issued. Big spatio-
textual DSMSs are designed to account for the
spatial and the associated textual attributes to
optimize the processing of spatio-textual queries
over spatio-textual data streams.

Key Scientific Findings

First, we describe the main query types over
spatial data streams. Then, we give a historical
background on general-purpose big DSMSs and
centralized spatial DSMSs. Then, we focus on the
categories of big spatial DSMSs.

https://doi.org/10.1007/978-3-319-77525-8_100108
https://doi.org/10.1007/978-3-319-77525-8_100277
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Query Types over Spatial Data Streams
There is a wide range of spatial predicates that
can be used when querying spatial data streams.
The two main classes of spatial predicates are
spatial selects and spatial joins.

1. Spatial Select: In a spatial select, given a
spatial data stream and a spatial predicate,
the spatial select produces as output the data
tuples from the spatial data stream that satisfy
the spatial predicate. Examples of a spatial
select are the spatial range select and the top-k
nearest neighbor select.
The range select predicate operates on a single
spatial data stream and has a specific spatial
range predicate. This select predicate identi-
fies the streamed data tuples (i.e., the streamed
spatial objects, e.g., cars or shops) that satisfy
the spatial range predicate, i.e., the spatial
objects that are located inside the specified
spatial range.
The k-nearest-neighbor (kNN) select predicate
operates on a single spatial data stream and
has a focal point and a parameter k. The kNN
spatial select identifies the k-nearest data ob-
jects to the focal point specified. The distance
function used in measuring the distance from
the focal point to the spatial data objects can
vary. It can be the Euclidean distance or the
distance over an underlying road network.

2. Spatial Join: In a spatial join, given two spatial
data streams and a spatial join predicate, the
spatial join produces as output data tuple pairs,
one from each spatial data stream, such that
each pair of tuples satisfies the spatial join
condition. The spatial join has many flavors
based on the type of spatial join predicate that
is being used. The following are two popular
spatial join operation.
The spatial range join: The spatial predicates
can be of various forms. For example, one
spatial predicate can be a distance threshold,
say d . In this case, the spatial join will produce
as output the pairs of objects, say (xi ; yj ),
where Object xi from the first data source is
within distance d from Object yj from the
second data source. This type of operation is
referred to as a spatial range join operation.

The spatial k-nearest neighbor join (kNN-
join): Depending on the spatial predicate
involved, other types of spatial joins may
be formed. For example, the spatial kNN-
join operation produces as output the pairs
of objects, say (xi ; yj ), where Object yj

from the second data source is among the k-
closest objects to Object xi from the first data
source. In addition to the two input spatial
data streams, the number k is also specified
as an input parameter to the spatial kNN-join
operation. Any distance function can be used.
Examples are the Euclidean or Manhattan
distances or the distance over an underlying
road network graph.

A single spatial data source may be used in the
spatial join in contrast to two data sources. In this
case, it is termed a spatial self-join. For example,
in a spatial range self-join, pairs of spatial objects
from the same source that are within distance d
from each other are reported as output. For all the
above operations, various distance functions can
be used, e.g., the Euclidean, Manhattan, and road
network distance metrics.

Continuous vs. Snapshot Spatial Queries
Spatial queries over data streams can either be
evaluated as snapshot or continuous queries. A
snapshot query operates on the current state of the
spatial stream and produces a single resultset. In
contrast, a continuous spatial query operates con-
tinuously for a relatively long duration, where the
resultset of the continuous query is continuously
updated to reflect the incoming spatial data from
the streamed spatial data source.

To evaluate a snapshot spatial query, the state
of the streamed spatial objects is maintained (usu-
ally using a spatial index). For example, consider
a stream of location updates of moving objects.
The state of the stream could be the current lo-
cations of the moving objects or a limited history
of the trajectories of the moving objects. When
a snapshot query arrives, it is evaluated once
over the current state of spatial data stream and
produces as output the spatial data objects that
qualify the query. Finally, the snapshot query is
completely evaluated, and it quits.
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In contrast, when a continuous query arrives,
it is stored into the system and is progressively
evaluated against the incoming spatial data ob-
jects. The DSMS maintains a state for each of the
continuous queries. This state may include some
intermediate summary data as well as the current
resultset of the query. For example, in the case
of continuous query that contains a kNN select
predicate, the DSMS maintains the current set of
k spatial objects that are closest to the focal point.
Because the query is continuous, as the objects
move, the current set of k-nearest objects to the
focal point continues to get updated.

Continuous spatial queries are often indexed
(using a spatial index) to speed up the main-
tenance of the arriving spatial objects, e.g., the
continuous updates of the locations of the spatial
objects as they move in space. Having a spatial
index facilitates the progressive evaluation of the
continuous spatial query.

Static vs. Dynamic Spatial Queries
Continuous spatial queries over spatial data
streams can either be static or dynamic. A static
continuous spatial query does not change its input
over time. For example, the spatial location of a
kNN select predicate remains constant over time
for the entire lifetime of the continuous spatial
query. In contrast, a dynamic continuous spatial
query may change its input parameters over
time. For example, consider the following query:
Find the three-closest gas stations to my current
location while I am driving on the highway. This
continuous query is composed of a kNN select
predicate, where the focal point of the kNN select
corresponds to the location of a moving object.
Changes to the location of this focal point as the
object moves may result in updating the query’s
resultset even without having any updates from
the spatial data source.

Historical Background

General-Purpose Big DSMSs
Several general-purpose big stream management
systems have been extended to support big spatial
data stream processing. These systems provide an

infrastructure for the scalable processing of data
streams. Generally, the main advantages of these
systems are (1) hiding the complexity of transfer-
ring data between distributed processes, (2) high
throughput, and (3) reliability and fault tolerance.
Two main data processing models are currently
being adopted by general-purpose big DSMSs,
namely, tuple-based and micro-batching.

In the tuple-based streaming model, every
tuple in the stream can be processed individually.
Yahoo S4 (Neumeyer et al., 2010) and Apache
Storm (Toshniwal et al., 2014) are examples of
tuple-based big data streaming systems. The main
advantage of the tuple-based model is the low
processing latency of streamed tuples. The main
limitation of this model is that a single tuple may
be processed more than once in certain failure
situations.

In the micro-batching streaming model, tu-
ples are not processed individually but are rather
buffered for a time duration (up to a few seconds)
to create a micro-batch. M3 (Aly et al., 2012)
is a main-memory map-reduce-based system that
modifies (Apatche Hadoop, 2017) in the follow-
ing way. It removes the HDFS layer and replaces
it by memory buffers that are maintained in a
distributed layer of data nodes. Data continues to
accumulate until the memory buffers are filled or
until some maximum delay threshold is reached.
Then, data is batched into the map-reduce layer.
In M3, the disk layer between the mappers and
the reducers is eliminated and is replaced by
another layer of distributed memory buffers. Data
is communicated between the mappers’ and the
reducers’ distributed memory buffers using net-
working sockets. SparkStreaming (Zaharia et al.,
2012) is another example of a micro-batching-
based DSMS. SparkStreaming extends Spark, a
general-purpose main-memory big data system.
SparkStreaming inherits the resilient distributed
datasets (RDD) and lineage from Spark to ensure
fault tolerance in stream processing. RDD is
an immutable main-memory data structure that
represents a collection of objects. Processing in
Spark and SparkStreaming is performed by ap-
plying transformations to RDDs. Lineage is a
graph that represents transformations to RDDs. In
failure scenarios, the lineage graph is consulted
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to reconstruct the failed RDDs. SparkStreaming
builds RDDs over micro-batches of streams every
specific time duration (up to a few seconds). The
main advantages of this model are high through-
put and that every tuple gets processed exactly
once even under failure scenarios. However, the
main limitation of micro-batching is the high
latency incurred while buffering streamed data to
build a micro-batch.

Centralized Spatial DSMSs
Several centralized spatial data stream manage-
ment systems have been developed to answer
spatial queries over spatial streams. Examples of
these systems include PLACE (Mokbel et al.,
2004b), SINA (Mokbel et al., 2004a), SEA-
CNN (Xiong et al., 2005), SOLE (Mokbel
and Aref, 2008), and Gpac (Mokbel and Aref,
2005). These systems are not designed for
scalability, and their performance is constrained
by the resources of the single machine they
run on.

Big Spatial DSMSs

We describe the main types of big spatial DSMSs
below.

Dedicated Big Spatial DSMSs
Special-purpose big spatial DSMSs are dis-
tributed systems that can process only spatial
data streams. These systems often address
specific types of queries over spatial data
streams. They focus on the scalability of spatial
query processing and do not address other
requirements of distributed big data processing,
e.g., the efficient scheduling of distributed
processes across the cluster of machines,
reliability, fault tolerance, error recovery, or
fair workload distribution across the processes.
These systems are considered the first step
toward big spatial DSMSs. Examples of these
dedicated and spatial-purpose distributed big
spatial DSMSs include PLACE� (Xiong et al.,
2007), MobiPLACE (Zakhary et al., 2013), and
MobiEyes (Gedik and Liu, 2006).

PLACE� (Xiong et al., 2007) use multiple servers
to evaluate continuous moving range queries (dy-
namic queries) over moving objects in the Eu-
clidean space. This system employs an incre-
mental update model that updates query results
only when there is a change to the resultset of
the queries. MobiPLACE (Zakhary et al., 2013)
applies the processing model of PLACE� over
road networks.
MobiEyes (Gedik and Liu, 2006) use a cen-
tralized server and multiple small smart-mobile
devices. To reduce the workload at the centralized
server, MobiEyes offloads and distributes the pro-
cessing of the continuous moving spatial range
queries to the mobile devices.

Spatial Extensions to Big DSMSs
The most adopted approach in big spatial data
streaming is to extend a general-purpose big data
stream management system. This allows spatial
extensions to inherit the scalability and reliability
features of the underlying streaming platform.
Spatial extensions to general-purpose big data
stream management systems differ in the stream-
ing model supported, i.e., tuple based or micro-
batching based. These systems also differ in the
type of spatial queries supported, the type of
the spatial indexes used, and whether the spatial
extension is adaptive and sensitive to the change
in distribution of the data and the query workload
of the spatial data stream or not.

Micro-Batching-Based Systems
Grid-based indexing on top of SparkStream-
ing (Choi et al., 2015; Lee and Song, 2015).
These systems answer continuous range queries
over spatial data streams on top of Spark-
Streaming. They use grid-based partitioning
to distribute the streamed workload across the
worker processes of the underlying cluster.
Cruncher (Abdelhamid et al., 2016). This system
is an adaptive extension to SparkStreaming that
addresses kNN and range queries over a spatial
data stream. Cruncher keeps statistics about the
spatial data and query workload to build a kd-
tree-based (Ooi et al. 1987) spatial partitioning
over the spatial data and queries. This partition-
ing is applied to every micro-batch to create
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sub-micro-batches. These sub-micro-batches are
fairly distributed across the worker processes of
the underlying spark cluster. Cruncher also uses
the spatial properties of continuous range queries
to share the execution among the spatial queries
that have overlapping ranges.

Tuple-Based Systems
Algorithms for spatial queries on top of
Storm (Zhang et al., 2016). This approach
develops algorithms to answer continuous spatial
queries on top of Storm. The queries supported
are the spatial range, kNN, and the spatial join.
The current locations of the moving objects are
maintained in separate Storm processes. Each
Storm process is responsible for a specific set
of moving objects. Within every Storm process,
say P , a spatial index is used to maintain the
current locations of the moving objects handled
by P . Spatial queries are replicated to all Storm
processes to produce partial results. Partial
results of these queries are collected from the
distributed Storm processes to be aggregated at
dedicated aggregation processes. To process a
spatial join operation, a different partitioning
algorithm is used. Instead of partitioning the
moving objects based on their identifiers, moving
objects are partitioned spatially using grid-based
partitioning. The range of a spatial join operation
may span multiple Storm processes. Moving
objects that overlap the spatial range of the spatial
join operation are paired together to produce the
final answer.
Continuous kNN-join processing on top of
Storm (Song, 2016) This approach develops a
parallel algorithm to evaluate continuous kNN-
join operations on top of spatial streams. The
algorithm uses data partitioning and replication
of distributed processes to group in the same
processes all the possible pairs that can be joined
together. This algorithm is realized on top of
Storm.
DSI: kNN processing on top of S4 (Yu et al.,
2015). DSI is a distributed spatial partitioning
mechanism that is realized on top of Yahoo
S4 (Neumeyer et al., 2010). DSI processes
snapshot kNN operations over the current
locations of moving objects. DSI partitions the

space into horizontal and vertical strips. Every
horizontal and vertical strip is assigned to a
distributed process in S4. To process a kNN
operation, partial kNN results are calculated from
the strips. Then, a global kNN result is aggregated
from all the partial results. DSI is adaptive and
attempts to ensure fair workload distribution
by updating the boundaries of the horizontal
and vertical strips based on the changes in the
workload.
kNN processing on top of IBM System S (Wu
et al., 2012). In this approach, the continuous
kNN operation is handled as a stateful opera-
tor, i.e., it maintains the current set of the k-
nearest objects closest to the focal point of the
continuous kNN operation. A distributed version
of the kNN operation is realized using IBM
System S. IBM System S is a proprietary general-
purpose big data stream management system.
To evaluate this kNN operation, location up-
dates of moving objects are partitioned using a
hash function to multiple processes. Then, an
aggregation step is used to find the global kNN
resultset.

Big Spatio-textual Data Streaming
Spatial data streams are often associated with a
textual attribute. For example, tweets have both
spatial and textual attributes. Several big spatial
data stream management systems have been de-
veloped to process streamed spatio-textual data.
The main feature in these systems is that they
utilize the textual attribute of the spatio-textual
data to optimize the processing of spatio-textual
queries.

The two main spatio-textual queries being
supported by big spatial data stream management
systems are (1) the continuous spatio-textual fil-
ter query and (2) the continuous top-k spatio-
textual query.
The continuous spatio-textual filter query has
both an input spatial range and a set of input key-
words. In this query, it is required to identify the
streamed spatio-textual objects located inside the
spatial range of the query and contain all of the
keywords of the query. Tornado (Mahmood et al.,
2015, 2017) and PS2Stream (Chen et al., 2017)
are two big spatial data stream management sys-



Streaming Big Spatial Data 1629

S

tems that address these queries. Both systems ex-
tend Storm. The main idea behind these systems
is to evenly distribute the spatio-textual data and
queries over distributed Storm processes. This
is performed using a global distribution layer
that contains a spatio-textual distribution index.
Within every worker process, continuous spatio-
textual filter queries are indexed using an internal
spatio-textual index.
The continuous top-k spatio-textual query. This
query has an input focal point and an associated
set of input keywords. This query maintains
a time-sliding window over a spatio-textual
data stream. In this query, it is required to
continuously identify the most relevant spatio-
textual data objects within the time-sliding
window. Relevance between the objects and
the query is calculated using a function of the
spatial distance and the textual similarity between
the spatio-textual data objects and the queries.
DSkype (Wang et al., 2017) is an extension
to Storm. DSkype uses a global spatio-textual
distribution mechanism to distribute stream
spatio-textual queries to worker processes. In
worker processes, a local index stores the spatio-
textual objects for a specific time-sliding window.
For every incoming query, the distributed local
indexes are searched to identify an initial list
of the top-k relevant data objects. Then, the list
of the top-k relevant data objects keeps being
updated according to the incoming spatio-textual
streamed data objects.

Examples of Applications

Many applications require the processing of this
streamed big spatial data in real time. Example
applications include finding travel companions;
ride-sharing, e.g., Uber; real-time navigation and
map services, e.g., Google Maps; and real-time
traffic analysis. Nowadays, algorithms adopted
in online advertisement targeting consider the
locations of users to identify relevant local
advertisements. Real-time analysis of micro-
blogs, e.g., identify trending Twitter hashtags
within a specific location, is one important

application of processing streamed spatio-
textual data.

Future Directions for Research

One important research direction is online big
spatial data analytics. The challenge here is to
support a richer set of complex spatial predi-
cates that also involves aggregations. One chal-
lenge of supporting these spatial predicates is
to devise effective cost estimation techniques
that can capture the varying overhead of these
operations. These cost estimation techniques are
crucial to maintaining workload balance over the
distributed processes of the underlying spatial
DSMS.

Also, existing big spatial DSMSs do not ef-
ficiently support the temporal dimension. One
example scenario of spatio-temporal and tex-
tual processing is the continuous aggregation of
streamed spatial data based on their textual at-
tributes over a time-sliding window. This type
of data management requires novel distributed
spatial-temporal and textual distribution, index-
ing, and query processing algorithms that account
for the peculiarities of the temporal dimension.
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Definitions

Streaming microservices refers to a style of build-
ing large-scale software systems as a collection of
independently deployable processes that commu-
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nicate via persistent message streams rather than
via remote procedure calls (RPC). A key distinc-
tion between streaming and RPC-based microser-
vices is that streaming microservices provide a
high degree of temporal decoupling between ser-
vices. Not only does it not matter how a service
does what it does, but it also matters much less
exactly when it does it.

The use of streaming microservices is distinct
from previous architectural trends such as Service
Oriented Architecture (SOA) because the mes-
sage streams used with streaming microservices
are very simple, supporting little more than or-
dered delivery of messages organized into topics
as opposed to the highly complex semantics sup-
ported by Enterprise Service Busses (ESB).

Historical Background

The term microservices as a style of systems ar-
chitecture was introduced in 2011 at a conference
in Venice and gained popularity around 2013–
2014 (Fowler and Lewis, 2014) as people saw
the success of this approach in large companies
including Netflix, Amazon, and LinkedIn. Many
of the core concepts underlying microservices for
architecting large-scale systems go back at least a
decade earlier, but the distinctive characteristics
of microservice architectures were not well artic-
ulated until more recently.

The basic idea of microservices is to provide
useful decompositions of large systems into
independent services that could be started,
stopped, and redeployed relatively independently.
The key characteristic is that the implementation
details of services are hidden. Virtues attributed
to microservices include agility and flexibility
in the development process by avoiding a
monolithic approach with many development
dependencies. Since services can be redeployed
independently, the system is easier to upgrade
progressively through evolutionary refinement
of services one at a time. Teams working on
different services can work to differing deadlines,
thus avoiding many dependencies and schedule
blocks.

In addition to the use of micro-services
as a way to structure systems, they also
define team organization. The result is that
large systems devolve into a suite of loosely
coupled small services, each built and run by
a small, focused, cross-functional team. As
originally viewed, microservices communicate
via synchronous remote procedure calls (RPC),
often implemented as REpresentation State
Transfer (REST) (Fielding and Taylor, 2002)
requests implemented over HTTP connec-
tions. More recently, asynchronous remote
procedure calls have become much more
common, especially in conjunction with node.js-
based systems (Hughes-Croucher and Wilson,
2012).

The ability to deploy microservices indepen-
dently makes development much easier than in
a monolithic system or in a system that forces
tight coupling between requestor and service.
This is because individual services that can be
upgraded independently also allow decoupling
of development schedules. Additionally, using
simple remote calls defined using systems like
ProtoBufs, strict versioning of communication
protocols is not necessary. Instead a more
evolutionary soft-versioning approach can
be taken that views all protocol changes as
extensions and avoids complete redefinitions.
Soft versioning of communication protocols
provides additional decoupling of service
development.

Decoupling of services also makes scaling
easier, so explosive growth is a strong incentive
to adopt microservice architectures. Selectively
scaling individual services to match the scale of
work that needs to be done by that service is much
more efficient than scaling a monolithic service
(Newman, 2015).

The final step to streaming microservices as
opposed to RPC-based microservices is a much
more recent development than the core concept
of microservices. The fundamental addition that
streaming brings is the idea that many services
can actually be decoupled temporally as well as
in terms of deployment. This sounds like a small
change, but it substantially increases the scope of
the microservice concept.
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Foundations

Getting streaming microservices to work well
requires a lexicon of high-level architectural pat-
terns, a compatible underlying message transport,
and methods for implementing the microservices
themselves. This section describes each of these
requirements in turn.

Emergence of Streaming Microservices
Widespread adoption of streaming microservices
is a relatively recent trend in spite of the fact
that the idea of moving data from one processing
element to another is an old one (Johnston et al.,
2004). What distinguishes modern streaming mi-
croservices from older dataflow concepts is that
whereas dataflow was largely intended to build
a system to execute a single computer program,
a streaming microservices system is intended to
support multiple high-level services that can be
modified at any time. The idea of mutability of
individual services leads directly to the require-
ment for hiding implementation details. Hiding
implementation details such as timing leads to the
use of persistent streams.

Existing messaging systems did not, however,
support streaming microservices very well until
recently. This prevented more than limited adop-
tion of streaming microservices as a common
architecture. This mirrors the way that early RPC
mechanisms such as Java RMI and Corba were
unsuitable for RPC-based microservices due to
the way that changes in client or server were re-
flected through the remote call mechanism. True
microservices could not really be built until more
modern conventions for RPCs such as REST
became widely accepted.

The problem with streaming microservices
was that, until recently, message queuing systems
put a premium on features that ensure that each
message is processed exactly once. This exactly-
once execution mirrors the way that a dataflow
program executes. This mode of message con-
sumption requires some kind of transaction per
message and can severely limit the message rate
and scalability (Videla and Williams, 2012; Sny-
der et al., 2011). More importantly, however, the
transaction induces coupling between message

producers and consumers and between different
consumers, which degrades the isolation neces-
sary for real microservices.

The release of Apache Kafka (Narkhede et al.,
2017) provided an alternative approach to mes-
saging that has proven more fertile for microser-
vices. With Kafka, neither producers nor con-
sumers have any idea how many consumers there
are, and messages are kept in order and are re-
tained for a configurable (and typically relatively
long) period of time with no regard to whether
they have been processed. Consumers are respon-
sible for maintaining a history of which messages
they have processed, although the framework
does have a provision for consumers to record
their consumption point back into the stream.
Kafka guarantees that all consumers will see mes-
sages in the same order within the same partition
of a topic but does little else to support the context
of consumers. This same model, and indeed, the
same API, have been adopted by commercial
vendors such as MapR in their streams technol-
ogy.

Pattern: Do Some, Defer Some
In microservice-based systems, some work typ-
ically has to be done by a service to produce a
response, but it is also common that a significant
amount of work involved in the request can be
deferred to another time, possibly when a larger
batch of such deferred tasks can be executed
at the same time. It is a rather natural step to
put the data associated with these deferred tasks
into a message stream. Each message specifies
a unit of work to be done when the message is
read from the stream. Such a do-some/defer-some
pattern is illustrated in Fig. 1. Here, we have three
microservices: one is the web UI (labeled 1 in
the figure) implemented as a synchronous RPC-
based microservice, and the other two (labeled 3
and 4 in the figure) are implemented as stream-
ing microservices. The web UI can respond to
requests as quickly as possible and can have a
simpler implementation because it only needs
to focus on the minimal amount of processing
necessary to provide a response. By recording a
summary of the request it just processed as an
event in a message stream, the web UI enables
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Streaming Microservices, Fig. 1 In a typical design of
a web service, the web UI (1) is implemented as a con-
ventional microservice that accepts requests and returns
responses in a synchronous fashion. In addition, the web
UI defers some work by putting an event into a message
stream (2). At a later time, other microservices such as
a behavioral analysis (3) or a profile database update (4)
process these events. Using streaming microservices here
avoids impact on the latency of the original web UI request
and improves the isolation of all three services

other microservices to do additional processing
outside the critical path of responding to web
UI requests. Because the web UI doesn’t even
necessarily know of the existence of these other
services, the implementation and operation of the
web UI are highly decoupled from them. This
decoupling means that each of the three services
can be updated and redeployed independently of
the other services.

In this example, the web UI doesn’t need to
wait for confirmation that the work of the other
services has completed nor does it rely on the
actual results of that work. All it needs is certainty
that the deferred work has been persisted in the
message stream and will get done eventually. In
fact, the web UI can often be implemented with
no knowledge of these other microservices. The
decoupling benefits of not depending on direct
results and relaxed temporal dependency suggest
that connecting services with message streams is
a useful alternative to the more widely known
RPC-based connected microservices. This style
of design was called “event sourcing” by Fowler
in Fowler (2005) and later called “streaming

architecture” or “streaming microservices” (Dun-
ning and Friedman, 2016).

One of the major advantages of streaming
microservices over conventional RPC-based mi-
croservices is that streaming microservices al-
low temporal decoupling of services in addition
to the ability to independently deploy and up-
grade services. Temporal decoupling means that
there is little dependency in time of computation
for producers of messages and consumers. This
decoupling allows major implementation details
such as whether a producer or consumer runs
intermittently or continuously to be hidden from
other services. In the ultimate case of hiding
implementation details, a consumer may not even
have been implemented when messages are emit-
ted by a producer. In that case, the producer
cannot depend on the implementation details of
the consumer since the consumer literally does
not even exist when the message is produced by
the producer.

Message Transport
The messaging technology used to communicate
between streaming microservices has some key
requirements that derive from the basic definition
of microservices. Earlier messaging tools gen-
erally required a trade-off between performance
and message persistence and induced coupling
between producers and consumers, between pro-
ducers on the same stream and between multiple
consumers due to the semantics of the messaging
system itself. These limitations made streaming
microservices difficult to apply across a wide
range of applications and thus substantially lim-
ited the uptake of streaming microservice archi-
tectures.

The effectiveness of the Kafka style of mes-
sage streaming for microservices can seem a
bit paradoxical; by providing fewer features and
simpler semantics, it makes streaming microser-
vices more practical. There are several major
requirements that Kafka-esque systems satisfy,
including:

Persistence Messages are persisted in the mes-
sage stream. This is logically required to enable
service independence since there is no guarantee



1634 Streaming Microservices

that both producer and consumer are even run-
ning at the same time. Message persistence also
improves failure recovery since a consumer can
checkpoint input offsets and internal state, allow-
ing clean restart on failure. Traditionally, how-
ever, persistence has been difficult to achieve at
high performance levels.

Performance It is important that the message
transport be fast enough for essentially any op-
erational requirement. If this is not true and
widely recognized, implementers will tend to
proactively code around perceived performance
risks. Wide adoption of streaming microservices
can quickly lead to message throughputs in the
millions of messages per second even at modest
scale. It is not true, however, that all stream-
ing microservices will require such high mes-
sage rates. It is simply true that some applica-
tions will require such rates and using different
streaming mechanisms for different applications
or changing streaming technologies as services
scale breaks down service independence because
of a lack of pervasiveness.

Pervasive A key benefit of a microservices ap-
proach is that services can universally interop-
erate. For RPC oriented microservices, organiza-
tions typically standardize on a single RPC tech-
nology for this reason. For streaming microser-
vices, similar standardization is required to gain
adoption and allow interoperation of services. As
such, any messaging system used has to meet
technical requirements such as persistence and
performance, but also social requirements like
universal adoption within a set of services, that
is, it must be pervasive. Put another way, if differ-
ent services use different streaming technologies
due to different performance levels, this intro-
duces implementation coupling between systems
that could be avoided with a single streaming
system.

Ultimately, these properties of the underlying
streaming technology result in a system that can
allow services to function without knowledge of
the implementation details of other services. In
the upper part of Fig. 2, for example, services A1

and A2 can be producing data for B1. Service
B2 can then be brought into operation without

A1 B1

A2 B2

A1

B1

A2

B2

Streaming Microservices, Fig. 2 Examples of decou-
pling between processes. In the top example, producers
A1 and A2 and consumers B1 and B2 operate indepen-
dently and can be deployed without affecting any of the
other services. In the bottom example, A1 and A2 produce
data that is consumed by B1 and B2 from different
replicas of the same stream. Producers and consumers in
the two examples can’t tell the difference between the two
configurations

B1 or either producer being aware. In the lower
example, geographical separation can also be
introduced by replicating the stream without any
of the services being affected, except possibly
by small differences in the latency for messages
arriving at B1 and B2.

Service Implementation
Streaming microservices can be implemented in
a wide variety of ways. Particularly at the lower
performance levels, it is possible to build reliable
services using simple single-threaded code that
reads units of work from a stream, performs
the work and occasionally commits the current
input point. This simple approach needs to be
augmented with some sort of orchestrator such as
Kubernetes that can restart or migrate the service
as necessary. At slightly higher throughput levels,
input streams can usually be partitioned to allow
multiple processes to cooperate in a “consumer
group.” By subscribing as part of the same con-
sumer group, these processes will be assigned
different partitions. The worker processes have
to handle out-of-band messages notifying them
of changes of partition control, but the basic
structure is extremely simple, at least as long as
the necessary processing on each unit of work is
relatively simple.

As the required complexity of a service’s
task goes up, it can be advantageous to use more
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advanced systems to implement services. Options
include Apache Spark’s continuous streaming
component (Apache Software Foundation,
2016b) or Apache Flink (Apache Software
Foundation, 2016a; Friedman and Tzoumas,
2016). These more complex systems can handle
complex joins and windowed transformations
of streaming data while maintaining failure
tolerance and high throughput.

Complementary Roles of the Message
Stream and Database

In streaming microservices, message streams are
used for communication between services, while
databases are typically considered better for re-
taining state within a service. Often, a service
will have a database that contains the latest state
received via message stream. The sequence of
states of such a database is, in some sense, equiv-
alent to the messages in the stream. The primary
difference is that the stream inherently retains
the notion of time and all previous states but
is difficult to probe for the latest value of any
quantity. In contrast, the database makes probing
for the latest value easy but loses information
about previous states. As such, databases of this
kind and the streams that update them can be seen
as complementary views of the same data.

The virtue of storing state in a private database
is that services can become decoupled in terms
of time. If two consumers of a message stream
update private databases in identical ways, there
is no guarantee that at any given time that the two
databases will have identical values because there
is no guarantee that the two services will process
messages at the same rate. We can guarantee,
however, that both services will agree about the
state of their databases relative to identical offsets
in the message stream. This idea of equivalent,
but not time-aligned, state is important because
it allows much of the power of database transac-
tions to be had without the abstraction destroying
qualities of shared databases.

It should be noted that, as recommended by
Fowler in his description of event sourcing, the
messages in a message stream should generally
be couched as heavily denormalized business-

level events rather than table level updates.
The concept of “business-level event” is not
particularly well defined, but it is very close
to the concept of REST in that the message
should contain everything that is needed to
describe the event in a self-contained way. The
purpose of using RESTful messages of this
type is that it is relatively easy to translate
such messages into corresponding low-level
table updates, but it is much more difficult
to translate a collection of table updates into
business-level event descriptions. This means
that using RESTful messages makes it so that
different services can easily have different data
models in their private databases, which makes
their implementations more loosely coupled.

Key Applications

The streaming style of microservices has
widespread application, especially associated
with more back-end systems such as analytical
systems in which throughput and aggregated
analytical results at scale are particularly
important (Dunning and Friedman, 2016).
Streaming microservice applications often
involve situations in which delayed processing
is acceptable.

In general, situations in which the flexibility of
a stream-based overall architecture is desired may
benefit from a streaming microservices style of
work. An example where a streaming microser-
vices style approach would be particularly useful
is in analysis of IoT (Internet of Things) sensor
data.
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Synonyms

Online conformance checking; Online process
discovery; Online process mining

Definitions

Streaming process discovery, streaming confor-
mance checking, and streaming process mining in
general (also known as online process mining) are
disciplines which analyze event streams to extract
a process model or to assess their conformance
with respect to a given reference model. The
main characteristic of this family of techniques
is to analyze events immediately as they are
generated (instead of storing them in a log for
late processing). This allows to drastically reduce
the latency among phases of the BPM lifecycle
(cf. Dumas et al. 2013), thus allowing faster
process adaptations and better executions.

Overview

A possible characterization of process mining
algorithms is based on how they consume event
data. Specifically, most of the algorithms focus on
a (static) event log; however, there are algorithms
which focus on event streams. An event log is a
finite sampling of activities observed in a given
time frame. An event stream, on the other hand, is
an unbounded sequence of events, which contains
events as they are executed.

Event streams, in fact, are specific types of
data streams, where each data point refers to an
event. General data streams have been investi-
gated since many years, mainly to tackle prob-
lems such as frequency counting, classification,
clustering, approximation, time series analysis,
and change diagnosis (also known as novelty
detection or concept drift detection) as summa-
rized in Widmer and Kubat (1996), Gama (2010),
Gaber et al. (2005), and Aggarwal (2007). To
tackle these problems, it is possible to devise
techniques in a data- or task-based orientation.
Data-based techniques aim at extracting a sig-
nificantly representative finite subset of the data
stream, which is used for the analysis. Task-
based techniques, on the other hand, adapt the
computation to this new data modality, in order
to minimize time and space complexity of the
analysis.
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The streams these algorithms have to deal with
can be characterized based on their operations
model. In particular, we might have:

• insert-only stream model (once an element is
seen, it cannot be changed);

• insert-delete stream model (cf.n elements can
be deleted or updated);

• additive stream model where seen item refers
to numerical variables which are just incre-
mented.

In the context of process mining, all available
techniques assume the insert-only model: ob-
servations refer to activities which have been
executed. The data mining literature, for exam-
ple, in Golab and Özsu (2003) and Bifet et al.
(2010), informally, defines data streams as a fast
sequence of data items. However, in Bifet and
Kirkby (2009), several assumptions on the data
stream are reported, such as the following: the
data is assumed to have a small and fixed number
of attributes; the number of data points is very
large; and the stream concepts (in the process
mining context, the concept is the model underly-
ing the events being generated) are assumed to be
stationary or evolving. These assumptions make
the processing of data streams very different from
conventional relational models. Specifically, as
detailed in Gama (2010, Table 2.1), the data
elements arrive online, with no control by the
system, in an unbounded amount. This imposes
the analysis to be incremental: once an element
is received, it is discarded or analyzed. If it is

analyzed, it cannot be explicitly retrieved again
afterward (i.e., its information is aggregated and
summarized). Additionally, to cope with concept
drifts, old observations should be replaced by
new ones, and it is not possible to have one-time
queries but a continuous “querying mechanism”
is necessary.

Key Research Findings

This section provides some general ideas on how
to tackle the problem of process mining from
an event stream. Three general strategies are
sketched, and in the upcoming subsections, de-
tails regarding actual instantiations of the ideas
are reported.

Figure 1 depicts a taxonomy of the different
approaches investigated so far. In this text, we
will not focus on hybrid approaches: they are
characterized by very heterogeneous solutions
and therefore there is no proper generalization
possible.
Window models. In order to perform process min-
ing on a stream of event, the simplest approach
is to devised a data-based technique to store only
the set of most recent events observed and period-
ically analyze them. Whenever there is no more
memory available, the oldest event is discarded.
This approach, called window model, is described
in Algorithm 1. The algorithm enters an endless
loop where, at each iteration, a new event is
observed. Then, the system checks whether it
is necessary to remove old events or not, and

Stream process mining approaches taxonomy

1. Store a window of recent event
2. Apply any offline approach for
    any process mining problem

1. Transform a specific process mining
    problem into a stream mining problem
2. Use known algorithm to solve the
    reduced problem
3. Contextualize the solution of the
    reduced problem into process mining

0. [offline] Precompute solutions to all
    possible problems given some
    conditions
1. Observe each event and apply
    proper precomputed solution

Window-based models Problem reduction Offline computation

Hybrid approaches: Mixing the three strategies

Streaming Process Discovery and Conformance Checking, Fig. 1 Taxonomy of the different approaches to solve
the different stream process mining problems. For each technique, corresponding general steps are sketched
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Algorithm 1: Window model
Input: S : event stream

M : memory model
maxM : maximum memory
A: additional information (e.g., a reference
model), can be ;

1 forever do
// Observe a new event

2 e observe.S/

// Memory update
3 if max.M / � maxM then
4 dequeue.M / // Forgetting
5 end
6 insert.M; e/

// Mining update
7 if perform mining then

// Memory into event log
8 L convert.M /
9 ProcessMining.L; A/

10 end
11 end

then the new event is inserted. Periodically, the
system converts the memory into a standard event
log, and classical process mining algorithms are
applied on it. The literature, in Babcock et al.
(2002), identifies at least two memory models ca-
pable of storing event: sequence based and times-
tamp based. The first approach (which is typi-
cally implemented with sliding windows) consists
of a FIFO queue of fixed size. The observed
events are stored in the window, and once the
maximum capacity is reached, the oldest event is
removed. In a timestamp-based window model,
the approach is very similar, but the memory size
is not fixed. Instead, the removal is based on the
“age” of the observation: the memory keeps only
the events observed within the given time span.

This approach comes with several advantages,
such as the possibility to reuse every mining algo-
rithm already available for event logs. However,
the memory management is extremely problem-
atic and has a huge impact on the performance
of the approach. Specifically, all window-based
approaches have poor summarizing capabilities
since, for example, duplicate events require two
“memory slots,” even though they may not pro-
vide new information.

Algorithm 2: Lossy counting
Input: S : data stream

�: maximal approximation error

1 T  ; // Initially empty set
2 N  1 // Number of observed events

3 w 
˙

1
�

�
// Bucket width

4 forever do
5 e observe.S/

6 bcurr  
˙

N
w

�

/* Is there a tuple in T with e as
first component? */

7 if e is already in T then
8 Increment the frequency of e in T
9 else

10 Insert .e; 1; bcurr � 1/ in T
11 end

12 if N mod w D 0 then
13 forall the .a; f; �/ 2 T s.t. f C� � bcurr do
14 Remove .a; f; �/ from T
15 end
16 end
17 N  N C 1

18 end

Problem reduction. The second possible way of
tackling the streaming process mining problems
is to employ a task-based technique. For exam-
ple, it is possible to reduce the process min-
ing problem to another well-established problem
and therefore reuse algorithms specifically de-
vised and optimized for the necessity at hand. Of
course, it is also possible to devise a completely
new algorithm specifically tailored to solve the
given situation. This approach, for example, has
been used to reduce the problem of streaming
process discovery to the frequency counting prob-
lem. This problem consists of counting the fre-
quencies of given variables over a stream. In
order to reduce the process discovery to such
problem, it is important to understand what is
a variable in the process mining context and
whether it is possible to identify it.

An example of efficient algorithm for the ap-
proximated frequency counting problem is Lossy
Counting, here summarized in Algorithm 2 and
described in Manku and Motwani (2002). The
idea is to conceptually split the observed stream
in buckets, each with a fixed size. The approach
takes as input the stream and the maximal approx-
imation error on the counting � 2 Œ0; 1�, which
drives the size of each bucket. The approach
stores entries in a data structure T where each
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component .e; f;	/ provides the element e of the
stream, the estimated frequency for it f , and the
maximum number of times it could have occurred
	. When a new event is observed in the stream,
the algorithm checks if it is already in T and, in
case, it increments its counter f by one. Oth-
erwise a new entry in T is created. Periodically
(i.e., every time a new conceptual bucket starts),
the algorithm cleans the memory, by removing
elements not frequently observed. This algorithm
has no memory bound. Specifically, the size of
the data structure T depends on the stream and on
the approximation error. However, a variation of
the algorithm to enforce fixed amount of memory
is described in Da San Martino et al. (2012).

The most relevant benefit of the problem re-
duction approach is that, once the process mining
problem has been reduced to the new one, it is
possible to use algorithms already devised for the
reduced problem. However, such reduction might
not be trivial and all assumptions of the used
approach have to be met.
Offline computation. The last approach we
present consists of moving the computation of
the solutions to the given problem from online
setting to offline. In other words, the idea is to
identify and solve all subproblems the stream
may provide. Adopting this approach will help
us in dealing with all situations we are going
to observe, still keeping the complexity of the
online processing constant.

The advantage of this approach is the pos-
sibility of having extremely expensive solutions
“cached” in advance which are then just reused
whenever needed. Though there are several draw-
backs, it is not possible to apply this approach to
all online process mining problems. Additionally,
by computing everything in advance, we lose the
possibility of adapting the precomputed solutions
to the contextual information, which might be
uniquely specific to the running process instance.

In the upcoming subsections, one example of
each technique will be presented and detailed by
presenting two process mining activities.

Process Discovery
The first problem we present is the online process
discovery. A graphical conceptualization of the

Events emitted over time

Stream miner instance

... Network communication

Time

...

A

B

B2
C

A B C

Streaming Process Discovery and Conformance
Checking, Fig. 2 Conceptualization of the streaming
process discovery idea as in Burattin et al. (2014b)

problem is reported in Fig. 2. The idea is to have a
source which is generating an event stream. This
event stream is consumed by a miner which gen-
erates a representation of the underlying process
model and keeps it up-to-date with respect to the
observed behavior.

The first approach available to tackle this
problem is reported in Burattin et al. (2012,
2014b). In their works, authors employ a problem
reduction strategy. Specifically, they reduce the
Heuristics Miner algorithm, described in van der
Aalst and Weijters (2003), to the frequency
counting problem. To do that, they assume
direct following relationships as variables, and
by counting them, they are able to use the
Heuristics Miner’s metric to reconstruct the high-
level business patterns in terms of Heuristics Net
or Petri Net. Authors test different algorithms
to solve the frequency counting problem, such
as Lossy Counting and Lossy Counting with
Budget. As baseline approach, authors use a
sliding window mechanism where Heuristics
Miner is iteratively applied. The sliding window
approach is constantly outperformed by other
approaches which provide a better usage of
the available resources. A similar approach,
called StrProM, tracks the direct following
relationships. This approach, presented in
Hassani et al. (2015), keeps an updated prefix tree
by deriving a solution based on Lossy Counting
with Budget. The direct following relationships
are then used to construct a process model using
the set of rules of Heuristics Miner.
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As for the previously mentioned approaches,
in Maggi et al. (2013) and Burattin et al. (2014a,
2015), authors investigate the problem of discov-
ering a process represented in Declare (cf. Pesic
et al. 2007). Specifically, their idea is to instan-
tiate several “replayers,” one for each Declare
template to mine. Then, specific behavior for
each template is implemented. To keep track of
the replay statuses, authors use Lossy Counting-
based strategies. Authors apply sliding window
as baseline, and again, the performances of the
Lossy Counting strategies are better with respect
to the simple application of offline approaches
over a sliding window.

In Redlich et al. (2014b), authors present the
adaptation of CCM to cope with event streams.
The basic idea of CCM (cf. Redlich et al. 2014a)
is to identify subsequences of events in order to
identify footprints of specific process patterns. In
CCM, relevant patters and corresponding foot-
prints are described. Aging factors are employed
to the collected information in order to give more
importance to recent behavior.

The most recent work tackling the online pro-
cess discovery is reported in van Zelst et al.
(2017b). In their paper, authors generalize previ-
ously instantiated concepts: they present an archi-
tecture, namely, S-BAR, which keeps an updated
abstract representation of the stream (e.g., direct
follow relationships), and they use it as starting
point to infer an actual process model. In their
work, authors present the adaptations of different
mining algorithms: ˛ (cf. van der Aalst et al.
2004), Heuristics Miner (cf. van der Aalst and
Weijters 2003), and Inductive Miner (cf. Leemans
et al. 2013). To show the generability of their
abstract representation, authors also show a miner
based on region theory (cf. van der Aalst et al.
2008). In order to keep their abstraction updated,
authors reduce their problem to frequency count-
ing, thus using Lossy Counting, Space Saving
(cf. Metwally et al. 2005), and Frequent (cf. Karp
et al. 2003).

Conformance Checking
The problem of online conformance checking has
received attention in the declarative domain. In
this case, it used to be called operational support,

and its aim is to understand whether a set of
constraints is being violated or not. To achieve
that, in Maggi et al. (2011, 2012), authors de-
vise an approach to represent the behavior as
an automaton and executions are replayed on
it. Additionally, each process instance is labeled
with one of four possible fulfillment states: per-
manently/temporarily violated/fulfilled.

Concerning imperative models, online con-
formance checking received less attention. At
present time, only two approaches have been
specifically designed to tackle the online con-
formance checking problem. One approach, de-
scribed in van Zelst et al. (2017a), aims at reusing
the concept of alignment in order to compute
the optimal alignment just for the prefix of the
trace seen up to a given point in time. To this
end, authors first devise a technique to compute
prefix alignments. Authors prove the optimality
of the prefix alignment they discover. Up to
this point, their approach is incremental but not
really online (i.e., it is able to work on partial
cumulative information, but in theory they need
infinite memory to backtrack in order to find the
optimal alignment). To solve this issue, authors
mention the possibility to implement memory
management, either falling into a window-based
model or as problem reduction. Authors, how-
ever, do not implement or test either memory
management approach. However, they test their
technique against different number of backtrack-
ing steps required to find the prefix alignment.

Another conformance checking approach be-
longs to the offline computation category and is
described in Burattin and Carmona (2017) and
Burattin (2017). In this case, given a Petri Net
as input, authors describe a technique to elicit
a transition system containing all possible tran-
sitions from one marking to another one, even
those which are not described by the original
model. Each transition in this elicited model is
then associated with a cost. Transitions allowed
by the original Petri Net have cost 0; all others
have cost > 0. This way, by replaying a trace
on such transition system and summing the costs,
authors show that conformant traces will have
cost 0 and non-conformant trace always have cost
larger than 0. Additionally, authors ensure the
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determinism of such transition system and the
possibility, from each state, to have one transition
for each possible activity. These two last proper-
ties guarantee the suitability of the approach for
online settings.

Another conformance checking approach is
presented in Weber et al. (2015). In this case, au-
thors propose a RESTful service which performs
a token replay on a BPMN model. In particular,
authors implemented a token pull mechanism.
Authors refer this approach as online primarily
because of its interface, while no explicit guaran-
tee is mentioned in terms of memory usage and
computational complexity.

Other Applications
Online process mining has been applied also
to discover cooperative structures out of event
streams. For example, in van Zelst et al. (2016),
authors are able to process an event stream and
update the set of relationships of a cooperative
resource network.

Additionally, in order to conduct research on
stream process mining, it is useful to simulate
an event stream for which we know the actual
original source. To achieve that, mainly two
approaches are available. The first is a tool called
PLG2 (http://plg.processmining.it/), described in
Burattin (2016). It allows to generate a random
model or to load a BPMN file and stream events
referring to actual executions. The stream is sent
over a TCP/IP connection, and the tool allows
different configurations in terms of noise and
concept drift. The second tool is described in van
Zelst et al. (2015). This tool allows researchers
to design a model – as Petri Net – in CPN
(http://www.cpntools.org/) and then import it
into ProM (http://www.promtools.org/) where
the XESEventStream Publisher plugin
can be used to simulate a stream. Please note
that, in this case, the stream exists just within
ProM.

Key Applications

Due to the novelty of the topic, we are not aware
of any deployment of streaming process min-

ing techniques in real settings. However, more
generally, online process mining techniques are
relevant in all cases where it is important to have
results in real time, to immediately enact proper
responses. In this section, examples related to
IT setting will be provided, but business-oriented
applications are absolutely possible and relevant
as well.

Online process discovery might be useful in
settings where it is important to analyze imme-
diately the behavior of the system. For example,
reconstructing the behavior of the services used
in a website might be useful in order to see what
is currently under stress and what is going to be
used afterward. Exploiting this information could
improve the resource allocation (e.g., upscaling
or downscaling the server capacity on the fly).

Online conformance checking is also useful
whenever it is important to immediately detect
deviations from reference behavior to enact
proper countermeasures. For example, the kernel
of an operating system exposes some services for
applications. These services should be combined
in some specific ways (e.g., a file should be
open() and then either write() or read()
or both appear, and eventually the file should
be close()) which represent the reference
behavior. If an application is observed strongly
violating such behavior, it might be an indication
of strange activities going on, for example, in
order to bypass some imposed limitations or
privileges.

Future Directions for Research

As previously mentioned, online process mining
is a relatively new area of investigation. Some
techniques are available for the discovery of the
process (both as imperative and declarative mod-
els). Very recently, online conformance checking
also received attention, but several improvements
are still needed.

First of all, techniques should improve their
efficiency, for example, in terms of memory con-
sumption. This represents an important research
direction since, in the online setting, the amount
of available memory is fixed, thus representing a

http://plg.processmining.it/
http://www.cpntools.org/
http://www.promtools.org/
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key resource. To tackle this problem, it is nec-
essary to work on the summarization capabilities
used by the algorithms in order to find more
compact ways of storing the same information.

Related to the previous point is the quality
and quantity of information, and contextual data
algorithms are able to extract out of the same
event stream. For example, a process discovery
algorithm might be extended to extract more
complex control flow patterns, or the algorithm
might be modified to return not just the result but
the confidence on the provided outcomes.

Additionally, there are more technical issues
that algorithms should be able to cope with, for
example, dealing with a stream where the arrival
time of events does not coincide with their actual
execution. In this case, it would be necessary to
reorder the list of events belonging to the same
process instance before mining them. Please note
that assuming different orders implies a sort of
different element models of the stream (i.e., it
becomes an “insert-delete stream model,” where
the order of events can change). Another relevant
issue might be the inference of the termination of
a process instance.
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Introduction

During the past decade, we have been witnessing
a massive growth of data. In particular
the advent of new mobile devices such as
smartphones, tablets and online services like
Facebook and Twitter created a complete new
era for data processing. Although there exist
already well-established approaches such as
MapReduce (Dean and Ghemawat, 2008) and
its open-source implementation Hadoop (2015)
in order to cope with these large amounts
of data, there is a recent trend of moving
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away from batch processing to low-latency
online processing using event stream processing
(ESP) systems. Inspired by the simplicity of
the MapReduce programming paradigm, a
number of open-source as well as commercial
ESP systems have evolved over the past years
such as Apache S4 (Neumeyer et al., 2010;
Apache, 2015) (originally pushed by Yahoo!),
Apache Storm (2015) (Twitter), and Apache
Samza (2015) (LinkedIn), addressing the strong
need for data processing in near real time.

Since the amount of data being processed of-
ten exceeds the processing power of a single ma-
chine, ESP systems are often carried out as dis-
tributed systems where multiple nodes perform
data processing in a cooperative manner. How-
ever, with an increasing number of nodes used,
the probability for a failure increases which can
lead either to partial or even full system outages.
Although several well-established approaches to
cope with system failures for distributed systems
are known in literature, providing fault tolerance
for ESP systems is challenging as those systems
operate on constantly flowing data where the in-
put stream cannot be simply stopped and restarted
during system recovery.

One possibility for providing fault tolerance
in ESP systems is the usage of checkpointing
and logging, also known as rollback recovery/-
passive replication in literature where the state
of an operator is periodically checkpointed to
some fault-tolerant stable storage and so-called
in-flight events are kept in in-memory logs at
upstream nodes (upstream backup) (Hwang et al.,
2005; Gu et al., 2009). During system recovery,
the most recent checkpoint is being loaded, and
previously in-flight events are replayed. An al-
ternative to rollback recovery is active replica-
tion (Schneider, 1990; Martin et al., 2011a) where
two identical copies of an operator are deployed
on different nodes performing redundant process-
ing. If one of the two copies crashes, the system
continues to operate without having to initiate a
long recovery procedure as in passive replication.

Although active replication provides the
quickest recovery, it requires almost twice the
resources, while passive replication consumes
only little resources; however, it suffers from

long recovery times. Despite the fact that
both fault tolerance approaches have different
characteristics with regard to recovery times and
resource overhead, both require a deterministic
processing of events. Deterministic processing
ensures that all replicas process events in the
same predefined order which is important in
order (i) to reliably filter out duplicated events
when using active replication and (ii) to provide
reproducibility of events needed in order to
recover precisely (i.e., neither loosing any events
nor processing events twice) using passive
replication. However, the use of deterministic
execution imposes a non-negligible overhead
as it increases processing latency and lowers
throughput at the same time due to the cost of
event ordering.

Key Research Findings
This chapter presents three approaches to reduce
the overhead imposed by fault tolerance in ESP
systems. They are presented in the following
order: First,

1. the architecture and implementation of
STREAMMINE3G are discussed, an ESP
system that was built from scratch to study and
evaluate novel fault tolerance and elasticity
mechanisms,

2. an algorithm to reduce the overhead imposed
by deterministic execution targeting commu-
tative tumbling windowed operators and im-
proving the throughput by several orders of
magnitude when used with passive and active
replication,

3. an approach to improve the overall system
availability by utilizing spare but paid cloud
resources, and

4. an adaption-based approach that minimizes
the operational costs by selecting the least
expensive fault tolerance scheme at runtime
based on user-provided constraints.

Roadmap section “STREAMMINE3G Approach”
introduces the reader to the architecture and im-
plementation of STREAMMINE3G, the ESP sys-
tem used for evaluating the proposed approaches.
In section “Lowering Runtime Overhead for Pas-
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sive Replication”, an approach is presented that
lowers the overhead of event ordering by in-
troducing the notion of an epoch and evaluated
it for the use with passive replication. An ex-
tension of this approach is discussed in sec-
tion “Lowering Runtime Overhead for Active
Replication” for the use with active replication
by proposing an epoch-based merge algorithm
and a lightweight consensus protocol. Next, sec-
tion “Improving Resource Utilization and Avail-
ability Through Active Replication” details how
to improve system availability by using a hybrid
approach of passive standby and active replica-
tion by utilizing spare but paid cloud resources,
while in section “Adaptive and Low-Cost Fault
Tolerance for Cloud Environments”, an adapta-
tion approach for fault tolerance is presented that
allows to lower the overall resource consumption
while still satisfying user-specified constraints
such as recovery time and recovery semantics.
Finally, the chapter concludes in section “Con-
clusions” with a short summary of the approaches
and the contributions.

STREAMMINE3G Approach

The following section provides a brief overview
about STREAMMINE3G, the ESP system used to
implement and evaluate the proposed approaches.

STREAMMINE3G is a highly scalable ESP
system targeting low-latency data processing of
streaming data. In order to analyze data, users can
either opt for writing their own custom operators
using the provided MapReduce-like interface and
implementing a user-defined function (UDF) or

choose from an existing set of standard com-
plex event processing (CEP) operators such as
filter, join, aggregation, and others. In addition
to the operators, users must specify the order
events are supposed to traverse the previously
selected operators using a topology. A topol-
ogy in STREAMMINE3G is represented by a di-
rected acyclic graph (DAG) where each vertex,
i.e., an operator, can have multiple upstream
and downstream operators as shown in Fig. 1
(left). In order to achieve scalability, operators
in STREAMMINE3G are partitioned as depicted
in Fig. 1 (right). Each partition processes only a
subset of events from the incoming data stream.
For data partitioning, users can either implement
their own custom partitioner as in MapReduce or
use the provided hash-based or key-range-based
partitioner.

A typical STREAMMINE3G cluster consists
of several nodes where each node runs a single
STREAMMINE3G process hosting an arbitrary
number of operator partitions, named slices as
shown in Fig. 2. One of such nodes takes up the
role of a manager which is responsible for placing
operator partitions across the set of available
nodes as well as moving partitions (through a
migration mechanism) to other nodes for load
balancing in situations of overload or underuti-
lization. An overload can be detected by the man-
ager node by analyzing the system utilization of
each node, which is periodically reported through
heartbeat messages exchanged between nodes.

In order to prevent the node hosting the
manager component being the single point of
failure, the state of the component is stored
in Zookeeper (Hunt et al., 2010) upon each

StreamMine3G: Elastic
and Fault Tolerant Large
Scale Stream Processing,
Fig. 1 Logical (top left)
and physical (bottom right)
representation (with two
partitions for each
operator) of a query graph
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StreamMine3G: Elastic
and Fault Tolerant Large
Scale Stream Processing,
Fig. 2 A
STREAMMINE3G cluster.
One node acts as a
master/manager, while
others serve as workers
hosting an arbitrary
number of slices (operator
partitions)
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reconfiguration of the system. In the event of a
crash of the node, another node can transparently
take over the role of the manager by simply
recovering with the previously persisted state.

Lastly, STREAMMINE3G supports the im-
plementation of stateless and stateful operators.
However, contrary to other ESP systems such
as Apache S4 and Storm that have either no,
or only limited, state support, STREAMMINE3G
offers an explicit state management interface
to its users. The interface frees the users from
the burden of having to implement their own
bridle locking mechanism to ensure consistent
state modifications when processing events
concurrently (to exploit multiple cores) and
provides a full stack of mechanisms for state
checkpoints, recovery, and operator migration.
In order to use these mechanisms, users
are only required to implement appropriate
methods for serialization and de-serialization
of the state that can comprise arbitrary data
structures.

Lowering Runtime Overhead for
Passive Replication

In the following section, an approach for low-
ering the overhead for passive replication by
introducing the notion of an epoch is presented.

Introduction and Motivation
ESP applications are often long-running oper-
ations that continuously analyze data in order
to carry out some form of service. In order to
identify patterns and correlations between con-
secutive events, operators are often implemented
as stateful components. One way for providing
fault tolerance for such components is to combine
periodic checkpointing with event logging for a
later replay. However, since events may arrive in
different orders at an operator during a recov-
ery than they would have arrived originally due
to small delays in network packet delivery, the
immediate processing of such events would lead
to possibly inconsistent results. One way of pre-
venting such situations is to order events prior to
the processing in order to ensure a deterministic
input to the operator code at all times. However,
the ordering of events is costly as it introduces
latency and lowers throughput as shown later.

Fortunately, many ESP operators used in ESP
applications share the property of commutativity
and operate on jumping windows where the order
of processing within such windows is irrelevant
for the computation of the correct result. Exam-
ples for such operators are joins and aggregations.
However, processing the same event twice or
even missing an event may still distort the result
of those operators. Hence, determinism is still
needed in order to provide exactly once process-
ing semantics.
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Approach
Based on the observation that many operators
are commutative and operate on jumping win-
dows, the notion of an epoch is introduced. An
epoch comprises a set of events based on their
timestamps and matches the length of the window
an operator is working on. In order to assign
events correctly to those epochs, i.e., the time-
based windows, events are equipped with mono-
tonically increasing timestamps. The key idea of
the approach is to process events within such
epochs, i.e., windows in arbitrary order, how-
ever, processing epochs itself in order. Exactly
once semantics can now be provided by solely
performing checkpointing and recovery at epoch
boundaries as at those points in time the system
still provides a deterministic snapshot.

Evaluation and Results
For the evaluation of the approach, a canoni-
cal streaming word count application has been
implemented that consists of two operators: a
stateless map operator that splits lines read from
a Wikipedia corpus file into individual words
which are then accumulated by a stateful reduce
operator. The stateful operator summarizes the
word frequencies using a jumping window, i.e.,
an epoch where the length of the epoch is defined
in terms of file position the word originated from
in the source file. The performance of the epoch-
based approach has been evaluated by comparing

it with an execution that does not perform any
event ordering and an execution that performs
a strict event ordering. In strict ordering, every
single event is ordered rather than applying the
weak ordering scheme based on epochs. The
results of the measurements are shown in Fig. 3.

Figure 3 (left) shows the accumulated
throughput for the experiment running on a 50-
node cluster, while Fig. 3 (right) depicts the per
node throughput. The experiments reveal that
using the proposed weak ordering scheme, a
similar throughput as when not applying any
ordering can be achieved, however, providing
precise recovery semantics as when using strict
ordering, i.e., deterministic execution.

Lowering Runtime Overhead for
Active Replication

In the previous section, an approach for reducing
the overhead of event ordering was presented
that provides exactly once processing semantics
and precise recovery when used with passive
replication which is traditionally based on check-
pointing and in-memory event logging. In this
section, an extension will be presented that can
be used with active replication.

Introduction and Motivation
Active replication is a useful approach to recover
applications that accumulate large portions of
state as the secondary instance is holding the
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forms deterministic execution
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state already in memory rather than reading it
from disk during a recovery. However, in order
to use active replication, a costly atomic broad-
cast or deterministic execution (i.e., strict event
ordering) is needed in order to ensure consistent
processing across all replicas. However, when us-
ing commutative and windowed operators, event
ordering solely serves the purpose of maintaining
consistency across replicas but does not have any
impact on correctness due to the commutativity.

Approach
Inspired by the previous epoch-based processing
approach, the following approach can be consid-
ered as an extension as it performs an epoch-
based deterministic merge that ensures correct-
ness for active replication, however, at a much
lower cost than a strict event order/merge. The
key idea of the approach is to merge epochs rather
than individual events which is far less costly than
a strict per event merge as shown in the evaluation
below.

In order to perform an epoch-based deter-
ministic merge, events arriving from different
upstream channels are enqueued on a per epoch
basis in separate so-called epoch bags first. Once
an epoch completes, i.e., all channels have passed
the epoch boundary, the content of the epoch bags
is merged by processing the bags in the order of
predefined channel identifiers. Since the channel
identifiers are globally defined and events from
upstream operators are delivered in FIFO order

through TCP, the final sequence of events is
identical and deterministic for all replicas.

In case upstream operator replicas or
sources deliver identical but differently ordered
sequences of events and in order to reduce
latency caused by stragglers, a lightweight
consensus protocol can be used that selects for
the available upstream replicas the set of bags
to merge so that all downstream peers process
the same sets of events. The protocol stops
furthermore the propagation of non-determinism
while decreasing latency at the same time.

Evaluation and Results
For the experimental evaluation of the approach,
a canonical application operating on jumping
windows was implemented that consists of three
operators, a partitioned source operator, an equi-
join that combines the output from the source
operator, and a sink. In order to assess the
performance of the approach, it was compared
with an out-of-order execution, a strict ordering,
the epoch-based merge, and the consensus-based
protocol. The outcome of the experiments is
depicted in Fig. 4.

Figure 4 (left) depicts the accumulated
throughput for the experiment running on a
50-node cluster, while Fig. 4 (right) depicts
the per node throughput. As shown in the
figures, the epoch-based deterministic merge
has a noticeable higher throughput than strict
determinism (ordering), while there is only a
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marginal difference for the consensus-based
variant in comparison to the epoch-based
deterministic merge without agreement.

Improving Resource Utilization and
Availability Through Active
Replication

While the objective of the previously presented
approaches was to minimize the runtime over-
head for fault tolerance by introducing a weak
ordering scheme based on the notion of epochs,
the approach presented next improves system
availability by efficiently using spare but paid
resources in commonly available cloud environ-
ments.

Introduction and Motivation
ESP systems are naturally highly dynamic sys-
tems as they process data often originating from
live data sources such as Twitter or Facebook
where the streams have highly varying data rates
that may change by several orders of magnitude
within relative short periods of time. In order to
cope with those peak loads and to prevent the
unresponsiveness of the system, the systems are
usually run at conservative utilization levels often
as low as 50%. Although the cloud computing
model enables customers to acquire resources
quite easily, migration and rebalancing mecha-
nisms are still not fast enough to accommodate
sudden load spikes forcing the service providers
to run their applications at low utilization levels.
However, cloud users are nevertheless charged
by full hours regardless of the actual resource
consumption of their virtual machines.

Approach
In order to fully utilize all available resources a
virtual machine offers, a hybrid approach is used
for fault tolerance where a transition between
active replication and passive standby based on
the utilization of the system is made. In order
to transition between the two states, a priority
scheduler is used that prioritizes the processing of
the primary and transparently pauses secondaries
once resources are exhausted. Hence, the system

transparently transitions between active replica-
tion and passive standby where the secondary is
paused until sufficient resources become avail-
able again. In order to keep the secondary up-
to-date during high system utilization, the state
of the primary is periodically checkpointed to
the memory of the secondary which allows the
secondary to prune enqueued but not yet pro-
cessed events from queues. Using an interleaved
partitioning scheme for the placement of primary
and secondaries across the cluster, the overhead
imposed on nodes during system recovery can
furthermore be decreased.

Evaluation and Results
In the following experiment, the system behavior
of the proposed solution has been investigated in
the event of load peaks. To simulate spikes, a load
generator to emit events at different rates for pre-
defined periods of time was used. Figure 5 depicts
the aggregated throughput for a single node and
the status of the input queues of secondary slices
on that node over time. In this experiment, the
load generator introduced load spikes every 20 s
for 2 s.

During a load peak, no events at the sec-
ondary slices on that node are being processed;
hence queues grow quickly. Once the load de-
creases, secondaries resume the processing of
events; hence, the amount of events in the queues
of the secondary slices shrink. Note that the
aggregated throughput of the node remains high
until the shrinking process has been fully com-
pleted. During the spike, the aggregated through-
put was higher due to the increase in load on
the primary slices; after the spike, the throughput
is higher due to the accumulated load on the
secondary slices.

Adaptive and Low-Cost Fault
Tolerance for Cloud Environments

In the previous section, an approach to utilize
spare but already paid resources was presented
that improves system availability by dynamically
transitioning between active replication and
passive standby during runtime. The following
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length behavior of secondary slice queues with induced load spikes

section presents an approach that lowers the
overall resource consumption by selecting
the fault tolerance scheme at runtime that
consumes the least amount of resources while
still guaranteeing user-defined constraints such
as recovery time and recovery semantics.

Introduction and Motivation
Fault tolerance in ESP systems can be carried
out through various mechanism and replication
schemes. For example, in active replication, re-
dundant processing is used as a mechanism to
carry out fault tolerance where as in passive repli-
cation, a combination of periodic checkpointing
and event logging is used in order to mitigate
system crashes. Although active replication pro-
vides a quick recovery, it comes with a high price
as it consumes almost twice of the resources,
while passive replication consumes only little
resources; however, it suffers from a long recov-
ery time. Besides active and passive replication,
there exist several more schemes to carry out
fault tolerance such as active and passive standby
where recovery time is traded by resource usage.

Choosing the right fault tolerance scheme is
not trivial as all those schemes have different re-
source footprints and recovery times. Moreover,
the footprint and recovery time for those schemes
are not static as they strongly depend on system
parameters that can greatly vary during the course

of processing. For example, the recovery time
for passive replication strongly depends on the
size of the checkpoint that must be read dur-
ing a recovery. However, the size of a check-
point strongly depends on the incoming data
rate when considering a stateful sliding window
operator.

Approach
In order to free the user from the burden of choos-
ing an appropriate fault tolerance scheme for his
application, a fault tolerance controller that takes
decisions on behalf of the user at runtime can be
utilized. The controller takes into account user-
provided constraints such as the desired recovery
time and recovery semantics, i.e., precise or gap
recovery.

Therefore, STREAMMINE3G was extended to
support six different fault tolerance schemes the
controller can choose from as shown in Fig. 6:
1© active replication, 2© active standby, 3© pas-

sive standby hot and 4© cold, 5© deployed, and
6© passive replication. The schemes have differ-

ent characteristics with regard to resource con-
sumption of CPU, memory, network bandwidth,
the amount of nodes used, and recovery time. In
order to choose the correct scheme, the controller
uses an estimation-based approach where histor-
ically collected measurements are continuously



StreamMine3G: Elastic and Fault Tolerant Large Scale Stream Processing 1651

S

StreamMine3G: Elastic
and Fault Tolerant Large
Scale Stream Processing,
Fig. 6 Fault tolerance
schemes state transition
wheel: active replication,
active standby, passive
standby hot and cold,
deployed, and passive
replication
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evaluated for an estimation of the expected recov-
ery time for each of the available schemes.

Evaluation and Results
The approach has been evaluated with regard to
the amount of resources that can be saved in
comparison to a conservative use of full active
replication. Figure 7 shows the runtime behavior
of the system.

At the top graph, the throughput and how it
varies over time are shown. Since the operator
used for evaluation is a sliding window operator
that accumulates events of the past 20 s, the size
of the state follows the pattern of the throughput
curve. At the bottom graphs, the chosen fault
tolerance scheme is shown for each time slice.
As shown in the plot, the system starts with active
replication (AR), as it is the safe choice. Once
enough measurements have been collected, the
controller quickly switches to the deployed state
replication scheme (DEP) as the state size and
the throughput are quite low and, hence, recovery
from disk and replay from upstream nodes can be
easily accomplished within the user’s specified
recovery time threshold. However, as spikes
occur which let the state and upstream queues
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StreamMine3G: Elastic and Fault Tolerant Large
Scale Stream Processing, Fig. 7 Throughput, state size,
and fault tolerance scheme evolution over time using
Twitter workload with a recovery threshold set to 5.5 s

grow, the controller switches between passive
replication (PR) and deployed replication scheme
(DEP). A cooldown time of 5 s prevents the
system from oscillating due to sudden load spikes
which are common in workloads originating
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from live data sources such as Twitter streams.
In summary, the controller chose a combination
of passive replication and deployed during the
first half of the experiment, whereas the second
half was dominated by passive hot standby
(PS Hot).

Conclusions

This chapter presented several approaches for
lowering the overhead imposed by fault toler-
ance mechanisms in ESP systems. First, a brief
overview of STREAMMINE3G was provided, the
ESP system used to study and evaluate the pre-
sented approaches, followed by the first approach
that allowed to reduce the overhead of event
ordering required to recover applications in a pre-
cise manner and to ensure reproducibility through
the use of epochs for commutative and tumbling
windowed operators (Martin et al., 2011b). In
order to apply this concept also for actively repli-
cated operators, an extension to this approach
was presented where the processing of epochs is
delayed and by performing an epoch-based deter-
ministic merge. In conjunction with a lightweight
consensus protocol, latency as well as the prop-
agation of non-determinism can be reduced and
prevented, respectively.

Next, an approach to increase system
availability by efficiently using spare but paid
cloud resources (Martin et al., 2011a) was
presented. The approach combines the two
replication schemes active replication and
passive standby where the system transparently
switches between the two states using a priority
scheduler. The evaluation showed that the system
maintains responsiveness while still providing
high availability through active replication at
(almost) no cost.

As a last approach, a fault tolerance con-
troller (Martin et al., 2015) was presented that
selects an appropriate fault tolerance scheme on
behalf of the user at runtime based on previously
provided constraints such as recovery time and
recovery semantics. The evaluation revealed that
a considerable amount of resources can be saved

in comparison to the conservative use of active
replication using this approach.
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Definitions

Bloom filter (Bloom 1970): Bloom filter is a
bit-vector data structure that provides a compact
representation of a set of elements. It uses a group
of hash functions to map each element in a data
set S D fs1, s2, : : : , smg into a bit-vector of n bits.

LSM tree (O’Neil et al. 1996): The LSM
tree is a data structure designed to provide low-
cost indexing for files experiencing a high rate
of inserts and deletes. It cascades data over time
from smaller, higher performing (but more ex-
pensive) stores to larger less performant (and less
expensive) stores.

Skip list (Black 2014): Skip list is a random-
ized variant of an ordered linked list with addi-
tional, parallel lists. Parallel lists at higher levels
skip geometrically more items. Searching begins
at the highest level, to quickly get to the right part
of the list, and then uses progressively lower level
lists. A new item is added by randomly selecting
a level, then inserting it in order in the lists for
that and all lower levels. With enough levels, the
time complexity of searching is O(logn).

Hash table (Cormen et al. 2009): Hash table
is a dictionary in which keys are mapped to array
positions by hash functions. Having the keys of
more than one item map to the same position
is called a collision. There are many collision
resolution schemes, but they may be divided
into open addressing, chaining, and keeping one
special overflow area.

Overview

This subject is mainly toward data structures for
large data sets, e.g., web pages, logs, and IoT
(Internet of Things) sensing data. With the rapid
development of big data applications such as web
and IoT applications, people have to deal with
massive data that cannot be efficiently processed
and stored using traditional data structures.

This entry focuses on some typical structures
that have been widely used for big data repre-
sentation and organization. Differing from tradi-
tional structures such as BC-tree, the structures

https://doi.org/10.1007/978-3-319-77525-8_305
https://doi.org/10.1007/978-3-319-77525-8_305
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discussed in this entry are specially designed
for large data sets. After a brief description on
the key ideas of the big-data-oriented structures,
some examples of application are presented. And
finally, this entry suggests a few future research
directions in this field.

Key Data Structures

Large data sets introduce new challenges for the
underlying structures for organizing data. First,
the high velocity of big data calls for write-
optimized data structures that can offer a high
throughput for data insertions and deletions. Sec-
ond, querying processing on large data sets costs
more time, which seriously throttles read perfor-
mance. Thus, most of structures for large data sets
aim to improve the write and read performance on
big data. However, many of them focus on finding
a tradeoff between read optimization and write
optimization, because many structures are not
possible for optimizing both read performance
and write performance. On the other hand, real
applications usually exhibit an asymmetric prop-
erty in read and write requests, i.e., some appli-
cations are write-intensive, while others are read-
intensive. To this end, we can choose specifically
optimized structures for different applications on
large data sets.

In this section, we present some existing struc-
tures that are proposed for read/write optimiza-
tion on large data sets.

Write-Optimized BC-tree
The BC-tree is a disk-based, paginated, dynam-
ically updateable, balanced, and tree-like index
structure (Liu and Özsu 2009). It supports point
queries in O(logpn) I/Os, where n is the number
of records in the tree and p is the page capacity in
number of records.

While the BC-tree provides efficient and
stable performance for point queries, it has poor
insertion performance. Each insertion in the
BC-tree has to search from the root node to
the appropriate leaf node, which costs O(logpn)
I/Os. In addition, it may incur iterated update of
the BC-tree in order to keep the properties of the

tree such as balanced structure and approximately
half filling-rate of each node.

Some write optimizations for the BC-tree are
as follows (Bender and Kuszmaul 2013; Graefe
2004).

Insert in sequential order. The BC-tree is a
couple of orders of magnitude faster at inserting
data in sequential order compared to the random
order. This is because once we insert a row into a
leaf node, that leaf node is in memory, and since
the next run of rows are destined for the same
leaf, they can all be inserted cheaply.

This property of BC-tree leads many people
to bend over backwards trying to keep insertions
sequential. In many applications, this is not a
natural or easy thing to do, and causes all sorts
of problems elsewhere in the system.

Use a write buffer. This optimization stores up
a bunch of insertions in a write buffer. When the
buffer is full, we pick a leaf and write all the rows
to the leaf.

This optimization works when we get to pick
a bunch of stored rows that are going to the
same leaf. When this happens, we see a speedup:
you get to accomplish a bunch of work just for
touching a leaf once.

The problem of this optimization is that we
have to query the write buffer when answering
queries, because the update-to-date rows may
resist in the write buffer. However, as memory
access is far fast than disk IOs, this approach can
still have good read performance.

Write-optimized BC-trees received much at-
tention in recent years, because of the popu-
larity of the BC-tree in data management. It
is a straightforward way to improve the BC-
tree to meet the special needs of big data man-
agement. So far, write-optimized BC-trees are
demonstrated advantageous for big data man-
agement, especially for streaming big data ar-
riving at a high speed. The high throughput of
insertion in write-optimized BC-trees makes it
possible to meet the “velocity” challenge of big
data.

The limitation of write-optimized BC-trees is
that most of them sacrifice the read performance,
which is not a good choice for read-intensive
applications. As a result, it is necessary to devise
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read/write-optimized BC-trees for big data man-
agement in future.

LSM-Tree
The Log-Structured Merge-Tree (or LSM-tree)
(O’Neil et al. 1996) is a data structure proposed
for highly inserted data, such as transactional log
data. LSM-tree maintains data in two or more
separate structures, each of which is optimized
for its respective underlying storage medium.
Data is synchronized in batches between the two
structures efficiently.

One simple version of the LSM-tree is a two-
level LSM-tree. A two-level LSM-tree comprises
two tree-like structures, called C0 and C1. C0 is
smaller and entirely resident in memory, while C1
is on disk. New records are first inserted into C0.
If the insertion causes C0 to exceed a certain size
threshold, a contiguous part of entries is removed
from C0 and merged into C1 on disk. The LSM-
tree has high update performance because move-
ments from C0 to C1 are performed in batches,
which implies that most writes to storage media
are sequential writes.

Most implementations of LSM-tree used in
practice employ multiple levels. Level 0 is kept
in main memory and might be represented using
a tree. The on-disk data is organized into sorted
runs of data. Each run contains data sorted by
the index key. A run can be represented on disk
as a single file, or alternatively as a collection of
files with nonoverlapping key ranges. To perform
a query on a particular key to get its associated
value, one must search in the Level 0 tree and
each run.

The most significant advantage of the LSM-
tree is its high performance of writing, because
the writes from one level to its next level are
always performed in sequential order. Thus, the
LSM-tree is much suitable for big data applica-

tions with high-velocity data streams. The prob-
lem of the LSM-tree is its read performance. A
read request in the LSM-tree may result in a few
IOs to the levels which are maintained in disks.

Tree Structures Optimized for New Storage
Traditional structures were mainly proposed for
magnetic disks. Disk IOs causing significant ac-
cess latency become a bottleneck of big data
storage and management. Recently, the advent
of new storage such as flash memory and phase
change memory introduces new opportunities for
accelerating the performance of accessing big
data. In this section, some typical tree structures
proposed for the context of big data and new stor-
age are described, including FD-tree, HybridB-
tree, and Bloom-tree.

FD-Tree
The idea of FD-tree is to change random writes
to an index into sequential ones (Li et al. 2010).
FD-tree was originally proposed for flash mem-
ory. However, as random writes are also slower
than sequential writes in hard disks, FD-tree can
work on different types of storage.

FD-tree is a multi-layer tree index (as shown
in Fig. 1), where the top layer is a two-level
BC-tree called head tree, and each of the other
layers consists of a sorted list. The updates to
FD-tree are initially performed on the head tree,
and then are gradually moved to the sorted lists
at the lower levels. The key point of FD-tree
is that each sorted list is organized as sequen-
tial pages that are contiguously stored in flash
memory. Therefore, when flushing the updates to
the index to flash memory, FD-tree only involves
sequential writes to flash memory. As sequential
writes to flash memory are more efficient than
random writes, FD-tree can improve the overall

Structures for Large
Data Sets, Fig. 1
Structure of the FD-tree
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time performance by transforming random writes
to sequential ones.

HybridB Tree
The HybridB tree (Jin et al. 2015) was designed
for solid-state drives (SSD) and hard disks (HDD)
based hybrid storage systems. It is an optimized
structure of the BC-tree. In the HybridB tree, all
the interior nodes are stored on SSD. Compared
with leaf nodes, interior nodes in the HybridB
tree are more possible to be read, because each
read to a leaf node has to incur several reads to
the interior nodes on the path from the root to
the leaf node. On the other hand, all the updates,
insertions, and deletions to the index are first fo-
cused on leaf nodes. Although there are possible
updates to some interior nodes when updating
a leaf node, these updates to interior nodes are
much less than those to leaf nodes. As one major
objective of the HybridB tree is to reduce random
writes to SSD, it is more appropriate to put leaf
nodes on HDD.

The structure of the HybridB tree is shown in
Fig. 2. The leaf nodes in the tree are designed
as huge leaf nodes (the yellow parts in Fig. 3),
which are distributed among HDD and SSD. An
interior node contains exactly one page, but a
huge leaf node includes two or more pages. Each

page in a huge leaf node can be a leaf-head node,
a leaf-leaf node, or a leaf-log node. The reason of
introducing the huge leaf nodes in the HybridB
tree is to reduce the splits/merges to the index,
because these operations will incur many random
writes to SSD.

The HybridB tree has the similar search cost
with the BC-tree on SSD/HDD. However, ow-
ing to the use of the huge nodes, it has fewer
random writes to SSD compared with the BC-
tree on SSD/HDD. Generally, the HybridB tree
can achieve better overall performance than the
BC-tree, especially in a big data environment,
because it can get more benefits over the BC-tree
when the height of the tree increases.

Bloom-Tree
The Bloom-tree (Jin et al. 2016) is an efficient
index structure proposed for large data sets on
flash memory. It is a read/write-optimized tree
structure of the BC-tree.

BC-tree has been demonstrated as an efficient
tree index that has fast search performance on
block-based storage such as hard disks. However,
updates on BC-tree will incur a substantial num-
ber of page writes to disks in order to maintain
its key features of balanced tree and half node-
filling. As random writes are much slow on flash

Structures for Large
Data Sets, Fig. 2
Structure of the HybridB
tree
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memory, many previous researches have shown
that BC-tree will result in poor overall perfor-
mance when directly used for flash memory (Roh
et al. 2009).

In order to optimize BC-tree for flash mem-
ory, one solution is to cache the updates to the
tree in a write buffer. Then, the cached updates
can be merged and flushed into flash memory
w.r.t. some optimal policy to reduce the overall
writes on the tree index. However, even a write
buffer is used for adapting BC-tree for flash
memory, split operations on the tree will still
lead to many page writes, as a split operation
usually incurs propagating updates from a leaf
node to the root of BC-tree. An intuitive way for
this problem is to allow overflow pages for leaf
nodes. Thus, newly inserted records can be put in
overflow pages and splits will not be triggered by
insertions.

So far, most flash-memory-oriented indices
are designed based on the write buffer and/or the
overflow page idea, aiming to reduce writes on
the BC-tree. However, these solutions typically
have to introduce many additional read opera-
tions. Meanwhile, modern flash disks show a
close gap between their read and write speed, thus
read operations on flash memory are becoming
a critical factor affecting the overall time per-
formance on flash memory. As a consequence,
how to optimize flash-memory-aware indices by

x

0 0 1 0 0 1 0 1 …... 0 1 0
h1(x) h2(x) h3(x) hk(x)

Structures for Large Data Sets, Fig. 4 Element map to
a Bloom filter

reducing both write and read costs is becoming
an open challenge.

The Bloom-tree is able to control read costs
while reducing writes to flash memory. In par-
ticular, it uses an update buffer and overflow
pages to reduce random writes to flash memory
and further exploits bloom filter to reduce the
extra reads to the overflow nodes in the tree.
With this mechanism, it constructs a read/write-
optimized structure that can obtain better overall
performance than previous flash-aware indices.

Figure 4 shows the structure of Bloom-tree. It
improves the traditional BC-tree with two new
designs. First, it introduces three kinds of leaf
nodes, namely Normal Leaf, Overflow Leaf (OF-
leaf), and Bloom-Filter Leaf (BF-leaf). Second,
it proposes to construct bloom filters in BF-leaf
nodes and use overflow pages in OF-leaf nodes.

A normal leaf node is the same as a leaf node
on the traditional BC-tree, and it occupies exactly
one page. An OF-leaf node contains overflow



1658 Structures for Large Data Sets

pages. However, an OF-leaf node contains not
more than three overflow pages in order to reduce
read costs on OF-leaf nodes. If an OF-leaf node
expands up to more than three pages, it will
be transformed into a BF-leaf node, which can
provide more efficient organization for overflow
pages. A BF-leaf node is designed for organizing
leaves with more than three overflow pages. As
shown in Fig. 3, it contains several data pages and
a leaf-head page maintaining the bloom filters
and metadata about the data.

Hashing Structures for New Storage
The idea of hashing has emerged as a basic tool
in data structures and algorithms. A wide range
of algorithmic problems can be solved by using
hash-based structures.

A hash table is a data structure that can map
keys to values (Cormen et al. 2009). A hash table
uses a hash function to map a set of keys to an
array of buckets. By using hash tables, people can
efficiently perform searching on large data sets.
For example, if you need to find out in web logs
the IP address with the highest access frequency
to a specific website, a hash table can be used to
partition all the possible IP addresses (232) into
1024 (or more) buckets. These buckets can be
maintained in memory, and the IP address with
the highest frequency can be easily computed.

The hash function for a hash table is expected
to map each key to only one bucket. However,
in many cases, the hash function may gener-
ate the same bucket number for several keys.
This causes hash collisions in hash tables (Knuth
1998). There are two basic ways to resolve hash
collisions. The first way is called separate chain-
ing. In this method, each bucket is appended with
a list of entries. If a few keys fall in the same
bucket, they will be put into the list of the bucket.
The separate chaining approach will introduce
extra search costs for the list lookup. The second
way is called open addressing. In this strategy,
all entry keys are stored in the bucket itself.
When a new key has to be inserted, the buckets
are examined, starting with the hashed-to bucket
and proceeding in some probe sequence, until an
unoccupied bucket is found. When searching for
an entry, the buckets are scanned in the same

sequence, until either the target record is found
or an unused bucket is found, which indicates that
there is no such key in the hash table. The name
“open addressing” means that the address of a
key is not determined by its hash value.

In recent years, there are some studies fo-
cusing on optimizing hashing structures for new
storage such as flash memory. Flash memory
has faster read speed than disks, but its random
write speed is slower. Thus, hashing structures
for flash memory mostly aim to reduce random
writes to flash memory. MicroHash (Zeinalipour-
Yazti et al. 2005) is an efficient external memory
index structure for wireless sensor devices, which
stores data on flash by time or value. MLDH
(Multi Level Dynamic Hash index) (Yang et al.
2009) is a multi-layered hash index, and the ca-
pacity of each level in MLDH is twice as its upper
level. Updates to MLDH are first buffered in an
in-memory structure. When the memory structure
is full, the memory data are merged with the hash
index on flash memory and a new hash index is
built. Wang et al. proposed a flash-based self-
adaptive extendible hash index where each bucket
occupies a block (erase unit) of flash memory
(Wang and Wang 2010). A bucket consists of
both data region and log region. The log region
serves updates and deletes, so in-place updates
to the data region can be delayed. In addition, a
Split-or-Merge (SM) factor, which is dynamically
adjusted according to the log/data ratio, is intro-
duced to make the index self-adaptive. Hybrid
Hash Index (Yoo et al. 2012) delays split oper-
ations which cause additional writes and erasure
operations by using overflow buckets. Li et al.
proposed a lazy-split hashing scheme to reduce
writes at the expense of more reads (Li et al.
2008). They declared that the lazy-split hashing
can adapt itself dynamically to different search
ratios. Yang et al. proposed SAL-Hashing (Self-
Adaptive Linear Hashing) (Yang et al. 2016) to
reduce small random-writes to flash memory that
are caused by index operations.

In-Memory Structures for Large Data Sets
In-memory data placement and processing has
been regarded as a basic principle for ensuring
fast read/write speed in big data management.
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For this purpose, efficient in-memory structures
are needed to be specially designed. This issue
is especially important as the memory size is in-
creasing with time. In this section, several struc-
tures proposed for in-memory data placement and
accesses are discussed, including Bloom filter
and Skip list.

Bloom Filter
Bloom filter is a space-efficient in-memory
data structure to represent a set to which we
can add elements and answer membership
queries approximately (Bloom 1970). It has been
extensively used as auxiliary data structures in
database systems. Bloom filter is a bit-vector data
structure that provides a compact representation
of a set of elements. It maps each element in a
data set S D fs1, s2, : : : , smg into a bit-vector of n
bits, which is denoted by BF[1], ..., BF[n] with a
default value of 0. In this mapping procedure, we
use a group of independent hash functions fh1,
h2, : : : , hkg. For a given element in S, each hash
function maps it into a random number within the
set of f1, 2, : : : , ng. If a hash function returns i,
we set BF[i] to 1. Figure 4 shows the mapping
idea of Bloom filter.

For an element x2S, the algorithm to compute
its bloom filter includes two steps. First, it calcu-
lates the k values of hash functions h1(x), h2(x),
: : : , hk(x). Second, it sets all bits BF[hi(x)] to 1.

For answering a membership query like “Is
y2S?,” the algorithm first calculates the k values
of hash functions h1(y), h2(y), : : : , hk(y). Then,
it checks all the Bloom filters of each element in
S to see whether all the BF[hi(y)] in an existing
Bloom filter are 1. If not, y is not a member of S. If
all the BF[hi(y)] are 1, y may be within S. Due to
the possible collisions of hash functions, there is
a false positive rate when evaluating membership
queries on Bloom filters. Given n, k, and m, the
false positive probability of a Bloom filter can be
computed by Eq. (1). Further, it is demonstrated
that the false positive probability is minimalized
when k D 0:7 � m

n
, which is approximately

0:6185
m
n (Bloom 1970).

f BF D
�
1 � e�

nk
m

�k

(1)

Bloom filter is space efficient in represent-
ing elements. In addition, it is time efficient for
inserting elements and answering membership
queries. However, Bloom filter does not sup-
port deletions on elements. A revised version
enhances Bloom filter with deletions (Bonomi et
al. 2006).

Skip List
Skip list is a linked-list-like in-memory structure
that allows fast search in memory (Pugh 1990).
It consists of a base list holding the elements,
together with a tower of lists maintaining a linked
hierarchy of subsequences, each skipping over
fewer elements.

Skip list is a data structure that can be used
in place of balanced trees. It uses probabilistic
balancing rather than strictly enforced balancing
and as a result the algorithms for insertion and
deletion in skip lists are much simpler and signif-
icantly faster than equivalent algorithms for bal-
anced trees. Skip lists are built in layers, as shown
in Fig. 5. The bottom layer is an ordinary ordered
linked list. At a high level, a skip list is just a
sorted, singly linked list with some “shortcuts”
(additional pointers that allow traveling faster. An
element in layer i appears in layer i C 1 with
some fixed probability p (two commonly used
values for p are1/2 or 1/4). On average, each
element appears in 1/(1-p) lists, and the tallest
element (usually a special head element at the
front of the skip list) in all the lists.

A search for a target element begins at the
head element in the top list and proceeds horizon-
tally until the current element is greater than or
equal to the target. If the current element is equal
to the target, it has been found. If the current
element is greater than the target, or the search
reaches the end of the linked list, the procedure is
repeated after returning to the previous element
and dropping down vertically to the next lower
list.

Indeed, a skip list is really just a simulation
of a binary search tree using multiple linked lists
running in parallel. Of course, trying to maintain
a perfectly balanced binary search tree using
this simulation is still expensive, and it is still
complicated. However, by viewing a skip list as
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Data Sets, Fig. 5
Structure of skip lists

a single sorted linked list, where each node has a
column of links to other nodes in the list, it is easy
to see how randomly choosing a height for each
new column could potentially produce the same
good behavior as a balanced skip list.

The original design of the skip list was as a
randomized data structure, much like randomized
binary search trees. By eschewing a logarithmic
bound guarantee in favor of a logarithmic bound
with high probability, a skip list can enjoy the
performance properties of a well-balanced binary
search tree (on average) while avoiding many
disadvantages of tree structures.

Compared with the balanced trees, the skip list
has the following advantages:

1. It is relatively easy to design and implement
the algorithm. The implementation of the skip
list is direct and easier than the balanced trees.

2. It is efficient. Insertion and deletion do not
need to be balanced again. Indeed, the skip list
serves as an alternative to the binary search
trees which become unbalanced after several
insertion and deletion operations.

3. The memory requirements of skip lists are less
than that used for balanced trees.

In the big data scope, the skip list is commonly
employed as an efficient structure for organizing
memory data. For example, it has been imple-
mented in a couple of NoSQL database engines
like LevelDB, Redis, and MemSQL as the pri-
mary memory structure.

Examples of Application

In many cases, hash tables are more efficient
than trees or any other table structures. For this
reason, they are widely used in many kinds of
computer software, particularly for associative
arrays, database indexing, caches, and large sets.

Recent research by Google (Henzinger 2006; Das
et al. 2007) showed that using deep learning
approach can optimize hash functions by orders
of magnitude in space usage savings and improve
retrieval speed as well.

Hash tables may also be used as disk-based
data structures and database indices. In multi-
node database systems, hash tables are commonly
used to distribute rows among nodes, reducing
network traffic for hash joins (Karger et al. 1997).

Hashing is also commonly used in information
retrieval. One early application in this field is
identifying near-duplicate web pages in Altavista
using min-wise hashing (Broder et al. 1998).
Another application is HyperANF (Boldi et al.
2011), which was used to compute the distance
distribution of the Facebook social network. In
the field of machine learning, random mappings
of data to lower-dimensional vectors that are eas-
ier to handle is of increasing importance for big
data applications. This is because that machine
learning algorithms often work with kernelized
feature vectors with high dimensions. Designing
randomized mappings that meet the criteria of
machine learning applications has been an ac-
tive research area in recent years (Wang et al.
2016).

A key application of Bloom filters is in the
field of content delivery networks, which deploys
web caches around the world to cache and serve
web content to users with greater performance
and reliability. Bloom filters are used to effi-
ciently determine which web objects to store in
web caches (Maggs and Sitaraman 2015). To
prevent caching one-hit-wonders (accessed by
users only once and never again), a Bloom filter is
used to keep track of all URLs that are accessed
by users. A web object is cached only when it
has been accessed at least once before. With this
mechanism, one can significantly reduce the disk
write workload, since one-hit-wonders are never
written to the disk cache. Further, filtering out the
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one-hit-wonders also saves cache space on disk,
increasing the cache hit rates.

Bloom filters can also be organized as
distributed data structures to perform fully
decentralized computations of aggregate
functions (Pournaras et al. 2013). Decentralized
aggregation makes collective measurements
locally available in every node of a distributed
network without involving a centralized
computational entity for this purpose.

The LSM-tree is now used in many database
products such as Bigtable, HBase, LevelDB,
MongoDB, SQLite, RocksDB, WiredTiger,
Apache Cassandra, and InfluxDB. The LSM-
tree is especially suitable for write-intensive
workloads. Certainly, LSM implementations such
as LevelDB and Cassandra regularly provide
better write performance than single-tree based
approaches. Yahoo! developed a system called
PNUTS, which combines the LSM-tree with
the B-trees and demonstrates better performance
(Cooper et al. 2008).

It is also worth considering the hardware be-
ing used. Some expensive solid state disks, like
FusionIO, have better random write performance.
This suits update-in-place approaches. Cheaper
SSDs are better suited to the LSM-tree, because
it can avoid small random writes to SSDs.

Skip list has been implemented in many sys-
tems such as LevelDB, MemSQL, and Redis.
Specially, Redis adds a backward pointer for each
skip list node to traverse reversely. Also there
is a span variable in level entry to record how
many nodes must be crossed when reaching to
next node. Actually, when traverse list, we can
accumulate span to get the rank of a node in
sorted set. In LevelDB, skip lists are used to
organize the MemTable in memory. In MemSQL,
skip lists are used as the prime indexing structure
for databases.

Future Directions for Research

Data structures are one of the most critical parts
for big data representation, processing, and
storage. In addition to the structures explained

in this article, there are some future research
directions in this field.

Firstly, the existing tree structures like LSM-
tree and HybridB-Tree are mainly toward write-
intensive workloads. Although it is a major ob-
jective to reduce random writes to new storage
such as flash memory, it is valuable to devise
read/write-friendly structures in the future.

Secondly, traditional database researches sup-
pose that data are stored in external disks. How-
ever, big data applications call for in-memory
data processing and storage. Thus, how to make
data structures suit for in-memory data manage-
ment is an important issue in the big data era.

Finally, recently nonvolatile memory (NVM)
has received much attention from both academia
and industries (Li et al. 2016; Chen et al. 2014).
This will lead to reformation of memory ar-
chitecture. Therefore, developing NVM-oriented
structures is a potential research direction in the
future.
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Synonyms

Measured system; SUT; Target environment; Test
object; Tested environment

Definitions

A System Under Test (SUT) is a complete system
that comprises hardware, software, and connec-
tivity components; that is the object or target of a
performance measurement test or benchmark.

Historical Background

While the term System Under Test is somewhat
generic in nature, it was formalized in the
early 1990s by industry consortiums with the
mission of defining industry standard perfor-
mance benchmarks, such as the Transaction
Processing Performance Council (TPC – www.
tpc.org), the Standard Performance Evaluation
Corporation (SPEC – www.spec.org), and the
Storage Performance Council (SPC – www.
storageperformance.org).

Foundations

The purpose of a test or benchmark is to deter-
mine how a target environment behaves under a
controlled load or in response to specific requests.
As such, the definition of the System Under Test
plays a key role in a benchmark specification.
The SUT’s definition discusses the inclusion or
exclusion of hardware, software, and connectiv-
ity components. It also defines the measurement
boundaries. For benchmarks that mandate some
pricing metrics, the SUT defines which compo-
nents must be included in this pricing.

Hardware Components
The definition of the SUT includes a number
of hardware components. These components can
be specific or generic. Specific components can
be chosen to define a fixed set of hardware on
which to measure different software variations.
By keeping the hardware as a constant while
varying the software, the outcome of the test can
be fully attributed to changes in the software envi-
ronment. Alternatively, the hardware components
can be defined in generic terms, giving some
latitude in their selection. This latitude can be
limited to some portion of the SUT or can be
applied to all hardware components in the SUT.
For example, the SUT’s definition may require
the configuration of a single server node with
specific attached storage and a specific number
of processor sockets, while giving latitude in the
choice of processor types. Such a SUT defini-
tion would focus the results of the test of the

https://doi.org/10.1007/978-3-319-77525-8_168
https://doi.org/10.1007/978-3-319-77525-8_26
https://doi.org/10.1007/978-3-319-77525-8_124
https://doi.org/10.1007/978-3-319-77525-8_157
http://www.tpc.org
http://www.spec.org
http://www.storageperformance.org
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processor’s capabilities. Alternatively, the SUT’s
definition may give full latitude in the selection
of the server’s internal architecture, system topol-
ogy (single-node, cluster, client–server, etc.), and
storage subsystem; giving the test an opportunity
to compare widely diverging solutions to a com-
mon workload requirement, or analyzing non-
hardware criteria, such as price, value (price/per-
formance), scalability, or portability.

Software Components
The definition of the SUT generally includes a
number of software components or a software
stack. Few tests solely focused on a hardware
component (e.g., a simple storage device) and do
not require any software as part of the SUT. But,
in most cases, one or more software components
are needed to assemble the SUT. There is a degree
to the role that software can play in the SUT. Soft-
ware can be part of the SUT to simply tie together
the hardware components targeted by the test. In
the case of system testing, software components
are just as important as hardware components for
the tested system, literally a System Under Test.
And for tests that directly target software, rather
than hardware, the software components are the
object of the test and the hardware components
merely provide a platform for the software to
execute.

Connectivity Components
The definition of the SUT may include a number
of connectivity components. These are used to
allow the hardware components to communi-
cate. Such connectivity might be in the form of
a general-purpose network (e.g., Ethernet over
Fibre Channel) or in the form of a proprietary
interconnect (e.g., AMD’s HyperTransport bus).
Many test environments use some connectivity
components to provide a communication channel
between the SUT and the test harness. These
communication channels may or may not be
included as part of the SUT. One criteria to
include such communication channel in the SUT
is whether they are also used for communication
between other components inside the SUT.

Measurement Boundary
The boundary between a test driver (also called
measurement harness) and the target of the mea-
surement (i.e., the SUT) is the point where the
driver applies a stimulus to the SUT and where
the driver measures the SUT’s response to that
stimulus. This measurement boundary is also
where the test driver ends and the SUT starts. In
some cases, the measurement boundary is virtual
in that the driver uses resources from components
that are part of the SUT. In other cases, the bound-
ary is physical in that no components, other than
a communication channel, are shared between the
driver and the SUT.

Pricing Metrics
When benchmarks results are used for competi-
tive analysis, it may be relevant to include some
pricing metrics. The purpose of such metrics is
to provide information about the cost associated
with the performance capabilities of the SUT.
These metrics are generally expressed in terms of
straight total price, in terms of ratio between total
price and measured performance, or both. For
example, the TPC-A metrics include the total cost
of ownership of the SUT and the associated cost
per unit of performance, expressed in cost/tps
(transaction per second). The definition of the
SUT is a key to defining which components are
included in these cost calculations.

Key Applications

First Formal Use
The first formal use of the term SUT was found
as part of the initial release of TPC Benchmark
A (TPC-A) (Huppler 2009), published by the
TPC in 1990. This online transaction process-
ing (OLTP) benchmark provided an industry-
sanctioned specification of the loosely defined
and widely used DebitCredit (Anon 1985) work-
load. The TPC-A specification defined the term
SUT as including the following components:

• One or more processing units (e.g., hosts,
front-ends, and workstations.), which will run
the transactions [ : : : ].



System Under Test 1665

S

• The hardware and software components of all
networks required to connect and support the
SUT components.

• Data storage media sufficient to satisfy both
the scaling rules [ : : : ] and the ACID proper-
ties [ : : : ].

• The host system(s) including hardware and
software supporting the database employed in
the benchmark.

Generic Terminology
Following in the footsteps of TPC-A, subsequent
benchmark specifications released by industry
standard consortia have been using the term SUT,
or one of its synonyms, to identify the per-
formance measurement target specific to each
benchmark. The term SUT, by itself, does not
describe the tested environment. Instead, the term
is used as a container to encapsulate the set of
hardware, software, and connectivity components
that are being targeted for measurement. As such,
each benchmark specification includes its own
formal definition of the term SUT.

In some instances, the term used to name the
target environment of a test is synonymous with
System Under Test. For example, SPEC does not
consistently use the term SUT in its benchmark
specifications. However, the consortium uses the
term SUT to name the set of configuration com-
ponents that can be chosen as filters for queries
against its database of benchmark publications.

Benchmark Adoption and Longevity
The SUT’s definition is a key factor in a
benchmark’s adoption and longevity. According
to (Huppler 2009), all “good” benchmarks
share the same primary characteristics of
being relevant, repeatable, fair, verifiable, and
economical. A careful definition of the SUT
will contribute to improving each one of these
characteristics.

• Relevant: The SUT’s primary components
are those for which test results are in
demand.

• Repeatable: The SUT’s definition has tight
requirements for components that impact the
test results, and gives flexibility for compo-
nents that are result neutral.

• Fair: Components of the SUT are limited to
those that can be compared on an even playing
field.

• Verifiable: The availability of the components
used and their configuration is such that others
can easily recreate the SUT to repeat the
test.

• Economical: The cost of assembling the SUT
does not create a prohibitive limit on who can
reasonably execute the test.
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�Big Data Benchmark
�Benchmark Harness
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�Cloud Big Data Benchmarks
�Component Benchmark
�End-to-End Benchmark
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