
C

Caching for SQL-on-Hadoop

Gene Pang and Haoyuan Li
Alluxio Inc., San Mateo, CA, USA

Definitions

Caching for SQL-on-Hadoop are techniques and
systems which store data to provide faster ac-
cess to that data, for Structured Query Language
(SQL) engines running on the Apache Hadoop
ecosystem.

Overview

The Apache Hadoop software project (Apache
Hadoop 2018) has grown in popularity for dis-
tributed computing and big data. The Hadoop
stack is widely used for storing large amounts of
data, and for large-scale, distributed, and fault-
tolerant data processing of that data. The Hadoop
ecosystem has been important for organizations
to extract actionable insight from the large vol-
umes of collected data, which is difficult or in-
feasible for traditional data processing methods.

The main storage system for Hadoop is the
Hadoop Distributed File System (HDFS). It is a
distributed storage system which provides fault-
tolerant and scalable storage. The main data pro-
cessing framework for Hadoop is MapReduce,
which is based on the Google MapReduce project

(Dean and Ghemawat 2008). MapReduce is a
programming model and distributed batch pro-
cessing framework for reliably processing large
volumes of data, typically from HDFS. However,
the distinct programming model for MapReduce
can be a barrier for nondevelopers, such as data
analysts or business intelligence (BI) tools.

Because of this barrier to entry, new tools
and frameworks have emerged for the Hadoop
ecosystem. Primarily, new Structured Query
Language (SQL) frameworks have gained
popularity for the Hadoop software stack.
SQL is a domain-specific declarative language
to describe retrieving and manipulating data,
typically from relational database management
systems (RDBMS). These SQL engines for
Hadoop have been effective for empowering
more users who are familiar with existing tools
and the SQL language for managing data. These
frameworks typically read data from HDFS,
process the data in a distributed way, and return to
the user the desired answer. Many SQL engines
are available for Hadoop, which include Apache
Hive (2018), Apache Spark SQL (2018), Apache
Impala (2018), Presto (Facebook 2018), and
Apache Drill (2018).

These SQL on Hadoop engines have combined
the convenience of data query with SQL and
the power of distributed processing of data with
Hadoop. However, these engines are commonly
not tightly integrated into the Hadoop ecosystem.
There can be advantages of separating the com-
putation engine from the storage system, such
as cost effectiveness and operational flexibility.

© Springer Nature Switzerland AG 2019
S. Sakr, A. Y. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-77525-8

https://doi.org/10.1007/978-3-319-77525-8

432 Caching for SQL-on-Hadoop

However, one potential weakness is that the per-
formance of accessing data may decline. Since
RDBMS typically have tight integration and con-
trol of the entire stack from the computation
to the storage, performance may be faster and
more predictable. For comparable experiences
with traditional SQL processing in RDBMS, dis-
tributed SQL engines on Hadoop turn to caching
to achieve the desired performance.

There are several different ways SQL engines
on Hadoop can take advantage of caching to
improve performance. The primary methods are
as follows:

Internal caching within the SQL engine
Utilizing external storage systems for caching

SQL Engine Internal Caching

A common way a SQL engine uses caching
is to implement its own internal caching. This
provides the most control for each SQL engine
as to what data to cache and how to represent
the cached data. This internal cache is also most
likely the fastest to access, since it is located clos-
est to the computation being performed (same
memory address space or local storage), in the
desired format. However, the SQL engine internal
caching may not be shareable between different
users and queries, which is beneficial in a multi-
tenant environment. Also, not all SQL processing
frameworks have implemented an internal cache,
which prevents using cached data for queries.

Apache Spark SQL
Apache Spark SQL is a SQL query engine built
on top of Apache Spark, a distributed data
processing framework. Spark SQL exposes a
concept called a DataFrame, which represents
a distributed collection of structured data,
similar to a table in an RDBMS. Caching in
Spark SQL utilizes the caching in the Spark
computation engine. A user can choose to cache
a DataFrame in Spark SQL by explicitly invoking
a cache command (Spark SQL 2018). When the
command is invoked, Spark SQL engine will
cache the DataFrame internal to the Spark engine.

There are several user-configurable ways the data
can be cached, including MEMORY_ONLY,
MEMORY_AND_DISK, DISK_ONLY, and
others (Spark RDD 2018). An explicit command
must be invoked to remove the DataFrame from
the cache.

Apache Hive and LLAP
Apache Hive is a SQL data warehouse for
Hadoop, which utilizes an existing distributed
computation engine for the data processing. The
options of computation engines for Hive to use
are MapReduce, Spark, or Tez. Hive uses Live
Long And Process (LLAP) (Apache Hive LLAP
2018) for caching data for SQL processing.
Currently, only Tez will take advantage of the
caching available via LLAP.

LLAP is a long-lived daemon which runs
alongside Hadoop components in order to pro-
vide caching and data pre-fetching benefits. Since
Tez takes advantage of LLAP, when Hive uses
Tez as the computation engine, data access will
go to the LLAP daemons, instead of the HDFS
DataNodes. With this access pattern and archi-
tecture, LLAP daemons can cache data for Hive
queries.

External Storage Systems for Caching

Another major technique for caching for SQL
engines on Hadoop is to utilize an external stor-
age system for caching data. Using a separate
system can have several benefits. An external
system may be able to manage the cache more
effectively and provide additional cache-related
features. Also, an external system can be de-
ployed independently from the other components
of the ecosystem, which can provide operational
flexibility. Additionally, sharing cached data can
be enabled or made simpler with a separate sys-
tem for caching. By using a separate system
for handling the caching of data, SQL engines
can take advantage by reading the data from
the cache, instead of the originating data source.
This can greatly improve performance, especially
when frequently accessed files are cached. Below

Caching for SQL-on-Hadoop 433

C

are some of the main systems which can provide
caching in Hadoop ecosystems.

Alluxio
Alluxio (2018) is a memory speed virtual dis-
tributed storage system. Alluxio provides a uni-
fied namespace across multiple disparate storage
systems. Alluxio enables users to “mount” any
existing storage system like HDFS, Amazon S3,
or a storage appliance, and presents a single,
unified namespace encompassing all the data.
When a mount is established, applications simply
interact with the Alluxio namespace, and the data
will be transparently accessed from the mounted
storage and cached in Alluxio. Since there is
no limit to how many mounts are possible, Al-
luxio enables accessing all data from a single
namespace and interface, and allows queries to
span multiple different data sources seamlessly.
Figure 1 shows how Alluxio can mount multiple
storage systems for multiple computation frame-
works.

Alluxio enables caching for SQL engines by
providing memory speed access to data via its
memory centric architecture. Alluxio stores data
on different tiers, which include memory, solid-
state drive (SSD), and disk. With the memory tier
and the tiered storage architecture, Alluxio can
store the important and most frequently accessed

data in the fastest memory tier, and store less
accessed data in slower tiers with more capacity.

SQL engines can access any data via the
Alluxio unified namespace, and the data will
be either fetched from the configured mounted
storages, or served from Alluxio-managed stor-
age (memory, SSD, and disk), which can greatly
improve performance. When Alluxio is deployed
colocated with the computation cluster, the
Alluxio memory storage can behave similar to the
internal caches of SQL engines. Alluxio is able
to transparently cache data from various other
storage systems, like HDFS. Additionally, since
the Alluxio storage is independent from the SQL
engines, the cached data can easily be shared
between different computation frameworks, thus
allowing greater flexibility for deployments.

Apache Ignite HDFS Cache
Apache Ignite (2018) is a distributed platform for
in-memory storage and computation. Apache Ig-
nite is a full stack of components which includes
a key/value store, a SQL processing engine, and
a distributed computation framework, but can be
used to cache data for HDFS and SQL engines on
Hadoop.

Apache Ignite provides a caching layer for
HDFS via the Ignite File System (IGFS). All
clients and applications interact with IGFS for
data, and IGFS handles reading and writing the

Caching for
SQL-on-Hadoop, Fig. 1
Alluxio mounting various
storage systems

434 Caching for SQL-on-Hadoop

data to memory on the nodes. When using IGFS
as a cache, users can optionally configure a sec-
ondary file system for IGFS, which allows trans-
parent read-through and write-through behavior.
Users can configure HDFS for the secondary file
system, so when the data is synced to IGFS, the
data in Ignite is cached in memory.

Using Apache Ignite, SQL engines can access
their HDFS data via IGFS, and the data can
be cached in the Ignite memory storage. Any
SQL engine can take advantage of this cached
data for greater performance for queries. When
using IGFS, the SQL engine internal caching
does not need to be used, which will also en-
able sharing of the cached data. However, IGFS
only allows a single secondary HDFS-compatible
file system, if SQL queries need to access var-
ied sources, IGFS would not be able to cache
the data.

HDFS Centralized Cache Management
Another external caching option is for the cache
to be implemented in the Hadoop storage system,
HDFS. Depending on the operating system (OS)
buffer cache is one way to take advantage of
caching in HDFS. However, there is no user con-
trol over the OS buffer cache. Instead, HDFS has
a centralized cache management feature (Apache
Hadoop HDFS 2018), which enables users to
explicitly specify files or directories which should
be cached in memory. Once a user specifies a path
to cache in HDFS, the HDFS DataNodes will be
notified, and will cache the data in off-heap mem-
ory. In order to remove a file or directory from
the cache, a separate command must be invoked.
HDFS caching can help accelerate access to the
data, since the data can be stored in memory,
instead of disk.

By enabling the HDFS centralized cache, the
data of specified files will reside on memory on
the HDFS DataNodes, so any SQL engines or
applications accessing those files will be able
to read the data from memory. Increasing the
data access performance of HDFS will help any
queries accessing the cached files. Apache Impala
has additional support for utilizing the HDFS
centralized caching feature for Impala tables

which are read from HDFS. With Apache Impala,
users can specify tables or partitions of tables to
be cached via HDFS centralized caching. IBM
Big SQL (Floratou et al. 2016) also uses the
HDFS cache for accelerating access to data and
utilizes new caching algorithms Adaptive SLRU-
K and Adaptive EXD to improve the cache hit
rates for better performance.

Since the centralized caching is an HDFS
feature, it can help improve performance for any
HDFS data access. However, for disaggregated
clusters, where the HDFS cluster is separate from
the SQL engine cluster, the HDFS caching may
not be able to help much. Separating computation
and storage clusters is becoming popular for
its scalability, flexibility, and cost effectiveness.
In these environments, when the computation
cluster requires data, the data must be accessed
across the network, so even if the data resides in
the memory cache on the HDFS DataNodes, the
network transfer may be the performance bottle-
neck. Therefore, further improving performance
via caching requires either SQL engine inter-
nal caching or a separate caching system. Also,
since the caching system is tightly integrated with
HDFS, the deployment is not as flexible as other
external caching systems.

Conclusion

Caching can significantly improve query perfor-
mance for SQL engines on Hadoop. There are
several different techniques for caching data for
SQL frameworks. SQL engine internal caching
has the potential for the greatest performance, but
each framework must implement a cache, and the
cached data is not always shareable by other ap-
plications or queries. Another option is to use the
HDFS centralized caching feature to store files in
memory on the HDFS DataNodes. This server-
side cache is useful to speed up local access to
data, but if SQL engines are not colocated with
HDFS, or the data is not stored in HDFS, the net-
work may become the performance bottleneck.
Finally, external systems can cache data for SQL
frameworks on Hadoop. When colocated with the
computation cluster, external systems can store

Cheap Data Analytics on Cold Storage 435

C

data in memory similar to an internal cache, but
provide the flexibility to share the data effectively
between different applications or queries.

Cross-References

�Apache Spark
�Hadoop
�Hive
� Spark SQL
�Virtual Distributed File System: Alluxio

References

Alluxio (2018) Alluxio – open source memory speed
virtual distributed storage. https://www.alluxio.org/.
Accessed 19 Mar 2018

Apache Drill (2018) Apache Drill. https://drill.apache.org.
Accessed 19 Mar 2018

Apache Hadoop (2018) Welcome to Apache Hadoop!
http://hadoop.apache.org. Accessed 19 Mar 2018

Apache Hadoop HDFS (2018) Centralized cache man-
agement in HDFS. https://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/Centralized-
CacheManagement.html. Accessed 19 Mar 2018

Apache Hive (2018) Apache Hive. https://hive.apache.
org/. Accessed 19 Mar 2018

Apache Hive LLAP (2018) LLAP. https://cwiki.apache.
org/confluence/display/Hive/LLAP. Accessed 19 Mar
2018

Apache Ignite (2018) Apache Ignite. https://ignite.
apache.org/index.html. Accessed 19 Mar 2018

Apache Impala (2018) Apache Impala. https://
impala.apache.org/. Accessed 19 Mar 2018

Apache Spark SQL (2018) Spark SQL. https://spark.
apache.org/sql/. Accessed 19 Mar 2018

Dean J, Ghemawat S (2008) MapReduce: simplified
data processing on large clusters. Commun ACM
51(1):107–113

Facebook (2018) Presto. https://prestodb.io/. Accessed 19
Mar 2018

Floratou A et al (2016) Adaptive caching in big SQL
using the HDFS cache. In: SoCC’16 proceedings of the
seventh ACM symposium on cloud computing, Snata
Clara, 5–7 Oct 2016

Spark RDD (2018) RDD programming guide. http://spark.
apache.org/docs/latest/rdd-programming-guide.html#
rdd-persistence. Accessed 19 Mar 2018

Spark SQL (2018) Spark SQL, dataframes and
datasets guide. http://spark.apache.org/docs/latest/
sql-programming-guide.html#caching-data-in-memory.
Accessed 19 Mar 2018

Cartography

�Visualization

Causal Consistency

�TARDiS: A Branch-and-Merge Approach to
Weak Consistency

Certification

�Auditing

Cheap Data Analytics on Cold
Storage

Raja Appuswamy
Data Science Department, EURECOM, Biot,
France

Definitions

Driven by the desire to extract insights out of
data, businesses have started aggregating vast
amounts of data from diverse data sources. How-
ever, recent analyst reports claim that only 10–
20% of data stored is actively accessed with
the remaining 80% being cold or infrequently
accessed. Cold data has also been identified as
the fastest-growing storage segment, with a 60%
cumulative annual growth rate (Mendoza 2013;
Moore 2015; Nandkarni 2014).

As the amount of cold data increases, enter-
prise customers are increasingly looking for more
cost-efficient ways to store this data. A recent re-
port from IDC emphasized the need for such low-
cost storage by stating that only 0.5% of potential
Big Data is being analyzed, and in order to benefit
from unrealized value extraction, infrastructure
support is needed to store large volumes of data,
over long time duration, at extremely low cost

https://doi.org/10.1007/978-3-319-77525-8_37
https://doi.org/10.1007/978-3-319-77525-8_36
https://doi.org/10.1007/978-3-319-77525-8_250
https://doi.org/10.1007/978-3-319-77525-8_251
https://doi.org/10.1007/978-3-319-77525-8_321
https://www.alluxio.org
https://drill.apache.org/
http://hadoop.apache.org/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LLAP
https://ignite.apache.org/index.html
https://impala.apache.org/
https://spark.apache.org/sql
https://prestodb.io
http://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/sql-programming-guide.html#caching-data-in-memory
https://doi.org/10.1007/978-3-319-77525-8_67
https://doi.org/10.1007/978-3-319-77525-8_160
https://doi.org/10.1007/978-3-319-77525-8_125

436 Cheap Data Analytics on Cold Storage

(Nandkarni 2014). Thus, the topic of managing
cold data has received a lot of attention from both
industry and academia over the past few years.
Systems that are purpose-built to provide cost-
efficient storage and analysis of cold data are
referred to as cold storage systems.

Background and Overview

Enterprise databases have long used storage tier-
ing for reducing capital and operational expenses.
Traditionally, databases used a two-tier storage
hierarchy. An online tier based on enterprise hard
disk drives (HDD) provided low-latency (ms) ac-
cess to data. The backup tier based on offline tape
cartridges or optical drives, in contrast, provided
low-cost, high-latency (hours or days) storage for
storing backups to be restored only during rare
failures.

As databases grew in popularity, the neces-
sity to reduce recovery time after failure be-
came important. Further, as regulatory compli-
ance requirements forced enterprises to maintain
long-term data archives, the offline nature of
the backup tier proved too slow for both stor-
ing and retrieving infrequently accessed archival
data. This led to the emergence of a new archival
tier based on nearline storage devices, like vir-
tual tape libraries (VTL), which could store and
retrieve data automatically without human inter-
vention in minutes.

Over the past decade, the emergence of flash-
based solid-state storage, declining price of
DRAM, and demand for low-latency, real-time
data analytics have resulted in the traditional
online tier being bifurcated into two subtiers,
namely, a performance tier based on RAM/SSD
and a capacity tier based on HDD. Thus, most
modern enterprises today use a four-tier storage
hierarchy (performance, capacity, archival,
backup) implemented using three storage types
(online, nearline, and offline) as shown in Fig. 1.

Given the proliferation of cold data over the
past few years, the obvious question that arises
is where should such cold data be stored. Given
that databases already have a tiered storage in-
frastructure in place, an obvious low-cost solution
to deal with this problem is to store cold data
in either the capacity tier or the archival tier.
Unfortunately, both these options are not ideal
given recent trends in the high-density storage
hardware landscape.

HDD-Based High-Density Storage
Traditionally, 7,200 RPM HDDs have been the
primary storage media used for provisioning the
capacity tier. For several years, areal density im-
provements enabled HDDs to increase capacity at
Kryder’s rate (40% per year), outstripping the 18-
month doubling of transistor count predicted by
Moore’s law. However, over the past few years,
HDD vendors have hit walls in scaling areal den-
sity with conventional perpendicular magnetic
recording (PMR) techniques (Fontana and Decad

Cheap Data Analytics on
Cold Storage, Fig. 1
Storage tiering for
enterprise databases

Cheap Data Analytics on Cold Storage 437

C

2015). As a result, HDD vendors have started
working on several techniques to improve areal
density, like using helium-bearing instead of air-
bearing for the disk head to pack more plat-
ters tightly or using shingled magnetic recording
(SMR) techniques that pack more data by over-
lapping adjacent disk tracks, to further increase
areal density. Despite such attempts from HDD
vendors, HDD areal density is improving only at
an annual rate of 16% instead of 40% (Fontana
and Decad 2015; Moore 2016).

HDDs also present another problem when
used as the storage medium of choice for
storing cold data, namely, high idle power
consumption. Unlike tape drives, which consume
no power once unmounted, HDDs consume a
substantial amount of power even while idle
(Colarelli and Grunwald 2002). Such power
consumption translates to a proportional increase
in operational expenses. Thus, the capacity tier,
with its always-on HDD-based storage, is not
an ideal option for storing infrequently accessed
cold data.

Tape-Based High-Density Storage
Unlike HDDs, the areal density of tapes has
been increasing steadily at a rate of 33% per
year, and the Linear Tape Organization (LTO)
roadmap (LTO Ultrium 2015) projects continued
increase in density for the foreseeable future. To-
day, a single LTO-7 cartridge is capable of match-
ing or even outperforming a HDD, with respect
to sequential data access bandwidth. As modern
tape libraries use multiple drives, the cumula-
tive bandwidth achievable using even low-end
tape libraries is 1–2 GB/s. However, the random
access latency of tape libraries is still 10,000�

higher than HDDs (minutes versus ms) due to
the fact that tape libraries need to mechanically
load tape cartridges before data can be accessed.
Thus, tape-based archival tier is used to store only
rarely accessed compliance and backup data. As
the expected workload in such cases is dominated
by sequential writes with a few rare reads, the
high access latency of tape drives is tolerable.

Using the archival tier to store cold data,
however, changes the application workload, as
analytical queries need to be issued over cold data

to extract insightful results (EMC 2014). As a
nearline storage device with access latency that
is five orders of magnitude larger than HDD, tape
will impose a significant performance penalty for
even latency-insensitive batch analytic workloads
(Kathpal and Yasa 2014). Thus, today, enterprises
are faced with a trade-off, as they can store cold
data in tape-based archival tier at the expense of
performance or in the HDD-based capacity tier
and trade-off cost.

Key Research Findings

Over the past few years, storage hardware ven-
dors and researchers have become cognizant of
the gap between the HDD-based capacity tier
and the tape-based archival tier. This has led
to the emergence of a new class of nearline
storage devices explicitly targeted at cold data
workloads. These devices, also referred as cold
storage devices (CSD), have two salient prop-
erties that distinguish them from the tape-based
archival tier. First, they use archival-grade, high-
density, shingled magnetic recording-based HDD
as the storage media instead of tapes. Second,
they explicitly trade off performance for power
consumption by organizing hundreds of disks in a
massive array of idle disk (MAID) configuration
that keeps only a fraction of HDD powered up at
any given time (Colarelli and Grunwald 2002).

CSD differ dramatically with respect to price,
performance, and peak power consumption char-
acteristics. Some CSD enforce a strict upper limit
on the number of HDD that can be spun up at any
given point to limit peak power draw. By doing
so, they right-provision hardware resources, like
in-rack cooling and power management, to cater
to the subset of disks that are spun up, reduc-
ing operational expenses further. For instance,
Pelican (Balakrishnan et al. 2014) packs 1,152
SMR disks in a 52U rack for a total capacity
of 5 PB. However, only 8% of disks are spun
up at any given time due to restrictions enforced
by in-rack cooling and power budget. Similarly,
each OpenVault Knox (Yan 2013) CSD stores
30 SMR HDDs in a 2U chassis of which only
one can be spun up to minimize the sensitivity

438 Cheap Data Analytics on Cold Storage

of disks to vibration. Other CSD, like Spectra
ArcticBlue Spectra Logic (2013), provide more
performance flexibility at the expense of cost,
similar to traditional MAID arrays, by only spin-
ning down idle disks while permitting a much
larger subset of disks to be active simultaneously.

The net effect of these limitations is that the
latency to access data stored in the CSD depends
on whether the data resides in a disk that is spun
up or down. Access to data in any of the spun-
up disks can be done with latency and bandwidth
comparable to that of the traditional capacity
tier. For instance, Pelican, OpenVault Knox, and
ArcticBlue are all capable of saturating a 10 Gb
Ethernet link as they provide between 1 and
2 GB/s of throughput with an access latency of
5–10 milliseconds for reading data from spun-up
disks. However, accessing data on a spun-down
disk takes 5–10 s, as the target disk needs to be
spun up before data can be accessed.

CSD form a perfect middle ground between
HDD and tape. Due to the use of high-density
disks and MAID techniques, CSD are touted to
offer cost/GB comparable to tape. With worst-
case access latencies in seconds, CSD are closer
to HDD than tape with respect to performance.
However, CSD are not a drop-in replacement for
HDD (Borovica-Gajic et al. 2016). In order to
effectively exploit CSD for reducing the cost of
cold data storage and analytics, cold storage in-
frastructures need to design three components of
both CSD and analytic engines to work in concert
with the shared goal of minimizing the number of
disk spin-ups, namely, the CSD storage manager,
the CSD I/O scheduler, and the analytic engine’s
query executor.

CSD Storage Manager
The CSD storage manager is responsible for
implementing the storage layout that maps data
to disks. Designing an optimal data layout for
CSD is a complex problem, as one has to balance
performance, reliability, and availability simulta-
neously. From performance point of view, data
that is accessed together should be stored on a
set of disks that can spin up together so that re-
quests for such data can be serviced concurrently
without any group switches. From the reliability

aspect, the disk chosen for storing data should
span multiple failure domains, like different trays
in the rack, so that a failure in any single domain
does not result in total data loss. With respect to
availability, data layout should ensure that recov-
ery from a disk failure is seamless and quick,
as disk failures will be a norm rather than an
exception in CSD.

In CSD like Pelican (Balakrishnan et al. 2014),
where the power and cooling infrastructure of the
CSD enforces a strict limit on which set of disks
can be spun up at any given time, the choice
of data layout is a direct consequence of these
restrictions. Pelican (Balakrishnan et al. 2014) as-
sembles disks into groups such that disks within
each group belong to different failure domains
and can be spun up simultaneously. Each data
object stored by Pelican is striped across disks
within a single group, using erasure coding to
protect data in case of disk failures. By using
disks that can be active at the same time, Pelican
meets the performance requirement, as multiple
object requests can be served concurrently due
to striping. Erasure coding helps in improving
availability, as recovery after disk failures can be
done within a group without any spin-ups and
several disks can participate in data restoration.

A storage layout that uses historic data access
patterns as a hint for future accesses could further
improve performance by packing multiple ob-
jects that are always accessed together into a few
disk groups. The task of identifying an optimal
mapping of objects to disks given a history of
accesses can be modeled as an optimization prob-
lem (Reddy et al. 2015). However, given the large
number of objects stored in CSD, it can be quite
complicated to handle each object individually in
the optimization algorithm. Thus, the problem of
choosing a data layout is decomposed into two
subproblems: (i) identifying clusters of objects
that are accessed together from the trace and
(ii) identifying an optimal mapping of objects to
disks. The goal of the first step is to transform in-
dividual object access patterns into group access
patterns by clustering objects that are accessed
together. The optimization algorithm can then
map clusters to disks. It has been shown that such
an access-driven data layout approach can save

Cheap Data Analytics on Cold Storage 439

C

up to 78% power over random placement (Reddy
et al. 2015).

CSD I/O Scheduler
The goal of the CSD’s I/O scheduler is to service
object requests from different clients in a way
that minimizes the number of group switches
while at the same time ensuring fairness across
clients. The CSD group scheduling problem can
be reduced to the single-head tape scheduling
problem in traditional tertiary storage systems,
where it has been shown that an algorithm that
picks the tape with the largest number of pending
requests as the target to be loaded next performs
within 2% of the theoretically optimal algorithm
(Prabhakar et al. 2003). If efficiency was the
only goal, we could apply such an algorithm,
which we henceforth refer to as Max-Requests,
to the CSD case by picking the disk group with
the maximum number of requests. However, the
algorithm would not provide fairness, as a contin-
uous stream of requests for a few popular disks
can starve out requests for less popular ones.

Pelican CSD solves this problem by schedul-
ing object requests in a first-come first-serve
(FCFS) order to provide fairness with some pa-
rameterized slack that occasionally violates the
strict FCFS ordering by reordering and grouping
requests to the same disk group to improve per-
formance (Balakrishnan et al. 2014). However, by
building on FCFS, Pelican’s algorithm trades off
efficiency for fairness. The Skipper framework
(Borovica-Gajic et al. 2016) introduces a new
algorithm that strikes a balance between FCFS
and Max-Requests by associating a rank with
each group that is computed by considering both
the number of requests that need to be serviced
for that disk group, and the average time spent
by requests waiting for that disk group to spin
up. The scheduler always picks the group with
the highest rank as the target to be spun up next.
By using the number of requests in computing
the rank, the scheduler behaves efficiently similar
to the Max-Requests algorithm. By including the
average waiting time, the scheduler ensures that a
request to a less popular group that has been not
been serviced for a while will get prioritized over
other requests to more popular groups.

Database Query Executor
When a CSD is used as the storage back end for
an analytical database engine, query execution
will result in the database reading data objects
directly from the CSD. In the best case, these
database read requests are always serviced from
a disk group that is spun up. In such a case, there
would be no performance difference between us-
ing a CSD and the traditional HDD-based capac-
ity tier. However, in the pathological case, every
data access request issued by the database would
incur a spin-up delay and cripple performance.
Unfortunately, the average case is more likely to
be similar to the pathological case due to two
assumptions made by traditional databases: (1)
storage subsystem has exclusive control over data
allocation, and (2) the underlying storage media
support random accesses with uniform access
latency.

Today, most enterprise databases run in a
virtualized setting in a private cloud hosted
on premise or in the public cloud. In such
a virtualized environment, a CSD will store
data corresponding to several databases by
virtualizing available storage behind an object
interface, similar to OpenStack Swift (Oracle
2015) or Amazon S3 (Amazon 2015). As each
database reads objects from the CSD, it has
no control over the CSD data layout which
is performed by the CSD storage manager.
The lack of control over data layout implies
that the latency to access a set of relations
depends on the way they are laid out across disk
groups.

Moreover, the CSD services requests from
multiple databases simultaneously. Thus, even if
all data corresponding to a single database is
located in a single group, the execution time of
a single query is not guaranteed to be free of
disk spin-ups. This is because the access latency
of any database request depends on the currently
loaded group, which depends on the set of re-
quests from other databases being serviced at any
given time. Thus, in a virtualized enterprise data
center that uses CSD as a shared service, both
assumptions made by analytical database engines
are invalidated leading to suboptimal query exe-
cution (Borovica-Gajic et al. 2016).

440 Cheap Data Analytics on Cold Storage

Exploiting the cost benefits of CSD while
minimizing the associated performance trade-off
requires eliminating unnecessary disk spin-ups.
The only way of achieving such an optimal data
access pattern is to have the database issue re-
quests for all necessary data upfront so that the
CSD can return data back in an order that min-
imizes the number of disk spin-ups. Thus, the
order in which database receives data, and hence
the order in which query execution happens,
should be determined by the CSD to minimize
the performance impact of group switches.

Unfortunately, current databases are not de-
signed to work with such a CSD-driven query
execution approach. Traditionally, databases have
used a strict optimize-then-execute model to eval-
uate queries. The database query optimizer uses
cost models and statistics gathered to determine
the optimal query plan. Once the query plan
has been generated, the execution engine then
invokes various relational operators strictly based
on the generated query plan with no run-time
decision-making. This results in pull-based query
execution where the database explicitly requests
data in an order determined by the query plan.
This pull-based execution approach is incompati-
ble with the CSD-driven approach, as the optimal
order chosen by the CSD for minimizing group
switches is different from the ordering specified
by the query optimizer.

In order to enable CSD-driven query execu-
tion, analytical database engines should adopt
push-based query execution instead of a pull-
based one. There are two approaches that can
be used to perform push-based query execution.
The first approach is to tightly couple query
execution with I/O scheduling in such a way that
the scheduler knows and delivers only objects
that are required for the query executor to make
progress. For instance, in a two-table hash join,
the scheduler would deliver objects correspond-
ing to the build relation over which the hash
table is built before delivering the probe relation.
Such an approach was used by tertiary database
engines (Sarawagi and Stonebraker 1996) and
makes two assumptions: (i) the database has
exclusive access to the storage device, and (ii)
the I/O scheduler on the storage device is aware

of database query execution. Unfortunately, both
assumptions are not true today with CSD, as CSD
storage is exposed behind an object interface and
shared among multiple databases.

The second approach, exemplified by the
Skipper framework (Borovica-Gajic et al. 2016),
is to perform CSD-driven, push-based, out-
of-order execution of queries by building on
work done in adaptive query processing (AQP)
(Deshpande et al, 2007). Multiway join (MJoin)
(Viglas et al. 2003) is one such AQP technique
that enables out-of-order execution by using
an n-ary join and symmetric hashing to probe
tuples as data arrives, instead of using blocking
binary joins whose ordering is predetermined by
the query optimizer. However, the incremental
nature of symmetric hashing in traditional MJoin
requires buffering all input data, as tuples that are
yet to arrive could join with any of the already
received tuples. Thus, in the worst-case scenario
of a query that involves all relations in the dataset,
the MJoin cache must be large enough to hold the
entire dataset. This requirement makes traditional
MJoin inappropriate for the CSD use case as
having a buffer cache as large as the entire dataset
defeats the purpose of storing data on the CSD.
Skipper solves this problem by redesigning both
MJoin and database buffer caching algorithms
to work in concert such that MJoin can perform
query execution even with limited cache capacity
(Borovica-Gajic et al. 2016).

Examples of Application

With the right combination of layout, I/O
scheduling, and query execution, cold data
analytic engines like Skipper have demonstrated
that it is possible to mask the long access latency
of CSD for latency-insensitive batch analytic
workloads. Thus, the obvious application for
CSD is as the medium of choice for storing cold
data, and a natural way of integrating CSD in the
four-tier storage hierarchy shown in Fig. 1 is to
use it for building a new cold storage tier that
stores only cold data.

However, CSD could potentially have a much
larger impact on the storage hierarchy based

Cheap Data Analytics on Cold Storage 441

C

on two observations. First, with latency-critical
workloads running in the performance tier, the
HDD-based capacity tier is already limited to
batch analytic workloads today. Second, due to
the use of high-density SMR disks and MAID
techniques, CSD can offer cost and capacity com-
parable to the tape-based archival tier. Given
these two observations, it might be feasible to
get rid of the capacity and archival tiers by using
a single consolidated cold storage tier. Such an
approach would result in the four-tier hierarchy
shown in Fig. 1 being reduced to a three-tier
hierarchy with DRAM or SSD in the performance
tier, CSD in the cold storage tier, and tape in the
backup tier. Recent studies report that enterprises
can lower their total cost of ownership (TCO)
between 40% and 60% by using such storage
consolidation (Borovica-Gajic et al. 2016). In
terms of absolute savings, these values translate
to hundreds of thousands of dollars for a 100TB
database and tens of millions of dollars for larger
PB-sized databases.

The implications and benefits of using CSD
are also applicable to cloud service providers. For
instance, cloud providers have already started
deploying custom-built CSD for storing cold
data (Bandaru and Patiejunas 2015; Bhat 2016;
Google 2017). An interesting area of future
work involves exploring implementation and
pricing aspects of cloud-hosted “cheap-analytics-
over-CSD-as-a-service” solutions. Such services
would benefit both customers and providers alike,
as providers can increase revenue by expanding
their storage-as-a-service offering to include
cheap analytic services and customers can reduce
the TCO by running latency-insensitive analytic
workloads on data stored in CSD.

Future Directions for Research

Systems like Pelican (Balakrishnan et al. 2014)
and Skipper (Borovica-Gajic et al. 2016) are a
first essential step toward broader adoption of
cold data analytics, in general, and CSD in par-
ticular. There are several avenues of future work
with respect to both cold storage hardware and
data analytic software.

Over the past few years, several other systems
have been built using alternate storage media
to reduce the cost of storing cold data. For in-
stance, DTStore (Lee et al. 2016) uses LTFS tape
archive for reducing the TCO of online multime-
dia streaming services by classifying data based
on access pattern and storing cold data in tape
drives. ROS (Yan et al. 2017) is a rack-scale
optical disk library that provides PB-sized stor-
age with in-line accessibility for cold data using
thousands of optical disks packed in a single 42U
rack. Nakshatra (Kathpal and Yasa 2014) enables
Hadoop-based batch analytic workloads to run
directly over data stored in tape archives. Similar
to Skipper, Nakshatra also modifies both the tape
archive’s I/O scheduler and the MapReduce run
time to perform push-based execution to hide the
long access latency of tape drives.

Today, it is unclear as to how these alterna-
tive storage options fare with respect to SMR-
HDD-based CSD as the storage media of choice
for storing cold data. Some storage media, like
optical disks, have the shortcoming that their se-
quential access bandwidth is substantially lower
than HDD or tape. Tape and optical media also
have very high access latency compared to CSD.
However, an interesting artifact of using push-
based engines like Skipper is that query exe-
cution becomes much less sensitive to the long
access latency of storage devices. Similarly, op-
tical disks are traditionally known to have longer
life span compared to HDD and tape. However,
it is possible to deal with even frequent media
failures by trading off some storage capacity for
improved reliability by using erasure coding and
data replication techniques in software. Thus,
further research is required to understand the
implications of storing cold data on these storage
devices by running realistic cold data analytic
workloads and performing a comparative study of
performance and reliability.

On the software side, current systems like
Skipper and Nakshatra only target a simplified
subset of SQL or MapReduce-based analytic
workloads. They do not support complex
business intelligence workloads that require
operators like data cube (Gray et al. 1997),
data mining workloads like clustering and

442 Cheap Data Analytics on Cold Storage

classification, or iterative machine learning
workloads. They also do not consider the
availability of additional layers of persistent
storage that could be used as caches or prefetch
buffers for data stored in CSD or as an extended
memory that can be used to swap out intermediate
data structures generated by operators like MJoin.
Further research is also required to understand
how push-based execution can be extended to
these workloads.

References

Amazon (2015) Amazon simple storage service. https://
aws.amazon.com/s3/. Accessed 1 Oct 2017

Appuswamy R, Borovica-Gajic R, Graefe G, Ailamaki A
(2017) The five-minute rule thirty years later, and its
impact on the storage hierarchy. In: Proceedings of the
eighth international workshop on accelerating analytics
and data management systems using modern processor
and storage architectures, Munich

Balakrishnan S, Black R, Donnelly A, England P, Glass
A, Harper D, Legtchenko S, Ogus A, Peterson E,
Rowstron A (2014) Pelican: a building block for ex-
ascale cold data storage. In: Proceedings of the 11th
USENIX conference on operating systems design and
implementation, Berkeley, pp 351–365

Bandaru K, Patiejunas K (2015) Under the hood:
Facebooks cold storage system. Facebook. https://
code.facebook.com/posts/1433093613662262/-under-
the-hood-facebook-s-cold-storage-system-/. Accessed
1 Oct 2017

Bhat S (2016) Introducing azure cool blob storage.
Microsoft. https://azure.microsoft.com/en-us/blog/
introducing-azure-cool-storage/. Accessed 1 Oct 2017

Borovica-Gajic R, Appuswamy R, Ailamaki A (2016)
Cheap data analytics using cold storage devices. Proc
VLDB Endow 9(12):1029–1040. https://doi.org/10.
14778/2994509.2994521

Colarelli D, Grunwald D (2002) Massive arrays of
idle disks for storage archives. In: Proceedings of
the ACM/IEEE conference on supercomputing, Los
Alamitos, pp 1–11

Deshpande A, Ives Z, Raman V (2007) Adaptive query
processing. J Found Trends Databases 1(1):1–140.
https://doi.org/10.1561/1900000001

EMC (2014) The digital universe of opportunities:
rich data and the increasing value of the inter-
net of things. https://www.emc.com/collateral/analyst-
reports/idc-digital-universe-2014.pdf. Accessed 1 Oct
2017

Fontana R, Decad G (2015) Roadmaps and technology
reality. Presented at the library of congress storage
meetings on designing storage architectures for digital
collections, Washington, 9–10 Sept 2015

Google (2017) Nearline cloud storage. https://cloud.
google.com/storage/archival/. Cited 1 Oct 2017

Gray J, Graefe G (1997) The five-minute rule ten years
later, and other computer storage rules of thumb.
SIGMOD Rec 26(4):63–68. https://doi.org/10.1145/
271074.271094

Gray J, Graefe G (2007) The five-minute rule twenty
years later and how flash memory changes the rules.
In: Proceedings of the 3rd international workshop on
data management on new hardware, New York, pp 1–9

Gray J, Putzolu GR (1987) The 5-minute rule for trading
memory for disk accesses and the 10-byte rule for
trading memory for CPU time. SIGMOD Rec 16(3):
395–398. https://doi.org/10.1145/38714.38755

Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D,
Venkatrao M, Pellow F, Pirahesh H (1997) Data cube:
a relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. J Data Min Knowl Discov
1(1):29–53. https://doi.org/10.1023/A:1009726021843

Kathpal A, Yasa GAN (2014) Nakshatra: towards running
batch analytics on an archive. In: Proceedings of 22nd
IEEE international symposium on the modelling, anal-
ysis and simulation of computer and telecommunica-
tion systems, Paris, pp 479–482

Lee J, Ahn J, Park C, Kim J (2016) DTStorage: dy-
namic tape-based storage for cost-effective and highly-
available streaming service. In: Proceedings of the 16th
IEEE/ACM international symposium on cluster, cloud
and grid computing, Cartagena, pp 376–387

LTO Ultrium (2015) LTO roadmap. http://www.
ltoultrium.com/lto-ultrium-roadmap/. Accessed 1
Oct 2017

Mendoza A (2013) Cold storage in the cloud: trends,
challenges, and solutions. https://www.intel.com/
content/www/us/en/storage/cold-storage-atom-xeon-
paper.html. Accessed 1 Oct 2017

Moore F (2015) Tiered storage takes center stage.
Horison Inc. http://horison.com/publications/tiered-
storage-takes-center-stage. Accessed 1 Oct 2017

Moore F (2016) Storage outlook 2016. Horison Inc.
https://horison.com/publications/storage-outlook-
2016. Accessed 1 Oct 2017

Nandkarni A (2014) IDC worldwide cold storage
taxonomy. http://www.idc.com/getdoc.jsp?containerId
=246732. Accessed 1 Oct 2017

Oracle (2015) OpenStack swift interface for oracle
hierarchical storage manager. http://www.oracle.com/
us/products/servers-storage/storage/storage-software/
solution-brief-sam-swift-2321869.pdf. Accessed 1
Oct 2017

Prabhakar S, Agrawal D, Abbadi A (2003) Optimal
scheduling algorithms for tertiary storage. J Distrib
Parallel Databases 14(3):255–282. https://doi.org/10.
1023/A:1025589332623

Reddy R, Kathpal A, Basak J, Katz R (2015) Data
layout for power efficient archival storage systems.
In: Proceedings of the workshop on power-aware
computing and systems, Monterey, pp 16–20

Robert Y, Vivien F (2009) Introduction to scheduling, 1st
edn. CRC Press, Boca Raton

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/
https://azure.microsoft.com/en-us/blog/introducing-azure-cool-storage/
https://doi.org/10.14778/2994509.2994521
https://doi.org/10.14778/2994509.2994521
https://doi.org/10.1561/1900000001
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
https://cloud.google.com/storage/archival/
https://cloud.google.com/storage/archival/
https://doi.org/10.1145/271074.271094
https://doi.org/10.1145/271074.271094
https://doi.org/10.1145/38714.38755
https://doi.org/10.1023/A:1009726021843
http://www.ltoultrium.com/lto-ultrium-roadmap/
http://www.ltoultrium.com/lto-ultrium-roadmap/
https://www.intel.com/content/www/us/en/storage/cold-storage-atom-xeon-paper.html
https://www.intel.com/content/www/us/en/storage/cold-storage-atom-xeon-paper.html
https://www.intel.com/content/www/us/en/storage/cold-storage-atom-xeon-paper.html
http://horison.com/publications/tiered-storage-takes-center-stage
http://horison.com/publications/tiered-storage-takes-center-stage
https://horison.com/publications/storage-outlook-2016
https://horison.com/publications/storage-outlook-2016
http://www.idc.com/getdoc.jsp?containerId=246732
http://www.oracle.com/us/products/servers-storage/storage/storage-software/solution-brief-sam-swift-2321869.pdf
http://www.oracle.com/us/products/servers-storage/storage/storage-software/solution-brief-sam-swift-2321869.pdf
http://www.oracle.com/us/products/servers-storage/storage/storage-software/solution-brief-sam-swift-2321869.pdf
https://doi.org/10.1023/A:1025589332623
https://doi.org/10.1023/A:1025589332623

Clojure 443

C

Sarawagi S, Stonebraker M (1996) Reordering
query execution in tertiary memory databases. In:
Proceedings of the 22th international conference on
very large data bases, San Francisco, pp 156–167

Spectra Logic (2013) Spectra arcticblue overview. https://
www.spectralogic.com/products/arcticblue/. Accessed
1 Oct 2017

Viglas SD, Naughton JF, Burger F (2003) Maximizing the
output rate of multi-way join queries over streaming
information sources. In: Proceedings of the 29th
international conference on very large data bases,
Berlin, pp 285–296

Yan M (2013) Cold storage hardware v0.5. http://www.
opencompute.org/wp/wp-content/uploads/2013/01/
Open_Compute_Project_Cold_Storage_Specification_
v0.5.pdf. Accessed 1 Oct 2017

Yan W, Yao J, Cao Q, Xie C, Jiang H (2017) ROS: a rack-
based optical storage system with inline accessibility
for long-term data preservation. In: Proceedings of
the 12th European conference on computer systems,
Belgrade, pp 161–174

Clojure

Nicolas Modrzyk
Karabiner Software, Tokyo, Japan

It’s easy to get sidetracked with technology, and
that is the danger, but ultimately you have to see
what works with the music and what doesn’t. In
a lot of cases, less is more. In most cases, less is
more.

Herbie Hancock

Definitions

How to use some best features of Clojure, a LISP
like functional programming language, to target
big data analysis.

Introduction

Rich Hickeys Clojure language is not in the new
section of hyped languages anymore, which is
great news for everybody interested in Clojure.
The language has just reached version 1.9, and
the amount of strong and precise development
that went into this new version deserved an ova-

tional praise. But why would you use Clojure
nowadays? What can it do for you that the avail-
able trillions of other languages available on the
market cannot do, or not as efficiently, with pro-
gramming in Java 1.9, Python, or NodeJS getting
all the hype and the tooling nowadays, with even
big consulting firms entering the NodeJS market.
Clojure being a LISP has a fantastic minimal core
and a very small set of functions and data struc-
tures. Of course, you have asynchronous thread-
safe parallel queues, of course you have parallel
processing of all the data structures, and it is also
a breeze to go for test-driven development, but
what’s more is that Clojure changes the way you
think about programming and write programs in
general. It makes you think in small, versatile,
reusable building block. Eventually the users of
Clojure, the people writing code with it, do not
really think about it anymore; it just becomes the
way they naturally code, whatever the language.
Clojure also makes your code smaller, easier to
debug, maintain, and push to production with less
fear of being woken up at 3 AM for issues. Your
program is consistent and reliable. Let’s review
some of the Clojure features and ecosystem that
makes Clojure a language of choice for handling
big data.

Clojure for Instant Prototyping, with
a REPL

Many languages have a REPL nowadays, a Read-
Eval-Print-Loop, like a shell prompt, where you
can write and execute code block by block. Clo-
jure is not the only language armed with a REPL,
but it is one of the most convenient because many
functions consist of a simple code block that
usually holds on one line.

Take the Fibonacci sequence, for example, it
does hold as a one liner

(d e f f i b �seq
((fn r f i b [a b]

(l azy �seq
(cons a

(r f i b b (+ a b)))))
0 1))

and is still easily readable.

https://www.spectralogic.com/products/arcticblue/
https://www.spectralogic.com/products/arcticblue/
http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0.5.pdf
http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0.5.pdf
http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0.5.pdf
http://www.opencompute.org/wp/wp-content/uploads/2013/01/Open_Compute_Project_Cold_Storage_Specification_v0.5.pdf
https://clojure.org/news/2017/12/08/clojure19

444 Clojure

You usually start a REPL with Leiningen (or
boot), the two most famous build tools that actu-
ally install Clojure at the same time and make you
in command of a build environment at the same
time.

Starting a REPL with:

l e i n r e p l

or

boo t r e p l

And you can copy paste the code above and
retrieve the first n elements of the Fibonacci
sequence, with the result printed below.

(t a k e 10 f i b �seq)
; (0 1 1 2 3 5 8 13 21 34)

When working with Clojure, programmers
would usually always have a REPL running to
try ideas on the run or in a business meeting.

Clojure for Code as Data

Beyond having a REPL, Clojure being a LISP has
its syntax and its code execution commands virtu-
ally identical. Clojure code is made of successive
lists of lists of symbols.

What does that mean?
At the REPL, since you have it open, if you

want to perform the simple Math of adding 1 to
1, you would write: (remember the LISP prefix
notation . . .)

(+ 1 1)
; t h a t r e t u r n s 2

The code is made of a single sequence, sur-
rounded by parenthesis, and the sequence itself is
made of 3 characters, +, 1, and 1.

What the REPL does is converting the string
you have written into a sequence and then eval-
uating its content. To perform the same thing
the REPL is doing, you can use the function
read-string, where read-string takes a string and
converts it to a sequence of symbols, similar to
an abstract syntax tree.

(read�s t r i n g " (+ 1 1) ")
; (+ 1 1)

To evaluate the list, you call eval on the list,
which executes the code and returns 2 again.

(e v a l
(read�s t r i n g " (+ 1 1) "))

; 2

To run eval on a sequence directly, people
usually use the ‘ (quote) symbol, where the quote
means this is already a set of symbols as a
sequence, no need to read it.

(e v a l ‘ (+ 1 1))
; 2

Why is this nice? It makes it really easy
to tweak the compilation step found in coding.
To achieve that, Clojure provides macros, which
are evaluated during the pre-processing phase,
transforming the lists of lists of sequence before
they are executed. See the plus-one macro below,
which adds one to the variable x.

(defmacro p lus �one [x]
‘ (+ 1 ~x))

When performing the compilating step of eval,
this macro will rewrite the list as a list of 3
symbols, as seen above, and as expanded below:

(c l o j u r e . p p r i n t / p p r i n t
(macroexpand ‘ (p lus �one 1)))

; (c l o j u r e . c o r e /+ 1 1)

This is different than writing a simple func-
tion, plus-one-fn:

(de fn p lus �one�fn [x] (+ 1 x))

In the sense, that the block code is written,
and evaluated as is, not rewritten then evaluated.
Which takes us to . . .

Clojure 445

C

Clojure Threading Macros

Clojure Macros have the ability to rewrite the
sequence of lists of lists before they are executed.
Two of the most used macros are � > and � >>.
The first macro, � >, takes a list of forms and
rewrite in a different order. The new order is such
that the previous step block comes as the first
parameter, and so the second element of the list
in the next step. With the simple (+ 1 1) example,
again this gives:

(�> 1
(+ 1))

; 2

The rewritten code can be expanded and seen
using Clojure’s macroexpand:

(macroexpand ‘(�> 1 (+ 1)))
; (c l o j u r e . c o r e /+ 1 1)

Those two macros come very handy when
handling data. Let’s take a new example with
�>>, the macro that rewrites code with the
previous code block becoming the last element of
next steps list. Say you want to count the sum of
all the integers from 1 to 100000, with the � >>

macro, this would be written:

(�>> 100000
(r a n g e)
(a p p l y +))

or as a one liner:

(�>> 100000 (r a n g e) (a p p l y +))

Again, using macroexpand, you would notice
this expands to:

(a p p l y + (r a n g e 1 0 0 0 0 0))

But was much more readable. An example of
a more complex operation, where:

• a sequence from 0 up to 100000 is created,
• then each element of the sequence is incre-

mented,
• then each element of the sequence is incre-

mented,
• and finally create a vector of the result

The above processing could be written like
this:

(i n t o []
(f i l t e r

even ?
(map i n c (r a n g e 1 0 0 0 0 0))))

Or the definitely more readable:

(�>>
100000
(r a n g e)
(map i n c)
(f i l t e r even ?)
(i n t o []))

Those Clojure threading macros tend to effec-
tively be usable in many places, For example, in
the Origami library, which is a Clojure wrapper
around OpenCV, transformations can be applied
to images in a sequence also using the �> macro,
as shown below:

(�>
(imread " doc / c a t _ i n _ b o w l . j p e g ")
(cv t �c o l o r ! COLOR_RGB2GRAY)
(canny ! 300 .0 100 .0 3 t r u e)
(b i t w i s e �n o t !)
(u / r e s i z e �by 0 . 5)
(i m w r i t e " doc / canny�c a t . j p g "))

The result of the transformation shown in the
pictures below (Figs. 1 and 2).

Clojure Laziness and Reducers

Usually Clojure tries to do the least amount of
work as possible. Meaning, lists of lists are lazily
evaluated, effectively evaluated only when really
required. Laziness is a core feature of Clojure and

Clojure, Fig. 1 Cat in a bowl

446 Clojure

Clojure, Fig. 2 Cat in a bowl

of many programmers. In the example below, a
binding named lazy-var is created.

(d e f l azy �v a r (p lus �one�fn 3))

The binding was created, but it was not really
used yet. It will only be used when, for example,
it is required to be printed.

(p r i n t l n l azy �v a r) ;
4

Laziness is used in many functions of Clojure
core, so those functions keep a good balance
between efficiency and laziness. (Isn’t that what
we are all trying to achieve anyway?) Reducers,
or reducing functions, on the contrary know they
will be combined to be applied on collections that
will finally turn into a realized result, realized
taken in the sense of not-lazy.

And so, knowing this, reducers can efficiently
work in parallel across all the elements of col-
lections they are being applied to. Here is the
simple threading example again, this time using
reducers.

(r e q u i r e
’ [c l o j u r e . c o r e . r e d u c e r s : a s r])

(�>>
100000
(r a n g e)
(r / map i n c)
(r / f i l t e r even ?)
(i n t o []))

It looks pretty much the same on paper, apart
from the r/ prefixes added to the map and filter
functions. What does not show on paper is the

fact that the r/map and r/filter functions have been
running in parallel and, on sizeable collections,
the time required to evaluate all the forms is
substantially faster.

The claypool library, while not an official
Clojure library, is quite convenient to specify
the size of the different thread pools used to do
parallel processing on collections.

In Clojure, there is an infamous function
named pmap that has been known to make great
use of all the cores available to the runtime.
(And take down clusters by using all the possible
resources available.)

In Clojure, to create a sequence of five ele-
ments from 0 to 4 and increase all the elements
sequentially, map is usually used.

(�>>
5
(r a n g e)
(map i n c))

To perform the same processing using as many
cores as possible, its parallel version named pmap
is usually used.

(�>>
5
(r a n g e)
(pmap i n c))

And to perform the same parallel work again,
but using only four cores, the claypoole library
version of pmap could be used, this time specify-
ing the thread pool size.

(r e q u i r e
’ [com . c l i m a t e . c l a y p o o l e : a s cp])

(�>>
5
(r a n g e)
(cp / pmap 4 i n c))

Clojure for Multi-threading

Reducers and the different versions of pmap are
perfect to apply computations in parallel. To per-
form asynchronous message handling between
different blocks of code, Clojure comes with
a core library named core.async, available on
github.

https://github.com/TheClimateCorporation/claypoole
https://github.com/clojure/core.async

Clojure 447

C

To present this, a small example made of
two asynchronous blocks of code, exchanging
messages through a channel will be used.

One asynchronous block will send messages
to the channel, while the other will read messages
from that same channel and print them out.

This very first example creates a thread and
prints message asynchronously by itself.

(r e q u i r e
’ [c l o j u r e . c o r e . a sync

: r e f e r : a l l])

(t h r e a d
(d o t i m e s [n 10]

(Thread / s l e e p 100)
(p r i n t l n " h e l l o : " n)))

If executed at the REPL, as soon as the block
of code is evaluated, evaluation does not block
and returns a reference to the executing async
thread.

In the meantime, the thread goes on with
his happy life and starts printing hello messages
every 100 ms.

This second example creates two threads. A
thread will update an atom, a variable ready for
asynchronous updates, by safely increasing its
value by one. A second thread safely reads the
value of the atom, while it’s being updated by the
first thread.

(d e f my�v a l u e (atom 0))

(t h r e a d
(d o t i m e s [n 10]

(Thread / s l e e p 1000)
(swap ! my�v a l u e i n c)))

(t h r e a d
(d o t i m e s [_ 5]

(Thread / s l e e p 1000)
(p r i n t l n

" Coun te r i s now : "
@my�v a l u e)))

The number of threads can be increased, and in
action, no deadlock occurs. Updates to the atom
are done using the STM transaction model that
prevents deadlock to occur using transaction to
perform updates on atoms.

The third asynchronous example removes the
use of the intermediate atom, by directly acting
on messages sent via a channel.

The first thread still creates messages, but this
time sends them to the newly created hi-chan
channel, while the second thread reads the value
coming through the channel and prints them out.

(d e f hi�chan (chan))

(t h r e a d
(d o t i m e s [n 10]

(Thread / s l e e p 1000)
(> ! ! hi�chan

(s t r " h e l l o : " n))))

(t h r e a d
(d o t i m e s [_ 10]

(Thread / s l e e p 1000)
(p r i n t l n

" Channel v a l u e : "
(< ! ! hi�chan))))

Here again, both thread code blocks return im-
mediately without blocking the execution of the
main thread, making all this feasible to execute at
the REPL.

Core.async can also run in the browser via
ClojureScript and is a very compelling strategy
to create a back buffer for onscreen user events
and other asynchronous data requests.

Clojure for the Backend

Many frameworks exist for server and api devel-
opment in Clojure, but most of them seem to be
inspired or paying close attention to the efforts
that were put into the ring and compojure mini-
frameworks.

Ring itself is an abstraction over HTTP, while
Compojure is a routing library that can, and
mostly does, run on top of ring.

If you have Leiningen installed, getting started
with Compojure is as easy as using the compojure
project template.

l e i n new compojure i n t r o

This creates a prod-ready but also development-
ready environment to start writing code.

From the newly created intro folder, a ring
development server can be started using the fol-
lowing command.

l e i n r i n g s e r v e r

448 Clojure

Clojure, Fig. 3 Ring HTTP get

This will set up everything needed, apart from
your favorite text editor. The main core.clj file in
the created project looks deceptively simple, with
a single route defined for a GET request on the
root context, anything else returning a simple Not
Found string.

(d e f r o u t e s app�r o u t e s
(GET " / " [] " H e l l o World ")
(r o u t e / not�found " Not Found "))

(d e f app
(wrap�d e f a u l t s

app�r o u t e s
s i t e �d e f a u l t s))

The main route can be updated by adding time
via a Java date object, using basic Clojure/Java
Interop.

(d e f r o u t e s app�r o u t e s
(GET " / " []

(s t r
" S e r v e r Time i s : "
(j a v a . u t i l . Date .)))

(r o u t e / not�found " Not Found "))

This is of course nowhere near a production-
ready app, but the point here is that this creates
a fully ready development environment in a few
minutes, thus bringing server-side prototyping
setup down to pretty much zero (Fig. 3).

To get further into the backend programming
in Clojure, there is a nice introduction in the blog
post below, when you want to quickly grasp all
the ring/compojure concepts:

sinatra-docs-in-clojure

Clojure for the Front End

ClojureScript is Clojure ported to javascript run-
time, and why and how to use it is extensively
covered in the Reactive with ClojureScript apress
book.

The sheer happiness that results from using
ClojureScript for the frontend is that this makes
your full application code to be written all in
Clojure:

• the backend,
• the frontend, and
• the data exchanged between both the backend

and the frontend can also be in the Extensible
Data Notation, a subset of Clojure.

Clojure’s Reagent is a library that acts as a
thin wrapper around React, the frontend frame-
work created by Facebook. It removes the extra
javascript boiler-plate to make the code very
compact, easier to read, write, and maintain.

Reagent can be combined with, among many
others, core.async so to get asynchronous looking
code (remember only JavaScript thread in the
browser) without sacrificing readability.

As for Clojure on the backend, here again
there is a Leiningen project template for the
reagent framework that can be created with the
command below.

l e i n new r e a g e n t r e a g e n t � i n t r o

To get started with the reagent setup, this
Leiningen needs two commands to be started, one
for the backend and one for the frontend.

Here is the command to start the server devel-
opment environment:

l e i n r i n g s e r v e r

Here is the command to start the client devel-
opment environment:

l e i n f i g w h e e l

The setup in place, it is now possible to start
editing the core.cljs file in the created project.

(de fn some�component []
[: d i v

[: h3 " I am a component ! "]
[: p . s o m e c l a s s
" I have " [: s t r o n g " bo ld "]
[: span { : s t y l e { : c o l o r "# cc77cc "}}
" and r e d "] " t e x t . "]])

(de fn mount�r o o t []
(r e a g e n t / r e n d e r

[some�component]

https://adambard.com/blog/sinatra-docs-in-clojure/

Clojure 449

C

(. ge tE lemen tById j s / document
" app ")))

(de fn i n i t ! []
(mount�r o o t))

The code above renders to HTML and is
returned to the client as shown in the figure below
(Fig. 4).

init! is defined and called only once in devel-
opment mode; thus the mount-root, which can be
rewritten, is kept separate.

The function mount-root itself takes a reagent
component and a mount point in the current
HTML dom, here < div id D app >< =div >,
and puts the component at that place.

A component is defined as a standard Clojure
function, whose return value is a special kind of
markup specific to Clojure, named hiccup.

Hiccup is eventually taken and transformed
from a list of Clojure vectors to valid HTML.

Here the component some-component output
some basic HTML elements like div, h3, p, and
span elements.

Components can be combined together, so it is
possible to create a component from two smaller
components, thus being completely in line with
Clojure big philosophy of building blocks.

The code below creates a simple Reagent com-
ponent top-component, made of two components
of type some-component.

(de fn top�component []
[: d i v

[some�component]
[some�component]])

Note here that even though some-component
is created using a single common definition, the
two mounted some-component are different in-
stances.

Clojure, Fig. 4 Reagent

Also, if not obvious, it is not required to
have Clojure on the backend to be able to use
ClojureScript and Reagent.

Many now in production projects did a rewrite
of their frontend from JavaScript to ClojureScript
first, to improve maintainability, without updat-
ing the server-side code.

Clojure for Big Data

Sparkling and Flambo are two among the Clojure
offers to handle spark data and spark clusters.

Flambo is slightly easier and more importantly
makes use of the previously introduced threading
macros, � > and � >>.

A simple bang-in example of using Flambo
is shown below. The example counts the total
number of characters of each line, line by line,
and then reduces to a single value of the overall
total over all the lines.

(�>
(f / t e x t � f i l e sc " d a t a . t x t ")
; ; r e t u r n s an u n r e a l i z e d
; ; l a z y d a t a s e t
(f / map (f / fn [s] (c o u n t s)))
; ; r e t u r n s RDD a r r a y
; ; o f l e n g t h o f l i n e s
(f / r e d u c e (f / fn [x y] (+ x y))))
; ; use an i n l i n e anonymous
; ; f u n c t i o n f o r r e d u c t i o n

Here, sc is a Spark Context, which can target
a local in-memory cluster, a stand-alone spark
cluster, or a mesos cluster.

(d e f c
(�> (con f / spa rk �con f)

(con f / m a s t e r " l o c a l ")
(con f / app�name " i n f i n i t y ")))

(d e f sc (f / spa rk �c o n t e x t c))

To perform a spark job, a spark resilient dis-
tributed dataset is used, and in the first example
presented, the dataset was created by reading
from a text file from the local file system.

Creating a Spark RDD can also be done in a
few other different ways, like a RDD made from
blobs of files stored in HDFS.

(d e f d a t a
(f / t e x t � f i l e

sc
(s t r

450 Clojure

" h d f s : / / hos tname : p o r t "
" / home / d a t a "
" / * / * . bz2 "))

Of course, using regular Java Interop, it is also
possible to target other RDD sources like Cassan-
dra, HBase, and any other storage supported by
hadoop.

Flambo itself allows to create valid Spark job
that can be deployed and run as any other jobs,
but one main limitation it has is that it does not
do allow to write and run new job at the REPL
without using AOT.

AOT is ahead-of-time compilation meaning
you need to statically compile all your code
before running, which does prevent it from being
created and run at the REPL.

This limitation sparked, pun intended, a new
project worth considering named powderkeg,
whose goal is to overcome that very limitation.

Clojure for Machine Learning

To go beyond simple big data, and as a recent and
strong contender to the TensorFlow framework,
Cortex has recently joined the Clojure ecosystem
for machine learning.

Some starters and favorites examples to look
at to fully understand how Cortex works are:
The cats and dogs sorting example or the fruits
classification example.

In this short entry, we will present briefly
training a network for xor operations, as it has
recently been included in the cortex examples
section and is very simple to go over.

As known, xor operations take two values in
input and one value in output. This is represented
here by creating a dataset to train the network,
made of a vector of elements, where each element
is a map with an input, :x, and an output, :y, value.

(d e f xor�d a t a s e t
[{ : x [0 . 0 0 . 0] : y [0 . 0] }

{ : x [0 . 0 1 . 0] : y [1 . 0] }
{ : x [1 . 0 0 . 0] : y [1 . 0] }
{ : x [1 . 0 1 . 0] : y [0 . 0] }])

The neural network to be created will be a lin-
ear network of three layers, where the activation

layer will be the hyperbolic tangent activation
function. (See: tanh function)

In the definition of the network, input and
output layer each specify how many variables are
available, and so below:

• 2 for the input, and
• 1 for the output

The network is then created almost by trans-
lating written text to a network definition using
the cortex api.

(d e f nn
(ne twork / l i n e a r �ne twork

[(l a y e r s / i n p u t 2 1 1 : i d : x)
(l a y e r s / l i n e a r �>t a n h 10)
(l a y e r s / l i n e a r 1 : i d : y)]))

Now along with the dataset, let’s create a
trained version of this neural network.

In machine learning, training a network is
usually done using two data sets.

• a training set, to tell the network what is
expected and correct

• a testing set, to test the network and check
whether how it performs.

The training stage is then achieved by passing
those two data sets, but here the same dataset is
used.

The number of rounds of training is also spec-
ified, here 3000 to get an efficient network.

(d e f t r a i n e d
(t r a i n / t r a i n �n

nn
xor�d a t a s e t
xor�d a t a s e t

: ba t ch �s i z e 4
: epoch�c o u n t 3000
: s imple �l o s s �p r i n t ? f a l s e))

Each training step outputs some output of
the current state of the trained network, notably
whether it performed better or not than its own
version in the previous step.

T r a i n i n g ne twork :
. . .
Loss f o r epoch 1 :

(c u r r e n t) 0 .7927149 (b e s t)
Sav ing ne twork t o

t r a i n e d �ne twork . n ippy

https://github.com/HCADatalab/powderkeg
https://github.com/thinktopic/cortex/tree/master/examples/catsdogs-classification
http://blog.hellonico.info/clojure/using_cortex
https://theclevermachine.wordpress.com/tag/tanh-function/

Clojure 451

C

Finally, to validate results yet another dataset
is created, of usually new values, and of course
only input values.

(d e f new�d a t a s e t
[{ : x [0 . 0 0 . 0] }

{ : x [0 . 0 1 . 0] }
{ : x [1 . 0 0 . 0] }
{ : x [1 . 0 1 . 0] }])

Then follows running the trained network with
this new dataset.

(c l o j u r e . p p r i n t / p p r i n t
(e x e c u t e / run

t r a i n e d
new�d a t a s e t))

The result is, not surprisingly, very accurate,
as shown from a screenshot of the network exe-
cuted at the REPL.

[{ : y [0 .4397728145122528]}
{ : y [0 .3689133822917938]}
{ : y [0 .37379032373428345]}
{ : y [0 . 4 2 8 2 9 1 2 3 1 3 9 3 8 1 4 1] }]

Clojure for Teaching

Another small in size but very important contri-
bution to the Clojure ecosystem is named Gorilla.

Simply said, Gorilla is a web-based REPL,
which allows to create annotated NoteBooks,
along ready to be executed code blocks, all in the
browser.

It is made of a server-side part that runs a
background repl and a simple compojure-based
API ready to receive Clojure code as string.

The second part is a Clojure frontend, running
a websocket sending Clojure code to the REPL
on the server, and waits for the result of the
execution and displays it.

The gorilla framework can be added to any of
your project using a Leiningen plugin.

This plugin is added either to the project def-
inition project.clj or the global leiningen profile,
profile.clj.

[l e i n �g o r i l l a " 0 . 4 . 0 "]

Starting the gorilla environment can now be
done using a Leiningen command:

l e i n g o r i l l a

Gorilla now makes the library and source code
available through a web interface. All the pre-
sented Cortex code could be run in the browser,
for example, and a possible figure is shown below
(Fig. 5).

Clojure, Fig. 5 Gorilla

452 Cloud Big Data Benchmarks

Beyond

Other key Clojure-based projects that can also be
looked into are:

• Riemann is an event aggregator, monitoring
system entirely written in Clojure. It can re-
ceive and process events from almost anything
you can imagine.

• Apache Storm almost entirely written in Clo-
jure, reportedly clocks millions of tuples pro-
cessed per second per node. This is a frame-
work of choice, and if you have complete
decision over the technologies used in your
next project, comes as a no brainer.

• Datomic, which is a distributed persistence
and query model over an historical set of
stored facts.

Conclusion

This short entry presented diverse possibilities on
how to put Clojure straight into action to:

• Help developers in writing code using a
REPL, thus reducing usual life cycle overhead
associated with many programming languages

• Reduce maintenance associated with writing
code in other languages, by considerably re-
ducing the lines of code used to work and
transform data structure by writing macros
and/or using the already available threading
macros

• Enable pinpoint custom usage of the cores
available to each runtime node of your ap-
plication. Parallel computations is available to
most data structures

• core.async allows message passing between
different components of your application.
Point of interaction can be defined with atom,
or channels, and by being reliably highlighted,
reduces the coupling between different parts
of the code, making the overall end product
resistant to changes.

• Front-to-End Clojure brings commonness and
portability of the application code thus helping

avoid usual pitfalls when doing client-server
programming, in simple sync-ed HTTP re-
quests or real-time websockets.

• Also, not only the code of the application but
the projects metadata used by the build tool
Leiningen itself was a DSL written in Clojure.

• Bringing entry points to directly interact with
any Spark cluster via the REPL, thus making
it easier to debug common and more advanced
distributed data problems.

• It is also ready for machine learning, provid-
ing a real and powerful alternative to Tensor-
Flow with Cortex.

• Finally, the ability to consume all the above,
and present annotated pages of work, ready to
be distributed and ready for reuse via Gorilla
Notebook-style environment.

Cloud Big Data Benchmarks

�Virtualized Big Data Benchmarks

Cloud Computing for Big Data
Analysis

Fabrizio Marozzo and Loris Belcastro
DIMES, University of Calabria, Rende, Italy

Definitions

Cloud computing is a model that enables
convenient, on-demand network access to a
shared pool of configurable computing resources
(e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned
and released with minimal management effort
or service provider interaction (Mell and Grance
2011).

Overview

In the last decade, the ability to produce and
gather data has increased exponentially. For ex-

https://doi.org/10.1007/978-3-319-77525-8_120

Cloud Computing for Big Data Analysis 453

C

ample, huge amounts of digital data are gen-
erated by and collected from several sources,
such as sensors, web applications, and services.
Moreover, thanks to the growth of social net-
works (e.g., Facebook, Twitter, Pinterest, Insta-
gram, Foursquare, etc.) and the widespread dif-
fusion of mobile phones, every day millions of
people share information about their interests
and activities. The amount of data generated, the
speed at which it is produced, and its heterogene-
ity in terms of format represent a challenge to
the current storage, process, and analysis capa-
bilities. Those data volumes, commonly referred
as Big Data, can be exploited to extract useful in-
formation and to produce helpful knowledge for
science, industry, public services, and in general
humankind.

To extract value from such data, novel tech-
nologies and architectures have been developed
by data scientists for capturing and analyzing
complex and/or high velocity data. In general, the
process of knowledge discovery from Big Data
is not so easy, mainly due to data characteristics,
such as size, complexity, and variety, that are
required to address several issues. To overcome
these problems and get valuable information and
knowledge in shorter time, high-performance and
scalable computing systems are used in combi-
nation with data and knowledge discovery tech-
niques.

In this context, Cloud computing has emerged
as an effective platform to face the challenge of
extracting knowledge from Big Data repositories
in limited time, as well as to provide an effec-
tive and efficient data analysis environment for
researchers and companies. From a client per-
spective, the Cloud is an abstraction for remote,
infinitely scalable provisioning of computation
and storage resources (Talia et al. 2015). From
an implementation point of view, Cloud systems
are based on large sets of computing resources,
located somewhere “in the Cloud,” which are
allocated to applications on demand (Barga et al.
2011). Thus, Cloud computing can be defined as a
distributed computing paradigm in which all the
resources, dynamically scalable and often virtu-
alized, are provided as services over the Internet.
As defined by NIST (National Institute of Stan-

dards and Technology) (Mell and Grance 2011),
Cloud computing can be described as: “A model
for enabling convenient, on-demand network ac-
cess to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly
provisioned and released with minimal manage-
ment effort or service provider interaction.” From
the NIST definition, we can identify five essen-
tial characteristics of Cloud computing systems,
which are (i) on-demand self-service, (ii) broad
network access, (iii) resource pooling, (iv) rapid
elasticity, and (v) measured service.

Cloud computing vendors provide their
services according to three main distribution
models:

• Software as a Service (SaaS), in which soft-
ware and data are provided through Internet
to customers as ready-to-use services. Specif-
ically, software and associated data are hosted
by providers, and customers access them with-
out the need to use any additional hardware or
software.

• Platform as a Service (PaaS), in an environ-
ment including databases, application servers,
development environment for building, test-
ing, and running custom applications. Devel-
opers can just focus on deploying of applica-
tions since Cloud providers are in charge of
maintenance and optimization of the environ-
ment and underlying infrastructure.

• Infrastructure as a Service (IaaS), that is an
outsourcing model under which customers
rent resources like CPUs, disks, or more
complex resources like virtualized servers or
operating systems to support their operations.
Compared to the PaaS approach, the IaaS
model has a higher system administration
costs for the user; on the other hand, IaaS
allows a full customization of the execution
environment.

Key Research Findings

Most available data analysis solutions today
are based on open-source frameworks, such as

454 Cloud Computing for Big Data Analysis

Hadoop (https://hadoop.apache.org/) and Spark
(https://spark.apache.org/), but there are also
some proprietary solutions proposed by big
companies (e.g., IBM, Kognitio).

Concerning the distribution models of Cloud
services, the most common ones for providing
Big Data analysis solutions are PaaS and SaaS.
Usually, IaaS is not used for high-level data
analysis applications but mainly to handle the
storage and computing needs of data analysis
processes. In fact, IaaS is the more expensive
distribution model, because it requires a greater
investment of IT resources. On the contrary, PaaS
is widely used for Big Data analysis, because it
provides data analysts with tools, programming
suites, environments, and libraries ready to be
built, deployed, and run on the Cloud platform.
With the PaaS model, users do not need to care
about configuring and scaling the infrastructure
(e.g., a distributed and scalable Hadoop system),
because the Cloud vendor will do that for them.
Finally, the SaaS model is used to offer complete
Big Data analysis applications to end users, so
that they can execute analysis on large and/or
complex datasets by exploiting Cloud scalability
in storing and processing data.

As outlined in Li et al. (2010), users can
access Cloud computing services using different
client devices, Web browsers, and desktop/mo-
bile applications. The business software and user
data are executed and stored on servers hosted
in Cloud data centers, which provide storage
and computing resources. Such resources include
thousands of servers and storage devices con-
nected to each other through an intra-Cloud net-
work.

Several technologies and standards are used by
the different components of the architecture. For
example, users can interact with Cloud services
through SOAP-based or RESTful Web services
(Richardson and Ruby 2008) and Ajax tech-
nologies, which let Cloud services to have look
and interactivity equivalent to those provided by
desktop applications.

Developing Cloud-based Big Data analysis
applications may be a complex task, with spe-
cific issues that go beyond those of stand-alone

application programming. For instance, Cloud
programming must deal with deployment, scal-
ability, and monitoring aspects that are not easy
to handle without the use of ad hoc environ-
ments (Talia et al. 2015). In fact, to simplify
the development of Cloud applications, specific
development environments are often used. Some
of the most representative Cloud computing de-
velopment environments currently in use can be
classified into four types:

• Integrated development environments, which
are used to code, debug, deploy, and monitor
Cloud applications that are executed on a
Cloud infrastructure, such as Eclipse, Visual
Studio, and IntelliJ.

• Parallel-processing development environ-
ments, which are used to define parallel
applications for processing large amount
of data that are run on a cluster of virtual
machines provided by a Cloud infrastructure
(e.g., Hadoop and Spark).

• Workflow development environments, which
are used to define workflow-based applica-
tions that are executed on a Cloud infrastruc-
ture, such as Swift and DMCF.

• Data-analytics development environments,
which are used to define data analysis
applications through machine learning and
data mining tools provided by a Cloud
infrastructure. Some examples are Azure ML
and BigML.

The programming model is a key factor to be
considered for exploiting the powerful features of
Cloud computing. MapReduce (Dean and Ghe-
mawat 2004) is widely recognized as one of the
most important programming models for Cloud
computing environments, being it supported by
Google and other leading Cloud providers such as
Amazon, with its Elastic MapReduce service, and
Microsoft, with its HDInsight, or on top of private
Cloud infrastructures such as OpenNebula, with
its Sahara service. Hadoop is the best-known
MapReduce implementation, and it is commonly
used to develop parallel applications that analyze
big amounts of data on Clouds. In fact, Hadoop

https://hadoop.apache.org/
https://spark.apache.org/

Cloud Computing for Big Data Analysis 455

C

ecosystem is undoubtedly one of the most com-
plete solutions for data analysis problem, but at
the same time, it is thought for high-skilled users.

On the other hand, many other solutions are
designed for low-skilled users or for low-medium
organizations that do not want to spend resources
in developing and maintaining enterprise data
analysis solutions. Two representative examples
of such data analysis solutions are Microsoft
Azure Machine Learning and Data Mining Cloud
Framework.

Microsoft Azure Machine Learning (Azure
ML) (https://azure.microsoft.com/services/
machine-learning-studio/) is a SaaS for the
creation of machine learning workflows. It
provides a very high level of abstraction, because
a programmer can easily design and execute data
analytics applications by using simple drag-and-
drop web interface and exploiting many built-in
tools for data manipulation and machine learning
algorithms.

The Data Mining Cloud Framework (DMCF)
(Marozzo et al. 2015) is a software system
developed at University of Calabria for allowing
users to design and execute data analysis
workflows on Clouds. DMCF supports a large
variety of data analysis processes, including
single-task applications, parameter-sweeping
applications, and workflow-based applications.
A workflow in DMCF can be developed using a
visual- or a script-based language. The visual
language, called VL4Cloud (Marozzo et al.
2016), is based on a design approach for end users
having a limited knowledge of programming
paradigms. The script-based language, called
JS4Cloud (Marozzo et al. 2015), provides a
flexible programming paradigm for skilled users
who prefer to code their workflows through
scripts.

Other solutions have been created mainly for
scientific research purposes, and, for this reason,
they are poorly used for developing business
applications (e.g., E-Science Central, COMPSs,
and Sector/Sphere).

e-Science Central (e-SC) (Hiden et al. 2013)
is a Cloud-based system that allows scientists to
store, analyze, and share data in the Cloud. It pro-

vides a user interface that allows programming
visual workflows in any Web browser.

e-SC is commonly used to provide a data
analysis back end to stand-alone desktop or Web
applications. To this end, the e-SC API pro-
vides a set of workflow control methods and data
structures. In the current implementation, all the
workflow services within a single invocation of a
workflow execute on the same Cloud node.

COMPSs (Lordan et al. 2014) is a program-
ming model and an execution runtime, whose
main objective is to ease the development of
workflows for distributed environments, includ-
ing private and public Clouds. With COMPSs,
users create a sequential application and specify
which methods of the application code will be
executed remotely. Providing an annotated inter-
face where these methods are declared with some
metadata about them and their parameters does
this selection. The runtime intercepts any call to
a selected method creating a representative task
and finding the data dependencies with all the
previous ones that must be considered along the
application run.

Sector/Sphere (Gu and Grossman 2009) is
an open-source Cloud framework designed to
implement data analysis applications involving
large, geographically distributed datasets. The
framework includes its own storage and compute
services, called Sector and Sphere, respectively,
which allow to manage large dataset with high
performance and reliability.

Examples of Application

Cloud computing has been used in many sci-
entific fields, such as astronomy, meteorology,
social computing, and bioinformatics, which are
greatly based on scientific analysis on large vol-
ume of data. In many cases, developing and con-
figuring Cloud-based applications requires a high
level of expertise, which is a common bottleneck
in the adoption of such applications by scientists.

Many solutions for Big Data analysis on
Clouds have been proposed in bioinformatics,
such as Myrna (Langmead et al. 2010), which

https://azure.microsoft.com/services/machine-learning-studio/
https://azure.microsoft.com/services/machine-learning-studio/

456 Cloud Computing for Big Data Analysis

is a Cloud system that exploits MapReduce for
calculating differential gene expression in large
RNA-seq datasets.

Wang et al. (2015) propose a heterogeneous
Cloud framework exploiting MapReduce and
multiple hardware execution engines on FPGA to
accelerate the genome sequencing applications.

Cloud computing has been also used for ex-
ecuting complex Big Data mining applications.
Some examples are as follows: Agapito et al.
(2013) perform an association rule analysis be-
tween genome variations and clinical conditions
of a large group of patients; Altomare et al.
(2017) propose a Cloud-based methodology to
analyze data of vehicles in a wide urban scenario
for discovering patterns and rules from trajectory;
Kang et al. (2012) present a library for scalable
graph mining in the Cloud that allows to find
patterns and anomalies in massive, real-world
graphs; and Belcastro et al. (2016) propose a
model for predicting flight delay according to
weather conditions.

Several other works exploited Cloud comput-
ing for conducting data analysis on large amount
of data gathered from social networks. Some
examples are as follows:

You et al. (2014) propose a social sensing
data analysis framework in Clouds for smarter
cities, especially to support smart mobility appli-
cations (e.g., finding crowded areas where more
transportation resources need to be allocated);
Belcastro et al. (2017) present a Java library,
called ParSoDA (Parallel Social Data Analytics),
which can be used for developing social data
analysis applications.

Future Directions for Research

Some of most important research trends and is-
sues to be addressed in Big Data analysis and
Cloud systems for managing and mining large-
scale data repositories are:

• Data-intensive computing. The design of data-
intensive computing platforms is a very sig-
nificant research challenge with the goal of
building computers composed of a large num-

ber of multi-core processors. From a software
point of view, these new computing platforms
open big issues and challenges for software
tools and runtime systems that must be able to
manage a high degree of parallelism and data
locality. In addition, to provide efficient meth-
ods for storing, accessing, and communicating
data, intelligent techniques for data analysis
and scalable software architectures enabling
the scalable extraction of useful information
and knowledge from data are needed.

• Massive social network analysis. The effective
analysis of social network data on a large
scale requires new software tools for real-
time data extraction and mining, using Cloud
services and high-performance computing ap-
proaches (Martin et al. 2016). Social data
streaming analysis tools represent very useful
technologies to understand collective behav-
iors from social media data. New approaches
to data exploration and model visualization
are necessary taking into account the size of
data and the complexity of the knowledge
extracted.

• Data quality and usability. Big Data sets are
often arranged by gathering data from sev-
eral heterogeneous and often not well-known
sources. This leads to a poor data quality that
is a big problem for data analysts. In fact, due
to the lack of a common format, inconsistent
and useless data can be produced as a result
of joining data from heterogeneous sources.
Defining some common and widely adopted
format would lead to data that are consistent
with data from other sources, that means high-
quality data.

• In-memory analysis. Most of the data analysis
tools access data sources on disks, while,
differently from those, in-memory analytics
access data in main memory (RAM). This
approach brings many benefits in terms of
query speed up and faster decisions. In-
memory databases are, for example, very
effective in real-time data analysis, but they
require high-performance hardware support
and fine-grain parallel algorithms (Tan et al.
2015). New 64-bit operating systems allow to

Cloud Databases 457

C

address memory up to one terabyte, so making
realistic to cache very large amount of data in
RAM. This is why this research area has a
strategic importance.

• Scalable software architectures for fine-grain
in-memory data access and analysis. Exascale
processors and storage devices must be ex-
ploited with fine-grain runtime models. Soft-
ware solutions for handling many cores and
scalable processor-to-processor communica-
tions have to be designed to exploit exascale
hardware (Mavroidis et al. 2016).

References

Agapito G, Cannataro M, Guzzi PH, Marozzo F, Talia
D, Trunfio P (2013) Cloud4snp: distributed analysis of
SNP microarray data on the cloud. In: Proceedings of
the ACM conference on bioinformatics, computational
biology and biomedical informatics 2013 (ACM BCB
2013). ACM, Washington, DC, p 468. ISBN:978-1-
4503-2434-2

Altomare A, Cesario E, Comito C, Marozzo F, Talia D
(2017) Trajectory pattern mining for urban computing
in the cloud. Trans Parallel Distrib Syst 28(2):586–599.
ISSN:1045-9219

Belcastro L, Marozzo F, Talia D, Trunfio P (2016) Using
scalable data mining for predicting flight delays. ACM
Trans Intell Syst Technol. ACM, New York, 8(1):
5:1–5:20

Belcastro L, Marozzo F, Talia D, Trunfio P (2016, to
appear) Using scalable data mining for predicting flight
delays. ACM Trans Intell Syst Technol (ACM TIST)

Belcastro L, Marozzo F, Talia D, Trunfio P (2017) A
parallel library for social media analytics. In: The 2017
international conference on high performance comput-
ing & simulation (HPCS 2017), Genoa, pp 683–690.
ISBN:978-1-5386-3250-5

Dean J, Ghemawat S (2004) Mapreduce: simplified data
processing on large clusters. In: Proceedings of the 6th
conference on symposium on operating systems design
& implementation, OSDI’04, Berkeley, vol 6, pp 10–10

Gu Y, Grossman RL (2009) Sector and sphere: the de-
sign and implementation of a high-performance data
cloud. Philos Trans R Soc Lond A Math Phys Eng Sci
367(1897):2429–2445

Hiden H, Woodman S, Watson P, Cala J (2013) Devel-
oping cloud applications using the e-science central
platform. Philos Trans R Soc A 371(1983):20120085

Kang U, Chau DH, Faloutsos C (2012) Pegasus: mining
billion-scale graphs in the cloud. In: 2012 IEEE in-
ternational conference on acoustics, speech and signal
processing (ICASSP), pp 5341–5344. https://doi.org/
10.1109/ICASSP.2012.6289127

Langmead B, Hansen KD, Leek JT (2010) Cloud-scale
rna-sequencing differential expression analysis with
Myrna. Genome Biol 11(8):R83

Li A, Yang X, Kandula S, Zhang M (2010) Cloudcmp:
comparing public cloud providers. In: Proceedings of
the 10th ACM SIGCOMM conference on Internet
measurement. ACM, pp 1–14

Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J,
Marozzo F, Lezzi D, Sirvent R, Talia D, Badia R (2014)
Servicess: an interoperable programming framework
for the cloud. J Grid Comput 12(1):67–91

Marozzo F, Talia D, Trunfio P (2015) Js4cloud: script-
based workflow programming for scalable data anal-
ysis on cloud platforms. Concurr Comput Pract Exp
27(17):5214–5237

Marozzo F, Talia D, Trunfio P (2016) A workflow manage-
ment system for scalable data mining on clouds. IEEE
Trans Serv Comput, vol PP(99), p 1

Martin A, Brito A, Fetzer C (2016) Real-time social
network graph analysis using streammine3g. In: Pro-
ceedings of the 10th ACM international conference on
distributed and event-based systems, DEBS’16. ACM,
New York, pp 322–329

Mavroidis I, Papaefstathiou I, Lavagno L, Nikolopoulos
DS, Koch D, Goodacre J, Sourdis I, Papaefstathiou
V, Coppola M, Palomino M (2016) Ecoscale: recon-
figurable computing and runtime system for future
exascale systems. In: 2016 design, automation test in
Europe conference exhibition (DATE), pp 696–701

Mell PM, Grance T (2011) Sp 800-145. The nist definition
of cloud computing. Technical report, National Insti-
tute of Standards & Technology, Gaithersburg

Richardson L, Ruby S (2008) RESTful web services.
O’Reilly Media, Inc., Newton

Talia D, Trunfio P, Marozzo F (2015) Data analysis in the
cloud. Elsevier. ISBN:978-0-12-802881-0

Tan KL, Cai Q, Ooi BC, Wong WF, Yao C, Zhang
H (2015) In-memory databases: challenges and op-
portunities from software and hardware perspectives.
SIGMOD Rec 44(2):35–40

Wang C, Li X, Chen P, Wang A, Zhou X, Yu H (2015)
Heterogeneous cloud framework for big data genome
sequencing. IEEE/ACM Trans Comput Biol Bioin-
form 12(1):166–178. https://doi.org/10.1109/TCBB.
2014.2351800

You L, Motta G, Sacco D, Ma T (2014) Social data
analysis framework in cloud and mobility analyzer for
smarter cities. In: 2014 IEEE international conference
on service operations and logistics, and informatics
(SOLI), pp 96–101

Cloud Databases

�Databases as a Service

https://doi.org/10.1109/ICASSP.2012.6289127
https://doi.org/10.1109/ICASSP.2012.6289127
https://doi.org/10.1109/TCBB.2014.2351800
https://doi.org/10.1109/TCBB.2014.2351800
https://doi.org/10.1007/978-3-319-77525-8_83

458 Cloud-Based SQL Solutions for Big Data

Cloud-Based SQL Solutions
for Big Data

Marcin Zukowski
Snowflake Computing, San Mateo, CA, USA

Overview

Cloud computing is one of the most important
trends in the current software industry. Cloud
possesses unique technical and business charac-
teristics, enabling new approaches to software
design and new usage models. In this chapter we
present the key characteristics of the cloud sys-
tems, and discuss opportunities and challenges
traditional database systems face when deployed
on this new platform. Using a set of existing
systems, we demonstrate various approaches to
building cloud-based SQL Big Data solutions.

Cloud

Cloud computing is possibly the largest shift in
computing since the client-server model became
popular. In recent years, we see companies of all
sizes embrace it, often for very different reasons.
Architecturally, it introduces a lot of previously
unavailable features, that provide amazing oppor-
tunities to system and application developers. At
the same time, careful (re)design of software is
needed to take full advantage of them.

The term “Cloud” tends to be used in various
contexts:

• An abstract remote location where data is
stored, and processing takes place (e.g., “my
photos are in the cloud”);

• Infrastructure-as-a-Service (IaaS) solutions,
that mostly replace on-premise physical
entities like buildings, (virtual) compute
and storage resources and networking
infrastructure;

• Platform-as-a-Service (PaaS) solutions,
extending IaaS with additional services
(e.g., database systems, messaging services

etc.) enabling development of end-user
applications;

• Software-as-a-Service (SaaS) solutions, en-
capsulating the complete application function-
ality in an end-user system;

• Single-vendors cloud systems, e.g., Amazon
Web Services (AWS). They typically provide
IaaS (e.g., EC2 for AWS) and PaaS (e.g., SQS
and Lambda) solutions, and sometimes also
end-user SaaS solutions (e.g., AWS Quick-
sight). This meaning is used mostly in this
article.

Historically, multiple companies made
attempts to build cloud platforms. However, the
technical complexity and economies of scale
led to only a few companies dominating the
market (Amazon Web Services (AWS), Microsoft
Azure and Google Cloud Platform), with a
reasonably small number of other players (Magic
Quadrant for Cloud Infrastructure as a Service,
Worldwide).

Cloud Platform Characteristics

Cloud systems provide a new, unique set of fea-
tures not available previously, which offer excit-
ing opportunities for database systems.

Elastic Compute
On-demand provisioning of computing resources
is a defining feature of cloud platforms. It allows
quickly (typically in minutes) getting access to
(effectively) arbitrarily large amount of compute
nodes. Additionally, these resources can be as-
needed scaled up and down, resulting in users
paying only for the actual usage.

This is dramatically different from tradi-
tional on-premise situation, where hardware
resources:

• Had to be planned months in advance, leading
to high capital expenses (CapEx) and slow
project rollouts

• Were provisioned for peak usage (further in-
creasing CapEx and reducing cost efficiency)

Cloud-Based SQL Solutions for Big Data 459

C

or average utilization (leading to insufficient
performance at peak times)

• Required continuous maintenance (high oper-
ating expense – OpEx)

• Required additional infrastructure (buildings,
power) impacting both CapEx and OpEx

Additional elasticity aspects of cloud compute
layers include:

• Instance types, e.g., instances with more RAM
VS more storage, or with specialized hardware
components like GPUs or FPGAs

• Payment models, e.g., fully on-demand or up-
front for a given period

• Availability models, e.g., cheaper spot
instances in AWS, that can be taken away
anytime, and “reserved” instances that provide
a better cost efficiency for highly-utilized
systems

• Ability to use various storage layers, see be-
low

An elastic compute layer is present in all
cloud systems, e.g., AWS EC2, Google Compute
Engine and Azure VMs.

Storage Services
Most cloud systems provide multiple layers
of storage systems, differing on a number of

dimensions. The table below lists the most
popular storage layers from leading providers and
their vendor-specific services. These different
services can lead to very different software design
choices, depending on the requirements of a
given system or application (Table 1).

Additional Features and Opportunities

Multi-Tenancy A unique aspect of cloud sys-
tems is that each cloud platform serves thousands
of different users. On the cloud provider side,
this leads to economy-of-scale benefits, savings
from sharing resources, and higher predictability
of general usage trends. On the user side, it gives
access to a huge pool of resources. It also opens
the possibility of sharing access to the same data,
if its stored in a shared layer (like S3). As a result,
sharing of data is possible without a physical
data movement task (e.g., transferring files) and
becomes to a logical operation (e.g., granting
access). This allows completely new classes of
applications and systems.

Geographical distribution Most cloud systems
are internally distributed across multiple (typi-
cally 3) physical data centers. As a results many
(but not all) services provide resiliency not only
to single-machine or single-rack failures, but to
the entire data center failures. This provides the

Cloud-Based SQL Solutions for Big Data, Table 1 Example storage services present in various cloud platforms

Cost Size Latency Bandwidth Persistency Access

AWS
(Ama-
zon
EC2:
Storage)

Azure (In-
troduction
to
Microsoft
Azure
Storage)

Google
(Google
Cloud
Platform:
Storage
Options)

Local instance
storage

Free
(included)

Limited,
fixed

Very
low Very high Ephemeral

Single
instance

Available
(not all
types) Available

Available
(not all
types)

Distributed
block storage Medium

Limited,
elastic Low High Persistent

Single
instance
(at a time) EBS

General
purpose
storage

Persistent
disks

Distributed file
system High Unlimited Medium Medium Persistent Shared EFS Azure files

Not avail-
able

Object (blob)
store Very low Unlimited High Low Persistent Shared S3

Azure
blob
storage

Cloud
storage

460 Cloud-Based SQL Solutions for Big Data

level of availability previously only available to
the largest companies.

Security Cloud systems offer improvements to
system security at various levels: physical secu-
rity (state of the art systems deployed at scale);
network security (e.g., Virtual Private Cloud in
AWS); encryption (automatic storage encryption;
encryption key management); authentication and
identity management (IAM in AWS); auditing
and more. As a result, building secure systems in
a cloud is often easier than providing a similar
(externally facing) system on-premise.

Additional services Cloud vendors offer dozens
of additional managed services, in areas like (ex-
amples for AWS): messaging systems (e.g., SMS,
SQS), databases (e.g., RDS, DynamoDB), server-
less computing (e.g., Elastic Beanstalk, Lambda),
management (e.g., CloudTrail, CloudWatch) and
more. These powerful tools make creating appli-
cations much easier in the cloud environment.

SaaS While IaaS provides flexibility and cost
benefits to organizations, a good software-as-a-
service product can lead also to a higher produc-
tivity, better user satisfaction, and personnel cost
reduction. As a result, cloud systems often focus
on providing a low-maintenance, mostly auto-
mated and easy-to use experience. For example,
aspects like friendly user interfaces, automatic
software update management, high-availability,
built-in monitoring etc are all now expected by
most users of cloud systems.

Cloud System Challenges
While providing a lot of great features, cloud
system introduce challenges which application
designers need to incorporate into their architec-
ture. This section lists some of them.

Unpredictability of single-instance perfor-
mance Since resources in the cloud are typically
shared and virtualized, it is possible for one
tenant of the same physical resource to have
a negative impact on other users. Modern

virtualization technologies prevent that to a large
extent, but the problem is not completely gone.

Increased failure rates similarly, it is more
common for instances in the compute layer to die
without a warning, due to hardware or software
corruption, often caused by activity unrelated to
a given user.

Non-transparent system topology For the end-
user, the mapping of virtual compute instances
onto physical entities is not visible. As a result,
one cant say if two nodes might influence each
others behavior, or predict the cost of the network
communication.

Unpredictability of services stability and per-
formance While cloud services typically offer
very high availability, some of them behave in-
consistently. For example, it is known that a
simple read request to AWS S3, while usually
taking a fraction of a second, occasionally can
take multiple seconds.

Limited hardware choice Many on premise
systems use carefully tuned hardware units,
with balanced CPU/RAM/disk and network.
While cloud offers multiple instance types, it
is often not possible to get the exact hardware
configuration that would be optimal for a given
application.

Cloud and Database Systems

The previously described properties of the cloud
clearly demonstrate these systems are signifi-
cantly different from on-premise infrastructure
available to most companies.

It is perfectly possible to deploy existing soft-
ware in a cloud environment, and a lot of database
systems in fact are deployed this way. However,
such strategy often does not allow benefiting from
the unique cloud opportunities, and might not
handle cloud-specific problems well.

Cloud-Based SQL Solutions for Big Data 461

C

Let us look at a list of various challenges that
database system designers face when designing
for the cloud

Elasticity Most popular design for on-premise
large scale database systems is “shared noth-
ing” (Stonebraker 1985). This is a great archi-
tecture for fixed-topology systems, but presents
a lot of problems when highly elastic behavior is
desired. As a result, other approaches have been
proposed.

Scalability Combination of elastic compute
resources and pay-for-use billing model, leads
to customers demanding higher peak compute
power (for a shorter time). As a result, distributed
database systems need to be designed to
efficiently scale to larger sizes.

Infrastructure reliability In traditional sys-
tems, an infrastructure failure (failed disk,
network partitioning etc) and performance
degradations were often consider exceptional
events. In the cloud, they are more likely and
systems need to be designed for them.

Performance consistency The performance dif-
ferences between various nodes participating in
query processing can be much higher in a shared
environment. As a result, features like load bal-
ancing and skew handling are significantly more
important in the cloud.

System topology With most of the cloud infras-
tructure virtualized, the placement of logical enti-
ties on physical hardware is often unknown. This
causes problems for aspects like fault tolerance,
where a single machine failure can potentially
influence multiple logical instances, making it
much harder to provide system failure guaran-
tees.

Network efficiency Many high-performance
distributed database systems are designed for
high-performance networking interfaces like
InfiniBand – when suddenly faced with e.g., a
1 gigabit Ethernet connection, their performance

can degrade quickly. This influences aspects like
distributed algorithms, data exchange formats
etc.

Security While being typically deployed in iso-
lated, private environments, databases did not
have to worry about many aspects of security
present in the cloud environments. For example,
for many users, having all data encrypted in-flight
is legally required in a shared environment.

Extensibility Many database systems allow us-
ing custom software to enhance various features
of the system (for example, C or C++ user defined
functions). Shared systems need to devise mecha-
nisms protecting against malicious code provided
through these mechanisms.

Monitoring On-premise databases could
assume the users had system-level access to
the instances, giving them insight into aspects
like memory or disk utilization. With databases
provided as a service, they often do not have this
access, and additional levels of monitoring needs
to be exposed via separate interfaces.

Client connectivity Databases traditionally as-
sumed the user maintain a network connection
throughout their session. However, with web user
interfaces and users being more mobile, the need
for clients that do not depend on continuous
connection arises.

External data Traditional data warehouses
could assume they managed all (or most) of the
data they needed to access. With the recent data
explosion, many organizations keep a lot of data
in low-cost services like S3. Ability to efficiently
access these becomes highly desired, especially
with that data being easily accessible within a
given cloud system.

Simplicity Another area where databases do not
match the SaaS world perfectly is the system us-
ability. Databases are famous for the complexity
of their management, with activities like tuning,

462 Cloud-Based SQL Solutions for Big Data

backups, monitoring consume a lot of precious
personnel time.

Pricing Traditional database license was rea-
sonably simple, with the user typically paying
for the volume of data or the amount of used
hardware resources. With the clouds elasticity,
new payment models had to be invented, typically
focused on actual system usage.

Multi-tenancy Cloud database systems that
choose to provide multi-tenant services face
additional challenges. For example, workload
of one user might adversely influence other
users. Additionally, any layers of the system
that are shared require strong access control
mechanisms. Finally, multi-tenancy can cause
scalability challenges for the shared system
components.

Example Systems

In this section we discuss a few representative
examples of database systems provided as cloud
services. While they obviously differ in many
database-specific areas, like SQL support, per-
formance etc, we focus on their very different
approaches to building a cloud data warehousing
system.

Amazon Redshift
Amazon Redshift (Amazon Redshift) was the
first widely available cloud data warehousing
system and is still the market leader. It is
derived from the on-premise Paraccel database,
which followed the traditional shared nothing
model (Chen et al. 2009). It uses user-sized EC2
clusters for both processing and storage.

While originally keeping the major design
decisions unchanged, Redshift did introduce a
number of cloud-focused improvements and ex-
tensions (Gupta et al. 2015), mainly:

• Ability to scale up/down and pause/resume,
providing much better elasticity than in the on-
premise systems

• Integration with S3, simplifying data backups
• Rich user interface for managing and

monitoring

Additionally, in 2017 Amazon introduced a
major architectural extension for Redshift called
Spectrum (Amazon Redshift Spectrum). It is
a sub-system focused on scanning data in S3,
where a part of the Redshift query can be pushed
to a separate system, which uses highly parallel
compute infrastructure for operations like scans,
filters and aggregations.

Microsoft Azure SQL Data Warehouse
Azure SQL Data Warehouse (SQLDW)
(Microsoft Azure SQL Data Warehouse)
is a cloud-focused evolution of the SQL
Server Parallel Data Warehouse (Parallel Data
Warehouse overview), which in turn extended
SQL Server with shared-nothing architecture
derived from DATAllegro (DATAllegro).

Azure SQLDW uses compute nodes accessing
data stored in a distributed block store. All the
data is up-front partitioned in the storage layer
into a limited (60) set of partitions. Each compute
node owns a subset of them, and inter-node data
transfer is required to access data owned by other
nodes. As such, the data assignment approach and
processing layer of Azure SQLDW are similar
to shared nothing systems. Still, using a separate
storage layer provides some benefits of the shared
filesystem approaches. For example redistribut-
ing the data between nodes is a logical operations
(no data copying is needed) and is relatively fast.

Google BigQuery
Google BigQuery (Google BigQuery) has
a very different lineage than Redshift and
Azure SQLDW. It is based on internal Google
products (BigQuery under the hood), mainly
Dremel (Melnik et al. 2010) for data processing
and Colossus distributed file system (Fikes)
for data storage, following the shared-storage
architecture.

Originally Dremel was a reasonably simple
internal query processing system with limited
functionality (e.g., no real distributed joins;

Cloud-Based SQL Solutions for Big Data 463

C

append-only), with a limited, SQL-like language.
After releasing it publicly as BigQuery in
2011, Google has implemented a number of
significant improvements bringing it much closer
to raditional database systems, including a more-
standard SQL support and update capability.

BigQuery is unique in the discussed set of
products with its usage model – the user issues
a query and only pays for the amount of data
that query processes. This is the closest to the
pure SaaS approach, with users not having to
manage anything related to resource allocation.
With this approach, it is also possible for a single
query to use tens or even hundreds of machines,
depending on what is currently available, with the
users cost staying the same.

BigQuery provides a demonstration of how
highly distributed compute layer combined with
an efficient distributed storage can provide excep-
tional query performance without any up-front
investment.

Snowflake Elastic Data Warehouse
Snowflake (Introducing Snowflake) is a rare
example of a SQL data warehousing system
designed from scratch with cloud platforms in
mind. Its architecture (Dageville et al. 2016) is
driven directly by various attributes of AWS:

• Object store is the cheapest and most reliable
storage, leading to using S3 as the persistent
data layer

• S3 has no update capability, leading to using
immutable micro-partitions as data storage
format

• S3 has low performance, leading to colum-
nar storage, heavy data skipping, and local
caching

• For compute layer to easily scale up and down,
compute nodes should be stateless

• With data in S3, multiple compute nodes can
access it at the same time, as long as someone
coordinates their activity.

• S3 is not good for frequent data access and
compute nodes are stateless, hence an extra
management and metadata entity is needed

• In a multi-tenant system, all the barriers are
purely logical, hence sharing data between
users is possible

The result multi-cluster shared-data architec-
ture uniquely translates a lot of cloud benefits to
the end user, providing high elasticity, scalability
and novel features.

Other Systems
While four systems discussed in this chapter are
highly representative examples, there are many
other products in this space, providing additional
unique cloud-related approaches and features.
That list includes, but is not limited to: Tera-
data Intellicloud (Teradata IntelliCloud), Micro-
Focus Vertica (including the Eon mode) (Whats
New in Vertica 9.0: Eon Mode Beta), Pivotal
Greenplum (Pivotal Greenplum on Amazon Web
Services), IBM DashDB (IBM dashDB), Ora-
cle Autonomous Data Warehouse (Oracle Au-
tonomous Data Warehouse Cloud) and Amazon
Athena (Amazone Athena).

Conclusions

It seems clear today that most future data pro-
cessing needs will be fulfilled by cloud systems.
This chapter discussed the challenges and op-
portunities cloud brings, as well as approaches
to addressing them. A short overview of a few
example systems demonstrates that databases can
take very different architectural approaches to
this new platform and still build very successful
cloud systems. With cloud adoption growing at a
rapid pace, we expect a lot of innovation in this
space in the coming years.

References

Amazon EC2: Storage. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/Storage.html

Amazon Redshift. https://aws.amazon.com/redshift
Amazon Redshift Spectrum. https://aws.amazon.com/

redshift/spectrum/
Amazone Athena. https://aws.amazon.com/athena

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://aws.amazon.com/redshift
https://aws.amazon.com/redshift/spectrum/
https://aws.amazon.com/redshift/spectrum/
https://aws.amazon.com/athena

464 Cloudlets

BigQuery under the hood. https://cloud.google.com/blog/
big-data/2016/01/bigquery-under-the-hood

Chen Y et al (2009) Partial join order optimization in the
paraccel analytic database In: Proceedings of SIGMOD

Dageville B et al (2016) The snowflake elastic data ware-
house In: Proceedings of SIGMOD

DATAllegro. https://en.wikipedia.org/wiki/DATAllegro
Fikes A Storage architecture and challenges. https://cloud.

google.com/files/storage_architecture_and_challe
nges.pdf

Google BigQuery. https://cloud.google.com/bigquery
Google Cloud Platform: Storage Options. https://cloud.

google.com/compute/docs/disks/
Gupta A et al (2015) Amazon redshift and the case for

simpler data warehouses In: Proceedings of SIGMOD
IBM dashDB. https://www.ibm.com/ms-en/marketplace/

cloud-data-warehouse
Introducing Snowflake. https://www.snowflake.net/pro

duct/
Introduction to Microsoft Azure Storage. https://docs.

microsoft.com\kern1pt/en-us\kern1pt/azure\kern1pt/
storage\kern1pt/common/storage-introduction

Magic Quadrant for Cloud Infrastructure as a Service,
Worldwide. https://www.gartner.com/doc/reprints?id=
1-2G2O5FC&ct=150519

Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar S,
Tolton M, Vassilakis T (2010) Dremel: interactive anal-
ysis of web-scale datasets. In: Proceedings of VLDB

Microsoft Azure SQL Data Warehouse. https://azure.
microsoft.com/en-us/services/sql-data-warehouse

Oracle Autonomous Data Warehouse Cloud. https://cloud.
oracle.com/en_US/datawarehouse

Parallel Data Warehouse overview. https://docs.
microsoft.com\kern1pt/en-us\kern1pt/sql\kern1pt/
analytics\kern1pt-\kern1ptplatform-system/parallel-
data-warehouse-overview

Pivotal Greenplum on Amazon Web Services. https://
pivotal.io/partners/aws/pivotal-greenplum

Stonebraker M (1985) The case for shared nothing. In:
Proceedings of HPTS

Teradata IntelliCloud. https://www.teradata.com/
products-and-services/intellicloud

Whats New in Vertica 9.0: Eon Mode Beta. https://my.
vertica.com/blog/whats-new-vertica-9-0-eon-mode-
beta

Cloudlets

�Big Data and Fog Computing

Cluster Scheduling

�Advancements in YARN Resource Manager

Clustering of Process
Instances

�Trace Clustering

CODAIT/Spark-Bench

� SparkBench

Collective Schema Matching

�Holistic Schema Matching

Columnar Storage Formats

Avrilia Floratou
Microsoft, Sunnyvale, CA, USA

Definitions

Row Storage: A data layout that contiguously
stores the values belonging to the columns that
make up the entire row.

Columnar Storage: A data layout that contigu-
ously stores values belonging to the same
column for multiple rows.

Overview

Fast analytics over Hadoop data has gained sig-
nificant traction over the last few years, as mul-
tiple enterprises are using Hadoop to store data
coming from various sources including opera-
tional systems, sensors and mobile devices, and
web applications. Various Big Data frameworks
have been developed to support fast analytics on
top of this data and to provide insights in near real
time.

https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood
https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood
https://en.wikipedia.org/wiki/DATAllegro
https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloud.google.com/bigquery
https://cloud.google.com/compute/docs/disks/
https://cloud.google.com/compute/docs/disks/
https://www.ibm.com/ms-en/marketplace/cloud-data-warehouse
https://www.ibm.com/ms-en/marketplace/cloud-data-warehouse
https://www.snowflake.net/product/
https://docs.microsoft.comkern 1pt/en-uskern 1pt/azurekern 1pt/storagekern 1pt/common/storage-introduction
https://docs.microsoft.comkern 1pt/en-uskern 1pt/azurekern 1pt/storagekern 1pt/common/storage-introduction
https://docs.microsoft.comkern 1pt/en-uskern 1pt/azurekern 1pt/storagekern 1pt/common/storage-introduction
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://cloud.oracle.com/en_US/datawarehouse
https://cloud.oracle.com/en_US/datawarehouse
https://docs.microsoft.comkern 1pt/en-uskern 1pt/sqlkern 1pt/analyticskern 1pt -kern 1pt platform-system/parallel-data-warehouse-overview
https://docs.microsoft.comkern 1pt/en-uskern 1pt/sqlkern 1pt/analyticskern 1pt -kern 1pt platform-system/parallel-data-warehouse-overview
https://docs.microsoft.comkern 1pt/en-uskern 1pt/sqlkern 1pt/analyticskern 1pt -kern 1pt platform-system/parallel-data-warehouse-overview
https://docs.microsoft.comkern 1pt/en-uskern 1pt/sqlkern 1pt/analyticskern 1pt -kern 1pt platform-system/parallel-data-warehouse-overview
https://pivotal.io/partners/aws/pivotal-greenplum
https://pivotal.io/partners/aws/pivotal-greenplum
https://www.teradata.com/products-and-services/intellicloud
https://www.teradata.com/products-and-services/intellicloud
https://my.vertica.com/blog/whats-new-vertica-9-0-eon-mode-beta
https://my.vertica.com/blog/whats-new-vertica-9-0-eon-mode-beta
https://my.vertica.com/blog/whats-new-vertica-9-0-eon-mode-beta
https://doi.org/10.1007/978-3-319-77525-8_41
https://doi.org/10.1007/978-3-319-77525-8_207
https://doi.org/10.1007/978-3-319-77525-8_91
https://doi.org/10.1007/978-3-319-77525-8_300
https://doi.org/10.1007/978-3-319-77525-8_12

Columnar Storage Formats 465

C

A crucial aspect in delivering high perfor-
mance in such large-scale environments is the un-
derlying data layout. Most Big Data frameworks
are designed to operate on top of data stored in
various formats, and they are extensible enough
to incorporate new data formats. Over the years,
a plethora of open-source data formats have been
designed to support the needs of various applica-
tions. These formats can be row or column ori-
ented and can support various forms of serializa-
tion and compression. The columnar data formats
are a popular choice for fast analytics workloads.
As opposed to row-oriented storage, columnar
storage can significantly reduce the amount of
data fetched from disk by allowing access to only
the columns that are relevant for the particular
query or workload. Moreover, columnar storage
combined with efficient encoding and compres-
sion techniques can drastically reduce the storage
requirements without sacrificing query perfor-
mance.

Column-oriented storage has been suc-
cessfully incorporated in both disk-based
and memory-based relational databases that
target OLAP workloads (Vertica 2017). In
the context of Big Data frameworks, the first
works on columnar storage for data stored
in HDFS (Apache Hadoop HDFS 2017) have
appeared around 2011 (He et al. 2011; Floratou
et al. 2011). Over the years, multiple proposals
have been made to satisfy the needs of various
applications and to address the increasing data
volume and complexity. These discussions
resulted in the creation of two popular columnar
formats, namely, the Parquet (Apache Parquet
2017) and ORC (Apache ORC 2017) file formats.
These formats are both open-source and are
currently supported by multiple proprietary
and open-source Big Data frameworks. Apart
from columnar organization, the formats provide
efficient encoding and compression techniques
and incorporate various statistics that enable
predicate pushdown which can further improve
the performance of analytics workloads.

In this article, we first present the major works
in disk-based columnar storage in the context
of Big Data systems and Hadoop data. We then
provide a detailed description of the Parquet and

ORC file formats which are the most widely
adopted columnar formats in current Big Data
frameworks. We conclude the article by high-
lighting the similarities and differences of these
two formats.

Related Work

The first works on columnar storage in the con-
text of Hadoop, namely, the RCFile (Row Colum-
nar File) (He et al. 2011) and the CIF (Col-
umn Input File format) (Floratou et al. 2011)
layouts, were mostly targeting the MapReduce
framework (Dean and Ghemawat 2008). These
two columnar formats have adopted significantly
different designs. The CIF file format stored each
column in the data as a separate file, whereas
the RCFile adopted a PAX-like (Ailamaki et al.
2001) data layout where the columns are stored
next to each other in the same file.

These design choices led to different trade-
offs. The CIF file format was able to provide
better performance as it allowed accessing only
the files that contain the desired columns but
required extra logic in order to colocate the files
that contain adjacent columns. Without provid-
ing colocation in HDFS, reconstructing a record
from multiple files would result in high network
I/O. The RCFile, on the other hand, did not
require any such logic to be implemented as
all the columns were stored in the same HDFS
block. However, the RCFile layout made it diffi-
cult to enable efficient skipping of columns due
to file system prefetching. As a result, queries
that were accessing a small number of columns
would pay a performance overhead (Floratou
et al. 2011).

The successor of the RCFile format, namely,
the ORC (Optimized Row Columnar) file format,
was developed to overcome the limitations of
the RCFile format. It was originally designed
to speed up Hadoop and Hive, but it is cur-
rently incorporated in many other frameworks
as well. The ORC file format still uses a PAX-
like (Ailamaki et al. 2001) layout but can more
efficiently skip columns by organizing the data
in larger blocks called row groups. A detailed

466 Columnar Storage Formats

description of the ORC file format is provided in
the following section.

The Parquet (Apache Parquet 2017) file for-
mat is another popular, open-source columnar
format. The Parquet file format was designed
to efficiently support queries over deeply nested
data. The format is based on the Dremel dis-
tributed system (Melnik et al. 2010) that was
developed at Google for interactively querying
large datasets. Similar to the ORC format, the
parquet format has also adopted a PAX-like lay-
out (Ailamaki et al. 2001). The following section
presents Parquet’s layout in detail.

Detailed comparisons of various columnar for-
mats can be found in Huai et al. (2013) and
in Floratou et al. (2014). The work by Floratou
et al. (2014) compares the ORC and Parquet file
formats in the context of Hive (Apache Hive
2017) and Impala (Kornacker et al. 2015) for
SQL workloads.

Other related open-source technologies are
Apache Arrow (2017) and Apache Kudu (2017).
Apache Arrow is a columnar in-memory format
that can be used on top of various disk-based
storage systems and file formats to provide fast,
in-memory analytical processing. Note that as
opposed to the file formats discussed above,
Arrow is an in-memory representation and not
a disk-based file format. Apache Kudu is an
open-source storage engine that complements
HDFS (Apache Hadoop HDFS 2017) and
HBase (Apache Hbase 2017). It provides efficient
columnar scans as well as inserts and updates.
Kudu provides mutable storage, whereas the
file formats described above (e.g., Parquet) are
immutable, and thus any data modifications
require rewriting the dataset in HDFS.

Columnar File Formats for Big Data
Systems

In this section, we describe in more detail
two popular, open-source columnar formats
that have been incorporated in various Big
Data frameworks, namely, the ORC and the
Parquet file formats. Both ORC and Parquet are
Apache projects (Apache ORC 2017; Apache

Parquet 2017) and are actively used by multiple
organizations when performing analytics over
Hadoop data.

The Parquet File Format
The Parquet file format (Apache Parquet 2017)
is a self-described columnar data format specif-
ically designed for the Hadoop ecosystem. It is
supported by many Big Data frameworks such as
Apache Spark (Zaharia et al. 2012) and Apache
Impala (Kornacker et al. 2015), among others.
The format inherently supports complex nested
data types as well as efficient compression and
encoding schemes. In the next section, we de-
scribe the format layout in more detail.

File Organization
The Parquet format supports both primitive (e.g.,
integer, Boolean, double, etc.) and complex data
types (maps, lists, etc.). The structure of a Parquet
file is shown in Fig. 1. The file consists of a
set of row groups which essentially represent
horizontal partitions of the data. A row group
consists of a set of column chunks. Each

Column 1 Chunk 1

Column N Chunk 1

Column 2 Chunk 1

Ro
w

 G
ro

up
 1

File Metadata

…

Ro
w

 G
ro

up
 2

Ro
w

 G
ro

up
 M

…

Metadata

Metadata

Metadata

…

Column 1 Chunk 2

Column N Chunk 2

Column 2 Chunk 2
…

Metadata

Metadata

Metadata

…

Column 1 Chunk M

Column N Chunk M

Column 2 Chunk M
…

Metadata

Metadata

Metadata

…

Columnar Storage Formats, Fig. 1 The parquet file
format

Columnar Storage Formats 467

C

column chunk contains data from a particular
data column and it is guaranteed to be contigu-
ous in the file. The column chunk consists
of one or more pages which are the unit of
compression and encoding. Each page contains
a header that describes the compression and en-
coding method used for the data in the page.

As shown in Fig. 1, the file consists of N

columns spread across M row groups. The
row groups are typically large (e.g., 1 GB) to
allow for large sequential I/Os. Since an entire
row group might need to be accessed, the
HDFS block size should be large enough to fit
the row group. A typical configuration is to
have 1 GB HDFS blocks that contain one row
group of 1 GB.

Metadata is stored at all the levels in the hierar-
chy, i.e., file, column chunk, and page. The
bottom of the file contains the file metadata which
include information about the data schema as
well as information about the column chunks
in the file. The metadata contains statistics about
the data such as the minimum and maximum
values in a column chunk or page. Using these
statistics, the Parquet file format supports pred-
icate pushdown which allows skipping of pages
and reduces the amount of data that needs to be
decompressed and parsed. The Parquet readers
first fetch the metadata to filter out the column
chunks that must be accessed for a particular
query and then read each column chunk sequen-
tially.

Compression
As described in the previous section, the unit
of compression in the Parquet file format is the
page. The format supports common compres-
sion codecs such as GZIP and Snappy (Snappy
Compression 2017). Moreover, various types of
encoding for both simple and nested data types
are also supported. The interested reader can
find more information about the various encoding
techniques in Parquet Encodings (2017).

The ORC File Format
The Optimized Row Columnar (ORC) for-
mat (Apache ORC 2017) is a column-oriented
storage layout that was created as part of an

initiative to speed up Apache Hive (2017) queries
and reduce the storage requirements of data
stored in Apache Hadoop (2017). Currently the
ORC file format is supported by many Big Data
solutions including Apache Hive (2017), Apache
Pig (2017), and Apache Spark (Zaharia et al.
2012), among others.

File Organization
The ORC format is an optimized version of the
previously used Row Columnar (RC) file for-
mat (He et al. 2011). The format is self-describing
as it includes the schema and encoding informa-
tion for all the data in the file. Thus, no external
metadata is required in order to interpret the data
in the file. The format supports both primitive
(e.g., integer, Boolean, etc.) and complex data
types (maps, lists, structs, unions). Apart from
the columnar organization, the ORC file supports
various compression techniques and lightweight
indexes.

The structure of an ORC file is shown in
Fig. 2. As shown in the figure, the file con-
sists of three major parts: a set of stripes,
a file footer, and a postscript. The

Index

Stripe Footer

Row Data

St
rip

e

Index

Stripe Footer

Row Data

St
rip

e

Index

Stripe Footer

Row Data

St
rip

e

File Footer

Postscript

Column 1

Column 2

Column 3

Column M

…

Column 1

Column 2

Column 3

Column M

…

Columnar Storage Formats, Fig. 2 The ORC file
format

468 Columnar Storage Formats

postscript part provides all the necessary
information to parse the rest of the file such as the
compression codec used and the length of the file
footer. The file footer contains information
related to the data stored in the file, such as the
number of rows in the file, statistics about the
columns, and the data schema. The process of
reading the file starts by first reading the tail of
the file that consists of the postscript and the
file footer that contain metadata about the
main body of the file.

An ORC file stores multiple groups of row
data as stripes. Each stripe has a size of
about 250 MB and contains only entire rows so
a row cannot span multiple stripes. Internally,
each stripe is divided into index data, row
data, and stripe footer in that order. The data
columns are stored next to each other in a PAX-
like (Ailamaki et al. 2001) organization. Depend-
ing on the query’s access pattern, only the neces-
sary columns are decompressed and deserialized.
The stripe footer contains the location of the
columns in data as well as information about the
encoding of each column. The indexes contain
statistics about each column in a row group (set
of 10,000 rows). For example, in the case of
integer columns, the column statistics include
the minimum, maximum, and sum values of the
column in the given row group. These statistics
can be used to skip entire sets of rows that do
not satisfy the query predicates. Recently, bloom
filters can additionally be used to better prune row
groups (ORC Index 2017).

Finally, it is worth noting that column statistics
are also stored in the file footer at the
granularity of stripes. These statistics enable
skipping entire stripes based on a filtering
predicate.

Compression
Depending on the user’s configuration, an ORC
file can be compressed using a generic compres-
sion codec (typically zlib (ZLIB Compression
2017) or snappy (Snappy Compression 2017)).
The file is compressed in chunks so that entire
chunks can be directly skipped without decom-
pressing the data. The default compression chunk
size is 256 KB but it is configurable. Having

larger chunks typically results in better com-
pression ratios but requires more memory to be
allocated during decompression.

The ORC file makes use of various run-length
encoding techniques to further improve compres-
sion. The interested reader can find more infor-
mation about the supported encoding methods
in ORC Encodings (2017)

File Format Comparison
The Parquet and ORC file formats have both been
created with the goal of providing fast analytics
in the Hadoop ecosystem. Both file formats are
columnar and they have adopted a PAX-like lay-
out. Instead of storing each column at a separate
file, the columns are stored next to each other
in the same HDFS block. By having large row
groups and HDFS blocks, both formats exploit
large sequential I/Os and can skip unnecessary
columns.

Both formats support various compression
codecs at a fine granularity so that the amount
of data that is decompressed is minimized.
They also support various encoding schemes
depending on the data type.

Finally, the file formats incorporate statistics
at various levels in order to avoid decompressing
and deserializing data that do not satisfy the filter-
ing predicates. Typically, the statistics include the
maximum and the minimum values of a column.
The ORC file additionally supports bloom filters
at the row group level, while the Parquet file
supports statistics at the page level as well.

Regarding the data types supported, the
Parquet file format has been designed to
inherently support deeply nested data using
the record shredding and assembly algorithm
presented in Melnik et al. (2010). The ORC file,
on the other hand, flattens the nested data and
creates separate columns for each underlying
primitive data type.

Conclusions

The increased interest in fast analytics over
Hadoop data fueled the development of multiple
open-source data file formats. In this work, we

Component Benchmark 469

C

focused on the columnar storage formats that
are used to store HDFS data. In particular, we
first reviewed the work on disk-based columnar
formats for Big Data systems and then presented
a detailed description of the open-source ORC
and Parquet file formats. These two columnar
data formats are currently supported by a plethora
of Big Data solutions. Finally, we highlighted
the differences and similarities of the two file
formats.

Cross-References

�Caching for SQL-on-Hadoop
�Wildfire: HTAP for Big Data

References

Ailamaki A, DeWitt DJ, Hill MD, Skounakis M (2001)
Weaving relations for cache performance. In: Proceed-
ings of the 27th international conference on very large
data bases (VLDB’01), pp 169–180

Apache Arrow (2017) Apache Arrow. https://arrow.
apache.org/

Apache Hadoop (2017) Apache Hadoop. http://hadoop.
apache.org

Apache Hadoop HDFS (2017) Apache Hadoop HDFS.
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

Apache Hbase (2017) Apache HBase. https://hbase.
apache.org/

Apache Hive (2017) Apache Hive. https://hive.apache.
org/

Apache Kudu (2017) Apache Kudu. https://kudu.apache.
org/

Apache ORC (2017) Apache ORC. https://orc.apache.org/
Apache Parquet (2017) Apache Parquet. https://parquet.

apache.org/
Apache Pig (2017) Apache Pig. https://pig.apache.org/
Dean J, Ghemawat S (2008) Mapreduce: simplified

data processing on large clusters. Commun ACM
51(1):107–113

Floratou A, Patel JM, Shekita EJ, Tata S (2011) Column-
oriented Storage Techniques for MapReduce. Proc
VLDB Endow 4(7):419–429

Floratou A, Minhas UF, Özcan F (2014) SQL-on-Hadoop:
full circle back to shared-nothing database architec-
tures. Proc VLDB Endow 7(12):1295–1306

He Y, Lee R, Huai Y, Shao Z, Jain N, Zhang X,
Xu Z (2011) RCFile: a fast and space-efficient data
placement structure in MapReduce-based warehouse
systems. In: Proceedings of the 2011 IEEE 27th in-
ternational conference on data engineering (ICDE’11).
IEEE Computer Society, pp 1199–1208

Huai Y, Ma S, Lee R, O’Malley O, Zhang X (2013)
Understanding insights into the basic structure and
essential issues of table placement methods in clusters.
Proc VLDB Endow 6(14):1750–1761

Kornacker M, Behm A, Bittorf V, Bobrovytsky T, Ching
C, Choi A, Erickson J, Grund M, Hecht D, Jacobs M,
Joshi I, Kuff L, Kumar D, Leblang A, Li N, Pandis I,
Robinson H, Rorke D, Rus S, Russell J, Tsirogiannis D,
Wanderman-Milne S, Yoder M (2015) Impala: a mod-
ern, open-source SQL engine for hadoop. In: CIDR

Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar
S, Tolton M, Vassilakis T (2010) Dremel: interactive
analysis of web-scale datasets. Proc VLDB Endow
3(1–2):330–339

ORC Encodings (2017) ORC Encodings. https://orc.
apache.org/docs/run-length.html

ORC Index (2017) ORC Index. https://orc.apache.org/
docs/spec-index.html

Parquet Encodings (2017) Parquet Encodings. https://
github.com/apache/parquet-format/blob/master/Encodi
ngs.md

Snappy Compression (2017) Snappy Compression.
https://en.wikipedia.org/wiki/Snappy_(compression)

Vertica (2017) Vertica. https://www.vertica.com/
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mc-

Cauley M, Franklin MJ, Shenker S, Stoica I (2012) Re-
silient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. NSDI, USENIX

ZLIB Compression (2017) ZLIB Compression. https://en.
wikipedia.org/wiki/Zlib

Complex Event Processing

� Pattern Recognition

Component Benchmark

Klaus-Dieter Lange and David L. Schmidt
Hewlett Packard Enterprise, Houston, TX, USA

Synonyms

Microbenchmark; Worklet

Overview

Component benchmarks are valuable tools for
isolating and analyzing the performance charac-
teristics of specific subsystems within a server

https://doi.org/10.1007/978-3-319-77525-8_249
https://doi.org/10.1007/978-3-319-77525-8_257
https://arrow.apache.org/
https://arrow.apache.org/
http://hadoop.apache.org
http://hadoop.apache.org
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hbase.apache.org/
https://hbase.apache.org/
https://hive.apache.org/
https://hive.apache.org/
https://kudu.apache.org/
https://kudu.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://pig.apache.org/
https://orc.apache.org/docs/run-length.html
https://orc.apache.org/docs/run-length.html
https://orc.apache.org/docs/spec-index.html
https://orc.apache.org/docs/spec-index.html
https://github.com/apache/parquet-format/blob/master/Encodings.md
https://en.wikipedia.org/wiki/Snappy_(compression)
https://www.vertica.com/
https://en.wikipedia.org/wiki/Zlib
https://en.wikipedia.org/wiki/Zlib
https://doi.org/10.1007/978-3-319-77525-8_189
https://doi.org/10.1007/978-3-319-77525-8_111
https://doi.org/10.1007/978-3-319-77525-8_100372

470 Component Benchmark

environment. This chapter will provide histor-
ical context for component benchmarks, brief
descriptions of the most commonly used bench-
marks, and a discussion on their uses in the
field.

Definitions

Software that utilizes standard applications, or
their core routines that focus on a particular ac-
cess pattern, in order to measure the performance
and/or efficiency of one of the primary server and
storage components (CPU transactions, memory,
and storage/network IO).

Historical Background

From earliest days of digital computer systems,
the goal of quantifying, improving, and opti-
mizing computational performance has been a
subject great interest. The earliest measures of
performance were comparisons of low-level in-
struction execution times. A mix of several of
these execution times would be combined to
produce an overall rating that could be compared
between systems. The most well-known of these
early benchmarks was the Gibson mix, devised
by Jack Gibson of IBM (Gibson 1970). As high-
level computer languages were developed, more
complex applications were created to develop
more rigorous methods of measuring a system’s
performance. Whetstone (Longbottom 2014) and
Dhrystone (Weiss 2002) are both early examples
of high-level language benchmarks.

As computer systems became more complex,
benchmarks were developed to measure the
performance of the separate components of
the system, such as memory, floating-point
arithmetic coprocessors, and data IO. Most
of these early benchmarks utilized synthetic
workloads and were usually provided to users
as source code that needed to be compiled on the
system of interest. This allowed such benchmarks
to be used on multiple platforms, but there was
generally no set standard on how to compile

such benchmarks or how to compare results
between different architectures which limited the
scope of their use. Industry-standard consortia
such as Transaction Processing Performance
Council (TPC, http://www.tpc.org) and Standard
Performance Evaluation Corporation (SPEC,
https://www.spec.org) were established in the
mid-1980s in an effort to provide fair standards
for measuring system-level and component-level
performance of differing platforms. Several of
the benchmarks developed by these consortia
are intended to measure component-level
performance.

Foundations

Component benchmarks are useful tools to ana-
lyze IT equipment and troubleshoot performance
bottlenecks. They utilize standard applications,
or their core routines that focus on a particular
access pattern, in order to measure the perfor-
mance of one of the primary server and storage
components such as CPU transactions, memory
access, storage IO, or network IO. By limiting
their scope, component benchmarks achieve a
deeper analysis of the targeted subsystem. At
the same time component benchmarks are often
easier to develop than benchmarks that stress the
complete server environment and they are typi-
cally less expensive to run, because they require
fewer equipment and engineering resources.

There can be an overlap in what is consid-
ered a component benchmark vs. a microbench-
mark. A microbenchmark is typically more lim-
ited in scope than a component benchmark, fo-
cusing on the performance of a single feature
of a component rather than the entire compo-
nent. Microbenchmarks utilize synthetic work-
loads rather than actual user applications to mea-
sure the performance of their intended resource.
Microbenchmarks are further described in a later
chapter.

Following is a description of the most com-
mon component benchmarks categorized by their
target subsystem in a Big Data environment.

http://www.tpc.org
https://www.spec.org

Component Benchmark 471

C

Processor subsystem

SPEC CPU2017 (https://www.spec.org/
cpu2017) is a benchmark package
developed by the Standard Performance
Evaluation Corporation (SPEC) to provide
a comparative measure of compute-
intensive performance across the widest
practical range of hardware platforms. The
benchmark uses workloads developed from
programs from a variety of application
areas, including artificial intelligence,
molecular dynamics, physics, weather-
forecasting, imaging, modeling, and
computer development. Suites of these
workloads are run to measure floating-point
(SPECrate2017 Floating Point, SPEC-
speed2017 Floating Point) and integer
(SPECrate2017 Integer, SPECspeed2017
Integer) performance. The suites are further
categorized as SPECrate and SPECspeed
suites. The SPECrate suites run multiple
concurrent copies of each benchmark
workload to provide a measure of
throughput performance. The SPECspeed
suites run a single copy of each benchmark
workload to measure processing speed and
parallelization performance.

SPEC CPU2006 (https://www.spec.org/
cpu2006) is the predecessor to SPEC
CPU2017 and likewise measures CPU
and memory performance utilizing
integer and floating-point intensive
benchmark suites. There are both rate
(SPECint_rate2006, SPECfp_rate2006)
and speed (SPECint2006, SPECfp2006)
suites to analyze different performance
characteristics of the CPU and memory
subsystems.

HEP-SPEC06 (Michelotto et al. 2010;
HEPiX benchmarking working group)
is a benchmark based on the SPEC
CPU2006 benchmark suites developed by
the HEPiX forum to measure processing
performance of applications in a high
energy physic environment. HEP-SPEC06
requires the use of the SPEC CPU2006

benchmark tools, but only runs a subset
of the component workloads; only the
six benchmark modules written in CCC

are utilized and are compiled as 32-bit
executables. The HEP-SPEC06 run script
will then invoke multiple instances of the
SPEC CPU2006 run script, each running a
single copy of the benchmark workloads.
The output results of each SPEC CPU2006
instance are then used to generate a final
HEP-SPEC06 score.

Whetstone (Longbottom) was one of the
first benchmarks to attempt to standardize
the measurement of floating-point perfor-
mance of CPUs. Developed in 1972, the
benchmark workload was a representation
of a set of 124 simple Whetstone ALGOL
60 compiler instructions translated into
FORTRAN. The benchmark result was
measured in thousands of Whetstone
instructions per second (kWips), and later
in millions of Whetstone instructions per
second (MWIPS). The benchmark was
updated over the years and ported to C,
CCC, Basic, and Java. It is frequently
included in component benchmark suites.

Dhrystone (Weiss 2002) is a synthetic
benchmark program developed in 1984
to measure integer-based processing
performance. Developed utilizing meta-
data from several applications written
in different programming languages,
Dhrystone was designed to measure
system program performance. For many
years Dhrystone was considered the
representative benchmark for general
processor performance. Originally written
in Ada, it was translated into C and
UNIX and is still often used in component
benchmark suites. The name Dhrystone
is a pun on the benchmark Whetstone,
another benchmark popular at the time of
its development.

LINPACK (The LINPACK benchmark
programs and reports; Dongarra et al.
2002) is a software library for performing
numerical linear algebra on digital com-

https://www.spec.org/cpu2017
https://www.spec.org/cpu2017
https://www.spec.org/cpu2006
https://www.spec.org/cpu2006

472 Component Benchmark

puters. The LINPACK benchmark uses the
LINPACK software library to solve a set of
predetermined set of n by n linear algebra
equations in order to measure a system’s
floating-point computing performance,
measured in floating point operations
per second (FLOPS). The benchmark
workload is almost exclusively floating-
point based, so is an excellent stressor of
the processors’ math and vector instruction
sets. There have been several versions of
LINPACK benchmarks since their creation
in 1979, which include LINPACK 100
(n D 100), LINPACK 1000 (n D 1000), and
HPLinpack (a highly parallelized version
that can run across multiple systems).
HPL is a portable implementation of
the HPLinpack benchmark written in
C. Precompiled LINPACK and HPL are
available for certain system architectures.

Memory

STREAM (https://www.cs.virginia.edu/
stream; McCalpin 1995) is a simple syn-
thetic benchmark that measures sustainable
memory bandwidth, reported in MB/s. The
benchmark is specifically designed to work
with dataset much larger than the available
processor cache on any given system so
that the results are more indicative of the
performance of a very large, vector-style
application. The benchmark yields four
metrics, representing different memory
operations: Copy, Add, Scale, and Triad.
The benchmark had C and FORTRAN
versions available which can run either in
a single-threaded or distributed fashion. A
precompiled version of this benchmark is
often included in component benchmark
suites.

Storage IO

SPEC SFS2014 (https://www.spec.org/
sfs2014) is a benchmark suite which
measures file server throughput and
response time. The SPEC SFS2014 SP2
benchmark includes five workloads which
measure storage performance in different

application areas: database operations,
software builds, video data acquisition
(VDA), virtual desktop infrastructure
(VDI), and electronic design automation
(EDA). Each workload is independent of
the others and reports the throughput (in
MB/s) and overall response time (in msec)
for a given number of workload instances.
Netmist is the load generator, allowing
the benchmark suite can be run over
any version of NFS, SMB/CIFS, object-
oriented, local, or other POSIX-compatible
file system.

Iometer (http://www.iometer.org) is a tool
which measures the performance and
characterization of I/O components
for single and clustered systems. It is
based on a client-server model where
a single client controls one or manager
driver which generates I/O using one or
more worker threads. Iometer performs
asynchronous I/O and can access files or
block devices. The tool is very flexible
and allows the user to adjust the workload
by configuring target disk parameters
(e.g., disk size, starting sector, number of
outstanding I/Os) and the workload access
specifications (e.g., transfer request size,
percent random/sequential distribution,
percent read/write distribution, aligned
I/Os, reply size, TCP/IP status, burstiness).
All of the output data is collected into a
CSV file for easy manipulation. One of the
more commonly utilized output parameter
is I/O operations per second (IOPS).

IOzone (http://www.iozone.org/docs/IOzone_
msword_98.pdf) is a file system benchmark
utility which generates and measures a
variety of file operations. These file opera-
tions include read, write, re-read, re-write,
read backwards, read strided, fread, fwrite,
random read/write, pread/pwrite variants,
aio_read, aio_write, and mmap. The results
can be exported into useful graphs which
show performance characteristics and
bottlenecks of the disk I/O subsystem. The
benchmark is written in C and can be run
under many operating systems.

https://www.cs.virginia.edu/stream
https://www.cs.virginia.edu/stream
https://www.spec.org/sfs2014
https://www.spec.org/sfs2014
http://www.iometer.org
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://www.iozone.org/docs/IOzone_msword_98.pdf

Component Benchmark 473

C

Network IO

Netperf (https://github.com/HewlettPackard/
netperf) is a software application that
provides network bandwidth testing
between two hosts on a network. It
measures performance of bulk data
transfer and request/response network
traffic using either TCP or UDP via
BSD sockets. There are optional tests
that measure performance of DLPI,
UnixDomainSockets, the Fore ATM API,
and the HP HiPPI LLa interface. Originally
developed by Hewlett Packard, it is now
available from github. Netperf has been
ported to run on numerous distributions of
UNIX and Linux, Windows, and VMware.

Component benchmarks are often bundled to-
gether into a suite of benchmarks that may or may
not also include microbenchmarks to provide a
tool that can measure several system features
in a single package. Note that these suites are
frequently designed for the personal computer
or workstation market rather than for the server
environment.

Following is a description of the more com-
mon component benchmark suites.

SERT (https://www.spec.org/sert) is the Server
Efficiency Rating Tool developed by SPEC to
evaluate the energy efficiency of servers. The
SERT suite is a suite of 12 “worklet” modules
that stress different system components and
measure performance as well as the power
consumption of the system. These worklets
stress the CPU, memory, and disk I/O sub-
system at various target load levels well, as
well as one hybrid worklet that stress a series
of complex CPU and memory access pattern.
The SERT suite utilizes the Chauffeur (https://
www.spec.org/chauffeur-wdk) harness and is
configurable so individual worklets or cate-
gories of worklets can be run.

LMBench (http://lmbench.sourceforge.net) is
a suite of simple benchmarks that measure
bandwidth and latency performance for a
variety of system components, including
memory, caches, disk I/O, and network I/O.

LMBench is written in C and can be used on
most distributions of UNIX and Linux.

SiSoftware Sandra (http://www.sisoftware.eu)
is suite of modules that provide information
about a system’s hardware and software,
including performance measurements on the
CPU, memory, disk I/O, and graphics. Only
available on Windows, the primary target of
the suite is PC and workstation systems. There
are many versions available from the free Lite
version to the Enterprise version.

3DMark (https://www.3dmark.com) is a bench-
marking tool that measures performance of
CPU and graphics utilizing modules based off
different versions of DirectX. Only available
on Windows, Android, and iOS, 3DMark is
intended for analyzing PCs used by gaming
enthusiasts.

PCMark (https://www.futuremark.com/benchma
rks/pcmark) is a benchmarking tool similar to
3DMark which measures the performance
of different components of PCs, such as
CPU, memory, disk I/O, and graphics. Only
available on Windows, PCMark is intended
for home use.

Key Applications

Single component benchmarks generally are not
directly useful for the analysis of Big Data en-
vironments, as they measure only one or a few
specific aspects of one primary server or storage
components. A suite of component benchmarks
like the SERT suite can be a key method to
measure the behaviors of the primary server and
storage components. Nonetheless, they are not
measuring the interaction and possible perfor-
mance bottlenecks between those components.
The real usefulness of component benchmarks is
their role in the simplification of the performance
analysis and the pinpointing of the actual perfor-
mance bottlenecks within a component.

The major key application of component
benchmarks is their usage during server
development and the design/deployment phases
of new Big Data environments. In general, the
first step is to run one of the component suites (or

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://www.spec.org/sert
https://www.spec.org/chauffeur-wdk
https://www.spec.org/chauffeur-wdk
http://lmbench.sourceforge.net
http://www.sisoftware.eu
https://www.3dmark.com
https://www.futuremark.com/benchmarks/pcmark

474 Component Benchmark

a series of hand-picked component benchmarks)
in order to determine if one subsystem exhibits
lower-than-expected performance. Next, an
analysis of the subsystem is conducted to
further pinpoint the root causes. For example,
the performance results from the SERT suite
determine lower-than-expected CPU subsystem
performance. The next step would include
running the SPEC CPU2017 benchmark suite to
further close in on the root cause. Finally, after a
possible resolution of the issues is implemented,
the original component suite should be run again
in order to verify that the resolution satisfactorily
fixed the bottleneck. Please note that it is the
nature of performance bottlenecks that they
switch from one component to another, once the
root cause of the original bottleneck is resolved.

In order to maintain their usefulness, compo-
nent benchmarks need a continuous development
cycle to keep up with emerging technologies.
For example, in order to accurately measure the
performance gain of a new microarchitecture, a
compiled version of the benchmark code (includ-
ing its libraries if applicable), which supports this
new microarchitecture, should be utilized. A 0.5–
3.0% performance gain from such a microarchi-
tecture optimization is quite common.

Cross-References

�Analytics Benchmarks
�Benchmark Harness
�Business Process Performance Measurement
�End-to-End Benchmark
�Energy Benchmarking
�Energy Efficiency in Big Data Analysis
�Graph Benchmarking
�Machine Learning Benchmarks
�Metrics for Big Data Benchmarks
�Microbenchmark
� Performance Evaluation of Big Data Analysis
� SparkBench
� Stream Benchmarks
�Virtualized Big Data Benchmarks
�YCSB

References

3DMark benchmark. https://www.3dmark.com
Chauffeur harness. https://www.spec.org/chauffeur-wdk
Dongarra JJ, Luszczek P, Petitet A (2002) The

LINPACK benchmark: past, present, and future. http://
www.netlib.org/utk/people/JackDongarra/PAPERS/hpl
paper.pdf

Gibson JC (1970) The Gibson mix. Technical report TR
00.2043. IBM Systems Development Division, Pough-
keepsie

HEPiX benchmarking working group. https://www.
hepix.org/e10227/e10327/e10325

Iometer project. http://www.iometer.org
IOzone filesystem benchmark. http://www.iozone.

org/docs/IOzone_msword_98.pdf
LMBench tool. http://lmbench.sourceforge.net
Longbottom (2014) R. Whetstone benchmark

history and results. http://www.roylongbottom.
org.uk/whetstone.htm

McCalpin JD (1995) Memory bandwidth and
machine balance in current high performance
computers. IEEE Comput Soc Tech Comm
Comput Arch (TCCA) Newsl. https://www.research
gate.net/publication/213876927_Memory_Bandwidth_
and_Machine_Balance_in_Current_High_Performan
ce_Computers

Michelotto M, Alef M, Iribarren A, Meinhard H,
Wegner P, Bly M, Benelli G, Brasolin F, De-
gaudenzi H, De Salvo A, Gable I, Hirstius A,
Hristov P (2010) A comparison of HEP code
with SPEC benchmark on multi-core worker nodes.
http://www.pd.infn.it/hepmark/HS06.pdf

Netperf benchmark. https://github.com/HewlettPackard/
netperf

PCMark benchmark. https://www.futuremark.com/bench
marks/pcmark

Server Efficiency Rating Tool (SERT). https://www.
spec.org/sert

SiSoftware Sandra. http://www.sisoftware.eu
SPEC CPU 2006 benchmark. https://www.spec.org/

cpu2006
SPEC CPU 2017 benchmark. https://www.spec.

org/cpu2017
SPEC SFS 2014 benchmark. https://www.spec.org/

sfs2014
Standard Performance Evaluation Corporation (SPEC).

https://www.spec.org
STREAM benchmark. https://www.cs.virginia.edu/stream
The LINPACK benchmark programs and reports.

http://www.netlib.org/benchmark/index.html
Transaction Processing Performance Council (TPC).

http://www.tpc.org
Weiss A (2002) Dhrystone benchmark: history,

analysis, scores and recommendations. http://www.
johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhite
Paper.pdf

https://doi.org/10.1007/978-3-319-77525-8_113
https://doi.org/10.1007/978-3-319-77525-8_134
https://doi.org/10.1007/978-3-319-77525-8_99
https://doi.org/10.1007/978-3-319-77525-8_112
https://doi.org/10.1007/978-3-319-77525-8_119
https://doi.org/10.1007/978-3-319-77525-8_141
https://doi.org/10.1007/978-3-319-77525-8_298
https://doi.org/10.1007/978-3-319-77525-8_100206
https://doi.org/10.1007/978-3-319-77525-8_122
https://doi.org/10.1007/978-3-319-77525-8_111
https://doi.org/10.1007/978-3-319-77525-8_143
https://doi.org/10.1007/978-3-319-77525-8_300
https://doi.org/10.1007/978-3-319-77525-8_299
https://doi.org/10.1007/978-3-319-77525-8_120
https://doi.org/10.1007/978-3-319-77525-8_131
https://www.3dmark.com
https://www.spec.org/chauffeur-wdk
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf
https://www.hepix.org/e10227/e10327/e10325
http://www.iometer.org
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://lmbench.sourceforge.net
http://www.roylongbottom.org.uk/whetstone.htm
https://www.researchgate.net/publication/213876927_Memory_Bandwidth_and_Machine_Balance_in_Current_High_Performance_Computers
http://www.pd.infn.it/hepmark/HS06.pdf
https://github.com/HewlettPackard/netperf
https://www.futuremark.com/benchmarks/pcmark
https://www.spec.org/sert
http://www.sisoftware.eu
https://www.spec.org/cpu2006
https://www.spec.org/cpu2017
https://www.spec.org/sfs2014
https://www.spec.org
https://www.cs.virginia.edu/stream
http://www.netlib.org/benchmark/index.html
http://www.tpc.org
http://www.johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.pdf

Compressed Indexes for Repetitive Textual Datasets 475

C

Compressed Indexes for
Repetitive Textual Datasets

Travis Gagie1 and Gonzalo Navarro2

1EIT, Diego Portales University, Santiago, Chile
2Department of Computer Science, University of
Chile, Santiago, Chile

Definitions

Given a text or collection of texts containing long
repeated substrings, we are asked to build an
index that takes space bounded in terms of the
size of a well-compressed encoding of the text
or texts and that, given an arbitrary pattern, can
quickly report the occurrences of that pattern in
the dataset.

Overview

Humanity now stores as much data in a year
as we did in our whole history until the turn
of the millennium. Most applications that use
this data need to query it efficiently, and one of
the most important kinds of queries is pattern
matching in texts. It is usually impractical to
scan massive textual datasets every time we want
to count or find the occurrences of a pattern,
so we must index them. Until fairly recently,
indexing a text often took much more memory
than simply storing the dataset. In 2000, however,
Ferragina and Manzini (2000, 2005) showed how
to simultaneously compress and index a text,
with the index itself supporting access to the
text and thus replacing it. Also in 2000, Grossi
and Vitter (2000, 2005) and Sadakane (2000,
2003) proposed an alternative data structure with
essentially the same query functionality but with
a space bound proportional to the size of the
uncompressed text; it was then improved to oc-
cupy compressed space. Ferragina and Manzini’s
and Grossi and Vitter’s data structures, the FM-
index and compressed suffix array (CSA), have

had a dramatic impact on several fields such
as bioinformatics, where FM-indexes are cen-
tral to many important DNA aligners such as
Bowtie (Langmead et al. 2009) and BWA (Li
and Durbin 2009). We note that, in contrast to
inverted lists, CSAs and FM-indexes can index
any kind of text and allow any pattern to be
sought, without regard for word boundaries. This
is important not only for applications involving
DNA but also to index source code repositories,
multimedia sequences, and even tokenized word
sequences in order to perform phrase searches.

CSAs and FM-indexes use space comparable
to the sizes of encodings produced by the
best statistical compressors, which achieve
bounds in terms of higher-order entropies, but
massive texts are often repetitive and are thus
much more compressible using dictionary-based
compressors such as LZ77 (Ziv and Lempel
1977). For example, humans are genetically
almost identical, so a good dictionary-based
compressor can compress a database of a
thousand human genomes to about 1% of its
size, as reported by the 1000 Genomes Project
(http://www.internationalgenome.org). Naturally,
researchers have tried to adapt CSAs and FM-
indexes to take better advantage of repetitions
or to find alternatives to them that do so. Their
efforts can be broadly classified into four groups:
run-length compressed FM-indexes, indexes
based on Lempel-Ziv compression or context-
free grammars, compressed directed acyclic word
graphs (CDAWGs), and, most recently, graph-
based indexes. We briefly survey the history
of each approach, mentioning its strengths and
weaknesses and giving pointers to practical
implementations where they are available.

Key Research Findings

Run-Length Compressed CSAs and
FM-Indexes
Consider a repetitive text (or the concatenation of
the texts in a repetitive collection) T Œ1::n�. The
suffix array of T , AŒ1::n�, points to the starting

http://www.internationalgenome.org

476 Compressed Indexes for Repetitive Textual Datasets

positions of all the suffixes of T in lexicographic
order. Assume a long string SŒ1::k� appears s

times in T . Then the s suffixes starting with
SŒ1::k� appear in a contiguous range AŒp1::p1 C

s � 1�. It is likely that the suffixes starting with
SŒ2::k� also appear together in another range
AŒp2::p2 C s � 2�, in the same order as those in
AŒp1::p1 C s � 1�. The same is likely to occur for
any SŒk0::k� as long as k �k0 is sufficiently large.
Such a regularity shows up in the � function of
CSAs, �Œi� D A�1ŒAŒi � C 1�, since the values in
�Œp1::p1 C s � 1� will point to Œp2::p2 C s � 2�,
and so on, thereby inducing runs of 1s in � 0Œi � D

�Œi� � �Œi � 1�, which is the main component of
CSAs. It also shows up in the Burrows-Wheeler
Transform (BWT) of T , BWTŒi � D T ŒAŒi � � 1�,
which is the main component of the FM-index:
BWTŒp2::p2 C s � 1� will be a run of copies of
SŒ1� and so on.

Mäkinen et al. (2010) took the first step toward
adapting CSAs and FM-indexes to handle repet-
itive texts better, by run-length compressing the
runs of 1s in � 0 or the runs of the same letters in
the BWT. The number of runs in � 0 is almost the
same as the number r of runs in the BWT. Their
run-length compressed CSA and FM-index then
use O.r/ space, often much less than a standard
CSA or FM-index while still counting patterns’
occurrences quickly.

Until very recently it was not known how to
compress similarly the suffix-array sample with
which we can locate patterns’ occurrences in T ,
without making those locating queries extremely
slow. However, Gagie et al. (2018) have now in-
troduced a new sampling scheme that takes O.r/

space and lets us locate each occurrence with
essentially only a predecessor query. Specifically,
they can count the number of occurrences of a
pattern of length m in O.m log log n/ time and
then locate each occurrence in O.log log n/ time.

Lempel-Ziv and Grammar-Based Indexes
Kärkkäinen and Ukkonen (1996) showed how
to store an O.´/-space data structure in addi-
tion to the text T , where ´ is the number of
phrases in the LZ77 parse of T , such that locating
all the occurrences of a pattern of length m

takes O.m2 C m log ´ C
p

m´ log m/ time plus
O.log ´/ time per occurrence. They divided the

occurrences into two types, called primary and
secondary: the former start in one phrase and
end in another (or at the next phrase boundary),
and the latter are completely contained within
single phrases. Their idea was to store a pair
of Patricia trees, one for the reversed phrases
in the parse and the other for the suffixes start-
ing at phrase boundaries. By dividing a pattern
every possible way into a nonempty prefix and
a (possibly empty) suffix and searching for the
reversed prefix in the first tree and the suffix
in the second, they obtain a pair of Patricia
tree nodes or, equivalently, a pair of ranges in
the lexicographically sorted reversed prefixes and
suffixes. Using an O.´/-space data structure for
four-sided two-dimensional range reporting, they
obtain all the primary occurrences. They use
access to the text to verify the occurrences. Using
another O.´/-space data structure that represents
the structure of the LZ77 parse, they can then
obtain all the secondary occurrences from the
primary ones.

Researchers are still following Kärkkäinen
and Ukkonen’s basic design. The major
alterations have aimed at a compressed
representation of the text, which is essential in the
repetitive scenario. Compressed representations,
which must offer direct access in order to support
searches, have been built on the LZ77 parse
or a variant of it (Kreft and Navarro 2013;
Do et al. 2014; Navarro 2017), a context-free
grammar (Claude and Navarro 2011, 2012; Gagie
et al. 2012, 2014; Bille et al. 2017), a run-length
compressed FM-index without samples (which
also replaces the Patricia trees) (Belazzougui
et al. 2015, 2017), and CDAWGs (Belazzougui
et al. 2015, 2017). Another improvement has
been to substitute z-fast tries for the Patricia trees,
which allows removing the quadratic dependence
on m in the query time (Gagie et al. 2014; Bille
et al. 2017).

There are also indexes based on edit-sensitive
parsing (Maruyama et al. 2013; Takabatake
et al. 2014, 2016) and locally consistent
parsing (Nishimoto et al. 2016), although the
former has poor worst-case query time and seems
practical only for long patterns, and the latter is
complicated and competitive in theory only when
the text is dynamic.

Compressed Indexes for Repetitive Textual Datasets 477

C

No structure using O.´/ space offers good
worst-case query times, because it is not known
how to support fast access to the text within
this space. The most recent theoretical bounds
are due to Bille et al. (2017), who showed
how we can store an O.´ log.n=´/ log log ´/-
space data structure such that later we can
locate all the occurrences of a pattern of length
m in O.m/ time plus O.log log ´/ time per
occurrence. The implementation of Kreft and
Navarro (2013) uses O.´/ space and offers
the best compression with query times that are
competitive in practice (despite their O.m2´/

worst-case bound).
Several authors (Schneeberger et al. 2009;

Wandelt et al. 2013; Ferrada et al. 2014;
Procházka and Holub 2014; Rahn et al. 2014)
have independently proposed ideas essentially
equivalent to finding the primary occurrences
using an FM-index built on the substrings of
length 2` centered around phrase boundaries,
where ` is a parameter. Gagie and Puglisi
(2015) surveyed early work in this direction,
and others (Danek et al. 2014; Wandelt and Leser
2015; Valenzuela 2016; Valenzuela and Mäkinen
2017; Ferrada et al. 2018) have given new
implementations. These indexes are practical,
though they have good worst-case query times
only for patterns of length m � `. Increasing `

at construction worsens compression, whereas
searching for patterns longer than ` requires the
use of heuristics.

CDAWGs
A string SŒ1::k� appearing s times in T tends
to induce large isomorphic subtrees in the suffix
tree of T , namely, the subtrees (with s leaves)
of the suffix tree nodes representing the strings
SŒ1::k�, SŒ2::k�, and so on. By regarding the
suffix tree as a deterministic automaton, identi-
fying all of its leaves with a single final state,
and minimizing it, one obtains the CDAWG of T

(Blumer et al. 1987). The minimization gets rid of
the isomorphic subtrees, so the CDAWG benefits
from repetitiveness as well.

The CDAWG can be represented using O.e/

space, where e is the number of right extensions
of maximal repeats in T . With it, we can locate
all the occurrences of a pattern of length m in

O.m log log n/ time plus O.1/ time per occur-
rence (Belazzougui et al. 2015). Its disadvantage
is that e is always larger than r and ´, by a
wide margin in practice, and hence CDAWGs
tend to be much larger than the structures de-
scribed above. The fastest variant (Belazzougui
and Cunial 2017) uses O.e C e/ space (where e

is the e measure of the reversed text) and answers
locating queries in optimal time: O.m/ and then
O.1/ per occurrence.

An advantage of CDAWGs is that they can
be augmented to support suffix tree functional-
ity (Belazzougui and Cunial 2017; Takagi et al.
2017), which is more powerful than just counting
and locating pattern occurrences and of inter-
est in bioinformatics applications. The CDAWG
implements a number of suffix tree navigation
operations in O.log n/ time. Other compressed
suffix trees for repetitive collections (Abeliuk
et al. 2013; Navarro and Ordóñez 2016) build
on a run-length encoded CSA or FM-index and
apply grammar compression to the extra suf-
fix tree components: the suffix tree’s topology
and the longest common prefix array. Like the
CDAWG, they profit from repetitiveness but are
significantly larger than their underlying com-
pressed suffix array. The only compressed suffix
tree of this kind offering good space guarantees
(Gagie et al. 2017b), uses O.r log.n=r// space,
and implements the suffix tree operations in time
O.log.n=r//.

Graph-Based Indexes
Graph-based indexes are the newest approach
to compressed indexing of repetitive textual
datasets so far focused on genomics (Eggertsson
et al. 2017; Novak et al. 2017b). Most are
generalizations of FM-indexes; Na et al.’s suffix
tree of an alignment (Na et al. 2013a) and suffix
array of an alignment (Na et al. 2013b) have
now been superseded by their FM-index of an
alignment (Na et al. 2016; Na et al. 2018).
Work in this direction began with Ferragina
et al. (2009) extending FM-indexes to labelled
trees, followed by Bowe et al. (2012) extending
them to de Bruijn graphs and Sirén et al. (2011,
2014) and Sirén (2017) extending them to
labelled directed acyclic graphs (DAGs). Gagie

478 Compressed Indexes for Repetitive Textual Datasets

et al. (2017a) recently introduced a framework
unifying these results.

Sirén et al.’s indexes are meant for pan-
genomics and work essentially by embedding
and indexing the DAGs in a kind of de Bruijn
graph, allowing matches in recombinations of
the input genomes. On the other hand, Na et
al. index only the input genomes, essentially
by embedding and indexing them in a kind of
colored de Bruijn graph.

Both techniques depend on the presence of
long, perfectly conserved regions to obtain better
compression than run-length compressed FM-
indexes, so it is not clear whether they will
retain a significant advantage when compress-
ing databases of tens of thousands of genomes
in which low-frequency variations are included,
how they compare to reference-free alignment
methods, and to what extent they have applica-
tions outside bioinformatics.

Implementations
The run-length compressed FM-index of
Mäkinen et al. (2010) is available at http://jltsiren.
kapsi.fi/rlcsa. There are several implementations
specifically for genomics (e.g., BGT, BWT-
merge, MSBWT, RopeBWT2, SGA), many
of which are available on GitHub. The index
of Gagie et al. (2018) is implemented at
https://github.com/nicolaprezza/r-index. The best
implementation of the index of Kreft and Navarro
(2013) is by Claude et al. (2016), currently
available at https://github.com/migumar2/
uiHRDC/tree/master/self-indexes/LZ.

Valenzuela (2016) and Valenzuela and Mäki-
nen (2017) give a good general-purpose hybrid
index and a good pan-genomic aligner based
on a hybrid index, available at https://www.cs.
helsinki.fi/u/dvalenzu/software.

The DAG-based implementation of Sirén et al.
is available at https://github.com/jltsiren/gcsa2.
There are also several implementations of graph
indexes specifically for genomics (Dilthey et al.
2015; Maciuca et al. 2016; Novak et al. 2017a;
Paten et al. 2017), some of which are available at
https://github.com/vgteam/vg.

Example Application

The main applications of indexing repetitive texts
have been in bioinformatics, such as indexing
genomic databases to support fast alignments. We
may be given a database of a thousand human
genomes, for example, and asked to preprocess
it such that later, given a pattern and an integer
k, we can quickly report which genomes contain
substrings within edit distance k of that pattern.
There are several techniques for implementing
such approximate pattern matching using indexes
for exact matching (Navarro and Raffinot 2002;
Ohlebusch 2013; Mäkinen et al. 2015).

Future Directions for Research

There are several important open problems in the
area. An immediate one is to explore the practical
impact of the new run-length compressed FM-
index of Gagie et al. (2018). In the longer term,
combining run-length compressed FM-indexes
with graph-based indexes and finding new
applications for such indexes seem promising.
Another challenge is to upgrade suffix arrays
to suffix trees for repetitive collections; suffix
trees require access to arbitrary suffix array
cells, which is not known to be possible within
O.r/ space, where r is again the number
of runs in the BWT. Obtaining better search
performance within space close to O.´/ in
Lempel-Ziv- and grammar-based indexes is
also important, where ´ is again the number
of phrases in the LZ77 parse, because ´ is in
practice significantly smaller than r , even if in
theory they are incomparable. String attractors
(Kempa and Prezza 2017) were introduced as
a generalization of these two and many other
measures of repetitiveness, so indexes based on
them could be good with respect to all these
measures simultaneously.

Cross-References

�Genomic Data Compression
�Grammar-Based Compression
� Inverted Index Compression

http://jltsiren.kapsi.fi/rlcsa
http://jltsiren.kapsi.fi/rlcsa
https://github.com/nicolaprezza/r-index
https://github.com/migumar2/uiHRDC/tree/master/self-indexes/LZ
https://github.com/migumar2/uiHRDC/tree/master/self-indexes/LZ
https://www.cs.helsinki.fi/u/dvalenzu/software
https://www.cs.helsinki.fi/u/dvalenzu/software
https://github.com/jltsiren/gcsa2
https://github.com/vgteam/vg
https://doi.org/10.1007/978-3-319-77525-8_55
https://doi.org/10.1007/978-3-319-77525-8_56
https://doi.org/10.1007/978-3-319-77525-8_52

Compressed Indexes for Repetitive Textual Datasets 479

C

References

Abeliuk A, Cánovas R, Navarro G (2013) Practical com-
pressed suffix trees. Algorithms 6(2):319–351

Belazzougui D, Cunial F (2017) Representing the suffix
tree with the CDAWG. In: Proceedings of the 28th
symposium on combinatorial pattern matching (CPM),
pp 7:1–7:13

Belazzougui D, Cunial F, Gagie T, Prezza N, Raffinot M
(2015) Composite repetition-aware data structures. In:
Proceedings of the 26th symposium on combinatorial
pattern matching (CPM), pp 26–39

Belazzougui D, Cunial F, Gagie T, Prezza N, Raffinot M
(2017) Flexible indexing of repetitive collections. In:
Proceedings of the 13th conference on computability
in Europe (CiE), pp 162–174

Bille P, Ettienne MB, Gørtz IL, Vildhøj HW (2017)
Time-space trade-offs for Lempel-Ziv compressed
indexing. In: Proceedings of the 28th sympo-
sium on combinatorial pattern matching (CPM),
pp 16:1–16:17

Blumer A, Blumer J, Haussler D, McConnell RM,
Ehrenfeucht A (1987) Complete inverted files for
efficient text retrieval and analysis. J ACM 34(3):
578–595

Bowe A, Onodera T, Sadakane K, Shibuya T (2012)
Succinct de Bruijn graphs. In: Proceedings of the 12th
workshop on algorithms in bioinformatics (WABI),
pp 225–235

Claude F, Navarro G (2011) Self-indexed grammar-
based compression. Fundamenta Informaticae 111(3):
313–337

Claude F, Navarro G (2012) Improved grammar-based
compressed indexes. In: Proceedings of the 19th sym-
posium on string processing and information retrieval
(SPIRE), pp 180–192

Claude F, Fariña A, Martínez-Prieto MA, Navarro G
(2016) Universal indexes for highly repetitive docu-
ment collections. Inf Syst 61:1–23

Danek A, Deorowicz S, Grabowski S (2014) Indexes
of large genome collections on a PC. PLoS One
9(10):e109384

Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G
(2015) Improved genome inference in the MHC us-
ing a population reference graph. Nat Genet 47(6):
682–688

Do HH, Jansson J, Sadakane K, Sung W (2014) Fast
relative Lempel-Ziv self-index for similar sequences.
Theor Comput Sci 532:14–30

Eggertsson HP et al (2017) Graphtyper enables
population-scale genotyping using pangenome
graphs. Nat Genet 49(11):1654–1660

Ferrada H, Gagie T, Hirvola T, Puglisi SJ (2014) Hybrid
indexes for repetitive datasets. Phil Trans R Soc A
372(2016):20130137

Ferrada H, Kempa D, Puglisi SJ (2018) Hybrid indexing
revisited. In: Proceedings of the 20th workshop on
algorithm engineering and experiments (ALENEX),
pp 1–8

Ferragina P, Manzini G (2000) Opportunistic data
structures with applications. In: Proceedings of the
41st symposium on foundations of computer science
(FOCS), pp 390–398

Ferragina P, Manzini G (2005) Indexing compressed text.
J ACM 52(4):552–581

Ferragina P, Luccio F, Manzini G, Muthukrishnan S
(2009) Compressing and indexing labeled trees, with
applications. J ACM 57(1):4:1–4:33

Gagie T, Puglisi SJ (2015) Searching and indexing
genomic databases via kernelization. Front Bioeng
Biotechnol 3:12

Gagie T, Gawrychowski P, Kärkkäinen J, Nekrich Y,
Puglisi SJ (2012) A faster grammar-based self-
index. In: Proceedings of the 6th conference on lan-
guage and automata theory and applications (LATA),
pp 240–251

Gagie T, Gawrychowski P, Kärkkäinen J, Nekrich Y,
Puglisi SJ (2014) LZ77-based self-indexing with
faster pattern matching. In: Proceedings of the 11th
Latin American symposium on theoretical informatincs
(LATIN), pp 731–742

Gagie T, Manzini G, Sirén J (2017a) Wheeler graphs:
a framework for BWT-based data structures. Theor
Comput Sci 698:67–78

Gagie T, Navarro G, Prezza N (2017b) Optimal-time text
indexing in BWT-runs bounded space. Technical report
1705.10382, arXiv.org

Gagie T, Navarro G, Prezza N (2018) Optimal-time text
indexing in BWT-runs bounded space. In: Proceedings
of the 29th symposium on discrete algorithms (SODA),
pp 1459–1477

Grossi R, Vitter JS (2000) Compressed suffix arrays and
suffix trees with applications to text indexing and string
matching (extended abstract). In: Proceedings of the
32nd symposium on theory of computing (STOC),
pp 397–406

Grossi R, Vitter JS (2005) Compressed suffix arrays
and suffix trees with applications to text index-
ing and string matching. SIAM J Comput 35(2):
378–407

Kärkkäinen J, Ukkonen E (1996) Lempel-Ziv parsing and
sublinear-size index structures for string matching. In:
Proceedings of the 3rd South American workshop on
string processing (WSP), pp 141–155

Kempa D, Prezza N (2017) At the roots of dictionary
compression: string attractors. In: Proceedings of the
50th symposium on theory of computing (STOC),
2018. CoRR abs/1710.10964

Kreft S, Navarro G (2013) On compressing and in-
dexing repetitive sequences. Theor Comput Sci 483:
115–133

Langmead B, Trapnell C, Pop M, Salzberg SL (2009)
Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol
10(3):R25

Li H, Durbin R (2009) Fast and accurate short read align-
ment with Burrows-Wheeler transform. Bioinformatics
25(14):1754–1760

480 Compressed Indexes for Repetitive Textual Datasets

Maciuca S, del Ojo Elias C, McVean G, Iqbal Z (2016)
A natural encoding of genetic variation in a Burrows-
Wheeler transform to enable mapping and genome
inference. In: Proceedings of the 16th workshop on
algorithms in bioinformatics (WABI), pp 222–233

Mäkinen V, Navarro G, Sirén J, Välimäki N (2010)
Storage and retrieval of highly repetitive sequence
collections. J Comput Biol 17(3):281–308

Mäkinen V, Belazzougui D, Cunial F, Tomescu AI (2015)
Genome-scale algorithm design: biological sequence
analysis in the era of high-throughput sequencing.
Cambridge University Press, Cambridge

Maruyama S, Nakahara M, Kishiue N, Sakamoto H
(2013) ESP-index: a compressed index based on edit-
sensitive parsing. J Discrete Algorithms 18:100–112

Na JC, Park H, Crochemore M, Holub J, Iliopoulos CS,
Mouchard L, Park K (2013a) Suffix tree of alignment:
an efficient index for similar data. In: Proceedings
of the 24th international workshop on combinatorial
algorithms (IWOCA), pp 337–348

Na JC, Park H, Lee S, Hong M, Lecroq T, Mouchard L,
Park K (2013b) Suffix array of alignment: a practical
index for similar data. In: Proceedings of the 20th sym-
posium on string processing and information retrieval
(SPIRE), pp 243–254

Na JC, Kim H, Park H, Lecroq T, Léonard M, Mouchard
L, Park K (2016) FM-index of alignment: a compressed
index for similar strings. Theor Comput Sci 638:159–
170

Na JC, Kim H, Min S, Park H, Lecroq T, Léonard M,
Mouchard L, Park K (2018) FM-index of alignment
with gaps. Theor Comput Sci. https://doi.org/10.1016/
j.tcs.2017.02.020

Navarro G (2017) A self-index on block trees. In: Pro-
ceedings of the 17th symposium on string processing
and information retrieval (SPIRE), pp 278–289

Navarro G, Ordóñez A (2016) Faster compressed suffix
trees for repetitive text collections. J Exp Algorithmics
21(1):article 1.8

Navarro G, Raffinot M (2002) Flexible pattern matching
in strings – practical on-line search algorithms for texts
and biological sequences. Cambridge University Press,
Cambridge, UK

Nishimoto T, Tomohiro I, Inenaga S, Bannai H, Takeda
M (2016) Dynamic index and LZ factorization in com-
pressed space. In: Proceedings of the prague stringol-
ogy conference (PSC), pp 158–170

Novak AM, Garrison E, Paten B (2017a) A graph ex-
tension of the positional Burrows-Wheeler transform
and its applications. Algorithms Mol Biol 12(1):18:1–
18:12

Novak AM et al (2017b) Genome graphs. Technical report
101378, bioRxiv

Ohlebusch E (2013) Bioinformatics algorithms: sequence
analysis, genome rearrangements, and phylogenetic
reconstruction. Oldenbusch Verlag, Bremen, Germany

Paten B, Novak AM, Eizenga JM, Garrison E (2017)
Genome graphs and the evolution of genome inference.
Genome Res 27(5):665–676

Procházka P, Holub J (2014) Compressing similar biolog-
ical sequences using FM-index. In: Proceedings of the
data compression conference (DCC), pp 312–321

Rahn R, Weese D, Reinert K (2014) Journaled string tree
– a scalable data structure for analyzing thousands
of similar genomes on your laptop. Bioinformatics
30(24):3499–3505

Sadakane K (2000) Compressed text databases with effi-
cient query algorithms based on the compressed suf-
fix array. In: Proceedings of the 11th international
symposium on algorithms and computations (ISAAC),
pp 410–421

Sadakane K (2003) New text indexing functionalities of
the compressed suffix arrays. J Algorithms 48(2):294–
313

Schneeberger K, Hagmann J, Ossowski S, Warthmann N,
Gesing S, Kohlbacher O, Weigel D (2009) Simultane-
ous alignment of short reads against multiple genomes.
Genome Biol 10(9):R98

Sirén J (2017) Indexing variation graphs. In: Proceedings
of the 19th workshop on algorithm engineering and
experiments (ALENEX), pp 13–27

Sirén J, Välimäki N, Mäkinen V (2011) Indexing finite
language representation of population genotypes. In:
Proceedings of the 11th workshop on algorithms in
bioinformatics (WABI), pp 270–281

Sirén J, Välimäki N, Mäkinen V (2014) Indexing graphs
for path queries with applications in genome research.
IEEE/ACM Trans Comput Biol Bioinform 11(2):
375–388

Takabatake Y, Tabei Y, Sakamoto H (2014) Improved
ESP-index: a practical self-index for highly repetitive
texts. In: Proceedings of the 13th symposium on exper-
imental algorithms (SEA), pp 338–350

Takabatake Y, Nakashima K, Kuboyama T, Tabei Y,
Sakamoto H (2016) siEDM: an efficient string index
and search algorithm for edit distance with moves.
Algorithms 9(2):26

Takagi T, Goto K, Fujishige Y, Inenaga S, Arimura H
(2017) Linear-size CDAWG: new repetition-aware in-
dexing and grammar compression. In: Proceedings of
the 24th symposium on string processing and informa-
tion retrieval (SPIRE), pp 304–316

Valenzuela D (2016) CHICO: a compressed hybrid in-
dex for repetitive collections. In: Proceedings of the
15th symposium on experimental algorithms (SEA),
pp 326–338

Valenzuela D, Mäkinen V (2017) CHIC: a short read
aligner for pan-genomic references. Technical report
178129, bioRxiv.org

Wandelt S, Leser U (2015) MRCSI: compressing and
searching string collections with multiple references.
Proc VLDB Endowment 8(5):461–472

Wandelt S, Starlinger J, Bux M, Leser U (2013) RCSI:
scalable similarity search in thousand(s) of genomes.
Proc VLDB Endowment 6(13):1534–1545

Ziv J, Lempel A (1977) A universal algorithm for se-
quential data compression. IEEE Trans Inf Theory
23(3):337–343

https://doi.org/10.1016/j.tcs.2017.02.020
https://doi.org/10.1016/j.tcs.2017.02.020

Computer Architecture for Big Data 481

C

Compressed Representations
for Complex Networks

� (Web/Social) Graph Compression

Computational Needs of Big
Data

� Parallel Processing with Big Data

Computer Architecture for Big
Data

Behrooz Parhami
Department of Electrical and Computer
Engineering, University of California,
Santa Barbara, CA, USA

Synonyms

Big data hardware acceleration; Hardware con-
siderations for big data

Definitions

How features of general-purpose computer ar-
chitecture impact big-data applications and, con-
versely, how requirements of big data lead to
the emergence of new hardware and architectural
support.

Overview

Computer architecture (Parhami 2005) is a sub-
discipline of computer science and engineering
that is concerned with designing computing
structures to meet application requirements

effectively, economically, reliably, and within
prevailing technological constraints. In this
entry, we discuss how features of general-
purpose computer architecture impacts big-data
applications and, conversely, how requirements
of big data lead to the emergence of new
hardware and architectural support.

Historical Trends in Computer
Architecture

The von Neumann architecture for stored-
program computers, with its single or unified
memory, sometimes referred to as the Princeton
architecture, emerged in 1945 (von Neumann
1945; von Neumann et al. 1947) and went
virtually unchallenged for decades. It dominated
the alternative Harvard architecture with separate
program and data memories (Aiken and Hopper
1946) from the outset as the more efficient and
versatile way of implementing digital computers.

As the workload for general-purpose
computers began to change, adjustments in, and
alternatives to, von Neumann architecture were
proposed. Examples include de-emphasizing
arithmetic operations in favor of data movement
primitives, as seen in input/output and stream
processors (Rixner 2001); introducing hardware
aids for frequently used operations, as in graphic
processing units or GPUs (Owens et al. 2008;
Singer 2013); and adding special instructions for
improved performance on multimedia workloads
(Lee 1995; Yoon et al. 2001).

Recently, data-intensive applications ne-
cessitated another reassessment of the match
between prevalent architectures and application
requirements. The performance penalty of data
having to be brought into the processor and
sent back to memory through relatively narrow
transfer channels was variously dubbed the “von
Neumann bottleneck” (Markgraf 2007) and
the “memory wall” (McKee 2004; Wulf and
McKee 1995). Memory data transfer rates are
measured in GB/s in modern machines, whereas
the processing rates can be three or more decimal
orders of magnitude higher.

https://doi.org/10.1007/978-3-319-77525-8_54
https://doi.org/10.1007/978-3-319-77525-8_165
https://doi.org/10.1007/978-3-319-77525-8_100029
https://doi.org/10.1007/978-3-319-77525-8_100163

482 Computer Architecture for Big Data

The term “non-von” (Shaw 1982) was coined
to characterize a large category of machines that
relaxed one or more of the defining features of
the von Neumann architecture, so as to alleviate
some of the perceived problems. Use of cache
memories (Smith 1982), often in multiple levels,
eased the von Neumann bottleneck for a while,
but the bottleneck reemerged, as the higher cache
data transfer bandwidth became inadequate and
applications that lacked or had relatively limited
locality of reference emerged. Memory inter-
leaving and memory-access pipelining, pioneered
by IBM (Smotherman 2010) and later used ex-
tensively in Cray supercomputers, was the next
logical step.

Extrapolating a bit from Fig. 1 (which covers
the period 1985–2010), and using round num-
bers, the total effect of architectural innovations
has been a 100-fold gain in performance, on
top of another factor-of-100 improvement due to
faster gates and circuits (Danowitz et al. 2012).
Both growth rates in Fig. 1 show signs of slow-
ing down, so that future gains to support the
rising processing need of big data will have to
come, at least in part, from other sources. In the
technology arena, use of emerging technologies
will provide some boost for specific applica-
tions. An intriguing option is resurrecting hybrid

digital/analog computing, which was sidelined
long ago in favor of all-digital systems. Archi-
tecturally, specialization is one possible avenue
for maintaining the performance growth rate, as
are massively parallel and in-memory or near-
memory computing.

How Big Data Affects Computer
Architecture

The current age of big data (Chen and Zhang
2014; Hu et al. 2014) has once again exposed
the von Neumann bottleneck, forcing computer
architects to seek new solutions to the age-old
problem, which has become much more serious.
Processing speed continues to rise exponentially,
while memory bandwidth increases at a much
slower pace.

It is by now understood that big data is differ-
ent from “lots of data.” It is sometimes defined
in terms of the attributes of volume, variety,
velocity, and veracity, known as the “4Vs” (or
“5 Vs,” if we also include value). Dealing with
big data requires big storage, big-data processing
capability, and big communication bandwidth.
The first two (storage and data processing) di-
rectly affect the architecture of the nodes holding

Computer Architecture for Big Data, Fig. 1 Technology advances and architectural innovations each contributed a
factor of �100 improvement in processor performance over three decades. (Danowitz et al. 2012)

Computer Architecture for Big Data 483

C

and processing the data. The part of communi-
cation that is internode is separately considered
in this encyclopedia. However, there is also the
issue of intranode communication represented in
buses and networks-on-chip that belong to our
architectural discussion here.

In addition to data volume, the type of data to
be handled is also changing from structured data,
as reflected, for example, in relational databases,
to semi-structured and unstructured data. While
this change has some negative effects in terms of
making traditional and well-understood database
technologies obsolete, it also opens up the pos-
sibility of using scalable processing platforms
made of commodity hardware as part of the
cloud-computing infrastructure. Massive unstruc-
tured data sets can be stored in distributed file
systems, such as the ones designed in connection
with Hadoop (Shafer et al. 2010) or SQL/noSQL
(Cattell 2011).

In addition to the challenges associated with
rising storage requirements and data access band-
width, the processing load grows with data vol-
ume because of various needs. These are:

• Encryption and decryption
• Compression and decompression
• Sampling and summarization
• Visualization and graphing
• Sorting and searching
• Indexing and query processing
• Classification and data mining
• Deduction and learning

The first four items above, which are different
forms of data translation, are discussed in the next
section. The other items, viz., data transforma-
tions, will be discussed subsequently.

Architectural Aids to Data
Translations

Many important data translations are handled
by endowing a general-purpose architecture with
suitable accelerator units deployed as coproces-
sors. Such accelerators are ideally custom inte-
grated circuits, whose designs are fully optimized

for their intended functions. However, in view
of rapid advances in capabilities, performance,
and energy efficiency of field-programmable gate
arrays (Kuon et al. 2008), a vast majority of
modern accelerators reported in the literature are
built on FPGA circuits.

Accelerators for encryption and decryption
algorithms have a long history (Bossuet et al.
2013). The binary choice of custom-designed
VLSI or general-purpose processing for crypto-
graphic computations has expanded to include a
variety of intermediate solutions which include
the use of FPGAs and GPUs. The best solution
for an application domain depends not only on
the required data rates and the crypto scheme, but
also on power, area, and reliability requirements.

Data compression (Storer 1988) allows us to
trade processing time and resources for savings in
storage requirements. While any type of data can
be compressed (e.g., text compression), massive
sizes of video files make them a prime target for
compression. With the emergence of video com-
pression standards (Le Gall 1991), much effort
has been expended to implement the standards
on special-purpose hardware (Pirsch et al. 1995),
offering orders of magnitude speed improvement
over general-purpose programmed implementa-
tions.

Both sampling and summarization aim to re-
duce data volume while still allowing the opera-
tions of interest to be performed with reasonable
precision. An alternative to post-collection reduc-
tion of data volume is to apply compression dur-
ing data collection, an approach that in the case of
sensor data collection is known as compressive
sensing (Baraniuk 2007). Compressive sensing,
when applicable, not only saves on processing
time but also reduces transmission bandwidth
and storage requirements. There are some math-
ematical underpinnings common to compressive
sensing techniques, but at the implementation
level, the methods and algorithms are by and
large application-dependent.

Data visualization (Ward et al. 2010) refers to
the production of graphical representation of data
for better understanding of hidden structures and
relationships. It may provide the only reasonable
hope for understanding massive amounts of data,

484 Computer Architecture for Big Data

although machine learning is a complementary
and competing method of late. Several visualiza-
tion accelerators were implemented in the late
1990s (e.g., Scott et al. 1998), but the modern
trend is to use FPGA and cluster-based methods.

Architectural Aids to Data
Transformations

Sorting is an extremely important primitive that
is time-consuming for large data sets. It is used
in a wide array of contexts, which includes facil-
itating subsequent searching operations. It can be
accelerated in a variety of ways, from building
more efficient data paths and memory access
schemes, in order to make conventional sorting
algorithms run faster, to the extreme of using
hardware sorting networks (Mueller et al. 2012;
Parhami 1999).

Indexing is one of the most important oper-
ations for large data sets, such as those main-
tained and processed by Google. Indexing and
query processing have been targeted for accel-
eration within large-scale database implementa-
tions (Casper and Olukotun 2014; Govindaraju
et al. 2004). Given the dominance of relational
databases in numerous application contexts, a va-
riety of acceleration methods have been proposed
for operations on such databases (e.g., Bandi et
al. 2004). Hardware components used in realizing
such accelerators include both FPGAs and GPUs.

Hardware aids for classification are as diverse
as classification algorithms and their underly-
ing applications. A prime example in Internet
routing is packet classification (Taylor 2005),
which is needed when various kinds of packets,
arriving at extremely high rates, must be sep-
arated for appropriate handling. Modern hard-
ware aids for packet classification use custom
arrays for pipelined network processing, content-
addressable memories (Liu et al. 2010), GPUs
(Owens et al. 2008), or tensor processing units
(Sato et al. 2017). Data mining, the process of
generating new information by examining large
data sets, has also been targeted for acceleration
(Sklyarov et al. 2015), and it can benefit from
similar highly parallel processing approaches.

Also falling under such acceleration schemes are
aids and accelerators for processing large graphs
(Lee et al. 2017).

The earliest form of deduction engines were
theorem provers. An important application of
automatic deduction and proof is in hardware ver-
ification (Cyrluk et al. 1995). In recent years, ma-
chine learning has emerged as an important tool
for improving the performance of conventional
systems and for developing novel methods of
tackling conceptually difficult problems. Game-
playing systems (Chen 2016) constitute impor-
tant testbeds for evaluating various approaches to
machine learning and their associated hardware
acceleration mechanisms. This is a field that has
just started its meteoric rise and bears watching
for future applications.

Memory, Processing,
and Interconnects

In both general-purpose and special-purpose sys-
tems interacting with big data, the three intercon-
nected challenges of providing adequate mem-
ory capacity, supplying the requisite processing
power, and enabling high-bandwidth data move-
ments between the various data-handling nodes
must be tackled (Hilbert and Lopez 2011).

The memory problem can be approached
using a combination of established and novel
technologies, including nonvolatile RAM, 3D
stacking of memory cells, processing in memory,
content-addressable memory, and a variety of
novel (nanoelectronics or biologically inspired)
technologies. We won’t dwell on the memory
architecture in this entry, because the memory
challenge is addressed in other articles (see the
Cross-References).

Many established methods exist for increasing
the data-handling capability of a processing
node. The architectural nomenclature includes
superscalar and VLIW organizations, collectively
known as instruction-level parallelism (Rau and
Fisher 1993), hardware multithreading (Eggers
et al. 1997), multicore parallelism (Gepner
and Kowalik 2006), domain-specific hardware
accelerators (examples cited earlier in this entry),

Computer Architecture for Big Data 485

C

transactional memory (Herlihy and Moss 1993),
and SIMD/vector architectural or instruction-
set extensions (Lee 1995; Yoon et al. 2001).
A complete discussion of all these methods
is beyond the scope of this entry, but much
pertinent information can be found elsewhere
in this encyclopedia.

Intranode communication is achieved through
high-bandwidth bus systems (Hall et al. 2000)
and, increasingly, for multicore processors and
systems-on-chip, by means of on-chip networks
(Benini and De Micheli 2002). Interconnection
bandwidth and latency rank high, along with
memory bandwidth, among hardware capabilities
needed for effective handling of big-data applica-
tions, which are increasingly implemented using
parallel and distributed processing. Considera-
tions in this domain are discussed in the entry
“Parallel Processing for Big Data.”

Future Directions

The field of computer architecture has advanced
for several decades along the mainstream line
of analyzing general applications and making
hardware faster and more efficient in handling
the common case while being less concerned
with rare cases which have limited impact on
performance. Big data both validates and chal-
lenges this assumption. It validates it in the sense
that certain data-handling primitives arise in all
contexts, regardless of the nature of the data or
its volume. It challenges the assumption by virtue
of the von-Neumann bottleneck or memory-wall
notions discussed earlier. The age of big data
will speed up the process of trickling down of
architectural innovations from supercomputers,
which have always led the way, into servers or
even personal computers, which now benefit from
parallel processing and, in some cases, massive
parallelism.

Several studies have been performed about the
direction of computer architecture in view of new
application domains and technological develop-
ments in the twenty-first century (e.g., Ceze et al.
2016; Stanford 2012). Since much of the process-
ing schemes for big data will be provided through

the cloud, directions of cloud computing and
associated hardware acceleration mechanisms be-
come relevant to our discussion here (Caulfield
et al. 2016). Advanced graphics processors (e.g.,
Nvidia 2016) will continue to play a key role in
providing the needed computational capabilities
for data-intensive applications requiring heavy
numerical calculations. Application-specific ac-
celerators for machine learning (Sato et al. 2017),
and, more generally, various forms of special-
ization, constitute another important avenue of
architectural advances for the big-data universe.

Cross-References

�Energy Implications of Big Data
� Parallel Processing with Big Data
� Storage Hierarchies for Big Data
� Storage Technologies for Big Data

References

Aiken HH, Hopper GM (1946) The automatic sequence
controlled calculator – I. Electr Eng 65(8–9):384–391

Bandi N, Sun C, Agrawal D, El Abbadi A (2004) Hard-
ware acceleration in commercial databases: a case
study of spatial operations. In: Proceedings of the inter-
national conference on very large data bases, Toronto,
pp 1021–1032

Baraniuk R (2007) Compressive sensing. IEEE Signal
Process Mag 24(4):118–121

Benini L, De Micheli G (2002) Networks on chips: a new
SoC paradigm. IEEE Comput 35(1):70–78

Bossuet L, Grand M, Gaspar L, Fischer V, Gogniat G
(2013) Architectures of flexible symmetric key crypto
engines – a survey: from hardware coprocessor to
multi-crypto-processor system on chip. ACM Comput
Surv 45(4):41

Casper J, Olukotun K (2014) Hardware acceleration of
database operations. In: Proceedings of ACM/SIGDA
international symposium on field-programmable gate
arrays, Monterey, CA, pp 151–160

Cattell R (2011) Scalable SQL and NoSQL data stores.
ACM SIGMOD Rec 39(4):12–27

Caulfield AM et al (2016) A cloud-scale acceleration
architecture. In: Proceedings of 49th IEEE/ACM in-
ternational symposium on microarchitecture, Orlando,
FL, pp 1–13

Ceze L, Hill MD, Wenisch TE (2016) Arch2030: a vision
of computer architecture research over the next 15
years, Computing Community Consortium. http://cra.

https://doi.org/10.1007/978-3-319-77525-8_171
https://doi.org/10.1007/978-3-319-77525-8_165
https://doi.org/10.1007/978-3-319-77525-8_175
https://doi.org/10.1007/978-3-319-77525-8_176

486 Computer Architecture for Big Data

org/ccc/wp-content/uploads/sites/2/2016/12/15447-CC
C-ARCH-2030-report-v3-1-1.pdf

Chen JX (2016) The evolution of computing: AlphaGo.
Comput Sci Eng 18(4):4–7

Chen CLP, Zhang C-Y (2014) Data-intensive applications,
challenges, techniques and technologies: a survey on
big data. Inf Sci 275:314–347

Cyrluk D, Rajan S, Shankar N, Srivas MK (1995) Ef-
fective theorem proving for hardware verification. In:
Theorem provers in circuit design. Springer, Berlin, pp
203–222

Danowitz A, Kelley K, Mao J, Stevenson JP, Horowitz
M (2012) CPU DB: recording microprocessor history.
Commun ACM 55(4):55–63

Eggers SJ, Emer JS, Levy HM, Lo JL, Stamm RL, Tullsen
DM (1997) Simultaneous multithreading: a platform
for next-generation processors. IEEE Micro 17(5):
12–19

Gepner P, Kowalik MF (2006) Multi-core processors:
new way to achieve high system performance. In:
Proceedings of IEEE international symposium on par-
allel computing in electrical engineering, Bialystok,
pp 9–13

Govindaraju NK, Lloyd B, Wang W, Lin M, Manocha D
(2004) Fast computation of database operations using
graphics processors. In: Proceedings of the ACM SIG-
MOD international conference on management of data,
Paris, pp 215–226

Hall SH, Hall GW, McCall JA (2000) High-speed digital
system design: a handbook of interconnect theory and
design practices. Wiley, New York

Herlihy M, Moss JEB (1993) Transactional memory:
architectural support for lock-free data structures. In:
Proceedings of the international symposium on com-
puter architecture, San Diego, CA, pp 289–300

Hilbert M, Lopez P (2011) The world’s technological
capacity to store, communicate, and compute informa-
tion. Science 332:60–65

Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable
systems for big data analytics: a technology tutorial.
IEEE Access 2:652–687

Kuon I, Tessier R, Rose J (2008) FPGA architecture:
survey and challenges. Found Trends Electron Des
Autom 2(2):135–253

Le Gall D (1991) MPEG: a video compression standard
for multimedia applications. Commun ACM 34(4):
46–58

Lee RB (1995) Accelerating multimedia with enhanced
microprocessors. IEEE Micro 15(2):22–32

Lee J, Kim H, Yoo S, Choi K, Hofstee HP, Nam GJ,
Nutter MR, Jamsek D (2017) ExtraV: boosting graph
processing near storage with a coherent accelerator.
Proc VLDB Endowment 10(12):1706–1717

Liu AX, Meiners CR, Torng E (2010) TCAM razor: a
systematic approach towards minimizing packet classi-
fiers in TCAMs. IEEE/ACM Trans Networking 18(2):
490–500

Markgraf JD (2007) The von Neumann Bottleneck. On-
line source that is no longer accessible (will find a
replacement for this reference during revisions)

McKee SA (2004) Reflections on the memory wall. In:
Proceedings of the conference on computing frontiers,
Ischia, pp 162–167

Mueller R, Teubner J, Alonso G (2012) Sorting networks
on FPGAs. Int J Very Large Data Bases 21(1):1–23

Nvidia (2016) Nvidia Tesla P100: infinite compute power
for the modern data center – technical overview.
On-line document. http://images.nvidia.com/content/
tesla/pdf/nvidia-teslap100-techoverview.pdf. Accessed
18 Feb 2018

Owens JD et al (2008) GPU computing. Proc IEEE
96(5):879–899

Parhami B (1999) Chapter 7: Sorting networks. In: Intro-
duction to parallel processing: algorithms and architec-
tures. Plenum Press, New York, pp 129–147

Parhami B (2005) Computer architecture: from micropro-
cessors to supercomputers. Oxford University Press,
New York

Pirsch P, Demassieux N, Gehrke W (1995) VLSI archi-
tectures for video compression – a survey. Proc IEEE
83(2):220–246

Rau BR, Fisher JA (1993) Instruction-level parallel pro-
cessing: history, overview, and perspective. J Super-
comput 7(1–2):9–50

Rixner S (2001) Stream processor architecture. Kluwer,
Boston

Sato K, Young C, Patterson D (2017) An in-depth
look at Google’s first tensor processing unit, google
cloud big data and machine learning blog, May
12. On-line document. http://cloud.google.com/blog/
big-data/2017/05/an-in-depth-look-at-googles-first-ten-
sor-processing-unit-tpu. Accessed 18 Feb 2018

Scott ND, Olsen DM, Gannett EW (1998) An overview of
the visualize FX graphic accelerator hardware. Hewlett
Packard J 49:28–29

Shafer J, Rixner S, Cox AL (2010) The Hadoop dis-
tributed filesystem: balancing portability and perfor-
mance. In: Proceedings of the IEEE international sym-
posium on performance analysis of systems & soft-
ware, White Plains, NY, pp 122–133

Shaw DE (1982) The non-von supercomputer, Columbia
University technical report, on-line document. http://
academiccommons.columbia.edu/catalog/ac:140914.
Accessed 18 Feb 2018

Singer G (2013) The history of the modern graphics pro-
cessor, TechSpot on-line article. http://www.techspot.
com/article/650-history-of-the-gpu/. Accessed 18 Feb
2018

Sklyarov V et al (2015) Hardware accelerators for infor-
mation retrieval and data mining. In: Proceedings of the
IEEE conference on information and communication
technology research, Bali, pp 202–205

Smith AJ (1982) Cache memories. ACM Comput Surv
14(8):473–530

Smotherman M (2010) IBM stretch (7030) – ag-
gressive uniprocessor parallelism. On-line document.
http://people.cs.clemson.edu/~mark/stretch.html. Ac-
cessed 18 Feb 2018

Stanford University (2012) 21st century computer archi-
tecture: a community white paper, on-line document.

http://cra.org/ccc/wp-content/uploads/sites/2/2016/12/15447-CCC-ARCH-2030-report-v3-1-1.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-teslap100-techoverview.pdf
http://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
http://academiccommons.columbia.edu/catalog/ac:140914
http://www.techspot.com/article/650-history-of-the-gpu/
http://people.cs.clemson.edu/~mark/stretch.html

Computing the Cost of Compressed Data 487

C

http://csl.stanford.edu/�christos/publications/2012.21
stcenturyarchitecture.whitepaper.pdf. Accessed 18 Feb
2018

Storer J (1988) Data compression. Computer Science
Press, Rockville

Taylor DE (2005) Survey and taxonomy of packet classi-
fication techniques. ACM Comput Surv 37(3):238–275

von Neumann J (1945) First draft of a report on
the EDVAC, University of Pennsylvania. On-line
document. https://web.archive.org/web/20130314123
032/http:/qss.stanford.edu/�godfrey/vonNeumann/vne
dvac.pdf. Accessed 14 Feb 2018

von Neumann J, Burks AW, Goldstine HH (1947) Prelim-
inary discussion of the logical design of an electronic
computing instrument. Institute for Advanced Study,
Princeton

Ward MO, Grinstein G, Keim D (2010) Interactive data vi-
sualization: foundations, techniques, and applications.
CRC Press, Natick

Wulf W, McKee S (1995) Hitting the wall: implications of
the obvious. ACM Comput Archit News 23(1):20–24

Yoon C-W, Woo R, Kook J, Lee S-J, Lee K, Yoo H-J
(2001) An 80/20-MHz 160-mW multimedia processor
integrated with embedded DRAM, MPEG-4 accelera-
tor, and 3-D rendering engine for mobile applications.
IEEE J Solid State Circuits 36(11):1758–1767

Computer Security

�Big Data for Cybersecurity

Computing Average Distance

�Degrees of Separation and Diameter in Large
Graphs

Computing the Cost of
Compressed Data

Alistair Moffat and Matthias Petri
School of Computing and Information Systems,
The University of Melboure, Melbourne, VIC,
Australia

Synonyms

Data archiving; Data compression; Data retention

Definitions

Compression mechanisms reduce the storage cost
of retained data. In the extreme case of data that
must be retained indefinitely, the initial cost of
performing the compression transformation can
be amortized down to zero, since the savings in
storage space continue to accrue without limit,
albeit at decreasing rates as time goes by and
disk storage becomes cheaper. A more typical
scenario arises when a fixed data retention period
must be supported, after which the stored data
is no longer required; and when a certain level
of access operations to the stored data can be
expected, as part of a regulatory or compliance
environment. In this second scenario, the total
cost of retention (TCR) is a function of multiple
competing factors, and the compression regime
that provides the most compact storage might not
be the one that provides the smallest TCR. This
entry summarizes recent work in the area of cost
models for data retention.

Overview

Data compression techniques have received ex-
tensive study over more than six decades. En-
tropy coding mechanisms such as Huffman, arith-
metic, and asymmetric numeral system (ANS)
coding have been used to support a range of
modeling approaches, including those based on
implicit and explicit dictionaries, those based on
statistical prediction, those based on grammar
identification, and those based on the Burrows-
Wheeler transform. Witten et al. (1999) and Mof-
fat and Turpin (2002) provide details of many
such combinations; the ANS mechanism is more
recent (Duda 2009, 2013; Moffat and Petri 2017).
Each possible arrangement of model and coder
represents another option for use by practition-
ers, with a wide range of trade-offs possible.
Compression systems are typically compared in
two quite different ways, based on the size of
the compressed data (the effectiveness of the
approach) and based on the computational and
memory resources required to attain the encoding

http://csl.stanford.edu/~christos/publications/2012.21stcenturyarchitecture.whitepaper.pdf
https://web.archive.org/web/20130314123032/http:/qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
https://doi.org/10.1007/978-3-319-77525-8_163
https://doi.org/10.1007/978-3-319-77525-8_59
https://doi.org/10.1007/978-3-319-77525-8_100077
https://doi.org/10.1007/978-3-319-77525-8_100080
https://doi.org/10.1007/978-3-319-77525-8_100089

488 Computing the Cost of Compressed Data

and decoding transformation (the efficiency of
the approach). Moreover, it is often the case
that effectiveness and efficiency are in tension
– that the most effective techniques are also the
ones that are least efficient and vice versa. For
example, software implementations of compres-
sion tools often include an optional parameter (in
several cases, “–1” to “–9”) to indicate the effort
that should be used during encoding, with better
compression resulting from greater effort; and
principled trade-off mechanisms have also been
proposed (Farruggia et al. 2014).

Hence, if a choice must be made between
competing alternatives (compression programs or
option settings) for use in some particular appli-
cation or situation, a joint overall cost must be
developed based on all relevant factors and used
to measure the total cost of retention. This entry
summarizes recent work by Liao et al. (2017) that
describes such a cost model as a response to a
service-level agreement and provides a synopsis
of their key findings.

Data Storage and Retention

An archiving service stores different kinds of
objects such as files, log entries, or variable-size
data blobs. Adding objects to the storage system
is generally referred to as a PUT request; and to
retrieve objects, a GET request specifying one or
more objects is issued to the storage system.

The objects stored by the archiving system
can be viewed as a stream of bytes arriving at
a constant rate when averaged over time. Liao
et al. (2017) consider the case of data that arrives
at an ingest rate of � GiB/day, is subject to
some obligatory minimum retention period of
LD days, and while retained must be available
to GET requests assumed to occur at the rate
of q queries per stored GiB per day. Each GET

request for an object that was ingested during
some particular day less than LD days in the
past is translated to a byte location within that
day’s data, and a request for the corresponding
object (some number of bytes or kibibytes) is
then issued, so that the object can be retrieved
and delivered. For example, log data or transac-

tion data might accumulate through some busi-
ness process and be required to be retained for
some minimum compliance period as part of a
regulatory framework; and small fragments of
that data might be required to be available on
demand for audit or verification purposes. Such
data retention regimes would typically be the
subject of a service-level agreement, or SLA,
including requirements in regard to the maximum
delay LW between ingest of any data and when
it becomes available for querying operations, in
regard to the maximum latency LR permissible
for any access operations, and in regard to other
such performance and reliability requirements.

A cloud provider offering a data storage ser-
vice naturally seeks to minimize the overall cost
of providing the service within the constraints of
the SLA. Compression is a key technology in this
regard, since for long retention periods, the flag-
fall cost of compressing the data can almost cer-
tainly be recouped via decreased storage costs –
provided, that is, the required GET operations can
also be supported within the constraints imposed
by the SLA.

Cost Model for Data Retention

Liao et al. (2017) propose that the total cost of a
storage system be subdivided into four categories
broadly aligned with the components measured
by most cloud system providers: (a) permanent
storage, (b) working memory, (c) compute cycles,
and (d) I/O operations. Each of these categories
is then measured and billed over a specific time
period, with the units of each category converted
into a common currency of dollars. For example,
consuming 50 GiB of permanent storage for 12

months might be billed at $0.30 per GiB-month
for a total storage cost of $180; and the compute
cycles necessary to support GET operations on
that data might cost a further $50 over the course
of the year.

The service provider can be assumed to form
data bales at daily or sub-daily intervals during
the ingestion period, each bale assembled from
multiple PUT operations. Once accumulated, the
bale is then processed as a sequence of inde-

Computing the Cost of Compressed Data 489

C

CPU cycles

LW

time, days
t3t2t1t0

stseuqersseccaecivrestrevnoctsegni

LD

re
so

ur
ce

 c
os

t,
$

pe
r

da
y

Legend

Disk storage

Memory

C

B

E

A

F

D

D

Computing the Cost of Compressed Data, Fig. 1 The
bale-based data retention regime described by Liao et al.
(2017) (Figure 2 of that paper, with copyright held by the
original four authors). The six marked zones are: (A) cost
of disk space for incoming data; (B) cost of CPU for index

construction, if applicable; (C) cost of memory space for
index construction, if applicable; (D) cost of disk space
for retained data; (E) cost of CPU for decoding and access
operations during retention period; (F) cost of memory
space during retention period, if applicable

pendently retrievable blocks, with the bale as a
whole following the life cycle shown in Fig. 1. A
generic compression algorithm, such as gzip, or a
domain specific algorithm, such as MPEG, might
be applied to each block, to reduce the amount
of permanent storage required while that block
is held through the retention period. Ideally a
compression scheme which minimizes the overall
balance between storage cost and resource expen-
diture should be chosen, subject to the constraints
set by the SLA parameters. For example, the
maximum write delay LW and the maximum
read latency LR set constraints on the encoding
and decoding speed of the compression algorithm
and/or the size of the blocks that can be al-
lowed. Similarly, the choice of permanent storage
has implications on the types of compression
algorithms which can comply with the SLA and
also on the cost involved. For example, high-
latency permanent storage devices will require a
compression algorithm with fast decompression
speed, in order to handle GET request within LR.

That is, each possible algorithm requires a cer-
tain amount of compute and memory resources
(zones (B) and (C) in Fig. 1) to convert incoming
bales. After the bale is converted, it resides on
secondary storage, incurring a constant storage

cost (D) for the remaining lifetime of the bale. To
service GET requests arriving at an average rate of
q queries per day per GiB of stored data, the sys-
tem consumes additional compute and memory
resources (E), (F) in order to decompress blocks.
Additional IO costs may arise when transferring
data to/from permanent storage and to/from the
storage system itself.

Implications of the Cost Model

Liao et al. measure encoding and decoding
speeds for compression mechanisms in four
broad groups:

• No compression at all (denoted as method
none);

• Fast encoding and decoding, based on
an adaptive model and modest resource
consumption, and with reasonably good
compression effectiveness achieved at
even relatively short block lengths (taking
zlib, https://github.com/madler/zlib, as an
exemplar);

• Excellent compression effectiveness when
long blocks can be permitted, at the cost
of more expensive encoding and decoding

https://github.com/madler/zlib

490 Computing the Cost of Compressed Data

(taking xz, http://tukaani.org/xz/, as an
exemplar); and

• RLZ, a semi-static mechanism designed for
fast decoding and good compression regard-
less of block size but requiring a per-bale
memory-resident dictionary throughout each
bale’s retention period (Hoobin et al. 2011;
Petri et al. 2015) (taking https://github.com/
mpetri/rlz-store as an exemplar).

Liao et al. also provide compression effective-
ness rates achieved for typical web data using a
range of block sizes, highlighting the fact that
for the adaptive zlib and xz approaches, compres-
sion effectiveness diminishes as blocks are made
smaller.

Figure 2 takes that data and applies it to
two different scenarios. In both graphs the total

retention cost (TRC, in dollars per 64 GiB bale)
is plotted on the vertical axis as a function of
cumulative retention time, shown on the horizon-
tal axis, for durations from 1 day to a little over
1 year. In the first pane, a low query rate q D 1

query per day per stored GiB is assumed. In this
arrangement, relatively large blocks of 1 MiB can
be employed as the encoding unit, and as a result
xz achieves excellent compression rates, close to
those of the semi-static RLZ mechanism. More-
over, the 8 MiB allocation of memory required
by RLZ (to be precise, 8 MiB in the configuration
plotted; dictionary size is another dimension that
affects the comparison) is a cost drain that is
not recouped even though RLZ decoding is faster.
Hence, for all but short retention durations, where
the encoding speed of zlib is an advantage, xz

provides the smallest TRC.

Computing the Cost of
Compressed Data, Fig. 2
Total retention cost for two
different scenarios: (a) a
low daily access rate
allows large blocks to be
used, favoring the “very
good but somewhat slow”
compression regime xz; (b)
a high query rate requires
small blocks, favoring the
semi-static RLZ
mechanism. For short
retention periods, zlib is the
cheapest option in both
scenarios; and storing the
data uncompressed
(method none) is never an
attractive option

3700 100 200 300
Days

0.20

0.50

2.00

5.00
a

b

0.10

1.00

$,
 q

ue
ry

ra
te

=
1,

 b
lo

ck
si

ze
=

10
24

none
zlib
xz
RLZ

q = 1 q/GiB/day, blocks of 1 MiB

3700 100 200 300
Days

0.20

0.50

2.00

5.00

0.10

1.00

$,
 q

ue
ry

ra
te

=
25

6,
 b

lo
ck

si
ze

=
64

none
zlib
xz
RLZ

q = 256 q/GiB/day, blocks of 64 kiB

http://tukaani.org/xz/
https://github.com/mpetri/rlz-store
https://github.com/mpetri/rlz-store

Conflict-Free Replicated Data Types CRDTs 491

C

In the lower pane, the query rate is consid-
erably increased, to q D 256 GET requests per
stored GiB per day, and the block sizes need to
shorten (the value b D 64 kiB is used in the
plot) so that decoding time doesn’t swamp the
other costs. Assuming that each GET request is to
a different block, that query rate and block size
mean that around 1:5% of the bale is decoded
each day, and decoding throughput becomes a
determining factor. Now RLZ’s dictionary mem-
ory pays for itself, and it provides the best TRC,
a combination of fast decoding and excellent
compression effectiveness.

Based on the data they collected (including, as
is also used in Figure 2, cost information from
mid-2016 for a major cloud services provider),
Liao et al. draw broad conclusions in regard to
the efficacy of the various options:

• if the retention period is short, then zlib is the
most economical choice, using a block size
that decreases as the query rate increases;

• if the query rate is low, and if memory is
expensive relative to secondary storage, then
xz should be preferred; and

• if the query rate is high, and/or if the memory-
to-disk cost ratio is more moderate, then RLZ-
style approaches should be employed.

More generally, Liao et al. note that “thinking
TRC” provides a framework in which compres-
sion improvements can be accurately measured
and present one such approach that reduces RLZ-
based retention costs by amortizing dictionary
costs over a small number of consecutive bales.

Cross-References

�Energy Implications of Big Data
�Hardware-Assisted Compression
� Storage Hierarchies for Big Data

References

Duda J (2009) Asymmetric numeral systems. CoRR
abs/0902.0271

Duda J (2013) Asymmetric numeral systems: entropy cod-
ing combining speed of Huffman coding with compres-
sion rate of arithmetic coding. CoRR abs/1311.2540

Farruggia A, Ferragina P, Venturini R (2014) Bicriteria
data compression: efficient and usable. In: Proceedings
of the European symposium on algorithms (ESA),
pp 406–417

Hoobin C, Puglisi SJ, Zobel J (2011) Relative Lempel-Ziv
factorization for efficient storage and retrieval of web
collections. PVLDB 5(3):265–273

Liao K, Moffat A, Petri M, Wirth A (2017) A cost
model for long-term compressed data retention. In:
Proceedings of the ACM international conference on
web search and data mining (WSDM), pp 241–249

Moffat A, Petri M (2017) ANS-based index compression.
In: Proceedings of the ACM international conference
on information and knowledge management (CIKM),
pp 677–686

Moffat A, Turpin A (2002) Compression and coding
algorithms. Kluwer, Boston

Petri M, Moffat A, Nagesh PC, Wirth A (2015) Access
time tradeoffs in archive compression. In: Proceedings
of the Asia information retrieval societies conference
(AIRS), pp 15–28

Witten IH, Moffat A, Bell TC (1999) Managing giga-
bytes: compressing and indexing documents and im-
ages. Morgan Kaufmann, San Francisco

Confidentiality

� Security and Privacy in Big Data Environment

Conflict-Free Replicated Data
Types CRDTs

Nuno Preguiça1, Carlos Baquero2, and
Marc Shapiro3

1NOVA LINCS and DI, FCT, Universidade
NOVA de Lisboa, Caparica, Portugal
2HASLab/INESC TEC and Universidade do
Minho, Braga, Portugal
3Sorbonne Université, LIP6 and INRIA, Paris,
France

Definitions

A conflict-free replicated data type (CRDT) is
an abstract data type, with a well-defined inter-
face, designed to be replicated at multiple pro-

https://doi.org/10.1007/978-3-319-77525-8_171
https://doi.org/10.1007/978-3-319-77525-8_311
https://doi.org/10.1007/978-3-319-77525-8_175
https://doi.org/10.1007/978-3-319-77525-8_245

492 Conflict-Free Replicated Data Types CRDTs

cesses and exhibiting the following properties:
(i) any replica can be modified without coordi-
nating with other replicas and (ii) when any two
replicas have received the same set of updates,
they reach the same state, deterministically, by
adopting mathematically sound rules to guarantee
state convergence.

Overview

Internet-scale distributed systems often replicate
data at multiple geographic locations to provide
low latency and high availability, despite outages
and network failures. To this end, these systems
must accept updates at any replica and propagate
these updates asynchronously to the other repli-
cas. This approach allows replicas to temporarily
diverge and requires a mechanism for merging
concurrent updates into a common state. CRDTs
provide a principled approach to address this
issue.

As any abstract data type, a CRDT implements
some given functionality and exposes a well-
defined interface. Applications interact with the
CRDT only through this interface. As CRDTs
are designed to be replicated and to allow un-
coordinated updates, a key aspect of a CRDT is
its semantics in the presence of concurrency. The
concurrency semantics defines what is the behav-
ior of the object in the presence of concurrent
updates, defining the state of the object for any
given set of received updates.

An application developer uses the CRDT
interface and concurrency semantics to reason
about the behavior of her application in the
presence of concurrent updates. A system
developer creating a system that provides CRDTs
needs to focus on another aspect of CRDTs:
the synchronization model. The synchronization
model defines the requirements that the system
must meet so that CRDTs work correctly. We
now detail each of these aspects independently.

Concurrency Semantics
The operations defined in a data type may intrin-
sically commute or not. Consider, for instance, a
counter data type, a shared integer that supports

increment and decrement operations. As these
operations commute (i.e., executing them in any
order yields the same result), the counter data
type naturally converges toward the expected re-
sult and reflects all executed operations reflects
all executed operations.

Unfortunately, for most data types, this is
not the case, and several concurrency semantics
are reasonable, with different semantics being
suitable for different applications. For instance,
consider a shared memory cell supporting the
assignment operation. If the initial value is 0, the
correct outcome for concurrently assigning 1 and
2 is not well defined.

When defining the concurrency semantics, an
important concept that is often used is that of
the happens-before relation (Lamport 1978). In a
distributed system, an event e1 happened-before
an event e2, e1 � e2, iff (i) e1 occurred before
e2 in the same process; or (ii) e1 is the event
of sending message m, and e2 is the event of
receiving that message; or (iii) there exists an
event e such that e1 � e and e � e2. When
applied to CRDTs, we can say that an update u1

happened-before an update u2 iff the effects of
u1 had been applied in the replica where u2 was
initially submitted.

As an example, if an event was Alice reserved
the meeting room, it is relevant to know if that
was known when Bob reserved the meeting room
to determine if Alice should be given priority or
if the two users concurrently tried to reserve the
same room.

For instance, let us use happened-before to
define the semantics of the add-wins set (also
known as observed-remove set, OR-set (Shapiro
et al. 2011)). Intuitively, in the add-wins se-
mantics, in the presence of two operations that
do not commute, a concurrent add and remove
of the same element, the add wins leading to
a state where the element belongs to the set.
More formally, the set interface has two update
operations: (i) add.e/, for adding element e to the
set, and (ii) rmv.e/, for removing element e from
the set. Given a set of update operations O that
are related by the happens-before partial order �,
the state of the set is defined as fe j add.e/ 2

O ^ Àrmv.e/ 2 O � add.e/ � rmv.e/g.

Conflict-Free Replicated Data Types CRDTs 493

C

Replica A •{a}
rmv(a)

•{}
add(a)

•{a}
sync

•{a}

Replica B •
{a}

rmv(a)•
{}

sync

•
{a}

Time

Conflict-Free Replicated Data Types CRDTs, Fig. 1 Run with an add-wins set

Figure 1 shows a run where an add-wins set is
replicated in two replicas, with initial state fag.
In this example, in replica A, a is first removed
and later added again to the set. In replica B, a is
removed from the set. After receiving the updates
from the other replica, both replicas end up with
the element a in the set. The reason for this is that
there is no rmv.a/ that happened after the add.a/

executed in replica A.
An alternative semantics based on the

happens-before relation is remove-wins. Intu-
itively, in remove-wins semantics, in the presence
of a concurrent add and remove of the same
element, the remove wins leading to a state where
the element is not in the set. More formally, given
a set of update operations O , the state of the set
is defined as: fe j add.e/ 2 O ^ 8rmv.e/ 2

O � rmv.e/ � add.e/g. In the previous example,
after receiving the updates from the other replica,
the state of both replicas would be the empty set,
because there is no add.a/ that happened after
the rmv.a/ in replica B.

Another relation that can be useful for defin-
ing the concurrency semantics is that of a total
order among updates and particularly a total order
that approximates wall-clock time. In distributed
systems, it is common to maintain nodes with
their physical clocks loosely synchronized. When
combining the clock time with a site identifier,
we have unique timestamps that are totally or-
dered. Due to the clock skew among multiple
nodes, although these timestamps approximate
an ideal global physical time, they do not nec-
essarily respect the happens-before relation. This
can be achieved by combining physical and log-
ical clocks, as shown by Hybrid Logical Clocks
(Kulkarni et al. 2014), or by only arbitrating

a wall-clock total order for the events that are
concurrent under causality (Zawirski et al. 2016).

This relation allows to define the last-writer-
wins semantics, where the value written by the
last writer wins over the values written previ-
ously, according to the defined total order. More
formally, with the set O of operations now totally
ordered by <, the state of a last-writer-wins set
would be defined as: fe j add.e/ 2 O ^

8rmv.e/ 2 O � rmv.e/ < add.e/g. Returning
to our previous example, the state of the repli-
cas after the synchronization would include a

if, according the total order defined among the
operations, the rmv.a/ of replica B is smaller
than the add.a/ of replica A. Otherwise, the state
would be the empty set.

We now briefly introduce the concurrency se-
mantics proposed for several CRDTs.

Set
For a set CRDT, we have shown the difference
between three possible concurrency semantics:
add-wins, remove-wins, and last-writer-wins.

Register
A register CRDT maintains an opaque value and
provides a single update operation that writes
an arbitrary value: wr.value/. Two concurrency
semantics have been proposed leading to two
different CRDTs: the multi-value register and
the last-writer-wins register. In the multi-value
register, all concurrently written values are kept.
In this case, the read operation returns the set of
concurrently written values. Formally, the state of
a multi-value register is defined as the multi-set:
fv j wr.v/ 2 O ^ Àwr.u/ 2 O � wr.v/ � wr.u/g.

494 Conflict-Free Replicated Data Types CRDTs

In the last-writer-wins register, only the value
of the last write is kept, if any. Formally, the state
of a last-writer-wins register can be defined as a
set that is either empty or holds a single value:
fv j wr.v/ 2 O ^ Àwr.u/ 2 O � wr.v/ < wr.u/g,
assuming some initial write.

Counter
A counter CRDT maintains an integer and can
be modified by update operations inc and dec,
to increase and decrease by one unit its value, re-
spectively (this can easily generalize to arbitrary
amounts). As mentioned previously, as opera-
tions intrinsically commute, the natural concur-
rency semantics is to have a final state that reflects
the effects of all registered operations. Thus, the
result state is obtained by counting the number of
increments and subtracting the number of decre-
ments: jfinc j inc 2 Ogj � jfdec j dec 2 Ogj.

Now consider that we want to add a write op-
eration wr.n/, to update the value of the counter
to a given value. This opens two questions re-
lated with the concurrency semantics. First, what
should be the final state when two concurrent
write operations are executed? In this case, the
last-writer-wins semantics would be simple (as
maintaining multiple values, as in the multi-value
register, is overly complex).

Second, what is the result when concurrent
writes and inc/dec operations are executed? In
this case, by building on the happens-before
relation, we can define several concurrency
semantics. One possibility is a write-wins
semantics, where inc/dec operations have no
effect when executed concurrently with the
last write. Formally, for a given set O of
updates that include at least a write operation,
let v be the value in the last write, i.e.,
wr.v/ 2 O ^ Àwr.u/ 2 O � wr.v/ < wr.u/.
The value of the counter would be v C o,
with o D jfinc j inc 2 O ^ wr.v/ � incgj �

jfdec j dec 2 O ^ wr.v/ � decgj representing
inc/dec operations that happened after the last
write.

Other CRDTs
A number of other CRDTs have been proposed
in the literature, including CRDTs for elementary

data structures, such as lists (Preguiça et al. 2009;
Weiss et al. 2009; Roh et al. 2011), maps (Brown
et al. 2014; Almeida et al. 2018), graphs (Shapiro
et al. 2011), and more complex structures, such
as JSON documents (Kleppmann and Beresford
2017). For each of these CRDTs, the developers
have defined and implemented a type-specific
concurrency semantics.

Synchronization Model
A replicated system needs to synchronize its
replicas, by propagating and applying updates in
every replica. There are two main approaches
to propagate updates: state-based and operation-
based replication.

In state-based replication, replicas syn-
chronize by establishing bi-directional (or
unidirectional) synchronization sessions, where
both (one, resp.) replicas send their state to a
peer replica. When a replica receives the state
of a peer, it merges the received state with
its local state. As long as the synchronization
graph is connected, every update will eventually
propagate to all replicas.

CRDTs designed for state-based replication
define a merge function to integrate the state of a
remote replica. It has been shown (Shapiro et al.
2011) that all replicas of a CRDT converge if
(i) the states of the CRDT are partially ordered
according to � forming a join semilattice; (ii) an
operation modifies the state s of a replica by an
inflation, producing a new state that is larger or
equal to the original state according to �, i.e., for
any operation m, s � m.s/; and (iii) the merge
function computes the join (least upper bound) of
two states, i.e., for states s; u, it computes s t u.

In operation-based replication, replicas
converge by propagating operations to every
other replica. When an operation is received in
a replica, it is applied to the local replica state.
Besides requiring that every operation is reliably
delivered to all replicas, e.g., by using some
reliable multicast communication subsystem,
some systems may require operations to be
delivered according to some specific order, with
causal order being the most common.

CRDTs designed for operation-based replica-
tion must define, for each operation, a generator

Conflict-Free Replicated Data Types CRDTs 495

C

and an effector function. The generator function
executes in the replica where the operation is sub-
mitted, the source replica, it has no side effects
and generates an effector that encodes the side ef-
fects of the operation. In other words, the effector
is a closure created by the generator depending
on the state of the origin replica. The effector op-
eration must be reliably executed in all replicas,
where it updates the replica state. Shapiro et al.
(2011) have shown that if effector operations are
delivered in causal order, replicas will converge
to the same state if concurrent effector operations
commute. If effector operations may be delivered
without respecting causal order, then all effector
operations must commute. Most operation-based
CRDT designs require causal delivery.

Alternative models: When operations modify
only part of the state, propagating the complete
state for synchronization to a remote replica is
inefficient, as the remote replica already knows
most of the state. Delta-state CRDTs (Almeida
et al. 2018) address this issue by propagating
only delta mutators, which encode the changes
that have been made to a replica since the last
communication. The first time a replica com-
municates with some other replica, the full state
needs to be propagated. This can be improved by
using a state summary (e.g., version vector) for
computing and sending only the deltas in the first
communication also, as shown in big delta-state
CRDTs (van der Linde et al. 2016), typically at
the cost of storing more metadata in the CRDT
state. Another improvement is to compute digests
that help determine which parts of a remote
state are needed, avoiding shipping full states
(Enes 2017).

In the context of operation-based replication,
effector operations should be applied immedi-
ately to the source replica. However, propaga-
tion to other replicas can be deferred for some
period and effectors stored in an outbound log,
presenting an opportunity to compress the log
by rewriting some operations – e.g., two add.1/

operations in a counter can be converted in a
add.2/ operation. This mechanism has been used
by Cabrita and Preguiça (2017). Delta mutators
can also be seen as a compressed representation
of a log of operations.

Operation-based CRDTs require executing a
generator function against the replica state to
compute an effector operation. In some scenarios,
this may introduce an unacceptable delay for
propagating an operation. Pure operation-based
CRDTs (Baquero et al. 2014) address this issue
by allowing the original operations to be propa-
gated to all replicas, typically at the cost of more
complex operations and of having to store more
metadata in the CRDT state.

Key Research Findings

Preservation of Sequential Semantics
When modeling an abstract data type that has an
established semantics under sequential execution,
CRDTs should preserve that semantics. For in-
stance, CRDT sets should ensure that if the last
operation in a sequence of operations to a set
added a given element, then a query operation
immediately after that one will show the element
to be present on the set. Conversely, if the last
operation removed an element, then a subsequent
query should not show its presence.

Sequential execution can occur even in dis-
tributed settings if synchronization is frequent.
An instance can be updated in replica A, merged
into another replica B and updated there, and
merged back into replica A before A tries to
update it again. In this case, we have a sequential
execution, even though updates have been exe-
cuted in different replicas.

Historically, not all CRDT designs have met
this property. The two-phase-set CRDT (2PSet)
does not allow re-adding an element that was
removed, and thus it breaks the common sequen-
tial semantics. Later CRDT set designs, such
as add-wins and remove-wins sets, do preserve
the original sequential semantics while providing
different concurrency semantics.

Extended Behavior Under Concurrency
Some CRDT designs handle concurrent opera-
tions by arbitrating a given sequential ordering
to accommodate concurrent execution. For exam-
ple, the state of a last-writer-wins set replica can
be explained by a sequential execution of the op-

496 Conflict-Free Replicated Data Types CRDTs

Replica A •{}
add(a)

•{a}
rmv(b)

•{a}
sync

•{a,b}

Replica B •
{}

add(b)•
{b}

rmv(a)•
{b}

sync

•
{a,b}

Conflict-Free Replicated Data Types CRDTs, Fig. 2 Add-wins set run showing that there might be no sequential
execution of operations that explains CRDT behavior

erations according to the LWW total order used.
When operations commute, such as in counters,
there might even be several sequential executions
that explain a given state.

Not all CRDTs need or can be explained by
sequential executions. The add-wins set is an
example of a CRDT where there might be no
sequential execution of operations to explain the
state observed, as Fig. 2 shows. In this example,
the state of the set after all updates propagate to
all replicas includes a and b, but in any sequential
extension of the causal order, a remove operation
would always be the last operation, and conse-
quently the removed element could not belong to
the set.

Some other CRDTs can exhibit states that are
only reached when concurrency does occur. An
example is the multi-value register. If used se-
quentially, sequential semantics is preserved, and
a read will show the outcome of the most recent
write in the sequence. However, if two or more
values are written concurrently, the subsequent
read will show all those values (as the multi-
value name implies), and there is no sequential
execution that can explain this result. We also
note that a follow-up write can overwrite both a
single value and multiple values.

Guaranties and Limitations
An important property of CRDTs is that
an operation can always be accepted at any
given replica and updates are propagated
asynchronously to other replicas. In the CAP
theorem framework (Brewer 2010; Gilbert and
Lynch 2002), the CRDT conflict-free approach
favors availability over consistency when facing
communication disruptions. This leads to
resilience to network failure and disconnection,

since no prior coordination with other replicas
is necessary before accepting an operation.
Furthermore, operations can be accepted with
minimal user perceived latency since they only
require local durability. By eschewing global
coordination, replicas evolve independently, and
reads will not reflect operations accepted in
remote replicas that have not yet been propagated
to the local replica.

In the absence of global coordination, session
guaranties (Terry et al. 1994) specify what the
user applications can expect from their inter-
action with the system’s interface. Both state-
based CRDTs and operation-based CRDTs when
supported by reliable causal delivery provide per-
object causal consistency. Thus, in the context of
a given replicated object, the traditional session
guaranties are met. CRDT-based systems that
lack transactional support can enforce system-
wide causal consistency, by integrating multiple
objects in a single map/directory object (Almeida
et al. 2018). Another alternative is to use merge-
able transactions to read from a causally con-
sistent database snapshot and to provide write
atomicity (Preguiça et al. 2014).

Some operations cannot be expressed in a
conflict-free framework and will require global
agreement. As an example, in an auction system,
bids can be collected under causal consistency,
and a new bid will only have to increase the offer
with respect to bids that are known to causally
precede it. However, closing the auction and
selecting a single winning bid will require global
agreement. It is possible to design a system that
integrates operations with different coordination
requirements and only resorts to global agree-
ment when necessary (Li et al. 2012; Sovran et al.
2011).

Conflict-Free Replicated Data Types CRDTs 497

C

Some global invariants, which usually are en-
forced with global coordination, can be enforced
in a conflict-free manner by using escrow tech-
niques (O’Neil 1986) that split the available re-
sources among the different replicas. For in-
stance, the Bounded Counter CRDT (Balegas
et al. 2015b) defines a counter that never goes
negative, among assigning to each replica a re-
serve of allowed decrements under the condition
that the sum of all allowed decrements does not
exceed the value of the counter. As long as its
reserve is not exhausted, a replica can accept
decrements without coordinating with other repli-
cas. After a replica exhausts its reserve, a new
decrement will either fail or require synchroniz-
ing with some replica that still can decrement.
This technique uses point-to-point coordination
and can be generalized to enforce other system-
wide invariants (Balegas et al. 2015a)

Examples of Applications

CRDTs have been used in a large number
of distributed systems and applications that
adopt weak consistency models. The adoption
of CRDTs simplifies the development of these
systems and applications, as CRDTs guarantee
that replicas converge to the same state when
all updates are propagated to all replicas. We
can group the systems and applications that
use CRDTs into two groups: storage systems
that provide CRDTs as their data model and
applications that embed CRDTs to maintain their
internal data.

CRDTs have been integrated in several storage
systems that make them available to applications.
An application uses these CRDTs to store its
data, being the responsibility of the storage
systems to synchronize the multiple replicas.
The following commercial systems use CRDTs:
Riak (Developing with Riak KV Data Types
http://docs.basho.com/riak/kv/2.2.3/developing/
data-types/.), Redis (Biyikoglu 2017), and Akka
(Akka Distributed Data: https://doc.akka.io/
docs/akka/2.5.4/scala/distributed-data.html.).
A number of research prototypes have also used
CRDTs, including Walter (Sovran et al. 2011),

SwiftCloud (Preguiça et al. 2014), and Antidote
(Antidote: http://antidotedb.org.) (Akkoorath
et al. 2016).

CRDTs have also been embedded in multiple
applications. In this case, developers either used
one of the available CRDT libraries, implemented
themselves some previously proposed design, or
designed new CRDTs to meet their specific re-
quirements. An example of this latter use is Roshi
(Roshi is a large-scale CRDT set implementa-
tion for timestamped events https://github.com/
soundcloud/roshi.), a LWW-element-set CRDT
used for maintaining an index in SoundCloud
stream.

Future Directions of Research

Scalability
In order to track concurrency and causal pre-
decessors, CRDT implementations often store
metadata that grows linearly with the number
of replicas (Charron-Bost 1991). While global
agreement suffers from greater scalability limi-
tations since replicas must coordinate to accept
each operation, the metadata cost from causality
tracking can limit the scalability of CRDTs when
aiming for more than a few hundred replicas.
A large metadata footprint can also impact the
computation time of local operations and will
certainly impact the required storage and commu-
nication.

Possible solutions can be sought in more
compact causality representations when multiple
replicas are synchronized among the same
nodes (Malkhi and Terry 2007; Preguiça et al.
2014; Gonçalves et al. 2017) or by hierarchical
approaches that restrict all to all synchronization
and enable more compact mechanisms (Almeida
and Baquero 2013).

Reversible Computation
Nontrivial Internet services require the composi-
tion of multiple subsystems, to provide storage,
data dissemination, event notification, monitor-
ing, and other needed components. When com-
posing subsystems, which can fail independently
or simply reject some operations, it is useful

http://docs.basho.com/riak/kv/2.2.3/developing/data-types/
http://docs.basho.com/riak/kv/2.2.3/developing/data-types/
https://doc.akka.io/docs/akka/2.5.4/scala/distributed-data.html
https://doc.akka.io/docs/akka/2.5.4/scala/distributed-data.html
http://antidotedb.org
https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi

498 Conflict-Free Replicated Data Types CRDTs

to provide a CRDT interface that undoes previ-
ously accepted operations. Another scenario that
would benefit from undo is collaborative editing
of shared documents, where undo is typically a
feature available to users.

Undoing an increment on a counter CRDT can
be achieved by a decrement. Logoot-Undo (Weiss
et al. 2010) proposes a solution for undoing (and
redoing) operations for a sequence CRDT used
for collaborative editing. However, providing a
uniform approach to undoing, reversing, opera-
tions over the whole CRDT catalog is still an
open research direction. The support of undo is
also likely to limit the level of compression that
can be applied to CRDT metadata.

Security
While access to a CRDT-based interface can be
restricted by adding authentication, any accessing
client has the potential to issue operations that
can interfere with the other replicas. For instance,
delete operations can remove all existing state.
In state-based CRDTs, replicas have access to
state that holds a compressed representation of
past operations and metadata. By manipulation of
this state and synchronizing to other replicas, it
is possible to introduce significant attacks to the
system operation and even its future evolution.

Applications that store state on third-party
entities, such as in cloud storage providers, might
not trust the provider and choose end-to-end en-
cryption of the exchanged state. This, however,
would require all processing to be done at the
edge, under the application control. A research
direction would be to allow some limited form
of computation, such as merging state, over in-
formation whose content is subject to encryption.
Potential techniques, such as homomorphic en-
cryption, are likely to pose significant computa-
tional costs. An alternative is to execute oper-
ations on encrypted data without disclosing it,
relying on specific hardware support, such as
Intel SGX and ARM TrustZone.

Nonuniform Replicas
The replication of CRDTs typically assumes that
eventually all replicas will reach the same state,
storing exactly the same data. However, depend-

ing on the read operations available in the CRDT
interface, it might not be necessary to maintain
the same state in all replicas. For example, an
object that has a single read operation returning
the top-K elements added to the object only needs
to maintain those top-K elements in every replica.
The remaining elements are necessary if a remove
operation is available, as one of the elements not
in the top needs to be promoted when a top ele-
ment is removed. Thus, each replica can maintain
only the top-K elements and the elements added
locally.

This replication model is named nonuniform
replication (Cabrita and Preguiça 2017) and can
be used to design CRDTs that exhibit important
storage and bandwidth savings when compared
with alternatives that keep all data in all replicas.
Although it is clear that this model cannot be used
for all data types, several useful CRDT designs
have been proposed, including top-K, top-Sum,
and histogram. To understand what data types can
adopt this model and how to explore it in practice
is an open research question.

Verification
An important aspect related with the development
of distributed systems that use CRDTs is the
verification of the correctness of the system. This
involves not only verifying the correctness of
CRDT designs but also the correctness of the
system that uses CRDTs. A number of works
have addressed these issues.

Regarding the verification of the correctness of
CRDTs, several approaches have been taken. The
most commonly used approach is to have proofs
when designs are proposed or to use some veri-
fication tools for the specific data type, such as
TLA (Lamport 1994) or Isabelle (Isabelle: http://
isabelle.in.tum.de/.). There have also been some
works that proposed general techniques for the
verification of CRDTs (Burckhardt et al. 2014;
Zeller et al. 2014; Gomes et al. 2017), which
can be used by CRDT developers to verify the
correctness of their designs. Some of these works
(Zeller et al. 2014; Gomes et al. 2017) include
specific frameworks that help the developer in the
verification process.

http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

Conflict-Free Replicated Data Types CRDTs 499

C

A number of other works have proposed tech-
niques to verify the correctness of distributed
systems that use CRDTs (Gotsman et al. 2016;
Zeller 2017; Balegas et al. 2015a). These works
typically require the developer to specify the
properties that the distributed system must main-
tain and a specification of the operations in the
system (that is independent of the actual code
of the system). Despite these works, the verifi-
cation of the correctness of CRDT designs and of
systems that use CRDTs, how these verification
techniques can be made available to program-
mers, and how to verify the correctness of imple-
mentations remain an open research problem.

Acknowledgements This work was partially supported
by NOVA LINCS (UID/CEC/04516/2013), EU H2020
LightKone project (732505), and SMILES line in project
TEC4Growth (NORTE-01-0145-FEDER-000020).

References

Akkoorath DD, Tomsic AZ, Bravo M, Li Z, Crain T,
Bieniusa A, Preguiça N, Shapiro M (2016) Cure: strong
semantics meets high availability and low latency.
In: Proceedings of the 2016 IEEE 36th international
conference on distributed computing systems (ICDCS),
pp 405–414. https://doi.org/10.1109/ICDCS.2016.98

Almeida PS, Baquero C (2013) Scalable eventu-
ally consistent counters over unreliable networks.
CoRR abs/1307.3207. http://arxiv.org/abs/1307.3207,
1307.3207

Almeida PS, Shoker A, Baquero C (2018) Delta
state replicated data types. J Parallel Distrib Com-
put 111:162–173. https://doi.org/10.1016/j.jpdc.2017.
08.003

Balegas V, Duarte S, Ferreira C, Rodrigues R, Preguiça
NM, Najafzadeh M, Shapiro M (2015a) Putting con-
sistency back into eventual consistency. In: Réveillère
L, Harris T, Herlihy M (eds) Proceedings of the tenth
European conference on computer systems, EuroSys
2015, Bordeaux. ACM, pp 6:1–6:16. https://doi.org/10.
1145/2741948.2741972

Balegas V, Serra D, Duarte S, Ferreira C, Shapiro M,
Rodrigues R, Preguiça NM (2015b) Extending even-
tually consistent cloud databases for enforcing nu-
meric invariants. In: 34th IEEE symposium on reli-
able distributed systems, SRDS 2015, Montreal. IEEE
Computer Society, pp 31–36. https://doi.org/10.1109/
SRDS.2015.32

Baquero C, Almeida PS, Shoker A (2014) Making
operation-based CRDTs operation-based. In: Proceed-
ings of the first workshop on principles and practice
of eventual consistency, PaPEC’14. ACM, New York,
pp 7:1–7:2. https://doi.org/10.1145/2596631.2596632

Biyikoglu C (2017) Under the hood: Redis CRDTs
(conflict-free replicated data types). Online https://goo.
gl/tGqU7h. Accessed 24 Nov 2017

Brewer E (2010) On a certain freedom: exploring the CAP
space, invited talk at PODC 2010, Zurich

Brown R, Cribbs S, Meiklejohn C, Elliott S (2014) Riak
DT map: a Composable, convergent replicated dictio-
nary. In: Proceedings of the first workshop on princi-
ples and practice of eventual consistency, PaPEC’14.
ACM, New York, pp 1:1–1:1. https://doi.org/10.1145/
2596631.2596633

Burckhardt S, Gotsman A, Yang H, Zawirski M (2014)
Replicated data types: specification, verification, opti-
mality. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT symposium on principles of programming
languages, POPL’14. ACM, New York, pp 271–284.
https://doi.org/10.1145/2535838.2535848

Cabrita G, Preguiça N (2017) Non-uniform replication.
In: Proceedings of the 21th international conference
on principles of distributed systems, OPODIS 2017,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
LIPIcs

Charron-Bost B (1991) Concerning the size of
logical clocks in distributed systems. Inf Process
Lett 39(1):11–16. https://doi.org/10.1016/0020-
0190(91)90055-M

Enes V (2017) Efficient Synchronization of State-based
CRDTs. Master’s thesis, Universidade do Minho.
http://vitorenesduarte.github.io/page/other/msc-thesis.
pdf

Gilbert S, Lynch N (2002) Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News 33(2):51–59. https://doi.
org/10.1145/564585.564601

Gomes VBF, Kleppmann M, Mulligan DP, Beres-
ford AR (2017) Verifying strong eventual consis-
tency in distributed systems. Proc ACM Program
Lang 1(OOPSLA):109:1–109:28. https://doi.org/10.
1145/3133933

Gonçalves RJT, Almeida PS, Baquero C, Fonte V (2017)
DottedDB: anti-entropy without Merkle trees, deletes
without tombstones. In: Proceedings of the 2017
IEEE 36th symposium on reliable distributed systems
(SRDS), pp 194–203. https://doi.org/10.1109/SRDS.
2017.28

Gotsman A, Yang H, Ferreira C, Najafzadeh M, Shapiro
M (2016) ’cause i’m strong enough: reasoning about
consistency choices in distributed systems. In: Pro-
ceedings of the 43rd annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages,
POPL’16. ACM, New York, pp 371–384. https://doi.
org/10.1145/2837614.2837625

Kleppmann M, Beresford AR (2017) A conflict-free
replicated JSON datatype. IEEE Trans Parallel Distrib
Syst 28(10):2733–2746. https://doi.org/10.1109/TPDS.
2017.2697382

Kulkarni SS, Demirbas M, Madappa D, Avva B, Leone
M (2014) Logical physical clocks. In: Aguilera MK,
Querzoni L, Shapiro M (eds) Principles of distributed
systems – 18th international conference, OPODIS

https://doi.org/10.1109/ICDCS.2016.98
http://arxiv.org/abs/1307.3207
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1145/2596631.2596632
https://goo.gl/tGqU7h
https://goo.gl/tGqU7h
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
http://vitorenesduarte.github.io/page/other/msc-thesis.pdf
http://vitorenesduarte.github.io/page/other/msc-thesis.pdf
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1109/SRDS.2017.28
https://doi.org/10.1109/SRDS.2017.28
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382

500 Conformance Checking

2014, Cortina d’Ampezzo. Proceedings. Lecture notes
in computer science, vol 8878. Springer, pp 17–32.
https://doi.org/10.1007/978-3-319-14472-6_2

Lamport L (1978) Time, clocks, and the ordering of events
in a distributed system. Commun ACM 21(7):558–565.
https://doi.org/10.1145/359545.359563

Lamport L (1994) The temporal logic of actions. ACM
Trans Program Lang Syst 16(3):872–923. https://doi.
org/10.1145/177492.177726

Li C, Porto D, Clement A, Gehrke J, Preguiça N, Ro-
drigues R (2012) Making geo-replicated systems fast
as possible, consistent when necessary. In: Proceedings
of the 10th USENIX conference on operating sys-
tems design and implementation, OSDI’12. USENIX
Association, Berkeley, pp 265–278. http://dl.acm.org/
citation.cfm?id=2387880.2387906

Malkhi D, Terry DB (2007) Concise version vectors in
winfs. Distrib Comput 20(3):209–219. https://doi.org/
10.1007/s00446-007-0044-y

O’Neil PE (1986) The escrow transactional method. ACM
Trans Database Syst 11(4):405–430. https://doi.org/10.
1145/7239.7265

Preguiça N, Marques JM, Shapiro M, Letia M (2009)
A commutative replicated data type for cooperative
editing. In: Proceedings of the 2009 29th IEEE inter-
national conference on distributed computing systems,
ICDCS’09. IEEE Computer Society, Washington, DC,
pp 395–403. https://doi.org/10.1109/ICDCS.2009.20

Preguiça NM, Zawirski M, Bieniusa A, Duarte S, Bale-
gas V, Baquero C, Shapiro M (2014) Swiftcloud:
fault-tolerant geo-replication integrated all the way
to the client machine. In: 33rd IEEE international
symposium on reliable distributed systems workshops,
SRDS workshops 2014, Nara. IEEE Computer Society,
pp 30–33. https://doi.org/10.1109/SRDSW.2014.33

Roh HG, Jeon M, Kim JS, Lee J (2011) Replicated
abstract data types: building blocks for collaborative
applications. J Parallel Distrib Comput 71(3):354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

Shapiro M, Preguiça N, Baquero C, Zawirski M (2011)
Conflict-free replicated data types. In: Proceedings
of the 13th international conference on stabilization,
safety, and security of distributed systems, SSS’11.
Springer, Berlin/Heidelberg, pp 386–400. http://dl.
acm.org/citation.cfm?id=2050613.2050642

Sovran Y, Power R, Aguilera MK, Li J (2011) Transac-
tional storage for geo-replicated systems. In: Proceed-
ings of the twenty-third ACM symposium on operat-
ing systems principles, SOSP’11. ACM, New York,
pp 385–400. https://doi.org/10.1145/2043556.2043592

Terry DB, Demers AJ, Petersen K, Spreitzer M, Theimer
M, Welch BB (1994) Session guarantees for weakly
consistent replicated data. In: Proceedings of the third
international conference on parallel and distributed
information systems, PDIS’94, Austin. IEEE Com-
puter Society, pp 140–149. https://doi.org/10.1109/
PDIS.1994.331722

van der Linde A, Leitão JA, Preguiça N (2016) �-CRDTs:
making ı-CRDTs delta-based. In: Proceedings of the
2nd workshop on the principles and practice of con-

sistency for distributed data, PaPoC’16. ACM, New
York, pp 12:1–12:4. https://doi.org/10.1145/2911151.
2911163

Weiss S, Urso P, Molli P (2009) Logoot: a scalable opti-
mistic replication algorithm for collaborative editing on
p2p networks. In: Proceedings of the 2009 29th IEEE
international conference on distributed computing sys-
tems, ICDCS’09. IEEE Computer Society, Washing-
ton, DC, pp 404–412. https://doi.org/10.1109/ICDCS.
2009.75

Weiss S, Urso P, Molli P (2010) Logoot-undo: distributed
collaborative editing system on p2p networks. IEEE
Trans Parallel Distrib Syst 21(8):1162–1174. https://
doi.org/10.1109/TPDS.2009.173

Zawirski M, Baquero C, Bieniusa A, Preguiça N, Shapiro
M (2016) Eventually consistent register revisited. In:
Proceedings of the 2nd workshop on the principles and
practice of consistency for distributed data, PaPoC’16.
ACM, New York, pp 9:1–9:3. https://doi.org/10.1145/
2911151.2911157

Zeller P (2017) Testing properties of weakly consistent
programs with repliss. In: Proceedings of the 3rd inter-
national workshop on principles and practice of consis-
tency for distributed data, PaPoC’17. ACM, New York,
pp 3:1–3:5. https://doi.org/10.1145/3064889.3064893,
https://dl.acm.org/authorize?N37605

Zeller P, Bieniusa A, Poetzsch-Heffter A (2014) Formal
specification and verification of CRDTs. In: Formal
techniques for distributed objects, FORTE 2014. Lec-
ture notes in computer science. Springer, pp 33–48

Conformance Checking

Jorge Munoz-Gama
Department of Computer Science, School of
Engineering, Pontificia Universidad Católica de
Chile, Santiago, Chile

Synonyms

Business process conformance checking

Definitions

Given an event log and a process model from
the same process, conformance checking com-
pares the recorded event data with the model to

https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1007/s00446-007-0044-y
https://doi.org/10.1007/s00446-007-0044-y
https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/7239.7265
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1109/SRDSW.2014.33
https://doi.org/10.1016/j.jpdc.2010.12.006
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/TPDS.2009.173
https://doi.org/10.1109/TPDS.2009.173
https://doi.org/10.1145/2911151.2911157
https://doi.org/10.1145/2911151.2911157
https://doi.org/10.1145/3064889.3064893
https://dl.acm.org/authorize?N37605
https://doi.org/10.1007/978-3-319-77525-8_100044

Conformance Checking 501

C

identify commonalities and discrepancies. The
conformance between a log and model can be
quantified with respect to different quality dimen-
sions: fitness, precision, and generalization.

Overview

Conformance checking compares an event log
with a process model of the same process
(Munoz-Gama 2016). An event log is composed
of a series of log traces where each log trace
relates to the sequence of observed events of a
process instance, i.e., a case. An event can be
related to a particular activity in the process but
can also record many other process information
such as time stamp, resource, and cost. In a
real-life context, event logs can be extracted
from Process-Aware Information Systems (PAIS)
such as workflow management (WFM) systems,
business process management (BPM) systems,
or typical relational databases, such as SAP
database. Similarly, process models can often
be extracted from the organization’s information
systems. These can be normative models that
the organization uses to manage their process,
or descriptive, created by hand or automatically
discovered to gain insight into their processes
(van der Aalst 2013).

Depending on the nature of the model, dis-
crepancies between the log and model can have
different interpretations (van der Aalst 2016). For
a normative model, deviations indicate violations
of imposed constraints. For example, a banking
process may require the processing and approval
of a loan to be done by different employees
to avoid the risk of misconduct (four-eyes prin-
ciple). Clearly, conformance checking between
an event log of the handled loan applications
and the process model can be applied to assess
compliance. On the other hand, for a descriptive
model, deviations indicate that the model is not
fully capturing all the observed behavior in the
log. For example, process analysts might perform
conformance checking on the models discovered
by different process discovery algorithms before
selecting the ones that are of sufficient quality for
further analysis.

To illustrate conformance checking, a simple
process is introduced. Figure 1 shows a doctoral
scholarship application process in an informal
modeling notation. This process consists of
eight activities: Start Processing, Evaluate
Project, Evaluate Academic Record, Evaluate
Advisor CV, Final Evaluation, Accept, Reject,
and Notify Results. To begin the process, an
applicant has to submit their academic record,
their advisor’s CV, and a description of their
proposed project. Once the required documents
are received, the committee would begin by
evaluating the submitted documents. As shown
by the AND gateway, the committee can choose
to evaluate the three documents in any order.
Following the preliminary evaluation, a final
evaluation is done to consolidate the previous
results. This leads to either the acceptance or
rejection of the application. Finally, the applicant
is notified of the result. An example of log trace
corresponding to an accepted application could
be hStart Processing, Evaluate Project, Evaluate
Academic Record, Evaluate Advisor CV, Final
Evaluation, Accept, Notify Resultsi.

Dimensions of Conformance
Through conformance checking, commonalities
and discrepancies between a log and model are
quantified. One simple idea would be to con-
sider that a log and model are conforming with
each other if the observed behavior in the log
is captured by the model. This means that a log
and model are perfectly conforming if all the log
traces can be fitted to the model. However, this
can be easily achieved with a model that allows
any behavior. Such models do not provide much
information to the data analyst about the process.
This shows that there is a need to consider con-
formance with respect to different dimensions.

Currently, conformance is generally consid-
ered with respect to three dimensions – fitness,
precision, and generalization.

Fitness relates to how well a model and log fit
each other. A log trace perfectly fits the model if it
can be replayed onto the model and corresponds
to a complete model trace. For example, hStart
Processing, Evaluate Project, Evaluate Academic

502 Conformance Checking

Record, Evaluate Advisor CV, Final Evaluation,
Accept, Notify Resultsi perfectly fits the model
in Fig. 1 since each of the observed steps can be
sequentially replayed at the model, and the trace
corresponds to a particular possible way to exe-
cute the process model. However, the trace hStart
Processing, Evaluate Project, Evaluate Academic
Record, Final Evaluation, Reject, Notify Resultsi
does not fit the model because the advisor’s CV
(Evaluate Advisor CV) is never evaluated. This
suggests that the corresponding application has
been rejected without proper evaluation.

Precision relates to a model’s ability to cap-
ture the observed behavior without allowing un-
seen behavior. It is not enough to have a model
that is perfectly fitting with the log since this
can be easily achieved with a model that permits
any behavior. Consider the “flower” model in
Fig. 2; it consists of all the transitions attached
to a state that corresponds to both the start and
end state. This means any sequence involving
the connected transitions is permissible by the
model. Though perfectly fitting with the log, such
underfitting model does not convey much useful
information to the user. In contrary, the process

model illustrated in Fig. 3 is much more precise
than the flower model.

Generalization relates to a model’s ability to
account for yet to be observed behavior. Typi-
cally, an event log only represents a small fraction
of the possible behavior in the process. As such, a
good model must be generalizing enough so that
unobserved but possible behavior is described.
For example, if the model in Fig. 4 was discov-
ered from an event log that contains only the
trace hStart Processing, Evaluate Project, Eval-
uate Academic Record, Evaluate Advisor CV,
Final Evaluation, Accept, Notify Resultsi, then
the model would be both perfectly fitting and pre-
cise since all observed behaviors are captured by
the model and that it does not allow any unseen
behavior. Clearly, there is much unseen behavior
that is very likely to occur in the future, e.g.,
the rejection of an application. This shows that,
while it is important to have precise models, it is
also important to avoid overfitting the observed
behavior.

Some authors consider a fourth dimension
called simplicity, relating to the model complex-
ity, i.e., simple models should be preferred over

Conformance Checking, Fig. 1 Informal process model of a university scholarship process

Conformance Checking,
Fig. 2 Imprecise flower
model of the doctoral
scholarship process

Conformance Checking 503

C

Conformance Checking, Fig. 3 Precise but unfitting model of the doctoral scholarship process

Conformance Checking, Fig. 4 Model that overfits one particular possible execution of the doctoral scholarship
process

Conformance Checking, Fig. 5 Three main types of conformance checking approaches

complex models if both describe the same behav-
ior. However this quality dimension relates only
to the model and therefore is not normally mea-
sured by conformance checking techniques. This
dimension is covered in the Automated Process
Discovery entry of this encyclopedia.

Overall, while the three quality dimensions are
orthogonal to each other, in a real-life context,
one is unlikely to find a pair of log and model that
are in perfect conformance (i.e., perfectly fitting,
precise, and generalizing). Often times, different
scenarios may require different conformance lev-
els and prioritization of the quality dimensions.
For example, to analyze the well-established
execution paths of a process, an analyst might
prioritize fitness over the other dimensions. On
the other hand, if an event log only contains
a small number of cases, generalization would

likely to be prioritized over the other dimensions
to account for possible future behavior.

Types of Conformance
Conformance checking techniques can be applied
to understand and quantify these relationships
between a log and model. There is a large col-
lection of approaches and metrics that are based
on different ways to compare a log and model.

Figure 5 shows that there are three main
groups of conformance checking approaches
– replay, comparison, and alignment. Replay-
based approaches replay log traces onto
the model and record information about the
conformance during the replay. Process models
can be denoted in different modeling notations,
e.g., Business Process Modeling Notation
(BPMN), Petri nets, and process trees, and each

504 Conformance Checking

Conformance Checking, Fig. 6 Model M1 of the university doctoral scholarship process denoted in Petri net notation

representation bias has distinct characteristics,
e.g., formalism and determinism. However, a
proper process model is typically executable so
that log traces can be re-executed stepwise by the
model. Comparison-based approaches convert
both the log and model into a common repre-
sentation so that the log and model are directly
comparable. Last but not least, alignment-based
approaches seek to explain observed behavior
in terms of modeled behavior by aligning log
traces with the model. This brings conformance
checking to the level of events and can offer
detailed diagnosis on conformance issues.

Key Research Findings

In this section, two conformance checking ap-
proaches and three conformance metrics are pre-
sented.

Token Replay
Token replay is a replay-based conformance
checking approach that measures the fitness
between a log and model by replaying log traces
onto process models denoted in the Petri net
notation (Rozinat and van der Aalst 2008).

Consider model M1 in Fig. 6 and log L1 in
Fig. 7. Model M1 is denoted in Petri net notation
so that the squares correspond to the activities
in the process, filled circles correspond to tokens
that mark the state of a process instance as activ-
ities get executed, and empty circles correspond
to places that hold tokens. To execute an activity,
all its input places (i.e., all the places connected
by an incoming arrow to the activity) must have
at least one token. This means that the activity

L1 = [t1 = 〈a, b, c, d, e, f, h〉,
t2 = 〈a, c, b, e, f, h〉,
t3 = 〈a, b, d, c, g, e, h〉]

Conformance Checking, Fig. 7 Running example:
event log L1

is enabled and can be fired. When an activity is
fired, the activity consumes a token from each
of its input places before producing one token at
each of its output places (i.e., all the places con-
nected by an outgoing arrow from the activity).
For example, activity a in model M1 in Fig. 6
is currently enabled. If the activity is fired, it
would consume the token of its input place and
produce three tokens at each of its three output
places as illustrated in Fig. 8. As such, an instance
of the process can be recorded by successively
firing enabled activities until no activities are
enabled. For a valid Petri net model, an instance
is initiated by having a token at each of the
source places (i.e., places without any incoming
arrows) and is deemed to be completed by firing
activities until there is only one token at each of
the sink places (i.e., places without any outgo-
ing arrows) and none at any other places. The
sequence of fired activities corresponds to a com-
plete model trace, i.e., a possible execution of the
model.

Log traces can be replayed onto the model by
successively firing the activities related to each
event in the log trace at an initiated Petri net
model. If the log trace is perfectly fitting with the
model, there should not be any problem with the
replay since the log trace corresponds to a com-
plete model trace. However, for deviating traces,
replay would not be successful due to missing or

Conformance Checking 505

C

Conformance Checking, Fig. 8 Model M1 after firing activity a

Conformance Checking, Fig. 9 Missing token to fire activity e in token replay of trace t2 D ha; c; b; e; f; hi

redundant tokens. An activity might be marked to
be fired in the log trace but is not enabled in the
model due to missing tokens at its input places.
Consider the replay of trace t2 in L1. Starting
from the initial state of model M1 as shown in
Fig. 6, the firing of activity a, b, and c would
consume three tokens and produce five tokens in
the process. Figure 9 shows the state of model
M1 after the firing of the first three activities and
records the number of consumed and produced
tokens. According to trace t2, the next activity
to be fired is activity e. However, this is not
possible since one of the input places of activity
e does not have any token, i.e., activity e is not
enabled. To continue the replay, the missing token
is artificially added into the empty input place,
and the number of missing token is incremented.
The rest of trace t2 (activity f and g) can be
replayed successively. Figure 10 shows that, after
firing activity h, there is a remaining token in the
input place of activity d since this activity was
not fired in the replay of trace t2. As recalled, a
process instance is only completed when there is
only one token at each of the sink places and none
at any other places. To complete the replay, the

remaining token is removed artificially, and the
number of remaining tokens is incremented.

Based on the count of each token types con-
sumed, produced, missing, and remaining (p = 8,
c = 8, m = 1, r = 1), the fitness between model M1

and trace t2 can be computed as:

fitness.t2; M/ D
1

2
.1 �

m

c
/ C

1

2
.1 �

r

p
/

D
1

2
.1 �

1

5
/ C

1

2
.1 �

1

5
/ D 0:8

This fitness metric can be extended to the log
level by considering the number of produced,
consumed, missing, and remaining tokens from
the token replay of all log traces.

Cost-Based Alignment
The token replay approach can easily identify
deviating traces in an event log. Moreover, the
deviation severity can be compared using a fitness
metric computed from the number of produced,
consumed, missing, and remaining tokens. How-
ever, the token replay approach is prone to creat-

506 Conformance Checking

ing too many tokens for highly deviating traces
so that any behavior is allowed. This can lead
to an overestimation of the fitness. The approach
is also specific to the Petri net notation. More
importantly, in the case of a deviating trace, the
approach does not provide a model explanation
of the log trace. For example, the deviations in
trace t2 D ha; c; b; e; f; hi can be explained if
it was considered with respect to the complete
model trace ha; c; b; d; e; f; hi. From this map-
ping, it is clear that the log trace is missing the
execution of activity d (Evaluate Advisor CV).
These mappings from log traces to model traces
were introduced as alignments to address this
limitation (van der Aalst et al. 2012).

Alignments are tables of two rows where the
top row corresponds to the observed behavior
(i.e., log projection) and the bottom row cor-
responds to the modeled behavior (i.e., model
projection). Each column is therefore a move
in the alignment where the observed behavior
is aligned with the modeled behavior. Consider
alignment �1 in Fig. 11. This alignment aligns

trace t3 D ha; b; d; c; g; e; hi in L1 and model
M1 in Fig. 6. The top row (ignoring �) yields
the trace t3 D ha; b; d; c; g; e; hi, and the bottom
row (ignoring �) yields a complete model trace
ha; b; d; c; e; g; hi. For each move in alignment
�1, the top row matches the bottom row if the
step in the log trace matches the step in the
model trace. This is called a synchronous move.
In the case of deviations, a no-move symbol � is
placed in the bottom row if there is a step in the
log trace that cannot be mimicked by the model
trace. For example, activity g is executed before
activity e in trace t3, but model M1 requires
activity e to be fired before activity g. Hence, a
log move is put where the top row has activity g
and the bottom row has a no-move �. Similarly,
a no-move symbol � is placed in the top row if
there is a step in the model trace that cannot be
mimicked by the log trace. For example, activity
g is executed after activity e in the model trace
according to model M1. Therefore, a model move
is added where the top row has a no-move � and
the bottom row has activity g. It is also possible

Conformance Checking, Fig. 10 Remaining token in token replay of trace t2 D ha; c; b; e; f; hi

Conformance Checking, Fig. 11 Possible alignments between trace t3 D ha; b; d; c; g; e; hi in L1 and model M1

in Fig. 6

Conformance Checking, Fig. 12 Default alignment between trace t3 in log L1 and model M1 in Fig. 6

Conformance Checking 507

C

that there are invisible transitions in the model
which are not observable in the log. Similar to a
model move, there would be a no-move in the top
row and an invisible transition label in the bottom
row. In total, there are four types of legal moves
in an alignment: synchronous move, log move,
model move, and invisible move.

For a particular log trace and model, there
could be many possible alignments where each
represents a different explanation of the observed
behavior in terms of modeled behavior. For
example, Fig. 11 shows three possible alignments
between trace t3 and model M1 in Fig. 6. Clearly,
alignment �1 and �3 are better alignments of trace
t3 and model M1 than alignment �2 since they
provide closer explanations with less log moves
and model moves. The quality of an alignment
can be quantified by assigning costs to moves. In
general, model moves and log moves are assigned
higher costs than synchronous moves because
they represent deviations between modeled
behavior and observed behavior. A standard cost
assignment could be that all model moves and log
moves are assigned a cost of 1 and synchronous
moves and invisible moves are assigned a cost of
0. Invisible moves are normally assigned zero
costs as they are related to invisible routing
transitions in the model that are not observable
in the log. Under the standard cost assignment,
the costs of the alignments in Fig. 11 can be
computed as follows:

cost.�1/ D 0 C 0 C 0 C 0 C 1 C 0 C 1 C 0 D 2

cost.�2/ D 0 C 0 C 1 C 0 C 1 C 1 C 0C1C0 D 4

cost.�3/ D 0 C 0 C 0 C 0 C 1 C 0 C 1 C 0 D 2

This confirms the previous intuition that align-
ment �1 and �3 are better alignments than align-
ment �2. Alignments with the minimal costs cor-
respond to optimal alignments thatgive the clos-

est explanations of log traces in terms of mod-
eled behavior. Note that there could be multiple
optimal alignments for a particular log trace. For
example, alignment �1 and �3 are both optimal
alignments of trace t3 under the standard cost
assignment. Furthermore, optimal alignments are
only optimal with respect to the given cost assign-
ment. For example, alignment �1 would cease to
be the optimal alignment if model moves and log
moves of activity g are assigned a cost of 2 (i.e.,
cost.�1/ D 4) to reflect that having deviations at
the decision part of the process is quite severe.
In practice, optimal alignments can be automat-
ically found by finding the cheapest complete
model trace in the synchronous product of the
log trace and model using heuristic algorithms
with proven optimality guarantees, e.g., the A�

algorithm (van der Aalst et al. 2012).
Alignments can also be used to compute con-

formance metrics with respect to the different
quality dimensions.

Cost-Based Fitness Metric
The fitness of a log trace and a model can be
quantified by comparing the cost of an opti-
mal alignment with the worst case scenario cost
(Adriansyah 2014). In the worst scenario, the log
trace is completely unfitting with the model. A
default alignment between the two can be com-
puted by assigning all the steps in the log trace
as log moves and all the steps in the complete
model trace as model moves. Since the optimal
alignment minimizes the total alignment cost,
the least costly complete model trace is used.
Figure 12 shows the default alignment between
trace t3 and model M1 under the standard cost
assignment. The top row (ignoring �) yields
trace t3, and the bottom row (ignoring �) yields
a complete model trace ha; b; d; c; e; g; hi. The
cost-based fitness of trace t3 can be computed as:

fitness.t3; M/ D 1 �
cost.align.t3; M//

cost.aligndefault.t3; M//

D 1 �
0 C 0 C 0 C 0 C 1 C 0 C 1 C 0

1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1

D 1 �
2

14
D 0:857

508 Conformance Checking

where a fitness value of 1.0 means that the model
and log trace are perfectly fitting.

Escaping Arc Precision
Precision based on escaping arcs can also be
computed using alignments (Adriansyah et al.
2012). As previously mentioned, an imprecise
model allows unobserved behavior, i.e., underfit-
ting. For example, consider the Petri net model
M1 in Fig. 6 and the optimal alignments (under
the standard cost assignment) between model M1

and log L1 in Fig. 13. Clearly, model M1 is not
perfectly precise as it allows for behavior that is
not observed in log L1. According to model M1,
activity b, c, and d can be executed in parallel
following the execution of activity a. However,
none of the log traces execute activity d after
activity a. This imprecision in the model can
be quantified by constructing a prefix automaton
using the model projection of the alignments, i.e.,
the bottom row of the alignments. As previously
presented, model projections of alignments ex-
plain potentially unfitting log traces in terms of
modeled behavior so that they can be replayed on
the process model. Figure 14 illustrates the con-
structed prefix automaton A1 for the alignments
between log L1 and model M1 (ignoring the
circles highlighted in red for now). Each prefix of
the model projections of the alignments identifies
a state (represented as circles), and the numberin

the states corresponds to the weight. For exam-
ple, the state hai has a weight of 3 because it
appears three times in the model projections (all
three alignments start with activity a). On the
other hand, the state ha; c; bi is only present in
alignment �6 and therefore has a weight of 1. The
states of automaton A1 represent states reached
by the model during the execution of the log.
For any particular state in automaton A1, there
might be activities that are enabled by the model
but are not observed in the log execution. These
activities indicate imprecisions of the model and
are called escaping arcs of the model. Escaping
arc states (represented as circles highlighted in
red) are added to automaton A1 by replaying the
automaton onto the model and checking for en-
abled activities at each state. For example, at state
hai (i.e., after firing activity a), activity b, c, and
d are enabled as shown in Fig. 8. However, the
prefix ha; d i was not observed in the construction
of automaton A1 using log L1. This means that
there is an escaping arc from state hai to state
ha; d i, and this is added to the automaton by the
state highlighted in red. The rest of the escaping
arcs can be added in a similar way.

With the constructed prefix automaton, escap-
ing arc precision can be computed by comparing
the number of escaping arcs with the number of
allowed arcs for all states:

precision.A1/ D 1 �

P
s2S ¨.s/ � jesc.s/j

P
s2S ¨.s/ � jmod.s/j

D 1 �
3 � 0 C 3 � 1 C 2 � 0 C : : : C 1 � 1 C 1 � 0 C 1 � 0

3 � 1 C 3 � 3 C 2 � 2 C : : : C 1 � 2 C 1 � 1 C 1 � 1

D 1 �
6

36
D 0:833

where S is the set of states in automaton A1, ¨.�/

maps a state s 2 S to its weight, esc.�/ maps a
state s 2 S to its set of escaping arc states, and
mod.�/ maps a state s 2 S to its set of allowed
states. A precision value of 1.0 indicates perfect
precision, i.e., the model only allows observed
behavior and nothing else.

Artificial Negative Events
Another approach to measure precision is
through artificial negative events. Artificial
negative events are induced by observing events
that did not occur in the event log. These
unobserved events (i.e., negative events) give
information about things that are not allowed to

Conformance Checking 509

C

Conformance Checking,
Fig. 13 Optimal
alignments between trace
t1, t2, t3 in log L1 and
model M1 in Fig. 6

Conformance Checking, Fig. 14 Prefix automaton A1 of alignments between log L1 and model M1 enhanced with
model behavior

occur in the process. Assuming that the event log
gives a complete view of the process (i.e., a log
completeness assumption), the precision of the
process model can be computed using artificial
negative events and the concepts of precision and
recall in data mining.

Artificial negative events can be induced by
grouping similar traces and then observing the
events that did not occur for every event in the
traces. Under the log completeness assumption,
this means that these unobserved events are neg-
ative events that are not allowed to happen by the
process (Goedertier et al. 2009).

The process model can then be compared with
the log by treating the model as a predictive
model. For a given incomplete event sequence
(i.e., an unfinished process instance), activities
that are permitted by the model and observed
in the log are classified as true positives (TP).
Activities that are permitted by the model but

are induced as negative events from the log are
classified as false positive (FP). Activities that are
not permitted by the model but observed in the
log are classified as false negative (FN). Finally,
activities that are not permitted by the model and
are induced as negative events from the log are
classified as true negative (TN). As shown in
Fig. 15, precision and recall can be computed us-
ing a confusion matrix. Specifically, the precision
of the positive class can be computed as:

precision D
TP

TP C FP

The computed precision value corresponds to
the precision of the three quality dimensions in
process mining since it refers to the proportion of
modeled behavior that is observed in the log.

The use of artificial negative events can also be
extended to quantify generalization and to com-

510 Conformance Checking

Conformance Checking, Fig. 15 Confusion matrix

pute a precision metric that is more robust against
less complete event logs. This is achieved by
extending the artificial negative event induction
strategy to assign weights to the induced negative
events (vanden Broucke et al. 2014).

Examples of Application

All of the conformance checking techniques
presented in the previous section have been
implemented and are applicable to most real-
life scenarios. In the following, the A� cost-
based alignment technique is applied to a real-life
dataset to illustrate how conformance checking
can be applied to gain insights about a process.
This example utilizes the data presented in
the “Conformance Checking: What does your
process do when you are not watching?” tutorial
by de Leoni, van Dongen, and Munoz-Gama at
the “15th International Conference on Business
Process Management (BPM17).”

As previously presented, a process model and
an event log are required to perform conformance
checking. The real-life event log is taken from a
Dutch financial institute and is of an application
process for a personal loan or overdraft within a
global financial organization (van Dongen 2012).
This means that each case in the log records
the occurred events of a particular loan applica-
tion. The log contains some 262,200 events in

13,087 cases. Apart from some anonymization,
the data is presented as it is recorded in the
financial institute. The log is merged from three
intertwined subprocesses so that the originating
subprocess of each event can be identified by the
first letter of the activity recorded by the event.
In this example, the log is filtered so that it only
contains events from two of the subprocesses: the
process which records the state of the application
(identifiable by “A_”) and the process which
records the state of an offer communicated to the
applicant (identifiable by “O_”). The model has
been created with the help of domain experts and
can be assumed to be a realistic representation of
the underlying process.

Figure 16 shows the process model projected
with the computed alignment results to allow
a visual diagnosis of the conformance results.
For each transition, there is an error bar to show
the distribution of synchronous moves (green)
and model moves (pink) for the transition. For
example, there are 383 synchronous moves
and 419 model moves related to transition
O_DECLINED. The occurrence and amount of
log moves are indicated by highlighting places
in yellow and the size of the highlighted places.
Observing the model, one can note that transition
O_SENT_BACK is associated with a large
amount of model moves. This transition is quite
an important part of the process as it corresponds
to the event where the financial institute receives
a reply from the applicant after a loan offer is
made. A model move of O_SENT_BACK in a
log trace means that the system did not register a
reply from the applicant regarding a made offer
as required by the process for the corresponding
loan application. Investigation of cases with a
model move in O_SENT_BACK (e.g., the case
with caseId 174036) would show that there are
cases for which an offer was created, sent, and
accepted without having received a reply from
the corresponding applicant. Whether it was due
to a system error, an employee’s mistake, or
at worst a fraudulent case, clearly it is in the
financial institute’s best interest to investigate the
root cause of this conformance issue.

Conformance Checking 511

C

C
o

n
fo

rm
an

ce
C

h
ec

k
in

g
,F

ig
.1

6
Pr

oc
es

s
m

od
el

pr
oj

ec
te

d
w

ith
al

ig
nm

en
tr

es
ul

ts

512 Conformance Checking

Future Directions for Research

While there have been significant advances in the
research of conformance checking over the recent
years, there are still many open challenges and
research opportunities. Some of them include:

Conformance Dimensions
The proposed three quality dimensions (fitness,
precision, and generalization) have been widely
accepted, but there is still a need for further
understanding on how to interpret and quantify
them through metrics. Furthermore, conformance
can be extended beyond the current three
dimensions, e.g., log completeness to quantify
whether if the observed event data gives
the full picture of the underlying process
(Janssenswillen et al. 2017).

Big Data and Real Time
Process mining techniques and tools are getting
applied to larger and more complex processes.
This means that they have to be scalable to
handle the increased size and complexity. In fact,
much of the recent research efforts in confor-
mance checking have been focused on this is-
sue. Related research lines include decomposed
conformance checking (Munoz-Gama 2016) and
online conformance checking for event streams
(Burattin 2015).

Conformance Diagnosis and Process
Model Repair
It is not enough to just identify conformance
issues; good diagnostic and visualization tools
are crucial in helping the analyst identify and
understand the root causes of the conformance
issues. While there has been work done in this
aspect of conformance checking, e.g., Buijs and
Reijers (2014) and Munoz-Gama et al. (2014),
there is much more to be done to provide bet-
ter conformance diagnosis technology, e.g., new
techniques and user study. Finally, once the dif-
ferences between the model and the log have
been diagnosed, the user may wish to repair the
model in order to fix such differences and achieve
a model that better describes the real process

executed. This topic is extensively covered in the
Process Model Repair entry of this encyclopedia.

Cross-References

�Automated Process Discovery
�Business Process Event Logs and Visualization
� Process Model Repair

References

Adriansyah A (2014) Aligning observed and modeled
behavior. Ph.D. thesis, Eindhoven University of Tech-
nology

Adriansyah A, Munoz-Gama J, Carmona J, van Dongen
BF, van der Aalst WMP (2012) Alignment based pre-
cision checking. In: Rosa ML, Soffer P (eds) Busi-
ness process management workshops – BPM 2012
international workshops, Tallinn, Estonia, 3 Sept 2012.
Revised papers. Lecture notes in business information
processing, vol 132. Springer, pp 137–149

Buijs, JCAM, Reijers HA (2014) Comparing business
process variants using models and event logs. In: Enter-
prise, business-process and information systems mod-
eling – 15th international conference, BPMDS 2014,
19th international conference, EMMSAD 2014, held at
CAiSE 2014, Thessaloniki, Greece, 6–17 June 1 2014.
Proceedings, pp 154–168

Burattin A (2015) Process mining techniques in business
environments – theoretical aspects, algorithms, tech-
niques and open challenges in process mining. Lecture
notes in business information processing, vol 207.
Springer, Cham

Goedertier S, Martens D, Vanthienen J, Baesens B
(2009) Robust process discovery with artificial negative
events. J Mach Learn Res 10:1305–1340

Janssenswillen G, Donders N, Jouck T, Depaire B (2017)
A comparative study of existing quality measures for
process discovery. Inf Syst 71:1–15

Munoz-Gama J (2016) Conformance checking and di-
agnosis in process mining – comparing observed and
modeled processes. Lecture notes in business informa-
tion processing, vol 270. Springer, Cham

Munoz-Gama J, Carmona J, van der Aalst WMP
(2014) Single-entry single-exit decomposed confor-
mance checking. Inf Syst 46:102–122

Rozinat A, van der Aalst WMP (2008) Conformance
checking of processes based on monitoring real behav-
ior. Inf Syst 33(1):64–95

van der Aalst WMP (2013) Mediating between modeled
and observed behavior: the quest for the “right” pro-
cess: keynote. In: RCIS, pp 1–12. IEEE

van der Aalst WMP (2016) Process mining – data science
in action. Springer, Berlin/Heidelberg

van der Aalst WMP, Adriansyah A, van Dongen BF
(2012) Replaying history on process models for

https://doi.org/10.1007/978-3-319-77525-8_88
https://doi.org/10.1007/978-3-319-77525-8_86
https://doi.org/10.1007/978-3-319-77525-8_90

Continuous Queries 513

C

conformance checking and performance analysis. Wi-
ley Interdisc Rew Data Min Knowl Disc 2(2):182–192

van Dongen BF (2012) BPI challenge 2012. 4TU Data-
centrum. Eindhoven University of Technology

vanden Broucke SKLM, Weerdt JD, Vanthienen J, Bae-
sens B (2014) Determining process model precision
and generalization with weighted artificial negative
events. IEEE Trans Knowl Data Eng 26(8):1877–1889

Consistency Criterion

�Database Consistency Models

Consistency Model

�Database Consistency Models

Consistency Models in
MMOGs

�Transactions in Massively Multiplayer Online
Games

Constraint-Based Process
Mining

�Declarative Process Mining

Context-Aware User Mobility

�Using Big Spatial Data for Planning User Mo-
bility

Continuous Dataflow
Language

� Stream Processing Languages and Abstractions

Continuous Queries

Martin Hirzel
IBM Research AI, Yorktown Heights, NY, USA

Synonyms

Streaming SQL queries; Stream-relational
queries; StreamSQL queries

Definitions

A continuous query in an SQL-like language is a
declarative query on data streams expressed in a
query language for streams derived from the SQL
for databases.

Overview

Just like data that is stored in a relational database
can be queried with SQL, data that travels in a
stream can be queried with an SQL-like query
language. For databases, the relational model
and its language, SQL, have been successful
because the relational model is a foundation for
clean and rigorous mathematical semantics and
because SQL is declarative, specifying what the
desired result is without specifying how to com-
pute it (Garcia-Molina et al. 2008). However,
the classic relational model assumes that data
resides in relations in a database. When data
travels in a stream, such as for communications,
sensors, automated trading, etc., there is a need
for continuous queries. SQL dialects for contin-
uous queries fill this need and inherit the ad-
vantages of SQL and the relational model. Fur-
thermore, SQL-like streaming languages capi-
talize on the familiarity of SQL for developers
and of implementation techniques from relational
databases.

There are various different SQL-like stream-
ing languages. This article illustrates concepts
using CQL (the continuous query language,
Arasu et al. (2006)) as a representative example,
because it has clean semantics and addresses
the interplay between streams and relations.

https://doi.org/10.1007/978-3-319-77525-8_203
https://doi.org/10.1007/978-3-319-77525-8_203
https://doi.org/10.1007/978-3-319-77525-8_184
https://doi.org/10.1007/978-3-319-77525-8_92
https://doi.org/10.1007/978-3-319-77525-8_224
https://doi.org/10.1007/978-3-319-77525-8_260
https://doi.org/10.1007/978-3-319-77525-8_100333
https://doi.org/10.1007/978-3-319-77525-8_100331
https://doi.org/10.1007/978-3-319-77525-8_100332

514 Continuous Queries

Section “Findings” explores other SQL-like
streaming languages beyond CQL.

SQL-Like Syntax
The surface syntax for streaming SQL dialects
borrows familiar SQL clauses (such as select,

from, and where) and augments them with
streaming constructs (which turn streams into
relations and vice versa). Consider the following
CQL (Arasu et al. 2006) query with extensions
adapted from Soulé et al. (2016):

1 Quotes : { ticker : string, ask : int } stream;
2 History : { ticker : string, low : int } relation;
3 Bargains : { ticker : string, ask : int , low : int } stream
4 = select istream(*)
5 from Quotes[now], History
6 where Quotes.ticker == History.ticker and Quotes.ask <= History.low;

Line 1 declares Quotes as a stream of
{ ticker , ask } tuples, and Line 2 declares History
as a relation of { ticker , low} tuples. Neither Quotes
nor History is defined with a query in the example.
Lines 3–6 declare Bargains and define it with a
query. Line 3 declares Bargains as a stream of
{ ticker , ask, low } tuples. Line 4 specifies the
output using the istream operator, which creates
a stream from the insertions to a relation, using *
to pick up all available tuple attributes. Line 5
joins two relations, Quotes[now] and History,
where Quotes[now] creates a relation from the

current contents of stream Quotes. Finally, Line 6
selects only tuples satisfying the given predicate,
whereas any tuples for which the predicate is
false are dropped.

The above example illustrates the core features
of CQL, viz.: using operators such as now to
turn streams into relations, using SQL to query
relations, and using operators such as istream to
turn relations into streams. For more detail, the
following paragraphs explain the CQL grammar,
starting with the top-level syntax:

program WWD declC

decl WWD ID ‘:’ tupleType declKind .‘=’query/‹ ‘;’
tupleType WWD ‘{’.ID ‘:’ TYPE/C; ‘}’
declKind WWD ‘relation ’j‘ stream’
query WWD select from where‹groupBy‹

A program consists of one or more declara-
tions. Each declaration has an identifier (ID), a
tuple type (one or more attributes specified by
their identifiers and types), a declaration kind
(either relation or stream), and an optional query.
The grammar meta-notation contains superscripts

for optional items (X ‹), repetition (XC), and
repetition separated by commas (XC;). Finally,
a query consists of mandatory select and from
clauses and optional where and group-by clauses.
Next, we look at the grammar for the select
clause, which specifies the query output:

select WWD ‘select’ outputList j‘select’ relToStream ‘(’ outputList ‘)’
relToStream WWD ‘istream’ j ‘dstream’ j ‘rstream’
outputList WWD ‘*’ j projectItemC; j aggrItemC;

projectItem WWD expr .‘as’ID/‹

aggrItem WWD AGGR ‘(’ID�; ‘)’.‘as’ ID/‹

Continuous Queries 515

C

A select clause either specifies an output list
directly or wraps an output list in a relation-
to-stream operator. In the first case, the query
output is a relation, while in the second case, the
query output is a stream. There are three relation-
to-stream operators: istream captures insertions,
dstream captures deletions, and rstream captures
the entire relation at any given point in time.

Here, a relation at a given point in time is a
bag of tuples (i.e., an unordered collection of
tuples that can contain duplicates). A stream is an
unbounded bag of timestamped tuples (pairs of
htimestamp; tuplei). The grammar for outputList
is borrowed from SQL. Next, we look at the
grammar for the from clause, which specifies the
query input:

from WWD ‘from’ inputItemC;

inputItem WWD ID .‘[’ streamToRel ‘]’/‹ .‘as’ ID/‹

streamToRel WWD ‘now’ j ‘unbounded’ j timeWindow j countWindow
timeWindow WWD partitionBy‹ ‘range’ TIME .‘slide’ TIME/‹

countWindow WWD partitionBy‹ ‘rows’ NAT .‘slide’ NAT/‹

partitionBy WWD ‘partition’ ‘by’ IDC;

An input item either identifies a relation di-
rectly or applies a stream-to-relation operator to a
stream identifier. Stream-to-relation operators are
written postfix in square brackets, reminiscent of
indexing or slicing syntax in other programming
languages. There are four such operators: now
(tuples with the current timestamp), unbounded
(tuples up to the current timestamp), range (time-
based sliding window), and rows (count-based
sliding window). Sliding windows can optionally
be partitioned, in which case their size is de-
termined separately and independently for each
unique combination of the specified partitioning
attributes. Sliding windows can optionally spec-
ify a slide granularity. Finally, we look at the
grammar for where and groupBy as examples of
other classic SQL clauses:

where WWD ‘where’ expr
groupBy WWD ‘group’ ‘by’ IDC;

The where clause selects tuples using a predi-
cate expression, and the group-by clause specifies
the scope for aggregation queries. These clauses
in CQL are borrowed unchanged from SQL. For
brevity, we omitted other classic SQL constructs,
such as distinct, union, having, or other types of
joins, which streaming SQL dialects such as CQL
can borrow from SQL as is.

Typically, before execution, queries in SQL or
its derivatives are first translated into a logical
query plan of operators, which is the subject of
the next section.

Stream-Relational Algebra
Whereas the SQL-like syntax of the previous
section is designed to be authored by humans,
this section describes an algebra designed to
be optimized and executed by stream-query en-
gines. The algebra is stream-relational because
it augments with stream operators the relational
algebra from databases. Relational algebra has
well-understood semantics (Garcia-Molina et al.
2008), and the CQL authors rigorously defined
the formal semantics for the additional stream-
ing operators (Arasu and Widom 2004). The
following paragraphs provide only an informal
overview of the operators; interested readers can
consult the literature for formal treatments. The
notation for operator signatures is:

operatorhconfigurationi.input/ ! output

The configuration of an operator specializes
its behavior. The input to an operator consists of
one or multiple relations or a stream. And the
output of an operator consists of either a relation
or a stream. Relational algebra is compositional,
since the output of one operator can be plugged

516 Continuous Queries

into the input of another operator, modulo com-
patible kind and type. For instance, the stream-
relational algebra for stream Bargains in the CQL

example from the start of section “SQL-Like
Syntax” is:

istream
�

�hask � lowi

�
‰hQuotes:tickerDHistory:tickeri

�
now.Quotes/; History

���

Classic relational algebra has operators from
relations to relations (Garcia-Molina et al.
2008):

• �hassignmentsi.relation/ ! relation
Project each input tuple using assignments

to create a tuple in the output relation.
• �hpredicatei.relation/ ! relation

Select tuples for which the predicate is true,
and filter out tuples for which it is false.

• ‰hpredicatei .relationC;/ ! relation
Join tuples from input relations as if with a

cross product followed by �hpredicatei.
• �hgroupBy;assignmentsi.relation/ ! relation

Group tuples and then aggregate within
each group, using the given assignments.

For brevity, we omitted other classic rela-
tional operators, but they could be added trivially,
thanks to the compositionality of the algebra.
CQL can use the well-defined semantics of clas-
sic relational algebra operators by applying them
on snapshots of relations at a point in time. Some
operators, such as � and � , process each tuple
in isolation, without carrying any state from one
tuple to another (Xu et al. 2013). These operators
could be easily lifted to work on streams, and
indeed, some streaming SQL dialects do just that.
But the same is not true for stateful operators
such as ‰ and � . To use these on streams, CQL
first converts streams to relations, using window
operators:

• now.stream/ ! relation
At each time instant t , all tuples from the

input stream with timestamp exactly t .
• unbounded.stream/ ! relation

At each time instant t , all tuples from the
input stream with timestamp at most t .

• rangehpartitionBy;size.;slide/‹i.stream/ ! relation
Use a time-based sliding window on the

input stream as the output relation.
• rowshpartitionBy;size.;slide/‹i.stream/ ! relation

Use a count-based sliding window on the
input stream as the output relation.

These window operators correspond directly
to the corresponding surface syntax discussed
in section “SQL-Like Syntax”. Gedik surveyed
these and more window constructs and their im-
plementation (Gedik 2013). A final set of opera-
tors turns relations back into streams:

• istream.relation/ ! stream
Watch input relation for insertions,

and send those as tuples on the output
stream.

• dstream.relation/ ! stream
Watch input relation for deletions, and send

those as tuples on the output stream.
• rstream.relation/ ! stream

At each time instant, send all tuples
currently in input relation on output
stream.

This article illustrated continuous queries in
SQL-like languages using CQL as the concrete
example, because it is clean and well studied. The
original CQL work contains more details and a
denotational semantics (Arasu et al. 2006; Arasu
and Widom 2004). Soulé et al. furnish CQL with
a static type system and formalize translations
from CQL via stream-relational algebra to a cal-
culus with an operational semantics (Soulé et al.
2016).

Continuous Queries 517

C

Findings

CQL was not the first dialect of SQL for
streaming. TelegraphCQ reused the front-end
of PostgreSQL as the basis for its surface
language (Chandrasekaran et al. 2003). Rather
than focusing on surface language innovation,
TelegraphCQ focused on a stream-relational
algebra back-end that pioneered new techniques
for dynamic optimization and query sharing.
Gigascope had its own dialect of SQL called
GSQL (Cranor et al. 2003). Unlike CQL,
GSQL used an algebra where all operators
work directly on streams. As discussed earlier,
this is straightforward for � and � , but not
for ‰ and � . Therefore, GSQL required ‰

and � to be configured with constraints over
ordering attributes that effectively function as
windows. Aurora used a graphical interface for
surface-level programming, but we still consider
it an SQL-like system, because it used a stream-
relational algebra (Abadi et al. 2003). Aurora’s
Stream Query Algebra (SQuAl) contained the
usual operators � , � , ‰, and � , as well as union,
sort, and a resample operator that interpolates
missing values.

CQL took a more language-centric approach
than its predecessors. It also inspired work prob-
ing semantic subtleties in SQL-like streaming
languages. Jain et al. precisely define the seman-
tics for the corner case of StreamSQL behav-
ior where multiple tuples have the same times-
tamp (Jain et al. 2008). In that case, there is
no inherent order among these tuples, so tuple-
based windows must choose arbitrarily, leading
to undefined results. Furthermore, if actions are
triggered on a per-tuple basis, there can be mul-
tiple actions at a single timestamp, leading to
spurious intermediate results that some would
consider a glitch. The SECRET paper is also
concerned with problems of time-based sliding
windows (Botan et al. 2010). SECRET stands for
ScopE (which timestamps belong to a window),
Contents (which tuples belong to a window),
REport (when to output results), and Tick (when
to trigger computation). Finally, Zou et al. ex-
plored turning repeated SQL queries into con-

tinuous CQL queries by turning parameters that
change between successive invocations into an
input stream (Zou et al. 2010).

Today, there is still much active research on
big-data streaming systems, but the focus has
shifted from SQL dialects to embedded domain-
specific languages (EDSLs, Hudak 1998). An
EDSL for streaming is a library in a host
language that offers abstractions for continuous
queries. In practice, most EDSLs lack the
rigorous semantics of stand-alone languages
such as CQL but have the advantage of posing
a lower barrier to entry for developers who are
already proficient in the host language, being
easier to extend with user-defined operators,
and not requiring a separate language tool-chain
(compiler, debugger, integrated development
environment, etc.).

Examples

The beginnings of sections “SQL-Like Syntax”
and “Stream-Relational Algebra” show a con-
crete example of the same query in CQL and in
stream-relational algebra, respectively. The most
famous example of a set of continuous queries
written in an SQL-like language is the Linear
Road benchmark. The benchmark consists of
computing variable-rate tolling for congestion
pricing on highways. A simplified version of
Linear Road serves to motivate and illustrate
CQL (Arasu et al. 2006). The full version of Lin-
ear Road is presented in a paper of its own (Arasu
et al. 2004). Both the simplified version and the
full version of the benchmark continue to be
popular, and not just for SQL-inspired streaming
systems and languages (Grover et al. 2016; Hirzel
et al. 2016; Jain et al. 2006; Soulé et al. 2016).

Future Directions for Research

Stream processing is an active area of research,
and new papers often use a streaming SQL foun-
dation to present their results. One challenging
issue for streaming systems is how to handle

518 Continuous Queries

out-of-order data. For instance, CEDR suggests a
solution based on stream-relational algebra using
several timestamps per tuple (Barga et al. 2007).
One challenge that is particular to SQL-like lan-
guages is how to extend them with user-defined
operators without losing the well-definedness of
the restricted algebra. For instance, StreamInsight
addresses this issue with an extensibility frame-
work (Ali et al. 2011). Finally, the semantics of
SQL are defined by reevaluating relational oper-
ators on windows whenever the window contents
change. Nobody suggests that this reevaluation is
the most efficient approach, but developing better
solutions is an interesting research challenge. For
instance, the DABA algorithm performs associa-
tive sliding-window aggregation on FIFO win-
dows in worst-case constant time (Tangwongsan
et al. 2017). All three of the abovementioned
research topics (out-of-order processing, extensi-
bility, and incremental streaming algorithms) are
still ripe with open issues.

Cross-References

� Stream Processing Languages and Abstractions

References

Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey
C, Lee S, Stonebraker M, Tatbul N, Zdonik S (2003)
Aurora: a new model and architecture for data stream
management. J Very Large Data Bases (VLDB J)
12(2):120–139

Ali M, Chandramouli B, Goldstein J, Schindlauer R
(2011) The extensibility framework in Microsoft
StreamInsight. In: International conference on data
engineering (ICDE), pp 1242–1253

Arasu A, Widom J (2004) A denotational semantics for
continuous queries over streams and relations. SIG-
MOD Rec 33(3):6

Arasu A, Cherniack M, Galvez E, Maier D, Maskey AS,
Ryvkina E, Stonebraker M, Tibbetts R (2004) Linear
road: a stream data management benchmark. In: Con-
ference on very large data bases (VLDB), pp 480–491

Arasu A, Babu S, Widom J (2006) The CQL continu-
ous query language: semantic foundations and query
execution. J Very Large Data Bases (VLDB J) 15(2):
121–142

Barga RS, Goldstein J, Ali M, Hong M (2007) Consistent
streaming through time: a vision for event stream

processing. In: Conference on innovative data systems
research (CIDR), pp 363–373

Botan I, Derakhshan R, Dindar N, Haas L, Miller RJ,
Tatbul N (2010) SECRET: a model for analysis of
the execution semantics of stream processing systems.
In: Conference on very large data bases (VLDB),
pp 232–243

Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ,
Hellerstein JM, Hong W, Krishnamurthy S, Madden
S, Raman V, Reiss F, Shah MA (2003) TelegraphCQ:
continuous dataflow processing for an uncertain world.
In: Conference on innovative data systems research
(CIDR)

Cranor C, Johnson T, Spataschek O, Shkapenyuk V (2003)
Gigascope: a stream database for network applications.
In: International conference on management of data
(SIGMOD) industrial track, pp 647–651

Garcia-Molina H, Ullman JD, Widom J (2008) Database
systems: the complete book, 2nd edn. Pearson/Prentice
Hall, London, UK

Gedik B (2013) Generic windowing support for extensible
stream processing systems. Softw Pract Exp (SP&E)
44:1105–1128

Grover M, Rea R, Spicer M (2016) Walmart & IBM revisit
the linear road benchmark. https://www.slideshare.
net/RedisLabs/walmart-ibm-revisit-the-linear-road-ben
chmark (Retrieved Feb 2018)

Hirzel M, Rabbah R, Suter P, Tardieu O, Vaziri M (2016)
Spreadsheets for stream processing with unbounded
windows and partitions. In: Conference on distributed
event-based systems (DEBS), pp 49–60

Hudak P (1998) Modular domain specific languages and
tools. In: International conference on software reuse
(ICSR), pp 134–142

Jain N, Amini L, Andrade H, King R, Park Y, Selo P,
Venkatramani C (2006) Design, implementation, and
evaluation of the linear road benchmark on the stream
processing core. In: International conference on man-
agement of data (SIGMOD), pp 431–442

Jain N, Mishra S, Srinivasan A, Gehrke J, Widom J,
Balakrishnan H, Cetintemel U, Cherniack M, Tibbets
R, Zdonik S (2008) Towards a streaming SQL standard.
In: Conference on very large data bases (VLDB), pp
1379–1390

Soulé R, Hirzel M, Gedik B, Grimm R (2016) River:
an intermediate language for stream processing. Softw
Pract Exp (SP&E) 46(7):891–929

Tangwongsan K, Hirzel M, Schneider S (2017) Low-
latency sliding-window aggregation in worst-case con-
stant time. In: Conference on distributed event-based
systems (DEBS), pp 66–77

Xu Z, Hirzel M, Rothermel G, Wu KL (2013) Testing
properties of dataflow program operators. In: Confer-
ence on automated software engineering (ASE), pp
103–113

Zou Q, Wang H, Soulé R, Hirzel M, Andrade H,
Gedik B, Wu KL (2010) From a stream of relational
queries to distributed stream processing. In: Confer-
ence on very large data bases (VLDB) industrial track,
pp 1394–1405

https://doi.org/10.1007/978-3-319-77525-8_260
https://www.slideshare.net/RedisLabs/walmart-ibm-revisit-the-linear-road-benchmark

Coordination Avoidance 519

C

Continuous Query
Optimization

� Stream Query Optimization

Coordination Avoidance

Faisal Nawab
University of California, Santa Cruz, CA, USA

Definitions

Coordination avoidance denotes a class of
distributed system methods that minimize the
amount of coordination between nodes while
maintaining the integrity of the application.

Overview

In many data management systems, data and
processing are replicated or distributed across
nodes (Kemme et al. 2010; Bernstein and Good-
man 1981). This replication and distribution in-
crease the levels of fault tolerance and avail-
ability. However, they introduce a coordination
cost to maintain the integrity of applications.
Since nodes are processing data for the same
application simultaneously, there is the possibil-
ity of conflicting operations that may overwrite
the work of other nodes. To overcome this prob-
lem, coordination and synchronization protocols
have been developed to ensure the integrity of
data. Typically, the coordination protocols strive
to ensure a guarantee of correctness, such as
serializability (Bernstein et al. 1987) and lineariz-
ability (Herlihy and Wing 1990). These are strong
notions of correctness that model the correctness
of a distributed system by whether the data man-
agement system can mask the underlying concur-
rency from the upper layers. Serializability, for
example, guarantees that the outcome of the exe-
cution of distributed transactions (i.e., bundles of
operations) is equivalent to some serial execution.

Thus, the application developer has the illusion
of the existence of a single machine that executes
transactions serially.

A strong guarantee of correctness is extremely
useful for application developers because it frees
them from thinking about concurrency and repli-
cation issues. Additionally, relying on the appli-
cation level to deal with concurrency anomalies is
error-prone and may lead to many wasted efforts
in applications reinventing the wheel. Rather,
the data management approach separates con-
cerns and relies on a data management layer
to manage concurrency and replication to guar-
antee the consistency of the application. How-
ever, these approaches are expensive, requiring
extensive coordination between nodes, as any
two operations touching the same data item need
to be synchronized. Data management systems
tackled this problem by building better coordi-
nation and synchronization designs and proto-
cols to optimize performance. Unfortunately, this
continues to be a challenging task as distributed
systems are becoming bigger with large-scale
many-node and many-core deployments that in-
crease the coordination and communication de-
mands. Also, distributed systems are increasingly
being deployed across wide geographical loca-
tions, increasing the latency of communication.
These two trends continue to be adopted and
are made accessible through cloud technology.
To reduce the cost of coordination, there have
been approaches that relax the consistency guar-
antees and trade them off with better perfor-
mance. This approach, however, does not re-
tain the easy-to-use data management abstrac-
tions that can be provided with strong consistency
guarantees.

Coordination avoidance aims to reduce the
cost of coordination while maintaining the in-
tegrity of data and the easy-to-use data manage-
ment abstractions. The approach of coordination
avoidance exploits knowledge of the application
layer to extract the set of consistency guaran-
tees that are sufficient for its application-level
correctness. Therefore, the cost of coordination
is only incurred when there is a potential that
it will lead to an anomaly. Extensions to coor-
dination avoidance approaches build execution

https://doi.org/10.1007/978-3-319-77525-8_261

520 Coordination Avoidance

models and abstractions that facilitate and enable
avoiding coordination.

Key Research Findings

The goal of coordination avoidance techniques
and protocols is to minimize the cost of coordi-
nation while retaining the application integrity.
There have been a plethora of work that inves-
tigates such approaches. What these works have
in common is attempting to leverage application-
level semantics to deduce the set of guarantees
that are sufficient for a consistent execution. They
may take various forms that are presented in this
section. Coordination avoidance techniques com-
bine a subset of different approaches. Generally, a
coordination avoidance protocol tackle two tasks:
extracting or modeling a set of consistency se-
mantics for a particular application and executing
operations while minimizing coordination to the
cases when only the set of extracted consistency
semantics are threatened.

There are various approaches for extracting
consistency semantics that vary in their ease of
use, generality, and optimality, where coordina-
tion avoidance protocols typically face the trade-
off between these three properties. One approach
extracts consistency semantics from existing code
via the use of static analysis or other similar
methods. This approach requires the least inter-
vention from application developers. However,
it introduces the challenge of extracting features
from general code which can be limited in its
scope. Some other approaches rely on the appli-
cation developers to annotate or model their code
to enable extracting the consistency semantics.
This approach requires additional intervention
from the application developer, although allow-
ing the use of existing general code. Alterna-
tively, some works explore an approach where
specialized frameworks and abstractions are in-
troduced to facilitate and enable the extraction
of consistency semantics. With the extracted fea-
tures, there are various approaches to execute dis-
tributed applications that also vary in their ease of
use, generality, and optimality. One approach is to
selectively coordinate between nodes according

to the extracted consistency semantics. Another
approach is to provide specialized protocols and
execution mechanisms that guarantee the consis-
tency semantics. The following are examples of
coordination avoidance methods and work that
combine and explore different extraction and ex-
ecution approaches.

Commutativity and Convergence
A large number of coordination avoidance pro-
tocols leverage the commutativity of operations.
Commutative operations are ones that can be
reordered arbitrarily while reaching the same
final state. Therefore, commutative operations
can execute at different nodes in different
orders without synchronously coordinating with
other nodes. The operations are asynchronously
propagated to other nodes that execute them
without the need of any ordering. Commutative
operations are especially useful for hot spots that
are frequently being updated, such as counters.
Many attempts have been made to generalize
the notion of commutativity in the context of data
management (Badrinath and Ramamritham 1992;
Korth 1983). Recoverability (Badrinath and
Ramamritham 1992) generalizes commutativity
to include more operations by explicitly ordering
commit points. For example, two operations
pushing to a stack simultaneously are not
commutative. However, with recoverability,
they can execute concurrently while maintaining
serializability with the condition that they commit
in the order they are invoked. Korth (1983)
generalizes locking to account for the existence
of commutative operations and thus allow more
concurrency when commutative operations are
being used. Commutative operations can also
be used in conjunction with other consistency
guarantees. Walter (Sovran et al. 2011), for
example, is a system that employs a consistency
notion based on snapshot isolation. Walter allows
commutative operations to be performed without
coordination.

Convergent and commutative replicated data
types (CRDTs) (Shapiro et al. 2011) are an
approach to make the use of commutativity
more powerful by designing access abstractions
and data structures that are more general than

Coordination Avoidance 521

C

traditional commutative operations while still
maintaining commutativity. This has led to the
development of nontrivial data structures that
perform complex operations while being commu-
tative, thus requiring no coordination (Preguica
et al. 2009). CRDTs are also used in the context
of eventual consistency by providing a means
to converge operations to the same, eventually
consistent state. Also, it is used in coordination-
free protocols to converge operations that do not
need to be synchronously coordinated (Bailis
et al. 2014).

CALM (Alvaro et al. 2011) is a principle that
shows that a distributed program can be executed
without coordination if the program’s logic is
monotone. This enables avoiding coordination by
building programs that ensure logical monotonic-
ity in addition to using analysis techniques to
assist whether a given program is logically mono-
tonic. Bloom is a domain-specific declarative
language that facilitates leveraging the CALM
principle to build coordination-free programs. In
this approach, the whole program does not have
to be monotonic, rather, it is possible to detect
potential anomalies that need to be addressed by
the developer.

Application-Level Correctness Semantics
Many data management system works utilize
application-level invariants and correctness
semantics to avoid coordination (Lamport 1976;
Agrawal et al. 1993, 1994; Garcia-Molina 1983;
Li et al. 2012; Roy et al. 2015; Bailis et al.
2014). In this approach, operations are allowed
to execute and commit without coordination
if the application-level correctness semantics
are not violated. Lamport (1976) (as described
in Agrawal et al. 1993) is the first to show
that application-level semantics can be used
to avoid coordination between certain types of
transactions. Garcia-Molina (1983) introduced
a design of a concurrency control protocol
that leverages application-level correctness
semantics. The protocol receives application-
level semantics from users and then uses
them to allow nonserializable schedules that
do not violate the application’s correctness
semantics. To achieve this, the protocol divides

the transaction into steps and derives what
steps can interleave with each other. Other
works adopt a similar approach of dividing the
transaction to find interleaving between the parts
of the transaction. A set of work has shown
that performing this division hierarchically may
lead better results (Lynch 1983; Weikum 1985;
Farrag and Özsu 1989). A formalization of
the correctness of application-level consistency
definitions is provided in Korth and Speegle
(1988).

Defining how the application-level consis-
tency semantics are expressed is important for the
practicality of the solution (i.e., how accessible is
the interface to developers) and the performance
gains of the solution (i.e., how the interface can
maximize the amount of captured knowledge).
Agrawal et al. (1993) propose the use of special
operations, called consistency assertions, that
captures a user’s view of the database and the
criterion for correct concurrency execution. Two
correctness criteria are developed to leverage the
special operations by making the database allow
concurrent execution of two transactions if the
consistency assertions are not violated. Relative
serializability (Agrawal et al. 1994) extends the
transaction model by allowing users to define the
atomicity requirements of transactions relative to
each other. Then, it is possible to interleave parts
of transactions that do not violate the defined
atomicity requirements.

The use of application-level correctness in-
variants is especially important for large-scale
and geo-scale deployments where the coordina-
tion cost is high. This has motivated the devel-
opment of more solutions that use application-
level correctness invariants for these new archi-
tectures (Li et al. 2012; Roy et al. 2015; Bailis
et al. 2014; Zhang et al. 2013). Gemini (Li et al.
2012) enables the coexistence of fast, eventually
consistent operations with strongly consistent,
slow operations. Therefore, operations are exe-
cuted with high performance, and the cost of
enforcing consistency is only paid when nec-
essary. To facilitate this, a consistency model,
called RedBlue consistency, is proposed. Using
the consistency formulation and application-level
consistency invariants, operations are assigned to

522 Coordination Avoidance

be either fast or consistent. The assignment is
made with the guarantee that executing fast op-
erations without synchronous coordination would
not lead to violations of the application-level con-
sistency semantics. Specifically, fast operations
execute locally at one of the data centers and
then lazily propagate to other data centers. Fast
operations are only guaranteed to be causally
ordered. Consistent operations, on the other hand,
are synchronously synchronized, potentially with
other data centers, leading to high latency. To
be either the Homeostasis protocol (Roy et al.
2015) aims at automating the process of gener-
ating application-level correctness invariants. A
program analysis technique is used to extract
the application-level consistency invariants from
code. In the Homeostasis protocol, the target
consistency level is serializability, and the code
is analyzed to extract the invariants that will
lead to a serializable execution as observed by
users. Application developers can then refine the
extracted application-level correctness invariants.
The Homeostasis protocol may enable and in-
spire future work on the use of automatic extrac-
tion of correctness invariants that improve their
accuracy. However, it is also useful as a tool to
bootstrap the process of specifying application-
level correctness invariants.

Transaction chains (Zhang et al. 2013) lever-
age transaction chopping (Shasha et al. 1995) to
commit transactions in a geo-scale deployment
locally without waiting for other data centers.
Transaction chopping (Shasha et al. 1995) is a
theoretical framework that enables decompos-
ing transactions to smaller pieces. The original
goal of transaction chopping is to allow more
concurrency. Transaction chains (Zhang et al.
2013) use the concepts of transaction chopping to
decompose transaction. Then, it introduces con-
straints on the execution of transactions. Trans-
action parts are executed in the same order at
the different nodes (potentially at different data
centers). Also, instances of the same transaction
are ordered at the first node that handles that
type of transactions. It turns out that these two
constraints, in addition to transaction chopping,
allow guaranteeing the success of the execution
of the transaction after the success in the first

node. Thus, rather than waiting for the response
from multiple nodes at multiple data centers,
transaction can execute and be guaranteed to
succeed after execution at the first node only.
Transaction chains incorporate many annotation
and commutative techniques to enable more flex-
ibility in the schedules and constraints that are
enforced on transactions.

Weak and Relaxed Consistency
Another method to avoid coordination is to
weaken or relax the consistency guarantees.
Eventual consistency (Cooper et al. 2008;
DeCandia et al. 2007; Bailis and Ghodsi
2013) only guarantees that the data copies
are eventually consistent in the absence
of updates. Therefore, coordination can be
performed asynchronously, and convergence can
be achieved via commutative and converging
operators. Causality (Lamport 1978) is a stronger
guarantee that ensures that events at one node
are totally ordered and events at one node are
ordered after everything that have been received
by the point they are generated. Causality does
not require synchronous coordination, which
made it a candidate for many environments
with high coordination costs (Lloyd et al.
2011, 2013; Bailis et al. 2013; Nawab et al.
2015; Du et al. 2013). Extensions of causality
that consider causal transactions rather than
operations or events are also shown to require
no synchronous coordination (Lloyd et al. 2011,
2013; Nawab et al. 2015). Parallel snapshot
isolation (PSI) (Sovran et al. 2011) extends
snapshot isolation (Berenson et al. 1995) for
geo-scale environments. This extension allows
many types of transactions to execute without the
need for synchronous coordination between data
centers. Transactions with write-write conflicts,
however, are still required to synchronously
coordinate.

Versioning and Snapshots
Serializability is a guarantee that the outcome of
transactions mimics an outcome of a serial exe-
cution. This makes read-only transactions have
the opportunity to execute without coordination
by reading from a consistent snapshot of data.

Coordination Avoidance 523

C

The outcome of such read-only transaction might
be stale but consistent. However, the challenge
in read-only transactions is in the development
of methods that minimize the interference with
read-write transactions. This is especially the
case for analytics queries that translate to large,
long-lived read-only transactions. Schlageter
(1981) showed that read-only transactions
can be executed without interfering with
read-write transactions. Specifically, in an
optimistic concurrency control protocol, read-
only transactions do not need to be validated
as long as they reflect the consistent state of
the database. However, read-write transactions
wait for read-only transactions to finish. This
may lead to long delays with large read-only
transactions. To overcome this limitation, multi-
versioning techniques were proposed to execute
read-only transactions on a recent, possibly stale
snapshot of the database (Agrawal et al. 1987).
In a replicated system, it was shown that a read-
only transaction can avoid coordination with
other replicas by reading a local, consistent
copy (Satyanarayanan and Agrawal 1993). This
entails modifying the coordination of read-write
transactions and additional overhead to enable
creating a consistent snapshot locally at every
replica. Recently, Spanner (Corbett et al. 2012)
shows the use of accurate time synchronization
to serve consistent read-only transactions with
improved freshness.

Conclusion

Coordination is continuing to be a major
challenge in data management systems due to
large-scale and geo-scale deployments. Coor-
dination avoidance techniques enable reducing
the overhead of coordination, thus improving
performance, while maintaining the ease of use
and intuition of data management abstractions
and strong consistency guarantees. There have
been many ways that can be used individually or
together to avoid coordination such as leveraging
commutativity and convergence, application-
level consistency semantics, relaxed consistency
guarantees, and specialized transaction types.

These solutions provide different levels of ease
of use, generality, and optimality, making them
suitable for different classes of applications and
use cases.

Examples of Application

Coordination avoidance is used in traditional and
cloud data management systems.

Future Directions for Research

The emergence of many new technologies, sys-
tem architectures, and applications invites the
investigation of new coordination avoidance tech-
niques and adaptations of existing coordination
avoidance technique.

Cross-References

�Geo-Replication Models
�Geo-Scale Transaction Processing
�Weaker Consistency Models/Eventual Consis-

tency

References

Agrawal D, Bernstein AJ, Gupta P, Sengupta S (1987)
Distributed optimistic concurrency control with re-
duced rollback. Distrib Comput 2(1):45–59. https://doi.
org/10.1007/BF01786254

Agrawal D, El Abbadi A, Singh AK (1993) Consistency
and orderability: semantics-based correctness criteria
for databases. ACM Trans Database Syst (TODS)
18(3):460–486

Agrawal D, Bruno JL, El Abbadi A, Krishnaswamy
V (1994) Relative serializability (extended abstract):
an approach for relaxing the atomicity of trans-
actions. In: Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on principles
of database systems. ACM, pp 139–149

Alvaro P, Conway N, Hellerstein JM, Marczak WR (2011)
Consistency analysis in bloom: a calm and collected
approach. In: CIDR, pp 249–260

Badrinath B, Ramamritham K (1992) Semantics-based
concurrency control: beyond commutativity. ACM
Trans Database Syst (TODS) 17(1):163–199

Bailis P, Ghodsi A (2013) Eventual consistency
today: limitations, extensions, and beyond. Queue

https://doi.org/10.1007/978-3-319-77525-8_186
https://doi.org/10.1007/978-3-319-77525-8_180
https://doi.org/10.1007/978-3-319-77525-8_181
https://doi.org/10.1007/BF01786254
https://doi.org/10.1007/BF01786254

524 Coordination Avoidance

11(3):20:20–20:32. https://doi.org/10.1145/2460276.
2462076

Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on
causal consistency. In: Proceedings of the 2013 ACM
SIGMOD international conference on management of
data, SIGMOD’13. ACM, New York, pp 761–772.
https://doi.org/10.1145/2463676.2465279

Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein
JM, Stoica I (2014) Coordination avoidance in database
systems. Proc VLDB Endow 8(3):185–196

Berenson H, Bernstein P, Gray J, Melton J, O’Neil E,
O’Neil P (1995) A critique of ansi SQL isolation levels.
ACM SIGMOD Rec 24:1–10. https://doi.org/10.1145/
223784.223785

Bernstein PA, Goodman N (1981) Concurrency control
in distributed database systems. ACM Comput Surv
(CSUR) 13(2):185–221

Bernstein PA, Hadzilacos V, Goodman N (1987) Con-
currency control and recovery in database systems.
Addison-Wesley, Reading

Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A,
Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni
R (2008) Pnuts: Yahoo!’s hosted data serving platform.
Proc VLDB Endow 1(2):1277–1288. https://doi.org/
10.14778/1454159.1454167

Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman
JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P,
Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik
S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L,
Saito Y, Szymaniak M, Taylor C, Wang R, Wood-
ford D (2012) Spanner: Google’s globally-distributed
database, pp 251–264. http://dl.acm.org/citation.cfm?
id=2387880.2387905

DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lak-
shman A, Pilchin A, Sivasubramanian S, Vosshall P,
Vogels W (2007) Dynamo: Amazon’s highly available
key-value store. In: Proceedings of twenty-first ACM
SIGOPS symposium on operating systems principles,
SOSP’07. ACM, New York, pp 205–220. https://doi.
org/10.1145/1294261.1294281

Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe:
scalable causal consistency using dependency matri-
ces and physical clocks. In: Proceedings of the 4th
annual symposium on cloud computing, SOCC’13.
ACM, New York, pp 11:1–11:14. https://doi.org/10.
1145/2523616.2523628

Farrag AA, Özsu MT (1989) Using semantic knowledge
of transactions to increase concurrency. ACM Trans
Database Syst (TODS) 14(4):503–525

Garcia-Molina H (1983) Using semantic knowledge for
transaction processing in a distributed database. ACM
Trans Database Syst (TODS) 8(2):186–213

Herlihy MP, Wing JM (1990) Linearizability: a correct-
ness condition for concurrent objects. ACM Trans
Program Lang Syst 12(3):463–492. https://doi.org/10.
1145/78969.78972

Kemme B, Jimenez-Peris R, Patino-Martinez M (2010)
Database replication. Synth Lect Data Manag 2(1):1–
153. http://www.morganclaypool.com/doi/abs/10.
2200/S00296ED1V01Y201008DTM007

Korth HF (1983) Locking primitives in a database system.
J ACM 30(1):55–79. https://doi.org/10.1145/322358.
322363

Korth HK, Speegle G (1988) Formal model of correct-
ness without serializabilty. ACM SIGMOD Rec 17:
379–386

Lamport L (1976) Towards a theory of correctness
for multi-user data base system. Teeh. Rep. Tech.
Rep., TRCA-7610-0712, Massachusetts Computer As-
sociates

Lamport L (1978) Time, clocks, and the ordering of events
in a distributed system. Commun ACM 21(7):558–565.
https://doi.org/10.1145/359545.359563

Li C, Porto D, Clement A, Gehrke J, Preguiça NM,
Rodrigues R (2012) Making geo-replicated systems
fast as possible, consistent when necessary. In: OSDI,
vol 12, pp 265–278

Lloyd W, Freedman MJ, Kaminsky M, Andersen DG
(2011) Don’t settle for eventual: scalable causal consis-
tency for wide-area storage with cops. In: Proceedings
of the twenty-third ACM symposium on operating sys-
tems principles, SOSP’11. ACM, New York, pp 401–
416. https://doi.org/10.1145/2043556.2043593

Lloyd W, Freedman MJ, Kaminsky M, Andersen
DG (2013) Stronger semantics for low-latency geo-
replicated storage. In: Proceedings of the 10th USENIX
conference on networked systems design and imple-
mentation, NSDI’13. USENIX Association, Berke-
ley, pp 313–328. http://dl.acm.org/citation.cfm?id=
2482626.2482657

Lynch NA (1983) Multilevel atomicity: a new correctness
criterion for database concurrency control. ACM Trans
Database Syst (TODS) 8(4):484–502

Nawab F, Arora V, Agrawal D, El Abbadi A (2015) Chari-
ots: a scalable shared log for data management in multi-
datacenter cloud environments. In: Proceedings of the
18th international conference on extending database
technology, EDBT 2015, Brussels, pp 13–24. https://
doi.org/10.5441/002/edbt.2015.03

Preguica N, Marques JM, Shapiro M, Letia M (2009)
A commutative replicated data type for coopera-
tive editing. In: 29th IEEE international conference
on distributed computing systems, ICDCS’09. IEEE,
pp 395–403

Roy S, Kot L, Bender G, Ding B, Hojjat H, Koch C, Foster
N, Gehrke J (2015) The homeostasis protocol: avoid-
ing transaction coordination through program analysis.
In: Proceedings of the 2015 ACM SIGMOD inter-
national conference on management of data. ACM,
pp 1311–1326

Satyanarayanan OT, Agrawal D (1993) Efficient execution
of read-only transactions in replicated multiversion
databases. IEEE Trans Knowl Data Eng 5(5):859–871.
https://doi.org/10.1109/69.243514

Schlageter G (1981) Optimistic methods for concur-
rency control in distributed database systems. In: Pro-
ceedings of the seventh international conference on
very large data bases, vol 7, VLDB Endowment,
VLDB’81, pp 125–130. http://dl.acm.org/citation.cfm?
id=1286831.1286844

https://doi.org/10.1145/2460276.2462076
https://doi.org/10.1145/2460276.2462076
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167
http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
http://www.morganclaypool.com/doi/abs/10.2200/S00296ED1V01Y201008DTM007
http://www.morganclaypool.com/doi/abs/10.2200/S00296ED1V01Y201008DTM007
https://doi.org/10.1145/322358.322363
https://doi.org/10.1145/322358.322363
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
https://doi.org/10.5441/002/edbt.2015.03
https://doi.org/10.5441/002/edbt.2015.03
https://doi.org/10.1109/69.243514
http://dl.acm.org/citation.cfm?id=1286831.1286844
http://dl.acm.org/citation.cfm?id=1286831.1286844

Co-resident Attack in Cloud Computing: An Overview 525

C

Shapiro M, Preguiça N, Baquero C, Zawirski M (2011)
Convergent and commutative replicated data types.
Bull Eur Assoc Theor Comput Sci (104):67–88

Shasha D, Llirbat F, Simon E, Valduriez P (1995) Trans-
action chopping: algorithms and performance studies.
ACM Trans Database Syst (TODS) 20(3):325–363

Sovran Y, Power R, Aguilera MK, Li J (2011) Transac-
tional storage for geo-replicated systems. In: Proceed-
ings of the twenty-third ACM symposium on operat-
ing systems principles, SOSP’11. ACM, New York,
pp 385–400. https://doi.org/10.1145/2043556.2043592

Weikum G (1985) A theoretical foundation of multi-
level concurrency control. In: Proceedings of the fifth
ACM SIGACT-SIGMOD symposium on principles of
database systems. ACM, pp 31–43

Zhang Y, Power R, Zhou S, Sovran Y, Aguilera MK, Li
J (2013) Transaction chains: achieving serializability
with low latency in geo-distributed storage systems.
In: Proceedings of the twenty-fourth ACM symposium
on operating systems principles, SOSP’13. ACM, New
York, pp 276–291. https://doi.org/10.1145/2517349.
2522729

Co-resident Attack in Cloud
Computing: An Overview

Sampa Sahoo, Sambit Kumar Mishra,
Bibhudatta Sahoo, and Ashok Kumar Turuk
National Institute of Technology Rourkela,
Rourkela, India

Introduction

Cloud computing is a novel computing model
that leverages on-demand provisioning of com-
putational and storage resources. It uses pay-as-
you-go economic model, which helps to reduce
CAPEX and OPEX. Cloud computing essence
and scope can be best described by the “5-3-2
principle,” where 5 stands for its essential char-
acteristics (on-demand service, ubiquitous net-
work access, resource pooling, rapid elasticity,
and measured service) (Puthal et al. 2015). Three
stands for service delivery models (SaaS, PaaS,
and IaaS). Two points to basic deployment mod-
els (private and public) of the cloud (Sahoo et al.
2015).

Figure 1 shows the layered architecture of
cloud. Various layers of a cloud are as follows:

application, virtualization, and physical. Appli-
cation layer consists of user applications. The
virtualization layer’s main components are a hy-
pervisor or Virtual Machine Manager (VMM)
and VM. A hypervisor acts as an administrator
for the virtualized data center that permits the
user to configure and manage cloud resources
to create and deploy virtual machines and ser-
vices in a cloud. A VM is an emulation of a
physical machine. The virtualization technology
allows creating several VMs on a single physical
machine (Mishra et al. 2018a). The physical layer
is a container of various physical resources like
memory, RAM, etc. (Sahoo et al. 2016).

The rise of multimedia data and ever-growing
requests for multimedia applications has tendered
multimedia as the biggest contributor of big data.
Applications on entertainment demand low se-
curity as compared to personalized videos like
business meetings, telemedicine, etc. A secured
video transmission ensures authorized entrance
and prevents information leakage by any un-
approved eavesdroppers. Various cryptographic
algorithms (AES, DES, etc.) can be used to guar-
antee security to the multimedia application. Few
examples of big data are credit card transactions,
Walmart customer transactions, and data gener-
ated by Facebook users. A security breach in
big data will cause severe legal consequences
and reputational damage than at present. The
use of big data in business also gives rise to
privacy issues (Inukollu et al. 2014). Big data
applications demand scalable and cost-efficient
technology for huge data storage, computation,
and communication. One of the solutions to ad-
dress these issues is the use of cloud computing
which is both scalable and cost-efficient. Since
cloud computing is an umbrella term used by
many technologies like networks, databases, vir-
tualization, operating system, resource schedul-
ing, transmission management, load balancing,
etc., security issues related to these systems are
also applicable to cloud computing.

Cloud computing facilitates business models
and allows renting of IT resources on a utility
like a basis through the Internet. Security is
one of the most challenging issues to deal with
in cloud computing due to numerous forms of

https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2517349.2522729
https://doi.org/10.1145/2517349.2522729

526 Co-resident Attack in Cloud Computing: An Overview

Co-resident Attack in Cloud Computing: An
Overview, Fig. 1 Layered architecture of cloud

attacks on the application side as well as the
hardware components. Various reasons for diffi-
culties correlated with cloud computing are the
loss of control, lack of trust, and multi-tenancy
(Bhargava 2010). A cloud user outsourced its
content to a remote server, losing direct control
over the data, which becomes one of the reasons
for cloud security issues. An attacker can target
the communication link between cloud provider
and clients. Multi-tenants of cloud use a shared
pool of resources having conflicting goals. This
gives opportunities to an attacker to steal useful
information from the legitimate user on the same
physical machine.

The virtualization method allows sharing of
computing resources among many tenants, which
may be business partners, suppliers, competi-
tors, or attackers (Mishra et al. 2018b). Even
though there is substantial logical isolation be-
tween VMs, shared hardware creates vulnerabil-
ities to side channel attacks, i.e., data leakage
through implicit channels (Zhang et al. 2011).
The following sections discuss security issues
in the cloud, co-resident attack, and its defense
methods, followed by the conclusion.

Security Issues in Cloud

Security is a dominant barrier to the develop-
ment and widespread use of cloud computing.
Big data computing in cloud environment fur-

ther intensified security and privacy issues. The
cheaper compute environment, networked appli-
cation environment, and shared cloud system en-
vironment generate security, compression, en-
cryption, and access control challenges, which
must be addressed in a systematic way (Cloud-
Security-Alliance 2012). Cloud provider security
implementation mainly focused on the assump-
tion that outsiders of the cloud are evil, whereas
insiders are good. An outside attacker performs
the following actions to get unauthorized ac-
cess: listen to network traffic, insert malicious
traffic, and launch DoS. An inside attacker can
log on to user communication, peek into VMs
or make copies of VMs, and monitor applica-
tion pattern for unapproved access. The deficit
security features in local devices also provide
a way for malicious services on the cloud, as
an attacker can use these devices to attack local
networks.

Various terms representing the security or
privacy attributes are confidentiality, integrity,
availability, accountability, and privacy preserv-
ability (Xiao and Xiao 2013). Confidentiality
ensures that user’s data and computation are kept
confidential from both the cloud provider and
other users. Primary threats to confidentiality are
co-resident VM attack and malicious system
admin. Cloud integrity implies that data are
stored honestly on data storage, computation
is performed without any distortion, and integrity
is affected by data loss or manipulation and
dishonest computation. Availability ensures that
cloud services are available most of the time and
meet the SLA. It is influenced by flooding attack
(denial of service (DoS)) and fraudulent resource
consumption (FRC) attack. Accountability im-
plies capability of identifying a party responsible
for the specific event. Several threats to cloud
accountability are SLA violation, inaccurate
billing, etc. Since cloud user’s data and business
logic reside among distributed cloud servers,
there are potential risks that confidential and
personal information will be disclosed to public
or business competitors. Privacy preservation is
one of the critical attributes of privacy, which pre-
vents disclosure of private data. Confidentiality
is indispensable, whereas integrity guarantees

Co-resident Attack in Cloud Computing: An Overview 527

C

data, or computation is corruption-free, which
somehow preserves privacy.

The following challenges are faced by cloud
providers to build secure and trustworthy cloud
system.

• Outsourcing: A cloud user outsourced its con-
tent to the cloud provider’s data center and
lost the direct physical control over the data.
The computing and data storage are done at
the cloud provider’s end, causing the main
reason for cloud insecurity. Outsourcing may
also incur privacy violations.

• Multi-tenancy: Since multiple customers
share the cloud resources, it gives rise to
co-residency issues. Cross-VM or co-resident
VM attack exploits the multi-tenancy nature.

• Massive data and intense computation:
Traditional security methods may not
suffice for massive data storage and
computation.

Various Attacks on VM
VMs are the principal computing unit in the
cloud computing environment that facilitate effi-
cient utilization of hardware resources and reduce
maintenance overhead of computing resources.
VMs provide the additional layer of hardware
abstraction and isolation but require quality meth-
ods to prevent attackers to access information
from other VMs and the host. Vulnerabilities in
VMs pose an immediate threat to the privacy
and security of the cloud services. The shared
and distributed nature of cloud resources makes
it difficult to develop a security standard that
ensures data security and privacy. Vulnerabil-
ities in the cloud are the security loopholes,
which allow unauthorized access to the network
and infrastructure resources. Vulnerabilities in
virtualization or hypervisor will enable an at-
tacker to perform a cross-VM side-channel at-
tack, and DoS attack provides access to legit-
imate user’s VM. Solution directives for VM
attacks include alert message for any breach of
VMs isolation, integrity and security assurance
of VM images, vulnerability-free virtual machine
manager (VMM) or hypervisor, etc. (Modi et al.

2013). Different classes of attacks (Hyde 2009)
that affect VMs are:

• Co-resident attack: Attacker adversary VM to
communicate with other colocated VMs on
the same host, thus violating isolation feature
of VMs.

• Attack on hypervisor: The attack on a hyper-
visor allows the attacker to access VM, host
operating system, and hardware.

• DoS attack: DoS attacks are endeavors by an
unapproved user to degrade or deny resources
to a genuine user. DoS attack consumes re-
sources from all VMs on the host.

Co-resident Attack

Colocated VMs are logically separated from each
other. Users are migrating to the cloud that was
exposed to an additional threat caused by neigh-
bors due to the sharing of resources. This ex-
posure raises questions about neighbors’ trust-
worthiness and integrity as a malicious user can
build side channel to circumvent logical isola-
tion and extract sensitive information from co-
resident VMs (Han et al. 2017). Like traditional
web services, VMs are exposed to various se-
curity threats, and co-resident attack is one of
them. Other names of co-resident attack are co-
residence, co-residency, and colocation attack.
Figure 2 shows co-resident VM attack in cloud. It
shows that attacker VM and target VM are placed
on the same physical machine, where attacker
extracts target VM information through the side
channel.

In co-resident attack, malicious users extract
information from colocated virtual machines on
the same physical machine by building side chan-
nels. The various side-channel attack includes
cache attack, timing attack, power monitoring at-
tack, software-initiated fault attack, etc. In cache
attack, attackers take action based on cache ac-
cess of the victim in a virtualized environment
like a cloud, whereas timing attack is based on
computation time of various activities (e.g., the
comparison between attacker’s password with

528 Co-resident Attack in Cloud Computing: An Overview

Co-resident Attack in Cloud Computing: An
Overview, Fig. 2 Co-resident attack

victim’s unknown one). The power monitoring
attack makes use of power consumption variation
by the hardware during computation. Software-
initiated fault attack is a rare one, where off-
limits memory is changed by accessing adjacent
memory too often.

The co-resident attack is a two-step process.
First, the attacker set target VMs and colocates
their VMs with these VMs on the correspond-
ing physical servers. The second process builds
the side channels to extract valuable information
from the victim. The following steps are per-
formed by an attacker for co-resident attack (Han
et al. 2016):

1. An attacker first targets some VMs.
2. Attacker starts some VMs either from a single

account or multiple accounts.
3. Check whether new VM is colocated with

target VM on the same physical machine or
not.

4. Repeat steps 2–3 until co-residency is
achieved.

5. If co-residency is achieved, non-colocated
VMs are turned off. Now, the attacker gains
access and steals information from the target
VM.

Defense Methods
Cloud security providers mainly aim to prevent
the attacker from achieving co-residence. Co-

residence may lead to cross-VM information
leakage. The attacker analyzes the cloud
infrastructure and identifies the residency of
target VM. After several attempts, an attacker
may succeed to instantiate new VMs, co-resident
with target VM. Now, the attacker can leak all
kinds of information which are known as the side-
channel attack. This is because both target and
attacker VM share the same resource. Various
methods used to defend co-resident attack in
cloud are listed below:

• Elimination of side channels: One of the solu-
tions to handle co-resident attack is the elim-
ination of side channels. But, this method
needs modifications to the current cloud plat-
form.

• VM-allocation policy: Another answer is VM
allocation policy, which can influence the
probability of colocation. The bigger the
probability of non-co-residency, the better
the policy is.

• Increasing difficulty level of co-residence ver-
ification: Usually the IP address of a VM
Dom0 is a privileged VM responsible for man-
agement of all VMs on a host. For co-resident
VMs, Dom0 IP addresses must be same. So,
the disclosure of Dom0 IP address must be
restricted.

• Detection of co-resident attacks trademark:
Any attack can be identified by unusual be-
havior of a cloud system. Various indicators of
co-resident attack include abnormalities in the
CPU and RAM behavior, cache miss, system
calls, etc.

• Periodic VM migration: Periodic migration of
VMs helps to counter co-resident attack. Like
every coin has two sides, this method comes
with additional drawbacks like extra power
consumption, performance degradation, SLA
violation, etc.

• Encrypted VM images: Encrypted VM images
can guarantee the security of a VM, which
can be accessible by only an authorized user
who knows the security keys of permitted
access.

CRUD Benchmarks 529

C

Case Study
Multiple VMs of various organizations run
on Amazon’s EC2 infrastructures with virtual
boundaries, and each VM can operate within a
single physical server. VMs located on the same
physical server have IP addresses approaching
each other. An attacker can set up lots of his
own virtual machines to get a glance at their
IP addresses and figure out VMs that share the
same resources as a meditated target. Once the
adversary VM is located along with target VM on
the same server, an attacker can deduce sensitive
information about the victim, and this action can
cause resource usage fluctuations.

Conclusion

This chapter manifests various security and pri-
vacy issues of cloud running big data applica-
tions. Virtualization technology and VM are the
two most essential components of a cloud. Our
aim in this paper is to give an overview of various
security issues in the cloud (specific to VM) and
its solutions. Here, we present details about co-
resident VM attack that includes steps performed
by an attacker, various defense methods, and the
explanation with an example.

References

Bhargava B, Çho Y, Kim A (2010) Research
in cloud security and privacy. https://www.cs.
purdue.edu/homes/bb/cloud/Security-Privacy.ppt

Cloud-Security-Alliance (2012) Top ten big data
security and privacy challenges. https://downloads.
cloudsecurityalliance.org/initiatives/bdwg/Big_Data_
Top_Ten_v1.pdf

Han Y, Alpcan T, Chan J, Leckie C, Rubinstein BIP
(2016) A game theoretical approach to defend against
co-resident attacks in cloud computing: preventing co-
residence using semi-supervised learning. IEEE Trans
Inf Forensics Secur 11(3):556–570

Han Y, Chan J, Alpcan T, Leckie C (2017) Using vir-
tual machine allocation policies to defend against co-
resident attacks in cloud computing. IEEE Trans De-
pendable Secure Comput 14(1):95–108

Hyde D (2009) A survey on the security of virtual ma-
chines. www.cse.wustl.edu/jain/cse571-09/ftp/vmsec/
index.html

Inukollu VN, Arsi S, Ravuri SR (2014) Security issues
associated with big data in cloud computing. Int J Netw
Secur Appl 6(3):45

Mishra SK, Putha D, Rodrigues JJ, Sahoo B, Dutkiewicz
E (2018a, in press) Sustainable service allocation using
metaheuristic technique in fog server for industrial
applications. IEEE Trans Ind Inf

Mishra SK, Puthal D, Sahoo B, Jena SK, Obaidat MS
(2018b) An adaptive task allocation technique for green
cloud computing. J Supercomput 74(1):370–385

Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M
(2013) A survey on security issues and solutions at
different layers of cloud computing. J Supercomput
63(2):561–592

Puthal D, Sahoo B, Mishra S, Swain S (2015) Cloud com-
puting features, issues, and challenges: a big picture.
In: Computational Intelligence and Networks (CINE),
2015 International Conference on, IEEE, pp 116–123

Sahoo S, Nawaz S, Mishra SK, Sahoo B (2015) Execution
of real time task on cloud environment. In: India
Conference (INDICON), 2015 Annual IEEE, IEEE, pp
1–5

Sahoo S, Sahoo B, Turuk AK, Mishra SK (2016) Real
time task execution in cloud using mapreduce frame-
work. In: Resource management and efficiency in cloud
computing environments, IGI Global, p 190

Xiao Z, Xiao Y (2013) Security and privacy in cloud
computing. IEEE Commun Surv Tutorials 15(2):843–
859

Zhang Y, Juels A, Oprea A, Reiter MK (2011) Home-
alone: co-residency detection in the cloud via side-
channel analysis. In: 2011 IEEE Symposium on Secu-
rity and Privacy, pp 313–328

CRUD Benchmarks

Steffen Friedrich and Norbert Ritter
Department of Informatics, University of
Hamburg, Hamburg, Germany

Synonyms

NoSQL benchmarks

Definitions

A CRUD benchmark is a generic experimental
framework for characterizing and comparing the
performance of database systems by executing

https://www.cs.purdue.edu/homes/bb/cloud/Security-Privacy.ppt
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf
http://www.cse.wustl.edu/jain/cse571-09/ftp/vmsec/index.html
https://doi.org/10.1007/978-3-319-77525-8_100233

530 CRUD Benchmarks

workloads using only a simple CRUD (create,
read, update, and delete) interface.

Since each database system provides at least
this minimal subset of operations, CRUD bench-
marks allow a general performance comparison
of a variety of non-relational NoSQL database
systems.

Overview

For many decades, relational database manage-
ment systems (RDBMSs) have been the first
choice for business applications. A high degree
of standardization, especially the standard query
language SQL, made it possible to develop
domain-specific benchmarks for RDBMSs.

The DebitCredit benchmark by Jim Gray laid
down the foundation for standardized database
benchmarks (Anon et al. 1985). It introduced
most of the key ideas that were later taken up by
the Transaction Processing Performance Council
(TPC) for the specification of the TPC-A bench-
mark and its famous successor, TPC-C (2010).
The TPC was founded in 1988 as an industry-
consensus body to fulfill the need for benchmark
certification. Previously, many RDBMS vendors
had conducted benchmarks based on their own
interpretation of DebitCredit. Since its founda-
tion, the TPC has developed numerous bench-
marks for various kinds of online transactional
processing (OLTP) and also online analytical
processing (OLAP) workloads.

However, the amount of useful data in some
applications has become so vast that it cannot
be stored or processed by traditional relational
database solutions (Hu et al. 2014). At the be-
ginning of the twenty-first century, this led to
the development of non-relational database sys-
tems able to cope with such Big Data. These
systems are subsumed under the term NoSQL
database systems. They offer horizontal scalabil-
ity and high availability by sacrificing querying
capabilities, the strict ACID guarantees, and the
transactional support as known from RDBMSs.

Since most TPC benchmark specifications as-
sume ACID compliant transactions, they cannot
be applied to mostly non-transactional NoSQL

databases. Defining similar domain-specific stan-
dards for those systems is even more complicated
due to the sheer heterogeneity in their data mod-
els and APIs.

Therefore, many NoSQL vendors and open
source communities implemented their own
database-specific performance measurement
tools, just as the RDBMS vendors did before
TPC. These include, for example, the Cassandra-
stress tool, Mongoperf for MongoDB, the Redis-
benchmark utility, or Basho_bench for Riak.
In the end, the results of these tools are often
difficult to understand, cannot be extended to
other scenarios, and do not allow comparisons
between different databases.

Eventually, the Yahoo! Cloud Serving Bench-
mark (YCSB) was proposed (Cooper et al. 2010).
YCSB is limited to a simple CRUD interface and
has become the de facto standard for NoSQL
database performance comparison, which is why
the term NoSQL Benchmark is often used inter-
changeably for CRUD benchmark. Due to the
fact that YCSB is open source and extensible,
the developer community has added support for
almost every NoSQL database system since the
release in 2010.

Scientific Fundamentals

The Benchmark Handbook for Database and
Transaction Systems edited by Jim Gray (1993)
can be regarded as the first reference work
of database benchmarking. It identifies four
requirements that a domain-specific benchmark
must meet:

1. Relevance means that the benchmarks should
be based on a realistic workload such that
the results reflect something important to their
readers.

2. Simplicity describes that the workload should
be understandable.

3. Portability means that it should be easy to
run the benchmark against a large number of
systems.

CRUD Benchmarks 531

C

4. Scalability says that it should be possible to
scale the benchmark up to larger systems as
performance and architectures evolve.

These requirements have been refined over time
to reflect the current developments of database
systems (Huppler 2009; Folkerts et al. 2013). The
book Cloud Service Benchmarking by Bermbach
et al. (2017) is an excellent modern reference
work in which these design objectives are also
discussed in detail with regard to cloud com-
puting and Big Data requirements. Regarding
the mentioned four requirements, CRUD bench-
marks significantly weaken the relevance aspect
in order to achieve the greatest possible portabil-
ity, simplicity, and scalability. They do not model
a real domain-specific application workload like
the TPC standard specifications but a simpler
one in which the choice of CRUD operations is
selected according to a given probability distribu-
tion of real web application workloads (workload
generation). The typical metrics measured during
the benchmark run are throughput (operations
per second) and latency (response time in mil-
liseconds). CRUD benchmarks also define hardly
any restrictions on the system under test in favor
of portability. The actual data values consist of
simple synthetically generated random character
strings (data generation). Overall, this makes
them less relevant for concrete applications but
allows to measure the performance of highly
scalable NoSQL systems in the first place.

Hence, CRUD benchmarks are also often
used and extended in research to measure
additional performance aspects of distributed
NoSQL database systems. An overview of these
research efforts can be found in Friedrich et al.
(2014), and the book by Bermbach et al. (2017)
can also be recommended as a reference for
the current state of measurement methods for
nonfunctional properties such as scalability,
elasticity, and consistency of NoSQL data
management solutions.

It should be noted that the basics of scalability
and elasticity benchmarking were already deter-
mined by the Wisconsin benchmark, an early
performance evaluation framework for RDBMS
(DeWitt 1993). It was by no means as popular as

DebitCredit and the TPC benchmarks for com-
parative studies by RDBMS vendors, but it was
widely used in research for measuring the perfor-
mance of parallel database system prototypes de-
signed for shared nothing hardware architectures.
As these database prototypes should already meet
horizontal scalability and elasticity requirements,
the benchmark defined the key metrics scale-up
and speedup to measure them.

Current research work is further developing
domain-specific benchmarks for certain classes
of NoSQL database systems such as document
stores that go beyond pure CRUD benchmarks.
This allows to compare the performance of more
sophisticated query capabilities in the context of
a particular application. Reniers et al. (2017) give
an up-to-date overview of these domain-specific
NoSQL benchmarks and CRUD benchmarks.

Key Applications

In addition to the four requirements that a bench-
mark must meet, Gray (1993) also describes four
motivations for database benchmarking which
can be extended to NoSQL database performance
evaluation:

1. Different proprietary software and hard-
ware systems: The classical competitive situ-
ation between two relational database vendors
running their solution on their own dedicated
specialized hardware can, nowadays, for ex-
ample, be transferred to proprietary NoSQL
database as a service solutions (DBaaS) as
provided by cloud service providers.

2. Different software products on the same
hardware: This is the most common form
in which NoSQL database system vendors
compare their systems with others. The dif-
ferent databases are set up in a cluster of the
same hardware or cloud infrastructure, and
their performance is usually measured with a
selection of different workloads.

3. The same software product on different
hardware systems: The database workload
serves as a reference application for compar-
ing different underlying hardware platforms.

532 CRUD Benchmarks

Nowadays, this can mean that users bench-
mark their NoSQL database system on differ-
ent infrastructure as a service (IaaS) solutions
to select the most performant or cost-effective
cloud provider.

4. Different releases of a software product on
the same hardware: The benchmarking of
newer versions of a database system is an
integral part of the modern agile software
development process. This is one of the major
reasons why NoSQL developers often imple-
ment database-specific performance measure-
ment tools.

Comparative studies are primarily promoted by
database vendors themselves for marketing and
advertising purposes. Since there is no instance
like TPC for the verification of benchmark results
in the NoSQL area, these results should always
be looked at critically, because the workload
parameters, the hardware, and the presentation of
the results are selected in such a way that the own
product performs particularly well. This kind of
benchmarketing already existed for RDBMSs in
the early 1980s.

In addition to comparative studies, one of the
main motivations for benchmarking is systems
research, i.e., understanding the performance be-
havior of certain system designs or understand-
ing quality trade-offs like the consistency/latency
trade-off of different data replication techniques.

Future Directions

The research in the field of benchmarking
nonfunctional properties of distributed NoSQL
database systems is still in an early stage. For
example, a number of methods for measuring the
consistency of replicated databases have already
been proposed. Apart from further studies on
scalability and elasticity, there is only little work
on the topic of availability benchmarking of
NoSQL database systems, especially not under
different failure conditions. Therefore, further
research in this area is still needed to develop

standard methodologies for measuring these
requirements.

Furthermore, there is a variety of possible
benchmark designs between simple CRUD
benchmarks and application-oriented bench-
marks for one specific NoSQL data model
that still need to be explored. One can imagine
domain-specific workloads that are still general
enough to allow specific implementations for all
the different data models.

Cross-References

�NOSQL Database Systems
� System Under Test
�YCSB

References

Anon, Bitton D, Brown M, Catell R, Ceri S, Chou T,
DeWitt D, Gawlick D, Garcia-Molina H, Good B, Gray
J, Homan P, Jolls B, Lukes T, Lazowska E, Nauman
J, Pong M, Spector A, Trieber K, Sammer H, Serlin
O, Stonebraker M, Reuter A, Weinberger P (1985) A
measure of transaction processing power. Datamation
31(7):112–118

Bermbach D, Wittern E, Tai S (2017) Cloud service
benchmarking: measuring quality of cloud services
from a client perspective. Springer, Cham

Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears
R (2010) Benchmarking cloud serving systems with
YCSB. In: Proceedings of the 1st ACM symposium on
cloud computing, SoCC’10. ACM, New York, pp 143–
154

DeWitt DJ (1993) The wisconsin benchmark: past,
present, and future. In: Gray J (ed) The benchmark
handbook. Morgan Kaufmann, San Mateo

Folkerts E, Alexandrov A, Sachs K, Iosup A, Markl V,
Tosun C (2013) Benchmarking in the cloud: what it
should, can, and cannot be. Springer, Berlin/Heidel-
berg, pp 173–188

Friedrich S, Wingerath W, Gessert F, Ritter N (2014)
NoSQL OLTP benchmarking: a survey. In: 44.
Jahrestagung der Gesellschaft für Informatik, Infor-
matik 2014, Big Data – Komplexität meistern, 22–26
Sept 2014 in Stuttgart, pp 693–704

Gray J (ed) (1993) The benchmark handbook for database
and transaction systems, 2nd edn. Morgan Kaufmann,
San Mateo

https://doi.org/10.1007/978-3-319-77525-8_50
https://doi.org/10.1007/978-3-319-77525-8_124
https://doi.org/10.1007/978-3-319-77525-8_131

Cryptocurrency 533

C

Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable
systems for big data analytics: a technology tutorial.
IEEE Access 2:652–687

Huppler K (2009) The art of building a good benchmark.
Springer, Berlin/Heidelberg, pp 18–30

Reniers V, Van Landuyt D, Rafique A, Joosen W (2017)
On the state of NoSQL benchmarks. In: Proceedings
of the 8th ACM/SPEC on international conference on
performance engineering companion, ICPE’17 com-
panion. ACM, New York, pp 107–112

TPC-C (2010) Benchmark specification. http://www.tpc.
org/tpcc

Cryptocurrency

�Blockchain Transaction Processing

http://www.tpc.org/tpcc
http://www.tpc.org/tpcc
https://doi.org/10.1007/978-3-319-77525-8_333

	C
	Caching for SQL-on-Hadoop
	Definitions
	Overview
	SQL Engine Internal Caching
	Apache Spark SQL
	Apache Hive and LLAP

	External Storage Systems for Caching
	Alluxio
	Apache Ignite HDFS Cache
	HDFS Centralized Cache Management

	Conclusion
	Cross-References
	References

	Cartography
	Causal Consistency
	Certification
	Cheap Data Analytics on Cold Storage
	Definitions
	Background and Overview
	HDD-Based High-Density Storage
	Tape-Based High-Density Storage

	Key Research Findings
	CSD Storage Manager
	CSD I/O Scheduler
	Database Query Executor

	Examples of Application
	Future Directions for Research
	References

	Clojure
	Definitions
	Introduction
	Clojure for Instant Prototyping, with a REPL
	Clojure for Code as Data
	Clojure Threading Macros
	Clojure Laziness and Reducers
	Clojure for Multi-threading
	Clojure for the Backend
	Clojure for the Front End
	Clojure for Big Data
	Clojure for Machine Learning
	Clojure for Teaching
	Beyond
	Conclusion

	Cloud Big Data Benchmarks
	Cloud Computing for Big Data Analysis
	Definitions
	Overview
	Key Research Findings
	Examples of Application
	Future Directions for Research
	References

	Cloud Databases
	Cloud-Based SQL Solutions for Big Data
	Overview
	Cloud
	Cloud Platform Characteristics
	Elastic Compute
	Storage Services
	Additional Features and Opportunities
	Cloud System Challenges

	Cloud and Database Systems
	Example Systems
	Amazon Redshift
	Microsoft Azure SQL Data Warehouse
	Google BigQuery
	Snowflake Elastic Data Warehouse
	Other Systems

	Conclusions
	References

	Cloudlets
	Cluster Scheduling
	Clustering of Process Instances
	CODAIT/Spark-Bench
	Collective Schema Matching
	Columnar Storage Formats
	Definitions
	Overview
	Related Work
	Columnar File Formats for Big Data Systems
	The Parquet File Format
	File Organization
	Compression

	The ORC File Format
	File Organization
	Compression

	File Format Comparison

	Conclusions
	Cross-References
	References

	Complex Event Processing
	Component Benchmark
	Synonyms
	Overview
	Definitions
	Historical Background
	Foundations
	Key Applications
	Cross-References
	References

	Compressed Indexes for Repetitive Textual Datasets
	Definitions
	Overview
	Key Research Findings
	Run-Length Compressed CSAs and FM-Indexes
	Lempel-Ziv and Grammar-Based Indexes
	CDAWGs
	Graph-Based Indexes
	Implementations

	Example Application
	Future Directions for Research
	Cross-References
	References

	Compressed Representations for Complex Networks
	Computational Needs of Big Data
	Computer Architecture for Big Data
	Synonyms
	Definitions
	Overview
	Historical Trends in Computer Architecture
	How Big Data Affects Computer Architecture
	Architectural Aids to Data Translations
	Architectural Aids to Data Transformations
	Memory, Processing, and Interconnects
	Future Directions
	Cross-References
	References

	Computer Security
	Computing Average Distance
	Computing the Cost of Compressed Data
	Synonyms
	Definitions
	Overview
	Data Storage and Retention
	Cost Model for Data Retention
	Implications of the Cost Model
	Cross-References
	References

	Confidentiality
	Conflict-Free Replicated Data Types CRDTs
	Definitions
	Overview
	Concurrency Semantics
	Set
	Register
	Counter
	Other CRDTs

	Synchronization Model

	Key Research Findings
	Preservation of Sequential Semantics
	Extended Behavior Under Concurrency
	Guaranties and Limitations

	Examples of Applications
	Future Directions of Research
	Scalability
	Reversible Computation
	Security
	Nonuniform Replicas
	Verification

	References

	Conformance Checking
	Synonyms
	Definitions
	Overview
	Dimensions of Conformance
	Types of Conformance

	Key Research Findings
	Token Replay
	Cost-Based Alignment
	Cost-Based Fitness Metric
	Escaping Arc Precision
	Artificial Negative Events

	Examples of Application
	Future Directions for Research
	Conformance Dimensions
	Big Data and Real Time
	Conformance Diagnosis and Process Model Repair

	Cross-References
	References

	Consistency Criterion
	Consistency Model
	Consistency Models in MMOGs
	Constraint-Based Process Mining
	Context-Aware User Mobility
	Continuous Dataflow Language
	Continuous Queries
	Synonyms
	Definitions
	Overview
	SQL-Like Syntax
	Stream-Relational Algebra

	Findings
	Examples
	Future Directions for Research
	Cross-References
	References

	Continuous Query Optimization
	Coordination Avoidance
	Definitions
	Overview
	Key Research Findings
	Commutativity and Convergence
	Application-Level Correctness Semantics
	Weak and Relaxed Consistency
	Versioning and Snapshots

	Conclusion
	Examples of Application
	Future Directions for Research
	Cross-References
	References

	Co-resident Attack in Cloud Computing: An Overview
	Introduction
	Security Issues in Cloud
	Various Attacks on VM

	Co-resident Attack
	Defense Methods
	Case Study

	Conclusion
	References

	CRUD Benchmarks
	Synonyms
	Definitions
	Overview
	Scientific Fundamentals
	Key Applications
	Future Directions
	Cross-References
	References

	Cryptocurrency

