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Abstract We study practical algorithms for solving the all-pairs shortest path prob-
lem. The Floyd-Warshall algorithm is frequently used to solve the aforementioned
problem, and we show how it can be augmented to drastically reduce the number of
path combinations examined.Very favorable results are shown via empirical tests that
compare the new algorithm with known algorithms on random graphs. In addition
to the all-pairs shortest path problem, we also investigate the highly related all-pairs
bottleneck paths problem, and give an efficient average case algorithm. On top of
that, we show how the bottleneck paths problem relates to the decremental transitive
closure problem, and specifically how algorithms for the latter can be used to solve
the former.

1 Introduction

Let G = (V, E) denote a directed graph where E is the set of edges and V =
{v1, v2, ..., vn} is the set of vertices of the graph. The function �(·) maps edges
to (possibly negative) lengths. For a path π , we define its length to be the sum of
the lengths of its edges: �(π) = ∑

(u,v)∈π �(u, v). Additionally, we define ∀(u, v) /∈
E : �(u, v) = ∞. From hereon we make the standard assumption that there are no
cycles whose total lengths are negative, and without loss of generality, we assume
G is strongly connected. To simplify notation, we define m = |E | and n = |V |.
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Furthermore, we define d(u, v) for two vertices u, v ∈ V as the length of the short-
est path from u to v. It is also useful to define m∗ as the number of edges (u, v) such
that d(u, v) = �(u, v). These are the edges that form the shortest path graph, and are
the only edges necessary for its computation.

Finding shortest paths in such graphs is a classic problem in algorithmic graph
theory. Twoof themost commonvariants of the problemare the single-source shortest
path (SSSP) problem and the all-pairs shortest path problem (APSP). In the SSSP
variant, we are searching for paths with the least total length from a fixed vertex
s ∈ V to every other vertex in the network. Similarly, the APSP problem asks for
the shortest path between every pair of vertices u, v ∈ V . In this chapter we will
focus exclusively on the APSP variant of the problem, and without loss of generality,
assume that we are not interested in paths beginning in v and returning back to v.

The asymptotically fastest APSP algorithm for dense graphs to date runs in
O(n3 log log3 n/ log2 n) time [1]. For non-negative edge length functions and for
sparse graphs, there exist asymptotically fast algorithms for worst case inputs
[2–4], and algorithms which are efficient average-case modifications of Dijkstra’s
algorithm [5–7].

The APSP problem can easily be solved by n calls to an SSSP algorithm. There
exist strategies that are more effective than simply running independent SSSP com-
putations, such as the Hidden Paths Algorithm [8], the Uniform Paths algorithm [5],
and most recently the Propagation algorithm [9]. The Propagation algorithm is more
general than the former two, which are modifications of Dijkstra, in the sense that
it works for any SSSP algorithm. Besides providing a speed-up for arbitrary SSSP
algorithms, it also performs well in practice, as shown in [9].

As a truly all-pairs algorithm, Floyd-Warshall [10, 11] is frequently used to solve
APSP. There exist many optimizations for the Floyd-Warshall algorithm, ranging
from better cache performance [12], optimized program-generated code [13], to
parallel variants for the GPU [14, 15]. One can also approach APSP through funny
matrix multiplication, and practical improvements have been devised to this end
through the use of sorting [16].

In spite of intensive research on efficient implementations of the Floyd-Warshall
algorithm, there has not been much focus devoted to improvement of the number of
path combinations examined by the algorithm. In Sect. 2, we will propose a modifi-
cation of the Floyd-Warshall algorithm that combines it with an hourglass-like tree
structure, which reduces the number of paths that have to be examined. Only those
path combinations that provably cannot change the values in the shortest path matrix
are omitted. The resulting algorithm is simple to implement, uses no fancy data
structures and in empirical tests is faster than the Floyd-Warshall algorithm for ran-
dom complete graphs on 256–4096 nodes by factors ranging from 2.5 to 8.5. When
we inspect the number of path combinations examined however, our modification
reduces the number by a staggering factor of 12–90.

In Sect. 4 we consider the all-pairs bottleneck paths (APBP) problem, which is
highly related to the all-pairs shortest path problem. We show that an efficient algo-
rithmwhose bound depends onm∗ can be obtained, and showhow theAPBPproblem
can be reduced to that of decremental transitive closure.
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2 The Hourglass Algorithm

TheFloyd-Warshall algorithm [10, 11] is a simple dynamicprogramming approach to
solve the all-pairs shortest path problem.UnlikeDijkstra’s algorithm, Floyd-Warshall
can find shortest paths in graphs which contain negatively-weighted edges. In this
section we will outline improvements that build on the base algorithm, but first we
outline the pseudocode of the Floyd-Warshall algorithm in Algorithm 1. Intuitively,
one might expect that the minimum operation in line 5, also sometimes referred to
as relaxation, would not succeed in lowering the value of W [i][ j] every time. This
is precisely what we aim to exploit: instead of simply looping through every node in
line 4, we utilize the structure of shortest paths that we have computed up until now.
This allows us to avoid checking many path combinations that the Floyd-Warshall
algorithm inspects, but which provably cannot reduce the current value stored inside
W [i][ j].

Algorithm 1 Floyd-Warshall Algorithm
1: procedure Floyd-Warshall(W )
2: for k := 1 to n do
3: for i := 1 to n do
4: for j := 1 to n do
5: W [i][ j] := min(W [i][ j],W [i][k] + W [k][ j])
6: end for
7: end for
8: end for
9: end procedure

We will say a path u
k�v is a k-shortest path if it is the shortest path between u

and v that is only permitted to go through nodes {v1, ..., vk}. This means that u
n�v

would be the shortest path from u to v in the traditional sense. We denote the length

of a path u
k�v by writing �(u

k�v), where the length is simply the sum of the lengths
of all edges that are on the path.

The resulting algorithm is still a dynamic programming algorithm, but it now has
a smaller pool of candidates to perform relaxation on, which makes it run faster. In
Sect. 2.1, we show how to lower the number of candidates looped through in line

4 of Algorithm 1 by exploiting the tree structure of k
k−1� j paths. In Sect. 2.2, we

show how to exploit the structure of i
k−1�k paths and further reduce the number of

candidates in line 4. Both reductions are achieved by traversing a tree structure rather
than looping through all nodes. These modifications yield two tree data structures,
and joining them in the root yields an hourglass shaped data structure that combines
the power of both.
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2.1 The Single-Tree Algorithm

The simplest improvement involves the use of a tree, denoted as OUTk , which is
the shortest path tree containing paths that begin in node vk and end in some node
w ∈ V \{vk}, but only go through nodes in the set {v1, ..., vk−1}. In other words, these
are paths of the form vk

k−1�w ∀w ∈ V \{vk}. Traversal of this tree is used to replace
the FOR loop on variable j in line 4 of Algorithm 1. In order to reconstruct the
shortest paths, the Floyd-Warshall algorithm needs to maintain an additional matrix,
which specifies the path structure, but this additional matrix is otherwise not required
for the functioning of the algorithm. In our algorithm, however, this information
is essential, since the path structure is used during the algorithm’s execution. We
augment the Floyd-Warshall algorithm with a matrix L[i][ j] which specifies the
penultimate node on the shortest path from i to j (i.e. the last node that is not j).
This suffices for reconstructing the shortest path tree for all paths going out of k as
follows: create n trees {T1, ..., Tn}, now go through j = 1 to n and place Tj as the
child of TL[k][ j]. This takes O(n) time.

Assume that we have the (k − 1)-shortest paths i
k−1� j ∀i, j ∈ V and we are

trying to extend the paths to go through vk , i.e. we want to compute i
k� j ∀i, j ∈ V .

First we construct OUTk in O(n) time. Now we can use the following lemma when
extending the paths to go through vk :

Lemma 1 Let vx ∈ V \{vk} be some non-leaf node in OUTk and let vy �= vx be
an arbitrary node in the subtree rooted at vx . Now let vi ∈ V \{vk} and consider a

path vi
k−1�vk

k−1�vx . If �(vi
k−1�vk

k−1�vx ) ≥ �(vi
k−1�vx ), thenwe claim �(vi

k−1�vk
k−1�vy) ≥

�(vi
k−1�vy).

Proof By choice of vy and vx , we have vk
k−1�vy = vk

k−1�vx
k−1�vy . Thus we want to

show:
�(vi

k−1�vy) ≤ �(vi
k−1�vk

k−1�vx ) + �(vx
k−1�vy).

Observe that x < k, since vx is neither a leaf nor the root of OUTk . Because vi
k−1�vy

is the (k − 1)-shortest path and x < k we have:

�(vi
k−1�vy) ≤ �(vi

k−1�vx ) + �(vx
k−1�vy).

Putting these together we get:

�(vi
k−1�vy) ≤ �(vi

k−1�vx ) + �(vx
k−1�vy) ≤ �(vi

k−1�vk
k−1�vx ) + �(vx

k−1�vy).

Which is what we wanted to prove.
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The algorithm then extends the (k − 1)-shortest paths for each incoming node vi
by depth-first traversal1 of OUTk , starting with the root and avoiding the inspection

of subtrees whose roots vx did not yield a shorter path than vi
k−1�vx . Intuitively,

one would expect this to exclude large subtrees from ever being considered. The
pseudocode is given in Algorithm 2.

Algorithm 2 Single-tree Algorithm
1: procedure Single-Tree(W )
2: Initialize L , a n × n matrix, as L[i][ j] := i .
3: for k := 1 to n do
4: Construct OUTk .
5: for i := 1 to n do
6: Stack := empty
7: Stack.push(vk )
8: while Stack �= empty do
9: vx := Stack.pop()
10: for all children v j of vx in OUTk do
11: if W [i][k] + W [k][ j] < W [i][ j] then
12: W [i][ j] := W [i][k] + W [k][ j]
13: L[i][ j] := L[k][ j]
14: Stack.push(v j )
15: end if
16: end for
17: end while
18: end for
19: end for
20: end procedure

Observe that the extra space required by the trees is merely O(n), since we can
reuse the same space. Constructing the tree takes O(n) time which yields in total
O(n2) time over the course of the entire algorithm.

2.1.1 Optimized Implementation

Instead of maintaining a stack and visiting nodes in the tree as in Algorithm 2, a
much faster implementation is possible in practice. After building the treeOUTk , we
keep track of two permutation arrays: dfs[] and skip[]. The dfs array is simply the
depth-first traversal of the tree, i.e. dfs[x] contains the x-th vertex encountered on a
DFS traversal of OUTk . For a vertex vz , skip[z] contains the index in dfs of the first
vertex after vz in the DFS order that is not a descendant of vz in OUTk . Then, all
we need to do is simply traverse dfs and whenever an improvement is not made, we
jump to the next index via the skip array. It should be pointed out that the asymptotic
time remains the same, as this is solely a practical optimization.

1Breadth-first traversal is also possible, of course.
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2.2 The Hourglass Algorithm

We can augment Algorithm 2 with another tree. The second tree is similar to OUTk ,

except that it is the shortest path “tree” for paths w
k−1�vk ∀w ∈ V \ {vk}. Strictly

speaking, this is not a tree,2 but we can reverse the directions of the edges, which
turns it into a tree with vk as the root. We denote this tree as INk . Observe that if
va �= vk is a node in INk and vb is a child of va in INk , then the (k − 1)-shortest path
from vb to vk goes through va , since the edges are reversed in the tree. Traversal
of INk will be used as a replacement of the FOR loop on variable i in line 3 of
Algorithm 1. In order to construct INk efficiently, we need to maintain an additional
matrix F[i][ j] which stores the second node on the path from i to j (i.e. the first
node that is not i). The construction of INk is now similar to what we had before:
create n trees {T1, ..., Tn}, then go through i = 1 to n and place Ti as the child of
TF[i][k]. This takes O(n) time. Consequently, we have the following lemma:

Lemma 2 Let va ∈ V \ {vk} be some non-leaf node in INk and let vb �= va be an
arbitrary node in the subtree rooted at va. Now let v j ∈ V \ {vk} and consider a path
va

k−1�vk
k−1�v j . If �(va

k−1�vk
k−1�v j ) ≥ �(va

k−1�v j ), then we claim �(vb
k−1�vk

k−1�v j ) ≥
�(vb

k−1�v j ).

Proof Due to the choice of va and vb we have: vb
k−1�vk = vb

k−1�va
k−1�vk . We want to

show, that:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�vk

k−1�v j ).

Observe that a < k, since va is neither a leaf nor the root of INk . Thus we have:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�v j ).

Putting these together we get the desired inequality:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�vk

k−1�v j ).

Observe that if we perform depth-first traversal on INk , we can temporarily prune

OUTk as follows: if va is the parent of vb in INk and va
k−1�v j ≤ va

k−1�vk
k−1�v j , then

the subtree of v j can be removed from OUTk while we are inspecting the subtree of
va in INk , and later re-inserted. This is easy to do by using a stack to keep track of
deletions. The pseudocode for the Hourglass algorithm is given in Algorithm 3. In
practice, recursion can be replaced with another stack, and each node in the INk tree
is then visited twice—the second visit would restore the subtrees that were removed
from OUTk by that node.

2The hourglass name comes from placing this structure atop the OUTk tree, which gives it an
hourglass-like shape, with vk being the neck.
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Algorithm 3 Hourglass Algorithm
1: procedure Hourglass(W )
2: Initialize L , a n × n matrix, as L[i][ j] := i .
3: Initialize F , a n × n matrix, as F[i][ j] := j .
4: for k := 1 to n do
5: Construct OUTk .
6: Construct INk .
7: for all children vi of vk in INk do
8: RecurseIN(W, L , F, INk ,OUTk , vi )
9: end for
10: end for
11: end procedure
12: procedure RecurseIN(W, L , F, INk ,OUTk , vi )
13: Stack := empty
14: Stack.push(vk )
15: while Stack �= empty do
16: vx := Stack.pop()
17: for all children v j of vx in OUTk do
18: if W [i][k] + W [k][ j] < W [i][ j] then
19: W [i][ j] := W [i][k] + W [k][ j]
20: L[i][ j] := L[k][ j]
21: F[i][ j] := F[i][k]
22: Stack.push(v j )
23: else
24: Remove the subtree of v j from OUTk .
25: end if
26: end for
27: end while
28: for all children vi ′ of vi in INk do
29: RecurseIN(W, L , F, INk ,OUTk , vi ′ )
30: end for
31: Restore any subtrees we may have removed in line 24.
32: end procedure

The only extra space requirement of the Hourglass algorithm that bears any sig-
nificance is the matrix F , which contains n2 entries. It is important to note that the
worst-case time complexity of the Hourglass (and Single-tree) algorithm remains
O(n3). The simplest example of this is when all shortest paths are the edges them-
selves, at which point the tree structure is essentially flat and never changes.

2.3 Empirical Comparison

We now empirically examine howmany path combinations are skipped by the Hour-
glass and Single-tree algorithms compared to the Floyd-Warshall algorithm. We
performed two experiments, one on random complete graphs, and one on random
sparse graphs. We measured the number of path combinations examined. Since the
results are numbers that range from very small to very large in both cases, we display
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Fig. 1 The percentage of
path combinations examined
by the two modifications of
Floyd-Warshall, when
compared to the original
algorithm (which is always
at 100%, not shown), for the
input of complete graphs of
various sizes
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the results as a percentage of the Floyd-Warshall algorithm, which is always 100%
in the plots, but is not drawn explicitly.

The input graphs were pseudorandomly generated. For complete graphs, this
meant assigning each edge an independently uniformly distributed random length in
the range (0, 1). Sparse graphs were generated by starting with an empty graph on
1024 nodes and adding a desired number of edges, which were chosen independently
according to the uniform random distribution, and assigned an independently uni-
formly distributed random length in the range (0, 1). Edge lengths were represented
using floating-point numbers in both cases.

The first experiment was for the input of random complete graphs of varying
sizes. The results are shown in Fig. 1. The second experiment was for the input of a
random graph of 1024 nodes whose number of edges varied from 10 to 80% where
100% = n2. To make the comparison between Floyd-Warshall and the modified
versions fairer in the second experiment,we augmented theFloyd-Warshall algorithm
with a simplemodification, that allowed it to skip combinations i, k whereW [i][k] =
∞, which reduced the number of path combinations examined. The results of the
second experiment are shown in Fig. 2.

In Fig. 1 we can see a significant reduction in terms of path combinations exam-
ined. This quantity dominates the algorithm’s asymptotic running time and, as
observed, decreases compared to the cubic algorithm when inputs grow larger. It
might be possible to obtain sub-cubic asymptotic bounds in the average-case model,
which is an open question. The experiments on sparse graphs in Fig. 2 show a reduc-
tion in path combinations examined as the graph becomes sparser, but the effect on
the running time seems to be very minor.

Overall, the Single-tree algorithm is the simplest to implement and offers good
performance. The Hourglass algorithm has the potential to be even faster, but would



Practical Algorithms for the All-Pairs Shortest Path Problem 171

Fig. 2 The percentage of
path combinations examined
by the two modifications of
Floyd-Warshall, when
compared to the original
algorithm (which is always
at 100%, not shown), for the
input of a graph with 1024
nodes and various edge
densities
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likely require a better implementation. It is also worthwhile to note that the additional
space requirements for the Single-tree algorithm are very modest, as most applica-
tions would typically require storing the path reconstruction matrix regardless.

3 Empirical Comparison of APSP Algorithms

In this section, we analyze the results of empirical tests consisting of running five
shortest path algorithms on random graph instances and measuring their running
times.

3.1 Graphs and Algorithms

The experiments were conducted on the following two types of directed random
graphs.

Uniform random graphs: the edge length is uniformly randomly distributed
inside the interval [0, 1). As these graphs grow denser, they start to favor the average-
case algorithms, sincem∗ = O(n lg n)with high probability in complete graphs with
uniformly distributed random edge lengths [17].

Unweighted random graphs: edge lengths are set to 1. These graphs can be
viewed as a type of worst-case for the average-case algorithms, sincem∗ = m always
holds, i.e. a direct edge is the shortest path between two nodes. It should be pointed
out, that breadth-first search (BFS) is extremely efficient in solving these instances
given its simplicity and O(mn) running time (when solving APSP). However, since
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we consider these instances only as a worst-case of a more general shortest path
problem, we did not include BFS in the comparisons.

In both cases, the graphs were constructed by first setting a desired vertex count
and density. Then, a randomHamiltonian cycle is constructed, ensuring that the graph
is strongly connected. Edges are added into the graph at random until the desired
density is reached. Finally, algorithms are executed on the instance, and their running
times recorded. We have explored densities ranging from m = n1.1 to m = n2, and
vertex counts ranging from n = 512 to n = 4096. For each density and vertex count
combination, we have generated 10 different random instances and averaged the
running times of each algorithm.

Priority queues are integral to many shortest path algorithms. Pairing heaps were
used in all experiments, since they are known to perform especiallywell in this capac-
ity in practice. Unlike Fibonacci heaps, which have an O(1) amortized decrease key
operation, the amortized complexity of decrease-key for pairing heaps isO(22

√
lg lg n)

[18]. The following algorithms have been compared:
Dijkstra [19]: solves all-pairs by solving multiple independent single-source

problems. Using pairing heaps this algorithm runs in O(n2 lg n + mn22
√
lg lg n).

Floyd-Warshall [10, 11]: classic dynamic programming formulation. Does not
use priority queues and runs in O(n3).

Propagation: the algorithm described in [9]. In essence, it is a more efficient
way of using an SSSP algorithm to solve APSP. The underlying SSSP algorithm
is Dijkstra’s algorithm. Using pairing heaps this algorithm runs in O(n2 lg n +
m∗n22

√
lg lg n).

Single-tree: the algorithm from Sect. 2.1, with the optimizations outlined in
Sect. 2.1.1.

Hourglass: the algorithm from Sect. 2.2.
The code has been written in C++ and compiled using g++ -march=native

-O3. We have used the implementation of pairing heaps from the Boost Library,
version 1.55. All tests were run on an Intel(R) Core(TM) i7-2600@3.40GHz with
8GB RAM running Windows 7 64-bit.

Results are shown as plots where the y axis represents time in milliseconds in
logarithmic scale, and the x axis represents the graph edge density as m = nx.

3.2 Uniform Random Graphs

The results for uniform random graphs are shown in Figs. 3, 4, 5 and 6.
The tests show that Propagation and Single-tree together outperform the other

algorithms on all densities. As the size increases, Hourglass starts catching up to
Single-tree, but the constant factors still prove to be too much for it to benefit from
its more clever exploration strategy. The running time of Propagation depends on
m∗ instead of m, and m

m∗ in the uniform random graphs increases as the graphs grow
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Fig. 3 512 vertices, uniform weights. The plot is quite erratic due to the extremely short running
times
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Fig. 4 1024 vertices, uniform weights. The general trend starts to form. Differences between the
fastest three algorithms on the sparse instances are quite significant

denser, so it is expected that Dijkstra would be relatively slower the denser the graph
is. It is quite surprising that the Single-tree and Hourglass algorithms are so efficient
on sparse graphs, outperforming evenDijkstra, something thatwould seem incredibly
difficult given its O(n3) worst-case time. This would suggest that its average-case
time is significantly lower than its worst-case, but no theoretical bounds are known
so far.
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Fig. 5 2048 vertices, uniformweights. Floyd-Warshall’s running time begins to increase drastically,
as expected due to its cubic complexity. Differences between the fastest three algorithms on sparse
instances start to decrease
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Fig. 6 4096 vertices, uniform weights. Propagation and Single-tree prove to be the fastest, with
Single-tree outperforming Propagation on the sparser instances

3.3 Unweighted Random Graphs

The results for unweighted random graphs are shown in Figs. 7, 8, 9 and 10.
In these tests, Propagation performs quite poorly, but that is to be expected since

m = m∗ in these graphs, resulting in no benefit from Propagation’s more clever
search strategy compared to Dijkstra. What is interesting is that the Single-tree and
Hourglass algorithms are able to remain competitive withDijkstra in spite of this, and
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Fig. 7 512 vertices, unweighted. The plot is quite erratic due to the extremely short running times
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Fig. 8 1024 vertices, unweighted. A clearer picture begins to form, with Single-tree performing
surprisingly well and being overtaken by Hourglass briefly as the graph grows dense

even outperforming it on the smaller graphs in some instances. It is worthmentioning
that the n2 case for unit graphs is somewhat pathological, as the instance is already
solved since every vertex has a unit-length edge to every other vertex, which can be
seen to cause a consistent dip in the running time in the case of Dijkstra.
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Fig. 9 2048 vertices, unweighted. Hourglass continues to perform best in the 1.7–1.8 range. Differ-
ences between the algorithms on the sparse instances begin to decrease, but Single-tree maintains
good performance and is matched closely by Dijkstra
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Fig. 10 4096 vertices, unweighted. Single-tree andDijkstra remain closelymatched, andHourglass
continues to dominate the 1.7–1.8 density range

4 All-Pairs Bottleneck Paths

The all-pairs bottleneck paths problem (APBP) is closely related to the all-pairs
shortest path problem. The difference is only in the definition of the length of a
path π , which is defined to be: �(π) = max(u,v)∈π �(u, v). The length of edges is
constrained to be non-negative. A solution to this problem is readily available by
simplymodifying the relaxation equation of shortest path algorithms to usemaximum
instead of addition. For example, modifying Dijkstra’s algorithm in this way leads to
a solution that runs in O(mn + n2 lg n) using Fibonacci heaps [20]. A more efficient
folklore modification of Dijkstra’s algorithm is known to reduce this time down to
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O(mn). This folklore modification uses a bucket instead of a heap and sorts the
edges by their lengths beforehand in O(m lg n) time. Then, shortest path lengths can
be expressed as monotonically increasing integers from 1...m (referencing the edge
lengths), and by using this bucket each SSSP computation takes O(m) time in total.
It should be pointed out, that in the case of undirected edges, we can solve APBP
on the minimal spanning tree of G instead of on G itself, and still obtain the correct
result. This can be a significant speed-up, since m = n for any minimal spanning
tree.

In this section, wewill describe an algorithm that is more efficient, with an asymp-
totic running time of O(m∗n + m lg n). This algorithm will also allow us to state an
interesting relationship between APBP and the dynamic transitive closure problem.

Given a graph G = (V, E), the algorithm works by incrementally building the
graphG∗ = (V, E∗)where E∗ ⊂ E are the edges (u, v) such that d(u, v) = �(u, v).
It accomplishes this by inserting edges into an initially disconnected set of vertices.
The first step is to sort the set of edges E using their lengths. This can be done with
any off-the-shelf sorting algorithm in O(m lg n) time.

Now we consider each edge in this sorted list from smallest to largest. Given an
edge (u, v), check if v is reachable from u in G∗. If it is, ignore it and move to
the next edge, and if it isn’t, add (u, v) to G∗, and for every pair of vertices (w, q)

that become reachable, set d(w, q) = �(u, v). The algorithm finishes when we have
considered every edge.

We summarize the algorithm in pseudocode as Algorithm 4.

Algorithm 4 APBP Algorithm
1: procedure APBP(V, E)
2: Initialize D, a n × n matrix, as D[i][ j] := ∞.
3: E∗ := ∅
4: for all (u, v) ∈ E from shortest to longest length do
5: if D[u][v] = ∞ then
6: E∗ := E∗ ∪ (u, v)

7: D[u][v] := �(u, v)

8: for all (x, y) where D[x][y] = ∞ and x → y is reachable in G∗ = (V, E∗) do
9: D[x][y] := �(u, v)

10: end for
11: end if
12: end for
13: end procedure

Lemma 3 For a graph G = (V, E) the algorithm correctly computes d(u, v) :
∀u, v ∈ V .

Proof By induction on the stage of the algorithm. Let e1, e2, ..., en be the edges in
sorted order, i.e. �(e1) ≤ �(e2) ≤ · · · ≤ �(en). Assume the algorithm is at a stage k,
i.e. having examined the first k − 1 edges. For the case of k = 1, the shortest edge
in the graph clearly forms the shortest path between the two vertices it connects.
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For some case n ≥ k > 1, let ek = (u, v) and consider first the case that u and v

are already reachable in the current version of the graph G∗. That would imply that
d(u, v) ≤ �(ek−1), due to the definition of the length of bottleneck paths, which
means a shorter (or equal) path as ek already exists, thus the edge can be safely
omitted as it is redundant.

In the case u cannot yet reach v, then this is the shortest edge to connect the two
vertices, and thus clearly d(u, v) = �(ek). For any additional vertex pairs (w, q) that
become reachable after ek is added into the graph, they clearly contain ek on the path
that connects them. Since all the other edges in the graph are shorter, by the definition
of the length of bottleneck paths it holds that d(w, q) = �(ek), which completes the
proof.

The running time of the algorithm depends heavily on how we check which
previously unreachable vertex pairs have become reachable. The following simple
approach works when adding some edge (u, v):

1. Gather all vertices that can reach u. This takes O(n) time.
2. For each vertex that can reach u, start a breadth-first exploration of G∗ from u,

visiting only vertices that were previously not reachable.

Over the entire course of the algorithm, m∗ edges are added to G∗, so the time
for the first step is O(m∗n). The second step is not more expensive than the cost of
each vertex performing a full breadth-first exploration of G∗ when it is fully built,
thus at most O(m∗ + n) per vertex, amounting to O(m∗n) in total. Overall, the cost
is O(m∗n).

Combining both times for the edge sorting and reachability checking, we arrive at
the bound of O(m∗n + m lg n). It is worth pointing out that in the case of undirected
graphs, G∗ corresponds to the minimum spanning tree of G. This is interesting,
because it means m∗ = O(n), so the running time of the algorithm becomes simply
O(n2 + m lg n) for undirected graphs. This remains true even if the representation
is directed, i.e. each edge is simply repeated in both directions with the same length.
In some limited sense, the algorithm is adaptive to the input graph.

4.1 Reduction to Decremental Transitive Closure

If instead of adding edges into the graph we consider the opposite scenario, that of
removing edges (from largest to smallest) and checking when vertices are no longer
reachable, we can reduce the problem to that of decremental transitive closure. In
the latter problem, we are given a graph and a series of edge deletions, and the task
is to maintain the ability to efficiently answer reachability queries. Relatively recent
advancements in decremental transitive closure have led to an algorithm that has a
total running time of O(mn) under m edge deletions [21]. This immedately leads to
an O(mn) algorithm for all-pairs bottleneck paths. However, since transitive closure
can be computed in O( mn

lg n ) time [22], a decremental algorithm that matches that
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running time could also lead to an o(mn) combinatorial algorithm for APBP. While
subcubic algebraic algorithms for APBP based on matrix multiplication exist [23],
no o(mn) combinatorial algorithm is known.

5 Discussion

In this chapter we have looked at practical algorithms for solving the all-pairs short-
est path problem. It is typical of the more practically-minded APSP algorithms to
rely on average-case properties of graphs, and most of them are modifications of
Dijkstra’s algorithm. However, the Floyd-Warshall algorithm is known to perform
well in practice when the graphs are dense. To this end, we have suggested the Single-
tree and Hourglass algorithms: modifications of the Floyd-Warshall algorithm that
combine it with a tree structure, that allows it to avoid checking unnecessary path
combinations. However, these two algorithms have no known average-case bounds,
which would be an interesting topic for further research.

To compare practical performance, we have devised empirical tests using actual
implementations. Since, as mentioned, the algorithms studied typically rely on
average-case properties of graphs, we looked at both uniform random graphs and
unweighted random graphs of varying density. The latter present a hard case for
many of the algorithms and can highlight their worst-case performance, whereas the
former are much more agreeable to the algorithms’ assumptions. For the choice of
algorithms we have included those known from past work, as well as the novel Hour-
glass and Single-tree algorithms. As it turns out, the new algorithms have proven to
be quite efficient in the empirical tests that we have performed. The simpler Single-
tree algorithm has ranked especially well alongside the Propagation algorithm, while
at the same time it was more resilient when it came to worst-case inputs.

In addition, we have also briefly considered the case of all-pairs bottleneck paths,
where we proposed a simple algorithm, the asymptotic running time of which can be
parametrized withm∗. Additionally, we have shown ties to the decremental transitive
closure problem, which might lead to faster algorithms for all-pairs bottleneck paths
if faster algorithms for decremental transitive closure are found.
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