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Preface

Shortest path problem is a fundamental and classical problem of graph theory and
computer science and is applied in transport and logistics, telecommunication
networks, virtual reality and gaming, geometry, social networks analysis, and
robotics. The book offers advanced parallel and distributed algorithms and exper-
imental laboratory prototypes of chemical, physical, and living unconventional
shortest path and maze solvers.

Chapter by Matic—“A Parallel Algorithm for the Constrained Shortest Path
Problem on Lattice Graphs”—opens the book. The chapter shows how to solve a
constrained shortest path problem in parallel using a paradigm of water percolating
through the graph. These ideas are somewhat echoed in several other chapters
devoted to physical and chemical shortest path solvers. Pascoal presents
breadth-first search tree algorithms for computation of the maximal and the minimal
sets of non-dominating paths in “The MinSum-MinHop and the MaxMin-MinHop
Bicriteria Path Problems”.

Optimal algorithm for moving a swarm of robots into a common place via
shortest paths—“Gathering a Swarm of Robots Through Shortest Paths”—is
analysed by Cicerone, Di Stefano, Navarra. These results are augmented by con-
structs of mobile lattice automata forming a checkerboard pattern, where each agent
moves along the shortest path in Hoffmann’s chapter “Checkerboard Pattern
Formed by Cellular Automata Agents”. D’Angelo, D’Emidio, and Frigioni review
distributed shortest path algorithms for large-scale Ethernet networks, where each
node of the network stores distance to every other node in “Distance-Vector
Algorithms for Distributed Shortest Paths Computation in Dynamic Networks”. An
algorithm for multi-objective problem of vehicle routing inspired by virus propa-
gation is proposed and analyzed by Psychas, Delimpasi, Marinaki and Marinakis in
“Influenza Virus Algorithm for Multiobjective Energy Reduction Open Vehicle
Routing Problem”. Overview of pragmatic algorithms of shortest path computation
is given in “Practical Algorithms for the All-Pairs Shortest Path Problem” by
Brodnik and Marko Grgurovič.
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Computing of shortest path with uniform arrays of processing units is discussed
by Akl in “Computing Shortest Paths with Cellular Automata” and by Tsompanas,
Dourvas, Ioannidis, Sirakoulis, Hoffmann, Adamatzky in “Cellular Automata
Applications in Shortest Path Problem”. von Thienen and Czaczkes compare the
shortest pathfinding mechanisms in real ant colonies and artificial ant colony
optimisation techniques in “Do Ants Use Ant Colony Optimization?”.

Next two chapters make a nice transition from software to experimental labo-
ratory prototypes of distributed path solvers. Both chapters relate to slime
Physarum polycephalum, a large single cell which spans sources of nutrients with
an optimal network of protoplasmic tubes. Zhang and Yan—“Physarum-Inspired
Solutions to Network Optimization Problems”—present traffic flow assignment and
supply chain network design solutions using a mathematical model of the slime
mould. Multi-agent model of Physarum polycephalum and volumetric topological
material optimisation are employed in computation of shortest paths by Jones and
Safonov in “Slime Mould Inspired Models for Path Planning: Collective and
Structural Approaches”.

Irimia—“Maze-Solving Cells”—shows experimental laboratory results on how a
single human cell solves a maze crawling in a self-sustainable loop of externally
and internally generated gradients. Insight into the inefficiency and irreproducibility
of shortest path solving by living creatures—slime mould Physarum polycephalum
and ciliate Paramecium caudatum—in experimental laboratory conditions is pro-
vided by Mayne in his chapter “When the Path is Never Shortest: A Reality Check
on Shortest Path Biocomputation”. Čejková, Tóth, Braun, Branicki, Ueyama, and
Lagzi—“Shortest Path Finding in Mazes by Active and Passive Particles”—present
their chemistry-based concepts for maze solving which rely on surface
tension-driven phenomena at the air–liquid interface. Chapter “The Electron in the
Maze” by Ayrinhac addresses a computation of the shortest path in maze of con-
ductive channels with electrical current. The book closes with a discussion on
common physical/chemical principles of experimental laboratory prototypes of
maze solves, including fluid mappers and slime mould—“Maze Solvers
Demystified and Some Other Thoughts” by Adamatzky.

The book is a pleasure to explore for readers from all walks of life, from
undergraduate students to university professors, from mathematicians, computers
scientists, and engineers to chemists and biologists.

Bristol, UK Andrew Adamatzky
February 2018
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A Parallel Algorithm for the Constrained
Shortest Path Problem on Lattice Graphs

Ivan Matic

Abstract The edges of a graph are assigned weights and passage times which are
assumed to be positive integers. We present a parallel algorithm for finding the
shortest path whose total weight is smaller than a pre-determined value. In each step
the processing elements are not analyzing the entire graph. Instead they are focusing
on a subset of vertices called active vertices. The set of active vertices at time t is
related to the boundary of the ball Bt of radius t in the first passage percolationmetric.
Although it is believed that the number of active vertices is an order of magnitude
smaller than the size of the graph, we prove that this need not be the case with an
example of a graph for which the active vertices form a large fractal. We analyze an
OpenCL implementation of the algorithm on GPU for cubes in Zd .

1 Definition of the Problem

The graph G(V, E) is undirected and the function f : E → Z
2+ is defined on the

set of its edges. The first component f1(e) of the ordered pair f (e) = ( f1(e), f2(e))
for a given edge e ∈ E represents the time for traveling over the edge e. The second
component f2(e) represents the weight of e.

A path in the graph G is a sequence of vertices (v1, v2, . . . , vk) such that for each
i ∈ {1, 2, . . . , k − 1} there is an edge between vi and vi+1, i.e. (vi , vi+1) ∈ E . For
each path π = (v1, . . . , vk) we define F1(π) as the total time it takes to travel over
π and F2(π) as the sum of the weights of all edges in π . Formally,

F1(π) =
k−1∑

i=1

f1 (vi , vi+1) and F2(π) =
k−1∑

i=1

f2 (vi , vi+1) .

I. Matic (B)
Department of Mathematics, Baruch College, CUNY, One Bernard Baruch Way,
New York, NY 10010, USA
e-mail: ivan.matic@baruch.cuny.edu

© Springer International Publishing AG, part of Springer Nature 2018
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2 I. Matic

Let A, B ⊆ V be two fixed disjoint subsets of V and let M ∈ R+ be a fixed
positive real number. Among all paths that connect sets A and B let us denote by π̂

the one (or one of) for which F1(π) is minimal under the constraint F2(π) < M . We
will describe an algorithm whose output will be F1(π̂) for a given graph G.

The algorithm belongs to a class of label correcting algorithms [11, 20]. The
construction of labels will aim to minimize the memory consumption on SIMD
devices such as graphic cards. Consequently, the output will not be sufficient to
determine the exact minimizing path. The reconstruction of the minimizing path is
possible with subsequent applications of the method, because the output can include
the vertex X ∈ B that is the endpoint of π̂ , the last edge x on the path π̂ , and the
value F2(π̂). Once X and x are found, the entire process can be repeated for the
graph G ′(V ′, E ′) with

V ′ = V \ B, A′ = A, B ′ = {X}, and M ′ = F2
(
π̂

) − f2(x).

The result will be second to last vertex on the minimizing path π̂ . All other vertices
on π̂ can be found in the same way.

Although the algorithm works for general graphs and integer-valued functions f ,
its implementation on SIMD hardware requires the vertices to have bounded degree.
This requirement is satisfied by subgraphs of Zd .

Finding the length of the shortest path in graph is equivalent to finding the shortest
passage time in first passage percolation. Each of the vertices in A can be thought of
as a source of water. The value f1(e) of each edge e is the time it takes the water to
travel over e. Each drop of water has its quality and each drop that travels through
edge e looses f2(e) of its quality. Each vertex P of the graph has a label Label(P)

that corresponds to the quality of water that is at the vertex P . Initially all vertices in
A have label M while all other vertices have label 0. The drops that get their quality
reduced to 0 cannot travel any further. The time at which a vertex from B receives its
first drop of water is exactly the minimal F1 (π) under the constraint F2(π) < M .

Some vertices and edges in the graph are considered active. Initially, the vertices
in A are active. All edges adjacent to them are also called active. Each cycle in
algorithm corresponds to one unit of time. During one cycle the water flows through
active edges and decrease their time components by 1. Once an edge gets its time
component reduced to 0, the edge becomes used and we look at the source S and
the destination D of this water flow through the edge e. The destination D becomes
triggered, and its label will be corrected. The label correction is straight-forward if
the edge D was inactive. We simply check whether Label(S) − f2(e) > Label(D),
and if this is true then the vertex D gets its label updated to Label(S) − f2(e) and its
status changed to active. If the vertex Dwas active, the situation ismore complicated,
since the water has already started flowing from the vertex D. The existing water
flows correspond to water of quality worse than the new water that has just arrived to
D. We resolve this issue by introducing phantom edges to the graph that are parallel
to the existing edges. The phantom edges will carry this new high quality water,
while old edges will continue carrying their old water flows. A vertex stops being
active if all of its edges become used, but it may get activated again in the future.
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2 Related Problems in the Literature

The assignment of phantom edges to the vertices of the graph and their removal is
considered a label correcting approach in solving the problem. Our particular choice
of label correction is designed for large graphs in which the vertices have bounded
degree. Several existing serial computation algorithms can find the shortest path by
maintaining labels for all vertices. The labels are used to store the information on the
shortest path from the source to the vertex and additional preprocessing of vertices is
used to achieve faster implementations [5, 9]. The ideas of first passage percolation
and label correction have naturally appeared in the design of pulse algorithms for
constrained shortest paths [17]. All of the mentioned algorithms can also be par-
allelized but this task would require a different approach in designing a memory
management that would handle the label sets in programming environments where
dynamical data structures need to be avoided.

The method of aggressive edge elimination [22] can be parallelized to solve the
Lagrange dual problems. In the case of road and railroad networks a substantial
speedup can be achieved by using a preprocessing of the network data and applying
a generalized versions of Dijkstra’s algorithm [12].

The parallel algorithm that is most similar in nature to the one discussed in this
paper is developed for wireless networks [16]. There are two features of wireless
networks that are not available to our model. The first feature is that the communi-
cation time between the vertices can be assumed to be constant. The other feature is
that wireless networks have a processing element available to each vertex. Namely,
routers are usually equipped with processors. Our algorithm is build for the situ-
ations where the number of processing cores is large but not at the same scale as
the number of vertices. On the other hand our algorithm may not be effective for
the wireless networks since the underlying graph structure does not imply that the
vertices are of bounded degree. The increase of efficiency of wireless networks can
be achieved by solving other related optimization problems. One such solution is
based on constrained node placement [21].

The execution time of the algorithm is influenced by the sizes of the sets of
active vertices, active edges, and phantom edges. The sizes of these sets are order of
magnitude smaller than the size of the graph. Although this cannot be proved at the
moment, we will provide a justification on how existing conjectures and theorems
from the percolation theory provide some estimates on the sizes of these sets. The set
of active vertices is related to the limit shape in the model of first passage percolation
introduced byHammersley andWelsh [10]. Thefirst passage percolation corresponds
to the case M = ∞, i.e. the case when there are no constraints. If we assume that
A = {0}, for each time t we can define the ball of radius t in the first passage
percolation metric as:

Bt = {x : τ(0, x) ≤ t} ,
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where τ(0, x) is the first passage time, i.e. the first time at which the vertex x is
reached.

The active vertices at time t are located near the boundary of the ball Bt . It is
known that for large t the set 1

t Bt will be approximately convex. More precisely, it
is known [7] that there is a convex set B such that

P

(
(1 − ε)B ⊆ 1

t
Bt ⊆ (1 + ε)B for large t

)
= 1.

However, the previous theorem does not guarantee that the boundary of Bt has
to be of zero volume. In fact the boundary can be non-polygonal as was previously
shown [8].

The set of active vertices does not coincide with the boundary of Bt , but it is
expected that if ∂Bt is of small volume then the number of active vertices is small
in most typical configurations of random graphs. We provide an example for which
the set of active vertices is a large fractal, but simulations suggest that this does not
happen in average scenario.

The fluctuations of the shape of Bt are expected to be of order t2/3 in the case of
Z
2 and the first passage time τ(0, n) is proven to have fluctuations of order at least

log n [23]. The fluctuations are of order at most n/ log n [3, 4] and are conjectured
to be of order t2/3. They can be larger and of order n for modifications of Z2 known
as thin cylinders [6].

The scaling of t2/3 for the variance is conjectured for many additional interface
growth models and is related to the Kardar-Parisi-Zhang equation [1, 15, 25].

The constrainedfirst passage percolation problem is a discrete analog toHamilton-
Jacobi equation. The large time behaviors of its solutions are extensively studied and
homogenization results are obtained for a class of Hamiltonians [2, 13, 14, 26].
Fluctuations in dimension one are of order t [24] while in higher dimensions they
are of lower order although only the logarithmic improvement to the bound has been
achieved so far [19].

3 Example

Before providing a more formal description of the algorithm we will illustrate the
main ideas on one concrete example of a graph. Consider the graph shown in Fig. 1
that has 12 vertices labeled as 1, 2, . . . , 12. The set A contains the vertices 1, 2, and
3, and the set B contains only the vertex 12. The goal is to find the length of the
shortest path from A to B whose total weight is smaller than 19.

The vertices are drawn with circles around them. The circles corresponding to
the vertices in A are painted in blue and have the labels 19. The picture contains the
time and weight values for each of the edges. The time parameter of each edge is
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Fig. 1 The initial state of the graph

written in the empty oval, while the weight parameter is in the shaded oval. Since
the number of edges in this graph is relatively small it is not difficult to identify the
minimizing path (3, 6, 10, 11, 12). The time required to travel over this path is 16
and the total weight is 15.

Initially, the vertices in set A are called active. Active vertices are of blue color
and edges adjacent to them are painted in blue. These edges are considered active.
Numbers written near their centers represent the sources of water. For example, the
vertex 2 is the source of the flow that goes through the edge (2, 5).

Notice that the smallest time component of all active edges is 2. The first cycle
of the algorithm begins by decreasing the time component of each active edge by
2. The edge (1, 4) becomes just used because its time component is decreased to 0.
The water now flows from the vertex 1 to the vertex 4 and its quality decreases by 5,
since the weight of the edge (1, 4) is equal to 5. The vertex 4 becomes active and its
label is set to

Label(4) = Label(1) − f2(1, 4) = 19 − 5 = 14.

The edge (1, 4) becomes used, and the vertex 1 turns into inactive since there are no
active edges originating from it. Hence, after 2 s the graph turns into the one shown
in Fig. 2.

The same procedure is repeated until the end of the 5th second and the obtained
graph is the top one in Fig. 3. In the 6th second the edge (2, 5) gets its time parameter
decreased to 0 and the vertex 5 gets activated. Its label becomes

Label(5) = Label(2) − f2 (2, 5) = 19 − 2 = 17.
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Fig. 2 The configuration after the second 2

However, the edges (4, 5), (5, 9), and (5, 6) were already active and the water
was flowing through them towards the vertex 5.

The old flow of water through the edge (4, 5) will complete in additional 5 s.
However, when it completes the quality of the water that will reach the vertex 5 will
be

Label(4) − f2 (4, 5) = 14 − 2 = 12 < Label(5)

because the label of the vertex 5 is 17. Thus there is no point in keeping track of this
water flow. On the other hand, the water flow that starts from 5 and goes towards 4
will have quality

Label(5) − f2(4, 5) = 17 − 2 = 15

which is higher than the label of the vertex 4. Thus the edge (4, 5) will change its
source from 4 to 5 and the time parameter has to be restored to the old value 7. At
this point the vertex 4 becomes inactive as there is no more flow originating from it.

The same reversal of the direction of the flow happens with the edge (5, 9). On
the other hand, something different happens to the edge (5, 6): it stops being active.
The reason is that the old flow of water from 6 to 5 will not be able to increase the
label of the vertex 5. Also, the new flow of water from 5 to 6 would not be able to
change the label of vertex 6.

A special care has to be taken when a water flow reaches a vertex that is already
active. In the case of the graph G such situation happens after the 11th second. The
configuration is shown in the top picture of Fig. 4. The edge (7, 11) has the smallest
time parameter 2. The time will progress immediately to 13 and all active edges
get their time parameters decreased by 2. In the 13th second the water from the
edge (7, 11) reaches the vertex 11. The label of vertex 7 is Label(7) = 11, while
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Fig. 3 The configurations after the seconds 5 and 6

Label(11) = 6. The weight of the flow over the edge between these two vertices is
2, hence this new water is of higher quality than the one present at the vertex 11.

In this situation we consider every active edge originating from 11 and create a
phantom edge through which this new water will flow. We will create a new vertex
11′ with label

Label(11′) = Label(7) − f2(7, 11) = 9

and connect it with each of the neighbors of 11 that can get their label increased with
the new flow. The only one such neighbor is 12 and we obtain the graph as shown in
the lower part of Fig. 4.
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Fig. 4 The configurations after the seconds 11 and 13

It can be now easily verified that after additional 3 s, i.e. in the end of the second
16 the vertex 12 becomes active with the label 4. Thus we conclude that it takes
water to travel 16 s over the shortest path. The total weight of the shortest path is
19 − 4 = 15. The minimizing path is (3, 6, 10, 11, 12).

4 Pseudo-code of the Algorithm

We will organize the algorithm by dividing it into smaller components. The first
component is the initialization, and the others are performed in the main loop that
consists of 9 major steps. The parallelization will happen only in these individual
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steps of the main loop. The pseudo-code for the main function is presented in
Algorithm 1. Each stepwill be described in full details and accompanied by a pseudo-
code that outlines the main ideas. For the sake of brevity, some data structures in
pseudo-code will be modeled with sets. However, the usage of sets is avoided as they
cannot support insertion and deletion of elements in parallel. The sets are replaced
by indicator sequences for which appropriate operations are easier to parallelize. For
the full source code the reader is referred to [18].

Algorithm 1Main function
Input: Graph G = (V, E); A, B ⊂ G such that A ∩ B = ∅, M ∈ R, two functions f1, f2 : E →
R.

f1(e) is the time to travel over the edge e and f2(e) is the weight of the edge e.
Output: The shortest time to travel from A to B over a path whose weight is less than M .
1: function main

2: Initialization
3: L =ShortestTravelTimeAndTerminalConditionCheck
4: while L = 0 do
5: TriggerVertices
6: AnalyzeTriggeredVertices
7: GetInputFromPhantoms
8: TriggerEdges
9: TreatTriggeredEdges
10: L =ShortestTravelTimeAndTerminalConditionCheck
11: FinalTreatmentOfPhantoms
12: FinalTreatmentOfVertices
13: FinalTreatmentOfActiveEdges
14: return L

5 Memory Management and Initialization

5.1 Labels for Vertices and Edges

In this section we will describe the memory management of variables necessary for
the implementation of the algorithm. Before providing the precise set of variables let
us describe the information that has to be carried throughout the execution process.
As we have seen before, the vertices will have labels assigned to them. Initially we
label each vertex of G with 0 except for vertices in A which are labeled by M .

To each vertex and edge in G we assign a State. The vertices have states in the
set {active, inactive}. Initially all vertices in A are active, while the other vertices are
inactive. The states of the edges belong to the set {active, passive, used, just used}.
Initially the edges adjacent to the vertices in A are set to active while all other are
passive.
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To each edge we associate a pointer to one of its endpoints and call it Source. This
variable is used at times when the water is flowing through the edge and it records the
source of the current water flow. Initially, to each edge that originates from a vertex
in A we set the source to be the pointer to the vertex in A. All other edges have their
source initially set to 0.

There is additional variable Time that represents the time and is initially set to 0.

5.2 Termination

The algorithm terminates if one of the following two conditions is satisfied:

1◦ A vertex from B becomes active. The variable Time contains the time it takes to
reach this vertex along the shortest path π̂ , i.e.

Time = F1
(
π̂

)
.

The label of the last vertex B̂ on the path allows us to determine the value F2
(
π̂

)
.

Namely,
F2

(
π̂

) = M − Label(B̂).

We will not go into details on how to recover the exact shortest path. Instead
we will just outline how this can be done. We need to identify the used edge f
(or one of the used edges, if there are more than one) that is adjacent to B̂. This
edge can help us in finding the second to last point of the path π̂ . Let us denote
by F the other endpoint of f . It could happen that F is a phantom vertex (i.e.
a copy of another vertex), and we first check whether F ∈ PhantomVertices.
If this is not the case, then F is the second to last element of the path π̂ . If
F ∈ PhantomVertices then the vertex F is a copy of some other vertex in the
graph and the phantom vertex F has the pointer to the original based on which
it is created. This original vertex is the second to last point on the path π̂ .

2◦ There is no active edge in the graph. In this case there is no path that satisfies
the constraint F2 ≤ M .

5.3 Sequences Accessible to All Processing Elements

It is convenient to store the vertices and edges in sequences accessible to all processing
elements. We will assume here that the degree of each vertex is bounded above by
d.
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Algorithm 2 Function that checks whether the algorithm has finished and returns
the time for travel over the shortest path
1: function ShortestPathLengthAndTerminalConditionCheck

2: // Returns 0 if the path is not found yet.
3: // Returns −1 if there is no path with weight smaller than M .
4: // Returns the weight of the shortest path if it is found.
5: // A non-zero return value is the indication that the algorithm is over.
6: #Performed in parallel
7: if ∃B0 ∈ B such that B0 = active then
8: result ← Time
9: else
10: if there are no active vertices then
11: result ← −1
12: else
13: result ← 0
14: #barrier
15: return result

5.3.1 Vertices

Each vertex takes 5 integers in the sequence of vertices. The first four are name, label,
status, and the location of the first edge in the sequence of edges. The fifth element
is be used to store a temporary replacement label. Initially, and between algorithm
steps, this label is set to −1.

When a first drop of water reaches an inactive vertex V , we say that the vertex
is triggered, and that state exists only temporarily during an algorithm cycle. In the
end of the algorithm cycle some triggered vertices become active. However it could
happen that a triggered vertex does not get a water flow of higher quality than the
one already present at the vertex. The particular triggered vertex with this property
does not get activated.

5.3.2 Edges

Each edge e takes 8 integers in the sequence of edges. Although the graph is undi-
rected, each edge is stored twice in the memory. The 8 integers are the start point,
the end point, remaining time for water to travel over the edge (if the edge is active),
the weight of the travel f2(e), the initial passage time f1(e), the label of the vertex
that is the source of the current flow through the edge (if there is a flow), status, and
the location of the same edge in the opposite direction.

5.3.3 Active Vertices

The sequence contains the locations of the vertices that are active. This sequence
removes the need of going over all vertices in every algorithm step. The locations are
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sorted in decreasing order. In the end of the sequence we will add triggered vertices
that will be joined to the active vertices in the end of the cycle.

5.3.4 Active Edges

The role of the sequence is similar to the one of active vertices. The sequence main-
tains the location of the active edges. Each edge is represented twice in this sequence.
The second appearance is the one in which the endpoints are reversed. The loca-
tions are sorted in decreasing order. During the algorithm cycle we will append the
sequence with triggered edges. In the end of each cycle the triggered edges will be
merged to the main sequence of active edges.

5.3.5 Sequence of Phantom Edges

The phantom edges appear when an active vertex is triggered with a new drop of
water. Since the vertex is activewe cannot relabel the vertex. Instead each of the edges
going from this active triggered vertex need to be doubled with the new source of
water flowing through these new edges that are called phantoms. They will disappear
once the water finishes flowing through them.

5.3.6 Sequence of Elements in B

Elements in B have to be easily accessible for quick check whether the algorithm
has finished. For this reason the sequence should be in global memory.

Listing 3 summarizes the initializing procedures.

6 Graph Update

The algorithm updates the graph in a loop until one vertex from B becomes active.
Each cycle consists of the following nine steps.

6.1 Step 1: Initial Triggering of Vertices

In this step we go over all active edges and decrease their time parameters by m,
where m is the smallest remaining time of all active edges. If for any edge the time
parameter becomes 0, the edge becomes just used and its destination triggered.

To avoid the danger of two processing elements writing in the same location of
the sequence of active vertices, we have to make sure that each processing element
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Algorithm 3 Initialization procedure
1: procedure Initialization
2: for e ∈ E do
3: State(e) ← passive
4: Source(e) ← 0
5: TimeRemaining(e) ← 0
6: for v ∈ V \ A do
7: State(v) ← inactive
8: Label(v) ← 0
9: for v ∈ A do
10: State(v) ← active
11: Label(v) ← M
12: for e ∈ Edges(v) do
13: State(e) ← active
14: Source(e) ← v

15: TimeRemaining(e) ← f1(e)

16: TriggeredVertices ← ∅
17: PhantomVertices ← ∅
18: PhantomEdges ← ∅
19: Time ← 0

that runs concurrently has pre-specified location to write. This is accomplished by
first specifying the number of threads in the separate variable nThreads. Whenever
kernels are executed in parallel we are using only nThreads processing elements.
Each processing element has its id number which is used to determine the memory
location to which it is allowed to write. The sequence of triggered vertices has to be
cleaned after each parallel execution and at that point we take an additional step to
ensure we don’t list any of the vertices as triggered twice.

Algorithm 4 Procedure TriggerVertices
1: procedure TriggerVertices
2: TriggeredEdges ← ∅
3: #Performed in parallel
4: m ← min {TimeRemaining(e) : e ∈ ActiveEdges}
5: #barrier
6: Time ← Time + m
7: #Performed in parallel
8: for e ∈ ActiveEdges do
9: TimeRemaining(e) ← TimeRemaining(e) − m
10: if TimeRemaining(e) = 0 then
11: State(e) = just used
12: Se ← Source(e)
13: De ← TheTwoEndpoints(e) \ {Se}
14: TriggeredVertices ← TriggeredVertices ∪ {De}
15: #barrier
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6.2 Step 2: Analyzing Triggered Vertices

For each triggered vertex Q we look at all of its edges that are just used. We identify
the largest possible label that can result from one of just used edges that starts from
Q. That label will be stored in the sequence of vertices at the position reserved for
temporary replacement label. The vertex is labeled as just triggered. If the vertex
Q is not active, this label will replace the current label of the vertex in one of the
later steps. If the vertex Q is active, then this temporary label will be used later to
construct an appropriate phantom edge.

We are sure that different processing elements are not accessing the same vertex
at the same time, because before this step we achieved the state in which there are
no repetitions in the sequence of triggered vertices.

Algorithm 5 Analysis of triggered vertices
1: procedure AnalyzeTriggeredVertices
2: TempLabel ← ∅
3: #Performed in parallel
4: for Q ∈ TriggeredVertices do
5: TempLabel(Q) ← max {Label(P) − f2(P, Q) : State(P, Q) = just used}
6: #barrier

6.3 Step 3: Gathering Input from Phantoms

The need to have this step separated from the previous ones is the current architecture
of graphic cards that creates difficulties with dynamic memory locations. It is more
efficient to keep phantom edges separate from the regular edges. The task is to look
for all phantom edges and decrease their time parameters. If a phantom edge gets
its time parameter equal to 0, its destination is studied to see whether it should be
added to the sequence of triggered vertices.We calculate the new label that the vertex
would receive through this phantom. We check whether this new label is higher than
the currently known label and the temporary label from possibly previous triggering
of the vertex. The phantoms will not result in the concurrent writing to memory
locations because each possible destination of a phantom could have only one edge
that has time component equal to 0.

6.4 Step 4: Triggering Edges

In this step we will analyze the triggered vertices and see whether each of their
neighboring edges needs to change the state. Triggered vertices are analyzed using
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Algorithm 6 Input from phantoms
1: procedure GetInputFromPhantoms
2: #Performed in parallel
3: Decrease time parameters of fantom edges (as in Listing 4)
4: Trigger the destinations of phantom edges (as in Listing 4)
5: #barrier
6: #Performed in parallel
7: Analyze newly triggered vertices, in a way similar to Listing 5
8: #barrier

separate processing elements. A processing element analyzes the vertex Q in the
following way.

Each edge j of Q will be considered triggered if it can cause the other endpoint to
get better label in future through Q. The edge j is placed in the end of the sequence
of active edges.

Algorithm 7 Procedure that triggers the edges
1: procedure TriggerEdges
2: #Performed in parallel
3: for Q ∈ TriggeredVertices do
4: for P ∈ Neighbors(Q) do
5: if TempLabel(Q) − f2(P, Q) > Label(P) then
6: State(P, Q) ← active
7: TriggeredEdges ← TriggeredEdges ∪ {(P, Q)}
8: #barrier

6.5 Step 5: Treatment of Triggered Edges

Consider a triggered edge j . We first identify its two endpoints. For the purposes of
this step we will identify the endpoint with the larger label, call it the source, and
denote by S. The other will be called the destination and denoted by D. In the end
of the cycle, this vertex S will become the source of the flow through j .

Notice that at least one of the endpoints is triggered. If only one endpoint is
triggered, then we are sure that this triggered endpoint is the one that we designated
as the source S.

We then look whether the source S was active or inactive before it was triggered.
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6.5.1 Case in Which the Source S Was Inactive Before Triggering

There are several cases based on the prior status of j . If j was passive, then it should
become active and no further analysis is necessary. If it was used or just used, then
it should become active and the time component should be restored to the original
one. Assume now that the edge j was active. Based on the knowledge that S was
inactive vertex we can conclude that the source of j was D. However we know that
the source of j should be S and hence the time component of j should be restored
to the backup value.

Consequently, in the case that S was inactive, regardless of what the status of j
was, we are sure its new status must be active and its time component can be restored
to the original value. This restoration is not necessary in the case that j was passive,
although there is no harm in doing it.

If the edge j was not active before, then the edge j should be added to the list of
active edges. If the edge j was active before, then it should be removed from the list
of triggered edges because all triggered edges will be merged into active edges. The
edge j already appears in the list of active edges and need not be added again.

6.5.2 Case in Which the Source S Was Active Before Triggering

In this case we create phantom edges. Each such triggered edge generates four entries
in the phantom sequence. The first one is the source, the second is the destination,
the third is the label of the source (or the label stored in the temporary label slot, if
higher), and the fourth is the original passage time through the edge j .

Algorithm 8 Treatment of triggered edges
1: procedure TreatTriggeredEdges
2: #Performed in parallel
3: for j ∈ TriggeredEdges do
4: S ← The endpoint of j with larger label
5: D ← The endpoint of j with smaller label
6: OldStateOfS ← State(S)

7: OldStateOfJ ← State( j)
8: if OldStateOfS = inactive then
9: State( j) ← active
10: Source( j) ← S
11: TimeRemaining( j) ← f1( j)

12: if OldStateOfS = active then
13: Create a phantom vertex S′ and connect it to D
14: TimeRemaining(S′, D) ← f1(S, D)

15: #barrier
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6.6 Step 6: Checking Terminal Conditions

In this step we take a look whether a vertex from B became active or if there are no
active edges. These would be the indications of the completion of the algorithm. The
function that checks the terminal conditions is presented earlier in Listing 2.

6.7 Step 7: Final Treatment of Phantoms

In this step we go once again over the sequence of phantoms and remove each one
that has its time parameter equal to 0.

Algorithm 9 Final treatment of phantoms
1: procedure FinalTreatmentOfPhantoms
2: #Performed in parallel
3: for j ∈ PhantomEdges do
4: if TimeRemaining( j) = 0 then
5: Remove j and its source from the sequence of phantoms
6: #barrier

6.8 Step 8: Final Treatment of Vertices

In this step of the program the sequence of active vertices is updated so it contains
new active vertices and looses the vertices that may cease to be active.

6.8.1 Preparation of Triggered Vertices

For each triggered vertex Q we first check whether it was inactive before. If it was
inactive then its label becomes equal to the label stored at the temporary storing
location in the sequence of vertices. If it was active, its label remains unchanged.
The phantoms were created and their labels are keeping track of the improved water
quality that has reached the vertex Q.

We may now clean the temporary storing location in the sequence of vertices so
it now contains the symbol for emptiness (some pre-define negative number).

6.8.2 Merging Triggered with Active Vertices

Triggered vertices are now merged to the sequence of active vertices.
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6.8.3 Check Active Vertices for Potential Loss of Activity

For each active vertex Q look at all edges from Q. If there is no active edge whose
source is Q, then Q should not be active any longer.

6.8.4 Condensing the Sequence of Active Vertices

After previous few steps some vertices may stop being active in which case they
should be removed from the sequence.

Algorithm 10 Final treatment of vertices
1: procedure FinalTreatmentOfVertices
2: #Performed in parallel
3: for Q ∈ TriggeredVertices do
4: if State(Q) = inactive then
5: State(Q) ← active
6: Label(Q) ← TempLabel(Q)

7: #barrier
8: TempLabel ← ∅
9: #Performed in parallel
10: Merge triggered vertices to active vertices
11: #barrier
12: #Performed in parallel
13: for Q ∈ TriggeredVertices do
14: if there are no active edges starting from Q then
15: State(Q) ← inactive
16: #barrier

6.9 Step 9: Final Treatment of Active Edges

We first need to merge the triggered edges with active edges. Then all just used edges
have to become used and their source has to be re-set so it is not equal to any of the
endpoints. Those used edges should be removed from the sequence of active edges.

The remaining final step is to condense the obtained sequence so there are no used
edges in the sequence of active edges.
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Algorithm 11 Final treatment of active edges
1: procedure FinalTreatmentOfActiveEdges
2: #Performed in parallel
3: Merge triggered edges to active edges
4: #barrier
5: #Performed in parallel
6: Transform all just used into used and erase their Source components
7: #barrier

7 Large Sets of Active Vertices

In this sectionwewill prove that it is possible for the set of active vertices in dimension
2 to contain more than O(n) elements. We will construct examples in the case when
the time to travel over each vertex is from the set {1, 2} and when M = +∞.

We will consider the subgraph Vn = [−n, n] × [0, n] of Z2. At time 0 the water
is located in all vertices of the x axis. For sufficiently large n we will provide an
example of configuration ω of passage times for the edges of the graph Vn such that
the number of active vertices at time n is of order n log n. This would establish a
lower bound on the probability that the number of active vertices at time t is large.

Let us assume that each edge of the graph has the time component assigned from
the set {1, 2} independently from each other. Assume that the probability that 1 is
assigned to each edge is equal to p, where 0 < p < 1.

Theorem 1 There exists t0 ≥ 0, μ > 0, and α > 0 such that for each t > t0 there
exists n such that the number At of active vertices at time t in the graph Vn satisfies

P (At ≥ αt log t) ≥ e−μt2 .

To prepare for the proof of the theorem we first study the evolution of the set of
active edges in a special case of a graph. Then we will construct a more complicated
graph where the set of active edges will form a fractal of length t log t .

Lemma 1 If all edges on the y-axis have time parameter equal to 1 and all other
edges have their time parameter equal to 2, then at time T the set of active vertices
(Fig. 5) is given by

AT = {(0, T )} ∪ {(0, T − 1)} ∪
� T+1

4 �⋃

k=1

{(−k, T − 2k) , (k, T − 2k)}

∪
⋃

z∈Z\{−� T+1
4 �,...,� T+1

4 �}

{(
z,

⌊
T

2

⌋)}
.
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Fig. 5 The active edges at
time T

Proof After T − 2k units of time the water can travel over the path γk that consists of
vertices (0, 0), (0, 1), . . . , (0, T − 2k). In additional 2k units of time thewater travels
over the path γ ′

k that consists of vertices (0, T − 2k), (1, T − 2k), . . . , (k, T − 2k).
Consider any other path that goes from x axis to the point (k, T − 2k) for some

fixed k ≤ ⌊
T+1
4

⌋
. If the path takes some steps over edges that belong to y axis then it

would have to go over at least k horizontal edges to reach y axis, which would take
2k units of time. The path would have to take at least T − 2k vertical edges, which
would take at least T − 2k units of time. Thus the travel would be longer than or
equal to T .

However, if the path does not take steps over the edges along y axis then it would
have to take at least T − 2k steps over edges that have passage time equal to 2. This
would take 2(T − 2k) = 2T − 4k units of time. If T + 1 is not divisible by 4, then
k < T+1

4 and

2T − 4k > 2T − T − 1 = T − 1,

which would mean that the travel time is at least T . If T + 1 is divisible by 4 and
k = ⌊

T+1
4

⌋
then the vertical path would reach (k, T − 2k) at time T − 1. However,

the vertex (k, T − 2k) would still be active because the water would not reach (k +
1, T − 2k) which is a neighbor of (k, T − 2k).
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Fig. 6 The set of active
edges in configuration ω2

Let us denote by Nt the number of active vertices at time t whose x coordinate is
between −t and t ,

Nt = {
(x, y) ∈ {−t,−t + 1, . . . , t − 1, t} × Z

+
0 : (x, y) is active at time t

}
.

Theorem 2 There exist real numbers α and t ≥ 0 and an environment ω for which

Nt (ω) ≥ αt log t.

Proof Assume that t = 2k for some k ∈ N. Let us define the following points with
their coordinates T = (0, t), L = (− t

2 , 0
)
, and O = (

0, t
2

)
(Fig. 6). We will recur-

sively construct the sequence of pairs (ω1,I1), (ω2,I2), . . . , (ωk,Ik) where ω j

is an assignment of passage times to the edges and I j is a subgraph of Z2. This
subgraph will be modified recursively. All edges in I j have passage times equal to
2 in the assignment ω j . Having defined the pair

(
ω j ,I j

)
we will improve passage

times over some edges in the setI j by changing them from 2 to 1. This way we will
obtain a new environment ω j+1 and we will define a new set I j+1 to be a subset of
I j . The new environment ω j+1 will satisfy

Nt (ω j+1) ≥ Nt (ω j ) + βt,

for some β > 0.
Let us first construct the pair (ω1,I1). We will only construct the configuration

to the left of the y axis and then reflect it across the y axis to obtain the remaining
configuration.

All edges on the y axis have the passage times equal to 1, and all edges on the
segment LO have the passage times equal to 1. All other edges have the passage
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times equal to 2. Define I1 = �LOT . Then the polygonal line LYT contains the
active vertices whose x coordinate is between −t and 0.

The environment ω2 is constructed in the following way. Let us denote by L0

and T0 the midpoints of LO and T O . Let X be the midpoint of LT . We change
all vertices on L0X and T0X to have the passage time equal to 1. We define I2 =
�LL0X ∪ �XT0T .

Let L1 and L2 be the midpoints of LL0 and L0O and let L ′ and L ′′ be the
intersections of XL1 and XL2 with LY . The points T ′ and T ′′ are defined in an
analogous way: first T1 and T2 are defined to be the midpoints of T T0 and OT0 and
T ′ and T ′′ are the intersections of XT1 and XT2 with TY .

The polygonal line LL ′XL ′′YT ′′XT ′T is the set of active edges that are inside the
triangle LOT . The following lemma will allow us to calculate Nt (ω2) − Nt (ω1).

Lemma 2 LetΛ and λ denote the lengths of the polygonal lines LL ′XL ′′YT ′′XT ′T
and LYT respectively. If t is the length of OT then

Λ = λ + 4

3
√
5
t.

Proof It suffices to prove that LL ′ + L ′X + XL ′′ + L ′′Y = LY + 2
3
√
5
t . From the

similarities �LL0X ∼ �LOT and �LL0L ′ ∼ LOX we have that L0L ′‖OX .
Therefore L ′ is the midpoint of LY and LY = LL ′ + L ′Y = LL ′ + L ′X . It remains
to prove that XL ′′ + L ′′Y = 2

3
√
5
t . From

∠L0XL ′′ = ∠L ′XL0 = ∠L0LL
′′

we conclude that the quadrilateral LL0L ′′X is inscribed in a circle. The segment LX
is a diameter of the circle hence∠LL ′′X = ∠LL0X = 90◦. We also have∠L ′′XY =
∠L0XY − ∠L0XL ′′ = 45◦ − ∠OLT0 = 45◦ − arctan 1

2 .
The point Y is the centroid of �LOT hence XY = 1

3 XO = 1
3
√
2
t . Therefore

XL ′′ + L ′′Y = XY cos

(
45◦ − arctan

1

2

)
+ XY sin

(
45◦ − arctan

1

2

)

= cos
(
45◦ − arctan 1

2

) + sin
(
45◦ − arctan 1

2

)

3
√
2

t

= cos
(
45◦ − arctan 1

2

)
cos 45◦ + sin

(
45◦ − arctan 1

2

)
sin 45◦

3
t

= cos
(
45◦ − arctan 1

2 − 45◦)

3
t = cos

(
arctan 1

2

)

3
t

= 2

3
√
5
t.
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Fig. 7 The set of active
edges in configuration ω3

The number of edges on each of the segments of the polygonal lines we obtained is
equal to u√

5
, where u is the length of the segment. Using this fact with the previous

lemma applied to both �LOT and its reflection along OT gives us

Nt (ω2) − Nt (ω1) = 4

3
√
5
t · 1√

5
= 4

15
t.

We now continue in the same way and in each of the triangles LL0X and XT0T
we perform the same operation to obtain ω3 and I3. Since the side length of LL0X
is t

2 , the increase in the number of elements in the new set of active vertices is 2
15 · t

2 .
However, this number has to be now multiplied by 4 because there are 4 triangles
to which the lemma is applied: �LL0X , �XT0T , and the reflections of these two
triangles with respect to OT . Therefore the increase in the number of active vertices
is Nt (ω3) − Nt (ω2) = 4 · 2

15 · t
2 = 4

15 t (Fig. 7).
This operation can be repeated k times and we finally get that

Nt (ωk) = Nt (ω1) + (k − 1) · 4

15
t ≥ k · 4

15
t.

Thus the theorem holds if we set α = 4
15 log 2 .

Proof (Proof of Theorem 1)Recall that p is the probability that the time 1 is assigned
to each edge. Let ρ = min {p, 1 − p}. The configuration provided in the proof of
Theorem 2 has its probability greater than or equal to ρ t2 . Therefore
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P (At ≥ αt log t) ≥ ρ t2 = et
2 ln ρ.

Therefore we may take μ = − ln ρ.

8 Performance Analysis

The algorithmwas implemented in C++ and OpenCL. The hardware used has a quad
core Intel i5 processor with clock speed of 3.5GHz and AMD Radeon R9 M290X
graphic card with 2 gigabytes of memory. The graphic card has 2816 processing
elements.

The table provides a comparison of the performance of the algorithm on 4 samples
of three dimensional cubes with edges of lengths 50, 75, 100, and 125. The initial
configuration for each of the graphs assumes that there is water on the boundary of
the cube, while the set B is defined to be the center of the cube. The same program
was executed on graphic card and on CPU.

Graph GPU time (s) CPU time (s)
50 × 50 × 50

3 10
75 × 75 × 75

8 61
100 × 100 × 100

21 275
125 × 125 × 125 117 1540

The graph that corresponds to the cube 100 × 100 × 100 has 1000000 vertices
and 2970000 edges, while the graph corresponding to the cube 125 × 125 × 125 has
1953125 vertices and 5812500 edges.

9 Conclusion

The algorithm described in this chapter solves the constrained shortest path problem
using parallel computing. It is suitable to implement on graphic cards and CPUs that
have large number of processing elements. The algorithm is implemented in C++
and OpenCL and the parallelization improves the speed tenfold.

The main idea is to follow the percolation of water through the graph and assign
different qualities to drops that travel over different edges. Each step of the algo-
rithm corresponds to a unit of time. It suffices to analyze only those vertices and
edges through which the water flows. We call them active vertices and active edges.
Therefore, the performance of the algorithm is tied to the sizes of these active sets.
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Theorem 1 proves that it is possible to have at time t an active set of size O(t log t).
The proof of the theorem relied on constructing one such set. It is an open problem
to find the average size of the active set at time t .

Problem 1 If the weights and travel times of the edges are chosen independently at
random, what is the average size of the active set at time t?

At some stages of the execution, the program needs additional memory to store
phantom edges in the graph. It would be interesting to know how many phantom
edges are allocated during a typical execution. This can be formally phrased as an
open problem.

Problem 2 If the weights and travel times of the edges are chosen independently at
random, what is the average number of phantoms that need to be created during the
execution of the algorithm?

Acknowledgements The author was supported by PSC-CUNY grants #68387 − 0046, #69723 −
0047 and Eugene M. Lang Foundation.

References

1. G. Amir, I. Corwin, J. Quastel, Probability distribution of the free energy of the continuum
directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math. 64, 466–537 (2011)

2. S. Armstrong, H. Tran, Y. Yu, Stochastic homogenization of a nonconvex Hamilton–Jacobi
equation. Calc. Var. Partial Differential Equations, 54, 1507–1524 (2015). (Submitted)
arXiv:1311.2029

3. M. Benaim, R. Rossignol, Exponential concentration for first passage percolation through
modified poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 44(3), 544–573 (2008)

4. I. Benjamini, G. Kalai, O. Schramm, First passage percolation has sublinear distance variance.
Ann. Probab. 31(4), 1970–1978 (2003)

5. N. Boland, J. Dethridge, I. Dumitrescu, Accelerated label setting algorithms for the elementary
resource constrained shortest path problem. Oper. Res. Lett. 34, 58–68 (2006)

6. S. Chatterjee, P.S. Dey, Central limit theorem for first-passage percolation time across thin
cylinders. Probab. Theory Relat Fields 156(3), 613–663 (2013)

7. J.T. Cox, R. Durrett, Some limit theorems for percolation processes with necessary and suffi-
cient conditions. Ann. Probab. 9(4), 583–603 (1981)

8. M. Damron, M. Hochman, Examples of nonpolygonal limit shapes in i.i.d. first-passage perco-
lation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074–1085
(2013)

9. M. Desrochers, J. Desrosiers, M. Solomon, A new optimization algorithm for the vehicle
routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

10. J. Hammersley, D. Welsh, First-passage percolation, subadditive processes, stochastic net-
works, and generalized renewal theory. in Bernoulli-Bayes-Laplace Anniversary Volume1965

11. S. Irnich, G. Desaulniers, Shortest path problems with resource constraints. in Column Gener-
ation, ed. by G. Desaulniers, J. Desrosiers, M. M. Solomon. GERAD 25th Anniversary Series
(Springer, 2005), pp. 33–65

12. E. Köhler, R.H. Möhring, H. Schilling, Acceleration of shortest path and constrained shortest
path computation. Lect. Notes Comput. Sci. 3503, 126–138 (2005)

13. E.Kosygina, F.Rezakhanlou, S.R.S.Varadhan, Stochastic homogenizationofHamilton-Jacobi-
Bellman equations. Comm. Pure Appl. Math. 59(10), 1489–1521 (2006)

http://arxiv.org/abs/1311.2029


26 I. Matic

14. E. Kosygina, F. Yilmaz, O. Zeitouni, Nonconvex homogenization of a class of one-dimensional
stochastic viscous Hamilton-Jacobi equations, in preparation (2017)

15. J. Krug H. Spohn, Kinetic roughening of growing surfaces. Solids Far Equilib. 412–525 (1991)
16. X.-Y. Li, P.-J. Wan, Y. Wang, O. Frieder, Constrained shortest paths in wireless networks, in

IEEE MilCom (2001), pp. 884–893
17. L. Lozano, A.L. Medaglia, On an exact method for the constrained shortest path problem.

Comput. Oper. Res. 40(1), 378–384 (2013)
18. I. Matic, Parallel algorithm for constrained shortest path problem in C++/OpenCL. https://

github.com/maticivan/parallel_constrained_shortest_path
19. I. Matic, J. Nolen, A sublinear variance bound for solutions of a random Hamilton-Jacobi

equation. J. Stat. Phys. 149, 342–361 (2012)
20. K. Mehlhorn, M. Ziegelmann, Resource constrained shortest paths. Lect. Notes Comput. Sci.

1879, 326–337 (2000)
21. S. Misra, N.E. Majd, H. Huang, Approximation algorithms for constrained relay node place-

ment in energy harvesting wireless sensor networks. IEEE Trans. Comput. 63(12), 2933–2947
(2014)

22. R. Muhandiramge, N. Boland, Simultaneous solution of lagrangean dual problems interleaved
with preprocessing for the weight constrained shortest path problem. Networks 53, 358–381
(2009)

23. C.M. Newman, M.S.T. Piza, Divergence of shape fluctuations in two dimensions. Ann. Probab.
23(3), 977–1005 (1995)

24. F. Rezakhanlou, Central limit theorem for stochastic Hamilton-Jacobi equations. Commun.
Math. Phys. 211, 413–438 (2000)

25. T. Sasamoto, H. Spohn, One-dimensional kardar-parisi-zhang equation: An exact solution and
its universality. Phys. Rev. Lett. 104 (2010)

26. P.E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applica-
tions. Asymptot. Anal. 20(1), 1–11 (1999)

https://github.com/maticivan/parallel_constrained_shortest_path
https://github.com/maticivan/parallel_constrained_shortest_path


Gathering a Swarm of Robots
Through Shortest Paths

Serafino Cicerone, Gabriele Di Stefano and Alfredo Navarra

Abstract The gathering problem has been largely studied in the last years with
respect to different environments. The requirement is to move a team of robots ini-
tially placed at different locations toward a common point. Robots move based on
the so called Look-Compute-Move model. Each time a robot wakes up, it perceives
the current configuration in terms of robots’ positions (Look), it decides whether and
where to move (Compute), and makes the computed move (Move) in the case that
the decision was affirmative. All the phases are performed asynchronously for each
robot. Robots are oblivious, anonymous, silent, and execute the same distributed
and deterministic algorithm. So far, the goal has been mainly to detect the mini-
mal assumptions that allow to accomplish the gathering task, without taking care
of any cost measure of the provided solutions. We provide an overview of recent
results that first extend the classic notion of optimization problem to the context
of robot-based computing systems, and then show that the gathering problem can
be optimally solved. As cost measure, the overall traveled distance performed by
all robots is considered. This implies that the provided optimal algorithms must be
able to solve the gathering by moving robots through shortest paths. The presented
optimal algorithms refer to robots moving on either the plane or graphs. In the latter
case, different topologies are considered, like trees, rings, and infinite grids.
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1 Introduction

The gathering task is a basic primitive in robot-based computing systems. It has been
extensively studied in the literature under different assumptions. The problem asks to
design a distributed algorithm that allows a swarm of robots to meet at some common
place (not determined in advance). Depending on the environment where they move
aswell as on the capabilities of the robots, very different and challenging aspectsmust
be faced (see, e.g. [5, 11–14, 17, 18, 23, 25], and references therein). Concerning the
environment, in this work we consider robots placed on either the Euclidean plane
or the vertices of graphs. Concerning the robots’ capability, we follow the research
trend of admitting the minimal setting required to accomplish the gathering task (as
it is considered one of the main issues in robot-based computing systems). Then,
we consider systems in which initially each robot occupies a different location and
robots are endowed with very few capabilities. They are assumed to be:

• Dimensionless: modeled as geometric points in the plane or considered as placed
on vertices of a graph;

• Anonymous: no unique identifiers for robots, no labels for vertices and edges;
• Autonomous: no centralized control;
• Oblivious: no memory of past events;
• Homogeneous: they all execute the same deterministic algorithm;
• Asynchronous: there is no global clock that synchronizes their actions;
• Silent: no direct way of communicating, no possibilities of leaving any mark at
visited vertices;

• Unoriented: no common coordinate system, no common compass, no common
left-right orientation (i.e., no chirality/handedness).

Robots are equipped with sensors and motion actuators, and operate in Look-
Compute-Move cycles (see, e.g. [18]). In the Look phase a robot takes a snapshot of
the current global configuration (when a robot moves on the plane, it performs this
operation in terms of the relative robots’ positions, according to its own coordinate
system). Successively, in the Compute phase it decides whether to move toward a
specific direction or not, and in the affirmative case it moves (Move).

A Look-Compute-Move cycle is called a computational cycle of a robot.
Computational cycles are performed asynchronously, i.e., the time between Look,

Compute, and Move phases is finite but unbounded, and it is decided by an adver-
sary for each robot. Moreover, during the Look phase, a robot does not perceive
whether other robots are moving or not. Hence, robots may move based on outdated
perceptions.1

The concept of the adversary is rather common in distributed computing where
the evolving of the system might be subject to different unconstrained events.

1In fact, asynchrony implies that, based on the configuration perceived during the Look phase at
some time t , a robot r computes a destination at some time t ′ > t , starts to move at an even later time
t ′′ > t ′, eventually stopping at time t ′′′ ≥ t ′′; thus it might be possible that at time t ′′ some robots
are in different positions from those previously perceived by r at time t , because in the meantime
they performed their Move operations (possibly several times).
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The environment in which robots move may affect the last part of the computa-
tional cycle: in the plane a robot can move toward any point and the distance traveled
within a move is neither infinite nor infinitesimally small2; in graphs, a robot can
move only to one of its adjacent vertices and the move is instantaneous (notice this
implies that during the Look phase robots are always detected on vertices and not on
edges).

During the Look phase, robots are assumed to perceivemultiplicities [11, 18, 20].
Themultiplicity detection capability has been exploited in various forms. In any case,
a robot perceives whether a location is occupied by robots or not, but in the global-
strong version, a robot is able to perceive the exact number of robots that occupy the
same location. In the global-weak version, a robot perceives only whether a location
is occupied by one robot or if a multiplicity occurs, i.e., the location is occupied by
an undefined number of robots greater than one. In the local-strong version, a robot
can perceive only whether a location is occupied or not, but it is able to perceive
the exact number of robots occupying the location where it resides. Finally, in the
local-weak version, a robot can perceive the multiplicity only on the location where
it resides but not the exact number of robots composing it.

The scheduler (decided by the adversary) determining the computational cycles
timing is assumed to be fair, that is, each robot performs its cycle within finite time
and infinitely often. In the literature, this kind of scheduler is called Asynchronous
(Async). Different options for the scheduler are:

• Fully-synchronous (FSync): all robots are awake and run their computational
cycle concurrently. Each phase of the cycle has exactly the same duration for
all robots. This is equivalent to a fully synchronized system in which robots are
activated simultaneously and all operations happen instantaneously.

• Semi-synchronous (SSync): It coincides with the FSync model with the only
difference that not all robots are necessarily activated during a cycle, but those
who are activated are fully synchronized.

Contribution. The classical gathering problem, where robots are free to gather any-
where in the Euclidean plane, has been solved in [8] for any number of robots n > 2,
even assuming the few capabilities recalled above. In the same paper, authors posed
the following interesting problem: “In all existing investigations on the Gathering
Problem, the focus has been on computability (i.e., feasibility), while the complex-
ity of the solutions has never been an issue; indeed, there is a general absence of
cost measures. An interesting fundamental research question is the definition of cost
measures and their use in the analysis of the complexity of the solution protocols.”

In this chapter, we survey recent results (cf. [7, 15, 16]) that try to answer to such a
research question not only on the plane but also on discrete structures like graphs. In

2More precisely, the adversary has also the power to stop a moving robot before it reaches its
destination, but there exists an (unknown arbitrarily small) constant δ > 0 such that if the destination
point is closer than δ, the robot will reach it, otherwise the robot will be closer to it by at least δ.
Note that, without this assumption, an adversary would make it impossible for any robot to ever
reach its destination.
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particular, when the environment is the plane, the problem is modified by assuming
that robots must meet at some predetermined points, herein called meeting-points.3

During the Look phase, robots detect themeeting-points in the snapshot of the system
as sort of landmarks. Contrarily to the classic gathering problem, the introduction of
meeting-points implies that some configurations turn out to be ungatherable.

As a contribution, we show that it is possible to use a generalization of the classic
definitions of optimization problem and approximation algorithm to the context of
robot-based computing systems. This generalization has been introduced in [7] and
allow us to formally define the concept of optimal algorithm for solving both the
gathering problem on meeting-points and the gathering problem on (specific topolo-
gies of) graphs. In both the cases, the cost measure is the minimum total traveled
distance of all robots. This measure implies that any optimal gathering algorithm
must move robots through shortest paths until the final gathering point.

The defined cost measure is strictly related to the concept of Weber point [3, 9,
24]. The Weber point is in fact defined as the point minimizing the sum of distances
between itself and a given set of points in the plane (the robots in our scenario). A
well-known characterization says that if the provided points are not collinear, the
Weber point is unique, but its computation is usually unfeasible, even for just five
points [9].

For the gathering problem onmeeting-points, the concept ofWeber point has to be
restricted to the set of meeting-points, and this leads to define the concept of discrete
Weber point. Of course, it is always possible to compute the discrete Weber point
where to finalize the gathering since itmust be chosen among the finite set ofmeeting-
points. Differently from the classical notion ofWeber point, the discreteWeber points
are not necessarily unique evenwhen the robots are not collinear, and hence in general
constitute a subset of the meeting-points. In order to calculate and manipulate such
a subset it is possible to exploit results about so-called k-ellipses [26–28]. For the
gathering problem on graphs, the same observations hold: it is possible that more
than one discrete Weber point exists and all the discrete Weber points can be easily
computed. Notice that both on meeting-points and on graphs, discrete Weber points
can be computed as long as a robot is empowered with the global-strong multiplicity
detection.

This works shows that, for each optimization problem addressed and for each
environment considered, the following holds: (1) some input configurations cannot
be optimally gathered on discrete Weber points even though they are potentially
gatherable, and (2) for all configurations admitting optimal gathering there exists a
distributed optimal algorithm that gathers on a discrete Weber point by letting robots
move along the shortest paths.

Outline. This chapter is organized as follows. Section2 formally defines the two
addressed versions of the gathering problem, namely that on meeting-point on the
plane and that on graphs. Section3 formalizes a general notion of optimization prob-

3Meeting-points for gathering purposes are interesting not only from a theoretical point of view,
but also for practical reasons when not all places can be candidate to serve as gathering points.
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lems in robot-based computing systems and then provides the optimization version
of the gathering problems defined in the previous section.

Section4 is devoted to present an optimal algorithm for the problem of gathering
on meeting-points. The section starts by providing some details on the possible
information that robots can deduce from the Look phase. In particular, we recall the
concepts of configuration view and configuration symmetry, which in turn are used to
provide general impossibility results. Then, we discuss the concept of discreteWeber
point (i.e., a Weber point chosen only among the finite set of meeting-points) and
show useful properties that are successively exploited by the gathering algorithms.
Finally, we present a distributed optimal gathering algorithm that solves the problem
for all configurations where optimal gathering can be achieved.

Section5 is devoted to an optimal algorithm for the problem of gathering on differ-
ent graph topologies. The section starts by reconsidering the notions of configuration
automorphisms and symmetries to be applied to general graphs. Accordingly, we
provide general impossibility results. We also reconsider the notion of Weber points
for graphs and show useful properties that are successively exploited by the gather-
ing algorithms. Finally, the optimal gathering algorithms when the graph topologies
correspond to trees, rings and infinite grids are provided.

Section6 concludes the chapter and outlines some possible research directions.

2 Gathering in Different Environments

In this work we consider two different environments where robots move: the
Euclidean plane and undirected graphs. According to such environments, we address
two different versions of the classical problem, namely the Gathering on Meeting
Points on the plane denoted as gmp, and the Gathering on Graphs denoted as GG.

Definition of GMP. The system is composed of n mobile robots freely moving on
the plane. At any time, the multiset R = {r1, r2, . . . , rn}, with ri ∈ R

2, contains the
positions of all the robots. The set U (R) = {x | x ∈ R} contains the unique robots’
positions. M is a finite set of fixed meeting-points in the plane representing the
only locations in which robots can be gathered (notice that the concept of meeting-
points as been already considered in [6, 19], but for addressing the pattern formation
problem). The center of gravity of points in M , that is the point whose coordinates
are the mean values of the coordinates of the points of the set, is denoted by cg(M).
The pair C = (R, M) represents a configuration.

Similarly to [19], a robot is said to be stationary in a configuration C if it is (1)
inactive, or (2) active, and it has not taken the snapshot yet, or it has taken snapshot
C , or it has taken snapshot C ′ �= C (with C ′ being produced by the algorithm before
C) which leads to a null movement. A configuration C is said to be stationary if
all robots are stationary at C . A configuration C is initial at time t if it is stationary
and at time t all robots have distinct positions (i.e., |U (R)| = n). Unlike the initial
configurations, in general, not all robots are stationary at a non-initial configuration
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C , but at least one robot that takes the snapshot C is stationary by definition. A
configuration C is final at time t if at that time there exists a point m ∈ M such that
ri = m for each ri ∈ R, and at each time t ′ ≥ t each robot performing a move makes
a null movement; in this case we say that the robots have gathered on point m at
time t .

Problem gmp can be formally defined as the problem of transforming an ini-
tial configuration into a final one. A gathering algorithm for the gmp problem is a
deterministic distributed algorithm that brings the robots in the system to a final con-
figuration in a finite number of cycles from any given initial configuration, regardless
of the adversary. We say that an initial configuration C = (R, M) is ungatherable if
there are no gathering algorithms for gmp with respect to C . Moreover, a gathering
algorithmA for gmpwith respect toC ensures the gathering on T ⊆ M if it finalizes
the gathering on some point of T . Note that if A ensures the gathering on T , then
an execution of A will provide a solution in T , regardless of the adversary.

Definition of GG. A simple undirected graph G = (V, E), with vertex set V and
edge set E , will represent the topology where robots are placed on. A function
μ : V −→ N, represents the number of robots on each vertex of G, and we call
(G, μ) a configuration whenever

∑
v∈V μ(v) is bounded and greater than zero.

A configuration is initial if each robot lies on a different vertex (i.e., μ(v) ≤
1 ∀v ∈ V ). A configuration is final if all the robots are on a single vertex u (i.e.,
μ(u) > 0 and μ(v) = 0, ∀v ∈ V \ {u}).

Similarly to gmp, the GG problem can be formally defined as the problem of
transforming an initial configuration into a final one. A gathering algorithm for the
GG problem is a deterministic distributed algorithm that brings the robots in the
system to a final configuration in a finite number of cycles from any given initial
configuration, regardless of the adversary. We say that an initial configuration C =
(G, μ) is ungatherable if there are no gathering algorithms for GG with respect
to C .

3 Optimization Problems for Robot-Based Computing
Systems

In this section, we recall from [7] how the classical notion of optimization problems
(cf. [2]) is extended to optimization problems solvable in the context of robot-based
computing systems. According to the new framework, we describe how both gmp
and GG can be reformulated as optimization problems.

Let Π be an optimization problem for robot-based computing systems. For the
sake of clarity, we address the minimization case only. The maximization case can
be derived analogously. Problem Π consists of a triple (I , sol,mis), where:

• I is the set of instances (i.e., all possible initial configurations);
• sol is a function that maps each initial configuration C ∈ I to the set sol(C) of
feasible solutions of C ;
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• given an instance C ∈ I and a solution s ∈ sol(C), then mis(C, s) denotes the
real positive measure of s, and the function mis is called objective function for Π .

The goal of Π with respect to an instance C is to find an optimal solution, that is, a
feasible solution s ∈ sol(C) such that

mis(C, s) = min{mis(C, s ′) : s ′ ∈ sol(C)}.

In the following, opt will denote the function mapping an instance C to the measure
of an optimum solution in sol(C). Given an instance C and a solution s ∈ sol(C),
we define the performance ratio of s with respect to C as

R(C, s) = mis(C, s)

opt(C)
.

The performance ratio is always a number greater than or equal to 1 and is as close
to 1 as the solution s is close to the optimal solution.

Now, letA be an algorithm for Π and C be an initial configuration. Even though
we are dealing with deterministic algorithms, different executions of A starting
from the same initial configuration C can lead to different solutions. In fact, in the
described asynchronous setting, an execution depends on the time required by the
scheduled activities, and this is implemented by the behavior of the adversary. Then,
there exists a set solA (C) ⊆ sol(C) of solutions, each corresponding to a possible
execution ofA starting fromC . IfA (C) is a solution s ∈ solA (C)whichmaximizes
mis(C, s), that is

A (C) = arg max
s∈solA (C)

mis(C, s),

then:

• we say thatA is an optimal algorithm forΠ if R(C,A (C)) = 1 for each instance
C ∈ I ;

• given a function f : N → (1,∞), we say that A is a f (n)-approximation for Π

if R(C,A (C)) ≤ f (|C |) for each instance C ∈ I . Here |C | denotes the size of
a configuration C .

GMP as an optimization problem. We can now formalize gmp as an optimization
problem gmp+ = (I , sol,mis). Of course, I is the set of all the possible initial
configurations to be gathered. To formalize the set sol(C) for any given initial con-
figuration C = (R, M) for gmp, we need to remark what an execution of a gathering
algorithmA produces. In particular, an execution ofA forC can be seen as a setP
containing |R| polycurves in the plane. Each polycurve in P models all the move-
ments performed by a specific robot in R starting from its initial position and ending
on the final gathering point m ∈ M . A movement performed by a robot during a
computational cycle corresponds to a part of the polycurve, and the endpoints of
each curve are the positions of the robot at the beginning and at the end, respectively,
of a computational cycle. Let us call gathering solution a set of polycurves each one
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starting from the initial position of a different robot in R and ending on the same final
gathering point m ∈ M . The set of all the gathering solutions for a configuration C
defines sol(C). Concerning, mis(C,P) we use the following measure:

• mis(C,P) corresponds to
∑

P∈P length(P), where length(P) is the length of the
polycurve P .

GG as an optimization problem. Also GG can be expressed as an optimization
problem GG+ = (I , sol,mis), where I is the set of all the possible initial con-
figurations for GG. Given an initial configuration C = (G, μ), an execution of a
gathering algorithm A for C can be seen as a set P containing paths in the graph
G. Each path inP models all the movements performed by a specific robot starting
from its initial position and ending on the final gathering point. A movement per-
formed by a robot during a computational cycle corresponds to a subpath made of
just two adjacent vertices. So, a gathering solution is a set of paths, each one starting
from a distinct vertex and ending on the same final gathering vertex. The set of all
the gathering solutions for a configurationC defines sol(C). Concerning,mis(C,P)

we use the following measure:

• mis(C,P) corresponds to
∑

P∈P length(P), where length(P) is the length of the
path P expressed as the number of edges in the path.

4 Optimal Gathering for GMP+

In this section an optimal gathering algorithm for gmp+ is described (cf. [7]). Before
presenting the algorithm, we give some detail on the possible information that robots
can deduce from the Look phase. In particular, we recall the concepts of configu-
ration view and configuration symmetry, which in turn are used to provide general
impossibility results. Then, we discuss the concept of discrete Weber-point (i.e., a
Weber-point chosen only among the finite set of meeting-points, and not among the
infinite set of points in the plane) and show useful properties that are successively
exploited by our gathering algorithms.

4.1 Configuration View

Given two distinct points u and v in the plane, denote by d(u, v) their distance,
line(u, v) the straight line passing through them, and (u, v) (resp. [u, v]) the open
(resp. closed) segment containing all points of this line that lie between u and v.
The half-line starting at point u (but excluding the point u) and passing through v
is denoted by hline(u, v). We denote by �(u, c, v) the angle centered in c and with
sides hline(c, u) and hline(c, v). The angle �(u, c, v) is measured from u to v in
clockwise or counter-clockwise direction, and the measure is always positive and
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ranges from 0◦ to less than 360◦ and the direction in which it is taken will be clear
from the context.

Given a set P of n points in the plane and an additional point c /∈ P , let⋃
p∈P hline(c, p) be the set of all half-lines starting from c and passing through

each point in P . The successor of p ∈ P with respect to c, denoted by succ(p, c), is
defined as the point q ∈ P such that

• either q is the closest point to p on hline(c, p), with d(c, q) > d(c, p);
• or hline(c, q) is the half-line following hline(c, p) in the order implied by the
clockwise direction, and q is the closest point to c on hline(c, q).

Let us now assume that, during its last Look phase, a robot r ∈ R has just taken
a snapshot of the current configuration C = (R, M). Since in our model robots do
not have a common understanding of the handedness (chirality), we assume that r
arbitrarily chooses one direction as “clockwise” and accordingly uses the function
succ() to define the “view”of the configurationC (that is, of themultiset R ∪ M) from
a given observation point p. In particular, if p ∈ (R ∪ M) \ cg(M) and P = (R ∪
M) \ {p}, then the function succ() allows r to compute the sequence V+

r (p) = (p0 =
p, p1, . . . , p f −1),4 where f = |U (R)| + |M |, pi = succ(pi−1, p0), i ≥ 1, and the
first half-line needed by succ() to identify p1 is hline(p0, cg(M)).5 In other words, if
r “simulates” its position as it were in the point p, then V+

r (p) represents the order
in which r views all the points in C starting from p itself and turning clockwise
hline(p, cg(M)) according to succ(). Similarly, V−

r (p) can be computed by r by
turning in counter-clockwise direction6 (see Fig. 1).

Now, from each sequence V+
r (p), r can directly get the sequence V +

r (p), that is
the clockwise view of p as observed by r , as follows:

• for each i ≥ 1, point pi inV+
r (p) is replacedby the tripleαi , di , xi inV +

r (p),where
αi = �(cg(M), p, pi ), di = d(p, pi ), and xi ∈ {r,m,x} according whether pi is
a robot position not in a multiplicity, a meeting-point, or a robot position where a
multiplicity occurs, respectively.

• for i = 0, α0 = 0, d0 = d(p0, cg(M)), and x0 is an element in {r,m,x} defined
as above.

Note that in V +
r (p) there are no elements of type x if robots do not have the multi-

plicity detection capability. Similarly, the robot r can compute the counter-clockwise
view of p, denoted by V −

r (p), by considering the sequence V−
r (p).

By definingr < m < x for the third component in the triples used to defineV +
r (p)

from V+
r (p), any set of strings encoding the views of a robot can be ordered lexico-

4The subscript in the symbol V+
r (p) is used to remark who is computing the view (in this case r ),

while the argument indicates the point from which the view is computed.
5If two points r ′ ∈ U (R) andm ∈ M , different from p, are coincident, then points r ′,m will appear
in this order in V+

r (p).
6Remember that the terms clockwise and counter-clockwise always refer to the local coordinate
system of the robot that computes the view. During a computational cycle, r maintains the same
local orientation to compute the view of each point p ∈ R ∪ M , but the orientation could change
between two different computational cycles.
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α5

α4

cg(M)

r α2

α1m3

m2

r3
r2

α3
r1

m1

Fig. 1 Robot r computing its view: V−
r (r) = (r,m1, r1, r2,m2, r3,m3) and hence

V −
r (r) = (0◦, d(r, cg(M)),r, α1, d(r,m1),m, α2, d(r, r1),r, α2, d(r, r2),r, α3, d(r,m2),m,

α4, (r, r3),r, α5, d(r,m3),m). Black circles represent robots, white circles represent meeting-
points

graphically, andhence theminimum(i.e., theminimumview) canbe computed. In par-
ticular the view of p computed by r is defined as Vr (p) = min{V +

r (p),V −
r (p)}, the

view of the configuration C computed by r is defined as Vr (C) = ⋃
p∈R∪M {Vr (p)},

and the minimum of Vr (C) can be computed.
Until now, Vr (p) has been defined for points p not coincident with cg(M). If p

coincides with cg(M) then the first half-line to be used to build V+
r (p) and V−

r (p)
is hline(cg(M), q), being q the point in P = (R ∪ M) \ {p} with minimum view. If
there is more than one point with minimum view in P , we can choose one of them
since the outcome will be the same (this will be confirmed by Lemma 1). In this case,
Vr (p) is minimum by definition in the set of views associated to points in R ∪ M , as
α0 = 0 and d0 = 0, whereas for each other point q not in cg(M), Vr (q) is such that
α0 = 0 and d0 > 0. If two points in R ∪ M lie on cg(M) the minimum is determined
by the value of x0.

Notice that, even if robots do not have a common understanding of the handedness
(chirality), by computing their view of C they all get the same information. This is
better expressed by the following statement.

Property 1 If two distinct robots r1 and r2 take a snapshot of the same configuration
C , then they compute the same view of C , that is Vr1(C) = Vr2(C).

Two additional concepts about views will be used in the following:

• if p ∈ U (R) ∪ M and S ⊆ U (R) ∪ M , then min_view(p, S) says whether p is a
point with minimum view in S or not;

• ifm ∈ M , then start(m) represents the point(s) in R closest tom but not on it, and
having the minimum view in case of ties.

Note that, in symmetric configurations, start(m),m ∈ M , may define more than one
robot.
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4.2 Configuration Automorphisms and Symmetries

Letϕ : R2 → R
2 be amap frompoints to points in the plane. It is called an isometry or

distance preserving if for any a, b ∈ R
2 one has d(ϕ(a), ϕ(b)) = d(a, b). Examples

of isometries in the plane are translations, rotations and reflections. An isometry ϕ

is a translation if there exists no point x such that ϕ(x) = x ; it is a rotation if there
exists a unique point x such that ϕ(x) = x (and x is called center of rotation); it is
a reflection if there exists a line � such that ϕ(x) = x for each point x ∈ � (and � is
called axis of symmetry).

An automorphism of a configuration C = (R, M) is an isometry from R
2 to

itself, that maps multiplicities to multiplicities, single robots to single robots (i.e.,
points of R into R), and meeting-points to meeting-points (i.e., points of M into
M). Note that, by considering the global-weak multiplicity detection, the mapping
of multiplicities to multiplicities is done regardless of the number of robots. The
set of all automorphisms of C forms a group with respect to the composition called
automorphism group of C and it is denoted by Aut(C).

The isometries in Aut(C) are the identity, rotations, reflections and their compo-
sitions (translations are not possible as the sets R and M are finite). Note that the
existence of two reflections implies the existence of a rotation.

If |Aut(C)| = 1, that is C admits only the identity automorphism, then C is said
to be asymmetric, otherwise it is said to be symmetric (i.e., C admits rotations or
reflections). If C is symmetric due to an automorphism ϕ, a robot cannot distinguish
its position at r ∈ R from r ′ = ϕ(r). As a consequence, no algorithm can distinguish
r from r ′, and then it cannot avoid that the two robots start the computational cycle
simultaneously. In such a case, there might be a so called pending move, that is one
of the two robots performs its entire computational cycle while the other has not
started or not yet finished its Move phase, i.e. its move is pending. Clearly, any other
robot is not aware whether there is a pending move, that is it cannot deduce such
an information from its view. This fact greatly increases the difficulty to devise a
gathering algorithm for symmetric configurations.

Given an isometry ϕ ∈ Aut(C), the cyclic subgroup of order k generated by ϕ is
given by {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦ ϕ, . . . , ϕk−1}where ϕ0 is the identity. A reflection ρ

generates a cyclic subgroup H = {ρ0, ρ} of order two. The cyclic subgroup generated
by a rotation ρ can have any order k > 1, with k fixed and depending on the size
of C . If H is a cyclic subgroup of Aut(C), the orbit of a point p ∈ R ∪ M is Hp =
{γ (p) | γ ∈ H}. Note that the orbits Hr , for each r ∈ R form a partition of R.
The associated equivalence relation is defined by saying that r and r ′ are equivalent
if and only if their orbits are the same, that is Hr = Hr ′. Equivalent robots are
indistinguishable by any algorithm.

Next lemmata provide relationships between isometries and configuration views.

Lemma 1 Let C = (R, M), |M | > 1, be a configuration without multiplicities and
let r ∈ R be a robot that has taken a snapshot of C during its last Look phase. Then:

• C admits a reflection if and only if there exist two points p, q ∈ R ∪ M, not nec-
essarily distinct, such that V +

r (p) = V −
r (q);



38 S. Cicerone et al.

• C admits a rotation if and only if there exist two distinct points p, q ∈ R ∪ M,
such that V +

r (p) = V +
r (q).

Lemma 2 Let C = (R, M) be a configuration without multiplicities and � be a line
passing through cg(M). If C is asymmetric or � is the only axis of reflection for C,
then all robots that take a snapshot of C agree on the same North-South orientation
of �.

According to this lemma, in the remainder we can assume that, under certain condi-
tions, all robots can agree about the North of a line or axis � passing through cg(M),
and in case, about the “northernmost robot or meeting-point” on �.

4.3 Ungatherability Results

In this section we state a theorem providing a sufficient condition for a configuration
to be ungatherable: if this condition applies then gmp is not solvable. Actually, results
are even stronger, as they hold also for the case of the synchronous environments
FSync. We first need the following definition:

Definition 1 LetC = (R, M) be a configuration. An isometry ϕ ∈ Aut(C) is called
partitive on R

2 \ P if the cyclic subgroup H generated by ϕ has order k > 1, and
|Hp| = k for each p ∈ R

2 \ P .

Notice that the identity is not partitive. A reflection ρ with axis of symmetry
� generates a cyclic group H = {ρ0, ρ} of order two and is partitive on R

2 \ �. A
rotation ρ is partitive on R

2 \ {c}, where c is the center of rotation, and the cyclic
subgroup generated by ρ can have any order k > 1, with k fixed and depending
on the size of C . In the following, we say that an isometry ϕ fixes a point p when
ϕ(p) = p. The following theorem provides us a sufficient condition for establishing
when a configuration is ungatherable.

Theorem 1 In the FSync setting, consider an initial configuration C = (R, M) and
a subset of points P ⊂ R

2 with P ∩ R = ∅. If there exists an isometry ϕ ∈ Aut(C)

that is partitive on R
2 \ P and fixes the points of P, then there is no gmp gathering

algorithm for C that ensures the gathering on M \ P.

Theorem 1 is given in a form that can be easily generalized to spaces of more than
two dimensions. For the Euclidean plane, the following corollary characterizes the
initial configurations of the gmp that are ungatherable.

Corollary 1 In the FSync setting, consider an initial configuration C = (R, M)

admitting an isometry ϕ ∈ Aut(C). C is ungatherable if one of the following holds:

• ϕ is a rotation with center c and c /∈ R ∪ M;
• ϕ is a reflection with axis � and � ∩ (R ∪ M) = ∅.
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Another consequence of Theorem 1 for initial symmetric configurations is that,
if a gathering algorithm exists in any setting, and in particular in the Async one,
then it must gather the robots on a point in the set P defined in the statement of
the theorem. In particular, when the configuration admits a rotation whose center c
is not occupied by a robot, then the set P contains only c, and hence the following
corollary can be stated.

Corollary 2 Consider an initial configuration C = (R, M) admitting a rotation
with center c and c /∈ R. If there exists a gathering algorithm for gmp with respect
to C, then there exists a meeting-point m on the center c where the gathering is
finalized.

Similarly, when the configuration admits a reflection then the set P of Theorem 1
contains only the points of the axis of reflection, and hence the following corollary
can be stated.

Corollary 3 Consider an initial configuration C = (R, M) admitting a reflection
with axis � and � ∩ R = ∅. If there exists a gathering algorithm for gmp with respect
toC, then there exists ameeting-point m on the axis �where the gathering is finalized.

4.4 Weber Points for GMP

A typical approach used to solve the classic gathering problem is to choose as des-
tination a point which is invariant with respect to the robots movements toward it.
The only known point with such a property is the unique point in the plane that
minimizes the sum of the distances between itself and all positions of the robots
(actually, such a point may be not unique when the robots are collinear). In fact,
this point, known as the Weber point, does not change when moving any of the
robots straight toward it [27, 28]. Unfortunately, it has been proven in [3] that the
Weber point is not expressible as an algebraic expression involving radicals since
its computation requires finding zeros of high-order polynomials even for the case
n = 5 (see also [9]).

It is worth to note that when the Weber point of a set of robots is restricted to
belong to a finite set of discrete points (i.e., the set M), then it fulfills the following
properties: (1) it can be easily computed, and (2) it may become not unique even
though the robots are not collinear. Such a restriction leads to our concept of discrete
Weber points. In particular, if C = (R, M) is a configuration without multiplicities,
then we define the Weber-distance of C as the value

wd(C) = min
m∈M

∑

r∈R

d(r,m).

The Weber-distance of a point m ∈ M in C is denoted by wd(C,m) and is defined
as wd(C,m) = ∑

r∈R d(r,m). Hence, a point m ∈ M is called discrete Weber point
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of C if wd(C,m) is minimum, that is wd(C,m) = wd(C). We denote byWP(C) the
set containing all the discrete Weber points of C .

In the following, we provide some useful properties about the discrete Weber
points in WP(C). We use the simple sentence “robot r moves toward a meeting-
point m” to mean that r performs a straight move toward m and the final position
of r lies on the interval (r,m]. We start by observing that it is easy to verify (see
also [8]) the following result.

Lemma 3 Let C = (R, M) be a configuration, m ∈ WP(C), and r ∈ R. If C ′ =
(R′, M) represents the configuration obtained after r moved toward m, then m is in
WP(C ′).

A consequence, the above lemma implies that after the movement of r toward a
discrete Weber point m, the set of discrete Weber points is restricted to the meeting-
points lying on the half-line hline(r,m).

Lemma 4 Let C = (R, M) be a configuration, m ∈ WP(C), and r ∈ R. If C ′ =
(R′, M) represents the configuration obtained after r moved toward m, then all the
discrete Weber points in WP(C ′) lie on hline(r,m).

We are now interested in estimating how many points inWP(C) are still discrete
Weber points after the move of r toward m. To this end, we pose the following
general question: “How many discrete Weber points inWP(C) lie on a given line in
the plane?”

It is well known that the ellipse is the plane curve consisting of all points p whose
sum of distances from two given points p1 and p2 (i.e., the foci) is a fixed number d.
Generalizing, a k-ellipse is the plane curve consisting of all points p whose sum of
distances from k given points p1, p2, . . . , pk is a fixed number (cf. Fig. 2). In [26],
it is shown that a k-ellipse is a strictly-convex curve, provided the foci pi are not
collinear. This implies that a line intersects a k-ellipse in at most two points. Now, if
we apply the notion of k-ellipse to the gmp problem, we easily get that

{

p :
∑

r∈R

d(p, r) = d

}

(1)

Fig. 2 A 3-ellipse and two
4-ellipse each with its foci.
In the first 4-ellipse has a
focus on it
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is a |R|-ellipse consisting of all points p whose sum of distances from all robots
is a fixed number d. If we set d = wd(C), then Eq. (1) represents the |R|-ellipse
containing all the discrete Weber points in WP(C). In the following, such a curve
will be denoted by E (C). The next results characterize E (C) and, in turn, the set of
all discrete Weber points after a robot moved toward one of such points.

If C = (R, M) is a configuration in which points in R are collinear, then the
median segment of R, denoted by med(R), is:

• the segment [r1, r2], when |R| is even and r1 and r2 are the median points of R;
• the single point r , when |R| is odd and r is the median point of R.

Lemma 5 Let C = (R, M) be a configuration.

• If points in R are not collinear, then E (C) is either a single point or a strictly-
convex curve with non-empty interior;

• If points in R are collinear, then E (C) is either med(R) or a strictly-convex curve
with non-empty interior.

By using Lemmata 4 and 5, we get the next result that characterizes the discrete
Weber points remaining in a configuration after a robot r moved toward a discrete
Weber point m. In particular, in case of non-collinear robots, it states that after the
move at most two discrete Weber points remain: one is m and the other, if any, lies
on hline(r,m); moreover, in any case, the remaining discrete Weber points form a
subset of the initial set of discrete Weber points.

Lemma 6 Let C = (R, M) be a configuration. Assume that a robot r ∈ R moves
toward a point m ∈ WP(C) and this move creates a configuration C ′ = (R′, M).
Then:

(a) if E (C) is a strictly-convex curve with non-empty interior, thenWP(C ′) contains
one or two discrete Weber points only. In one case WP(C ′) = {m}, while in the
other WP(C ′) = {m,m ′}, with m ′ ∈ WP(C) and m ′ lying on hline(r,m);

(b) if E (C) is a single point m (i.e, WP(C) = {m}), then WP(C ′) contains m only;
(c) if E (C) is med(R) (i.e., WP(C) = med(R) ∩ M), then WP(C ′) = med(R′) ∩

M, with med(R′) ⊆ med(R).

The next lemma characterizes the discrete Weber points in case of a particular
rotation.

Lemma 7 Let C = (R, M) be an initial configuration that admits a rotation with
center c ∈ M.Then c ∈ WP(C), and if all robots are not collinear thenWP(C) = {c}.

For the sake of readability, in the rest of the paper, each time we use the term
Weber points, we will always refer to discrete Weber points, that is points in the set
WP(C), with C = (R, M) being the current configuration.
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4.5 The Algorithm

Let C = (R, M) be an initial configuration for the problem gmp+. According to
the measure mis(C,P) = ∑

P∈P length(P) used in the definitions of gmp+, we
observe that the minsum-distance of C , defined as the value

	+(C) = min
m∈M

∑

r∈R

d(r,m),

represents a lower bound formis(C,P) for any polycurveP representing a solution
for C . Since the minsum-distance of C is nothing else that the Weber-distance, then
it follows that any optimal gathering algorithm for gmp+ has to select a Weber point
as gathering point and make all robots move toward it along shortest paths. As a
consequence, Corollaries 2 and 3 imply that in some cases there are no optimal
gathering algorithms for gmp+, as stated in the following result.

Corollary 4 Let C = (R, M) be an initial configuration for gmp+. There exists no
optimal gathering algorithm for gmp+ with respect to C if one of the following holds:

• C admits a rotation with center c and c /∈ R ∪ WP(C);
• C admits a reflection with axis � and � ∩ (R ∪ WP(C)) = ∅.

To the aim of defining an optimal gathering algorithm for the gmp+ problem,
we start by providing a partition of the set I . According to Corollary 1 there are
configurations inI that are ungatherable. The class of such configurations is denoted
by U and contains any C fulfilling one of the following conditions:

• C admits a rotation with center c, and there are neither robots nor meeting-points
on c;

• C admits a reflection on axis �, and there are neither robots nor meeting-points on
�.

According to Corollary 4, there are configurations inI \ U that cannot be gathered
by any optimal gathering algorithms for gmp+. The class of such configurations is
denoted by N + and contains any C such that:

• C admits a reflection on axis �, and there are meeting-points on � but neither robots
nor Weber points on �.

Notice that Corollary 4 also concerns configurations admitting rotations. Actually,
Lemma 7 ensures that such configurations are in U . In particular, the lemma states
that any configuration admitting a rotationwith center c ∈ M is such that c ∈ WP(C).

In the rest of this section we provide an optimal gathering algorithm for the gmp+
problem when the input is restricted to I \ (U ∪ N +). We assume |R| > 1 and
|M | > 1: in fact, if |R| = 1 it is sufficient that the only robot reaches a Weber point
and if |M | = 1 all the robots can move toward the only meeting-point.

All the initial configurations processed by the algorithm, alongwith configurations
created during the execution, are partitioned in the following classes:
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• S +
1 : any configuration C with one multiplicity;

• S +
2 : any C = (R, M) with |WP(C)| = 1, and C /∈ S +

1 ;
• S +

3 : any C = (R, M) with cg(M) ∈ WP(C), and C /∈ ⋃2
i=1 S

+
i ;

• S +
4 : any C admitting a rotation, and C /∈ ⋃3

i=1 S
+
i ;

• S +
5 : any C = (R, M) with all points in R and all points inWP(C) lying on a line

�, and C /∈ ⋃4
i=1 S

+
i ;

• S +
6 : any C admitting a reflection with at least one robot and one Weber point on

the axis, and C /∈ ⋃5
i=1 S

+
i ;

• S +
7 : any C admitting a reflection with at least one robot on the axis, and C /∈

⋃6
i=1 S

+
i ;

• S +
8 : any C admitting a reflection with at least one Weber point on the axis, and

C /∈ ⋃7
i=1 S

+
i ;

• S +
9 : any asymmetric configuration C , and C /∈ ⋃5

i=1 S
+
i ;

• S +
0 :S +

1 ∪ S +
2 (class defined for the sake of convenience only).

Note that S +
1 is the only class not containing initial configurations. Moreover,

according to the definition of the above classes, it easily follows that the set
{U ,N +,S +,S +, . . . ,S +} is a partition of the configurations without multi-
plicities, and then it induces a partition of the set I .

The main strategy of the algorithm is to select and move robots straight toward a
Weber point m so that, after a certain number of moves, m remains the only Weber
point (hence reaching a configuration in classS +

2 ).Once only oneWeber point exists,
all robots move toward it. According to the multiplicity detection, once a multiplicity
is created, robots are no longer able to compute the Weber points accurately. Hence,
our strategy ensures to create the first multiplicity over m, and once this happens all
robots move toward it without creating other multiplicities. Note that, in the initial
configuration, it is possible that there is already a robot on m. Hence, it is possible
to create a configuration in classS +

1 without creating a configuration in classS +
2 .

The general algorithm is shown in Fig. 3. It is divided into various sub-procedures,
that will be defined later in this section, each of them designed to process configura-
tions belonging to a given classS +

i , i ≥ 1. Priorities amongprocedures are implicitly
defined by the subscripts in the name of the classes. Moves are always computed
without creating undesired multiplicities, as described by the following remark.

Remark 1 In Procedure Compute+, and in any procedure called there-in, robots
move without creating undesired multiplicities. In fact, robots move straight toward
a Weber point, then two robots meet only at the final destination point, unless they
move along the same direction. In such a case, robots move without overtaking each
other. In particular, if a robot r is moving toward a point p and there is another robot
r ′ in the open segment (r, p), then r moves toward a point p′ on (r, p) such that
d(r, p′) = d(r,r ′)

2 .

In this way, undesired multiplicities are never created. Once a multiplicity is
created on a meeting-point m, it is then easy to move all other robots toward it, by
exploiting the multiplicity detection. Hence the gathering is easily finalized.



44 S. Cicerone et al.

Given a configuration C = (R, M), all procedures are invoked after having com-
puted the classS +

i which C belongs to. For this task any robot can exploit the mul-
tiplicity detection capability (for class S +

1 ), the computation of WP(C) and cg(M)

(for classes S +
2 and S +

3 ), whether its view contains all robots and Weber points
associated with a same angle (for class S +

5 ), and Lemma 1 (for all the remaining
classes).

ClassesS +
1 ,S +

2 , andS +
3 . In classesS +

1 ,S +
2 , andS +

3 , robots can move concur-
rently toward the unique multiplicity, the only Weber point, or cg(M), respectively.
Class S +

1 is the only one not containing initial configurations (they are created by
our strategy). According to the multiplicity detection, once a multiplicity is created,
robots are no longer able to compute theWeber points accurately. Hence, the strategy
ensures to create the first multiplicity over a Weber point, and once this happens all
robots move toward it without creating other multiplicities.

Class S +
4 . In class S +

4 the algorithm handles configurations that admit a rotation
(these include also configurations where all robots are collinear). In such a cases,
Procedure Compute+ leads to a configuration C ′ in class S +

0 with a single Weber
point and with at most one robot moving toward it.

In particular, the algorithmmakes the robot r on the center tomove toward an arbi-
trary pointm ∈ WP(C) (seeLine 5 inFig. 3 of ProcedureCompute+). ByLemma5, r
is insideE (C) and hence hline(r,m) intersectsE (C) atm only. Then, byLemma6(a),
once the robot has moved, only one Weber point remains. It follows that a configu-
ration C ′ ∈ S +

0 is created.

ClassS +
5 . In classS +

5 the algorithm considers any configurationC where all robots
and all Weber points lie on a line. After the Look phase, a robot can detect whether
the current configuration admits such a property by checking if there exists a robot
whose view contains all robots and all Weber points associated with a same angle. In
such a cases, Procedure Compute+ calls the subroutine Line (Fig. 4), which leads to

Procedure: COMPUTE+

Input: Configuration C = (R,M)

1 Compute cg(M),C,WP(C);
2 ifC ∈ +

1 then move toward the unique multiplicity ;
3 ifC ∈ +

2 then move towardWP(C) ;
4 ifC ∈ +

3 then move toward cg(M) ;
5 ifC ∈ +

4 ∧ r lies in the center of the rotation then move toward any m ∈ WP(C) ;
6 ifC ∈ +

5 then LINE(C) ;
7 ifC ∈ +

6 then REFLECTIONRW (C);
8 ifC ∈ +

7 then REFLECTIONR(C);
9 ifC ∈ +

8 then REFLECTIONW (C);
10 ifC ∈ +

9 then ASYMMETRIC(C);

Fig. 3 ProcedureCompute+executed by any robot r during the Compute phase. In each procedure,
moves are performed accordingly to Remark 1
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Procedure: LINE

Input: Configuration C = (R,M) ∈ +
5 with R

⋃
WP(C) lying on a line �

1 if M admits a reflection with axis �′ perpendicular to � and the intersection is w ∈ WP(C)
then

2 move toward w

3 ifC admits a reflection with the axis perpendicular to � passing through a robot r′, or C
admits a rotation with the center lying on � occupied by a robot r′ then

4 if r = r′ then
5 move toward a Weber point in any direction on �

6 else
7 if there are robots in between WP(C) on � then
8 if r has minimum view among robots in between WP(C) then
9 move toward a Weber point in any direction on �

10 else
11 Let r1 and r2 be the robots such that [r1,r2] is the smallest segment containing all

the points in WP(C);
12 Let m1, m2 ∈ WP(C) be the closest meeting-points to r1 and r2, respectively;
13 Let k1 = |(M \ (WP(C)))∩ (�\hline(r1,r2))|;
14 Let k2 = |(M \ (WP(C)))∩ (�\hline(r2,r1))|;
15 if r = r1 ∧ ((k1 > k2) ∨ (k1 = k2 ∧ d(r,m1) < d(r2,m2)) ∨

(k1 = k2 ∧ d(r,m1) = d(r2,m2) ∧ min view(r,{r,r2}))) then
16 move toward m2

Fig. 4 Procedure Line for moving robot r in case of configurations in class S +
5

a configuration C ′ in class S +
0 , with robots moving toward the Weber point or the

multiplicity, eventually.
ClassS +

6 . In classS +
6 the algorithm considers any configurationC admitting reflec-

tions with robots andWeber points on the axis. In such a cases, ProcedureCompute+
calls the subroutineReflectionRW (Fig. 5),which leads to a configurationC ′ in class
S +

0 , possibly with one robot moving toward the Weber point, eventually.
Class S +

7 . In class S +
7 the algorithm considers any configuration C admitting

reflections with robots but no Weber points on the axis. In such a cases, Procedure
Compute+ calls the subroutineReflectionR (Fig. 6), which leads to a configuration
C ′ either in classS +

0 or in classS +
9 , possiblywith one robotmoving toward aWeber

point.
Class S +

8 . In class S +
8 the algorithm considers any configuration C admitting

reflections with Weber points but no robots on the axis. In such a cases, Procedure
Compute+ calls the subroutineReflectionW (Fig. 7),which leads to a configuration
C ′ in classS +

0 , possibly with robots moving toward theWeber point, or in classS +
9 ,

possibly with one moving robot and one pending robot both with the same target
Weber point.
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Fig. 5 Procedure ReflectionRW for moving robot r in case of configurations in class S +
6

Fig. 6 Procedure ReflectionR for moving robot r in case of configurations in class S +
7

Class S +
9 In class S +

9 . the algorithm considers any asymmetric configuration C .
In such a cases, Procedure Compute+ calls the subroutine Asymmetric (Fig. 8). If
C is generated from a configuration in S +

7 or S +
8 with possibly a pending robot

with the same target point, then Asymmetric leads to a configuration in classS +
0 ,

possibly with robots moving toward the Weber point, eventually.
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Fig. 7 Procedure ReflectionW for moving robot r in case of configurations in class S +
8

Correctness. Figure9 shows all transitions among classes defined by the algorithm,
and, in particular, it shows that from each class S +

i , i ≥ 3, a configuration in class
S +

1 orS +
2 (i.e., in classS +

0 ) is reached. The next theorem states the correctness of
the algorithm.

Theorem 2 (Optimal gathering on fixed points on the plane) ProcedureCompute+
is an optimal gathering algorithm that solves the gmp+ problem for an initial con-
figuration C if and only if C ∈ I \ (U ∪ N +).

5 Optimal Gathering for GG+

In this section an optimal gathering algorithm for GG+ is described (cf. [15, 16]).
Before presenting the algorithm, we reconsider the notions of configuration auto-
morphisms and symmetries to be applied to general graphs, and accordingly we
provide general impossibility results. We also reconsider the notion of Weber points
for graphs and show useful properties that are successively exploited by our gather-
ing algorithms. In particular, we provide optimal gathering algorithm forGG+ when
the graph topologies correspond to trees, rings and infinite grids.

5.1 Configuration Automorphisms, Symmetries
and Ungatherabilty Results

Two graphs G = (VG, EG) and H = (VH , EH ) are isomorphic if there is a bijection
ϕ from VG to VH such that uv ∈ EG if and only if ϕ(u)ϕ(v) ∈ EH . An automorphism
on a graphG is an isomorphism fromG to itself, that is a permutation of the vertices of
G thatmaps edges to edges and non-edges to non-edges. The set of all automorphisms
of G forms a group called automorphism group of G and denoted by Aut(G).

The concept of isomorphism can be extended to configurations in a natural way:
two configurations (G, μ) and (G ′, μ′) are isomorphic if G and G ′ are isomorphic
via a bijection ϕ and for each vertex v in G, μ(v) = μ′(ϕ(v)). An automorphism
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Fig. 8 Procedure Asymmetric for moving robot r in case of configurations in class S +
9

on a configuration (G, μ) is an isomorphism from (G, μ) to itself and the set of all
automorphisms of (G, μ) forms a group that we call automorphism group of (G, μ),
denoted by Aut((G, μ)).

Given an isomorphism ϕ ∈ Aut((G, μ)), the cyclic subgroup of order p generated
by ϕ is given by {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦ ϕ, . . . , ϕ p−1} where ϕ0 is the identity. If H
is a subgroup of Aut((G, μ)), the orbit of a vertex v of G is Hv = {γ (v) | γ ∈ H}.
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Fig. 9 Schematization of the optimal gathering algorithm for gmp+ along with priorities

If |Aut(G)| = 1, that is, G admits only the identity automorphism, then G is said
asymmetric, otherwise it is said symmetric. Analogously, if |Aut((G, μ))| = 1, we
say that (G, μ) is asymmetric, otherwise it is symmetric.

The next theorem provides a sufficient condition for a configuration to be not
gatherable, but we first need the following definition:

Definition 2 LetC = ((V, E), μ) be a configuration. An isomorphism ϕ ∈ Aut(C)

is called partitive on V ′ ⊆ V if the cyclic subgroup H = {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦
ϕ, . . . , ϕ p−1} generated by ϕ has order p > 1 and is such that |Hu| = p for each
u ∈ V ′.

Note that, in the above definition, the orbits Hu, for each u ∈ V ′ form a partition
of V ′. The associated equivalence relation is defined by saying that x and y are
equivalent if and only if there exists a γ ∈ H with γ (x) = y. The orbits are then the
equivalence classes under this relation; two elements x and y are equivalent if and
only if their orbits are the same; i.e., Hx = Hy. Moreover, note that μ(u) = μ(v)
whenever u and v are equivalent.

Theorem 3 Let C = ((V, E), μ) be a non-final configuration. If there exists ϕ ∈
Aut(C) partitive on V then C is not gatherable.

In Fig. 10a, it is shown a partitive configuration where each vertex belongs to an
orbit of size three. By the above theorem we deduce that the gathering cannot be
assured, since each move allowed by an algorithm can be executed synchronously
by all the three robots due to an adversary. This would always produce a new partitive
configuration.

Figure10b, shows a configuration admitting an isomorphismwhich is not partitive.
In this case the gathering is possible even though not the optimal one. In fact, each
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(c)(b)(a)

Fig. 10 A gray vertex indicates the presence of one robot. a Configuration admitting a partitive
isomorphism: the sets of the partition are the three central vertices, the vertices with robots, and the
three remaining vertices. b Configuration admitting a non-partitive isomorphism that maps v in u,
u in w, w in v, x in y and y in x . c Configuration admitting a non-partitive isomorphism with two
sets of the partition of size two, and one of size one

of the three occupied vertices areWeber points, but moving from one to another may
produce the same configuration if the three robots move concurrently in the same
direction. Hence, a gathering algorithm can move the three robots towards the two
empty vertices. Once all the three robots have moved, a multiplicity is created. The
multiplicity either contains all the robots or just two. In the first case the gathering
has been accomplished. In the second case, the gathering is finalized by letting the
single robot move towards the multiplicity.

Finally, Fig. 10c shows a configuration admitting a non-partitive isomorphism
but the gathering cannot be assured as shown in [21]. It follows that, there exist
configurations not admitting partitive isomorphisms but still not gatherable.

It is worth noting how most of the configurations proved to be not gatherable
for the rings [22], trees [11], and grids [10] fall into the hypothesis of Theorem 3.
Considering the ring case [22], for instance, periodic configurations (i.e., invariant
with respect to not full rotations), or configurations admitting an edge-edge symmetry
(i.e., invariant to reflection on an even ring) are not gatherable.

The next theorem suggests the gathering point in some circumstances.

Theorem 4 Given a configuration C = ((V, E), μ), and a subset of nodes V ′ ⊂ V ,
if there exists an automorphism ϕ ∈ Aut(C) that is partitive on V \{V ′}, with l(v) = 0
for any v ∈ V ′, then, any gathering algorithm can not assure the gathering on a vertex
in V \V ′.

The above theorem implies that some configurations can be gathered only at some
predetermined vertices, regardless of whether they areWeber points or not. Hence, in
such cases the optimality of the provided solutions cannot be measured with respect
to the minimum distances of the robots towards Weber points.

5.2 Weber Points for GG

Definition 3 Given a configuration (G, μ), with G = (V, E), the centrality of each
v ∈ V , is cG,μ(v) = ∑

u∈V d(u, v) · μ(u). A vertex v ∈ V is a Weber point if it has
the minimal centrality, that is, cG,μ(v) = min{cG,μ(u) | u ∈ V }.
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Whenever clear by the context, we refer to the centrality of a vertex v by cG(v),
cμ(v), or simply c(v). By definition, a Weber point is a vertex that has the overall
minimal distance from all the robots in the configuration. Then, an algorithm that
gathers all the robots on a Weber point via shortest paths is optimum with respect
to the total number of moves. More formally, a gathering algorithm must define the
sequence of moves for each robot, leading to a final configuration. A move is the
change of the position of a single robot from a vertex u to an adjacent vertex v.
This equals to change the configuration from, say (G, μ) to (G, μ′), where μ(w) =
μ′(w) ∀w ∈ V \{u, v}, μ′(u) = μ(u) − 1 and μ′(v) = μ(v) + 1. A robot perceives
its position on the graph G if (G, μ) is asymmetric. Whereas, if (G, μ) admits
a non-identity isomorphism ϕ, a robot cannot distinguish its position at u from
ϕ(u). As a consequence, two robots (e.g., one on u and one on ϕ(u)) can decide to
move simultaneously, as any algorithm is unable to distinguish between them. This
fact greatly increases the difficulty to devise a gathering algorithm for symmetric
configurations.

We say that an algorithm assures the gathering if it achieves the gathering regard-
less any possible sequence of the moves it allows, and possible simultaneous moves.

In the remainder of this section, we provide general results that allow to define
optimal gathering algorithms. We start by observing that the GG problem can be
characterized as follows:

Proposition 1 Gathering is achieved on a configuration ((V, E), μ) if and only if
there exists a vertex v ∈ V such that c(v) = 0.

Along the text, we say that a robot on a vertex u moves towards a vertex v if it
moves to a vertex adjacent to u along a shortest path between u and v.

Theorem 5 Given a configuration ((V, E), μ)withWeber points in X ⊆ V , a move
of a robot towards a Weber point x gives rise to a configuration ((V, E), μ′) with
Weber points in X ′ ⊆ V such that:

1. cμ′(v) = cμ(v) − 1 for each v ∈ X ′;
2. x ∈ X ′;
3. X ′ ⊆ X.

When the configuration admits a unique Weber point (or a Weber point can be
uniquely determined), the above theorem suggests an optimal gathering algorithm
that also exploits concurrency among robots. In fact, regardless other robots, each
one can move towards the only Weber point via the shortest path, until finalizing the
gathering.

Corollary 5 Let C = ((V, E), μ) be a configuration. Then:

• if C admits only oneWeber point then the gathering can be achieved by an optimal
algorithm;

• if there exists a real function f : V −→ R
+ such that f admits only one minimum

on the set ofWeber points, then gathering can be achieved by an optimal algorithm.
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5.3 Optimal Gathering on Trees

In this section, we characterize the gathering on tree topologies.We provide a general
algorithm that always achieves the optimal gathering starting from configurations not
falling into the hypothesis of Theorem3. To this aim,we exploit interesting properties
resulting from the tree topology.

Let (T, μ) be a configuration for a tree T , and a and b two of its vertices.Wedenote
by Pab the path between a and b of length |Pab|. Tree T can be decomposed into three
subtrees, see Fig. 11. The one containing a when removing from T the edge incident
to a in Pab, and denoted by Ta ; The one containing bwhen removing the edge incident
to b in Pab, and denoted by Tb; And the third one obtained from T by removing both
Ta and Tb, and denoted by Tab. Let La = ∑

v∈Ta μ(v) and Lb = ∑
v∈Tb μ(v), that is

the number of robots in Ta and Tb, respectively.

Theorem 6 Let (T, μ) be a configuration for a tree T . Then, the following properties
hold:

• given two distinct Weber points a and b, Tab does not contain any robots;
• given two distinct Weber points a and b, La = Lb;
• the Weber points form a path;
• if the number of robots is odd, then there exists only one Weber point.

The above properties, imply the existence of a simple optimal gathering algorithm
when the number of robots is odd. A complete characterization about the existence of
optimal gathering algorithms on trees is given by the next theorem. It shows that an
optimal algorithm exists unless there is an automorphism that maps each vertex to a
different one. This is a lighter condition with respect to the case given in Theorem 3.

Theorem 7 (Optimal gathering on trees) Let C = (T, μ) be a configuration for a
tree T = (V, E). There exists an optimal gathering algorithm for C if and only if for
each ϕ ∈ Aut(C) there exists v ∈ V such that ϕ(v) = v.

The algorithm provided in the proof of Theorem 7 works as follows.
From Theorem 6, let Pab be the path of Weber points.

Fig. 11 Partitioning of a
tree into three subtrees

T T T
ab b

a

a b
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If T has one center x , there must be a vertex v in Pab nearest to x (possibly, x
coincides with v). By Corollary 5, it follows that all the robots can move towards v
via the shortest paths, and eventually finalizing the optimal gathering.

If T has two centers joined by edge xy, then three cases arise: (1) xy is in Ta (Tb,
respectively); (2) xy is in Tab but either x or y is not in Pab; (3) xy is an edge of Pab.

In case (1), by Corollary 5, all the robots can move towards a (b, resp.), the
gathering point.

In case (2), there must exist a vertex w in Pab nearest to xy (possibly, w coincides
either with x or with y). Again by Corollary 5, all the robots can move towards w

and gather there.
In case (3), by the hypothesis of Theorem 7, for each ϕ ∈ Aut(C) there exists

v ∈ V such that ϕ(v) = v. Then, the two subtrees Tx and Ty obtained by removing
xy cannot be isomorphic. In this case, it is always possible to determine which tree
between Tx and Ty is less than the other with respect to a natural ordering on labeled
trees (see, e.g. [1, 4]), where the label of a vertex is given by functionμ, and each tree
is represented by the string obtained by reading the labels from the root downwards
to the leaves. Without loss of generality, assuming Tx greater than Ty , all the robots
in Tx can move towards x . In this way, after each move, Tx remains always greater
than Ty . Once all the robots in Tx are at x , they move to y. As soon as one robot
moves from x to y, the path of Weber points will be Pyb, xy is not in Pyb and we can
proceed as before: all the robots can move towards y and gather there.

The gathering algorithm provided above exploits similar properties of that pre-
sented in [11]. However, this new version accomplishes the optimal gathering while
the old one always gather robots on a center of the underlying tree. Considering
Fig. 12a, it is easy to provide configurations where this algorithm performs the gath-
ering in two moves, while the old algorithm requires n moves.

Before concluding this section, it is interesting to characterize the disposal of
Weber points on the degenerate case of paths. This will be of practical interest in the
next section for characterizing Weber points on rings.

Lemma 8 Given a configuration (P, μ) where P is a path graph, the set of Weber
points is constituted either by one occupied vertex, or by one subpath whose extremes
are occupied.

(a) (b)

Fig. 12 A gray vertex indicates the presence of one robot; Dashed circled vertices are Weber
points. Dashed line stands for an undefined sequence of empty vertices. Vertices pointed by an
arrow represent the gathering vertices with respect to algorithms in [11] for (a), and in [22] for (b)
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5.4 Optimal Gathering on Rings

In this section, we fully characterize optimal gathering on ring topologies. As we
are going to show, optimal gathering is achievable when the input configuration is
asymmetric, or it admits an axis of symmetry passing through a robot or a Weber
point.

From Theorem 3, gathering is unfeasible on periodic configurations or those
admitting an edge-edge symmetry. Another impossibility result concerning gathering
on rings comes from [22]:

Theorem 8 If C = (R, μ) is a configuration on ring R with only two robots, then
C is ungatherable.

Moreover, fromTheorem4,wehave that some configurations can be gathered only
at some predetermined vertices, regardless of whether they are Weber points or not.
Hence, in such cases optimal gathering canbe accomplishedonly if the predetermined
vertex is a Weber point. On rings, Theorem 4 applies on configurations admitting a
vertex-edge or a vertex-vertex symmetry and any vertex lying on the axis is empty.
It follows that from configurations satisfying the hypothesis of Theorem 4, optimal
gathering can be accomplished only if there is at least a Weber point on the axis of
symmetry.

Before providing a general algorithm for achieving optimal gathering whenever
possible, we provide some useful properties concerning the disposal of Weber points
on rings.

Theorem 9 Given a configuration (R, μ) on a ring R, if an empty vertex u is a
Weber point then also its neighbors are Weber points.

By the above theorem, as for the path case, if there exists a sequence of vertices that
are Weber points, then the extremes of such a sequence are Weber points occupied
by robots. It is worth noting that on rings there might occur more than one of such
sequences.

As first result on rings, the next theorem provides an algorithm to assure optimal
gathering from asymmetric configurations. Actually, the algorithm defined by the
next theorem will be used later as part of the general algorithm for solving optimal
gathering from any configuration on rings where it is achievable.

LetC = (μ(v0), μ(v1), . . . , μ(vn−1)) be one of the possible views computed by a
robot occupying vertex v0 during its Lookphase according its clockwise direction.We
denote by C = (μ(v0), μ(vn−1), μ(vn−2), . . . , μ(v1)), and by Ci the configuration
obtained by reading C starting from vi , that is

Ci = (μ(vi ), μ(v(i+1) mod n), . . . , μ(v(i+ j) mod n)).

By referring toFig. 12b, the robot pointed by the arrowhas viewC = (1, 0, 0, 0, 1,
0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1) if it reads in the clockwise direction. Then, C =
(1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0). Its lexicographical maximum view
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is C , while the absolute maximum view of the configuration is C9 = (1, 1, 0,
1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0).

Theorem 10 Given an asymmetric configuration (R, μ) without multiplicities on a
ring R of n vertices, it is always possible to assure optimal gathering.

The algorithm provided in the proof of Theorem 10 works as follows.
From Theorem 9, there exists in R at least one Weber point occupied by a robot.

Consider two different cases: either there are only isolatedWeber points (i.e., no two
Weber points are adjacent) or not.

In the first case, as the configuration is asymmetric, among allWeber points which
are occupied by robots, there must be one whose view represents the lexicographical
maximum among all the views. Let r be the robot occupying such aWeber point, and
without loss of generality, let (μ(v0), μ(v1), . . . , μ(vn−1)) be its maximum view.

Let r ′ be a robot on vi , where i > 0 is the smallest index such that μ(vi ) = 1.
The gathering algorithm makes r ′ move towards r . By Theorem 5, v0 remains a
Weber point. Moreover the view of r remains maximum as it has been increased.
The obtained configuration is still asymmetric unless only one Weber point is left.
In fact, since a possible axis should pass through the unique Weber point with the
lexicographical maximum view, it is enough to observe that other Weber points can
reside only at one side of such an axis since all those on the side where r ′ resides
have disappeared, if any. This is repeated until a multiplicity is created on v0.

In the second case, the algorithm considers the robots onWeber points with views
such that v1 or vn−1 is a Weber point. If both v1 and vn−1 are Weber points, the
robot chooses the maximum view, otherwise it chooses the view in the direction of
the adjacent Weber point. Let r be the robot with the maximal view chosen in the
described way, and r ′ the first robot seen by r according to its view. By Theorem 9,
r and r ′ determine a path P of Weber points.

Consider the two views of r and r ′, respectively, in the opposite direction with
respect to P . The algorithmmakes move r (r ′, resp.) towards r ′ (r resp.) if its view is
lexicographically bigger than that of r ′ (r , resp.). In doing so, the path P is shortened
and will be again selected in the subsequent steps as r has increased its maximum
view. The obtained configuration is still asymmetric unless a multiplicity is created.
In fact, since a possible axis should pass through the uniqueWeber point detected by
the proposed strategy where r resides, it is enough to observe that only one neighbor
of r is a Weber point. As above, this is repeated until a multiplicity is created.

In both cases, once a multiplicity M is created, either it coincides with the only
Weber point left, or the algorithmmakesmove towardsM the robot closer toM on the
side closest to other Weber points. In this way, after this movement, only one Weber
point remains and optimal gathering can be finalized by exploiting Corollary 5.

The main difference of the described algorithm with that in [22] is in the choice
of the vertex where a multiplicity is created. Once this is done, the two algorithms
finalize the gathering on the created multiplicity by moving robots along the shortest
paths towards it.

The algorithm proposed in [22] considers the longest interval I of empty vertices.
Among the two intervals of empty vertices neighboring to I , the shortest one was
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reduced by moving the robot delimiting I . Ties were broken by the asymmetry of
the configuration. The described move was repeated until creating a multiplicity.

It is also worth noting that once a multiplicity is created, our algorithm requires
one further move to obtain a single Weber point, and from there all robots can move
concurrently towards the gathering node, while in [22] at most two robots at the two
sides of the multiplicity can move concurrently.

Figure12b shows a configuration where our algorithm requires 25 moves while
the algorithm in [22] takes 35 moves. It is easy to provide worsen instances where I
is far apart from Weber points, hence resulting in a much larger difference with our
algorithm in terms of computed moves.

It is worth noting that the gathering vertices selected by those algorithms turn out
to be the right choice according to Theorem 4. However, such algorithms are not
optimal as the performed moves are not always along the shortest paths towards the
gathering vertex. For a correct comparison, we remark that those papers deal with
the global weak multiplicity detection while here we are assuming the global strong
version.

In what follows, we provide a gathering algorithm for all symmetric configura-
tions that admit optimal gathering. This makes use of the algorithm designed for
asymmetric configurations defined in the proof of Theorem 10, hence providing a
full characterization of optimal gathering on rings.

Some further definitions and useful properties about Weber points on rings are
still required.

Definition 4 Given a configuration (R, μ) on a ring R of n vertices, two vertices
are said antipodal if their distance is � n

2 �. Two robots are said antipodal if they lie
on two antipodal vertices.

Lemma 9 Given a configuration C = (R, μ) on a ring R with an even number of
vertices, if vertex u is a Weber point then it is a Weber point also in the configuration
C ′ obtained from C by removing all the antipodal robots.

Corollary 6 Given a configuration C = (R, μ) on a ring R with an even number
of vertices, if it contains only pairs of antipodal robots then C is periodic.

It is worth noting that when a configuration satisfies the hypothesis of Corollary 6
then by Lemma 9 all its vertices are Weber points since all the vertices of an empty
ring have centrality nil.

Theorem 11 Given an aperiodic configuration C = (R, μ) on a ring R with an
even number of vertices, if vertex v is a Weber point in C then its antipodal vertex is
not a Weber point.

Theorem 12 Given a configuration C on a ring R with an odd number of vertices,
if two adjacent vertices u and v are two Weber points, and at most one of them is
occupied, then vertex w whose antipodal vertices are u and v is not a Weber point.

We are now ready to define another part of the main algorithm to deal with
symmetric configurations with an odd number of robots.
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Theorem 13 Given a symmetric configuration C = (R, μ) on a ring R with an odd
number of robots, then optimal gathering can be accomplished.

The algorithm provided in the proof of Theorem 13 works as follows.
If C is symmetric, there must be exactly one robot lying on the axis of symmetry

since the number of robots is odd. If there is only one Weber point, then optimal
gathering is achieved by exploiting Corollary 5. If there are at least twoWeber points,
the algorithm then moves the robot on the axis towards one of the two possible
directions, indiscriminately. By Theorem 5, all the Weber points contained in the
semi-ring where the robot moved are maintained, while all the Weber points in the
other semi-ring (that was originally symmetric) disappear. The only exception might
be the antipodal vertex (if any)with respect to the original location of themoved robot
when the ring is composed of an even number of vertices. Again, if after the move
there is only one Weber point, then optimal gathering is accomplished by exploiting
Corollary 5. If there are at least two Weber points, the obtained configuration can be
symmetric or asymmetric (possibly containing amultiplicity). In the former case, the
algorithmmoves again the new robot on the axis, and by [22] we are assured that this
can happen afinite number of times until reaching an asymmetric configuration. From
asymmetric configurations, Theorem 9 can be exploited to finalize the gathering.

For the case of even number of robots on symmetric configurations, we need two
more definitions.

Definition 5 Given a symmetric configuration on a ring R of n vertices, a vertex v
is called north if it lies on the axis and it is a Weber point. The edge whose endpoints
are the antipodal vertices (in case of vertex-edge symmetry) of v or its antipodal
vertex (in case of vertex-vertex symmetry) is called south.

It is worth nothing that we use the above definition only for symmetric configurations
with single axis of typevertex-vertexor vertex-edge,with aWeber point on the axis. In
particular, in case of vertex-vertex symmetry the definition is not ambiguous. In fact,
from Theorem 11 the two vertices on the axis cannot be bothWeber points. Contrary,
if both are not Weber points and are empty, by Theorem 4 optimal gathering cannot
be accomplished, hence we do not need such definitions. As we are going to see, if
both are not Weber points but are occupied, optimal gathering can be assured but
the strategy does not require to define north and south. Whereas, another definition
required together with north and south is the following.

Definition 6 Given a symmetric configuration on a ring R, the line orthogonal to
the axis of symmetry, cutting R on two edges into two subrings whose size differ of
at most one vertex in favor of the southern side is called the horizon.

We are now ready to provide an optimal gathering algorithm for all configurations
where this is possible. Let U be the set of initial configurations where optimal
gathering cannot be assured, that is, configurations with two robots, or periodic, or
admitting an axis of symmetry not passing through a Weber point nor a robot. The
algorithm is described from the perspective of a generic robot after having performed
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its Look phase. The output of the algorithm is then the decision of the robot to move
somewhere or to stay idle.

Theorem 14 (Optimal gathering on rings) There exist an optimal gathering algo-
rithm for a configuration C = (R, μ) on a ring R of n vertices if and only if C /∈ U .

The algorithm provided in the proof of Theorem 14 works as follows.
Configurationswith anoddnumber of robots have been solvedbyTheorem13, and

robots can always recognize they are in such a case by computing k = ∑n−1
i=0 μ(vi ).

The asymmetric case has been already solved by Theorem 10. The proposed
technique must be slightly modified in order to integrate it with symmetric cases,
hence obtaining a unique optimal gathering algorithm characterizing all possible
configurations.

If configuration C admits a single axis of symmetry passing through two robots,
by Theorem 4, the vertices where such robots lie cannot be both Weber points. If
one is a Weber point and it is the only one among all vertices, then by Corollary 5
optimal gathering can be accomplished. If there is more than one Weber point in C
then the algorithm makes move one of the robots on the axis (towards any direction)
as follows.

If there is an odd number ofWeber points (the north is aWeber point, necessarily),
then the robot occupying the south is moved. In doing so, the number ofWeber points
remains odd since those initially residing at one side of the axis of symmetry have
disappeared but not the one on the north. The obtained configuration can be still
symmetric (of type robot-robot or node-node) with a Weber point on the axis and
less Weber points than the original one. The case of node-node-symmetry will be
discussed later, while for the case of robot-robot the same arguments can be applied
again.

If there is an even number of Weber points (the north is not a Weber point), then
the robot occupying the north is moved unless it creates a new axis of symmetry. In
such a case, the one on the south is moved and we are sure that the configuration
becomes asymmetric.

If C is symmetric without robots on the axis, the algorithm allows only moves
towards northwhere the gatheringwill be eventually accomplished. The north, which
is a Weber point, must exist as otherwise, by Theorem 4, optimal gathering is not
possible.

Consider an even number of robots greater than four. The case of four robots
will be handled later. From Theorem 9 the set of Weber points in R is given by a
set of paths, and by hypothesis there is at least one path of Weber points (possibly
made of just one vertex) containing the north. Moreover, due to symmetry and by
Theorems 11 and 12, the number of such paths is odd and the two adjacent vertices
at one side of R divided by the horizon cannot be both Weber points unless they are
both occupied. If they are not occupied, the algorithm then moves the robots lying
on the two Weber points closest to the horizon—and in case of ties the farthest from
the axis of symmetry—towards north. Due to asynchrony, either one or two robots
move. In either cases, by Theorem 5 all Weber points below the horizon disappear
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while all those above are preserved. Hence the number of paths of Weber points is
still odd, and the obtained configurationC ′ maintains the original axis of symmetry if
both robots have moved, or it is asymmetric at one step from the original symmetry
if only one robot has moved. When only one robot moves, we are sure that the
new configuration cannot be symmetric. Then, robots can detect whether the current
asymmetric configuration may have been obtained from a symmetric one, and hence
they can recognize the unique robot that can (re)-establish the original symmetry.
Note that, the algorithm leads to a symmetric configuration even though the initial
configuration is asymmetric but obtainable from a symmetric one. This is the only
modification required to the algorithm provided in the proof of Theorem 10 for
asymmetric configurations. This technique is applied until creating two symmetric
multiplicities. Since we are considering at least six robots, if there are two robots
above the multiplicities, the algorithm makes the two northern robots move towards
north where they will create a third multiplicity, eventually. If there are no robots
norther than the multiplicities, then the multiplicities are moved towards north until
they join. In both cases, once a multiplicity is created on the north, by Theorem 5 this
is the only Weber point, and hence the gathering can be easily finalized by applying
Corollary 5.

In the case where in C the two pairs of adjacent vertices divided by the horizon
are all occupied, the two southern ones move towards north. If both move, two
multiplicities are created and similar arguments as above hold. If only one moves,
only onemultiplicity is created, but again similar arguments as above permit to create
the second symmetric multiplicity, hence the gathering can be finalized on north.

It remains to consider the case of exactly four robots. Since the number of paths
of Weber points must be odd there can be only one path of Weber points containing
the north. The algorithm moves the two robots closest to the north towards it until
creating a multiplicity. This can be realized since the other two robots are symmetric
with respect to the original axis of symmetry, and cannot be as such with respect to
another axis. Again, once a multiplicity is created on the north, this is the onlyWeber
point, and hence the gathering can be finalized by applying Corollary 5.

5.5 Optimal Gathering on Infinite Grids

In this section, we fully characterize optimal gathering on infinite grids. Let an
infinite path be the graph P = (Z, E) with E = {{i, i + 1} : i ∈ Z

}
. An infinite

grid is defined as the Cartesian product G = P × P . A vertex of the grid is then an
ordered pair of integers called coordinates. If G is an infinite grid then C = (G, μ)

is a configuration on G.
Notice that on infinite grids the topology does not help in detecting a gathering

vertex. Nonetheless, the interest in infinite grids also arises from the fact that they
represent a natural discretization of the plane.Wedetect all the specific configurations
where gathering cannot be performed. For all other configurations, we devise a
distributed algorithm that exploit the global-strongmultiplicity detection and, assures
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gathering on a Weber point by letting robots move along the shortest paths toward
such a vertex, i.e., our algorithm is optimal in terms of moves.

LetC = (G, μ) be a configuration and SC be theminimal (finite) sub-grid contain-
ing all the occupied vertices of the infinite grid G, and (SC , μ) be the corresponding
configuration. It is worth mentioning that SC may change while robots move. As a
consequence, even though SC is a finite grid, the approach of [10] cannot be applied
(it is strongly dependent on the dimensions of the grid where robots reside).

During the Look phase, a robot perceives (SC , μ) and it is able to recognize its
position on SC if (G, μ) is asymmetric. Whereas, if (G, μ) admits an isometry ϕ

different from the identity, a robot cannot distinguish its position at u from ϕ(u),
unless u = ϕ(u). As a consequence, two robots (e.g., one on u and one on ϕ(u)) can
decide to move simultaneously, as any algorithm is unable to distinguish between
them. This fact greatly increases the difficulty to devise a gathering algorithm for
symmetric configurations.

In an infinite grid, the center of a rotation can be a vertex, or the center of an
edge, or the center of the area surrounded by four vertices, whereas the angle of
rotation can be of 90◦ or 180◦. Reflections axis can be horizontal (vertical), passing
through vertices or through the middle of edges, or diagonal (45◦), passing through
vertices. If we assume the infinite grid embedded in a Cartesian plane, it is not
difficult to see that other than rotations and reflections it admits also translations,
that is a shifting of the vertices by applying the same displacement to each vertex.
Regarding translations, even if they are possible for infinite grids, they do not belong
to any automorphism group of configurations as these are defined for a finite (not
null) number of robots. Note that, an infinite number of robots (or no robots at all) is
required also when the configuration admits two parallel axis of symmetry, one axis
and one center of rotation not lying on the axis, or two distinct centers of rotation.
Moreover the automorphism group of a configuration with a finite number of robots
is finite.

In order to check whether the current configuration could have been obtained
from a symmetric one, we introduce the concept of previous position for a robot.
Sometimes, an algorithm simulates itself by considering a configuration C ′ which
is identical to the current configuration C but for the position of one robot r . If an
execution of the algorithm can lead from C ′ to C then the simulated position of r
in C ′ is called a previous position for r . This method will be used to detect possible
pending moves when C ′ is symmetric.

Definition 7 Given a configuration C = (G, μ), GWP(C) is the subgraph induced
by its Weber points.

According to Corollary 5, in a configuration that admits only oneWeber point the
gathering can be achieved by an optimal algorithm. In what follows, configurations
with one single Weber point are called of type S.

Impossibility results. We have already observed that, in general, a partitive configu-
ration is ungatherable. In infinite grids, this result implies that all initial configurations
with an axis of symmetry not passing through vertices or admitting a rotation with a
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center not coinciding with a vertex, are ungatherable. In fact, all such configurations
are partitive with orbits of size at least two, and only those admitting rotations of 90◦
have orbits of size four.

In what follows we say that a symmetry is allowed if it is not partitive.

Theorem 15 Let C = (G, μ) be a configuration, Then,

• If C contains only two robots (or equivalently, two multiplicities of the same size),
then it is ungatherable.

• If C contains only four robots (or equivalently, four multiplicities of the same size)
disposed on the corners of SC , then C is ungatherable.

In this section we denote by U the set of all initial configurations proved to be
ungatherable. The set U includes all partitive configurations, those with only two
robots, and those with four robots disposed as the corners of a rectangle. We will
show a gathering algorithm for all the remaining initial configurations.

It is worth noting (see [10]) that gathering on finite grids was possible without
any multiplicity detection due to the existence of special vertices like corners. The
following results states that in our context the multiplicity detection is mandatory.

Theorem 16 If robots are not empowered by any multiplicity detection capability,
then the gathering problem is unsolvable on infinite grids.

Here, we are assuming robots empowered by global-strongmultiplicity detection.
As shown by Fig. 13, relaxing such an assumption to the global-weak or any local
multiplicity detection, makes ungatherable in the optimal way some configurations.
Figure13a shows a symmetric configurationwhichmay lead to two different configu-
rations. Only twomoves in fact can be defined in order to gather all robots via shortest
paths at one of the nine Weber points available. It is easy to check that GWP(C) is
constituted by the central subgrid of dimension 3 × 3. Any optimal algorithm can
allow each robot to move toward either the farthest or the closest robot that shares
one coordinate with it, any other move would lead robots away from Weber points.

(c) (d)(b)(a) (e)

Fig. 13 Empty circles represent single robots; filled circles represent multiplicities. a Symmetric
configuration with nine Weber points in the center. b Symmetric configuration obtainable from
(a) with nine Weber points. c Symmetric configuration obtainable from (a) with one Weber point
in the center. d Symmetric configuration obtainable from (c) with one Weber point recognizable
only if robots are empowered by global-strong multiplicity detection. e Symmetric configuration
obtainable from (d) with one Weber point recognizable only if robots are empowered by global-
strong multiplicity detection
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Note that, the adversary can make all robots synchronously move since for each pair
of robots there exists a symmetry with respect to which their occupied vertices are
equivalent. If all robots move synchronously, in the first case (in the second case,
resp.) configuration of Fig. 13b (Fig. 13c, resp.) is reached. By Theorem 15, config-
uration in Fig. 13b is ungatherable. From configuration in Fig. 13c, only the move
toward the center (the uniqueWeber point left) can be allowed. If the adversarymakes
all the robots move for one step, configuration in Fig. 13d is obtained. From there, if
all the robots but those belonging to only one multiplicity make another step, then
configuration in Fig. 13e is reached. From this configuration, without global-strong
multiplicity detection, the twomultiplicities are indistinguishable and byTheorem15
the reached configuration in ungatherable.

5.5.1 One-Dimensional Grids

We first consider infinite paths as grids with one row and infinitely many columns.

Lemma 10 If the number of robots k is odd, then there exists only one Weber point.
If k is even, then all vertices of the subpath delimited by the two central robots
(including the vertices where such robots lie) are Weber points.

Theorem 17 Optimal gathering on one-dimensional grids is always achievable
except for configurations with only two robots or admitting partitive automorphisms.

In the previous theorem, the ungatherable cases simply follow from Theorem 3
and 15. When the number of robots is odd, from Lemma 10 there exists only one
Weber point and optimal gathering can be achieved by Corollary 5.

Let us observe how the optimal gathering is achievable when the number of robots
is even. In such a case, if the configuration is symmetric, then the subpath of Weber
points must be odd as otherwise the configuration is partitive. The idea is then to
move the robots delimiting the Weber points toward the central vertex. If both move
synchronously, the configuration remains symmetric but the interval ofWeber points
is reduced until only theWeber point at the central vertex remains. If only onemoves,
it is possible to recognize the robot that has tomove to (re)-establish the symmetry. In
fact, considering the two intervals of free vertices neighboring the robots delimiting
the Weber points, the algorithm allows to move the robot delimiting the shortest
interval.

When the number of robots is even, but the configuration is asymmetric, then
either it is at one move from a possible symmetry which is allowed, or one of the
two robots delimiting the Weber points can be chosen to move toward the other one
without creating a symmetry until only one Weber point remains.

Finally, when there is only oneWeber point, fromCorollary 5, all robots canmove
safely toward it. It is worth to notice that such an algorithm also works when the
input configuration admits multiplicities.
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5.5.2 Two-Dimensional Grids

We now describe a general optimal algorithm to solve the gathering problem for
each configuration C = (G, μ) such that C /∈ U . From Corollary 5, if the configu-
ration C admits only one Weber point (that is, C ∈ S), then optimal gathering can
be accomplished. Another characterization is provided by considering SC , and in
particular the projections of the robots to the two generating paths P1 and P2 of G.
Given a robot on a generic vertex (i, j) of G, its projections on P1 and P2 are a robot
on vertex i and a robot on vertex j , respectively. This gives rise to two configurations
(P1, μ1) and (P2, μ2) such that μ1(v) = ∑

j μ((v, j)) and μ2(v) = ∑
i μ((i, v)).

As the movements on a grid are either vertical or horizontal, solving the gathering
with respect to the two dimensions separately, solves the general problem.

Theorem 18 Given a configuration C = (G, μ) with G = P1 × P2, if (P1, μ1) and
(P2, μ2) are optimally gatherable, then also C is optimally gatherable.

The optimal gathering considered in the previous theorem is obtained by simply
considering (P1, μ1) and (P2, μ2) separately.Each timea robotwakes-up, it canmove
with respect to any of the two instances indiscriminately, as they are independent
to each other. Theorem 17 guarantees optimal gathering on both the instances even
though they might contain multiplicities.

Note that there are gatherable configurations that do not satisfy the assumptions of
Theorem 18. Hence, a more general strategy must be designed in order to cope with
all the gatherable configurations. The next theorem provides a useful characterization
about the arrangement of Weber points in a configuration.

Theorem 19 Given a configuration C = (G, μ) with G = P1 × P2, GWP(C) is a
finite grid defined by the Cartesian product of the subpaths induced by the Weber
points belonging to (P1, μ1) and (P2, μ2).

By referring to Fig. 14, it is worth noting that GWP(C), for some configuration
C , is in general a finite grid where robots can occupy only the corners. Moreover,

Fig. 14 A sample
configuration C which
induces SC , GWP(C), and its
projections to the sides of SC

2

2 (P1, �1)

(P2, �2)

SC

GWP(C)
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all the vertices belonging to the strips from GWP(C) to the borders of SC cannot be
occupied, but for the ones sharing coordinates with the border of GWP(C). These
robots will be said to determine GWP(C). Note that, given a configuration C with k
robots, evaluating the set of Weber points has time complexity O(|SC | × k).

Grids with an odd number of robots. By Lemma 10, an odd number of robots
implies a single Weber point for each instance on the two paths generating G. By
Theorem 19, the Cartesian product of those two Weber points constitutes the only
Weber point of the configuration, hence by Corollary 5 optimal gathering can be
assured. Then, the following results follows.

Corollary 7 If the number of robots in a grid G is odd, then optimal gathering can
be accomplished.

Grids with an even number of robots for which SC has all sides of odd length and
a center that is a Weber point. Here we describe a general strategy that solves the
optimal gathering problem for all the configurations with an even number of robots
not in U .

First of all, if SC has both sides odd and the center is a Weber point then we can
gather all the robots in the center. The idea at the basis of the strategy is to move
all the robots not lying on the border of SC toward the center that becomes the only
Weber point of the current configuration. From there on, all the other robots can
join the unique Weber point. This can be easily realized if the number of robots is
“sufficiently” large, while for few robots specific strategies are required. The next
lemma holds when the number of robots is at least 6.

Lemma 11 Let C = (G, μ) be an initial configuration inducing SC with both sides
odd and the center being a Weber point, then if the number of robots is at least 6,
there exists an optimal gathering algorithm.

Let us nowdescribe the optimal gathering algorithmwhose existence is guaranteed
by the previous theorem.

For each side of SC , consider the robot (or the two robots) farthest from the central
vertex of the chosen side. The algorithm first makes all other robots move toward
the center of SC . At this point, we consider different cases according to the number
of robots occupying the corners of SC :

• No corners occupied. Each robot lying on a side of SC is moved to the center of
the side. The obtained configuration is then composed of one or two robots at the
center of each side and zero or more robots at the center of SC .

• One corner occupied. Since one corner is occupied, the robots (if any) on the sides
defining the occupied corner have been moved by the algorithm toward the center
of SC . For each of the other two sides, let r be the closest robot to the occupied
corner, the algorithm makes the other robot (if any) move toward the center of
SC . Then, r is moved to the center of its side. The obtained configuration is then
composed by the robot on the corner, no other robots on the two sides sharing one
coordinate with the corner occupied, one robot for each of the other two sides at
their centers, and at least three robots in the center of SC .
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• Two corners occupied. If the two corners occupied do not share any coordinate,
then the algorithm makes all the robots move but those in the corners to the center
of SC , where there will be at least four robots.
If the two corners occupied share one coordinate, then consider the only side s
of SC whose endpoints are not occupied. All the robots except the two on the
occupied corners and the one(s) on s farthest from the center of SC , are moved
to the center of SC . After completion of these moves, the algorithm makes the
remaining robot(s) on s move to its center. The obtained configuration is then
composed by the two robots on the corners, no other robots on the three sides
sharing one coordinate with the corners occupied, one robot or two robots in the
center of s, and at least two robots in the center of SC .

• Three corners occupied. In this case, there are two robots in two different corners
not sharing any coordinate, hence the algorithm makes all the other robots move
toward the center of SC , where there will be at least four robots.

• Four corners occupied. The algorithm makes all robots move but those in the
corners toward the center of SC , where there will be at least two robots.
In all the above cases, the obtained configuration admits only one Weber point
at the center of SC . This can be easily checked considering (G, μ) as the Carte-
sian product of two configurations on two paths (P1, μ1) and (P2, μ2) where
μ1(x) = ∑

y μ((x, y)) and μ2(y) = ∑
x μ((x, y)), and by applying Lemma 10

and Theorem 19.
By Corollary 5, at this point all the robots can move toward the only Weber point,
hence achieving the gathering. Moreover, as all the computed moves have been
performed toward the final Weber point, then the proposed algorithm is optimal.

For the case of just 4 robots, the next lemma holds.

Lemma 12 Let C = (G, μ) be an initial configuration inducing SC with both sides
odd and the center being a Weber point, then if there are only 4 robots, there exists
an optimal gathering algorithm unless each robot occupies a different corner of SC .

Remark 2 Configurations admitting rotations but not in U are solved by the above
two lemmata since the center of rotation is a vertex in such cases (i.e., SC has both
sides odd) and it is a Weber point.

Grid with an even number of robots for which SC has a side with an even length
or a center that is not a Weber point. Before proceeding with the characterization
of the algorithm, we need to better specify the view of the robots during their Look
phase when no multiplicities occur.

Let us consider the eight sequences of distances (number of empty vertices)
between occupied vertices obtained by traversing SC starting from its four cor-
ners and proceeding toward the two possible directions. If proceeding vertically,
all columns will be considered sequentially. Similarly for the rows if proceeding
horizontally. Note that the two sequences associated to a corner occupied by a
robot start with 0. For instance, by referring to Fig. 14, the top-left corner is asso-
ciated with (1, 27, 24, 6, 36, 15, 11, 12, 4) by reading the configuration vertically,
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and with (6, 7, 1, 18, 43, 28, 9, 19, 5) by reading the configuration horizontally. To
better understand how such sequences are computed, consider the one obtained by
the vertical reading. Starting from the top-left corner of SC and moving down the
first column it takes 1 empty vertex to reach the first robot. Thus, 1 is the first term
of the sequence. Going further down we see 7 empty vertices in the first column.
Then we start from the top of the second column and walk down. We pass additional
9 empty vertices. We then walk down the third column and pass another 9 empty
vertices. Finally, starting from the top of the fourth column we meet 2 empty vertices
before arriving at the next robot. Thus the total number of empty vertices between
the first and the second robot is 7 + 9 + 9 + 2 = 27, and this is the second term of
the sequence, and so forth.

We associate for each corner the lexicographically largest sequence between the
two readings from such corner. Note that, in square grids such two sequences are
always different, but for the two corners through which a possible axis of symmetry
passes. In rectangular grids, if the two sequences are equal, we assume as larger the
one when read in the direction of the largest side.

We define the maximal sequence as the largest one among the four sequences
associated to the four corners.We refer to the corner(s) defining themaximal sequence
as preferred corner(s), and to the direction(s) that implies the maximal sequence as
preferred direction(s).

In Fig. 14, the preferred corner of SC is the bottom-left one, the preferred direction
is horizontal, and the maximal sequence is (10, 11, 21, 34, 19, 12, 21, 7, 1).

We are now ready to describe the gathering algorithm for each configuration
C /∈ U with more than one Weber point, where SC has at least one side even or its
center is not a Weber point.

In general, if a configuration is symmetric, the algorithmmay allow themovement
of two symmetric robots. If both move, the configuration remains symmetric. If only
one moves, the algorithm always forces to move the one that can (re)-establish the
symmetry. In fact, from asymmetric configurations at one step from an allowed
symmetry it is always possible to detect one unique robot that has to move in order
to (re)-establish the symmetry.

Let C be a configuration. According to the number of corners of GWP(C) occu-
pied by robots, different strategies are applied (see Fig. 15 for a visualization of the
configurations that will be considered).

• Type F :No corners occupied.Among these configurations, F1 are the asymmetric
ones, F2 the symmetric configurations with a horizontal/vertical axis, and F3 the
symmetric configurations with a diagonal axis.
First we consider the caseswhenGWP(C) is not a path. IfC is in F2, then among the
robots determiningGWP(C), consider those closest toGWP(C). Among such robots
consider those closest toGWP(C)with respect to the preferreddirection, if any.Only
two robots are then selected by considering those closest to the preferred corners.
Such robots move toward GWP(C). In this case, either two symmetric robots move
synchronously, or only one moves, and the other one is possibly pending. We
will show that our algorithm always force the possible pending robot to move.
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F1 F2 F3 A M

B1 B2 C1 C3C2

E1 E2D SE3

Fig. 15 Types of configurations according to the number of corners of GWP(C) occupied by
robots/multiplicities. Dashed lines delimit GWP(C), empty circles represent single robots, and filled
circles represent multiplicities

Eventually, this process leads to symmetric configurations with two corners of
GWP(C) occupied. The axis of reflection is the bisector of the line determined by
GWP(C).
IfC is in F3, then among the robots determiningGWP(C), consider those closest to
GWP(C). Among such robots consider those closest to GWP(C) with respect to the
preferred direction, if any. Only two robots are then selected by considering those
closest to the preferred corner(s). Such robots move towardGWP(C). As above, our
algorithm forces the two selected robots to move symmetrically. Again, we will
show that our algorithm always forces the possible pending robot to move. Even-
tually, this process leads to symmetric configurations with one corner occupied by
a multiplicity.
If C is in F1 at more than one move from an allowed symmetry, the closest robot
to GWP(C) moves toward it. Ties are solved by considering the preferred direction
and the preferred corner.
When GWP(C) consists of just a path, the strategy is the same as above but limited
to the robot(s) lying on the extension of GWP(C), and not those determining its
endpoints.

• Type A:One corner occupied by a single robot. If the configuration is asymmetric,
first robots check whether an allowed symmetry can be (re)-established. We will
show that this is possible by finding the previous positions of the unique robot
on the corner of GWP(C). If a symmetry can be (re)-established, then the possible
pending robot is forced to perform its move. In any other case, the single robot on
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the corner moves in one of the two directions that reduce GWP(C), until obtaining
only one Weber point.

• Type M : One corner occupied by a multiplicity and possibly other corners occu-
pied.First, all robots sharing one coordinatewith themultiplicitymove in turn (i.e.,
without creating anothermultiplicity) until joining it, toward the shared coordinate.
After that, if there is more than one Weber point, among the robots determining
GWP(C), consider those closest to it. Such robots—at most four—move (even con-
currently) along the direction that reducesGWP(C), until they share one coordinate
with the multiplicity.

• Types B and C : Two corners occupied. Among these configurations we denote by
B the set of configurations where the two corners occupied share one coordinate
except for symmetric configurations with the axis passing through the two occu-
pied corners. These last configurations and the remaining ones with two corners
occupied are denoted byC . B1 ⊂ B represents symmetric configurations, B2 ⊂ B
the asymmetric ones. C1 ⊂ C represents asymmetric configurations, C2 ⊂ C the
symmetric ones with the axis passing through the occupied corners, and C3 ⊂ C
the remaining symmetric configurations.
From B1, the two robots on GWP(C) move toward each other, still maintaining the
symmetry. Note that, the two robots are separated by an odd path, as otherwise the
configuration is ungatherable by Theorem 3.
From B2, the algorithm (re)-establishes an allowed symmetry, if any. Otherwise,
the robot r on the corner of GWP(C), closest to the preferred corner, moves toward
the other robot r ′. If such a move would generate an ungatherable configuration,
then r ′ moves toward r .
From C1, the algorithm (re)-establishes an allowed symmetry, if any. Otherwise,
if GWP(C) is composed of more than four vertices, the first robot r met among
the two on the corners of GWP(C) from the preferred corner along the preferred
direction moves toward the other robot r ′ unless it makes GWP(C) as a path or
the move brings to an ungatherable configuration. In which case, r ′ moves. When
GWP(C) is a square grid of four vertices, then we ensures that the selected robot
can safely move toward the other one.
From C2, if GWP(C) is not a path, the robot that moves is the one at the corner of
GWP(C) closest to the corner of SC associated with the maximal sequence among
the two corners on the axis. If GWP(C) is a path, the robot that moves is the one
closest to the corners of SC associated with the maximal sequence.
From C3, the two robots on the corners of GWP(C) move toward the corner of
GWP(C) on the axis, closest to the corner of SC associated with the maximal
sequence.
In all the cases, a configuration in S with a multiplicity occupying the only Weber
point will be reached, eventually.

• Type D: Three corners occupied. From D, the robot on the middle corner moves
toward one of the two other occupied corners. This leads to a configuration with
two corners occupied or with one corner occupied by a multiplicity. We will show
that if the configuration is at onemove from an allowed symmetry, then the defined
move involves exactly the robot that can (re)-establish the symmetry.
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Fig. 16 Procedure Compute

• Type E : Four corners occupied. Among configurations E , we denote by E1 the
symmetric ones with a diagonal axis, by E2 the remaining symmetric ones, and
by E3 the asymmetric ones.
From E1, the robot on GWP(C) closest to the corner of SC on the axis associated
with the maximal sequence, moves reducing the Weber points.
From E2, the two robots on GWP(C) closest to the preferred corners move toward
each other. Note that, if both move synchronously, then a symmetric configuration
with two corners occupied or with a multiplicity is obtained. If only one moves,
then a configuration of type D is obtained. According to that case, the robot that
will be allowed to move is the one with a possible pending move, hence it does
not create further pending moves.
From E3, the robot on GWP(C) closest to the preferred corner moves reducing the
Weber points.

Summarizing, the algorithm applied by the robots during the compute phase is
shown in Fig. 16.

Correctness. When C ∈ S, the correctness is guaranteed by Corollary 5. By Theo-
rem 19, S includes all configurations with an odd number of robots. When there is
more than oneWeber point, ifC contains an even number of robots with SC admitting
both sides odd and its center being a Weber point, the correctness is guaranteed by
Lemmata 11 and 12.

When SC has at least one side even or its center is not aWeber point, we are going
to prove that the defined strategy always leads to configurations in S, and from there
the gathering is finalized by applying Corollary 5. Moreover, along this transition,
the target vertex where gathering is finalized never changes, hence robots always
move along their shortest paths toward the gathering vertex.
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Fig. 17 Transitions among types of configurations allowed by the optimal gathering algorithm
when SC has at least one side even or its center is not a Weber point

The general scheme of the transitions obtainable by our algorithm when SC has
at least one side even or its center is not a Weber point is shown in Fig. 17. For the
ease of visualization, self-loops are not shown in the figure since from each class
except S, an exit transition is always taken, eventually. From S, instead, gathering
is always finalized. We have to prove that the only possible transitions generated by
our algorithm are those depicted in the figure, hence S being the only sink node that
will be reached, eventually.

The following theorem summarizes the described results about infinite grids.

Theorem 20 (Optimal gathering on infinite grids) Given an initial configuration
C = (G, μ) on an infinite grid G, optimal gathering can be assured unless C ∈ U .

6 Conclusion

We have reviewed recent results about the gathering problem of anonymous, asyn-
chronous, and oblivious robots placed on different environments, like the Euclidean
plane and some graph topologies (trees, rings, and infinite grids). Robots operate in
the Look-Compute-Move model possibly empowered with the multiplicity detec-
tion, and they are required to gather at one of some predetermined meeting-points
(when the environment is the plane) or at a vertex of the graph.

These results provide a possible answer to a recent research question that asks
for gathering algorithms designed by taking into account not only the feasibility but
also some kind of cost measure for the solution. To this aim, we have shown that it
is possible to use a generalization of the classic definitions of optimization problem
and approximation algorithm to the context of robot-based computing systems. The
considered cost measure is the minimum total traveled distance of all robots, which
implies that any optimal gathering algorithm must move robots through shortest
paths.

We have shown that, for each considered environment in which robots move,
there exists an optimal distributed gathering algorithm that solves the problem for
all configurations but those proved to be (optimally) ungatherable.
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These results suggest to investigate a new branch of research that concerns the def-
inition of new optimization problems. In fact, previous strategies/settings can be now
reconsidered with respect to the new optimization tasks, or other objective functions.
Actually, the introduced concepts of meeting-points or optimality requirements can
be also explored with respect to other problems concerning robot-based computing
systems. For instance, a challenging investigation may concern basic coordination
problems like pattern formation, scattering, leader election or dynamic tasks like
flocking and sequential pattern formation.
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The MinSum-MinHop
and the MaxMin-MinHop Bicriteria
Path Problems

Marta Pascoal

Abstract The number of hops (or arcs) of a path is a frequent objective function with

applications to problems where network resources utilization is to be minimized. In

this chapter we solve bicriteria path problems involving this objective function and

two other common metrics, the path cost and the path capacity. Labeling algorithms

are introduced, which use a breadth-first search tree in order to compute the maximal

and the minimal sets of non-dominated paths. Dominance rules are derived for the

two bicriteria problems and the properties of this data structure are explored to better

suit the number of hops objective function and thus simplify the labeling process.

Computational experiments comparing the new methods with standard approaches

on randomly generated test instances and on instances that simulate video traffic are

presented and discussed. Results show a significant speed-up over generic standard

methods.

1 Introduction

Optimal path problems are classical network optimization problems which arise in

several contexts and with different types of objective functions [1]. However, very

often a single objective function cannot completely characterize a problem. Two of

the most common objective functions used in these problems are the path cost, given

by an additive function, in general to be minimized, and the path capacity, which is

a bottleneck function, in general to be maximized. These two problems will be des-

ignated by MinSum and MaxMin, respectively. In 1980 Hansen [11] presented a list

of several bicriteria path problems, studied their complexity, and adapted labeling

algorithms to solve them. These problems include the MinSum-MinSum path prob-
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lem (which minimizes two cost functions) and the MinSum-MaxMin path problem

(which minimizes the cost and maximizes the capacity). Later Martins [13] general-

ized labeling algorithms for the MinSum path problem with more than two objective

functions, and in [14] the same author studied the MinSum-MaxMin case and devel-

oped both an algorithm for finding the maximal set of non-dominated paths and

another algorithm for finding simply the minimum set of non-dominated paths, thus

computing the non-dominated objective values. Recently the algorithm presented by

Martins [13] was extended by Gandibleux et al. [9] to cope with more than a single

cost function and one bottleneck function. Other labeling algorithms [4, 18] have

also been presented for the MinSum-MinSum case, as well as for path problems

with a higher number of objective functions to optimize [3, 12, 15].

The number of arcs in a path, or the number of hops borrowing from the telecom-

munications terminology, is another useful in practice and common objective func-

tion with particular interest to telecommunications. In general this criterion should

be minimized, thus we designate the corresponding problem by MinHop. In such

problems it is frequent to look for a route using the maximum available bandwidth,

or having the minimum cost (sometimes also related with the arcs bandwidth). The

hop-constrained shortest path problem, where the goal is to seek the shortest path

with at most H arcs, for a given integer H, is another version of the problem, which

arises often as a subproblem in telecommunication network design problems, where

a given specified level of service with respect to certain measures (such as delay or

reliability) must be met by each commodity [2]. This particular problem has been

addressed, for instance, by Dahl and Gouveia [8]and by Riedl in [17], where the

problem’s polytope is characterized for particular cases of H.

When combining the objective function number of hops with the cost or with

the bandwidth, the MinHop-MinSum or the MinHop-MaxMin path problems are

obtained. These are particular cases of the MinSum-MinSum or the

MinSum-MaxMin path problems, since the number of hops can be seen as an addi-

tive function where all arcs have cost equal to 1. Some problems related to these two

variants can be found in the works by Cheng and Ansari, Guerin and Orda, and Ran-

driamasy, Fourni and Hong [5, 10, 16]. Still, despite their large number of potential

applications, to our knowledge no specific method have been developed to deal with

them.

This manuscript focuses on labeling algorithms for the MinHop-MinSum and the

MinHop-MaxMin path problems, aiming to determine the minimal and the maximal

sets of non-dominated paths. It is known that breadth-search allows to scan the nodes

of a tree by order of the level they belong to, and therefore the proposed methods use

a queue to manage the labels associated with each generated path. This results in a

simplification of the labeling procedure, namely regarding the dominance test and

in the decrease of the CPU time.

The remainder of the text is organized as follows. In Sect. 2 notation, preliminary

concepts and the problems are introduced. Section 3 is dedicated to the presentation

of labeling algorithms for the minimum hop-shortest path problem from two points

of view, the determination of all non-dominated paths or simply of those with distinct
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objective values, while Sect. 4 is devoted to the minimum hop-maximum capacity

path problem. In Sect. 5 the results of computational experiments are reported and

discussed. Conclusions follow in Sect. 6.

2 Preliminaries

Let (N,A) be a directed network consisting of a set N = {1,… , n} of nodes and

of a set A = {1,… ,m} of arcs. Let s, the initial node, and t, the terminal node,

be two distinct nodes in (N,A). A path from s to t in (N,A) is a sequence of the

form p = ⟨v1,… , v𝓁⟩ where v1 = s, v𝓁 = t, vi ∈ N, i = 1,… ,𝓁, and (vi, vi+1) ∈ A,

i = 1,… ,𝓁 − 1. For simplicity we write (i, j) ∈ p if i and j are consecutive nodes

and i precedes j in p. Let P denote the set of all paths from s to t in (N,A). With each

arc (i, j) ∈ A are associated a cost cij ∈ ℝ and a capacity uij ∈ ℝ+
. Then the cost of

path p is defined by

c(p) =
∑

(i,j)∈p
cij,

its capacity by

u(p) = min
(i,j)∈p

{uij},

and its number of arcs by

h(p) = 𝓁 − 1.

Usually the functions c and h are minimized, whereas u is maximized. The single cri-

terion problems thus obtained will be called MinSum, MinHop and MaxMin, respec-

tively. These functions are combined in bicriteria path problems. The following sec-

tions focus on two of these problems, the MinHop-MinSum path problem, where h
and c are minimized, and the MinHop-MaxMin problem, where h is minimized and

u is maximized.

In general, the two objective functions of a bicriteria problem are not correlated

and there is no solution optimizing them simultaneously. Instead, the set of non-

dominated paths, for which there is no other solution that improves one of the objec-

tives without worsening the other, is computed. In the following definitions we bor-

row some terminology used by Gandibleux et al. [9] for multicriteria path problems.

As we focus on the optimization of different objective functions we present a general

definition of dominance.

Definition 1 Let p1, p2 be two paths between the same pair of nodes in (N,A) and

f1, f2 two functions defined for any path.

1. Path p1 dominates path p2 (denoted p1Dp2) if and only if fi(p1) is better than

or equal to fi(p2), i = 1, 2, and it is strictly better for at least one of the objec-

tive functions. In that case it can also be said that (f1(p1), f2(p1)) dominates

(f1(p2), f2(p2)) (denoted (f1(p1), f2(p1))D(f1(p2), f2(p2))).
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2. Path p1 strictly dominates path p2 if and only if it is better than p2 both for f1 and

f2. Paths p1, p2 are equivalent when fi(p1) = fi(p2), i = 1, 2.

Definition 2 A path p ∈ P is non-dominated, or efficient, if and only if it is not

dominated by any other. If there is no path that strictly dominates p, then p is said to

be weakly non-dominated, or weakly efficient.

Definition 3 Let PD be the subset of dominated paths in P. Then PN = P − PD
denotes the maximal complete set of non-dominated paths in P, while ̄PN denotes the

minimal complete set of non-dominated paths, the largest subset of PN that contains

no equivalent solutions.

3 MinHop-MinSum Path Problem

In labeling algorithms for bicriteria path problems several labels can be assigned

to a network node. Each label corresponds to a path in the network starting from s,
and thus a tree of paths rooted at s can be constructed. Some branches of this tree

can be pruned by testing the dominance of new nodes and of those that are already

in the tree, corresponding to paths. Like for the single criterion case, label setting

and label correcting algorithms for these problems differ on the strategy they use to

pick the next label to scan. If the lexicographically smallest label is taken, in the first

case, then it is permanent, that is, non-dominated, after being scanned, while with

label correcting algorithms non-dominated paths can only be known when all labels

have been scanned. In the following the labels used for each problem, as well as the

dominance rules to compare them, are defined.

For the MinHop-MinSum path problem a label associated with a node x in the

search tree of paths from s to other nodes has the form lx = [𝜋h
x , 𝜋

c
x , 𝜉x, 𝛽x], where

∙ 𝜋

h
x denotes the number of arcs in the path from the root node to x,

∙ 𝜋

c
x denotes its cost,

∙ 𝜉x is the node preceding x in that tree, and

∙ 𝛽x is the network node that corresponds to x.

Given 𝛽x = i ∈ N and (i, j) ∈ A, a new node y can be considered in the tree, with the

label

ly = [𝜋h
x + 1, 𝜋c

x + cij, x, j].

Let X denote the set of labels that are eligible to be scanned.

By definition of dominance between two labels lx, ly corresponding to paths end-

ing at the same network node can be compared by saying that lx is dominated by ly
if and only if

(𝜋h
x > 𝜋

h
y and 𝜋

c
x ≥ 𝜋

c
y) or (𝜋h

x ≥ 𝜋

h
y and 𝜋

c
x > 𝜋

c
y ). (1)
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Therefore, a new label ly can be discarded if there is another node x already in the

tree such that 𝛽x = 𝛽y and

(𝜋h
x < 𝜋

h
y and 𝜋

c
x ≤ 𝜋

c
y) or (𝜋h

x ≤ 𝜋

h
y and 𝜋

c
x < 𝜋

c
y ). (2)

On the other hand, whenever (1) holds for some label lx in the search tree, then lx
can be replaced by ly.

Now, considering the computation of the maximal set of non-dominated paths

and assuming X is manipulated as a First In First Out list (FIFO), that is, a queue,

the number of arcs of the analyzed paths, i.e. the 𝜋

h
x values, forms a non-decreasing

sequence [7]. Thus for a new label ly condition 𝜋

h
x ≤ 𝜋

h
y always holds, so that the first

part of (1) is never satisfied and (1) can be replaced by

𝜋

h
x = 𝜋

h
y and 𝜋

c
x > 𝜋

c
y . (3)

Furthermore the labels associated with a certain node have particular properties, as

shown in Lemma 1.

Lemma 1 If X is a FIFO, then for each level of the tree of paths rooted at s a tree
node is associated with several labels, if and only if all have the same objective
function values.

Proof Let lx and ly be two labels at the same level in X, that correspond to the same

node, i.e. 𝛽x = 𝛽y and 𝜋

h
x = 𝜋

h
y . By contradiction, assuming that 𝜋

c
x ≠ 𝜋

c
y , then:

1. either 𝜋
c
x < 𝜋

c
y , which implies lxDly, so y should not belong to X,

2. or else 𝜋

c
x > 𝜋

c
y , therefore lyDlx, so x should not belong to X.

Moreover, if a network node has several non-dominated labels with the same objec-

tive values, then they share the same value of h and belong to the same paths tree

level. ⊓⊔

This result yields a simplification of the acceptance condition of a new label, ly
(2), which can be restated as

(𝜋h
x < 𝜋

h
y and 𝜋

c
x > 𝜋

c
y) or (𝜋h

x = 𝜋

h
y and 𝜋

c
x ≥ 𝜋

c
y ), (4)

for any x ∈ X such that 𝛽x = 𝛽y, while if (3) holds for some node x ∈ X, this node

can be removed from the tree since the corresponding label is dominated. Using the

FIFO data structure to represent X, and conditions (3) and (4) as dominance rules,

the following result holds.

Corollary 1 If X is a FIFO, then the sequence of labels extracted from X and asso-
ciated with a network node is in lexicographic order.

Another consequence of Lemma 1 and Corollary 1 is that each label picked in X
is non-dominated.
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Algorithm 1: MinHop-MinSum maximal set of non-dominated paths determi-

nation

1 for i ∈ N do Lasti ← 0
2 nX ← 1; lnX ← [0, 0,−, s]; X ← {1}
3 Lasts ← 1
4 PN ← ∅
5 while X ≠ ∅ do
6 x ← first node in X;X ⟵ X − {x}; i ← 𝛽x
7 if i = t then PN ← PN ∪ {x}
8 for j ∈ N such that (i, j) ∈ A do
9 y ← Lastj
10 if y = 0 or (y ≠ 0 and 𝜋h

x + 1 > 𝜋

h
y and 𝜋

c
x + cij < 𝜋

c
y ) then

11 nX←nX+1;lnX ← [𝜋h
x+1, 𝜋

c
x+cij, x, j];Insert nX at the end of X

Lastj ← nX
12 else
13 if 𝜋h

x + 1 = 𝜋

h
y and 𝜋

c
x + cij = 𝜋

c
y then

14 nX ← nX + 1; lnX ← [𝜋h
y , 𝜋

c
y , x, j]; Insert nX at the end of X

15 else
16 if 𝜋h

x + 1 = 𝜋

h
y and 𝜋

c
x + cij < 𝜋

c
y then

17 ly ← [𝜋h
y , 𝜋

c
x + cij, x, j]

18 Remove from X other labels associated with j with the

objective values of x

Corollary 2 If X is a FIFO, then a label chosen in X is permanent.

Two conclusions can be drawn from this latter result. First, non-dominated paths

from s to t can be known from the moment labels that correspond to t are chosen in X.

Second, in order to check the dominance of a new label it is sufficient to compare it

with the latest label inserted in X associated with the same node. In the pseudo-code

presented below this information is maintained in the n elements array Last.
Although X is manipulated as a FIFO, in the sense that new elements are inserted

at the end of the queue while the first one is scanned, an adaptation might have to be

done when a new label ly dominates a previous one, lx. If lx is the only label at level

𝜋

h
x , it is sufficient to replace lx by ly. However, if there are multiple labels associated

with 𝛽x at level 𝜋
h
x , then they are all dominated and should be deleted. An alternative

is to include an additional comparison between labels that are picked in X and the

correspondent Last, in order to check their dominance.

The pseudo-code of the method just described is presented in Algorithm 1. Lines 1

to 4 outline the initialization of the used variables. Besides the aforementioned vari-

ables, PN is used to store the non-dominated labels of paths from node s to node t.
One such path is identified whenever a node x corresponding to node t is selected in
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Fig. 1 Network G1

Fig. 2 MinHop-MinSum maximal set of non-dominated paths from node 1 to node 4 in networkG1

X. Lines 8 to 19 describe the analysis of the arcs emerging from the selected node, i.
In particular, lines 10 and 14 correspond to the first and the second parts of condition

(4), the case where the new label is inserted in set X. The latter case is implemented

by line 17, combined with line 13, and means that the new label dominates the cur-

rent as well as their equivalents. In that case the label ly replaces the label lx and the

dominated labels are removed from set X.

Figure 2 illustrates the application of Algorithm 1 to the networkG1 in Fig. 1 when

the origin and the destination nodes are s = 1 and t = 4, respectively. In particular,

each plot in Fig. 2 represents the tree of paths that have been found in each iteration

of the algorithm. The dashed circles highlight the nodes that are scanned at each

iteration and the number attached to each circle is the cost of the path it corresponds

to.

At the initialization step of Algorithm 1, naturally the first, the queue that stores

the nodes yet to scan is set only with to the initial node, X = {1}. Afterwards:
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∙ In the next iteration node 1 is picked in X and, because (1, 2), (1, 3) and (1, 4)
are arcs in G1, the nodes 2, 3, and 4, are then stored in X, to be scanned in a

forthcoming iteration.

∙ Assuming the new nodes are inserted in X in that order, and because X is managed

as a FIFO list, the node to scan at iteration 2 is node 2. In this case new labels are

created for nodes that already have a label. These nodes, 3′ and 4′, are marked with

an additional prime, to distinguish them from the previous labels corresponding to

other paths. It can be remarked that l3 = [1, 15, 1, 3] and l4 = [1, 40, 1, 4], whereas

l3′ = [2, 10, 2, 3] and l4′ = [2, 25, 2, 4]. The latter labels are not dominated by the

first, nor the latter dominate the first.

∙ Node 3 is scanned at iteration 3. The arcs (3, 2) and (3, 4) emerge from node 3,

however the label of the new path from node 1 to node 2 would be [2, 15, 3, 2′],
which is dominated by l2 = [1, 10, 1, 2]. Thus, this new label, marked by a dotted

circle in Fig. 2 and in bold in the queue X, is discarded.

∙ The paths formed by the algorithm do not change in the next iteration because

no arcs emerge from node 4, the next one to be scanned. This step is omitted in

Fig. 2. The node selected in X at iteration 5 is node 3’. Once again the node 2′′
is not included in the queue X, given that its label is dominated. Still, a new path

from node 1 to node 4 is found, represented in X as node 4′′′.
∙ All the nodes that are still stored in the queue X correspond to the network node 4,

therefore no additional labels are created in the remaining iterations of the method.

At the end of Algorithm 1 the maximal set of non-dominated paths from node 1 to

node 4 is {⟨1, 4⟩, ⟨1, 2, 4⟩, ⟨1, 3, 4⟩, ⟨1, 2, 3, 4⟩}. Two of them, ⟨1, 2, 4⟩ and ⟨1, 3, 4⟩,
both have 2 arcs each and the same cost, 25, thus they are equivalent.

If the goal is to find the non-dominated objective values, i.e. the minimal set of

non-dominated paths, then it is sufficient to compute a single path for each objective

values pair, which allows to make certain simplifications to the method above. The

main difference now is that in such a case at most one label is used for each node

and each number of arcs, so Lemma 1 is now replaced by the following result.

Lemma 2 If X is a FIFO, then at most one label per level is associated with a
network node.

Moreover, Corollaries 1 and 2 are still valid. Thus, concerning the minimal set of

non-dominated paths computation a new label ly should be inserted in X if and only if

(𝜋h
x < 𝜋

h
y and 𝜋

c
x > 𝜋

c
y) or (𝜋h

x = 𝜋

h
y and 𝜋

c
x > 𝜋

c
y ), (5)

for any x ∈ X such that 𝛽x = 𝛽y, and in the second case, i.e., if

𝜋

h
x = 𝜋

h
y and 𝜋

c
x > 𝜋

c
y , (6)

lx can be discarded. The fact that there is a single label associated with each pair

of objective values also allows to replace labels, with no need for deletions, if they

become dominated by others.
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Fig. 3 MinHop-MinSum minimal set of non-dominated paths from node 1 to node 4 in networkG1

The pseudo-code of Algorithm 2 is a simplified version of Algorithm 1 for finding

the minimal set of non-dominated paths. The variables used in the pseudo-code have

similar meaning, except PN which is replaced by ̄PN . Line 10 of the pseudo-code

corresponds to the case of ly being added as a possible non-dominated label, whereas

Line 14 is executed if ly replaces the current label of node i in set X.

Algorithm 2: MinHop-MinSum minimal set of non-dominated paths determi-

nation

1 for i ∈ N do Lasti ← 0
2 nX ← 1; lnX ← [0, 0,−, s]; X ← {1}
3 Lasts ← 1
4 ̄PN ← ∅
5 while X ≠ ∅ do
6 x ← first node in X; X ⟵ X − {x}; i ← 𝛽x
7 if i = t then ̄PN ← ̄PN ∪ {x}
8 for j ∈ N such that (i, j) ∈ A do
9 y ← Lastj
10 if y = 0 or (y ≠ 0 and 𝜋

h
x + 1 > 𝜋

h
y and 𝜋

c
x + cij < 𝜋

c
y ) then

11 nX ← nX + 1; lnX ← [𝜋h
x + 1, 𝜋c

x + cij, x, j]; Insert nX at the end of X

12 Lastj ← nX
13 else
14 if 𝜋h

x + 1 = 𝜋

h
y and 𝜋

c
x + cij = 𝜋

c
y then ly ← [𝜋h

y , 𝜋
c
x + cij, x, j]

The initialization and the first two iterations of Algorithm 2 when applied to

the previous example, the network G1 in Fig. 1, are similar to the determination

of the maximal set of non-dominated paths shown in Fig. 2. Then, when scan-

ning node 3 it is possible to reach node 4 with the label l4′′ = [2, 25, 3, 4]. As

seen before, this label is equivalent to l4′ = [2, 2, 4, 25], therefore it is discarded, as

shown in Fig. 3. The minimal set of non-dominated paths output by this algorithm

is {⟨1, 4⟩, ⟨1, 2, 4⟩, ⟨1, 2, 3, 4⟩}.
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Fig. 4 Efficient solutions formed by weakly efficient subpaths

Regarding the number of operations performed by the algorithms above, we first

note that the MinHop-MinSum path problem has up to n(n − 2) non-dominated pairs

of objective values, if there is a path with every number of arcs between 1 and n − 2
from s to any other node i. Therefore the tree of paths obtained by Algorithm 2

can have at most n − 2 levels. In the worst case, every of the m network arcs needs

to be scanned once for each of those levels. Analyzing an arc implies the insertion

and deletion of an element in X, which can be done in constant time. Therefore the

worst-case time complexity of Algorithm 2 is O(nm).
As for Algorithm 1, its theoretical complexity also depends on the number of

levels the paths tree can have and on the total number of non-dominated labels. Even

though the tree can have up to n − 2 levels, because there may be multiple labels with

the same objective values, the number of labels cannot be polynomially bounded.

4 MinHop-MaxMin Path Problem

The MinHop-MaxMin path problem can be viewed as a special case of the problems

solved by Martins and by Gandibleux et al. [9, 13] considering a single cost function

and cij = 1 for any (i, j) ∈ A. Like in the previous section, labeling algorithms can

also be designed for the MinSum-MaxMin path problem, by including the number of

hops and the capacity values in each label and modifying the label dominance test.

However, non-dominated paths may contain weakly non-dominated subpaths [9].

Therefore weakly non-dominated labels may be necessary to determine the maxi-

mal set of non-dominated paths. As an example, the paths ⟨1, 2, 4, 5⟩ and ⟨1, 3, 4, 5⟩
between nodes 1 and 5 in the network depicted in Fig. 4 are both non-dominated with

respect to the MinHop-MaxMin path problem, although the same does not hold for

their subpaths given that ⟨1, 2, 4⟩D⟨1, 3, 4⟩.
Maintaining the previous notation a label associated with a node x in the search

tree of paths from s to other nodes has now the form lx = [𝜋h
x , 𝜋

u
x , 𝜉x, 𝛽x], where 𝜋

u
x

denotes the path capacity. Furthermore, if 𝛽x = i ∈ N and (i, j) ∈ A, a new label asso-

ciated with node y can be created, such that

ly = [𝜋h
x + 1,min{𝜋u

x , uij}, x, j].
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Now consider that instead of minimizing a cost function, we maximize a capacity

function. Given lx, ly two labels corresponding to a path starting at s and ending at

the same network node, we say lx is dominated by ly if and only if

(𝜋h
x > 𝜋

h
y and 𝜋

u
x ≤ 𝜋

u
y ) or (𝜋h

x ≥ 𝜋

h
y and 𝜋

u
x < 𝜋

u
y ). (7)

Taking into account that in this problem weakly non-dominated labels can be used

to obtain non-dominated solutions, namely solutions with the same number of hops

but different capacities, a new label ly should only be discarded if there is another

node x in X such that 𝛽x = 𝛽y and

𝜋

h
x < 𝜋

h
y and 𝜋

u
x ≥ 𝜋

u
y . (8)

On the other hand, label lx can be replaced by label ly whenever

𝜋

h
x > 𝜋

h
y and 𝜋

u
x ≤ 𝜋

u
y . (9)

Back to the determination of the maximal set of non-dominated paths using

a FIFO list, because the number of arcs of the scanned paths is non-decreasing

condition (9) never holds. This means that no label should be deleted and the domi-

nance test whenever a new label is formed can be replaced simply by (8).

The acceptance of weakly non-dominated labels that may be dominated implies

that Corollaries 1 and 2 no longer hold true. For this reason the set PN can only be

known after the labeling process is over. Moreover, it is not enough to compare a new

label with the last one observed for that node, and two cases should be distinguished:

1. 𝜋

h
x = 𝜋

h
y for some x in X, then node 𝛽x already has a label at level 𝜋

h
y of the search

tree and neither lx strictly dominates ly nor ly strictly dominates lx, therefore node

y is inserted in set X;

2. 𝜋

h
x < 𝜋

h
y for every x in X, then label ly belongs to a different level than label lx

and it should be inserted if and only if 𝜋
u
x < 𝜋

u
y , that is, if and only if

max{𝜋u
x ∶ x ∈ X and 𝜋

h
x < 𝜋

h
y} < 𝜋

u
y . (10)

In short, a new candidate label will only be accepted if its capacity improves the

capacity of the labels with fewer arcs. An auxiliary array storing the best capacity

value found for each network node until the latest scanned level,Best, is used in Algo-

rithm 3, where the pseudo-code for finding the maximal set of MinHop-MaxMin

paths is summarized.

The application of Algorithm 3 to the network G2 in Fig. 5 is illustrated in Fig. 6.

At the initialization phase, naturally the first, the queue that stores the nodes yet to

scan is set only to the initial node, X = {1}. Afterwards:

∙ In the next iteration node 1 is picked in X and the nodes 2, 3, and 4 are then stored

in X, so that they can be scanned in a future iteration.
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Algorithm 3: MinHop-MaxMin maximal set of non-dominated paths determi-

nation

1 for i ∈ N do
2 Besti ← 0; 𝜋

u
i ← 0

3 Lasti ← 0
4 nX ← 1; lnX ← [0,+∞,−, s]; X ← {1}
5 Lasts ← 1
6 while X ≠ ∅ do
7 x ← first node in X; X ⟵ X − {x}; i ← 𝛽x for j ∈ N such that (i, j) ∈ A do
8 if min{𝜋u

x , uij} > Bestj then
9 y ← Lastj
10 if y = 0 or (y ≠ 0 and 𝜋

h
x + 1 > 𝜋

h
y ) then

11 Bestj ← 𝜋

u
Lastj

12 if min{𝜋u
x , uij} > Bestj then

13 nX ← nX + 1; lnX ← [𝜋h
x + 1,min{𝜋u

x , uij}, x, j]; Insert nX
14 at the end of X
15 Lastj ← nX

16 else
17 if 𝜋h

x + 1 = 𝜋

h
y then

18 nX ← nX + 1; lnX ← [𝜋h
y ,min{𝜋u

x , uij}, x, j]; Insert nX at the end of X
19 if 𝜋h

x + 1 = 𝜋

h
y then Lastj ← nX

20 PN ← {non-dominated paths from s to x ∈ X where 𝛽x = t}

1

2

3

4

5

10

15

1515

15

10

Fig. 5 Network G2

∙ Assuming the new nodes are inserted in X in that order, the node 2 is scanned at

iteration 2. Then new labels are created for nodes 3 and 4, denoted by 3′ and 4′,
having l3′ = [2, 10, 2, 3] and l4′ = [2, 10, 2, 4] as labels. Note that l3′ is dominated

by the former label of node 3, l3 = [1, 15, 1, 3].
∙ Node 3 is scanned at iteration 3. Two new labels are created l2′ = [2, 15, 3, 2] and

l4′′ = [2, 10, 3, 4]. Additionally, 2′ and 4′′ are inserted in queue X.

∙ No new paths are formed in the next two iterations, which correspond to scanning

nodes 4 and 4′. Node 2′ is the selected node at iteration 5. Once again the node 3′′
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is not included in X, given that its label is dominated, but a new path from node 1

to node 4 is found, represented in X as node 4′′′.
∙ No further paths are created when scanning the nodes remaining in X, 4′′ and 4′′′.
At the end of Algorithm 3 the maximal set of non-dominated paths from node 1 to

node 4 is {⟨1, 4⟩, ⟨1, 2, 4⟩, ⟨1, 3, 4⟩, ⟨1, 3, 2, 4⟩}, and both ⟨1, 2, 4⟩ and ⟨1, 3, 4⟩ are

equivalent.

Even though weakly non-dominated subpaths have to be generated, node t can be

treated differently from the others because only non-dominated t labels are necessary

(otherwise the label corresponds to a solution that contains a loop and is dominated).

A different dominance test can then be applied, because a new label ly, 𝛽y = t, should

be discarded if and only if there is another one lx, 𝛽x = t, such that

(𝜋h
x < 𝜋

h
y and 𝜋

u
x ≥ 𝜋

u
y ) or (𝜋h

x = 𝜋

h
y and 𝜋

u
x > 𝜋

u
y ), (11)

and it should replace lx if

𝜋

h
x = 𝜋

h
y and 𝜋

u
x < 𝜋

u
y . (12)

This variation of Algorithm 3 ensures that t labels are non-dominated as soon as they

are chosen in X, thus allowing the generation of non-dominated paths between s and

t along the labeling process.

If again the aim is the determination of the minimal set of non-dominated paths at

most one label is stored for each node in a tree level, therefore no dominated subpaths

need to occur in non-dominated solutions and the next result follows.

Proposition 1 Let p∗ ∈ PN for the MinHop-MaxMin path problem, then there is
p ∈ P formed by non-dominated subpaths from s to any node such that (h(p), u(p)) =
(h(p∗), u(p∗)).

X = {1} X = {2,3,4} X = {3,4,3’,4′}
Initialization Iteration 1 Iteration 2

X = {4,4′,2′,4′′} X = {4′′,3”,4′′′}
Iteration 3 Iteration 6

Fig. 6 MinHop-MaxMin maximal set of non-dominated paths from node 1 to node 4 in networkG2
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X = {4,4′,2′} X = {3’,4′′}
Iteration 3 Iteration 6

Fig. 7 MinHop-MaxMin minimal set of non-dominated paths from node 1 to node 4 in network

G2

This result can be used to tighten the dominance test, given that a new label ly can

be discarded if there is lx such that 𝛽x = 𝛽y and

(𝜋h
x < 𝜋

h
y and 𝜋

u
x ≥ 𝜋

u
y ) or (𝜋h

x ≤ 𝜋

h
y and 𝜋

u
x > 𝜋

u
y ),

that is, as X is manipulated as a FIFO list, if

𝜋

u
x ≥ 𝜋

u
y . (13)

The same label will replace lx whenever

𝜋

h
x = 𝜋

h
y and 𝜋

u
x < 𝜋

u
y . (14)

Moreover, in this case the labels associated with a network node i correspond to a

non-dominated path from s to i, and thus a non-dominated path from s to t is obtained

whenever a label associated with t is chosen in X. The resulting method is not very

different from Algorithm 2, but its pseudo-code is shown in Algorithm 4 for the sake

of completeness.

When applying Algorithm 4 to the network G2, the first iterations are similar to

what was described earlier for Algorithm 3. Then, at iteration 3 the node 3 is scanned

and only node 2′ is added to the previous tree, because label [2, 10, 3, 4] is equivalent

to l4′ . The algorithm continues as described earlier and as depicted in Fig. 7. The final

minimal set of non-dominated paths is {⟨1, 4⟩, ⟨1, 2, 4⟩, ⟨1, 3, 2, 4⟩}.

The complexity of Algorithm 3 and 4 can be determined as for the MinHop-

MinSum path problem. Therefore, the first is not polynomial in time whereas the

second has a worst-case time complexity of O(mn).



The MinSum-MinHop and the MaxMin-MinHop Bicriteria Path Problems 87

Algorithm 4: MinHop-MaxMin minimal set of non-dominated paths determi-

nation

1 for i ∈ N do Lasti ← 0
2 nX ← 1; lnX ← [0,+∞,−, s]; X ← {1}
3 Lasts ← 1
4 ̄PN ← ∅
5 while X ≠ ∅ do
6 x ← first node in X; X ⟵ X − {x}; i ← 𝛽x
7 if i = t then ̄PN ← ̄PN ∪ {x}
8 for j ∈ N such that (i, j) ∈ A do
9 y ← Lastj
10 if y = 0 or (y ≠ 0 and 𝜋

h
x + 1 > 𝜋

h
y and min{𝜋u

x , uij} > 𝜋

u
y ) then

11 nX ← nX + 1; lnX ← [𝜋h
x + 1,min{𝜋u

x , uij}, x, j]; Insert nX at the end of X
12 Lastj ← nX

13 else
14 if 𝜋h

x + 1 = 𝜋

h
y and min{𝜋u

x , uij} > 𝜋

u
y then ly ← [𝜋h

y ,min{𝜋u
x , uij}, x, j]

5 Computational Results

Computational experiments were carried out to evaluate the empirical performance

of the methods described in the previous sections.

A first set of random networks with 1 000, 3 000, 5 000 and 7 000 nodes, dn arcs,

for densities d = 5, 10, 20, 30, and uniformly integer cost (capacity) values generated

in [1,M], with M = 100 and M = 10 000, was considered. The results presented in

the following were obtained over 30 different instances generated for each dimension

of this data set.

The second set of instances is based on a simulation of a video traffic routing

problem in undirected communication networks used in [6]. These networks have

1 000, 1 500, 2 000, 2 500 and 3 000 nodes and 4n arcs. Each node of the network

corresponds to a point randomly chosen in a rectangular grid with dimension 400 ×
240 and a mesh size unit of 10 Km. This grid simulates the United States of America

geography. Each node has at least 2 and at most 10 neighbour nodes. Additionally,

the generated networks contain at least a Hamiltonian path, to guarantee they are

connected. The graphs are generated in three steps. In the first step a permutation of

the order of the graph nodes is created. The second step consists of linking each pair

of consecutive nodes in the permutation with an arc, thus obtaining a Hamiltonian

path. Finally, in the last phase the remaining arcs are randomly assigned to pairs of

nodes. Two values are associated with any arc, depending on the considered problem.

Thus, given the arc (i, j) of the network, where i and j correspond to points (xi, yi)
and (xj, yj) in the initial grid, respectively, the following values are generated:

∙ arc (i, j)’s delay, in milliseconds, given by
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dij =

(
Skmax
rk

+
Smax
Rij

)

+
𝓁ij

2c∕3
=
(53 × 8

1.5
+ 53 × 8

155.52

)
× 10−3 +

𝓁ij

200
,

where 𝓁ij =
√

(xi − xj)2 + (yi − yj)2 represents the Euclidean distance, in kilome-

ters, between (xi, yi) and (xj, yj), c = 300 Km/ms is the speed of light and for any

(u, v) ∈ A , Ruv = 155.52 × 106 bits/s is the bandwidth capacity of arc (u, v). Also:

– rk = 1.5 × 106 bits/s is the token generation rate of the leaky bucket (stochastic

model associated with the nodes),

– Skmax = Smax is the maximum packet size of the flow k (in bits),

and Smax = 53 × 8 bits which is the size of an ATM cell.

∙ arc (i, j)’s available bandwidth, in Mb/s, that is a random value denoted by bij ∈
{0.52, 2.52,… , 150.52}, which corresponds to a link capacity of 155.52 Mb/s.

For each number of nodes 10 distinct seeds were used to generate networks and for

each of them the algorithm was tested by considering
n2

25 000
origin-destination node

pairs.

All the tests were executed on an Intel
Ⓡ

Core™i7-5820K at 3.3 GHz, with 64 Gb

of RAM, and using the compiler gcc 4.8.5 running over openSUSE Leap 42.2.

5.1 MinHop-MinSum Path Problem

In order to evaluate the methods proposed for finding the maximal set of MinHop-

MinSum paths two programs were coded in C, namely a labeling algorithm where

X is as FIFO list with a standard dominance test, designated F1, and Algorithm 1,

designated A1. Similarly, when concerning only the determination of the minimal

set of non-dominated paths a standard labeling algorithm using a FIFO, F2, and

Algorithm 2, A2, have been implemented.

5.1.1 Random Instances

Tables 1 and 2 present the minimum, mean and maximum numbers of non-dominated

paths from s to t, regarding the randomly generated networks for the cases of costs

in [1, 100] and in [1, 10 000], respectively. Even though t can have n − 2 different

non-dominated labels in the worst-case, the results show the actual number of labels

to be much smaller. In the entire test set the registered mean number of PN elements

is always between 2 and 5, increasing slowly with density. When M = 10 000 the

results are very similar in general, only with some higher minimum and mean num-

ber of non-dominated paths.

A comparison between the mean running times of standard versions of a labeling

algorithm, F1 and F2, and the methods introduced for finding the maximal and the
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Table 1 Number of MinHop-MinSum non-dominated paths in random instances with M = 100
n = 1 000 n = 3 000 n = 5 000 n = 7 000

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

d = 5 1 2.5 4 1 2.3 5 1 2.9 5 1 3.1 6

d = 10 2 3.1 6 1 2.7 6 1 2.9 6 1 3.7 6

d = 20 1 3.7 6 1 3.4 6 1 3.5 5 2 3.7 6

d = 30 1 4.1 6 1 3.7 6 2 3.8 6 2 4.7 7

Table 2 Number of MinHop-MinSum non-dominated paths in random instances withM = 10 000
n = 1 000 n = 3 000 n = 5 000 n = 7 000

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

d = 5 1 2.5 4 1 2.5 5 1 3.0 5 1 3.1 6

d = 10 2 3.1 6 1 2.7 6 1 3.2 6 2 3.8 6

d = 20 1 3.7 6 1 3.4 6 1 3.6 6 2 4.0 6

d = 30 1 4.1 6 1 3.9 6 2 4.0 5 4 5.0 7

minimal sets of non-dominated paths, A1 and A2, is presented in Tables 3 and 4.

The first of these tables shows mean values of the improvement obtained by the new

algorithms when M = 100. The values on the second table refer to instances where

M = 10 000. In most cases the CPU time is approximately reduced by half, although

in some small size instances (with low density when finding the minimal set) the

results are better for the standard versions. However, for these dimensions all running

times are very close to 0 s. The algorithmic performance is very similar for the two

cost ranges, although the times are slightly greater for the wider range. Also, the

speed improvement regarding the standard implementation was, in general, bigger

whenM = 10 000 rather than whenM = 100. It is still worth noting that, as expected,

the minimal set determination is easier than that of the maximal set. The difference

seems to increase with the instances dimension. The CPU times taken by any of the

implemented algorithms were very small for small size instances. Figures 8 and 9

show the mean running times for the A1 and A2 codes. The first two plots concern

the variation depending on the number of network nodes, while the other two depend

on the network density. The plots show there is an increase of the running times with

n as well as with d, both for A1 and A2 as the theoretical complexity bound suggests.

Still, the determination of the maximal, and of the minimal, sets of MinHop-MinSum

paths in the considered data set was made in short times. Both A1 and A2 were able

to solve problems with 7 000 nodes and 210 000 arcs in less than 13.20 ms.
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Table 3 Percentage mean CPU times improvement of MinHop-MinSum non-dominated paths in

random instances with M = 100
100× (F1-A1)/F1

d = 5 d = 10 d = 20 d = 30
n = 1 000 40.0 33.3 50.0 52.0

n = 3 000 43.8 46.7 44.3 45.2

n = 5 000 38.7 43.3 45.2 47.9

n = 7 000 38.5 43.3 43.9 48.1

100× (F2-A2)/F2

n = 1 000 25.0 28.6 50.0 31.6

n = 3 000 46.7 40.0 51.5 48.2

n = 5 000 41.4 45.6 52.8 52.6

n = 7 000 34.1 57.0 50.5 56.9

Table 4 Percentage mean CPU times improvement of MinHop-MinSum non-dominated paths in

random instances with M = 10 000
100× (F1-A1)/F1

d = 5 d = 10 d = 20 d = 30
n = 1 000 40.0 33.3 55.0 50.0

n = 3 000 25.0 45.2 43.5 53.8

n = 5 000 50.0 55.1 37.8 48.3

n = 7 000 31.4 45.6 51.3 46.3

100× (F2-A2)/F2

n = 1 000 40.0 44.4 42.9 44.4

n = 3 000 42.9 42.3 47.1 50.5

n = 5 000 53.3 48.1 52.7 53.3

n = 7 000 56.8 50.5 48.7 54.7

A1, d = 5 A1, d = 10 A1, d = 20 A1, d = 30
A2, d = 5 A2, d = 10 A2, d = 20 A2, d = 30

1 000 3 000 5 000 7 000

3

6

9

12

n

C
PU

tim
es

(m
s)

M = 100

1 000 3 000 5 000 7 000
n

M = 10000

Fig. 8 Mean CPU times MinHop-MinSum non-dominated paths in random instances versus n



The MinSum-MinHop and the MaxMin-MinHop Bicriteria Path Problems 91

A1, n= 1000 A1, n= 3000 A1, n= 5000 A1, n= 7000
A2, n= 1000 A2, n= 3000 A2, n= 5000 A2, n= 7000

5 10 20 30

3

6

9

12

d

C
PU

tim
es

(m
s)

M = 100

5 10 20 30

d

M = 10000

Fig. 9 Mean CPU times MinHop-MinSum non-dominated paths in random instances versus d

5.1.2 Communication Instances

Table 5 shows the minimum, mean and maximum numbers of non-dominated paths

from s to t, obtained for the MinHop-MinSum problem on the communication net-

work instances. For these problems the costs associated with the arcs were the delay

values defined at the beginning of this section. Similarly to the previous results, the

number of non-dominated paths ranged between 1 and 6, with means around 1.9 and

slightly increasing with the number of nodes.

On Table 6 the running times of the methods F1 and F2 and of the methods

A1 and A2, respectively, are compared. Those values show that an improvement of

about 40% when using the new methods. In general this improvement is slightly

bigger when finding the maximal set of MinHop-MinSum paths than when finding

the minimal set of MinHop-MinSum paths.

Finally, the CPU times for algorithms A1 and A2 for these instances are depicted

on Fig. 10. Finding the minimal set of non-dominated paths was easier than finding

the maximal set of non-dominated paths. The plots also show a similar growth of the

CPU times of both methods with the number of nodes of the network.

Table 5 Number of MinHop-MinSum non-dominated paths in communication instances

n = 1 000 n = 1 500 n = 2 000 n = 2 500 n = 3 000
Min. 1 1 1 1 1

Mean 1.9 1.9 2.0 2.0 2.0

Max. 5 5 6 6 6
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Table 6 Percentage mean CPU times improvement of MinHop-MinSum non-dominated paths in

communication instances

n = 1 000 n = 1 500 n = 2 000 n = 2 500 n = 3 000
100×
(F1-A1)/F1

37.5 37.6 39.8 40.0 40.8

100×
(F2-A2)/F2

39.2 34.2 35.6 37.2 38.2

Fig. 10 Mean CPU times

MinHop-MinSum

non-dominated paths versus

n in communication

instances

A1 A2

1 000 1 500 2 000 2 500 3 000

0.3

0.6

0.9

1.2

n

C
PU

tim
es

(m
s)

5.2 MinHop-MaxMin Path Problem

5.2.1 Random Instances

The procedure followed for this problem is analogous to the one used in the previous

section. Two standard labeling algorithms using a FIFO were coded: one for finding

the maximal and the other for finding the minimal sets of MinHop-MaxMin paths,

F3 and F4, as well as Algorithm 3 and 4, A3 and A4, respectively.

The minimum, mean and maximum numbers of solutions in the tested instances

with capacity values in [1, 100] are provided in Table 7. Similar values for instances

with capacity values in [1, 10 000] are shown in Table 8. These values are greater than

for the MinHop-MinSum problem. On average the maximal set of non-dominated

paths has between 5.5 and 10.1 non-dominated solutions whenM = 100, and between

5.5 and 11.3 non-dominated solutions when M = 10 000, but both are still far from

the upperbound n − 2. In general, for instances with M = 10 000 the mean is slightly

bigger than with M = 100.

Tables 9 and 10 show the relation between the original algorithms,F3 andF4, and

the introduced methods, A3 and A4, for the minimal and the maximal sets determina-

tion, when M = 100 and when M = 10 000, respectively. The improvement on run-

ning times is between 68 and 94% for finding all non-dominated paths and between

89 and 89% for finding the non-dominated objective values, regardless of the instance

size. As expected these values are greater than the observed for the MinHop-MaxMin
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Table 7 Number of MinHop-MinSum non-dominated paths in random instances with M = 100
n = 1 000 n = 3 000 n = 5 000 n = 7 000

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

d = 5 1 5.5 15 1 6.5 11 2 6.7 12 2 7.8 17

d = 10 3 6.6 12 3 7.6 13 4 7.8 15 4 10.0 16

d = 20 4 6.5 8 3 9.5 17 3 7.3 12 6 8.9 12

d = 30 4 7.1 15 2 8.2 14 3 8.7 15 3 10.1 18

Table 8 Number of MinHop-MinSum non-dominated paths in random instances withM = 10 000
n = 1 000 n = 3 000 n = 5 000 n = 7 000

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

d = 5 1 5.5 15 1 6.7 11 2 7.1 13 2 8.3 16

d = 10 3 7.3 14 5 8.9 13 4 8.1 18 4 11.2 16

d = 20 3 6.9 13 3 10.7 20 3 8.4 14 6 10.7 12

d = 30 6 8.7 15 2 9.1 21 3 10.1 19 3 11.3 16

Table 9 Percentage mean CPU times improvement of MinHop-MaxMin non-dominated paths in

random instances with M = 100
100× (F3-A3)/F3

d = 5 d = 10 d = 20 d = 30
n = 1 000 68.1 83.6 86.4 88.6

n = 3 000 74.3 82.0 87.9 90.2

n = 5 000 72.2 83.7 90.1 91.6

n = 7 000 70.2 84.3 89.8 93.4

100× (F4-A4)/F4

n = 1 000 89.6 95.2 97.8 98.3

n = 3 000 91.2 95.1 97.7 98.3

n = 5 000 91.7 95.7 98.1 98.5

n = 7 000 92.0 94.9 97.5 98.6

path problem, as much more weakly non-dominated labels now have to be stored.

The general tendency is the same both for M = 100 and M = 10 000.

The difference in performance when determining the maximal and the minimum

sets of non-dominated paths is also evident on the plots in Figs. 11 and 12, which

show the running times of A3 and A4 variation with n and with d, respectively.

Solid lines, depicting A3 results, grow much faster than dashed lines, for A4. The

growth seems to present a linear behaviour with n and with d. For larger instances it

took in average 83.50 ms to find the maximal set of non-dominated paths and 20.30

ms to find the minimal set of non-dominated paths.
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Table 10 Percentage mean CPU times improvement of MinHop-MaxMin non-dominated paths

in random instances with M = 10 000
100× (F3-A3)/F3

d = 5 d = 10 d = 20 d = 30
n = 1 000 68.1 79.5 87.8 88.9

n = 3 000 73.4 84.9 88.8 89.6

n = 5 000 77.5 84.3 87.8 92.8

n = 7 000 74.0 82.4 90.2 93.1

100× (F4-A4)/F4

n = 1 000 91.1 95.6 97.7 97.7

n = 3 000 92.8 95.4 97.4 98.0

n = 5 000 91.7 95.4 97.7 98.6

n = 7 000 92.4 95.0 97.7 98.5

5.2.2 Communication Instances

For this set of problems the capacity values associated with the each arc were the

available bandwidth values defined earlier in this section. According to Table 11

there were between 1 and 31 MinHop-MaxMin paths on the communication net-

work instances, which, like before, is a higher number than for the MinHop-MinSum

problem. The mean number of non-dominated paths seems to increase slowly with

the number of network nodes.

On Table 12 the running times of the methods F3 and F4 and the methods A3
and A4 are compared. Those values show an improvement of around 80% when

using the new methods for finding the maximal set of MinHop-MaxMin paths and

around 94% when finding the minimal set of MinHop-MaxMin paths. In both cases

the improvement increases with the number of nodes in the network.

A3, d = 5 A3, d = 10 A3, d = 20 A3, d = 30
A4, d = 5 A4, d = 10 A4, d = 20 A4, d = 30
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Fig. 11 Mean CPU times MinHop-MaxMin non-dominated paths in random instances versus n
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A3, n= 1000 A3, n= 3000 A3, n= 5000 A3, n= 7000
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Figure 13 presents the mean CPU times of algorithms A3 and A4 for the com-

munication instances. The results follow the tendencies observed for the MinHop-

MinSum problem and the methods ran in a mean time of at most 0.6 ms.

Table 11 Number of MinHop-MaxMin non-dominated paths in communication instances

n = 1 000 n = 1 500 n = 2 000 n = 2 500 n = 3 000
Min. 1 1 1 1 1

Mean 6.9 7.0 7.3 7.4 7.6

Max. 21 24 24 29 31
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Table 12 Percentage mean CPU times improvement of MinHop-MaxMin non-dominated paths

in communication instances

n = 1 000 n = 1 500 n = 2 000 n = 2 500 n = 3 000
100×
(F3-A3)/F3

76.6 78.9 79.9 80.8 81.2

100×
(F4-A4)/F4

93.2 94.3 94.6 94.6 94.6

6 Conclusions

Labeling algorithms for bicriteria path problems minimizing the number of hops and

either the path cost or the path capacity have been described, aiming at the compu-

tation of the maximal and the minimal sets of non-dominated paths. These methods

make use of a breadth-first search tree by managing the set of labels as a FIFO and list

node labels by non-decreasing order of the number of hops. Tuning the dominance

tests according with this structure leads to non-polynomial algorithms for the prob-

lems of finding the maximal sets of non-dominated paths, for the MinHop-MinSum

and the MinHop-MaxMin path problems. The minimal set versions of those algo-

rithms has worst-case time of O(mn).
The new methods have shown an improvement between 25 and 57% for the

MinHop-MinSum path problem running times and between 68 and 98% for the

MinHop-MaxMin path problem over randomly generated instances. For a set of

instances that simulate video traffic the improvement was between 34 and 41% in

the first case and between 76 and 95% in the second. Additionally, numerical results

indicate that only 13.20 ms are necessary to find the whole set of non-dominated

paths in the first case, and 83.50 ms are needed in the second case, for instances with

7 000 nodes and 210 000 arcs. The determination of the non-dominated objective

values was completed with 12.00 ms for the MinHop-MinSum and within 20.30 ms

for the MinHop-MaxMin path problems over the same test bed. The biggest video

traffic instances are defined over undirected networks with 3 000 nodes and 12 000

edges. For these instances the introduced algorithms were able to find the maximal,

minimal, complete set of non-dominated paths for the MinHop-MinSum problem in

less than 1.16, 1.05 ms. For the MinHop-MaxMin problem the same time bounds

were of 8.58 ms, and 2.90 ms, respectively.

Future lines of research include comparing the introduced methods with other

type of algorithms for bicriteria path problems, as well as the adaption of the intro-

duced methods to problems with additional constraints, like the telecommunication

problems mentioned in the introduction.
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Distance-Vector Algorithms
for Distributed Shortest Paths
Computation in Dynamic Networks

Gianlorenzo D’Angelo, Mattia D’Emidio and Daniele Frigioni

Abstract Computing and updating distributed shortest paths is a core
functionality of today’s communication networks. The solutions known in the lit-
erature are classified into two categories, namely Distance-Vector and Link-State
algorithms. Distance-Vector algorithms usually require each node of the network to
store the distance toward every other node in a data structure called routing table,
thus requiring linear storage per node. Such a data structure is used to compute the
next hop to be used to forward data toward any destination node of interest. This
is usually done by solving very simple equations, thus requiring few computational
time per node. The main drawback of Distance-Vector algorithms is that, in dynamic
scenarios, they can suffer of the looping and count-to-infinity phenomena, though
quite efficient countermeasures for such issues are known. Link-State algorithms,
instead, require a node of the network to know and store the entire network topol-
ogy, to compute its distance and next hop toward any destination. This is usually
done by means of a centralized shortest-path algorithm, hence requiring quadratic
storage and rather high computational effort per node. The main drawback of Link-
State algorithms is that, notwithstanding they do not incur in looping and count-to-
infinity problems, they perform quite poorly in dynamic scenarios, since nodes need
to receive and store up-to-date information on the entire network topology after each
change. In the last years, there has been a renewed interest in devising new light-
weight distributed shortest-path solutions for large-scale Ethernet networks, where
Distance-Vector algorithms are an attractive alternative to Link-State solutions when
scalability and reliability are key issues or when the memory resources of the nodes
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of the network are limited. In this chapter, we hence focus on Distance-Vector solu-
tions by reviewing classic approaches and recent algorithmic developments in this
category.

1 Introduction

The problem of computing and updating shortest paths in a distributed network
whose topology dynamically changes over the time is a core functionality of today’s
communication networks, which has been widely studied in the literature. Broadly
speaking, solutions found are classified into two categories, namelyDistance-Vector
and Link-State algorithms.

Distance-Vector algorithms usually require each node of the network to store (at
least) the distance (i.e. the weight of a shortest path) toward every other node of the
network and to store it in a data structure called routing table, thus, most of the times,
requiring linear storage per node. Such a data structure is used, occasionally with
some auxiliary data, to compute the next hop (i.e. the next node on a shortest path)
to be used to forward data toward any destination node of interest. This is usually
done by solving very simple equations, thus being very parsimonious solutions from
the computational point of view per node. The majority of the known Distance-
Vector solutions (see, e.g., [1–6] and references therein) are based on the classical
Distributed Bellman-Ford (DBF) approach, introduced for the first time in Arpanet
in the late 60s [7], and still used in some real-world networks, as part of the RIP
protocol [8]. DBF has been shown to converge to the correct distances if the link
weights stabilize and all cycles have positive lengths [9]. However, the convergence
time can be very high (and possibly infinite) due to the well-known looping and
count-to-infinity phenomena (tough quite efficient countermeasures for such issues
are known). Furthermore, if the nodes of the network are not synchronized, even in
the static case, i.e. when no change occurs in the network, the overall number of
messages sent by DBF is, in the worst case, exponential with respect to the size of
the network [10].

Link-State algorithms, as for example the Open Shortest Path First (OSPF) pro-
tocol, are widely used in the Internet [11] and require each node of the network to
know and store the entire network topology to compute its distance to any destina-
tion, usually by running the centralized Dijkstra’s algorithm [12]. Thus, they induce
a space occupancy per node that is quadratic in the number of nodes of the network.
Link-State algorithms do not incur in both looping and count-to-infinity phenomena.
However, they perform quite poorly in dynamic scenarios, where each node needs
to receive and store up-to-date information on the entire network topology after any
change. This is achieved by broadcasting each modification affecting the network
topology to all nodes [8, 11, 13], and by using a centralized algorithm for dynamic
shortest paths, as for example those described in [14–16].

In the last years, there has been a renewed interest in devising new efficient and
light-weight distributed shortest-path solutions for large-scale Ethernet networks
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(see, e.g., [17–23]), where Distance-Vector algorithms seem to be an attractive alter-
native to Link-State solutions either when scalability and reliability are key issues or
when thememory resources of the nodes of the network are limited. This is the reason
why, in this chapter, we focus on Distance-Vector solutions and both review classic
approaches and overview the most recent and efficient solutions of the category.

Themost importantDistance-Vector algorithm in the literature is surely theDiffuse
Update Algorithm (DUAL) [24], which is part of CISCO’s widely used Enhanced
InteriorGatewayRoutingProtocol (EIGRP) [25].DUAL ismore complex thanDBF,
and uses different data structures in order to guarantee freedom from looping and
count-to-infinity phenomena. Another loop-free Distance-Vector algorithm, named
Loop Free Routing (LFR), has been proposed in [26]. Compared with DUAL, LFR
has the same theoretical message complexity but it uses an amount of data structures
per node which is always smaller than that of DUAL. Moreover, in [26] LFR has
been experimentally shown to be very effective in terms of both messages sent and
memory requirements per node in some real-world networks of particular interest.

Recently a general technique, named Distributed Computation Pruning (DCP),
has been introduced in [27]. It can be combined with any Distance-Vector algorithm
in order to overcome limitations, such as high number of messages sent, high space
occupancy per node, low scalability, or poor convergence.DCP has been designed to
be efficient on networks following a power-law node degree distribution, which are
often simply referred as power-law networks. Such class of networks is of particular
practical relevance, since it includes some of the most important nowadays network
applications. The Internet, the majority of modern wireless sensor networks, and
social networks are examples of power-law networks. The main idea that DCP tries
to exploit is that a power-law network with n nodes typically has average node
degree much smaller than n (usually a small constant) and a high number of nodes
with small degree (less than 3). Nodes with small degree often do not provide any
useful information for the distributed computation of shortest paths, in the sense that
there are many topological situations in which these nodes should neither perform
nor be involved in any kind of distributed computation, as their shortest paths depend
on those of higher degree nodes. In [27] the effectiveness ofDCP has been shown via
an extensive experimental evaluations conducted within OMNeT++ [28], a network
simulator widely used in the literature. As input to the algorithms, instances of
power-law networks similar to those considered in [17, 26] were used, that is the
Internet topologies of the IPv4 topology dataset [29] of the Cooperative Association
for Internet Data Analysis (CAIDA), which provides data and tools for the analysis
of the Internet infrastructure, and the random topologies generated by the Barabási-
Albert algorithm [30].

This chapter is organized as follows. In Sect. 2 we give all the necessary back-
ground and notation. In Sect. 3 we review DBF. In Sects. 4 and 5 we survey DUAL
andLFR, respectively. In Sect. 6 we describeDCP, show how to combine it with both
DUAL and LFR, and overview the experimental study of [27] which gives evidence
of the practical effectiveness of DCP. Finally, in Sect. 7 we give some concluding
remarks.



102 G. D’Angelo et al.

2 Background

In this section, we provide all the necessary background and notation that will be
used through the chapter. As a general assumption, we consider the scenario where
a network is made of processors which are connected through (bidirectional) com-
munication channels and exchange data using a message passing model, in which:

• each processor can send messages only on its own communication channels, i.e.
to processors it is connected with;

• messages are delivered to their destination within a finite delay;
• there is no shared memory among the processors;
• the system is asynchronous, that is a sender of a message does not wait for the
receiver to be ready to receive the message. The message is delivered within a
finite but unbounded time.

2.1 Asynchronous System

The asynchronous system considered in this chapter is based on that described in
[31], which is briefly summarized below. The state of a processor v is the content of
the data structure stored by processor v. The network state is the set of states of all
the processors in the network plus the network topology and the channel weights.
An event is the reception of a message by a processor or a change to the network
state. When a processor p sends a messagem to a processor q,m is stored in a buffer
located at q. When q reads m from its buffer and processes it, the event “reception
of m” occurs. Messages are transmitted through the channels in First-In-First-Out
(FIFO) order, that is, messages arriving at processor q are always received in the
same order as they are sent by p. An execution is a (possibly infinite) sequence
of network states and events. A non-negative integer number is associated to each
event, the time at which that event occurs. The time is a global parameter and is
not accessible to the processors of the network. The time must be non-decreasing
and must increase without any bound, if the execution is infinite. Finally, events are
ordered according to the time at which they occur. Several events can happen at the
same time as long as they do not occur on the same processor. This implies that the
times related to a single processor are strictly increasing.

2.2 Graph Notation

We represent a network by an undirected weighted connected graph G = (V, E,w),
where V is a finite set of n nodes, one for each processor, E is a finite set ofm edges,
one for each (bidirectional) communication channel, and w is a weight function
w : E → R

+ that assigns to each edge a real value representing the optimization
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parameter associated to the corresponding channel, such as, e.g. latency. Regarding
the notation, given a graph G = (V, E,w), we will denote by:

• (v, u) an edge of E that connects nodes v, u ∈ V , and by w(v, u) its weight,
respectively;

• N (v) = {u ∈ V : (v, u) ∈ E} the set of neighbors of each node v ∈ V ;
• deg(v) = |N (v)| the degree of v, for each v ∈ V ;
• maxdeg = maxv∈V deg(v) the maximum degree among the nodes in G.

Furthermore, we will use {u, . . . , v} to represent a generic path in G between
nodes u and v and, given a path P = {u, ..., v}, we will use w(P) to denote its
weight, i.e. the sum of the weights associated to its edges. A path P = {u, ..., v} is
called a shortest path between u and v if and only if P is a path having minimum
weight among all possible paths between u and v in G. Given two nodes u, v ∈ V ,
we will denote by d(u, v) the topological distance between u and v, i.e. the weight of
a shortest path between u and v. Finally, we will call via(u, v) the via from u to v, i.e.
the set of neighbors of u (there might be more than one) that belong to a shortest path
from u to v. More formally, via(u, v) ≡ {z ∈ N (u) | d(u, v) = w(u, z) + d(z, v)}.

2.3 Dynamic Networks

In this chapter, we consider a set of common realistic assumptions that have been
considered in the great majority of the works on distributed shortest paths. In partic-
ular, we focus on the case of dynamic networks, i.e. networks that vary over time due
to change operations occurring on the processors or on the communication channels,
respectively. We denote a sequence of update operations on the edges of the graph G
representing the network by C = {c1, c2, . . . , ck}. Assuming G0 ≡ G, we denote by
Gi , 0 ≤ i ≤ k, the graph obtained by applying ci to Gi−1. Without loss of generality,
we restrict our focus on the case where operation ci either increases or decreases the
weight of an existing edge in Gi , as insertions and deletions of nodes and edges can
be easily modelled as weight changes (see, e.g., [17] for more details). Moreover,
we consider the case of networks in which a change in the weight of an edge (either
increase or decrease) can occur while one or more other edge weight changes are
under processing. A processor v of the network might be affected by a subset of these
changes. As a consequence, v could be involved in the concurrent executions related
to such changes. We will use wt (), dt (), and viat () to denote a given edge weight,
distance, or via in graph Gt , respectively.

2.4 Complexity Measures

In the remainder of the chapter, the performance of some of the considered algorithms
will be measured in terms of two parameters, namely δ and Δ, which have been
considered in several works on the matter (see, e.g. [1, 2, 24, 26] and reference
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therein) since they capture pretty well the amount of distributed computation that has
to be carried out to update the shortest paths in dynamic networks, as a consequence
of one or more update operations.

In more details, given a sequence C = {c1, c2, ..., ck} of update operations, we
define parameter σci ,s to represent, for each operation ci and for each node s, the set
of nodes that change either the distance or the via toward s as a consequence of ci .
More formally, for each operation ci and for each node s, such parameter is defined
as

σci ,s = {v ∈ V | dti (v, s) �= dti−1(v, s) or viati (v, s) �= viati−1(v, s)}.

If a node v ∈ ∪k
i=1 ∪s∈V σci ,s , then v is said to be affected. We denote by Δ the

overall number of affected nodes, Δ = ∑k
i=1

∑
s∈V

∣
∣σci ,s

∣
∣. Furthermore, given a

generic destination s in V , σs = ∪k
i=1σci ,s and δ = maxs |σs |. It follows that a node

can be affected for at most δ different sources.
Finally, to properly analyse the behaviour of the solutions described in this chapter

with respect to convergence time, we will consider the so-called Fifo network sce-
nario which can be briefly summarized as follows. As shown in [32], the perfor-
mance of a distributed algorithm in the asynchronous model depend on the time
needed by processors to execute the local procedures of the algorithm and on the
delays incurred in the communication among nodes. Moreover, these parameters
influence the scheduling of the distributed computation and hence the number of
messages sent. For these reasons, in order to correctly evaluate the performance of
a distributed algorithm, the realistic case is considered, where the weight of an edge
models the time needed to traverse such edge (the delay occurring on that edge if
a packet is sent on it) and all the processors require the same time to process every
procedure (the delay occurring on a processor if a procedure is performed on it),
which is assumed to be instantaneous. In this way, the distance between two nodes
models the minimum time that such nodes need to communicate. Then, the time
complexity is measured as the number of steps performed by the processors, that is
the number of times that a processor performs a procedure.

2.5 Distance-Vector Algorithms

In this section, we summarize the main characteristics of Distance-Vector algorithms
that will be useful for their description and analysis. Distance-Vector algorithms
based on shortest paths are usually able to handle concurrent updates, and share a set
of common features which can be briefly summarized as follows. Given a weighted
graph G = (V, E,w), a generic node v of G executing a Distance-Vector algorithm:

• knows the identity of any other node of G, as well as the identity of its neighbors
and the weights of its adjacent edges;
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• maintains a routing table that has n entries, one for each s ∈ V , which consists of
at least two fields:

– the estimated distance Dv[v, s] towards s, i.e. an estimation on d(v, s), that will
converge to the correct value in finitely many steps;

– the estimated via (often also called next hop) Viav[s], i.e. an estimation on one
or more elements of via(v, s) ≡ {z ∈ N (v) | d(v, s) = w(v, z) + d(z, s)};

• handles edge weight increases and decreases either all together, by a single pro-
cedure, or by two separate routines; in the former case (see, e.g., [24]), we
will denote such unified routine by HandleChangeW, while in the latter case
(see, e.g., [17]), we will denote the two procedures by HandleIncreaseW and
HandleDecreaseW, respectively;

• requests data to neighbors, regarding estimated distances, and receives the cor-
responding replies from them, through a dedicated exchange of messages (for
instance, by sending aquerymessage, like in [24], or by sending a get. f easible.dist
message, like in [26]);

• propagates a variation, occurring on an estimation on the distance or on the via,
to the rest of the network as follows:

– if v is performing HandleChangeW, then it sends out to its neighbors a ded-
icated notification message (from now on denoted by update); a node that
receives this kind of message executes a corresponding routine, from now on
denoted by HandleUpdate;

– if v is performing HandleIncreaseW (HandleDecreaseW, respectively)
then it sends to its neighbors a dedicated notification message (denoted from
nowonby increase ordecrease, respectively); a node that receives an increase
(decrease, respectively) message executes a corresponding routine, from now
on denoted by HandleIncrease (HandleDecrease, respectively).

It is known that a Distance-Vector algorithm can be designed to be free of looping
or count-to-infinity phenomena by incorporating suitable sufficient conditions in the
routing table update procedures. Three such conditions are given in [24]. The less
restrictive, and easier to implement, of the conditions in [24] is the so-called Source
Node Condition (snc), which can be implemented to work in combination with
a Distance-Vector algorithm if and only if such an algorithm maintains, besides the
already mentioned routing table, a so-called topology table. The topology table of
a node v has to contain enough information for v to be able to determine, for each
u ∈ N (v) and for each s ∈ V , the quantityDv[u, s], i.e. an estimation on the distance
from u to s as it is known to v. Such values are then exploited by the snc to establish
whether a path is free of loops as follows. If, at time t , v needs to change Viav[s] for
some s ∈ V , then it can select as new via any neighbor k ∈ N (v) satisfying both the
conditions of the following loop-free test:

1. Dv[k, s](t) + wt (v, k) = minvi∈N (v){Dv[vi , s](t) + wt (vi , v)}, and
2. Dv[k, s](t) < Dv[v, s](t),
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Fig. 1 A graph G before and
after a weight increase on the
edge (s, v). Edges here are
labeled with their weights v

s

ba

100

1 1

v

s

ba

1

1 1

11

where Dv[i, s](t) denotes, in this case, the estimated distance of neighbor i ∈ N (v)
as it is known to v at time t . If no such neighbor exists, then Viav[s] does not
change. If VIAG[s](t) denotes the directed subgraph of G induced by the set
{Viav[s](t), for each v ∈ V }, of the estimated vias, at time t , then the following
result holds.

Theorem 1 ([24]) Let G be a network whose VIAG[s](t0) is loop-free at time t0.
If G undergoes a sequence of updates starting at a certain time t ′ ≥ t0 and snc is
used when nodes have to change their via, then VIAG[s](t) remains loop-free, for
any t ≥ t ′ ≥ t0.

3 Distributed Bellmann-Ford

This section summarizes the main characteristics of the Distributed Bellmann-Ford
(DBF) method. DBF requires each node v in the network to store the last known
estimated distance Dv[u, s] towards any other node s ∈ V , received from each
neighbor u ∈ N (v). In DBF, a node v updates its estimated distance Dv[v, s] toward
a node s by simply executing the iterationDv[v, s] := minu∈N (v){w(v, u)+Dv[u, s]},
when needed. As already mentioned in Sect. 1, it is known that DBF suffers of the
well-known looping and count-to-infinity problems, which arise when a certain kind
of link failure or weight increase operation occurs in the network. In Fig. 1, we show a
classical topology whereDBF counts to infinity. In particular, the left and right sides
of such a figure show a graph G before and after a weight modification occurring on
edge (s, v). In Fig. 2, we show the corresponding steps required by DBF to update
both the distance and the via towards a distinguished node s, for each node of G, as
a consequence of the change.

In detail, when the weight of edge (s, v) increases to 100, node v updates its
distance and via towards s by setting Dv[v, s] to 3 and Viav[s] to node b. In fact,
v knows that the distance from a (and b) to s is 2, while the weight of edge (v, s)
is 100. Note that, v cannot know that the path from a to s with weight 2 is that
passing through edge (v, s) itself. Now, we concentrate on the operations performed
by nodes a and b. When node a (b, respectively) performs the updating step, it finds
out that its new estimated via towards s is b (a, respectively) and its new distance
is 3. In fact, according to a’s information Da[v, s] = 3 and Da[b, s] = 2, therefore
w(a, b)+Da[b, s] < w(a, v)+Da[v, s]. Subsequent updating steps (but the last one)
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Fig. 2 The sequence of recomputations of Du[u, s] and Viau[s] by a node u executing DBF. The
value close to a node denotes its distance towards s while an arrowhead from x to y in edge (x, y)
indicates that node y is the estimated via of x towards s

do not change the estimated via to s of both a and b, but only the estimated distances.
For each updating step the estimated distances increase by 1 (i.e., by the weight of
edge (a, b)). The counting stops after a number of updating steps that depends on
the new weight of edge (s, v) and on the weight of edge (a, b). Note that, if edge
(s, v) is deleted (i.e. his weight is set to ∞), the algorithm does not terminate.

In Fig. 3 we give an example of the execution ofDBF on another (simple) network
(which is part of an example in [24])where aweight increase operation occurs and the
algorithm does not count to infinity. In the figure, the value close to a node indicates
its distance to node s and an arrowhead from x to y in edge (x, y) indicates that
node y is the successor of x towards node s. An arrowhead from x to y close to edge
(x, y) denotes that node x is sending a message to y containing the current distance
from s to t , the value of such distance is reported close to the arrow.

At a certain point in time, edge (b, s) changes its weight from 2 to 10 (see
Fig. 3a). When node b detects the weight increase, it updates the value of Db[b, s]
to the minimum possible value, that is Db[b, s] = minu∈N (b){w(b, u) + Db[u, s]} =
w(b, c) + Db[c, s] = 4. Then, node b sends Db[b, s] to all its neighbors (Fig. 3b).
As a consequence of such messages, nodes a and c update Da[b, s] and Dc[b, s],
respectively, compute their optimal distances to s that are 4 and 5, respectively, and
send them to their own neighbors (Fig. 3c). Nodes s and d only update Ds[b, s] and
Dd [b, s], respectively. In Fig. 3d, node b updates Db[c, s] to 5 as a consequence of
the message sent by c. As c was the successor node of b towards s, b needs to update
Db[b, s] to minu∈N (b){w(b, u) + Db[u, s]} = w(b, a) + Db[a, s] = 5. After this
update, b sends Db[b, s] to its neighbors. Node d behaves similarly by updating its
distance to s to 6. In Fig. 3e–g, the message sent by b is propagated to nodes c and
d in order to update the distances from this nodes to s.

As a concluding remark of this section, we recall that, if the nodes of the network
are not synchronized, even in the static case, i.e. when no change occurs in the
network, it can be shown that overall number of messages sent by DBF is, in the
worst case, exponential with respect to the number of nodes in the network as stated
in the next theorem [33, Chap. 15].

Theorem 2 ([33]) Let n be any even number, n ≥ 4. Then there is a weighted graph
G with n nodes, in which the DBF algorithm sends at least �(cn) messages in the
worst case, for some constant c > 1.
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Fig. 3 Example of execution of DBF

4 Diffuse Update Algorithm

This section describes the main characteristics of the Diffuse Update Algorithm
(DUAL), and analyses its complexity, under the Fifo networks assumption. We omit
the proofs of correctness and formal initialization of the flag variables. The full
details are presented in [24]. The main steps of the algorithm are executed every time
a weight change ci ∈ C = {c1, c2, ..., ck} occurs on an edge (xi , yi ).
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4.1 Data Structures

DUAL is more complex than classical Distance-Vector algorithms, like DBF, and
uses different data structures in order to guarantee freedom from looping and counting
to infinity. For each node v and for each destination s, it stores a slightly modified
routing tablewhere the twofields: the first is a numerical valueDv[v, s] that represents
the estimated distance; the second field is a vertex FSv[s] that represents the feasible
successor of v towards s. This latter field takes the place of the standard value of
Viav[s], and represents an estimation on via(v, s) that is always guaranteed to induce
a loop-freeVIAG[s](t) at any time t [24]. In order to computeFSv[s],DUAL requires
that each node v be able to determine, for each destination s, a set of neighbors called
the Feasible Successor Set, denoted as FSSv[s]. To this aim, each node v explicitly
stores the topology table, which contains, for each u ∈ N (v), the distance Dv[u, s]
from u to s. Then, it computes FSSv[s] by using the snc sufficient condition. In
more details, node u ∈ N (v) is inserted in FSSv[s] if the estimated distance Dv[u, s]
from u to s is smaller than the feasible distance FDv[v, s] from v to s. If a neighbor
u ∈ N (v), through which the distance from v to s is minimum, is in FSSv[s], then u
is chosen as feasible successor. Moreover, in order to guarantee mutual exclusion in
case multiple weight change operations occur, each node v performing DUAL uses
some auxiliary data structures: (i) an auxiliary distance RDv[v, s], for each s ∈ V ;
and (ii) a finite state machine to process these multiple updates sequentially. The
state of the machine consists, for each s ∈ V , of three variables:

1. the query origin flag Ov[s] (integer value from the set {0, 1, 2, 3})
2. the state Activev[s] (an integer and a boolean entry)
3. the replies status flag Rv[u, s] (a boolean value fro each neighbor u ∈ N (v))

It follows that DUAL requires �(n · maxdeg) space per node, as all the data
structures stored by a node v are arrays of size n, with the exception of the topology
tableDv[u, s] and the replies status flag, which are permanently allocated and require
�(n · maxdeg) space.

4.2 Algorithm

Themain core ofDUAL is a sub-routine, namedDiffuse-Computation (see Fig. 7),
which is performed by a generic node v, every time FSSv[s] does not include the
node u ∈ N (v) through which the distance from v to s is minimum. The Diffuse-
Computation works as follows: node v sends queries to all its neighbors with its
distance through FSv[s] by using message query (see Line 2 of Fig. 7). Accord-
ingly, v sets Rv[u, s] to true (see Line 3 of Fig. 7), for each u ∈ N (v), in order
to keep trace of which neighbor has answered to the query message (the value is
set to false when a corresponding reply message is received, see Line 2 of Fig. 9).
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Fig. 4 Pseudo-code of procedure DistanceDecrease

Fig. 5 Pseudo-code of procedure Update
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Fig. 6 Pseudo-code of procedure DistanceIncrease

Fig. 7 Pseudo-code of procedure Diffuse-Computation

From this point onwards v does not change its feasible successor to s until the
Diffuse-Computation terminates.

When a neighbor u ∈ N (v) receives a query, it triggers the execution of pro-
cedure Query (see Fig. 8). The procedure tries to determine if a feasible successor
toward s exists after the update. If so, it replies to the query by sending message
reply containing its own distance to s (see Lines 11–18 of Fig. 8). Otherwise, u prop-
agates theDiffuse-Computation toward the rest of the network. In details, it sends
out queries and waits for the replies from its neighbors before replying to v’s origi-
nal query. To guarantee that each node is involved in one Diffuse-Computation
phase at the time, for a certain s ∈ V , an appropriate finite state machine behaviour
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Event: Node v receives a query(u,s,d) from u.
Procedure: QUERY(u,s,d)

1 Dv[u,s] := d;
2 if FSv[s] �= u then
3 Send reply(v,s,Dv[v,s]) to u;

4 else
5 if Ov[s] = 1∧ ACTIVEv[s] = true then
6 Ov[s] = 2;

7 if Ov[s] = 0∧ ACTIVEv[s] = true then
8 Ov[s] = 2;

9 Dmin := min
k∈N(v)

Dv[k,s]+w(v,k);

10 Smin := argmin
k∈N(v)

Dv[k,s]+w(v,k);

11 if Dv[Smin,s]< FDv[v,s] then
12 Dv[v,s] := Dmin;
13 if ACTIVEv[s] = false then
14 FSv[s] := Smin;
15 RDv[v,s] := Dv[v,s];
16 Send reply(v,s,Dv[v,s]) to u;
17 foreach k ∈ N(v) do
18 Send update(v,s,Dv[v,s]) to k;

19 else
20 Dv[v,s] := Dv[u,s]+w(u,v);
21 if ACTIVEv[s] = false then
22 Ov[s] := 3;
23 FDv[v,s] := Dv[v,s];
24 RDv[v,s] := Dv[v,s];
25 call DIFFUSE-COMPUTATION(s);

Fig. 8 Pseudo-code of procedure Query

is implemented by variablesOv[s] andActivev[s] (see, e.g. Lines 6 and 8 of Fig. 8).
Changes to distances, feasible distances and successors are allowed only under spe-
cific circumstances.Moreover, an auxiliary variableRDv[v, s], representing an upper
bound to Dv[v, s] is used by each node v, for each s ∈ V , to answer to certain types
of queries, under the same circumstances, in order to avoid loops.We refer the reader
to [24] for an exhaustive discussion on the subject. In the same paper, the authors
show that theDiffuse-Computation always terminates, i.e. that there exists, under
the Fifo assumption, a time when a node receives messages reply by all its neigh-
bors. At that point, it updates its distance and feasible successor, with the minimum
value obtained by its neighbors and the neighbor that provides such distance. This is
done during the execution of procedure Reply, which is invoked upon the reception
of each Reply message (see Fig. 9). At the end of a Diffuse-Computation exe-
cution, a node sends message update containing the new computed distance to its
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Event: Node v receives a reply(u,s,d) from u.
Procedure: REPLY(u,s,d)

1 Dv[u,s] := d;
2 Rv[u,s] := false;
3 if Rv[k,s] = false ∀ k ∈ N(v) then
4 if {Ov[s] = 1∧ ACTIVEv[s] = true}∨{Ov[s] = 3∧ FDv[v,s] = ∞} then
5 Dmin := min

k∈N(v)
Dv[k,s]+w(v,k);

6 Smin := argmin
k∈N(v)

Dv[k,s]+w(v,k);

7 if Dv[Smin,s]< FDv[v,s] then
8 Dv[v,s] := Dmin;
9 FSv[s] := Smin;
10 Ov[s] := 1;
11 ACTIVEv[s] := false;
12 FDv[v,s] := Dv[v,s];
13 RDv[v,s] := Dv[v,s];
14 foreach k ∈ N(v) do
15 if k = u then
16 Send reply(v,s,Dv[v,s]) to k;

17 else
18 Send update(v,s,Dv[v,s]) to k;

19 else
20 if Ov[s] = 0 then
21 Ov[s] = 1;

22 if Ov[s] = 2 then
23 Ov[s] = 3;

24 c := FSv[s];
25 Dv[v,s] := Dv[c,s]+w(v,c);
26 FDv[v,s] := Dv[v,s];
27 call DIFFUSE-COMPUTATION(s);

Fig. 9 Pseudo-code of procedure Reply

neighbors (see Line 18 of Fig. 9). As mentioned above, DUAL starts every time a
node xi detects a weight change operation ci occurring on one of its adjacent edges,
say (xi , yi ). In what follows, the cases in which ci is a weight decrease and a weight
increase operation are considered separately.

Weight decrease. If ci is a weight decrease operation on (xi , yi ), node xi first
tries to determine whether node yi can be chosen as new FSxi [s] or not, for each
s ∈ V , without performing Diffuse-Computation. In fact, since ci can induce
only decreases in the distances, snc is trivially always satisfied by at least one neigh-
bor, which is either the current FSxi [s] or yi itself. This is done by invoking procedure
DistanceDecrease (yi , s) for all s ∈ V (see Fig. 4), and the same routine is per-
formed, symmetrically, by node yi . In any of the two cases, it propagates the change



114 G. D’Angelo et al.

by sending update messages to its neighbors, with the aim of notifying either a
change in the distance or in the distance and the feasible successor. Each node in the
graph, which receives such update message, in turn, determines whether FSv[s] has
to be updated or not in the same way, and possibly propagates the change (see Line 9
Fig. 5). Note that, as the Fifo case is under consideration, each node of the graph
updates its data structures related to s at most once as a consequence of ci . Hence,
since there are

∣
∣σci ,s

∣
∣ nodes that change their distances or feasible successors towards

s as a consequence of ci and since each node v in σci ,s sends at mostmaxdeg update
messages, the number of messages, related to a source s, sent as a consequence of
a weight decrease operation ci is O(maxdeg · ∣

∣σci ,s

∣
∣), while the number of steps

required to converge is O(|σci ,s |).
Weight increase. If ci is a weight increase operation, the only nodes that sends
messages, as a consequence of operation ci and w.r.t. a source s, are those in σci ,s and
their neighbors. In particular, after ci occurs on (xi , yi ), node xi tries, for each s ∈ V ,
to determine whether a feasible successor still exists or not, by checking if nodes in
FSSv[s] still satisfy snc. This is done by invoking procedure DistanceIncrease
(yi , s) for all s ∈ V (see Fig. 6). The same routine is performed, symmetrically, by
node yi . In the affirmative case, node xi immediately terminates its computation and
sends an update message to each u ∈ N (xi ) with the updated value of distance
(see Line 11 of Fig. 6). Since we are considering the Fifo case, by snc we know
that, in the above case, the path in VIAG[s] from u to s does not contain xi . Then,
it follows that also node u does not execute a Diffuse-Computation nor send
update to xi , as a consequence of ci . In the negative case, i.e. node xi performs a
Diffuse-Computation, and sends query messages to all its neighbors (see Line 20
of Fig. 6), and possibly (depending on the presence of alternative paths) induces other
nodes inVIAG[s] to performDiffuse-Computation.When xi receives all the reply
messages, it chooses as new feasible successor a neighbor u ∈ N (xi ) which, in turn,
does not perform Diffuse-Computation nor send update messages to xi , with
respect to s, as a consequence of ci .

The correctness of DUAL is given in the next theorem.

Theorem 3 ([24]) Let C = {c1, c2, . . . , ck} be a sequence of edge weight changes
on G. If DUAL is used, then FS is loop-free at any time t ≥ t0. Moreover, at the end
of the algorithm FSv[s] ∈ viatk (s, v) and Dv[s] = dtk (v, s), for each pair of nodes s
and v.

In any of the above cases, node xi sends O(|N (xi )|) updatemessages while only
in the second case, it sends O(|N (xi )|) query messages and each of the nodes in
N (xi ) sends O(1) reply messages. Note that each node v ∈ σci ,s behaves as xi
when it receives either update or query messages from FSv[s]. As a consequence, it
follows that the total number of messages sent by each node v ∈ σci ,s is O(|N (v)|) =
O(maxdeg) and that the overall number of messages related to the source s sent as
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a consequence of a weight increase operation ci is O(maxdeg · ∣
∣σci ,s

∣
∣) while the

number of steps required to converge is O(|σci ,s |).
Since

∑k
i=1

∑
s∈V

∣
∣σci ,s

∣
∣ = Δ, it follows that the overall number of messages

sent during a sequence of weight modifications C = {c1, c2, ..., ck}, in the realistic
case, and for each possible source s, is given by

∑k
i=1

∑
s∈V O

(
maxdeg · ∣

∣σci ,s

∣
∣
) =

O(maxdeg · Δ), while the overall number of steps required by the algorithm to
converge is

∑k
i=1

∑
s∈V O(|σci ,s |) = O(Δ).

This implies the next theorem.

Theorem 4 ([24]) DUAL requires O(maxdeg · Δ) messages, O(Δ) steps, and
�(n · maxdeg) space occupancy per node.

4.3 Example of Execution

In Fig. 10 we present an example of execution of DUAL, which is inspired by an
example given in [24].

The example focuses on the graph of Fig. 10a, and on destination s. In the figure,
the value close to a node indicates its distance to node s, and an arrowhead from
x to y in edge (x, y) indicates that node y is the successor of x toward node s.
Messages query, reply, and update are denoted by Q, R, and U, respectively.
The number in parentheses following R denotes the reported distance contained in
the reply message. Nodes involved in a Diffuse-Computation are highlighted
in white. At a certain point in time, edge (b, s) increases its weight from 2 to 10
(Fig. 10a). When node b detects the weight increase, it determines that it has no
feasible successor as none of its neighbors has a distance smaller than its current
distance, that is 2. Accordingly, it starts aDiffuse-Computation by sending a query
to its neighbors (Fig. 10b). In Fig. 10c, node c forwards the query and continues the
Diffuse-Computation, because it has no feasible successor, while node a finds a
feasible successor which is node s itself as 0 < 3 and sends a reply to b. When node
d receives node b’s query, it simply sends a reply because it has a feasible successor.
However, it becomes involved in the Diffuse-Computation when it receives the
query from node c (Fig. 10d). When node d receives all the replies to its query
(Fig. 10e), it computes its new distance and successor (12 and c, respectively), and
sends a reply to c’s query (Fig. 10f). Nodes c and b operate in a similar manner when
they receives all the replies to their respective queries (Fig. 10f–g). At this point, the
Diffuse-Computation is terminated and node b sends messages update containing
the new computed distance to notify its neighbors (Fig. 10h). Such messages are
propagated to the entire network in order to update the distances according to paths
to s induced by successors nodes (Fig. 10i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Example of execution of DUAL

As a final observation of the section, notice that, the undesirable count-to-infinity
phenomenon shown in Fig. 2 of Sect. 3, induced by the use ofDBF, does not occur if
DUAL is used, with snc. For instance, at step 2, the snc prevents node v to choose b
as its successor, since the loop-free test fails. This triggers an execution of Diffuse-
Computation, which is guaranteed to always produce an acyclic sub-graph induced
by the feasible successors [24].
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5 Loop Free Routing

This section describes the Loop Free Routing (LFR) algorithm of [26] and analyses
its complexity, under the Fifo assumption. The algorithm consists of four procedures
namedUpdate,Decrease, Increase and SendFeasibleDist, respectively, shown
in pseudocode in Figs. 11, 12, 13 and 14, respectively. The main procedures of the
algorithm start every time a weight change ci ∈ C = {c1, c2, ..., ck} occurs on an
edge (xi , yi ).

5.1 Data Structures

Similarly to DUAL, LFR is more complex than the classical Distance-Vector algo-
rithms, such as DBF, and uses a different set of data structures to realize a loop-free
behaviour. In more details, it maintains, for each node v, a customized version of
the standard routing table, that consists of two arrays Dv[v, s] and FSv[s], that store
the estimated distance and the so-called feasible via, respectively. This latter value
represents a different kind of estimation on via(v, s) that is always guaranteed to

Event: Node v receives an update(u,s,Du[u,s]) message from u
Procedure: UPDATE(u,s,Du[u,s])

1 if STATEv[s] = false then
2 if Dv[v,s]> Du[u,s]+w(u,v) then
3 DECREASE(u,s,Du[u,s]);
4 else
5 if Dv[v,s]< Du[u,s]+w(u,v) then
6 INCREASE(u,s,Du[u,s]);

Fig. 11 Pseudocode of procedure Update(u, s,Du[u, s])

Event: Node v invokes procedure DECREASE(u,s,Du[u,s])
Procedure: DECREASE(u,s,Du[u,s])

1 Dv[v,s] := Du[u,s]+w(u,v);
2 UDv[s] := Dv[v,s];
3 FSv[s] := u;
4 foreach k ∈ N(v)\{FSv[s]} do
5 send update(v,s,Dv[v,s]) to k;

Fig. 12 Pseudo-code of procedure Decrease(u, s,Du[u, s])
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Fig. 13 Pseudo-code of procedure Increase

induce loop-free VIAG[s](t) at any time t [26]. In addition, for each s ∈ V , a node v
executing LFR stores the following data structures: Statev[s], which represents the
state of node v with respect to source s (v is in active state and Statev[s] = true if
and only if it is performing procedure Increase or procedure SendFeasibleDist
with respect to s);UDv[s]which represents the estimated distance from v to s through
the current FSv[s] (in particular, if v is active UDv[s] is always greater than or equal
to Dv[v, s], otherwise they coincide).

To implement the topology table and, consequently, snc, node v stores an array
tempDv which represents atemporary data structure. The allocation of memory for
this data structure is made for a certain s only when needed, that is when v becomes
active with respect to a certain s, and it is deallocated right after v turns back in
passive state with respect to the same s. The entry tempDv[u][s] contains UDu[s],
for each u ∈ N (v), and hence tempDv takes O(maxdeg) space per node.
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Fig. 14 Pseudo-code of procedure SendFeasibleDist

5.2 Algorithm

At any time t < t1, beforeLFR starts, we assume that, for each pair of nodes v, s ∈ V ,
the values stored inDv[v, s](t) andFSv[s](t) are correct, that isDv[v, s](t) = dt (v, s)
and FSv[s](t) ∈ viat (v, s). The description focuses on a distinguished node s ∈ V
and each node v ∈ V , at time t , is assumed to be passive with respect to that s.

The algorithmstartswhen theweight of an edge (xi , yi ) changes.As a consequence,
xi (yi , respectively) sends to yi (xi , respectively) message update(xi , s,Dxi [xi , s])
(update(yi , s,Dyi [yi , s]), respectively). Messages received at a node are stored in
a queue and processed in FIFO order to guarantee mutual exclusion. If an arbitrary
node v receives update(u, s,Du[u, s]) from u ∈ N (v), then it performs procedure
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Update, which simply compares Dv[v, s] with Du[u, s] + w(u, v) to determine
whether v needs to update its estimated distance and or its estimated feasible via to s.

If node v is active, then the processing of the message is postponed by enqueue-
ing it into the FIFO queue associated to s. Otherwise, we distinguish three cases,
and discuss them separately, depending on the type of change in the estimated dis-
tance (or feasible via) that is induced by the message. In particular, if Dv[v, s] >

Du[u, s] + w(u, v), then v performs procedure Decrease, while if Dv[v, s] <

Du[u, s]+w(u, v), then v performs procedure Increase. Finally, if node v is passive
andDv[v, s] = Du[u, s]+w(u, v) then it follows that there is more than one shortest
path from v to s. In this case the message is discarded and the procedure ends.

DECREASE. When a node v performs procedure Decrease, it simply updates D,
UD and FS data structures by using the updated information provided by u. Then,
the update is forwarded to all neighbors of v with the exception of FSv[s] which is
node u (see Fig. 12).

INCREASE.When a node v performs procedure Increase(see Fig. 13), it first checks
whether the update has been received from FSv[s] or not. In the negative case, the
message is simply discarded while, in the affirmative case (only) v needs to change
its estimation on distance and feasible via to s. To this aim, node v becomes active,
allocates the temporary data structure tempDv, and setsUDv[s] to the current distance
through FSv[s]. At this point, v first performs the so called Local-Computation,
which involves all the neighbors of v. If the Local-Computation does not succeed,
then node v initiates the so called Global-Computation, which involves in the
worst case all the other nodes of the network. During the Local-Computation,
node v sends get.dist messages, carrying UDv[s], to all its neighbors, with the
exception of u. A neighbor k ∈ N (v) that receives a get.dist message, immediately
replies with the value UDk[s], and if k is active, it updates tempDk[v][s] to UDv[s].
When node v receives these values from its neighbors, it stores them in the array
tempDv, and it uses them to compute the minimum estimated distance Dmin to s and
the neighbor Viamin which gives such a distance.

At the end of the Local-Computation v checks whether a feasible via exists, by
executing the loop-free test, according to the snc. If the test fails, then v initiates the
Global-Computation, in which it entrusts the neighbors the task of finding a loop-
free path. In this phase, v sends get. f easible.dist(v, s,UDv[s]) message to each
of its neighbors. This message carries the value of the temporary estimated distance
through its current feasible via. This distance is not guaranteed to be minimum but
it is guaranteed to be loop-free. When v receives the answers to get. f easible.dist
messages from its neighbors, again it stores them in tempDv and it uses them to
compute the minimum estimated distance Dmin to s and the neighbor Viamin which
gives such a distance. At this point, v has surely found a feasible via to s and hence it
deallocates tempDv, updatesDv[v, s],UDv[s] and FSv[s] and propagates the change
by sending update messages to all its neighbors. Finally, v turns back in passive
state and starts processing another message in the queue, if any.
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A node k ∈ N (v) which receives a get. f easible.dist message performs pro-
cedure SendFeasibleDist. If FSk[s] = v and k is passive, then procedure -
SendFeasibleDist behaves similarly to procedure Increase.

The only difference is that SendFeasibleDist needs to answer to the
get. f easible.dist message. However, within SendFeasibleDist, the Local-
Computation and theGlobal-Computation are performed with the aim of send-
ing a reply with an estimated loop-free distance in addition to that of updating the
routing table. In particular, node k needs to provide to v a new loop-free distance.
To this aim, it becomes active, allocates the temporary data structure tempDk , and
sets UDk[s] to the current distance through FSv[s]. Then, as in procedure Increase,
k first performs the Local-Computation, which involves all the neighbors of k.
If the Local-Computation fails, that is snc is violated, then node k initiates the
Global-Computation, which involves in the worst case all nodes of the network.
At this point k has surely found an estimated distance to s which is guaranteed to
be loop-free and hence, differently from Increase, it sends this value to its current
via v as answer to the get. f easible.dist message. Now, as in procedure Increase,
node k can deallocate tempDv, update its local data structures Dv[v, s], UDv[s] and
FSv[s], and propagate the change by sending update messages to all its neighbors.
Finally, v turns back in passive state and starts processing another message in the
queue, if any.

The correctness of LFR is given in the next theorem.

Theorem 5 ([26]) Let C = {c1, c2, . . . , ck} be a sequence of edge weight changes
on G. If LFR is used, then FS is loop-free at any time t ≥ t0. Moreover, at the end
of the algorithm FSv[s] ∈ viatk (s, v) and Dv[s] = dtk (v, s), for each pair of nodes s
and v.

Concerning the space complexity, LFR takes O(n+maxdeg · δ) space per node,
as all the data structures, stored by a node v, are arrays of size n, with the exception
of tempDv[·][s] which is allocated only when node v becomes active for a certain
destination s, that is only if v ∈ δci ,s , and deallocated when v turns back in passive
state for s, that is at most δ times. As each entry tempDv[·][s] requires O(maxdeg)
space, the total space per node is O(n + maxdeg · δ) in the worst case.

Concerning the message and time complexity, given a source s and a weight
change operation ci ∈ C on edge (xi , yi ), the cases in which ci is a weight decrease
or a weight increase operation are considered separately. If ci is a weight decrease
operation, only nodes in σci ,s update their data structures and send messages to their
neighbors. In detail, a node v can update its data structures related to s at most once
as a consequence of ci and, in this case, it sends |N (v)| messages. Hence, v sends at
most maxdeg messages. Since there are

∣
∣σci ,s

∣
∣ nodes that change their distance or

via to s as a consequence of ci , the number of messages related to the source s sent
as a consequence of a weight decrease operation ci is O(maxdeg · ∣∣σci ,s

∣
∣), while the

number of steps required to converge is O(|σci ,s |).
If ci is a weight increase operation, the only nodes which send messages with

respect to operation ci and source s are those in σci ,s and the neighbors of such
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nodes. In detail, each time that a node v ∈ σci ,s executes procedures Increase
and SendFeasibleDist, it sends O(|N (v)|) messages and each of the nodes in
N (v) sends O(1) messages, for a total number of O(|N (v)|) = O(maxdeg) mes-
sages sent. In the Fifo case, node v performs either procedure Increase or pro-
cedure SendFeasibleDist at most once with respect to ci and s. It follows that
each v ∈ σci ,s sends at most O(maxdeg) messages. Therefore, the overall num-
ber of messages related to the source s sent as a consequence of operation ci is
O(maxdeg · ∣

∣σci ,s

∣
∣) while the number of steps required to converge is O(|σci ,s |).

Now, since
∑k

i=1

∑
s∈V

∣
∣σci ,s

∣
∣ = Δ, it follows that the overall number of mes-

sages sent during the whole sequence C and for each possible source s, is given by∑k
i=1

∑
s∈V O

(
maxdeg · ∣

∣σci ,s

∣
∣
) = O(maxdeg · Δ), while the overall number of

steps required by the algorithm to converge is
∑k

i=1

∑
s∈V O(|σci ,s |) = O(Δ).

The next theorem follows from the above discussion.

Theorem 6 ([26])LFR requires O (maxdeg · Δ)messages, O(Δ) steps, and O(n+
maxdeg · δ) space occupancy per node.

5.3 Example of Execution

Fig. 15 shows an example of execution of LFR on the same graph of Fig. 10a, where
the focus is on shortest paths towards node s. Given a node v, FSv[s] is represented by
an arrow from v to FSv[s], andDv[v, s] andUDv[s] by a pair of values associated to v.
Before LFR starts it is assumed that all nodes are in passive state, that is none of them
is involved in a computation with respect to s. Passive nodes are represented as black
circles, while active nodes by white circles. In the example, the algorithm starts when
the weight of (b, s) increases from 2 to 10 (Fig. 15a). As a consequence b sends to
s message update(b, s,Db[b, s]), and s sends to b message update(s, s,Ds[s, s]),
denoted as u(2) and u(0), respectively (Fig. 15b).

When a node v receives an update message with an increased distance to s,
it checks whether it comes from FSv[s] and, in the affirmative case, it performs
Procedure Increase, otherwise it discards the message. Hence, when s receives
u(2), it immediately discards it and terminates, as FSs[s] �= b. On the other hand,
when node b, receives u(0), since FSb[s] = s and Db[b, s] < Ds[s, s] + w(b, s), it
needs to update its own routing table and hence it performs Procedure Increase.
In detail, b first performs the Local-Computation in which it tries to understand
whether its routing table can be updated by using only the distances to s of its
neighbors. To this aim, b switches to the active state, sets tempDb[s][s] = 0
and UDb[s] = tempDb[s][s] + w(b, s) = 0 + 10 = 10, and it sends to all
its neighbors, except FSb[s] = s, a get.dist message carrying UDb[s] denoted
as gD(10) (Fig. 15c). When a node k ∈ N (b) receives gD(10), it immediately
replies to b by sending UDk[s] (Fig. 15c). By using the replies of its neighbors,
b computes Dmin = min{tempDb[k][s] + w(b, k) | k ∈ N (b)} and Viamin =
argmin{tempDb[k][s] + w(b, k) | k ∈ N (b)} and performs the loop-free test of
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Fig. 15 Example of execution of LFR

the snc, to check whether the provided distance corresponds to a loop-free path
or not. Then b compares tempDb[Viamin][s] with Db[b, s], which represents the
last value of a loop-free distance computed by b. If the test succeeds, it follows
that b has a feasible via to s. Then it turns back in passive state, updates its routing
table and propagates the change to its neighbors. Otherwise, b performs theGlobal-
Computation, where it computes a loop-free path by involving the other nodes of the
graph. In this phase b sends to its neighbors a get. f easible.dist message (denoted
as gF in the figure), bringing the most up to date estimated distance to s through
the current successor FSb[s] of b. In this case, Dmin = Da[a, s] + w(b, a) = 4
and tempDb[a][s] = 3 > Db[b, s] = 2, hence b performs Global-Computation
(Fig. 15d).

When a neighbor k of b receives get. f easible.dist , it performs Procedure -
SendFeasibleDist. In detail, k first checks whether FSk[s] �= b or Statek[s] =
true. In this case, k immediately replies to b with UDk[s] (node d replies to b with
4 in Fig. 15d). If FSk[s] = b and Statek[s] = f alse then node k, sets UDk[s] =
tempDb[b][s]+w(b, k) (for example node a setsUDa[s] = 10+1 = 11 in Fig. 15d),
performs first Local-Computation and thenGlobal-Computation (nodes a and
c in Figs. 15d–f), in a way similar to Procedure Increase. To this aim, node a
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performs Local-Computation (Fig. 15d), which succeeds since tempDa[s][s] =
0, and replies to b with 4 (Fig. 15e). Differently from a, the Local-Computation
of node c fails, and hence c performs Global-Computation as well, by sending
gF(11) to d (Fig. 15e). When node d receives such message, it performs Local-
Computation by sending gD(12) to b which replies with UDb[s] = 10 �=
Db[b, s] = 2. Since the snc is not satisfied at d, because

• min{tempDd [z][s] + w(d, z) | z ∈ N (d)} = 12
• argmin{tempDd [z][s] + w(d, z) | z ∈ N (d)} = c
• tempDd [c][s] = 11 > Dd [d, s] = 4

then d performsGlobal-Computation by sending gF(12) to b, which immediately
replies with 10, and updates tempDb[d][s] = 12 (Fig. 15f).

At the end of this process, node d finds a new feasible via, node c, and replies to
c with the corresponding minimum estimated distance Dc[c, s] + w(d, c) = 12. In
addition, node d updates its routing table and propagates the change to its neighbors.
When c receives the answer to the gF message from d (Fig. 15g) it behaves as d, by
sending Db[b, s] +w(b, c) = 11 to b, updating its routing table and propagating the
change to its neighbors.

When b receives all the replies to its gF messages (Fig. 15h), it is able to compute
the new loop-free shortest path to s, to update UDb[s] = Db[b, s] = 5, to turn
back in passive state and to propagate the change by means of update messages
(Fig. 15i). The update messages induce the neighbors of b to update their routing
tables as described above for b. As the value UDb[s], sent by b during the Global-
Computation is an upper bound to Db[b, s], these update messages induce the
neighbors to perform procedure Decrease (Fig. 15j–k).

As a final observation of the section, notice that, the undesirable count-to-infinity
phenomenon shown in Fig. 2 of Sect. 3, induced by the use ofDBF, does not occur if
LFR is used, with snc, as well as for DUAL. In fact, for instance, at step 2, the snc
prevents node v to choose b as its successor, since the loop-free test fails after the
Local-Computation phase. This triggers an execution ofGlobal-Computation,
which is guaranteed to always produce an acyclic sub-graph induced by the feasible
successors [26].

6 Distributed Computation Pruning

This section describes the Distributed Computation Pruning (DCP) technique intro-
duced in [27]. The approach is not an algorithm by itself. Instead, it can be applied
on top of any distance vector algorithm for distributed shortest paths.

Given a generic distance-vector algorithm A, the combination of DCP with A
induces a newalgorithm,whichwedenote byA-DCP. TheDCP technique is designed
to be efficient mainly in power-law networks, by forcing the distributed computation
to be carried out only by a subset of few nodes of the network. In what follows, we
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first briefly summarize the main characteristics of such networks. Then, we present
the technique that is able to exploit some of the mentioned characteristics.

6.1 Power-Law Networks

A power-law network, in the most general meaning, is a network exhibiting a power-
law distribution of node degrees, thus having many nodes with low degree and few
(core) nodes with very high degree. Such class of networks is very important from
the practical point of view, since it includes many of the currently implemented
communication infrastructures, like the Internet, the World Wide Web, some social
networks, and so on. We refer the reader to [30] for more details on the subject. Prac-
tical examples of power-law networks, that will be considered in the remainder of the
chapter, are the Internet topologies of theCAIDA IPv4 topology dataset [29], and the
artificial instances generated by the Barabási-Albert model [30]. In Figs. 16 and 17
we show the power-law node degree distribution exhibited by typical CAIDA and
Barabási-Albert networks, respectively. More details about these kinds of networks
will be given in Sect. 6.7.

In the remainder of this section,we introduce somenotation anddefinitions that are
useful to capture scenarios typical of power-law networks We give some properties
of shortest paths in these cases that then are exploited by DCP. Given a graph G =
(V, E,w), we classify nodes, edges and paths in G as follows. A node v ∈ V is:
peripheral, if deg(v) = 1; semi-peripheral, if deg(v) = 2; and central if deg(v) ≥ 3.
A peripheral or semi-peripheral node is non-central. A path P = {v0, v1, . . . , v j } of
G is central if vi is central, for each 0 ≤ i ≤ j . Any edge belonging to a central
path is called central edge. A path P = {v0, v1, . . . , v j } of G is peripheral if v0 is
central, v j is peripheral, and all vi , for each 1 ≤ i ≤ j − 1, are semi-peripheral.
In this case, v0 is called the owner of P and of any node belonging to P . Any
edge belonging to a peripheral path, accordingly, is called peripheral edge. Finally,
a path P = {v0, v1, . . . , v j } of G is semi-peripheral if v0 and v j are two distinct

Fig. 16 Power-law node
degree distribution of a
CAIDA graph with 8000
nodes and 11141 edges
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Fig. 17 Power-law node degree distribution of aBarabási-Albert graphwith 8000 nodes and 12335
edges
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Fig. 18 A graph G and its corresponding nodes, edges and paths’ classification. Central nodes are
drawn in black, semi-peripheral nodes are drawn in gray, and peripheral node are drawn in white

central nodes, and all vi are semi-peripheral nodes, for each 1 ≤ i ≤ j − 1. Nodes
v0 and v j are called the semi-owners of P and of any node belonging to P . Any
edge belonging to a semi-peripheral path is called semi-peripheral edge. A further
distinction for semi-peripheral paths occurs if v0 ≡ v j . In this case P is called a
semi-peripheral cycle, and node v0 ≡ v j is called the cycle-owner of P and of any
node belonging to P . Each edge belonging to such a path is called cyclic edge and
each node u �= v0 in P is called cyclic node.

In Fig. 18 we present examples of the above defined concepts. Central nodes are
drawn in black, semi-peripheral nodes are drawn in gray, and peripheral node are
drawn in white. The path {u, j, v} is a central path, the path {v, p1, p2, p3} is a
peripheral path whose owner is v, the path {u, sp1, sp2, sp3, v} is a semi-peripheral
path whose semi-owners are u and v, while the path {u, c1, c2, c3, c4, u} is a semi-
peripheral cycle whose cycle-owner is u.
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In what follows, we list some straightforward relationships that can be established
between shortest paths involving central and non-central nodes of a given graph
G = (V, E,w).

Proposition 1 Let P = {v, p1, . . . , p j } be a peripheral path of G whose owner is
node v. Then, for each x ∈ V \ {p1, . . . , p j } and for each 1 ≤ i ≤ j , we have that
d(x, pi ) = d(x, v) + w(v → pi ), where w(v → pi ) is the weight of the unique
sub-path of P connecting v to pi .

Proposition 2 Let S = {u, sp1, . . . , sp j , v} be a semi-peripheral path of G whose
semi-owners are nodes u and v. Then, for each x ∈ V \ {sp1, . . . , sp j } and for each
1 ≤ i ≤ j , we have that d(x, spi ) = min{d(x, u) + w(u → spi ), d(x, v) + w(v →
spi )}, where w(u → spi ) and w(v → spi ) are the weights of the two sub-paths of S
connecting spi to u and v, respectively.

Proposition 3 Let C = {u, c1, . . . , c j , u} be a semi-peripheral cycle of G whose
cycle-owner is node u. Then, for each x ∈ V \{c1, . . . , c j } and for each 1 ≤ i ≤ j , we
have that d(x, ci ) = d(x, u)+min{w(P1

i ),w(P2
i )}, where P1

i = (u, c1, . . . , ci−1, ci )
and P2

i = (ci , ci+1, . . . , c j , u).

6.2 The Technique

The DCP technique has been designed to exploit the aforementioned topological
properties in order to reduce the communication overhead induced by distributed
computations executed by Distance-Vector algorithms. In particular, it forces the
distributed computation to be carried out by the central nodes only (which are few
in real-world power-law networks). Non-central nodes, which are instead the great
majority, play a passive role and receive updates about routing information from the
respective owners, without taking part to any kind of distributed computation and by
performing few trivial operation to update their routing data. Hence, it is clear that the
larger is the set of non-central nodes of the network, the bigger is the improvement in
the pruning of the distributed computation and, consequently, in the global number of
messages sent by A-DCP. This observation will be supported through experimental
means in Sect. 6.7.

6.3 Data Structures

In order to be implemented, DCP requires that a generic node of G stores some
additional information with respect to those required by A. In particular, each node
v needs to store and update information about adjacent non-central paths of G. To
this aim, v maintains a data structure called ChainPath, denoted as CHPv, which
is an array containing one entry CHPv[s], for each central node s. CHPv[s] stores
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the list of all edges, along with their weights, belonging to those non-central paths
that contain s. To build the ChainPath data structure, we assume that v knows the
degree of all nodes of the network belonging to non-central paths. The following
properties clearly hold:

• a central node obviously does not appear in any list of CHPv;
• a peripheral node appears in exactly one list CHPv[s], where s ∈ V is its owner;
• a semi-peripheral node appears in exactly two lists CHPv[v0] and CHPv[v j−1], if
it belongs to a semi-peripheral path (v0 and v j−1 are its semi-owners), while it
appears in a single list CHPv[v0], if it belongs to a semi-peripheral cycle (v0 is its
cycle-owner).

Hence, a node v, by using CHPv is able to determine locally its type, and, in the
case it is not central, it is also able to compute its owner, semi-owners, or cycle-owner.
The space occupancy overhead per node due to the ChainPath can be estimated as
follows:

• the ChainPath contains at most as many entries as the number of the central
nodes;

• the sum of the sizes of all lists in the ChainPath is at most twice the number of
non-central edges of G, since each non-central edge belongs to at most two chain
paths;

• the number of non-central edges of G is O(n), as they belong to paths in which
every node has degree at most two.

Therefore, theworst case space overhead per node due toCHPv is O(n). Note that,
despite this overhead, the use of DCP can induce a decrease in the space occupancy
per node required by A for the following observations: (i) in most of the cases nodes
do not ask and do not need to store information received from non-central nodes;
(ii) computations which involve the whole network are performed only with respect
to central destinations. Section6.7 will give experimental evidence of this behavior.
More details about the above statement are provided in the next section.

6.4 Description

Thebehavior of a generic algorithmA,when combinedwithDCP, canbe summarized
as follows. While in a classic routing algorithm every node performs the same code
thus having the same behavior, in A-DCP central and non-central nodes are forced
to have different behaviors. In particular, central nodes detect (and handle) changes
concerning all kinds of edges, while peripheral, semi-peripheral, and cyclic nodes
detect (and handle) changes concerning only peripheral, semi-peripheral, and cyclic
edges, respectively. Changes affecting the distances towards/from peripheral, semi-
peripheral, and cyclic nodes are handled by exploiting Propositions 1–3, as described
below. Four different types of edge weight updates can occur on the network, i.e. (i)
the weight of a central edge changes; (ii) the weight of a peripheral edge changes;
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(iii) the weight of a semi-peripheral edge changes; (iv) the weight of a cyclic edge
changes. In what follows, the generic algorithm A-DCP is described by considering
the four cases separately.

Case (i) If the weight of a central edge (x, y) changes, then node x (y, respectively)
performs the procedure provided by A for handling changes of this kind only with
respect to central nodes. During this computation, if x (y, respectively) needs to
know the estimated distances of its neighbors toward a central node s, it asks for
it only to its central neighbors. If x (y, respectively) is the semi-owner of one or
more semi-peripheral paths, it also asks for information to the other semi-owner
of each semi-peripheral path, by means of a strategy we call traverse- path. In
detail, node x (y, respectively) sends, for each semi-peripheral path it belongs to,
a sp.query(s) message to the corresponding semi-peripheral neighbor. The aim of
this message is to traverse the semi-peripheral path in order to get the estimated
distance, toward the considered node s, of the other semi-owner of the path. The
sp.query message contains only one field, i.e. the object s of the computation that
has originated the message. When a semi-peripheral node receives a sp.query(s)
message from one of its two neighbors j , it simply performs a store-and-forward
step and sends a sp.query(s) message to the other neighbor k �= j . The store-and-
forward step is performed in a way that the ordering of the messages is preserved. A
central node r that receives a sp.query(s) message from one of its semi-peripheral
neighbors u, simply replies to u with a sp.reply(s,Dr [r, s]) message, which carries
the estimated distance of r towards s, which was requested by x (y, respectively).
When a semi-peripheral node receives a sp.reply(s,Dr [r, s]) message from one
of its two neighbors j , it simply performs a store-and-forward step and sends a
sp.reply(s,Dr [r, s]) message to the other neighbor k �= j . The strategy terminates
whenever the central node x (y, respectively) receives sp.reply(s,Dr [r, s]): upon
that event, x (y, respectively) stores Dr [r, s] and uses it, if needed, while executing
the procedure provided by A for the distributed computation of shortest paths.

Once x (y, respectively) has updated its own routing data toward a certain central
node s, it propagates thevariation to all its neighbors througha gen.update(s,Dx [x, s])
(gen.update(s,Dy[y, s]), respectively), which carries an updated value of Dx [x, s]
(Dy[y, s], respectively).When a generic node v receives a gen.updatemessage from
a neighbor u, it executes procedure GeneralizedUpdate of Fig. 19 which, as first
step, stores the current value of Dv[v, s] in a temporary variable Dold

v [s] (Line 1).
Then, according to its status, the node performs different steps, which can be sum-
marized as follows:

• if v is central, then it handles the change and updates its routing information
toward the central node s (Line 3) by using the proper procedure of A, i.e.
HandleUpdate, HandleIncrease, or HandleDecrease, depending on the
original structure of A, and forwards the change through the network accordingly
(see Line 4).

• if v is a peripheral node whose owner is node r , thenDv[v, s] is trivally updated by
exploiting Proposition 1, i.e. by settingDv[v, s] = Dv[v, r ]+Dv[r, s] (see Line 8).
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Moreover, any specific data structure of A is accordingly updated, and Dv[r, s] is
propagated to the other neighbor of v.

• if v is a cyclic node whose cycle-owner is node r , then v exploits Proposition 3
and sets Dv[v, s] = Dv[v, r ] + Dv[r, s] (see Line 13). Moreover, since Dv[r, s] is
not changed, any specific data structure of A is accordingly updated, and Dv[r, s]
is propagated to the other neighbor of v.

• if v is a semi-peripheral node whose semi-owners are nodes r1 and r2, then the
message carries the estimated distance from either r1 or r2 to s which can be used,
according to Proposition 2, to update distances. In details, let us assume that the
message carries Dr1 [r1, s], the other case is symmetric. We denote by u and z
the neighbors of v which are closer (in terms of number of edges) to r1 and r2,
respectively. If the distance from v to s is not affected by the change of Dr1 [r1, s],
that is Dr1 [r1, s] increases but Viav[s] �= u, then v simply discards the message.
Otherwise, two cases may arise:

– (i) if Dr1 [r1, s] is increased and Viav[s] = u, then node v updates (Line 22 of
Fig. 19) Dv[v, s] as the weight of the shortest between two paths: that formed
by the shortest path from r1 to s plus the path from r1 to v, and that formed by
the shortest path from z to s plus edge (z, v);

– (ii) if Dr1 [r1, s] is decreased enough to induce a decrease also to Dv[v, s], then
v updates (Line 27 of Fig. 19) Dv[v, s] as the weight of the path formed by the
shortest path from r1 to s plus the unique path from r1 to v.

In both cases, any specific data structure of A is updated accordingly, andDr1 [r1, s]
is propagated to z. This behaviour mimics the distributed Bellman-Ford algorithm
equipped with the split horizon heuristic [34, Section 6.6.3]: the information about
the route for a particular node is never sent back in the direction from which it was
received.

After updating the routing information toward the central node s, the node v
calls the procedure PeripheryUpdate, presented in Fig. 20, using s and Dold

v [s]
as parameters. This procedure first verifies whether the routing table entry of s is
changed or not and, in the affirmative case (Line 1), it updates the routing information
about the non-central nodes whose owner, semi-owner, or cycle-owner is s, if they
exist, as follows:

• for each peripheral node z whose owner is s, node v sets Dv[v, z] equal to the
weight of the unique path from s to z plus the weight of the shortest path from v
to s (Line 4).

• for each cyclic node z whose cycle-owner is s, node v setsDv[v, z] equal to weight
of the shortest between the two possible paths from s to z plus the weight of the
shortest path from v to s (Line 9).

• for each semi-peripheral node z such that one of the semi-owner nodes is s,
node v performs procedure InnerSemiPeripheryUpdate (Line 12), if z and v lie
on the same semi-peripheral path, and procedure OuterSemiPeripheryUpdate
(Line 14), otherwise. These procedures update the routing information toward z
by exploiting the data stored in the ChainPath.
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Fig. 19 Pseudo-code of procedure GeneralizedUpdate

In detail, procedure InnerSemiPeripheryUpdate, described in Fig. 21, updates
Dv[v, y] by comparing the weight of the only two paths that connect v and z. Note
that, such two paths include the shortest paths between the semi-owners of v and
v itself.
In particular, if we assume that S is the semi-peripheral path that includes v and
z whose semi-owners are r1 and r2, node v computes the weight D1 of the unique
sub-path of S from v to z (Line 2), and determines the neighbor Via1 of v that
belongs to such sub-path (Line 3).
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Fig. 20 Pseudo-code of procedure PeripheryUpdate

Then, if v belongs to the sub-path of S that connects z to r1 (this detail can easily
be deduced from the ChainPath), it computes the weight D2 of the path formed
by the sub-path of S from z to r2 plus the shortest path from v to r2 (Line 5). Note
that such shortest path might contain node r1. Otherwise, node v computes the
weight D2 of the path formed by the sub-path of S from z to r1 plus the shortest
path from v to r1 (Line 8). Finally, node v sets Dv[v, z] to the minimum weight
of the above two possible paths (Lines 10 and 14, respectively) and, accordingly,
updates Viav[z].
Similarly, procedureOuterSemiPeripheryUpdate, presented in Fig. 22, updates
Dv[v, z] by comparing the weight of the only two paths that connect v and z. Note
that such paths include the shortest paths between the semi-owners of z and v. In
detail, if S is the semi-peripheral path that contains z and r1 and r2 are the semi-
owners of S, node v first computes two values Dr1 and Dr2 (Lines 2–3), equal to
the weight of the path formed by the path between z and r1 (z and r2, respectively)
plus the shortest path between v and r1 (v and r2, respectively), then sets Dv[v, z]
equal to the minimum of the weights of these two possible paths (Line 2) and,
accordingly, updates Viav[z].

Case (ii) If aweight change occurs on a peripheral edge (x, y1), belonging to a periph-
eral path P = {r, . . . , x, y1, . . . , yn}whose owner is r , then node x (y1, respectively),
handles the change by sending a peri.change(x, y1,w(x, y1)) message to each of
its neighbors. In this case, the distance from each node of the network to x does not
change, except for those nodes yp with p = 1, . . . , n (which are topologically further
than x from r ). Each of these nodes, after receiving the peri.change(x, y1,w(x, y1))
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Fig. 21 Pseudo-code of procedure InnerSemiPeripheryUpdate

Fig. 22 Pseudo-code of procedure OuterSemiPeripheryUpdate

message, first updates the CHP with the new value of w(x, y1) and then computes
the distance to x and to all the other nodes s of the network by simply adding to
Dyp [yp, s] the weight change on edge (x, y1). When a generic node v, different from
nodes yp, receivesmessage peri.change(x, y1,w(x, y1)), it first verifieswhether the
update has been already processed or not, by comparing the new value of w(x, y1)
with the one stored in its CHP. In the first case the message is discarded. Otherwise,
it updates its CHP with the updated value w(x, y1) and its routing information only
toward nodes yp, as the shortest path toward x does not change. In particular, node v
setsDv[v, yp] = Dv[v, r ]+Dv[r, yp], whereDv[r, yp] is the weight of the peripheral
path from r to yp (note that, for each v ∈ P , v �= yp, Dv[v, yp] is computed by using
only the information stored inside the CHP because it is equal to the weight of the
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peripheral path from v to yp). Then, it propagates peri.change(x, y1,w(x, y1)) over
the network by a flooding algorithm.

Case (iii) If the weight of a semi-peripheral edge (x, y), whose semi-owner nodes
are r1 and r2, changes, then node x (y, respectively) sends two kinds of messages: a
semi.change(x, y,w(x, y)), to each of its neighbors, and a gen.update(s,D·[·, s]
to x (y, respectively), for each central node s such that Viax [s] �= y (Viay[s] �= x ,
respectively), where D·[·, s] is the distance toward s of the semi-owner node of x (y,
respectively) that belongs to the sub-path of the semi-peripheral path that does not
include the edge (x, y). When a generic node v receives message semi.change, it
first verifies whether the update has been already processed or not, by comparing the
new value of w(x, y) with the one stored in its CHP. In the first case the message is
discarded. Otherwise, node v updates its CHP with the new value of w(x, y) and it
propagates semi.change(x, y,w(x, y)) over the network by a flooding algorithm.
Moreover, if v is the semi-owner nodeof the semi-peripheral path P that includes edge
(x, y), it also performs the procedure provided byA for the distributed computation of
shortest pathswith respect to central nodes. This step basically considers P as a single
edge that connects the two semi-owner nodes of P itself, and induces such semi-
owner nodes to behave like the weight of one of their adjacent edges has changed.

When a generic node v receives a gen.update(s,D·[·, s]message from a neighbor
u, it executes procedure GeneralizedUpdate(s,D·[·, s] of Fig. 19. After updat-
ing the routing information toward a central node s, node v calls the procedure
PeripheryUpdate presented in Fig. 20 using s and Dold

v [s] as parameters. The pro-
cedure works as in the case of a central edge weight change (see Case (i)).

Case (iv) If the weight of a cyclic edge (x, y) changes, both nodes x and y send a
cycl.change(x, y,w(x, y)) message to each of their neighbors. Let r be the cycle-
owner node of both x and y.When a generic node v receives message cycl.change, it
first verifies whether the update has been already processed or not, by comparing the
new value of w(x, y) with the one stored in its CHP. In the first case the message is
discarded. Otherwise, node v first updates its CHPwith the updated value of w(x, y)
andpropagates cycl.change(x, y,w(x, y))over the networkby aflooding algorithm.
Then, two cases can occur: either node v belongs to the same semi-peripheral cycle
of x and y or not.

• In the first case, node v first computes dα = Dv[v, s] − Dv[v, r ] and, hence,
updates the routing information toward all the nodes of the semi-peripheral cycle,
including r , by using the CHP data structure. Then, if Dv[v, r ] changes, it updates
the routing information toward all the other central nodes s of the network by
setting Dv[v, s] = Dv[v, r ] + dα . After updating the routing information toward a
central node s, node v calls the procedure PeripheryUpdate presented in Fig. 20
using s and Dold

v [s] as parameters. The procedure works as in the case of a central
edge weight change (see Case (i)).
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• In the second case, v computes, for each node z of the semi-peripheral cycle, the
shortest path distance between z and its cycle-owner node r by using theCHP data
structure. Finally, it assigns Dv[v, z] = Dv[v, r ] + Dv[r, z].

6.5 Combining DCP with DUAL

This section describes the combination of DCP to DUAL, denoted as DUAL-DCP.
The main changes deriving by the application of DCP to DUAL can be summarized
as follows.

If the weight of a central edge (u, v) changes, then node v verifies, only with
respect to each central node s, whetherDv[v, s] > Dv[u, s]+w(u, v) or not (note that
the behaviour of node u is symmetric with respect to the weight change operation).
In the first case, node v sets Dv[v, s] = Dv[u, s] + w(u, v) and FSv[s] = u and
propagates the change to all its neighbors. In the second case, node v first checks
whether FSv[s] = u or not. If FSv[s] �= u, the node terminates the update procedure.
Otherwise, node v tries to compute a new FSv[s]. In this phase, if no neighbor of v
satisfies snc and node v needs to perform the Diffuse-Computation, it sends out
query messages only to its central neighbors. Moreover, with the aim of knowing
the estimated distance of each of the semi-owner of the semi-peripheral paths which
node v belongs to, node v performs the traverse- path phase and sends sp.query
messages to each of its semi-peripheral neighbors. When node v receives all the
replies to these messages, it updates its routing information towards s and propagates
the change to all its neighbors. In all the cases, if the distance towards s changes, node
v is able to update its routing information towards all the nodes in the non-central
paths of s, if they exists.

If a weight change occurs on either a peripheral or a cyclic edge, then the nodes
adjacent to the edge behave as described in Sect. 6. The difference from the generic
case is that the involved nodes also update the topology table. If a weight change
occurs on a semi-peripheral edge, differently from the general case, semi-peripheral
nodes do not need to ask information to their neighbors, asDUAL permanently stores
the topology table.

Note that, when DCP is combined with DUAL, certain nodes of the network can
avoid to maintain some data structures of DUAL, as either the information stored in
them can be inferred by using the ChainPath, or it is not needed due to the pruning
mechanism of DCP. For instance, each node of the network executing DUAL-DCP,
does not need to store the data structure of DUAL that implements the finite state
machine with respect to non-central nodes, as no distributed computation can be ini-
tiated for this kind of nodes. Same considerations hold for the topology table. Other
minor compressions in the space occupancy can be achieved by exploiting some rela-
tionships between the shortest paths from non-central nodes to their corresponding
owner/semi-owners/cycle-owner.
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6.6 Combining DCP with LFR

This section describes the combination of DCP to LFR, denoted as LFR-DCP. In
what follows we summarize the main changes deriving by the application of DCP to
LFR.

If the weight of a central edge (u, v) changes, then node v verifies, only with
respect to central nodes s ∈ Vc, whether Dv[v, s] > Dv[u, s] + w(u, v) or not
(note that the behaviour of node u is symmetric with respect to the weight change
operation). In the first case, node v setsDv[v, s] = Dv[u, s]+w(u, v) and FSv[s] = u
and propagates the change to all its neighbors. In the second case, node v first checks
whether FSv[s] = u or not. If FSv[s] �= u, the node terminates the update procedure.
Otherwise, node v performs Local-Computation, by sending get.dist message to
all its neighbors. If the Local-Computation succeeds, node v updates its routing
information and propagates the change. Otherwise, node v needs to perform the
Global-Computation and it sends out get. f easible.dist messages only to its
central neighbors. Moreover, with the aim of knowing the estimated distance of each
of the semi-owner of the semi-peripheral paths which node v belongs to, node v
performs the traverse- path phase and sends sp.query messages to each of its
semi-peripheral neighbors. When node v receives all the replies to these messages,
it updates its routing information towards s and propagates the change to all its
neighbors. In all the cases, if the distance to s changes, node v is able to update its
routing information towards all nodes in the non-central paths of s, if they exists. If
a weight change occurs on a peripheral, semi-peripheral or a cyclic edge, then the
nodes adjacent to the edge behave as described in Sect. 6.

Note that, also whenDCP is combinedwithLFR, certain nodes of the network can
avoid tomaintain somedata structures ofLFR, as either the information stored in them
can be inferred by using theChainPath, or it is not needed due to the pruning mech-
anism of DCP. For instance, each node of the network executing LFR-DCP, does
not need to allocate the temporary data structure tempD with respect to non-central
nodes, as nonodeof the network canbecomeactivewith respect to a non-central node.
Moreover, this data structure, when allocated for some central node s, has a reduced
size, equal to the number of central neighbors of s plus the number of semi-peripheral
paths to which s belongs. Other minor compressions in the space occupancy and, in
particular, in the data structures needed to coordinate the distributed computations,
can be achieved also by exploiting some relationships between the shortest paths
from non-central nodes to their corresponding owner/semi-owners/cycle-owner.

6.7 Practical Effectiveness of DCP

This section describes the results of the experimental study proposed in [27], which
consider algorithms DUAL, LFR, DUAL-DCP and LFR-DCP, and show the prac-
tical effectiveness of the use of DCP. The experiments have been performed on a
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workstation equipped with a Quad-core 3.60 GHz Intel Xeon X5687 processor, with
12MB of internal cache and 24 GB of main memory, and consist of simulations
within the OMNeT++ 4.0p1 environment [28]. The programs have been compiled
with GNU g++ compiler 4.4.3 under Linux (Kernel 2.6.32).

6.7.1 Executed Tests

The experiments have been performed both on real-world and artificial instances
of the problem, subject to randomly generated sequences of updates. In detail, we
used both the power-law networks of the CAIDA IPv4 topology dataset [29], and the
random power-law networks generated by the Barabási-Albert algorithm [30].

The CAIDA dataset is collected by a globally distributed set of monitors. The
monitors collect data by sending probe messages continuously to destination IP
addresses. Destinations are selected randomly from each routed IPv4/24 prefix on
the Internet such that a random address in each prefix is probed approximately every
48 h. The current prefix list includes approximately 7.4 million prefixes. For each
destination selected, the path from the source monitor to the destination is collected,
in particular, data collected for each path probed includes the set of IP addresses of
the hops which form the path and the Round Trip Times (RTT) of both intermediate
hops and the destination. The power-law graphs of the CAIDA dataset have average
node degree approximately equal to 2.5 and a number of nodes with degree smaller
than 3 approximately equal to 3/4n.

A Barabási–Albert topology is generated by iteratively adding one node at a time,
starting from a given connected graph with at least two nodes. A newly added node
is connected to any other existing nodes with a probability that is proportional to
the degree of the existing nodes. The power-law graphs generated by the Barabási–
Albert algorithm have average node degree approximately equal to 3 and a number
of nodes with degree smaller than 3 approximately equal to 7/10n.

Regarding CAIDA network instances, the files provided by the CAIDA consor-
tium have been parsed to obtain a weighted undirected graph, denoted asGI P , where
a node represents an IP address in the dataset (both source/destination hosts and inter-
mediate hops), edges represent links among hops, and weights of the edges are given
by Round Trip Times. As the graph GI P consists of almost 35000 nodes, it was not
possible to use it for the experiments, as the amount of memory required to store
the routing tables of all the nodes is O(n2 · maxdeg) for DUAL. Hence, the tests
have been performed on connected subgraphs of GI P , with a variable number of
nodes and edges, induced by the settled nodes of a breadth first search starting from
a node taken at random. A subgraph of GI P with h nodes is denoted with GI P−h .
Different tests have been generated, each test consisting of a subgraph of GI P and a
set of k edge updates, where k assumes values in {5, 10, . . . , 200}. An edge update
consists of multiplying the weight of a random selected edge by a percentage value
randomly chosen in [50, 150%]. For each test configuration (a graph with a fixed
value of k) 5 different experiments were performed (for a total amount of 200 runs)
and the average values are reported.
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Concerning Barabási–Albert instances, different tests have been randomly gen-
erated, where a test consists of a n nodes Barabási–Albert random graph, denoted
as GBA−n , and a set of k edge updates, where k assumes values in {5, 10, . . . , 200}.
Edge weights are non-negative real numbers randomly chosen in [1, 1000000]. Edge
updates are randomly chosen as in the CAIDA tests. For each test configuration (a
graph with a fixed value of k) 5 different experiments have been performed (for a
total amount of 200 runs) and average values are reported.

6.7.2 Analysis

Simulations have been ran on both CAIDA and Barabási–Albert instances with dif-
ferent number of nodes n ∈ {1200, 5000, 8000}. The results of the experiments
on the different instances are similar, hence only those on the bigger instances are
reported here, that is, GI P−8000 (8000 nodes and 11141 edges), and GBA−8000 (8000
nodes and 12335 edges), respectively. Notice that:GI P−8000 has average node degree
equal to 2.8, a percentage of degree 1 nodes approximately equal to 38.5%, and a
percentage of degree 2 nodes approximately equal to 33%; GBA−8000 has average
node degree equal to 3.1, a percentage of degree 1 nodes approximately equal to
45%, and a percentage of degree 2 nodes approximately equal to 26%.

In Fig. 23 the number of messages sent by DUAL and DUAL-DCP on GI P−8000

are reported, while in Fig. 24 the number of messages sent by LFR and LFR-DCP
on GI P−8000 are reported. These Figures show that the combinations of DUAL and
LFR with DCP provide a huge improvement in the global number of messages sent
on GI P−8000. In particular, in the tests of Fig. 23 the ratio between the number of
messages sent by DUAL-DCP and DUAL is within 0.03 and 0.16 which means that
DUAL-DCP sends a number ofmessageswhich is between 3 and 16% that ofDUAL.
In the tests of Fig. 24 the ratio between the number of messages sent by LFR-DCP
and LFR is within 0.10 and 0.26.

In Fig. 25 the number of messages sent by DUAL and DUAL-DCP on GBA−8000

are reported, while in Fig. 26 the number of messages sent by LFR and LFR-DCP on
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Fig. 24 Number of
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GBA−8000 are reported. These Figures show that the use of DCP again gives a clear
improvement in the global number ofmessages sent. In detail, in the tests of Fig. 25 the
ratio between the number of messages sent byDUAL-DCP andDUAL is within 0.22
and 0.47. Similarly, in the tests of Fig. 26 the ratio between the number of messages
sent by LFR-DCP and LFR is within 0.26 and 0.34. Notice that, the improvement
provided by DCP in these artificial instances is smaller than in the real-world ones.
This is due to the fact that the part of the distributed computation pruned by DCP
is smaller in the Barabási-Albert networks with respect to the CAIDA networks, as
they have: (i) a slightly higher average degree (ii) a wider range of the degree of the
central nodes, that is a slightly larger standard deviation of the node degree. In fact,
for instance, GI P−8000 has an average degree equal to 2.8 and maxdeg equal to 203
while GBA−8000 has an average degree equal to 3.1 and maxdeg equal to 515. Note
also that this behaviour is more emphasized for LFR-DCP as LFR includes two sub-
routines (called Local-Computation and Global-Computation, respectively)
where the worst case message complexity depends on the maximum degree, while
DUAL uses a single sub-routine (namely the Diffuse-Computation) where the
worst case message complexity depends on the same parameter.

To conclude the analysis, the space occupancy per node of each algorithm has
been considered. The results are summarized in Table1 where, both for GI P−8000

and GBA−8000, the maximum and the average space occupancy per node, in Bytes,
of each algorithm is reported. Also the ratio between the space occupancy per node
of the algorithms integrating DCP and that of the original algorithms is reported,
for each test instance. Note that, since the space occupancy per node of LFR, and
LFR-DCP depends on the number of weight change operations, median values for
each of these algorithms are reported.

The experiments show that the use of DCP induces, in most of the cases, a clear
improvement also in the space requirements per node. In particular, DUAL-DCP
(LFR-DCP, respectively) requires a maximum space occupancy per node which is
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Fig. 26 Number of
messages sent by LFR and
LFR-DCP on GBA−8000
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0.30 (0.72, respectively) and 0.29 (0.83, respectively) times that of DUAL (LFR,
respectively) in GI P−8000 and GBA−8000, respectively. Notice that, the improvement
is more evident in the case of DUAL, as its maximum space occupancy per node is
by far higher than that of LFR. Concerning DUAL, this behaviour is confirmed also
in the average case, where DUAL-DCP requires 0.81 and 0.92 times the average
space occupancy per node of DUAL, in GI P−8000 and GBA−8000, respectively. On
the contrary, the experimental data show that the average space occupancy per node
of LFR-DCP is slightly greater than that of LFR and that the use of DCP induces
an overhead in the average space occupancy per node which is equal to 53% and
77%, in GI P−8000 and GBA−8000, respectively. This is due to the fact that the average
space occupancy of LFR is quite low by itself and that, in this case, the space occu-
pancy overhead needed to store the ChainPath is greater than the space occupancy
reduction induced by the use of DCP.
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Table 1 Space occupancy per node of the considered algorithms

Graph Algorithm MAX AVG

Bytes Ratio Bytes Ratio

GI P−8000 DUAL 8 320 000 1 311410 1

DUAL-DCP 2517680 0.30 252625 0.81

GI P−8000 LFR 549170 1 192871 1

LFR-DCP 392658 0.72 295930 1.53

GBA−8000 DUAL 20800000 1 323350 1

DUAL-DCP 6130860 0.29 300081 0.92

GBA−8000 LFR 520289 1 192619 1

LFR-DCP 434130 0.83 341449 1.77

7 Conclusions

In the last years, there has been a renewed interest in devising new efficient light-
weight distributed shortest paths solutions for large-scale Ethernet networks, where
distance-vector algorithms are an attractive alternative to link-state solutions, when
scalability and reliability are key issues or when the memory resources of the nodes
of the network are limited.

In this chapter we have reviewed classic distance-vector approaches, and outlined
the most recent and efficient solutions of this category. In particular, we have con-
sidered the classicalDistributed Bellman-Ford (DBF) algorithm [7], the well-known
Diffuse Update Algorithm (DUAL) of [24], the recent Loop Free Routing algorithm
(LFR) of [26], and the Distributed Computation Pruning technique (DCP) of [27],
which can be combined with distance-vector algorithms with the aim of overcom-
ing some of their main limitations. We have analysed differences and similarities,
pros and cons, of the various algorithm, and we have also provided a summary of
the experimental results given in [26, 27], which show how the above mentioned
algorithms behave in practice.
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Algorithm (PMS-MOIVA) for the solution of the Multiobjective Energy Reduction
Open Vehicle Routing Problem. The PMS-MOIVA could be categorized in the Arti-
ficial Immune System algorithms, as it simulates the process of annual evolution of
influenza virus in an isolated human population. Two different versions of the algo-
rithm are presented where their main difference is the fact that in the first version,
PMS-MOIVA1, the algorithm focuses on the improvement of themost effective solu-
tions using a local search procedure while in the second version, PMS-MOIVA2, the
use of the local search procedure is applied equally in the whole population. In order
to prove the effectiveness of the proposed algorithm a comparison is performed with
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II). The Multiobjective Energy Reduction Open Vehicle Routing Problem has two
different objective functions, the first corresponds to the optimization of the total
travel time and the second corresponds to the minimization of the fuel consumption
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1 Introduction

In recent years, there is an increasing number of papers in two different fields of
Vehicle Routing Problem variants, the first concerns Multiobjective Vehicle Routing
Problems [18, 24, 36, 39] and the second concerns the optimization of energy or
fuel consumption in the Vehicle Routing Problems. Considering the second variant
the calculation of the tonne-kilometers (tonne-km or tkm) were used in order to
calculate the “Fuel Efficiency” and the “CO2 emissions” of a vehicle [19, 33, 34].
Leonardi’s et al. [28] calculate the “Efficiency of the vehicle use” by a ratio tonne-
kilometres/mass-kilometres and also they calculate the “CO2 Efficiency” assuming
that there are some other real route and environmental parameters that are multiplied
with the “Efficiency of the vehicle use” in order to calculate the “CO2 Efficiency” of
a vehicle. Another parameter that can be taken into account for the calculation of fuel
consumption is the parameter of speed [1, 2, 13, 23, 30, 44]. Xiao et al. [49] propose
the Fuel Consumption Rate (FCR) for a VRP (FCVRP) in order to minimize the fuel
consumption. A bi-objective Green Vehicle Routing Problem was proposed in [17]
in order to minimize the total traveled distance and the CO2 emissions. In [11] a
bi-objective Pollution Routing problem’s model is proposed where the first objective
function minimizes theCO2 emissions of a vehicle and the second objective function
minimizes the driving time. For two more complicated multiobjective Energy VRPs
please see [22, 35]. Two other energy Pick-up andDeliveryVRPmodels are analyzed
in [31, 45]. Some other CO2 emissions minimizing models are presented in [7, 20,
21, 29, 46]. Also, CO2 emissions could be minimized by creating shortest routes
and by traveling with the best speed for the environment [42]. For a more extended
review for the Energy and Green Vehicle Routing Problems please see [25, 32].

In general, the Vehicle Routing Problem (VRP) is a problem in which vehicles
start from the depot and end to the depot after the servicing of a number of customers
taking into account a number of constraints. For an overview of the VRP please see
[26, 47].

Recently our research group published two papers, the first concerns the appli-
cation of a new version of NSGA II, denoted as Parallel Multi Start NSGA II, for
the solution of the Multiobjective Energy Reduction Vehicle Routing Problem [39]
and the second concerns the application of a number of variants of the Differential
Evolution algorithm for the solution of the same problem [40]. The latter algorithm
is based on a modification of an algorithm that we have published for the solution of
the Multiobjective Traveling Salesman Problem [41]. The novelty of the proposed
research is twofold. Initially, a new formulation of a variant of the Vehicle Routing
Problem is given, where the vehicles do not return to the depot, as in theOpenVehicle
Routing Problem [3], and two objective functions are optimized simultaneously, the
first corresponds to the optimization of the total travel time and the second objec-
tive function corresponds to the minimization of the fuel consumption of the vehicle
taking into account the travel distance and the load of the vehicle when the deci-
sion maker plans delivery. The proposed model is denoted as Multiobjective Energy
Reduction Open Vehicle Routing Problem (MEROVRP).
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The other novelty of the chapter is the proposal of a new Artificial Immune
System algorithm denoted as Influenza Virus Algorithm (IVA). The algorithm
simulates the process of annual evolution of influenza virus in an isolated human
populationwith a constant number of people. Furthermore, it simulates themethods
of Reassortment and Mutation that this virus uses in order to evolve into a host’s
body. Each solution represents a carrier of the virus. The application of an Artificial
Immune System algorithm in a multiobjective environment has been studied from a
number of researchers in the past [4, 5, 8]. The novelty of the proposed algorithm is
that it is the first time, at least to our knowledge, that this natural process is simulated,
transformed and presented as a Multiobjective Evolutionary Optimization algorithm
[9]. This algorithm does not only creates new solutions by crossover using two
selected parents from the previous generation as a simple genetic algorithm does, but
also creates a number of clones of each solution and evolves them with two different
methods, the Mutation that is an 2-opt application on the solution or Reassortment
that is a crossover application on two solution. Using these two different methods
the proposed algorithm gives the opportunity to the solutions to evolve more times
and with different procedures than a genetic algorithm. For comparison reasons, we
use the Parallel Multi-Start NSGA II (PMS-NSGA II) algorithm [39].

The structure of the chapter is as follows. In Sect. 2, the MEROVRP problem is
described in detail and its formulation is presented. In Sect. 3, an analytical descrip-
tion of the proposed algorithms is presented. Finally, in Sect. 4, the computational
results are presented and, then, concluding remarks and the future research are given
in the last Section.

2 Multiobjective Energy Reduction Open Vehicle Routing
Problem

In this chapter, a Multiobjective Energy Reduction Open Vehicle Routing
Problem (MERVRP) is formulated. Two different objective functions are used
where the first one concerns the minimization of the time needed for a vehicle to
travel between two customers or a customer and the depot while the second one
concerns the minimization of the fuel consumption when the decision maker plans
routes with all the customers having only demands.

We used the same formulation as the one proposed in [39, 40] with the difference
that the vehicle does not return to the depot after the servicing of the customers, as
it happens in any variant of the Open Vehicle Routing Problem. For completeness
and due to space limitations we present only the two objective functions and the
constraints of the problem and the analysis of how this formulation resulted is given
in [39, 40] with the difference that in the last two papers the vehicle returns to the
depot after the completion of its routes.

In the first objective function, the minimization of the time needed to travel
between two customers or a customer and the depot is given:
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min OF1 =
n∑

i=1

n∑

j=2

m∑

κ=1

(tκi j + sκ
j )x

κ
i j (1)

where tκi j the time needed to visit customer j immediately after customer i using
vehicle κ , sκ

j is the service time of customer j using vehicle κ , n is the number
of nodes and m is the number of homogeneous vehicles and the depot is denoted
by i = j = 1. xκ

i j denotes that the vehicle κ visits customer j immediately after
customer i .

The second objective function is used for the minimization of the fuel Consump-
tion (FC) taking into account the load and the traveled distance [39, 40]. We have
to mention that in the second objective function we consider that the most loaded is
the vehicle the more fuel it consumes:

min OF2 =
n∑

j=2

m∑

κ=1

c1 j x
κ
1 j (1 + yκ

1 j

Q
) +

n∑

i=2

n∑

j=2

m∑

κ=1

ci j x
κ
i j (1 + yκ

i−1,i − Di

Q
) (2)

with the maximum capacity of the vehicle denoted by Q, the i customer has demand
equal to Di and D1 = 0, xκ

i j denotes that the vehicle κ visits customer j immediately

after customer i with load yκ
i j and yκ

1 j =
∑n

i=1
Di for all vehicles as the vehicle

begins with load equal to the summation of the demands of all customers assigned
in its route and ci j is the distance from node i to node j .

The constraints of the problem are the following:

n∑
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m∑

κ=1

xκ
i j = 1, i = 1, . . . , n (3)
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m∑

κ=1

xκ
i j = 1, j = 2, . . . , n (4)
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xκ
i j −
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xκ
j i = 0, i = 1, . . . , n, κ = 1, . . . ,m (5)
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j i −
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j=2, j �=i

yκ
i j = Di , i = 1, . . . , n, κ = 1, . . . ,m, (6)

Qxκ
i j ≥ yκ

i j , i = 1, . . . , n, j = 2, . . . , n, κ = 1, . . . ,m (7)
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xκ
i j =

{
1, if (i, j) belongs to the route
0, otherwise

(8)

Constraints (3) and (4) represent that each customer must be visited only by one
vehicle; constraints (5) ensure that each vehicle that arrives at a node must leave
from that node also. Constraint (6) indicate that the reduced load (cargo) of each
vehicle after it visits a node is equal to the demand of that node. Constraints (7) are
used to limit the maximum load carried by the vehicle and to force yκ

i j to be equal to
zero when xκ

i j = 0 while constraints (8) ensure that only one vehicle will visit each
customer.

3 Parallel Multi-Start Multiobjective Influenza Virus
Algorithm (PMS-MOIVA)

In this Section the proposed algorithm is presented and analyzed in detail. Emphasis
is given in the part of the algorithm denoted as Influenza Virus Algorithm and all the
other parts that are common with our previous papers [39–41] are described in brief
given the differences of their initial proposed versions and the appropriate reference
where they were initially published.

3.1 Basic Parts of the Algorithm

The solutions are represented with the path representation of the tour. For example,
if we have a solution with five nodes a possible path representation would be the
“1 2 3 4 5”. The node 1 is the depot. If a route does not start with the node 1 then we
find it and we put it at the beginning of the route. For example a solution “2 3 1 5 4”
is transformed to “1 5 4 2 3”.

For the initialization of the population we use a method denoted as Parallel Multi
Start Method [39, 40]. A brief description of the algorithm is as follows. More than
one initial population are created (X populations). Each one of these populations is
divided in K subpopulations withw = W/K solutions each one, whereW is the total
number of solutions of the population and K is the number of objective functions.
Thus, if the initial number of solutionsW of one of the X populations is equal to 20,
the number of objective functions (K ) is equal to 2 and the number of population
X is equal to 5, each one of the two subpopulation consists of w = 10 solutions
and the total number of produced solutions (considering all the X populations) are
equal to 100 (W ∗ X ). The initial members of each of the X (five in our example)
populations are produced using, three different strategies, a Nearest Neighborhood
procedure [27] (for the 20% of the populations, one in our example), a variant of
the Variable Neighborhood Search (VNS) algorithm [14] as it was proposed in [39]
(for the 40% of the populations, two in our example) and a variant of the Greedy
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Table 1 How to produce the initial solutions for a two objective functions problem

Number of individuals Method used

Individuals in the first 40% of the populations

W w for OF1 1 VNS

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

w for OF2 1 VNS

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

Individuals in the next 20% of the populations

W w for OF1 1 Nearest neighborhood

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

w for OF2 1 Nearest neighborhood

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

Individuals in the last 40% of the populations

W w for OF1 1 GRASP

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

w for OF2 1 GRASP

2 to w/3 Swap method

(w/3) + 1 to 2w/3 2-opt method

(2w/3) + 1 to w Random solutions

Randomized Adaptive Search Procedure (GRASP) [12] as it was proposed in [40]
(for the rest of the populations, two in our example). All the other solutions of each of
the populations are produced using a local search procedure based on VNS algorithm
as it was analyzed in [40]. For more information please see Table1.

3.2 Multiobjective Influenza Virus Algorithm

In real life, Influenza virus is a RNAvirus. It consists of a genome that is enclosed in a
host cell membrane. Influenza viruses are evolving by Mutation or by Reassortment
into the hosts [16]. The process of Mutation produces an antigenic drift and the
process of Reassortment produces an antigenic shift [6].
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Antigenic drift
The Antigenic drifts are small changes in two antigens on the surface of the virus
and cause the creation of strains derived from already existed strains. The new strain
replaces the older strains when it enters into the population causing epidemics (each
year, 5–20% of the population is infected with influenza viruses [15]) [48]. These
new strains are drift variants. Antigenic drift happens every year. For this reason there
is a lack of full immunity while the annual adjustment of the vaccine is essential.

Antigenic shift
The Antigenic shift is an effective fast change in viral genetics, which are sudden
changes from one antigen to another. These large changes allow the virus to infect
new species and to overcome quickly the protective immunity. For example the
reassortment between avian strains and human strains can cause an antigenic shift. If
a virus that infects people has completely new antigens, everyone would be infected
and thenewviruswill cause apandemic if the circumstances permit it [38]. Pandemics
can start unpredictably every 10–40 years because of the appearance of a completely
new strain to which the population has no natural immunity. In 1918 the Spanish
influenza pandemic is estimated to have infected 50% of the world’s population. The
ability of this new strain to spread from person to person (contagiousness) as well as
the urbanization and the high population density increase the risk of a rapid global
spread of a pandemic due to a novel influenza virus.

The Influenza Virus Algorithm simulates the process of annual evolution of
influenza in an isolated human population with a constant number of I individ-
uals (humans). For each human population should be a carrier that will transmit
the virus to a certain proportion of the human population. Thus, for an algorithm
that optimize a population of solutions, as the proposed algorithm, we will have as
many carriers as the number of the solutions. Also for every carrier there will be
a human population that the carrier will transmit the virus to a certain proportion
of it (of the population). In the proposed algorithm, the carrier corresponds to the
problem’s solution, the in f ection corresponds to the process of producing a new
solution and one year corresponds to one iteration. The Mutation corresponds to a
partial change of a solution (antigenic drift) and the Reassortment corresponds to
the global change of a solution (antigenic shift).

In the proposed algorithm, the number of the initial solutions (carriers) is equal
to W . Before the iterative procedure starts, for every solution (carrier) is determined
randomly if it will be a New Strain or a Pre-existing Strain using an archive strain.
If a solution has value 1 in the archive strain, then, this solution has been signed as
a New Strain. On the other hand, if a solution has value 0 in the archive strain, then,
this solution has been signed as a Pre-existing Strain.

Also, the personal best (Carrier Best) are initially set equal to the current solutions
and the initial set of non-dominated solutions is calculated. As in the real life there
are carriers of the virus in the population and there are, also, a number of healthy
members of the population. In the proposed algorithm, every population has I
healthy individuals. During a year, each carrier will infect a part of the population
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where it belongs to, thus, a table with one to, at most, I/2 clones of the solution
(carrier) will be created (the number of the members of the healthy population that
would be infected by each carrier). The number of the clones will be signed as
in f ect . We consider that in every in f ected individual occurs only one antigenic
shift (Mutation) or one antigenic drift (Reassortment).

In each iteration and for every solution (carrier) the following procedure is applied.
A variable den (density) is randomly generated (where den ∈ (0, 1)) which repre-
sents the annual density of each population of I individuals. Also, a variable con
(contagiousness) is generated which represents the annual contagiousness of each
carriers virus i and is calculated by the following equations:

For the variant PMS-MOIVA1:

coni = 1 −
∑K

k=1
value of the carrier (i) f or the k objective f unction

worst value of k objective f unction

K
(9)

In this equation, the con tends to be equal to 1 as the fitness functions of a solution
are improved. This equation gives the opportunity in better solutions to performmore
mutations.

For the variant PMS-MOIVA2

coni =
∑K

k=1
value of the carrier (i) f or the k objective f unction

worst value of k objective f unction

K
(10)

In this equation, the con tends to be equal to 1 as the fitness functions of a solution
deteriorate.

For example, for a carrier i of the proposed multiobjective problem if theOF1i is
equal to 5 and theOF2i is equal to 100 and the larger values (considering the values of
all carriers) is equal to 150 for the OF1 and is equal to 180 for OF2, then, considering
the PMS-MOIVA2 con equation the coni would be calculated as it follows:

coni = (105/150) + (100/180)

2
= 0.62 (11)

If a solution (carrier) has been signed as a New Strain (strain = 1), con ≥ 0.6
and den ≥ 0.7, then, this is a Pandemic (the limits 0.6 and 0.7 were selected in order
to simulate as faithfully as it could be the conditions of the real life) and the number
in f ect of the infected individuals of the human population from that solution is
calculated by the following equation:

in f ect = round(
1

2
∗ con ∗ den ∗ I ) (12)

By this way the value of the variant in f ect will be always between 20 and 50%
of the value of the variant I . Thus, the number of the clones of the i solution that
will be thought as I n f ecteds will be equal to in f ect .
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In any other case, the situation is denoted as Epidemic and the value of the
variable in f ect from the solution i is calculated by the following equation:

in f ect = round(
1

5
∗ con ∗ den ∗ I ), if in f ect > round(0.05 ∗ I ) (13)

or

in f ect = round(0.05 ∗ I ), in any other case (14)

Based on the last two equations the value of the variant in f ect will be always
between 20 and 50% of the value of the variant I . Thus, for each carrier a table
I n f ecteds with in f ect members, clones of the carrier , is calculated and each one
of these solutions-clones has 90% to be mutated (mutation operator) and 10% to be
replaced in the population by a new solution (reassortment operator—in real life this
means that the human has been infected by more than one types of viruses). The
Mutation operator is performed using a 2-opt in the solution of the table I n f ecteds
and creates a new solution and the Reassortment operator is performed, for the
creation of a new solution, using a classic crossover operator using the solution-clone
and a new randomly created solution New I n f . This new solution, that is created
from the crossover, is signed as a New Strain. For more understanding please
see Fig. 1. For the calculation of this new solution, each element of the solution-

Iteration it

       Solutions (Carriers) strain Infecteds

Infecteds

               Iteration it+1

                                                                                                Solutions (Carriers)

For each carrier a table 
Infecteds is produced.

Each solution of the 
table Infecteds is

evolved by Mutation 
or Reassortment.

Mutation: 2-opt 

Reassortment: creation of a new solution 
newInf and crossover with the solution of 
the table Infecteds. 

Suppose that the first solution of the 
table Infecteds is the best solution of 
the table Infecteds and also is better 
than the carrier. Thus, it replaces the 
solution of the solutions table of the 

next iteration.

Fig. 1 How a solution (carrier) evolves from one iteration to the next
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clone and the New I n f ’s solution is transformed into a floating point in the interval
[39, 40].

The equation for the calculation of the new solution (in f ected) is:

in f ected(i) = (1 − g) ∗ New I n f (i) + g ∗ carrier(i) (15)

where g ∈ (0, 1) and is a random produced number and i = 1, ..., n and in f ected
is the solution of the table I n f ecteds. After the crossover, the elements of the new
solution (infected) are transformed back into the integer domain by assigning the
smallest floating value to the smallest integer, the next highest floating value to the
next integer and so on [39].

Then, the Pareto set of the table I n f ecteds is calculated and one of the elements
of this Pareto set is selected randomly as the best in f ected solution. This best
in f ected from the Pareto set will become the new carrier of his human population
for the next iteration. This procedure is continues for every solution (carrier) of the
table Carriers until all solutions (carriers) are examined. Afterwards, a Variable
Neighborhood Search (VNS) algorithm [39] (vnsmax = 20 and localmax = 10) is
applied in each carrier . The first iteration of the algorithm ends with the creation
of the initial Pareto set with the non-dominated solutions of the initial population of
the table Carriers.

The personal best solution for each carrier (Carrier Best) is updated using
the following procedure. If a solution (carrier) in iteration i t dominates its personal
best solution, then, the personal best solution is replaced by the current solution.
Otherwise, if the personal best solution dominates the current solution or the two
solutions are not dominated between them, then, the personal best solution is not
replaced. Then, the VNS method is applied at the personal best solutions of the table
Carriers Best with both the vnsmax and the localmax equal to 10 [39]. At the end
of each iteration, the set of the non-dominated solutions is updated and when all the
processes of all populations have been completed, then, the Total Pareto Front is
updated.

In Fig. 1, the basic steps of the method are presented and, then, a pseudocode of
the proposed Parallel Multi-Start Multiobjective Influenza Virus algorithm is given.

Algorithm Parallel Multi-Start Multiobjective Influenza Virus
Do while the maximum number of Populations has not been reached:
Initialization

Generation of the initial population
Definition of the maximum number of iterations (years)
Selection of the number of solutions W and of the value of the variable I
Creation of the initial Carriers and define which solution
will be signed as a New Strain and as a Pre − existed Strain
Evaluation of each objective function for every solution
Initialization of the Carrier Best
Finding of the non-dominated set of the Carriers

Main Phase
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Do while the maximum number of iterations has not been reached
For each solution (carrier) do

Evaluation of con
den = rand
If solution is a New Strain & con ≥ 0.6 & den ≥ 0.7 then

Calculate in f ect using Eq.12
else

Calculate in f ect using Eqs. 13 and 14
Endif
Creation of the I n f ecteds
For each solution of the I n f ecteds do

p=rand
If p ≤ 0.9 then

Call Mutation
Define the new solution as a Pre − existed Strain

else
Call Reassortment
Define the new solution as a New Strain

Endif
Evaluation of the objective function for every solution

Endfor
Initialization of the non-dominated set of the I n f ecteds
Choose randomly the best solution of the I n f ecteds’s Pareto set
Update of the solution (carrier) with the best in f ected solution

Endfor
Evaluation of the Carriers for each objective function
Application of VNS to improve the solutions
Update the personal best solutions (Carrier Best)
Update of the non-dominated set

Enddo
Return Population’s Pareto Front

Enddo
Return Total Pareto Front

4 Computational Results

The whole algorithmic approach was implemented in Visual C++. We used a data
set of instances that was, initially, proposed in [39] for the solution of the Multiob-
jective Energy Reduction Vehicle Routing Problem and they are, also, suitable for
the solution of the Multiobjective Energy Reduction Open Vehicle Routing Problem
as the only difference between the two problems is that the vehicles do not return to
the depot after the completion of the servicing of the customers. In order to compare
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the results of the proposed algorithm and to see the effectiveness of the procedure
a variant of the NSGA II [10], the Parallel Multi-start NSGA II (PMS-NSGA II) is
used as it was proposed in [39]. In order to evaluate the effectiveness of the proce-
dures four classic measures were used, the range to which the front spreads (Mk)
[50], the number of solutions of the Pareto front (L), the Δ measure which includes
information about both spread and distribution of solutions [37], and the Coverage
measure [50].

A number of different alternative values for the parameters of the algorithms
were tested and the ones selected are those that gave the best computational results
concerning both the quality of the solution and the computational time needed to
achieve this solution and, also, taking into account the fact that we would like to test
the algorithms with the same function evaluations. Thus, the selected parameters for
all the algorithms are given in the following:

Parallel Multi-Start MOIVAs

• Number of carriers for each initial population: 100.
• Number of years: 500.
• I = 100.
• Number of initial populations: 10.

Parallel Multi-Start NSGA II

• Number of individuals for each initial population: 100.
• Number of generations: 500.
• Number of initial populations: 10.

After the selection of the final parameters, the two versions of the Parallel Multi-
Start Multiobjective Influenza Virus Algorithm (PMS-MOIVAs) and the Parallel
Multi-Start Non-dominated Sorting Genetic Algorithm II (PMS-NSGA II) were
tested in ten instances (i.e., kroA100par3-kroB100par3, kroA100par3-kroC100par3,
kroA100par3-kroD100par3, etc., as they are described in [39]). In the following
tables the comparisons performed based on the four evaluation measures that are
mentioned previously are given. In all Tables, kroA100par3 is denoted with A,
kroB100par3 is denoted with B, and so on. If we have a combination of two
instances, the instance is denoted by the combination of the two letters, for example
kroA100par3-kroB100par3 is denoted with A−B in all Tables. In Table2, the results
of the first three measures are given while in Table3, the results of the Coverage
measure are presented. In Fig. 2, four representative Pareto fronts are presented.

In general, it is preferred to find as many as possible non-dominated solutions (L
measure), the expansion of the Pareto front to be as large as possiblewhich shows that
better solutions have been found in every dimension (Mk measure) and the spacing of
solutions to be as smaller as possible which means that the non-dominated solutions
are close between them (Δmeasure). In the first table, the best value for eachmeasure
from the comparison of all algorithms is signed as bold while from the comparison of
the two PMS-MOIVA algorithms the best values are underlined. On the other hand,
in the second table, the best value for C measure from the comparisons of all the
algorithms is signed as bold. In the C measure table, the notation of the algorithms
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Table 2 Results of the first three measures for the three algorithms for the ten instances

PMS-MOIVA1 PMS-MOIVA2 PMS-NSGA II

Instances L Mk Δ L Mk Δ L Mk Δ

A−B 40 591.46 0.60 41 591.17 0.67 45 597.21 0.66

A−C 38 595.24 0.54 42 591.09 0.63 53 611.52 0.65

A−D 47 551.27 0.64 54 576.52 0.65 58 559.72 0.56

A−E 52 564.61 0.63 45 580.50 0.55 54 584.03 0.63

B−C 46 571.82 0.66 48 574.53 0.81 68 582.28 0.58

B−D 47 570.51 0.66 44 583.71 0.61 52 571.63 0.76

B−E 42 584.21 0.66 44 579.86 0.63 61 597.60 0.72

C−D 51 559.04 0.64 45 565.93 0.72 55 559.23 0.69

C−E 35 580.33 0.63 43 600.27 0.59 70 597.95 0.53

D−E 45 591.35 0.67 45 582.55 0.66 55 594.32 0.61

Table 3 Results of the coverage measure

A−B MOIVA1 MOIVA2 NSGA II B-D MOIVA1 MOIVA2 NSGA II

MOIVA1 0.00 0.41 0.84 MOIVA1 0.00 0.43 0.83

MOIVA2 0.38 0.00 0.87 MOIVA2 0.19 0.00 0.79

NSGA II 0.00 0.00 0.00 NSGA II 0.13 0.14 0.00

A−C MOIVA1 MOIVA2 NSGA II B-E MOIVA1 MOIVA2 NSGA II

MOIVA1 0.00 0.40 0.94 MOIVA1 0.00 0.32 0.98

MOIVA2 0.34 0.00 0.87 MOIVA2 0.52 0.00 1.00

NSGA II 0.00 0.00 0.00 NSGA II 0.00 0.00 0.00

A−D MOIVA1 MOIVA2 NSGA II C-D MOIVA1 MOIVA2 NSGA II

MOIVA1 0.00 0.41 0.90 MOIVA1 0.00 0.44 1.00

MOIVA2 0.40 0.00 0.88 MOIVA2 0.41 0.00 0.98

NSGA II 0.02 0.04 0.00 NSGA II 0.00 0.00 0.00

A−E MOIVA1 MOIVA2 NSGA II C-E MOIVA1 MOIVA2 NSGA II

MOIVA1 0.00 0.51 0.94 MOIVA1 0.00 0.60 0.99

MOIVA2 0.42 0.00 0.98 MOIVA2 0.26 0.00 0.89

NSGA II 0.00 0.00 0.00 NSGA II 0.00 0.07 0.00

B−C MOIVA1 MOIVA2 NSGA II D-E MOIVA1 MOIVA2 NSGA II

MOIVA1 0.00 0.71 0.90 MOIVA1 0.00 0.51 0.85

MOIVA2 0.20 0.00 0.90 MOIVA2 0.27 0.00 0.87

NSGA II 0.04 0.02 0.00 NSGA II 0.04 0.02 0.00

PMS-MOIVA# and PMS-NSGA II have been replaced with the notations MOIVA#
and NSGA II, respectively, in order to reduce the size of the Table.

In general the outcome of all evaluation measures could not give safe conclusions
concerning which algorithm performs better from the others. If we take into account
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Fig. 2 Pareto fronts of the three algorithms for four different instances

only the results of the L measure (Table2), then, the proposed algorithms PMS-
MOIVA1 and PMS-MOIVA2 give inferior results compared to the PMS-NSGA II
algorithm. On the other hand, if we take into account the coverage measure (Table3),
then, the proposed algorithms perform better than the PMS-NSGA II algorithm in
all the instances. In the other two measures, all the algorithms give equally good
results. However, if we, also, use the depiction of the results in Fig. 2, we can see
that the two proposed algorithms perform better than PMS-NSGA II algorithm as the
produced Pareto Fronts of the proposed algorithms always dominate the produced
Pareto Fronts of PMS-NSGA II algorithm.

If we would like to compare the results of the two versions of the PMS-MOIVA
algorithm, both algorithms perform equally well in the three out of the four measures
(measures presented in Table2). However, in the Coverage measure, PMS-MOIVA1
algorithm performs better than PMS-MOIVA2 in all but one instances. The same
outcome could be seen from Fig. 2, although, as the solutions are very close between
them, this outcome is not so obvious taking into account only the figure.
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5 Conclusions and Future Research

In this chapter, a new algorithm based on the evolution of the Influenza Virus in
different populations was presented. We have applied this algorithm in a multiob-
jective problem as we would like to test the effectiveness of the algorithm in a very
difficult variant of the Vehicle Routing Problem. The results from the application
in a multiobjective problem are positive and give us the strength to continue to the
application to other multiobjective problems (not belonging to the variants of the
Vehicle Routing Problem) and to single objective optimization problems (problems
from the context of the Vehicle Routing Problem and more general problems).
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Practical Algorithms for the All-Pairs
Shortest Path Problem

Andrej Brodnik and Marko Grgurovič

Abstract We study practical algorithms for solving the all-pairs shortest path prob-
lem. The Floyd-Warshall algorithm is frequently used to solve the aforementioned
problem, and we show how it can be augmented to drastically reduce the number of
path combinations examined.Very favorable results are shown via empirical tests that
compare the new algorithm with known algorithms on random graphs. In addition
to the all-pairs shortest path problem, we also investigate the highly related all-pairs
bottleneck paths problem, and give an efficient average case algorithm. On top of
that, we show how the bottleneck paths problem relates to the decremental transitive
closure problem, and specifically how algorithms for the latter can be used to solve
the former.

1 Introduction

Let G = (V, E) denote a directed graph where E is the set of edges and V =
{v1, v2, ..., vn} is the set of vertices of the graph. The function �(·) maps edges
to (possibly negative) lengths. For a path π , we define its length to be the sum of
the lengths of its edges: �(π) = ∑

(u,v)∈π �(u, v). Additionally, we define ∀(u, v) /∈
E : �(u, v) = ∞. From hereon we make the standard assumption that there are no
cycles whose total lengths are negative, and without loss of generality, we assume
G is strongly connected. To simplify notation, we define m = |E | and n = |V |.
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Furthermore, we define d(u, v) for two vertices u, v ∈ V as the length of the short-
est path from u to v. It is also useful to define m∗ as the number of edges (u, v) such
that d(u, v) = �(u, v). These are the edges that form the shortest path graph, and are
the only edges necessary for its computation.

Finding shortest paths in such graphs is a classic problem in algorithmic graph
theory. Twoof themost commonvariants of the problemare the single-source shortest
path (SSSP) problem and the all-pairs shortest path problem (APSP). In the SSSP
variant, we are searching for paths with the least total length from a fixed vertex
s ∈ V to every other vertex in the network. Similarly, the APSP problem asks for
the shortest path between every pair of vertices u, v ∈ V . In this chapter we will
focus exclusively on the APSP variant of the problem, and without loss of generality,
assume that we are not interested in paths beginning in v and returning back to v.

The asymptotically fastest APSP algorithm for dense graphs to date runs in
O(n3 log log3 n/ log2 n) time [1]. For non-negative edge length functions and for
sparse graphs, there exist asymptotically fast algorithms for worst case inputs
[2–4], and algorithms which are efficient average-case modifications of Dijkstra’s
algorithm [5–7].

The APSP problem can easily be solved by n calls to an SSSP algorithm. There
exist strategies that are more effective than simply running independent SSSP com-
putations, such as the Hidden Paths Algorithm [8], the Uniform Paths algorithm [5],
and most recently the Propagation algorithm [9]. The Propagation algorithm is more
general than the former two, which are modifications of Dijkstra, in the sense that
it works for any SSSP algorithm. Besides providing a speed-up for arbitrary SSSP
algorithms, it also performs well in practice, as shown in [9].

As a truly all-pairs algorithm, Floyd-Warshall [10, 11] is frequently used to solve
APSP. There exist many optimizations for the Floyd-Warshall algorithm, ranging
from better cache performance [12], optimized program-generated code [13], to
parallel variants for the GPU [14, 15]. One can also approach APSP through funny
matrix multiplication, and practical improvements have been devised to this end
through the use of sorting [16].

In spite of intensive research on efficient implementations of the Floyd-Warshall
algorithm, there has not been much focus devoted to improvement of the number of
path combinations examined by the algorithm. In Sect. 2, we will propose a modifi-
cation of the Floyd-Warshall algorithm that combines it with an hourglass-like tree
structure, which reduces the number of paths that have to be examined. Only those
path combinations that provably cannot change the values in the shortest path matrix
are omitted. The resulting algorithm is simple to implement, uses no fancy data
structures and in empirical tests is faster than the Floyd-Warshall algorithm for ran-
dom complete graphs on 256–4096 nodes by factors ranging from 2.5 to 8.5. When
we inspect the number of path combinations examined however, our modification
reduces the number by a staggering factor of 12–90.

In Sect. 4 we consider the all-pairs bottleneck paths (APBP) problem, which is
highly related to the all-pairs shortest path problem. We show that an efficient algo-
rithmwhose bound depends onm∗ can be obtained, and showhow theAPBPproblem
can be reduced to that of decremental transitive closure.
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2 The Hourglass Algorithm

TheFloyd-Warshall algorithm [10, 11] is a simple dynamicprogramming approach to
solve the all-pairs shortest path problem.UnlikeDijkstra’s algorithm, Floyd-Warshall
can find shortest paths in graphs which contain negatively-weighted edges. In this
section we will outline improvements that build on the base algorithm, but first we
outline the pseudocode of the Floyd-Warshall algorithm in Algorithm 1. Intuitively,
one might expect that the minimum operation in line 5, also sometimes referred to
as relaxation, would not succeed in lowering the value of W [i][ j] every time. This
is precisely what we aim to exploit: instead of simply looping through every node in
line 4, we utilize the structure of shortest paths that we have computed up until now.
This allows us to avoid checking many path combinations that the Floyd-Warshall
algorithm inspects, but which provably cannot reduce the current value stored inside
W [i][ j].

Algorithm 1 Floyd-Warshall Algorithm
1: procedure Floyd-Warshall(W )
2: for k := 1 to n do
3: for i := 1 to n do
4: for j := 1 to n do
5: W [i][ j] := min(W [i][ j],W [i][k] + W [k][ j])
6: end for
7: end for
8: end for
9: end procedure

We will say a path u
k�v is a k-shortest path if it is the shortest path between u

and v that is only permitted to go through nodes {v1, ..., vk}. This means that u
n�v

would be the shortest path from u to v in the traditional sense. We denote the length

of a path u
k�v by writing �(u

k�v), where the length is simply the sum of the lengths
of all edges that are on the path.

The resulting algorithm is still a dynamic programming algorithm, but it now has
a smaller pool of candidates to perform relaxation on, which makes it run faster. In
Sect. 2.1, we show how to lower the number of candidates looped through in line

4 of Algorithm 1 by exploiting the tree structure of k
k−1� j paths. In Sect. 2.2, we

show how to exploit the structure of i
k−1�k paths and further reduce the number of

candidates in line 4. Both reductions are achieved by traversing a tree structure rather
than looping through all nodes. These modifications yield two tree data structures,
and joining them in the root yields an hourglass shaped data structure that combines
the power of both.
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2.1 The Single-Tree Algorithm

The simplest improvement involves the use of a tree, denoted as OUTk , which is
the shortest path tree containing paths that begin in node vk and end in some node
w ∈ V \{vk}, but only go through nodes in the set {v1, ..., vk−1}. In other words, these
are paths of the form vk

k−1�w ∀w ∈ V \{vk}. Traversal of this tree is used to replace
the FOR loop on variable j in line 4 of Algorithm 1. In order to reconstruct the
shortest paths, the Floyd-Warshall algorithm needs to maintain an additional matrix,
which specifies the path structure, but this additional matrix is otherwise not required
for the functioning of the algorithm. In our algorithm, however, this information
is essential, since the path structure is used during the algorithm’s execution. We
augment the Floyd-Warshall algorithm with a matrix L[i][ j] which specifies the
penultimate node on the shortest path from i to j (i.e. the last node that is not j).
This suffices for reconstructing the shortest path tree for all paths going out of k as
follows: create n trees {T1, ..., Tn}, now go through j = 1 to n and place Tj as the
child of TL[k][ j]. This takes O(n) time.

Assume that we have the (k − 1)-shortest paths i
k−1� j ∀i, j ∈ V and we are

trying to extend the paths to go through vk , i.e. we want to compute i
k� j ∀i, j ∈ V .

First we construct OUTk in O(n) time. Now we can use the following lemma when
extending the paths to go through vk :

Lemma 1 Let vx ∈ V \{vk} be some non-leaf node in OUTk and let vy �= vx be
an arbitrary node in the subtree rooted at vx . Now let vi ∈ V \{vk} and consider a

path vi
k−1�vk

k−1�vx . If �(vi
k−1�vk

k−1�vx ) ≥ �(vi
k−1�vx ), thenwe claim �(vi

k−1�vk
k−1�vy) ≥

�(vi
k−1�vy).

Proof By choice of vy and vx , we have vk
k−1�vy = vk

k−1�vx
k−1�vy . Thus we want to

show:
�(vi

k−1�vy) ≤ �(vi
k−1�vk

k−1�vx ) + �(vx
k−1�vy).

Observe that x < k, since vx is neither a leaf nor the root of OUTk . Because vi
k−1�vy

is the (k − 1)-shortest path and x < k we have:

�(vi
k−1�vy) ≤ �(vi

k−1�vx ) + �(vx
k−1�vy).

Putting these together we get:

�(vi
k−1�vy) ≤ �(vi

k−1�vx ) + �(vx
k−1�vy) ≤ �(vi

k−1�vk
k−1�vx ) + �(vx

k−1�vy).

Which is what we wanted to prove.
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The algorithm then extends the (k − 1)-shortest paths for each incoming node vi
by depth-first traversal1 of OUTk , starting with the root and avoiding the inspection

of subtrees whose roots vx did not yield a shorter path than vi
k−1�vx . Intuitively,

one would expect this to exclude large subtrees from ever being considered. The
pseudocode is given in Algorithm 2.

Algorithm 2 Single-tree Algorithm
1: procedure Single-Tree(W )
2: Initialize L , a n × n matrix, as L[i][ j] := i .
3: for k := 1 to n do
4: Construct OUTk .
5: for i := 1 to n do
6: Stack := empty
7: Stack.push(vk )
8: while Stack �= empty do
9: vx := Stack.pop()
10: for all children v j of vx in OUTk do
11: if W [i][k] + W [k][ j] < W [i][ j] then
12: W [i][ j] := W [i][k] + W [k][ j]
13: L[i][ j] := L[k][ j]
14: Stack.push(v j )
15: end if
16: end for
17: end while
18: end for
19: end for
20: end procedure

Observe that the extra space required by the trees is merely O(n), since we can
reuse the same space. Constructing the tree takes O(n) time which yields in total
O(n2) time over the course of the entire algorithm.

2.1.1 Optimized Implementation

Instead of maintaining a stack and visiting nodes in the tree as in Algorithm 2, a
much faster implementation is possible in practice. After building the treeOUTk , we
keep track of two permutation arrays: dfs[] and skip[]. The dfs array is simply the
depth-first traversal of the tree, i.e. dfs[x] contains the x-th vertex encountered on a
DFS traversal of OUTk . For a vertex vz , skip[z] contains the index in dfs of the first
vertex after vz in the DFS order that is not a descendant of vz in OUTk . Then, all
we need to do is simply traverse dfs and whenever an improvement is not made, we
jump to the next index via the skip array. It should be pointed out that the asymptotic
time remains the same, as this is solely a practical optimization.

1Breadth-first traversal is also possible, of course.
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2.2 The Hourglass Algorithm

We can augment Algorithm 2 with another tree. The second tree is similar to OUTk ,

except that it is the shortest path “tree” for paths w
k−1�vk ∀w ∈ V \ {vk}. Strictly

speaking, this is not a tree,2 but we can reverse the directions of the edges, which
turns it into a tree with vk as the root. We denote this tree as INk . Observe that if
va �= vk is a node in INk and vb is a child of va in INk , then the (k − 1)-shortest path
from vb to vk goes through va , since the edges are reversed in the tree. Traversal
of INk will be used as a replacement of the FOR loop on variable i in line 3 of
Algorithm 1. In order to construct INk efficiently, we need to maintain an additional
matrix F[i][ j] which stores the second node on the path from i to j (i.e. the first
node that is not i). The construction of INk is now similar to what we had before:
create n trees {T1, ..., Tn}, then go through i = 1 to n and place Ti as the child of
TF[i][k]. This takes O(n) time. Consequently, we have the following lemma:

Lemma 2 Let va ∈ V \ {vk} be some non-leaf node in INk and let vb �= va be an
arbitrary node in the subtree rooted at va. Now let v j ∈ V \ {vk} and consider a path
va

k−1�vk
k−1�v j . If �(va

k−1�vk
k−1�v j ) ≥ �(va

k−1�v j ), then we claim �(vb
k−1�vk

k−1�v j ) ≥
�(vb

k−1�v j ).

Proof Due to the choice of va and vb we have: vb
k−1�vk = vb

k−1�va
k−1�vk . We want to

show, that:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�vk

k−1�v j ).

Observe that a < k, since va is neither a leaf nor the root of INk . Thus we have:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�v j ).

Putting these together we get the desired inequality:

�(vb
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�v j ) ≤ �(vb

k−1�va) + �(va
k−1�vk

k−1�v j ).

Observe that if we perform depth-first traversal on INk , we can temporarily prune

OUTk as follows: if va is the parent of vb in INk and va
k−1�v j ≤ va

k−1�vk
k−1�v j , then

the subtree of v j can be removed from OUTk while we are inspecting the subtree of
va in INk , and later re-inserted. This is easy to do by using a stack to keep track of
deletions. The pseudocode for the Hourglass algorithm is given in Algorithm 3. In
practice, recursion can be replaced with another stack, and each node in the INk tree
is then visited twice—the second visit would restore the subtrees that were removed
from OUTk by that node.

2The hourglass name comes from placing this structure atop the OUTk tree, which gives it an
hourglass-like shape, with vk being the neck.
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Algorithm 3 Hourglass Algorithm
1: procedure Hourglass(W )
2: Initialize L , a n × n matrix, as L[i][ j] := i .
3: Initialize F , a n × n matrix, as F[i][ j] := j .
4: for k := 1 to n do
5: Construct OUTk .
6: Construct INk .
7: for all children vi of vk in INk do
8: RecurseIN(W, L , F, INk ,OUTk , vi )
9: end for
10: end for
11: end procedure
12: procedure RecurseIN(W, L , F, INk ,OUTk , vi )
13: Stack := empty
14: Stack.push(vk )
15: while Stack �= empty do
16: vx := Stack.pop()
17: for all children v j of vx in OUTk do
18: if W [i][k] + W [k][ j] < W [i][ j] then
19: W [i][ j] := W [i][k] + W [k][ j]
20: L[i][ j] := L[k][ j]
21: F[i][ j] := F[i][k]
22: Stack.push(v j )
23: else
24: Remove the subtree of v j from OUTk .
25: end if
26: end for
27: end while
28: for all children vi ′ of vi in INk do
29: RecurseIN(W, L , F, INk ,OUTk , vi ′ )
30: end for
31: Restore any subtrees we may have removed in line 24.
32: end procedure

The only extra space requirement of the Hourglass algorithm that bears any sig-
nificance is the matrix F , which contains n2 entries. It is important to note that the
worst-case time complexity of the Hourglass (and Single-tree) algorithm remains
O(n3). The simplest example of this is when all shortest paths are the edges them-
selves, at which point the tree structure is essentially flat and never changes.

2.3 Empirical Comparison

We now empirically examine howmany path combinations are skipped by the Hour-
glass and Single-tree algorithms compared to the Floyd-Warshall algorithm. We
performed two experiments, one on random complete graphs, and one on random
sparse graphs. We measured the number of path combinations examined. Since the
results are numbers that range from very small to very large in both cases, we display
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Fig. 1 The percentage of
path combinations examined
by the two modifications of
Floyd-Warshall, when
compared to the original
algorithm (which is always
at 100%, not shown), for the
input of complete graphs of
various sizes
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the results as a percentage of the Floyd-Warshall algorithm, which is always 100%
in the plots, but is not drawn explicitly.

The input graphs were pseudorandomly generated. For complete graphs, this
meant assigning each edge an independently uniformly distributed random length in
the range (0, 1). Sparse graphs were generated by starting with an empty graph on
1024 nodes and adding a desired number of edges, which were chosen independently
according to the uniform random distribution, and assigned an independently uni-
formly distributed random length in the range (0, 1). Edge lengths were represented
using floating-point numbers in both cases.

The first experiment was for the input of random complete graphs of varying
sizes. The results are shown in Fig. 1. The second experiment was for the input of a
random graph of 1024 nodes whose number of edges varied from 10 to 80% where
100% = n2. To make the comparison between Floyd-Warshall and the modified
versions fairer in the second experiment,we augmented theFloyd-Warshall algorithm
with a simplemodification, that allowed it to skip combinations i, k whereW [i][k] =
∞, which reduced the number of path combinations examined. The results of the
second experiment are shown in Fig. 2.

In Fig. 1 we can see a significant reduction in terms of path combinations exam-
ined. This quantity dominates the algorithm’s asymptotic running time and, as
observed, decreases compared to the cubic algorithm when inputs grow larger. It
might be possible to obtain sub-cubic asymptotic bounds in the average-case model,
which is an open question. The experiments on sparse graphs in Fig. 2 show a reduc-
tion in path combinations examined as the graph becomes sparser, but the effect on
the running time seems to be very minor.

Overall, the Single-tree algorithm is the simplest to implement and offers good
performance. The Hourglass algorithm has the potential to be even faster, but would
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Fig. 2 The percentage of
path combinations examined
by the two modifications of
Floyd-Warshall, when
compared to the original
algorithm (which is always
at 100%, not shown), for the
input of a graph with 1024
nodes and various edge
densities
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likely require a better implementation. It is also worthwhile to note that the additional
space requirements for the Single-tree algorithm are very modest, as most applica-
tions would typically require storing the path reconstruction matrix regardless.

3 Empirical Comparison of APSP Algorithms

In this section, we analyze the results of empirical tests consisting of running five
shortest path algorithms on random graph instances and measuring their running
times.

3.1 Graphs and Algorithms

The experiments were conducted on the following two types of directed random
graphs.

Uniform random graphs: the edge length is uniformly randomly distributed
inside the interval [0, 1). As these graphs grow denser, they start to favor the average-
case algorithms, sincem∗ = O(n lg n)with high probability in complete graphs with
uniformly distributed random edge lengths [17].

Unweighted random graphs: edge lengths are set to 1. These graphs can be
viewed as a type of worst-case for the average-case algorithms, sincem∗ = m always
holds, i.e. a direct edge is the shortest path between two nodes. It should be pointed
out, that breadth-first search (BFS) is extremely efficient in solving these instances
given its simplicity and O(mn) running time (when solving APSP). However, since
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we consider these instances only as a worst-case of a more general shortest path
problem, we did not include BFS in the comparisons.

In both cases, the graphs were constructed by first setting a desired vertex count
and density. Then, a randomHamiltonian cycle is constructed, ensuring that the graph
is strongly connected. Edges are added into the graph at random until the desired
density is reached. Finally, algorithms are executed on the instance, and their running
times recorded. We have explored densities ranging from m = n1.1 to m = n2, and
vertex counts ranging from n = 512 to n = 4096. For each density and vertex count
combination, we have generated 10 different random instances and averaged the
running times of each algorithm.

Priority queues are integral to many shortest path algorithms. Pairing heaps were
used in all experiments, since they are known to perform especiallywell in this capac-
ity in practice. Unlike Fibonacci heaps, which have an O(1) amortized decrease key
operation, the amortized complexity of decrease-key for pairing heaps isO(22

√
lg lg n)

[18]. The following algorithms have been compared:
Dijkstra [19]: solves all-pairs by solving multiple independent single-source

problems. Using pairing heaps this algorithm runs in O(n2 lg n + mn22
√
lg lg n).

Floyd-Warshall [10, 11]: classic dynamic programming formulation. Does not
use priority queues and runs in O(n3).

Propagation: the algorithm described in [9]. In essence, it is a more efficient
way of using an SSSP algorithm to solve APSP. The underlying SSSP algorithm
is Dijkstra’s algorithm. Using pairing heaps this algorithm runs in O(n2 lg n +
m∗n22

√
lg lg n).

Single-tree: the algorithm from Sect. 2.1, with the optimizations outlined in
Sect. 2.1.1.

Hourglass: the algorithm from Sect. 2.2.
The code has been written in C++ and compiled using g++ -march=native

-O3. We have used the implementation of pairing heaps from the Boost Library,
version 1.55. All tests were run on an Intel(R) Core(TM) i7-2600@3.40GHz with
8GB RAM running Windows 7 64-bit.

Results are shown as plots where the y axis represents time in milliseconds in
logarithmic scale, and the x axis represents the graph edge density as m = nx.

3.2 Uniform Random Graphs

The results for uniform random graphs are shown in Figs. 3, 4, 5 and 6.
The tests show that Propagation and Single-tree together outperform the other

algorithms on all densities. As the size increases, Hourglass starts catching up to
Single-tree, but the constant factors still prove to be too much for it to benefit from
its more clever exploration strategy. The running time of Propagation depends on
m∗ instead of m, and m

m∗ in the uniform random graphs increases as the graphs grow
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Fig. 3 512 vertices, uniform weights. The plot is quite erratic due to the extremely short running
times
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Fig. 4 1024 vertices, uniform weights. The general trend starts to form. Differences between the
fastest three algorithms on the sparse instances are quite significant

denser, so it is expected that Dijkstra would be relatively slower the denser the graph
is. It is quite surprising that the Single-tree and Hourglass algorithms are so efficient
on sparse graphs, outperforming evenDijkstra, something thatwould seem incredibly
difficult given its O(n3) worst-case time. This would suggest that its average-case
time is significantly lower than its worst-case, but no theoretical bounds are known
so far.
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Fig. 5 2048 vertices, uniformweights. Floyd-Warshall’s running time begins to increase drastically,
as expected due to its cubic complexity. Differences between the fastest three algorithms on sparse
instances start to decrease
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Fig. 6 4096 vertices, uniform weights. Propagation and Single-tree prove to be the fastest, with
Single-tree outperforming Propagation on the sparser instances

3.3 Unweighted Random Graphs

The results for unweighted random graphs are shown in Figs. 7, 8, 9 and 10.
In these tests, Propagation performs quite poorly, but that is to be expected since

m = m∗ in these graphs, resulting in no benefit from Propagation’s more clever
search strategy compared to Dijkstra. What is interesting is that the Single-tree and
Hourglass algorithms are able to remain competitive withDijkstra in spite of this, and
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Fig. 7 512 vertices, unweighted. The plot is quite erratic due to the extremely short running times
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Fig. 8 1024 vertices, unweighted. A clearer picture begins to form, with Single-tree performing
surprisingly well and being overtaken by Hourglass briefly as the graph grows dense

even outperforming it on the smaller graphs in some instances. It is worthmentioning
that the n2 case for unit graphs is somewhat pathological, as the instance is already
solved since every vertex has a unit-length edge to every other vertex, which can be
seen to cause a consistent dip in the running time in the case of Dijkstra.
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Fig. 9 2048 vertices, unweighted. Hourglass continues to perform best in the 1.7–1.8 range. Differ-
ences between the algorithms on the sparse instances begin to decrease, but Single-tree maintains
good performance and is matched closely by Dijkstra
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Fig. 10 4096 vertices, unweighted. Single-tree andDijkstra remain closelymatched, andHourglass
continues to dominate the 1.7–1.8 density range

4 All-Pairs Bottleneck Paths

The all-pairs bottleneck paths problem (APBP) is closely related to the all-pairs
shortest path problem. The difference is only in the definition of the length of a
path π , which is defined to be: �(π) = max(u,v)∈π �(u, v). The length of edges is
constrained to be non-negative. A solution to this problem is readily available by
simplymodifying the relaxation equation of shortest path algorithms to usemaximum
instead of addition. For example, modifying Dijkstra’s algorithm in this way leads to
a solution that runs in O(mn + n2 lg n) using Fibonacci heaps [20]. A more efficient
folklore modification of Dijkstra’s algorithm is known to reduce this time down to
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O(mn). This folklore modification uses a bucket instead of a heap and sorts the
edges by their lengths beforehand in O(m lg n) time. Then, shortest path lengths can
be expressed as monotonically increasing integers from 1...m (referencing the edge
lengths), and by using this bucket each SSSP computation takes O(m) time in total.
It should be pointed out, that in the case of undirected edges, we can solve APBP
on the minimal spanning tree of G instead of on G itself, and still obtain the correct
result. This can be a significant speed-up, since m = n for any minimal spanning
tree.

In this section, wewill describe an algorithm that is more efficient, with an asymp-
totic running time of O(m∗n + m lg n). This algorithm will also allow us to state an
interesting relationship between APBP and the dynamic transitive closure problem.

Given a graph G = (V, E), the algorithm works by incrementally building the
graphG∗ = (V, E∗)where E∗ ⊂ E are the edges (u, v) such that d(u, v) = �(u, v).
It accomplishes this by inserting edges into an initially disconnected set of vertices.
The first step is to sort the set of edges E using their lengths. This can be done with
any off-the-shelf sorting algorithm in O(m lg n) time.

Now we consider each edge in this sorted list from smallest to largest. Given an
edge (u, v), check if v is reachable from u in G∗. If it is, ignore it and move to
the next edge, and if it isn’t, add (u, v) to G∗, and for every pair of vertices (w, q)

that become reachable, set d(w, q) = �(u, v). The algorithm finishes when we have
considered every edge.

We summarize the algorithm in pseudocode as Algorithm 4.

Algorithm 4 APBP Algorithm
1: procedure APBP(V, E)
2: Initialize D, a n × n matrix, as D[i][ j] := ∞.
3: E∗ := ∅
4: for all (u, v) ∈ E from shortest to longest length do
5: if D[u][v] = ∞ then
6: E∗ := E∗ ∪ (u, v)

7: D[u][v] := �(u, v)

8: for all (x, y) where D[x][y] = ∞ and x → y is reachable in G∗ = (V, E∗) do
9: D[x][y] := �(u, v)

10: end for
11: end if
12: end for
13: end procedure

Lemma 3 For a graph G = (V, E) the algorithm correctly computes d(u, v) :
∀u, v ∈ V .

Proof By induction on the stage of the algorithm. Let e1, e2, ..., en be the edges in
sorted order, i.e. �(e1) ≤ �(e2) ≤ · · · ≤ �(en). Assume the algorithm is at a stage k,
i.e. having examined the first k − 1 edges. For the case of k = 1, the shortest edge
in the graph clearly forms the shortest path between the two vertices it connects.
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For some case n ≥ k > 1, let ek = (u, v) and consider first the case that u and v

are already reachable in the current version of the graph G∗. That would imply that
d(u, v) ≤ �(ek−1), due to the definition of the length of bottleneck paths, which
means a shorter (or equal) path as ek already exists, thus the edge can be safely
omitted as it is redundant.

In the case u cannot yet reach v, then this is the shortest edge to connect the two
vertices, and thus clearly d(u, v) = �(ek). For any additional vertex pairs (w, q) that
become reachable after ek is added into the graph, they clearly contain ek on the path
that connects them. Since all the other edges in the graph are shorter, by the definition
of the length of bottleneck paths it holds that d(w, q) = �(ek), which completes the
proof.

The running time of the algorithm depends heavily on how we check which
previously unreachable vertex pairs have become reachable. The following simple
approach works when adding some edge (u, v):

1. Gather all vertices that can reach u. This takes O(n) time.
2. For each vertex that can reach u, start a breadth-first exploration of G∗ from u,

visiting only vertices that were previously not reachable.

Over the entire course of the algorithm, m∗ edges are added to G∗, so the time
for the first step is O(m∗n). The second step is not more expensive than the cost of
each vertex performing a full breadth-first exploration of G∗ when it is fully built,
thus at most O(m∗ + n) per vertex, amounting to O(m∗n) in total. Overall, the cost
is O(m∗n).

Combining both times for the edge sorting and reachability checking, we arrive at
the bound of O(m∗n + m lg n). It is worth pointing out that in the case of undirected
graphs, G∗ corresponds to the minimum spanning tree of G. This is interesting,
because it means m∗ = O(n), so the running time of the algorithm becomes simply
O(n2 + m lg n) for undirected graphs. This remains true even if the representation
is directed, i.e. each edge is simply repeated in both directions with the same length.
In some limited sense, the algorithm is adaptive to the input graph.

4.1 Reduction to Decremental Transitive Closure

If instead of adding edges into the graph we consider the opposite scenario, that of
removing edges (from largest to smallest) and checking when vertices are no longer
reachable, we can reduce the problem to that of decremental transitive closure. In
the latter problem, we are given a graph and a series of edge deletions, and the task
is to maintain the ability to efficiently answer reachability queries. Relatively recent
advancements in decremental transitive closure have led to an algorithm that has a
total running time of O(mn) under m edge deletions [21]. This immedately leads to
an O(mn) algorithm for all-pairs bottleneck paths. However, since transitive closure
can be computed in O( mn

lg n ) time [22], a decremental algorithm that matches that
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running time could also lead to an o(mn) combinatorial algorithm for APBP. While
subcubic algebraic algorithms for APBP based on matrix multiplication exist [23],
no o(mn) combinatorial algorithm is known.

5 Discussion

In this chapter we have looked at practical algorithms for solving the all-pairs short-
est path problem. It is typical of the more practically-minded APSP algorithms to
rely on average-case properties of graphs, and most of them are modifications of
Dijkstra’s algorithm. However, the Floyd-Warshall algorithm is known to perform
well in practice when the graphs are dense. To this end, we have suggested the Single-
tree and Hourglass algorithms: modifications of the Floyd-Warshall algorithm that
combine it with a tree structure, that allows it to avoid checking unnecessary path
combinations. However, these two algorithms have no known average-case bounds,
which would be an interesting topic for further research.

To compare practical performance, we have devised empirical tests using actual
implementations. Since, as mentioned, the algorithms studied typically rely on
average-case properties of graphs, we looked at both uniform random graphs and
unweighted random graphs of varying density. The latter present a hard case for
many of the algorithms and can highlight their worst-case performance, whereas the
former are much more agreeable to the algorithms’ assumptions. For the choice of
algorithms we have included those known from past work, as well as the novel Hour-
glass and Single-tree algorithms. As it turns out, the new algorithms have proven to
be quite efficient in the empirical tests that we have performed. The simpler Single-
tree algorithm has ranked especially well alongside the Propagation algorithm, while
at the same time it was more resilient when it came to worst-case inputs.

In addition, we have also briefly considered the case of all-pairs bottleneck paths,
where we proposed a simple algorithm, the asymptotic running time of which can be
parametrized withm∗. Additionally, we have shown ties to the decremental transitive
closure problem, which might lead to faster algorithms for all-pairs bottleneck paths
if faster algorithms for decremental transitive closure are found.
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Computing Shortest Paths with Cellular
Automata

Selim G. Akl

Abstract Wedescribe cellular-automaton-based algorithms for solving two shortest
path problems on arbitrary connected, directed, and weighted graphs with n vertices.
The first problem is that of finding the shortest path from a given vertex to another
given vertex of the graph.A two-dimensional cellular automaton, shaped as a triangle,
with O(n2) cells, is used. The algorithm runs in O(n) time. The second problem
requires that all shortest paths between pairs of vertices be obtained.An n × n cellular
automaton solves the problem in O(n log n) time.

1 Introduction

A cellular automaton, a biologically-inspired model of computation, is an arrange-
ment of simple processors, or cells usually in a one or two dimensional geometric
pattern [1, 7, 12]. Each cell receives data from the outside world and/or from its
immediate neighbors and delivers output to the outside world and/or to its immedi-
ate neighbors. The cells operate in a synchronous fashion. In [2] it is shown how a
cellular automaton can compute shortest paths in a rectangular lattice with weighted
edges. The same computation is discussed in [9–11]. In this chapter we describe
cellular-automaton-based algorithms for solving two problems pertaining to shortest
paths in arbitrary graphs. Given a connected, directed, and weighted graph, as shown
in Fig. 1:

Single-pair shortest path: It is required to compute the shortest path from one given
vertex to another given vertex.

All-pairs shortest paths: For all ordered pairs of vertices, it is required to find the
shortest path from the first vertex in the pair to the second.
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Fig. 1 A connected,
directed, and weighted graph
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Finding shortest paths is a classical computation in computer science [5, 6, 8].
The algorithms in what follows are adapted for the cellular automaton model from
ideas originally presented in [3, 4] in a different context.

2 Shortest Path Between Two Vertices

Dynamic programming is a powerful algorithmic method used in the solution of
optimization problems in which a discrete function is to be minimized or maximized.
The approach is to compute optimal solutions to subproblems of the main problem
and then combine them to obtain a global optimal solution. This method has been
applied successfully to a wide variety of problems, including scheduling problems,
computing shortest paths in directed andweighted graphs, constructing binary search
trees, and finding the longest common subsequence of two sequences. Our algorithms
in this chapter use the dynamic programming approach.

Throughout the chapter, time is divided into discrete time units. A time unit is
the time required by a cellular automaton cell to perform an arithmetic or logical
operation. It is also the time required by a cellular automaton cell to receive a datum
from the outside world, or to transfer a datum to a neighboring cell or to the outside
world. The running time of an algorithm is measured and expressed in time units.

2.1 Preliminaries

Let f (i, j) be a real-valued function of two integer variables i and j , 1 ≤ i ≤ j ≤ n.
Initially,

f (i, j) = w(i, j) for 1 ≤ i < j ≤ n, and f (i, i) = 0 for 1 ≤ i ≤ n.

Here, the values w(i, j) are chosen as appropriate for the specific application at
hand. The final value of f (i, j) is to be obtained according to the rule

f (i, j) = min
i≤k≤ j

( f (i, k) + f (k, j)) for 1 ≤ i < j ≤ n.
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This equation assumes that when f (i, j) is to be computed for two given integers
i and j , all values required for its computation, namely, f (i, k) and f (k, j) for
i ≤ k ≤ j , have been previously obtained by the same rule and stored, and are hence
available. Note also that for k = i or k = j , the quantity ( f (i, k) + f (k, j)) equals
the given initial value w(i, j).

Once f (i, j) is computed, it, too, is stored and later used to compute subsequent
values of f , for other values of i and j .

2.2 Shortest Path Problem Formulation

Suppose that G is a connected, directed, and weighted graph with n vertices v1, v2,
. . . , vn . Further, let w(i, j) ≥ 0 be the weight (also referred to as the length) of the
directed edge (vi , v j ), which connects vertex vi to vertex v j . If vi is not directly
connected by an edge to v j , then w(i, j) = ∞. The weight (or length) of a path from
vi to v j is the sum of the weights of the edges forming it. Under these conditions,
f (i, j), as defined above in Sect. 2.1, represents the length of a shortest path (i.e., a
pathwithminimumweight) from vi to v j , which is allowed to go through intermediate
vertices vk , provided that i < k < j . Note that if the shortest path does indeed go
through other vertices vh , vl , . . . , vm , then

w(i, h) + w(h, l) + · · · + w(m, j) < w(i, j).

On a sequential model of computation, such as the Random Access Machine
(RAM), for example, this problem can be solved in O(n2) time.

2.3 An Algorithm for a Triangular Cellular Automaton

We now show how the equation

f (i, j) = min
i≤k≤ j

( f (i, k) + f (k, j))

can be computed on a two-dimensional cellular automaton, for 1 ≤ i < j ≤ n.
Specifically, we use a triangular arrangement.

Triangular cellular automaton. The automaton is shown in Fig. 2 for n = 6. In this
arrangement, each cell P(i, j) is connected to cells P(i − 1, j) and P(i, j + 1) by
two links, namely, a simple (or fast) link and a buffer (or slow) link. The buffer link
contains a secondary cell whose only purpose is to slow down the communication
by one time unit. Thus:
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Fig. 2 A cellular automaton for the shortest path problem

1. If P(i, j) sends a datum to P(i − 1, j) and/or to P(i, j + 1) on the fast link,
the datum arrives at its destination during the same time unit.

2. If, on the other hand, the datum is sent on the slow link, it arrives during the
following time unit.

Cell P(i, j) will be in charge of computing f (i, j) and will finish doing so at
time unit 2( j − i). Once f (i, j) has been computed, it is sent to P(i − 1, j) and
P(i, j + 1) on the fast links. After leaving P(i, j), a datum travels (simultaneously
up and to the right) for j − i time units on the fast links and then continues its motion
on the slow links. Typically, a cell receives up to four inputs and produces up to four
outputs, as shown in Fig. 3, where the small squares represent secondary cells. Each
cell holds a variable F in an internal register. Initially, F = w(i, j) for cell P(i, j).

Scheduling data movement. Suppose that the algorithm begins during time unit 1
and that subsequent time units are numbered 2, 3, and so on. Let u denote the number
of the current time unit at any point during the execution of the algorithm. When
u = 2( j − i), the final value of f (i, j) has been computed by P(i, j), and it is sent
up and to the right on the fast links. Now, f (i, j) stays on the fast links for j − i
time units. Therefore, it reaches P(i, j + j − i) traveling right and P(i − j + i, j)
traveling up when

u = 2( j − i) + ( j − i) = 3( j − i),
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Fig. 3 Structure of a cell
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at which point it must switch to the slow links. Thus, a datum switches from a fast
to a slow link as it goes through a cell P(r, s) if u = 3(s − r)/2.

The Algorithm. Using the notation in Fig. 3, we see that each cell P(i, j) performs
the following computations whenever it receives input:

Step 1: F ← min(F, f1 + f3, f2 + f4)
Step 2: if u = 3( j − i)/2

then (i) f ′
2 ← f1

(ii) f ′
4 ← f3

else (i) f ′
2 ← f2

(ii) f ′
4 ← f4

end if
Step 3: if u = 2( j − i)

then (i) f ′
1 ← F

(ii) f ′
3 ← F

else (i) f ′
1 ← f1

(ii) f ′
3 ← f3

end if.

It is important to note that:

1. A cell P(i, j) uses fl , 1 ≤ l ≤ 4, in the computation of F , provided that fl was
received during the current time unit. Similarly, P(i, j) produces fl as output,
provided that it was received in the previous time unit.

2. Cells P(i, i + 1) do not receive any input and begin operating when u = 1. They
perform no computations and, when u = 2, produce F as f (i, i + 1).

3. If a cell receives inputs f1 and f2 during time unit u, then during time unit u + 1
its outputs f ′

1 and f ′
2 are such that f ′

1 = f1 and f ′
2 = f2 (i.e., the input arriving

on the fast input link is not switched to the slow output link). This is because if
f1 and f2 are received by P(i, j) during time unit u, then it must be the case that
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u + 1 �= 3( j − i)/2 and u + 1 �= 2( j − i).

4. If a cell’s output f ′
2 is such that f ′

2 = f1 during time unit u + 1, then the cell
received no input f2 during time unit u. Indeed, if f ′

2 = f1 for P(i, j) during
time unit u + 1, then it must be the case that u + 1 = 3( j − i)/2. This property,
together with the preceding one, establishes that a cell never has to place two
values on its slow output link simultaneously.

5. If F = f (i, j) is produced as output during time unit u + 1, then cell P(i, j)
received no input during time unit u. This follows from the fact that

if F = f (i, j) for P(i, j) during time unit u + 1,

then it must be the case that

u + 1 = 2( j − i).

This property ensures that a cell never has to place two values on its fast output
link simultaneously.

6. Cell P(i, j) finishes computing f (i, j) when u = 2( j − i). We prove this as
follows. The number of links separating P(i, i + 1) and P(i, j) is

j − (i + 1) = j − i − 1.

Now f (i, i + 1) is produced in time unit 2. It stays on the fast link one time unit,
then switches to the slow links in time unit 3. It now traverses j − i − 2 slow
links in 2( j − i) − 4 time units and reaches P(i, j) during time unit

2( j − i) − 4 + 3 = 2( j − i) − 1.

One time unit later f (i, j) is produced.

Example 1 Let n = 6.We illustrate how f (1, 6) is computed on the cellular automa-
ton of Fig. 2, where

f (1, 6) = min (w(1, 6), f (1, 2) + f (2, 6),
f (1, 3) + f (3, 6),
f (1, 4) + f (4, 6),
f (1, 5) + f (5, 6)).

The computation is illustrated in Fig. 4, in which only the top row of the triangular
automaton is shown and u denotes the number of time units elapsed. Thefirst values to
emerge from their respective cells are f (1, 2) and f (5, 6), when u = 2. Subsequent
computations are as follows:

u = 3: f (1, 2) and f (5, 6) are placed by P(1, 3) and P(4, 6) on the slow links.
u = 4: f (1, 3) and f (4, 6) are placed by P(1, 3) and P(4, 6) on the fast links.
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Fig. 4 Computing f (1, 6): a u = 2; b u = 4; c u = 6; d u = 7; e u = 8

u = 5: f (1, 3) and f (4, 6) reach P(1, 5) and P(2, 6), respectively.
u = 6: f (1, 4) and f (3, 6) are placed by P(1, 4) and P(3, 6) on the fast links;

f (1, 3) and f (4, 6) are placed by P(1, 5) and P(2, 6) on the slow links.
u = 7: f (1, 4) and f (1, 3) reach P(1, 6) from the left;

f (4, 6) and f (3, 6) reach P(1, 6) from the bottom.
u = 8: P(1, 6) computes F ← min (w(1, 6), f (1, 3) + f (3, 6), f (1, 4) + f (4, 6));

f (1, 5) and f (1, 2) reach P(1, 6) from the left;
f (5, 6) and f (2, 6) reach P(1, 6) from the bottom.

u = 9: P(1, 6) computes F ← min (F, f (1, 5) + f (5, 6), f (1, 2) + f (2, 6)).

When u = 10, F = f (1, 6) is produced as output by P(1, 6). �
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2.4 Analysis

A problem of size n uses a triangular cellular automaton of n(n − 1)/2 cells. Since
the last output to be produced is f (1, n), and this requires 2(n − 1) time units, the
algorithm has a running time of t (n) = 2(n − 1). It is important to note that this
algorithm computes f (i, j), the length of a shortest path from vertex vi to vertex v j .
The path itself, that is, the actual sequence of intermediate vertices vk , i < k < j ,
that form the path from vi to v j is obtained by keeping track of each index which
achieves the minimum in the recurrence

f (i, j) = min
i≤k≤ j

( f (i, k) + f (k, j)).

2.5 A Variant: No Need to Keep Track of Time

In the cellular automaton of Sect. 2.3, each cell needs to keep track of u, the number
of time units elapsed, in order to “decide”whether it is time to produce the contents of
F as output or to switch a value received on a fast link onto a slow link.We now show
that by using 2(n − 1) control signals, one per row and one per column, which travel
at appropriate speeds from left to right and from bottom to top, respectively, each
cell receiving these signals can determine what needs to be done (without having to
store u).

The (n − 1) signals (one per row) traveling horizontally are the switch signals.
They tell a cell when to switch an input from a fast to a slow link. Because the
switch signal must reach P(i, j) at time unit 3( j − i)/2, it begins at time unit 3 at
P(i, i + 2) and travels to the right on slow links connecting those cells for which
( j − i) is even, such that each link has three delays (and hence takes three time units
to traverse).

The (n − 1) signals (one per column) traveling vertically are the output signals.
They tell a cell when to produce the contents of F as output. Because the output
signal must reach P(i, j) at time unit 2( j − i), it begins at time unit 2 at P(i, i + 1)
and travels upwards on slow links with one delay per link (similar to the slow links
used for the data).

3 All-Pairs Shortest Paths

Suppose that we are given a directed and weighted graph G, with n vertices
v1, v2, . . . , vn . The graph is defined by its weight matrix W , in which entry w(i, j)
represents the weight of edge (vi , v j ), also referred to as its length, as was done in
Sect. 2.2. However, unlike in Sect. 2.2, we assume more generally that W has posi-
tive, zero, or negative entries, as long as there is no cycle in G such that the sum of
the weights of the edges on the cycle is negative.
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The problem that we address here is known as the all-pairs shortest paths problem
and is stated as follows: For every pair of vertices vi and v j in G, it is required to
find the length of the shortest path from vi to v j along edges in G. Specifically, a
matrix D is to be constructed such that di j is the length of the shortest path from
vi to v j in G, for all i and j . Here, as before, the length of a path (or cycle) is the
sum of the lengths of the edges forming it. It may be obvious now why we insisted
that G have no cycle of negative length: If such a cycle were to exist within a path
from vi to v j , then one could traverse this cycle indefinitely, producing paths of ever
shorter lengths from vi to v j . Because G is directed, edges (vi , v j ) and (v j , vi ) are
different, and a path from vi to v j is not the same as a path for v j to vi . Thus there
are n(n − 1) distinct pairs of vertices in a directed n-vertex graph, and consequently
n(n − 1) distinct shortest paths to be computed. On the RAM, this problem is solved
in O(n3) time.

Two obviousways are available to solve the all-pairs shortest paths problem, using
the triangular cellular automaton of Sect. 2.2:

1. To employ a single triangular cellular automaton with n(n − 1)/2 cells, repeat-
edly, n(n − 1) times, each time computing the shortest path for a different pair
of vertices. This requires a running time of n(n − 1) × 2(n − 1). In this case,
the total number of basic computations, such as additions, subtractions, and so
on, expressed as the number of cells multiplied by the running time, is therefore
O(n5).

2. Alternatively, to employ n(n − 1) distinct cellular automata, each equipped with
n(n − 1)/2 cells and operating independently from all the others to compute the
shortest path for a different pair of vertices. Thus, by computing in parallel, the
automata achieve a parallel running time of 2(n − 1). The total number of basic
computations, a measure of the work done collectively, is again O(n5).

In what follows we present a significantly more efficient solution to the all-pairs
shortest path problemon a graphwith n vertices, whose total number of computations
is O(n3 log n).

3.1 All Pairs Shortest Paths Cellular Automaton Algorithm

Let dk
i j denote the length of the shortest path from vi to v j that goes through at

most k − 1 intermediate vertices. Thus, d1
i j = w(i, j), that is, the length of the edge

from vi to v j . In particular, if there is no edge from vi to v j , where i �= j , then
d1
i j = w(i, j) = ∞. Also, d1

i i = w(i, i) = 0. Given that G has no cycles of negative
length, there is no advantage in visiting any vertex more than once in a shortest path
from vi to v j . It follows that di j = dn−1

i j , since there are only n vertices in G.
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In order to compute dk
i j for k > 1, we can use the recurrence

dk
i j = min

l
(dk/2

il + dk/2
l j ),

in which k/2 is rounded appropriately when needed. The validity of this relation is
established as follows: Suppose that dk

i j is the length of the shortest path from vi to
v j and that two vertices vr and vs are on this shortest path (with vr preceding vs). It
must be the case that the edges from vr to vs (along the shortest path from vi to v j )
form a shortest path from vr to vs . (If a shorter path from vr to vs existed, it could
be used to obtain a shorter path from vi to v j , which is absurd.) Therefore, to obtain
dk
i j , we can compute all combinations of optimal subpaths (whose concatenation is
a path from vi to v j ) and then choose the shortest one. The fastest way to do this is
to combine pairs of subpaths with at most k/2 vertices each. This guarantees that a
recursive computation of dk

i j can be completed in O(log k) steps.
Let Dk be thematrixwhose entries are dk

i j , for 1 ≤ i, j ≤ n. In accordancewith the
discussion in the previous two paragraphs, the matrix D can be computed from D1 =
W by evaluating D2, D4, . . . , Dm , where m is the smallest power of 2 larger than or
equal to n − 1 (i.e.,m = 2�log(n−1)	), and then taking D = Dm . In order to obtain Dk

from Dk/2, we use a special form of matrix multiplication in which the operations
‘+’ and ‘min’ replace the standard operations of matrix multiplication—that is, ‘×’
and ‘+’, respectively. Hence, if a matrix multiplication algorithm is available, it can
be modified to generate Dm from D1. Exactly �log(n − 1)	 such matrix products
are required.

The remainder of this section is devoted to showing how two matrices can be
multiplied on a two-dimensional cellular automaton. An n × n cellular automaton for
this purpose is shown in Fig. 5. In what follows various algorithms are described for
multiplying two matrices on this automaton. Each algorithm, appropriately modified
as described in the previous paragraph, can be used to compute the shortest path
matrix D. Each algorithm runs in O(n) time. Since O(log n) such matrix products
are required, the running time for computing all-pairs shortest paths for a graph with
n vertices on an n × n cellular automaton is t (n) = O(n log n).

3.2 Matrix Multiplication on a Cellular Automaton

In the general case of matrix multiplication, we are given an m × n matrix A and an
n × k matrix B. It is required to compute an m × k matrix C equal to the product of
A and B. The elements of C = A × B are given by

ci j =
n∑

s=1

ais × bsj ,



Computing Shortest Paths with Cellular Automata 191

P(0,0) P(0,1) P(0,2) P(0,3)

P(1,0) P(1,1) P(1,2) P(1,3)

P(2,0) P(2,1) P(2,2) P(2,3)

P(3,0) P(3,1) P(3,2) P(3,3)

0 1 2 3

0

1

2

3

ROW
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Fig. 5 Two-dimensional cellular automaton for all pairs shortest paths

n n
CELLULAR CELLULAR

m      k

AUTOMATON

A

B
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CA

B
(b)

AUTOMATON

Fig. 6 Variants of data flow for matrix multiplication on a cellular automaton: a The elements of
the product matrix, all initialized to 0, reside in the automaton at the beginning of the computation;
b The elements of the product matrix, all initialized to 0, are fed into the automaton sequentially

for 1 ≤ i ≤ m and 1 ≤ j ≤ k. We begin by describing an algorithm for performing
this computation on a cellular automaton with m rows and k columns. Initially, cell
P(i, j) holds ci j = 0. Matrices A and B are fed into the automaton as shown in
Fig. 6a. We now show how to organize the input and subsequent computations so
that, when the algorithm terminates, P(i, j) contains the final value of ci j .

Cellular automaton rows are numbered 1, 2, . . . ,m and columns 1, 2, . . . , k.
Matrices A and B are fed into the cells in column 1 and row 1 as follows. Ele-
ment ain is the first element of row i of matrix A to enter P(i, 1). Also, row i of
A lags one time unit behind row i − 1, for 2 ≤ i ≤ m. Similarly, element bnj is the
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first element of column j of matrix B to enter P(1, j). Also, column j of B lags
one time unit behind column j − 1, for 2 ≤ j ≤ k. This ensures that ais meets bsj
in cell P(i, j) at the right time, and the latter executes the following:

(a) ci j ← ci j + (ais × bsj ),
(b) sends ais to P(i, j + 1), provided j < k, and
(c) sends bsj to P(i + 1, j), provided i < m.

Elements am1 and b1k take m + k + n − 2 steps from the beginning of the com-
putation to reach P(m, k). Since P(m, k) is the last cell to terminate, this many steps
are required to compute the product. Assumingm ≤ n and k ≤ n, the algorithm runs
in O(n) time.

3.3 A Variant: Three Input Streams

We now consider the case where matrices A, B, andC are fed to the cellular automa-
ton as shown in Fig. 6b, with all the elements of C initialized to 0. Suppose that
A and B are n × n matrices. We use a cellular automaton with n rows, numbered
1, 2, . . . , n and 2n − 1 columns, numbered 1, 2, . . . , 2n − 1.

(a) The elements of row i of A are fed to row i of the cellular automaton from the
left, such that ai1 enters P(i, 1) first, ai2 second, and so on. Two consecutive
elements ai j and ai, j+1 are separated by two time units. Also, row i lags one
time unit behind row i − 1, for 2 ≤ i ≤ n.

(b) The elements of row i of C are fed to row i of the cellular automaton from
the right, such that ci1 enters P(i, 2n − 1) first, ci2 second, and so on. Two
consecutive elements ci j and ci, j+1 are separated by two time units. Also, row i
lags one time unit behind row i − 1, for 2 ≤ i ≤ n.

(c) Let the diagonals of matrix B be numbered from 1 (bottom left) to 2n − 1 (top
right), such that the diagonal consisting of bn1 alone is diagonal 1, the diagonal
consisting of bn−1,1 and bn2 is diagonal 2, and so on. For 1 ≤ j ≤ 2n − 1, the
elements of diagonal j are fed to column j of the cellular automaton from the top,
such that the top left element of diagonal j enters P(1, j) first. Two consecutive
elements of a diagonal are separated by two time units. Furthermore, b11 enters
P(1, n) when both a11 and c11 have reached that cell. In the following time unit,
b21 and b12 enter P(1, n − 1) and P(1, n + 1), respectively. One time unit later,
b31, b22, and b13 enter P(1, n − 2), P(1, n), and P(1, n + 2), respectively. This
continues until bnn enters P(1, n).

When aik meets bkj and ci j in a cell, the latter computes ci j ← ci j + (aik × bkj ).
The algorithm requires O(n) time units.
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3.4 The Case of Several Inputs

Assume that several pairs of matrices (A1, B1), (A2, B2), . . . , (Aq , Bq) are queued,
waiting to be multiplied on the cellular automaton of Sect. 3.2 (or that of Sect. 3.3).
We now show how the algorithm can be modified to allow this computation to be
carried out in a pipeline fashion. This is accomplished as follows. The matrices
A1, A2, . . . , Aq are fed to them × k automaton in a pipeline fashion and move from
left to right. Similarly, B1, B2, . . . , Bq are fed to the automaton in a pipeline fashion
and move from the top down.

Once cell P(i, j) has finished computing ci j for one pair of matrices, it should
produce it as output immediately before it becomes involved in computing the product
of a new pair of matrices. This is because the product matrix may be needed for
another computation once it is available and/or because P(i, j) has storage room for
only one ci j at a time. If P(i, j) is directly connected to an output device, then it can
send ci j to the outside world once it is computed.

Alternatively, suppose that only boundary cells in the cellular automaton are con-
nected to output devices. In this case, the ci j are produced as output in the following
manner. Since each cell has a limited amount of local storage, it is important that ci j
be produced as output by P(i, j) as soon as its computation is complete, and before
P(i, j) begins computing a new ci j for the next pair of matrices. One way to produce
the output is to send ci j to P(i, j − 1) as soon as its computation is complete, there-
from it travels leftwards to the output. Alternatively, ci j can be sent to P(i − 1, j)
therefrom it travels upwards to the output.

3.5 A Second Variant: Resident Input

In this variant, an n × n cellular automaton is used the compute the product of two
n × n matrices as follows. Initially, cell P(i, j) stores elements ai j and bi j of the two
matrices A and B, respectively. We describe an algorithm for computingC = A × B
on this model, so that at the end of the computation P(i, j) also holds ci j . For ease
of exposition, we present three versions of the algorithm.

1. The first, simplest but least efficient, version requires that one of the twomatrices
be transposed, and runs on a cellular automaton with so-called wraparound
connections.

2. The second, more efficient but also slightly more complex, removes the need for
initially transposing one of the two matrices, and instead uses the wraparound
connections to simulate the transpose during the process of multiplying the two
matrices.

3. Finally, we show how the wraparound connections can be discarded.
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Therefore, we begin by describing how a matrix transpose is accomplished on the
cellular automaton.

3.5.1 Matrix Transpose on a Cellular Automaton

Given an n × n matrix

B =

⎛

⎜⎜⎜⎝

b11 b12 . . . b1n
b21 b22 . . . b2n

...

bn1 bn2 . . . bnn

⎞

⎟⎟⎟⎠ ,

it is required to compute the transpose of B; that is,

BT =

⎛

⎜⎜⎜⎝

b11 b21 . . . bn1
b12 b22 . . . bn2

...

b1n b2n . . . bnn

⎞

⎟⎟⎟⎠ .

In other words, every row in matrix B is a column in matrix BT . The transpose
of an n × n matrix can be computed on an n × n cellular automaton by assigning
bi j to cell P(i, j) and then routing bi j to cell P( j, i), for all 1 ≤ i, j ≤ n. We now
show how this is done in each of the following two cases:

Case (a) The element bi j carries along the indices of its destination cell, namely, j
and i , as it travels from P(i, j) to P( j, i).

Case (b) The element bi j carries no information whatsoever concerning i and j as
it travels from P(i, j) to P( j, i).

Since the diagonal elements are not affected during the transposition, that is, ele-
ments bii of BT , the data in the diagonal cells will stay stationary. Those below
the diagonal are sent to occupy symmetrical positions above the diagonal. Simulta-
neously, the elements above the diagonal are sent to occupy symmetrical positions
below the diagonal. Each cell P(i, j) has three registers: One to store bi j (and even-
tually b ji ), the second to store data received from the right or top neighbors, and
the third to store data received from the left or bottom neighbors. When a datum
traveling to the left (right) reaches a diagonal cell it switches its direction and moves
down (up).

Routing in case (a) Suppose that element bi j carries along ( j, i) as it travels from
P(i, j) to P( j, i). When bi j reaches P( j, i) the latter recog-
nizes its indices in ( j, i) and retains bi j (other elements are
forwarded by P( j, i) in the direction in which they were mov-
ing).
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Routing in case (b) Suppose that element bi j carries no information about cell
P( j, i). The destination of bi j is determined as follows: P( j, i)
retains the first element it receives from below (above) if
P( j, i) is above (below) the diagonal, and forwards all sub-
sequent elements in the direction in which they were moving.

In either case, the algorithm runs in O(n) time.

3.5.2 Using Wraparound Connections

Once again, for ease of exposition, we begin by temporarily assuming that the n × n
cellular automaton in charge of multiplying matrices A and B, is such that the cells
in each row and the cells in each column are connected to form a ring. The additional
links are called wraparound connections. In this section we describe how a cellular
automaton with these additional connections computes the product C = A × B of
the two matrices as specified earlier, namely:

1. Cell P(i, j) already stores elements ai j and bi j of A and B, respectively, at the
beginning of the computation.

2. When the computation terminates, cell P(i, j) also holds element ci j of the
product.

Each cell has four registers a, b, c, and d. Initially, the a and b registers of P(i, j)
store ai j and bi j , respectively.When the algorithm terminates, the c register of P(i, j)
holds ci j . The algorithm is as follows (for convenience, numbering starts at 0).

Step 1: Compute the transpose of matrix B using the algorithm
of Sect. 3.5.1

Step 2: for l = 0 to n − 1 do
for all cells do in parallel
d ← a × b

end for
for i = 0 to n − 1 do in parallel
Compute the sum of all d registers in row i
and place this sum in the c register of cell P(i, (l + i) mod n)

end for
for j = 0 to n − 1 do in parallel
for i = 0 to n − 1 do in parallel
Transfer the contents of the b register of every
cell P(i, j) to the b register of cell P((i − 1) mod n, j)

end for
end for

end for.
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The algorithm is simple; however, it runs in O(n2) time. An O(n) time algorithm
is as follows (for convenience, numbering starts at 1.)

Matrix multiplication on cellular automaton with wraparound connections

Step 1: (1.1) for i = 1 to n do in parallel
Shift the contents of all a registers
in row i cyclically to the right
n − i times

end for
(1.2) for j = 1 to n do in parallel

Shift the contents of all b registers
in column j cyclically down
n − j times

end for
Step 2: for i = 1 to n do in parallel

for j = 1 to n do in parallel
ci j ← 0
for k = 1 to n do
(2.1) ci j ← ci j + (a × b)
(2.2) Cyclically shift the contents of all

a registers to the left once
(2.3) Cyclically shift the contents of all b registers up once

end for
end for

end for
Step 3: (3.1) for i = 1 to n do in parallel

Shift the contents of all a registers in row i
cyclically to the left n − i times

end for
(3.2) for j = 1 to n do in parallel

Shift the contents of all b registers in column j
cyclically up n − j times

end for.

3.5.3 Doing Away with the Wraparound Connections

Finallywe demonstrate that thewraparound connections,whilemaking the algorithm
easy to describe, are not necessary, and can be discarded. The wraparound connec-
tions were used to circulate the elements of the two matrices so that every pair of
numbers that must be multiplied meet in a cell. In the absence of the wraparound



Computing Shortest Paths with Cellular Automata 197

connections, their effect can be obtained by storing a second copy of each element of
the two matrices. These “secondary” elements travel in a direction opposite to that
of the “main” elements.

3.6 Analysis

Each of the matrix multiplication algorithms in Sects. 3.2, 3.3 and 3.5 computes the
product of two n × n matrices in O(n) time. Since the shortest paths algorithm of
Sect. 3.1 consists of O(log n) matrix multiplications, its overall running time, using
an n × n cellular automaton, is O(n log n). The total number of basic computations
is O(n3 log n). Once again we point out that this algorithm computes di j , that is, the
length of a shortest path from vi to v j , for all i and j . In order to produce the path
itself, that is, the sequence of vertices that appear on a shortest path from vi to v j , it
is necessary to record each index that yields a minimum in the recurrence

dk
i j = min

l
(dk/2

il + dk/2
l j ).

4 Conclusion

It is rather counter intuitive at first glance that a highly organized and structuredmodel
of computation such as the cellular automaton be used to solve problems defined on
a highly unstructured collection of data in an arbitrary graph. Yet, as shown in this
chapter, the cellular automaton can be applied quite effectively to solve two shortest-
path problems on graphs. This is a perfect example of the power of abstraction in the
science of computation. An appropriate encoding and a clever algorithm is usually
all it takes to do the job.
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Abstract Cellular Automata (CAs) are computational models that can capture the
essential features of systems in which global behavior emerges from the collec-
tive effect of simple components, which interact locally. During the last decades,
CAs have been extensively used for mimicking several natural processes and sys-
tems to find fine solutions in many complex hard to solve computer science and
engineering problems. Among them, the shortest path problem is one of the most
pronounced and highly studied problems that scientists have been trying to tackle
by using a plethora of methodologies and even unconventional approaches. The pro-
posed solutions are mainly justified by their ability to provide a correct solution in
a better time complexity than the renowned Dijkstra’s algorithm. Although there is
a wide variety regarding the algorithmic complexity of the algorithms suggested,
spanning from simplistic graph traversal algorithms to complex nature inspired and
bio-mimicking algorithms, in this chapter we focus on the successful application of
CAs to shortest path problem as found in various diverse disciplines like computer
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science, swarm robotics, computer networks, decision science and biomimicking of
biological organisms’ behaviour. In particular, an introduction on the first CA-based
algorithm tackling the shortest path problem is provided in detail. After the short
presentation of shortest path algorithms arriving from the relaxization of the CAs
principles, the application of theCA-based shortest path definition on the coordinated
motion of swarm robotics is also introduced. Moreover, the CA based application of
shortest path finding in computer networks is presented in brief. Finally, a CA that
models exactly the behavior of a biological organism, namely the Physarum’s behav-
ior, finding the minimum-length path between two points in a labyrinth is given. The
CA-based model results are found in very good agreement with the computation
results produced by the in-vivo experiments especially when combined with truly
parallel implementations of this CA in a Field Programmable Gate Array (FPGA)
and on a Graphical Processing Unit (GPU). The presented implementations succeed
to take advantage of the CA’s inherit parallelism and significantly improve the perfor-
mance of the CA algorithm when compared with software in terms of computational
speed and power consumption.

1 Introduction

The shortest path problem has always been a hot topic in the study of graph theory,
because of its wide application field, extending from operational research to the dis-
ciplines of geography, automatic control, computer science and traffic. According to
its concrete applications, scholars in relevant fields have presented many algorithms,
but most of them are solely improvements [27] based on Dijkstra’s algorithm [7].
Shortest path problems can be solved in polynomial time by one of the many shortest
path algorithms, such as Dijkstra [7] and Floyd-Warshall [15, 72], provided that edge
lengths are deterministic, i.e. every feasible probability distribution, out of a given
set, over all possible successor nodes assigns probability one to a single successor
On the other hand, Cellular Automata (CAs) are models of physical systems, where
space and time are discrete and interactions are local [69]. Prior and more recent
works proved that CAs are very effective in simulating physical systems and solv-
ing scientific problems, because they can capture the essential features of systems
where global behavior arises from the collective effect of simple components, which
interact locally [1, 11, 53, 54, 73]. Furthermore, they can easily handle complex
boundary and initial conditions, inhomogeneities and anisotropies [8, 62]. The last
decades, a wide variety of CA applications have been proposed on several scientific
fields, such as simulation of physical systems, biological modeling involving models
for self-reproduction, biological structures, image processing, semiconductor fabri-
cation processes, crowd evacuation, computer networks and quantum CAs [16, 17,
30, 31, 38, 45, 55, 56, 61, 65]. These problems are described in terms of CAs,
spatially by an 1-d, 2-d or 3-d array of cells and a local rule, which is usually an
arbitrary function that defines the new state(s) of its CA cell depending on the states
of its neighbors. The CA cells can work in fully synchronous and parallel manner
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updating their own state. It is clear that the CA approach can be considered consis-
tent with the modern notion of unified space time, where, in computer science, space
corresponds to memory and time to processing unit. In analogy, in CA, memory
(cell state) and processing unit (local rule) are inseparably related to a CA cell [49,
60]. Taking all the above into consideration, there is no surprise that CA have been
also able to deal successfully with the shortest path problem providing coherent and
computationally efficient solutions in a number of various scientific applications and
fields as shown later in this chapter. In what follows, we will focus in some of the
most pronounced CA based applications that present different confrontations and
corresponding solutions concerning the shortest path problem.

2 The First Cellular Automata Approach in Shortest
Path Problem

ThefirstCAalgorithm tackling the shortest path problemwasproposedbyAdamatzky
[2] although, it can be claimed that the famous Lee algorithm [32] could be consid-
ered as the first CA alike approach (see the CA algorithm in the next Sect. 3 for
unweighted cells). However, the CA algorithm proposed by Adamatzky is mainly
studying a weighted graph, which is also oriented. The three most common varia-
tions of the problem, namely single source shortest path (S3P), all pairs shortest path
(APSP) and single source single destination shortest path (S3DSP), were all faced
by the proposed CA algorithm. The main aim of this work was to tackle in a parallel
way the S3P and APSP variants by implementing a CA with adjustable neighbor-
hood radius. Solving a shortest path problem or identifying the most direct path in a
network among two vertices (i.e. x and y) was approximated using a CA, by plotting
the under study graph onto a rectangular mesh, where cells x and y represent the
respective vertices. The proposed solution is reached when an excitation wave with
starting point cell x , diffuses towards all directions and arrives at cell y.

CAs have simulated living processes, neural networks, cellular and animal popula-
tions, molecular liquids, membranes and excitable reaction-diffusionmedia, because
they are the most material, perceptible and practical models [2]. The main feature
of excitation in a medium is that signals can be propagated undamped over a long
distance and the speed of wave propagation can be variable. In Adamatzky’s work
the speed of a wave is proportional to the weight of the edge connection between
node x and node y. At the beginning the given graph is mapped onto the cellular
array of CA. Source vertex x and destination vertex y of the graph are corresponding
to cells x and y, respectively. The x cell is excited and the wave propagates in all
directions around the lattice, modifying the states of cells. Computation is assumed
finished when the wave reaches destination y.

The definition of a CA is a d-dimensional lattice L of n cells, cell states Q,
neighborhood function u and transition function f . For every cell x a neigh-
borhood function assigns a group of the closest cells u(x). The local transition
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function f maps a set of neighborhood states into the set Q of cells states. Using
all the above characteristics, the next state of cell x will be defined as the state of
its neighborhood in the previous time step and the rule of the transition function in
the following way: xt+1 = f (u(xt )). Evolution of CA with initial configuration c
is a series of transitions like: c0 → c1 → c2 → · · · ct → ct+1 → · · · . In this (ours)
work [2] a pointer px and a vector wxy are used, which correspond to the direction
from which the wave has propagated at the previous time step and the weight of
the edge between nodes x and y, respectively. The set Q can take one of the fol-
lowing elements: Q = {+, #, •, 0, 1, 2, . . . , ν}. Pointer px takes values from a finite
nonempty set Y = {1, 2, . . . , k, λ} where λ can be considered as the initial value
of px . Every element wxy of vector wx , y ∈ u(x), can be in one of the states of
set W = {∞, 0, . . . , ν}. When vertices (nodes) x and y are not connected with one
another by an edge oriented from x to y then wxy = ∞ .

Let G = 〈V, E〉 be an oriented graph of n vertices arranged on the d-dimensional
discrete lattice, every vertex υ ∈ V of which is connected with no more than
k neighboring vertices υ1, υ2, . . . , υk by input edges υ1υ, υ2υ, . . . , υkυ ∈ E of
weights w(υ1υ),w(υ2υ), . . . ,w(υkυ) ∈ {0, 1, . . . , ν,∞}. If some pair υ ′υ ′′ ∈ V ,
w(υ ′υ ′′) = ∞ is written when there is no edge υ ′υ ′′ in set E (i.e. there is no edge
between those vertices). There is a principal feature that graph G must have in order
to be successfully mapped onto a cellular lattice: k < n. Let p = (υ0, . . . , υm) be a
shortest path from vertex υ0 to vertex υm of graph G and l(p) be a length of p. Then
we have that l(p) = min{l(p′) : p′ = {υ0, . . . , υm}}.

First, the single source, single destination shortest path (S3DSP) is considered.
This can be used in S3P and APSP in a similar way. In the S3DSP computation,
at the beginning x0s = +, where t = 0 is assumed and xs and xd are the source and
destination nodes while + is the wave of excitation. The computation stops when
cell x passes in state # or every cell of L is in state # or • (• is a quiescent-like state).
The second constraint is used to stop computation when there is no path from xs to
xd . The virtual wave is moving in cellular lattice. The wave of states + runs in all
directions around the lattice from cell xs until it is in xd , or passes all the cells of L .
The pointer px has an initial state λ as mentioned before. When the cell x takes the+
state then px changes its initial value and takes one from set {1, 2, . . . , k}, which is
the index of the neighbor fromwhere the+ state has come from. In this way, the final
path can be extracted easily from the final configuration of the CA by back-tracking
over the pointers from cell xd toward cell xs . The transition function f works with
the neighborhood function u(x) and weights wxy in the following way. Assuming
that cell xt = • and some of its neighbors from u(x) are in state + at time t . Cell xt

finds the neighbor yt = + that has the minimum weight value and x takes this value.
Starting from state wxy , cell x jumps in state 0, decreasing its current state on unit
step at every time step xt+1 = xt − 1. Cell xt will take the state + when xt = 0 or
there exists a neighbor yt = + and the weight of the edge between xt and yt is the
minimum and wt

xy < xt . The transition from state 0 to state + and from state + to
state # is occurring unconditionally.

When the simulation starts, pointers of all cells are in state λ. However, if cell x
changes its state towxy , then for some neighbor y j pointer px saves the index j of this
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Fig. 1 The example of
oriented graph G: arrows
indicate orientation of edges;
and intersection of two or
more straight lines
corresponds to a vertex of G;
black and empty boxes are
source vertex and destination
vertex, respectively (adopted
from [2])

neighbor. During the decreasing of wxy down to 0, pointer px can be modified when
there is the condition∀y ∈ u(x) : yt = + ∧ wxy = min{wxy′ : y′ ∈ u(x) ∧ y′t = +}
and wt

xy < xt . The state of pointer becomes constant after cell x departs from state
0. Concluding all these rules, xt+1 can take the following states in every case:

• #, when xt is in states # or +.
• +, when xt = 0.
• •, when xt = • and there in no neighbor yt = +.
• wxy , when xt = • or xt > 0 and there is at least one neighbor with yt = + and
the weight of the edge between xt and yt is the minimum of other edges in the
neighborhood.

• xt − 1, when xt > 0 and there is no other neighbor yt = + that has a weight in
the edge between xt and yt in order that wxy < xt .

An example can be shown in Fig. 1. The goal is the solution of a S3DSP in a 2-d
grid where the edges can take states ∞ or 0 and the source vertex is on the upper
left and destination vertex on the bottom right. Q can take values {•,+, #}, Y can
take values {N ,W, S, E, λ} and W can take values (wxN ,wxW ,wxS,wxE ). Symbols
N ,W, S, E are the indices for the northern, western, southern and eastern neighbors
of the cell. The initial conditions are: x0s = +,∀x ∈ L , x 
= xs : x0 := • and px := λ.
The dynamic of CA evolution is shown in Fig. 2. The back-traced (a) and extracted
(b) paths can be found in Fig. 3.

The longest path in G consists of n − 1 nodes. So, a CA of n cells, four neighbors
and nine states that models a 2-d G graph of n nodes, some cut-off edges and edge
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Fig. 2 A CA evolution in the computation S3DSP . Symbol—means state #. A state pointer for
cell x is shown in the figure only if x was in state # at least two times (adopted from [2])
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Fig. 3 The results of computation of S3DSP (adopted from [2])

weights {∞, 0} can compute the shortest path in O(n) computation time and APSP
in O(n2), respectively.

Assuming a 2-d CA of n cells is used, each of which has four neighbors and
6 + 5n states modeling a 2-d rectangular grid where the edges of G graph can be of
weight {0, . . . , ν,∞}, the S3DSP can be solved in O(νn) upper time.

The same example is used as in Fig. 1, with setW taking values {0, 1, 2,∞}. The
graph with the edges’ weight can be seen in Fig. 4. If the longest path consists of n
vertices and the delay of state transition is ν for any cell, then O(νn) is an upper
bound on the time for computation S3P . If a CA uses k neighbors and O(νk) states
then the S3DSP can be solved in O((ν + k)n) upper time. An S3P can be extracted
in O(n2) upper time. The evolution of the above example can be found in Fig. 5 and
the result in Fig. 6.

After the initial introduction of the CA notion in the shortest path problem
by Adamatzky [2], an increasing interest of the research community in the spe-
cific field was declared. In particular in 2004, more than a decade afterwards, Wu
and Xue [74] tried to extend the CA model for shortest path calculation defining
properly the cell state and providing suitable cellular evolution to dictate cell states
evolution mainly focusing on the appropriate node order as resulted from the pro-
posed CA algorithm. An update of the presented study was published a couple of
years later by Li et al. [33] with the addition of the cell state turnover and Sun and
Dai, based on this CA algorithm proposed the subtraction of the least surplus weight
to advance once again the CA based algorithms for shortest path computation [58]
as mentioned in Wang et al. paper [71]. In this last work, Wang et al. selected to
adjust the cell state set by combining breeding and mature states, while trying to
improve the resulting parallelism and at the same time, recording manner of cellular
state turnover is modified to record all information sources [71].
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Fig. 4 An oriented planar
graph G every vertex of
which has indegree 4. The
edges are weighted with
elements of set {0, 1, 2,∞}.
The left upper vertex is a
source vertex and the right
lower is a destination one
(adopted from [2])

Moreover, in 2010, Wang [70] studied the shortest path solution on a three-
dimensional surface using CAs. On the 2-d space, a straight line is the shortest
distance between two points, but for a complex 3-d surface such as a path between
mountain, the shortest walking path between the starting point and destination can
not be a simple straight line. It is a more complex problem to find the shortest path
on the complex 3-d surface. Such an approach has a considerable arbitrariness, and
it is hard to find the best route. There are also obstacles like hills, rivers, lakes which
block the routes from the source to the destination point. 3-d position data of the
study area are imported, including the plane coordinates and elevation values of the
starting point A and end point B. The problem is seeking the shortest path between
A point and B point. The distance between A and B point was divided into n equal
portions, and the vertical profile is made over each equal point, so that each vertical
profile intersects three-dimensional surface, n profile curves are derived. Then, each
profile curve is equal to m number of points according to horizontal distance, so that
the path search problem of 3-d surface is transformed into a discrete optimization
problem through gridding.
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Fig. 5 An evolution of CA which computed the S3DSP on a graph with weighted edges. Symbol
−means #. A state of the pointer for cell x is shown in figure only if x was in state # at least two
times (adopted from [2])
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Fig. 6 The shortest path
(adopted from [2])

3 A Cellular Automata Algorithm Based on Lee’s
Algorithm

The Lee algorithm [32] is a well known fundamental routing algorithm that can find
the shortest path between two points in a grid. The task was to find a CA similar
to the Lee algorithm that uses a small number of states, independently of the grid
size. Such an algorithm was found in [22] and then further described in [19]. It was
developed when the expressive power of the cellular description language CDL [18,
20] was explored for different applications.

3.1 Lee Algorithm

A very well known approach to routing problems is the Lee algorithm [32]. Its
purpose is to find an optimal path between two points on a regular grid. Each point of
the grid is associated with a weight. The algorithm finds the path on the grid with the
lowest sum of weights. By adjusting the weights of the grid points the user has some
control over what is supposed to be an optimal path. Let us consider an example: The
user simply searches for the shortest path between two points. In this case the user
specifies the weight one for all grid points and the algorithm will find the path with
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Fig. 7 First phase of the original Lee algorithm

Fig. 8 Original Lee algorithm. A wave propagates from S to E. At each time step the cell’s weight
(one here) is added to the minimum of the neighbours’ accumulated weights. When E is reached the
path is backtraced along the neighbours with the minimal accumulated weights. Several alternative
shortest paths are possible

the lowest number of grid points. This is the shortest path between the two chosen
points S and E. In another example the user looks for a path that crosses the already
existing paths as few as possible. In this case the user assigns a very high weight to
all points of the existing paths and a very low weight to all other grid points. The
algorithm will then find the path with as few crossings as possible.

The algorithm works in two phases, (1) wave propagation from S to E, and (2)
building a path by backtracing from E to S.

In the first phase (Fig. 7) the accumulated weights (acw) for each node relative to
the starting point are computed. All free cells are initialized to infinity. The accumu-
lated weight for the starting point S is initialized to 0. Figure8 shows for a sample
grid the calculation of the accumulated weights. The weight of all grid points is one
in this case. The wave reaches the end point at time step t = 6.

In the second phase the actual path is established. For this purpose the algorithm
‘walks’ back from the end point E to the starting point S. At each step the neighbour
with the smallest accumulated weight is selected as part of the path.

Note, that there are several possibilities to build a path from the end point to the
start point. At the end point you can either go up or left (Path1 and Path2 in Fig. 8,
respectively) for this example.
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Obstacles can be modeled by infinite weights at grid points. Since then the sum of
the local weight and the accumulated weight of a neighbour will always be infinite,
such grid points may never become part of the path.

At a first glance this algorithm looks like it perfectly fits onto aCellularAutomaton
(CA). Unfortunately the number of states required to perform the algorithm is related
to the longest path ormore precisely to the largest accumulated weight that can occur.
Thus we decided to develop a version of the algorithm [19, 22] which has a constant
number of states. This version can only handle the shortest path problem with a
unified weight at all grid points.

3.2 CA Based Lee Algorithm

The accumulated weights in the Lee algorithm are needed to find the shortest path.
Instead of storing the accumulated weights we stored the direction in which we have
to move in order to return back to the starting point. With these wave marks instead
of the accumulated weights the algorithm requires only a constant set of states. Of
course, we can not handle problems with arbitrary weights at the grid points.

We present the modified algorithm in CDL (Cellular Description Language). This
language has been developed to describe CAs in a concise and readable way, inde-
pendent of the target architecture. Compilers were built that could translate CDL
into C functions for almost any software architecture and into Boolean equations for
hardware synthesis, like the CEPRA family [21].

At the beginning of the first phase all cells are in the free state, except for the
starting and end point. In the first phase, all cells check whether there is any cell in
the neighbourhood that already has a wave mark. If a wave mark is found, the cell
itself becomes a wave mark towards the already marked cell. This is performed in
lines 25 and 26 of Fig. 9. The one function successively assigns all the elements of
the groups neighbours and wave to the temporary variables h (a cell address)
and z (a state). For each assignment the condition following the colon is checked.
The evaluation of the one function stops if an assignment is found, that satisfies
the condition, i.e. the corresponding neighbour is in state start or in any of the
states wave. The first assignment is h=N and z=wave_up. The assignment to z is
only used for its side effect to store temporarily the wave state corresponding to the
neighbour being investigated. If the east neighbour is currently investigated this cell
state will change to wave_right since it must point to this neighbour. Figure10 at
t = 6 shows a sample grid at the end of phase one. The wave marks are symbolized
by small arrows. The black squares are obstacles. We had to introduce a special state
to model obstacles, since we do not have weights at the grid points.

Phase one ends when the end point is reached. Now the path is built backward
towards the start point along the wave marks (lines 29–34). If a cell is one of the
wave states and it sees a neighbour cell that is a path towards this cell, then this cell
becomes a path in the direction of its previous mark (Fig. 10, t = 7–13). This is done
in the CDL program by adding four to the enumeration element; e.g. wave_down
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Fig. 9 The shortest path algorithm described in the language CDL

becomes path_down. When the starting point is reached, its state changes from S
to R. The ready state R signalizes the termination of phase two.

All unnecessary wave marks have to be cleared in order to allow subsequent
routing passes. For this purpose all cells that see a neighbour cell which is a path not
pointing towards this cell are cleared. Such a cell will never become part of the path.
Also all cells are cleared that see a neighbour in the clear state. Since the building of
the path moves along the shortest path, it is impossible that a cell in clear state could
reach a cell which will be in the path but is not yet part of it. A cell in state clear
will change to state free in the following time step.

The time complexity for the first and second phase is O(p), where p is the path
length. For a n × n square grid, the maximal path length is 2n − 1 if there are no
obstacles, and O(n2) if there are obstacles (spiral like path). The algorithm requires
only 14 states and thus can be very easily realized in hardware.
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Fig. 10 A simulation of the algorithm. (t = 6) Wave marks at the end of phase one. (t = 8) A
first unused wave mark changes into the state clear (•). (t = 13) Path is constructed. (t = 14)
Starting point changes into the ready state (R). (t = 17) All unused wave marks are deleted

Based on the Lee algorithm, a CA algorithm with 14 states was designed that is
able to route a shortest path between to nodes of a grid. The algorithm is independent
of the grid size and needs only 14 states per cell. The time complexity is O(p), where
p is the path length.

4 Learning Automata

There are shortest path problems in which the lengths of the edges in a graph are
allowed to be random. This makes the problem more difficult. A stochastic graph
G is defined by a triple G = 〈V, E, F〉, where V represents the set of nodes, E
specifies a set of edges and matrix F is the probability distribution describing the
statistics of edge lengths. In stochastic graphG, a path πi with length of ni nodes and
expected length of Lπi from source node Vsource to destination node Vdest is defined
as an ordering {πi,1, πi,2, . . . , πi,ni } of nodes. Vπi,1 = Vsource and Vπi,ni

= Vdest are
source and destination nodes, respectively and all the intermediates are nodes in path
πi . Assume that there are r distinct paths between Vsource and Vdest . The shortest
path between source node and destination node is defined as a path with minimum
expected length. Stochastic shortest path problems can be grouped in two main
classes: the first class aims to find a priori solution that minimizes the expected
lengths, while the second one computes an online solution that allows decisions to
be made at various stages.

In 2006, Beigy and Meybodi [3] introduced a network of Learning Automata
(LAs), which were called Distributed Learning Automata (DLAs). More
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specifically, an automaton acting in an unknown random environment and improv-
ing its performance in some specified manner, is referred to as a learning automaton
(LA). DLAs is a network of automata which collectively cooperate to solve a par-
ticular problem. A DLA can be modeled by a directed graph in which the set of
nodes of a graph constitute the set of automata and the set of outgoing edges for each
node constitutes the set of actions for corresponding automaton. When an automaton
selects one of its actions, another automaton on the other end of edge, corresponding
to the selected action, will be activated. They used this tool to propose some iterative
algorithms and solve stochastic shortest path problem. In these algorithms, at each
stage DLAs determine which edges to be sampled. This sampling method may result
in decreasing unnecessary samples and hence decreasing the running time of algo-
rithms. The automata approach to learning involves the determination of an optimal
action from a set of allowable actions. Automaton selects an action from its finite
set of actions, which serves as the input to the environment, which in turn emits
a stochastic response at a specific time. The environment penalizes or rewards an
action of the automaton with a penalty/reward probability. The state of the automaton
is updated and a new action is chosen at the next time step.

In their algorithm a network of learning automata which is isomorphic to the
input graph is created. Each node in the network represents a LA and the actions of
this node in the LA is the outgoing edge of this node. Then, at the stage k, source
automaton, which represents the source node in the graph, chooses one of its actions
based on its action probability vector. If the action is am the automaton Am is also
activated on the other end of edge (s,m). The process of choosing an action and
activating an automaton is repeated until the destination automaton is reached or for
some reason moving along the edges of the graph is not possible or the number of
visited nodes exceeds the number of nodes in the graph. After destination automaton
is reached, the length of the traversed path is computed and then compared with a
quantity called dynamic threshold.

Depending on the result of the comparison all the LAs (except the destination
learning automaton) along the traversed path update their action probabilities. Updat-
ing is done in direction from source to destination or vice versa. If length of the tra-
versed path is less than or equal to the dynamic threshold then all LAs along that path
receive reward and if length of the traversed path is greater than the dynamic thresh-
old or the destination node is not reached, then activated automata receive penalty.
The process of traveling from the source LA to the destination LA is repeated until
the stopping condition is reached which at this point the last traversed path is the
path which has the minimum expected length among all paths from the source to the
destination.
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5 Shortest Path Based on Cellular Automata Algorithm
for Computer Networks

As already mentioned in the Introductory Chapter the problem of finding the shortest
path (SP) from a single source to a single destination in a graph arises as a sub-
problem to many broader problems. In general, different path metrics are used for
different application. For example, in communication systems, if each link cost is
1, then the minimum number of hubs is found. However, cost can also represent the
propagation delay, the link congestion or the reliability of each link. In the latter case,
if the individual communication links operate independently, then the problem can
be stated as to find what path has the maximum reliability.

Here we focus on the computer networks and we present how the aforementioned
problem is confronted and solved by the CAs approach. More specifically, Mardiris
et al. [38] presented an interactive tool that offers automated modeling with the
assistance of a dynamic and user friendly graphical environment, called Net_CA for
modeling and simulation of computer networks based on CAs. More specifically, a
2-d NaSch [43] CA computer network model was developed and several computer
networks were simulated, while algorithms for connectivity evaluation, system reli-
ability evaluation and shortest path computation in a computer network [14] have
also been implemented. The proposed system also produced automatically synthe-
sizable VHDL code leading to the parallel hardware implementation of the above
CA algorithms rendering Net_CA as a very reliable and fast simulator for wireless
networks, ad hoc networks and, generally, for low connection reliability networks

In regards to the shortest path algorithm as expressed in CAs and applied for
computer networks, let G = (N , A) be a network, where N is the set of n nodes,
A ⊆ N × N is the set of connections and Li is the neighborhood of the node i . That
is, each node i is mapped to a cell whose neighborhood is the set of nodes connected
to it by its input connections. Associated with each connection (p, q) ∈ A is a non-
negative number; Cpq stands for the cost of connection from node p to node q.
Non-existing connection costs are set to infinity. Let Pst be a path from a source
node s to a destination node t , defined as the set of consecutive connected nodes:
Pst = {s; n1; n2; . . . ; ni ; t}. The state of each node, at each time step ts , is represented
by avectorwith twoentriesVi (ts) = {

V 1
i (ts), V 2

i (ts)
}
: thefirst component is a pointer

to the previous node in the path, while the second is the cost of the partial path up to
node i . V 1

i (ts) is not necessary for evaluating the shortest path length, but it is used
only for indicating the shortest path itself.

The evolution of CA algorithm is given by the following equation:

V 1
i (ts) = {

k,
(
V 2
i (ts) + Ck,i

)}
(1)

The flowchart of the described CA algorithm is shown in Fig. 11. The minimum
s–t path cost is the second component of the state vector of node t . In case this value
is infinity, then there exists no s–t path.
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iteration = 1

Number of System States with connectivity = 0

Generate a random system state X

evaluate if there is a path

Number of System States with connectivity =
Number of System States with connectivity +1

Iteration = iteration + 1

iteration < NE

Reliability = Number of System States with connectivity / NE

yes

no

yes

no

Fig. 11 The CA algorithm flowchart of shortest path computations (adopted from [38])

The results of the implementation of the presented shortest path computation
algorithm to the proposed Net_CA system are depicted in Fig. 12. As before the user
defines the starting topology. During the execution of the aforementioned algorithm
each node is described by a pair of values, one for its number (name) according to
the cost of the connection up to it, and the other for the minimum cost of connection
of the starting node to the examined node. After the execution of the algorithm the
shortest connectivity path between nodes s and t , if it exists, is colored yellow.
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Fig. 12 The final simulation screen of the Net_CA system during the execution of the shortest path
algorithm between nodes s and t (adopted from [38])

6 Shortest Path Definition Based on Cellular Structures
for Coordinated Motion in Swarm Robotics

In robotics, the applied shortest path solversmust consider various constraints regard-
ing both the environment and the utilized robot configurations. Robot navigation
involves the determination of a continuous motion for a robot towards a goal loca-
tion. Depending on the available information, the path planners must consider the
presence of obstacles in order to avoid potential collisions. A priori knowledge of
the configuration area status involves static obstacles which results to simple solu-
tions of the path-planning problem. A global shortest path is extracted for the robot,
which involves also collision avoidance scenarios. The complexity of such solutions
increases in cases where no information is available in advance (dynamic environ-
ments) and therefore, they should extract the robot’s motion in real-time. Robot’s
motions are recalculated at every time step in order to both avoid the detected objects
and follow the defined shortest path. The periodic motions of a robot could also be
affected by processes of coordination in multirobot systems. The required collective
behavior that emerges from the interactions between the robots significantly impress
the results of the path planner and its overall complexity. Cooperative robotic teams
are extensively utilized for accomplishing additional tasks such as exploration [48],
search and rescue [36] and formation control [46].

Severalmethods have been proposed for solving the shortest path problem in robot
navigation, both for a single ormultiple robots and for static or dynamic environments.
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Visibility graphs have been exploited to identify Euclidean shortest paths among a
set of polygonal obstacles in the plane [40]. The method applies a recursive pro-
cess capable of solving dynamic navigation problems for a single robot. Collective
behavior will dramatically increase the complexity of the approach due to recur-
siveness rendering the method improper for computing shortest paths in multirobot
systems. Moreover, a modified version of potential fields has been proposed in order
to consider both static and dynamic obstacles [42]. The method combines an Artifi-
cial Potential Field technique with a Bacterial Evolutionary Algorithm to reduce the
extraction time of the optimal path. Despite the fast computation and the accurate
results, the resulted time remains in high levels due to its dependencywith the utilized
robot configurations making its implementation on swarm robots unfeasible. Aiming
at smoother transitions, heuristic based algorithms were introduced as potential path
planning solvers. For example, an extended version of a D-star algorithm [57] was
proposed in [13]. The method applies a bilinear interpolation function to compute
the required motion fragments resulted by the vertex expansion. In order to reduce
time complexity and define smoother transitions, a mathematical model inspired by
Physarum polycephalum along with a heuristic rule function were proposed to solve
the shortest path problem [75]. The method extract accurate results in limited time
amounts nonetheless; it could not be implemented in low resources systems.

On the contrary, cell decomposition techniques display low time and compu-
tational complexity levels rendering the approaches proper for implementation in
swarm robotic systems. The configuration area is partitioned into a lattice grid and
every area cell is processed accordingly. For example, free space is retracted onto a
Voronoi diagram while the evolution of a CA constructs its structure [68]. Moreover,
a variant of the A-star algorithm, namely Theta-star, was extended in [47] where the
acquired information is propagated along grid edgeswithout constraining the paths to
grid edges. Themethod handles accurately static objects however; the extracted paths
for unknown environments are based on assumptions. Furthermore, numerous arti-
ficial intelligence algorithms were proposed as potential solvers of the shortest path
problem in robotics. A fuzzy logic controller was proposed in [50] where obstacles
of various shapes can be avoided and a single robot can follow the computed shortest
path towards its final destination. A fuzzy-based cost function was also exploited by
an ant colony optimization for the evaluation process of the potential solutions [51].
In addition, various types of artificial neural networks were utilized to extract opti-
mum paths. A Guided Autowave Pulse Coupled Neural Network [59] and a Deep
Convolutional Neural Network [23] were applied to create collision free trajecto-
ries for mobile robots. Despite their efficiency, special hardware resources and/or
centralized control are required for their implementation to real robotic systems.

All the aforementionedmethods displaymultiple limitations or specificdrawbacks
despite their efficiency in defining the required shortest paths for robot navigation.
Their vast majority cannot include collective behavior since their complexity and
their resource requirements can be increased significantly, even with proper imple-
mentation modifications. Several methods have been proposed to overcome such
limitations and are specialized in computing the required paths in multiple robot
teams. In general, methods that consider collaborations between the robot members
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present deviations regarding their complexity, which is related to the size of the
robotic team and the collaborative tasks. The coordinated movement of a robotic
team comprises one of the most widely studied research fields in swarm robotics.
For example, a feedback law using Lyapunov type analysis was derived in [39] for
a single robot thus, collision avoidance and tracking of the shortest path are accom-
plished. The method extends this result to the case of multiple nonholonomic robots.
A coordinated control scheme based on leader-follower approach was also proposed
to achieve the required formation maneuvers during the robots transit following their
shortest routes [6]. First and second order sliding mode controllers were used for
asymptotically stabilizing the vehicles to a time varying desired formation consid-
ering the optimum pathway. In addition, an improved rapidly exploring random tree
(RRT) method was proposed in [35]. The modified RRT considers the kinematics of
each mobile robot to extract the corresponding pathways while a dynamic priority
strategy was introduced to avoid mutual collisions and retain the formation of the
team. Except these approaches, various artificial intelligence based methods were
also introduced in mutltirobot systems. A unified framework of a co-evolutionary
mechanism and an improved genetic algorithm (GA)were introduced to compute the
multiple paths of the team [52]. The improvedGAconverges to the optimumcollision
free paths while the co-evolution mechanism takes into full account the cooperation
between the populations to avoid collisions between mobile robots. Finally, multiple
shortest paths can also be defined with the use of artificial bee colony algorithms
[34].

In general, most of the above methods can produce accurate results for multiple
robots while retaining a formation nonetheless; their implementation in real systems
is restricted. Most of these algorithms can only operate in simulation environments
due to their resource requirements. Here a CA-based path planner is presented for
robot teams, which also involves collective behaviors between the robot members in
order to define the shortest routes for retaining their formation [24–26]. As already
briefly commented CAs comprise a simple, yet efficient, computational tool that can
be implemented in real systems of low cost miniature robots. CAs were successfully
exploited as potential solution of the shortest path problem in [2] found earlier in
this Chapter and could be denoted as a cell decomposition approach and proper for
a single robot application. Marchese has also introduced the use of Spatiotemporal
Cellular Automata (SCA) to define the desired shortest path [37]. Three level ofmaps
are introduced where the first two maps reduce the problem of extremely large cell
numbers. Limiting the search space to smaller areas and considering the interaction
between the robots,motion planning is performed using the SCA.A simpler approach
was introduced in [5] where the A-star algorithm was combined with CAs and tested
successfully in realworld planar environments.More specifically, thefinite properties
of the A-star algorithmwere amalgamated with the CA rules to build up a substantial
search strategy [4]. The corresponding algorithm’s main attribute is that it expands
the map state space with respect to time using adaptive time intervals to predict the
potential expansion of obstacles.
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In the following, a CA-based algorithm is introduced for dynamically extracting
the required collision free pathways for every member of a robot team. The presented
planner considers also the collective behavior that the robots must display in order
to retain their formation. A swarm robotic team must cover a specific space in the
configuration area while simultaneously each member must be able to detect and
bypass every dynamic obstacle. For cases where a scatter formation is produced due
to the existence of an obstacle, the team must be able to recover its initial formation
following optimum paths via collaborations. The CA-based algorithm can extract the
optimum pathways of every robot towards its final destination point while shortest
paths are also computed for recovering the desired formation. In contrast with similar
CA-based architectures, the proposed method does not require any type of central
control making the system fully autonomous. In addition, the method is applicable
to real systems comprised by miniature robots with low resource specifications since
the next transit of ever robot depends on only its current location and the states of
its adjacent robots. This flexibility and the method’s efficiency were tested using
different types of formations.

6.1 Proposed Method

As a cell decomposition approach, the configuration area where the teams operates
is initially divided into a simple rectangular lattice of identical square cells. Both
dimensions of the required lattice are expressed in cells and thus, they depend on the
applied cell length. The latter is strictly related to the specifications of the distance
sensor that is utilized from a robot in a real system. For the presented model, the
desired covered distance in terms of cell numbers comprises the variable that deter-
mines the lattice size. Following the CA description, variable D is defined based on
these requirements. Let z be the cell length and x × y cells the dimensions of the
CA.

Since the dimensions are defined, the set of states should also be defined, meaning
variable Q. According to the CAs definition, every cell can be denoted with only
one discrete state at every evolution step based on the delineated set of states Q =
{0, 1, . . . , q}. The proposed model includes the use of multiple robots and so, the
number of the possible states is relative to the number of the robot cells. Taking this
notion one-step further, this robot state is exploited as an identifier for the collective
behavior of the team. Assuming that the team includes r robot cells, the final set
of states is comprised by three discrete subsets: CF denoting the absence of both
obstacle and robot cells (free cells), CR denoting a robot cell and CO the presence
of an obstacle. More specifically, every subset of state can be defined as CF = 0,
CR = 1, 2, . . . , r and CO = r + 1. Essentially, in order to avoid the overlapping of
the cell states, the Eq.2 must be valid:

CF ∩ CR ∩ CO = {∅}&CF ∪ CR ∪ CO = Q (2)
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Fig. 13 Example setup of three robots

Due to the application, every robot cell must have a complete awareness of its
surroundings in order to avoid properly the detected obstacles. Therefore, Moore
neighborhood is exploited for every cell to be evolved accordingly (variable N neigh-
borhood radius) with range equal to one. Figure13 presents such a setup for a team
of three robots.

The final variable of the quadruple F has to be defined, meaning the set of the
transitions rules, in order to evolve the state of every cell. The applied local transition
rules F : QV → Q, considering the applied neighborhood, can be expressed as:

Ct+1
x,y = F(Ct

x−1,y−1, . . . ,C
t
x,y, . . . ,C

t
x+1,y+1) (3)

or in a more compact, alternative formulation:

Ct+1
(x,y) = F

[ i=1∑

i=−1

j=1∑

j=−1

ai jC
t
(x+i,y+ j)

]
(4)

where the ai j are integer constants and thus the function F has a single integer as
argument. Due to the discrete nature of the CAs, Cartesian coordinates aremostly uti-
lized to characterize a specific cell. Nonetheless, the orientation of a robot must also
be taken into consideration in order to achieve smoother transitions during the evolu-
tion. The corresponding parameter must follow the basic principles of a CAmeaning
the state of orientation should also be finite and integer. An additional parameter,
θ t , is inserted to the transitions rules at each evolution step displaying the follow-
ing states θ t = 0, 1, 2, 3, 4 which are mapped to the values {−90,−45, 0, 45, 90}
expressed in degrees. Therefore, Eq.4 is transformed as:
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(Ct+1
(x,y), θ

t+1) = F

[ i=1∑

i=−1

j=1∑

j=−1

ai jC
t
(x+i,y+ j), θ

t

]
(5)

The transition set of rules should consider both collision avoidance procedures
and the collective behavior of the swarm robot cells. The avoidance of obstacles
from a robot cell relies on the characterization of an adjacent cell in its Moore
neighborhood as an obstacle cell. During its transit towards the final destination
following the shortest path (straight line), the robot cell “checks” its contiguous area
cell in order to define whether is comprised by free or obstacle cells. If a cell is
occupied by an obstacle, the appropriate transition rules will be applied so that it
could be bypassed. A small set of the corresponding transition rules are provided in
Table1. For the frontier cells, null boundary conditions are applied meaning that all
virtual cells are always denoted as free cells.

In both scenarios (free space or present obstacles), the robot team must display
collective behavior as one entity in order to retain or regain their formation. The
proposed CA model involves all the appropriate procedures via the application of
proper transition rules in order to define the required shortest paths for formation
control. It is assumed that robot cells have the ability to exchange data regarding their
position in the lattice and in the formation. A local relationship of master and slave
is applied between the members of the team. Innermost robot cells are denoted as
masters over their neighboring partners while the outermost as slaves. Master robot
cells undertake to collect the required information from its slaves and the decide
which transition rule should be applied. The latter could be either a command of
moving towards one cell to the final destination point or a command of exchanging
positions due to a scattered formation. Scattered formations are the result of a detected
obstacle so the team members should collaborate to define the shortest paths aiming
at recovering their initial structure. Depending on the required application, various
transformation can be applied such as straight-line formation, triangular formation,
etc. The only requirement for the formation control is to define the corresponding
CA transition rules where the position in the lattice of every robot cell and additional
checks based on their coordinates are required. Table2 includes a set of such transition
rules for straight-line formations where every cell should follow its optimum path
(variable di denotes the desired path for i robot cell expressed as number of cells).

In case of a deviation, the corresponding robot cell will display a non-zero value
between its di value and its current vertical coordinate. Thus, the team recognizes
that the formation is scattered and the master robot cell apply the necessary transition
rules to regain their formation following the extracted shortest paths by exchanging
positions in the formation. The extracted optimum paths will eventually lead the
team to converge to specific positions in the configuration area and at some point,
their formation will be restored. Finally, the team will proceed as one unit towards
the final destination by keeping their motion on the desired shortest route.
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6.2 Implementation in Real Swarm Robot Team

The main objective of the method is to display low computational and memory
requirements so that it could be developed as a firmware and loaded on real robots.
The simplicity of the developed CA renders the method suitable to achieve this
task. To be fully functional, every utilized robot must be equipped with a proper
hardware architecture including a microprocessor, distance sensors (e.g. IR), step
motors and a communication interface (e.g. Bluetooth). No central control (e.g. base
station) is required following the basic principles of the swarm robotics theory. Each
robot of the team should be loaded with the method’s implementation in order for
the system to accomplish its goals. The team could also include different types
of robots, forming a heterogeneous swarm, with the only restriction that all the
robots exploit the same communication protocol. For testing purposes, without loss
of generality, the method was tested on a three member’s squad of miniature robots,
called E-puck [41] (Fig. 14a). The e-puck robotic architecture comprises a fully open
source platform providing full access to every of its modules. Equipped with all the
aforementioned requirements for the method’s implementation, it is a valid selection
for swarm robotics applications.

The first stage of implementation is the determination of the lattice size that is pro-
portional to the desired distance to be covered and the cell length. More specifically,
cell length is strictly related to the proximity sensors’ readings. In order to identify
the presence of an obstacle, the sensors are enabled and based on the acquired data;
an adjacent cell (which corresponds to an actual fragment of space) is denoted as
free or as an obstacle cell. The IR sensors mounted on the e-puck (Fig. 14b) produce
a scalable number, which represents the distance from an object. A higher value
corresponds to a lower distance of an object and vice versa. Nonetheless, due to the

Fig. 14 a E-puck robot and b IR proximity sensors
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Fig. 15 Measures of the IR proximity sensors for different lengths: a 0.5cm and, b 1cm

nature of these sensors, their response is affected by the environment’s ambient light
leading to false positives (object detections) in large distances. On the other hand, in
case of small cell lengths, the lattice is increased leading to higher memory resources
and less accuracy in denoting a cell as obstacle due to the placement of the sensors
on the robot. Therefore, multiple experiments were conducted in order to identify
the proper cell size and ensure the required accuracy of the sensor’s readings.

For this task, a special software was developed on a personal computer to help us
acquire all the sensors’ data and model their response. The software was connected
with an e-puck robot via Bluetooth in order to acquire the required readings. At first,
the smallest possible distance between the robot and an object was applied. At every
time step, a backward motion was applied, covering a distance of one cell length and
capturing the response of the sensor. When the maximum possible proximity (8cm)
was covered, the front sensors’ (IR7 and IR0 of Fig. 14b) responses were transmitted
back to the software for visualization and evaluation purposes. Multiple cell sizes
were tested while Fig. 15 includes the sensors’ responses for two cell lengths, 0.5
and 1cm.

All actions executed by every robot can be summarized into two different subsets
of execution. During the first stage, every robot acts as an individual and “scans”
its adjacent environment in order to detect potential obstacles. The IR proximity
sensors are enabled and according to their readings, the corresponding cells are
denoted as free or obstacle cells. The presence of an obstacle is detected by comparing
the acquired scalable values with the value that represents the cell length. For the
tested environment, a cell length equal to 0.5cm was used. In addition, two different
formations were tested, namely a straight-line and a triangular formation. Snapshots
of the entire procedure are provided in Fig. 16.

More specific, for the straight-line formation, all robots are deployed to their initial
positions forming a straight line.As they cover the desired distance towards, their final
destination, all robots detect an obstacle that interfere their motion. Thus, obstacle
avoidance transition rules are applied to bypass the obstacle. At the second stage, the
central robot, which acts as a master, commands its right adjacent robot to exchange
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Fig. 16 Swarm robots from top to bottom in a straight line formation and, b triangular formation

their positions in order to recover the team’s formation. Collective behaviors are
executed and following the extracted shortest paths, the formation is retrieved with
the minimum time cost. Finally, the team continues to their final positions covering
the defined distance.

Similar process is followed for the triangular formation. All robots of the team are
initially deployed forming a triangular formation. At some point, the left most robot
detects an obstacle that must be avoided. The appropriate transition rules are applied
to achieve this task. During that process, the central/master robot coordinates all
the motions with the rest of the team members and decides that no position shifting
is required. Until the robot avoids the box, the rest of the team freezes its motions
and wait the discarded robot to regain its position to the formation. For this type
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of formation control, both vertical and horizontal coordinates in the lattice of every
robot are exchanged. Since the formation is recovered, the team proceeds to its final
destination as one entity, again via collaborations.

7 Physarum Polycephalum CA Model

Modern computers offer sufficient processing power to handle most of the analy-
sis that several complex phenomena require. Physics, biology or chemistry can be
characterized as complex phenomena. They are based on processes and systems
using inhomogeneities, multiple interactions and complex constraints that even the
modern computers cannot handle. CAs include all the necessary characteristics (han-
dling of complex boundary and initial conditions, description of local interaction of
a system with inhomogeneities and anisotropies that lead to global behavior, inher-
ent parallelism) that makes them the appropriate tool to model and simulate natural
phenomena.

A fungus, Physarum polycephalum, is such a system. Physarum Polycephalum
is a large amoeba-like cell consisting of a dendritic network of tube-like structures
(pseudopodia). It changes its shape as it crawls over a plain agar gel, and if nutrients is
placed at two different points, it will extend pseudopodia that connect the two nutrient
sources (FSs). Nakagaki et al. [44] showed that this simple organism has the ability
to find the minimum-length solution between two points in a labyrinth. This resulted
in an intensive period of research on this organism that exposed a great range of its
computational abilities to spatial representations of various graph problems CAs are
used extensively in this system because they have the ability to model the foraging
behavior of plasmodium (physarum in its nutritious stage). Plasmodium spreads its
pseudopodia and searches for chemo-attractants to lead it to nutrients that can devour
and survive. It is very important for the survival of this life form to consume the least
possible energy to find this chemo-attractants. This is the reasonwhy the plasmodium
creates tubes with minimum distance between food spots in a maze.

CAs is the most suitable paradigm to model such a structure [9, 10, 12, 28, 29,
63–67]. The maze can be modeled by creating a grid of cells with standard initial
and boundary conditions. Plasmodium is not a unified mass but it is composed by
many elementary parts that communicate and move. This local interaction leads
in the movement of the whole plasmodium’s mass. Each CA cell can model this
elementary part of Physarum. The neighborhood of this cell will include walls of
the maze, empty paths or other plasmodium’s particles. This cell will interact with
its environment, exchange stimuli and information and finally it will take a decision
about the next direction of its movement. The evolution of this CA system leads to
the final solution of the maze.

The maze used for the biological experiment (Fig. 17) was also used as an input
for our algorithm. More specifically, Nakagaki et al. [44] took a growing tip of
an appropriate size from a large plasmodium in a 25 × 35 cm2 culture trough and
divided it into small pieces.
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Fig. 17 The under study
maze in correspondence to
the one of [44]

Then, they positioned these in a maze created by cutting a plastic film and placing
it on an agar surface. The plasmodial pieces spread and coalesced to form a single
organism that filled the maze, avoiding the dry surface of the plastic film. At the
start and end points of the maze, they placed agar blocks containing nutrient (ground
oat flakes) and there were four possible routes between the start and the end points.
The plasmodium pseudopodia reaching dead ends in the labyrinth shrank (Fig. 19a),
resulting in the formation of a single thick pseudopodium spanning the minimum
length between the nutrient-containing agar blocks (Fig. 19b). In our case, we arti-
ficially reconstructed the aforementioned maze taking into consideration the exact
positions of the maze.

In order to simulate this biological experiment, the area is divided into a matrix of
squareswith identical areas and each square of the surface is represented by aCAcell.
The type of neighborhood that was used in this CAmodel is theMoore neighborhood
which means that we use the north, south, east, west, north-east, north-west, south-
east and south-west neighbors.The state of the (i, j) cell at time t , defined as Ct

i, j is
equal to:

Ct
i, j = {Topologyi, j ,Chemt

i, j , Dir ti, j , Phys
t
i, j , Pseudo

t
i, j } (6)

• Topologyi, j is a variable which indicates the type of area of the corresponding
(i, j) cell. The possible values of this variable are 0, 1, 2, 3 and indicate a free
area, the spot of the initially placed FS, the spot of the initially placed plasmodium
and the spot which represents a wall of the topology respectively.
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Fig. 18 The amoeba-like CA simulation results for the maze after a 500, b 1000, c 1200 and d
1500 time steps, respectively

• Chemt
i, j represents the concentration of chemo-attractants at time t in the area

corresponding to the (i, j) cell. In order to calculate this variable for every cell,
we make use of the concentration of the neighborhood to update the value of the
central cell.

• Dir ti, j is a variable that indicates the direction of the attraction of the plasmodium
by the chemicals produced by the FS. For example, if the area around a corre-
sponding cell has no chemo-attractants, the foraging strategy of the plasmodium
is uniform and, thus, these parameters are equal to zero. If there is higher concen-
tration of chemo-attractants in the cell at direction x from the one in direction y,
then the parameter corresponding to direction x is positive and the parameter cor-
responding in the direction y is negative. This happens, in order to more accurately
simulate the non-uniform foraging behavior of the plasmodium.

• Physti, j indicates the volume of the cytoplasmic material of the plasmodium in
the corresponding (i, j) cell. In order to calculate this variable for every cell, we
make use of the neighbors’ volumes.
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• Finally, Pseudoti, j is a variable which can take values [0,1] and illustrates if the
(i, j) cell is included in the final path of tubular network that is formed inside
the plasmodium’s body. This tubular network forms the shortest path between the
FSs and the cell from where the plasmodium started to expand and it is our final
solution.

The amoeba-like CA model simulation results after 500, 1000, 1200 and 1500 time
steps are shown in Fig. 18. Compared to the results of the biological experiment,
which are presented in Fig. 19, the algorithm can be considered successful. As is
illustrated in Fig. 18, it takes 1200 time steps to find a solution that is not the best
one. However, after 1500 time steps, it manages to solve the maze using the shortest
possible route. It should be noted that in analogy to the real experiments, the amoeba-
like CA model changes its shape in the maze to form one thick tube covering the

Fig. 19 a, b The maze solving by P. polycephalum after 4 and 8 h, respectively, as presented by
Nakagaki et al. in [44], where yellow color, is the plasmodium and black are the maze ‘walls’. c
The final simulation results, after 1500 time steps, of the CA that mimics the P. Polycephalum’s
behavior for the same maze. The situation in b is successfully reproduced
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shortest distance between the FSs, so as to maximize its foraging efficiency, and
therefore, its chances of survival.

The period of 1500 time steps (which correspond to about 45 s of real time on
a PC) may seem like a long time, but compared to 8h needed for the biological
experiment, it is not a significantly long time period.

7.1 GPGPU Implementation

The termGPGPU (General-Purpose computing onGraphics ProcessingUnits) refers
to the use of the GPU processor as a parallel device for purposes other than graphic
elaboration. More specific, GPU is often used in order to solve some complex com-
putational problems that classical CPU cannot handle. This device has the ability to
execute a great number of independent threads in parallel. So if a complex problem
has an inherent parallel nature, an implementation in GPU is going to multiply the
performance of its algorithm and the solution will be produced much faster. The
GPU’s architecture has a computational power that can exceed a teraFLOP and it is
fully suitable for fine grain parallelism. The reason of the great success and enor-
mous spread of the GPGPU application in the past few years, is CUDA programming
model. The basic structure of CUDA is that it provides three key abstractions, namely
the hierarchy with which the threads are organized, the memory organization and the
functions that execute in parallel, called kernels.

In a CUDAapplication, some parts are performed in a parallel way and some other
parts are performed in the classical serial way. The device, which is the name of the
GPU in CUDA context, can be thought as an additional co-processor of the main
CPU which is called host in the CUDA context. In order to take off the performance
of our algorithm, we have to exploit the parts of the data that are made to work in
parallel and execute them on the device as many time steps is necessary. In order
to achieve this, we have to call one, two or more kernels which use thousands of
threads.

One key problem towards the implementation in a GPU is the way the memory is
organized and used. The threads can be organized and cooperate together by sharing
a common fast shared-memory synchronizing in some points of the kernel within
a so called thread-block. But the number of threads that a block can use is limited
and at the most applications more parallelism is needed. CUDA gives the choice to
launch kernels with a larger total number of threads by organizing block of threads
together, by means of a grid of blocks. So it is possible to choose a cell of a CA,
which can be thought as a particular data of the device memory, and associate it to
a current thread of a kernel.

Threads can access different memory locations during execution. Generally, there
are three types of memory used in CUDA applications, namely (a) the private mem-
ory, which is the memory its thread has for its own, (b) the shared memory, which is
the memory being visible to all threads in a block and (c) the global memory, which
is a larger memory on the device board but it is outside the computing chip. In this
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study, we make use of the global memory of the device. This memory is slower if
compared with the shared memory but it can deliver a significantly higher memory
bandwidth than the traditional CPU memory. It is measured that is about 20 times
more efficient to access the global memory of the GPU than the CPU memory. As a
result, when a CUDA application is designed, the minimum data transfers between
CPU and GPU should take place.

The reason why GPGPU programming is used for CAs models can be explained
easily when referring to the CAs’ parallel nature. The local interaction of the neigh-
bors that CAsmethods propose is another fact that makes these implementations very
suitable and very fast. These features make the CAs models ideal to be implemented
in parallel computers. The basic idea when computing a CAmodel in GPU, which is
also used in our implementation, can be described as follows: First, we compute the
next state of all the cells in parallel. Afterward we use two memory regions to store
the data. More specifically, we use one region for the CAcurrent , which indicates the
CA states before the calculations and one for the CAnext , which in turns indicates
the CA states after the calculations. Finally, the switching between theCAcurrent and
the CAnext in each time step takes place.

For this paper we store the CA data to the global memory of the device. The steps
of the algorithm are: (a) Split the CA states and make use of a kernel for every one
of them. In more detail, we make use of a kernel to hold the Topologyi, j , one kernel
for the computation of the diffusion equation of the chemo-attractants, Chemi, j , and
their direction, Diri, j , one kernel for the computation of the diffusion equation of the
mass of plasmodium, Physi, j and finally one kernel that computes the Pseudoi, j
to find the shortest path in the maze. (b) An initialization of the current state for all
these kernels happens through a CPU-GPU memory copy operation (i.e. from host
to the device global memory). (c) Every kernel runs in each time step and makes its
calculations by using the information of the states of the other necessary kernels. For
example, in order to calculate the Pseudoi, j we have to knowwhich of the neighbors
has the greater mass value. Therefore, we take this information from the kernel that
executes the computation of the Physi, j . (d) At the end of each CA step, a device to
device memory copy operation is used to update the new values in order to continue
the calculations in the next CA step. (e) When the simulation is completed the final
state of the automaton is being retrieved from the global memory of the device to the
host through a GPU-CPU memory copy operation.

For the proposed GPU implementation of the presented slime mould CA based
model we used the graphics card NVIDIA GT640. We used a 50 × 50 CA cells in
order to synthesize the maze. The time needed for the presented solution to result
is 2.47 s. In the serial code the time needed for the serial software implementation
in MATLAB was approximately 45 s. Therefore, the increase in the performance in
our implementation is about 18.2 times more than the one in MATLAB.
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7.2 Hardware Implementation

Current FPGAs include logic density equivalent to millions of gates per chip and
can implement very complex computations. CAs consist of a uniform n-dimensional
structure, composed of many identical synchronous cells where both memory and
computation are involved, thus matching the inherent design layout of FPGA Hard-
ware. As a result memory and processing unit are closely related both in CAs cells
and FPGA configurable logic blocks (CLBs). The structure of a cell consists of a
combinational part connected with one or more memory elements in a feedback loop
shape while the state of the memory elements is also defined by the inputs and the
present state of these elements. For this implementation the design produced by using
VHDL code has been analyzed and synthesized by Quartus II (32-bit version 12.1
build) FPGA design software of ALTERA Corporation.

Each CA cell is implemented by a hardware block called “PhysarumCell”. Each
“PhysarumCell” block is connected appropriately with its four neighbors (west, east,
south andnorth). It uses the inputs from the neighbors and the previous state of itself to
produce results that simulate the movement of the plasmodium. An “PhysarumCell”
block has 22 inputs and 7 outputs.

After creating the lattice, the user has to provide only the topology of the exper-
imental area by giving values to the 2-bit signals topology for each individual cell,
namely the location of the FS and the location of the initial introduction of the
plasmodium to the experimental area and the parameters for the diffusion equations.

The number of logic elements, registers and pins of the CA cell are presented in
Table3. Moreover, to illustrate the area needed for a fully interconnected system of a
CA grid implementing the proposed bio-inspired model, the results of synthesizing
a 10 × 10, a 15 × 15 and a 20 × 20 grid are illustrated in Table4. The circuits are
synthesized on several target devices and the results on the Stratix V 5SGXBB are
presented here. The process ends in a few µs. In Table4, it is shown that for almost
every 150 CA cells there is an increment of 300,000 logic elements on average.

Table 3 FPGA hardware implementation details for one CA cell

Quartus II 32-bit Version 12.1 Build 243 01/31/2013 SP 1

Total logic elements 1,739

Total registers 45

Total pins 226

Table 4 FPGA hardware implementation for different topology sizes

10 × 10 15 × 15 20 × 20

Total logic elements 161,162 370,447 666,060

Total registers 8,360 18,840 33,520

Total pins 317 692 1217
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8 Conclusions

In this chapter the inseparable relationship between CAs and shortest path problem
is depicted. CAs are a very powerful modeling tool that can capture the essential
characteristics of this problem and produce effective results. They can manage the
classical S3P , S3DSP and APSP problems as presented in Sect. 2. They can learn
and find solutions in a stochastic graph as presented in Sect. 4. They can also move
to three-dimensional space and provide solutions to difficult territories as already
shown in corresponding subsections. But their use is not only theoretical. They can
be applied successfully for computer networks main problems as shown in Sect. 5.
They are a very useful tool in robotics and their movement inside a maze section
as demonstrated in Sect. 6. They can also describe and model very effectively and
efficiently physical phenomena and living structures that have the ability to provide
unconventional solution to shortest path problems as presented in Sect. 7. What is
the reason that the complexity bounds are so good? It takes place because we used a
very restricted form of a rectangular lattice to make the structure of a problem most
resembling the architecture of computing devicewhich solves this problem. CanCAs
be applied in practice? Of course. The CAs algorithms are derived almost directly
for biology and nature. For this reason, the implementation of these algorithms in
massively parallel processors or neurocomputers is an event that already happens.
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Checkerboard Pattern Formed
by Cellular Automata Agents

Rolf Hoffmann

Abstract Considered is a multi-agent system with agents, modeled by Cellular
Automata. The agents have the task to form a checkerboard (CB) pattern on an
n × n square field. The objective is to find the behavior (an algorithm) for the agents
(realized by finite state automata, or finite state machines FSM), which can solve this
task in shortest time, i.e. moving on a shortest path (space filling curve) for a single
agent system. The target pattern class can be described by local matching patterns
(3 × 3 templates). The degree of order is the number of template hits. Our goal is
to find perfect CB patterns with a maximum degree of order. Firstly, a single-agent
algorithm G1 with four states is designed, where the agent starts in a corner. The
agent walks on a shortest path, but needs some additional steps to turn to a free
direction when sensing a border. Secondly, FSM algorithms for multi-agent systems
are evolved (found) by a Genetic Algorithm for an 8 × 8 field. Now the agents may
start at any random position. Optionally an agent can emit a signal which can be
sensed by another nearby agent. This signal was introduced to speedup the task.
The evolved single-agent FSM algorithm uses another strategy than G1, a spiral-like
trajectory. The fully packed system with 64 agents is the fastest, but it is also the
most costly one, in terms of the product (time-steps × number of agents).

1 Introduction

1.1 The Problem

Given is a square field of N = n × n cells with border. k agents are moving around in
the field. The agents’ task is to construct a global configurationwhere a certain spatial
pattern appears that belongs to a predefined pattern class. Each cell, except the border
cells, contains a certain color C ∈ {−1, 0, 1} ≡ {bordercolor, white, black}. An
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agent can change the color of the site it is situated on, and the border color remains
fixed. Initially the whole field is colored white, and the agents start at a special
positions or are randomly distributed.

The objective is to find “intelligent” agents that are able to form a checkerboard
pattern (CB pattern) in shortest time. All nodes of the grid have to be visited at least
once (in order to color the cells) with the lowest possible frequency. If one agent is
used only, the problem is similar to the problem of finding a shortest path. Space
filling curves, like the one proposed by Peano [1], are possible solutions.

The agents’ behavior shall be controlled by an embedded finite state machine
(FSM). The capabilities of the agents shall be constrained, i.e. the number of control
states, the action set and the amount of perceived information.

There are many applications for building patterns by agents, e.g. the forming of
mechanical, chemical, biological or artificial structures, or the building of compu-
tational devices and communication networks. For example, nano-structures, func-
tional polymers, and spin alignments, can be formed by nano-robots, or by beaming
focused energy onto certain cells in order to change their physical state.

1.2 Using Agents

Problem solving with robots and agents has become more and more attractive [2–8].
Agents can be seen as moving processors in a spatial distributed computer system.
Agents are “intelligent” and their capabilities can be tailored to the problem in order
to solve it effectively, and often in an unconventional way. Important properties that
can be achieved by agents are:

• Generality and Flexibility. The ability to solve the problem under a large variety
of initial configurations or boundary conditions, e.g. by changing the size or the
shape of the environment.

• Scalability. The ability to solve the problem with any number of agents. It is
expected that the problem can be solved faster with more agents.

• Tunability. The ability to solve the problem faster or with a higher quality by
increasing the agents’ intelligence.

• Fault-tolerance. The ability to solve the problem with some degradation when
parts of the system fail.

• Adaptability. The ability to cope with unexpected changes in the environment.

Owing to their intelligence, agents can be employed to design, model, analyze, sim-
ulate, and solve problems in the areas of complex systems, real and artificial worlds,
games, distributed algorithms and mathematical questions.

Robots or agents controlled by a finite state machine (FSM) have a long history
in computer science [9], sometimes they are simply called “FSMs”, often with the
property that they can move around on a graph or grid. For example, searching
through the whole environment was addressed in [10, 11], routing in [12–15], all-
to-all communication in [16], graph exploration in [17], and pattern formation in
[18, 19].
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1.3 Cellular Automata Agents

What is a Cellular Automata Agent (CA Agent)? Simply speaking, a CA agent
is an agent that can be modeled within the CA paradigm. A simple example is
the elementary CA rule 184 (Traffic Rule) in which the moving particles can be
interpreted as agents. And what are the most important attributes of agents in our
context?

1. Self-contained (an individual, complete in itself). In CA, this property can be
realized by one cell, by a part of a cell, or by a group of cells.

2. Autonomous (not controlled by others). Agents operate on their own and control
their actions and internal states. In CA, this property can be realized by the cell’s
state and the transition rule.

3. Perceptive (perceives information about the environment). In CA, this property
is realized by reading and interpreting the states of the neighborhood.

4. Reactive (can react on the perceived environment). In CA, this property is real-
ized by changing the cell’s state taking into account the perceived information.

5. Communicative (can communicate with other agents). This property means
that agents can exchange information, either indirectly through the environment
(modeled as parts of the CA cells), or directly by observing other agents, or by
listening to signals they are emitting.

6. Proactive (acts on its own initiative, not only reacting, using a plan). In CA, the
cell’s next state should not only depend on its neighbors’ states but also on its own
state. The number of states and inputs should not be too small in order to give the
agent a certain intelligence to initiate changes and to deal in advancewith difficult
situations. And the agent’s behavior is to a certain extent not foreseeable, it can
be influenced by secret personal information or internal events. In CA, this can
be accomplished by hidden states that cannot be observed by the neighbors, or
by asynchronous internal triggers (e.g. by a random generator). As it is difficult
to define proactivity in a strict way, it is a matter of viewpoint whether simple
classical CA rules (like Game of Life, Traffic Rule) shall be classified as multi-
agent systems or not.

7. Local (acts locally). Agents are small compared to the system size and can only
act on their neighborhood. In CA, a rule is allowed to change the cell’s own state
only. Global effects arise from accumulated local actions.

8. Mobile (this feature is not required but often useful). Very often agents are able
to move around in the environment. Then the points of activity and the rule
applications are moving, too. When moving around, agents are often changing
the environment.

Usually an agent performs actions. Internal actions change the agent’s state, either
visible or non-visible, whereas external actions change the state of the environment.
The environment is composed of the ground environment (the playground), constant
objects (like stones, boxes, obstacles), variable objects (like colors, markers, num-
bers), and other agents. Objects cannot change their state or location by themselves,
only through the actions of agents.
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In CA, an agent is not allowed to change the state of a neighboring cell. Therefore,
if an agent wants to apply an external action to a neighboring cell, it can only issue
a command that must be adequately executed by the neighbor. For example, if agent
A sends a “kill” command to agent B, then agent B has to kill itself. This example
shows that the CA modeling and description of changing the environment is indirect
and does not appear natural. Other models like the “CA-w model” are helpful to
simplify such descriptions.

1.4 CA and CA-w Models

In order to describe moving agents, moving particles or dynamic changing activities,
the CA-w model (Cellular Automata with write access) was introduced [20]. This
model allows to write information to a neighbor. This method has the advantage that
a neighbor can directly be activated or deactivated, or data can be sent actively to
it by an agent. Thus the movement of particles and agents can be described more
easily.

The CA-w model is a restricted case of the more general, “Global” GCA-w
[21–23]. In GCA-w any cell of the whole array can be modified whereas in the
CA-w model only the local neighbors can be. Usually the cells of these models
are a composition of (data, pointers). The neighbors are accessed via pointers, that
can be changed dynamically like the data by an appropriate rule from generation to
generation.

In order to avoid confusion between CA and CA-w, in this context the CA model
can be attributed as “classical model” and the CA-w model as “implementation
model” although both can be used for description and implementation.

The CA-w model can be mapped onto the CA model by increasing the neighbor-
hood radius. If the radius of the CA-w model is R1 for read and write access, then an
equivalent behavior can be described in the CA model by using the radius 2R1 read
access only.

A drawback is the possible occurrence of write conflicts. There are two solutions
to handle conflicts:

• Use a conflict-resolving function, for example by applying a reduction operator
(max, +, ...) or using a random or deterministic priority scheme.

• Avoid conflicts by algorithmic design, meaning that the parallel application of all
rules will never cause a conflict.

The second solution is more elegant, leads to a more simple implementation, and
many applications with agents can be described in this way.

1.4.1 Modeling the Agents’ Mobility

How can an agent move from A to B? In the CA model, a couple of two consistent
rules (copy-rule, delete-rule) must be performed (Fig. 1a): the first rule copies the
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Fig. 1 CAmodel: a cell A deletes the agent and cell B copies it. CA-w model: b cell A deletes and
copies the agent or c cell B deletes and copies the agent. Active cells executing a rule are shaded

agent from A to B, the second deletes it on A. Both rules have to compute the same
moving condition, this means a redundant computation. There are two modeling
options with CA-w to avoid this redundancy:

• Cell A (the agent) is responsible for the moving operation (Fig. 1b), it computes
the moving condition and, if true, applies a rule that deletes itself on A and copies
it to B.

• Cell B (the empty front cell) is responsible (Fig. 1c), it computes the moving
condition and, if true, applies a rule that deletes the agent on A and copies it to B.

The second option was used for the software simulation of our problem. In this way,
concurrent agents intending to move to the same empty site in front can easily be
prioritized, and the moving condition needs only to be computed by the empty target
cell.

1.5 Target Patterns and Degree of Order

How can a class of target patterns be defined? The idea is to use a set of smallm × m
matching patterns (or templates) and test them on each site (x, y) of the cell field. If
a template fits on a site, then a hit (at most one) is stored at this site. Then the sum of
all hits is computed which defines the degree of order h. This testing operation can
be seen as a classical CA rule application.

The size of a template is not fixed, but it should be smaller than the whole field,
and larger than one cell. A reasonable size is 3 × 3. The larger the templates are, the
more sophisticated patterns can be generated.

Now we will define a very simple target pattern, the checkerboard pattern (CB
pattern), which we are using throughout this chapter in order to demonstrate the
whole process of pattern generation.
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1.5.1 Checkerboard Pattern

A square cell field of n × n cells is considered. The CB pattern uses two colors
(black and white) in a way that the colors alternate in each row and in each column.
There are two possible solutions defining the class of target patterns, depending on
the color at (x, y) = (0, 0). The position x is counted from left to right and y from
top to bottom. Two simple templates (Fig. 2a) define that class. The aimed global
CB pattern has a maximum number of hits. The degree of order is h = (n − 2)2

(Fig. 2a–e). The number of black and white cells are equal for n even and differ by
one for n odd. In order to simplify the task and considerations the border length n is
assumed to be even.

How can templates be found? There are three ways.

1. If some of the target patterns are given, they can be analyzed. Each site is
inspected with its neighborhood according to the tentative template size. A new
template is stored in the template set if it is part of the pattern in mind. So at

Fig. 2 Two templates define the class of CB patterns (a). There are two target patterns for a square
cell field of n × n cells. The number of hits (degree of order) is h = (n − 2)2. There are 4 hits for
n = 4 (b, c) and 9 hits for n = 5 (d, e). Hits are depicted as dots
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the end of the analyzing phase, the given patterns can be tiled (with a certain
degree) by the collected templates. The tiling is performed in a way where the
templates may overlap and the hits are as close to each other as possible. Then
the given patterns and new similar ones (belonging to the same target class) can
be generated by these templates.

2. Templates can be designed with respect to some patterns in mind which may be
vague to a certain extent. Somemost important aimedpatterns or parts of themare
analyzed as described before, and a first set of templates is fixed. Then patterns
are generated using this first set. If the generated patterns are not satisfying
(faulty patterns or missing patterns or unwanted patterns), the template set has
to be updated until the generated patterns are satisfying. During this process new
patterns may appear unintentional, which can be of interest and may be included
in the set of target patterns. So, through this process, the designers creativity
may be enhanced.

3. A game can be played in order to find new target patterns. The set of templates is
generated exhaustively or at random satisfying some constraints (e.g. symmetry).
Then the target pattern are observed and can be analyzed and selected by global
properties (e.g. color distribution, fractal dimension). Thereby the influence of
the templates on the patterns can be studied fundamentally, and interesting novel
global patterns may appear.

2 Single-Agent System

2.1 The Specific Task

Only one agent is used. Initially it is placed in one of the four corners (Fig. 3). Its
direction is chosen in a non-blocking way. For the starting position (x, y) = (0, 0)
the agent canmove freely to the right (along the x-axis) until it meets the right border.
The other starting positions are rotational symmetric.

What is the shortest path to visit all cells and thereby producing the desired
CB pattern? In principle there is a simple solution: the agent moves first right until
reaching the right border, then down one line, then to the left until reaching the left
border, then down one line, then again to the right, and so forth until the agent reaches
the bottom left corner where it can stop (Fig. 3a). Following the shortest path, every
second cell is colored black, starting with a black cell at (0, 0) or (1, 0). The shortest
path length for an agent with a global or large view is tglobal = N = n2. (In the special
case that the last cell of the CB pattern is supposed to be white, the agent does not
need to visit this last cell because it was already white initially.)

This path can easily be programmed by a supervisor who overviews the system
globally. However, an agent can follow the optimal path only if its capabilities are
powerful enough, i.e. its sensing, moving, turning and memory capabilities. What is
the necessary local view to reach the optimum? The agent has to be able to view two
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Fig. 3 Actions of a moving agent on a path forming a CB pattern. a Global view or large
Neighborhood2: agent walks on shortest path. b Neighborhood1 (view one cell ahead): agent walks
on fastest possible path. c Designed algorithm with Neighborhood1

Fig. 4 a Potential neighbors in front of an agent dynamically depending on its direction. They can
be identified by absolute coordinates. b Coordinates relative to the agent’s direction are useful to
describe the actual neighbors and the moving actions more easily

cells ahead (ZF and ZFF ) and the left cell in front (ZFL ) in order to detect in time the
borders and the bottom left corner (Fig. 4). Thus the needed dynamic neighborhood
depending on the agent’s direction D is

NH2 = Neighborhood2(D) = {(0, 0)rel , (1, 0)rel , (2, 0)rel , (1,−1)rel}.
Using this neighborhood, the optimal time (Fig. 3b) can be reached:
t (NH 2) = tglobal .
Now we want to know the shortest time if the view is restricted to one cell ahead.

Then the dynamic neighborhood consists of two cells only:
NH1 = Neighborhood1(D) = {(0, 0)rel , (1, 0)rel}.
The time becomes now a bit longer, because the necessary turn at a border needs

2 steps, first detecting the border, and second turning to a free cell in front. Thus the
time is now

t (NH 1) = N + 2(n/2) = n2 + n.
Now our objective is to find a real algorithm (a finite state automaton) that reaches

or nearly reaches this time, using four states only.
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2.2 Modeling

The CA or CA-w cell rule has to react on different non-uniform situations, such as:
an agent is actively operating on the cell it is situated on, or a border cell is in front.
Therefore the cell state is modeled as a record of several data items.

CellState = (Color, Agent), where
Color C ∈ {−1, 0, 1} ≡ {border color, white, black}
Agent = (active, I denti f ier, Direction, State)

active ∈ {true, f alse} ≡ {1, 0}
I denti f ier ID ∈ {0, 1, ..., k − 1}, where k is the number of agents,

and for the single-agent-system k = 1
holds

Direction D ∈ {0, 1, 2, 3} ≡ {toN, toE, toS, toW}
State s ∈ {0, 1, ..., NState − 1}, where NState is the number of states.

This means that each cell is equipped with a potential agent, which is either active
or not. When an agent is moving from A to B, it is copied from A to B and the active
bit of A is set to false.

The agent’s hardware is depicted in Figs. 5 and 6. The function g is the main
part of the algorithm controlling the agent. Inputs are the control state s, the current
direction D, the colorC and the color in frontCF . The direction has two functions: (1)
it defines the cell in front which can be sensed, and (2) it defines themoving direction.
Outputs are the new control state snew, the new direction Dnew, the new color Cnew,
the new active state, and the move request. The agent will move to the cell ahead if
move = 1 and no blocking border is in front. The outputs can be distinguished into
internal actions that influence the agent’s state (active, s, D), external actions that
influence the color (the environment), and signals (move) that are signaling certain
conditions or sub states to the own agent or to potential agents in the neighborhood.

Fig. 5 Non-moving agent (staying in left cell)
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Fig. 6 Moving agent (from left to right cell)

The capabilities of the agents have to be defined before designing or searching
for the agents’ behavior. The main capabilities are: the perceivable data from the
neighborhood, the actions an agent can perform, the capacity of its memory (number
of possible control and data states) and its actual “intelligence” (useful pro- and
reactive activity).

For our single-agent system the inputs, actions, and signals that an agent is able
to perform are summarized in the following. The inputs are:

• its own control state s,
• its own direction D,
• the cell’s color C the agent is situated on,
• the color in front CF , including the detection of a border in front (CF = −1).

The actions and signals are:

• new state: s ← snew ∈ {0, ... , NStates − 1}
• turn: turn ∈ {0, 1, 2, 3}
The next direction is D(t + 1) ← (D(t) + turn) mod 4

• flip color: f li pcolor ∈ {0, 1}
The next color is C(t + 1) ← (C(t) + f li pcolor) mod 2.

• move: move ∈ {0, 1} ≡ {wait, go}
All actions can be performed in parallel. There is only one constraint: when the

agent’s action is go and the situation is blocked, then the agent cannot move and has
to wait, but still it can turn and change the cell’s color.

Note that our agent’s perception is very limited, it reacts only on on the color in
front and the cell’s own state. Therefore the task it not so easy to solve.



Checkerboard Pattern Formed by Cellular Automata Agents 249

2.3 The Designed Algorithm

The designed agent’s algorithm G1 to solve this task is depicted in Fig. 7. The agent
walks on the shortest path (Figs. 3c and 8), but it needs at the right border an additional
step and at the left border two additional steps to determine the next free cell. Thus
the time to visit each cell is

t (G1) = N + n
2 + 2 n

2 = N + 3 n
2 .

The time-complexity is O(N ). When the agent is free running and both colors
CCF are white, the states 0 and 5 are alternated, and the color is flipped when the
state transition 0 → 2 takes place. When the right border is detected in state 5 the
next state is 4, the color remains white, the go command is not executed because of
the border, and the agent turns right. The next state transition is from 4 to 0. The
color is not flipped and the agent moves forward and turns right. When the agent
detects the left border, it first turns right and reaches state 4 again. There it detects
a black cell in front, turns back in order to continue its walk, and reaches state 1. If
it can move forward (not yet reached the bottom left corner) the color is flipped and
the agent moves forward thereby turning left. When the agent detects the bottom left
border, the agent remains in state 1 and stops all its actions. This is a clear condition
that the algorithm has terminated.

2.4 Termination

We want to reflect upon the termination of multi-agent systems in our context of
forming patterns. The goal is to form a certain pattern out of the defined pattern class
with a certain degree of order. We will call the time to order a field tsuccess(htarget ),
if h ≥ htarget .

Fig. 7 The agent’s algorithm G1 performing the CB task, depicted as finite state automaton graph
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Fig. 8 Simulation of the agent’s algorithm G1 on a 4 × 4 field. The agent has built a CB pattern at
t = 19, and reaches state 1 at t = 21 and then stops all actions at t = 22

After this time, the degree of order may oscillate around the level htarget . Then,
at time tstable, the pattern may remain stable (reach a fix point) with a possibly other
degree of order hstable.

During the whole run, the agent may decide not to change the pattern anymore and
(i) to stop all activities (here move = wait , no direction change, no external visible
state change), or (ii) continue being alive (direction changing and/ormoving), usually
running in a cycle. The first case can be called “hard” stop, the second “soft” stop. If
the agent stops hard/soft and the aimed degree of order is reached or is greater, then
we call the multi-agent computation hard/soft-terminated.

3 Multi-agent System

3.1 The Task

Now we want to find algorithms for k = 1, . . . , N agents. The agents shall start at
any random position and with any random direction. As it is quite difficult to design
such algorithms, we will use a Genetic Algorithm to find them automatically. We
restrict our approach to a field of size N = n2 = 8 × 8.

What is the shortest path for one agent to visit all cells and thereby producing
the desired CB pattern? The agent can first find a corner as starting position and
then use one of the algorithms discussed before. A more sophisticated algorithm
would immediately start to color each second cell black in order not to visit already
colored cells twice. We have already learned that the fastest algorithm would need
a large neighborhood. As before we are interested in an algorithm with a few local
neighbors. We would like to use the neighborhood NH1 as before (sensing the cell
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in front only). But unfortunately we need to look two cells ahead in order to detect
a moving conflict. Therefore we are using the neighborhood

NH 3 = Neighborhood3(D) = {(0, 0)rel , (1, 0)rel , (2, 0)rel}.
Optionally we will allow an agent E to emit a signal which can be detected by

another agent A pointing to E. E must be a direct neighbor in front of A. The signal
can be read by at most four agents pointing to E.

Now our objective is to find near optimal algorithms (finite state automata) with
6 states. We will also use the term FSM (finite state machine) to denote the agent’s
algorithm.

3.2 Modeling

The new agent’s hardware (Fig. 9) is now slightlymodified compared to the hardware
before, and it is now called finite state machine (FSM). The function g (Figs. 5 and
6) is now partitioned into the sensor, the input mapping module, the state table
and the “plus” operators used for the direction and color change. The state table
is the variable (configurable) part, and the surrounding elements (wires, operators,
memory elements) are fixed (pre-defined). The state table can also be seen as a
program residing inside the FSM which is optimized by the Genetic Algorithm. The
state table defines the actions (new state, turn, flip color, signal) to be performed.
Inputs of the table are the control state s and several pre-defined input situations x .

The sensor gathers the information of the own cell and its neighborhood and
transforms it to intermediate conditions which are then used by the input mapping
module. The sensed data depends on the agent’s direction. The sensed data is the

Fig. 9 An agent is controlled by a finite state machine (FSM). The state table defines the agent’s
next control state, its next direction, and whether to move or not. The table also defines the next
color, and the signal to another agent
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own color, the state of the front cell (color in front, agent in front), and the moving
conflict situation.

The input mapping module reduces all possible input combinations to an index
x ∈ X = {0, 1, . . . , Nx − 1} which is used in combination with the control state to
select the actual line of the state table. The input mapping function was introduced
in order to limit the size of the state table entries. It can be seen as a preprocessing
operation related to the sensing capabilities. In principle the input mapping module
is not really necessary, and then the intermediate conditions are directly part of the
address which selects the actual line from the state table. But then the needed bit
capacity of the state table would be much larger.

For multi-agent systems we have added a signal to the agent’s hardware: an agent
(A1) emits a signal ∈ {0, 1} (output of the FSM table) that can be used by another
agent (A2). Only agents A2 in the direct neighborhood of A1 and pointing to A1 can
read this signal. The idea behind this signal is to enhance the system’s performance
by revealing a part of the agent’s internal state to nearby agents.

In our multi-agent system an agent can now be blocked not only by a border but
also by another agent in front. We are not distinguishing these two cases for the input
mapping. If two or more agents meet head-on (with one free cell in between) want
to move to the same free cell in front, this situation is a moving conflict. It is solved
by giving priority to the agent with the lowest identifier (ID = 0 . . . k − 1). Instead
of using the identifier for prioritization, it would be possible to use other schemes,
e.g. random priority, or a cyclic priority with a fixed or space-dependent base.

3.2.1 The Input-Mapping in Detail

The input mapping shown in Table1 was used. Thirteen input situations x were
distinguished. They select together with the current control state s the actual line
of the state table. An agent perceives a border in front (x = 0), the color C and the
color in front CF when it can run freely (x = 1 . . . 4), and in addition it can read the
signal that another agent in front emits in case of blocking (x = 5 . . . 12). The agents’
FSMs will also be evolved for the case where agents emit no signals. Then no test
for signals is performed any more, and the input values x = 5 . . . 8 and x = 9 . . . 12
coincide and are mapped to x = 5 . . . 8. In a single-agent system the agent cannot be
blocked by another agent and no conflict can appear, therefore only x = 0 . . . 4 are
relevant. In a fully packed system the agents cannot move, therefore x = 1 . . . 4 are
not relevant.

This mapping was designed by experience. Obviously, other input mappings can
be defined, with another set of input situations (with more or less local information
sources) and another number of x values. For instance the direction of the agents, or
the detection of templates may enhance the performance of the agents.

Note that our agent’s perception is very limited, it reacts only on

• own cell: color and control state,
• cell in front: color, signal (if blocking agent is there),
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Table 1 The used input mapping. For each input situation a different index x (used for addressing
the FSM table) is defined. NU = not used, NA = not available

x Blocked Color Front color Signal

0 1 NU −1 NA Blocked by border

1 0 0 0 NA Not blocked (agent can move)

2 0 1 1 NA

3 0 1 0 NA

4 0 0 1 NA

5 1 0 0 0 Blocked (signal = 0)

6 1 0 1 0

7 1 1 0 0

8 1 1 1 0

9 1 0 0 1 Blocked (signal = 1)

10 1 0 1 1

11 1 1 0 1

12 1 1 1 1

• blocking: by border in front, by agent in front, or by conflict.

Under these restrictions, the agent’s task is quite difficult to solve. Imagine that
you are the agent, moving around in a dark room where you can observe only the
color on the ground and in front, and sometimes you are detecting a border or an
agent in front (emitting a binary signal)! It seems to be evident that the larger the
agent’s perception is with regard to the task to be solved, the easier it could be solved.

4 Evolving FSMs by a Genetic Algorithm

An ultimate aim could be to find an FSM that is optimal for all possible initial
configurations on average. This aim is very difficult to reach because it needs an
huge amount of computation time. Furthermore, it depends on the question whether
all-rounders or specialists are favored. Therefore, in this work we searched only for
specialist optimized for (i) a fixed field size of N = n × n (n = 8), (ii) a fixed number
of agents k = 1, 2, 4, 8, 16, 32, 64, and (iii) 1000 initial random configurations (for
training and evaluation).

The number of different FSMs which can be coded by a state table is Z =
(|s||y|)(|s||x |) where |s| is the number of control states, |x | is the number of inputs
and |y| is the number of outputs. As the search space increases exponentially, we
have restricted the number of states to |s| = Nstates = 6, and the number of inputs to
|x | = 13 (outputs of the input mapping). A relatively simple genetic algorithm sim-
ilar to the one in [18] was used in order to find (sub) optimal FSMs with reasonable
computational cost. A possible solution corresponds to the contents of the FSM’s
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state table. For each input combination (x, state) = j , a list of actions is assigned:
actions(j) = (newstate(j), move(j), turn(j), flipcolor(j), signal(j)).

The fitness is defined as the number t of time steps which is necessary to emerge
successfully a target pattern with a given degree htarget of order, averaged over all
given initial random configurations. Successfullymeans that a target pattern with h ≥
htarget was found. The fitness function t is evaluated by simulating the system with
a tentative FSMi on a given initial configuration. Then the mean fitness tmean(FSMi )

is computed by averaging over all initial configurations of the training set. tmean is
then used to rank and sort the tentative FSMs.
Evolved Finite State Machines
In general it turned out that it was very time consuming to find good solutions with
a high degree of order, due to the difficulty of the agent’s task in relation to their
capabilities. In addition the search space is very large and difficult to explore. The
total computation time on a Intel Xeon QuadCore 2GHz was around 4 weeks to find
the needed FSMs.

The best found FSM is denoted by

FSM(n, k, htarget ),

for field size n, systemwith k agents, and a reached order of h ≥ htarget . The reached
order can also be given relatively as hrel with a per cent suffix. If the order htarget is
not explicitly given, then h = hmax or hrel = 100% resp. is assumed.

In order to evaluate the effect of the signal that an agent can emit, the FSMs were
evolved with signal and without signal for k ≥ 2. An FSM with signal is denoted by
FSM+.

Six FSM(8, k, 100%) without signal, and six FSM+(8, k, 100%) with signal were
evolved for k = 2, 4, 8, 16, 32, 64 (Figs. 15 and 16).

For k = 1 the signal is of no use, therefore only FSM(8, 1, 100%) = FSM(8, 1,
36) was evolved. Several FSM(8, 1, 100%) with the same best fitness were found
by the Genetic Algorithm. Among them, one of them was selected which was also
successful on other field sizes (n = 4, 6, 8, 10). The state table of this single-agent
system is the following:

/x=0 \ /x=1 \ /x=2 \ /x=3 \ /x=4 \
state 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
newstate 3 1 0 2 5 1 4 0 1 0 1 4 4 3 1 2 5 0 3 1 3 4 4 4 4 1 5 1 1 1
flipcolor 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1
move 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0
turn 3 2 2 1 1 3 0 0 0 0 1 0 2 1 1 2 3 0 2 1 2 3 0 2 3 2 2 2 1 1
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5 Evaluations

5.1 Time-Steps of the Evolved FSMs for Fields of Size 8 × 8

The following measures were used in order to evaluate the performance of the multi-
agent systems of field size 8 × 8 (Table2):

• successful fields: the number of initial configurations (out of the given 1000 fields
with random placement of the agents) which were successfully evolved over time
to a CB pattern by the multi-agent system with FSM(8, k) or FSM+(8, k).

• tmean, tmin, tmax : The number of time-steps to form the pattern. The whole set of
1000 initial configurations which was used in the Genetic Algorithmwas also used
for evaluation, and mean, minimum and maximum time were computed.

• speedup = tmean(1)/tmean(k): This is a well-known metric to evaluate how much
faster a computer system works with k processors compared to one processor. For
one processor an optimal sequential algorithm is used, and for k > 1, a parallel
algorithm. Here we use another interpretation. Each agent is a (moving) processor.
And for each k, a specific, near-optimal FSM (evolved by the Genetic Algorithm)
is used.

• cost per cell = tmean · k/N : This measure is the sum of the time-steps that all
agents need together, normalized to the number of cells. One can consider this

Table 2 Performance of the evolved FSMs: number of successful ordered fields; mean, minimum
and maximal time; speedup = tmean(1)/tmean(k); cost (number of all computational steps) per cell

Agents k 1 2 4 8 16 32 64

FSM(8,
k) without
signal

Successful
fields out of
1000

1000 998 1000 1000 1000 1000 1000

Time tmean 203 314 174 88 77 71
tmin 102 55 45 32 27 14

tmax 274 1541 606 374 400 341

Speedup 1 0.65 1.17 2.31 2.64 2.86

Cost per cell
tmean k/64

3.25 19.6 21.8 22 38.5 71

FSM+(8,
k) without
signal

Successful
fields out of
1000

1000 995 1000 1000 1000 1000 1000

Time tmean 203 295 166 89 71 46
tmin 102 71 42 31 17 10

tmax 274 1441 969 352 268 179

Speedup 1 0.69 1.22 2.28 2.86 4.41

Cost per cell
tmean k/64

3.25 18.4 20.1 22.2 35.5 46
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measure to be the cost (in time-units) to be paid to all agents, in relation to the size
of the field.

For k = 1, only FSM(8, 1) was evolved, because the signal is of no use, and
therefore FSM = FSM+. This FSM was selected among several equally best ones, in
order to order the field independently of the field size. All possible initial configura-
tion were used for training and testing. In fact there are (only) 100 different of them
taking into account the rotational symmetry. The rotation rot(F) means, that a field
F is rotated 90 degrees clock-wise. E.g., if an agent which is originally placed in
the first quadrant (upper-left), then it is placed after rotation in the second quadrant
(upper-right), and thereby the agent’s direction is also rotated. There a four rotational
equivalent fields: F, rot(F), rot(rot(F), rot(rot(rot(F))), and there are (n/2)2 different
positions that an agent can take (in the first quadrant)), with four different directions.
Therefore there exist 4(n/2)2 different initial configurations with one agent. Note
that the agent’s actions are invariant under this rotation, therefore the new direction
(output of the FSM table), was defined relative to the current direction.

For k = 2, FSM(8, 2) was found which was successful on 998/1000 fields, and the
best found FSM+(8, 2) was successful on 995/1000 fields only. Though the Genetic
Algorithm was running for a very long time, no better algorithms were found. This
rises the question if there exists a FSM(8, 2) with 6 states that is successful on any
configuration. So further research has to be conducted on this topic.

For k = 4, 8, 16, 32, 64, the found algorithms were successful on all the 1000
fields (used for training and evaluation). Nevertheless it is important to note, that this
test is not exhaustive, and the algorithms may fail for some special configurations.
Indeed, it turned out for some tests, that the CB pattern cannot be formed perfectly
if the agents are placed in a rotational symmetric way. One such case will be shown
for a four-agent system in the next section.

Figure10 shows how the time decreases with the number of agents until the
system is fully packed. The positive effect of the signal is more noticeable when the
communication becomes high for systems with a high density of agents.

The speedup for systems with several agents is relatively low, and it is even less
than one with four agents. This means that four agents are doing worse that one only.

Fig. 10 Five Evolved FSMs
for a different number of
agents. Average time tmean to
order 1000 random fields of
size 8 × 8 successfully



Checkerboard Pattern Formed by Cellular Automata Agents 257

The single-agent system needs 3.25 time-steps on average per cell to form the
pattern, whereas the fully packed system with signal needs 46 steps. Thus the fully
packed system with signal is 4.41 times faster but 46/3.25 = 14 times more costly.

The fully packed system is more similar to a classical CA because each cells
contains an agent that cannot move, though it can turn its direction.

5.2 Simulation and Generality

Simulations for systemsusingFSM(8, k), k=1, 4, 64,will be presented anddiscussed.
And generality will be tested, how well FSM(8, 1) and FSM(8, 64) are performing
for different field sizes n.

5.2.1 Single-Agent System

After evolving several FSM(8, 1) with equal fitness, they were tested exhaustively
also on other field sizes: n = 4, 6, 10. The number of different initial configurations
with one agent is 4(n/2)2. The selected FSM(8, 1) is successful for all these test
cases (Table3). The cost per cell increases linear with n, the function is cost (n) =
(n + 11)/6, which can be derived from the given values. And the mean time is
tmean(n) = N · cost (n) = n2(n + 11)/6.

The time-complexity is O(n3) = O(N 3/2). This algorithm is O(n) slower, com-
pared to the designed, restricted algorithm (Sect. 2.3), where the agent must start in
a corner.

In Fig. 11 two simulations are shown, the fastest and the slowest. When the agent
starts in the middle, it needs 102 time-steps to form the pattern. When the agent
starts in the corner, it needs 274 time-steps. After reaching the order of hmax = 36,
the agent continues its walk along the border, thereby changing slightly the pattern.
((t, h) = (274, 36), (275, 34), (276, 36), (277, 36), (278, 36), (279, 33), (280, 36),
etc.).

What is the strategy of the agent? Following the simulation step by step for a 6
× 6 field (Fig. 12) one can see that the agent mainly follows a spiral path (counter-

Table 3 Single-agent FSM(8, 1) simulated for other field sizes

Size 4× 4 6× 6 8× 8 10× 10

# successful Any 4× 4 Any 4× 9 Any 4× 16 Any 4× 25

tmean 40 100 203 350

tmin 16 50 102 174

tmax 58 146 274 479

Cost per cell 2.5 2.78 3.17 3.5
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Fig. 11 Simulation of a 8× 8 single-agent systemwith the best found FSM evolved for all possible
8× 8fields. The pattern is successfully formed at tmin = 102 (top) for an agent starting in themiddle,
and at tmax = 274 (bottom) for an agent starting in the top left corner

Fig. 12 Simulation of a 6× 6 single-agent systemwith the best found FSM evolved for all possible
8 × 8 fields. The aimed pattern with degree 16 is formed at t = 50, 52, 53, 54, 56, 58, 59, etc
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clockwise), enlarging the already visited area. On the way, the agent is performing
tests and is slightly deviating from its main path. When the agent is blocked by the
border, it runs along it. After having reached the maximum order at t = 50, the agent
continues its walk along the border, thereby changing slightly the pattern (Fig. 12).
The degree of order then oscillates between 16 and 13.

A question was, if there exists a dual algorithm working clockwise. The turn
actions of the FSM table were manually changed (right and left turns were inter-
changed, 1 ↔ 3). Then this algorithm was tested and indeed, it showed the expected
dual behavior.

5.2.2 Four-Agent System

The evolved four-agent algorithm FSM(8, 4) was successful on 1000 random initial
configurations. But this not a proof that this FSM will be always successful. Espe-
cially sensitive are configurations that are rotational symmetric. Such a case was
simulated (Fig. 13 (top)). Already snapshot at t = 30 shows that each agent builds a
part of the pattern, but the parts do not fit together, and all corners are colored black
and remain so. The agents are not able to break the symmetry and then to collaborate
in order to build the aimed pattern. Furthermore, the system runs into a live-lock (the
four last situations are cyclically repeated). In a live-lock the agents act in a way that
there is no more progress in the system’s global state towards the aimed pattern, and
the system’s global state runs in a cycle. An analogy is that two people meet head-on
and each tries to step around the other, but they end up swaying from side to side,
getting in each others way as they try to get out of the way.

Fig. 13 The used FSM(8, 4) was successful on 1000 random configurations. (top) Starting from a
symmetric configuration, the desired CB pattern could not be achieved. The system is running into
a live-lock. (bottom) Starting from a slightly different asymmetric configuration, the CB pattern
appears at t = 173
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The next initially configuration was slightly modified, the agent in the upper-left
corner is now directed downwards. Now the agents can solve the problem. The four
corners are colored in black until t = 60, then the lower-right corner’s color is changed
into white at t = 90, and finally at t = 173 the pattern is established.

We can conclude, that some configurations, especially symmetric ones, may lead
to live-locks in the multi-agent systems with the evolved FSM(8, k), k = 2, 4, 8,
16, 32, 64. Then, are the evolved FSMs useless? We are confident, that the FSMs
are still useful, because they are functional with a high probability. In real life, we
rely on many systems that are not working always perfectly. And there are some
options to make systems more perfect and avoid live-locks: (i) break the symmetry
by introducing some noise (e.g. change the agents’ directions with a low probability),
(ii) use slightly different FSMs for some agents, or (iii) use an asynchronous updating
scheme.

I may thank a reviewer for his valuable comment on the break of the symmetries
which I like to cite: “In the deterministic setting, I think that it is possible to prove
formally that some patterns are not solvable given certain initial configurations. E.g.,
the first configuration in Fig. 13 has the same symmetries of a Dihedral group D4

whereas the target has less symmetries (that of a dihedral group D2), then by showing
that the symmetries of D4 cannot be broken then the target cannot be reached. The
case of the second starting configuration inFig. 13 is different as it has no symmetries,
then the target, with more symmetries, can be reached. Given a deterministic setting,

Fig. 14 Simulation of a 8 × 8 fully packed system with the best evolved FSM(8, 64) and FSM+(8,
64). (top) Simulation for the field with shortest time (out of 1000) without using signals. (bottom)
Simulation for the field with shortest time (out of 1000) using signals
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the aim could be to exactly characterize those patterns that are solvable by certain
starting configurations.”

5.2.3 64-Agent System

The fully packed agent systems are fastest because all cells can be active simultane-
ously. The agents cannot move but change direction. The FSMwithout using signals

Fig. 15 The state tables of the evolved finite state machines without signal
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Fig. 16 The state tables of the evolved finite state machines with signal

shall be compared with the FSM+ using signals. The initial configurations which
led to the fastest pattern building were selected. For this example, the number of
time-steps is t = 14 for FSM(8, 64) and t = 10 for FSM+(8, 64) (Figs. 14, 15 and 16).
Interesting is that both algorithms are successfully terminating (the pattern remains
stable with h = hmax ) while the agents continue to change direction. We have called
this case soft-termination in Sect. 2.4.

How general is the systemwith respect to the field size? FSM(8, 64) and FSM+(8,
64) were tested for n = 4, 6, 8, 10. The results of the simulations on 1000 random
test fields are given in Table4. FSM(8, 64) without signal was always successful
on smaller systems, but only partly (997/1000) on the 10 × 10 system. FSM+(8,
64) with signal was always successful on the 10 × 10 system, but not on smaller
ones. This means that the algorithms evolved for the fully packed system are also
successful on smaller or larger fields, but not for any initial configuration.
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Table 4 Fully packed system evolved for FSM(8, 64), simulated on other field sizes

Size 4× 4 6× 6 8× 8 10× 10

FSM(8, 64) without signal # successful 1000 1000 1000 997

tmean 26 46 71 –

FSM(8, 64) with signal # successful 970 995 1000 1000

tmean – – 46 79

6 Conclusion

The objective was to find algorithms (automata, finite state machines) for controlling
the agents’ behavior in order to form a checkerboard pattern in shortest time on an
n × n field. The class of patterns was defined by two templates, small 3 × 3 local
matching patterns. The degree of order is the number of template hits, for the CB
pattern the maximum is hmax = (n − 2)2. Firstly, a single-agent algorithm G1 with
four states was designed, where the agent starts in a corner. The agent walks on a
shortest path, forms the CB pattern, and then stops all activities. The time complex-
ity is of order O(n2). Secondly, for 8 × 8 fields, several FSMs were evolved by a
Genetic Algorithm with a different number of agents, also using a local communi-
cation signal between agents. Signals speedup the task, but only significantly if the
density of agents is high. The agents are able to form successfully the aimed pattern
with a maximum degree of order for 1000 random initial configurations. The evolved
single-agent algorithmhas a time-complexity of O(n3), where the agent can now start
at any position. The fully packed system is the fastest, but it is also the most costly
(cost = time-steps × number of agents). Although the evolved multi-agents systems
did form a CB pattern for 1000 initial test configurations, there may exist special ini-
tial configurations which are not successful. It turned out that some totally symmetric
initial configurations, cannot be solved successfully because of live-locks. Further
research has to be conducted in order to find (1) more formally which patterns can
/ cannot be generated by certain multi-agent-systems, and (2) to find more general,
efficient, and hard-terminating algorithms.
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Do Ants Use Ant Colony Optimization?

Wolfhard von Thienen and Tomer J. Czaczkes

Abstract Ant Colony Optimization (ACO) is a widespread optimization technique
used to solve complex problems in a broad range of fields, including engineering,
software development and logistics. It was inspired by the behaviour of ants which
can collectively select the shorter of two paths leading to a food source. They are
able to do so even without any single ant comparing the lengths of the two paths.
Ants, like other eusocial insects, have no central authority to coordinate the sophisti-
cated and complex work of their colony members. Coordination is achieved through
self-organization, principles of which inspired the development of ACO algorithms.
Here we discuss both the similarities and the considerable differences between the
behaviour of real ant colonies and techniques used by ACO. We also describe some
of the latest findings in ant research and how they may contribute to new ACO
algorithms.

1 Introduction

1.1 Ant Colony Optimization

Ant Colony Optimization (ACO) refers to a family of optimization techniques that
were inspired by the collective behaviour of ant colonies. ACO-techniques are used
in different fields of software development, mathematics, engineering and logistics
[22, 24]. They are especially useful for finding sufficiently good or near-optimal
solutions for problems that are too complex to be solved simply by computational
power.A typical example for suchproblems is the travelling salesmanproblem (TSP):
A salesman must visit all the cities on his list once before he returns home. Let us
imagine he lives in London and must visit Oxford, Manchester and Liverpool. It is
very easy to solve this problem: one has to find all possible combinations of cities,
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summarize the distances of each possible route, and compare them. In this case, there
are only four cities involved. Thus, there are only three possible routes to compare
and the salesman must do just a few simple calculations to find the shortest route. He
can do so by simply adding the distances between the cities of each route. But what
if he also wants to visit Plymouth, Southampton and Bristol? In this case, there are
already 360 possible routes, which would take the salesman a long time to calculate
without aid of a computer. If we add just four more cities, the number of routes
will be close close to two million. If the salesman must visit 50 cities, the number
of possible routes approximates the number of atoms in the known universe and
no computer in the world would be able to calculate and compare all the different
city combinations in an acceptable time. Such problems are called NP-problems
(nondeterministic polynomial)1. In such problems, the number of possible solutions
grows much faster than the number of problem instances.

In our technology-focused, interconnected society wemust solvemany such com-
plex problems, and must do so quickly and efficiently. The TSP is just one example;
other examples include the scheduling of aircraft landings, the routing of IP-packages
through a communication network or planning the delivery routes of trucks.

1.2 Pattern Formation and Self-organization

In nature, complex problems are evenmore common. Living beingsmust find accept-
able solutions for very complex problems in limited time since the number of param-
eters that influence a living system is extremely high, and competition is often fierce.
Although the environment is extremely complex, nature has managed to provide
organisms with strategies for finding solutions to a wide variety of problems. These
strategies allowed living systems to develop from simple cells into complex multi-
cellular beings, and allow organisms to react to all kinds of changing environmental
conditions, organize their behaviour, survive and proliferate. Biologists have found
that many of these strategies can be described by the concept of self -organization.
Self-organization allows patterns to emerge in a system on a global level without
the use of global information. Instead, patterns arise through interactions between
the components of the system, using only local information [11, p. 8]. The stripes of
zebras, the development of a complex organism from an egg, and the pattern of leaves
and branches in a canopy—all of these and many others are well studied examples

1Nondeterministic polynomial means that an algorithm may be constructed which selects the dif-
ferent instances of the problem randomly (nondeterministic), constructs a solution for each instance
and tests in polynomial time whether the solution solves the problem. A NP-problem is complete if
any other NP-problem can be reduced to it in polynomial time. Polynomial timemeans that the time
an algorithm needs to find a solution for a problem is no more than a polynomial function of the
problem size. Although the test for each instance can be performed in polynomial time, there are
no algorithms known that are able to solve a NP-complete problem in polynomial time. The reason
is that the number of possible solutions grow much faster than the number of problem instances
(from [57]).
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of self-organization. Indeed, even evolution, the process that lies at the core of all
living things, is a self-organizing process.

In this context, eusocial insects2 such as ants, bees and termites have become
important model organisms for biologists, as they offer a convenient way to study
the rules that underlie self-organization. Although small, these animals are able to
build very complex three dimensional structures orders of magnitude larger than the
individual workers. Beehives, for example, consist of many thousands of hexagonal
cells in which bees raise their brood and store their food. Termites mounds may rise
several meters above the ground and are equipped with a sophisticated ventilation
system [41]. Leaf cutter ants build vast subterranean “cities” extending up to seven
meters underground, with tunnels up to 70 m long, inhabited by several millions
ants, with a sophisticated tunnel system connecting chambers in which they farm
fungi, organise waste disposal and ventilate the nest for climate control and air
conditioning [35]. Less obvious, and much more important and impressive, is the
ability of eusocial insects to coordinate a workforce of up to several million workers
without central control. If we imagine a well-functioning city with thousands or even
millions of citizens but without any central administration, we can catch a glimpse
of how striking the self-organizing abilities of eusocial insects are.

1.3 Stigmergy

The key to understanding collective, self-organized decision-making by insects is the
concept of stigmergy. Stigmergy describes a situation inwhich the output of a process
serves as the input for the further development of the process. It was first defined
in 1959 by the French biologist Grassé in relation to the construction process of the
large, tower-like nest-structures of termites [29]. Since then, stigmergy was found
to be an important principle of self-organization in all eusocial insects, allowing
colonies to coordinate their collective behaviours.

Social insects such as ants can greatly increase their foraging efficiency by coordi-
nating their foraging effort. For example, they could tune the number of workers they
allocate to a food source depending on the amount of food available. Howmight ants
achieve this? Ants deposit chemical substances on their way back to the nest after
they have found a food source. These chemical substances, called pheromones, serve
as a signal to other ants of the same species. While trail recruitment in ants can take
many forms (for an overview see [19]), ACO typically considers the case of “mass
recruitment”. In this case, the chemical might mean “follow this smell to food”. If
another ant encounters the trail, either by smelling the pheromone at the nest entrance

2Eusocial means that individuals of different generations live together, cooperate in caring for the
juveniles and only a subset of individuals reproduce (reproductive division of labor). The best known
eusocial animals are ants, bees, wasps and termites, but rare examples of eusocial mammals (naked
mole rats) and crustaceans exist. Eusociality is rare in the animal kingdom and only 2% of all insect
species are eusocial. However, eusocial insects make up more than half of the biomass of all insects
[36].
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or by crossing the trail while searching for food, it is likely to follow the pheromone
trail towards the newly discovered food source. Like the first ant, it will collect some
food and lay pheromone while returning to the nest, reinforcing the trail. This will
motivate more ants to follow the trail and themselves lay pheromone. As the trail
gets stronger, the more likely ants are to react to it. As a result, a positive feedback
loop is thus established that results in a constant flow of ants bringing food back into
the nest. The number of ants at the food builds up exponentially. It is finally limited
by pheromone evaporation and the crowding of the ants at the food source, since at a
certain point the ants are unable to reach the food and therefore return without laying
pheromone [64]. A further limiting factor is the amount of food available. When the
food is exhausted, the ants cease laying pheromone, or begin searching for new food
sources rather than return to the nest. The remaining pheromone slowly evaporates
and the ants stop following the trail. The addition of a minor behaviour adds even
more functionality: ants modulate the amount of pheromone they deposit depending
on the quality of the food they have found [6]. Thus, the recruitment is stronger to
higher-quality food sources, allowing ants to collectively select the best food source
to exploit [7, 53].

1.4 Collective Decision Making in Ants

(modified from [57])

By obeying algorithms, by using them as rules of thumb, each worker is able to make quick
instinctive decisions in themidst of seeming chaos…With algorithms, the colonymasters the
problems natural selection has designed it to solve. The required information is distributed
among the colony members. Thus, a distributed intelligence is greater than the intelligence
of any one of the members, sustained by the increased pooling of information through
communication. ([36], p. 58)

The above statement about ant colonies, made by the two famous sociobiologists
and myrmecologists (ant scientists) E. O. Wilson and B. Hölldobler, provides not
only a succinct description of how social organization works in ant colonies but also
relates it to the way computer scientists think. Following principles are typical for
the self-organized collective behaviour of ant colonies:

• There is no central authority [20].
• Individuals have only very limited knowledge about the state of the whole system
and the environment [20].

• Individual ants act on a set of behavioural algorithms that are quite simple com-
pared to the complex behaviour of the whole colony [35, pp. 315–315, 36, p. 57].

• Ants predominantly use pheromones deposited in the environment as signals for
communication [34, 35, 63, p. 227].

• Changes in both the internal and/or external environment of the colony (e.g.
internal: resource levels, colony demographics, external: food availability, tem-
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perature) trigger positive and negative feedback loops, enabling structures or
patterns to emerge [11, ch. 2]

• The colony as a whole reacts dynamically to changes in the environment [11, ch.
3], shifting the colony into a state that represents a good solution to the problems
that the environment has posed upon the colony [36, p. 58].

• In many cases, colonies show a complete and abrupt transition from one stable
state into another (symmetry breaking or bifurcation) [20].

Key to understanding self-organization in ants is to understand the way they com-
municatewith each other using pheromones [35, p. 227]. In fact, ants use pheromones
not only for marking trails to food sources and recruiting other ants towards them but
for a vast array of different communication purposes such aswarning others in case of
danger, differentiating nestmates from non-nestmates, caste recognition, suppression
of fertility in workers, and recognition of different development stages (for a general
overview see [35, 36]). For the purposes of this chapter these can safely be ignored,
but an understanding of how trail recruitment works is crucial, as this is what ACO is
based on. Ants follow a pheromone trail by sensing the pheromone gradient around
the trail and staying in a tunnel-like area of highest concentration [32]. They do not
simply head towards the strongest pheromone concentration; rather, their decision is
probabilistic. The higher the pheromone concentration an ant encounters, the higher
the probability that it will respond to it. It is this probabilistic nature of trail following,
which we must understand to truly perceive collective decision-making using trail
pheromones.

1.5 The Deneubourg Model and Short Path Selection

(modified from [58, 59])
Deneubourg and colleagues showed in experiments on Argentine ants (Linep-

ithema humile)3 that ant colonies are able to collectively decide to use the shortest of
two paths between their nest and a food source, and that a symmetry breaking occurs
in that ants almost always focus on only one route to the food [28]. The Deneubourg
group explained this behaviour based on four simple principles:

3Argentine ants (Linepithema humile) have spread from Argentina to become invasive to many
ecosystems around the world. Unlike many other ant species, they show no or very little aggression
towardsmembers of otherArgentine ant colonies, and they frequently share food, brood andworkers
between neighbouring colonies, which are often connected by trail systems. Since there is no clear
distinction between the colonies, it is believed that they form large supercolonies which may spread
over more than 3000 km [62]. Argentine ants have very poor vision, so are highly depend on
pheromones [2]. They form extensive pheromone trails between their nest and their food sources
and between the nests of different colonies [4, 37]. The ants deposit pheromone both on their way
to and from the food [4] with up to four times more pheromone when returning to the nest [4]. This
likely provides information about food quality similar to other ants, such as Lasius niger [6]. Very
little is known about the absolute pheromone amounts the ants deposit on their trail [13, 58] and
we are only able to measure relative pheromone concentrations by an indirect method based on the
movements of their gaster when depositing pheromone [4].
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Fig. 1 Shortest path
experiment (schematic)

1. Argentine ants deposit pheromone on their trails in both directions. This assump-
tion was already confirmed from observations (see above).

2. At a trail bifurcation, ants decide probabilistically which trail to follow depend-
ing on the pheromone concentration in two trails. This assumption was weakly
confirmed by measurements of [33] on another ant species (Lasius fuliginosus).

3. The decision the ants take follows a simple mathematical choice function. We
refer to this function as the Deneubourg choice function (DCF, see below). This
function relates the pheromone concentration on each trail with the probability
that an ant will take the one or the other trail. The DCF has only recently been
rigorously tested [58].

pl � (k + cL)
b

(k + cL)
b + (k + cR)b

and pr � 1 − pl

pl—decision left branch cL—pheromone concentration in the left branch,
cR—pheromone concentration in the right branch, b—exponent, k—constant.

4. An initial preference is amplified by positive feedback and finally results in the
selection of a preferred solution by most of the ants (Figs. 1 and 2A).

The model explains the selection of the shortest of the two paths mainly by an
initial time delay between the ants arriving at the food via the long path and those
arriving via the short path. During this period, the long path carries no pheromone
at all at the food-side and the returning ants prefer the short path on their way back
to the nest and deposit pheromone on it. This generates a positive feedback loop in
favor of the short path. Thus, in most experiments, the majority of ants follow the
shortest path (see Fig. 2a). If both paths are of equal length, no time delay occurs.
Stochastic differences between the paths occur at the beginning and positive feedback
amplifies the path with an initially slightly higher concentration so that it is finally
selected by most of the ants. Consequently, symmetry breaking occurs in most of the
experiments—and in any one experiment either path is preferred by the majority of
ants with equal probability (see Fig. 2b).

Based on these principles, other types of collective ant behaviour can be success-
fully explained, for example how ant colonies are able to select the higher quality
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Fig. 2 Results of the original shortest path experiments, modified from [28]. The x-axis shows the
distribution of ants that chose the short path (n = 500); the y-axis shows the number of experiments
(n = 14 in a, n = 26 in b) or simulations (n = 1000) in percent. Black = original experimental results,
grey = results of Monte Carlo simulations with parameters b = 2, k = 20

food source if food sources of different quality are presented to the colony [6, 7, 53]
and how ant colonies can coordinate the division of labor by caste specific response
thresholds [10, 27].

1.6 Extensions of the Deneubourg Model

1.6.1 U-Turns

One of the prerequisites for the Deneubourg model is the deposition of pheromone
in both directions. Beckers [5] showed that the ant Lasius niger, like Argentine ants,
is able to select the shortest path. However, in contrast to Argentine ants, L. niger
do not lay pheromone on their first trip towards the food source. Therefore, an initial
preference for the short path cannot build up and the model does not work. This
discrepancy was solved by a significant modification of the Deneubourg model. It
was found that the ants frequently made U-turns, and the probability of making a
U-turn was greater on the long branch since the ants spend more time travelling
the long branch. This leads to a preference of the short branch. It was also found
that U-turning ants lay no pheromone and that the U-turn rate decreases with rising
pheromone concentration. Both effects amplify the preference for the short branch.
By extending the Deneubourg model with these effects, computer simulations could
fully reproduce the short path selection rate of L. niger [5].
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1.6.2 Short Path Selection in Labyrinths

When Argentine ants traverse a labyrinth to reach a food source, there are many
possible routes that they may take. Due to the high number of possible routes, the
initial time differences are less distinct than in the shortest path experiments and
it can be expected that the ants’ ability to select the shortest path will decrease.4

However, experiments with Argentine ants gave a different result [56]. About 60%
of the ants chose the shortest path and 20% the second shortest path. These results
could be reproduced in computer simulations by assuming an extremely high value
for the exponent of the DCF (b = 4), or by assuming that ants dislike changing their
walking direction (see also [66]) and that they modulate pheromone deposition such
that the ants lay twice as much pheromone on their way returning to the nest as
coming from the nest. In contrast to the original Deneubourg model, the resistance
to directional changes together with the probabilistic response to a pheromone was
shown to be the main reasons for the system to be able to select the shorter paths in
the labyrinth.

In a further experiment with Argentine ants, an established short route in a
labyrinth was blocked. However, the Argentine ants were still able to find the remain-
ing shortest route through the labyrinth [51]. This shows that they are able to dynam-
ically react to a changing environment. Again, these results can be explained by
factors such as ants avoiding changing their heading, or by the existence of a long-
living exploratory pheromone besides a short-living trail pheromone, rather than by
the amplification of initial time differences.

Vela-Pérez et al. [55] as well as Ramsch et al. [49] have developed models of ant
foraging in labyrinths, which incorporate factors such as directional persistence or
preference of small angle turns. These models also used the DCF as a decision rule.
Vela-Pérez et al. [55] showed that the exponent b > 1 was critical for the system
to show symmetry breaking and short path selection, and Ramsch et al. [49] used
exponents between 2 and 4 in their simulations. Thus, while the DCF has clear
limitations, it is still generally used as the basis for understanding collective route
selection by ants.

4To test this, we extended the simulations of the shortest path experiments described in Fig. 2a
(DCF with k = 20 and b = 2) by adding further virtual bridges arranged in line. In this way, we
simulated different path length to the food, as in a labyrinth. We counted the number of ants taking
the short or the long sections. While in the original setting with one bridge, 75% of the ants selected
the short sections, this ratio dropped to 64% if three bridges were present, 62% if five bridges were
present, and 57% with ten bridges. This demonstrates that the majority of ants still chose the short
sections but the effect size drops the more paths are available, and that there was a considerable
percentage of virtual ants that took the long sections (von Thienen unpublished data).
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1.7 Ant Colony Optimization—ACO

Computer scientistswere inspired by thefindings of theDeneubourg group to develop
a computer algorithm able to solve complex optimization problems [22] such as
the traveling salesman problem and other NP-problems. Such an algorithm is not
necessarily intended to find the ideal solution but rather a good approximation to the
ideal solution in a time period short enough for practical purposes (see introduction).
To do so, the ACO algorithm uses the same principles as the Deneubourg model, i.e.,
pheromone deposition, probabilistic response to different pheromone concentrations
according to the DCF, and positive feedback. The best way to describe how it works
is, again, to use the Travelling Salesman Problem (TSP) as an example. To solve the
TSP, a number of virtual ants simultaneously and randomly visit the different cities
until each ant has visited all cities. After completing their journeys, the ants mark
their route with an amount of virtual pheromone that correlates with the inverse of
the distances they travelled. This process is repeated in the next iteration, but this
time, the virtual ants do not walk completely randomly. Rather, they slightly prefer
the routes marked with pheromone. When repeating this process for many iterations
(usually 1000), a path of the highest pheromone concentration emerges that usually
marks the shortest path or is at least close to the shortest possible path. As a result,
the algorithm converges to a solution that is close to the theoretical optimum.

Besides the TSP, ACO-algorithms have been applied to many different problems
like data network routing [24, pp. 223–260], finding the best transport routes for
trucks [24, pp. 155–159], scheduling of incoming airplanes at airports [9], machine
scheduling in factories [8], data mining [46] and construction of phylogenetic trees
[48] (for an overview see [23]). These are only some examples of ACO applications,
and the list is steadily growing. ACO has become one of the most successful algo-
rithms inspired by swarm intelligence, with over 3400 articles in scientific journals,
dealing with ant colony optimization (according to a search in the Web Of Science
Core Collection in March 2018).

The main components of the original ACO algorithms were the use of a virtual
pheromone to mark good solutions, positive feedback to allow the algorithm to
converge towards the optimal solution, and evaporation of the virtual pheromone to
avoid the algorithm converging too early on a suboptimal solution.

Since its invention in 1996, the original ACO algorithm has undergone var-
ious improvements intended mostly to refine software algorithms rather than
inspired by actual ant behaviour. Such improved algorithms included the Elitist
Ant System, Rank-Based ant system, Max-Min ant system and Ant Colony System
(ACS) [24, p. 73 ff.]. Nowadays, ACO is thus ameta-heuristic framework inspired by
the Deneubourg model for finding good solutions to different kinds of optimization
problems. In an Elitist Ant System, the best solution currently found is given a bonus
by adding an extra amount of pheromone. This can be viewed as an elitist ant that
had found the best current route and deposits an extra amount of pheromone on it.
In a Rank-Based Ant System, the routes are ranked and marked with pheromone
amounts corresponding to their rank. The Max-Min Ant System implements several
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different techniques. First, only the best route found is marked with pheromone.
However, this may lead to a very early stagnation of the process. Therefore, a second
mechanism is implemented by limiting the amount of pheromone to a certain range
(minimum-maximum). In addition, the algorithm is reinitialized when stagnation
occurs. In the Ant Colony System, negative feedback is implemented such that
ants reduce the pheromone amount at a node they have crossed. This prevents the
algorithm from running into stagnation.

2 Do Ants Use ACO?

2.1 There Is no Ant-God

The greatest difference between real ants and ACO is that all ACO algorithms cur-
rently used for practical applications have complete knowledge about the state of the
system and perform operations on a global level. In fact, it was shown in the early
stages of ACO-development that without such a global knowledge, the algorithm
performed worse than other optimization techniques and was not suitable for practi-
cal purposes. Examples of such advancedACO algorithms that use global knowledge
are the above-mentioned Elitist Ant System, Rank-Based Ant System and Min-Max
Ant System. Such advanced ACO algorithms perform centralized operations like
calculating and comparing the lengths of routes found after each iteration, and using
this knowledge to mark the best routes with additional pheromone.

Another form of global knowledge used by ACO is the information that defines
the cost of going from one node of the solution space to another. This information
is necessary to evaluate the quality of the solution found by ants. In case of the
TSP, this is the distance between the cities. Usually, this information is available a
priori and stored in a global table. However, it is not always necessary to provide
such global information a priori. For instance, virtual ants may evaluate the distance
by themselves while exploring the solution space and store it in their individual
memory. They may also copy it to the global table or to a table at each node that
can be read by other ants passing that node. However, since this has to be done for
each ant, the cost in terms of performance is high and the approach is only advisable
for applications in dynamic environments. A good example is AntNet, an ACO-
algorithm for data network routing. The algorithm uses global routing tables and a
globally synchronized time. It evaluates local heuristic information at each network
node using network traffic by virtual ants and stores it in local tables at network nodes
[23, 24, 44]. Thus, although operating in a distributed environment and performing
decentralized operations, the algorithm still depends on global information.However,
there are some similarities between the ways ants and ACO-algorithms use these
kinds of global information: real ants are very capable of measuring distances and
even keeping track of the directions they have walked [65], and many ant species
have very good visual orientation [40]. But, by contrast to ACO, this information
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is only available to an individual ant due to experience and learning and not shared
among the colonymembers. However, ants canmodulate their pheromone deposition
depending on their distance from the nest [21], which, together with other pheromone
based information like food-quality, may be viewed as a kind of heuristic information
similar to heuristic information used in ACO.

Thus, in contrast to ACO, there exists nothing like an ant-god that has global
knowledge, constantly evaluates the best solution and directs the colony towards
this solution. Instead, each ant has only a very limited knowledge and memory. It
simply deposits pheromone along its path and reacts to pheromone in a probabilistic
manner. This is sufficient for a behavioural pattern to emerge that is beneficial for the
colony. Therefore, it is perhaps misleading to consider ACO a swarm-intelligence
system. The algorithm depends on the global knowledge and only uses a stochastic
process in the behaviour of its local agents to converge towards an optimal solution.
However, for situations in which no central authority is available, the ACO-concept
of depositing pheromone and reacting to it in a probabilistic manner may still be
useful if it is combined with further techniques that incorporate knowledge about the
environment, see for instanceMeng et al. [45]who have developed anACOalgorithm
for distributed robot swarms. Thus, while a major difference between ACO and real
ant colony decision making is an increased centralization in ACO, this is mainly
done to increase computational efficiency—an option which is not open to real ants.

2.2 Ants Do not Use the Deneubourg Choice Function

In biological modeling, it is important to find a balance between complexity and sim-
plicity. Since biological systems are usually extremely complex, it is nearly impos-
sible to develop models that would incorporate all possible factors. Instead, a model
must focus on those factors that are essential for an understanding of the biologi-
cal system investigated. The Deneubourg model was very successful in finding this
balance and was very helpful in understanding ant behaviour. The main factors the
model originally focused onwere the probabilistic response of ants to pheromone—a
simple choice function to give a mathematical description of the response—and the
amplification of an initial preference of the short path caused by difference in time
needed to travel both paths. At that point the model gave a sufficient explanation of
the ants’ behaviour in bifurcation experiments. Meanwhile research has continued
and biologically important aspects not so far incorporated into the model must be
considered.

2.2.1 Measuring the Dose-Response Relationship

Although experimental evidence existed for a general relationship between the ants’
decision and the pheromone concentration in two other ant species [33, 54], no exact
relationship between ants’ decision and pheromone concentration had been mea-
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sured for a broad range of concentrations, neither in Argentine ants nor in other
ant species. In addition, it was not known whether the pheromone concentrations
used in the experiments were realistic and occurred on natural trails. Moreover,
the Deneubourg model did not distinguish between detection and discrimination of
pheromones. The ability to detect a pheromone may be completely different from
the ability to discriminate between two different pheromone concentrations. Further-
more, the parameters of the DCF (k and b) lack a biological interpretation. Thus,
a large part of the Deneubourg model—the exact relationship between pheromone
concentration and path choice—was hypothetical. Even the original experimental
results of the shortest path experiments published by the Deneubourg group were
not fully reproduced by their simulations. The parameters of the DCF were chosen
arbitrarily to give the best fit to the experimental data. However, in only 66% of the
simulations did the majority of ants choose the shortest path, compared to 93% in
the experiments (see Fig. 2a).

In von Thienen et al. [58] we attempted to test and parameterize the DCF. We
measured the exact dose-response relationship in three ant species, one of which was
theArgentine ant.Wedid this for detection aswell as for discrimination. The results of
our experiments were similar for the three ant species. As Deneubourg and his group
assumed, the dose–response relationship followed an S-shaped curve (see Figs. 3
and 4). However, there were significant differences from the original assumptions.
When we fitted the data to the DCF, the parameters were quite different from the
parameters that the Deneubourg group had assumed. In the shortest path experiments
the parameters were set to give a good fit to the experimental results with b = 2 and
k = 20. Similar and even higher settings for the exponent were used in the model
with U-turns and in the model of the labyrinth experiments, as well as in the model
of Vela-Pérez et al. [55] (see above). In contrast to these assumptions, the values for
the parameter b we deduced from experiment were b = 0.52 in detection experiments
and b = 1.06 in discrimination experiments.

2.2.2 Weber’s Law

In a further experiment, we tested how sensitive the discrimination abilities of the
ants were to changes in absolute pheromone concentrations. The response of the ants
followed the prediction of Weber’s law. Weber’s law is a key concept in understand-
ing how animals (including humans) perceive the world. It states that the ability to
distinguish two different physical stimuli only depends on their ratio and not on their
absolute values (see Box 1). Weber’s law can be expected to be of great biological
importance to ants since the ability to discriminate between different concentrations
should remain constant within a physiologically realistic range of concentrations. If
this were not the case, the information encoded in the ratio of pheromone concentra-
tions between two trails would be unstable due to changing environmental conditions
such as humidity, temperature and evaporation. If we failed to confirm this stability,
an important aspect of communication and information use in ant models could not
work under realistic conditions. A similar finding in a different experimental setting
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Fig. 3 Dose-response relationship (discrimination) for Linepithema humile (Argentine ant) fitted
with the Deneubourg choice function. Symbols show the probability that the ants take the test trail
(response) depending on the concentration ratio between test-and reference trail (with concentration
= 1). Bars show the 95% confidence limits. The dashed line shows the original Deneubourg choice
function used in the shortest path experiments with parameters k = 20 and b = 2. The solid line
shows the Deneubourg choice function fitted to the data with parameters k = 0.02 and b = 1.06. The
concentration ratio is given on a log2 scale

Fig. 4 Dose-response relationship (discrimination) for three ant species, fitted with the psycho-
metric function. Symbols show the probability that the ants take the test trail (response) depending
on the concentration ratio between test- and reference trail (with concentration = 1). Bars show the
95% confidence limits (only shown for E. procera for clarity reasons). The lines show the fitted
psychometric functions. The concentration ratio is given on a log2 scale

(an open arena instead of bridges) was published before by Perna et al. [47]. They
found that the more ants had passed by an arbitrary point in the arena following a
certain direction, the more future ants passing that point would change their heading
towards the direction in which most of the previous ants went. The relation between
the change in heading and the ratio between the numbers of previous ants heading
left or right followed Weber’s law. The authors assumed that the pheromone con-
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centration at a certain point is proportional to the number of ants that had passed
that point. Thus, they concluded that the ants’ response to differences in pheromone
concentrations follows Weber’s law too. Most importantly, the authors have shown
that the Deneubourg model can only be consistent with Weber’s law if the exponent
is set to 1 (and the constant k �� 0). Since the Deneubourg model and its extensions
only work with an exponent >1 (and k �� 0), it contradict Weber’s law and thus is
missing something critical.

2.2.3 Applying Psychophysical Theory to the Collective Behaviour of
Ants

Although the Deneubourg model gives a general explanation of the ability of ants
to collectively find the shortest path, the above arguments show that there are still
important points missing in the model.

Most importantly, the response of an ant to pheromone is determined by the way
it perceives the pheromone through its sensory organs, processes this information
by its nervous system, and, finally, translates it into behaviour. Thus, a rigorous the-
ory of how ants perceive pheromones and translate this information into a specific
behaviour is needed to bring biological realism to our understanding of collective
decision-making through pheromone trails.We found that a viable explanation could
be provided by psychophysical theory (see Box 1). This theory describes the rela-
tion between the strength of a physical stimulus and its perception. It is based on
Weber’s law, which we found to be well followed in our experiments. This was the
first indication that psychophysical theory might provide an appropriate explanation
of perception mechanism, describing important aspects of ants colony behaviour.We
have found in our measurements that the dose-response relationship of an ant colony
can be described by psychophysical theory and follows a psychometric function (PF)
(see Fig. 5). In contrast to the original Deneubourg model, this approach is not only
based on an established theory of perception but, in addition, it allows us to define
biologically meaningful parameters such as detection and discrimination thresholds,
information capacity and error rates (lapse rate). These parameters describe char-
acteristic differences between the three species we studied, and could be mapped to
their specific ecological needs [58].

Box 1: Psychophysical theory,
(modified from [58–60])
Psychophysical theory was developed by Fechner [25] based on the works
of Weber [61]. Weber sought to find a relationship between the strength of
a physical stimulus and its sensory impressions. He discovered that the abil-
ity to discriminate between two stimuli depends on the ratio of the stimulus
strengths, which, within certain limits, is independent of the absolute stim-
ulus strengths (Weber’s law). Fechner [25] discovered later that the sensory
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Fig. 5 Schematic examples of psychometric functions. In detection experiments (a) the psycho-
metric function (PF) gives the probability that a stimulus is reported stronger (response) than a
null-stimulus. In discrimination experiments (b) the PF gives the probability that a stimulus is
reported stronger (response) than a constant stimulus, which is larger than zero. Lapse rate (λ, dotted
horizontal line), guess rate (γ, dashed horizontal line), 75%-detection threshold (tdt75, dashed ver-
tical line), 75%-discrimination threshold (tds75, dashed vertical line). Note that the 75%-threshold
is the point at half the distance between guess rate and upper asymptote, thus, it may not be exactly
at p = 0.75. Solid lines show the PF

impression of a physical stimulus is proportional to the logarithm of the stimu-
lus strength, which is the reason why, for example, sound levels are measured
on a logarithmic scale in units of decibel.
A mathematical framework has been developed that relates physical stimuli
to sensory impressions. This framework incorporates the effect of noisy back-
grounds that influence the ability to detect a signal and it gives clearmathemati-
cal definitions of sensory thresholds.One of themost usefulmathematical tools
is the psychometric function (PF), which describes the relationship between
the probability of a positive response p to a stimulus and the stimulus strength
x (see Fig. 5)

p (x) � γ + (1 − λ − γ) · F (x)

x—stimulus strength,λ—guess rate, γ—lapse rate,F(x)—function describing
the probability to detect a stimulus by the underlying sensorymechanism [39, p.
74]. For F(x) a probability distribution like the Weibull distribution is applied.
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2.2.4 Testing the Models

We tested whether we could reproduce the original results of the shortest path exper-
iments by using realistic parameter values that had been deduced from the experi-
ments described above [59]. To do so, we repeated the simulations described by the
Deneubourg group [28] with the realistic parameter values. Both the DCF and the PF
could reproduce the experimental results when path lengths were equal. However, if
the paths were of different length, neither the Deneubourg model with the DCF nor
the model with the PF could reproduce the experimental results (see Fig. 6).

These results show that neither the DCF nor the PF form of the Deneubourg
model can satisfactorily describe the collective behaviour of ants in a bifurcation
experiment. As the first step toward finding the missing factors in the model, we
tried to identify biologically reasonable mechanisms that could additionally amplify
the initial differences between the paths. These conditions can be satisfied by the
modulation of pheromone deposition since it is well documented that argentine ants
deposit up to four times more pheromone on their way back to the nest compared
to the way from the nest [4]. We incorporated this effect into our model. The results
showed that the short path was selected significantly more often than the long path,
and the PF showed a much higher rate of short path selection than the DCF (see
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Fig. 6 (From [59]) Monte Carlo simulations of shortest path experiments with the DCF and the PF
with realistic parameter values. Paths differ by a factor of two. Parameters for the DCF: b = 1.06,
k = 0.02 (discrimination) and b = 0.52, k = 0.02 (detection). Parameters for the PF: γ = 0.47, λ =
0.02, b = 0.87 (discrimination) and γ = 0.43, λ = 0.11, b = 0.6, tdt75 = 0.053 (detection). The x-axis
shows the distribution of ants that chose the short path (n = 500). The y-axis shows the number of
experiments (n = 14) or simulations (n = 1000) in percent. Error bars give 95%-binomial confidence
intervals of the simulations
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Fig. 7 (From [59]) a Same
simulations as in Fig. 6, with
pheromone modulation. The
ants deposit four times more
pheromone on their way
back to the nest than in the
opposite direction. b Same as
in A but with the additional
assumption that the ants have
a higher responsiveness in
the initial phase. This was
achieved by increasing the
exponent (DCF) or the slope
(PF) four times in the first
100 iterations. Black =
original experimental results
modified from [28], dark
grey = simulation of the
DCF, light grey = simulation
of the PF

distribution of ants on short path

pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

0%
50

%
10

0%

0-20% 20-40% 40-60% 60-80% 80-100%

93%

72%

57%

distribution of ants on short path

pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

0%
50

%
10

0%

0-20% 20-40% 40-60% 60-80% 80-100%

93%
89%

51%

black original experiments
(Goss et al. 1989)

dark grey simulation of the DCF
light grey simulation of the PF

black original experiments
(Goss et al. 1989)

dark grey simulation of the DCF
light grey simulation of the PF

(a)

(b)

Fig. 7a). Further analysis showed that the lapse rate, a parameter that the DCF does
not have, was responsible for this difference. The lapse rate is a measure for the ants’
independence from pheromone trails [58].

Although themodulation of pheromone deposition gave better results for the short
path selection rate compared to experiments without modulation, the real ants still
performed much better than the virtual ants (93% vs. 72% in case of the PF). This
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indicated that there were still some factors missing. We also tested several different
biologically meaningful assumptions such as the combination of two pheromones
with different evaporation rates, path memory, negative or positive feedback between
pheromone concentration and pheromone deposition, higher pheromone deposition
on the return path in the initial phase [59]. However, we could not fully reproduce
the experimental results of the original shortest path experiments. We also tested
the effect of U-turns because they had been shown to be important in short path
selection in the case of L. niger ants [5] (see above). However, we could not confirm
the result of Beckers [5] if we applied realistic parameter values (von Thienen,
unpublished data).5 Only by making the hypothetical assumption that ants show a
higher responsiveness to pheromones for a short time after they have found food and
in the beginning of the recruitment, we were able to fully reproduce the experiments
by applying the PF (see Fig. 7b) [59].

2.2.5 The Ecological Meaning of the Deneubourg Model

Biologists are always interested in how a certain behaviour helps a species in its
struggle to survive and how that behaviour was formed during the evolution of that
species. In case of the shortest path experiments, we might ask how the ability to
select the shortest path towards a food source gives the colony an advantage and
increases its fitness sufficiently to be favored by evolution. Obviously, the ability
to find the shortest path is in itself advantageous. It reduces predation risk due to
shorter time periods outside the shelter of the nest, and also reduces the time and
energy spent collecting food. However, to our knowledge, this advantage has never
been demonstrated by field research and is therefore only hypothetical. It is also
reasonable to askwhether these collective behaviours, which have been demonstrated
in the lab, also occur in the ‘real world’. Usually ants live in an open field where
an infinite number of possible routes and obstacles between nest and food exist and
form a sophisticated trail system connecting different nests and food sources with
many intersections and nodes that had been formed over a longer time period. This
trail system changes dynamically in response to the food supply outside the nest and
changing environmental conditions [43]. Since in a network of trails many different
paths exist that the ants may explore, it can be expected that the ability to select
one of the shortest paths will be lower compared to a situation in which only two
paths are available (See above footnote 4). In addition, food sources are discovered
asynchronously and initial timedifferences due to different path lengthswill therefore

5The model settings were similar to those described in Fig. 6 with the exception, that U-turns were
incorporated as described by Beckers [5]. The U-turn settings were such that in average half of
the ants made a U-turn while travelling a distance equal to the long path if no pheromone was
present. The probability to take a U-turn decreased with the pheromone concentration according to
the formula given by Beckers [5] with P0 giving the U-turn-probability in the absence of pheromone
set to 0.5, α set to 0.1 and C giving the pheromone concentration. The histogram of the short path
selection was similar to that of the simulations without U-turns as shown in Fig. 6 from left to right:
29%–9%–7%–6%–49%.
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only occur very rarely. Lastly, nature usually does not offer the sort of infinite supply
of food present in laboratory experiments, which fuels such strong positive feedback
cycles. Taken together, the ‘real world’ situation is worlds apart from the shortest
path experiments with only two possible routes that are simultaneously explored.

With this in mind, it may happen that the results of the shortest path experiments
simply represent an artefact of the special setup of the experiments, and may have
little or no ecological meaning. Nevertheless, the experiments described above with
Argentine ants in labyrinths and themodels for their behaviour [51, 55, 56]weremuch
more realistic than theoriginal shortest path experiments and show thatArgentine ants
are able to find short paths in amore complex environment.However, the assumptions
made in these extended Deneubourg models to explain the short path selection in
labyrinths have not been tested with realistic parameter values for the DCF. Only the
assumption of the modulation of pheromone deposition has so far been demonstrated
to work in the model for shortest path selection with realistic parameter values (see
above). Other assumptions, such as directional preference, combination of long- and
short-living pheromones and preference of small angles have not been tested yet
with realistic values of the exponent b in the DCF. Particularly problematic is the
high value of the exponent, used in all of the extended Deneubourg models, which
is unrealistic and contradicts Weber’s law.

In contrast to models for shortest path selection, the Deneubourg model seems
to work fine for the ants’ ability to select the best food source if food sources of
different quality are available, even when realistic parameter values are applied. The
Deneubourg model could explain this behaviour very well for L. niger ants [6, 7, 53]
(see introduction). This ability gives the ants a clear selective advantage and bears
great biological meaning. We tested the model with realistic parameter values for
the DCF and for the PF for L. niger as well as L. humile. We were able to confirm
the results of Beckers et al. [6, 7, 53] for both functions and species.6 Thus, in
contrast to the shortest path experiments, the selection of food sources of different
quality is consistent with the Deneubourg model and works with realistic parameter
settings. Together with negative feedback factors like crowding at the food source
and on the trail [18, 64], reduced pheromone deposition on marked trails [18] or the
incorporation of the lapse rate [57, 58], the model might give good explanations of
how ants are able to dynamically switch between different food sources and how

6The simulation settings were the same as described in Fig. 6 except that the paths were of equal
length and led to two different food sources of different quality and that the returning ants deposited
four timesmore pheromone on the right side with higher food quality than on the left side with lower
food quality. L. humile and L. niger deposited pheromone in both directions with the exception that
L. niger did not deposit pheromone on its first move to the food. For both ant species, we found a
clear preference of the richer food source with following histogram similar to Fig. 6 from left to
right:

DCF-L. humile: 11%–10%–8%–8%–63%—DCF-L. niger: 0%–0%–0%–100%–0%.
PF-L. humile: 1%–12%–17%–14%–56%—PF-L. niger: 0%–0%–0%–100%–0%.
Results are similar if pheromone is deposited only in one direction from food to nest.
([57], unpublished data).
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they are able to optimize the foraging process if different food sources of different
quality and distance are available.

2.3 Similarities Between ACO and Ant Trail Use

Aswe have seen, there exist deep differences betweenACOand how ants actually use
pheromone trails. However, besides the use of pheromones, there is one surprising
parallel between how ACO works and at least one aspect of pheromone trail use
by real ants. The pheromone-based solution search in ACO is very often coupled
with local search to find local optima [24, pp. 92–96]. A similar function to localize
searching is played by pheromone trails of many ant species. A good example is
patrollers of the Pogonomyrmex barbatus ants. The nests of these ants are connected
to different food sources by long-lasting trails. Eachmorning, the patrollers mark one
of the trails, causing the foraging ants, which leave the nest, to follow this specific
trail for the rest of the day [30]. Similar to ACO, ants combine different local search
strategies, depending on the dispersion and type of food they are collecting [42].
They may for instance lay long-lasting trails to certain areas in which good food sites
are located. Individual ants then independently search for food in these areas. Or a
subset of foragers leave long-term trails to stable food-sources and engage in solitary
search for short-living food sources scattered in the environment, like dead insects.
Ants may also combine trails with long-lasting pheromone to stable food-sources
like colonies of honeydew-secreting insects and trails with short-lasting pheromone
leading to dead insects scattered in the area. Indeed, ants finding a resource near
a well-established trail may even recruit other ants directly from the trail, without
returning to the nest [26]. Similarly, as an army ant colony sweeps over an area, the
trail system forms a fan-shaped structure, with a main trail representing the direction
of the raid andmany branching trails forming a constantly advancing front of foraging
ants searching the local environment of the main trail for food [52].

3 Possible Further Improvements of ACO by Real Ant
Behaviour

Over twenty years have passed since the invention of ACO and the original experi-
ments of the Deneubourg group, and ACO-algorithms have become a successful tool
for engineers and software developers. However, as has been stated before, the main
improvements of ACO are strictly software-motivated extensions of the algorithm
to improve performance or adapt it to specific problems. Here we will propose some
possible improvements to ACO inspired by real ants that we, as biologists, have not
tested yet, but that engineers and software developers might find interesting.
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First, wewill start with a disappointment. The use of a PF inACO-algorithmsmost
likely will not improve the algorithm. The PF is mathematically more complex than
the DCF and therefore will not improve performance. In contrast, the DCF is a very
simple function that can be calculated very fast. However, it should be kept in mind
that the DCF does not follow Weber’s law if it has exponents different from 1 and
k > 0, which is common to ACO-algorithms. This leads to the effect that the solution
space not being symmetrical with respect to absolute pheromone concentrations.
In regions of low pheromone concentration the system behaves differently than in
regions with high pheromone concentrations. To our knowledge, this effect has not
been tested yet, and the implications for ACO algorithms have not been considered.

The concept of the lapse rate may be implemented in ACO. This might help avoid
situations in which ACO algorithms reach stagnation before finding an optimum.
This situation happens if all virtual ants follow the same path without coming close
to the optimal solution. Usually this is avoided by adding a priori information to
the algorithm about each node of the state-space, or by implementing local search
algorithms that, for each ant, suggest optimal steps to take in the next iteration, or
by letting the virtual pheromone evaporate [24, p. 70, pp. 215–216]. The concept of
the lapse rate offers an alternate approach. By implementing the lapse rate concept
into ACO algorithms, there is always a set of ants which more or less ignore the
pheromone trails and randomly explore solutions beyond established pheromone
marked routes. This could be achieved by defining a set of virtual ants that respond
to pheromone weakly or not at all, or, perhaps more effectively, by allowing ants to
be variable in their response to pheromones [12]. Inter-individual variability in social
insect colonies can lead to increased effectiveness, but the costs of this variability
are not yet well understood [38].

Czaczkes et al. [18] showed that ants deposit less pheromone if they are already
walking on a pheromone-marked path. This is effectively a negative-feedback sys-
tem, which makes strengthening of trails progressively harder, and gradually caps
the maximum strength of a trail. By preventing trails from becoming too strong, this
allows newly-discovered trails of a higher quality to successfully out-compete estab-
lished trails, again preventing stagnation and trapping in a sub-optimal solution [14].
As mentioned before, the Ant Colony System (ACS) implements such a negative
feedback by reducing the pheromone concentration on a node visited by an ant [24].
However, a more nuanced result with lower computational costs can be achieved by
implementing a mechanism of local response to pheromone strength.

The modulation of pheromones described above, where ants deposit more
pheromone as they return to the nest and encode food quality in it, has already
been implemented in a similar way in the Elitist Ant Systems [24, p. 73]. In this case,
the best of all currently found solutions is marked with an additional pheromone
amount. However, the idea behind the Elitist Ant System is different from the situ-
ation observed in the nature since the evaluation of the best solution needs a central
authoritywhich the ants do not have. Instead, they incorporate directional and qualita-
tive information into the system by depositingmore pheromonewhen returning to the
nest. Since classical problems solved by ACO, like the travelling salesman problem,
do not require information about direction, the concept of pheromone modulation
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will not improve these algorithms. However, if the problem is such that directional
information is important, the concept of pheromone modulation may be useful. For
example, if a salesman prefers to visit cities in the east before he visits cities in the
west (a priori definition), the virtual ants may deposit more pheromonewhen heading
east, causing the algorithm to prefer cities in the east. Another variation may be that
cities or group of cities may have different qualities (for instance sale rates). Routes
to these cities might receive more pheromone, causing such cities to be preferred by
the algorithm. This strategy might be good for a lazy salesman. He first visits the
cities in which he can expect good business. If he has made enough sales, he may
want to stop and go home, cancelling the less productive routes.

Memory and learning are important factors in ant behaviour and it had been shown
that ants acquire route memory by visual learning which also modifies their response
to pheromones [2, 3, 16, 17, 31, 60]. Several studies, [15] show that individual
memories can improve collective decision-making process in ants. ACO algorithms
already use the concept of individualmemories to store a priori information or to store
information collected during the exploratory phase. As an inspiration from real ants,
we suggest the development of learning ACO algorithms. As an example, let us take
a salesman who frequently repeats the same tour. While travelling he may modify
the route, for instance, to avoid traffic congestions that result from road constructions
works. After he has finished a tour, a second long lasting pheromone is added to the
modified route segments that he has actually taken, increasing the attractiveness of
these segments. In the next run of the ACO algorithm, this long lasting pheromone is
still present from the first run and the marked segments will be preferred for the next
journey of the salesman. In this way a kind of memory builds up that incorporates
information of former tours into the construction process of new tours.

Our knowledge of how ants are able to collectively react to dynamically chang-
ing situations may inspire the development of ACO algorithms that react to chang-
ing situations in real time. Experiments and computer simulations show that the
efficiency with which a group of ants exploit multiple food sources increases if
individual experience and pheromone-based orientation are used together. We term
this phenomenon composite collective decision-making [15]. The pheromone-based
recruitment allows ants to quickly concentrate on the best food sources, and the
individual memory component allows subsets of ants to specialize in less produc-
tive, but underexploited resources. Such a technique could be used to develop ant
algorithms that use current infrastructure more efficiently. This may be of particular
interest in intelligent transport system applications based on autonomous vehicles.
ACO has been frequently used to develop algorithms for optimization of traffic flow
(for instance [1]). These algorithms use the ACO-concepts to mark the virtual roads
with pheromone depending on the traffic density, and then use that information to
calculate the best route for a specific user. In a more advanced form, the algorithm
is able to automatically find a balance between the goal of individual drivers to min-
imize their travel time and the overall goal to minimize the travel time of all drivers
by optimizing the travel flow in the entire network. So far, such concepts remained
the subject of theoretical studies based on simulations. However, in a modern context
with big data and modern navigation devices able to communicate in real-time, they
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may be implemented in real-time traffic guidance systems that constantly evaluate
the traffic situation, communicate with the navigation devices in cars and optimize
the traffic flow. The algorithm for such systems could implement the concept of com-
posite collective decision making by incorporating individual experience into each
navigation device and using it together with the real-time data of the traffic situation
encoded in virtual pheromone. For instance, the navigation device could remember
the best found routes of the past of its user and thus fine tune the route calculation.

We have found that, apart frommemory mechanisms, starvation can also alter the
response to pheromone [60]. In dynamic situations this idea may be used to assign a
time-dependent priority to each node of the state-graph. Let us suppose a travelling
salesman has different time slots at which he has to visit his customers. To meet this
requirement, he may update his scheme by a new ACO-run after each visit. In each
run, the difference between the calculated arrival time at the remaining cities and
the originally calculated arrival time is used to update the priority of the city and
guide the system in such a way that cities with the greatest delay are visited next. In
a similar way, Bencheihk et al. [9] calculated the scheduling of aircraft landing at an
airport by ACO by penalizing the deviation from the scheduled time of arrival.

4 Conclusion

ACO is a very good example of how the complex and self-organizing behaviour
of social insects inspired new optimizing solutions for complex technical and orga-
nizational problems. It is also a nice demonstration of how, by distilling the key
aspects of a biological system and adding specific, non-biological improvements,
the biomimetic approach can be very successful (see also [50]). ACO has only a
few major aspects in common with real ant behaviour, namely the deposition of a
virtual pheromone and the concentration–dependent, probabilistic response to the
pheromone. This is to be expected, as ACO and collective ant behaviour developed
and function under very different constraints. Real ants cannot use a central con-
troller—there is no ant god—and so have developed a robust system which does
not require one. ACO still requires central control, and time will tell whether fully
decentralized ACO algorithms may generate practical solutions in acceptable time
frames. In our opinion, applications for swarm robots, self-organizing factories, algo-
rithms for social media, search algorithms, data mining, business intelligence, and
applications in which many humans are simultaneously involved in real time (such
as traffic) are interesting fields for further research on the application of fully decen-
tralized ACO algorithms. At the same time, research on ant behaviour continues,
and there are many things that we, as biologists, do not yet understand, and many
unknown unknowns waiting to be discovered. We are still far from having a univer-
sal ant model that is able to incorporate at least the most important mechanisms of
ants communication and their behavioural responses. We do not even have a com-
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monly accepted model of how trail networks are formed, how trails are structured
and what exactly happens when ants follow a trail and deposit pheromone. These
behaviours vary significantly among different ant species, andwill be strongly related
to their specific ecological niche [19]. In many cases, we do not even know the exact
pheromone composition of the pheromone signals that ants use. There are more than
14,000 ant species alive today [36, p. 11] and only very few of them have been
studied in depth by biologists. And there are many other social insect groups such
as bees, wasps or termites which add to our pool of potential inspiration. We have
every reason to expect more surprising findings to inspire further improvements to
ACO algorithms in the future.
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Slime Mould Inspired Models for Path
Planning: Collective and Structural
Approaches

Jeff Jones and Alexander Safonov

Abstract Path planning is a classic and important problem in computer science,with
manifold applications in transport optimisation, delivery scheduling, interactive visu-
alisation and robotic trajectory planning. The task has been the subject of classical,
heuristic and bio-inspired solutions to the problem. Path planning can be performed
in both non-living and living systems. Amongst living organisms which perform
path planning, the giant amoeboid single-celled organism slime mould Physarum
polycephalum has been shown to possess this ability. The field of slime mould com-
puting has been created in recent decades to exploit the behaviour of this remarkable
organism in both classical algorithms and unconventional computing schemes. In this
chapter we give an overview of two recent approaches to slime mould inspired com-
puting. The first utilises emergent behaviour in a multi-agent population, behaving
in both non-coupled and coupled modes which correspond to slime mould foraging
and adaptation respectively. The second method is the structural approach which
employs numerical solutions to volumetric topological optimisation. Although both
methods exploit physical processes, they are generated and governed using very dif-
ferent techniques.Despite these differenceswefind that both approaches successfully
exhibit path planning functionality. We demonstrate novel properties found in each
approach which suggest that these methods are complementary and may be appli-
cable to application domains which require structural and mechanical adaptation to
changing environments.
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1 Introduction: Path Planning

Path planning is a classic problem in computer science and robotics [1, 2] which has
been implemented in a wide variety of classical algorithms [3, 4]. These algorithms
may be optimised in different ways, for example maximising execution speed or
minimising memory resources. Path planning is also a canonical application task for
unconventional computing substrates (see [5] for a thorough review). These novel
computing schemes utilise the parallel spatial propagation of information within a
physical medium and often employ a two-stage method involving diffusive propaga-
tion to discover all paths and a second stage to highlight or visualise the path between
two particular points in an arena, such as a simple maze.

The giant amoeboid single-celled organism, true slime mould P. polycephalum is
also adept at path planning as it is also famously known to solve mazes by adapting
the transport networks which comprise its distributed body plan between nutrients
placed at the start and end points of a maze. In the first approach [6] the slime mould
was inoculated over the entire maze in separate pieces, before the organism re-fused
it separate component parts and adapted its morphology to efficiently connect the
nutrients. Slime mould has also been shown to solve mazes in a manner akin to the
classical unconventional computing approach of growing towards and tracking the
diffusing chemo-attractant gradient placed at the exit of the maze when the slime
mould is itself inoculated at the start of the maze [7]. It appears that slime mould can
not only solve mazes, but can do this task using two separate biological mechanisms,
foraging and adaptation.

In this article we investigate two modelling approaches to approximating the
behaviour of slimemould for path planning applications, the collective and structural
approaches. The collective approach exploits collective behaviour in a multi-agent
model of the slime mould plasmodium. The method utilises a population of identical
mobile particleswhich sense the concentration of a diffusing virtual chemo-attractant
factor. The collective approach can operate in both foraging and adaptive modes,
which differ in how the particles are ‘coupled’ to their environment. The collective
behaves as a virtual material in a spatially represented unconventional scheme where
the initial problem configuration and final output ‘solution’ are both represented as
spatial patterns.

In the non-coupled (foraging)mode, particles are inoculated at the start location of
the maze and passively follow the diffusing wavefronts emanating from an attractant
source placed at the exit of the maze. The foraging pattern of the slime mould is thus
used to visualise the shortest path.

In the coupled (adaptation) mode particles are, like the original slime mould
experiment, inoculated at all vacant spaces in the maze. Diffusive attractant sources
are placed at the entrance and exit points of themaze. The particles not only follow the
concentration gradient between the nutrient locations but alsomodulate this gradient
(by depositing the same diffusive attractant) by the action of their own movement,
resulting in an emergent collective cohesion of the population. Reducing the size
of the population results in morphological adaptation as the collective adapts to the
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location of the diffusive stimuli and the obstacles within the maze. We demonstrate
the similarities and differences between the two concepts, providing examples of
how both methods can be used for path planning problems.

The two different modes of the collective approach also possess more subtle
features which can be used in different aspects of path planning problems. For exam-
ple, in the non-coupled approach, we demonstrate how variable path widths may
be used to implement a novel quantitative method to assign path costs. Agents not
only sense the timing of the diffusive wavefronts but also the relative strength of the
competing fronts. In the coupled mode we demonstrate cases where multiple paths
are required and the subsequent selection of a single path from multiple options.
Collision-free paths may also be implemented via repulsion from the borders of the
arena, and obstacle avoidance can be implemented by a repulsive field generated
from obstacles as they are uncovered by the shrinking collective. These examples
demonstrate how unconventional computing approaches can be used to implement
different approaches to the same problem by exploiting and coupling different ‘phys-
ical’ properties of the underlying computing substrate.

The secondmodelling approach inspired by slimemould is the structural approach
introduced by the authors in [8]. In these works the computing structures could be
seen as growing on demand, and models for path planning develop in a continuum
where an optimal distribution of material minimised internal energy. A continuum
exhibiting such properties can be coined as a “self-optimising continuum”. Slime
mould of P. polycephalum well exemplifies such a continuum: the slime mould is
capable of solving many computational problems, including mazes and adaptive
networks [9]. Other examples of the material behaviour include bone remodelling
[10], roots elongation [11], sandstone erosion [12], crack and lightning propagation
[13], growth of neurons and blood vessels etc. Some other physical systems suitable
for computations were also proposed in [14–17]. In all these cases, a phenomenon
of the formation of an optimum layout of material is related to non-linear laws
of material behaviour, resulting in the evolution of material structure governed by
algorithms similar to those used in a topology optimisation of structures [18].

When applying dynamic approaches in solving the problems of biological growth
or finding an optimal topology it is necessary to ensure a decrease in objective func-
tion over time. The systems energy is usually taken as an objective function. When
using multi-agent modelling this is achieved through an adjustment of the collective
morphology arising from the behaviours of individual agent particle interactions, and
changes in the population size. When using the apparatus of ODE (Ordinary Dif-
ferential Equations) a non-increase in objective function is usually ensured through
meeting Lyapunovs condition determining a negative derivative of an objective func-
tion over its trajectory [18]. Therefore, both considered approaches used to model
dynamic systems with decreasing internal energy describe a systems tendency to
attractors representing morphology of slime mould networks.

Methods of topology optimisation of flow in a porous medium [19] were applied
to simulate the growth of the slime mould [20]. We develop the ideas of material
optimisation further and show, in numerical models, how path planning can be build
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in a conductive material self-optimise its structure governed by configuration of
inputs and outputs.

We describe approaches to unconventional computing in Sect. 2. A brief overview
of slime mould and slime mould computing follows in Sect. 3. The multi-agent
approach is described in Sect. 4. Experiments using the non-coupled and coupled
approaches are described in Sects. 6 and 7 respectively. In Sect. 8 we introduce topol-
ogy optimisation aimed to solve a problem of a stationary heat conduction. Section9
presents the simulation results for topology optimisation methods used in solution of
test problems.We conclude in Sect. 10 by summarising the similarity and differences
between the collective and structural approaches, along with suggestions for further
research applications.

2 Unconventional Computing Substrates and Path
Planning

Unconventional computing seeks to utilise the computing potential of natural physi-
cal systems to solve useful problems. Since these systems are localised in space, they
typically use different mechanisms to classical approaches. In recent years physical
propagation through space in chemical substrates has been used as a search strategy.
Babloyantz first suggested that travelling wave-fronts from chemical reactions in
excitable media could be used to approximate spatial problems [21]. Wave propaga-
tion in the Belousov-Zhabotinsky (BZ) chemical reaction was subsequently used to
discover the path through a maze [22]. In this research a trigger wave was initiated
at the bottom left corner of a maze and its propagating wave front recorded by time-
lapse photography. Direction of wave propagation was calculated from the collective
time-lapse information to give vectors which indicated the direction of the travelling
wave. The path from any point on the maze to the exit (the source of the diffusion)
was followed by tracking backwards (using the vector information) to the source.

Wave-front propagation differs from conventional diffusion and gradient forma-
tion because the diffusing fronts annihilate when they collide with an environmental
barrier or another wave-front. As front propagation occurs at a fixed speed the anni-
hilation zones indirectly encode information about distances travelled within the
environment (shown, for example, in Fig. 5d). The propagation pattern generates a
solution from any (and indeed every) point in the arena. Branching paths (for exam-
ple around obstacles) are searched in parallel and the solution time is dependent on
the spatial size (in terms of maximum path length) of the arena and the wave-front
propagation speed. Although computationally efficient, a direct spatial encoding of
the problem (arena, desired start and end points) must be stored, as opposed to a
more compact graph or grid encoding in classical approaches.

Reading the output of the parallel calculations is not a simple approach using
chemical substrates. Although the propagating wave solves the shortest path for all
points in the arena, finding and tracking the desired path from start to end point
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requires separate processes. Different approaches have been attempted including
image processing [23], using two wave-fronts in both directions [24], and hybrid
chemical and cellular automata approaches [25]. More recently, a direct visual solu-
tion to path planning was devised in which an oil droplet (exploiting convection
currents and surface tension effects) migrated along a pH gradient formed within a
maze to track the shortest path through the maze [26].

3 Slime Mould Computing

The giant amoeboid Myxomycete organism true slime mould P. polycephalum has
proven to be an ideal candidate for research into living unconventional computing
substrates. P. polycephalum is a giant single-celled organism which can usually be
seen with the naked eye (for a comprehensive guide, see [27]). During the plasmod-
ium stage of its complex life cycle it adapts its body plan in response to a range
of environmental stimuli (nutrient attractants, repellents, hazards) during its growth,
foraging and nutrient consumption. The plasmodium is composed of a transport net-
work of protoplasmic tubes which spontaneously exhibit contractile activity which is
harnessed used in the pumping and distribution of nutrients. The organism is remark-
able in that its complex behaviour is achieved without any specialised nervous tissue.
Control of its behaviour is distributed throughout the simple material comprising the
cell and the cell can survive damage, excision or even fusion with another cell.

The plasmodium of slime mould is amorphous in shape and ranges from the
microscopic scale to up to many square metres in size. It is a giant single-celled syn-
cytium formed by repeated nuclear division, comprised of a sponge-like actomyosin
complex co-occurring in two physical phases. The gel phase is a densematrix subject
to spontaneous contraction and relaxation, under the influence of changing concen-
trations of intracellular chemicals. The protoplasmic sol phase is transported through
the plasmodium by the force generated by the oscillatory contractions within the gel
matrix. Protoplasmic flux, and thus the behaviour of the organism, is affected by
changes in pressure, temperature, space availability, chemo-attractant stimuli and
illumination [28–34]. The P. polycephalum plasmodium can thus be regarded as a
complex functional material capable of both sensory and motor behaviour. Indeed
P. polycephalum has been described as a membrane bound reaction-diffusion system
in reference to both the complex interactions within the plasmodium and the rich
computational potential afforded by its material properties [35].

Interest in slime mould computing was initiated by the work of Nakagaki et al.
[6] who found that the slime mould could approximate the solution to a simple maze
problem when the slime mould was inoculated as fragments covering the channels
of a patterned maze. These fragments fused over a number of hours and, when
the maze start and end points were covered by nutrient oat flakes, the plasmodium
spontaneously adapted its transport network. Protoplasmic tubes were removed from
redundant (dead end) paths and longer paths, leaving the transport network of the
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slime mould connected to the start and end points, thus finding a solution to the
maze [6].

Subsequent research into the range of computational abilities of slime mould
demonstrated that the plasmodium successfully approximates spatial representations
of various graph problems. In [36] the authors examined the connectivity of the tube
networkwhen the plasmodiumwaspresentedwithmultiple sources of nutrients. They
found that the plasmodium constructed networks that combined features ofminimum
path length (approximating the Steiner tree) and cyclic connectivity (giving resilience
to random disconnection of a path). It has since been found that slime mould suc-
cessfully approximates spatial representations of various graph problems including
generation of Voronoi diagrams and collision-free path planning [37], Delaunay tri-
angulation [38], spanning trees [35, 39, 40], proximity graphs [41], convex hulls and
concave hulls [42]. These research examples all used the spatial foraging behaviour
of the plasmodium to approximate graph problems which are conventionally solved
using algorithmic approaches.Methods to control the propagation of the plasmodium
using attractants, repellents and light irradiation were investigated by Adamatzky in
[43–45].

The oscillatory phenomena and avoidance of light irradiation were exploited by
Aono and colleagues for combinatorial optimisation problems [46–48], specifically
small instances of the Travelling Salesman Problem, and found that the chaotic
behaviour of the internal oscillations helped the plasmodium avoid deadlock situa-
tions, preventing the organism from becoming trapped in local minima—behaviour
which is useful in terms of computational and biological search strategies. The
behaviour of Physarum in response to strong long-distance attractant stimuli com-
bined with short-distance repulsive stimuli was found to follow attractor cycles
around simple stimuli and limit-cycle motion with more complex stimuli arrange-
ments [49].

It is somewhat traditional in unconventional computing to validate the compu-
tational equivalence of a particular computing substrate with the components of
classical computing devices [50–52]. It should be stressed that such research is moti-
vated by exploring theoretical computational potential, rather than suitability. In [53],
the authors demonstrated how a foraging plasmodium of Physarum could be used
to construct simple logic gates. A similar approach based on the ballistic comput-
ing model was implemented using Physarum in [54]. The likelihood of extending
this approach for more complex adding circuits was explored in simulation in [55]
who found that foraging errors were compounded by small delays in signal tim-
ing at junctions, rendering the approach infeasible for larger adding circuits. More
recently, photo-avoidance by Physarumwas used to implement a range of logic gates
[56]. The protoplasmic tubes of the Physarum plasmodium have also been shown
to act as microfluidic logic gates under mechanical stimulation [57]. The relatively
slow growth and propagation of the Physarum plasmodium limits its application for
logical gates. However, Whiting recently demonstrated an approach whereby logic
operations could be approximated by much faster changes in oscillatory streaming
frequency [58]. The utilisation of different frequency responses with regard to arena
size was used experimentally and in simulation in the proposal to simplify Adder
circuits using a quantitative scheme [59].
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Slime mould utilises its self-made protoplasmic network to transport nutrients
within its cell body. The transport phenomena correspond to transportation networks
formed by collectives in other living systems including fungi [60, 61], ants [62]
and humans [63]. Since the plasmodial network is a single cell, constructed from
‘bottom-up’ principles, how does the structure of the plasmodium networks compare
to other artificial transport networks which are typically constructed from hierarchi-
cal ‘top-down’ methodologies? The task is somewhat difficult as slime mould is only
concerned with survival, rather than solving externally applied problems, however
early research into the topic of nature-inspired transport networks using slime mould
was performed by Adamatzky and Jones who found that Physarum networks closely
approximated the major motorway network connecting the most populous UK urban
areas [64]. The authors also found that the plasmodium effected an efficient response
to simulated disastrous contamination of individual urban areas, implemented by dif-
fusion of salts within the region. The plasmodiummigrated away from contaminated
regions to relatively unpopulated areas before re-establishing network connectivity
when the damaged areas were contamination-free. This study was recently extended
to include the major motorway networks in different countries [65], and an intriguing
similarity between the historical evolution of human networks (for example, cattle
droving trails, iron age trails, Roman roads, modern arterial routes) can be mirrored
in the evolution of early stage fine-grained Physarum networks to later networks
with thicker and more sparse connectivity [66]. The connectivity of Physarum net-
works was also compared with the regional rail system surrounding Tokyo by Tero
et al. who, using a novel approach to represent environmental hazards using light
irradiation, also found a similar correspondence between the human and plasmodial
networks, in terms of distance and connectivity [67].

4 The Collective Approach: Multi-agent Slime Mould
Computing

Themulti-agent approach to slimemould computing was introduced in [68], consist-
ing of a large population of simple mobile agents (a single agent and its controlling
algorithm is shown in Fig. 1) whose collective behaviour was indirectly coupled via
a diffusive chemo-attractant lattice. Each agent corresponds to a small subunit of
the slime mould cell, capable of performing simple local movement. Agents sensed
the concentration of a hypothetical ‘chemical’ in the lattice, oriented themselves
towards the locally strongest source and deposited the same chemical during for-
ward movement. By depositing the same chemical into the lattice, the particles are
directly coupled to the lattice evolution, i.e. the particles are affected by changes
in the lattice but also effect a direct change of the lattice configuration. The col-
lective movement trails spontaneously formed emergent transport networks which
underwent complex evolution, exhibiting minimisation and cohesion effects under a
range of sensory parameter and scale settings. The overall pattern of the population
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Fig. 1 Base agent particle morphology and sensory stage algorithm. a Illustration of single agent,
showing location ‘C’, offset sensors ‘FL’,‘F’,‘FR’, Sensor Angle ‘SA’ and Sensor Offset ‘SO’,
b simplified sensory algorithm

represented the structure of the Physarum plasmodium and the individual movement
of particles within the pattern represented the flux within the plasmodium. The col-
lective behaved as a virtual material demonstrating characteristic network evolution
motifs and minimisation phenomena seen in soap film evolution (for example, the
formation of Plateau angles, T1 and T2 relaxation processes and adherence to von
Neumann’s law [69]). A full exploration of the dynamical patterns were explored
in [70] which found that the population could reproduce a wide range of Turing-
type reaction-diffusion patterning (i.e. self-organised patterns emerging from local
interactions, see [71] for an overview). The model was extended to include growth
and shrinkage in response to environmental stimuli [72, 73]. In a comparison by
image analysis and network analysis, the coarsening of the multi-agent networks
were found to closely approximate the coarsening observed in the evolution of
P. polycephalum transport networks [74].

5 Mechanisms of Collective Computation

The computational behaviour of the multi-agent approach is generated by the evo-
lution of the virtual material over time and space. Although the type of pattern (and
thus the type of material behaviour) can be influenced by parametric adjustment of
the SA (Sensor Angle) and RA (Rotation Angle) values (Fig. 1a), the evolution is
manifested most typically as a shape minimisation over time. At low SA and RA
values the patterns are reticulate and adaptive, constantly changing their topology
(for example, Fig. 2). As SA and RA values increase, the networks undergo minimi-
sation, reducing the number of network edges and network nodes. Further increases
result in labyrinthine patterns and the formation of circular minimal configurations.
The Sensor Offset (SO) parameter acts as a scaling mechanism, altering the size of
the patterns formed (see Fig. 3).
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Fig. 2 Spontaneous formation and evolution of transport networks in themulti-agentmodel. Lattice
200 × 200, %p15, SA 22.5◦, RA 45◦, SO 9, Images taken at: 2, 22, 99, 175, 367, 512, 1740 and
4151 scheduler steps

Fig. 3 Effect of Sensor Offset distance (SO) on pattern scale and granularity. Left to Right: Pat-
terning produced with SO of 3, 9, 15, 25 pixels, Lattice 200 × 200. For all experiments: %p = 15,
SA 45◦, RA 45◦, Evolution stopped at 500 steps

The evolution of different patterns, however, does not in itself constitute compu-
tation. To perform useful computation we must be able to interact with the mate-
rial, affecting its behaviour and evolution. This can be achieved by the placement of
external attractant and repellent stimuli into the diffusive lattice. These stimuli, when
projected into the lattice, form concentration gradients. The gradients constrain the
natural minimisation of the material, which would otherwise typically condense the
initial inoculation pattern into a minimal configuration. The final (or stable) state
of the constrained material indicates that the computation has ‘halted’. Because the
virtual material is a spatially represented unconventional scheme, the initial problem
configuration and final output ‘solution’ must both be represented as spatial patterns.

The approach follows the scheme suggested by Stepney [75] in which the phys-
ical properties of the unconventional computing substrate perform the computation
(in this case by material adaptation) and the inputs to the computing substrate can
be represented as external fields. In Stepney’s scheme there is abundant scope for
interfacing the physical substrate with classical computing devices. This interfacing
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of classical PCs to unconventional computing substrates can be used to program the
substrate, read the current state of the substrate, extract data from the substrate and to
halt the computation when the solution is found. For physical implementations these
interfaces include magnetic fields, chemo-attractant gradients, light projection (for
example, to project input patterns onto the chemical substrates) and video camera
systems (to sample the current configuration). The interaction between the unconven-
tional substrate and the external system may be very simple, such as the projection
of a simple input stimulus pattern, followed by a recording sample of the final state
of the computing medium. Alternately, the interaction may be more complex, such
as a real-time closed-loop feedback system where the current state of the physical
computing medium is sampled, interrogated by a classical computing device and
fed back to the substrate. A good example of this more complex integration is the
method by Aono and colleagues to control the migration of Physarum plasmodium
within a stellate chamber, aided by video recording equipment and video projection
equipment. Control of input illumination patterns (and thus control of the mate-
rial substrate) was effected by a Hopfield-type algorithm running on a standard PC
architecture (see [76] for details).

In the specific case of themulti-agent model of slimemould, the computingmech-
anism can be specified generically in the following scheme (specific implementa-
tions and differences will be described in later sections). The multi-agent population
resides on a 2D diffusive lattice and the movement of each particle is indirectly cou-
pled to their neighbours by deposition and sensing of chemo-attractant within the
diffusive lattice. These interactions generate the emergent network formation and
minimisation behaviour. This computing substrate is ‘programmed’ by inoculating
the population at specific locations within the substrate, or as a particular pattern
(Fig. 4). The evolution of the material is then constrained by placement of external
spatial stimuli (chemo-attractant gradients, chemo-repellent gradients and simulated
light irradiation). The computation proceeds with the morphological adaptation of
the virtual material (constrained, to some degree, by the stimuli) and the final result
is recorded as the stable pattern which the virtual material eventually adopts.

6 Non-coupled Collective Approach: Path Planning
with Passive Particle Movement

For the first exploration of collective agent behaviour for path planning problems
we examine the case where agents sense the concentration in the lattice but do not
directly modify the lattice contents. This may be interpreted as a passive response by
the agent population to the diffusive lattice. Initial experiments comprised a simple
path choice between two channels with different lengths. The arena (Fig. 5a) contains
a diffusion source (left circle) and the particles must be confined to start within a
particular area of the path (right rectangle). The light grey area represents the area
wherewaves are free to propagate and the surrounding darker grey areas are obstacles
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Fig. 4 Schematic illustration of unconventional computing approach using multi-agent model of
slime mould

at which all waves will be annihilated.When particles reach the diffusion source they
are immediately transported back to the initial start position area.

Figure5b shows the partial propagation of the wavefront along the labyrinth. The
wave is initiated at the source on the left side of the figure and splitswhen it encounters
a junction, traversing both paths in parallel. Because the waves move at a constant
velocity, the wavefront traversing the lower (shorter) path moves further along the
labyrinth than the wave travelling the upper path. Before the wave has completed
the labyrinth there is a period of initial confusion in the population (since there is
no chemo-tactic path to follow), and random movement ensues with particles taking
both the upper and lower path (Fig. 5c). Shortly afterwards the wave has completed
its traversal (Fig. 5d) and the lower wave, arriving at the final junction first, travels
the remaining distance to the particle source. When the two separate wave fronts
meet, the particles choose the shorter path (Fig. 5e) because the wavefront travelling
along the shorter path arrives at the agent source earlier than the wavefront from the
longer path. The historical emergent trail record left behind by the particles (Fig. 5f)
corresponds to the shortest path through the simple labyrinth.

Computation by diffusive propagation can be extended to more complex envi-
ronments, as shown in Fig. 6. The wavefront is initiated at the exit (circled) and
propagates backwards throughout the maze in parallel (Fig. 6).

When the wavefront reaches the particle start area (rectangle), the particles can
then follow the path of strongest chemo-attractant and identify the shortest path
through the maze (Fig. 7) by the historical record of the collective particle move-
ment trails. Although the diffusion is a parallel process (for example, at branching
points in the maze both branches are propagated simultaneously), the time taken for
the wavefront to propagate through the maze is dependent on the total length (and
tortuosity) of the maze.
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Fig. 5 Shortest path solution in a minimal complexity path choice problem. aArena shape showing
diffusion source (circle) and agent inoculation site (rectangle),bwavefront emanating fromdiffusion
source, c initially random particle movement, d completion of diffusive propagation with wavefront
collision point marked in blue, e agents follow highest concentration of attractant, f historical record
of shortest path by agent population

6.1 Dynamical Response to Changing Problems

The particle population is also able to dynamically track changes to the environment
without having to restart the algorithm. The iterative nature of the framework ensures
that the population is collectively able to maintain a record of the shortest path via
the trail map. An illustration of the response time-line to changes in the environment
is shown in Fig. 8. The wave front is initiated at the source and begins to propagate
through the maze. Particle movement is random at this point (Fig. 8a, 100 system
steps). The particles follow the wavefront path and finds the path through the maze
(Fig. 8b, 920 steps). The problem configuration is replaced with a longer, more com-
plex maze (Fig. 8c, 1100 steps). There is population confusion as the new wavefront
competes with the older collapsing front (Fig. 8d, 1500 steps). The new wavefront
completes its traversal through the entire maze and particles follow the new path
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Fig. 6 Initiation and propagation of wavefront through a maze

(although the path is longer, the older and shorter path is no longer available). The
particle positions indicate the new path but remnants of the older path persist in the
trail pattern (Fig. 8e, 2100 steps). The trail erosion selection pressure ensures only
the new path persists and the old path is forgotten (Fig. 8f, 4000 steps).

6.2 Quantitative Field Propagation as a Cost Assignment

One significant difference between the particle based approach and chemical imple-
mentations of RD computing is that in the particle approach, the wave propagation
has quantitative as well as qualitative properties. In chemical approaches only the
timing of the wave propagation is used for the computation, the wavefront which
arrives first is the winner and the waves are annihilated on contact. In the particle
based approach the amount of diffusing chemo-attractant also has an influence on
particle path choice. In labyrinths with identical path widths, this property is not
taken into consideration and only the timing of propagation is utilised. The quanti-
tative aspect of the front propagation can be harnessed and exploited to assign path
costs, as illustrated in Fig. 9.
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(a) arena 1 (b) wavefront (c) particles (d) trail

(e) arena 2 (f) wavefront (g) particles (h) trail

(i) arena 3 (j) wavefront (k) particles (l) trail

Fig. 7 Shortest path planning by non-coupled method in more complex environments. a, e, i
Experimental arenas, b, f, j wavefront pattern, c, g, k particle paths, d, h, l collective historical
record of particle paths through maze

Figure9a shows a labyrinth with two possible paths, the right (narrow) side of
which is considerably shorter. As befitting the shorter length, the wavefront on the
right side arrives first at the particle start location (Fig. 9) and would be expected
to be traversed by the particles. The narrow width of the right side path, however,
acts to constrict the amount of chemo-attractant flowing through that path and the
annihilation point where the two waves met is shifted to the right hand side by the
strong competition of the flow in the longer left channel (Fig. 9c, circled region). For
this reason the particles follow the path of greater flow and choose the longer side
(Fig. 9d).When the width of the right side channel is changed to match that of the left
side (Fig. 9e), the greater flow in the right side shifts the annihilation point back to
the left (Fig. 9g, circled) and the particles preferentially choose the shorter right side
path (Fig. 9h). When a simple erosion operator is used on the particle movement trail
map the new path choice replaces the previous path choice over-time, in response
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(a) Maze (top), wavefront
(bottom)

(b) wavefront and trail (c) new maze and collapsing
front

(d) competing fronts and
paths

(e) new path selection (f) final path

Fig. 8 Evolution of diffusion field and shortest path trail pattern in a changing environment
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Fig. 9 Utilising the quantitative properties of front propagation to assign path costs via different
channel widths

to path width changes (Fig. 9i, j). The width of the channels may therefore be used
to assign additional costs to the problem routes, as with real life problem instances
where, for example, a shorter path may be subject to more congestion.

7 Coupled Collective Approach: Path Planning with
Cohesive Particle Collectives

The examples provided so far, using passive particle sensing of concentration gradi-
ents, reproduce the functionality of reaction-diffusion computing. In terms of slime
mould behaviour, the approach approximates the foraging behaviour of Physarum.
To replicate the adaptation behaviour ofPhysarumwe exploit the collective cohesion
property of the population when the particles modulate the concentration gradients.
Exploitation of collective cohesion effects has been used to approximate Convex and
Concave Hulls [77], combinatorial optimisation [78], spline curves [79] and the den-
sity classification problem [80]. For path planning a general approach was devised in
[81] whereby a large population of the virtual plasmodium was inoculated within a
lattice whose boundaries took the shape of a maze or robotic arena. Chemo-attractant
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was projected into the lattice at the desired start and end locations and the population
size was reduced. The model plasmodium adapted its shape automatically as the
population size reduced, conforming to the boundaries of the arena and forming a
path between the start and end locations.

7.1 Maze Solution by Morphological Adaptation

Solution of a maze was the initial experimental finding which attracted the attention
of the scientific community to the computational behaviour of Physarum [6, 82,
83]. The plasmodium solves the maze by morphological adaptation of its transport
network after the plasmodium has completely covered the maze. It should be noted
that the plasmodium network is only an approximation of the shortest path, and in
the majority of runs with the living organism variants of the shortest path were found.
The representation of the problem (initialising the plasmodium to completely cover
all paths, then retracting redundant and longer veins) is also different to classical
approaches to maze solving which typically search without knowing the complete
maze configuration in advance, using a combination of depth and breath searching
[84].

To assess the behaviour of the model plasmodium on maze solving a large virtual
plasmodium was placed to completely cover all paths in a maze (Fig. 10a, an ana-
logue of the original experimental design in [82]). The size of the virtual plasmodium
was reduced over time using the growth and adaptation behaviour to maintain con-
nectivity, and retraction of pseudopodia from dead-ends was observed (Fig. 10b–e).
Unlike the real organism, however, all possible paths connecting the start to exit
persisted. Attempts to ‘force’ the virtual plasmodium to choose the shorter of the
paths were performed by removing particles selected at random. This resulted in the
plasmodium shrinking to give thinner paths until connectivity was broken. However
this method did not guarantee that the shortest path through the maze would persist.
Gunji noted that protoplasmic flux in the Physarum plasmodium is not as idealised
as that represented in the mathematical model by Tero et al. [85], noting that actual
flow within the plasmodium is irregular, redundant and partially dependent on the
shape of the organism itself [86].

How can the shape of the maze affect flux within the virtual plasmodium? The
shape of the maze walls affect the tortuosity of the paths and evolution of the vir-
tual plasmodium tends to enhance flux in paths where changes in direction are less
frequent, thus favouring ‘easier’ as well as shorter paths. This may be partly due
to the fact that the virtual plasmodium is not anchored firmly to the substratum, as
in the case of the real plasmodium. The virtual plasmodium attempts to minimise
the path choices by shifting the positions of the Steiner points. In an environment
without obstacles the Steiner points are free to move and eventually competing paths
merge to form a single path. In the maze, however, the walls provide obstacles to free
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Fig. 10 Approximation of maze problem by virtual plasmodium. a population inoculated in entire
habitable region of maze and nutrients (blue circles) projected at start and exit points, b–e retraction
of virtual pseudopodia, f persistence of path combinations connecting start and exit, g regions of
competing path flux

movement of the Steiner points. The competing paths, indicated by their respective
Steiner points are indicated in Fig. 10g and separated by bounded regions. In the
case of region ‘C’ the two paths above and below the point are effectively anchored,
whereas the pseudopodium on the left is not anchored and shrinks back into the
main vertical flow. The natural shrinkage direction of the Steiner points in regions
‘A’ and ‘B’ is indicated but movement in these directions is prevented by the maze
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walls. As diffusion does not crossmazewalls (chemo-attractant is removed fromwall
regions) the walls ‘pinch’ the path thickness in these areas, reducing the attraction
for paths which make significant contact with wall regions. Reducing the population
size shrinks the width of the network paths but selection of shorter paths cannot be
guaranteed and ‘easier’ (as opposed to shorter) paths were often selected. Reducing
the frequency of chemo-attractant diffusion (for example, to every 50 scheduler steps
instead of every step) mimicked a stronger adhesion of the path to the substratum
whilst leaving individual particles free to decide path choices but did not reliably
increase the path selection.

7.2 Collective Path Planning with Obstacle Avoidance

A number of variations on the cohesive adaptation approach are possible. In many
applications a collision-free path may be required, for example if the desired path has
to avoid close proximity towalls. To achieve thismethodbymorphological adaptation
we represented the walls of the arena as repellent sources (repellent sources project
negatively weighted values into the diffusive lattice). We used the same arena as in
earlier experiments, but with different start and end points (Fig. 11a, b). As the ‘blob’
of virtual plasmodium shrunk it formed the shortest path (following the walls) when
repellent diffusion was not activated (Fig. 11c–f). When repellent diffusion from the
arena walls was activated the virtual plasmodium still maintained its connectivity
to the start and end points but also avoided the diffusing repellent values projecting
from the walls of the arena (Fig. 11g). Further increasing the concentration of the
repellent source increased the distance of the path from the walls (Fig. 11h).

To ensure only a single path is generated we devised a two-part repulsion mecha-
nism. The first part of themechanism occurs by initialising the blob to cover the entire
arena (including the obstacles). This part in isolation would not solve the problem
of multiple paths, however: if the obstacles repelled the blob immediately then the
virtual plasmodium would simply flee the obstacle regions from all directions and
multiple paths would still be retained. The second part of the mechanism ensures that
only a single path is retained. The shrinkage process is performed more slowly and
we generate repellent fields only from obstacles (more specifically, exposed frag-
ments of large obstacles) that have been partially uncovered by the shrinkage of the
blob.

The mass of the blob is thus shifted away from obstacles by their emergent repul-
sion field. Because the blob shrinks slowly inwards from the outside of the arena
obstacles are slowly uncovered and the repulsion field further pushes the blob inwards
until a single path connecting the source attractants is formed. The shrinkage and
repulsion mechanism is illustrated in Fig. 12 where the arena (including obstacles) is
completely covered by a large mass of particles comprising the virtual plasmodium
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(a) t=1 (b) t=1

(c) t=146 (d) t=506

(e) t=2546 (f) t=4579

(g) t=5946 (h) t=9376

Fig. 11 Approximation of collision-free shortest path by morphological adaptation and repulsion.
a 2D Arena defined by borders (grey), habitable regions (black) and start and end points (white), b
initialisation of virtual plasmodium in habitable region, c–f shrinkage of blob causes adaptation of
shape and attraction to points, forming the shortest path between the points, g repulsion field emitted
from arena walls causes virtual plasmodium to avoid wall regions, forming a collision-free path,
h increasing concentration of repulsion field causes further adaptation of the virtual plasmodium
away from walls

(Fig. 12b). The blob shrinks inwards as the periphery of the blob is drawn inwards
(Fig. 12c). When an obstacle is partially uncovered repellent is projected into the
diffusive lattice at exposed obstacle fragments (Fig. 12d, arrowed). The blob at these
regions is repelled and moves away from the exposed obstacle fragment. The shrink-
age process continues and when a larger obstacle is partially exposed the repel-
lent projected into the lattice again causes the blob to move away from this region
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(a) t=1 (b) t=90 (c) t=1560 (d) t=4350

(e) t=5730 (f) t=7050 (g) t=8240 (h) t=17000

Fig. 12 Mechanism of shrinkage combined with repulsion at exposed obstacle fragments generates
a single path. a Arena with habitable areas (black), inhabitable areas (dark grey), obstacles light
grey and path source locations (white). b Blob initialised on entire arena, including obstacles, c
gradual shrinkage of blob, d exposure of obstacle fragment generates repellent field at exposed areas
(arrow), e blob moves away from repellent field of obstacle, f lower obstacle is exposed causing
repellent field at these locations (arrow), g further exposure causes migration of blob away from
these regions (arrow), h final single path connects source points whilst avoiding obstacles

(Fig. 12f, arrowed). Further exposure of this large lower obstacle causes the blob to
continue to be repelled away (Fig. 12g) until eventually only a single path remains
which connects the source attractants and threads between the obstacles (Fig. 12h).

In the presence of a large number of obstacles, the repulsion field emanating from
newly-exposed obstacles acts to deform the shrinkage of the virtual plasmodium.
The mass of particles is deformed both by the attractant stimuli from the start and
end points of the path (Fig. 13d) and the gradual exposure of the obstacles as the
blob shrinks. Figure13 shows the deformation of the blob and also the changing
concentration gradient field as the shrinkage continues, until only a collision-free
path between the obstacles remains.
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(a) t=330 (b) t=4410 (c) t=8330 (d) t=12630

(e) t=18810 (f) t=35030

(g) field t=330 (h) field t=4410 (i) field t=8330 (j) field t=12630

(k) field t=18810 (l) field t=35030

Fig. 13 Shrinkage and exposed repulsion method in complex obstacle field. (a–f) Uniform shrink-
age of blob is distorted by attraction to start and end stimuli and repulsion from exposed obstacles,
(g–l) visualisation of gradient field showing attractants at start and end stimuli (bright spots), blob
(mid-grey mass) and repulsion field from exposed obstacles (dark circles). Greyscale gradient field
images transformed by gamma correction (γ = 0.6) to improve clarity



Slime Mould Inspired Models for Path Planning … 315

8 The Structural Approach: Topology Optimisation

A topology optimisation in continuum mechanics aims to find a layout of a material
within a given design space that meets specific optimum performance targets [87–
89]. The topology optimisation is applied to solve a wide range of problems [90], e.g.
maximisation of heat removal for a given amount of heat conducting material [91],
maximisation of fluid flow within channels [92], maximisation of structure stiffness
and strength [90], development of meta-materials satisfying specified mechanical
and thermal physical properties [90], optimum layout of plies in composite laminates
[93], the design of an inverse acoustic horn [90], optimisation of photonics-crystal
band-gap structures [94], construction of logical gates [95].

A standard method of the topology optimisation employs a modelling material
layout that uses a density of material, ρ, varying from 0 (absence of a material) to 1
(presence of a material), where a dependence of structural properties on the density
of material is described by a power law. This method is known as Solid Isotropic
Material with Penalisation (SIMP) [96]. An optimisation of the objective function
consists in finding an optimum distribution of ρ: minρ f (ρ).

The problem can be solved in various numerical schemes, including the sequential
quadratic programming (SQP) [97], the method of moving asymptotes (MMA) [98],
and the optimality criterion (OC) method [90]. The topology optimisation problem
can be replaced with a problem of finding a stationary point of an Ordinary Dif-
ferential Equation (ODE) [18]. Considering density constraints on ρ, the right term
of ODE is equal to a projection of the negative gradient of the objective function.
Such optimisation approach is widely used in the theory of projected dynamical
systems [99]. Numerical schemes of topology optimisation solution can be found
using simple explicit Euler algorithm. As shown in [100] iterative schemes match
the algorithms used in bone remodelling literature [101].

In this work the topology optimisation problem as applied to heat conduction
problems [102]. Consider a region in the space Ω with a boundary Γ = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅, separated for setting the Dirichlet (D) and the Neumann (N) boundary
conditions. For the region Ω we consider the steady-state heat equation given in:

∇ · k∇T + f = 0 in Ω (1)

T = T0 on ΓD (2)

(k∇T ) · n = Q0 on ΓN (3)

where T is a temperature, k is a heat conduction coefficient, f is a volumetric heat
source, and n is an outward unit normal vector. At the boundary ΓD a temperature
T = T0 is specified in the form of Dirichlet boundary conditions, and at the boundary
ΓN of the heat flux (k∇T ) · n is specified using Neumann boundary conditions. The
condition (k∇T ) · n = 0 specified at the part of ΓN means a thermal insulation
(adiabatic conditions).
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When stating topology optimisation problem for a solution of the heat conduction
problems it is necessary to find an optimal distribution for a limited volume of
conductivematerial in order tominimise heat release,which corresponds to designing
a thermal conductive device. It is necessary tofind anoptimumdistributionofmaterial
density ρ within a given area Ω in order to minimise the cost function:

Minimize C(ρ) =
∫

Ω

∇T · (k(ρ)∇T ) (4)

Subject to
∫

Ω

ρ < M (5)

In accordance with the SIMP method the region being studied can be divided into
finite elements with varying material density ρi assigned to each finite element i . A
relationship between the heat conduction coefficient and the density of material is
described by a power law as follows:

ki = kmin + (kmax − kmin)ρ
p
i , ρi ∈ �0, 1	 (6)

where ki is a value of heat conduction coefficient at the i-th finite element, ρi is a
density value at the i-th element, kmax is a heat conduction coefficient at ρi = 1, kmin

is a heat conduction coefficient at ρi = 0, p is a penalisation power (p > 1).
In order to solve the problem (1)–(6) we apply the following techniques used in

the dynamic systems modelling. Assume that ρ depends on a time-like variable t .
Let us consider the following differential equation to determine density in i-th finite
element, ρi , when solving the problem stated in (1)–(6):

ρ̇i = λ

(
Ci (ρi )

ρi Vi
− μ)

)
Ci (ρi ) =

∫
Ωi

∇T · (ki (ρ)∇T )dΩ (7)

where dot above denotes the derivative with respect to t , Ωi is a domain of i-th finite
element, Vi is a volume of i-th element, λ andμ are positive constants characterising
behaviour of the model. This equation can be obtained by applying methods of the
projected dynamical systems [100] or bone remodelling methods [101, 103, 104].

For numerical solution of Eq. (8) a projected Euler method is used [99]. This gives
an iterative formulation for the solution finding ρi [18]:

ρn+1
i = ρn

i + q[Ci (ρ
n
i )

ρn
i Vi

− μn] (8)

where q = λΔt , ρn+1
i and ρn

i are the numerical approximations of ρi (t + Δt) and

ρi (t), μn =
∑

i Ci (ρ
n
i )∑

i

∫
Ωi

ρevdΩ
, ρev is a specified mean value of density.

We consider a modification of Eq. (8):
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ρn+1
i =

{
ρn
i + θ if Ci (ρ

n
i )

ρn
i Vi

− μn ≥ 0,

ρn
i − θ if Ci (ρ

n
i )

ρn
i Vi

− μn < 0,
(9)

where θ is a positive constant.
Then we calculate a value of ρn+1

i using Eq. (9) and project ρi onto a set of
constraints:

ρn+1
i =

⎧⎪⎨
⎪⎩

ρmax if ρn+1
i > ρmax,

ρn+1
1 if ρmin ≤ ρn+1

i ≤ ρmax,

ρmin if ρn+1
i < ρmin

(10)

where ρmin is a specified minimum value of ρi and ρmax is a specified maximum
value of ρi . A minimum value is taken as the initial value of density for all finite
elements: ρ0

i = ρmin.
The model can be described by the following parameters: ρmin and ρmax are mini-

mum and maximum values of ρi , ρev is a mean value of density, θ is an increment of
ρi at each time step, p is a penalisation power, kmax is a heat conduction coefficient
at ρi = 1, kmin is a heat conduction coefficient at ρi = 0.

The algorithm above is implemented in ABAQUS [105] using the modification
of the structural topology optimisation plug-in, UOPTI, developed previously [106].

9 Topology Optimisation: Results

Calculations were performed using topology optimisation method for the finite ele-
ment models of test problems (Fig. 14). The length scale of the models is 100 units.
Square-shaped linear hexahedral plane elements of DC2D4 type (4-node, linear, see
[105]) with a half unit length edgeswere used in calculations. The elements used have
four integration points. The cost function value is updated for each finite element as
a mean value of integration points for an element under consideration [105].

All parameters but ρev are the same for all simulations: ρmax = 1, ρmin = 0.0001,
θ = 0.01, p = 2, Kmax = 1, Kmin = 0.01. For each test case, calculations were car-
ried out with two values of the mean value of density ρev: ρev1 = 0.05, ρev2 = 0.1.

Following boundary conditions is specified. Neumann boundary conditions are
considered. Positive heat flux QInput = 1 is set at the entrance of the maze. Negative
heat flux QOutput = −1 is set at the exit of the maze. Adiabatic condition is set at
the other boundaries.

Figures in this section show density distribution of the conductive material. The
maximum values of ρ are shown by red colour, the minimum values by blue colour.

Figure15 shows results of shortest path planning by topology optimisation
approach for the minimal maze.

Figure16 shows results of shortest path planning by topology optimisation
approach for the complex maze.
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Fig. 14 Finite element models of test problems for topology optimisation. a Minimal maze; b
complex maze; c arena with obstacles

Fig. 15 Shortest path planning by topology optimisation approach for the minimal maze. a The
mean value of density ρev1 = 0.05; b the mean value of density ρev2 = 0.1

Fig. 16 Shortest path planning by topology optimisation approach for the complex maze. a The
mean value of density ρev1 = 0.05; b the mean value of density ρev2 = 0.1
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(a) t=60 (b) t=100

(c) t=120 (d) t=140

(e) t=150 (f) t=250

Fig. 17 Intermediate results of shortest path planning by topology optimisation approach for the
complex maze with the mean value of density ρev1 = 0.05
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Fig. 18 Shortest path planning by topology optimisation approach for three variants of the complex
maze. a, b, c The mean value of density ρev1 = 0.05

Fig. 19 Shortest path planning by topology optimisation approach for the arena with obstacles. a
The mean value of density ρev1 = 0.05; b the mean value of density ρev2 = 0.1

Figure17 shows intermediate results of shortest path planning by topology opti-
misation approach for the complex maze with the mean value of density ρev1 = 0.05.
Figure18 shows results of shortest path planning by topology optimisation approach
for three variants of the complex maze with the mean value of density ρev1 = 0.05.

Figure19 shows results of shortest path planning by topology optimisation
approach for arena with obstacles.

Figures15, 16 and 19 show the results for two values of the mean value of density
ρev: ρev1 = 0.05, ρev2 = 0.1. One can see the formation of two paths for the mean
value of density ρev2 = 0.1. On the other hand, for the mean value of density ρev2 =
0.05 the optimal single path is observed. The Fig. 17 shows the selection of the
optimal path among the two possible paths for the complex maze with the mean
value of density ρev1 = 0.05. The simulation results show an interesting fact that for
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a large amount of conductive material (ρev2 = 0.1) algorithm indicates all possible
paths. However, for a small amount of conductive material (ρev2 = 0.05) algorithm
indicates the optimal single path only. Supplementary videos can be found here [107].

10 Conclusions

We have demonstrated how unconventional computation of path planning problems
may be performed directly in 2D space by morphological adaptation in a virtual
material inspired by the adaptation of slime mould P. polycephalum. Unlike previ-
ous implementations of path planning problems in chemical substrates the method
does not rely on a two-stage computation (one stage to perform the computation,
another stage to highlight the path). The method computes a simple path with only
two attractant sources. Multiple paths were represented by having more than two
attractant sources and a single path was selected between two of these sources by
removal of redundant sources. Collision-free paths were discovered by the simul-
taneous addition of repellent sources at arena boundaries. Obstacle avoiding paths
were discovered using a mechanism whereby obstacles were represented by a grad-
ual exposure of repellent sources. The contribution of this method is in the simplicity
of the approach: the behaviour of the shrinking blob is distributed within the material
itself and emerges from the simple and local interactions between the particles which
comprise the blob. The path finding process is governed, to a large extent, by the
spatial configuration of the arena and the obstacles within the arena. Since the blob
initially occupies all of the space within the arena the path finding method may be
described as subtractive—all redundant or inefficient paths are removed during the
shrinkage process. This is achieved by withdrawal of pseudopodia (for example from
dead-ends in the arena) and also by displacement of the blob by the repellent fields
emitted from the gradually exposed obstacles. Unlike chemical-based approaches
the method is not initiated at either the path start or end points but is initialised by
shrinkage from the arena boundary. Diffusion from the source points still occurs
but is merely used to anchor the blob material at these points and does not require
propagation of the diffusion front throughout the entire arena. Likewise, repellent
diffusion occurs from the boundary (for collision-free paths) and from obstacles (for
obstacle-avoiding paths) but this diffusion also is only local and does not require
propagation throughout the entire arena.

We also implemented path planning using topology optimisation of conductive
material when solving stationary problems of heat conduction. In the simplest case
of two sites in a plane with given heat fluxes the conductive material is distributed
between the sites in a straight line. For the complex structure of the maze the con-
ductive material is distributed between the sites along the optimal single path. The
algorithm of optimal layout of the conductive material is similar to a biological pro-
cess of bone remodelling. The algorithm proposed can be applied to a wide range
of biological networks, including neural networks, vascular networks, slime mould,
plant routes and fungi mycelium. These networks will be the subject of further
studies.
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Both collective and structural approaches exploit propagation of information
within a ‘physical’ medium, albeit by very different methods (namely diffusion
and emergent cohesion in the agent approach, and numerical calculation of heat
flux within the structural approach). They demonstrate the efficiency of ‘outsourc-
ing’ much of the computation to physical processes which also appears to be effi-
ciently exploited by the Physarum plasmodium. Because slime mould is constantly
remodelling its body plan in response to changing environmental stimuli, the two
approaches described hereinmay also be amenable to tackling optimisation problems
which are dynamic in their nature. In addition to the purely topological reorganisa-
tion, which is well studied in networks formed by Physarum and its models, we
suggest that the two approaches described in this Chapter may be the bases of future
explorations of slime-mould mechanics.
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Supplementary Materials

Topology Optimisation Approach

• Minimal maze, the mean value of density ρev1 = 0.05: https://youtu.be/aXaca
zRYt-8

• Minimal maze, the mean value of density ρev2 = 0.1: https://youtu.be/Lf6IeCK
wklQ

• Complex maze #1, the mean value of density ρev1 = 0.05: https://youtu.be/
LCidzk607mE

• Complex maze #1, the mean value of density ρev2 = 0.1: https://youtu.be/Fpnkzi
CmS_U

• Complex maze #2, the mean value of density ρev1 = 0.05: https://youtu.be/
3tTkCK6US_Q

• Complex maze #3, the mean value of density ρev1 = 0.05: https://youtu.be/
6qNiXgHgFq4

• Arena with obstacles, the mean value of density ρev1 = 0.05: https://youtu.be/
T4q_z_XphMQ

• Arena with obstacles, the mean value of density ρev2 = 0.1: https://youtu.be/
pevR7eNZxhw
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Physarum-Inspired Solutions to Network
Optimization Problems

Xiaoge Zhang and Chao Yan

Abstract In this chapter, we introduce a mathematical model inspired by slime
mould Physarum polycephalum, an amoeboid organism that exhibits phenome-
nal path-finding behavior. By comparing it to one of the classic shortest path
algorithms—Dijkstra algorithm, we highlight and summarize the key characteris-
tics that are unique in Physarum algorithm, namely flow continuity and adaptivity.
Due to these features, the Physarum model responses autonomously to the changes
of external environment, thereby converging to optimal solutions adaptively. Herein,
we take advantage of its superior properties and develop various models to address
several significant network optimization problems, including traffic flow assignment
and supply chain network design. By comparing its performance with the state-of-
the-art methods in terms of solution quality and running time, we demonstrate the
efficiency of the proposed algorithms.

1 Introduction

Network, as an effective tool, has been widely used to characterize a large number
of real-world systems, e.g., supply chain [1], manufacturing system [2], waterway
network [3], traffic network [4, 5], airline network [6], and subway networks [7], to
name a few. Typically, there are two basic components in a network: nodes and edges,
in which the nodes are used to represent ad hoc entities depending on the specific
context. For example, in a supply chain, a node can denote a supplier, a distribution
center, a storage center, or a demand market. Whereas, in an airline network, a node
may represent a hub airport, a destination city, or an origin city. With respect to

X. Zhang (B)
Department of Civil and Environmental Engineering, School of Engineering,
Vanderbilt University, Nashville, TN 37235, USA
e-mail: xiaoge.zhang@vanderbilt.edu; zxgcqupt@gmail.com

C. Yan
Department of Electrical Engineering and Computer Science, School of Engineering,
Vanderbilt University, Nashville, TN 37235, USA
e-mail: chao.yan@vanderbilt.edu; authoryanchao@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
A. Adamatzky (ed.), Shortest Path Solvers. From Software to Wetware,
Emergence, Complexity and Computation 32,
https://doi.org/10.1007/978-3-319-77510-4_12

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77510-4_12&domain=pdf


330 X. Zhang and C. Yan

the edges, they are employed to characterize the activities or interactions among
the entities. In particular, if there is an edge between two nodes in a transportation
network, it entails that the two cities are connected to each other. Otherwise, there
is no route between them. By representing a system using nodes and edges, we can
capture a wide variety of activities that occur among different entities. By doing so,
each given network topology corresponds to a possible system design.

Since the construction of the fundamental infrastructure systems is expensive, they
must be rigorously scrutinized for cost-effectiveness.Mathematically, these problems
can be cast as Network Design Problems (NDP) [8, 9]. Simply speaking, a network
design problem is to identify an optimal subgraph from a graph subject to feasibility
conditions [10–12]. Some well-known NDPs include traveling salesman problem
(TSP) [13], minimum spanning tree problem (MSTP) [14], the shortest path problem
(SPP) [15], the Steiner Tree Problem (STP) [16], and the bi-level network design
problem [17], etc. These formulations characterize important matters in practical
applications. For example, the traveling salesman problem is frequently encountered
bymany delivery firms, e.g., FedEx,DHL, andUPS,with the objective ofminimizing
the total fuel consumption as well as maximizing the delivery efficiency through
optimizing the route for each truck in distributing the products with the constraint
that each car must return to the distribution center after the delivery. Another instance
is the transportation network design. In recent years, the bi-level network design has
risen to be a significant model after the Braesss paradox [18] was identified. The
Braesss paradox reveals that simply adding a new edge/link to a congested road
traffic network may increase the overall journey time. From then on, the bi-level
network design framework has been formulated and received increasing attentions
over years. In this model, the passengers’ path-choosing behavior acts as the lower-
levelmodelwhile the leader’s decisionmaking in terms of adding or removing certain
edges from the traffic network plays as the upper model.

Since these problems have ubiquitous applications in practice, solving them effi-
ciently has drawn increasing attentions. In the past decades, tremendous progress has
beenmade towards finding either exact solutions or approximate solutions. The exact
methods include branch and bound algorithm [19, 20], dynamic programming [21],
and local search [22, 23], etc. The basic idea is to keep shrinking the region that con-
tains a better solution. Unfortunately, when the magnitude of the problem instance
increases, the search space grows exponentially and the time complexity for exact
solutions becomes unacceptable in practice. Such critical deficiency has prevented
the applications of these methods. Often, finding the optimal solution for a NP hard
problem is non-tractable. Since most of the network design problems are NP-Hard,
this further increases the difficulty to apply these algorithms. In recent years, there is
a growing interest in the design and analysis of bio-inspired algorithms, e.g., Particle
Swarm Optimization (PSO) [24], Genetic Algorithm (GA) [25], and Ant Colony
Optimization (ACO) [26], due to their capability of providing approximately opti-
mal solutions to complicated problems efficiently. All these methods are inspired by
the phenomenon in the natural world. These algorithms are known as population-
based optimizer: the initial individuals are generated in a probabilistic way, and they
work together in the search process, in which each individual is assigned a value to
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measure its fitness in the whole population. The individuals of good fitness are
selected from the current population to form a new generation. The same proce-
dure continues until some predefined termination conditions are satisfied. Instead of
searching the space exhaustively, these algorithms tackle the problems in a proba-
bilistic manner, by which the near-optimal solutions are identified. Compared to the
exact methods, one of the most significant properties of bio-inspired algorithms is
their outstanding running time.

Among them, Physarum model has received increasing attentions in the past
few years due to its prevailing capability in solving many practical network design
problems, such as design of wireless sensor network [28], linear transportation prob-
lem [29] and route selection of delivery problem [30]. Physarum is a large, single-
celled, amoeba-like creature. In most of its life, Physarum lives as a ‘plasmodium’,
which is a single cell that contains many nuclei. The plasmodium searches for food
bymoving along like an amoeba and sending out a network of tendrils, throughwhich
the chemical signals and nutrients are transported [31]. Physarum does not have a
brain, or even a nervous system, but nevertheless, they exhibit strong capability in
making surprisingly sophisticated decisions. For example, Physarum is able to iden-
tify the shortest path between two nodes in a maze. The maze-solving behavior is
demonstrated in Fig. 1. First, the slime mould extends its tendrils through every cor-
ner of the maze, essentially filling the entire maze (Fig. 1a). For more details, please
refer to the video here: https://www.youtube.com/watch?v=czk4xgdhdY4. Two food
sources are placed at the entrance (N1) and the exit (N2) of the maze. Then it tracks
the tendrils that do not find food and leaves behind a trail of translucent slime that acts
as external memory. Such trail enables the slime mould to recognize certain areas,
which are referred to as dead ends, in this maze. The slime mould avoids the dead
ends by decreasing the thickness of the tubes in these areas and grows exclusively
along the shortest path from the source node to the destination node of the maze, as
indicated in Fig. 1c.

In addition to identifying the shortest path in the labyrinth, Tero et al. also demon-
strated that Physarum is able to build highly efficient networks by trading off among
network cost, transport efficiency, and fault tolerance [32]. As shown in Fig. 2a, 36
food sources are placed in multiple positions to denote the geographical locations
of major cities in the Tokyo area. The Physarum first grows from Tokyo and fills
almost every corner of the available land space, as can be observed from Fig. 2b–d.
Within certain period, Physarum optimizes the network structure by concentrating
on the backbone tube network that connects the food sources, which can be seen from
Fig. 2d, e. The ultimate network formed by Physarum is shown in Fig. 2f. Afterwards,
Tero et al. compared the Physarum-formed network with the real Tokyo railway sys-
tem using three metrics, namely: network cost, transport efficiency, and network
robustness. The experiments revealed that Physarum is capable of constructing effi-
cient network with comparable efficiency, fault tolerance, and cost to the real Tokyo
railway network.

https://www.youtube.com/watch?v=czk4xgdhdY4


332 X. Zhang and C. Yan

(a) (b)

(c) (d)

Fig. 1 a–d Illustrates Physarum’s maze-solving process. a Initial state: the maze is filled by
Physarum. b Intermediate state: the backbone path is formulated to connect the two food sources.
c The path spanning the minimum length between the nutrient-containing agar blocks emerges.
d A graphical representation of the maze: the source node N1 and the sink node N2 are indicated
by solid circles and other nodes are shown by solid squares [27]

From then on, the Physarummodel has been well-studied from the computational
point of view, including route optimization [33, 34], 0–1 knapsack problem [35], net-
work optimization [36–39], and load-shedding problem [40]. In this chapter, instead
of providing a comprehensive review on the recent advances on the Physarum mod-
els, we focus on its progress and development in solving network optimization prob-
lems. Firstly, we present a generalized Physarum model, which has the capability
to handle the route optimization problem with multiple sources and destinations in
both directed and undirected networks. Secondly, we identify the principal differ-
ences between the Physarum model and other algorithms (i.e., Dijkstra algorithm,
label setting algorithm) in finding the shortest paths. Thirdly, we leverage the core
characteristics of the Physarum model to propose novel algorithms applied to dif-
ferent network optimization scenarios, where the edge weight is a function of the
flow. Important problems, such as user equilibrium and system optimum problems
in transportation networks, and supply chain network design, can be well solved.
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Fig. 2 Network formed by Physarum over time. a At t = 0, a small Physarum was placed at the
location of Tokyo and it was bounded by the Pacific coast line. b At t = 5, the Physarum expanded
from the initial food source gradually. c The Physarum spread progressively and colonized other
food sources. d The Physarum yielded a network with a high similarity to the real rail network.
e The backbone tubes interconnecting these food sources emerged. f The ultimate network formed
by the Physarum [32]

2 Physarum Model

In 2000, Nakagaki et al. [41] demonstrated that the plasmodium of the slime mould
Physarumpolycephalum approximates theminimum-length path between two points
in a given labyrinth. Before describing the maze-solving process of Physarum, we
first recall some basic properties of Physarum polycephalum. Physarum is a large
amoeba-like cell, and it consists of a dendritic network of tube-like structures. One
of the most important features in Physarum is to adapt its shape when it crawls over
a plain agar gel. If the food is placed at two different points, Physarum formulates
the pseudopodia to connect the two points in a smart manner.

Figure1 illustrates Physarum’s maze-solving process. Initially, the maze is filled
by Physarum, as illustrated in Fig. 1a. The two solid red circles, labelled as N1 and
N2, indicate two separated food sources. As can be observed, there are four candidate
routes to connect the two food sources, namely, α1, α2, β1, and β2. Figure1b demon-
strates that the backbone network only containing α1, α2, β1, and β2 is formulated
and all other tubes in the dead end degenerate. Finally, as shown in Fig. 1c, the path
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spanning the minimum length between the food sources emerges while all the other
segments disappear.

Amathematical model used to describe Physarum’s shortest path finding behavior
was developed in [27]. Here, we adopt this particular maze to illustrate this mathe-
matical model. Suppose we represent the maze by a graph, as shown in Fig. 1d, in
which two special nodes N1 and N2 are designated as the source node and sink node,
respectively. All other nodes are labeled as N3, N4, . . . etc. The edge/link between
nodes Ni and N j is Ai j . The variable Qi j is used to denote the flux through the tube
Ai j from node Ni to N j . Then the flux Qi j can be formulated as:

Qi j = Di j

Li j
(pi − p j ) (1)

where pi is the pressure at node Ni , Di j is a conductivity (or diameter) of the tube
Ai j , and Li j is its length.

According to the flow conservation law, we have that the inflow and outflow must
be balanced: ∑

∀(i, j)∈A

Qi j = 0 ( j �= 1, 2) (2)

With respect to the source node N1 and the sink node N2, the following two
equations hold: ∑

i
Qi1 + I0 = 0

∑
i
Qi2 − I0 = 0

(3)

where I0 is the flux flowing from the source node. Since the total flux is fixed
throughout the process in the experiment, thus I0 is a constant.

To model the adaptive behavior of the slime mould, we assume that the conduc-
tivity Di j changes over time according to the flux Qi j . Thus, the evolution process
of Di j (t) can be described as follows:

d

dt
Di j = y(|Qi j |) − γ Di j (4)

where γ is the decay rate of the tube. This equation implies that the conductivity
tends to vanish if there is no flux along the edge, while it is enhanced by the flux. It is
natural to assume that y is a monotonically increasing continuous function satisfying
y(0) = 0.

Then the network Poisson equation for the pressure is derived from Eqs. (1)–(3)
as follows:

∑

i

Di j

Li j
(pi − p j ) =

⎧
⎨

⎩

−1 for j = 1,
+1 for j = 2,
0 otherwise.

(5)
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By setting p2 = 0 as the basic pressure level, all pi ’s can be determined uniquely
by solving the equation system (5), and each Qi j = Di j/Li j (pi−p j ) is also obtained.

Herein, we assume that y(Qi j ) = |Qi j | because Physarum can converge to the
shortest path regardless of the initial distribution of conductivities when y

(∣∣Qi j

∣∣) =∣∣Qi j

∣∣, and γ = 1 [27]. With the flux calculated, the conductivity can be derived,
where Eq. (6) is used instead of Eq. (4), adopting the functional form y(Q) = |Q|.

Dh+1
i j − Dh

i j

δt
= |Qh

i j | − Dh+1
i j . (6)

where δt is a time mesh size and the upper index h indicates a time step.
In fact, the above equations model a dynamic evolution system, where the con-

ductivity, Di j , and flow, Qi j , are the functions of time t . The conductivity Di j evolves
according to the adaptation equation (6), where variables Qi j and pi are determined
by solving the network Poisson equation in Eq. (5) characterized by the value of
Di j and Li j at each moment. In equilibrium (Dh+1

i j = Dh
i j ), the conductivity along

each link is equal to its flow. In non-equilibrium, the conductivity, Di j , increases or
decreases if the absolute value of the flow is larger than or smaller than the conduc-
tivity, respectively.

During the evolution of the system, some tubes grow or remain while others
disappear. The system solves the shortest path problem while the conductivities of
the edges on the shortest path converge to one, and the conductivities on the edges
outside the shortest path converge to zero. In 2012, Bonifaci et al. [42, 43] proved
that the mass of Physarumwill eventually converge to the shortest N1–N2 path of the
network, independent of the structure of the network or of the initialmass distribution.

3 A Generalized Physarum Model

Several crucial issues arisewhenweexploit thePhysarummodel to tackle the network
optimization problems. Since the links in the maze are undirected, when Physarum
finds the shortest path in the maze, its tubes can explore in either orientation along
the segment. Whereas, many constraints are imposed with the traffic networks in
reality, e.g., in the transporation networks, many roads are one-way. Hence, the
first issue is how to extend the current Physarum model to handle the pathfinding
problem in general cases. Another issue is that the original model can only find
the shortest path in the network with one source node and one sink node, which is
different from the realistic scenarios. For instance, in the supply chain, there aremany
suppliers providing the homogeneous product to various demandmarkets distributed
in different locations. To address these issues, we develop a generalized Physarum
model in this section.



336 X. Zhang and C. Yan

3.1 Pathfinding in Directed Graph

One of the prevailing ways to represent the structure of a graph is the adjacency
matrix [44]. The elements of the adjacency matrix indicate whether pairs of vertices
are adjacent or not in the graph. Let G(V, E, L) be a graph, where V denotes the
set of vertices, E denotes the set of edges, and L represents the set of edge weights.
Suppose |V | = n, then its adjacency matrix can be represented as:

L =

⎡

⎢⎢⎢⎢⎢⎣

0 L12 L13 · · · L1n

L21 0 L23 · · · L2n

L31 L32 0 · · · L3n
...

...
...

. . .
...

Ln1 Ln2 Ln3 · · · 0

⎤

⎥⎥⎥⎥⎥⎦

where Li j denotes the weight along the edge (i, j). In particular, if graph G is
undirected, then its adjacency matrix is symmetrical. Thus, we have Li j = L ji , for
∀ (i, j) ∈ E . Whereas, if graph G is directed and there is no edge from node j to
node i , then we have L ji = ∞.

From this standpoint, we can represent a directed link as a bidirectional one by
using two individual variables Li j and L ji . By considering the orientation of each
edge, we update Eq. (5) as:

∑

i

(
Di j

Li j
+ Dji

L ji

) (
pi − p j

) =
⎧
⎨

⎩

−1 for j = 1
+1 for j = 2
0 otherwise.

(7)

where Di j is the conductivity of link Ai j .
If there is only one edge between node i and j , say i → j , then L ji = ∞,

Dji

L ji
= 0, and the equation degenerates to the same form as Eq. (5), and vice versa. If

the link is bidirectional, then Di j

Li j
= Dji

L ji
, and we can update Eq. (5) as:

∑

i

2 ∗ Di j

Li j

(
pi − p j

) =
⎧
⎨

⎩

−1 for j = 1
+1 for j = 2
0 otherwise.

(8)

The only difference between Eqs. (5) and (8) is the constant term 2. Since the
system evolves according to Eq. (6), the introduction of the constant term has no
effect on its convergence. According to the evolution equation (6), the convergence
condition still holds when Di j = Qi j . Since we bring in a constant term, the pressure
of each node p

′
i shrinks to half of its original value pi calculated from Eq. (5). In
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the following iterations, the flow along each link shrinks by half because Qi j =
Di j

Li j

(
p

′
i − p

′
j

)
= 1

2
Di j

Li j

(
pi − p j

)
. When the system converges, the conductivities of

the edges forming the shortest path converge to 0.5 while the conductivities of the
edges outside the shortest path converge to 0.

In addition, the Physarum model can be readily represented by an electrical net-
work. To be specific, the hydrostatic pressure pi at node i Physarum is equivalent
to the potential of the corresponding electrical network. Ri j can be modeled as
Ri j = Li j

Di j
. Let γi j be the current along the link (i, j), then we have:

γi j = Ui j

Ri j
= pi − p j

Li j

Di j

= Di j

Li j

(
pi − p j

) = Qi j (9)

in which Ui j is the potential difference between i and j . It is observed that Eq. (9)
exactly models the protoplasmic flow through the tubes.

In an electrical network, if there is a potential difference in an link (i, j) from
i to j , then an electrical current γi j will flow from i to j according to Ohm’s law.
Consider the network in Fig. 3, the shortest path from node s to node t needs to be
found. For the sake of simplicity, let the length of all the links be 1. s and t are the
source and sink nodes, respectively. There are two alternate paths to connect s with
t : s → 1 → 3 → t , and s → 2 → 4 → t . By making full use of the symmetry of
the network, we rank the pressure of each node as: ps > p1 = p2 > p3 = p4 > pt .

Suppose we add another directed link (3, 2) into the network. Since p2 > p3, the
current tends to flow from node 2 to node 3, which is opposite to the link’s direction.
To solve this problem, we implement a checking procedure to guarantee the flow
direction is consistent with the link orientation. Specifically, we record the direction
of each link. If there is a directed edge from node i to node j , and the pressure p j

at node j calculated from Eq. (8) is larger than the pressure pi at node i , the flux
tends to flow from node j to node i , which is opposite to the link’s orientation. In this
case, Qi j = Di j

Li j

(
pi − p j

)
< 0, which means the flow moves from node j to i , and

we let the flow Qi j be zero. In other words, we forbid the flow through the network
when its direction is opposite to the edge’s orientation. The general flowchart of the
algorithm is summarized in Algorithm 1.

Fig. 3 One comprehensive
example
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Algorithm 1: Physarum Algorithm for Directed Networks
Data: G = (L , s, t), where L is an adjacency matrix of graph G, s is the starting node, and t

is the ending node.
Result: The shortest path from s to t .

1 D ←− (0, 1] Q ←− 0 p ←− 0
33 while the termination condition is not met do
55 pt ← 0
67 Calculate the pressure according to equation (8)

∑

i

(
Di j

Li j
+ Dji

L ji

) (
pi − p j

) =
⎧
⎨

⎩

−1 for j = 1
+1 for j = 2
0 otherwise

8 Qi j ← Di j × (
pi − p j

)

9 if Li j �= ∞ and pi < p j then
10 Qi j = 0

11 D ← Q + D

3.2 Network Optimization with Multiple Sources
and Destinations

In a transportation network, there might be multiple source-sink pairs, whereas the
original Physarum model is limited to a network with only one source node and
one sink node. As a result, we modify Eq. (8) as follows to address the network
optimization problem with multiple sources and sinks:

∑

i

(
Di j

Li j
+ Dji

L ji

) (
pi − p j

) =
⎧
⎨

⎩

−ds,t , ∀(s, t) ∈ OD,

+ds,t , ∀(s, t) ∈ OD,

0, otherwise.
(10)

whereOD denotes the set of all OD pairs and ds,t denotes the travel demand between
the origin node s and destination node t .

Given multiple sources and sinks, the proposed Physarum algorithm chooses the
shortest path to transport the demand. Equation (10) guarantees that the flow is
transported along the shortest paths, which has already been proved by Damian et
al. [45].

4 Unique Features in Physarum Model

In this section, we identify the principal differences between Dijkstra algorithm and
Physarum algorithmwhen they find the shortest path. By doing this, we highlight the
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unique characteristics in the Physarum model and summarize the benefits brought
by such features.

4.1 Dijkstra Algorithm

Dijkstra algorithm was originally developed in 1956 by Edsger Dijkstra [46]. It is
one of the most widely used approaches for finding the shortest path in a graph. In
general, Dijkstra algorithm creates a tree of shortest paths from the starting node
to all the other nodes in the graph. Herein, we briefly describe the procedures of
Dijkstra algorithm in finding the shortest path. Let G(V, E, L) be a graph, where
V denotes the set of nodes, E represents the set of edges, and L is the set of link
weights. For a given source node s, Dijkstra algorithm initializes the distance from
all the nodes to the source node s as +∞, and for each vertex v ∈ V , we maintain
an attribute v · d, and it is the upper bound of the distance from node v to the source
node s, which is also referred to as shortest-path estimate. Then a set S is used to
keep track of the nodes whose final shortest-path weights from the source node s
have already been determined, and another set Q is used to represent the nodes that
are not visited yet. Next, the algorithm repeatedly selects the vertex u ∈ V − S with
the minimum distance from node s, add u to S, and relaxes all edges leaving u. The
general procedures of Dijkstra algorithm is summarized in Algorithm 2.

In such algorithm, v · π denotes the predecessor of node v in the shortest path,
and the function MIN-DIST denotes identifying the node in set Q that has the
minimum distance from node s. For the completeness of this chapter, we use one
example to depict the basic procedures of Dijkstra algorithm. Figure4a shows a
weighted, directed graph with seven nodes, in which s and t play as the source and
the destination nodes, respectively. The numbers along each edge indicate the weight
of that particular link, and the value above each vertex represents the label of each
node. Our goal is to find a path with the minimum total cost to connect the source
node s and the ending node t . First of all, we initialize the distance from all the nodes
to the source node as ∞ (see Fig. 4b), the set S is initialized as an empty set, as
illustrated in lines 1–5 of Algorithm 2. Next, we pick the vertex with the minimum
distance value (node s) from node s, remove it from set Q, and add it to set S. After
the vertex s is included, we examine the edges that leave from node s. The edge (s, 1)
gives a path cost of 11 so we update the distance value of node 1 as 11. Likewise, we
change the distance of node 2 from ∞ to a smaller value 8, as illustrated in Fig. 4c.

Now, among the nodes 1 and 2, node 2 has the smallest distance value. Thus, we
remove it from set Q, and add it to set S. It can be observed that the edge (2, 3) has a
weight 2, and it indicates we can get from node s to node 3 for a cost of 8+ 2 = 10.
Hence, we update the distance from node s to node 3 as 10. In a similar way, we
examine the other edges that leave node 2, and conduct the same operations. As a
result, the distance from node 1 and node 5 to node s is updated as 9 and 14 (see
Fig. 4d), respectively. The smallest value on a white vertex is node 1, so we add node
1 to the set S and remove it from the set Q as well (see Fig. 4e). In what follows,
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Algorithm 2: Dijkstra algorithm for finding the shortest path
Data: A directed graph G = (L , s, t), where L is an adjacency matrix of graph G, s is the

starting node, and t is the ending node.

Result: The shortest path from s to t .

// Initialize the distance from source node s to all the

other nodes

1: for each vertex v ∈ G.v do
2: v.d = +∞
3: v.π = NULL

4: end for
5: S = �

6: Q = G.V

// Relaxtion

7: while Q �= � do
8: u = MIN-DIST (Q)

9: S = S ∪ u

10: for each vertex v ∈ G.ad j [u] do
11: if v.d > u.d + L(u, v) then
12: v.d = u.d + L(u, v)

13: v.π = u

14: end if
15: end for
16: end while

we re-examine the distance values at the unvisited neighbor of node 9. The edge
(1, 3) has weight 6, and we can get node 3 with a cost of 9 + 6 = 15, but it is
more than the current shortest-path estimate 10. Thus, we do not update node 3’s
shortest-path estimate in this case. The other edge (1, 4) has weight 5, and we can
get node 4 from node s with a cost of 9 + 5 = 14, which is less than its current
shortest-path estimate ∞. Therefore, the shortest-path estimate of node 4 is updated
(see Fig. 4e). Now, the minimum distance occurs at vertex 3. As a result, we remove
it from set Q and add it into set S. Likewise, we check the links that leave node 3, and
update the shortest-path estimates of adjacent nodes (node 4 and node t) as 12 and 18,
respectively. Afterwards, node 12 becomes the node with minimum total weight, and
it is removed from set Q and added into set S (see Fig. 4g). But it does not change the
shortest-path estimates of the node in set Q. Eventually, node t is removed from set
Q and added into set S (see Fig. 4h), and Dijkstra algorithm terminates because the
queue Q is empty. The found shortest path from node s to node t is s → 2 → 3 → t .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 The execution of Dijkstra algorithm. The source node s is the leftmost vertex. The shortest-
path estimates appear within the vertices. The black vertices are in the set S, and the white vertices
are in the set Q. a An illustrative example. b The network state before the first iteration of while
loop of lines 7–16 in Algorithm 2. c–h The network state after each successive iteration of the while
loop

4.2 Physarum Algorithm

As indicated in Algorithm 1, the first step in Physarum algorithm is to initialize all
the parameters, including the conductivity D, the link flow Q, and the node pressure
p. The second step is to derive the node pressure from the network flow conservation
equation (10). Afterwards, the flow along each link is updated according to Eq. (1).
Once the flow is obtained, the conductivity along each edge in the next iteration is
calculated based on Eq. (6). The process continues until the termination condition
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Fig. 5 An example illustrating Physarum model’s shortest path finding process

is satisfied. In this chapter, when the difference of the conductivity along each link
between two consecutive iterations is less than a prescribed threshold (10−3), the
algorithmhalts. Figure5 demonstrates the process of Physarum in finding the shortest
path from node s to node t for the directed graph shown in Fig. 4a. It can be seen that
the conductivity along all the links is initialized as the same value. With the increase
of iterations, the conductivity of certain links converges to 1 while the conductivity
along all the other links degenerates to zero. The links with conductivity equal to
one form the shortest path from the source node s to the destination node t , which is
s → 2 → 3 → t .

4.3 Primary Differences

Obviously, the path found by Physarum algorithm is consistentwith the one identified
by the Dijkstra algorithm. However, there are huge differences in the procedures
of the two algorithms in finding the shortest path. First of all, Dijkstra algorithm
approaches the shortest path by updating the shortest-path estimate. During each
iteration, Dijkstra algorithm adds one vertex to the set S and updates the shortest-
path estimate to the latest. The same process continues until all the nodes are added
to the set S. Thus, Dijkstra algorithm needs to maintain the set Q and S to keep
track of which node is visited, which one is not. Whereas, Physarum algorithm does
not maintain the same data structure that is used in Dijkstra algorithm, i.e., set S
and Q, and the shortest-path estimate. In contrast, Physarum algorithm employs the
network Poisson equation (see Eq. (8)) as a central unit to determine the pressure
of each node with the consideration of link cost and conductivity, and the computed
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node pressure are then used to calculate the link flow in the next iteration. Another
key underlyingmechanism in themodel is the positive feedback expressed in Eq. (6):
larger conductivity results in larger flux, and this in turn increases the conductivity.
When the above two mechanisms are combined together, it makes the Physarum
model to converge to the shortest path, as proved in Ref. [42].

Secondly, the different underlying mechanisms in the two algorithms result in
totally different pathfinding process. As can be seen from Fig. 4, the shortest path
finding in Dijkstra algorithm can be seen as a discrete process, while in Physarum
algorithm, the search process for the shortest path is continuous, as can be observed
from Fig. 5. The continuous nature in the Physarum algorithm equips the algorithm
with some significant advantages over the Dijkstra algorithm. Specifically, the Dijk-
stra algorithm performs the optimization in a discrete manner by iterating over all
the nodes one by one. When the costs on some links related to the visited nodes
happen to change, the Dijkstra algorithm needs to revisit those nodes and reconstruct
the shortest path for the nodes affected by such a change. Moreover, in the Dijk-
stra algorithm, each link is only associated with one criterion—length—and there
is no equivalent attribute like ‘flow’ in the Physarum model reacting to the change
of the link cost. As a result, many classical algorithms for the traffic equilibrium
problem must have two separate processes: path finding and flow shift. In contrast,
our Physarum algorithm is very straightforward; once the link cost L is updated,
with the help of Eq. (10), the flow is redistributed and reallocated dynamically in the
next iteration. Physarum algorithm is suitable for solving the network optimization
problems in dynamic environment because it can utilize the computational (or inter-
mediate) results in the previous iterations and respond to the changes by adjusting
the tube thickness (Q).

5 Traffic Assignment Problem

5.1 Problem Formulation

Consider a strongly connected networkG(V, E), whereV and E are sets of nodes and
links, respectively. LetOD be all the OD pairs in networkG, for which travel demand
ds,t is generated, where (s, t) ∈ OD. Let qs,t

p represent the path flow originated at
node s and destined to node t , then we have

∑

p∈Ps,t

qs,t
p = ds,t , ∀(s, t) ∈ OD. (11)

where Ps,t is a set of cycle-free paths connecting s with t . All path flows must be
non-negative to guarantee a meaningful solution

qs,t
p ≥ 0, ∀p ∈ Ps,t , ∀(s, t) ∈ OD. (12)
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Let fa denote the flow along the link a. Then the total flow on the link a is the
sum of all paths that include the link

fa =
∑

(s,t)∈OD

∑

p∈Ps,t

qs,t
p δs,tap , ∀a ∈ E . (13)

where δs,tap = 1 if the link a is a segment of the path p connecting s with t . Otherwise,
δs,tap = 0.

In a transportation network, each user non-cooperatively seeks to minimize their
own cost by taking the path with least perceived cost from their origin to destination.
The network is said to be in equilibrium if no user can reduce their cost by shift-
ing to other alternative routes. The traffic equilibrium assignment problem can be
mathematically formulated as:

Min z(x) = ∑
a∈E

∫ fa
0 ta (x)dx,

s.t.
fa = ∑

(s,t)∈OD

∑
p∈Ps,t

qs,t
p δs,tap , ∀a ∈ E,

∑
p∈Ps,t

qs,t
p = ds,t , ∀(s, t) ∈ OD,

qs,t
p ≥ 0, ∀p ∈ Ps,t ,∀(s, t) ∈ OD.

(14)

where z is the objective function, fa denotes the total traffic flow on link a, and
ta(x) is a cost function of link a that is convex and monotonically increasing, qs,t
represents the total traffic demand from s to t , and f s,tp denotes the flow on path p
between origin node s and destination node t .

5.2 Proposed Method

In1 the traffic network, link cost is a function of the traffic flow. Every time, when the
flow volume on a specific link changes, the link cost needs to be updated accordingly,
which in turn makes the traffic flow be redistributed in the updated network. The
process continues until the system converges to the user equilibrium.

The Physarum algorithm enjoys several nice properties when applied to the traffic
assignment problem. First of all, the network Poisson equation shown in Eq. (10)
makes the Physarum solver capable of redistributing the flow in accordance with the
updated link cost Li j . Every time the cost is updated, the Physarum solver adapts
itself to redistribute the flow in a way such that the selected paths are optimal after
the link cost is updated.

1This subsection is taken from the paper published in IEEE Transactions on Cybernetics. For more
details, please see [47].
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Since the cost function of shipping Qi j units along link (i, j) is denoted as
ti j

(
Qi j

)
, we propose the following equation to update the cost of the link (i, j):

Lh+1
i j =

Lh
i j + ti j

(
Qh+1

i j

)

2
(15)

where Qh+1
i j represents the flow along link (i, j) at the h + 1th iteration, Lh+1

i j and
Lh
i j denote the cost on the link at the h + 1th and hth iteration, respectively. The

composite cost function Lh+1
i j combines the current cost Lh

i j with the cost in the next

iteration denoted by ti j
(
Qh+1

i j

)
. The composite cost function guides the algorithm

to allocate the flow in a way that balances the cost and flow.

The cost function defined in Eq. (15) has several benefits. Specifically, ti j
(
Qh+1

i j

)

denotes the cost on link (i, j) at the h+1 iteration provided that Qh+1
i j is allocated to

link (i, j). Thus, we update the link cost Lh+1
i j in the way that combines the current

link cost Lh
i j and the future link cost ti j

(
Qh+1

i j

)
, which, in turn, affects the flow

distribution further in the next iteration according to Eq. (10). When the two costs
are the same (Lh

i j = ti j (Q
h+1
i j )), the algorithm converges.

Algorithm 3: Physarum Solver in Traffic Network Equilibrium Assignment
Problem (L , n,OD)
1: // n is the size of the network;
2: // OD is the set of all OD pairs in the network;
3: // Li j is the length of the link connecting node i with node j ;

Di j ← (0, 1] (∀i, j = 1, 2, . . . , n);
Qi j ← 0 (∀i, j = 1, 2, . . . , n);
pi ← 0 (∀i = 1, 2, . . . , n);

4: repeat
5: Calculate the pressure associated with each node according to Eq. (10)

∑

i

(
Di j

Li j
+ Dji

L ji

) (
pi − p j

) =
⎧
⎨

⎩

−ds,t , ∀(s, t) ∈ OD,

+ds,t , ∀(s, t) ∈ OD,

0, otherwise.

6: Qi j ← Di j × (
pi − p j

)/
Li j // Using Eq. (1);

7: Di j ← Qi j + Di j // Using Eq. (6)
8: Update the cost on each link;
9: for i = 1 : n do
10: for j = 1 : n do

11: Li j = Li j+ti j (Qi j )
2

12: end for
13: end for
14: until the required RGAP is met
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The general flow of the proposed algorithm is shown in Algorithm 1. There are
several possible termination criteria in Algorithm 1, such as the maximum number
of iterations is reached, flux through each tube remains unchanged, etc. The algo-
rithm described in the present paper stops when its solution to the traffic assignment
problem satisfies the required precision.

5.3 Convergence of the Proposed Method

In this section, we prove that the developed Physarum algorithm converges to the
optimal solution that minimizes the objective function (14).

Lemma 1 When the developed Physarum algorithm converges, the traveling time
Lst among any OD pair (s, t) is a constant.

Proof As indicated in Ref. [42], Dh+1
i j = Dh

i j when the Physarum algorithm con-
verges.

From Eq. (6), it holds that Dh
i j =

∣∣∣Qh
i j

∣∣∣. Thus, we have:

Dh
i j =

{
Qh

i j , if Qh
i j ≥ 0,

−Qh
i j , if Qh

i j < 0.
(16)

• If Qh
i j ≥ 0, since Di j and Li j are nonnegative variables, we derive pi ≥ p j from

Eq. (1). Besides, since Dh
i j = Qh

i j , Eq. (1) further implies Li j = pi − p j .
• If Qh

i j < 0, we have pi < p j . By substituting Dh
i j = −Qh

i j into Eq. (1), we have
Li j = p j − pi .

In summary, it holds that Li j = |pi − p j |, where pi and p j are derived from Eq.
(10). The linear system defined in Eq. (10) determines the node potential uniquely.
In other words, the potential at each node is a constant, so we have Lh+1

i j = Lh
i j when

h → ∞. Likewise, for any OD pair (s, t), Lst is a constant.

Lemma 2 When the developedPhysarumalgorithm converges, the travel time along
any link is equal to the cost derived from the cost function.

Proof From Lemma 1, we have Lh+1
i j = Lh

i j . By substituting it into Eq. (15), we

have Lh+1
i j = ti j

(
Qh+1

i j

)
when h → ∞.

Lemma 3 The optimal solution of the mathematical minimization program formu-
lated in Eq. (14) is equivalent to the user equilibrium conditions.
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Proof Sheffi [48] proved the equivalence between the equilibrium conditions and
the optimal solution to the minimization program of the traffic assignment problem
in pp. 63–66. Here, we do not repeat the proof for the sake of brevity. Thus, the
solution satisfying the equilibrium conditions is the one that minimizes the objective
function defined in Eq. (14).

Lemma 4 The objective function formulated in Eq. (14) has a unique minimum.

Proof The Hessian matrix of the objective function (14) can be calculated by using
a representative term of the matrix. The derivative is firstly computed with respect
to the flow on the m-th and n-th link, respectively.

∂z (x)

∂xm
= tm (xm) (17)

and the second derivative is:

∂2z (x)

∂xm∂xn
= ∂tm (xm)

∂xn
=

{ dtn(xn)
dxn

, for m = n,

0, otherwise.
(18)

Obviously, all the off-diagonal elements of the Hessian matrix, ∇2z (x), are zero,
and all the diagonal elements are given by dta(xa)

dxa
. Thus, we have:

∇2z (x) =

⎡

⎢⎢⎢⎢⎢⎣

dt1(x1)
dx1

0 0 · · ·
0 dt2(x2)

dx2
0 · · ·

0 0
. . . · · ·

...
...

... dta(xa)
dxa

⎤

⎥⎥⎥⎥⎥⎦
(19)

Because all entries in the diagonal are strictly positive, this matrix is positive
definite. Thus, the objective function (14) is strictly convex. In other words, the
traffic assignment problem has a unique minimum.

From Lemmas 1 and 2, it entails that all the used paths have the same cost. Thus,
the first condition of the user equilibrium is satisfied.

As indicated in Ref. [42], the Physarum model always converge to the shortest
path, and the conductivity along the edges outside the shortest path converges to
zero. Hence, there is no flow along the non-optimal paths because their traveling
time is inferior to that of the shortest paths. Thus, the second condition of the user
equilibrium is met. From Lemmas 3 and 4, we know that the solution satisfying the
two user equilibrium conditions is equivalent to the one that minimizes the program
(14). Hence, the proposed Physarum model converges to user equilibrium.
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5.4 Measure of Solution Quality

In this chapter, we use the Relative Gap (RGAP) to measure the convergence:

RGAP = 1 −
∑
s∈O

∑
t∈D

dst · pstmin

n∑
i=1

n∑
j=1

fi j · ti j
(20)

wheredst represents the travel demandbetweennode s and t , pstmin denotes the shortest
path of OD pair (s, t), fi j and ti j denote the flow and travel time, respectively, along
the link (i, j) when the algorithm terminates.

5.5 Numerical Examples

In this section, we use two examples to demonstrate the efficiency of the proposed
algorithm, and compare its performance against the Frank-Wolfe (FW) algorithm,
Conjugate Frank-Wolfe (CFW) algorithm, Bi-Conjugate Frank-Wolfe (BFW) algo-
rithm, and Gradient Projection (GP) algorithm. All the five algorithms are imple-
mented using C++. In FW, BFW, and CFW, we implement linear search to balance
the flow. All tests are performed in a Windows 7 computer with Intel Core i5-2510
CPU, 4 Core, 2.5 GHz; 4GBRAM. TheRGAP is set as 10−5.We adopt the following
cost function developed by the US Bureau of Public Roads (BPR) for all the links
[49]:

ti j = αi j

(
1 + 0.15

(
vi j

Ci j

)4
)

(21)

where ti j , αi j , vi j , and Ci j denote the travel time (cost), free-flow travel time, flow,
and capacity along link (i, j), respectively.

Example 1 The network shown in Fig. 6 is adapted from Ref. [50], which has 13
nodes, 19 links, and 10 OD pairs. The origin-destination demands, in vehicles per
hour, are shown as blow:

q1,2 = 660, q1,3 = 800, q1,10 = 800, q1,11 = 600,
q4,2 = 412.5, q4,3 = 495, q4,8 = 700, q4,9 = 300,
q4,10 = 300, q4,13 = 600.

and the link characteristics are shown in Table1.
The optimal solution found by the proposed Physarum algorithm is shown in

Fig. 7, and the result is consistent with that of the other four algorithms. From the
flow along each link indicated in Fig. 7, we can compute the travel time along each
link according to the BPR function defined in Eq. (21). With the calculated travel



Physarum-Inspired Solutions to Network Optimization Problems 349

Fig. 6 Test network 1: Nguyen-Dupuis’s 13-node network [50], the grey colored circles represent
the origins, and the blue colored circles denote the destinations

Table 1 Link characteristics for Nguyen-Dupuis’s 13-node network shown in Fig. 6 [50]

Link Free-flow
travel time
(min/trip)

Capacity
(veh/h)

Link Free-flow
travel time
(min/trip)

Capacity
(veh/h)

1 7 300 11 9 500

2 9 200 12 10 550

3 9 200 13 9 200

4 12 200 14 6 400

5 3 350 15 9 300

6 9 400 16 8 300

7 5 500 17 7 200

8 13 250 18 14 300

9 5 250 19 11 200

10 9 300

cost, we compute the travel time along the alternate paths that connect the same OD
pair. Specifically, the cost along the path 1 → 12 → 8 → 2 is 1421.1+134.1390+
20.0464 = 1575.3, and the traveling time is the same as that of the other two paths,
namely, 1 → 5 → 6 → 7 → 8 → 2, and 1 → 12 → 6 → 7 → 8 → 2. Likewise,
this also applies to the paths that connect other OD pairs. Obviously, all the used
paths connecting the same OD pair have the same travel time.

Figure8 illustrates the computational comparisons between the proposed method
and the other fourmethods. Among all the algorithms, GP consumes the least amount
of time to converge to the predefined precision, and the proposed algorithm is the
second fastest algorithm among them. Since this is a tiny example, there is no explicit
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Fig. 7 The optimal solution for the traffic assignment in test network 1
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Fig. 8 Computational effort versus accuracy in test network 1

difference in the running time of GP and the proposed algorithm. In the subsequent
examples, we will demonstrate the superiority of the proposed algorithm against GP
in searching for the equilibrium solution. Figure8 also reveals the FW algorithm’s
quick start/never-end feature. In fewer than 2 s, FW reduced the relative gap from
0.89 to 10−3, a difference of 0.899. Yet in 14 s, it could reduce RGAP further by only
9× 10−4. FW spent nearly 7 times as long to achieve less than one-hundredth of the
reduction. Besides, we also observe the zigzag pattern in the FW-based algorithms.
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Fig. 9 Test network 2: A transportation network with 25 nodes, the green colored squares represent
the origins, and the yellow colored squares denote the destinations

This happens because the search direction is perpendicular to the gradient of the
objective function when the algorithm approaches the equilibrium solution [51]. But
GP and the proposed algorithm does not have this issue, and such characteristics
make them more appropriate to address the traffic assignment problems in practical
applications.

Example 2 The network shown in Fig. 9 has 40 two-way links and ten OD pairs. The
link cost is asymmetric in this network. The nodes in squares represent the source and
sink nodes, and all the remaining 21 nodes are transshipment nodes. The numbers
along each link represent the link capacity and free flow travel time, respectively.
For example, the free flow travel time on link (1, 2) is 3.72 and the link capacity is
300. Suppose the travel demand matrix is given as:

q1,22 = 700, q1,25 = 500, q2,22 = 800, q5,24 = 600,
q5,25 = 800, q6,10 = 800, q6,24 = 2800, q11,22 = 800,
q14,22 = 800, q15,20 = 800.

Figure10 shows the comparison results for a target RGAP of 10−5. Among
FW-based algorithms, BFW demonstrates the best performance, followed by CFW.
All the FW-based algorithms suffer from the problem that the search direction is
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Fig. 10 Computational effort versus accuracy in test network 2

perpendicular to the gradient of the objective function when the level of relative
gap reaches 10−4. The proposed method runs much faster than the FW, CFW, BFW,
and GP algorithms, and it converges to the equilibrium solution in 2 s. As can be
observed, the proposed algorithm outperforms GP in searching for the equilibrium
solution. While GP takes 3.2 s to converge, the developed algorithm only costs 1.3
s to obtain the equilibrium solution. Besides, GP also shows a zigzag pattern when
the value of relative gap is less than 10−4. In contrast, the convergence curve of the
developed algorithm is very smooth and it does not suffer from such problems.

6 Supply Chain Network Design

In this section, we employ Physarum model to address a multi-criteria sustainable
supply chain network design problem.

6.1 Multi-criteria Sustainable Supply Chain Network Design
Model [52]

Consider the supply chain network shown in Fig. 11: a firm corresponding to node
1 aims at delivering the goods or products to the nodes at the very bottom which



Physarum-Inspired Solutions to Network Optimization Problems 353

Fig. 11 The supply chain
network topology

1

Firm

M1 MnM

R1 R2 RnR

D1,1 DnD,1

D1,2 DnD,2

. . .

. . .

. . .

. . .

Shipping

Distribution Center Storage

Shipping

Manufacturing at the Plants

Retail Outlets / Demand Points

correspond to the retail outlets. The links connecting the source node with the des-
tination nodes represent the activities of production, storage and transportation of
good or services. Different network topologies corresponds to different supply chain
network activities.

As shown in Fig. 11, the firm takes into consideration nM manufacturers, nD

distribution centers when nR retailers with demands dR1 , dR2 , . . . , dRnR
must be

served. The node 1 in the first layer is linked with the possible nM manufacturers,
which are represented as M1, M2, . . . , MnM . These edges in the manufacturing level
are associated with the possible distribution center nodes, which are expressed by
D1,1, D2,1, . . . , DnD ,1. These links mean the possible shipment between the manu-
facturers and the distribution centers. The links connecting D1,1, D2,1, . . . , DnD ,1

with D1,2, D2,2, . . . , DnD ,2 reflect the possible storage links. The links between
D1,2, D2,2, . . . , DnD ,2 and R1, R1, . . . , RnR denote the possible shipment links con-
necting the storage centers with the retail outlets.

Let a supply chain network be represented by a graph G(N , L), where N is a set
of nodes and L is a set of links. Each link in the network is associated with a cost
function and the cost reflects the total cost of all the specific activities in the supply
chain network, such as the transport of the product, the delivery of the product, etc.
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The cost related with link a is expressed by ĉa . A path p connecting node 1 with a
retail node shown in Fig. 11 denotes the whole activities related with manufacturing
the products, storing them and transporting them, etc. Assume wk denotes the set
of source and destination nodes (1, Rk) and Pwk represents the set of alternative
associated possible supply chain network processes joining (1, Rk). Then P means
the set of all paths joining (1, Rk) while xp denotes the flow of the product on path
p, then the following Eq. (22) must be satisfied:

∑

p∈Pwk

x p = dwk , k = 1, . . . , nR . (22)

Let fa represent the flow on link a, then the following conservation flow must be
met:

fa =
∑

p∈P

xpδap, ∀a ∈ L . (23)

Eq. (23) means that the inflow must be equal to the outflow on link a.
These flows can be grouped into the vector f . The flow on each link must be a

nonnegative number, i.e. the following Eq. (24) must be satisfied:

xp ≥ 0, ∀a ∈ L . (24)

Suppose themaximumcapacity on link a is expressed by ua,∀a ∈ L . It is required
that the actual flow on link a cannot exceed the maximum capacity on this link:

fa ≤ ua, ∀a ∈ L ,

0 ≤ ua, ∀a ∈ L .
(25)

The total cost on each link, for simplicity, is represented as a function of the flow
of the product on all the links [53–56]:

ĉa = ĉa ( f ) , ∀a ∈ L . (26)

The total investment cost of adding capacity ua on link a can be expressed as
follows:

π̂a = π̂a (ua) , ∀a ∈ L . (27)

Summarily, the supply chain network design optimization problem is to satisfy
the demand of each retail outlet and minimize the total cost, including the total cost
of operating the various links and the capacity investments:

Minimize
∑

a∈L
ĉa ( f ) +

∑

a∈L
π̂a (ua) (28)

subject to constraints (22)–(25).
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Hereupon, we also take into account the cost associated with the total amount of
emissions generated both in the capital phase and operation phase. The generated
emissions can occur in each phase, including the manufacturing stage, storing stage,
and shipping stage. Suppose ea( fa) represents the emission-generation function on
link a in the operation phase and it is a function in relation with the product flow on
this link. In addition, let êa (ua) denote the emission-generation function on link a
in the capital investment period. Similarly, it is a function of the product flow on that
link. As a result, this objective can be expressed in the following form:

Minimize
∑

a∈L
ea ( fa) + êa (ua) (29)

Combing these two objectives shown in Eqs. (30) and (29), we can construct the
following objective function:

Minimize
∑
a∈L

ca ( fa) + π̂a (ua) + ω

(∑
a∈L

ea ( fa) + êa (ua)

)

s.t.
fa ≤ ua
0a ≤ ua

(30)

where ω is a nonnegative constant assigned to the emission-generation attribute. It
is a factor to reflect how much the firm is willing to pay for per unit of emissions and
it might also be explained as the tax imposed by the government [57].

6.2 Physarum-Inspired Solution to Multi-criteria Sustainable
Supply Chain Network Design Problem

In2 the design of sustainable supply chain, it is required that the flow is less than its
actual capacity. In our view, in the optimal solution, the capacity ua must be equal
to the actual flow fa along the same link a. Suppose the capacity ua on link a is
more than the flow fa , this will incur extra cost. On the contrary, if the capacity ua
on link a is equal to the flow fa , it not only satisfies the constraint indicated in Eq.
(25), but also decreases the total cost. From this standpoint, in the optimal solution,
the capacity on each link should be equal to its actual flow. In other words, in the
optimal solution, fa = ua . As a matter of fact, in the Physarum model, the flow on
link a is equal to the flow Qi j .

As a matter of fact, the sustainable supply chain network design problem is a sys-
tem optimum (SO) problem from the perspective of flow theory in the transportation
systems, and its objective is to minimize the total cost in the supply chain network.

2This subsection is taken from the paper published in Annals of Operations Research. For more
details, please see Ref. [58].
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Fig. 12 The baseline supply
chain network topology for
all the examples. Adopted
from Ref. [52]
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To date, Physarum has been successfully employed to handle the user equilibrium
(UE) problem in the transportation network. To solve the UE problem, we need to
use a revised cost function to replace the length of each link. The procedures to solve
the user equilibrium problem are already described in Algorithm 3 in the last section.

However, different from UE solution, in the sustainable supply chain network,
we aim at minimizing the total cost. For the purpose of using Physarum to solve this
issue, we transform the SO state into the corresponding UE state using the following
Eq. (31) [59, 60].

t̃a (xa) = ta (xa) + xa
dta (xa)

dxa
, ∀a ∈ L (31)

where xa represents the flow on link a, ta(xa) denotes the cost function per unit of
flow on link a while t̃a (xa) denotes the transformed cost function per unit of flow.

In the sustainable supply chain network, Li j means the cost when the flow is Qi j .
Hence, the following Eq. (32) is built to express the cost per unit of flow:

LFi j =
ĉa

(
Qi j

) + π̂a
(
Qi j

) + ω
(
ea

(
Qi j

) + f̂a
(
Qi j

))

Qi j
(32)
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Algorithm 4: Physarum-Inspired Model for Constructing the Optimal Sustain-
able Supply Chain Network Design (L , 1, N , R)

// N is the size of the network;
// Li j is the link connecting node i with node j ;
// 1 is the starting node while R is the set of retail outlets;
Di j ← (0, 1] (∀i, j = 1, 2, . . . , N );
Qi j ← 0 (∀i, j = 1, 2, . . . , N );
pi ← 0 (∀i = 1, 2, . . . , N );
Li j ← 0.001 (∀i, j = 1, 2, . . . , N );
count ← 1 ;
repeat
Calculate the pressure associated with each node according to Eq. (10)

∑

i

Di j

Li j

(
pi − p j

) =

⎧
⎪⎪⎨

⎪⎪⎩

+
nR∑
i=1

dRi f or j = 1,

−dR j f or j = R1, R2, · · · RnR ,

0 otherwise

Qi j ← Di j × (
pi − p j

)/
Li j // Using Eq. (1);

Di j ← Qi j + Di j // Using Eq. (6)
Update the cost on each link;
for i = 1 : N do
for j = 1 : N do
if Qi j �= 0 then

Li j = Li j + LFi j + Qi j ∗ dLFi j
dQi j

∣∣∣
Qi j=Qi j

;

end if
end for

end for
L = L/2;
count ← count + 1

until a termination criterion is met

According to the above method, we can construct the procedures for constructing
the optimal sustainable supply chain network, which is shown in Algorithm 4.

6.3 Numerical Examples

In this section, two numerical examples are used to demonstrate the procedures of
the proposed method for solving the multi-criteria sustainable supply chain network
design problem.

The baseline for all the examples are shown in Fig. 12. In this figure, the numbers
along these links represent the label of each link. It can be noticed that there are three
alternative manufacturing plants and each of them has two possible technologies.
Each manufacturer is in association with two possible distribution centers. Similarly,
each distribution center is associated with two possible storage centers. The firm
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Table 2 Total cost and emission functions for the numerical examples. Adopted from Ref. [52]

Link a ĉa( f ) π̂a (ua) ea( fa) êa( fa)

1 f 21 + 2 f1 0.5u21 + u1 0.05 f 21 + f1 1.5u21 + 2u1
2 0.5 f 22 + f2 2.5u22 + u2 0.1 f 22 + f2 2u22 + 2u2
3 0.5 f 23 + f2 u23 + 2u3 0.15 f 23 + 2 f3 2.5u23 + u3
4 1.5 f 24 + 2 f4 u24 + u4 0.05 f 24 + 0.1 f4 0.1u24 + 0.2u4
5 f 25 + 3 f5 2.5u25 + 2u5 0.05 f 25 + 0.1 f5 0.05u25 + 0.1u5
6 f 26 + 2 f5 0.5u26 + u6 0.1 f 26 + 0.1 f6 0.05u26 + 0.1u6
7 0.5 f 27 + 2 f7 0.5u27 + u7 0.05 f 27 + 0.2 f7 0.1u27 + 0.2u7
8 0.5 f 28 + 2 f8 1.5u28 + u8 0.05 f 28 + 0.1 f8 0.1u28 + 0.3u8
9 f 29 + 5 f9 2u29 + 3u9 0.05 f 29 + 0.1 f9 0.1u29 + 0.2u9
10 0.5 f 210 + 2 f10 u210 + 5u10 0.2 f 210 + f10 1.5u210 + 3u10
11 f 211 + f11 0.5u211 + 3u11 0.25 f 211 + 3 f11 2u211 + 3u11
12 0.5 f 212 + 2 f12 0.5u212 + u12 0.05 f 212 + 0.1 f12 0.1u212 + 0.2u12
13 0.5 f 213 + 5 f13 0.5u213 + u13 0.1 f 213 + 0.1 f13 0.05u213 + 0.1u13
14 f 214 + 7 f14 2u214 + 5u14 0.15 f 214 + 0.2 f14 0.1u214 + 0.1u14
15 f 215 + 2 f15 0.5u215 + u15 0.05 f 215 + 0.3 f15 0.1u215 + 0.2u15
16 0.5 f 216 + 3 f16 u216 + u16 0.05 f 216 + 0.1 f16 0.1u216 + 0.1u16
17 0.5 f 217 + 2 f17 0.5u217 + u17 0.15 f 217 + 0.3 f17 0.05u217 + 0.1u17
18 0.5 f 218 + 1 f18 u218 + 2u18 0.2 f 218 + 2 f18 2u218 + 3u18
19 0.5 f 219 + 2 f19 u219 + u19 0.25 f 219 + 3 f19 3u219 + 4u19
20 1.5 f 220 + 1 f20 u220 + u20 0.3 f 220 + 3 f20 2.5u220 + 5u20
21 0.5 f 221 + 2 f21 u221 + 3u21 0.1 f 221 + 3 f21 1.5u221 + 4u21
22 f 222 + 3 f22 0.5u222 + 2u22 0.2 f 222 + 4 f22 2.5u222 + 4u22

has to satisfy the demand from three possible retail outlets. The basic data for the
following examples is shown in Table2.

Example 3 In this example, the demands for each retail outlet is

dR1 = 45, dR3 = 35, dR3 = 5

The cost functions and emission functions are shown in Table2. In this example,
we assume that the firm does not care about the emission generated in its supply
chain. Therefore, ω = 0. Figure13 shows us the flux changing trend during the
iterative process. It can be seen that the Physarum converges to the optimal solution
after 25 iterations. Table3 provides us the specific flow on each link. As expected,
the flow associated with each link is equal to its capacity. According to Eq. (30), we
can obtain that the total cost is 10716.33 and the result is inconsistent with that in
Ref. [52]. From Table3, it can be noted that link 14 has zero capacity and zero flow.
Thus, in the final optimal sustainable supply chain network, link 14 will be removed.
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Fig. 13 The flux variation during the iterative process in the Example 3

Table 3 The optimal solution to Example 3

Link a f ∗
a u∗

a Link a f ∗
a u∗

a

1 12.43 12.43 12 25.44 25.44

2 11.67 11.67 13 19.03 19.03

3 15.81 15.81 14 0.00 0.00

4 14.69 14.69 15 19.56 19.56

5 10.16 10.16 16 15.97 15.97

6 13.94 13.94 17 5.00 5.00

7 20.70 20.70 18 12.43 12.43

8 15.83 15.83 19 22.98 22.98

9 9.66 9.66 20 9.69 9.69

10 21.90 21.90 21 22.57 22.57

11 20.43 20.43 22 20.10 20.10

Example 4 In this example, it has the same data as Example 3 except that the param-
eterω = 5, which express the degree of the firm is concerned about the environment.
The optimal solution to this example is given in Table4. The total cost as shown in
Eq. (28) for this example is 11288.27. The total emission cost is 7735.71. The result
is different from that in Ref. [52]. We find that the results in Ref. [52] is not reason-
able. To be specific, for the node M1, its inflow is equal to the sum of the flow on link
18 and link 1, which is equal to 33.22 (19.32+13.90) in Nagurney’s solution. As for
the outflows associated with node M1, it is composed of two separate flows on link
4 and link 5, which is equal to 33.23 (19.43+13.80). Obviously, the inflows are not
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Table 4 The optimal solution to Example 4

Link a f ∗
a u∗

a Link a f ∗
a u∗

a

1 19.33 19.33 12 26.65 26.65

2 15.68 15.68 13 20.65 20.65

3 13.45 13.45 14 1.69 1.69

4 19.45 19.45 15 18.35 18.35

5 13.78 13.78 16 14.35 14.35

6 13.78 13.78 17 3.31 3.31

7 13.24 13.24 18 13.90 13.90

8 15.76 15.76 19 11.34 11.34

9 8.99 8.99 20 11.30 11.30

10 24.20 24.20 21 24.79 24.79

11 19.66 19.66 22 16.35 16.35
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Fig. 14 The flux variation during the iterative process in the Example 4

equal to the outflows. This contradicts the law of flow conservation. Similarly, it is
also observed that such kind of phenomenon can be found in the node D2,1.

In the Physarum model, it takes 22 iterations to converge to the optimal solution.
In the optimal solution, it can be noted that all the links have positive capacity and
flows. In addition, the flows are equal to the capacity on all the links. In Example 3,
links 1 and 18 have the same flow. However, in Example 4, the flow on link 1 has
increased 50% while the flow on link 18 only increases about 10%. This is due to
the emission cost on link 1 is less than link 18. Such kind of behavior, also can be
found on links 2 and 19 (Fig. 14)
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7 Conclusion

In this chapter, we developed a generalized Physarum model to address several
network optimization problems. In summary, we make the following contributions:

• We proposed an innovative strategy to enable Physarum model to address the
network optimization problems with multiple sources and sinks in both directed
and undirected networks.

• We compared Physarum model with Dijkstra algorithm in the manners of finding
the shortest path. By performing such a comparison, we highlighted the unique
features present in Physarum model as well as the benefits brought by these fea-
tures.

• We approached the optimal solution to equilibrium traffic assignment problem by
leveraging the adaptivity and continuity features in Physarum model. We devel-
oped a composite function to relate the link cost and link flow, and prove the
converge of the system to the user equilibrium as well.

• By leveraging the equivalent transformation between user equilibrium and system
optimal, we utilized the Physarummodel to identify the optimized network for the
firm to transport products to the retail outlets for the purpose of minimizing the
total cost.
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Maze-Solving Cells

Daniel Irimia

Abstract Moving cells have surprising abilities to navigate efficiently through com-
plex microscale human-engineered mazes. Most often, they follow chemical gradi-
ents established by diffusion from a source to a sink. Cells steer towards the steepest
gradients and move along the shortest paths towards the source. Occasionally, the
gradients are self-generated by the moving cells themselves. While the cells also
respond to the same gradients they create, a self-sustained loop is established, which
guides the cells towards the shortest path towards exit from confined spaces. Pre-
cision measurements of human cell maze-navigation performance could ultimately
enhance our capabilities to diagnose, monitor, and treat various diseases that range
from inflammation to cancer.

All cells in our body move and often must navigate complex territories. Leukocytes
responding tomicrobes enter tissues packedwith other cells, fibers, blood vessels and
nerves. Epithelial cells moving to close wounds constantly re-arrange their position
relative to mechanical obstacles and their cellular neighbors. Streams of cells navi-
gate between precisely defined locations during embryo development and give rise
to tissues and organs. Recent advances of in vivo imaging technologies significantly
accelerate our understanding for how and why cells move. However, several chal-
lenges limit the utility of in vivo systems. These include poor control of microscale
environment conditions in vivo, limited resolution in space and time, requirements
for fluorescently tags on the target cells, and the insidious interference from untagged
cells. In response to these limitations, systems for monitoring human cell movement
ex vivo, in conditions that replicate key features of the in vivo microenvironment, are
being developed and essential for advancing this understanding of cell movement.

Emerging microfluidic tools designed to probe cell migration are today capable of
achieving unprecedented levels of precision in the control of the microenvironment
around moving cells and the quantification of migration parameters. Microfluidic
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tools also have the advantage of significantly higher experimental throughput com-
pared to in vivo experiments. They are increasingly capable to replicate in vivo
conditions, thus enabling unique insights into how cells navigate complex environ-
ments.

One key advance towards the goal of understanding cell movement was our obser-
vation that cells move at uniform speed when confined in microscale channels with
cross-section smaller than that of the moving cells [1]. Subsequently, devices with
intricate networks of channels helped us study how cells can find their way through
increasingly complex mazes. Precise measurements of various parameters relevant
to the navigation of cells, including persistence and directionality, could for the first
time be performed directly on individual cells, circumventing the need for complex
statistics. This chapter will review and discuss the most important bioengineering
insights into the ability of cells to navigate through mazes and the implications of
these findings to our understanding of health and disease.

1 Limitations of Traditional Cell Migration Assays Probing
Cell Navigation

Traditionalmigration assays explore themigrationof cells onflat surfaces, e.g. guided
by the release and diffusion of a chemoattractant from the tip of a micropipette. The
directional migration of cells towards the highest chemoattractant concentration at
the tip of the micropipette is often described as a “biased random walk”. The migra-
tion is characterized by tortuous trajectories and large variations in speed [2]. The
cells advancing towards the pipette tip stop, go, and change the migration speed
constantly. The levels of randomness decrease the precision of the measurements
and make comparisons between conditions difficult. Standard metrics for describing
motility include the speed and directionality. The speed of migration, defined as dis-
placement over time, is calculated as an average. The directionality is a measure of
efficiency in advancing towards a target. Because cells constantly change their direc-
tion of migration along meandering trajectories, sophisticated statistical methods are
often required to estimate the directionality parameter, limiting the precision of these
metrics. Other traditional assays offer even less information. The most popular cell
migration assay, the transwell assay (Boyden chamber) is an end-point assay that
only provides a measure of the fraction of cells to moved. For cells that prolifer-
ate, the doubling of cell number over time interferes with these measurements. The
vulnerability of the micropipette chemoattractant gradients to interference from tiny
perturbations in the environment, and the continuously evolving nature of gradients
across the transmembrane assay further complicate these measurements.

These measurements of cell migration in traditional assay are often inconsistent
with in vivo observations, where various cells navigate very efficiently through com-
plex tissue microenvironments towards their targets. Moreover, the cells moving
through live tissues are experiencing the natural variability and complexity of the
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microenvironment and have close interaction with other moving cells on their paths.
Thus, a direct comparisons between in vivo and ex vivo measurements using tra-
ditional assays is challenging. White blood cells like neutrophils are quite efficient
when navigating complex and heterogeneous environments in vivo [3]. However,
they are significantly less efficient when moving across flat surfaces, when they
take tortuous paths, with frequent divagations from straight lines and frequent stops.
Similarly, epithelial cancer cells invade preferentially migration along lymph ves-
sels, collagen fibers, or white matter tracts and in vivo observations documented their
persistent migration along these guiding structures [4]. However, epithelial cancer
cell migration on flat surfaces, in the presence of chemical gradients e.g. growth
factors, appears rather random, with a bias towards the higher concentrations.

The status-quo for cell migration assays is being challenged since the early 2000s
by the emergence of a new set of tools for building and controlling the cellular
microenvironment atmicroscale.Borrowed from the electronics industry and enabled
by novel biocompatible materials, microfluidic tools enabled the manufacturing of
physical structures that were smaller than the size of a typical mammalian cell [5].
These structures could control the cells directly through mechanical interactions and
indirectly by controlling the chemical microenvironment around cells. In one early
example, the two sides of one 10 µm sized cell were exposed to fluids of different
colors, “painting” stripes across the cell [6]. The first microfluidic assays for cell
migration attempted to address these issues by providing exquisite control of the
shape and stability of chemical gradients [7]. However, the variations in speed and
directionality during leukocyte chemotaxis on flat surfaces in microfluidic devices
were still comparable to those in traditional assay. The key advance towards precision
measurements of moving cells came from an unexpected insight, when we confined
cells in channels that had a cross-section that was smaller than the cross-section of
the resting cells.

2 Straight Channels Rectify Cell Migration

More than a decade ago, we were surprised to uncover that when moving neutrophils
were confinedwithin small channels, theirmigration towards sources of chemoattrac-
tant was enhanced [1]. The confinement reduced the variability of migration speed
over time and improved the precision of neutrophil migration measurements. Shortly
after, we uncovered that several epithelial cancer cell types includingMDA-MB-231
cells (breast adenocarcinoma cell line), human derived mammary epithelial cells,
PC-9ZD cells (lung carcinoma cell line), and human-derived pancreatic carcinoma
cells, also display persistent, unidirectional motility when confined inside channels
smaller than their size [8]. Inside channels, both leukocytes and human epithelial
cancer cells can accomplish incredible feats, like the ability to migrate persistently
in one direction for hours. Remarkably, cancer cells display this uniform motility
phenotype spontaneously, in the absence of an externally-imposed guiding gradient.
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Fig. 1 Mechanical confinement inside microscale channels stimulates the migration of leukemia
cell line (HL60) at uniform speed. Fixed cells, actin stained in red, microtubules in green [1]. Scale
bar is 5 µm. Reproduced with permission from the Royal Society of Chemistry

The small cross-section of the channels is a key factor in regulating the motility
of the cells inside [1]. These channels are assembled in between biocompatible sil-
icone and glass. Human cells from a leukemia cell line (HL-60) migrate at uniform
speed through 10 × 3 µm cross-section channels [1]. The morphology of the cells
remains relatively constant over time. The protrusion of the membrane at the front is
coordinated with the contraction at the back. This migration phenotype is different
than the classical four-step motility model (protrusion, attachment contraction, and
detachment) for haptokinetic cell migration. Inside the motile cells, actin is predom-
inantly localized at the leading edge, filling the cross-section of the channel (Fig. 1).
Microtubules are centered behind the nucleus, with the longer ones reaching past
the nucleus and stopping at the leading edge. Counterintuitively, the migration of
leukemia cells, as well as of human neutrophils, is significantly slower in larger than
in smaller channels. During migration inside larger channels e.g. 10 × 10 µm, the
speed of migration varies over time. The morphology of cells changes constantly,
and the overall phenotype of the cells is comparable to that of cells chemotaxing on
two-dimensional surfaces.

We observed a similar dependence between the persistence of cell migration and
the cross-section of the channels for epithelial cells [8]. The optimal size of the
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channels for epithelial cell migration was 10 × 10 µm and the migration in larger
channels was slower and less persistent. These observations validate the benefits of
studying cell motility inside small channels. In patients and animal models, cancer
cells often migrate along lymphatic vessels [9], towards lymph nodes. They are often
found along the periphery of blood vessels [10]. Glioblastoma cells are well known
to migrate preferentially along white matter tracts [11]. Like in vivo, cancer cells
inside the channels benefit from the mechanical support of the rigid walls. Moving
cells contact the extracellular matrix proteins on the walls throughout their entire
circumference, enabling 3D-like adhesions. Unlike in vivo, the migration occurs
without the need to degrade this matrix.

In addition to reflecting the mechanical features of in vivo environment, several
practical benefits emerge from the quantification of cell motility in channels. First,
the position of cells moving at uniform speed is predictable during migration in
channels and facilitates tracking. Second, thousands of cells could be tracked at the
same time in parallel channels. While the cells in parallel channels cannot overlap,
there is noneed to resolve situations of cell overlap. Finally, in the absence of temporal
variations of speed, the precision of migration speed is higher than in any other assay.
These features ultimately enable more precise comparisons between cells, and helps
quantify the effect of various compounds aiming at slowing or accelerating cell
migration.

Despite simplicity, the persistent migration of cells through channels teaches us
two important things about the ability of cells to interpret, respond, and change their
microenvironment to fulfill their physiologic roles. In the case of human leukocytes,
we identified signature motility patterns that are uniquely associated with chemoat-
tractants that guide leukocyte motility in various conditions [12]. We found that the
signature motility patterns are independent of the chemoattractant dose or receptor
expression. Formylated peptide chemoattractant fMet-Leu-Phe and leukotriene B4
induce a migration phenotype in human neutrophils that is directional and persistent.
This phenotype is effective at attracting the neutrophils towards the source of these
molecules. By contrast, complement component 5a and interleukin 8 induce both
chemoattraction and repulsion in equal proportions. Thismigration phenotype results
in the dispersal of neutrophils throughput the area where the chemokines are present.
Overall, the combination of three characteristics: speed, persistence, and directional-
ity, in addition to the percentage of cells migrating in response to a chemoattractant
define unique signatures for each chemoattractant and cell type. These signature
patterns could have not been defined in vitro using traditional techniques.

Importantly, the moving cells guide themselves from one end to the other of a
channel, without turning or slowing down. The mechanisms for this persistent, self-
guided navigation emerged slowly and required several additional steps in technical
innovation and systematic experiments. Essential for this progress was the design
of microfluidic mazes and the observation that epithelial cells navigate these mazes
along the shortest path towards exit, starting with no other external cues than the
maze itself.
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3 Cell Make Binary Decisions in Bifurcating Channels

The first step towards dissecting the mechanisms of cell migration in confined spaces
was enabled by the addition of bifurcations to the design of the channels. This slight
increase in the complexity of the microfluidic channels enabled us to measure the
directional decisions of the moving cells [13]. Whereas the persistent migration in
straight channels may be explained by either the mechanical guidance along the
walls of the channels or the pursuit of a chemical gradient, the addition of bifurca-
tions decouples the two contributions in unambiguous ways. The quantification also
becomes more precise, with the moving cells making essentially binary choices at
each bifurcation.

When neutrophils are moving through channels and presented with bifurcations,
they consistently steer towards the shorter branch (Fig. 2). We observed that more
than 90% of the neutrophils arriving at asymmetric bifurcations maze chose the
shorter of two branches leading towards the same source of chemoattractant. The
shorter branch presents the cells with a steeper chemoattractant gradient. In con-
trol experiments, neutrophils migrating through symmetrical bifurcations chose ran-
domly between the two branches. Moreover, when presented with three symmet-
rical bifurcations in series, individual human neutrophils do not have preferences
for either branches and their decisions appear entirely random [13]. Remarkably, at
the point where branches recombine, all neutrophils migrated directly towards the

Fig. 2 Human neutrophils (top) and cancer epithelial cells (bottom) make binary directional deci-
sions when navigating through channels with bifurcations. Neutrophils migrate preferentially along
the shortest path towards the source of chemoattractant [13]. MDA-MB-231 epithelial cells avoid
the dead end and migrate preferentially along the through path towards the outer compartment [14].
Reproduced with permission from the Royal Society of Chemistry
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source of chemokine (increasing chemoattractant concentration). No cells travelled
back toward the entrance of the channel (decreasing chemoattractant concentration).

Neutrophils move with the same average velocity before and after encountering
the bifurcations. This suggests that themechanisms for cell steering and those for cell
migration may be independent. In addition, the rapid decisions at bifurcations before
the rest of the cell escapes confinement suggest that the chemical gradient sensing
mechanisms are localized only at the leading edge of the cells. Our observations
also suggest that the sensing and motility mechanisms are independent of each other.
However, this mechanism is difficult to reconcile with current biochemical models
for cell polarization. For example, one widely accepted chemotaxis model postulates
the existence of a global inhibitor that diffuses between the front and the back of
the cells [15]. If such an inhibitor was present the timescale for decisions would be
longer and larger in longer cells. Our observations contradict this model. Instead, our
observations favor a model of mechanical integrator of discrete, cooperative process
at the leading edge. Such an adaptive sensing mechanism provides the cell with
cues for maintaining and adjusting its polarization towards the fastest concentration
increases [16].

Asymmetrically-bifurcating channels also allowed us to decouple the speed and
directionality in moving cancer epithelial cells [14]. Migrating cells make one direc-
tional decision at the bifurcation without changing their migration speed. The cells
steered either toward the “through” path leading to the outer compartment or toward
the “side” path leading to a dead-end (Fig. 2). We found that, unlike the neu-
trophils, which require a chemoattractant to guide them through the bifurcation, the
epithelial cancer cells can navigate the bifurcations effectively despite the absence
of an externally imposed gradient. Impressively, cancer cells steered toward the
“through” path three times more often than toward the “side”.

We designed branching channels with various configurations with the goal of dif-
ferentiating between potential mechanisms of guided epithelial cell migration. Inside
U-shaped channels with a tiny, cell impassible extension to the outer compartment,
more than 75% of the cells stopped at the site of the extension rather than continuing
migration through the large branch. Abruptly reducing the cross-section of channels
to half resulted in the reversal of the direction of migration in less than 10% of the
cells. Other designs probed the role of hydraulic resistance and mechanical guidance
during epithelial cell migration [14]. These results together indicate that a chemical
gradient along the channels rather than mechanical cues is the dominant factor in
guiding cell migration through channels. Additional support for the role of chemical
cues during cell orientation emerged from observations of the long-distance inter-
actions between multiple cells inside the same channel. Inside complex networks
of through and dead-end channels [14], the frequency of a cell entering dead-end
channels was significantly lower whenever another cell was already present in these
channels. The ability of cells in channels to influence the direction of migration of
other cells at a distance suggests that the differences are due to biochemical modifi-
cations of the microenvironment by the epithelial cells.

Two additional experiments provide key clues for the nature of these modifica-
tions. First, the ability of epithelial cells to navigate correctly through channels and
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avoid dead-end channels is lost in media lacking epidermal growth factor (EGF).
Second, navigation abilities are also lost when EGF receptor signaling is perturbed
in the presence of specific inhibitory compounds. Navigation abilities are preserved
in the presence of inhibitors for other receptors and signaling pathways.

Following the experimental results from straight and bifurcating channels, it
became intriguing to test if cells could navigate through mazes with complex design.
This situation clearly brings the ex vivo assays closer to the complexity of in vivo
situations. The mazes also uncovered three main navigation strategies for human
neutrophils, lymphocytes, and epithelial cancer cells.

4 Cells Navigate Complex Mazes Along the Shortest Path

Inside mazes, moving cells are most often guided by chemoattractant gradients
established by diffusion from end-reservoirs (source) to loading chambers (sink).
Neutrophils follow externally imposed chemoattractant gradients accurately [17].
Lymphocytes display a patrolling mode that allows them to switch between efficient
navigation to a survey of the entire mazes [18]. By contrast, epithelial cancer cells
can find the shortest path from entrance to exit in the absence of externally imposed
chemoattractant gradients, guided by self-generated gradients [14].

We compared human neutrophils with two cell types that are common models of
cell polarization and cell motility, the leukemia cell lines (HL60) and soil amoeba
Dictyostelium discoideum (Dicty). We found that human neutrophils, their leukemia
counterpart, and Dicty cells can navigate millimeter long mazes of interconnected
channels in just slightly over 1 h [17]. The narrow, 5 × 10 µm cross-section of the
channels, mimics some of the biomechanical features encountered by neutrophils in
tissues and the confined spaces encountered by Dicty in the soil.

We quantified the navigation performance of cells using heat maps that helped
compare the magnitude of the chemical gradient (Fig. 3a) and the most commonly
traversed paths of the maze (Fig. 3b). A “cellular flux” parameter for each edge was
defined as the number of cells that crossed the edge in the specified direction, divided
by the total number of cells analyzed. The heat map of cellular flux for Dicty cells
(Fig. 3b) appeared similar to that of the chemical gradients (Fig. 3a). The heat map
of cellular flux for HL60 cells was much more uniform, suggesting more random
choices along the migration path. The cellular flux across edges in the direction of
the gradient increased with the slope of chemical gradients along the edges.

At every junction in the maze, cells were forced to choose among up to four paths.
These decisions were analyzed as a set of binary decisions in which cells choose one
edge over the others. Dicty cells had a significantly higher probability of making
the optimal choice than HL60 cells. The differences are more pronounced for small
differences in gradient slopes. Interestingly, a strong negative correlation between
cell speed and correctness was found for Dicty cells, while the HL60 cells performed
equally poor regardless of their migration speed.
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Fig. 3 Dictyostelium and HL60 cells navigate through mazes guided by chemoattractants. a The
map of gradients for a chemoattractant diffusing from a reservoir (top) to a sink (bottom). Darker
colors indicate steeper gradients. b The map for the flux of cells in different sections of the maze
indicates preferential paths for traversing the maze. For Dicty, these paths are a better match to the
gradient than for HL60 cells. Darker colors indicate higher frequency of cells passing through each
section. Edges not traversed by any cells are shown as blue [17]. Reproduced with permission from
the Public Library of Science

Other leukocytes e.g. humanT lymphocytes are less efficient at navigating through
mazes. Their migration patterns change depending on their activation levels [18].
In their resting state, T lymphocytes navigate rather efficiently through orthogonal
mazes of small channels and follow relevant chemoattractant gradients. However,
after activation, the migration patterns of T lymphocytes change and cells turn more
frequently. They are less accurate at following the direction of the gradients com-
pared to the resting cells. They also explore larger areas of the mazes, a process
that may facilitate the contact between lymphocytes and infected cells. Interaction
with antigen presenting cells within the foreign tissue may further activate the T
lymphocytes. The activation will stimulate them again to migrate throughout the
inflamed and chemokine containing tissue. In vivo live imaging and static histolog-
ical observations in infected tissues support this hypothesis [19]. Overall, the maze
experimental system offers a well-controlled alternative, which could be useful for
testing compounds to modulate these patterns.

One striking advance that emerged from the study of epithelial cancer cell motil-
ity inside the mazes was the discovery that epithelial cells could employ navigation
strategies that do not require any pre-existent chemoattractant gradient [14]. We
expected that in the absence of pre-existent chemical gradients, cells will make ran-
dom decisions at the bifurcations (Fig. 4). If cells only move forward, the calculated
chance of a cell tomove along the shortest path to exit through five bifurcations is less
than ~10% if the decisions at the bifurcations are random. Instead, we observed that
epithelial cells reach the exit in significantly larger numbers and along the shortest
path frommicroscopicmazes filled with uniform concentrations of media.More than
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Fig. 4 One epithelial cancer cell navigates through a microscale maze of microfluidic channels.
Successive positions at 30 min interval are shown overlaid on the image of the microfluidic maze
[14]. No gradient is pre-imposed on the maze. Reproduced with permission from the Royal Society
of Chemistry

90% of MDA-MB-231 cells, 75% of the human derived mammary epithelial cells,
70% of PC-9ZD cells, and 40% of the human-derived pancreatic carcinoma cells
reach an exit along the short path. These numbers indicate that moving epithelial
cells navigate the mazes and repeatedly make correct decisions towards the exit. The
cells in mazes avoid dead-ends and avoid turning back towards the entrance. Such
experiments are not possible using traditional migration assays. In such assays the
supply of EGF diffusing from the culture media exceeds the rate of cellular EGF
uptake. The concentrations of EGF around cells are homogeneous in space, with
minimal gradient forming.

The strategy employed for navigation through mazes by the epithelial cells in
the absence of pre-existent gradients is novel and relies on three processes that are
tightly connected. First, epithelial cells take up significant amounts of EGF. This
leads to partial depletion of the cell microenvironment. Second, the consumed EGF
is replenished only by diffusive transport from the environment. The channels restrict
the total flux of EGF towards the cells. Finally, epithelial cells respond to the local
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gradients that result from EGF uptake and flux. Epithelial cells move in the direction
of the steepest gradients and highest EGF concentrations. In combination, the three
processes enable the epithelial cells tomigrate and exit confinement along the shortest
path. Most importantly, they overcome the absence of pre-existent gradients and
generate their own cues towards the closest exit.

These results are important for our understanding of cancer cell invasion. While
the self-guidance strategy does not require pre-existing chemical gradients, persis-
tent migration is not bound by the spatial limits of any gradient. This characteristic
of self-guidance strategy is clearly distinct from the classical chemotaxis. During
chemotaxis, cells move directionally only in the limited area where a spatial gradient
is present. As soon as the cells reach the area of highest concentration, the directional
movement ceases. By contrast, the self-guidance strategy predicts that a gradient can
be initiated by the cells and will continuously move with the cells. The overlap of
two functions in epithelial cells (making the gradient and responding to it) clearly
distinguishes the self-guidance strategy from all other mechanisms of cell migration.
The self-guidance strategy is distinct from autocrine or paracrine signaling, when
gradients of attractant molecules are being produced and direct the migration of cells
towards each other. By contrast, the self-guidance strategy drives the cells to move
away from their peers and disperse. The self-guidance strategy could contribute to
the uniform distribution of normal epithelial cells in monolayers. It is also important
for the redistribution of epithelial cells after epithelial injuries.

In the context of cancer, the overlap between EGF uptake and cellular confinement
drives the formation of chemical gradients that guide the migration of malignant
epithelial cells. The various networks of channels may be regarded as replicating
conditions close to those inside tissues and around tumors e.g. lymphatic vessels,
perivascular spaces, and perineural spaces. These spaces are well known to facilitate
the dissemination of malignant cells. Moreover, we have previously shown that the
migration of cells through channels correlates with their ability to form lung metas-
tases in a mouse model [20]. Together, these results suggest that our experimental
setup of channel networks could be a relevant in vitro model for cancer cell invasion.

One additional development of the strategies to measure cell navigation through
mazes is towards assays that can probe the interactions between epithelial cells in
monolayers [21]. When layers of epithelial cells advance through micropillar arrays,
they do this as a collectively advancing front.Whenever the integrity of the advancing
front is maintained, this is an indication that the epithelial phenotype is preserved.
Whenever individual cells break contacts with neighbors, disperse fast, along straight
trajectories, this is an indication that a mesenchymal phenotype is present (Fig. 5).
The transition from epithelial to mesenchymal phenotype can be captured by the
scattering of individual cells. Additional validation is possible using tagged anti-
bodies for epithelial (e.g. E-cadherin) and mesenchymal (e.g. vimentin) molecular
markers. However, the validation is a terminal assay, that requires the fixation and
permeabilization of the cells. The transition between phenotypes, commonly named
epithelial-to-mesenchymal transition (EMT), is of great interest for understanding
disease processes during inflammation (e.g. tissue fibrosis), cancer (e.g. malignant
transformation of cells), or embryogenesis.
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Fig. 5 Epithelial to mesenchymal transition (EMT) is quantified in real time and at single cell
resolution by probing the advancement of MDA-MB-231 cells through arrays of posts inside a
microfluidic device. Individuallymigratingmesenchymal cells detach and scatter froma collectively
migrating epithelial front. The epithelial andmesenchymal phenotypes are then validated by staining
using tagged antibodies for E-cadherin (green) and vimentin (red), respectively [21]. Reproduced
with permission from Springer Nature

Using microfluidic mazes, the epithelial-to-mesenchymal and mesenchymal-to-
epithelial dynamics can bemeasured in real time, using automated tracking, at single-
cell resolution. Initial observations suggested that cells could switch frequently
between the epithelial and mesenchymal states. Moreover, a ‘sorting’ mechanism
could take place, resulting in the physical segregation of mesenchymal and epithelial
cells. These behaviors can also be ‘tuned’ by altering pillar spacing, further indica-
tive of phenotypic plasticity of migration. These behaviors can be perturbed by small
molecule inhibitors, revealing that individually migrating cells exhibited diminished
chemosensitivity when compared against their collectively migrating counterparts.
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5 Future Directions

Microfluidic devices for precision measurements of migration phenotype can be use-
ful in the clinic. For example, for testing the functional status of leukocytes microflu-
idic devices enabled our group to define a normal range of human neutrophil velocity
in healthy individuals [22, 23]. They also helped optimize a treatment that restores
defective neutrophil directionality following burn injuries [24]. Restoration of neu-
trophil abilities to navigate through simple channels with bifurcations progressed in
parallel with increasing the overall capacity of the body to respond appropriately to
infections.

Further exploration and better understanding of the directionality strategies in
epithelial cells could lead to more effective therapeutic approaches to accelerate
wound healing or delay cancermetastasis. New therapeutic strategies for suppressing
individual invasion and dissemination may be tested using this assay, based on sup-
pressing migration associated pathways as well as enhancing a reverse mesenchymal
to epithelial transition. Ultimately, the abilities of cells to navigate through mazes,
directly form relevant biological samples, inside devices that are user-friendly, could
bring change to the way we diagnose and monitor health and disease conditions and
enhance our understanding of how all the cells in the human body work together in
harmony.
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When the Path Is Never Shortest:
A Reality Check on Shortest Path
Biocomputation

Richard Mayne

Abstract Shortest path problems are a touchstone for evaluating the computing
performance and functional range of novel computing substrates. Much has been
published in recent years regarding the use of biocomputers to solve minimal path
problems such as route optimisation and labyrinth navigation, but their outputs are
typically difficult to reproduce and somewhat abstract in nature, suggesting that both
experimental design and analysis in the field require standardising. This chapter
details laboratory experimental data which probe the path finding process in two
single-celled protistic model organisms, Physarum polycephalum and Paramecium
caudatum, comprising a shortest path problem and labyrinth navigation, respectively.
The results presented illustrate several of the key difficulties that are encountered in
categorising biological behaviours in the languageof computing, includingbiological
variability, non-halting operations and adverse reactions to experimental stimuli. It
is concluded that neither organism examined are able to efficiently or reproducibly
solve shortest path problems in the specific experimental conditions that were tested.
Data presented are contextualised with biological theory and design principles for
maximising the usefulness of experimental biocomputer prototypes.

1 Introduction

This chapter addresses the use of biocomputer prototypes for addressing variousmin-
imal path problems (MPPs), which include physical solving of graph theoretical tasks
such as shortest path problems (SPPs; synonymous with calculation of the Steiner
minimum spanning tree of a set of vertices), the Travelling Salesperson Problem
(TSP) and labyrinth navigation, by living systems. Measurement of an organism’s
ability to solve such puzzles, especially mazes, is not new: rodent navigation through
geometrically-confined spaces was a staple of psychological research during the pre-
vious century and various forms of maze puzzle remain a diverting brain-teaser for
children. It has not been until the comparatively recent advent of digital computing,
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however, that we have begun to question the practical applications for experimental
biocomputing prototypes that are able to address graph theory problems.

Of particular note is the explosion in research on the navigational abilities of the
macroscopic amoeba-like organism P. polycephalum during the past decade which
have experimentally demonstrated that this single-celled organism is capable of solv-
ing the TSP [36], navigating through various labyrinths and geometric puzzles on
the first pass [20, 23] and calculating minimum spanning tree of a series of vertices
[1], all via adaptation of its somatic morphology as a result of foraging behaviours
(which will be expanded upon in the following section). Other notable examples of
graphical biocomputation from recent years include, but are not limited to:

1. TSP solving through induced genetic transformation within live bacterial cells,
wherein edges are conceptualised as segments of DNA linking gene nodes.
Despite the variety of means by which computation can be achieved in transgenic
bacteria, output is usually interpreted optically, e.g. through a change in colony
colour (expression of coloured/fluorescent proteins), or expression of antibiotic
resistance genes [7, 9].

2. Ant swarm migration along optimised single pathways—deduced by pathfinder
ants according to an edge weight of attractant and repellent gradients—towards
new nesting sites [21]. These dynamics may be put to more tangible computing
applications such as addressing the Towers of Hanoi problem [24].

3. Maze navigation via the shortest path by cultured epithelial tumour cells, appar-
ently guided by self-generated chemical gradients in amanner suggested to under-
lie cancer cell invasion [27].

4. Navigation through complex virtual reality labyrinths by rats undergoing simul-
taneous neural measurement [10].

Research in this area of biocomputation is justified for the following reasons.
Firstly, as we approach the limitations of conventional digital hardware (i.e. the
finite nature of the miniaturisation barrier presented by silicon-based computing
substrates and associated problem of waste energy thermalisation), we are led to
question the value of novel substrates, techniques and applications for computing
technologies. Secondly, as alluded to in point 3 of the above enumerated list, inter-
pretation of natural behaviours as expressions of computing aid our understanding
of the biosciences and by extension, our ability to experimentally manipulate them.
Finally, development of bio-inspired algorithms for use on conventional computing
architectures is a richly diverse and varied area of research with virtually limitless
applications; examples of successful algorithms relevant to this chapter include ant
colony systems for optimised calculation of a range of problems including the TSP,
labyrinth navigation and foraging route optimisation [8, 22, 33, 34] and multi-agent
P. polycephalum-inspired models for solving SPPs and hence planning transport
networks [14].

This apparently glowing appraisal of MPP biocomputation (also called ‘bioevalu-
ation’) somewhat misrepresents the abilities of biological organisms for approaching
problems that we are accustomed to tackling via the use of conventional comput-
ers, i.e. machines operating according to principles of the Turing model. As was
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eloquently argued by Stepney [28], biological substrates can only be said to com-
pute in a distinctly non-Turing fashion, i.e. they are non-designed entities that are,
to all intents and purposes, non-halting, nonsymbolic, stochastic systems. We are,
furthermore, currently far from having elucidated the biological processes (intracel-
lular, intercellular and extracellular signalling events) that constitute biocomputer
input/output operations and interactions therein that we are choosing to call a form
of computation. As such, the majority of experimental biocomputer prototypes will
suffer frompoor reproducibility, be slow,1 costly to operate and require large amounts
of operator time investment to set up, program and monitor for output. All of these
factors are distinctly far-removed from our usual conception of computation. How,
then, can live substrates be said to ‘compute’ the solution to MPPs given their afore-
mentioned detriments?

The purpose of this chapter is to examine two case studies documenting research
which exemplifies the theoretical and experimental limitations of utilising biocom-
puting substrates for calculating MPPs and enforce a ‘reality check’ on MPP bio-
computation in so doing. In plainer terms, the aim of this chapter is to delineate
the differences in the way in which biological substrates can be said to ‘compute’
the solution to MPPs, in comparison to the electronic substrate (algorithmic) equiv-
alent. The conclusions drawn highlight the comparative strengths and weaknesses
of biocomputing substrates and suggest experimental considerations for designing
MPP-oriented biocomputers.

2 Case Study 1: The Physarum problem

2.1 Background

The P. polycephalum plasmodium (vegetative life cycle form) (Fig. 1) is a remark-
able and fascinating protistic creature that is, at the time of writing, one of the most
intensively researched-upon biological computing substrates. Comprising a macro-
scopic amoeba-like cell possessing millions of nuclei encapsulated within a single
cell membrane, the plasmodial (or ‘acellular’) slime moulds are archetypal model
organisms for excitable,motile cells aswell as a go-to organism for educatorswishing
to demonstrate simple culture techniques with non-pathogenic organisms.

It was discovered in 2000 that P. polycephalum could navigate through a maze
puzzle on the first pass [20]: this precipitated a biocomputing revolution2 that saw
the development of slime mould sensors, computer interfaces and circuitry, to name

1Biological time is many orders of magnitude slower than electrical time, implying that biocom-
puters capitalise on their comparative parallelism in order to beat the efficiency of conventional
substrates.
2A Google Scholar (http://scholar.google.com) query with the search terms ‘Physarum’ and ‘com-
puting’ return approximately 2,750 hits between the years 2000–2017 (search date September
2017).

http://scholar.google.com
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Fig. 1 Photograph of a P. polycephalum plasmodium cultivated on 2% non-nutrient agar gel,
engulfing a few oat flakes. The organism is composed of caudal tubular regions (arrowhead) and a
fan-shaped advancing anterior margin (arrow). Scale bar 10mm

but a few examples of what are informally known as ‘Physarum machines’. Whilst
it is inappropriate to expand further on the range of biocomputing applications that
have been found for P. polycephalum, we refer the reader to Refs. [3, 5, 17], and
Jones and Safonow’s chapter in this volume, for a comprehensive overview of slime
mould computing.

As maze navigation is a MPP, this novel experiment quickly led researchers to
question what other problems of graph theory that could be applied to slime mould.
In 2007, Adamatzky [1] demonstrated that slime mould may solve SPPs, guided
by nutrient gradients, thus demonstrating a clear advantage over previous reaction-
diffusion computing substrates which cannot address this class of problem without
engineered collisions. Slime mould mechanisms for adapting its inbuilt foraging
behaviour to solving permutations of SPPs have been exploited in various biocom-
puter prototypes, including:

• Solving U-shaped trap problems [23].
• Colour sensing [4].
• Various logic gates [18].
• Constructing proximity graphs and beta skeletons [2].
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• Designing transport networks [29].
• Constructing the convex and concave hulls about spatially-distributed nutrient
sources [15].

The abilities of slime mould are represented with different degrees of ‘enthusi-
asm’ by the researchers who work on them: some maintain cautiously that slime
mould biocomputation of MPPs are ‘approximations’ and hence that we are assign-
ing conventional computing terminology on the organism for ease of comparison
[3], whereas at the other end of the spectrum, some authors claim that the organism
is capable of ‘intelligent’ behaviour [20].

In this section, I report that although slime mould SPP bioevaluation is both
fascinating and worthy of further research, the manner in which the organism is able
to represent the shape of a dataset is incompatible with our familiar, algorithmic
understanding of the concept of ‘solving a SPP’.

The experiments outlined in this section rely on observing the migration of slime
mould through a down-scaled two-dimensional representation of a human living
space, guided by chemoattractant gradients and zones of photorepulsion. The specific
application of these experimentswas to ‘bio-evaluate’ the layout of this domicilewith
regard to how ‘efficiently’ the space is subdivided, but their design is essentially
the same as all of the previously mentioned Physarum machines created to address
MPPs, i.e. analysis of the organism’smigration between spatially-distributed nutrient
sources. Success of the organism with regards to SPP navigation was interpreted in
terms of the following criteria:

a. Ability of the organism to navigate between a finite number of attractant sources
(vertices) in an order that represents a shortest path solution. Results were com-
pared output from the same problemwhen addressed by a conventional computer
(using Dijkstra’s algorithm), i.e. if the shortest path between a set of four vertices
in a virtual two-dimensional space, [A, B, C, D], is solved (via calculation of
edge weights) by a computer as [D] → [B] → [A] → [C], slime mould in cor-
responding experiments whose conditions mimic those in the simulation will be
judged to have correctly calculated the SPP if it navigates between vertices in the
order [D, B, A, C]. This is opposed to simply comparing edge lengths between
laboratory experiments (physically measuring the slime mould’s length) and
computer simulations.

b. Reproducibility, i.e. the ability of laboratory experimental slime mould to con-
sistently navigate the same route between distributed vertices.

This methodology was chosen to best represent the differences between the way
in which SPPs are ‘bioevaluated’, rather than algorithmically ‘computed’. Total edge
length travelled by slime mould in each experiment was also measured (for compar-
ison but not as a primary determinant of path navigation ‘success’), as were general
observations on culture morphology and behaviour.

The rationale of this experiment was that the organism was expected to plot a
route through the living space: we expect, informed by previous work on the topic,
that the slime mould will attempt to link the discrete nutrient sources by forming
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tubular strands of protoplasm between them in a shape approximating the shortest
path between them, whilst avoiding illuminated areas (hence why the shortest path
solution outcome is not measured here as purely the total edge length).

The application of this Physarum machine was therefore to grant insight into a
natural route around the space, e.g. if the organism were to visit the kitchen first,
we could reason that this is not the most efficient use of space as the kitchen may
not be the most frequently-visited room or indeed the room one is most likely to
visit on entering the building. Although this application is somewhat removed from
computer science, it represents an active area of unconventional computing, i.e.
‘bioinspiration’, which looks to analyse natural behaviour and apply it to creative
problems; its inclusion here is purely to exemplify how the organism calculates its
path.

2.2 Methods

A sample of aP. polycephalum plasmodium colonising an oat flake (a preferred slime
mould nutrient source) was placed onto a section of 2% non-nutrient agarose gel.
In this experiment, the agar section (hereafter ‘wet layer’) represents a geometric
environment (or, graph) wherein vertices in the forthcoming SPP were represented
by oat flakes. The wet layer was situated within a 900mm square plastic Petri dish
made of clear polystyrene.

A two-dimensional spatial representation of a living space was constructed as
follows. An architectural draft of a two bedroom flat was etched onto two pieces
of acrylic, one clear and one opaque. Both pieces of acrylic were then laser cut
around each ‘room’ (two bedrooms, living space, kitchen, bathroom, entrance hall-
way and two connecting hallways), leaving two ‘backing layers’ with holes in and
two sets of eight cut-out pieces. The opaque cut outs were then slotted into the clear
background, with the exception of the hallways, resulting in the draft comprising
opaque sections (rooms) with clear sections separating them (walls and hallways)
respectively (hereafter, the acrylic portion is known as the ‘dry layer’) (Fig. 2).

The dry layer was affixed to the bottom of the Petri dish housing the wet layer and
the whole environment was placed overlying an electroluminescent plate producing
196 Lux, in order to represent the two-dimensional living space in a format the
slime mould could interpret: opaque ‘room’ sections of the dry layer cast shadows
onto the wet layer, whereas the clear spaces were illuminated, thus creating the
organism’s preferred dark zones and repellent illuminated zones. The agar gel in the
wet layer was cut to the outline of the draft to constrain the organism’s movements to
within the ‘building’ and uncolonised oat flakes (discrete chemoattractant sources)
were arranged to sit in the centre of each room, with the initial colonisation point
being placed in the space representing the entrance hallway. The experiment was
shielded from external light sources and the organism was left to propagate around
its environment, with photographs being taken every 4h for 48h. The experiment
was repeated in triplicate.
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Fig. 2 Photograph of laser cut acrylic representation of a two bedroom, single floor living space,
referred to in text as the ‘dry layer’. All named rooms are cut from opaque acrylic and the spaces
between them (walls and hallways) are clear acrylic

2.3 Results

A completed representative experiment, photographed after 48h had elapsed, is
shown in Fig. 3a. Path lengths radiating from the inoculation point [A] are over-
laid; paths not shown are (in mm): [BD] 600, [BE] 675, [BF] 445, [CE] 685, [CF]
515, [DF] 375. The route taken by the plasmodium is shown in Fig. 3b and follows
[A]→[B]→[A]→[F]→[E]→[D]→[C]→[B] to complete a circuit linking all of the
oat flakes. The total length of this specific route is 2060mm, although the physical
length of the organism greatly exceeds this (see below). For comparison, the mini-
mal length solution to this problem, as calculated by Dijkstra’s algorithm, is shown
in Fig. 3c and follows [A]→[F]→[E]→[D]→[C]→[B], with a total path length of
1795mm.

Morphologically, the plasmodium shown in Fig. 3a contains a number of redun-
dant links: this is best exemplified in the organism’s [CD] link, which vaguely resem-
bles the figure ‘8’ due to two bifurcations which concatenate at the nodes. As was
mentioned in the previous paragraph, the organism’s travel distance between nodes
exceeds the algorithmically-generated value, due to the organism not propagating in
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Fig. 3 Slime mould addresses a SPP in a simple graph guided by attractants and repellents. a
Photograph showing experiment (details in text) after 48h, overlaid with paths radiating from
inoculation point, [A]. Path lengths in millimetres, rounded to nearest 5. b Path taken by slime
mould, as indicated by arrows and numbering. c Shortest path, as calculated by Dijkstra’s algorithm
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straight lines and the existence of multiple accessory branches in its protoplasmic
network. The organism’s deviation from straight lines tended to increase proportion-
ally with the inter-node distance and larger ‘rooms’ tended to have more accessory
branches within them. The organism also tended to avoid crossing illuminated zones
but did cross 5 wall spaces and one hallway.

In all experiments, the slimemould assumed a ring around the points in themanner
shown in Fig. 3a (i.e. a concave hull around the vertices), but did not always take
the same route: the other two routes taken were [AFEFABCDEF] and [ABCDEFA]
(data not shown).

It is clear from the examplar data that the organisms did not calculate the short-
est path, as defined by the criteria delineated in Sect. 2.1: the navigation sequence
between vertices was not identical to the sequence calculated to be the shortest by
Dijkstra’s algorithm (although one did take an optimal route, i.e. the inverse of the
algorithmically calculated route) and different routes were taken by each organism
in each repeat.

2.4 Discussion

2.4.1 Straight Lines, Redundancy and Accessory Branches

The experiment shown in Fig. 3a highlights why the total length of the organism’s
protoplasmic tube network (i.e. edge length) was not used as a primary determinant
of the experimental outcome: slimemoulds do not travel in perfectly straight lines. In
some cases, such as in the edge [AF], the fit is good but far from perfect. Conversely,
[DC] edge measures about 534mm (measuring the thickest tube only and no redun-
dant paths), approximately 4% greater than the true shortest route between these
paths. In comparison to conventional algorithmic approaches to solving SPPs, this
amount of divergence is sufficient to negate the hypothesis that the organism could
be said to be computing the ‘absolute’ shortest path, especially as the error accumu-
lates with each edge. Whilst it is beyond the remit of this investigation to debate at
length on why slime moulds no not travel in perfectly straight lines, we may assume,
parenthetically, that there is no distinct evolutionary advantage to doing so and that
factors such as organisation of intracellular motile machinery and reception of dif-
fused chemical signals involve stochastic elements (a common feature of biological
processes that makes live substrates particularly challenging to model [26]).

Another important factor influencing the organisms’ total network length was the
existence of the edge weighting factors other than node spacing. Although every
attempt was made to control the independent variables in the experiments presented,
a multitude of ‘background’ factors that are extremely difficult to control are likely to
have contributed to the variation in the organisms’ routes observed across all exper-
iments. Exemplar influencing factors include the organisms’ health and nutritional
status, fluctuations in temperature, presence of microbes and distribution of moisture
throughout the wet layer. It is likely that such factors also played an important role in
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determining the overall distribution of the organisms’ protoplasm in particular areas
of the wet layer, i.e. redundant links and accessory branches, which are thought to
be constructed in areas of high nutrient availability and along gradients of attraction
(chemical or otherwise), respectively [16]. As such, descriptions of slime mould
addressing MPPs cannot be favourably interpreted in purely algorithmic terms, so
our biocomputing vocabulary must be altered accordingly.

2.4.2 Ordering of Vertex Visits

The path the organism took in the experiment shown in Fig. 3 involved doubling
back, increasing its total path length by 2 edges (equating to over 10% in terms of
physical path length). This highlights how live biocomputers are always in a state of
flux and require constant observation in order to assess the state of the computation;
observing the output of the plasmodium at the 48h mark gives no indication as to
how the organism’s network was constructed. The nature of biological substrates is,
insofar as we have ascribed an exogenous purpose to its foraging behaviour, non-
halting; this could be considered both a benefit (it allows for assessment of the state
of computation and overall system dynamics at any point) and a detriment (user input
is required to determine when the operation has finished).

Whilst the organism did navigate via an optimal route in one of the repeats, albeit
not in the order calculated by Dijkstra’s algorithm, the reproducibility of results from
this small sample was poor by both biological and computing standards.

To address the question of why the slime mould in the above example took the
longer path with the addition of the [ABA] diversion, one may be tempted to assume
that the organism lacks the necessary ‘intelligence’ to adequately distinguish between
the benefits and detriments of the potential edges [AB] and [AF] and so opted for one
at random, then found that the conditions at [B] were less favourable than at [A], so
doubled back to explore other paths. Whilst this is certainly possible, it is apparent
that the data are insufficient to properlymeasure the effect of the aforementioned non-
visible weighting factors regarding environment favourability, organism status and
the (likely nonlinear) relationship between these and the physical distances separating
vertices. The complex interplay between attraction and repulsion is best illustrated
here by the example of the [DC] path in Fig. 3a: the organism traverses the repellent
‘hallway’ zone, presumably as the benefits of migrating across the gap outweigh the
energy costs of circumventing it.

It is essentially impossible to control all of the variables in experiments such
as those described here, hence variation in biocomputer must be anticipated and
accounted for in experimental designs. As variation is the basis by which all organ-
isms were able to evolve, an intuitively-designed biocomputer will capitalise on
variation, despite this being anathema to the traditional concept of computing.



When the Path Is Never Shortest: A Reality Check … 389

2.4.3 Shortest Path Approximations are only Constructed
in Nutrient-Limited Environments

The experiment described above represents a nutrient-sparse environment for slime
mould: can the organism construct similar graphs in nutrient-rich environments? In
Fig. 4a a P. polycephalum plasmodium inoculated onto a lattice delineated by oat
flakes is shown. The figure shows that P. polycephalum forms a more interconnected
graph in nutrient-rich environments, which is perhaps more akin to a Gabriel graph
than a Steiner minimum spanning tree (although 2 points near the centre have not
been linked, for an unknown reason). It was demonstrated in 2009 [2] that P. poly-
cephalum may approximate any of the proximity graphs in the Toussaint hierarchy,
dependent on relative edge weighting. For comparison, Fig. 4b shows slime mould
growth on nutrient enriched (i.e. a uniform attractant field) agar; the entire plate is
morphologically more similar to the amorphous advancing anterior margins usually
observed in nutrient-limited substrates. This highlights that slime mould biocom-
putation of SPPs only occurs within a specific set of conditions relating to nutrient
availability, meaning that reproducibility of SPPs is dependent on a fairly narrow
window of initial conditions relating to the organism’s nutritional status and the
spacing of nutrient sources.

Fig. 4 Photographs of P. polycephalum propagating in nutrient rich environments, 48h post-
inoculation. a An excessive amount of discrete food sources (oat flakes) are provided. b Growing
on enriched (oatmeal) agarose substrate. Adapted from [17]
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2.5 Summary

During the recent advent of slime mould computing research, much hype was gener-
ated in themedia around the use of slimemould for addressing shortest path problems,
particularly with respect to route planning. The organism’s malleability and easily-
interpretable output led to rich and varied works, including a particularly whimsical
paper in which it was suggested that slimemould should play a role in planning inter-
planetary missions [6]. In spite of this, I have demonstrated here that to label slime
mould foraging behaviours in nutrient-limited environments as calculation of a SPP
is somewhat inaccurate without applying a certain amount of abstraction to the man-
ner in which the term ‘shortest path’ is interpreted. This is not to devalue slimemould
research; clearly the organism is undertaking some immensely complex massively-
parallel operations, research upon which is most assuredly important. What I am
suggesting, however, is that directly comparing this to conventional path finding
algorithms is at best unhelpful.

3 Case Study 2: Banging Your Paramecium against a brick
wall

3.1 Background

P. caudatum is a single celled protistic freshwater microorganism covered in thou-
sands of minute hair-like appendages called ‘cilia’ (Fig. 5). Cilia beat rhythmically in
order to generate fluid currents in adjacent media, thus generating motive force and
enhancing feeding on dispersed particulates. Cilia-based motility in P. caudatum
therefore represents a novel mechanism for addressing MPPs in aquatic environ-
ments.

Whilst historical literature has indicated the use of basic puzzles to assess chemo-
taxis and thermotaxis in P. caudatum (usually, a T-shaped puzzle where the organism
is given a binary choice to navigate directly ahead or around a 90◦ bend) [32], very
little attention has been paid to the organism’s ability to address problems of graph
theory, despite their behaviour in confined environments (microfluidic circuitry, cap-
illary tubes) being reasonably well characterised [12].3

In this section I will demonstrate how P. caudatum is particularly ill-adapted for
addressing MPPs in geometrically-constrained labyrinth puzzles and by extension
illustrate some of the practical limitations of designing MPP-solving biocomputers.
Single P. caudatum cells were placed in small labyrinth puzzles in the presence of
a chemoattractant gradient at the exit, according to the principle that the organism

3It is essential in this context to mention ingenious work of Reidel-Kruse et al. [25] who developed
multiple ‘games’ in tiny enclosed environments wherein paramecium behaviour was influenced by
user input, including ‘PAC-mecium’ and ‘ciliaball’.
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Fig. 5 Photomicrographs ofP. caudatum, phase contrast optics. (Main)Anterior tip of the organism,
where hair-like cilia may be easily seen coating the cell’s membrane. Scale bar 10µm. (Inset) Lower
magnification image showing the whole cell. Scale bar 25µm

congregates in regions of highest nutrient density [31]. Successful navigation towards
the puzzle’s exit within a specific timeframe (10min) was judged to be evidence in
support of the hypothesis that P. caudatum are able to solve this variety of MPP.

3.2 Methods

P. caudatumwere cultivated in an in-housemodification ofChalkley’smediumwhich
was enriched with 10g of desiccated alfalfa and 20 grains of wheat per litre, at
room temperature. Cultures were exposed to a day/night cycle but were kept out of
exposed sunlight. Organisms were harvested in logarithmic growth phase by gentle
centrifugation at 400× G before being transferred to fresh culture media. Cells used
in experiments were transferred via a micropipette to the testing environment.

The testing environments, these being labyrinth puzzles designed to accommo-
date P. caudatum, were fabricated as follows. Labyrinths were generated in open-
SCAD using an open-source Python script [30] which rendered graphic files in STL
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Fig. 6 Projection of labyrinth puzzle mould used in P. caudatum navigation experiments. The route
between the entrance/exit reservoirs is shown in red

format (Fig. 6). The size of the completed labyrinth was approximately 10 × 7mm;
the dimensions of the labyrinth’s walls were chosen to accommodate approximately
8–10 cell widths (750µm2), which was reasoned to be ample room to allow a single
P. caudatum cell to manoeuvre and reduce the likelihood of collisions with the envi-
ronment’s walls. Maze designs were modified to have two distinct reservoirs at the
entrance and exits to the labyrinths before being inverted using Solidwoks 2017 (Das-
sault Systèmes, France). Moulds were then printed in PLA using an Objet 260 FDM
3D printer (Stratasys, USA) at a resolution of 50µm. The moulds were then cleaned
in isopropyl alcohol, rinsed three times in deionised water and air dried. Labyrinths
were cast in clear polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, USA)
by pouring elastomer solution onto themould, removing any air in a vacuum chamber
and finally polymerising in an oven at 40 ◦C for 48h.

Completed testing environments were stuck to large glass microscope coverslips
(depth 0.11mm) and a small piece of a solid chemoattractant (desiccated alfalfa)
was placed in one of the labyrinth’s reservoirs. The maze was then filled with tap
water that had been resting for 48h from the end containing the solid chemoattractant
source, taking care not to dislodge it from its reservoir. This method was chosen in
order to generate a gradient of chemoattractants along the maze. The environment
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was then allowed to rest for 15min in a sealed Petri dish, in order to allow bubbles
to disappear but prevent fluid evaporation. Individual P. caudatum cells were then
transferred to the unoccupied reservoir using amicropipette.Observationsweremade
using a stereomicroscope and video footage was collected using a Brunel Eyecam
(BrunelMicroscopy, UK). Each experiment was run for 10min, after which thewater
began to evaporate to a noticeable degree. Labyrinths were not sealed in order to not
expose the organisms to alterations in fluid pressure or dissolved oxygen content.

The timescale for the experiment was judged to be sufficiently long for the organ-
ism to navigate the puzzle (based on typicalP. caudatummovement speed reaching in
excess 1mm per second), whilst disallowing the eventuality of the organism arriving
at the exit via a random walk. The experiment was repeated 10 times.

3.3 Results

The experiment detailed in Fig. 7 is representative of all experiments conducted.
Immediately after inoculation into the maze puzzle, the P. caudatum cell spent sev-
eral seconds rotating on the spot. Following, the organism would migrate in approx-
imately the correct direction, i.e. towards the aperture leading to the maze, before
colliding with a wall. Collisions would cause the the organism to migrate in a reverse
direction at apparently random angles. This would begin an erratic oscillation in
anteroposterior migration which prevented the organism from progressing far into
the maze; the furthest a P. caudatum cell was observed to have migrated within
the 10min experiment was approximately 4mm end-to-end, amounting to two right
angle corners successfully traversed.

3.4 Discussion

3.4.1 Spontaneous Alternation Behaviour Is Incompatible
with Constrained-Geometry Puzzles

Spontaneous alternation behaviour (SAB) in Paramecium spp. is a well documented
phenomenon that occurs when the organism collides with a solid object or otherwise
meets an unfavourable stimulus. As Witcherman noted in his classic treatise on
Paramecium [35], this behaviour is not quite taxis nor quite kinesis as it interferes
with true directional movement with a non-specific reaction to move away in any
other direction. This response was anticipated, although attempts to engineer the
labyrinth’s passages as widely as possible had been made as earlier experiments
with narrower channels produced much the same effect (data not shown).

The evolutionary advantages of SAB demonstrate the momentary requirements
of motile freshwater microorganisms that sit in the middle of their food chain (i.e.
they predate smaller organisms and are prey to larger organisms), as it would appear
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Fig. 7 Figure to demonstratemotion ofP. caudatum in a labyrinth.a–f Experimental photographs to
show movement of organism (false coloured red) about geometric constraints in a PDMS labyrinth
(see text). Images taken at approx. 1 s intervals. Scale bar (in panel a) 500µm. g Schematic to
demonstrate organism movement (red, numbered sequentially) about labyrinth boundaries (blue)
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to favour keeping the organism away from harm at the cost of reducing the efficiency
of its search for food. This does, however, result in the organism being virtually
incapable of efficiently traversing environments such as theminiature labyrinths used
in these experiments, although this of course does not imply that they are unable to
address MPPs in unconstrained geometries.

Previous literature has indicated that P. caudatum responds to extremely confined
environments (microfluidic circuitry or otherwise sealed systems) by exhibiting a
somersaulting behaviour which allows it to assume sinusoidal paths by bending
over on its self, rather than reverting SAB [12]. It must be noted, however, that
this behaviour is quite different to any previously described mode of Paramecium
movement and is unlikely to occur in anything but the most confined environments.

3.4.2 Challenges Associated with Biocomputing in Aqueous
Environments

Generating a chemoattractant gradient in an aqueousmedium is not a straightforward
task. Chemical attraction was chosen as the input over, for example, light or electrical
gradients due to the technical limitation ofmicroscopic illumination and the necessity
to use electrical fields of a potentially harmful magnitude to be detectable at opposite
ends of the labyrinth, respectively. It was reasoned that the organisms were able to
sense a chemoattractant given their propensity to always initially migrate in the
direction of the stimulus. Nutrient density at the labyrinth start point was low and
the organisms only exhibited patterns of movement associated with migration, as
opposed to the slower-swimming ‘feeding behaviours’ that can be observed in areas
of sufficiently high nutrient substrate concentration [19]. Nevertheless, it is apparent
that in this instance, any chemoattractive effects that were induced were insufficient
to guide the organism through the maze without collisions. Representing multiple
vertices as attractant fields in unconstrained geometric spaces would represent a
significant technical challenge.

Another issue encountered, which is not adequately represented by standard pho-
tography, was the impact that being in a three dimensional environment had on the
organisms’ pathfinding abilities:P. caudatum cellswere observed to collidewith both
the upper and lower levels of the experimental environment (the ‘roof’ and ‘floor’, as
demarcated by the area filled with fluid) in the majority of experiments, to much the
same effect as wall collisions. Even though these labyrinth puzzles are pseudo-two
dimensional puzzles, it must be remembered that the search for an efficient path
encompasses the need to find the most efficient route in all three dimensions. Even
had the organisms successfully navigated to the labyrinth exit, care would have to
be taken in stating that the organism had navigated the ‘shortest path’ through, due
to the phenomenon of helical swimming in all Paramecium species and z-axis devi-
ations [13]. This emphasises the need to take into account the third dimension when
conducting such experiments.
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3.5 Summary

Despite being an intensely researched-upon model organism that exhibits many
behaviours that can be interpreted as expressions of natural computing (orchestrated
manipulation of micro-scale objects [19], basic learning/memory [11]), their mode
of motion and hazard avoidance essentially precludes their use in experiments which
use geometries constrained to the degrees described. This implies that the only way
P. caudatum may be coaxed into addressing MPPs is either in architectureless space
(which is complex to monitor microscopically) or otherwise in extremely confined
environments, which would in turn still be problematic to achieve in practice.

Although it could perhaps have been predicted that P. caudatum cells are a good
medium for implementing graph theory biocomputation, it is nevertheless a fact
that Paramecium species have long-since been used as model aquatic organisms
for investigating various taxes, meaning that results gained with these organisms
may be partially representative of a large class of organisms. Although there are
doubtless other species of ciliate better suited to such applications, this section serves
to emphasise that being placed in confined environments is not representative of
P. caudatum’s natural habitat (i.e. large bodies of static or running freshwater) and
by extension that live substrates are not always as tolerant to abuse (in designing
MPPs or any other form of biocomputer) as archetypal substrates such as slime
mould may suggest.

4 Conclusions

It is a singular temptation to view emergent biological phenomena in our world and
dream of how they may be harnessed, mimicked or emulated for computing appli-
cations. Whilst I have endeavoured to prevent the tone of this chapter from being
overtly negative or unduly sceptical (biocomputing is a wonderful science whose
advancement is of great necessity!), I have attempted to highlight the experimen-
tal considerations that make laboratory experiments involving morphological and
topological operations with live substrates difficult to implement and even harder to
interpret, reproduce and refine. The data presented here suggest that shortest path
biocomputation is not something that can easily be achieved and that a certain amount
of optimism and open-mindedness is required to interpret such experiments as any-
thing other than rough approximations of MPP solutions in the rare experiments that
are ostensibly successful.

In conclusion, the experiments outlined here involve taking organisms out of
their natural environment and encouraging them to do distinctly unnatural things.
Interpreting the output of a biocomputer almost always requires a certain degree of
abstraction; this does not devalue the experiments or make the phenomena under
investigation less interesting, but it must be remembered that approximation is a
distinctly unconventional paradigm in computer science. The best biocomputing
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experiments will put minimal stress on the organism and observe processes that
occur naturally, only intervening subtly in order to tweak a parameter or make a
measurement.

Finally, I will note on behalf of all experimentalists in the field that the divergence
between the observed results of biocomputation and our pre-conceived notions of
their expected outcomes in comparison with the algorithmic equivalents highlights
why it is essential to make physical biocomputing prototypes in unconventional
computing research, rather than computer models alone.

Acknowledgements The author thanks both reviewers for their invaluable insights and suggestions
andMatthewHynam for providing the laser cut architectural drafts used in slimemould experiments.
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Abstract Maze solving and finding the shortest path or all possible exit paths in
mazes can be interpreted as mathematical problems which can be solved algorithmi-
cally. These algorithms can be used by both living entities (such as humans, animals,
cells) and non-living systems (computer programs, simulators, robots, particles). In
this chapter we summarize several chemistry-based concepts for maze solving in
two-dimensional standard mazes which rely on surface tension driven phenomena
at the air-liquid interface. We show that maze solving can be implemented by using:
(i) active (self-propelled) droplets and/or (ii) passive particles (chemical entities).
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1 Introduction

Solving mazes and finding of the shortest path or all possible exit paths in mazes
are scientifically challenging problems, although sometimes it seems to be “just to
find the trivial way from the start to the exit of a maze”. Here, we focus on mazes in
Euclidean geometry in two or three dimensions, possibly with multiple solutions but
without any loops or inaccessible areas. Algorithms for solving such mazes can be
classified according to several criteria. For example, some maze-solving strategies
require no prior knowledge about the maze structure and its complexity. On the other
hand, other algorithms require information about the global maze structure. Another
classification is based on on the type of the desired outcome, e.g., whether or not
the solver identifies the optimal or all possible solutions to exiting the maze. Of
course, the type of algorithm chosen depends on specific needs and situations; some
algorithms may be plausibly envisaged as implementable by living entities, other
algorithms can be only used by artificial physical or chemical solvers [1–4, 8, 9,
12–17].

Consider first humans and animals as the ‘solvers’. In this case one can assume
that the solvers are rather sophisticated in the sense that they possess the necessary
sensing skills for spatially resolved data acquisition and the cognitive abilities for
signal processing, comparison, and decision making, leading to efficient (though
not necessarily optimal) path finding strategies. For a trained human maze solving
may be often an easy easy task if the global maze structure is available. However, if
only a local information about a maze is available at any time, or if the solver has
rudimentary cognitive skills, the same problem could be difficult and challenging.
Here, we outline three simple maze-solving strategies which do not require no prior
knowledge on the maze structure and its complexity, namely the random mouse, the
wall follower, and the Trémaux algorithms.

The simple random mouse solver abandons targeted goal finding and relies instead
on a random trial-and-error strategywhich results in a randomwalk through themaze
which is terminated once the exit is reached. The disadvantage of this algorithm is
that it is extremely slow and the time for this algorithms to execute (i.e., find the exit)
is unbounded [19].

The more efficient wall follower algorithm is based on always following the same
wall in the maze (e.g., by keeping one hand in contact with one wall). For non-
degenerate mazes (i.e., with an ‘entry’ and ‘exit’, and assuming that one does not
start in inside an enclosed area) this algorithm is guaranteed to complete the task of
finding the exit in finite time. In general, the execution time of this strategy depends
on the orientation (i.e., the choice of hand/wall).

The Trémaux’s algorithm represents another random strategy which results in a
version of the self-avoiding random walk. In this method the solver makes random
decisions about where to go from the starting point while recording the past path
(think of drawing a line on the floor to mark the path). If the solver reaches the end
point of any corridor, it returns to the closest crossroadwhere he chooses any corridor



Shortest Path Finding in Mazes by Active and Passive Particles 403

that it has not visited yet. Paths are either unmarked (i.e., unvisited), marked once or
marked twice (i.e., leading to a dead end).

Clearly, the above exit-finding strategies can be utilised by humans or imple-
mented algorithmically, for example, in order to aid robot navigation. Robots are
able to randomly make decisions which corridor to choose (and thus to use the ran-
dommouse algorithm), follow the wall (and use the wall follower algorithm) or label
the floor and then check the numbers of lines (by using Trémaux’s algorithm). How-
ever, an important question concerns the issue of using simple non-programmable
objects for maze solving.

Recently, we have shown that oil droplets can self-propel (by picking up momen-
tum due to the thermodynamic setting of the environment of the drops) and thus
follow chemical gradients mimicking the chemotactic behaviour of living cells [5,
10]. While it is implausible to assume that simple droplets could be programmed to
execute any of the aforementioned algorithms, their chemotactic behaviour can be
exploited to the similar end. It turns out that if a chemical signal is placed at the exit,
the chemotactic droplets are capable of solving the maze by following the shortest
path predefined by the concentration gradient. In fact, diffusive andMarangoni flows
can be used to construct ‘physical’ maze solvers [1]. We will discuss this problem
more in detail in Sect. 2 where we focus on maze solving by active particles, and
Sect. 3 which outlines maze solving by passive particles.

2 Maze Solving by Active Particles

Here, we introduce methods for maze solving using active particles that can sense
their environment and respond to environmental stimuli. Active particle in this con-
text is an autonomous self-propelled object that can convert energy from the envi-
ronment into directed or persistent motion. Moreover, such an object has the ability
to behave chemotactically. Chemotaxis is an oriented movement of cells or animals
in concentration gradients and it is universal process by exploited by animate matter
in nature. It has been found that non-living objects also exhibit similar properties
and such motion is usually referred to as artificial chemotaxis. It has been shown
that there are several chemical systems that exhibit such behaviour. We focus on
organic droplets at the liquid-air interface that perform oriented chemotactic move-
ment towards the source of “chemoattractant”, i.e., they implement positive artificial
chemotaxis [7].

We have shown that microliter sized decanol droplets suspended at the liquid-air
interface in decanoate water solution perform a self-propelled motion and follow
salt or hydroxide concentration gradients [5]. The decanol droplet in a homogeneous
solution of decanoate exhibits a weak random motion. However, when a source of
salt is added, after an induction period, it starts to move directionally and follows
the salt concentration gradient. The salt concentration gradient in decanoate solution
establishes a significant surface tension gradient (with a surface tension difference
of ∼40 mN/m between no salt and saturated salt cases) at the liquid-air interface
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Fig. 1 Maze solving by a decanol droplet (5 µL, purple colour) in decanoate water solution
(10mM). The exit represented by a stationary nitrobenzene droplet containing solid sodium chlo-
ride salt (yellow colour). Nitrobenzene droplet is immiscible with water and shows no self-propelled
motion, thus allows a gradual leaching (diffusion) of salt ions to the surrounding solution creating
a concentration gradient around the sodium chloride crystal. The maze was designed by using a
microscope slide and adhesive double sided tape (3M) for walls of the maze. Scale bar at the bottom
right represents 1cm. (Reprinted with permission from [5]. Copyright 2014 American Chemical
Society.) See supplementary movie http://youtu.be/P5uKRqJIeSs

and it generates surface tension difference between the leading and the trailing edge
of the oil droplet. In turn, this surface tension difference induces a fluid flow inside
the droplet as well as in the bulk water phase contributing to the directional and
self-propelled motion of the droplet.

There exist other chemical systems exhibiting a similar chemotactic behaviour. In
particular, organic droplets (mineral oil or dichloromethane) containing fatty acid,
2-hexyldecanoic acid (HDA), are able to move towards the acidic region (pH ∼ 1)
[10]. The mechanism of the self-propelled motion is similar to the one described
above for the decanol droplet but, in this case, the surface tension difference is due
to the pH gradient that affects the protonation rate of fatty acid molecules.

Placing the chemoattractant at the exit of themaze and the self-propelled droplet at
the entrance, results in a maze-solving ability of the chemotactic droplets (see Figs. 1
and 2). The droplets follow the shortest path predefined by concentration gradient
of the chemoattractant (salt or pH); the diffusion and Marangoni flows represent
the physical maze solvers in this setting. The chemoattractant, i.e., the chemical
substance placed at the exit, diffuses and induces a surface tension gradient which,
in turn, drives the Marangoni flow. If the droplet is placed anywhere in the maze,
it follows the steepest gradient and reaches the source of the chemical signal. The
unique property of these chemotactic droplets is not the ability to find the target, but
to follow the track leading to the target, because not all droplets have this ability
to chemotactically follow the chemical gradient [6]. The efficiency (solution time)
of maze solving scales with the intensity of generated Marangoni flow, which is
somehow proportional to the length of the shortest path.

http://youtu.be/P5uKRqJIeSs
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Fig. 2 Maze solving by an organic droplet (1 µL) containing 20% of 2-Hexyldecanoic acid in
0.05M alkaline solution of potassium hydroxide. Maze was fabricated from polydimethylsiloxane
(PDMS) using photolithography (with thickness and depth of 1.4 and 1mm, respectively). The
images were created by overlaying experimental images at different times (spheres indicate the
position of the droplet at different times), and the time window for this process is 1min. (Reprinted
with permission from [10]. Copyright 2010 American Chemical Society)

3 Maze Solving by Passive Particles

Another approach to exploring mazes replies on utilizating the global fluid flow in
the channel network. If one can induce and maintain a fluid flow in the maze with
the largest velocities between the entrance and the exit of the maze, the shortest path
can be found by following (visualizing) this flow. There exist several approaches to
establishing this kind of fluid flow. For example, it has been reported that applying a
pressure difference between the entrance and the exit of a maze can generate a fluid
flow through the microfluidic channel network [9].

On the other hand,Marangoni flows can also be generated at the liquid-air interface
of a 2D channel network. Marangoni flow results in a mass transfer of the liquid
medium at the liquid-air interface due to a surface tension difference (surface tension
gradient). The fluid flows from the lower surface tension region to the greater surface
tension region at the interface; consequently, due to the conservation of mass, the
near surface flow induces a reverse flow at the bottom of the channel.

In a typical experiment, we filled the maze with an alkaline solution (pH=11)
containing fatty acid (HDA) with a concentration of 0.2%. In this pH the head group
of the fatty acid molecules are deprotonated, and they are oriented at the liquid-air
interface and the deprotonated form of HDA acts as surfactant (reducing the surface
tension at the liquid-air interface). To generate and maintain the Marangoni flow in
the maze we placed either a small acidic hydrogel block (pH ∼ 1) or a cold small
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Fig. 3 Maze solving by inducedMarangoni flow at the liquid-air interface. The letter E indicates the
exit of the maze, a gel soaked with acid and b cold small stainless steel sphere. The letter S (as start)
shows the entrance of the maze, where phenol red dye particles are added. In a typical experiment,
the shortest path can be found and visualized in the order of minutes. Scale bars correspond to 1cm.
(Reprinted a from [18] under Creative Commons Attribution 4.0 International Public License and
b from [11] with permission of The Royal Society of Chemistry)

stainless steel sphere to the exit, the temperature difference between the exit and the
starting point was 60 K, which translates into 20.0 mN/m surface tension difference.
[11, 18]. After the addition of this object, a small amount (∼0.3mg) of dry phenol
red dye powder was placed at the liquid-air interface at the starting point (entrance).
These small dye particles act as passive tracers and can be seen travelling towards
the exit at the liquid-air interface (low pH and low temperature regions). The dye
particles transported by the induced Marangoni flow gradually dissolve in the liquid
phase and the colour showed their paths through the maze (Fig. 3).

4 Conclusions

We have outlined several mechanisms through which simple droplets of organic
solvents can efficiently navigate their way through amaze based on chemical signals.
Such droplets actively take part in the maze-solving process in the sense that they
self-propel autonomously in the direction of a concentration gradient of a salt or pH.
This movement is referred to as artificial chemotaxis. Our approach presented here
is similar to the artificial potential fields algorithms, in which the motion planning
utilizes a potential field providing attraction to the goal and repulsion from obstacles.
We have demonstrated that passive particles are also able to solve amaze utilizing the
Marangoni flow. Marangoni flows can be induced either by a pH or a temperature
gradient between the entrance and the exit of the maze. The corresponding flow



Shortest Path Finding in Mazes by Active and Passive Particles 407

velocities are the most intense along the shortest path connecting the entrance to the
exit; therefore, the most passive particles are dragged along this way. If the particles
dissolve during their travel, they can also aid path visualisation; such particles also
help determine other paths solving the maze, and these longer paths are associated
with less intense colour since less particles move along those paths.
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The Electron in the Maze

Simon Ayrinhac

Abstract A physical method to solve a maze using an electric circuit is presented.
The temperature increase due to Joule heating is observed with a thermal camera
and the correct path is instantaneously enlightened. Various mazes are simulated
with Kirchhoff’s circuit laws. Finally, the physical mechanisms explaining how the
electric current chooses the correct path are discussed.

1 Resolving Mazes with Electricity

1.1 Preliminary Considerations About Electrical Circuits
and Thermography

The maze-solving problem and the shortest path problem are inspiring problems in
algorithmics and they involvemanyfields of science, such as robotics or optimization.
In addition to numericalmethods,many experimentalmethods have been proposed to
solve these problems, including fluids [1], memristors [2], living organisms (ants [3],
honey bees [4], amoeba or “blobs” [5], nematodes [6], plants [7]) or plasma [8]. In
this chapter, a solution by a simple physical method using an electric current is
proposed.

First, mazes and labyrinths should be distinguished. Labyrinths have only one
way, which is very complicated and which generally leads to the center, as can be
seen in drawings on the floor of several cathedrals (see Fig. 1). In contrast, mazes
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(a) (b) (c)

Fig. 1 Examples of labyrinths: a The labyrinth on the floor of the cathedral at Chartres (France);
b the logo of Monuments historiques (national heritage sites) in France; c a handwritten labyrinth
that was designed according to the intriguing instructions “You have two minutes to design a maze
that takes one minute to solve”. Reproduced from the Inception movie (real. C. Nolan, 2010)

Fig. 2 Examples of mazes: a a computer generated maze; b a plan of the Palace of Knossos (now
a ruin near the town of Heraklion in Crete), the historical location of the myth of the Minotaur; c
map of a city with ways (streets and avenues)

possess a complex branching (see Fig. 2). Although labyrinths are fascinating from
a symbolic point of view, mazes are more interesting.1

This chapter presents a simple physical method to solve a maze, using an electric
current. Themaze can be done by an electric circuit that is constituted by, for example,
copper tracks printed on an epoxy card [9].

Basically, two points of the maze are connected with a battery: if the entrance and
the output of the maze are connected, then the electric current flows and the maze
is solved. If they are unconnected, then the circuit is open and no current flows. A
simple ohmmeter (usually a multimeter in a particular mode) gives the answer: if the
resistance between two points is very low, then the path is continuous; in contrast,
if the resistance is very high, then the path is broken. However, in this method, the
exact path followed by the current is unknown.

1The title of this chapter is a tribute to the American sci-fi writer Robert Silverberg and his novel
“The Man in the Maze”.
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Thermography is a contactless and nondestructivemethod that can reveal the good
path. The power P dissipated by a resistor, with electrical resistance R, is given by
Joule’s law

P = RI 2. (1)

For a resistor obeying Ohm’s law U = RI , where U is the voltage, the electrical
energy provided by the battery is integrally converted into heat. When the electric
charges flow, the temperature increase in the tracks is due to Joule heating.

The temperature increase ΔT is limited by thermal losses in the circuit. A first
origin of thermal losses is conduction, which depends on the surrounding materials
and the contact areas (controlled by the size of the circuit). A second origin is radi-
ation produced by a hot body. A third origin is the convective heat transfer between
an object and the surrounding fluid—in this case, the atmosphere. Given that the
radiation heat transfer is negligible at low temperature, the following simple scaling
law is relevant for a standard circuit on printed circuit board (PCB) [10]

ΔT ∝ I 2. (2)

The increase in temperature is visualized by a thermal camera that detects infrared
radiation (IR).

Thermal cameras are often used for educational purposes [11–15] to provide a
clear visualization of invisible phenomena or to illustrate complex phenomena. There
a wide range of topics in physics [16] or in chemistry [17] where a thermal camera
may come in handy. With this kind of apparatus, qualitative as well as quantitative
applications are possible. Although prices have decreased significantly in recent
years, thermal cameras are still rather expensive. However, there are other devices
suitable for thermal imaging applications: such as a simple webcam with an IR
filter [18] or a smartphone-based device such as FLIR ONE or Seek Thermal.

The main purpose of an infrared camera is to convert IR radiation intensity in a
temperature measurement and to show the spatial variations in a false-color visual
image. Intensity is integrated froma spectral band, generally in the long-wave infrared
(7.5–13 µm). The temperature is given by a formula which takes into account three
phenomena [16]: the true thermal emission from the object, the thermal radiation
emitted by its surroundings and reflected by the object, and the atmospheric absorp-
tion. A suitable temperature measurement needs the knowledge of some parameters,
for example the emissivity, humidity, distance and ambient temperature.

Thermal imaging can find wide application in electronics. For example, electrical
components in themicroelectronic boards of computers produce heat that can damage
the circuits. To avoid failures, processors or power transistors need to be cooled by
fans or Peltiermodules, for example. IR imaging is a non-contact and non-destructive
technique that can be used to test and survey electronic boards, allowing a diagnos-
tics of possible malfunctions. Given that these boards are often made of different
materials, the differences in components emissivity make quantitative temperature
measurements difficult (an explanation of emissivity will be given later).
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Temperature measurement depends strongly on the emissivity ε of materials.
Unfortunately, for metals, the emissivity is very low, and they are hard to see directly
in thermography. Emissivity is defined as the ratio of the amount of the radiation
emitted from the surface to that emitted by a blackbody at the same temperature [16].
A blackbody is a perfect absorber for all incident radiations. It appears black when
cooled at 0 K and when heated up it emits light at all wavelengths and the result-
ing spectrum (given by Planck’s law [16]) depends only on the temperature of the
blackbody. Kirchhoff’s law of thermal radiation states that ε = α where α is the
absorption coefficient [19]. This formula means that, for an opaque body, the more
a body absorbs, the more it emits light. A metal is a good reflector, so it has a bad
absorption and, therefore, a poor emissivity.

1.2 Experiments on Circuits

A regular maze (see Fig. 3) is printed on a epoxy card with tracks made of copper. A
transparent plastic sheet, which has a higher emissivity contrary to metal, is placed
over the circuit to ensure that the temperature increase is seen by thermography. The
transparent cover sheet allows the maze to be seen in both in infrared light and visible
light. With a thermal camera, the correct track appears to be immediately illuminated
despite the complexity of the circuit (see Fig. 4).

Our maze is designed to highlight the following special features (see Fig. 5):

• In case of branching with a path twice as long as the parallel branch, the shorter
path appears to be more brightly illuminated compared to the longer path. This
happens because the trace resistance R is proportional to the length of the
resistor �, such as R = �/σ A, where σ is the electrical conductivity and A the

Fig. 3 a The maze used in the experiment; b the maze on a printed circuit board with dimensions
15 × 15 cm2. The conductive copper tracks have a thickness of 35 µm and a width of 800 µm. The
circuit is covered by a plastic transparent sheet
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Fig. 4 a The studied maze without dead ends; b thermal image (320 × 240 pixels) of the circuit
connected to the battery at points labelled (A) and (B). The infrared light captured by the camera
immediately shows the correct path! The colour bar on the right of the image is the temperature scale
in degrees Celsius. This scale is calculated with an emissivity parameter of 0.95. The spectral range
of the camera is in the long-wave (LW) region, i.e. 7.5–13 µm. Note that the minimum temperature
on the scale is not the room temperature

(a) (b)

Fig. 5 a The battery is connected to the circuit by the points labelled (1) and (2). This picture
demonstrates two effects: the difference between two paths with a pathwith double length compared
to another (lower arrow) and the Wheatstone Bridge (upper arrow). b The battery is connected to
the circuit by the points labelled (I) and (II). Because there are many good branches with equal
lengths, it is difficult to identify the shortest path

cross-sectional area. The voltage U is equal in the two branches and gives
I� = 2I2�, so with Eq. (2), the temperature increase in the shortest path is four
times higher than in the longer path ΔT� = 4ΔT2�.

• If the branching is configured as a Wheatstone bridge, then the parallel branch
does not appear. See Fig. 11 and the associated text for explanations.

• In case of multiple paths, the branching is complicated and the shortest path is
hard to be seen.
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Fig. 6 a A maze is drawn on a paper sheet with a pen delivering conductive ink (around 1 �/cm).
It takes about 10 min to draw the whole maze. This maze was previously presented in detail in
Ref. [9]. Despite the care taken in the drawing, the tracks are not perfectly regular and the paper is
muchmore fragile compared to a PCB, and can be torn easily; b the correct path appears illuminated
with an infrared camera. The temperature increase is clearly seen in this case because the paper has
a better emissivity compared to metallic conductive tracks. Due to the sideways spreading of the
heat the correct path in the image looks “blurred”. This method is cheaper and faster compared to
printing the same maze on a PCB

This kind of demonstration is possible provided that several conditions aremet: the
tracks should have the same section and they should be built with the same material,
the branching should not be too complex (i.e., one-solution mazes) and the correct
path should exist among many dead ends. So, the ideal circuit is an intermediate
between a labyrinth and a maze.

The circuit can be drawn by an ink pen on a paper sheet (see Fig. 6). However,
despite the care taken in the drawing, the tracks are not perfectly regular and the paper
is much more fragile than a PCB and can be torn easily. Nevertheless, this method is
cheaper and faster than printing the same maze on a PCB. To further reduce costs,
the IR camera can be replaced by a temperature sensitive liquid crystal film (around
15$), to obtain qualitatively the same result (see Fig. 7).

1.3 Simulated Circuits

To investigate more complex topologies, various circuits were simulated in the per-
manent regime using Kirchhoff’s laws [20]: the algebraic sum of currents at a node
is zero (Kirchhoff node rule), and the directed sum of the voltages around a loop
is zero (Kirchhoff loop rule). The operation involves a solution of a linear system
with n equations, involving resistances, currents and applied voltages, where n is the
number of branches in the electrical network.
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Fig. 7 a A thermochromic liquid crystal film (the size of the sheet is 15×15cm2), sensitive to
temperature, with a hand print. The transition from black to color occurs between 20–25 ◦C. The
colour change is reversible and quick, with a response time about 10 ms [21]. b The correct path of
the maze appears illuminated with the liquid crystal film placed on the PCB

(a)

(b)

(c)

Fig. 8 a A circuit drawn in an image file (7 × 6 pixels), imitating copper tracks on a PCB.
b The equivalent electrical circuit. c Distribution of the intensities obtained by the application of
Kirchhoff’s laws (see text). The color bar at the right indicates the intensity values in each branch

The studied circuits are directly generated by drawing the tracks in an image
file (see the example in Fig. 8). The battery voltage is 10V and the track electrical
resistance is 1 � by unit of length (equal to the track width). This resistance value
is arbitrary. The nodes are not be taken into account in the calculation of resistance.
In the nodes, the current is calculated by the averaging of the surroundings currents.
The resulting picture represents the current I in amperes at each point of the circuit.
Note that the resulting picture is not a thermography image rendering.

In a grid-like circuit (Fig. 9), the current is spread over the whole circuit. In this
case, all the paths are equivalent and the current appears equal in all of the paths. In
another example with disordered tracks (Fig. 10), the shortest path appears clearly.
In some cases, the current can fall to zero in a part of the circuit. This is due to the
creation of an “electrical bridge”, also called Wheatstone bridge, as illustrated in the
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Fig. 11. The process to follow the shortest path between two points connected by
the battery is to choose at each node the branch where the intensity is maximum.
Generally speaking, the shortest path is the path where the intensity is maximized.
This idea is sustained by the basic electric conception that more current follows the
path of less resistance.

The resistive grid was early used to explore some physical problems, such as
solution of partial differential equations [22], or mobile robot path planning [23]. In
robot path planning, a collision-free environment canbemodelledwith a resistive grid
of uniform resistance, and obstacles are represented by regions of infinite resistance.
The path planning can be evaluated in real space if the robot moves through a maze,
for example, or in the configurational space where the dimensions are the degrees
of freedom of the robot, considering a robot manipulator arm, for example. The
path from start to goal is found using voltage measurements from successive nodes.
In the limit of the continuous case, the electromagnetism equations imply that for
steady currents in regions with no sources the voltage obeys Laplace’s equation, if we

(a) (b)

Fig. 9 a A grid-like circuit. The battery is located in the upper branch. b Distribution of the
intensities inside the studied circuit. The color bar at the right indicates the intensity values in each
branch

(a) (b)

Fig. 10 a A circuit maze with disordered tracks. The battery is located in the upper branch. b
Distribution of the intensities inside the studied circuit. The color bar at the right indicates the
intensity values
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(a) (b) (c)

Fig. 11 a A complex circuit. The battery is located in the upper branch. b In the simulated circuit,
the central part does not appear. This is due to the creation of an electrical “bridge”. c Diagram of
an electrical circuit containing an electrical “bridge”. Resistors and currents are labelled R and in ,
respectively. If the circuit is well balanced, all R are equal, and it can be demonstrated that i3 = 0.
This configuration is called a Wheatstone bridge and it is often used to measure resistance

assume that conductivity is uniform and constant. The two-dimensional Laplace’s
equation

∂2V (x, y)

∂x2
+ ∂2V (x, y)

∂y2
= 0 (3)

may be solved to calculate the value of the voltage V at every point (x, y). The
direction of the movement is given locally by the direction of the voltage gradient
∇V . Globally, this approach produces an optimal path solution, depending on the
limit conditions to avoid spurious local minima.

2 Discussion of the Physical Mechanisms

After the demonstration, a physical question remains: How does the electric current
choose the correct path amongst many others?

Acommonexplanation is that the battery produces a potential differenceΔV at the
two extremities of the circuit, and the resulting electric fieldE possesses a magnitude
constant and a direction along the wire. This is especially puzzling in a maze circuit,
where the electric field must follow the multiple bends of the circuit. In contrast, the
electric field E and then the potential difference ΔV is produced by distributions of
point charges. So where are the charges producing the electric field inside the wires?
This question is challenging because electrokinetics and electrostatics are two topics
that are usually treated separately in physics textbooks; charges distributions on a
one side, and electrical circuits on the other side. Consequently, for most students the
two topics are unconnected, leading to manymisconceptions [24]; that is, commonly
held beliefs that have no basis in actual scientific knowledge.

This pointwas extensively examined in the literature [25–29]. The electric charges
responsible for the electric field inside the conductor are located on the surfaces of
the wire. This fact is known from the pioneering works of Weber and Kirchhoff [30],
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but it has been completely forgotten during the last 150years. The quantity of surface
charge is very small: the order ofmagnitude of the charge necessary to turn an electric
current of 1A around a corner is equal to about the charge of one electron [25]. A
quantitative estimate in a typical circuit [29] for the magnitude of the surface charge
density is 10−12–10−10 C m−2. Comparatively, the quantity of charge moving inside
the wires is much higher, about 10−6 C m−2s−1, which corresponds to 1 A.

Although the quantity of surface charges is small, their role is essential [27]: they
ensure that the equality of the potential in the conductors is at equilibrium, they
permit the circulation of the charges and they produce an electric field outside the
wires. Two types of surface charges can be distinguished [29]: at the boundary of
two conductors with different resistivities and at the surface of the conductors.

The free electrons in the metal are pushed by the electric force arising from the
electric field. If there is a curve, they pile-up on the surface, and their electric field
changes the pathway of the incomingmoving charges. There is a feedbackmechanism
between the surface charges and the charges moving inside. The book of Chabay and
Sherwood [20] provides an excellent and very accessible overview of this problem
for undergraduate students.

This feedbackmechanism explains how the charges avoid dead-ends of the circuit
maze. First, they pile-up on the extremity of the dead-end; the build-up of negative
charge pushes the arriving electrons, and then the flowing current reaches zero.
Finally, the only path left for the charges to follow is the solution path of the maze.
This phenomenon is analogous to liquid propagating in a microfluidic network [1].

Electric circuits are often compared to hydraulic circuits from a pedagogical point
of view (themost complete comparison can be found inTable1 inRef. [31]).However
there are fundamental differences between electrons and water: electrons do not
interact with one another, and energy is not carried by the free electrons. Energy is
carried outside the circuit by the electromagnetic fields forming the Poynting vector
S = 1

μ0
E × B. This formula combines the magnetic field B due to electric current

inside the wires (moving charges) and the electric field E due to surface charges.
Solving themazewith an electric current reveals the existence of a transient period

between the beginning of the experiment and themoment that the current is stabilized
in the solved maze.2 Simulations performed by Preyer in a simple RC circuit [28]
can give us a better understanding of phenomena observed in the transient state. Just
after the connection of the battery at two points of the maze, the electric field spreads
through the circuit at the speed of light. During this step, the surface charges build
on the tracks. The surface charges locally change the electric field and the current,
as they influence each other. This feedback mechanism occurs in the transient state
and is at work when the uniform current flow is established, which means that the
maze is solved.

All of the changes occur at the speed of light c inside the material around the
circuit (usually air), which is also the speed that the information propagates between
different parts of the circuit. The drift velocity v of charges moving inside the wires

2In the following discussion, we do not consider the thermal equilibration of the system, which
requires more time than electric equilibration.
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is much slower than c, typically a few microns a second. The simple propagation
of the electric field through the whole circuit needs a time τ ≈ �/c, where � is the
characteristic length of the maze, but the time τ ′ needed for the feedback mechanism
to operate is much longer [28] with τ ′ > 2�/c, which can be considered as the
minimum time needed to solve the maze.

With this physical method, the maze resolution is fast. This explains why this is
considered to be the fastest and the cheapest method among many other physical
methods [32], especially if the circuit is drawn by ink pen on a paper sheet.
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Maze Solvers Demystified and Some
Other Thoughts

Andrew Adamatzky

Abstract There is a growing interest towards implementation of maze solving in

spatially-extended physical, chemical and living systems. Several reports of proto-

types attracted great publicity, e.g. maze solving with slime mould and epithelial

cells, maze navigating droplets. We show that most prototypes utilise one of two

phenomena: a shortest path in a maze is a path of the least resistance for fluid and

current flow, and a shortest path is a path of the steepest gradient of chemoattractants.

We discuss that substrates with so-called maze-solving capabilities simply trace flow

currents or chemical diffusion gradients. We illustrate our thoughts with a model of

flow and experiments with slime mould. The chapter ends with a discussion of exper-

iments on maze solving with plant roots and leeches which show limitations of the

chemical diffusion maze-solving approach.

1 Introduction

To solve a maze
1

is to find a route from the source site to the destination site. In [6] we

reviewed experimental laboratory prototypes of maze solvers. We speculated that the

experimental laboratory prototypes of maze solvers, despite looking different, use the

same principles in their actions: mapping and tracing. A maze is mapped in parallel

by developing chemical, electrical, or thermal gradients.
2

A path from a given source

site to the destination site is traced in the mapped maze using living cells, fluid flows

or electrical current. The traced paths are visualised with morphological structures

of living cells, dyes, droplets, thermal sensing or glow-charge. The experimental

laboratory maze solvers vary in their speeds substantially. The solvers based on glow-

1
A labyrinth is a maze with a single path to an exit/destination.

2
This is a material implementation of 1961 Lee algorithm, where each site of a maze gets a

label showing a number of steps someone must make to reach the site from the destination

site [21, 30].
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discharge [14, 28] or thermal visualisation of a path [10], and the solver utilising

crystallisation [2] produce the traced path in a matter of milliseconds or seconds.

Prototypes employing assembly of conductive particles [27], dyes [15], droplets [11,

19] and waves [8, 9] give us results in minutes. Living creatures—slime mould [4]

and epithelial cells [31]—require hours or days to trace the path.

Chemical, physical and living maze solvers are conventional examples of uncon-

ventional computers. In the present chapter we do not provide all technical details of

the experimental laboratory prototypes, these can be found in [6], but rather share

our thoughts on maze solvers in a context of unconventional computing and discuss

some experiments with inconclusive results.

Whilst mentioning ‘unconventional computing’ we might provide a definition

of the field. The field is vaguely defined as the computing with physical, chemi-

cal and living substrates (as if conventional computers compute with ‘non-physical’

substrates!). In our recent opinion paper [7] unconventional computists provided

several definitions, e.g. challenging impossibilities (Cristian Calude), going beyond

discriminative knowledge (Kenichi Morita), intrinsic parallelism and nonuniversal-

ity (Selim Akl), and continuous computation (Bruce MacLennan). José Félix Costa

defines the unconventional computing as ‘physics of measurement’ which echoes

with our own opinion of the unconventional computing as an art of interpretation [3].

Take, for example, the famous, and still very much relevant, book by Stéphane Leduc

“Théorie physico-chimique de la vie et générations spontanées” published in Paris

in 1910. Not only did this book laid a foundation of the Artificial Life but some-

what contributed to the field of unconventional computing. Namely, have a look at

the Fig. 1a. This is a structure that emerged when Leduc placed drops on potassium

ferrocyanide on the gelatine gel. Neighbouring diffusing drops applied pressure to

each other and diffusion stopped at the bisectors between the drops. Leduc presented

this as a chemical model of multi-cellular formation. Unaware of the Leduc’s exper-

iments Adamatzky and Tolmachiev rediscovered a similar formation in 1996 and

reinterpreted it as a chemical processor which computes Voronoi diagram of a pla-

nar set of points [34]: the data points are represented by drops of potassium iodide

diffusing in a thin-layer agar with palladium chloride (Fig. 1b, c). These our historical

reminiscences smoothly flow into the next section of the chapter on fluid mappers.

2 Fluid Mappers. Shortest Path is a Path of the Least
Hydrodynamic Resistance

In 1900 Hele-Shaw and Hay developed an analogy between stream-lines of a fluid

flow in a thin layer and the lines of magnetic induction in a uniform magnetic

field [16]: pressure gradient of a fluid flow is equivalent to magnetic intensity and rate

of the flow is analogous to magnetic induction. As Hele-Shaw and Hay wrote [16]:

The method described is the only one hitherto known which enables us to determined the

lines of induction in the substance of a solid magnetic body.
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Fig. 1 Unconventional computing is an art of interpretation. a Cellular structure produced by

Stéphane Leduc in 1910 with drops of potassium ferrocyanide diffusing in gelatine [20]. b, c Chem-

ical processor made by Adamatzky and Tolmachiev in 1996 [34]: photo of a completed reaction (b)

and corresponding Voronoi diagram (c)
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Fig. 2 Stream-lines of a fluid flow around a domain with low permeability, designs were proposed

in 1904. From [17]

In 1904 they applied their approach to solve a “problem of the magnetic flux distor-

tion brought about by armature teeth” [17] (Fig. 2).

Hele-Shaw and Hay’s idea was picked up by Arthur Dearth Moore who developed

fluid flow mapping devices [25] (Fig. 3).
3

The Moore’s fluid mapper is made of a cast

slab, covered by a glass plate, with input (source) and output (sink) ports, fluid flow

lines are visualised by traces from dissolving crystals of potassium permanganate

or methylene blue. He shown that his fluid mappers can simulate electrostatic and

magnetic fields, electric current, heat transfer and chemical diffusion [25]. This is a

description of the mapper in Moore’s own words [26]:

When a given potential field situation is to be portrayed, the lower member of the fluid

mapper is built to scale, with suitable boundaries, open or closed; islands, if any; one or

more sources or sinks; and so on. Each source or sink is connected by a rubber tube to a tank,

so that raising or lowering a tank will induce flow in the flow space. When the operation

is conducted so that the flow is not affected by inertia, the flow pattern set up can quite

accurately duplicate either the equipotential lines, or else the flux lines, of the potential field

under consideration.

Moore mentioned ‘islands’, which could play a role of obstacles or even maze walls,

when a collision-free shortest path is calculated or a maze solved, however, there is

no published evidence that Moore applied his inventions to solve mazes. Maybe he

did. The fluid mappers became popular, for a decade, and have been used to solve

engineering problems of underground gas recovery and canal seepage.
4

In 1952 Moore’s method was applied to study current flow for various positions

of electrocardiographic leads: an outline of a human body was made of a plaster

3
Moore has also invented hydrocal, a hydraulic computing device for solving unsteady problem in

heat transfer [24] at the same time when Luk’yanov’s invented his famous hydraulic differential

equations solver [22].

4
http://quod.lib.umich.edu/b/bhlead/umich-bhl-851959?rgn=main;view=text.

http://quod.lib.umich.edu/b/bhlead/umich-bhl-851959?rgn=main;view=text
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Fig. 3 A short news story about Moore’s works was published in “The Michigan Daily” newspaper

on June 29, 1950 [1]. ©The Michigan Daily

and covered with a glass plate to allow only a thin layer of fluid inside, locations of

a source and sinks of fluid flow corresponded to positions of electrocardiographic

electrodes, variations of resistance of organs were modelled by varying the depth

of the plaster slab [23] (Fig. 4a). In 1954 a fluid mapper was evaluated in designs

of fume exhaust hoods [12]: it was possible to plot hood characteristics, stream,

pressure and velocity lines with the help of the experimental fluid mapper (Fig. 4b).

First published evidence of experimental laboratory fluid maze solver is dated

back to 2003. In a fluidic maze solver developed in [15] a maze is the network of

micro-channels. The network is sealed. Only the source site (inlet) and the des-

tination site (outlet) are open. The maze is filled with a high-viscosity fluid. A

low-viscosity coloured fluid is pumped under pressure into the maze, via the inlet.
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Fig. 4 Applications of fluid mappers. a Fluid mapper used in optimisation of a canopy exhaust

hood in 1954 [12]. b Imitation of a current flow in a human body with a thin-layer fluid flow, with

domains of low permeability corresponding to lungs and liver, the fluid enters the model from the

left leg and leaves the model through the arms. The experiments are conducted in 1952. From [23]

Due to a pressure drop between the inlet and the outlet liquids start leaving the maze

via the outlet. A velocity of fluid in a channel is inversely proportional to the length

of the channel. High-viscosity fluid in the channels leading to dead ends prevents the

coloured low-viscosity fluid from entering the channels. There is no pressure drop

between the inlet and any of the dead ends. Portions of the ‘filler’ liquid leave the

maze. They are gradually displaced by the colour liquid. The colour liquid travels

along maximum gradient of the pressure drop, which is along a shortest path from

the inlet to the outlet. When the coloured liquid fills the path the viscosity along

the path decreases. This leads to an increase of the liquid velocity along the path.

The shortest path—least hydrodynamic resistance path—from the inlet to the outlet

is represented by channels filled with coloured fluid. Visualisation of the fluid flow

indicating a shortest path in a maze is shown in Fig. 5. Fluids solve mazes at any

scale, not just micro-fluidics, as has been demonstrated by Masakazu Matsumoto,

where water explores the maze and milk traces the shortest path (Fig. 6) and in our

own experiments with milk and coffee in a labyrinth (Fig. 7).
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(a) 0 sec (b) 1 sec (c) 2 sec

(d) 4 sec (e) 6 sec (f) 10 sec

(g) 0 sec (h) 1 sec (i) 2 sec

(j) 4 sec (k) 6 sec (l) 10 sec

Fig. 5 Fluid flow through the maze. Entrance is on the left, exit is on the right. Labyrinth is

generated in Maze Generator http://www.mazegenerator.net/ and modified to maze. Flow simu-

lation is done in Flow Illustrator http://www.flowillustrator.com/ for visual flow control dt = 0.01
and Reynolds number 500. Maze is black, red coloured areas are part of fluid making clockwise

rotation and green coloured areas—counter-clockwise. See videos of these computational exper-

iments https://youtu.be/FUBYr3cOoC8 (labyrinth) and https://youtu.be/0jFPXBhQBS0 (maze).

Time shown as per video generated by the Flow Illustrator

http://www.mazegenerator.net/
http://www.flowillustrator.com/
https://youtu.be/FUBYr3cOoC8
https://youtu.be/0jFPXBhQBS0
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(a) 20 sec (b) 22 sec

(c) 25 sec (d) 30 sec

(e) 35 sec (f) 40 sec

Fig. 6 Snapshots of milk and water solving maze. Snapshots from the video of experiments by

Masakazu Matsumoto https://youtu.be/nDyGEq_ugGo who used one Lego 6177, one Lego 628,

half-a-litre of milk and two litres of water. Printed with kind permission from Masakazu Matsumoto

https://youtu.be/nDyGEq_ugGo
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Fig. 7 Labyrinth solving with coffee and milk: a the path is traced by coffee, b the path is traced

by milk

3 Electrical Mappers. Shortest Path Is a Path of the Least
Electrical Resistance

Approximation of a collision-free path with a network of resistors was first proposed

in [32, 33]. A space is represented as a resistor network, obstacles are insulators. An

electrical power source is connected to the destination and the source sites. The des-

tination site is the electrical current source. Current flows in the network but does

not enter obstacles. A path can be traced by a gradient descent in electrical potential.

That is for each node a next move is selected by measuring the voltage difference

between the current node and each of its neighbours, and moving to the neighbours

which shows maximum voltage. As shown by Simon Ayrinhac (originally in [10], a

shortest path can be visualised without discretisation of the space. A maze is filled

with a continuous conductive material. Corridors are conductors, walls are insula-

tors. An electrical potential difference is applied between the source and the desti-

nation sites. The electrical current ‘explores’ all possible pathways in the maze. An

electrical current is stronger along the shortest path. Local temperature in a locus of

a conducting material is proportional to a current strength through this locus. A tem-

perature profile can be visualised with thermal camera [10] or glow-discharge [28]

or temperature sensitive liquid crystal sheets (Fig. 8).
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Fig. 8 Calculating a shortest path with electrical current. a Circuit. b Visualisation of a shortest

path with the temperature sensitive liquid crystal sheet (Edmund Optics Inc., USA). Current applied

through is 3.2 A.

4 Diffusion Mappers. Shortest Path Is a Path
of the Steepest Gradient of Chemoattractants

A source of a diffusing substance is placed at the destination site. After the substance

propagates all over the maze a concentration of the substance develops. The concen-

tration gradient is steepest towards the source of the diffusion. Thus starting at any

site of the maze and following the steepest gradient one can reach the source of the

diffusion. The diffusing substance represents one-destination-many-sources shortest

paths. To trace a shortest path from any site, we place a chemotactic agent at the site

and record its movement towards the destination site. There are three experimen-

tal laboratory prototypes of visualising a shortest path in a diffusion field: by using

travelling droplets, crawling epithelial cells and growing slime mould.

A path along the steepest gradient of potassium hydroxide has been visualised

by István Lagzi and colleagues with a droplet of a mineral oil or dichloromethane

mixed with 2-hexyldecanoic acid [19]. Daniel Irimia and colleagues used epithelial
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Fig. 9 A path between central chamber of exit of a maze is represented by thickest protoplasmic

tube. a Photo of experimental setup with the maze solved. b Painting of the setup where the path

to the maze’s central chamber is more visible

cells to visualise the steepest gradient of the epidermal growth factor [31]. Let us

discuss our own experiments on visualising a path in a maze with slime mould.

The slime mould maze solver based on chemo-attraction is proposed in [4]. An

oat flake is placed in the destination site. The slime mould Physarum polycephalum
is inoculated in the source site. The oat flakes, or rather bacterias colonising the

flake, release a chemoattractant. The chemo-attractant diffuses along the channels

(Fig. 10). The slime mould explores its vicinity by branching protoplasmic tubes

into openings of nearby channels. When a wave-front of diffusing attractants reaches

the slime mould, the cell halts its lateral exploration. The slime mould develops an

active growing zone propagating along the gradient of the attractant’s diffusion. The

problem is solved when the slime mould reaches the source site. The thickest tube

represents the shortest path between the destination site and the source site (Fig. 9).

Mechanisms of tracing the gradient by the slime mould are confirmed via numer-

ical simulation a two-variable Oregonator partial-differential equations in a two-

dimensional space (Fig. 11). Not only nutrients can be placed at the destination site
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(a) t = 101 (b) t = 202 (c) t = 303

(d) t = 404 (e) t = 505 (f) t = 606

Fig. 10 Numerical simulation of a diffusing chemo-attractant. The grey-level is proportional to a

concentration of the chemo-attractant. Time steps indicated are iteration of numerical integration.

See details in [4]

(a) t = 807 (b) t = 1307 (c) t = 1807

(d) t = 2307 (e) t = 2807 (f) t = 4807

Fig. 11 Numerical simulation of the gradient tracing by the slime mould. Active growing zone is

shown by red colour. The slime mould’s body is shown by blue colour. See details of the model

in [4]
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but any volatile substances that attract the slime mould, e.g. roots of the medicinal

plant Valeriana officinalis [29]. Note that in our experiments reported in [4] slime

mould did not calculate the shortest path inside the maze but just one of the paths,

while Oregonator based model always produces the shortest path.

5 Thoughts on Inconclusive Experiments

In 2009 we attempted to understand what is going on in the slime mould’s ‘mind’

when it traces gradients of chemoattractants. We positioned 16 electrodes at the bot-

tom of a plastic maze (Fig. 12a) with reference electrode in the central chamber,

poured some agar above, inoculated the slime mould in the central chamber and

placed an oat flake at the outer channel of the maze. Configurations of the slime

mould growing in the maze are shown Fig. 12b, c. Electrical potential differences

between each of 16 electrodes and the reference electrode recorded during several

days are shown in Fig. 12d, e. We found that active growing zones of the slime mould

show a higher level of the electrical potential difference and there are signs of an

apparent communication between the zones performing parallel search at different

parts of the maze. However, it still remains unclear how exactly ‘suppression’ of

growing zones propagating along the longest routes is implemented.

A spectrum of leeches’ behaviour traits is extensively classified [13]. A leech posi-

tions itself at the water surface in resting state. The leech swims towards the source

of a mechanical or optical stimulation. The leech stops swimming when it comes

into contact with any geometrical surface. Then, the leech explores the surface by

crawling. When a leech finds a warm region the leech bites. We attempted to solve a

maze, a template printed of nylon and filled with water, with young leeches Hirudo
verbana (see details of experimental setup in [5]). We tried fresh blood, temperature

and vibration as sources of physical stimuli which would attract leeches to the target

site. The leeches did not show attraction to the blood when placed over 5 cm away

from the source. Being placed in the proximity of the source the leeches crawled

or swam to the target site (Fig. 13a). We have also conducted scoping experiments

with leeches in presence of thermal gradients. To form the gradient we immersed, by

5 mm, a tip of a soldering iron, heated to 40
◦
C, in the water inside a central cham-

ber of the maze. In half of the experiments, leeches escaped from the template, in

a quarter of the experiments leeches moved to the domains proximal to the source

of a higher temperature and in a quarter of experiments leeches moved towards the

source of thermal stimulation. Trajectories of the leeches movement in the presence

of a source of vibration did not show any statistically significant preference towards
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Fig. 12 Illustrations of experiments on electrical activity of slime mould Physarum polycephalum
during maze solving: a positions of electrodes, reference electrode is labeled GND, b two days after

inoculation, c three days after inoculation, d electrical activity recorded on channels 1–8, sampling

rate is one per second, e electrical activity recorded on channels 9–16, plots of electrical potential

on electrodes are shown by different colours and also numbered
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Fig. 13 A leech partially solves maze. a Trajectory of the leech approaching the target, blue pixels

show starting position of a leech, red pixels—final position. b Trajectory of a leech in a template

with vibrating motor

movement into areas with highest level of vibration, in some cases a leech was mov-

ing towards the vibrating motor from the start of an experiment but then swam or

crawled away (Fig. 13b). Inconclusive results with vibration-assisted maze solving

could be due to a reflection of waves at maze walls.

We have undertaken a few scoping experiments on plants navigating mazes

guided only by gravity force and physical structure of a maze, see illustrations in

Fig. 14a. When seeds are placed in or near a central chamber of a maze their roots

somewhat grow towards the exit of the labyrinth. However, they often become stuck

midway and rarely reach the exit. Yokawa and colleagues [35] demonstrated that

by using volatiles it is possible to navigate the roots in simple binary mazes, more

complicated mazes have not been tested. Few more experiments on a collision-free

path approximation by plant roots have been done on a 3D templates of Bristol (UK)

city and USA. The seeds of lettuce, in experiments with a template of Bristol, were

placed in large open spaces, corresponding to squares. The templates were kept in a

horizontal position. We found that root apexes prefer wider streets, they rarely enter

side streets (Fig. 14b). Potential prototypes of shortest path solvers with roots could

be the case of future studies, at this moment we only know that roots navigate around

obstacles (Fig. 14b) and elevations (Fig. 14c).
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Fig. 14 a Lettuce seedlings grow inside plastic mazes. b, c Roots propagate in a 3D model of

Bristol. d Maize roots navigate around elevations on 3D template of USA
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6 Conclusion

To solve a maze we need a mapper and a tracer. The tracer’s role is straightforward,

we would say easy, just follow a map made by the mapper. This is the mapper who

does all ‘computation’. Does it? And here we come to a disturbing thought that a

computation exists only in our mind. Nature does not compute. It is us who invented

the concept of computation. As Stanley Kubrick told in his interview to “Playboy”

magazine in 1968 [18]:

The most terrifying fact about the universe is not that it is hostile but that it is indifferent; but

if we can come to terms with this indifference and accept the challenges of life within the

boundaries of death — however mutable man may be able to make them — our existence

as a species can have genuine meaning and fulfilment.

Designing and re-designing experimental laboratory prototypes of unconven-

tional computing devices might be our way to cope with the Nature’s indifference.
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