
Chapter 2
The Principle of Virtual Power (PVP):
Application to Complex Media,
Extension to Gauge and Scale
Invariances, and Fundamental Aspects

Laurent Hirsinger, Naoum Daher, Michel Devel and Gautier Lecoutre

Abstract This work, relative to the principle of virtual power, is composed of three
distinct but nevertheless complementary parts. The first part follows the line of
thought developed by professor Maugin and his students on complex continuous
media subject to the objectivity requirement (translational and rotational invari-
ances). The second part shows that this principle is extensible to other types of
invariance such as gauge and scale invariances. Gauge invariance allows to express
Maxwell equations, usually derived through a vector approach, by use of a scalar
principle having the same formal structure as the principle of virtual power. As to
scale invariance, it allows to deal, in a general and unified way whatever the
underlying physics, with the passage from a continuous medium to a discontinuous
one (singular surfaces, lines or points). The third part concerns the foundations of
dynamics where the principle of virtual power appears as a theorem, like other
analytical principles, each corresponding to one point of view, deductible from a
general intrinsic (viewpoint independent) dynamical framework. The attention will
be focused on the origin of the duality notion, at the basis of the principle of virtual
power.
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2.1 First Part

2.1.1 Complex Media: Modeling of the Different Continua

If one intends to describe semiconduction effects coupled to ferroelectricity and/or
ferromagnetism, one must, on the one hand, distinguish between the various species
of carriers by decomposing the total charge and current densities in order to account
for generation and recombination phenomena as done in [1]. On the other hand, one
must introduce polarization and magnetization gradients to account for electro-
magnetic ordering. Phenomenologically, the conduction (or diffusion) currents per
unit charge may be considered as the new generalized velocity fields that, by
thermodynamic duality, yield generalized internal forces for which constitutive
equations will have to be constructed. That is, we increase the complexity of the
general scheme of electromechanical interactions of [2] by considering the
self-explanatory scheme of Fig. 2.1 where the continua of charge α, correspond to
electrons, holes, ions, impurities, etc. Thus the superscript α labels quantities
attached to these species of charge and we have the obvious relations and notations.

The volume density of free charges qf and the total electric current density
J correspond to the contribution of each α charge carriers, such that:

qf = ∑
α
qαf , J= ∑

α
Jα ð2:1Þ

vα =
Jα

qαf
, uα = vα − v=

JJα

qαf
ð2:2Þ

Fig. 2.1 Scheme of interactions in thermo-deformable semiconductors [1]
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where qαf and Jα denote respectively the volume density and the electric current
density of electric charges of type α. The vectors v, vα and uα denote respectively
the velocity fields describing the global deformable material, the αth continuum (or
the velocity of α charges carriers with respect to the frame RG) and the relative
velocity (i.e. with respect to the co-moving frame RC). JJα denotes the conduction
current density of α charge carriers that is diffused within the material with respect
to RC frame. Similarly to the mass conservation but accounting for the possible
recombination and generation [1], we can write for the αth continua of charge the
following global balance laws ðα=1, 2, 3 . . .Þ:

dα

dt

Z

D

qαf dv=
Z

D

rαdv ð2:3Þ

where dα ̸dt= ∂ ̸∂t+ vα ⋅∇ denotes the “αth continuum” convective-time derivative
and rα the source terms such that ∑α r

α =0.
Equation (2.3) yields the local conservation-of-charge equations for the αth type

of charge carriers as

∂qαf
∂t

+∇ ⋅ Jα = rα ð2:4Þ

By summation over α, the latter equation yields the conservation-of-charge
equation for the whole continuum.

In the following we use the convective-time derivative of a vector field A such
that

A
*
= A

.
− A ⋅ ∇ð Þv+A ∇ ⋅ vð Þ ð2:5Þ

Maxwell’s equations can be written in SI units, like other equations in this
communication, in order to be close to what is nowadays done by physicists [3]:

∇×EE+ B
*
= 0, ∇ ⋅ B=0 ð2:6Þ

∇×
BB
μ0

� �
− ε0 E

*
= JJeff , ∇ ⋅E=

qeff

ε0
ð2:7Þ

where E and B denote the vectors of the electric field and the magnetic induction
evaluated in the fixed Galilean frame RG; EE and BB are the same vector fields as
E and B but referred to a co-moving frame RC in movement with the material
velocity v with respect to RG; ε0 and μ0 are respectively the vacuum permittivity
and permeability such that ε0μ0c

2 = 1 (where c denotes the speed of light in vac-
uum); qeff and JJeff are the effective charges and currents in RC defined by:
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qeff = ∑
α
qαf −∇ ⋅P= ∑

α
qαðeff Þ, qαðeff Þ = qαf 1−

∇ ⋅P
∇ ⋅D

� �
ð2:8Þ

JJeff = JJ+ P
*
+∇×MM= ∑

α
JJαðeff Þ, JJαðeff Þ = JJα + qαf P

*
+∇×MM

� �
∇ ⋅ Dð Þ− 1 ð2:9Þ

where D, P and M denote the vector of the electric displacement, the electric
polarization and the magnetization evaluated in RG; MM and JJ= ∑α JJ

α are the same
vector fields as M and J but referred to a co-moving frame RC. When ∇ ⋅ D=0,
one uses the first equalities of Eqs. (2.8) and (2.9). In the Galilean approximation,
we have the following transformation laws between RG and RC:

EE=E+ v×B,
BB
μ0

=
B
μ0

− v× ε0Eð Þ ð2:10Þ

MM=M + v×P, JJ= J− qf v. ð2:11Þ

This gives an idea of the effective charge and current densities that must be
accounted for the αth species when the material is simultaneously polarized and
magnetized.

2.1.2 Thermo-Electro-Magneto-Mechanical Equations

2.1.2.1 General Principles in Global Form

The thermomechanical balance laws of an electromagnetic continuum may be
deduced in an elegant manner from three general principles written in global form
for the material volume D. These are the principle of virtual power and the first and
second principles of thermodynamics [4, 5]. We refer the reader to the review paper
[2] and the book [6] for this general approach from which we extract only the
required ingredients.

In order to construct the different virtual powers, we construct a space of
velocities and velocity gradients V (see, for instance, [1, 2, 6–8]) from the available
“velocities” gathered in Vð0Þ:

Vð0Þ = vi, vαi , π ̇i, μ̇i
� � ð2:12Þ

where πi =Pi ̸ρ and μi =Mi ̸ρ denote the mass density of polarization and
magnetization.

The set of variables is chosen according to the phenomena one is interested in.
For simple deformable electro-magneto-mechanical interactions, one needs to
account for time rates of polarization π ̇i and magnetization μ̇i, in addition to the
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usual mechanical ingredients: velocity vi and its first gradient vi, j (needed to account
for deformation). In the present approach where one deals with complex media
including ferroelectricity, ferromagnetism, flexoelectricity, semi-conduction etc., it
becomes necessary to add to the time rates of polarization and magnetization first
gradients, ðπ i̇Þ, j and ðμ ̇iÞ, j, accounting thus for the so-called electromagnetic
ordering (ferroelectricity, ferromagnetism …). One also needs to account for a
second gradient relative to the velocity vi, jk, required to give account of the flex-
oelectric effect. As to semi-conduction, it is accounted for by introducing new
variables reflecting the motion of the different charge carriers (electrons, holes …)
i.e. the velocity vαi and its first-order gradient vαi, j. In summary, the set of variables

Vð0Þ has been enlarged with these different first and second order gradients to obtain
the new set V such that (see for instance [2, 9]):

V = vi, vi, j, vi, jk, vαi , v
α
i, j, π ̇i, π i̇ð Þ, j, μ ̇i, μ ̇ið Þ, j

n o
ð2:13Þ

In order to pave the way for objective quantities, the velocity gradients may be
decomposed into their symmetric and anti-symmetric parts. This may be decom-
posed as:

V = vi,Dij,Ωij, vi, jk, uαi ,D
α
ij,Ω

α
ij, π ̇i, π i̇ð Þ, j, μ̇i, μ̇ið Þ, j

n o
ð2:14Þ

where vi, j = v i, jð Þ + v i, j½ � =Dij +Ωij and vαi, j = vαi, jð Þ + vαi, j½ � =Dα
ij +Ωα

ij.
Since the constitutive equations associated with the different continua must be

objective, i.e. frame-independent, we construct a subspace Vobj including only
objective fields. In order to do that, the Jaumann derivatives, noted DJ , and the
specific time derivative tensors are used with the velocity of the deformable con-
tinuum and with the velocities of the αth charge continua [1, 3]. Hence, for the
polarization, we introduce:

π î = ðDJπÞi = π i̇ −Ωijπj, π ̂αi = ðDα
JπÞi = π ̇i −Ωα

ijπj ð2:15Þ

π îj = DJð∇πÞ½ �ij +Dkj πi, k = ðπ i̇Þ, j −Ωikπk, j, π ̂αij = ðπ i̇Þ, j −Ωα
ikπk, j. ð2:16Þ

For the magnetization, the Jaumann derivatives, μî and μ ̂αi , and the specific time
derivative tensors, μîj and μ ̂αij, are introduced similarly. Thus, the objective space
Vobj is composed of the following set of kinematical objective fields

Vobj = Dij, vi, jk, uαi ,D
α
ij, π ̂i, π ̂ij, μ ̂i, μ ̂ij, π ̂

α
i , π ̂

α
ij, μ̂

α
i , μ ̂

α
ij

n o

As to the set of dynamical objective fields Fobj, it is introduced by duality to the
set Vobj. It is composed of generalized internal forces, such that [2]:
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Fobj = σij, μijk , q
α
f
LEEα

i , σ
α
ij, ρ

LEi, LEEij, ρ LBi, LBBij, ρ LEα
i ,

LEEα
ij, ρ

LBα
i ,

LBBα
ij

n o

where σαij and σij are the symmetric first-order stress tensor’s components referred to
as the intrinsic-stress tensor respectively for the αth charge continua and for the
deformable continuum. μijk is the intrinsic second-order stress tensor. A dimen-
sional analysis shows that LBi and LBα

i are induction fields, and, LEEα
i ,

LEi and LEα
i

are electric fields. LEEij, LBBij, LEEα
ij and

LBBα
ij are generalized forces associated to the

gradient of the time derivatives of electric polarization and magnetization.

• Principle of Virtual Power (PVP)

In a Galilean frame and for a Newtonian chronology, the total virtual power of inertial
forces of the system P*

ðaÞ balances the sum of the virtual powers of internal forces

P*
ðiÞ, of external volume forces P*

ðvÞ and of external contact forces P*
ðcÞ impressed

on the system for any virtual velocity field. With the above notation, this reads:

P*
ðaÞðD,V* ∈Vð0Þ*Þ

=P*
ðiÞðD,V* ∈V*

objÞ+P*
ðvÞðD,V* ∈V*Þ+P*

ðcÞð∂D,V* ∈VðcÞ*Þ
ð2:17Þ

• First Principle of Thermodynamics

The time rate of change of the total energy contained in the material domain D,
considered as a closed system, is equal to the sum of the power developed by
“prescribed” forces PðeÞ, the energy supply by radiation in the volume of D and the
total flux of energy through the boundary ∂D [2]. Mathematically, this reads:

d
dt

KðDÞ+EðDÞ+UemðDÞ½ �=PðeÞðDÞ+Q
∙
hðDÞ ð2:18Þ

where D denotes the outside of domain D in R3.

• Second Principle of Thermodynamics

For any thermodynamical process the time rate of change of the total entropy of the
material domain D is never less than the sum of the total entropy supply in the
volume of D and the total flux of entropy through its boundary ∂D. Mathematically,
this reads:

d
dt
NðDÞ≥ N

∙ ðDÞ ð2:19Þ
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For a general magnetizable, electrically polarized, heat conducting deformable
semiconductor, the expressions to be carried in Eqs. (2.17)–(2.19) are given as follows:

KðDÞ=
Z

D

1
2
ρ v2 +

1
2
ρ d π ̇2

� �
dv ð2:20Þ

EðDÞ=
Z

D

ρεdv, UemðDÞ=
Z

D

1
2

ε0E2 +
B2

μ0
− 2MM ⋅BB

� �
dv ð2:21Þ

Q
∙
hðDÞ=

Z

D

ρhdv−
Z

∂D

q ⋅ nda ð2:22Þ

NðDÞ=
Z

D

ρηdv, N
∙
ðDÞ=

Z

D

ρσdv−
Z

∂D

ϕ ⋅ n da ð2:23Þ

where d is the electronic polarization inertia tensor, e is the internal energy per unit
mass, η is the entropy per unit mass, h is the radiation heat power source per unit
mass, n is the unit exterior normal to the closed surface ∂D of the material domain D
and q is the total power flux vector, i.e. the sum of the heat power flux vector q ̃ and
the Poynting’s flux vector S referring to RC [2]:

q= q ̃+S, S=EE×HH. ð2:24Þ

The fields σ and ϕ are usually related to h, q and the thermodynamical tem-
perature θ (where θ > 0, inf(θ) = 0). These relations will be specified later on.

The other expressions to be carried in Eqs. (2.17)–(2.19) are constructed as follows:

Total virtual power of inertial forces P*
ðaÞ

P*
ðaÞðD,V* ∈Vð0Þ*Þ=

Z

D

ρ vi̇v*i + dπ ̈iπ ̇*i + β′γ − 1μ̇iω
*
i

� �
dv ð2:25Þ

where γ is the gyromagnetic ratio of electrons. β′ is equal to 1 when the spin
precession plays an important role (i.e. when the material is ferromagnetic at low
temperature) which can be expressed as a constraint on the magnetization velocity
μ ̇=ω× μ, where ω is the precession velocity. Otherwise, β′ can be set equal to 0 as
shown in [1, 2, 6, 8].

Total virtual power of internal forces P*
ðiÞ

The internal forces that reflect the interactions associated with the crystal lattice and
polarizable, magnetizable and semi-conducting continua, have to be objective
[1, 2, 6, 8]:
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P*
ðiÞðD,V* ∈V*

objÞ= −
Z

D

p*ðiÞdv ð2:26Þ

with

p*ðiÞ = σijD*
ij + μijkv

*
i, jk − ρ LEiπ ̂*i − ρ LBiμ̂

*
i +

LEijπ ̂*ij + β LBijμ̂
*
ij − ∑

α
qαf

LEα
i u

α*
i

+ ∑
α

σαijD
α*
ij − ρ LEα

i π ̂
α*
i − ρ LBα

i μ̂
α*
i + LEα

ijπ ̂
α*
ij + β LBα

ijμ ̂
α*
ij

� 	 ð2:27Þ

where, β is equal to 1 when the exchange forces play an important role, via
variables LBij and LBα

ij (i.e. when the material is ferromagnetic). Otherwise, β can be
set equal to 0.

Total virtual power of external volume forces P*
ðvÞ

P*
ðvÞðD,V* ∈V*Þ=

Z

D

fi + f emi

 �

v*i + ρEiπ ̇*i + ρBiμ ̇*i + ∑
α
f αi u

α*
i

� �
dv ð2:28Þ

where f and f α represent volume densities of forces and f em is the volume density of
ponderomotive forces. Here, we have assumed for the sake of simplicity that the
cofactors of vi, jk , μ ̇ið Þ, j and π ̇ið Þ, j take the value zero (in fact no physical inter-
pretation of these fields has been found up to now [2]).

Total virtual power of external contact forces P*
ðcÞ

For the external contact power, we obtain the following expression (see [3, 5, 9–13]):

P*
ðcÞð∂D,V* ∈Vð0Þ*Þ=

Z

∂D−Γ↗

Ti + Tem
i


 �
v*i +Ri

∂v*i
∂n

+
ρQi

ε0
π ̇*i

� �
da

+
Z

∂D−Γ↗

β μ0 ρFi μ̇
*
i + ∑

α
Tα
i u

α*
i

� �
da+

Z

Γ↗

Liv*i ds

ð2:29Þ

where T and Tα represent surface densities of forces, Tem is the electromagnetic
surface density of forces, Ri, Li, Qi and Fι̇ denote respectively the normal double
traction (per unit length), the reduced linear density of strength along the discon-
tinuous line Γ (i.e. an edge where the unit exterior normal n on the closed surface
∂D is discontinuous) and the surface distribution of electric and magnetic dipoles.
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Total power of “prescribed” forces PðeÞ

The total power of the “prescribed” forces is obtained by the construction of the
principle of virtual power for an actual velocity field [2, 9, 11]. Using the global
energetic identity for the electromagnetic fields Uem given by Maugin in [6], we
obtain the total power of the “prescribed” forces PðeÞðDÞ as

PðeÞðDÞ=
Z

D

fividv+
Z

∂D−Γ↗

Tivi +Ri
∂vi
∂n

+
ρQi

ε0
π ̇i

� �
da

+
Z

∂D−Γ↗

βμ0ρFiμ̇i + ∑
α
Tα
i u

α
i

� �
da+

Z

Γ↗

Livids
ð2:30Þ

In the above-set of Eqs. (2.25)–(2.30), f and T are respectively the volume and
surface densities of forces of purely mechanical origin. f α and Tα are respectively
the volume and surface densities of forces associated with the αth charge contin-
uum. The symmetric tensor with the component σij is called the intrinsic stress
tensor (not to be mistaken for the Cauchy stress tensor to which it is only a
symmetric contribution). Constitutive equations will have to be constructed for this
tensor. The quantities σαij,

LEi, LBi
LEα

i ,
LBα

i and LEα
i all introduced by duality (we

need constitutive equations for these) reflect the interactions between, respectively,
the neighboring elements of the αth charge continuum; the polarization field and the
crystal lattice; the magnetization field and the crystal lattice; the polarization field
and the αth charge continuum; the magnetization field and the αth charge contin-
uum; the crystal lattice and the αth charge continuum (this clearly is a “diffusion”
process). Finally, the presence of μijk,

LEij, LBij, LEα
ij and

LBα
ij are explained by the

inclusion of the gradients (∇∇v, ∇μ and ∇πÞ and the principle of objectivity. These
quantities (we also need constitutive equations for these) reflect, respectively, the
second order interaction between the neighboring elements of the deformable
continuum, and, the interactions between the polarization gradient field and the
crystal lattice; the magnetization gradient field and the crystal lattice; the polar-
ization gradient field and the αth charge continuum; the magnetization gradient field
and the αth charge continuum. Finally, f em is the volume density of the pondero-
motive force and Tem is the corresponding electromagnetic surface density of force.

According to a semi microscopic approach [14] accounting for the effects of only
charges and dipoles, the ponderomotive volume density of force is [1, 6, 8, 14–19]:

f em = qeffE+ JJeff −∇×MM

 �

×B+∇ ⋅ EE⊗Pð Þ+ ∇Bð Þ ⋅M ð2:31Þ

where one has set: ∇ ⋅ EE⊗Pð Þ½ �i = EEi Pj

 �

, j and ∇Bð Þ ⋅M½ �i =Bj, i MMj
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This latter expression is equivalent to the following:

f em =∇ ⋅ tem −
∂G
∂t

= Lf +∇ ⋅ tēm ð2:32Þ

where we have singularized the “Lorentz force” Lf

Lf = qeffE+Jeff ×B=∇ ⋅ tF −
∂G
∂t

ð2:33Þ

temij = tFij + tēmij , G= ε0E×B ð2:34Þ

tFij = ε0EiEj +
BiBj

μ0
−

1
2

ε0E2 +
B2

μ0

� �
δij, tēmij =EiPj −MiBj +M ⋅B δij. ð2:35Þ

The electromagnetic surface density of forces Tem is defined on ∂D as [1, 6, 8]:

Tem
i = − ðtemij +GivjÞnj ð2:36Þ

Finally, the ponderomotive couple Cem (of electromagnetic origin) is accounted
for through the pseudo-vector of the electromagnetic stress tensor Cem such that

Cem
ij = − temij½ � = − tēmij½ � , cemk = εklmCem

lm = P×EE+M×Bð Þk ð2:37Þ

where εijk denotes the classical Levi-Civita symbol.

2.1.2.2 Local Electro-Magneto-Mechanical Balance Equations

For any virtual fields v*, vα*, π ̇*, μ ̇* and ∂v* ̸∂n and for any element of volume
and surface, we obtain the following local field equations from (2.17) that govern
the motion and the interactions in a moving magnetized, polarized and semicon-
ducting, material medium (see [1, 2, 4, 9]):

ð2:38Þ

ð2:39Þ

tijnj = Ti + Tem
i + ∇ĵ − nj ∇̂pnp


 �
 �
μijknk − ∑

α
Tα
i on ∂D−Γ↗ ð2:40Þ

Li = εjpq½½μijknkτpnq�� onΓ↗ ð2:41Þ
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where the nonsymmetric Cauchy stress tensor’s component tij is defined by:

tij = σij − μijk, k + ρ LE½iπ j� + LB½iμ j�
� 	

− LE½i kj jπ j�, k + β LB½i kj jμ j�, k
� 	

ð2:42Þ

and where the symbol ½½. . .�� denotes here the jump across the edge Γ, τ denotes the
unit vector tangent to Γ and oriented in the direct sense about the normal n, and, ∇̂
denotes the surface gradient operator.

ð2:43Þ

tαijnj = Tα
i on ∂D−Γ↗ ð2:44Þ

where the nonsymmetric stress tensor’s component tαij is defined by:

tαij = σαij + ρ LEα
½iπ j� + LBα

½iμ j�
� 	

− LEα
½i kj jπ j�, k + β LBα

½i kj jμ j�, k
� 	

ð2:45Þ

ð2:46Þ

LEET
ij nj =

ρQi

ε0
on ∂D−Γ↗ ð2:47Þ

with the effective electric field Eeff , and, the local interaction electric fields of the
first order LET and of the second order with components LET

ij defined by:

Eeff
i = Ei + LET

i ð2:48Þ
LET

i =
LEi + ∑

α

LEα
i and LET

ij =
LEij + ∑

α

LEα
ij ð2:49Þ

ð2:50Þ

βεipq
LBT

pjnj − ρμ0Fp

� 	
μq =0 on ∂D−Γ↗ ð2:51Þ

with β′ = β=1, when the material is ferromagnetic at low temperature [13, 15];
β=1, β′ =0, when the material is ferromagnetic near the Curie temperature;
β′ = β=0, otherwise, and, with the effective magnetic induction Beff , and, the local
interaction magnetic inductions of the first order LBT and of the second order with
components LBT

ij defined by:
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Beff
i =Bi + LBT

i ð2:52Þ
LBT

i =
LBi + ∑

α

LBα
i and LBT

ij =
LBij + ∑

α

LBα
ij ð2:53Þ

2.1.2.3 Local Thermodynamical Equations

Combining the first principle of thermodynamic (2.18) with the principle of virtual
power (taken for actual velocities), we obtain the following global statement cor-
responding to the global form of the energy theorem as:

E
∙ ðDÞ+PðiÞðD,VobjÞ=Q

∙
hðDÞ+Q

∙
emðDÞ ð2:54Þ

where we have set

Q
∙
emðDÞ=

Z

D

qėmdv+
Z

∂D

SS ⋅ nda ð2:55Þ

with

qėm = ∑
α

JJα ⋅EE− f α ⋅ uαð Þ ð2:56Þ

Accounting for the generalized transport theorems and balances of mass, from
these latter eqns, we deduce the local forms of the first principle of thermodynamics
(2.18) (or the local form of the energy theorem) as

ρε ̇= pðiÞ + q ̇em −∇ ⋅ q ̃+ ρh ð2:57Þ

The second principle of thermodynamics remains to be exploited. To that pur-
pose we assume that σ = h ̸θ and ϕi = qĩ ̸θ. Only the volume entropy flux differs
from the usual ratio of the heat vector to the temperature, which means that
non-simple thermodynamic processes are involved (cf. [20], p. 129). The local form
of the second principle of thermodynamics (2.19) then reads

ρθ
dη
dt

≥ ρh−∇ ⋅ q ̃+ϕ ⋅∇θ ð2:58Þ

2.1.3 Clausius-Duhem Inequality

The Helmholtz free energy density ψ = ε− η θ is introduced. And we are led to the
Clausius-Duhem inequality in the local form:
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− ρ
dψ
dt

+ η
dθ
dt

� �
+ pðiÞ + q ̇em −ϕ ⋅∇θ≥ 0 ð2:59Þ

Introducing the relations between Jaumann derivatives and convective-time ones
and a scalar chemical potential, we can evaluate [3]:

pðiÞ + q ̇em = tT̃ijDij + μijkvi, jk − LET
i Pi

*
− LBT

i Mi

*
+ LET

ijπ
⌢
ij + β LBBT

ijμ
⌢

ij

+ ∑
α

EEαðeff Þ ⋅JJα − μα∇ ⋅JJα
h i ð2:60Þ

where we have also introduced the effective electromotive field of the α charge
carriers by EEαðeff Þ =EE−∇μα, where tT̃ is a symmetric tensor such that:

tT̃ij = σij + ∑
α
σαij −

LEðiPjÞ − LBði MjÞ + LEði , kj jπjÞ, k + β LBði , kj jμjÞ, k ð2:61Þ

and where LET
i ,

LBT
i ,

LET
ik and LBT

ik are respectively defined previously.
Recalling that ϕ= q̃ ̸θ and accounting for the latter eqns, we can rewrite the

Clausius-Duhem inequality (2.59) in the useful form [3]:

− ρ
dψ
dt

+ η
dθ
dt

� �
+ t ̃TijDij + μijkvi, jk −

LET
i Pi

*
− LBT

i Mi
*

+ LET
ik π

⌢
ij + β LBT

ikμ
⌢

ij

+ ∑
α
E
αðeff Þ
i Jα

i + ∑
α
μα ρ

dcαλ
dt

− rα
� �

+ θ q ̃ ⋅∇
1
θ

� �
≥ 0

ð2:62Þ

As is well known, the Clausius-Duhem inequality plays a major role in the
building of constitutive relations.

2.2 Second Part

2.2.1 Extension of the PVP to Gauge and Scale Invariances

The scalar method known as the principle of virtual power—applied to mechanics
with microstructures by Germain [4, 5], then to electro-magneto-mechanics by
Maugin and his students [7, 8, 10, 11]—has brought remarkable advances. This
method based on the duality notion subject to translational and rotational invariances
is extended here to gauge and scale invariances, leading thus to a more unifying
principle, apt to account for a wider range of applications as shown in [21–24].
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After having extended the principle of virtual power to complex structures
including conduction and diffusion effects of various charge carriers (semi-
conduction), it seemed advisable to acquire a more unifying, systematic and uni-
versal framework, adapting this formal and reliable method to other types of sym-
metries and invariances thanks to its use of the fruitful concepts of modern geometry.

This was done by borrowing concepts from theoretical physics, particularly gauge
theories (serious candidates for the unification of the four forces of interaction of
fundamental physics). Thus, scale and gauge invariances were introduced into the
physics of continuous media. These two types of invariances add to the well-known
translational and rotational invariances (objectivity requirement) already dealt with in
electro-magneto-mechanics. Gauge invariance allows to account for Maxwell’s
electromagnetism analogously to rotational invariance for deformable bodies. As to
scale invariance, it allows to deal with the various forms of discontinuities and
interfacial properties that occur at singular surfaces, lines and/or points.

These aspects have been presented succinctly in congresses [22–24] and in a
synthetic paper [21] more than twenty years ago, both in Newtonian and Einsteinian
chronologies, but this theoretical theme, considered too remote from the immediate
concerns of the laboratory, had not been pursued further at that time.

In the last decade, some works together with Hirsinger and Devel showed the
need for such a general and systematic methodology (see for instance [3]) that will
be succinctly recalled here and developed in future works.

2.2.2 Extended form of d’Alembert’s Principle

Statical continuum mechanics and magnetism are the simplest examples where the
basic ideas are brought out clearly. In addition, since a boundary may be regarded
as a particular case of a moving singular surface, one may omit its expression in the
present derivation. Only the essential elements are kept here. The attention is
focused on the three different invariance principles that govern discontinuities as
well as Maxwell electromagnetism and deformable mechanics.

2.2.3 Unified Global Statement

The basic postulate may be expressed in the form of an orthogonality relation as
follows:

δW* = ⟨D, δG
*
⟩=0 ð2:63Þ
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where δG is an infinitesimal variation of the geometrical parameter G and D is the
dynamical contribution introduced by duality. A star * on a field denotes its virtual
character. In the present framework, it is convenient to distinguish between three
types of energies as follows:

δW* = δW*
GIV + δW*

GRI + δW*
SCI =0 ð2:64Þ

In a first-order gradient framework associated with volume and surface physical
contributions, one may write:

δW*
GIV =

Z

D−Σ

KiδR*
i +Kij∇j δR*

i


 �
dv+

Z

Σ

K ̂iδ ̂R̂
*
i +Kîj∇̂j δ ̂R̂

*
i

� 	
da ð2:65Þ

δW*
GRI =

Z

D−Σ

AiδR*
i +Aij∇j δR*

i


 �
dv+

Z

Σ

Âiδ ̂R̂
*
i + Âij∇ĵ δ ̂R̂

*
i

� 	
da ð2:66Þ

δW*
SCI =

Z

Σ

Z +
i δ+R*+

i − Z −
i δ−R*−

i + Zîδ ̂R̂
*
i

� 	
da ð2:67Þ

where dv is the volume element of the bulk medium D−Σ, da is the surface
element of the interface Σ and ∇ ̂ denotes the surface gradient, + and − denote
quantities on either side of the singular surface and ^ the quantity at the singular
surface.

The expressions of δW*
GIV and δW*

GRI (GIV for given fields, GRI for gauge and
rotational invariance) are introduced in a systematic manner. Ki, Kij


 �
and their

surface counterparts Kî, K ̂ij

 �

correspond to given fields. A quantity for which no
physical support is available can be dropped from Eq. (2.65). As to the expression
of δW*

GRI , it should be specified through a physical invariance principle. More
precisely, gauge invariance (Electromagnetism) and rotational invariance
(Mechanics) will impose restrictions on the form of δW*

GRI . As shown below, the
dual field Aij will be skew-symmetrical (in Electromagnetism) and symmetrical (in
Mechanics). And the dual fields Ai and Aî will vanish in both cases since they
violate the invariance requirements. Physically, these invariance principles will give
the correct form of the field-field interaction energy (magnetic energy) and of the
matter-matter interaction energy (deformation energy). Thus, a net distinction is
made between given fields and those deduced from a physical invariance principle.

Across the interface, one loses differentiability, thus, a general form of the
interaction energy between the bulk and the interface is given by Eq. (2.67). Its
construction is performed by taking all the energies that one may construct at the
interface and its surrounding. This leads to the introduction of three vector fields, to
be coupled together as well as with the fields present in Eqs. (2.65) and (2.66).
A full determination is obtained in two steps. First, the scale invariance principle
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relates Z ̂ to Z±, then the use of the virtual character through the application of the
principle for any δR± will lead to the determination of Z±. The scale invariance
principle asserts that Eq. (2.67) must remain invariant under the addition of any
continuous infinitesimal vector field. This requirement governs the passage from a
continuous to a discontinuous medium. Before dealing with the three invariance
principles, let us recall that the present formulation may be regarded as a gener-
alization of the well-known Lagrangian approach, (recovered for integrable sys-
tems, Ai ≡ ∂L ̸∂RiÞ. In the present formulation, no hypothesis of integrability is
imposed. This offers richer possibilities, particularly in the framework of dissipative
phenomena and irreversible processes.

2.2.4 Derivation of Scale, Gauge and Rotational
Invariances

The attention is focused here on the formal unifying structure. The physical details
are provided in Refs. [21–24]. One way to deal with invariance principles consists
in requiring that the energy remains invariant under the addition of a certain
infinitesimal field. Mathematically, one writes

δ
α
R′

α

= δ
α
R
α
+ δr α= + , − , ∧f g ð2:68Þ

A—Scale invariance corresponds to r= a, where a is any continuous vector
field (i.e. ½½a��=0Þ

This requirement transforms Eq. (2.67) into

δW*
SCI =

Z
½½Zi δR*

i − δ̂R ̂*i
� 	

�� da ð2:69Þ

where ½½A��≡A+ −A− denotes the jump from the + to the – side of the interface.
B—Gauge invariance consists in taking r=∇ψ , where ψ is any scalar field. As

to δR, it coincides here with an infinitesimal variation of a vector potential δA. The
consequence of this invariance on Eq. (2.66) leads to

Ai =0, Âi =0, Hij ≡Aij ð2:70Þ

such that

Hij +Hji =0

and
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Hij
S

≡ Âij ð2:71Þ

such that

Hij
S

+ Hji
S

= Hik
S

nk nj + Hjk
S

nk ni

where Hij and Hij
S

are respectively volume and surface magnetic fields which are
pseudo-vectors expressed here in tensorial form.

C—Rotational invariance (or objectivity requirement) is expressed through a
rigid body motion transformation r=X +ω× x (X: translations, ω: Rotations).
This leads to

Ai =0, Âi =0, σij ≡ −Aij ð2:72Þ

such that

σij − σji =0

and

σij
S ≡ − Âij ð2:73Þ

such that

σij
S − σji

S
= σik

S
nk nj − σjk

S
nk ni

In this case δR coincides with an infinitesimal displacement and σij is none other
than the mechanical stress tensor.

2.2.5 Local Equations

On assuming that Eq. (2.64) holds good for all virtual fields and any element of
volume and surface, one obtains the following local equations after using the
volume and surface divergence theorems:

Ki =∇i Aij, K ̂i =∇̃i Âij + ½½Aij��nj ð2:74Þ
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∇̃= ∇̂+2Ω
m

n, 2Ω
m
= − ∇̂ ⋅ n ð2:75Þ

(Ω
m
: mean curvature, ∇̂: surface gradient).
Notice that a tensorial framework offers interesting similarities between

mechanical and electromagnetic energies. Here Kij δA i, jf g is none other than
deformation energy (mechanics) or magnetic energy (magneto-statics).

2.2.6 Relativistic Framework

Another important feature in such a derivation is its natural generalization to a
relativistic framework. Indeed, the basic postulates (2.63)–(2.64) and the invariance
requirements (2.68)–(2.73) still hold. The only difference is that one needs to
express the fields in a Lorentzian 4-dimensional space. Thus, Eq. (2.74) is to be
replaced by

Kα = ∂β Aαβ, K ̂α = ∂̃β Â
αβ
+ ½½Aαβ��Nβ ð2:76Þ

α, β= 1, . . . 4f g

where ∂β, ∂̃β and Nβ are the 4 dimensional analogues of ∇j, ∇j̃ and nj. For lack of
space, we only recall the relation between N and n

Ni = ni ̸
ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2̂n

q
, N4 = − vn̂ ̸

ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2̂n

q
ð2:77Þ

when v2̂n ≪ 1, ∂̃i →∇ ̃i and ∂ ̃4 → ∂̃ ̸∂t= ∂ ̸∂t+ v ̂n n ⋅ ∇̂ − 2Ω
m� 	

.

It is important to note here, that dealing with interfaces in a relativistic frame-
work does not only yield more general solutions but also leads to simple covariant
expressions. The simplicity criterion is essential here to verify the coherence of the
theory. Indeed, the lack of symmetry between space and time in a Galileen
framework leads to complicated expressions. When applied to electromagnetism,
Eq. (2.76) may be explicitly written as:

Jα = ∂β Hαβ, J ̂α =Pγ
β ∂γ H ̂αβ +H ̂βγΓα

γβ + ½½Hαβ��Nβ ð2:78Þ

Pγ
β = δγβ −NβNγ, Γα

γβ =Nγ Pθ
β ∂θ N

α −∂ ⋅N δαβ

n o
, Jα

s
=Pα

β J ̂
β ð2:79Þ

Let us recall that the passage from 4 to (3 + 1) dimensions transforms
Jα = ∂β Hαβ such that Hαβ +Hβα =0 into qf =∇ ⋅D and J= − ∂D ̸∂t+∇×H.
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The interfacial expression is written in such a manner that one may distinguish

between three contributions: (i) the spatio-temporal variation of H ̂αβ (counterpart of
the volume expression), (ii) its coupling with the surface curvature Γα

γβ and (iii) the
jump relation.

This energy formulation may also account for singular lines by analogy to
singular surfaces as explicitly shown in [21–23].

In conclusion, let us recall that the second part of this work extends the ideas
expressed in the works of professors Germain and Maugin who developed
d’Alembert’s principle in different contexts by exploiting the invariance under a
rigid body motion.

2.3 Third Part

2.3.1 Foundation of the Principle of Virtual Power (PVP)

The principle of virtual power is a scalar (geometrical) approach, based on the
duality notion that corresponds to one point of view among others. We shall go
back to the source of this notion thanks to an intrinsic (viewpoint independent)
dynamical framework conceptualized by Leibniz and formalized recently in Refs.
[25–28]. This framework clearly distinguishes between worlds and points of view.
A dynamical world is formally expressed through a relation that links directly the
two conserved entities (energy and impulse): E=FðpÞ or more generally
RðE, pÞ=C (constant). As to a point of view attached to a specific world, it
consists in expressing impulse and energy in terms of a motion parameter x:
p= gðxÞ, E= f ðxÞ. Obviously, if this point of view is relative to the above world
E=FðpÞ, then the three functions F, g and f cannot be independent anymore. They
must satisfy: E=F pð Þ=F g xð Þð Þ= f xð Þ.

Unlike usual physics, limited to one world (Newtonian, Einsteinian, Finslerian
…) dealt with through one point of view (variational, geometrical, group theoretical
…), Leibniz’s conception accounts for all physically admissible worlds (i.e. com-
patible with the relativity and conservation requirements) independently of any a
priori imposed point of view whatsoever. Such a conception is characterized by its
intrinsic (viewpoint independent) nature where the different dynamical worlds are
deduced before the determination, by self-organization, of the appropriate points of
view attached to each world.

The principle of virtual power, like other analytical principles such as the
principle of least action, appears henceforth as a theorem. These turn out to be
deductible from a weaker principle, using qualitative mathematics, from which
different quantitative dynamical structures—each constituting one point of view—
are derived. Among these dynamical structures, one recognizes the ones that cor-
respond to the well-identified physical principles developed in the history of
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dynamics. Here, the attention will be focused on the source of the duality notion
which is at the basis of the principle of virtual power.

2.3.2 Main Points of the Leibnizian Dynamical Framework

The Leibnizian formulation takes its origin from a dynamical procedure, due to
Huygens, based on the relativity and conservation principles, in (1 + 1) dimen-
sions, recalled in Eqs. (9.11)–(9.14) of Ref. [29], by the physicist and historian of
science Barbour.

Elevated to the rank of a principle and expressed in the Leibnizian language of
infinitesimal calculus, Huygens dynamics is formally expressed by: M = d2E ̸dw2,
with M =m, p= dE ̸dw and the limit conditions w=0, p=0, E=E0, where the
motion parameter w satisfies an additive composition law w′ =w+W


 �
. Its inte-

gration leads to: p=m w and E=1 ̸2 m w2 +E0. This method (recently justified by
a theorem borrowed from group theory) was revived by many authors [30–34] and
applied to Einstein’s dynamics where the constant M =mð Þ is replaced by the linear
relation M =E ̸c2ð Þ.

In order to account for all physically admissible worlds and associated points of
view, we have extended Huygens procedure according to Leibniz’s conceptual-
ization, characterized by the simultaneous presence of an infinity of points of view
on each dynamical world [25–28]. Such a conceptualization is called architectonical
by opposition to the usual analytical conceptualization, limited to one point of view
a priori imposed from the start.

As a consequence, instead of the above differential equation M = d2E ̸dw2,
relative to Huygens conception, that accounts for one world M =mð Þ, corre-
sponding to: E= p2 ̸2 m+E0, dealt with through one point of view p= dE ̸dwð Þ,
expressed by the motion parameter w attached to the operator d ̸dw, one is led, as
shown explicitly in [25, 26], to an infinity of differential equations M = d2μE ̸dv2μ,
corresponding to Leibniz’s conception, that account for all dynamically admissible
worlds M = λE+ γdμE ̸dvμ + η


 �
, each one dealt with through an infinity of points

of view p= dμE ̸dvμ

 �

, expressed by the motion parameters vμ attached to the
infinitely multiple μ-operator: dμ ̸dvμ = Iμd ̸dvμ where the functions Iμ that depend
on vμ are yet indeterminate. The functions Iμ reflect the non-additive composition

laws v′μ ≠ vμ +Vμ

� 	
that accompany the additive one v′a = va +Va


 �
for which Ia

reduces to unity Ia =1ð Þ.
In brief, the passage from the Huygensian analytical conception to the Leib-

nizian architectonical one, amounts to replace: M =m= d2E ̸dw2 with p= dE ̸dw
by the following under-determinate structure: M = λE+ γdμE ̸dvμ + η= d2μE ̸dv2μ
with p= dμE ̸dvμ expressed explicitly by:
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M = λE+ γ IμdE ̸dvμ + η= Iμd ̸dvμ
� �

Iμd ̸dvμ
� �

E

= I 2
μ d

2E ̸dv2μ + IμdIμ ̸dvμ
� �

dE ̸dvμ
ð2:80Þ

At first sight, it seems contradictory to associate the term “world” with the above
expression of M because of its viewpoint dependence. But this apparent contra-
diction vanishes by showing, as done in [25], that Eq. (2.80) transform into an
intrinsic (viewpoint independent) framework, expressed uniquely in terms of the
conserved entities E and p as follows: M = λE+ γp+ η= pd ̸dE½ � pd ̸dE½ �E=
p2d2 ̸dE2 + pd ̸dEð Þd ̸dE½ �E= pdp ̸dE. When integrated, this differential equation
becomes formally expressed through a relation that links together the two con-
served entities (energy and impulse): RðE, pÞ=C. One recovers thus what is called
above a dynamical world. This procedure, called in [25–28] a “filtering procedure”,
characterizes the Leibnizian intrinsic approach where the determination of the
worlds precedes and contributes to the specification of the points of view.

2.3.3 Determination of the Yet Under-Determinate
Framework

The attention will be focused here on the Newtonian (parabolic) and Einsteinian
(hyperbolic) worlds that correspond respectively to: λ, γ, ηð Þ= 0, 0, mð Þ and
λ, γ, ηð Þ= E ̸c2, 0, 0ð Þ, getting thus: M=m and M=E ̸c2. These two dynamical
worlds can be expressed in a unified differential form by: M=mðE ̸mc2Þk=p dp ̸dE
with k=0 for Newton and k=1 for Einstein.

Its integration will provide valuable information that will actively contribute to
the determination of the infinity of the yet indeterminate points of view as shown in
[25]. Thus, one is led to the multiple scale law:

Iμ = M ̸mð Þ2− μ = E ̸m c2

 �kh i2− μ

ð2:81Þ

Having specified the functions Iμ, the under-determinate structure (2.80)
becomes well determinate: it includes an infinity of quantitative equations, each
value of μ corresponding to a particular point of view. Among the infinity of points
of view, the formal structure singles out four basic (singular, remarkable and
operational) points of view, the others corresponding to more or less complicated
combinations of the four basic ones. The three well-identified points of view rel-
ative to the three different principles (Lagrangian formulation, d’Alembert’s prin-
ciple and Huygens procedure) expressed in mathematical terms by the calculus of
variations, modern geometry and group theory, turn out to be deductible from the
points of view of orders μ= 4, 1 and 2f g respectively as shown in [25–28]. Since
we are mainly concerned here with d’Alembert’s (or virtual power) principle, the
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attention will be focused on the procedure that allows deriving it from the present
general Leibnizian approach.

2.3.4 Deduction of the PVP Based on Duality

As shown in [25–28] for the point of view of order one μ=1ð Þ, we get:
I1 =M ̸m= ðE ̸m c2Þk and p= I1 dE ̸dv1 =m v1 from which one deduces:
p dv1 = v1 dp (since dp=m dv1), at the basis of the duality notion. Its combination
with p= I1dE ̸dv1 leads to: I1 dE− p dv1 = I1 dE− v1 dp=0 so that one is finally
left with: M c=m c I1, p=m v1 and I1 dE− v1 dp=0.

With the well-known compact notation: M c, pð Þ=P= Pif g, E ̸c, pð Þ=p= pif g
and c I1, v1ð Þ=u= uif g with i=0, 1, one gets: P=m u and u ⋅dp=0 where the
scalar product: u ⋅dp=0 is associated with Minkowski’s signature η= 1, −1ð Þ.

In order to replace the infinitesimal form: u ⋅ dp=0 by a finite one: u ⋅ f =0,
leading thus to the concept of force, we set: f = dp ̸dτ, then analogously: F= dP ̸dτ
and a= du ̸dτ. This allows writing: F=m a and u ⋅ f =0. These two vector and
scalar expressions can be unified into a unique scalar formalism: F−m að Þ ⋅ u* = 0
and u ⋅ f =0, provided one accounts for a virtual motion u*. This formulation that
goes back to d’Alembert corresponds to the principle of virtual power.

2.3.5 Derivation of Einstein’s Dynamics

For k=1 (Einstein’s world), f reduces to F because p = P since E ̸c=M c, getting
thus: F −m að Þ ⋅ u* = 0 and u ⋅F =0.

Let us firstly show that this general dynamical approach, will naturally lead to
space-time thanks to the duality property. Indeed, by combining: u ⋅ dp= u ⋅ f dτ
with: u ⋅ f = f ⋅u, one gets the following expressions: u ⋅ dp=u ⋅ f dτ=
f ⋅ u dτ= f ⋅ dx, where we have set: dx=u dτ. In the same way as u is the dual of
dp, f appears as the dual of dx. As shown below, when f =F, dx corresponds to
space-time variation.

On assuming that the relation F−m að Þ ⋅ u* = 0 subject to: u ⋅F=0 holds true
for any virtual motion u*, one derives: F=m a and u ⋅ a=0. Their integration leads
to: p=m u and u ⋅ u=C where C is a constant of integration. On setting C= c2,
with c having the dimension of a velocity and accounting for dx=u dτ, one is left
with: p=m dx ̸dτ and dx ⋅ dx= c2dτ2 where one recognizes Einstein’s dynamics
with its metrical structure.

Final remark: In order to establish a direct link with the present approach, let us
note that the metrical structure may be explicitly written as: Γ2 − u2 ̸c2 = 1, with
Γ = dt ̸dτ and u= dx ̸dτ. The couple Γ, uð Þ that reflects the relativistic factor and
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the celerity respectively corresponds to: I1, v1ð Þ subject to: I 2
1 − v 2

1 ̸c2 = 1. It is
easily deduced from the general relation between Iμ and vμ:

I 2 ̸ 2− μð Þ
μ −

1
c2

Z
I μ− 1ð Þ ̸ 2− μð Þ
μ dvμ

� �2

= 1 ð2:82Þ

derived from the Leibnizian architectonical approach. Indeed, for μ=1, this
expression greatly simplifies getting: I 2

1 − v 2
1 ̸c2 = 1 which is formally similar to:

Γ2 − u2 ̸c2 = 1 but with a different interpretation.
According to the architectonical approach where dynamics precedes kinematics

and determines it, the principle of virtual power, based on the duality notion
between kinematical and dynamical entities u and fð Þ is not postulated anymore: it
corresponds to the point of view of order one μ=1ð Þ deduced from a higher
intrinsic principle apt to include various singular, remarkable and operational points
of view including those developed in the history of science as shown in [26, 27].
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