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Dedicated to the memory of a great creative
spirit, G. A. Maugin



Preface

At the beginning of February 2017, the invitation letters for a special remembrance
book were sent to approximately 70 friends and colleagues of the great French
scientist in the field of Continuum Mechanics (or more general Continuum Physics)
Gérard A. Maugin who died on September 22, 2016. As usual in such case that the
response is 50% sending a kind reply that they will submit a paper, and finally one
gets 15–20 papers. In the case of Gérard, the resonance was overwhelming—the
editors got finally approximately 60 papers and the decision was made to publish
two volumes. This is the second one including 15 papers from authors living in
13 countries following volume 1 (Altenbach, H., Pouget, J., Rousseau, M.,
Collet, B., Michelitsch, Th. (Eds.) Generalized Models and Non-classical
Approaches in Complex Materials 1, Advanced Structured Materials Vol. 89,
Springer International Publishing, 2018).

The scientific interests of Gérard are well reflected by variety of subjects covered
by the contributions to this book including the following branches of Continuum
Mechanics:

• relativistic continuum mechanics,
• micromagnetism,
• electrodynamics of continua,
• electro-magneto-mechanical interaction,
• mechanics of deformable solids with ferroïc states (ferromagnetics, ferro-

electrics, etc.),
• thermomechanics with internal state variables,
• linear and nonlinear surface waves on deformable structures,
• nonlinear waves in continua,
• Lighthill–Whitham wave mechanics, lattice dynamics,
• Eshelbian Mechanics of continua on the material manifold,
• geometry and thermomechanics of material defects,
• material equations, and
• biomechanical applications (tissue and long bones growth).
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In addition, he published several papers and books on the history of continuum
mechanics. This was reason that the authors of this book have submitted so different
papers with the focus on the research interests of Gérard.

We have to thank all contributors for their perfect job. Last but not least, we
gratefully acknowledge Dr. Christoph Baumann (Springer Publisher) supporting the
book project.

Magdeburg Holm Altenbach
Paris Joël Pouget
February 2018 Martine Rousseau

Bernard Collet
Thomas Michelitsch

The original version of the book was inadvertently published without chapter 15.
A correction to the book can be found at https://doi.org/10.1007/978-3-319-77504-3_16
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Chapter 1
Damping in Materials and Structures:
An Overview

Yvon Chevalier

Abstract For ordinary people, mechanical damping is the attenuation of a motion
over time under possible eventual external actions. The phenomenon is produced by
the loss or dissipation of energy during motion and thus time. The concept of real
time is therefore at the center of the phenomenon of damping and given the recent
scientific contributions (of gravitational waves in 2016), the notion of space-time
calls for reflections and comments. The systemic approach of the phenomenon
taking into account the mechanical system, its input and output variables (gener-
alized forces or displacements) allows a very convenient analysis of the phe-
nomenon. We insist on the differences between a phenomenon and a system: the
causality, the linearity, the hysteresis are for example properties of phenomena and
not properties of system; on the other hand we can consider dissipative or
non-dissipative systems. We describe some macroscopic dissipation mechanisms in
structures and some microscopic dissipation at the molecular level in materials or
mesoscopic dissipation in composites materials. After specifying the notion of
internal forces of a system we present some classical dissipative mechanisms
currently used: viscous dissipation, friction dissipation, micro-frictions. The pur-
pose of this presentation is not to list new dissipative systems but to point out a
number of errors, both scientific and technical, which are frequently committed.

1.1 Introduction

What is the damping of motion in mechanics? For common people that is the
motion of a mass Which decreases with time under the eventual action of an
excitation called force, the phenomenon is regarded as non-destructive, except in
specific cases. This very simple concept currently uses the four general quantities of
Newtonian mechanics (Isaac Newton-1638–1723 (see [33])) which are supposed to

Y. Chevalier (✉)
Quartz Laboratory, Institute Superior of Mechanic of Paris (ISMEP-SUPMECA),
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be independent: displacement, time, mass and force. This concept that we are going
to develop is largely enough to explain and study the common phenomena in the
field of engineering.

It should be emphasized, however, that the scientific revolution, which was
attacked and vilified by the thurifiers (clerics, flatterers, adulators) of the various
religions for three centuries, was again discussed at the beginning of the 20th
century by the restricted theory of relativity and general relativity of Albert Einstein
and the appearance of quantum mechanics. To try to simplify, in the field of the
infinitely large variables, the parameters of the Newtonian mechanics are no longer
independent: time and space depend on the reference coordinate system, mass and
energy are the same entity and gravitational forces are due to the curvature of
space-time. At the same time quantum mechanics is concerned with the infinitely
small variables (atomic scale) and the particle-wave duality vision is probabilistic:
the famous example is Schrödinger’s cat (1925) which can be both dead and alive.
It distinguishes 4 types of forces and three fields: electromagnetism linking elec-
trons to the nucleus of the atom (chemistry), strong interaction linking protons and
nucleus cohesion (nuclear fusion and fission), nuclear force (radiation) and gravi-
tation. Only the first 3 actions result from a quantum field, since gravitation does
not depend on a field. The theory of relativity explains the gravitation by the
curvature of space-time. It should be noted that the link between the relativistic
mechanics and the quantum mechanics is not yet established despite the efforts of
scientists (8 Nobel prizes in physics during the last 20 years) and the technical
performances of the experimental devices: CERN particle accelerator in Geneva,
the laser interferometers of the centers in Europe-Italy, two in the USA-Washington
and Louisiana), and the satellite observations and space probes moving in the
universe.

The scientific community is booming over the last two decades and concepts
resulting from theories are becoming reality: Higgs boson in 2013, gravitational
waves in 2016 for example. Let us return to our preoccupation with damping in a
concept of Newtonian mechanics which concerns most of the current engineering
problems and where time is still the central variable, while recalling that GPS is an
application of relativistic mechanics.

1.2 Mechanisms of Energy Dissipation

The attenuation of the motion of a mass over time can be analyzed from an energy
point of view, which gives it a more scientific co-notation than the raw observation
presented in the introduction. The mechanical energy dissipated during the move-
ment is transformed, in heat, or else in structural modification of the environment,
in electricity, etc. This leads us to consider a systemic approach to the problem
which makes it possible to give an intrinsic character to the damping. Let us analyze

2 Y. Chevalier



the diagram above (Fig. 1.1) in which the mechanical system is called (Σ), in which
the important mechanism is provided with a mass (articulated systems, solid (and/
or) fluid structures, …) and is subjected to excitatory actions (input variables X).
This results in a response (output variable Y). The nature of the system obviously
links the input and output variables which may be scalar, vector or tensor,
depending on time t and space coordinates (x, y, z). The nature of these variables
provides no information in the interpretation of damping which is a temporal
phenomenon which may have spatial effects in wave propagation phenomena for
example. We will therefore limit ourselves to scalar variables: q(t) will be a general
displacement (length, angle, deformation) and Q(t) will be general force (force,
moment, stress) velocity, acceleration can also be considered. The important thing
is to note the difference between “phenomenon” and “system”: a phenomenon is a
system equipped with its input and output variables, we may thus consider damping
phenomena and dissipative systems. There is often a confusion between the
properties of the phenomenon (causality, stationarity, linearity, hysteresis …) and
those of the system. This energy approach is coherent because it is included in the
formulation of the principle of virtual powers involving power of internal forces,
power of inertia efforts (the system), and power of external forces (the phe-
nomenon). The energy dissipation mechanisms can be schematically classified into
2 categories: macroscopic mechanisms and microscopic mechanisms.

1.2.1 Macroscopic Approach

The macroscopic side appears because the dissipation is produced on the scale of
the system itself directly on the variables of input and output (force, displacement,
velocity, etc.).

Fig. 1.1 Systemic schematics of damping and energy dissipation
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1.2.1.1 Viscous Dissipation

The cause of this energy dissipation is the velocity of motion. The most well-known
mechanical device is the hydraulic damper (or oil-filled drilled piston) found in
vehicles suspension. In this device the dissipation of energy is due to the viscosity
of the oil which goes, with more or less ease, through the holed piston according to
his speed. However, we must not forget the role of the spring that compensates for
external forces. This simple mechanical vehicle suspension device has led to
imagine more integrated systems: the idea is to concentrate the functions of stiffness
(spring) and damping (damper) in the same system using the properties of rigidity
and damping of materials (composite materials). The advantage is obvious: Small
footprint of the device, medium good reliability of the system, good corrosion
resistance, reasonable manufacturing cost. Several projects of unidirectional com-
posite blade (glass or carbon/epoxy), which have not been completed industrially,
were born in this perspective during the last 2 decades of the 20th century.

1.2.1.2 Friction Dissipation

The cause of this energy dissipation is the presence of frictional forces between two
elements of the system. The normal force at the contact surface generates a tan-
gential force which opposes the motion and the phenomenon is therefore damped.
The most known device is the vehicle brake consisting of a brake housing con-
taining a pad which rubs on a rotating disc. Compared to viscous-type dissipation,
this dissipation by friction can be sudden or softer in the case of micro-friction
where the two masses can be clamped in their displacements (see paragraph 1.3.4.4)
This is the case for example of assemblies riveted, bolted or even glued. These
previous devices are the seat of micro-displacements during external stresses and
therefore of micro-frictions which are dissipative.

1.2.1.3 Magneto-Mechanic Dissipation

The cause of this energy dissipation is due to the presence of a magnetic field in
which moves a conducting mass which generates eddy currents. These currents
generate an own drag force, electromotive force of Laplace which opposes the
movement. This concept of dissipation of energy and thus damping, is very recent
compared to a pad rubbing on a wheel which is known for millennia. The first
patent for electromagnetic retarder was deposited by Steckel in 1903 and realized in
practice by Raoul Sarazin in 1936. These systems are known under the trade name
of “Telma” and equip heavy trucks and coaches. Unlike the conventional brakes
which use the friction of two masses, this braking, or this dissipation of energy,
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works without contact and thus without wear of the mechanical parts. The system of
damping of motion by dissipation of electric energy is a non-destructive system.

1.2.1.4 Electro-Mechanic Dissipation

The cause of this energy dissipation is due to the presence of an electric field
generated by displacements of electric charges caused by external forces: piezo-
electricity. If these charges can move in an electrical circuit there is dissipation of
energy by Joule effect. This electric current can also excite systems of piezoelectric
actuators which correct and attenuate the movement, (see [4, 27]).

1.2.1.5 Plastic Dissipation

The cause of this dissipation of energy is the plasticity of a part of the system. High
external loads generate significant internal stresses. If these exceed a threshold the
system is irreversibly altered (plasticity of the materials for example) but retains its
integrity. The integrity of the system can be destroyed if the efforts are too large and
then there is ruin. This device for absorbing energy by plastic deformation of
metallic materials (see Fig. 1.2) is used, for example, in the aeronautical sector to
absorb the slight shocks and is present at the front of the cockpit of the aircraft. The
same principle is used in the automotive sector for absorbing shocks at low speeds:
metal profiles in the shape of tubes of rectangular cross-section, attaching the front
and rear automobile bumpers to the body of the vehicle, deform by buckling in the
event of an impact and thus absorb kinetic energy for low speeds (of the order of
10 km/h).

Fig. 1.2 Materials with high absorptive capacity a type of aluminum honeycomb b type of
small-pore aluminum foams
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1.2.2 Microscopic Approach

The mechanical dissipative system can also be studied finer by introducing smaller
scales in the system to explain the macroscopic phenomenon which is the result of
several micro-phenomena working in an intimate way on a smaller scale.

1.2.2.1 Atomic Scale Approach

We can schematically distinguish two close mechanisms that generate damping:
one by thermomechanical effects, the other by energy effects:

• Damping in materials by thermomechanical effects
The most well-known theory is that of the “thermoelastic peaks of Zener” (see
[46]) which considers damping in metals can be interpreted by the presence of
thermal diffusion phenomena which (the best-known mechanism). An increase
in temperature under constant pressure always results in a local increase in
volume. Vice versa, the adiabatic application of loads causes a drop-in tem-
perature and, consequently, tends to cause a heat flow from the outside. As the
temperature drop gradually relaxes, the specimen undergoes a slow increase in
length and generate relaxation. This phenomenon is conditioned by the thermal
diffusion coefficient which affects the heat flux. This importance of thermal
conductivity was found by Kirchhoff as early as 1860 (see [20]), who noted the
importance of thermal conductivity in the damping of acoustic waves. Note that
damping in common metals can be neglected (less than 0.1% at ambient tem-
perature) except for some particular ferro-magnetic alloys (Fe–Cr–Al or Mo)
(see [36]) where it can reach a few per cent. These metal alloys have approx-
imately the rigidity of steel with cushioning capacities of the polymers, they are
used in military applications (submarine discretion for example). An approach
also well known in, is those of “free volumes”. Interpretation assumes that there
are “empty volumes” at the atomic or molecular scale inside the material. Under
the effect of temperature, forces or other physical phenomena such as moisture,
for example, these volumes lose its shape and evolve according to the excitation
and then tend to stabilize, with delay and according to a time of their own
(material history). Compared to the present time (real time) this phenomenon
generates damping and therefore energy dissipation. This interpretation has been
developed by chemists concerned with the mechanical behavior of rubber
materials. We can mention the work of Knauss and Emri [21, 22] in which the
deformation of the free volume is due to temperature (rubber materials and
polymers for example), this help to explain William, Landel, Ferry
(WLF) curve, (see [13]) and the non-linear viscoelastic behavior of elastomers.
In a similar way Schapery proposes that the cause of deformation of the free
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volume is the stress that conditions the historical time. This gives rise to non-
linear viscoelastic models reflecting the behavior of polymers (see [40, 41]).
This approach by the theory of free volume has been taken up more recently by
other authors to study non-linear viscoelasticity (see [14, 15]). It should be noted
that the scale considered here is “large microscopic” close to those of the
mechanics of continuous media.

• Damping in materials by energy effects
This approach is energetic and based on the notion of internal variables and on
the local state, this is also a microscopic point of view but does not explicitly
refer to the geometric aspect. The simplest theory, “Theory of transition steps”,
allows us to study the influence of temperature. It is associated with the name of
Eyring who analyses studies chemical reactions and the chemical kinetics (see
[12]). The basic idea is that two molecules that react, to lead an activated
complex, or possess a transition step, which decomposes to give final reaction
products. This reaction, which comes from the theory of transition step, gen-
erates an equation which, unlike Arrhenius’ law, corresponds to a theoretical
model based on statistical thermodynamics (This equation was established
almost simultaneously in 1935 by Henry Eyring, G. Evans, and Michael
Polanyi). The “theory of sites” is a specific approach to damping in polymers
which have an amorphous state and a crystalline state according to temperature
(see [7]). The theory of sites is based on the “theory of transition steps”. It
applied to solid crystalline dielectrics and was extended with some success to
the mechanical relaxations of polymers. This relaxation is related to the varia-
tion of free energy between the crystalline state and the amorphous state gen-
erated by the difference between two sites modified by application of a stress.
There is a population change between site 1 and site 2 and this change is related
to deformation. It is not difficult to imagine how this can happen at the
molecular level if, for example, the motion a molecular chain involves internal
rotations. Locally, the configurations of strings can be changed from a left
configuration to a right configuration. The free energy difference generates a
time constant identical to that of the Zener model cited above. This site model is
applicable to relaxation processes showing a constant activation energy, that is
to say to local motions in the crystalline regions of the semi-crystalline
polymers.

1.2.2.2 Molecular Scale Approach

In this approach, the dynamics of the movement of molecules inside the material
makes it possible to explain the macroscopic mechanical behavior of the material.
In this perspective Rouse’s theory is the most well-known (see [38]), it applies to
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polymers. It is based on the movement of flexible insulated chains. The aim of this
theory is to predict the relaxation spectrum for amorphous polymers as well as the
relationship between time scale and temperature. The molecules of polymers are
represented as a system of strings (sub-molecules) connected by springs whose
behavior is that of a free chain on the basis of the Gaussian theory of elasticity (see
Fig. 1.3). If the nodes are moved from their free equilibrium position, the motion is
generated by two types of forces:

• the forces due to the friction of the chains,
• forces due to a tendency of the molecular chains to return to their state and the

result on a macroscopic scale is that the behavior of the polymer is equivalent to
a model of spring and shock absorbers in parallel (Kelvin-Voigt) (see [44]).

1.2.2.3 Mesoscopic Scale Approach

In an approach close to the previous ones, it is possible to envisage composite
materials which have damping properties, that is to say media composed of two or
more materials that are more or less damping. The scale of analysis is no longer
microscopic (atoms or molecules) but intermediate between the latter and the
macroscopic approach of the medium: it is called “mesoscopic scale”. If on the
macroscopic scale the composite medium is considered as homogeneous material,
its behavior is determined by homogenization processes from a microscopic or
mesoscopic scale (see [8, 37]). The most known case is laminated composite (see
Fig. 1.4). The behavior of each ply is determined by the microscopic scale as before
and the mesoscopic scale corresponds to the behavior of each ply integrated into a
homogenization process (see [24]) to arrive at the macroscopic behavior.

(a)

i-1 y

x

i

i

i+1

i+1
i-1

(xi,yi,zi)

z

(b)

Fig. 1.3 Rouse model—
a network of chains—
b representation of the
network by a combination of
springs and shock absorbers
[38, 44]
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1.3 Modelling Energy Dissipation

The internal forces and their work in cyclic motions are examined before analyzing
some models of dissipation.

1.3.1 Internal Forces

The notion of internal forces specific to a mechanical system (Σ), a thermodynamic
concept, manifests only itself in reality when the system is in operation. As we have
already pointed out, the energy balance of a mechanical system in operation is
governed by the principle of “virtual powers”, see [17, 28, 29, 39] in which work of
the internal efforts is one of the elements. The real movement is a special case of the
virtual movement and is expressed in general by the following equation (or
equations) in temporal aspect:

m q
∙∙
+ Φ q, q

∙
, . . . q

ðnÞ
; Q, Q

∙
, . . . Q

ðnÞ
, t

� �
= Q tð Þ ð1:1Þ

in which q(t) is a generalized displacement, Q(t) a generalized effort and Φ the
internal forces of the system which are sometimes called “internal frictions”. These
internal forces depend usually on generalized displacements and their successive

Fig. 1.4 Angle-ply carbon/epoxy composite, 8 plies: 2 × (0° × 60° × 0° × −60°)—thickness
900 μ. a Microscopic scale: ply—b mesoscopic scale: laminate structure
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derivatives, on generalized forces and their successive derivatives according to the
considered dissipation mechanism. As mentioned previously, q and Q can be scalar,
vector or tensor quantities and are all causal signals (q, Q, Φ, etc.) it means they are
zero for the negative values of time. This deserves undivided attention for the
internal efforts Φ that exist only from the moment 0 beginning of the phenomenon:

Φ = 0 when q and q
∙
are zero. Caution should therefore be exercised in the analysis

of aging systems whose properties change over of time.
One technique of analyzing relation (1.1) is to use the classical integral trans-

forms, Laplace or Fourier, which are advantageous because they transform the
derivatives into multiplications and the integrations into divisions. Take for
example the Fourier transform of the relation of motion (1.1)

mω2 q ̂ðωÞ+ Φ̂ q, q
∙
, . . . q

ðnÞ
; Q, Q

∙
, . . . . Q

ðnÞ
, t

� �
= Q̂ ωð Þ ð1:2Þ

Relation expressed with q ̂ðωÞ and Q̂ ωð Þ, the Fourier transforms of the general-
ized displacements and forces q(t) and Q(t), ω is the circular frequency. The relation
(1.2) is advantageous only if the Fourier transform of de Φ is expressed as a
function of the Fourier transforms of q and Q (linear dependence for example). It is
important to note that for any physical signal which is causal, its Fourier transform
has an even real part and an odd imaginary part versus circular frequency ω.
This remark must be present in any choice of frequency models. As we shall see
later, relations (1.1) (temporal aspect) or (1.2) (frequency aspect), which are the
most natural, allow to quantify the elementary mechanisms of energy dissipation in
mechanical systems. It should be emphasized, however, that in some dissipation
mechanisms the internal forces Φ are only implicitly determined and it is possible to
express the generalized displacement q in the following form

qðtÞ=Θ Φ, Φ
∙
, . . . Φ

ðnÞ
; Q, Q

∙
, . . . Q

ðnÞ
, t

� �
ð1:3Þ

The dependence can be an integro-differential equation, which does not facilitate
the analysis of the problem, except in the case of a linear dependence.

1.3.2 Work of Internal Forces: Cycling

The approach of the phenomenon of energy dissipation from the internal forces of
the mechanical system is an analytical approach, that means the knowledge and the
nature of the internal dissipation of energy is known. If the dissipation models are
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numerous and varied (see viscous dissipation Sects. 1.3.3 and 1.3.4 below) they are
left to the discretion of the user and the designer. Conversely, a cyclical approach is
synthetic in the sense that it does not explicitly take into account the notion of
internal efforts of the system but only their work. For example, let us describe a
cycle by a system (see Fig. 1.5), the input variable being for example the gener-
alized displacement q(t) and the output variable the generalized force Q(t). The
energy balance of this cycle is as follows:

• WF: energy supplied to the system (surface subtended by the upper curve of
Fig. 1.5): Vertical stripes and hatchings

• WR: energy recovered by the system (surface subtended by the lower curve of
Fig. 1.5): Vertical stripes

• WD = WF − WR: energy dissipated during the cycle: hatched area of the cycle
(Fig. 1.5).

The commonly accepted definition of Damping is the “Specific damping
Capacity” (SDC) Ψ and is defined as follows

Ψ =
WD

WF
= 1 −

WR

WF
ð1:4Þ

If the system is non-dissipative WD = 0: the energy returned is equal to the
energy supplied and thus the SDC Ψ = 0. The system is then thermodynamically
called “elastic”. This behavior is of course ideal, it is convenient in modeling and
simulation, realistic in some cases, but does not correspond to the general physical
reality. In a non-destructive mechanical system (excluding explosions, deflagra-
tions, etc.) the energy recovered cannot be greater than the energy supplied and
therefore

0<ψ<1 ð1:5Þ

Fig. 1.5 Description of a
cycle for a reversible
mechanical system: q(t) and
Q(t) are respectively the
displacements and the
generalized forces
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In its general formulation, the SDC Ψ depends on the internal forces of the
system (Σ) (relation 1.1) but also on the cycle, that means

Ψ Φ, q(t), Q(t), t0, t1, t2½ � ð1:6Þ

and consequently, indirectly of q0 and Q1 (see Fig. 1.5). In practical aspects a
number of remarks deserve to be mentioned which can simplify the analysis.

Comment 3.1 If the system is governed by a potential that means that the energy
involved in going from point A to point B of the diagram (q, Q) (see Fig. 1.5) is
independent of the path then the energy supplied WF is identical to the energy
recovered WR. This implies that Ψ = 0.

Comment 3.2 If the phenomenon is invariant in time or “stationary” (non-aging),
the evolution between times t0 and t1 (Fig. 1.5) does not depend on t0 and t1 but on
the difference t1 − t0. In this case, we do not restrict the generality by taking t0 = 0.

Comment 3.3 The previous scheme (Fig. 1.5) is described for a cycle but it is
possible to envisage several successive cycles. The specific damping thus evolves
from one cycle to another. “The Mullins effect” (see [31]) in some viscoelastic
media is the best known (see Fig. 1.6).

As in many damping phenomena, when the number of cycles increases, the
difference from one cycle to another is very low or nil and the notion of specific
damping appears as the consequence of an intrinsic property of the system.

Comment 3.4 In the field of electricity, the notion of quality factor Q (not to be
confused with forces) is sometimes used which is the inverse of the specific
damping Q = 2π/Ψ.

Fig. 1.6 Mullin effect [31] in viscoelastic media. q = ε (strain), Q = σ (stress)
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1.3.3 Viscous Dissipation

Mechanisms related to velocity is the most commonly accepted and used because it
is the most practical: In the ignorance of the dissipative phenomenon, it is often
reduced to viscous damping (under the operating conditions of the system).

1.3.3.1 Linear Behavior of the Phenomenon

The phenomenon is linear (proportionality between the input and output variables
(see Fig. 1.1)). The internal efforts of the system (relation 1.1) take the following
generic form called “historic integral” (convolution)

Φðt) =R(0+ Þqðt) +
Z t

0

R
∙
t − τð Þ q τð Þdτ = R(t)q ð0+ Þ +

Z t

0

R t − τð Þ q∙ ðτÞdτ =
D(R * q)

Dt

ð1:7Þ

in which R(t) is the relaxation function of the system and q(t) the generalized
displacement which is a causal function (or distribution) not increasing with time.
The point symbolizes the temporal derivative and D/Dt the derivative in the sense
of the distributions which allows a more synthetic expression of the formulation
(see [10] Chapter 2), * represents is the convolution. As we mentioned this relation
can be inverted (relation 1.3) and then the generalized displacement q(t) as a
function of the internal forces and becomes

q(t) = J(0+ ÞΦðt) +
Z t

0

J
∙

t − τð ÞΦðτÞ dτ = J(t)Φð0+ Þ +
Z t

0

J t− τð Þ Φ∙ ðτÞdτ =
D(J *ΦÞ

Dt

ð1:8Þ

In the relation (1.8) J(t) is called creep function. The creep functions and the
relaxation are inverse to each other in the sense of convolutions.

Taking the Fourier transform of Eq. (1.7) we obtain the frequency aspect (re-
lation 1.2) of the internal forces.

ΦðωÞ= iω R̂ðωÞ q ̂ðωÞ=FðωÞq ̂ðωÞ ð1:9Þ

F(ωÞ= iω R̂ðωÞ=F′ðωÞ+ iF′′ðωÞ is called “complex stiffness” in general or
“complex modulus” in the context of viscoelasticity, i is the pure imaginary number
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(i2 = −1). It is convenient to introduce the loss angle δ(ω) defined by its tangent (tg
δ), which is the ratio of the imaginary part of the complex stiffness (loss modulus)
to its real part (storage modulus), which is commonly called the “damping factor, or
loss factor”

ηðωÞ= tgδðωÞ= F′′ðωÞ
F′ðωÞ ð1:10Þ

These models are frequently used in the field of mechanics of structures and
mechanics of material.

Cycling this system makes possible to link the specific damping capacity Ψ
(relation 1.4) to the system parameters and provide then energy balance of the
evolution of the system. We then consider that a sinusoidal strain ε(t) = ε0 sin ωt
generates a sinusoidal stress when the transient running has disappeared to give
place to a permanent running, the cycle is of the elliptic and symmetrical type as
shown in Fig. 1.7.

The choice of the supplied WF energy leads to several expressions for the SDC
Ψ as in the discussion presented by Lee and Hartmann in 1998 (see [25]). The
discussion is based on the choice of WF

ψ=2π sin δ Maximum potential energy:WF = q0Q0 ̸2
ψ= π sin δ Potential energy over one cycle,WF = q0Q0

ψ=
π tg δ

1+ π
2 + δ
� �

tg δ
Energy involved in a cycle

ð1:11Þ

Depending on the choice the SDC can be greater than one, which is a
disadvantage.

Fig. 1.7 Scheme of the cycling of a damping of the viscous type. cycle of a viscoelastic material:
q = ε strain, Φ = σ stress
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Discrete Bi-parametric Model (Like Voigt Model)

This model is the most common since internal forces are modelled by a spring and a
damper having a linear behavior and placed in parallel. The relaxation function (see
relation 1.7) is then of the form:

R(t) =C δðt) +KH(t) ð1:12Þ

The parameters C and K are respectively the damping constant and the stiffness,
δ(t) is the Dirac distribution and H(t) the Heaviside unit step (H(t) = 0 for t < 0, t) =
1 for t > 0). The internal efforts take the following simple form

Φðt) =C q
∙ ðt) +Kq(t) ð1:13Þ

And the the expression of the complex stiffness thus (relationship 1.9) is then

F(ωÞ= iωC+K ð1:14Þ

The relationship (1.14) shows that the damping (relation (1.10) evolves linearly
with the circular frequency ω, which can only be realistic within a certain range of
circular frequencies. This “two-parameter” model is commonly used in multidi-
mensional formulations (simulations by finite elements for example). The complex
stiffness then takes the following matrix form

F(ωÞ½ � = iω C½ � + K½ � ð1:15Þ

In which [C] and [K] are respectively the symmetric square matrices. If this
formulation poses no conceptual problem, it raises some difficulties in solving the
equation of motion in the frequency domain.

To solve easily numerically this matrix problem several tricks, having no real
physical foundation, are proposed.

Comment 4.1 the first trick t is to introduce the notion of “structural damping”
which consists in choosing the following complex stiffness

F(ωÞ½ �= i C½ �+ K½ � ð1:16Þ

This concept has no physical reality for the simple reason that there is no real
time signal whose Fourier transform has a constant and even real part and a constant
and odd imaginary part.

This concept of structural damping, which is practical in design, can be
explained by considering the notion of a fractional derivative of a function (see
[2, 10, 42]). The complex stiffness is then equal to FðwÞ½ � = iωð Þα C½ � + K½ � and if α
is small and even close to 0, we find that the real and imaginary parts of the
previous stiffness are respectively even and odd and almost constant and therefore
independent of ω in a given circular frequency bandwidth.
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Comment 4.2 the second trick consists in introducing the notion of proportional
damping known as the “Basile hypothesis”. If the system is conservative ([C] = 0),
its resolution is done by projection of the displacement {q} on the eigen-modes of
this system and in this case the matrix is diagonal. If the system is dissipative ([C]
≠ 0), the method consists in express the damping matrix [C] as a linear combi-
nation of the mass matrix [M] and stiffness matrix [K], then [C] = ε[K] + γ[M].
Then the matrix equation of motion is projected on the basis of the eigen-modes of
the corresponding conservative system. The matrices are then diagonal which
facilitates the resolution of the problem. The difficulty lies in the choice of the
parameters ε and γ which have no physical reality and are simply a numerical
convenience

Continuous Multi-parametric Model (Prony Series)

These models are more complex and include n parameters n≥ 2ð Þ and are used in
the behavior of viscoelastic materials (see [10], Chapter 2). The relaxation function
R(t) is usually expressed as a linear combination of exponentials or Prony’s series

RðtÞ=K∞ 1+ ∑
p= n

p=1
kpe

− t
τp

 !
ð1:17Þ

The best known of these models is that of generalized Maxwell (see [10]) but the
main difficulty lies in the choice of the number of parameters which must be
relatively important to correctly represent the behavior of the material (a dozen) but
not too important for reasons for determination and measurement. The relation
(1.17) easily leads to the complex stiffness (relation 1.9) which is a sum of rational
fractions depending on ω. The loss factor varies according to the materials: on the
order of a few 10−4 for metals, some 10−2 for polymers and about 10−1 for rubber
materials at ambient temperature (20 °C).

1.3.3.2 Non-linear Behavior of the Phenomenon

The notion of nonlinear phenomenon is extremely wide and therefore very varied in
representations. The most conventional approach is to admit that in its operation the
system has a dissipation of viscous and linear origin and to complete the model with
ingredients generating non-linearity in certain cases of motions. We therefore
consider the “historic integral” generating internal forces (relations 1.7 or 1.8) by
modifying it somewhat.
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Schapery Model

This model is adapted to polymers and is based on the notion of free volume (see
Sect. 1.2.2.1). It was developed by Shapery in 1966 [41]. The hypothesis is to
assume that the real time t is modified by a number of internal variables (temper-
ature, constraint, dilatation, moisture, etc.) and to introduce an artificial time which
translates the history of material. In the Schapery model the stress σ of course
generates strain but also a modification of time and the model expresses the
deformation ε as follows by using the creep functions (relation 1.8)

εðt) = J(0+ Þ g1 σðt)½ �σ ̂ðtÞ + g1 σðt)½ �
Z t

0

J
∙ ðφðt) − φðτÞ½ � σ ̂ðτÞ

a σðτÞ½ � dτ ð1:18Þ

In this relation (1.18)

• t is the present (or real) time and τ represents a time specific to the loading
history, or historical time (classic case of linear viscoelasticity).

• g1[σ(t)] is a stress factor that expresses the “nonlinear memory” of the material.
This factor is equal to 1 for the low stress levels (linear viscoelasticity) and
increases approximately linearly with the stress: the slope is bounded by 0.04
and 0.05 MPa−1 in the case of polymers, (see [45]).

• σ ̂ðtÞ= σðtÞg2 σðt)½ � where g2[σ(t)] is known as the “stiffening stresses factor” and
is equal to 1 for low stresses. It grows proportionally according to the level of
stress with a slope by 0.05 and 0.06 MPa−1 in the case of polymers, [45].

• φðtÞ = R t
0

ds
aσ σðsÞ½ � is the reduced real time and s the time of memory, specific to

the history of the phenomenon, a[σ] is the stress-time factor.

The Schapery model allows to describe the dissipative behavior of polymers in
the case of low or high deformations or weak or high stresses for polymer materials.
It can be noted that the Schapery model is formally similar to the notion of
time-temperature superposition (WLF-William-Landel-Ferry, [13]), stress playing
the role of temperature in the expression of reduced real time The Schapery model
can be generalized by introducing time into the stress-time factor and makes it
possible to obtain the behavior of the material for longer times, see [16]. Note that
in the case of certain materials, ferro-magnetic alloys for example, the phenomenon
of dissipation can depend on the deformation even for small deformations and
generate nonlinear phenomena (see [36], Fig. 1.8).

Other kind of alloys, such as “Sonoston” (Manganese, copper, Aluminum, (see
[48]), have comparable damping factors like polymers (2 to 5 × 10−2) with
Young’s moduli comparable to aluminum, between 73 and 83 GPa. These alloys
are used, for example, in the manufacture of submarine propellers for reasons of
vibrations damping and acoustic discretion. The disadvantage is the high density,
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7200 kg/m3, comparable to that of steel, which limits its application in the aero-
nautical sector.

Valanis-Landel Model

The previous models were generalized by Valanis and Landel (see [43]) and then by
O’Down and Knauss (see [34]) for isotropic Hyper-elastic materials, in large
deformations. Unlike Schapery, which explicitly introduces stress (or small strains
into the “historic integral”, these models remain very general by simply using the
Green-Lagrange strain tensor in this “historic integral” (relation 1.7). Then

SijðtÞ= ∂w
∂𝖤ij

+
Z t

0

∂

∂τ
Rijkl 𝖤ðτÞ, t − τ½ �� �

𝖤klðτÞdτ ð1:19Þ

• The first part of the relationship (1.19) relates to “hyper-elasticity” where w is
the volumetric strain energy, which depends on strain tensor of the
Green-Lagrange E = (Eij), and makes it possible to express stress tensor of
Piola-Kirchhoff S = (Sij).

• The second part of the relation (1.19) relates to the memory effect provided that
the “condition of validity” (1.20) is satisfied.

∂w𝖤ðtÞ
∂𝖤ij

=Rijkl 𝖤ðtÞ, 0½ �𝖤klðtÞ ð1:20Þ

Fig. 1.8 Variations of the damping factor of ferromagnetic alloys versus strain. a for various
alloys—b for various proportions of aluminum (see [36])
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This formulation, which is relatively complex, makes it possible, for example, to
study the small oscillations of a rubber material around a large elongation: vibration
tests under static preload (see [3]), Fig. 1.9.

In the case of a simple tensile test for example, with a large static elongation λ of
the beam (λ = Length L of the beam/Initial length L0 of the beam), it can be seen
that he storage modulus increases with the elongation λ (and the frequency) and that
the damping coefficient η decreases with the elongation (for λ > 1).

Frechet-Volterra Series Model

This model has very mathematical formulation: it stipulates that the internal forces
Φ (Relationship 1.1) are expressed by series of multiple convolutions which depend
on generalized displacement q(t), the first term of which expresses a linear behavior

ΦðtÞ= Rt
0

R1
∙ ðt− τ1Þ qðτ1Þdτ1 +

Rt
0

Rt
0
R2
∙ ðt− τ1, t− τ2Þqðτ1Þqðτ2Þdτ1dτ2 + . . .

. . . +
Rt
0
. . .
Rt
0
Rn
∙ ðt− τ1, . . . , t− τnÞqðτ1Þ . . . qðτnÞdτ1 . . . dτn + jumps

ð1:21Þ

The advantage of the relation is that it does not presuppose a priori any model for
the phenomenon but the disadvantage is obvious: how to determine the various
kernels R1, R2, …, Rn? (see [6]). In practice 2 or 3 term of this series are con-
served. This modeling is used in the analysis of structures to bring back various
phenomena (plays, micro plasticity, micro-friction, etc.) to a dissipation of viscous
type. Let us note the approach of Lai and Finley which is limited to symmetric
parabolic kernels of order less or equal to 3, (see [23]), while Locket [26] proposes
a method of obtaining kernels, and that Molinari, (see [30]) examines the
one-dimensional problem. Huet uses this method to treat the case of aging mate-
rials, (see [19]).

Fig. 1.9 Complex Young’s modulus (storage modulus and damping coefficient) of a BX type
elastomer with different loading as a function of frequency. Test at room temperature 20 °C [3]

1 Damping in Materials and Structures: An Overview 19



Linearization of the Phenomenon

• Two linearization concepts are used: the first concerns weakly nonlinear phe-
nomena and the linearization process consists of expansion in Taylor series,
around a reference position: stable equilibrium, for example.

• The second consists in considering a fixed state of the phenomenon and in
admitting that the latter is linear around this state. The method of linearization
using the Hilbert Transform (involution) is a rigorous tool, very efficient and
used in software for modal analysis of structures (see [18], [47]). We can
consider non-linear-modes which have no fundamental interest but whose role is
only qualitative as a point of comparison with other results for example. This
linearization makes it possible, for a given state of the system, to use the
conventional tools for measuring damping: logarithmic decrement, bandwidth,
frequency response functions (FRF).

1.3.4 Friction Dissipation

Friction efforts are often generated by two moving masses, one of which is gen-
erally planar. The localized contact generated by a cylindrical, or spherical (most
frequent case) surface and the surface contact generated by a flat (less studied) area
can be distinguished (see Fig. 1.10).

Models of friction are numerous, see [9], however a large number of laws are
based on the model of Coulomb or on the model of Tresca according to the existing
phenomenon.

Sliding displacement qT(a) (b) (c)

TaTaT

Fig. 1.10 Contact between 2 masses, N: normal force, T: tangential force, qT: tangential slip, a:
amplitude of tangential displacement during cycling. a localized contact without sliding.
b localized contact with sliding c plane contact surfaces
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1.3.4.1 Coulomb’s Friction Modelling

This type of model is the oldest and relatively the simplest (see, for example, [32].)
Contact forces have a normal component N and tangential component T (essentially
positive) and T is governed by an inequality if masses are immobile and by an
equality if one of the masses moves relative to the other (relative motion). Cou-
lomb’s law is thus expressed in the following way

T ≤ FðN, 0Þ si qT
∙

= 0
T = FðN, qT

∙ Þ si qT
∙

≠ 0

(
ð1:22Þ

qT being the sliding relative displacement between the two masses (see Fig. 1.10).
T represents the forces internal to the system (relation 1.1) which are opposite to the
sliding speed. This law is expressed in the following algebraic relationship:

Φ= −T sing qT
∙

� 	
ð1:23Þ

The function “sing (x)” being equal to 1 if x > 0 and −1 if x < 0.
The most classic formulation of the Coulomb friction, which states that the

function FðN, qT
∙ Þ is proportional to the normal force N, that means

FðN, q
∙
TÞ = f qT

∙� 	
N ð1:24Þ

where f( qT
∙ Þ is dynamic friction coefficient and f(0Þ is the static coefficient of

friction. The coefficient of friction is the ratio of the tangential component of the
friction force to the normal component, f = T/N. We often represent the friction law
in the diagram (f, qT) for an imposed cyclic tangential displacement qT, which
makes possible to get rid of the normal force N. In the case of the friction of
Coulomb this diagram is a rectangle for q(t) > 0) and a symmetric rectangle (for q
(t) < 0). The area of the cycle represents the dissipated energy WD, (relation 1.4),
and therefore the SDC Ψ is greater in the case of a friction dissipation than in
the case of a viscous dissipation. It should be noted that for reasons of simulation
convenience, friction damping is often replaced by its viscous equivalent, relations
(1.11), thus artificially defining a loss angle of due to the “work of the internal
forces”.
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1.3.4.2 Tresca’s Friction Modelling

The friction model of Tresca is very close to that of Coulomb: the upper bound
FðN, 0Þ (relation 1.22) is replaced by a specific quantity g which depends on the 2
solids in contact.

1.3.4.3 Dahl’s Friction Modelling

This friction law is introduced by P. Dhal in 1976, [5, 11] for the study of dry
friction. In the Coulomb model the adhesion is taken into account by a condition of
sliding velocity zero (relation 1.22) while when sliding case, the sliding forces F
depends on the speed is imposed, which complicates the resolution. This Dahl’s
friction model describes the internal forces by the following relation

dΦ
dqT

=K 1 −
Φ
Tc

sign ðqTÞ
∙

� �α

ð1:25Þ

in which

• K is the initial tangential rigidity for small displacements around 0,

• Φ is the internal force or the tangential interaction force between the solids,

• TC is the tangential interaction force when there is slip,

• α is a parameter positive giving the shape of the law of friction.

The law has a non-differential analytical description. For α = 1 it can easily be
shown that

Φ= TC exp
K
TC

qT

� �
− 1

� �
ð1:26Þ

For α > 1 and α < 1 we can find in [5] the corresponding analytical expressions.
We can also represent the Dahl model in the diagram (f, qT) for an imposed

cyclic displacement (Fig. 1.11).
The literature is generous in friction models, we can mention for example the

LuGre’s model which is widely used (see [1]).
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1.3.4.4 Micro-friction

The dissipation of energy by micro-friction is more difficult to interpret because this
phenomenon is at the level of assemblies where there is no free sliding displace-
ments at the interface of the two masses (see [35]). Unlike the preceding analyzes
where the two masses in contact were rigid solids, in this case we assume the
masses are deformable under the action of the normal force which generates a
variable contact surface and the displacement d considered is taken “far” from the
contact surface (see Fig. 1.10a). In the case of cyclic stresses, this displacement d
has a maximum amplitude a (see Fig. 1.10a, b) and the area of the cycle (f, d)
translates the dissipated energy and thus generate a SDC Ψ as before). The friction
coefficient depends on the tangential force (relation 1.22) which can be positive or
negative.

When there is slip (Fig. 1.10b), the area of the cycle (f, d) is larger. The results in
Fig. 1.12 are obtained by plane contact surfaces (contact pin-disc), the track being
subjected to an alternating displacement of imposed amplitude and frequency.
Special tribometers can also be used.

Fig. 1.11 Characteristic of the Dahl model in the plane (f, qT) for cyclic loading. The diagram is
symmetrical with respect to the ordinate axis excluding the rising part close to the origin,
according to [9], [11]
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1.4 Conclusion

The above present developments are conventional and well known since several
years but they deserve some reflections on the different concepts used.

• The first concerns the fundamental difference between the notion of damping
phenomenon and of the dissipative system. Damping is a phenomenon, a
phenomenon that generally decreases over time, the system is a physical reality
composed of material elements. The phenomenon is then the union of a system
and its input and output variables, it evolves over time. Causality, linearity,
stationarity, hysteresis, are not properties of the system, but properties of the
phenomenon.

• The second relates to the time which plays a preponderant role in these analyzes
and this notion of time deserves some reflections. As we have seen the time and
usually an independent parameter related to Newtonian mechanics of the 16th
century. But it is possible to generate other times: the reduced historical time
which describes the intimate history of a material (see Schapery-1966 models,
Valanis model and Landel 1967, etc.), space–time of the relativistic mechanics
during beginning of the 20th century, which generates gravitation, permitted to
verify the gravitational wave detection in 2016. This current scientific boom will
probably generate innovations, long-term in the techniques of mechanical
engineering and materials.

• The third concerns the scientific inaccuracies commonly accepted for reasons of
simplifying the treatment of problems: We are in an era of abundant digital
development and we must constantly create software, and simplify the scientific
analysis of phenomena. It should be stressed that these simplifications work
correctly within specific ranges of use, and so there is often a scientific reason.
The notion of structural damping, for example, can be explained by the frac-
tional derivative, the notion of non-linear modes consists in “linearizing” by
abstracting from the real phenomenon. The notion of mode is specific to a linear
phenomenon and this notion is advantageous because it makes it possible to

Fig. 1.12 Characteristic of micro-friction s in the plane (f, d), coefficient of friction-displacement.
Experimental amplitude 0.1 mm (Institute superior of Mechanics of Paris, Department Tribology)
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solve the problem by decomposition of the basis of eigenvalues (linear
combination).

• The last one concerns the use of current mathematical tools to model the
physical phenomena. The notion of distribution, which generalizes the notion of
function, makes it possible to introduce in a synthetic way initial conditions in
mechanical systems, while convolution schematizes all linear phenomena.

In conclusion, we can observe that nonlinear phenomena are rarely analyzed as
such, but by techniques specific to linearity and in sciences the behaviors are like
those of mechanics: there is the energy for reflection (potential), there is some
energy for applications (kinetics), remains to be seen if the total energy is
conserved?
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Chapter 2
The Principle of Virtual Power (PVP):
Application to Complex Media,
Extension to Gauge and Scale
Invariances, and Fundamental Aspects

Laurent Hirsinger, Naoum Daher, Michel Devel and Gautier Lecoutre

Abstract This work, relative to the principle of virtual power, is composed of three
distinct but nevertheless complementary parts. The first part follows the line of
thought developed by professor Maugin and his students on complex continuous
media subject to the objectivity requirement (translational and rotational invari-
ances). The second part shows that this principle is extensible to other types of
invariance such as gauge and scale invariances. Gauge invariance allows to express
Maxwell equations, usually derived through a vector approach, by use of a scalar
principle having the same formal structure as the principle of virtual power. As to
scale invariance, it allows to deal, in a general and unified way whatever the
underlying physics, with the passage from a continuous medium to a discontinuous
one (singular surfaces, lines or points). The third part concerns the foundations of
dynamics where the principle of virtual power appears as a theorem, like other
analytical principles, each corresponding to one point of view, deductible from a
general intrinsic (viewpoint independent) dynamical framework. The attention will
be focused on the origin of the duality notion, at the basis of the principle of virtual
power.
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2.1 First Part

2.1.1 Complex Media: Modeling of the Different Continua

If one intends to describe semiconduction effects coupled to ferroelectricity and/or
ferromagnetism, one must, on the one hand, distinguish between the various species
of carriers by decomposing the total charge and current densities in order to account
for generation and recombination phenomena as done in [1]. On the other hand, one
must introduce polarization and magnetization gradients to account for electro-
magnetic ordering. Phenomenologically, the conduction (or diffusion) currents per
unit charge may be considered as the new generalized velocity fields that, by
thermodynamic duality, yield generalized internal forces for which constitutive
equations will have to be constructed. That is, we increase the complexity of the
general scheme of electromechanical interactions of [2] by considering the
self-explanatory scheme of Fig. 2.1 where the continua of charge α, correspond to
electrons, holes, ions, impurities, etc. Thus the superscript α labels quantities
attached to these species of charge and we have the obvious relations and notations.

The volume density of free charges qf and the total electric current density
J correspond to the contribution of each α charge carriers, such that:

qf = ∑
α
qαf , J= ∑

α
Jα ð2:1Þ

vα =
Jα

qαf
, uα = vα − v=

JJα

qαf
ð2:2Þ

Fig. 2.1 Scheme of interactions in thermo-deformable semiconductors [1]
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where qαf and Jα denote respectively the volume density and the electric current
density of electric charges of type α. The vectors v, vα and uα denote respectively
the velocity fields describing the global deformable material, the αth continuum (or
the velocity of α charges carriers with respect to the frame RG) and the relative
velocity (i.e. with respect to the co-moving frame RC). JJα denotes the conduction
current density of α charge carriers that is diffused within the material with respect
to RC frame. Similarly to the mass conservation but accounting for the possible
recombination and generation [1], we can write for the αth continua of charge the
following global balance laws ðα=1, 2, 3 . . .Þ:

dα

dt

Z

D

qαf dv=
Z

D

rαdv ð2:3Þ

where dα ̸dt= ∂ ̸∂t+ vα ⋅∇ denotes the “αth continuum” convective-time derivative
and rα the source terms such that ∑α r

α =0.
Equation (2.3) yields the local conservation-of-charge equations for the αth type

of charge carriers as

∂qαf
∂t

+∇ ⋅ Jα = rα ð2:4Þ

By summation over α, the latter equation yields the conservation-of-charge
equation for the whole continuum.

In the following we use the convective-time derivative of a vector field A such
that

A
*
= A

.
− A ⋅ ∇ð Þv+A ∇ ⋅ vð Þ ð2:5Þ

Maxwell’s equations can be written in SI units, like other equations in this
communication, in order to be close to what is nowadays done by physicists [3]:

∇×EE+ B
*
= 0, ∇ ⋅ B=0 ð2:6Þ

∇×
BB
μ0

� �
− ε0 E

*
= JJeff , ∇ ⋅E=

qeff

ε0
ð2:7Þ

where E and B denote the vectors of the electric field and the magnetic induction
evaluated in the fixed Galilean frame RG; EE and BB are the same vector fields as
E and B but referred to a co-moving frame RC in movement with the material
velocity v with respect to RG; ε0 and μ0 are respectively the vacuum permittivity
and permeability such that ε0μ0c

2 = 1 (where c denotes the speed of light in vac-
uum); qeff and JJeff are the effective charges and currents in RC defined by:
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qeff = ∑
α
qαf −∇ ⋅P= ∑

α
qαðeff Þ, qαðeff Þ = qαf 1−

∇ ⋅P
∇ ⋅D

� �
ð2:8Þ

JJeff = JJ+ P
*
+∇×MM= ∑

α
JJαðeff Þ, JJαðeff Þ = JJα + qαf P

*
+∇×MM

� �
∇ ⋅ Dð Þ− 1 ð2:9Þ

where D, P and M denote the vector of the electric displacement, the electric
polarization and the magnetization evaluated in RG; MM and JJ= ∑α JJ

α are the same
vector fields as M and J but referred to a co-moving frame RC. When ∇ ⋅ D=0,
one uses the first equalities of Eqs. (2.8) and (2.9). In the Galilean approximation,
we have the following transformation laws between RG and RC:

EE=E+ v×B,
BB
μ0

=
B
μ0

− v× ε0Eð Þ ð2:10Þ

MM=M + v×P, JJ= J− qf v. ð2:11Þ

This gives an idea of the effective charge and current densities that must be
accounted for the αth species when the material is simultaneously polarized and
magnetized.

2.1.2 Thermo-Electro-Magneto-Mechanical Equations

2.1.2.1 General Principles in Global Form

The thermomechanical balance laws of an electromagnetic continuum may be
deduced in an elegant manner from three general principles written in global form
for the material volume D. These are the principle of virtual power and the first and
second principles of thermodynamics [4, 5]. We refer the reader to the review paper
[2] and the book [6] for this general approach from which we extract only the
required ingredients.

In order to construct the different virtual powers, we construct a space of
velocities and velocity gradients V (see, for instance, [1, 2, 6–8]) from the available
“velocities” gathered in Vð0Þ:

Vð0Þ = vi, vαi , π ̇i, μ̇i
� � ð2:12Þ

where πi =Pi ̸ρ and μi =Mi ̸ρ denote the mass density of polarization and
magnetization.

The set of variables is chosen according to the phenomena one is interested in.
For simple deformable electro-magneto-mechanical interactions, one needs to
account for time rates of polarization π ̇i and magnetization μ̇i, in addition to the
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usual mechanical ingredients: velocity vi and its first gradient vi, j (needed to account
for deformation). In the present approach where one deals with complex media
including ferroelectricity, ferromagnetism, flexoelectricity, semi-conduction etc., it
becomes necessary to add to the time rates of polarization and magnetization first
gradients, ðπ i̇Þ, j and ðμ ̇iÞ, j, accounting thus for the so-called electromagnetic
ordering (ferroelectricity, ferromagnetism …). One also needs to account for a
second gradient relative to the velocity vi, jk, required to give account of the flex-
oelectric effect. As to semi-conduction, it is accounted for by introducing new
variables reflecting the motion of the different charge carriers (electrons, holes …)
i.e. the velocity vαi and its first-order gradient vαi, j. In summary, the set of variables

Vð0Þ has been enlarged with these different first and second order gradients to obtain
the new set V such that (see for instance [2, 9]):

V = vi, vi, j, vi, jk, vαi , v
α
i, j, π ̇i, π i̇ð Þ, j, μ ̇i, μ ̇ið Þ, j

n o
ð2:13Þ

In order to pave the way for objective quantities, the velocity gradients may be
decomposed into their symmetric and anti-symmetric parts. This may be decom-
posed as:

V = vi,Dij,Ωij, vi, jk, uαi ,D
α
ij,Ω

α
ij, π ̇i, π i̇ð Þ, j, μ̇i, μ̇ið Þ, j

n o
ð2:14Þ

where vi, j = v i, jð Þ + v i, j½ � =Dij +Ωij and vαi, j = vαi, jð Þ + vαi, j½ � =Dα
ij +Ωα

ij.
Since the constitutive equations associated with the different continua must be

objective, i.e. frame-independent, we construct a subspace Vobj including only
objective fields. In order to do that, the Jaumann derivatives, noted DJ , and the
specific time derivative tensors are used with the velocity of the deformable con-
tinuum and with the velocities of the αth charge continua [1, 3]. Hence, for the
polarization, we introduce:

π î = ðDJπÞi = π i̇ −Ωijπj, π ̂αi = ðDα
JπÞi = π ̇i −Ωα

ijπj ð2:15Þ

π îj = DJð∇πÞ½ �ij +Dkj πi, k = ðπ i̇Þ, j −Ωikπk, j, π ̂αij = ðπ i̇Þ, j −Ωα
ikπk, j. ð2:16Þ

For the magnetization, the Jaumann derivatives, μî and μ ̂αi , and the specific time
derivative tensors, μîj and μ ̂αij, are introduced similarly. Thus, the objective space
Vobj is composed of the following set of kinematical objective fields

Vobj = Dij, vi, jk, uαi ,D
α
ij, π ̂i, π ̂ij, μ ̂i, μ ̂ij, π ̂

α
i , π ̂

α
ij, μ̂

α
i , μ ̂

α
ij

n o

As to the set of dynamical objective fields Fobj, it is introduced by duality to the
set Vobj. It is composed of generalized internal forces, such that [2]:
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Fobj = σij, μijk , q
α
f
LEEα

i , σ
α
ij, ρ

LEi, LEEij, ρ LBi, LBBij, ρ LEα
i ,

LEEα
ij, ρ

LBα
i ,

LBBα
ij

n o

where σαij and σij are the symmetric first-order stress tensor’s components referred to
as the intrinsic-stress tensor respectively for the αth charge continua and for the
deformable continuum. μijk is the intrinsic second-order stress tensor. A dimen-
sional analysis shows that LBi and LBα

i are induction fields, and, LEEα
i ,

LEi and LEα
i

are electric fields. LEEij, LBBij, LEEα
ij and

LBBα
ij are generalized forces associated to the

gradient of the time derivatives of electric polarization and magnetization.

• Principle of Virtual Power (PVP)

In a Galilean frame and for a Newtonian chronology, the total virtual power of inertial
forces of the system P*

ðaÞ balances the sum of the virtual powers of internal forces

P*
ðiÞ, of external volume forces P*

ðvÞ and of external contact forces P*
ðcÞ impressed

on the system for any virtual velocity field. With the above notation, this reads:

P*
ðaÞðD,V* ∈Vð0Þ*Þ

=P*
ðiÞðD,V* ∈V*

objÞ+P*
ðvÞðD,V* ∈V*Þ+P*

ðcÞð∂D,V* ∈VðcÞ*Þ
ð2:17Þ

• First Principle of Thermodynamics

The time rate of change of the total energy contained in the material domain D,
considered as a closed system, is equal to the sum of the power developed by
“prescribed” forces PðeÞ, the energy supply by radiation in the volume of D and the
total flux of energy through the boundary ∂D [2]. Mathematically, this reads:

d
dt

KðDÞ+EðDÞ+UemðDÞ½ �=PðeÞðDÞ+Q
∙
hðDÞ ð2:18Þ

where D denotes the outside of domain D in R3.

• Second Principle of Thermodynamics

For any thermodynamical process the time rate of change of the total entropy of the
material domain D is never less than the sum of the total entropy supply in the
volume of D and the total flux of entropy through its boundary ∂D. Mathematically,
this reads:

d
dt
NðDÞ≥ N

∙ ðDÞ ð2:19Þ
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For a general magnetizable, electrically polarized, heat conducting deformable
semiconductor, the expressions to be carried in Eqs. (2.17)–(2.19) are given as follows:

KðDÞ=
Z

D

1
2
ρ v2 +

1
2
ρ d π ̇2

� �
dv ð2:20Þ

EðDÞ=
Z

D

ρεdv, UemðDÞ=
Z

D

1
2

ε0E2 +
B2

μ0
− 2MM ⋅BB

� �
dv ð2:21Þ

Q
∙
hðDÞ=

Z

D

ρhdv−
Z

∂D

q ⋅ nda ð2:22Þ

NðDÞ=
Z

D

ρηdv, N
∙
ðDÞ=

Z

D

ρσdv−
Z

∂D

ϕ ⋅ n da ð2:23Þ

where d is the electronic polarization inertia tensor, e is the internal energy per unit
mass, η is the entropy per unit mass, h is the radiation heat power source per unit
mass, n is the unit exterior normal to the closed surface ∂D of the material domain D
and q is the total power flux vector, i.e. the sum of the heat power flux vector q ̃ and
the Poynting’s flux vector S referring to RC [2]:

q= q ̃+S, S=EE×HH. ð2:24Þ

The fields σ and ϕ are usually related to h, q and the thermodynamical tem-
perature θ (where θ > 0, inf(θ) = 0). These relations will be specified later on.

The other expressions to be carried in Eqs. (2.17)–(2.19) are constructed as follows:

Total virtual power of inertial forces P*
ðaÞ

P*
ðaÞðD,V* ∈Vð0Þ*Þ=

Z

D

ρ vi̇v*i + dπ ̈iπ ̇*i + β′γ − 1μ̇iω
*
i

� �
dv ð2:25Þ

where γ is the gyromagnetic ratio of electrons. β′ is equal to 1 when the spin
precession plays an important role (i.e. when the material is ferromagnetic at low
temperature) which can be expressed as a constraint on the magnetization velocity
μ ̇=ω× μ, where ω is the precession velocity. Otherwise, β′ can be set equal to 0 as
shown in [1, 2, 6, 8].

Total virtual power of internal forces P*
ðiÞ

The internal forces that reflect the interactions associated with the crystal lattice and
polarizable, magnetizable and semi-conducting continua, have to be objective
[1, 2, 6, 8]:
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P*
ðiÞðD,V* ∈V*

objÞ= −
Z

D

p*ðiÞdv ð2:26Þ

with

p*ðiÞ = σijD*
ij + μijkv

*
i, jk − ρ LEiπ ̂*i − ρ LBiμ̂

*
i +

LEijπ ̂*ij + β LBijμ̂
*
ij − ∑

α
qαf

LEα
i u

α*
i

+ ∑
α

σαijD
α*
ij − ρ LEα

i π ̂
α*
i − ρ LBα

i μ̂
α*
i + LEα

ijπ ̂
α*
ij + β LBα

ijμ ̂
α*
ij

� 	 ð2:27Þ

where, β is equal to 1 when the exchange forces play an important role, via
variables LBij and LBα

ij (i.e. when the material is ferromagnetic). Otherwise, β can be
set equal to 0.

Total virtual power of external volume forces P*
ðvÞ

P*
ðvÞðD,V* ∈V*Þ=

Z

D

fi + f emi

 �

v*i + ρEiπ ̇*i + ρBiμ ̇*i + ∑
α
f αi u

α*
i

� �
dv ð2:28Þ

where f and f α represent volume densities of forces and f em is the volume density of
ponderomotive forces. Here, we have assumed for the sake of simplicity that the
cofactors of vi, jk , μ ̇ið Þ, j and π ̇ið Þ, j take the value zero (in fact no physical inter-
pretation of these fields has been found up to now [2]).

Total virtual power of external contact forces P*
ðcÞ

For the external contact power, we obtain the following expression (see [3, 5, 9–13]):

P*
ðcÞð∂D,V* ∈Vð0Þ*Þ=

Z

∂D−Γ↗

Ti + Tem
i


 �
v*i +Ri

∂v*i
∂n

+
ρQi

ε0
π ̇*i

� �
da

+
Z

∂D−Γ↗

β μ0 ρFi μ̇
*
i + ∑

α
Tα
i u

α*
i

� �
da+

Z

Γ↗

Liv*i ds

ð2:29Þ

where T and Tα represent surface densities of forces, Tem is the electromagnetic
surface density of forces, Ri, Li, Qi and Fι̇ denote respectively the normal double
traction (per unit length), the reduced linear density of strength along the discon-
tinuous line Γ (i.e. an edge where the unit exterior normal n on the closed surface
∂D is discontinuous) and the surface distribution of electric and magnetic dipoles.
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Total power of “prescribed” forces PðeÞ

The total power of the “prescribed” forces is obtained by the construction of the
principle of virtual power for an actual velocity field [2, 9, 11]. Using the global
energetic identity for the electromagnetic fields Uem given by Maugin in [6], we
obtain the total power of the “prescribed” forces PðeÞðDÞ as

PðeÞðDÞ=
Z

D

fividv+
Z

∂D−Γ↗

Tivi +Ri
∂vi
∂n

+
ρQi

ε0
π ̇i

� �
da

+
Z

∂D−Γ↗

βμ0ρFiμ̇i + ∑
α
Tα
i u

α
i

� �
da+

Z

Γ↗

Livids
ð2:30Þ

In the above-set of Eqs. (2.25)–(2.30), f and T are respectively the volume and
surface densities of forces of purely mechanical origin. f α and Tα are respectively
the volume and surface densities of forces associated with the αth charge contin-
uum. The symmetric tensor with the component σij is called the intrinsic stress
tensor (not to be mistaken for the Cauchy stress tensor to which it is only a
symmetric contribution). Constitutive equations will have to be constructed for this
tensor. The quantities σαij,

LEi, LBi
LEα

i ,
LBα

i and LEα
i all introduced by duality (we

need constitutive equations for these) reflect the interactions between, respectively,
the neighboring elements of the αth charge continuum; the polarization field and the
crystal lattice; the magnetization field and the crystal lattice; the polarization field
and the αth charge continuum; the magnetization field and the αth charge contin-
uum; the crystal lattice and the αth charge continuum (this clearly is a “diffusion”
process). Finally, the presence of μijk,

LEij, LBij, LEα
ij and

LBα
ij are explained by the

inclusion of the gradients (∇∇v, ∇μ and ∇πÞ and the principle of objectivity. These
quantities (we also need constitutive equations for these) reflect, respectively, the
second order interaction between the neighboring elements of the deformable
continuum, and, the interactions between the polarization gradient field and the
crystal lattice; the magnetization gradient field and the crystal lattice; the polar-
ization gradient field and the αth charge continuum; the magnetization gradient field
and the αth charge continuum. Finally, f em is the volume density of the pondero-
motive force and Tem is the corresponding electromagnetic surface density of force.

According to a semi microscopic approach [14] accounting for the effects of only
charges and dipoles, the ponderomotive volume density of force is [1, 6, 8, 14–19]:

f em = qeffE+ JJeff −∇×MM

 �

×B+∇ ⋅ EE⊗Pð Þ+ ∇Bð Þ ⋅M ð2:31Þ

where one has set: ∇ ⋅ EE⊗Pð Þ½ �i = EEi Pj

 �

, j and ∇Bð Þ ⋅M½ �i =Bj, i MMj
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This latter expression is equivalent to the following:

f em =∇ ⋅ tem −
∂G
∂t

= Lf +∇ ⋅ tēm ð2:32Þ

where we have singularized the “Lorentz force” Lf

Lf = qeffE+Jeff ×B=∇ ⋅ tF −
∂G
∂t

ð2:33Þ

temij = tFij + tēmij , G= ε0E×B ð2:34Þ

tFij = ε0EiEj +
BiBj

μ0
−

1
2

ε0E2 +
B2

μ0

� �
δij, tēmij =EiPj −MiBj +M ⋅B δij. ð2:35Þ

The electromagnetic surface density of forces Tem is defined on ∂D as [1, 6, 8]:

Tem
i = − ðtemij +GivjÞnj ð2:36Þ

Finally, the ponderomotive couple Cem (of electromagnetic origin) is accounted
for through the pseudo-vector of the electromagnetic stress tensor Cem such that

Cem
ij = − temij½ � = − tēmij½ � , cemk = εklmCem

lm = P×EE+M×Bð Þk ð2:37Þ

where εijk denotes the classical Levi-Civita symbol.

2.1.2.2 Local Electro-Magneto-Mechanical Balance Equations

For any virtual fields v*, vα*, π ̇*, μ ̇* and ∂v* ̸∂n and for any element of volume
and surface, we obtain the following local field equations from (2.17) that govern
the motion and the interactions in a moving magnetized, polarized and semicon-
ducting, material medium (see [1, 2, 4, 9]):

ð2:38Þ

ð2:39Þ

tijnj = Ti + Tem
i + ∇ĵ − nj ∇̂pnp


 �
 �
μijknk − ∑

α
Tα
i on ∂D−Γ↗ ð2:40Þ

Li = εjpq½½μijknkτpnq�� onΓ↗ ð2:41Þ
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where the nonsymmetric Cauchy stress tensor’s component tij is defined by:

tij = σij − μijk, k + ρ LE½iπ j� + LB½iμ j�
� 	

− LE½i kj jπ j�, k + β LB½i kj jμ j�, k
� 	

ð2:42Þ

and where the symbol ½½. . .�� denotes here the jump across the edge Γ, τ denotes the
unit vector tangent to Γ and oriented in the direct sense about the normal n, and, ∇̂
denotes the surface gradient operator.

ð2:43Þ

tαijnj = Tα
i on ∂D−Γ↗ ð2:44Þ

where the nonsymmetric stress tensor’s component tαij is defined by:

tαij = σαij + ρ LEα
½iπ j� + LBα

½iμ j�
� 	

− LEα
½i kj jπ j�, k + β LBα

½i kj jμ j�, k
� 	

ð2:45Þ

ð2:46Þ

LEET
ij nj =

ρQi

ε0
on ∂D−Γ↗ ð2:47Þ

with the effective electric field Eeff , and, the local interaction electric fields of the
first order LET and of the second order with components LET

ij defined by:

Eeff
i = Ei + LET

i ð2:48Þ
LET

i =
LEi + ∑

α

LEα
i and LET

ij =
LEij + ∑

α

LEα
ij ð2:49Þ

ð2:50Þ

βεipq
LBT

pjnj − ρμ0Fp

� 	
μq =0 on ∂D−Γ↗ ð2:51Þ

with β′ = β=1, when the material is ferromagnetic at low temperature [13, 15];
β=1, β′ =0, when the material is ferromagnetic near the Curie temperature;
β′ = β=0, otherwise, and, with the effective magnetic induction Beff , and, the local
interaction magnetic inductions of the first order LBT and of the second order with
components LBT

ij defined by:
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Beff
i =Bi + LBT

i ð2:52Þ
LBT

i =
LBi + ∑

α

LBα
i and LBT

ij =
LBij + ∑

α

LBα
ij ð2:53Þ

2.1.2.3 Local Thermodynamical Equations

Combining the first principle of thermodynamic (2.18) with the principle of virtual
power (taken for actual velocities), we obtain the following global statement cor-
responding to the global form of the energy theorem as:

E
∙ ðDÞ+PðiÞðD,VobjÞ=Q

∙
hðDÞ+Q

∙
emðDÞ ð2:54Þ

where we have set

Q
∙
emðDÞ=

Z

D

qėmdv+
Z

∂D

SS ⋅ nda ð2:55Þ

with

qėm = ∑
α

JJα ⋅EE− f α ⋅ uαð Þ ð2:56Þ

Accounting for the generalized transport theorems and balances of mass, from
these latter eqns, we deduce the local forms of the first principle of thermodynamics
(2.18) (or the local form of the energy theorem) as

ρε ̇= pðiÞ + q ̇em −∇ ⋅ q ̃+ ρh ð2:57Þ

The second principle of thermodynamics remains to be exploited. To that pur-
pose we assume that σ = h ̸θ and ϕi = qĩ ̸θ. Only the volume entropy flux differs
from the usual ratio of the heat vector to the temperature, which means that
non-simple thermodynamic processes are involved (cf. [20], p. 129). The local form
of the second principle of thermodynamics (2.19) then reads

ρθ
dη
dt

≥ ρh−∇ ⋅ q ̃+ϕ ⋅∇θ ð2:58Þ

2.1.3 Clausius-Duhem Inequality

The Helmholtz free energy density ψ = ε− η θ is introduced. And we are led to the
Clausius-Duhem inequality in the local form:
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− ρ
dψ
dt

+ η
dθ
dt

� �
+ pðiÞ + q ̇em −ϕ ⋅∇θ≥ 0 ð2:59Þ

Introducing the relations between Jaumann derivatives and convective-time ones
and a scalar chemical potential, we can evaluate [3]:

pðiÞ + q ̇em = tT̃ijDij + μijkvi, jk − LET
i Pi

*
− LBT

i Mi

*
+ LET

ijπ
⌢
ij + β LBBT

ijμ
⌢

ij

+ ∑
α

EEαðeff Þ ⋅JJα − μα∇ ⋅JJα
h i ð2:60Þ

where we have also introduced the effective electromotive field of the α charge
carriers by EEαðeff Þ =EE−∇μα, where tT̃ is a symmetric tensor such that:

tT̃ij = σij + ∑
α
σαij −

LEðiPjÞ − LBði MjÞ + LEði , kj jπjÞ, k + β LBði , kj jμjÞ, k ð2:61Þ

and where LET
i ,

LBT
i ,

LET
ik and LBT

ik are respectively defined previously.
Recalling that ϕ= q̃ ̸θ and accounting for the latter eqns, we can rewrite the

Clausius-Duhem inequality (2.59) in the useful form [3]:

− ρ
dψ
dt

+ η
dθ
dt

� �
+ t ̃TijDij + μijkvi, jk −

LET
i Pi

*
− LBT

i Mi
*

+ LET
ik π

⌢
ij + β LBT

ikμ
⌢

ij

+ ∑
α
E
αðeff Þ
i Jα

i + ∑
α
μα ρ

dcαλ
dt

− rα
� �

+ θ q ̃ ⋅∇
1
θ

� �
≥ 0

ð2:62Þ

As is well known, the Clausius-Duhem inequality plays a major role in the
building of constitutive relations.

2.2 Second Part

2.2.1 Extension of the PVP to Gauge and Scale Invariances

The scalar method known as the principle of virtual power—applied to mechanics
with microstructures by Germain [4, 5], then to electro-magneto-mechanics by
Maugin and his students [7, 8, 10, 11]—has brought remarkable advances. This
method based on the duality notion subject to translational and rotational invariances
is extended here to gauge and scale invariances, leading thus to a more unifying
principle, apt to account for a wider range of applications as shown in [21–24].
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After having extended the principle of virtual power to complex structures
including conduction and diffusion effects of various charge carriers (semi-
conduction), it seemed advisable to acquire a more unifying, systematic and uni-
versal framework, adapting this formal and reliable method to other types of sym-
metries and invariances thanks to its use of the fruitful concepts of modern geometry.

This was done by borrowing concepts from theoretical physics, particularly gauge
theories (serious candidates for the unification of the four forces of interaction of
fundamental physics). Thus, scale and gauge invariances were introduced into the
physics of continuous media. These two types of invariances add to the well-known
translational and rotational invariances (objectivity requirement) already dealt with in
electro-magneto-mechanics. Gauge invariance allows to account for Maxwell’s
electromagnetism analogously to rotational invariance for deformable bodies. As to
scale invariance, it allows to deal with the various forms of discontinuities and
interfacial properties that occur at singular surfaces, lines and/or points.

These aspects have been presented succinctly in congresses [22–24] and in a
synthetic paper [21] more than twenty years ago, both in Newtonian and Einsteinian
chronologies, but this theoretical theme, considered too remote from the immediate
concerns of the laboratory, had not been pursued further at that time.

In the last decade, some works together with Hirsinger and Devel showed the
need for such a general and systematic methodology (see for instance [3]) that will
be succinctly recalled here and developed in future works.

2.2.2 Extended form of d’Alembert’s Principle

Statical continuum mechanics and magnetism are the simplest examples where the
basic ideas are brought out clearly. In addition, since a boundary may be regarded
as a particular case of a moving singular surface, one may omit its expression in the
present derivation. Only the essential elements are kept here. The attention is
focused on the three different invariance principles that govern discontinuities as
well as Maxwell electromagnetism and deformable mechanics.

2.2.3 Unified Global Statement

The basic postulate may be expressed in the form of an orthogonality relation as
follows:

δW* = ⟨D, δG
*
⟩=0 ð2:63Þ

42 L. Hirsinger et al.



where δG is an infinitesimal variation of the geometrical parameter G and D is the
dynamical contribution introduced by duality. A star * on a field denotes its virtual
character. In the present framework, it is convenient to distinguish between three
types of energies as follows:

δW* = δW*
GIV + δW*

GRI + δW*
SCI =0 ð2:64Þ

In a first-order gradient framework associated with volume and surface physical
contributions, one may write:

δW*
GIV =

Z

D−Σ

KiδR*
i +Kij∇j δR*

i


 �
dv+

Z

Σ

K ̂iδ ̂R̂
*
i +Kîj∇̂j δ ̂R̂

*
i

� 	
da ð2:65Þ

δW*
GRI =

Z

D−Σ

AiδR*
i +Aij∇j δR*

i


 �
dv+

Z

Σ

Âiδ ̂R̂
*
i + Âij∇ĵ δ ̂R̂

*
i

� 	
da ð2:66Þ

δW*
SCI =

Z

Σ

Z +
i δ+R*+

i − Z −
i δ−R*−

i + Zîδ ̂R̂
*
i

� 	
da ð2:67Þ

where dv is the volume element of the bulk medium D−Σ, da is the surface
element of the interface Σ and ∇ ̂ denotes the surface gradient, + and − denote
quantities on either side of the singular surface and ^ the quantity at the singular
surface.

The expressions of δW*
GIV and δW*

GRI (GIV for given fields, GRI for gauge and
rotational invariance) are introduced in a systematic manner. Ki, Kij


 �
and their

surface counterparts Kî, K ̂ij

 �

correspond to given fields. A quantity for which no
physical support is available can be dropped from Eq. (2.65). As to the expression
of δW*

GRI , it should be specified through a physical invariance principle. More
precisely, gauge invariance (Electromagnetism) and rotational invariance
(Mechanics) will impose restrictions on the form of δW*

GRI . As shown below, the
dual field Aij will be skew-symmetrical (in Electromagnetism) and symmetrical (in
Mechanics). And the dual fields Ai and Aî will vanish in both cases since they
violate the invariance requirements. Physically, these invariance principles will give
the correct form of the field-field interaction energy (magnetic energy) and of the
matter-matter interaction energy (deformation energy). Thus, a net distinction is
made between given fields and those deduced from a physical invariance principle.

Across the interface, one loses differentiability, thus, a general form of the
interaction energy between the bulk and the interface is given by Eq. (2.67). Its
construction is performed by taking all the energies that one may construct at the
interface and its surrounding. This leads to the introduction of three vector fields, to
be coupled together as well as with the fields present in Eqs. (2.65) and (2.66).
A full determination is obtained in two steps. First, the scale invariance principle
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relates Z ̂ to Z±, then the use of the virtual character through the application of the
principle for any δR± will lead to the determination of Z±. The scale invariance
principle asserts that Eq. (2.67) must remain invariant under the addition of any
continuous infinitesimal vector field. This requirement governs the passage from a
continuous to a discontinuous medium. Before dealing with the three invariance
principles, let us recall that the present formulation may be regarded as a gener-
alization of the well-known Lagrangian approach, (recovered for integrable sys-
tems, Ai ≡ ∂L ̸∂RiÞ. In the present formulation, no hypothesis of integrability is
imposed. This offers richer possibilities, particularly in the framework of dissipative
phenomena and irreversible processes.

2.2.4 Derivation of Scale, Gauge and Rotational
Invariances

The attention is focused here on the formal unifying structure. The physical details
are provided in Refs. [21–24]. One way to deal with invariance principles consists
in requiring that the energy remains invariant under the addition of a certain
infinitesimal field. Mathematically, one writes

δ
α
R′

α

= δ
α
R
α
+ δr α= + , − , ∧f g ð2:68Þ

A—Scale invariance corresponds to r= a, where a is any continuous vector
field (i.e. ½½a��=0Þ

This requirement transforms Eq. (2.67) into

δW*
SCI =

Z
½½Zi δR*

i − δ̂R ̂*i
� 	

�� da ð2:69Þ

where ½½A��≡A+ −A− denotes the jump from the + to the – side of the interface.
B—Gauge invariance consists in taking r=∇ψ , where ψ is any scalar field. As

to δR, it coincides here with an infinitesimal variation of a vector potential δA. The
consequence of this invariance on Eq. (2.66) leads to

Ai =0, Âi =0, Hij ≡Aij ð2:70Þ

such that

Hij +Hji =0

and
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Hij
S

≡ Âij ð2:71Þ

such that

Hij
S

+ Hji
S

= Hik
S

nk nj + Hjk
S

nk ni

where Hij and Hij
S

are respectively volume and surface magnetic fields which are
pseudo-vectors expressed here in tensorial form.

C—Rotational invariance (or objectivity requirement) is expressed through a
rigid body motion transformation r=X +ω× x (X: translations, ω: Rotations).
This leads to

Ai =0, Âi =0, σij ≡ −Aij ð2:72Þ

such that

σij − σji =0

and

σij
S ≡ − Âij ð2:73Þ

such that

σij
S − σji

S
= σik

S
nk nj − σjk

S
nk ni

In this case δR coincides with an infinitesimal displacement and σij is none other
than the mechanical stress tensor.

2.2.5 Local Equations

On assuming that Eq. (2.64) holds good for all virtual fields and any element of
volume and surface, one obtains the following local equations after using the
volume and surface divergence theorems:

Ki =∇i Aij, K ̂i =∇̃i Âij + ½½Aij��nj ð2:74Þ
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∇̃= ∇̂+2Ω
m

n, 2Ω
m
= − ∇̂ ⋅ n ð2:75Þ

(Ω
m
: mean curvature, ∇̂: surface gradient).
Notice that a tensorial framework offers interesting similarities between

mechanical and electromagnetic energies. Here Kij δA i, jf g is none other than
deformation energy (mechanics) or magnetic energy (magneto-statics).

2.2.6 Relativistic Framework

Another important feature in such a derivation is its natural generalization to a
relativistic framework. Indeed, the basic postulates (2.63)–(2.64) and the invariance
requirements (2.68)–(2.73) still hold. The only difference is that one needs to
express the fields in a Lorentzian 4-dimensional space. Thus, Eq. (2.74) is to be
replaced by

Kα = ∂β Aαβ, K ̂α = ∂̃β Â
αβ
+ ½½Aαβ��Nβ ð2:76Þ

α, β= 1, . . . 4f g

where ∂β, ∂̃β and Nβ are the 4 dimensional analogues of ∇j, ∇j̃ and nj. For lack of
space, we only recall the relation between N and n

Ni = ni ̸
ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2̂n

q
, N4 = − vn̂ ̸

ffiffiffiffiffiffiffiffiffiffiffiffi
1− v2̂n

q
ð2:77Þ

when v2̂n ≪ 1, ∂̃i →∇ ̃i and ∂ ̃4 → ∂̃ ̸∂t= ∂ ̸∂t+ v ̂n n ⋅ ∇̂ − 2Ω
m� 	

.

It is important to note here, that dealing with interfaces in a relativistic frame-
work does not only yield more general solutions but also leads to simple covariant
expressions. The simplicity criterion is essential here to verify the coherence of the
theory. Indeed, the lack of symmetry between space and time in a Galileen
framework leads to complicated expressions. When applied to electromagnetism,
Eq. (2.76) may be explicitly written as:

Jα = ∂β Hαβ, J ̂α =Pγ
β ∂γ H ̂αβ +H ̂βγΓα

γβ + ½½Hαβ��Nβ ð2:78Þ

Pγ
β = δγβ −NβNγ, Γα

γβ =Nγ Pθ
β ∂θ N

α −∂ ⋅N δαβ

n o
, Jα

s
=Pα

β J ̂
β ð2:79Þ

Let us recall that the passage from 4 to (3 + 1) dimensions transforms
Jα = ∂β Hαβ such that Hαβ +Hβα =0 into qf =∇ ⋅D and J= − ∂D ̸∂t+∇×H.
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The interfacial expression is written in such a manner that one may distinguish

between three contributions: (i) the spatio-temporal variation of H ̂αβ (counterpart of
the volume expression), (ii) its coupling with the surface curvature Γα

γβ and (iii) the
jump relation.

This energy formulation may also account for singular lines by analogy to
singular surfaces as explicitly shown in [21–23].

In conclusion, let us recall that the second part of this work extends the ideas
expressed in the works of professors Germain and Maugin who developed
d’Alembert’s principle in different contexts by exploiting the invariance under a
rigid body motion.

2.3 Third Part

2.3.1 Foundation of the Principle of Virtual Power (PVP)

The principle of virtual power is a scalar (geometrical) approach, based on the
duality notion that corresponds to one point of view among others. We shall go
back to the source of this notion thanks to an intrinsic (viewpoint independent)
dynamical framework conceptualized by Leibniz and formalized recently in Refs.
[25–28]. This framework clearly distinguishes between worlds and points of view.
A dynamical world is formally expressed through a relation that links directly the
two conserved entities (energy and impulse): E=FðpÞ or more generally
RðE, pÞ=C (constant). As to a point of view attached to a specific world, it
consists in expressing impulse and energy in terms of a motion parameter x:
p= gðxÞ, E= f ðxÞ. Obviously, if this point of view is relative to the above world
E=FðpÞ, then the three functions F, g and f cannot be independent anymore. They
must satisfy: E=F pð Þ=F g xð Þð Þ= f xð Þ.

Unlike usual physics, limited to one world (Newtonian, Einsteinian, Finslerian
…) dealt with through one point of view (variational, geometrical, group theoretical
…), Leibniz’s conception accounts for all physically admissible worlds (i.e. com-
patible with the relativity and conservation requirements) independently of any a
priori imposed point of view whatsoever. Such a conception is characterized by its
intrinsic (viewpoint independent) nature where the different dynamical worlds are
deduced before the determination, by self-organization, of the appropriate points of
view attached to each world.

The principle of virtual power, like other analytical principles such as the
principle of least action, appears henceforth as a theorem. These turn out to be
deductible from a weaker principle, using qualitative mathematics, from which
different quantitative dynamical structures—each constituting one point of view—
are derived. Among these dynamical structures, one recognizes the ones that cor-
respond to the well-identified physical principles developed in the history of
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dynamics. Here, the attention will be focused on the source of the duality notion
which is at the basis of the principle of virtual power.

2.3.2 Main Points of the Leibnizian Dynamical Framework

The Leibnizian formulation takes its origin from a dynamical procedure, due to
Huygens, based on the relativity and conservation principles, in (1 + 1) dimen-
sions, recalled in Eqs. (9.11)–(9.14) of Ref. [29], by the physicist and historian of
science Barbour.

Elevated to the rank of a principle and expressed in the Leibnizian language of
infinitesimal calculus, Huygens dynamics is formally expressed by: M = d2E ̸dw2,
with M =m, p= dE ̸dw and the limit conditions w=0, p=0, E=E0, where the
motion parameter w satisfies an additive composition law w′ =w+W


 �
. Its inte-

gration leads to: p=m w and E=1 ̸2 m w2 +E0. This method (recently justified by
a theorem borrowed from group theory) was revived by many authors [30–34] and
applied to Einstein’s dynamics where the constant M =mð Þ is replaced by the linear
relation M =E ̸c2ð Þ.

In order to account for all physically admissible worlds and associated points of
view, we have extended Huygens procedure according to Leibniz’s conceptual-
ization, characterized by the simultaneous presence of an infinity of points of view
on each dynamical world [25–28]. Such a conceptualization is called architectonical
by opposition to the usual analytical conceptualization, limited to one point of view
a priori imposed from the start.

As a consequence, instead of the above differential equation M = d2E ̸dw2,
relative to Huygens conception, that accounts for one world M =mð Þ, corre-
sponding to: E= p2 ̸2 m+E0, dealt with through one point of view p= dE ̸dwð Þ,
expressed by the motion parameter w attached to the operator d ̸dw, one is led, as
shown explicitly in [25, 26], to an infinity of differential equations M = d2μE ̸dv2μ,
corresponding to Leibniz’s conception, that account for all dynamically admissible
worlds M = λE+ γdμE ̸dvμ + η


 �
, each one dealt with through an infinity of points

of view p= dμE ̸dvμ

 �

, expressed by the motion parameters vμ attached to the
infinitely multiple μ-operator: dμ ̸dvμ = Iμd ̸dvμ where the functions Iμ that depend
on vμ are yet indeterminate. The functions Iμ reflect the non-additive composition

laws v′μ ≠ vμ +Vμ

� 	
that accompany the additive one v′a = va +Va


 �
for which Ia

reduces to unity Ia =1ð Þ.
In brief, the passage from the Huygensian analytical conception to the Leib-

nizian architectonical one, amounts to replace: M =m= d2E ̸dw2 with p= dE ̸dw
by the following under-determinate structure: M = λE+ γdμE ̸dvμ + η= d2μE ̸dv2μ
with p= dμE ̸dvμ expressed explicitly by:
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M = λE+ γ IμdE ̸dvμ + η= Iμd ̸dvμ
� �

Iμd ̸dvμ
� �

E

= I 2
μ d

2E ̸dv2μ + IμdIμ ̸dvμ
� �

dE ̸dvμ
ð2:80Þ

At first sight, it seems contradictory to associate the term “world” with the above
expression of M because of its viewpoint dependence. But this apparent contra-
diction vanishes by showing, as done in [25], that Eq. (2.80) transform into an
intrinsic (viewpoint independent) framework, expressed uniquely in terms of the
conserved entities E and p as follows: M = λE+ γp+ η= pd ̸dE½ � pd ̸dE½ �E=
p2d2 ̸dE2 + pd ̸dEð Þd ̸dE½ �E= pdp ̸dE. When integrated, this differential equation
becomes formally expressed through a relation that links together the two con-
served entities (energy and impulse): RðE, pÞ=C. One recovers thus what is called
above a dynamical world. This procedure, called in [25–28] a “filtering procedure”,
characterizes the Leibnizian intrinsic approach where the determination of the
worlds precedes and contributes to the specification of the points of view.

2.3.3 Determination of the Yet Under-Determinate
Framework

The attention will be focused here on the Newtonian (parabolic) and Einsteinian
(hyperbolic) worlds that correspond respectively to: λ, γ, ηð Þ= 0, 0, mð Þ and
λ, γ, ηð Þ= E ̸c2, 0, 0ð Þ, getting thus: M=m and M=E ̸c2. These two dynamical
worlds can be expressed in a unified differential form by: M=mðE ̸mc2Þk=p dp ̸dE
with k=0 for Newton and k=1 for Einstein.

Its integration will provide valuable information that will actively contribute to
the determination of the infinity of the yet indeterminate points of view as shown in
[25]. Thus, one is led to the multiple scale law:

Iμ = M ̸mð Þ2− μ = E ̸m c2

 �kh i2− μ

ð2:81Þ

Having specified the functions Iμ, the under-determinate structure (2.80)
becomes well determinate: it includes an infinity of quantitative equations, each
value of μ corresponding to a particular point of view. Among the infinity of points
of view, the formal structure singles out four basic (singular, remarkable and
operational) points of view, the others corresponding to more or less complicated
combinations of the four basic ones. The three well-identified points of view rel-
ative to the three different principles (Lagrangian formulation, d’Alembert’s prin-
ciple and Huygens procedure) expressed in mathematical terms by the calculus of
variations, modern geometry and group theory, turn out to be deductible from the
points of view of orders μ= 4, 1 and 2f g respectively as shown in [25–28]. Since
we are mainly concerned here with d’Alembert’s (or virtual power) principle, the
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attention will be focused on the procedure that allows deriving it from the present
general Leibnizian approach.

2.3.4 Deduction of the PVP Based on Duality

As shown in [25–28] for the point of view of order one μ=1ð Þ, we get:
I1 =M ̸m= ðE ̸m c2Þk and p= I1 dE ̸dv1 =m v1 from which one deduces:
p dv1 = v1 dp (since dp=m dv1), at the basis of the duality notion. Its combination
with p= I1dE ̸dv1 leads to: I1 dE− p dv1 = I1 dE− v1 dp=0 so that one is finally
left with: M c=m c I1, p=m v1 and I1 dE− v1 dp=0.

With the well-known compact notation: M c, pð Þ=P= Pif g, E ̸c, pð Þ=p= pif g
and c I1, v1ð Þ=u= uif g with i=0, 1, one gets: P=m u and u ⋅dp=0 where the
scalar product: u ⋅dp=0 is associated with Minkowski’s signature η= 1, −1ð Þ.

In order to replace the infinitesimal form: u ⋅ dp=0 by a finite one: u ⋅ f =0,
leading thus to the concept of force, we set: f = dp ̸dτ, then analogously: F= dP ̸dτ
and a= du ̸dτ. This allows writing: F=m a and u ⋅ f =0. These two vector and
scalar expressions can be unified into a unique scalar formalism: F−m að Þ ⋅ u* = 0
and u ⋅ f =0, provided one accounts for a virtual motion u*. This formulation that
goes back to d’Alembert corresponds to the principle of virtual power.

2.3.5 Derivation of Einstein’s Dynamics

For k=1 (Einstein’s world), f reduces to F because p = P since E ̸c=M c, getting
thus: F −m að Þ ⋅ u* = 0 and u ⋅F =0.

Let us firstly show that this general dynamical approach, will naturally lead to
space-time thanks to the duality property. Indeed, by combining: u ⋅ dp= u ⋅ f dτ
with: u ⋅ f = f ⋅u, one gets the following expressions: u ⋅ dp=u ⋅ f dτ=
f ⋅ u dτ= f ⋅ dx, where we have set: dx=u dτ. In the same way as u is the dual of
dp, f appears as the dual of dx. As shown below, when f =F, dx corresponds to
space-time variation.

On assuming that the relation F−m að Þ ⋅ u* = 0 subject to: u ⋅F=0 holds true
for any virtual motion u*, one derives: F=m a and u ⋅ a=0. Their integration leads
to: p=m u and u ⋅ u=C where C is a constant of integration. On setting C= c2,
with c having the dimension of a velocity and accounting for dx=u dτ, one is left
with: p=m dx ̸dτ and dx ⋅ dx= c2dτ2 where one recognizes Einstein’s dynamics
with its metrical structure.

Final remark: In order to establish a direct link with the present approach, let us
note that the metrical structure may be explicitly written as: Γ2 − u2 ̸c2 = 1, with
Γ = dt ̸dτ and u= dx ̸dτ. The couple Γ, uð Þ that reflects the relativistic factor and
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the celerity respectively corresponds to: I1, v1ð Þ subject to: I 2
1 − v 2

1 ̸c2 = 1. It is
easily deduced from the general relation between Iμ and vμ:

I 2 ̸ 2− μð Þ
μ −

1
c2

Z
I μ− 1ð Þ ̸ 2− μð Þ
μ dvμ

� �2

= 1 ð2:82Þ

derived from the Leibnizian architectonical approach. Indeed, for μ=1, this
expression greatly simplifies getting: I 2

1 − v 2
1 ̸c2 = 1 which is formally similar to:

Γ2 − u2 ̸c2 = 1 but with a different interpretation.
According to the architectonical approach where dynamics precedes kinematics

and determines it, the principle of virtual power, based on the duality notion
between kinematical and dynamical entities u and fð Þ is not postulated anymore: it
corresponds to the point of view of order one μ=1ð Þ deduced from a higher
intrinsic principle apt to include various singular, remarkable and operational points
of view including those developed in the history of science as shown in [26, 27].
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Chapter 3
The Limitations and Successes
of Concurrent Dynamic Multiscale
Modeling Methods at the Mesoscale

Adrian Diaz, David McDowell and Youping Chen

Abstract Dynamic concurrent multiscale modeling methods are reviewed and then
analyzed based on their governing equations in terms of consistency in material
descriptions between different scales, wave propagation across the numerical
interfaces between the different descriptions, and advances in describing defects in
the coarse-grained domain. The analysis finds that most methods suffer from the
consequences of inconsistent materials descriptions between representations at
different scales; a few methods such as Concurrent Atomistic Continuum (CAC),
Coupled Atomistic Discrete Dislocation (CADD), and the coupled Extended Finite
Element Method (XFEM) are capable of simulating moving defects in the
coarse-scale domain to improve practicality and prediction. Application of multi-
scale simulation to coupled thermal and mechanical problems is showing promise.
Mesoscale evolution of defects, largely beyond the reach of conventional atomistic
methods, is still beyond the reach of many concurrent multiscale methods.
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3.1 Introduction

The development of many multiscale methodologies today has been in the interest
of seeking enhanced efficiency to address higher length and time scales [1]. Ideally,
a multiscale method would provide a vehicle by which the scientific community can
overcome the current limiting length and time scales in the established methods of
atomistic simulation. The current drive to develop multiscale methods is the sim-
ulation of mesoscale defect evolution since atomistic simulations cannot model
these processes.

The mesoscale is an inherently dynamic regime, “where energy and information
captured at the nanoscale is processed and transformed to create novel outcomes”
[2]. The mesoscale also connects the enormously different descriptions between the
behavior of atoms at the nanoscale and the functionality and behavior of materials
at the higher scales of applications. A multiscale simulation method is useful only if
it surpasses the practical challenges of nanoscale methods to tackle challenging
mesoscale problems with similar predictive capabilities.

Metamaterials are an emerging class of mesoscale materials [3]; an example is a
photonic material of dimension of 1–100 μm with internal surfaces and phase
interfaces shown in Fig. 3.1 [4]. Metamaterials are synthetic periodic structures that
provide specific functionality through ordering of interfaces; these interfaces alter
the dynamics of waves and, consequently, the dynamic properties of the materials
[5–13]. For the understanding of a metamaterial, a simulation method should have
one or all of the following capabilities:

(1) The ability to reproduce wave propagation. This is essential since physical
properties of metamaterials and the underlying mechanisms have been descri-
bed in terms of waves. In addition, dynamic phenomena in crystalline materials
are typically waves, e.g., stress waves, heat waves, sound, and light; each of
these possesses characteristic wavelengths.

Fig. 3.1 A metamaterial
made of Ag and MgF2 layers
(a = 565 nm, b = 265 nm,
and p = 860 nm) [4]
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(2) The ability to simulate nucleation and propagation of defects. In contrast to
nanoscale materials, defects are ubiquitous in mesoscale materials. They
determine mechanical properties and alter the functionalities of the materials.

(3) Coupling thermal transport and mechanical behavior. Like defects, thermal
behavior is also ubiquitous at the mesoscale. Consequently, thermal and
mechanical coupling becomes crucially important to the understanding and
prediction of mesoscale material behavior.

This paper aims to assess concurrent multiscale modeling methods, including
their theoretical foundations and their capabilities in the simulation of mesoscale
material behavior. The objective of a typical concurrent multiscale method designed
for mesoscale simulations is to couple the response of a domain modeled at full
atom.

Istic resolution to another represented by coarse-graining approximations. The
multiscale methodologies encompassed in this review focus on dynamic multiscale
methods pursued in the last five years. The specific properties of the Coupled
Atomistic Discrete Dislocation (CADD), the coupled Extended Finite Element
Method (XFEM), Concurrent Atomistic Continuum (CAC), maximum entropy
Quasi-Continuum (HotQC), and Atomistic to Continuum (AtC) methods will be
reviewed. The limitations unique to the governing equations, interface treatments,
and supplemental equations for each method will be analyzed. Limitations that are
shared by most of the methods that affect their utility will also be discussed.

The paper is divided into four sections. After the introduction, each of the
dynamic multiscale methods will be described in Sect. 3.2.2. Common challenges
to capability will be analyzed in Sect. 3.2.3. Conclusions will be presented in
Sect. 3.2.4.

3.2 Review of Dynamic Multiscale Methods

3.2.1 Coupled Atomistic and Discrete Dislocation Dynamics

Coupled Atomistic and Discrete Dislocation Dynamics (CADD) is interested in
interfacing phenomenon that require atomistic resolution such as dislocation
nucleation, mobility, crack formation, and growth with a continuum model that can
represent dislocations through the Discrete Dislocation method [14–16].
The CADD formulation involves the linear superposition of three different problem
types, shown in Fig. 3.2, to apply appropriate boundary conditions [17].

The energy and forces of the atomistic region are treated as in a MD model. The
atoms are coupled to the continuum at the interface by a set of “pad” atoms that
affect the environment for the atoms at the interface. These pad atoms and interface
atoms adhere to the continuum displacement field on the continuum side of the
interface, i.e., strong compatibility [18]. The nodes of the finite elements present at
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the interface must then correspond to interface atoms in the atomistic representation
(Fig. 3.3). This completes the description of the coupling on the atomistic region.

The superposition of the problem types for the continuum region necessitates the
definition of displacement fields u ̃ for the pure DD solution and u ̂= u− u ̃ for a
corrective solution resulting from the Finite Element solution subject to boundary
and loading conditions due to the external environment and the coupling interface.
The stress fields likewise are superimposed as σ = σ ̂+ σ ̃. The solution for the
corrective accelerations u ̂̈ follows from the discretization present in problem II.
CADD employs linear elastic constitutive laws for the stress within the continuum;
the elasticity tensor corresponds to the atomistic crystal structure and potential in a
manner that will be described towards the end. The corrective accelerations can thus
be solved with the typical mass and stiffness matrices, i.e.,

Mu ̂̈=Ku ̂+Fext. ð3:1Þ

The last term Fext represents the external equivalent nodal forces. Problem I (The
DD model) can then be updated using constitutive laws by computing the
Peach-Koehler forces for each dislocation using the resulting stress field σ = σ ̂+ σ ̃.
The constitutive relationship ensures the dislocation moves in its specified slip
direction. The new dislocation positions are then used to compute the new DD
strain field to start the next time-step.

Fig. 3.2 Schematic representation of the CADD problem superposition. The first is the infinite
discrete dislocation solution, the second is the corrections required to create the finite element
model from the DD solution. Then the atomic conditions are applied [14]

Fig. 3.3 Schematic
representation of CADD
interface with detection
elements shown [14]
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An additional feature of the algorithm is the detection of dislocations in the
atomistic region to artificially pass them into the continuum. The lack of this
mechanism would result in spurious movement of the dislocation at the interface of
the atomistic to continuum region. A detection band of elements is defined near the
interface in the atomistic region to this end as in Fig. 3.2; the deformation of these
elements is then analyzed and compared to all the known allowable dislocation slip
strains in the crystal structure [14, 16].

Spurious reflections of waves emanating from the atomistic domain into the
continuum at the interface are removed or minimized by dampening atomic motion.
Recently, a parallel CADD algorithm was implemented enabling 3D simulation in
LAMMPS [19]. The wave reflection in this implementation is mitigated by
dampening only atoms near the interface. Additionally, this method foregoes the
passing of dislocations across the interface. The calculation of the continuum elastic
modulus tensor Cijkl is performed by performing an MD simulation of an atomistic
unit cell.

3.2.2 Coupled Extended Finite Element Method

A method pioneered by Belytschko involves the use of the Extended Finite Element
Method (XFEM), a discontinuous framework for finite element analysis, to intro-
duce dislocation slip directions and crack surfaces as part of the continuum
description [20]. The method also aims to be adaptive to encapsulate the moving
defects with the minimum required atomic resolution; it coarse grains when atomic
displacements appear regular enough and refines where defects might move or
propagate. The continuum is governed by the use of the “Cauchy Born Rule” in the
latest implementations [20, 21]. The purely atomistic region with no enforced
coupling is treated just as in MD. The continuum displacement is additively
decomposed into the continuous and discontinuous part, i.e.,

uðxÞ= uCðxÞ+ uDðxÞ ð3:2Þ

uDðxÞ= uDdðxÞ+ uDcðxÞ ð3:3Þ

where the additional lowercase d signifies dislocation and the lowercase c signifies
crack. These two are then defined with Heaviside step functions HðxÞ as:

uDdðxÞ= b ∑
J ∈Nψ

NJ ½HðψðxÞÞ−HðψðxJÞÞ� ð3:4Þ

uDcðxÞ= ∑
J ∈Nψ

NJ ½HðψðxÞÞ−HðψðxJÞÞ�aK ð3:5Þ

The Heaviside functions present in each of the discontinuous enrichment terms
ensures that the only non-zero contribution is made over those elements that are
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intersected by the crack or the slip direction. The function ψðxÞ is defined for a
specific slip plane or crack surface; defect location is denoted by ψðxÞ=0.

The coupled XFEM method imposes a pair of weighting functions, as shown in
Fig. 3.4, to the energy contributions of the atomistic and continuum regions. In this
manner, the energy is not double counted at the interface between the atomistic and
continuum regions.

The governing equation for the entire system is the Euler Lagrange equations;
the Lagrangian is treated discretely in the atomistic and bridging domains while
being described with a density in the continuum domain. The Euler-Lagrange
equations can be solved with the superposition of all three Lagrangians:

LA = ∑
i

wðXiÞmiv2i − w̄ðXiÞUiÞ
� � ð3:6Þ

LB = ∑
i∈ SB

λi uðXiÞ− ui½ � ð3:7Þ

LC =
Z

VC
0

ð1−wðXÞÞ ρ0ðXÞ
2

u ̇2ðXÞ−WCðCðXÞÞ
� �� �

dVC
0 ð3:8Þ

The barred weight function in the atomistic Lagrangian represents the effective
weight computed for a non-local interaction; typically this involves an average of
the sum of weights for the interacting atoms. The two properties inherently
enforcing the coupling are the weight function and the Lagrange multipliers
applying constraint forces in the bridging domain. The procedure is spatially
scalable due to its adaptive remeshing tactics; it coarsens where atomistic dis-
placements are smooth enough and transitions to an atomistic description where
finite elements may cause inaccuracy as shown schematically in Fig. 3.5.

Fig. 3.4 One dimensional example of a bridging domain with linear weighting function [20]
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3.2.3 Concurrent Atomistic Continuum Method

The concurrent atomistic-continuum (CAC) method is a coarse-grained atomistic
method employing a two-level structural description of crystalline materials [22]. It
builds on the solid-state physics description of crystals and the nonequilibrium
statistical mechanics of transport processes. Solid state physics describes the
structure of all crystals in terms of a periodic lattice with a basis of atoms attached
to each lattice point [23] (cf. Fig. 3.6). As the size of the lattice increases, the
structure and its response become increasingly amenable to a continuous field
representation [2]. In contrast to many existing multiscale methods that coarse-grain
the atomic-level structure or displacements, CAC reduces the degrees of freedom by
assuming continuous deformation of the lattice while retaining the internal degrees
of freedom within any given unit cell in the case of polyatomic crystals.

The CAC balance laws are formulated using the formalism of Kirkwood for the
“statistical mechanical theory of transport processes” [25, 26]. CAC extends
Kirkwood’s theory of transport processes for “single phase single component
systems” to the description of materials having internal degrees of freedom first
envisioned by Kirkwood [26]. Consequently, a crystalline material is viewed as a
continuous collection of lattice cells with a group of discrete atoms embedded
within each lattice cell. This two-level description is also employed in Micromor-
phic theory and other generalized continuum mechanics (GCM) [27–36], but CAC
contrasts with these GCM in that the subscale description consists of discrete atoms.
Following the Irving-Kirkwood formalism [25], this concurrent two-level
description leads to a concurrent atomistic-continuum representation of the con-
servation laws of mass, momentum, and energy [37–39], i.e.,

Fig. 3.5 Example of mesh refinement into atomistic degrees of freedom [20]

Fig. 3.6 Solid state physics description: “crystal structure = lattice + basis” [24]
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dρα

dt + ραð∇x ⋅ v+∇yα ⋅ΔvαÞ=0
ρα d

dt ðv+ΔvαÞ=∇x ⋅ tα +∇yα ⋅ τα + f αext
ρα deα

dt =∇x ⋅ qα +∇yα ⋅ jα + tα:∇xðv+ΔvαÞ+ τα:∇yαðv+ΔvαÞ
ð3:9Þ

where x is the physical space coordinate of the continuously distributed lattice;
yαðα=1, 2, . . . , Na, where Na is the total number of atoms in a unit cell) is the
internal variable describing the position of atom α relative to the mass center of the
lattice located at x; ρα, ρα v+Δvαð Þ , and ραeα are the local densities of mass, linear
momentum and total energy, respectively; v+Δvα is the atomic-level velocity and v
is the velocity field; f αext is the external force field; t

α and qα are the momentum flux
and heat flux due to the homogeneous deformation of lattice cells; τα and jα are the
momentum flux and heat flux resulted from the reorganizations of atoms within the
lattice cells.

The new conservation equations, supplemented by the underlying interatomic
potential, solve for both the continuous lattice deformation and the rearrangement
of atoms within the lattice cells, thus leading to a concurrent atomistic-continuum
methodology. The same single set of governing equations govern both the atomistic
and continuum regions; in the two limiting cases, i.e., the atomic and the macro-
scopic scales, the atomistic and continuum descriptions of transport processes are
recovered. Noteworthy features of CAC include:

(1) There is no need for an artificial interface between atomistic-continuum
descriptions that limits most multiscale methods to static phenomena.

(2) CAC can simulate complex crystalline materials and reproduce both acoustic
and optical branches of phonons due to its incorporation of internal degrees of
freedom; in the coarse-grained regions modeled by finite elements CAC can
reproduce accurate phonon dynamics for phonons with wavelengths sufficiently
longer than the element size.

(3) The CAC formulation can be solved efficiently using continuum simulation
approaches with the only constitutive relation being the interatomic potential. In
addition, due to its use of a nonlocal force field, continuity between elements is
not required; consequently, nucleation and propagation of dislocations or
cracks can be simulated via sliding and separation between elements as direct
consequences of the governing equations.

The CAC formulation has been numerically implemented using a modified finite
element (FE) method. It differs from traditional FE implementations of classical
continuum mechanics since each finite element in CAC contains a collection of
primitive unit cells and each FE node corresponds to a primitive unit cell that
further contains a group of atoms. Applications of CAC for simulations of
mechanical behavior have been demonstrated through reproducing dynamic phe-
nomena, such as crack propagation and branching [40–42], phase transitions [43],
nucleation of dislocations and formation of dislocation loops and networks [44–49],
defect-interface interactions [50–56], phonon-dislocation interactions [57, 58] and
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phonon-grain boundary interactions [59], and crack-dislocation-grain boundary
interaction in polyatomic ionic crystals [60, 61].

3.2.4 The Hot Quasi-Continuum Method

The “Hot” quasicontinuum method utilizes the principle of maximum entropy [62].
Unlike the canonical ensemble associated with a global constraint, the method
begins by enforcing a distribution per atom energy for the entropy function to be
maximized:

Sðq̄,p ̄,β,ωÞ= − kB⟨ logðρÞ⟩+ β ⋅ ⟨hðq,pÞ⟩ ð3:10Þ

where angle brackets denote ensemble averages with respect to the probability
distribution. This results in a similar exponential distribution to the canonical
ensemble that is a function of per particle energies and temperatures:

ρ=
1
Z
exp ∑

a

ha
Ta

� �
ð3:11Þ

where Z is the normalization constant and Ta represents the particle temperature.
The Lagrange multipliers βi are redefined as particle temperatures via Ti =1 ̸kBβi,
where kB is Boltzmann’s constant. The non-local per particle Hamiltonian ha would
introduce great difficulty and impracticality in the calculation of Eq. (3.10), and
thus the energies must be approximated with local forms. The quantity ha in the
distribution function is then approximated by

ha =
1

2ma
p−p ̄j j2 + maω2

a

2
q−q ̄j j2, ð3:12Þ

which involves the introduction of mean positions q̄= ⟨q⟩ and momenta p ̄= ⟨p⟩
along with frequencies ωa for each particle a in the system. This is called the
“meanfield” approximation of the entropy [63]. The local approximation of the
Hamiltonian introduces a larger free energy by the Gibbs-Bogoliubov inequality
[64]. The equations of motion used by the authors, [65, 66], in terms of an average
Hamiltonian H ̄= 1

kB
∑i ∂S ̸∂βi = ⟨Hðq, pÞ⟩ are then

dp̄i
dt

= −
∂H ̄
∂q̄i

ð3:13Þ

dq̄i
dt

=
∂H ̄
∂p̄i

ð3:14Þ
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These two equations are coupled with a stationary requirement on the entropy
with respect to the previously defined particle frequencies:

∂S
∂ωi

=0 ð3:15Þ

The temperatures are updated with an additional constitutive law; in recent
works on nanovoid growth [65, 66] Fourier’s law of heat conduction is utilized. The
method is then used to reduce the degrees of freedom with a typical finite element
interpolation of the variables in terms of specified nodes, called “repatoms”. After
this approximation, some local quantities such as kinetic energy can be computed,
but the potential energy is nonlocal and requires further approximation. QC uses the
Cauchy-Born rule (CBR) with a specified cluster summation rule such as is
depicted in Fig. 3.7 to approximate the energy at proscribed quadrature points [18].

A typical summation rule approximates the total energy for the reference atom
an as average of the energy in selected cluster around the atom:

EīðXiÞ= 1
m
∑
m

a
EðuðXa −XiÞÞ ð3:16Þ

The total energy of the model is then computed using a set of weights assigned
to each representative atom’s average energy:

Etot = ∑
nr

i
wiE ̄i ð3:17Þ

The weights (w) are selected according to the number of atoms that the average
energy represents. The method then requires the ensemble average of energy:

⟨E⟩=
Z

ρðq̄,p ̄,β,ω,q, pÞEðq, pÞdqdp ð3:18Þ

The integral average increases in dimensionality with the number of relevant
degrees of freedom needed to describe the neighboring deformation and this
imposes the famous “curse of dimensionality” on the associated quadrature rule.

Fig. 3.7 Clusters of
“repatoms”, which are the
nodes of the CST elements
[18]
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Sparse gridded methods exist to alleviate the burden of increasing dimension but
they only become practical by the time the dimension is quite large [67].

A persistent issue in the CQC method is the presence of ghost-forces. Many of
the recent publications are aimed at minimizing the influence of the ghost forces
through various methods, such as optimal summation weights, displacement basis
enrichment such as higher order shape functions and Krylov subspace bases, and
bridging methods [68–70].

3.2.5 The Atomistic to Continuum Method

AtC is intended to provide a means by which energy can flow from the continuum
to the atomistic domain [71, 72]. The governing equation of the continuum rep-
resentation is the heat equation with the assumption of Fourier’s law.

The procedure can be divided into three steps: computing an effective set of
nodal temperatures for the FE mesh overlaid on the MD region; damping the
atomistic forces in the MD region to conserve the total energy of the model in the
coupled system; and finally find the solution of the heat equation using the previous
computations for the current state along with their effect on the energy flow rates.

The first step requires computation of nodal temperatures for the background
mesh overlaid on the MD region (Fig. 3.8) by minimizing the squared difference
between the finite element temperature interpolation and the atomistic temperature
field, i.e.,

R=
Z

ΩA

ðTðXÞ−ThðXÞÞ2dV ð3:19Þ

where Th Xð Þ is the finite element interpolation using a set of nodal temperatures
θI tð Þ. The temperature field T Xð Þ is defined using a dirac delta distribution for each
atom. The coupling of the thermal boundary conditions on the atomistic domain is
enforced by altering the interatomic force as.

Fig. 3.8 Depiction of the
domains to be coupled in the
thermal AtC problem [72]
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fi = f MD
i + f λi . ð3:20Þ

The alteration f λi is expressed as a damping force

f λi =
mi

2
viλi, ð3:21Þ

in which the multiplier λi is expressed as a finite element interpolation using the
same mesh over the MD region, i.e.,

λi = ∑
M

I =1
NIðXiÞλI . ð3:22Þ

The λI are then solved for in two steps. First, the method imposes the global
conservation of energy with this new dissipative force term. The result of that is still
non-unique since there are many possible per atom damping force combinations.
The chosen solution is a linear regression evaluated at all the atomic sites which
results in the second linear system the procedure needs to solve:

MλI = −PI ð3:23Þ

where PI is the inner product of the Ith shape function and the effective surface flux
out of the MD region.

The final step to complete procedure is the solution of the heat equation with the
two previous steps of computation and Galerkin’s method:

Z

Ω

NIT ̇
h
dV = ∑

N

a=1
VaNIðXaÞT ̇a +

Z

ΩC

κ

ρcp
NI∇2ThdV , ð3:24Þ

which is then coupled to the atomistic region through

Z

Γmd

NIQ ̇ ⋅ dA=
Z

Γmd

NIκ∇T ⋅ dA ð3:25Þ

where Γmd is the surface separating the continuum and atomistic regions. This heat
flux is then expressed in terms of the drag forces on the atom. This completes the
effect of the coupling and the equations are integrated numerically in time.

66 A. Diaz et al.



3.3 Analysis

A concurrent multiscale simulation method capable of describing the example
mesoscale problem shown in Fig. 3.1 should, with few if any additional constitutive
laws that riskily assume the mesoscale behavior, be capable of several or all of the
following: wave propagation, defect nucleation and multiplication, and thermo-
mechanical coupling. Two important necessities for a wider applicability of such a
method are the accurate description of polyatomic materials when coarse-graining
and the ability to model moving defects without impractically increasing the
degrees of freedom through adaptive remeshing. In this section, we explain their
applicability based on the governing equations. Table 3.1 summarizes the laws and
equations that govern the motion of the system for each method and the additional
equations needed to define the interface or describe unknowns with supplemental
constitutive equations in addition to the interatomic potential.

3.3.1 Modeling Materials Beyond Monoatomic Crystals

The spurious reflection problem has two common sources in dynamic multiscale
modeling methods: (1) material mismatch between two different spatial domains of
the model trying to describe the same material with different definitions, and (2) the
interfaces between regions of different numerical resolution, i.e., a non-uniform
mesh [74]. The abundance of reflection then forces implementers to create a spe-
cially treated numerical interface that somehow absorbs the spurious waves. The
cause for case (1) is commonly neglected even in recent works that focus on the
numerical cause (2) for XFEM coupling [20, 75] with graphene. Most of the mul-
tiscale methods, excluding CAC, do not provide a two-level description for each
material point in the continuum domain. This limits the methods to monoatomic
crystals and introduces error for polyatomic materials.

No methods are capable of conveying all fine-scale dynamics of waves, such as
an input wave packet excitation, from one atomistic region to another separated by
a continuum representation. This is due to that the second source of spurious
reflection is purely a consequence of the finite element discretization where only
wavelengths that are sufficiently longer than the length of the finite elements can
propagate. Typical wavelengths range from 6 to 10 times the element size [76]. This
last problem is a difficult limitation to overcome for a non-uniform mesh and
caution must be taken to determine the impact of this spurious wave reflection
contribution on simulation accuracy, assuming the reflections do not cause insta-
bility and prevent a practical simulation in the first place.

In CADD, the use of an elasticity tensor Cijkl will introduce a mismatch between
the frequency response of the atomistic and continuum domains and thus be a
source of spurious wave reflection. Significant spurious forces are also noted by
[19] when dislocations are close to the interface.
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The use of the Cauchy Born rule (CBR) in methods such as coupled XFEM and
HotQC is intended to reduce the mismatch between the atomic and continuum
regions; it eliminates short-wavelength acoustic phonons and all optical phonons.
The stress for CBR is typically computed by mapping the strain to a reference
lattice surrounding a reference atom at a quadrature point, as shown in Fig. 3.9. The
strain tensor defines a state of continuous deformation applied to all atoms in the
unit cell and the rest of the neighborhood in a CBR procedure; this generally leads
to unstable configurations if no further treatment is provided for polyatomic
materials [20]. A further approximation is to minimize the energy of the neigh-
borhood after the continuous deformation. Since energy minimization does not
move internal atoms in accordance with Newton’s second law, even for linear
dynamics, this is then a source of spurious wave reflections at the interface since
this approximation cannot reproduce the frequency response of material in the
lattice even at long wavelengths.

The CAC formulation is based on the solid-state physics description of all
crystals, i.e., crystal = lattice + basis. As a result, it naturally applies to any
crystalline materials beyond monoatomic crystals. This ability has been demon-
strated through simulation of phase transition in Si [43], dislocations in MgO [77],
the nucleation and propagation of cracks and dislocations as well as dislocation-GB
interaction in SrTiO3 [60, 61, 78].

3.3.2 Modeling of Defects and Waves

The dynamic simulation of metamaterials shown in Fig. 3.1 requires effective
coupling between the wave dynamics and defects to reproduce the transport pro-
cesses; these are generally non-equilibrium in space and time and may involve
phonon-interface and phonon-dislocation scattering in addition to defect-defect and
defect-interface interactions. Applicability of the multiscale methods for the sim-
ulation of these dynamic phenomena is discussed in Table 3.2.

The CAC method provides consistency between the atomistic and continuum
propagation of waves due to its two-level description of materials. It is possible to
obtain accurate dynamic wave propagation, as shown in Fig. 3.10, for long
wavelength phonons. The spurious wave reflection will nonetheless be present for

Fig. 3.9 Example of a virtual
atom cluster to compute the
stress at a quadrature point
[20]
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Table 3.2 Evaluation of applicability for each method in the simulation of waves and defects

Name Wave propagation Nucleation and
propagation of defects

Thermal-mechanical
coupling

CADD Waves will reflect
spuriously due to the
description of the
continuum with linear
elasticity. The method
requires interface
damping which
influences waves and
energy conservation

Dislocations must be
detected before the
interface and artificially
reintroduced into the
DD domain.
Significant spurious
forces are also noted by
[19] when dislocations
are close to the interface

The DD constitutive
laws are not suitable to
describe the interaction
with phonons even if
they overcame the
dampening and interface
reflection

Coupled
XFEM

Bridging region
influences the
propagation of waves.
The material description
in the continuum with
the CB rule + energy
minimization represents
a different material since
atoms internal to the unit
cell don’t obey newton’s
second law; this results
in unphysical scattering

The method enables
defects to move
practically with mesh
refinement when
dislocation cores arrive
at interfaces between
different descriptions.
Coarsening takes place
where defects are no
longer present Defects
cannot nucleate
naturally in the
coarse-grained
description

The discontinuous
description of defects is
simplified with a
Heaviside function.
Coupled with the
material description, this
alters phonon
propagation

CAC Long wavelength waves
can propagate while
shorter wavelengths
only suffer numerical
scattering in
non-uniform meshes

Propagates naturally if
near element edges but
fails to do so if incident
on element surfaces;
would require mesh
refinement by at least
splitting elements [79].
Defects can emerge
naturally in the
coarse-scale regions

CAC is robust for
coarse-grained
simulation of phonon
thermal transport,
phonon-defect
interaction, but
inaccurate for short
wavelength phonons
due to the scattering
caused by non-uniform
mesh

HotQC The governing law is
not Newton’s laws of
motion and thus wave
representation is
dramatically altered.
Waves would scatter at
the numerical interfaces

Mesh must be refined to
atomistic resolution for
defects. This leads to the
well documented
increasing DOF
problem, Fig. 3.11 [80]

Waves cannot be
modeled accurately as
previously stated.
Defects can only be
modeled in the atomistic
domain

AtC The constitutive
description of the
continuum would scatter
waves introduced in the
atomistic description
[72, 81]

Defects in the atomistic
domain would encounter
a boundary unless mesh
is refined

Only possible within the
atomistic domain
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systems involving short wavelength phonons under the critical mesh threshold as
commonly seen in dynamic FEA simulations [82]; this can be negligible but there is
no guarantee for a general system and process.

A common challenge in the modeling of defects using atomistic resolution is the
threat of rapidly increasing numbers of degrees of freedom as defects propagate. An
example of HotQC simulation, shown in Fig. 3.11, exemplifies this problem; this
incentivizes use of coarse-grained models to describe defects in the continuum,
using the interatomic potential, to resolve the discontinuities and their propagation.

3.4 Conclusions

In this work, we have attempted to evaluate the applicability of concurrent multi-
scale modeling methods for dynamic simulation of mesoscale materials. We have
reviewed in detail the governing equations of each method. The governing equa-
tions, i.e., the mathematical representation of the governing laws, determine the
fundamental nature of each method. They distinguish static from dynamic models,
simple lattice from general materials, zero temperature from finite temperature

Fig. 3.10 Phonon propagation across grain boundaries in a CAC model [59]

Fig. 3.11 Quasicontinuum mesh initially (a) and after adaptive refinement (b) [80]
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problems, constant temperature from thermo-mechanical coupling, and hence
define the domains of applications.

Within the domain of applications, the applicability of each method is further
determined by another key element for concurrent multiscale methods, namely the
internal consistency of its laws. A Philosophy professor, Dr. Winsberg, commented
on existing “parallel (concurrent) multiscale models” as “models of an inconsistent
set of laws” and a “common philosophical intuition about scientific theories” is that
“the internal consistency of its laws is a necessary condition that all successful
theories have to satisfy” [83]. Using different governing laws for different scales
results in internal inconsistency. The internal inconsistency gives rise to artificial
interfaces. These a physical interfaces are the source of ghost forces for many static
multiscale methods; they are also the origin of spurious wave reflections for most
dynamic methods. The presence of such interfaces can degrade the ability of a
concurrent multiscale method to simulate dynamic problems involving waves or
vibrations. From this viewpoint, many dynamic methods are inapplicable to realistic
dynamic problems. This is indicated in Table 3.1 and explained in Table 3.2.

The formulations of many dynamic multiscale methods have been unable to
preserve the essential features of the dynamics of atoms: internal motion of atoms
relative to the lattice, the interatomic potential as the only materials description, and
discontinuities as a result of naturally occurring defects. This has placed many
dynamic methods in a position where they are unable to accurately simulate
polyatomic materials with existing interatomic potentials even with uniform meshes
and no critical defects. The inclusion of these requirements in CAC has generated a
potentially general and consistent framework for modeling the coupling between
thermal and mechanical features accurately with uniform meshes. Multiscale
modeling methods must provide consistency between the descriptions of the ato-
mistic and the continuum domains. Strengths of some methods might be syner-
gized; such as the two-level description of CAC being employed in other methods
and XFEM support possibly augmenting CAC. Additionally, all multiscale meth-
ods today still require physical problems to have a negligible reliance on short
wavelength propagation only currently available in MD.

Nonetheless, with enough synthesis and improvements the abstraction of con-
current multiscale modeling methods may very well be a powerful tool for the
solution of mesoscale technological problems such as the design of multifunctional
or mechanical metamaterials. A modern inspiration for this role of powerful pre-
dictive simulation comes from the continuum scale with ubiquitous finite element
methods solving structural dynamics, heat transport problems, electrical conduc-
tion, and other problems. With continued effort, concurrent multiscale simulation
methodologies might conceive a similar advance with their predictive power.
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Chapter 4
Modeling Semiconductor Crystal
Growth Under Electromagnetic Fields

Sadik Dost

Abstract Growth of semiconductor single crystals under electric and magnetic
fields is of interest to increase and better control of crystal growth rate, to suppress
and control the adverse effect of natural convection and to obtain better mixing in
the growth melt (liquid solution) for better crystal uniformity, which all are
favorable conditions for a prolonged growth of high quality crystals. To this end, in
parallel to well-designed experiments, modeling is essential to shed light on various
aspects of these growth processes and also to better understand the transport phe-
nomena involved. In this article the models developed over the years, mostly based
on Professor Gerard Maugin’s well-known contributions to “electromagnetic
interactions”, are briefly presented for “solution growth” conducted under electric
and magnetic fields. Basic and constitutive equations of a binary electromagnetic
continuum mixture are specialized for two important solution growth techniques—
Liquid Phase Electroepitaxy (LPEE) and Travelling Heater Method (THM). As an
application, an LPEE growth of GaAs bulk crystals under a strong static magnetic
field is considered. Experimental results, that have shown that the growth rate under
an applied static magnetic field is also proportional to the applied magnetic field and
increases with the field intensity level, are predicted from these models. The con-
tribution of a third-order material constant in LPEE is also predicted from these
models. The prediction of increasing growth rate in THM growth under rotating
magnetic fields from modeling was verified by experiments.

4.1 Introduction

Modeling some electromagnetic continua has been a great interest for many dis-
ciplines of engineering sciences. The literature on this topic is rich. The related
fundamental and constitutive equations of a single continuum, and also a com-
prehensive list of related literature can be found in the treatment of Eringen and
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Maugin [1]. Linear and nonlinear constitutive equations of various single contin-
uum electromagnetic media were presented in [1]. Fundamental equations of a
continuum (non electromagnetic) of mixtures, and the related literature can also be
found in Bowen [2]. Based on [1] and [2] the linear equations of binary and ternary
conducting metallic liquid mixtures under electric and magnetic fields were given in
[3] and [4]. However, as presented in [1] and [5], when an electromagnetic medium
is under a strong external magnetic field, contributions of nonlinear and higher
order interactions may become significant. Therefore, for accurate predictions such
nonlinear effects must be included in the model. To this end, the nonlinear equa-
tions of a binary metallic liquid mixture under electric and magnetic fields were
developed in [6, 7] where in the development of the model equations the focus was
on the solution crystal growth techniques of Liquid Phase Electroepitaxy (LPEE)
and Travelling Heater Method (THM).

Solution growth techniques such as LPEE and THM are of significant techno-
logical interest in growth of bulk single crystals of alloy semiconductors. However,
in these techniques the natural convection occurring in the solution zone adversely
affects the quality of grown crystals and leads to growth instabilities. The use of an
applied magnetic field is an option in suppressing natural convection. A strong
static magnetic field aligned perfectly with the axis of the growth cell gives rise to a
magnetic body force that balances the vertical gravitational body force and, as a
result, suppresses convection in the liquid solution. A weak rotating magnetic field
is also used for better mixing in the melt. Literature on the use of magnetic field in
crystal growth is rich. There are numerous studies examining the effect of applied
magnetic field. We cite here only a brief list for the sake of brevity (see for instance
[3–46].

The high growth rates observed in LPEE growth of bulk crystals under magnetic
field [39, 40] could not be predicted from a model based only on linear constitutive
coefficients (see [36, 45, 46]). As mentioned earlier, this requires the development
of nonlinear equations for accurate predictions [6, 7]. To provide the needed
background for modeling, we first briefly introduce the LPEE and THM crystal
growth techniques.

4.1.1 Liquid Phase Electroepitaxy

In Liquid Phase Electroepitaxy (LPEE), growth is achieved by passing an electric
current through the growth cell while the overall furnace temperature is kept
constant during the entire growth period (see Fig. 4.1). The applied electric current
is the sole driving force for growth, and gives rise to two growth mechanisms that
are known as “electromigration” and “Peltier cooling/heating”. The electromigra-
tion of species in the liquid solution is believed to take place due to
electron-momentum exchange and electrostatic field forces, and sustains a
controlled-growth [47, 48]. The Peltier heating/cooling, on the other hand, is a
thermoelectric effect occurring when electric current passes through an interface of
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two materials with different Peltier coefficients. The Peltier cooling at the growth
interface (the interface between the seed and the liquid solution, see Fig. 4.1)
supersaturates the solution in the immediate vicinity of the substrate and leads to
epitaxial growth. The Peltier heating at the dissolution interface (the interface
between the source and the liquid solution, see Fig. 4.1), on the other hand, causes
the dissolution of the source material into the solution and provides constantly the
needed feed material for growth. The growth rate is proportional to the applied
electric current density [39, 40, 47–57]. The Joule heating due to the passage of
electric current may also become very significant, particularly in growth of bulk
crystals that require longer growth periods [58].

LPEE has a number of advantages over other bulk crystal growth techniques
such as relatively lower temperature gradients, the ability of well-controlled growth,
and the growth of ternary single crystals with uniform compositions. Such features
make LPEE technologically very promising for commercial growth of high quality,
bulk crystals such as GaInAs, GaInSb, CdZnTe, and SiGe (see [39, 40, 47–57]).
However, the combined effect of the Joule heating in the solid crystals and the
Peltier heating/cooling at the growth and dissolution interfaces gives rise to natural
convection in the solution, which leads to interface instability and limits the
achievable crystal thickness [4]. In order to reduce the adverse effect of convection,
the LPEE growth of single crystals has been studied under a strong static magnetic
field both theoretically and experimentally. The objective of the related modeling
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Fig. 4.1 Schematic view of a typical LPEE growth cell
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studies (i.e., [3–7, 22–24, 31, 35, 36, 38–40] was to examine the effect of an applied
static magnetic field in minimizing the adverse effect of natural convection. These
studies have shown that lower convection in the solution may allow the use of
higher electric current densities that will be translated into higher growth rates.
A detailed account of application of magnetic field and related literature can be
found in [5–7, 36].

A large number of bulk GaAs and InGaAs single crystals with 25 mm diameter
and up to 9 mm thicknesses have been grown [39, 40] with and without the
application of a strong magnetic field. It was shown experimentally that the
application of a static magnetic field, up to a critical field strength [35, 38, 40],
indeed suppresses convection, and leads to thick and very flat crystals of uniform
compositions.

In addition, LPEE experiments in [39] under static magnetic field also led to very
significant results. The mass transport was extraordinarily enhanced in the presence
of applied magnetic field. Experiments showed that the growth rate is proportional
to the field, and increases with the field intensity level. For instance, the growth rate
at J = 3 A/cm2 electric current density was more than ten times higher for the
0.45 T magnetic field level than that under no magnetic field. In addition, the LPEE
growth was independent of the direction of the magnetic field. A number of
experiments were conducted at three levels of magnetic field intensities taking the
magnetic field vector B both upward and downward. All the experiments were
successful and the grown crystals were single crystals. The growth rates in these
experiments were the same whether B was up or down. This showed that the mass
transport due to electromigration was only dependent on the magnetic field intensity
but not on the field direction. Measured growth rates are presented in Table 4.1.
Details of LPEE experimental procedures can be found in [39, 46].

4.1.2 Traveling Heater Method

The Traveling Heater Method (THM) is also a solution growth technique in which a
metallic liquid solution is placed between a polycrystalline source and a single
crystal seed in a quartz ampoule (see Fig. 4.2: a laboratory THM system used at the
Crystal Growth Lab of University of Victoria is shown [44]). A predetermined
temperature profile is then imposed on the growth ampoule. Then, the imposed
temperature profile, by moving either the heater or the growth ampoule, is slowly
moved upward at a predetermined rate (with a continuous motion as much as

Table 4.1 Summary of experimental results [39, 46] at J = 3 A/cm2

Magnetic field intensity (T) 0.0 0.1 0.2 0.45

Experimental growth rate (mm/day) 0.50 1.62 2.35 6.10
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possible). When the temperature profile (the right figure in Fig. 4.2) moves
upwards, the dissolution interface (the interface between the source and the liquid
solution; see the middle figure in Fig. 4.2) hits the hotter section of the temperature
profile and dissolves the source material. This dissolution provides constantly the
needed material to the liquid solution. With the movement of the temperature
profile, at the same time, the growth interface (the interface between the substrate
and the liquid solution) hits the cooler section of the temperature profile, and the
supersaturated solution in the vicinity of the growth interface solidifies on the seed
crystal. With this process, a constant, controlled, but slow growth is achieved.

The quality of grown crystals in THM is very sensitive to the relative movement
of the temperature profile that determines the growth rate. It is important to mention
that the growth rate (which is the rate (speed) of the heater or the ampoule
movement) is determined by the crystal grower based on his/her experience. If the
rate is lower than the actual mass transport in the liquid zone, the material yield will
be less and the grown crystals will be more expensive. On the other hand, if the
growth rate is selected higher, the grown crystals will be of poor quality due to
possible inclusions of elements of the solution mixture. For instance, in growth of
GaSb we may have elemental Ga or Sb trapped in the grown GaSb crystals.
Therefore, the availability of accurate models for THM is very important for the
growth of high quality crystals with a sufficient yield.

In a typical THM system, temperature gradients in the liquid solution zone are
very large compared with that of an LPEE system. It may reach a maximum of
about 30 °C/cm. Naturally such a large temperature gradient gives rise to very
strong convection in the solution zone. In order to reduce the adverse effect of

Fig. 4.2 The THM GaSb system used at University of Victoria: (i) a sample of grown crystal
(left), (ii) the schematics of the growth crucible (middle), and (iii) the actual applied temperature
profile (right) [44]
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convection, a large number of studies are conducted considering the application of
an external magnetic field [15, 21, 25, 26, 28, 35, 37, 42]. These studies have
shown that a strong magnetic field is beneficial in suppressing convection. A weak
but rotating magnetic field has also been used to provide better mixing in the
solution zone for growth of better quality crystals [15, 16, 21, 25, 26, 33, 42]. In
addition, THM experiments conducted in our laboratory under a weak rotating
magnetic field are showing the possibility of increasing the THM growth about two
or three times compared with that of no magnetic field [44]. Such results are very
important for THM, and definitely show the importance of mathematical modeling
for a better understanding of the effects of magnetic field on mass transport in
crystal growth. In order to make more accurate predictions, the availability of a
model that also includes some nonlinear effects would be beneficial for researchers
in this field.

4.2 Basic Equations of an Electromagnetic Liquid
Continuum

In this section we present the basic equations of an electromagnetic liquid con-
tinuum of a binary mixture. Solutions used in both LPEE and THM are metallic
liquids and are generally good conductors. We will therefore assume that the liquid
phase is a conductive, viscous fluid with no polarization and magnetization. Fol-
lowing closely the procedures given by Eringen and Maugin [1] and [3, 4], the basic
and general constitutive equations of a binary mixture under the assumption of the
classical magnetohydrodynamic (MHD) approximation were obtained [6, 7].

4.2.1 Basic Equations

Under the assumption of magnetohydrodynamic approximation the Maxwell
equations take the following forms in the RMKS unit system [1]:

∇×E+
∂B
∂t

= 0, ∇ ⋅B= 0, ∇×H− J= 0, ∇ ⋅ J= 0 ð4:2:1Þ

where B= μ0H and E=E+ v×B. Here E, B, H, and J denote the electric field,
magnetic induction, magnetic field, and electric current density, respectively, and μ0
is the permeability of vacuum. The contribution of the free charge density is
neglected. This is a good approximation for metallic liquids [4], and for the same
reason, the partial derivative of the electric displacement was also neglected in
Eq. (4.2.1)3. The associated jump conditions on a surface of discontinuity σðtÞ,
moving with a velocity V can be found in [1].
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The metallic binary liquid solution (for instance, a Ga-As solution for the growth
of GaAs, or Cd-Te for CdTe, or Ga-Sb for GaSb, etc.) is assumed to be a
non-polarizable, non-magnetizable, Newtonian viscous liquid mixture. Under the
above assumptions and also based on the magnetohydrodynamic approximation,
the thermomechanical balance laws of such a medium, namely the overall con-
servation of mass, the balance of linear momentum, the conservation of mass for the
solute (for instance As in a Ga-rich solvent), the balance of energy, and the second
laws of thermodynamics yields the following local balance equations (see [1, 4, 6,
7] for derivation).

Continuity

∂ρ

∂t
+∇ ⋅ ðρvÞ=0 ð4:2:2Þ

Momentum

−∇π +∇.Dt+ ρ f −
∂v
∂t

− v.∇v
� �

+ fem = 0 ð4:2:3Þ

Mass transport

ρ
∂C
∂t

+ v.∇C
� �

=∇.i ð4:2:4Þ

Energy

ρϑ
∂η

∂t
+ v.∇η

� �
= trðDt.dÞ+∇.q− μ∇.i+ ρh+ J.E ð4:2:5Þ

Entropy inequality

trðDt.dÞ+
1
ϑ
ðq− μiÞ.∇ϑ+ i.∇μ+ J.E≥ 0 ð4:2:6Þ

In Eqs. (4.2.2)–(4.2.6) ρ denotes the mass density of the binary mixture defined
in terms of mass densities of the solute ρ1 and the solvent ρ2 by ρ= ρ1 + ρ2, C is the
mass concentration of the solute defined by C= ρ1 ̸ρ, π is the thermodynamic
pressure, Dt is the dissipative part of the stress tensor, f is the body force due to
gravitation, i and q are the concentration and heat fluxes, respectively, h is the
internal heat source, ϑ and η denote respectively the absolute temperature and the
entropy density function. fem = J×B represents the magnetic body force [42] where
the convection current is assumed to be negligible compared with the conduction
current. The effective chemical potential is defined by μ= μ1 − μ2 where μ1 and μ2
are the chemical potentials of the solute and solvent, respectively. The deformation

4 Modeling Semiconductor Crystal Growth … 85



rate tensor, d is given by 2d=∇⊗ v+ ð∇⊗ vÞT where T denotes transpose, and ∇
is the gradient operator. The associated interface conditions related to overall mass
balance, momentum balance, mass transport, and energy balance can be found in
[4, 6, 7].

4.2.2 Constitutive Equations

A complete set of nonlinear constitutive equations of an electromagnetic fluid is
given by Eringen and Maugin in [1] for a single conductive continuum, taking into
account both polarization and magnetization. The linear constitutive equations of a
binary metallic liquid mixture were obtained in [3, 4] where the mixture was
assumed nonpolarizable and nonmagnetizable. Following the same procedure of [1]
and [3, 4] the nonlinear constitutive equations for a nonpolarizable and nonmag-
netizable binary metallic liquid mixture were given in [6, 7]. After lengthy
manipulations, the constitutive equations for the mass flux i, the heat flux q, and the
electric current J were obtained as

ρ− 1i=D1∇C+D2∇T +D3E+D4d∇C+D5d∇T +D6dE+D7∇C ×B

+D8∇T ×B+D9E ×B+D10d2∇C+D11d2∇T +D12d2E +D13ðB ⋅ ∇CÞB
+D14ðB ⋅ ∇TÞB+D15ðB ⋅EÞB+D16fdð∇C ×BÞ− dðB×∇CÞg
+D17fdð∇T ×BÞ− dðB×∇TÞg+D18fdðE×BÞ− dðB×EÞg

ð4:2:7Þ

q= k1∇T + k2∇C+ k3E+ k4d∇T + k5d∇C+ k6dE+ k7∇T ×B+ k8∇C ×B

+ k9E×B+ k10d2∇T + k11d2∇C+ k12d2E+ k13ðB ⋅ ∇TÞB+ k14ðB ⋅ ∇CÞB
+ k15ðB ⋅EÞB+ k16fdð∇T ×BÞ− dðB×∇TÞg+ k17fdð∇C ×BÞ
−dðB×∇CÞg+ k18fdðE×BÞ− dðB×EÞg

ð4:2:8Þ

J= σ1E+ σ2∇T + σ3∇C+ σ4dE+ σ5d∇C+ σ6d∇T + σ7E×B+ σ8∇C ×B

+ σ9∇T ×B+ σ10d2E+ σ11d2∇T + σ12d2∇T + σ13ðB ⋅EÞB+ σ14ðB ⋅ ∇CÞB
+ σ15ðB ⋅ ∇TÞB+ σ16fdðE×BÞ− dðB×EÞg+ σ17fdð∇C ×BÞ− dðB×∇CÞg
+ σ18fdð∇T ×BÞ− dðB×∇TÞg

ð4:2:9Þ

where the stress tensor Dt (dissipative) was not presented here for the sake of space
(see [6, 7]) and Wkl = εklmBm and εklm is the permutation symbol, and subscript S
indicates symmetrization. In these equations, the notation of [1] was adopted, i.e., a
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tensor product sign was used between two vectors, but no sing was used between a
second order tensor and a vector to denote the operation of contraction. Coefficients
D1, …, D18; k1, …, k18; σ1, . . . , σ18 and α1, . . . , α25 are functions of temperature
T, concentration C, and also the joint invariants of d, E, B, ∇T , and ∇C. These
invariants can be read from Table E1 in [1]. They are not presented here for the sake
of brevity. However, some that are essential for the models of LPEE and THM will
be presented later. These equations will be simplified based on physical grounds.
The physical significance of some of the coefficients, related to the LPEE and THM
growth processes, will be discussed. Previous numerical simulations have shown
that the concentration field (mass transport) is more sensitive to nonlinear inter-
actions than the thermal and flow fields [58, 59]. We therefore focus on the mass
flux given in Eq. (4.2.7).

In this constitutive equation, the first three terms, D1∇C, D2∇T , and D3E are
linear in ∇C, ∇T , and E, but the coefficients D1, D2, and D3 are still arbitrary
functions of T, C, and the joint invariants of d, E, B, ∇T , and ∇C. We first expand
these coefficients into a Taylor series about a reference temperature T0, and con-
centration C0. This process is straightforward but very lengthy. We only present the
procedure for the mass flux, and then write the resulting equations for the others. Let
us begin with D1 =D1ðT ,C, I1, I2, I3, . . . , IKÞ, D2 =D2ðT ,C, I1, I2, I3, . . . , IKÞ,
D3 =D3ðT ,C, I1, I2, I3, . . . , IKÞ where some of the invariants are I1 = trðdÞ= I,
I2 = trðd2Þ= I2 − 2ðIIÞ, I3 = trðd3Þ= I3 − 2ðIÞðIIÞ+ III, I4 = E ⋅E, I5 =B ⋅B,
I6 = ðE ⋅BÞ2, etc. [1]. The remaining invariants can be read from Table E1 of [1], of
course, by adding the concentration gradient to the list of independent variables. We
expand D1, D2, and D2 into a Taylor series:

D1 = fDC +DCEE+DCBBg+ . . .g+ fDCC +DCCEE+DCCBB+ . . .gC
+ fDCT +DCTEE+DCTBB+ . . .gT . . . . . .

ð4:2:10Þ

D2 = fDT +DTEE+DTBBg+ . . .g+ fDTC +DTCEE+DTCBB+ . . .gC
+ fDTT +DTTEE+DTTBB+ . . .gT . . . .

ð4:2:11Þ

D3 = fDE +DEEE+DEBBg+ . . .g+ fDEC +DECEE+DECBB+ . . .gC
+ fDET +DETEE+DETBB+ . . .gT . . . .

ð4:2:12Þ

where E=
ffiffiffiffi
I4

p
, B=

ffiffiffiffi
I5

p
, and the material constants appearing in the above equa-

tions are functions of the reference temperature and the reference concentration
only. Now using Eqs. (4.2.10)–(4.2.12) in Eq. (4.2.7), and also dropping some
higher order terms we obtain the mass flux as
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ρ− 1i= fðDC +DCEE+DCBBÞ+ ðDCC +DCCEE+DCCBBÞC
+ ðDCT +DCTEE+DCTBBÞT + . . . .g∇C+ fðDT +DTEE+DTBBÞ
+ ðDTC +DTCEE+DTCBBÞC+ ðDTT +DTTEE+DTTBBÞT +DTCCC2 + . . .g∇T
+ fðDE +DEEE+DEBBÞ+ ðDEC +DECEE+DECBBÞC
+ ðDET +DETEE+DETBBÞT + . . . .gE+ . . . ..

ð4:2:13Þ

where we have not written the remaining higher order cross terms for the sake of
space. In the above equations, the following convention was used for the subscripts
in material constants. In the expanded parts, we used only letters, and the first letter
indicates the direct contribution of the field to the related flux, while the second and
third letters describe higher order contributions of the other fields. For instance, DC

is the coefficient of the direct contribution of ∇C to the mass flux, and DEC rep-
resents the interactive contribution of E with C to the mass flux. In addition, the
number of letters describes the rank of the order of contribution. For instance, DC is
a first order contribution while DEC and DECB are the second and third order
contributions. The coefficients in the cross terms, the first index (letter) refer to the
depended variable (fluxes), for the second indices we kept the numbering indexing
to make the identification tractable.

Equation (4.2.13) can be further simplified based on physical grounds and
experimental observations. At this point, considering the applications only in LPEE
and THM growth of crystals, we will leave only the terms up to second order with
the exception of two third order coefficients in the coefficient of E, and one in the
coefficient of ∇T . The significance of higher order coefficients will be discussed
later. It is important to mention that the decision of leaving coefficients in a model
in or out depends on how the model is being developed. This can either be the result
of experimental observations that may force us to reexamine the significance of
such coefficients in a model to make more accurate predictions, or can be brought
about in the development of a general theory which can be tried to be proven by
experiments. The former is the reason in this work. Based on the purpose in mind,
Eq. (4.2.13) is simplified further to

ρ− 1i= fDC +DCCC+DCTT +DCEE+DCBBg∇C+ fDT +DTCC+DTTT

+DTCCC2g∇T + fDE + ðDEC +DECBBÞC+ ðDET +DETBBÞTgE
+DC4d∇C+DC5d∇T +DC6dE +DC7∇C ×B+DC8∇T ×B+DC9E ×B

ð4:2:14Þ

We will leave the mass flux in its form at the moment. We will later make further
simplifications specific to each crystal growth technique. Also when we use
Eq. (4.2.14) in the mass balance equation, further simplifications can be made by
dropping higher order terms depending on their significance to the process under
consideration, and also due to the restrictions imposed by the entropy inequality on
material coefficients.

88 S. Dost



Following the same procedure and arguments, the heat flux, electric current and
stress tensor can be simplified further. In these equations, for the sake of brevity, we
will leave only the terms that are significant for discussion, i.e.,

q= kT∇T + kC∇C+ kEE + kT4d∇T + kT5d∇C+ kT6dE +kT7∇T ×B
+ kT8∇C ×B+ kT9E ×B

ð4:2:15Þ

J= σEE + σT∇T and Dt=2μvd ð4:2:16Þ

Equations (4.2.15)–(4.2.16) must satisfy the entropy inequality in Eq. (4.2.6).
The material constants are functions of the reference temperature and concentration
only. The physical significance of the constitutive constants appearing in these
constitutive equations has been discussed in details in regard to crystal growth of
semiconductors in [6, 7].

4.3 Liquid Phase Electroepitaxial Growth of Binary
Systems Under Magnetic Field

We only present here the equations of the liquid phase. The equations of the solid
phases for a binary system are the same as those given in [4]. We will now develop
the model equations for the growth of GaAs crystals by LPEE under an applied
magnetic field, specific to the LPEE growth system used in our Crystal Growth
Laboratory. Here we make the following assumptions and simplifications in
obtaining the field equations, and the boundary and interface conditions.

(i) The so-called Boussinesq approximation holds, that is, the density of the
liquid phase is constant everywhere in the field equations except in the body
force term due to gravitation. In order to allow density variations, we write

ρf = gf− ρLβTðT −T0Þ+ ρLβCðC−C0Þg ð4:3:1Þ

where ρL is the constant density of the liquid solution, and βT and βC are the
thermal and solutal expansion coefficients, respectively, and T0 and C0 are the
reference temperature and concentration. In this special case the continuity
equation will reduce to the incompressibility condition, i.e., ∇ ⋅ v=0.

(ii) In the LPEE systems used in our Laboratory, the electric field and the mag-
netic field are aligned vertically with the symmetry axis of the growth cru-
cible. The magnetic field measurements made in the absence of growth
crucible also shown that the magnetic field is almost uniform in the space
where the growth cell is located (see [17]). The fields are also constant; do not
vary in time. These reduce the Maxwell equations to a single equation, i.e.,
∇ ⋅ J=0. The electric field in the solution will be obtained from the solution of
∇ ⋅ J=0, as was the case in [35, 36]. However, since the LPEE growth
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crucible was designed so as to have an almost uniform electric current dis-
tribution in the liquid zone, and also since the computed electric field was
almost uniform in [35, 36], in this work we will consider the electric current
distribution is uniform for computational convenience. Otherwise, ∇ ⋅ J=0
must be added to the field equations. In addition, the induced magnetic field
due to the applied electric current is small, so is neglected.

(iii) Since the electromigration of species is the dominant mechanism of mass
transport in LPEE, we further assume that the contributions of (a) nonlinear
terms, such as DC7∇C ×B, DC8∇T ×B, DC9E×B, kT7∇T ×B, kT8∇C ×B,
kT9E×B, σJ7E ×B, σJ8∇C ×B, σJ8∇T ×B, μvTT , and μvCC, and (b) the
Soret ðDTÞ and Dufour ðkCÞ effects are negligible.

(iv) In Fig. 4.1 the applied static magnetic field is shown upward, but as men-
tioned earlier, the two sets of LPEE growth experiments performed specifi-
cally for the work in [43] showed that the growth is in the direction of
applied electric current, and the growth rate is almost the same regardless
whether the applied magnetic field is upward or downward. This eliminates
the possibility of the explicit dependence of the mass flux on the magnetic
field vector. Indeed, the constitutive equations developed so far are in
compliance with this observation; there was no magnetic induction vector
dependence in the constitutive equations.

(v) The contribution of the Joule heating can be neglected since the liquid is a
good conductor. However, it must be taken into account in the solid phases
(source, seed, and grown crystal). In addition, the contribution of ðv×BÞ×B
to the electric current can also be neglected based on our previous numerical
simulations in [36, 42, 45, 46] that the contribution of ðv×BÞ×B with
respect to E is very small. Then the constitutive equations for the case
considered become

1
ρL

i=DC∇C+ ðDEC +DECBBÞCE, q= kT∇T , J= σEE, Dt=2μvd ð4:3:2Þ

Based on the foregoing assumptions, the use of Eq. (4.3.2) in Eqs. (4.2.2)–
(4.2.5) yields respectively the following field equations

∇ ⋅ v=0,

−∇p+2μv∇ ⋅ d+ gf− ρLβTðT −T0Þ+ ρLβCðC−C0Þg+ σEE×B

= ρL
∂v
∂t

+ v ⋅ ∇v
� �

,

DEC +DECBBð ÞE ⋅ ∇C+DC∇2C=
∂C
∂t

+ v+∇C,

kT∇2T = ρLγL
∂T
∂t

+ v ⋅ ∇T
� �

ð4:3:3Þ
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where γL is the specific heat of the liquid solution. The above equations will be
supplemented by appropriate boundary and interface conditions for a selected
specific domain (the growth cell). These conditions can be found in our earlier
simulation studies for specific growth crucibles [36, 42, 45, 46].

4.3.1 Electromagnetic Mobility

The first term in the mass transport equation, Eq. (4.3.3)3, i.e.,
μt =DEC +DECBB≡ μE + μEBB represents the contribution of applied electric cur-
rent density to mass transport under the effect of a static external magnetic field.
This effect is known as electromigration. Its coefficient, which will be called from
now on “the total mobility”, is written in the following form for convenience
μt =DEC +DECBB≡ μE + μEBB where the material constant μE (a second order
material coefficient) is the classical electric mobility of the solute (As) in the liquid
solution (Ga-As solution) due to the applied electric current in the absence of an
applied magnetic field. The constant μEB is a third order material coefficient that
represents the contribution of the applied magnetic field intensity to the electro-
migration of species. It is zero (or insignificant) in the absence of applied electric
current. This term is new, and defined for the first time by the Author. It is called
“Electromagnetic effect” or Electromagnetic mobility”. Below we will give an
estimate for its numerical value using the experimental results of [39] and [46].

Experiments show that the growth rate is proportional to the applied electric
current density, and we have evaluated the value of μE in the Ga-As (and also in
In-Ga-As) solution in the absence of applied magnetic field. The numerical simu-
lations based on this value verify the experimental growth rates at all three electric
current levels (J = 3, 5, and 7 A/cm2) (see [31]). Of course, the diffusion (the second
term, DC∇2C) and also the natural convection (the last term on the right-hand side,
v ⋅ ∇C) contribute to the growth rate [4, 17, 22, 23, 35, 38, 40]. However, in LPEE
the contribution of the first term (electromigration) is dominant [23], and the growth
rate can be assumed proportional to this term. Experiments also show that the
growth rate increases significantly in the presence of a static magnetic field, and is
also proportional to the field intensity level as long as the field level is below a
critical value above which the growth is not stable [39, 45].

The numerical values of μE and μEB are calculated using the results of a large
number of experiments of [39, 46] in which the magnetic field vector B was used
both upward and downward. The growth rates in these experiments were almost the
same whether B was up or down. In other words the mass transport due to elec-
tromigration was only dependent on the magnetic field intensity but not on its
direction. This is also in compliance with the defined constitutive equations. Using
the measured growth rates given in Table 4.1, the total magnetic mobility was
computed as μt = μE + μEBB≅ 0.7 × 10− 5 + 1.4 × 10− 5B where the above mobility
values are computed as μE =0.7 × 10− 5m2 ̸Vs and μEB =1.4 × 10− 4m2 ̸Vs ðteslaÞ
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(electromagnetic effect). Equation (4.3.4) can be expressed in terms of a dimen-
sionless mobility as

μ=
μt
μE

=1+
μEB
μE

B≅ 1+ 20B ð4:3:4Þ

which is plotted in Fig. 4.3. As seen the total mobility is almost linearly dependent
on the magnetic field intensity, within the limits of experimental measurements.

Growth rate under the effect of applied magnetic field will then be calculated by
using the total mobility (instead of using only electric mobility) given by

Vg =
ρL
ρS

DC
∂C
∂n

+ μtEzC
� �

1
CS −C

ð4:3:5Þ

which predicts the experimental growth rate accurately.

4.4 Growth of Binary Systems by the Traveling Heater
Method Under Magnetic Fields

As described in the introduction section, the Traveling Heater Method (THM) is a
solution growth technique and the driving force is the applied temperature profile.
There is no applied electric current imposed on the system. However, an external
static magnetic field has been used in THM to suppress the convective flow in the
solution zone. The interaction of the applied magnetic field with other field

Fig. 4.3 Dependence of the
total mobility on magnetic
field intensity

92 S. Dost



gradients may induce an electric current. In this case the simplified constitutive
equation for the mass flux can be written from Eq. (4.2.14) as

ρ− 1i=DC∇C+DT∇T +DC4d∇C+DC5d∇T +DC7∇C ×B+DC8∇T ×B
+ kT9E×B

ð4:4:1Þ

where E=Eind + v×B and where Eind represent the induced electric field due to the
applied magnetic field. When the applied magnetic field is constant in time and also
uniform in space, the contribution of the induced electric field can be neglected;
leaving only the term v×B in the electric field term above.

Below we now present the constitutive equations and also the associated field
equations for the THM growth of a binary system such as CdTe or GaSb under
certain simplifying assumptions in view of metallic solutions involved in the
growth of such semiconductor single crystal materials. These assumptions, how-
ever, must be re-examined, whenever in doubt, based on experimental observations.

4.4.1 Growth by the Traveling Heater Method Under
Static Magnetic Field

In this section we develop the model equations step by step, making certain sim-
plifying assumptions and also discussing the implications of the simplifications
made or not made. Lets us begin with the mass transport equation, in Eq. (4.2.4),
and evaluate ∇.ðρ− 1iÞ using Eq. (4.4.1) with the assumption of negligible Eind.
Then we have

∇.ðρ− 1iÞ=DC∇2C+DT∇2T +DC4 ⋅ ðd∇CÞ+DC5∇ ⋅ ðd∇TÞ
+DC7∇ ⋅ ð∇C ×BÞ+DC8∇ ⋅ ð∇T ×BÞ+DC9∇ ⋅ ððv×BÞ×BÞ

ð4:4:2Þ

The first term in Eq. (4.4.2), DC∇2C, represents the molecular diffusion with a
constant effective diffusion coefficient, DC. This is the only term considered in most
modeling studies for THM. The second term, DT∇2T , is the Soret effect which is
the contribution of temperature gradient to mass transport. Depending on the
material (the value of the Soret coefficient, DT ) considered, it may or may not be
significant. It must be taken into account if there is a physical evidence of its
significance. For instance, this effect was considered in [60, 61] by not taking DT

into account but the nonlinear terms DTCC and DTCCC2, and was shown that their
contribution was significant. The third and the fourth terms, DC4∇ ⋅ ðd∇CÞ and
DC5∇ ⋅ ðd∇TÞ, are the second order terms, and represent respectively the interaction
of fluid flow with concentration and temperature gradients. In most models their
contribution is neglected.
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In the presence of an applied magnetic field, the last term, DC7∇ ⋅ ð∇C ×BÞ,
represents the contribution of the applied magnetic field to the mass transport.

DC7ðεklmC, lBmÞ, k =DC7ðεklmC, lmBm + εklmC, lBm, kÞ=DC7εklmC, lBm, k ð4:4:3Þ

We now examine this term closely. Here we used the index notation for con-
venience. As can be seen this term will not vanish if the magnetic field is not
constant in space (not uniform). In such a case, it must be included in a model, and
its significance can only be determined by experiments. It is possible that it may
contribute to the growth rate in THM, for instance the growth rate may be increased
by a proper application of the external magnetic field.

In the THM system in our Laboratory at the University of Victoria, a strong
static magnetic field up to 1.25 T can be applied in the vertical direction that is
aligned with the growth direction. The superconducting magnet (with 13 “opening)
is designed so as to provide an almost uniform field in the central region where the
liquid solution zone will be located in the growth ampoule. Indeed in the absence of
growth crucible the field is uniform in this space. However, the field distribution
may be altered when the growth ampoule is lowered into the magnet opening. If the
field is assumed to be uniform in the liquid solution, then the contribution of the last
term can be neglected. Otherwise this term must be taken into account in modeling.

Then Eq. (4.4.2) can be simplified to

∇ ⋅
1
ρL

� �
i=DC∇2C+DT∇2T +DC9∇ ⋅ ððv×BÞ×BÞ ð4:4:4Þ

Following a similar reasoning, the constitutive equations for the heat flux and
electric current can be simplified to

q= kT∇T + kC∇C, J= σEE + σT∇T + σC∇C+ σJ7ðv×BÞ×B ð4:4:5Þ

The field equations in this case take the following forms

∇ ⋅ v=0,

−∇p+2μv∇.d+ gf− ρLβLðT −T0Þ+ ρLβCðC−C0Þg+ σEðv×BÞ×B

= ρL
∂v
∂t

+ v.∇v
� �

,

DC∇2C+DT∇2T +DC9∇ ⋅ ððv×BÞ×BÞ= ∂C
∂t

+ v.∇C,

kT∇2T + kC∇2C− μfDC∇2C+DT∇2T +DC9∇ ⋅ ððv×BÞ×BÞg+ σEE2

+ fσT∇T + σC∇C+ σJ7ððv×BÞ×BÞg ⋅ ððv×BÞ×BÞ= ρLγL
∂T
∂t

+ v.∇T
� �

ð4:4:6Þ
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In addition, the remaining Maxwell equation, i.e.,

σE∇ ⋅E + σT∇2T + σC∇2C+ σJ7∇ ⋅ fðv×BÞ×Bg=0 ð4:4:7Þ

must be added to these equations.
The energy equation can be further simplified if the Joule heating in the liquid

zone is neglected, and also higher order interaction terms are dropped, i.e.,

kT∇2T + kC∇2C− μfDC∇2C+DT∇2Tg= ρLγL
∂T
∂t

+ v.∇T
� �

ð4:4:8Þ

These equations can be further simplified if the Soret and Dufour effects are
neglected. In that case the mass transport and energy equations become

DC∇2C+DC9∇ ⋅ ððv×BÞ×BÞ= ∂C
∂t

+ v.∇C ð4:4:9Þ

kT∇2T = ρLγL
∂T
∂t

+ v.∇T
� �

ð4:4:10Þ

In a microgravity environment such as the International Space Station, second
and third order terms may become significant. As mentioned earlier, the results of
microgravity solidification experiment (Mephisto in [60]) could only be predicted
by a model in [61] that included the second and third order Soret effects in the mass
transport equation, in the form of DCTCð1−CÞ∇2T .

4.4.2 Growth by the Traveling Heater Method Under
Rotating Magnetic Field

As mentioned earlier a weak rotating applied magnetic field is of great interest in
THM to obtain good mixing in the solution zone in order to grow crystals with
uniform composition. On this topic the literature is relatively rich (see for instance
[15, 16, 21, 25, 26, 32, 42]). The application of a weak rotating field can also be
considered together with a strong static external magnetic field. While the strong
field can provide the required control of natural convection in the liquid zone, the
weak rotating field gives rise to better mixing in the solution. In this direction such a
facility has been developed in our Laboratory and used to conduct experiments in
growth of bulk crystals of CdTe, CdZnTe, GaSb, etc. We have also performed
numerical simulations for THM growth in order to determine the feasibility of using
static and rotating magnetic fields [42].

In the presence of a small rotating magnetic field, the magnetic body force will
have two parts, one from the applied strong field, and the other from the rotating
field; fem = femsta + femrot where femsta is the same given earlier and femrot is given by
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femrot = J×Brot = σEðEind + v×BrotÞ×Brot where we have neglected the effects of
temperature and concentration gradients in J. Since the field is not stationary the
Maxwell equations must be added to the system equations as

∇×Eind +
∂Brot

∂t
=0, ∇ ⋅Eind =0, ∇ ⋅Brot =0, ∇×Brot −

1
μ0

J=0,

∇ ⋅ J=0

Now assuming that electric and magnetic fields can be obtained from a scalar
potential ϕ, and a vector potential A as follows

Brot =∇×A and Eind = − ∇ϕ+
∂A
∂t

� �

A specific application of the above components can be found in [42].
Naturally, the question of whether the growth rate in THM will be affected by

the presence of an applied magnetic field (fixed or rotating) comes in mind. In this
direction, we have performed THM experiments under rotating magnetic fields
(RMF) for the growth of GaSb single crystals [44]. Typical industrial THM growth
rate (translation rate) is about 2–3 mm/day. Faster than this rate leads to more Te
inclusions in the growth crystals.

In our THM growth experiments we tested a higher growth rate: 5 mm/day and
performed a number of experiments to determine the optimum RMF level. At this
translation rate the THM experiments produced polycrystalline structures under the
RMF of 0.8 mT field intensity and 75 Hz frequency. The crystals grown in the
experiments under a 1.94 mT rotating magnetic field at 50 Hz were however pre-
dominantly single crystals with a few large grains near the crucible wall. Results of
the experiments performed in [44] suggest that the growth rate of the THM growth
process may be increased significantly (more than double) with the proper (opti-
mum) selection of rotating magnetic field levels. It must be mention that the
optimum level of RMF will be different for different materials due to different
electric conductivities. For instance, in the growth of CdTe crystals the optimum
level of RMF could be higher due to the lower electric conductivity of this material.

4.5 Conclusions

The models developed over the years, based on Professor Gerard Maugin’s con-
tributions to “electromagnetic interactions”, are briefly presented for “solution
growth” techniques under electric and magnetic fields. Basic and constitutive
equations are specialized for the solution growth techniques of LPEE and THM. As
an application, the LPEE growth of GaAs bulk crystals under a strong static
magnetic field is considered. Experimental results, that have shown that the growth
rate under an applied static magnetic field is also proportional to the applied
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magnetic field and increases with the field intensity level, are predicted from these
models. The contribution of a third-order material constant in LPEE is also pre-
dicted from these models. The prediction of increasing growth rate in THM growth
under rotating magnetic fields was also verified by experiments.
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Chapter 5
Dispersion Properties of a Closed-Packed
Lattice Consisting of Round Particles

Vladimir I. Erofeev, Igor S. Pavlov, Alexey V. Porubov
and Alexey A. Vasiliev

Abstract A two-dimensional discrete model for a hexagonal (closed-packed) lattice

with elastically interacting round particles possessing two translational and one rota-

tional degrees of freedom is considered. The linear differential-difference equations

are obtained by the method of structural modeling to describe propagation of longi-

tudinal, transverse and rotational waves in the medium. The dispersion properties of

the model are analyzed. Existence of a backward wave is revealed. The numerical

estimations of threshold frequencies of acoustic and rotational waves are given for

some values of microstructure parameters.

Keywords Structural modeling ⋅ Hexagonal lattice ⋅ Round particles

Microstructure parameters ⋅ Dispersion properties

V. I. Erofeev (✉) ⋅ I. S. Pavlov

Mechanical Engineering Research Institute of Russian Academy of Sciences,

85 Belinskogo str., 603024 Nizhny Novgorod, Russia

e-mail: erof.vi@yandex.ru

V. I. Erofeev ⋅ I. S. Pavlov

Nizhny Novgorod Lobachevsky State University, 23 Gagarin av., 603950

Nizhny Novgorod, Russia

A. V. Porubov

Institute of Problems in Mechanical Engineering, 61 Bolshoy, V.O.,

199178 Saint-Petersburg, Russia

e-mail: alexey.porubov@gmail.com

A. V. Porubov

St. Petersburg State University, 7–9 Universitetskaya nab., V.O., 199034 Saint-Petersburg,

Russia

A. V. Porubov

St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st.,

195251 Saint-Petersburg, Russia

A. A. Vasiliev

Department of Mathematical Modelling, Tver State University, 35 Sadoviy per.,

170002 Tver, Russia

e-mail: alvasiliev@yandex.ru

© Springer International Publishing AG, part of Springer Nature 2018

H. Altenbach et al. (eds.), Generalized Models and Non-classical Approaches
in Complex Materials 2, Advanced Structured Materials 90,

https://doi.org/10.1007/978-3-319-77504-3_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77504-3_5&domain=pdf


102 V. I. Erofeev et al.

5.1 Introduction

Prediction of physical and mechanical properties of media with microstructure and

adequate description of dynamic (wave) processes [1] require mathematical models

taking into account the presence of several scales (structural levels) in a medium,

their self-consistent interaction and the possibility of energy transfer from one level

to another [2]. It should be emphasized that the actual values of the “microstruc-

ture” of the medium in a specific problem can lie both in the range of nanometers or

angstroms, and in the field of microns and even on larger scales. From the viewpoint

of the methodology of theoretical research, the absolute values of the “microstruc-

ture” are not so important, as the smallness of some scales with respect to others.

Investigation of wave processes in crystal lattices can be carried out by the method

of structural modeling [3–7]. Modeling by this method starts with a selection of a

certain minimum volume (a structural cell that is analog of the periodicity cell in the

crystalline material) in the bulk of a material represented by a regular or a quasireg-

ular lattice consisting of particles of finite sizes. Such a cell is capable of reflecting

the main features of the macroscopic behavior of this material [8]. First, a discrete

model is elaborated within the scope of this method. Only at the next stage, one

can pass to the continuum approximation. Structural models in explicit form contain

the geometric parameters of the structure—the size and shape of the particles, on

which, ultimately, the effective moduli of elasticity depend [5]. By changing these

parameters, we can control the physical and mechanical properties of a medium.

Such investigations are very important, for instance, for the photonic and phononic
crystals [9–11].

The term “photonic crystals” appeared in the early 1990s for media having a peri-

odic system of dielectric inhomogeneities giving rise to emergence of zones opaque

both for light and electromagnetic waves [12]. From a general viewpoint, a photonic

crystal is a superlattice or a medium, in which an additional field has been artifi-

cially created, and its period is of some orders greater than the basic lattice period.

The behavior of photons is radically different from their behavior in the ordinary

crystal lattice if the optical superlattice period is comparable with the length of the

electromagnetic wave. They do not transmit the light with a wavelength comparable

with the lattice period of the photonic crystal and determine the effect of the light

localization. Photonic lattices are in the gap between the atomic crystal lattices and

the macroscopic artificial periodic structures.

Subsequently, natural or artificial periodic structures became known as

“phononic” crystals (acoustic superlattices) by analogy if they consist of non-

pointwise particles, in which the length of the acoustic waves is comparable with

the lattice period [9, 13–15]. The velocity of propagation of elastic waves in solids

is about 105 times less than the light wave velocity. Therefore, all effects inherent to

photonic crystals should take place in acoustics, but for significantly lower frequen-

cies. High interest in materials of this type is caused by the unique properties of the

materials that enables one to apply them in many fields, primarily, in nanoelectron-

ics. The ordering of the geometric structure is typical for the periodic (crystalline)
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media. It is a decisive factor leading to anisotropy of the properties of crystals and

to the predominance of the collective motions of the wave type in the crystal lattice

[16]. The dispersion properties of the phononic crystal representing a rectangular

lattice consisting of ellipse-shaped particles were analyzed in [17].

It is interesting to note that examples of materials, in which the presence of vari-

ous structural levels is very clearly manifested, can be also found in geophysics. For

instance, the internal structure of rocks, in particular, hydrocarbon reservoirs, is dif-

ferent on various scales and determines their specific physical properties. First of all,

it concerns such physical properties as thermal and electrical conductivity, hydraulic

and dielectric permittivity. Methods of the theory of effective media are employed

in geophysics for elaboration of different-scale mathematical models of such media.

The construction of models is performed according to the principle “from small inho-

mogeneities to large ones”. For each scale, a model medium is constructed with the

given parameters. Its equations establish relationships between the parameters of

the model and the measured physical properties of the rock. The role of the model

parameters can be played by the characteristics of the shape and orientation, degree

of ordering of the inhomogeneities, and the degree of their connectivity [18, 19]. In

this case, inhomogeneities mean the grains of minerals, particles of organic matter,

cracks and pores filled with various fluids. In addition, such models can be used, in

particular, for solving problems of geomechanical modeling [20]. Obviously, such

approach to construction of models for physical properties of media resembles with

the structural modelling method in mechanics of microstructured solids.

In exploration geophysics, interest has recently increased to unconventional reser-

voirs of hydrocarbons and to reservoirs with complicated production conditions [20].

Such objects include gas-hydrate formations and rocks of “shale oil/gas”. In par-

ticular, gas hydrates, as distinct from traditional hydrocarbons, have a crystalline

structure. “Shale oil/gas” rocks are characterized by a rather large (more than 30%)

content of clay minerals, the crystal lattice of which contains intracrystalline water.

Due to that, the elastic properties of clay minerals are drastically changed. Therefore,

studies of processes occurring at the level of the crystal lattices of such media, which

influence and give rise to the interrelationships of the physical properties mentioned

above, are of great importance. When different-scale mathematical models of phys-

ical properties of such rocks are constructed, these studies should precede the study

of properties on nano-and micro-scales.

Using the structural modeling method, a discrete model of a two-dimensional

close-packed lattice consisting of rigid non-deformable round particles is elaborated

in this paper. Between the particles there is the so-called porous space—a medium,

through which force and moment interactions between the particles are transmitted.

If the appropriate model is used to solve a geophysical problem, it is possible to

suppose that this porous space is filled with a fluid, for example, an intracrystalline

water. Next, the dispersion properties [21] of such a lattice are analyzed. An influence

of the microstructure of the crystal on its dispersion properties is also shown, and

theoretical estimates of the threshold frequencies of the acoustic and optical phonons

are obtained for some values of the microstructure parameters.
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5.2 Discrete Model for a Hexagonal Lattice Consisting
of Round Particles

We consider a two-dimensional hexagonal closed-packed lattice (or triangle, as it is

mentioned in [22]) consisting of homogeneous round particles (grains or granules)

with masses M and diameter d. In the initial state, they are located in the lattice sites

and the distance between the mass centers of the neighboring granules are equal to

a, see Fig. 5.1. Each particle has three degrees of freedom: translational degrees of

freedom ui,j and wi,j for the displacement of the mass center of the particle with the

number N = N(i, j) along the axes xand y, and the rotational degree of freedom 𝜑i,j
for the rotation with respect to the mass center (Fig. 5.2). The kinetic energy of the

particle N(i, j) is

Ti,j =
M
2

(
u̇2i,j + ẇ2

i,j

)
+ J

2
�̇�

2
i,j, (5.1)

where J = Md2∕8 is the moment of inertia of the particle about the axis passing

through its mass centre. The upper dot denotes derivatives with respect to time.

It is assumed that each particle interacts only with six nearest neighbors in the

lattice. Simulation of the interactions between the particles is performed by means

of the so-called “spring” model. Such a model is used in many works, see, e.g.,

[3, 23–29]. In this paper, the central and non-central interactions of the neighboring

granules are simulated by elastic springs of three types [30]: central (the correspond-

ing spring is designated by number 1 and has rigidity K0), non-central (2 and 3 with

rigidity K1), and “diagonal” (4 and 5 with rigidity K2). The interactions of tension-

compression type are modeled by the central and non-central springs. The torques

Fig. 5.1 Hexagonal lattice

with round particles
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Fig. 5.2 Kinematical scheme

Fig. 5.3 Scheme of the force interactions and introduced notations

of the particles are provided by the springs of the K1 type. Springs with the rigidity

K2 characterize the force interactions of the particles at the shear deformations. The

points of junctions of the springs K1 and K2 coincide with the apexes of the regular

hexagon inscribed in the round particle (Fig. 5.3).

It should be noted that six pairs of diagonal springs connecting the central parti-

cle with the six nearest neighbors in the lattice have the same rigidity K2. But if the

rigidities of the diagonal springs in pairs are different, then there is a lattice with a

chiral microstructure. Dynamical properties of such lattices were discussed, partic-

ularly, in Refs. [31, 32].
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The displacements of the granules are supposed to be small in comparison with

the sizes of the elementary cell of the lattice. The energy of each particle provided by

deviation of the particle from the equilibrium state is determined by the strain energy

of the springs connecting this particle with the six nearest neighbors in the lattice.

These six particles can be numbered by two ways: either by the number of the row,

where the particle is located (Fig. 5.3), or by the coordinates of the mass centers of

these particles on the circle of unit radius. In order to construct a discrete model, it is

more convenient to use the first method. In this case, 1 is added to the first index of

the particles, if they are located to the right of the particle N(i, j) (in Fig. 5.3, these

particles have the numbers n = 0, 1, 5), and −1 is added, if the particles are to the

left of it (these are particles n = 2, 3, 4). Similarly, 1 is added to the second index of

the particles located above the particle N(i, j) and −1 is added, if the particles are

below it (respectively, for particles with numbers n = 0 and n = 5, the second index

remains equal to j). Thus, the potential energy due to the interaction of the particle

N(i, j) with six nearest neighbors in the lattice (i + m1, j + m2), where m1 = ±1 is

the shift of the number along the horizontal axis and m2 = 0, ±1 is the shift of the

number along the vertical axis, is described by the formula

Ui,j =
1
2

∑
(m1,m2)

(
K0
2
D2

1(m1,m2)
+ +K1

2
(D2

2(m1,m2)
+ D2

3(m1,m2)
)+

+ K2
2
(D2

4(m1,m2)
+ D2

5(m1,m2)

)
.

(5.2)

Here Dl(m1, m2) are the elongations of the springs connecting the central particle N
with its six neighbors, l = 1, 2, 3, 4, 5 is the spring number in Fig. 5.3. Equation

(5.2) contains an additional factor 1/2, since the potential energy of each spring is

equally divided between two particles connected by this spring. Expressions for the

elongations of the springs Dl(m1, m2) calculated in the approximation of smallness of

the quantities 𝛥um1,m2
== (ui+m1,j+m2

− ui,j)∕a ∼ 𝛥wm1,m2
= (wi+m1,j+m2

− wi,j)∕a ∼
∼ 𝜑i,j ∼ 𝜀 (here 𝜀 << 1 is a measure of the cell deformation, m1 = ±1, m2 = 0, ±1)

and 𝛷m1,m2
=
(
𝜑i,j + 𝜑i+m1,j+m2

)
∕2 = = 𝜑i,j − 0, 5a𝛥𝜑m1,m2

<< 𝜋∕2 have the form:

D1(m1,m2) =
a
2

(
m1𝛥um1, m2

+ m2

√
3𝛥wm1, m2

)
,

D1(m1, 0) = m1a𝛥um1, 0,

D2,3m1,m2) =
a
4

(
2m1𝛥um1, m2

+ 2m2

√
3𝛥wm1, m2

∓ m2d
√
3𝛥𝜑m1, m2

)
,

D2,3(p, 0) = m1a

(
𝛥um1, 0 ±

d
√
3

4
𝛥𝜑m1, 0

)
, (5.3)

D4(m1,m1) =
m1a
2r0

(
(a − 2d)𝛥um1, m1

+ a
√
3𝛥wm1, m1

+ d
√
3𝛷m1, m1

)
,



5 Dispersion Properties of a Closed-Packed Lattice Consisting of Round Particles 107

D5(m1, m1) =
m1a
2r0

(
(a + d)𝛥um1, m1

+ (a − d)
√
3𝛥wm1, m1

− d
√
3𝛷m1, m1

)
,

D4,5(m1, 0) =
a
2r0

(
m1(2a − d)𝛥um1, 0 ± d

√
3𝛥wm1,0 ± m1d

√
3𝛷m1, 0

)
,

D4,5(∓1,±1) =
a
2r0

(
∓(a + d)𝛥u∓1, ±1 ± (a − d)

√
3𝛥w∓1,±1 + d

√
3𝛷∓1,±1

)
,

D4,5(±1,∓1) =
a
2r0

(
±(a − 2d)𝛥u±1, ∓1 ∓ (a − d)

√
3𝛥w±1,∓1 − d

√
3𝛷±1,∓1

)
,

where r0 =
√
a2 − ad + d2 is the length of the undisturbed spring K2. In expressions

for D2,3 and D4,5, the upper symbols in ± and ∓ are taken for the springs of types 2

and 4, whereas the lower ones are necessary for the springs 3 and 5.

It should be noted that Eq. (5.3) have been obtained with the accuracy up to the

linear terms having the order 𝜀
1
. Substitution of these expressions in Eq. (5.2) leads

to the following expression for the potential energy per cell with the number N =
N(i, j) with accuracy up to quadratic terms:

Ui,j = 𝛾1(𝛥u21,0 + 𝛥u2−1,0) + 𝛾2(𝛥u21,1 + 𝛥u2−1,−1 + 𝛥u21,−1 + 𝛥u2−1,1) +

+ 𝛾3(𝛥w2
1,0 + 𝛥w2

−1,0 +𝛷

2
1,0 +𝛷

2
−1,0 +𝛷

2
1,1 +𝛷

2
−1,−1 +𝛷

2
1,−1 +𝛷

2
−1,1 +

+𝛥w1,1𝛷1,1 − 𝛥w−1,−1𝛷−1,−1 + 𝛥w1,−1𝛷1,−1 − 𝛥w−1,1𝛷−1,1) +

+
√
3𝛾3(−𝛥u1,1𝛷1,1 + 𝛥u−1,−1𝛷−1,−1 + 𝛥u1,−1𝛷1,−1 − 𝛥u−1,1𝛷−1,1) +

+2𝛾3(𝛥w1,0𝛷1,0 − 𝛥w−1,0𝛷−1,0) + (5.4)

+ 𝛾4(𝛥w2
1,1 + 𝛥w2

−1,−1 + 𝛥w2
1,−1 + 𝛥w2

−1,1) +

+ 𝛾5(𝛥𝜑2
1,0 + 𝛥𝜑

2
−1,0 + 𝛥𝜑

2
1,1 + 𝛥𝜑

2
−1,−1 + 𝛥𝜑

2
1,−1 + 𝛥𝜑

2
−1,1) +

+ 𝛾6(𝛥u1,1𝛥w1,1 + 𝛥u−1,−1𝛥w−1,−1 − 𝛥u1,−1𝛥w1,−1 − 𝛥u−1,1𝛥w−1,1).

Here the coefficients 𝛾1,. . . , 𝛾6 are

𝛾1 =
a2
2
(K0 + 2K1 +

(2a − d)2

2r20
K2),

𝛾2 =
a2
8
(K0 + 2K1 +

2a2 − 2ad + 5d2

r20
K2), 𝛾3 =

3a2d2

4r20
K2,
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𝛾4 =
3
8
a2(K0 + 2K1 +

2a2 − 2ad + d2

r20
K2), (5.5)

𝛾5 =
3a2d2
16

K1, 𝛾6 =
√
3
4

a2(2K1 −
2a2 − 2ad − d2

r20
K2).

The linear equations of motion for our lattice are obtained using the variational

principle, where parts of the Lagrangian are defined by Eqs. (5.1) and (5.4),

Müi,j −
2𝛾1
a2

(ui+1,j − 2ui,j + ui−1,j) −

−
2𝛾2
a2

(ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4ui,j) −

−
𝛾6

a2
(wi+1,j+1 + wi−1,j−1 − wi+1,j−1 − wi−1,j+1) − (5.6)

−
√
3𝛾3
2a

(−𝜑i+1,j+1 + 𝜑i−1,j−1 + 𝜑i+1,j−1 − 𝜑i−1,j+1) = 0,

Mẅi,j −
2
a2

𝛾1(wi+1,j − 2wi,j + wi−1,j) −

− 2
a2

𝛾2(ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4uij) −

− 1
a2

𝛾6(wi+1,j+1 + wi−1,j−1 − wi+1,j−1 − wi−1,j+1) − (5.7)

− 1
a
𝛾3(𝜑i+1,j − 𝜑i−1,j) −

− 1
2a

𝛾3(𝜑i+1,j+1 − 𝜑i−1,j−1 + 𝜑i+1,j−1 − 𝜑i−1,j+1) = 0,

M�̈�i,j − (16
a2
𝛾5 − 4𝛾3)(𝜑i+1,j + 𝜑i−1,j + 𝜑i+1,j+1 + 𝜑i−1,j−1 +

+𝜑i+1,j−1 + 𝜑i−1,j+1 − 6𝜑i,j) +
8
a
𝛾3(wi+1,j − wi−1,j) +

+ 48𝛾3𝜑i,j −
4
√
3

a
𝛾3(ui+1,j+1 − ui−1,j−1 − ui+1,j−1 + ui−1,j+1) −

− 4
a
𝛾3(−wi+1,j+1 + wi−1,j−1 − wi+1,j−1 + wi−1,j+1) = 0.

(5.8)

Here R =
√
J∕M = d∕8 is the radius of inertia of the microparticles of the medium

with respect to the mass center.

Equations (5.6)–(5.8) obtained in this section can be used for numerical simula-

tion of the response of the system to the external dynamic effects in a wide range of
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frequencies up to the threshold values [30]. It should be noted that non-neighboring

interactions are frequently introduced, if the particles are the material points [24].

It leads to the differences in the Lagrangian, which gives the higher-order deriva-

tives in the continuum limit. In this paper the particles of the lattice are finite size

bodies. They possess both translational and rotational degrees of freedom. In the

low-frequency long-wavelength approximation, when the rotational mode does not

propagate, the three-mode system is reduced to the two-mode system containing the

fourth-order derivatives in equations for the longitudinal and transverse modes [30].

These equations are called equations of the second-order gradient elasticity. Thus,

we achieve appearance of the higher-order derivatives in the governing equations by

another way. Further, the dispersion properties of Eqs. (5.6)–(5.8) will be analyzed.

5.3 Derivation of the Dispersion Equation

The lattice with round particles considered in Sect. 5.2 represents a system with N
degrees of freedom, which is described by coupled equations (5.6)–(5.8), see [16].

Introduction of normal mode variables, makes equations of motion independent [33],

and the arbitrary motion of the system can be represented as a superposition of nor-

mal vibrations. This approach is very convenient both for the theoretical analysis of

the problem and for the physical interpretation of the obtained results. Similar con-

cepts can be also introduced for distributed systems, where interacting waves of var-

ious types can propagate. A generalization of the concept of the normal vibrations of

concentrated systems to “not closed” wave systems (boundless media, waveguides,

tubes, rods, strings, and etc.) gives rise to the normal wave, i.e. traveling harmonic

waves in the linear systems with constant parameters, in which an absorption and

scattering of energy are negligible [34, 35].

In order to study the collective motions arising in an arranged crystalline struc-

ture, we will pass to the normal oscillations. Let us consider solutions of the equa-

tions of motion representing plane monochromatic waves, for which the displace-

ments are

u
(
⃗N, t

)
= u0 exp

[
i
(
𝜔

(
q⃗
)
t − q⃗ ⃗N

)]

w
(
⃗N, t

)
= w0 exp

[
i
(
𝜔

(
q⃗
)
t − q⃗ ⃗N

)]

𝜑

(
⃗N, t

)
= 𝜑0 exp

[
i
(
𝜔

(
q⃗
)
t − q⃗ ⃗N

)]
(5.9)

Here 𝜔 = 𝜔

(
q⃗
)

is a wave frequency regarded as a continuous function of the wave

vector q⃗ =
(
q1, q2

)
that defines both the direction of the wave propagation in the

Cartesian coordinate system (x, y) and the wave length 𝜆 = 2𝜋∕q
(
q = ||q⃗||

)
. The

vector ⃗N = (i, j) fixes the lattice sites. Arbitrary collective motions can be repre-

sented as a superposition of monochromatic waves. Substitution of Eq. (5.9) into
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Eq. (5.6)–(5.8) results in a set of equations in the matrix form for determination of

the amplitudes of displacements,

⎛
⎜⎜⎝

M𝜔

2 − d11 d12 d13
d21 M𝜔

2 − d22 d23
d31 d32 M𝜔

2 − d33

⎞
⎟⎟⎠
⋅
⎛
⎜⎜⎝

u0
w0
𝜑0

⎞
⎟⎟⎠
=
⎛
⎜⎜⎝

0
0
0

⎞
⎟⎟⎠
, (5.10)

where the matrix elements are

d11 =
8𝛾1
a2

sin2(
q1a
2

) +
8𝛾2
a2

(1 − cos(
q1a
2

) cos(
q2a

√
3

2
)),

d22 =
16𝛾3
a2

sin2(
q1a
2

) +
8𝛾4
a2

(1 − cos(
q1a
2

) cos(
q2a

√
3

2
)),

d33 =
8
a2

[
8𝛾5+4a2𝛾3

d2
+
(
𝛾6

√
3 − 𝛾3(1 +

2a
d
)
)
×

×
(
sin2( q1a

2
) − cos( q1a

2
) cos( q2a

√
3

2
)
)]

,

(5.11)

d12 = d21 =
8
√
3

3a2
(𝛾3 − 𝛾4) sin(

q1a
2

) sin(
q2a

√
3

2
),

d13 = −d2
8
d31 = i

2
√
3𝛾3
a

cos(
q1a
2

) sin(
q2a

√
3

2
),

d23 = −d2
8
d32 = −i

2𝛾3
a

sin(
q1a
2

)

(
cos(

q2a
√
3

2
) + 2 cos(

q1a
2

)

)
.

The solvability condition for Eq. (5.10) with coefficients defined by Eq. (5.11) leads

to a bi-cubic dispersion equation for 𝜔,

M3
𝜔

6 + F1𝜔
4 + F2𝜔

2 + F3 = 0, (5.12)

where F1,2,3 are the wave vector functions:

F1 = d11 + d22 + d33,

F2 = d11d22 + d11d33 + d22d33 − d12d21 − d13d31 − d23d32, (5.13)

F3 = −d11d22d33 + d11d23d32 + d22d13d31 + d33d12d21 + d12d23d31 + d13d32d21.
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Dividing Eq. (5.12) by K3
0 and substituting the relationship, 𝜛 = 𝜔

√
M∕K0, one can

obtain the dispersion equation in the dimensionless form:

𝜛

6 − f1𝜛4 + f2𝜛2 + f3 = 0, (5.14)

where f1 = F1∕K0, f2 = F2∕K2
0 , and f3 = F3∕K3

0 . Thus, the left-hand side of Eq.

(5.14) contains three variables: frequency 𝜔 and the components of the wave vector,

q1 and q2. Moreover, the coefficients of Eq. (5.14) depend on the relative particle size

d∕a and on two parameters of the force and couple interactions: K1∕K0 and K2∕K0.

Two lattices correspond to each of the crystal structure: a direct lattice and a

reciprocal one. A direct lattice is a lattice in ordinary space and a reciprocal one

is a lattice in abstract reciprocal space, where distances have a dimension of the

reciprocal length, in fact, it is the Fourier transform of the direct lattice [36]. The

diffraction pattern represents a reciprocal crystal lattice map, just as the microscopic

image is a map of the real crystal structure.

The primitive unit cells which constitute the periodic reciprocal lattice in the

Bloch wave vector space are referred to as Brillouin zones [36]. The first Brillouin

zone can be regarded as a primitive cell of the reciprocal lattice that possesses point

symmetry of this lattice. Indeed, if we construct the first Brillouin zone around each

node of the reciprocal lattice (the origin should be located in the node), then such

zone would entirely fill the entire space without overlapping with each other. From

this fact it follows, in particular, that the volume of the first Brillouin zone is equal

to the volume of the primitive cell of the reciprocal lattice.

The structure of the Brillouin zones is defined only by crystal structure and

depends neither on the type of particles forming the crystal, nor on their interac-

tion. The physical meaning of the Brillouin zone boundaries consists in that they

show the following values of the wave vectors or the electron quasi-pulses, in which

the electron wave cannot propagate in a solid [36].

Next, we will analyze the dispersion properties of the medium in the first Brillouin

zone and on its boundary depending on the values of the microstructure parameters.

5.4 Dispersion Properties of Normal Waves

Like in the solid-state physics, each normal lattice vibration can be associated with a

certain type of quasiparticle—phonon [37]. The considered system has a longitudinal

acoustic (LA) phonon, a transverse acoustic (TA) one, and an optical rotational (OR)

phonon [38]. We pass to the polar coordinate system q1 = q cos 𝜃, q2 = q sin 𝜃, in Eq.

(5.12), where q is the wave vector module and the angle 𝜃 indicates the direction of

the plane wave propagation with respect to x-axis in the direct lattice. In particular,

in the case of propagation of the plane waves, when q2 ≡ 0 and, hence, d12 ≡ d13 ≡
d21 ≡ d31 ≡ 0, Eq. (5.14) is substantially simplified since the longitudinal phonons

become independent in it:
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(𝜛2 −
d11
K0

)
(
(𝜛2 −

d22
K0

)(𝜛2 −
d33
K0

) −
d23
K0

d32
K0

)
= 0, (5.14a)

where 𝜛 = 𝜔∕𝜔0, 𝜔0 =
√
M∕K0 and the coefficients of Eq. (5.14a) have the form:

d11 =
8
a2

[
𝛾1 sin2(

qa
2
) + 𝛾2(1 − cos(

qa
2
))
]
,

d22 =
8
a2

[
2𝛾3 sin2(

qa
2
) + 𝛾4(1 − cos(

qa
2
))
]
, (5.15)

d33 =
8
a2

[8𝛾5 + 4a2𝛾3
d2

+
(
𝛾6

√
3 − 𝛾3(1 +

2a
d
)
)(

sin2(
qa
2
) − cos(

qa
2
)
)]

,

d23 = −d2
8
d32 = −i

2𝛾3
a

(
sin(

qa
2
) + sin(qa)

)
.

From Eqs. (5.14a) and (5.15) it follows that each wave mode has both minimum

and maximum, which values depend on microstructure parameters. Thus, for exam-

ple, along the 𝛤 − K-axis the frequency of the longitudinal phonons has a local

maximum 𝜔

max
LA =

√
2
(
4(𝛾1 + 𝛾2) + 𝛾

2
2∕𝛾1

)
∕Ma2 at the point q =

2
(
𝜋 − arccos

(
𝛾2∕2𝛾1

))
∕a. Consequently, by varying the microstructure parame-

ters, it is possible to specify certain dispersion properties of the crystal [17, 39].

Analysis of solutions of the dispersion Eq. (5.14) is performed for the following

values of the microstructure parameters: d∕a = 0.1, K1∕K0 = 0.5, K2∕K0 = 0.3. The

dispersion curves calculated along directions 𝜃 = 0◦ (𝛤–K), 𝜃 = 30◦ (𝛤–M) and

along the boundary of the Brillouin zone (K −M) are shown in Fig. 5.4.

From Fig. 5.4 it is visible that in the 𝛤 −M-direction the frequency increases

monotonically, when the wave number grows, up to the boundary of the Brillouin

zone, and in the 𝛤 − K-direction the frequency of the longitudinal phonons has

a local maximum 𝜛 ≈ 2.96 located at the point q = 2
(
𝜋 − arctg

(
3
√
7
))

∕a. In

the interval 2
(
𝜋 − arctg

(
3
√
7
))

∕a < q < 4𝜋∕3a the group velocity of rotational

phonons is negative: vgr = d𝜔∕dq < 0. This area is called a backward-wave region
[36]. Usually, a field of the negative group velocity exists for optical phonons in lat-

tices with a complex structure, when more than one particle is present in the Bravais

lattice [36]. Here, a similar situation takes place for acoustic phonons in a simple

lattice. The presence of a backward wave in a medium is associated with the phe-

nomenon of negative refraction provided that the surface of equal frequencies is con-

vex. The longitudinal mode has the maximum frequency 𝜛 ≈ 3.65 that is achieved

on the boundary of the first Brillouin zone at point (q = 2𝜋∕
√
3a). At this point,

the group velocity is equal to zero and therefore a signal with such a frequency can-

not propagate in a crystal lattice. This restriction can be dropped only for nonlinear

perturbations [35], when anharmonic terms are taken into account in equations of
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Fig. 5.4 Dispersion curves

of the hexagonal lattice

motion. The frequency of the transverse phonons has the maximal value 𝜛 ≈ 3.38
at the point K. The rotational (optical) mode has two threshold frequencies: the min-

imum 𝜛(0) ≈ 3.44 and maximum 𝜛 ≈ 4.15 ones. In the frequency range 0 ≤ 𝜛 ≤

3.38 the system has LA-and TA-modes. In the interval 3.28 < 𝜛 < 3.44 there is only

a longitudinal mode and for frequencies 3.44 ≤ 𝜛 ≤ 3.65 there are longitudinal and

rotational modes. And, finally, in the high-frequency range 3.65 < 𝜛 ≤ 4.15, only

the rotational mode is present in the system (Fig. 5.4).

It should be noted that in the continuum approximation the rotational mode has

only one threshold frequency—minimal, whereas the longitudinal and transverse

modes have no threshold frequencies [39]. If a medium consists of material points

(d = 0), then there are no rotational phonons in the medium.

Figure 5.5 shows maps of equal frequencies for longitudinal, transverse, and rota-

tional phonons (for LA-mode 𝜛 = 0.7, 1.0, 1.5, 2.1, 2.7, 3.0, 3.2, 3.3, for TA-mode

𝜛 = 0.7, 1.0, 1.5, 2.1, 2.7, 3.0 and for OR mode 𝜛 = 3.2, 3.3, 3.5, 3.6, 3.7, 3.8). The

horizontal axis represents the projection qx of the wave vector, and along the vertical

axis—qy. The boundaries of the first Brillouin zone are indicated by a dashed line.

Figure 5.5 shows that lines of equal frequencies are circles for small values of the

wave number. Hence, the crystal structure behaves like an isotropic medium in the

long-wavelength range. However, when the wavelength decreases (the magnitude of

the wave vector increases), the properties of acoustic anisotropy begin to appear. In

this case, the transverse waves become anisotropic ones faster than the longitudinal

waves do. For 𝜛 = 3.22 the map of equal frequencies reproduces completely the

structure of the hexagonal lattice at issue.
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Fig. 5.5 Maps of equal frequencies for the hexagonal lattice

5.5 Conclusions

A two-dimensional discrete model of a close-packed (hexagonal) lattice consisting of

rigid non-deformable round particles of finite sizes is elaborated in this paper using

the structural modeling method. This model can be used, for example, for description

of wave processes in phononic crystals and in geophysics—for studying physical

properties of rocks.

Dispersion properties of such a medium have been analyzed for some values of

the microstructure parameters. The analysis showed the existence of a backward

wave, i.e. the wave whose phase and group velocities are oppositely directed. More-

over, if in the long-wavelength (continuum) approximation (when the characteris-
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tic length of an acoustic wave is much larger than the lattice period) the hexago-

nal lattice with round particles is isotropic in terms of acoustic properties, then in

the short-wavelength (discrete) approximation it is anisotropic, and the transverse

waves become anisotropic ones faster than the longitudinal waves do. The rotational

mode has two threshold frequencies: maximum and minimum. In the ranges of low

(0 ≤ 𝜛 < 2.33) and high (2.98 < 𝜛 ≤ 3.28) frequencies, there are two wave modes

in the system, whereas for 2.33 < 𝜛 ≤ 2.98 all three wave modes (longitudinal,

transverse and rotational) are present in the system. The greatest value of the fre-

quency of longitudinal phonons is reached at the boundary of the Brillouin zone at

the point M (q = 2𝜋∕
√
3a).

The similar results were obtained in [17], where the dispersion properties of the

discrete model of the rectangular lattice consisting of ellipse-shaped particles were

analyzed. But, in contrast to the hexagonal lattice considered here, the rectangular

and square lattices are anisotropic in terms of acoustic properties even in the long-

wavelength approximation. Moreover, the continuum approximations of the hexag-

onal and square lattice were considered in [30], where the analytical relationships

between the macroelasticity constants of the medium and microstructure parame-

ters were found. These relationships appeared to be different for the hexagonal and

square lattices.

Dispersion properties of elastic waves in 3D phononic crystals, where rotational

degrees of freedom had been taken into account, were considered in [40].

Transformation from a discrete model to a continuum one is suitable when the

long-wavelength processes are studied [30]. In this case, a comparison of the elabo-

rated model with the well-known continuum theories becomes possible. For ade-

quate description of the dispersion properties in the short-wavelength range (for

instance, frequency band gaps), it is necessary either to remain within a discrete

model, or to pass to a generalized continuum model, for example, in the framework

of the multi-field approach [25, 26] or on the base of Pade approximations [41].

Nonlinear plane waves in media with a hexagonal lattice consisting of material

points were studied in the scope of multi-field models in Refs. [6, 7]. The lattice

models with finite-size particles generalize such models and enable one to take into

account rotational wave effects. Earlier, multi-field models were elaborated only for

square lattices [25, 26]. Nowadays, construction of multi-field models for hexagonal

lattices with finite-size particles is, in our opinion, of prime interest.

The results obtained in this work can be suggested for modeling of artificial

periodic structures consisting of particles of non-zero sizes comparable with the

wavelengths of the considered phenomena, and possessing predetermined dispersion

properties.
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Chapter 6
Emulating the Raman Physics
in the Spatial Domain with the Help
of the Zakharov’s Systems

Evgeny M. Gromov and Boris A. Malomed

Abstract Dynamics of solitons is considered in the framework of the extended
nonlinear Schrödinger equation (NLSE), which is derived from a system of the
Zakharov’s type for the interaction between high- and low-frequency (HF and LF)
waves, in which the LF field is subject to diffusive damping. The model may apply
to the propagation of HF waves in plasmas. The resulting NLSE includes a pseudo-
stimulated-Raman-scattering (pseudo-SRS) term, i.e., a spatial-domain counterpart
of the SRS term which is well known as an ingredient of the temporal-domain
NLSE in optics. Also included is inhomogeneity of the spatial second-order
diffraction (SOD). It is shown that the wavenumber downshift of solitons, caused
by the pseudo-SRS, may be compensated by an upshift provided by the SOD whose
coefficient is a linear function of the coordinate. An analytical solution for solitons
is obtained in an approximate form. Analytical and numerical results agree well,
including the predicted balance between the pseudo-SRS and the linearly inho-
mogeneous SOD.

6.1 Introduction

The great interest to the dynamics of solitons is motivated by their ability to travel
long distances keeping the shape and transferring the energy and information with
no or little loss. Soliton solutions are relevant to nonlinear models in various areas
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of physics which deal with the propagation of intensive wave fields in dispersive
media: optical pulses and beams in fibers and spatial waveguides, electromagnetic
waves in plasma, surface waves (SW) on deep water, etc. [1–7]. Recently, solitons
have also drawn a great deal of interest in plasmonics [8–10].

The propagation of broad high-frequency (HF) wave packets is modeled by the
second-order nonlinear dispersive wave theory. In isotropic media, the basic
equation of the theory is the nonlinear Schrödinger equation (NLSE) [11, 12],
which combines the second-order dispersion (SOD) and the self-phase modulation.
Its soliton solutions provide for the equilibrium of the dispersive dilatation and
nonlinear compression of the wave packets. In particular, permanent-shape solu-
tions for damped solitons were found in the framework of the NLSE including
linear losses of HF waves and spatially-decreasing SOD [4, 13].

In anisotropic media, the copropagation of wave modes with different polar-
izations gives rise to coupled NLSEs [14–17], which include
cross-phase-modulation (XPM) terms. Interactions of vector solitons in the
framework of coupled NLSEs were studied in detail too, see, e.g., [18–20].

The dynamics of narrow HF wave packets is described by the third-order
nonlinear dispersive wave theory [1], which takes into account the nonlinear dis-
persion (self-steeping) [21], stimulated Raman scattering (SRS) [22–24] and
third-order dispersion (TOD). In isotropic media the basic equation of the theory is
the third-order NLSE [24–28]. Soliton solutions in the framework of the third-order
NLSE with TOD and nonlinear dispersion were found in Refs. [29–36]. In Refs.
[37, 38], stationary kink waves were found as solutions of the extended NLSE with
SRS and nonlinear dispersion terms. This solution exists as the equilibrium between
the nonlinear dispersion and SRS. For localized nonlinear wave packets (solitons),
the SRS gives rise to the downshift of the soliton spectrum [22–24] and eventually
to destabilization of the solitons. The use of the balance between the SRS and the
slope of the gain for the stabilization of solitons in long telecom links was proposed
in [25]. The compensation of the SRS by emission of linear radiation fields from the
soliton’s core was considered in [26]. In addition, the compensation of the SRS in
inhomogeneous media was considered in several situations, viz., with periodic SOD
[27, 28], shifted zero-dispersion point of SOD [29], and in dispersion-decreasing
fibers [30].

In anisotropic media the dynamics of narrow vector wave packets is described
by coupled third-order NLSEs, which take into account third-order cross-nonlinear
terms [31–34]. In the framework of this system, which does not include SRS terms,
vector-soliton solutions were found in [32]. Interactions of vector solitons in the
framework of coupled third-order NLSEs were considered in [35].

Intensive short pulses of HF electromagnetic or Langmuir wave in plasmas, as
well as HF SW in deep stratified water, suffer effective induced damping due to
scattering on LF waves, which, in turn, are subject to the action of viscosity.
These LF modes are ion-sound waves in the plasma, and internal waves (IW) in the
stratified fluid. The first model for the damping induced by the interaction with the
LF waves was proposed in [35] (see Sect. 6.2). This model gives rise to an
extended NLSE with the spatial-domain counterpart of the SRS term, that was call a
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pseudo-SRS one (pseudo-Raman). The equation was derived from the system of the
Zakharov’s type equations [37, 38] for the coupled Langmuir and ion-acoustic
waves in plasmas. The pseudo-SRS leads to the self-wavenumber downshift,
similar to what is well known in the temporal domain [1, 21–24] and, eventually, to
destabilization of the solitons. The model elaborated in [36] also included smooth
spatial variation of the SOD, accounted for by a spatially decreasing SOD coeffi-
cient, which leads to an increase of the soliton’s wavenumber, making it possible to
compensate the effect of the pseudo-SRS on the soliton by the spatially inhomo-
geneous SOD, neglecting the direct effect of the LF-wave loss.

The objective of this article is to produce a review of models derived, starting
from systems of the Zakharov’s type, in the form of NLSEs which include the
pseudo-Raman term and other terms which produce soliton pulses as a result of
competition with the pseudo-Raman effect. After reviewing the basic model
equation in Sect. 6.2, in Sect. 6.3 we consider the dynamics of intensive HF wave
packets in dispersive nonlinear media, taking into account the scattering on the
damped LF waves (pseudo-Raman), exponentially decreasing SOD, and linear
losses of HF waves [39].

In Sect. 6.4 the soliton dynamics is considered in the framework of an
higher-order NLSE with a pseudo-Raman effect, decreasing SOD, taking into
account nonlinear dispersion and TOD too [40]. The equilibrium between the
pseudo-SRS and decreasing SOD is considered. The equilibrium state is a stable
focus for negative nonlinear dispersion and positive TOD, and an unstable focus for
positive nonlinear dispersion and negative TOD.

In Sect. 6.5 we address the dynamics of vector solitons in the framework of
coupled extended NLSEs, taking into account pseudo-Raman, cross-pseudo-SRS,
XPM and inhomogeneous SOD [41]. Using analytical and numerical methods, the
compensation of the soliton’s Raman self-wavenumber downshift by the upshift
caused by the decreasing SOD is shown. An analytical vector-soliton solution is
found in the framework of coupled extended NLSEs, representing the equilibrium
of pseudo-SRS and inhomogeneous SOD. The soliton exists with an additional
wavenumber lower than a certain critical value, which is proportional to the
amplitude of the wave packet. By means of direct simulations, we also address
evolution initiated by an input with spatially even and odd components, which
reveals different outcomes, depending on the value of the relative amplitude of the
two components.

In Sect. 6.6 dynamics of solitons is considered in the framework of an extended
nonlinear NLSE, which is derived from a Zakharov-type model for wind-driven
HF SW in the ocean, coupled to damped LF IW [42]. The drive gives rise to a
convective (but not absolute) instability in the system. The resulting NLSE includes
a pseudo-SRS term, which is a spatial-domain counterpart of the SRS term.
Analysis of the field-momentum balance and direct simulations demonstrate that
wavenumber downshift by the pseudo-SRS may be compensated by the upshift
induced by the wind traction, thus maintaining robust bright solitons in both sta-
tionary and oscillatory forms; in particular, they are not destroyed by the underlying
convective instability.
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6.2 Soliton Dynamics in an Extended Nonlinear
Schrödinger Equation with a Pseudo-Raman Effect
and Inhomogeneous Dispersion

We consider the evolution of slowly varying envelope U ξ, tð Þ of the intense HF
wave field in the nonlinear medium with inhomogeneous SOD, taking into account
the interaction with LF variations of the medium’s parameter n ξ, tð Þ (such as the
refractive index in optics), which suffers the action of effective diffusion. The
unidirectional propagation of the fields along coordinate ξ is described by the
system of the Zakharov’s type [37, 38]:

2i
∂U
∂t

+
∂

∂ξ
q ξð Þ ∂U

∂ξ

� �
− nU =0, ð6:1Þ

∂n
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∂ Uj j2
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, ð6:2Þ

where μ is the diffusion coefficient. In particular, this system may describe intense
electromagnetic or Langmuir waves in plasmas, taking into account the scattering
on ion-acoustic waves, which are subject to the viscous damping. In the third-order
approximation of the theory (for short HF wave packets, with kΔ ≪ μ, where k and
Δ are the spatial extension and characteristic wave number of the wave packet),
Eq. (6.2) may approximated by the nonlinear response of the medium,

n= − Uj j2 − μ∂ Uj j2
� �

̸∂ξ, which leads to the following extended NLSE for the HF

amplitude:
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where α = 1 ̸2. Below, we fix α=1 by means of obvious scaling. The last term in
Eq. (6.3) represents the above-mentioned pseudo-Raman effect in the spatial
domain.

Equation (6.3) with zero boundary conditions at infinity, Ujξ→±∞ → 0, gives rise
to the following integral relations for field moments, which will be used below:

dN
dt

≡
d
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Z+∞

−∞

Uj j2dξ=0, ð6:4Þ
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where the complex field is represented as U ≡ Uj j exp iϕð Þ, and K ≡ ∂ϕ ̸∂ξ is the
local wavenumber.

For the analytical consideration of the wave-packet dynamics, we assume that
scale of the inhomogeneity of the SOD term is much larger than the spatial width of
the wave-packet envelope, Dq ≫ D Uj j. Then, a solution of system (6.5)–(6.6) may
be obtained in the adiabatic approximation, based on the use of the sech-like ansatz:

U ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, ð6:7Þ

where Δ tð Þ=
ffiffiffiffiffiffiffiffiffi
q ξ

 �q

̸A tð Þ,Ω tð Þ=A2 tð Þ ̸2,A2 tð ÞΔ tð Þ= const, ξ tð Þ=N − 1
R+∞

−∞
ξ Uj j2dξ. Substi-

tuting (6.7) in (6.5)–(6.6) we derive a system of evolution equations the system for
free parameters k and ξ:

2
dk
dt

= −
8
15

μA4
0q

2
0

q3 ξ

 � −

q′ ξ

 �

A2
0q0

3q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= kq ξ

 �

, ð6:8Þ

where initial values areq0 ≡ q ξ t=0ð Þ
 �
,A0 ≡A t=0ð Þ, which obey the above-mention

relation, A2 tð Þq ξ tð Þ
 �
=A2 t=0ð Þq ξ t=0ð Þ
 �

≡A2
0q0, and q′ ξ


 �
≡ dq ̸dξjξ= ξ is the

derivative (slope) of the SOD coefficient at the soliton’s center. Equation (6.8) give
rise to an obvious equilibrium state (alias a fixed point, FP):

8μq0A2
0 = − 5q′ ξ*


 �
q ξ*

 �

, k* = 0, ð6:9Þ

where ξ* is the equilibrium position of the soliton. For μ= μ* ≡ − 5 ̸8ð Þq′ ξ0

 �

̸A2
0

the equilibrium position of the soliton coincides with its initial position,
ξ* = ξ0 ≡ ξ t=0ð Þ. For μ≠ μ* soliton’s parameters are time-varying. To analyze the
evolution around the FP, we assume linearly decreasing SOD, q′ = const < 0, and
rescale the variables by defining τ ≡ − tq′A0 ̸

ffiffiffiffiffiffiffi
3q0

p
,
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y τð Þ≡ k τð Þ
ffiffiffiffiffiffiffi
3q0

p
̸A0, n τð Þ= q ξ τð Þ
 �

̸q0. ð6:10Þ

Then system (6.8) is reduced to

2
dy
dτ

= −
λ

n3
+

1
n2

+ y2,
dn
dτ

= − ny, ð6:11Þ

where λ ≡ − 8μA2
0 ̸ 5q′

 �

≡ μ ̸μ*. The first integral of Eq. (6.11) is

2y2n3 − 2y20 + λ− 2

 �

n2 − 2n+ λ=0, ð6:12Þ

where y0 = y τ=0ð Þ. Dynamical invariant (6.12) is drawn in the plane of y, nð Þ in
Fig. 6.1a, for y0 = 0 and different values of λ. Trajectories in the plot are closed for
0< λ<2, and open otherwise.

Further, at y20 > 0 straightforward analysis of Eq. (6.11) demonstrates that the
closed trajectories, which are shown in Fig. 6.1a for y20 = 0, stretch in both positive
and negative vertical directions (along the axis of nÞ. In the same case, the critical
value of the pseudo-SRS coefficient, which leads to the destruction of the soliton,
decreases to λcr = 2 1− y20


 �
, the destruction being signaled by the disappearance of

closed trajectories. Thus, the solitons do not exist at y20 > 1; in other words, they
exist with the wavenumber smaller than a critical value, k2 <A2

0α ̸ 3q0ð Þ. Contours
of dynamical invariant (6.12) are plotted in the plane of y, nð Þ in Fig. 6.1b, for
0< y20 < 1 and several values of λ.

We look for stationary solutions to Eq. (6.3), where the SOD with linear spatial
profile is adopted, in the form of a stationary wave profile, U ξ, tð Þ=ψ ξð Þ exp iΩtð Þ:

Fig. 6.1 Contour plots of dynamical invariant (6.12) in the plane of y, nð Þ of the soliton’s rescaled
dispersion and wavenumber (see Eq. (6.10)) for y0 = 0 (a) and 0< y20 < 1 (b), and different values
of constant λ
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q0 + q′ξ

 � d2ψ

dξ2
+ q′

dψ
dξ

+2ψ3 − 2Ωψ + μψ
d ψ2ð Þ
dξ

=0. ð6:13Þ

Next, with regard to the underlying assumption that the soliton’s width is much
smaller than the scale of the spatial inhomogeneity for the SOD, a solution to
Eq. (6.13) is found in the form of ψ =ψ0 +ψ1, where ψ1 is a small correction
produced by terms ∼ q′ and ∼ μ in Eq. (6.13). In this approximation, we obtain

q0
d2ψ0

dξ2
+ 2ψ3

0 − 2Ωψ0 = 0, ð6:14Þ

q0
d2ψ1

dξ2
+ 6ψ2

0 − 2Ω

 �

ψ1 = − q′
d2ψ0

dξ2
ξ−

2
3
μ
d ψ3

0


 �
dξ

− q′
dψ0

dξ
. ð6:15Þ

Equation (6.14) gives rise to the classical soliton solution, ψ0 =A0sech ξ ̸Δð Þ,
whereΔ≡ ffiffiffiffiffi

q0
p ̸A0 andΩ≡A2

0 ̸2. Then substitutions η= ξ ̸Δ andΨ=ψ1q0 ̸ A0q′η
� �

cast Eq. (6.15) in the form of

d2Ψ
dη2

+
6

cosh2 η
− 1

� �
Ψ=

η

cosh η
−

2η
cosh3 η

−
5
4
μ

μ*

sinh η
cosh4 η

+
sinh η
cosh2 η

, ð6:16Þ

where the equilibrium value of the pseudo-SRS coefficient is μ* ≡ − 5q′ ̸ 8A0ð Þ. For
μ= μ* Eq. (6.16) has an exact localized solution for the correction to the standard
sech soliton,

Ψ ηð Þ= 1 ̸4ð Þ tanh η sechηð Þ η2 − ln cosh ηð Þ� 
, ð6:17Þ

cf. a similar solution reported by [43]. It satisfies boundary conditions
Ψ η→±∞ð Þ→ 0. This spatially antisymmetric solution exists due to the balance
between the pseudo-SRS term and linearly decreasing SOD.

6.3 Damped Solitons in an Extended Nonlinear
Schrödinger Equation with a Pseudo-Raman Effect
and Exponentially Decreasing Dispersion

We consider the evolution of a slowly varying envelope, U ξ, tð Þ, of the intensive
HF wave field in the nonlinear medium with inhomogeneous SOD, taking into
account the interaction with the damped LF wave, which is represented by the local
perturbation of the effective refractive index, n ξ, tð Þ. The respective system of the
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Zakharov’s type for the unidirectional propagation of the HF and LF waves is [37,
38]

2i
∂U
∂t

+V
∂U
∂x

� �
+

∂

∂x
q xð Þ ∂U

∂x

� �
− nU + iνU =0, ð6:18Þ

∂n
∂t

+VS
∂n
∂x

− δ
∂
2n
∂x2

= −
∂ Uj j2
� �
∂x

, ð6:19Þ

where ν is the linear-losses coefficient of the HF waves, δ is the viscosity of the LF
waves, V is the HF group velocity, and VS is the velocity of LF waves. As men-
tioned above, this system may describe intensive Langmuir waves in isotropic
plasmas coupled to ion-sound waves, which are subject to the viscous damping.

In the third-order approximation of the theory (see Sect. 6.2) system (6.18)–
(6.19) leads to the following evolution equation for the HF envelope amplitude:

2i
∂U
∂t

+
∂

∂ξ
q ξ+Vtð Þ ∂U

∂ξ

� �
+2αU Uj j2 + μU

∂ Uj j2
� �
∂ξ

+ iνU =0, ð6:20Þ

where ξ= x−Vt, term μU∂ Uj j2
� �

̸∂ξ, with μ≡ δ VS −Vð Þ− 2, is, as above, the

spatial counterpart of the SRS effect in the temporal domain, and
α≡ ð1 ̸2Þ VS −Vð Þ− 1. Below, we fix α=1 by means of obvious scaling. After the
substitution of U ≡W exp − νt ̸2ð Þ, Eq. (6.3) takes the form of

2i
∂W
∂t

+
∂

∂ξ
q ξ+Vtð Þ ∂W

∂ξ

� �
+2W Wj j2exp − νtð Þ+ μW

∂ Wj j2
� �
∂ξ

exp − νtð Þ=0.

ð6:21Þ

Equation (6.21) with zero boundary conditions at infinity, W jξ→±∞ → 0, gives
rise to the following integral relations for the field moments:

dN
dt

≡
d
dt

Z+∞

−∞

Wj j2dξ=0, ð6:22Þ

2
d
dt

Z+∞

−∞

K Wj j2dξ= − μ exp − νtð Þ
Z∞
−∞

∂ Wj j2
� �
∂ξ

2
4

3
5
2

dξ−
Z∞
−∞

∂q
∂ξ

∂W
∂ξ

����
����
2

dξ,

ð6:23Þ
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d
dt

Z∞
−∞

ξ Wj j2dξ=
Z+∞

−∞

qK Wj j2dξ. ð6:24Þ

For the analytical consideration of the wave-packet dynamics, we again assume
that the scale of the inhomogeneity of the SOD term is much larger than the spatial
width of the wave-packet envelope, Dq ≫ DWj j.

We take the HF wave packet as

W ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, ð6:25Þ

cf. Eq. (6.7), where Δ tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q ξ+Vt

 �q

̸ A tð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp − νtð Þp
 �

,Ω tð Þ=A2 tð Þ

exp − νtð Þ ̸2,A2 tð ÞΔ tð Þ= const, ξ tð Þ=N − 1
R+∞

−∞
ξ Uj j2dξ. Substituting (6.25) in

(6.23)–(6.24), we derive the dynamical system:

2
dk
dt

= −
8
15

μA4
0 exp − 4νtð Þq20
q3 ξ+Vt

 � −

q′ ξ+Vt

 �

A2
0 exp − 2νtð Þq0

3q2 ξ+Vt

 � − q′ ξ+Vt


 �
k2,

dξ
dt

= kq ξ+Vt

 �

, ð6:26Þ

where A0 =A 0ð Þ. We now select the spatial variation of SOD in the form corre-
sponding to an exponentially decreasing profile of the SOD,

q= q0 exp − νx ̸Vð Þ. ð6:27Þ

In particular, the realization of fibers with exponentially decreasing profiles of
the SOD was demonstrated experimentally in [44]. Such profiles are created by
variation of the fiber’s diameter. Then system (6.14)–(6.18), with the time,
wavenumber and the soliton’s coordinate redefined as θ≡ νt,
y≡ k

ffiffiffiffiffiffiffi
3q0

p
̸A0, η≡ νξ ̸V , is reduced to

2σ exp θ
dy
dθ

= − λ exp 3ηð Þ+ y2 exp − ηð Þ+ exp ηð Þ, ð6:28Þ

σ exp θ
dη
dθ

= y exp − ηð Þ, ð6:29Þ

where new constants are defined as σ ≡V
ffiffiffi
3

p
̸ A0

ffiffiffiffiffi
q0

p
 �
, y0 = y 0ð Þ, λ≡ 8 ̸5ð ÞμA2

0V ̸ν.
An equilibrium state of Eqs. (6.25)–(6.26) is achieved under conditions
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k* = 0, η* = − 1 ̸2ð Þ ln λ. ð6:30Þ

In the equilibrium regime, the wave packet W propagates with the integral
moment, N, keeping their initial value, N, and zero wavenumber. Therefore, the
field moments for original wave packet, U =W exp − θ ̸2ð Þ decay exponentially,
NU θð Þ=N exp − θð Þ, that θ≡ νt. The first integral of these equations is

3y2 exp − ηð Þ+ λ exp 3ηð Þ− 1½ �+3 1− exp ηð Þ½ �=3y20. ð6:31Þ

In Fig. 6.2a, first integral (6.31) is drawn in the plane of y, ηð Þ for y0 = 0 and
different values of λ. Trajectories in the plot are closed for 0< λ<3, and open
otherwise. In Fig. 6.2b, first integral (6.31) is drawn in the plane of y, ηð Þ for
0< y20 < 1 and different values of λ. Trajectories in the plot are closed for
0< λ< λcr ≡ 3 1− y20


 �
, and open otherwise, cf. Fig. 6.1. The temporal evolution

y θð Þ following from Eqs. (6.28)–(6.29) is shown in Fig. 6.3 for initial condition
y0 = 0 with different σ and λ.

Fig. 6.2 First integral (6.31) in the plane y, ηð Þ of the soliton’s rescaled wavenumber and
coordinate for y0 = 0 (a) and 0< y20 < 1 (b), and different values of constant λ

Fig. 6.3 Time evolution y θð Þ obtained from Eqs. (6.28)–(6.29) for initial condition y0 = 0 with
different values of σ [a: σ =1 ̸10, b: σ =1], and different λ

128 E. M. Gromov and B. A. Malomed



6.4 Soliton in a Higher-Order Nonlinear Schrödinger
Equation with Pseudo-Raman Effect
and Inhomogeneous Second-Order Diffraction

Here we consider the dynamics of the HF wave, field U ξ, tð Þ exp − iωt+ iκξð Þ, in
the framework of inhomogeneous higher-order NLSE with pseudo-Raman,
nonlinear-dispersion, TOD and inhomogeneous-SOD terms:

2i
∂U
∂t

+
∂

∂ξ
q ξð Þ ∂U

∂ξ

� �
+2U Uj j2 + 2iχ

∂ U Uj j2
� �

∂ξ
+ iγ

∂
3U

∂ξ3
+ μU

∂ Uj j2
� �
∂ξ

=0,

ð6:32Þ

where the following notation is used: μ is, as above, the pseudo-SRS strength, χ is
the nonlinear dispersion, and γ is the TOD. Equation (6.1) with zero boundary
conditions on infinity, Ujξ→±∞ → 0, gives rise to the following evolution equations
for integral moments:

dN
dt

≡
d
dt

Z+∞

−∞

Uj j2dξ=0, ð6:33Þ

2
d
dt

Z+∞

−∞

K Uj j2dξ= − μ

Z∞
−∞

∂ Uj j2
� �
∂ξ

2
4

3
5
2

dξ−
Z∞
−∞

dq
dξ

∂U
∂ξ

����
����
2

dξ, ð6:34Þ

N
dξ
dt

≡
d
dt

Z∞
−∞

ξ Uj j2dξ=
Z+∞

−∞

qK Uj j2dξ+ 3
2
χ

Z+∞

−∞

Uj j4dξ− 3
2
γ

Z∞
−∞

∂U
∂ξ

����
����
2

dξ.

ð6:35Þ

For analytical consideration of the system (6.33)–(6.35), we assume that values
of nonlinear dispersion, TOD, and wavenumber are small, χ, γ,K ∼ ε ≪ 1. In this
case, from the imaginary part of (6.32), where terms of order ε2 are neglected, we
derive equation

∂ Uj j2
� �
∂t

+
∂

∂ξ
qK Uj j2 + 3

2
χ Uj j4

� �
+ γ Uj j ∂

3 Uj jð Þ
∂ξ3

= 0. ð6:36Þ

Assuming that wave packets move keeping their shapes,

∂ Uj j2
� �

̸∂t≈ −V∂ Uj j2
� �

̸∂ξ, where V is the velocity of the packet, we obtained

from Eq. (6.36)
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∂

∂ξ
−V Uj j2 + qK Uj j2 + 3

2
χ Uj j4

� �
+ γ Uj j ∂

3 Uj jð Þ
∂ξ3

= 0. ð6:37Þ

Integrating (6.37) for localized wave packets, Uj jξ→ −∞ → 0, and assuming (as
above) that the scale of the inhomogeneity of SOD is much larger than the inho-
mogeneity scale of the wave-packet envelope, D ≫ D Uj j, gives rise to a relation for
the wavenumber:

K = k tð Þ− 3χ
2q ξ

 � Uj j2 + 3γ

2q ξ

 �

Uj j2
∂ Uj jð Þ
∂ξ

� �2
−

γ

2q ξ

 �

Uj j2
∂
2 Uj j2
� �
∂ξ2

, ð6:38Þ

where k tð Þ=V ̸q ξ tð Þ
 �
. Solution of the system of Eqs. (6.34) and (6.35) can be

found in the adiabatic approximation, presenting the solution in sech-like form with
wavenumber distribution (6.38):

U ξ, tð Þ=A tð Þsech ξ− ξ

Δ tð Þ
� �

exp i
Z

K ξ, tð Þdξ− i
2

Z
A2 tð Þdt

� �
, ð6:39Þ

K ξ, tð Þ= k tð Þ− 3
2
χA2 tð Þ
q ξ

 � sech2

ξ− ξ

Δ tð Þ
� �

−
3
2

γ

q ξ

 �

Δ2 tð Þ tanh
2 ξ− ξ

Δ tð Þ
� �

+
γ

q ξ

 �

Δ2 tð Þ ,

ð6:40Þ

where Δ tð Þ≡
ffiffiffiffiffiffiffiffiffi
q ξ

 �q

̸A tð Þ and A2 tð ÞΔ tð Þ=const. Solution (6.39)–(6.40) has two

free parameters: an additional wavenumber k tð Þ and a center-of-mass coordinate
ξ tð Þ. Substituting Eqs. (6.39)–(6.40) in (6.34)–(6.35) and keeping terms of order ε,
we derive a system of equations for k and ξ:

2
dk
dt

= −
8q20A

4
0μ

15q3 ξ

 � − q0A2

0q
′ ξ

 �

3q2 ξ

 � +

2q0γA2
0q

′ ξ

 �

k

q3 ξ

 � −

2χA2
0q

′ ξ

 �

k

q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= qk, ð6:41Þ

where q0 = q 0ð Þ,A0 =A 0ð Þ, and q′ ξ

 �

= dq ̸dξð Þξ. System (6.41) gives rise to an

obvious equilibrium state (alias a fixed point, FP): 8q0A2
0μ= − 5q′ ξ*


 �
q ξ*

 �

, k* = 0.
In particular, for μ= μ* ≡ − 5q′ 0ð Þ ̸ 8A2

0


 �
the FP corresponds to initial soliton

parameters: ξ=0, k=0. For μ≠ μ* soliton’s parameters are time-varying. To analyze
the evolution around the FP, we assume linearly decreasing SOD, q′ = const < 0, and
rescale the variables by defining τ≡ − tq′A0 ̸

ffiffiffiffiffiffiffi
3q0

p
, y≡ k

ffiffiffiffiffiffiffi
3q0

p
̸A0 and n= q ξ


 �
̸q0.

Then system (6.41) is reduced to
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2
dy
dτ

= −
λ

n3
+

1
n2

+ y2 − υ
y
n3

+ ς
y
n2

,
dn
dτ

= − ny, ð6:42Þ

where λ ≡ − 8μA2
0 ̸ 5q′

 �

≡ μ ̸μ*, υ ≡ 2
ffiffiffi
3

p
γA0 ̸

ffiffiffiffiffi
q30

p
, ς ≡ 2

ffiffiffi
3

p
χA0 ̸

ffiffiffiffiffi
q30

p
. The FP

of Eq. (6.42) in the rescale variables is y* = 0, n* = λ. For I≡ υ− λς>0 the FP is a
stable focus, for I = 0 it is a center, and for I < 0 the FP is an unstable focus.
Trajectories in the y, nð Þ plane, obtained from Eq. (6.42) with initial conditions
y0 = 0, n0 ≡ 1 for λ=5 ̸4, and different values of I = υ− 5 ̸4ð Þς≡ υ− λς, are shown
in Fig. 6.4.

For μ= μ* ≡ 5q′ ̸ 8A2
0


 �
, corresponding to λ=1, the FP’s coordinates coincide

with the initial soliton parameters, n0 ≡ 1, y0 = 0. In this case, the soliton’s param-
eters remain constant in time.

6.5 Vector Solitons in Coupled Nonlinear Equations
with the Pseudo-Raman Effect and Inhomogeneous
Dispersion

We consider dynamics of the two-component (vector) HF wave field
E ⃗ ξ, tð Þ=U1 ξ, tð Þ exp iωt− iκξð Þe1⃗ +U2 ξ, tð Þ exp iωt− iκξð Þe ⃗2, where e ⃗1, 2 are unit
vectors of two orthogonal polarizations, and U1, 2 are the corresponding amplitudes.
The consideration is carried out in the framework of two coupled NLSEs including
pseudo-SRS, cross-pseudo-SRS, XPM and inhomogeneous SOD:

Fig. 6.4 Trajectories (6.42)
in the plane y, nð Þ for λ=5 ̸4,
initial conditions
y0 = 0, n0 ≡ 1, and different
values of
I = υ− 5 ̸4ð Þς≡ υ− λς
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2i
∂U1, 2

∂t
∓ δ

∂U1, 2

∂ξ

� �
+

∂

∂ξ
q ξð Þ ∂U1, 2

∂ξ

� �

+2U1, 2 U1, 2j j2 + U2, 1j j2
� �

+ μU1, 2

∂ U1, 2j j2 + U2, 1j j2
� �

∂ξ
=0,

ð6:43Þ

where δ is the group-velocity mismatch between the components, and μ is, once
again, the pseudo-SRS strength. The substitution of U1, 2 = u1, 2 exp ±iδ

R
dξ ̸q ξð Þ� 

transforms Eq. (6.43) into

2i
∂u1, 2
∂t

+
∂

∂ξ
q ξð Þ ∂u1, 2

∂ξ

� �
+

δ2

q ξð Þ u1, 2 + 2u1, 2 u1, 2j j2 + u2, 1j j2
� �

+ μu1, 2
∂ u1, 2j j2 + u2, 1j j2
� �

∂ξ
=0,

ð6:44Þ

with an effective potential δ2 ̸q ξð Þ (this definition implies that q ξð Þ does not vanish;
it may be interesting too to consider a setting with a zero-dispersion point, at which
q ξð Þ=0, but in that case it necessary to take into regard the third-order-dispersion
term, which is not included here).

6.5.1 Analytical Results

Equation (6.44) with zero boundary conditions at infinity, u1, 2jξ→±∞ → 0, gives
rise to the following exact integral relations for a localized wave packet:

dN1, 2

dt
≡

d
dt

Z+∞

−∞

u1, 2j j2dξ=0, ð6:45Þ

2
d
dt

Z+∞

−∞

k1, 2 u1, 2j j2dξ= − μ

Z∞
−∞

∂ u1, 2j j2
� �

∂ξ

∂ u1, 2j j2 + u2, 1j j2
� �

∂ξ
dξ−

Z∞
−∞

dq
dξ

∂u1, 2
∂ξ

����
����
2

+
δ2

q2
u1, 2j j2

 !
dξ

+2
Z+∞

−∞

u1, 2j j2
∂ u2, 1j j2
� �

∂ξ
dξ,

ð6:46Þ

N1, 2
dξ1, 2
dt

≡
d
dt

Z∞
−∞

ξ u1, 2j j2dξ=
Z+∞

−∞

qk1, 2 u1.2j j2dξ, ð6:47Þ
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where u1, 2 = u1, 2j j exp iφ1, 2


 �
, and k1, 2 = ∂φ1, 2 ̸∂ξ are wavenumbers of wave

packets u1, 2.
To analyze of the wave-packet dynamics, we assume, as above, that the scale of

the spatial inhomogeneity of SOD is much larger than the packet’s width, Dq ≫ Δ.
A solution to system (6.3)–(6.5) is then looked for in the form of a sech ansatz, with
two components proportional to each other:

u1 ξ, tð Þ=A tð Þsech ξ− ξ tð Þ
Δ tð Þ

� �
exp ik tð Þξ− i

Z
Ω tð Þdt

� �
, u2 ξ, tð Þ= σu1 ξ, tð Þ,

ð6:48Þ
where σ is a free real parameter, ξ tð Þ= ξ1, 2 tð Þ is the coordinate of the soliton’s

center 2Ω tð Þ= 1+ σ2ð ÞA2 tð Þ+ δ2 ̸q ξ tð Þ
 �
,Δ tð Þ= 1 ̸A tð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q ξ tð Þ
 �

̸ 1+ σ2ð Þ
q

k tð Þ≡ k1, 2 tð Þ, and it is set A2 tð ÞΔ tð Þ= const, which is the usual relation between the
amplitude and width of sech-shaped solitons. Substituting ansatz (6.48) in
Eqs. (6.46) and (6.47), and taking into account the above condition Δ ≪ Dq, leads
to the following evolution equations:

2
dk
dt

= − μ
8
15

1+ σ2ð Þ2q20A4
0

q3 ξ

 � −

1+ σ2ð Þq0A2
0q

′ ξ

 �

3q2 ξ

 � −

δ2q′ ξ

 �

q2 ξ

 � − q′ ξ


 �
k2,

dξ
dt

= kq ξ

 �

, ð6:49Þ

where initial values areq0 ≡ q ξ t=0ð Þ
 �
,A0 ≡A t=0ð Þ, which obey the above-mention

relation, A2 tð Þq ξ tð Þ
 �
=A2 t=0ð Þq ξ t=0ð Þ
 �

≡A2
0q0, and q′ ξ


 �
≡ dq ̸dξjξ= ξ is the

derivative (slope) of the SOD coefficient at the soliton’s center. Equation (6.49) give
rise to an obvious equilibrium state (alias a fixed point, FP):

8μ 1+ λ2

 �2

q20A
4
0 = − 5q′ ξ*


 �
q ξ*

 �

1+ λ2

 �

q0A2
0 + 3δ2

� 
, k* = 0, ð6:50Þ

where ξ* is the equilibrium position of the soliton. In the particular case of λ= δ=0,
relation (6.50) reduces to its counterpart for the single NLSE derived in [38]. For

μ= μ* ≡ − 5 ̸8ð Þq′ ξ0

 �

1+ σ2ð Þq0A2
0 + 3δ2

� 
̸ 1+ σ2ð Þ2q0A4

0

h i
the equilibrium

position of the soliton coincides with its initial position, ξ* = ξ0 ≡ ξ t=0ð Þ.
To analyze the evolution near the FP, we assume a constant value of

the SOD slope around the FP, q′ = const, and rescale the variables by defining

τ≡ − tq′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0A2

0 1 + σ2ð Þ+3δ2
q

̸
ffiffiffi
3

p
q0


 �
, y τð Þ≡ k τð Þ− tq′

ffiffiffi
3

p
q0 ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0A2

0 1 + σ2ð Þ+3δ2
q

n τð Þ≡
q ξ τð Þ
 �

̸q0, thus deriving a simple mechanical system from Eq. (6.49), coinciding
with Eq. (6.11).
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Here we address steady-state solutions of Eq. (6.44) for a linear profile of the
inhomogeneous SOD, viz., q ξð Þ= q0 + q′ξ, in the form of
U2 ξ, tð Þ= σU1 ξ, tð Þ≡ σψ ξð Þ exp iΩtð Þ:

− 2Ωψ +
δ2

q0 + q′ξ
ψ + q0 + q′ξ


 � d2ψ
dξ2

+ q′
dψ
dξ

+2 1+ σ2

 �

ψ3 + μ 1+ σ2

 �

ψ
d ψ2ð Þ
dξ

=0.

ð6:51Þ

Similar to what was adopted above, we again assume that the wave-packet’s
width is much smaller than the scale of the SOD’s spatial inhomogeneity,
Δ ≪ 1 ̸ q′

�� ��. Introducing the corresponding small parameter, ε∼Δ ⋅ q′ ∼ μ ≪ q0, a
solution to Eq. (6.51) can be looked for as ψ =Φ+ϕ, where ϕ is a correction ∼ ε.
Separating terms of orders ε0 and ε1, we obtain

q0
d2Φ
dξ2

+ 2Φ3 1 + σ2

 �

− 2Ω−
δ2

q0

� �
Φ=0, ð6:52Þ

q0
d2ϕ
dξ2

+ 6 1+ σ2

 �

Φ2 − 2Ω+
δ2

q0

� �
ϕ= q′

δ2

q20
Φξ− q′

d2Φ
dξ2

ξ− q′
dΦ
dξ

−
2
3
μ 1+ σ2

 � d Φ3


 �
dξ

.

ð6:53Þ

Equation (6.52) has the standard sech-soliton solution, Φ=Asech ξ ̸Δð Þ, where
Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 ̸ 1+ σ2ð Þp

̸A, and 2Ω= 1+ σ2ð ÞA2 + δ2 ̸q0. Then, in terms of rescaled

variables, η≡ ξ ̸Δ and ϕ≡ q′Ψ ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 1 + λ2

 �q

, Eq. (6.53) takes the form of

d2Ψ
dη2

+
6

cosh2 η
− 1

� �
Ψ

=
δ2

q0 1 + σ2ð ÞA2
0
− 1

� �
η

cosh η
+

2η
cosh3 η

+
sinh η
cosh2 η

+
2μ 1+ σ2ð ÞA2

0

q′
sinh η
cosh4 η

.

ð6:54Þ

An essential result is that, at

μ= μ* ≡ − 5 ̸8ð Þq′ 1+ 3Hð Þ ̸ 1+ σ2

 �

A2
0

� 
, ð6:55Þ

where H≡ δ2 ̸ q0 1 + σ2ð ÞA2
0

� 
, Eq. (6.54) has an exact localized solution for the

correction to the standard sech soliton,

Ψ ηð Þ= 1 ̸4ð Þ sechηð Þ 2Hη+ 1−Hð Þη2 tanh η− 1+ 3Hð Þ tanh ηð Þ ln cosh ηð Þ� 
.

ð6:56Þ
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In the particular case of H=0, which corresponds to δ=0, i.e., in the absence of
the group-velocity mismatch between the polarization components, solution (6.56)
carries over into one obtained above in Sect. 6.2, see Eq. (6.17).

6.5.2 Numerical Results

To check the above analytical results, we here aim to report findings produced
bysimulations of the evolution of initial wave packet u1, 2 ξ, 0ð Þ= 1 ̸

ffiffiffi
2

p
 �
sechξ in

the framework of Eq. (6.44) with a typical linear profile of the inhomogeneous
SOD, q=1− ξ ̸20, δ=1, σ =1 and different values of strength μ of the
pseudo-SMS effect. The respective point (6.50) of the equilibrium between the
pseudo-SRS and inhomogeneous SOD is μ* = 1 ̸8. In the simulations performed
with μ=1 ̸8, at times t>10 the pulse evolves into a stationary localized profile
with zero wavenumber. Figure 6.5 shows the deviation of the absolute value of the
numerically found stationary profile from the sech-soliton input, i.e.,
ϕnumðξÞ= u1, 2ðξÞj j− 1 ̸

ffiffiffi
2

p
 �
sechξ (the solid curve in the figure). The deviation is

very close to the respective analytically predicted correction, given by Eq. (6.56):

ϕ= −
ffiffiffi
2

p
̸80

� �
sechξð Þ ξ− 2 tanh ξ ln cosh ξð Þ½ �, ð6:57Þ

Fig. 6.5 Numerical results: deviation of the absolute value of the numerically found stationary
pulse from the standard soliton shape, ϕnumðξÞ= u1, 2ðξÞj j− 1 ̸

ffiffiffi
2

p
 �
sechξ (the solid curve). The

analytical correction ϕ to the absolute value of the standard soliton solution, given by Eq. (6.57), is
shown by the dashed curve
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as shown by the dashed curve in Fig. 6.5. Change of the pseudo-SMS strength μ
leads to variation of soliton’s wavenumber and amplitude. In particular, Fig. 6.6
shows the simulated spatiotemporal evolution of u1, 2 ξ, tð Þj j for μ= 4 ̸3ð Þμ* ≡ 1 ̸6.
In this case, the soliton performs oscillations without any visible radiation loss, i.e.,
the soliton is dynamically stable in the case, in the oscillatory state.

The above considerations were focused on two-component solitons with similar
shapes of the components. It is an issue of straightforward interest too to consider
the evolution of inputs with opposite parities of the components. For this purpose,
we carried out the simulations initiated by the input with an even profile in one
component, and an odd one in the other:

u1 ξ, 0ð Þ= sechξ, u2 ξ, 0ð Þ=A sech ξ+1ð Þ− sech ξ− 1ð Þ½ �, ð6:58Þ

in the framework of Eq. (6.44) with q=1− x ̸20, δ=0, and different values of A
and μ. Figures 6.7, 6.8, and 6.9 display the resulting spatiotemporal evolution of
u1 ξ, tð Þj j (a) and u2 ξ, tð Þj j (b). For the relative amplitude of the odd component
A=0.8 (with μ=1 ̸10Þ, initial pulse (6.58) transforms into an essentially novel
dynamical mode, in the form of a breather which keeps the opposite parities in its
components (Fig. 6.7). Further, for A=1 (with μ=1 ̸25Þ initial pulse (6.58) splits
into two separating vector solitons of the usual type, with identical parities in the
two components (Fig. 6.8), which is possible as the odd component in Eq. (6.58),
u2 ξ, 0ð Þ, is built as a set of two pulses with opposite signs. Lastly, for A=0.5 (with

Fig. 6.6 Results of the
simulations of the evolution
of the sech-shaped pulse for
μ= 4 ̸3ð Þμ* ≡ 1 ̸6
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μ=1 ̸30Þ the weaker component u2 tends to spread out into a small-amplitude
pedestal, into which a dark soliton is embedded (Fig. 6.9b), while the even com-
ponent u1 shows no essential evolution (Fig. 6.9a). In the latter case, the u2 com-
ponent keeps the spatially odd structure, as dark solitons are odd kink-like
solutions.

Fig. 6.7 The result of simulations of the evolution of the initial pulse (6.58) with opposite parities
of the components, for A=0.8 and μ=1 ̸10: formation of a breather with coupled even and odd
components

Fig. 6.8 The result of simulations of the evolution of the initial pulse (6.58) for A=1 and
μ=1 ̸25: splitting into two vector solitons of the usual type
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6.6 Solitons in a Forced Nonlinear Schrödinger Equation
with the Pseudo-Raman Effect

In this section, we consider the unidirectional copropagating of a slowly varying
envelope, U x, tð Þ, of the complex HF wave field, U x, tð Þ exp ik0x− iω0tð Þ, and its
real LF counterpart, n x, tð Þ (as said above, it may be realized as a local perturbation
of the refractive index, in terms of the optical or quasi-optical propagation). If the
HF and LF fields represent the SW (surface waves) and IW (internal waves),
respectively, in the ocean, the corresponding Zakharov-type system is composed of
the Schrödinger equation for the SW and Boussinesq (Bq) equation for the IW,
coupled by the quadratic terms [45–48]. Although the underlying geometry of the
fluid motion is two-dimensional, the derivation of the coupled system simplifies the
model to the one-dimensional form, as the crucially important geometric elements
which guide the propagating waves, viz., the free surface and interface between the
layers with different densities of water, are one-dimensional. Under the commonly
adopted assumption of the unidirectional wave propagation, the Bq equation may
be reduced to one of the Korteweg–de Vries type. Taking into regard LF viscosity δ
and the linear gain with real coefficient β applied to the SW, which, as said above,
represents the wind forcing in the ocean [49], the system of equations takes the
form of:

2i
∂U
∂t

+V
∂U
∂x

� �
−

∂
2U
∂x2

− β
∂U
∂x

− nU =0, ð6:59Þ

Fig. 6.9 The result of simulations of the evolution of the initial pulse (6.58) for A=0.5 and
μ=1 ̸30: the transformation of the weak odd component into a small-amplitude dark soliton
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∂n
∂t

+VL
∂n
∂x

− δ
∂
2n
∂x2

= −
∂ Uj j2
� �
∂x

, ð6:60Þ

where V and VL are the HF and LF group velocities.
The interplay of the wind, SW and IW is strong enough if the group velocities of

the SW and IW at some (widely different, see below) wavelengths, ΛSW and ΛIW,
are in resonance, and, additionally, the wind’s friction velocity, W , is in resonance
with the SW group velocity [45, 49]. Taking a characteristic value, W ∼ 10 cm/s
[50], the classical dispersion relation for the SW on deep water, ωSW =

ffiffiffiffiffi
gk

p
, and the

characteristic value for the Brunt-Väisälä (buoyancy) frequency, ωBV ∼ 0.01 Hz,
which gives rise to the IW at the interface between the top mixed layer and the
underlying undisturbed one in the ocean (at the depth of a few hundred meters)
[51], one can conclude that the corresponding characteristic HF is ωSW ∼ 50 Hz,
which exceeds the above-mentioned LF, ωBV by three or four orders of magnitude,
thus completely justifying the HF-LF frequency distinction. The difference in the
respective wavelength is dramatic too, the estimate yielding ΛSW ∼ 2 cm and
ΛIW ∼ 10 m.

In the third-order approximation of the theory (see Sect. 6.2) system (6.59)–
(6.60) leads to the following evolution equation for the HF envelope amplitude:

2i
∂U
∂t

=
∂
2U

∂ξ2
+ β

∂U
∂ξ

+2αU Uj j2 − μU
∂ Uj j2
� �
∂ξ

, ð6:61Þ

where ξ≡ x−Vt, α≡ 1 ̸2ð Þ V −VLð Þ− 1, μ≡ δ VL −Vð Þ− 2. Below, we fix α=1 by
means of obvious scaling, as it was done above in a different context.

The gain term in Eq. (6.61) may be formally absorbed by a transition into a
reference frame moving with imaginary velocity, i.e., replacement of real coordi-
nate ξ by Ξ≡ ξ− i β ̸2ð Þt, which makes it possible to obtain exact soliton solutions
to Eq. (6.62) that explicitly feature growth effects induced by the gain [49].
However, we prefer to consider Eq. (6.61) in terms of the real coordinate and time.
Then, it is natural to analyze the dispersion relation for small-amplitude excitations,
governed by the linearized versions of Eq. (6.61), by substituting
U ∼ exp iκξ− iωtð Þ, which produces a complex frequency as a function of real
wavenumber κ:

ω= − κ2 ̸2+ i ̸2ð Þβκ.

The same branch of the HF dispersion relation is valid for system (6.59)–(6.60),
as the nonlinear HF-LF coupling does not affect the dispersion relation. The real
part of the frequency gives rise to the group velocity, Vgr ≡ dω ̸dκ= − κ, hence the
excitation traveling at this velocity grows with the distance, − ξ, as
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U ∼ exp Imω ⋅ tð Þ≡ exp Imω ⋅ ξ ̸Vgr

 �

= exp − βξ ̸2ð Þ ð6:62Þ

(note that it does not depend on the wavenumber, κÞ, which represents a typical
manifestation of the convective instability [52]. This type of the instability implies
that (in contrast with the absolute instability, which drives the growth of quiescent
perturbations), the perturbations grow as they travel away, hence they usually do
not destroy the underlying patterns. Namely, if a soliton of size L, maintained by the
balance between the linear gain and pseudo-SRS term, does not move on the
average (see below), it follows from Eq. (6.62) that the soliton is not hurt by the
convective instability, provided that it is narrow enough, L ≪ β− 1.

Equation (6.61) with zero boundary conditions at infinity, Ujξ→±∞ → 0, gives
rise to the following integral relations for field moments:

dN
dt

≡
d
dt

Z+∞

−∞

Uj j2dξ= β

Z+∞

−∞

k Uj j2dξ≡ − βP, ð6:63Þ

dP
dt

= − β

Z+∞

−∞

∂U
∂ξ

����
����
2

dξ+
μ

2

Z+∞

−∞

∂ Uj j2
� �
∂ξ

2
4

3
5
2

dξ, ð6:64Þ

d
dt

Z+∞

−∞

ξ Uj j2dξ=P+ β

Z+∞

−∞

kξ Uj j2dξ, ð6:65Þ

The moments introduced in Eqs. (6.63), (6.64), and (6.65) determine the norm,
N, momentum, P, and center-of-mass coordinate, ξ, of the wave packet.

The system of exact evolution equations for the moments may be used, as done
above in different contexts, for the derivation of approximate evolution equations
for parameters of a soliton, see Refs. [53–56] and references therein. To this end,
we adopt the usual ansatz for the moving soliton, with amplitude A tð Þ, wavenumber
k tð Þ, and coordinate ξ defined above:

U ξ, tð Þ=A tð Þsech A tð Þ ξ− ξ

 �� 

exp ik tð Þξ− i ̸2ð Þ
Z

A2 tð Þdt
� �

. ð6:66Þ

The substitution of the ansatz into Eqs. (6.63)–(6.65) leads to the following
evolution equations:

dk
dt

=
β

3
A2 −

4
15

μA4,
dA
dt

= βAk,
dξ
dt

= − k, ð6:67Þ

which give rise to an obvious equilibrium state (alias fixed point, FP):
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μ* ≡ 5β ̸ 4A2
0


 �
, k* = 0, ð6:68Þ

where A0 is an arbitrary amplitude if the stationary soliton. To analyze the evolution
around the FP, we rescale the variables by defining τ≡ tβA0 ̸ffiffiffi
6

p
, a≡A ̸A0, y≡ k

ffiffiffi
6

p
̸A0, thus deriving a simple mechanical system from

Eq. (6.67):

dy
dτ

=2a2 1− λa2

 �

,
da
dτ

= ay, ð6:69Þ

where λ≡ μ ̸μ*. Obviously, Eq. (6.69) conserves the corresponding Hamiltonian,

y2 + λ a4 − 1

 �

− 2 a2 − 1

 �

= y20, ð6:70Þ

where y0 is the value of y at a=1. Dynamical invariant (6.70) is drawn in the plane
of y, að Þ in Fig. 6.10a, for y0 = 0 and different values of λ. Evidently, at λ<1 (i.e., if
the pseudo-SRS effect is relatively weak), the soliton’s amplitude periodically
oscillates between maximum and minimum values amax ≡Amax ̸A0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− λð Þ ̸λ

p
and amin = 1. These values swap if the pseudo-SRS effect is stronger, viz., 1 < λ<2
(the amplitude remains constant at λ=1Þ. As it follows from Eq. (6.70), oscillations
of the soliton’s amplitude translate into oscillations of its velocity, which are
symmetric with respect to the positive and negative values.

Lastly, if the pseudo-SRS term is too large, with λ≥ 2, it destroys the soliton, as
the evolution leads to the decay of the amplitude to a=0, while the rescaled
wavenumber takes the limit value y∞ ≡

ffiffiffiffiffiffiffiffiffiffi
λ− 2

p
.

Further, at y20 > 0 straightforward analysis of Eq. (6.70) demonstrates that the
loop trajectories, which are seen in Fig. 6.10a for y20 = 0, stretch in both positive and
negative vertical directions (along the axis of aÞ. In the same case, the critical value

Fig. 6.10 Plots of dynamical invariant (6.70) in plane y, að Þ of the soliton’s rescaled wavenumber
and amplitude for y0 = 0 (a) and 0< y20 < 2 (b), and different values of constant λ
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of the pseudo-SRS coefficient, which leads to the destruction of the soliton,
decreases to λcr = 2− y20; thus, the solitons do not exist at all at y20 > 2. Dynamical
invariant (6.70) is schematically drawn in the plane of y, að Þ in Fig. 6.10b, for
0< y20 < 2 and different values of λ.

6.7 Conclusion

In this article we have produced a review of results obtained in modelsbased on the
extended NLSEs (nonlinear Schrödinger equations) which contain the
spatial-domain counterpart of the SRS (stimulated Raman scattering) term, viz., the
pseudo-SRS one). The NLSEs are derived from the systems of the Zakharov’s type
for electromagnetic or Langmuir waves in plasmas and similar media, in which the
LF field is subject to the diffusive damping. We have studied the soliton dynamics
is the framework of the extended NLSEs, which may also include the smooth
spatial variation of the SOD (second-order dispersion) coefficient. The analytical
predictions were produced by integral relations for the field moments, and
numerical results were generated by systematic simulations of the pulse evolution in
the framework of the extended NLSEs. Stable stationary solitons are maintained, in
particular, by the balance between the self-wavenumber downshift, driven by the
pseudo-SRS, and the upshift induced by the linearly decreasing SOD. The ana-
lytical solutions are found to be in close agreement with their numerical
counterparts.
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Chapter 7
Generalized Differential Effective
Medium Method for Simulating
Effective Physical Properties of 2D
Percolating Composites

Mikhail Markov, Valery Levin and Evgeny Pervago

Abstract In this paper, we propose an approach for calculating the effective
physical properties of composite materials taking into account the percolation
phenomena. This approach is based on the Generalized Differential Effective
Medium (GDEM) method and, in contrast to the commonly used self-consistent
methods, allows us to incorporate the percolation threshold into the homogenization
scheme for simulation of the effective elastic moduli and electrical conductivity of a
2D medium. In this case, the composite is treated as a conductive elastic host where
elliptical inclusions of two types are embedded: (1) non-conductive soft inclusions
and (2) conductive elastic inclusions that have the same properties as the host. The
comparison of theoretical simulations with the experimental data for metal plates
containing holes has shown that the proposed GDEM approach describes well the
elastic moduli and electrical conductivity of materials of such type in the wide range
of hole concentration including the area near the percolation threshold.

7.1 Introduction

The problem of determination of effective properties of inhomogeneous materials is
important for various areas of physics of condensed matter such as physics of
composite materials, optics, rock physics, biophysics etc. Theoretical methods for
the solution of this problem were developed since the 19th century in the pioneer
articles by Rayleigh and Maxwell. Different homogenization methods were
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discussed in the review articles by Bergman and Stroud [1], Berryman [2], Markov
[3], Goncharenko [4], Brosseau [5], and in the book by Kanaun and Levin [6].
There are several approximation schemes which are applied widely for the simu-
lation of effective physical properties of micro-inhomogeneous media. Two
methods, the self-consistent approximation (EMA) and the differential effective
medium (DEM), both proposed by Bruggeman are known to be realizable (Milton
[7], Avellaneda [8]). The effective physical constants of an inhomogeneous material
obtained with the help of both methods obey the rigorous bound of Hashin and
Strickman [9]. Both methods were proposed by Bruggeman [10] for the calculation
of conductivity.

The EMA method was developed for N-component media where all components
are treated equally with no material distinguished as a host [11]. In contrast to the
EMA method, the differential effective medium approximation is based on the
concept that a composite material can be built up by infinitesimal additions of
inclusions into a host material and the material is asymmetrical on the components.
Then, as the included material accumulates to a finite amount, the new composite
becomes the host material, and so on until the described concentration of included
material is achieved [12–14]. In the framework of this method for composite media
with multiple constituents, the effective physical properties depend not only on the
final volume fractions and shapes of the constituents but also on the order in which
the incremental additions are made (see Norris [9], Berryman and Berge [11],
Nemat-Nasser and Hori [15], Chinh [16]).

It was shown that depending on the material microstructure and the contrast
between constituents’ properties, the effective physical properties are described
better using the DEM or the EMA method (Berryman [2]). It is known from
Tobochnik et al. [17] that both methods cannot describe the effective properties of
micro-inhomogeneous media near the percolation threshold. For example, in the 2D
case the DEM approximation overestimates the effective conductivity (Zimmerman
[18]) in the range of the conducting inclusion concentration close and less than the
percolation threshold. The EMA underestimates the effective conductivity pre-
dicting zero-electrical conductivity for the circular conducting inclusion concen-
tration equal to 0.5 [4, 17].

An interesting extension of the DEM approximation was presented in the papers
by Norris [9] and Norris et al. [19]. The authors of the General DEM model
(GDEM) considered two types of inclusions embedded in a host material. Norris [9]
showed that this model contains both DEM and EMA approximations as a par-
ticular case. The physical properties of the composite calculated using the GDEM
depend on the manner by which the solution is constructed [9, 15, 19]. In this case,
the possible solution must be restricted by introducing reasonable assumptions. In
the GDEM model, the construction process of a composite material is uniquely
specified by parametrizing the volume fractions of the included phases. This
scheme leads to an ordinary differential equation for the electric conductivity and to
a system of differential equations in the case of elasticity that can be solved
numerically, and it contains both the EMA and DEM approximations as special
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cases. Later, the GDEM was discussed by Hashin [20], Nemat-Nasser and Hori [15]
and Berryman and Berge [11].

In the current paper, we apply the GDEM approximation for the simulation of
effective elastic moduli and electrical conductivities of 2D composites in the wide
concentration area including the percolation threshold. The modeling results are
presented for experimentally well-examined media that consist of elastic and
conducting hosts containing holes.

The layout of this paper is as follows. In Sect. 7.2 we present the short
description of the GDEM, in Sect. 7.3 we give the modeling results for elastic
moduli and in Sect. 7.4 we demonstrate the calculation results for electric con-
ductivity. The comparison with the experimental data is presented in this section
too. In Sect. 7.5 we discuss the results obtained and present our concluding
remarks.

7.2 Generalized Differential Effective Medium Method
for Elastic Moduli and Conductivity Prediction

To calculate the effective properties of composite media, Norris [9] used the fol-
lowing procedure: he considered a volume V0 of a linear homogeneous material 0
that is characterized by the tensor A0 of physical properties (conductivity or elastic
moduli). Grains of materials 1 and 2 are embedded in the material 0 in such a way
that the total volume is a constant φ0 +φ1 +φ2 = 1, where φi is the volume fraction
of the i-th component.

The construction process continues by removing the current material and
replacing it with grains of materials 1 and 2. At each stage the material is assumed
to be homogeneous. The construction process is uniquely defined by a path in the
φ1,φ2 plane. If we assume that φ1,φ2 are functions of parameter t, the process of
homogenization results in a system of differential equations for the tensor of
effective physical properties.

According to the Norris scheme for 2D systems, two types (phase 1 and phase 2)
of inclusions embedded in a host material are considered. Assuming that the
changes of surface phase concentration are functions of the parameter t(φ1 =φ1 tð Þ
and φ2 =φ2 tð Þ), we obtained the system of equations that describes the elastic
moduli and the equation for the conductivity of an inhomogeneous two-component
medium.

In the case of isotropic medium containing elliptical inclusions, the equations for
elastic moduli have the form:

dK tð Þ
dt

= K1 −Kð ÞP1
dφ1

dt
+

dφ
dt

φ1

1−φ

� �
+ K2 −Kð ÞP2

dφ2

dt
+

dφ
dt

φ2

1−φ

� �
, ð7:1Þ
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dμ tð Þ
dt

= μ1 − μð ÞQ1
dφ1

dt
+

dφ
dt

φ1

1−φ

� �
+ μ2 − μð ÞQ2

dφ2

dt
+

dφ
dt

φ2

1−φ

� �
, ð7:2Þ

where K and μ are bulk and shear moduli of effective medium respectively, Ki and
μi are the bulk and shear moduli of i-th component, φ=φ1 +φ2, where φ1,φ2 are
the surface phase concentrations, and

P ið Þ =
1
3
T ið Þ
jjll ,Q

ið Þ =
1
5

T ið Þ
jjll −Pi

� �
, ð7:3Þ

where repeated subscripts are summed.
The tensor T ið Þ is obtained from the solution of one-particle problem for the

strain of an ellipse placed in the infinite effective medium and affected by a given
uniform strain field far from the inclusion. In the case of elliptical inclusions,
Thorpe and Sen [21] found that for the inclusions of the i-th type

P = 1+Z −
ZY

X +Y
a− b
a+ b

� �2
" #− 1

,

2Q = P
1+ Zð Þ
X + Y

+ 2+A−Xð Þ− 1,

ð7:4Þ

where

X =1+
Aab

a+ bð Þ2
" #

1+ sð Þ,

Y =
A
2

1− sð Þ,Z =
C
2

1+ sð Þ
ð7:5Þ

and

A=
μi
μ

� �
− 1,C=

Ki

K

� �
− 1, s=

K − μ

K + μ

� �
, i=1, 2 ð7:6Þ

where a and b are the ellipse semi-axes, indices j in Eqs. 7.4 and 7.5 are omitted for
simplicity. In Eq. 7.6 the subscript i refers to the inclusions and unsubscribed
quantities that correspond to the effective medium.

As in the 3D case, the sum of the surface phase concentrations obeys the
equation φ0 +φ1 +φ2 = 1, where φ0 is the host material concentration. The initial
conditions for the Eqs. (7.1) and (7.2) are K 0ð Þ=K0, μ 0ð Þ= μ0, where K0 and μ0
are the elastic moduli of the host material. The equation of the GDEM approxi-
mation for conductivity of an isotropic material is:
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dσ
dt

= − G1
dφ1

dt
+G2

dφ2

dt

� �
− G1φ1 tð Þ+G2φ2 tð Þ½ � dφ

dt
1

1−φð Þ , ð7:7Þ

where

Gj = σ ∑
2

k=1

σ − σj
� �

1−L jð Þ
k

� �
σ + L jð Þ

k σj
, j=1, 2; ð7:8Þ

the coefficients L jð Þ
k are the depolarization coefficients of the ellipses associated with

material j and σ is a function of variable t σ = σ tð Þð Þ. In the case of elliptical
inclusions, the depolarization coefficients are given by Osborn [22] and Landau and
Lifshitz [23]

L1 =
a

a+ b
, L2 =

b
a+ b

. ð7:9Þ

The initial condition for the Eq. (7.4) is σ 0ð Þ= σ0 where σ0 is electrical con-
ductivity of the host material.

To describe the properties of a bi-component composite, Norris [9] has made an
assumption that the physical properties of inclusions of the second type (phase 2)
coincide with the properties of the host. In this case, when φ=φ1 +φ2 tends to
unity, the Eqs. (7.1), (7.2) and (7.7) lead to the EMA approximation:

K1 − Kð ÞP1φ1 + K2 − Kð ÞP2φ2 = 0,
μ1 − μð ÞQ1φ1 + μ2 − μð ÞQ2φ2 = 0

G1φ1 + G2φ2 = 0.
ð7:10Þ

In the case when φ2 =
dφ2
dt = 0, Eqs. (7.1), (7.2) and (7.7) lead to the usual DEM

equations:

dK
dφ1

=
1

1−φ1
K1 −Kð ÞP1

dμ
dφ1

=
1

1−φ1
μ1 − μð ÞQ1,

dσ
dφ1

= −G1
1

1−φ1ð Þ .

ð7:11Þ

Both methods give us similar results in the case of low inclusion concentration
range. Unfortunately, these methods lead to different results that lie far from the
experimental data near the percolation threshold. Below we demonstrate that the
GDEM model describes the experimental data up to percolation threshold.
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Generally, Eqs. (7.1), (7.2) and (7.7) can be solved numerically, in some cases it
is possible to obtain the analytical solution, but the analysis of this analytical
solution is out of our consideration. To calculate the electrical conductivity and
elastic moduli we have to determine the functions φ1 =φ1 tð Þ,φ2 =φ2 tð Þ. In the
calculation process, we consider that:

1. The inclusions of the first phase are holes and inclusions of the second phase
have the same physical properties as the host.

2. The host material concentration tends to zero near the percolation threshold,
φ0 tð Þ→ 0 as φ1 approaches φC, where φC corresponds to the critical concen-
tration of the non-conducting phase.

3. The sum of concentrations obeys the condition φ0 +φ1 +φ2 = 1.

In this paper, we make an assumption that the concentrations of both phases are
a power functions of the parameter t:

φ1 tð Þ= a1tγ and φ2 tð Þ= a2tβ ð7:12Þ

Here we consider a more general case that in the paper [24] where we used the
model with γ =1. In order to solve the GDEM equations, we apply the classical
fourth-order Runge-Kutta method [25].

7.3 Elastic Properties Calculations

As the first example of calculations, we present the results for the elastic medium
containing circular holes. It is known from Xia and Thorpe [26], Garboczi et al.
[27] that the percolation threshold for this medium corresponds to elastic phase
concentration equal to 0.33. The dependencies of effective elastic moduli on the
elastic phase concentration φ0 +φ2ð Þ obtained by DEM and GDEM approximations
are presented in Fig. 7.1. The shear and the compression moduli of the host are 1
and 1.667, respectively. The calculations were fulfilled for linear dependence of
component concentration on the parameter t(γ = β=1). The effective moduli
obtained by GDEM method coincide with the classical DEM results (Fig. 7.1) in
high concentration range of the elastic component (the sum of the host and the
component 2 concentrations). However, the GDEM application describes the per-
colation threshold at the elastic phase concentration equal to 0.33 while the elastic
moduli calculated by DEM maintain non-zero values for the elastic phase con-
centration less than 0.33.

The effective moduli obtained by GDEM method coincide with the classical
DEM results (Fig. 7.1) in high concentration range of the elastic component (the
sum of the host and the component 2 concentrations). However, the GDEM
application describes the percolation threshold at the elastic phase concentration
equal to 0.33 while the elastic moduli calculated by DEM maintain non-zero values
for the elastic phase concentration less than 0.33.
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The decreasing of the aspect ratio of elastic inclusions leads to the increasing of
the effective elastic moduli (Fig. 7.2). The aspect ratio of the second phase inclu-
sions affects the elastic moduli only near the percolation threshold (Fig. 7.2b).

Figure 7.3 presents the calculation results for different integration paths. Inclu-
sions of both types are circular. The results obtained demonstrate the influence of
different path on the elastic module near the percolation threshold. In the low hole
concentration φ1ð Þ range, this influence is negligible.

To verify the feasibility of application of the GDEM approach for the effective
elastic moduli prediction we compare the predicted Young module with the
experimental data presented in [28]. The measurements were fulfilled for square
metal sheets containing randomly drilled holes. Holes could overlap or miss each
other by any amount. To minimize finite-size effects the authors used relatively
large samples.

The ratio of the sample size to the hole diameter was 49. In Fig. 7.4, we compare
the experimental data with the modeling results from EMA, DEM, and GDEM
approximations. The effective Young module simulated by EMA was taken from
Thorpe and Sen [21]. The GDEM’s results are obtained for linear dependencies of
surface concentrations φ1,φ2 on the parameter t. The results (Fig. 7.4) for GDEM
are shown for circular inclusions of both phases. The GDEM method describes the
experimental data better than the classical self-consistent methods, which can be
used for the low hole concentration only; the DEM approximation overestimates the

Fig. 7.1 Normalized effective elastic moduli of isotropic medium containing circular holes as an
elastic matrix concentration function. Solid lines correspond to the GDEM and dashed lines are the
DEM approximation
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Young module near the percolation threshold, while the EMA method underesti-
mates this module.

Near the percolation threshold, the value of physical parameter varies as
p− pCð Þδ, [29] where p is an area concentration of matrix phase φ0 +φ2ð Þ and pC
is the surface concentration corresponding to the percolation threshold.

Fig. 7.2 Normalized Young module of a 2D composite as a function of the elastic phase
concentration. Different curves correspond to different aspect ratios of the elastic inclusions α2
(inclusions of the second type)
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Fig. 7.3 Normalized Young module for different powers γ and β in Eq. 7.12

Fig. 7.4 The comparison of the effective conductivity simulated by using the EMA (dot line), the
DEM (solid line), and the GDEM (dash line), approximations with experimental data. The squares
represent the experimental data obtained by Lobb and Forrester [28]
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Our calculations for elastic moduli have shown that the GDEM gives the value of
critical exponent δ in the range of 1.6–2 depending on the model parameters (in-
tegration path and aspect ratio of elastic inclusions). In the cases of lattice simu-
lation [17] and experimental data [28], δ is smaller.

7.4 Effective Conductivity Calculations

As in the case of elastic moduli, the influence of integration path (different powers γ
and β in Eq. 7.12) on the conductivity is small for the hole concentrations lying far
from the percolation threshold (Fig. 7.5).

In contrast to the elastic moduli, the aspect ratio of the second phase inclusions
(conducting inclusions) significantly influences the electrical conductivity. The
decreasing of the aspect ratio of conducting inclusion leads to the decreasing of the
effective conductivity (Fig. 7.6). Near the percolation threshold the electrical con-
ductivity varies as σ ∝ p − pCð Þδ, where p is the surface concentration of the
conducting phase φ0 +φ2ð Þ and pC is the surface concentration of the conducting
phase corresponding to the percolation threshold. In the case of a 2D system
containing circular holes, computer simulations and experimental measurements
give the value of the critical exponent δ in the range 1.2–1.4. The GDEM model
gives the value of critical exponent that is in this range (Fig. 7.6b).

Fig. 7.5 Normalized effective conductivity as a conducting phase concentration. The calculations
are presented for different powers γ and β in Eq. 7.12
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Fig. 7.6 Normalized effective conductivity calculated by the GDEM for γ = β=1 and the power
law dependence p− pcð Þδ, where p is the conductive phase concentration (φ0 +φ2) and pc is the
percolation threshold of the conductive phase concentration. Different curves correspond to
different aspect ratios of conducting phase (α2)
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We compare the electrical conductivities obtained by using the different
self-consistent methods with the experimental data presented in Lobb and Forrester
[28] for an aluminum plate containing circular holes and with the results of
random-walk calculation of Tobochnik et al. [17] (Fig. 7.7). The DEM approxi-
mation overestimates the conductivity, while the EMA method underestimates it.
The results for the GDEM method are presented for the linear dependence of phase
concentrations on the parameter t(γ = β=1Þ. The comparison of the experimentally
measured data and the simulation of Tobochnik et al. [17] with the GDEM pre-
dictions demonstrates their good correspondence.

The experimental data for a composite medium containing elliptical inclusions
was obtained by Tobochnik et al. [30]. The samples are aluminized Mylar sheets
consisting of 0.5 in. thick Mylar plastic covered with a 500 Å film of aluminum.
The sample is a square sheet with the length of 23.1 cm and the slit length is 1/50 of
that. The measurements were fulfilled for non-conductive inclusions (phase 1) with
the aspect ratio α1 = 1 ̸43. In Fig. 7.8, we show these experimental data and the
GDEM results for the linear dependence of phase concentrations on the parameter t.

The comparison of our calculations with the experimental data set has shown
that the GDEM predictions are in satisfactory agreement with measured data.

Fig. 7.7 The comparison of the normalized effective conductivity simulated by using the EMA
(dash line), the DEM (dash dot-dot line), and the GDEM approximations for γ = β=1 with
experimental data. The solid and dot lines correspond to the GDEM method with α2 = 1, and 0.5,
respectively. The squares represent the experimental data obtained by Lobb and Forrester [28]. The
circles represent the lattice simulation data obtained by Tobochnik et al. [17]
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7.5 Concluding Remarks

It is well known that the classical effective medium theories such as the EMA or
DEM approximations predict effective physical properties of 2D composite mate-
rials in the case of sufficiently low inclusion concentrations [26]. The DEM
approximation overestimates effective physical properties of inhomogeneous media
near the percolation threshold. In contrast, the EMA method by Bruggeman [10]
gives us zero value of elastic moduli and conductivity of composites far from the
real value of critical porosity corresponding to the percolation threshold. In this
paper, we adopted for 2D media the GDEM approximation developed by Norris
and co-authors firstly for 3D composite materials for determination of elastic
moduli and conductivity of 2D inhomogeneous material prediction. As in the case
of DEM approximation, this scheme leads to a system of ordinary differential
equations of the first order that can be solved numerically. In contrast to the
classical DEM approximation, the physical properties of a composite calculated by
the GDEM approach depend on the manner by which the solution is constructed [9,
19]. In our case, the construction process of a composite material is uniquely
specified by parametrizing the surface concentration of the included phases.
The GDEM method does not predict the percolation threshold but the application of

Fig. 7.8 Effective conductivity predicted by the GDEM method for the 2D conducting medium
containing a random distribution of elliptical holes (α = 1/43). The solid and dashed lines
correspond to the models with different shapes of the conducting phase α2 = 1 and α2 = 1/2,
respectively. The calculations are fulfilled for γ = β=1. The squares are the experimental data by
Tobochnik et al. [30]
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this method allows us include the information about the value of critical porosity to
improve the calculation scheme.

Our calculations show that the GDEM approximation describes the experimental
data in the high inclusion concentration better than the classical self-consistent
schemes. In the low concentration range all methods give similar results.

To our mind, the GDEM approximation is a powerful tool for prediction of
physical properties of inhomogeneous media containing high contrast inclusions. It
is possible to find many applications of this method in rock physics and physics of
composite materials. One of the possible applications of the GDEM approximation
is the description of rocks near the critical porosity, i.e., the porosity that separates
their mechanical and acoustic behavior into two distinct domains. For porosities
lower than critical, the mineral grains are load-bearing, whereas for porosities
greater than critical, the rock simply “falls apart” and becomes a suspension, in
which the fluid phase is load bearing. The other feasible application of GDEM
approximation is the calculation of electric conductivity of low-porosity rocks near
the percolation threshold.
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Chapter 8
Nonlinear Acoustic Wedge Waves

Pavel D. Pupyrev, Alexey M. Lomonosov, Elena S. Sokolova,
Alexander S. Kovalev and Andreas P. Mayer

Abstract Among the various types of guided acoustic waves, acoustic wedge
waves are non-diffractive and non-dispersive. Both properties make them suscep-
tible to nonlinear effects. Investigations have recently been focused on effects of
second-order nonlinearity in connection with anisotropy. The current status of these
investigations is reviewed in the context of earlier work on nonlinear properties of
two-dimensional guided acoustic waves, in particular surface waves. The role of
weak dispersion, leading to solitary waves, is also discussed. For anti-symmetric
flexural wedge waves propagating in isotropic media or in anisotropic media with
reflection symmetry with respect to the wedge’s mid-plane, an evolution equation is
derived that accounts for an effective third-order nonlinearity of acoustic wedge
waves. For the kernel functions occurring in the nonlinear terms of this equation,
expressions in terms of overlap integrals with Laguerre functions are provided,
which allow for their quantitative numerical evaluation. First numerical results for
the efficiency of third-harmonic generation of flexural wedge waves are presented.
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8.1 Introduction

Since the nineteen-seventies and especially in the nineteen-eighties and nineteen-
nineties, nonlinear phenomena in connection with guided acoustic waves consti-
tuted a very active field of research, bringing together researchers in different fields
like mechanical and electrical engineering, applied mathematics, geophysics and
solid state physics. Gérard Maugin took a very important part in these activities as
one of his numerous research topics. Not only did he advance the theory of non-
linear guided waves, considering a model that contains the essentials for nonlinear
surface waves of shear-horizontal polarization [1–4]. He also efficiently helped this
topic to develop as a conference organizer, editor and textbook author [5]. At an
early stage, he recognized the necessity of having reliable data for the nonlinear
material properties. His compilation of linear and nonlinear material constants in his
well-known book “Nonlinear electromechanical effects and applications” [6] was a
valuable source that enabled researchers to obtain quantitative results for estimating
the size of the effects they predicted.

The nonlinear wave phenomena considered by Gérard Maugin in the
above-mentioned publications refer to the regime of large dispersion, where
envelope solitons of the nonlinear Schrödinger-type occur. They are modulations of
a guided acoustic carrier wave, and apart from the second harmonic of this carrier
wave, higher harmonics are largely irrelevant [7, 8]. This regime of large dispersion
was also considered in the context of acoustic wedge waves in an early theoretical
work [9]. At the same time, nonlinear phenomena have been investigated in con-
nection with guided acoustic waves that are not dispersive. The prototype of this
type of guided acoustic waves are Rayleigh waves or, more generally, surface
acoustic waves (SAWs) in elastic media that may be anisotropic and, in addition,
piezoelectric. We briefly review these theoretical investigations on nonlinear SAWs
here since they bear many similarities with the case of acoustic wedge waves. In the
absence of linear dispersion, second-order nonlinearity leads to rapid growth of
higher harmonics of a fundamental monochromatic input wave. The nonlinearity is
small, since maximum strains below the breaking limit of most common materials
are below 10−2, and the third-order elastic constants are normally not larger than the
second-order elastic constants by more than one order of magnitude. This allows
asymptotic methods to be used. Their application to SAWs has been pioneered by
Reutov [10], Kalyanasundaram [11], Lardner [12], Parker [13], Zabolotskaya [14]
and others. (For reviews with more references to the original literature see [15–17].
Reference [16] also contains a comparison between different approaches). A non-
linear evolution equation was derived by these authors for the waveforms of SAWs
at the surface. With the help of this evolution equation, steepening or spiking of
initially sinusoidal waveforms [13, 14, 18, 19] or pulses [20] with propagation
distance up to shock formation was found. The shock formation distance as well as
the waveforms for the components of the displacement field vertical or parallel to
the surface are governed by a kernel in the evolution equation which depends on
the second-order and third-order elastic constants of the elastic medium.
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The nonlinearity-induced evolution of the displacement components of an initially
sinusoidal Rayleigh wave was experimentally observed as early as 1984 [21].
Nonlinear evolution of surface acoustic pulses including shock formation was
demonstrated experimentally by laser ultrasound techniques [20, 22] in excellent
agreement with theory.

When small linear dispersion is introduced, for example by coating the elastic
medium with a thin film of a different material, the evolution equation for nonlinear
SAWs becomes similar to the Benjamin-Ono- or Korteweg-de Vries (KdV) equa-
tion with a non-local nonlinearity [16]. The interplay between dispersion and
nonlinearity gives rise to solitary waves, which have been predicted and verified
experimentally in laser-ultrasound experiments [16]. In case of anisotropic sub-
strates, the shape of these solitary pulses (i.e. the displacement or displacement
gradient components at the surface as function of arrival time at a certain obser-
vation point on the surface) strongly depends on the kernel in the nonlinear evo-
lution equation. For a simplified version of this evolution equation including weak
linear dispersion of the KdV type, analytic solutions for solitary pulses and sta-
tionary periodic wave profiles (analogs to the cnoidal wave solutions of the KdV
equation) have been found [16].

Other types of guided acoustic waves which are non-dispersive and which
exhibit straight-crested wave-fronts, characterized by a two-dimensional
wave-vector (2D guided waves), are Stoneley waves, propagating at the planar
interface of two homogeneous solid media, Scholte waves, propagating at the
planar interface between a solid and a fluid, and Bleustein-Gulyaev waves. The
latter are surface acoustic waves with shear-horizontal polarization, which owe their
surface localization to the coupling to the electric field in piezoelectric elastic
media. The equation governing nonlinear waveform evolution of Stoneley and
Scholte waves was found to be very similar to that of Rayleigh waves [23]. In the
case of Bleustein-Gulyaev waves, even harmonics of a sinusoidal straight-crested
input wave are polarized in the sagittal plane and have no shear-horizontal dis-
placement component in common propagation geometries. As a consequence of
this different symmetry type of even and odd harmonics, the evolution equation for
nonlinear Bleustein-Gulyaev waves contains an effective third-order instead of a
second-order nonlinearity [24].

The absence of linear dispersion in surface and interface waves is due to the
absence of any length scale in these systems. A further type of non-dispersive
guided acoustic waves are wedge waves, i.e. acoustic waves propagating along the
apex of a wedge made of an homogeneous elastic material. The apex line is
the intersection line of two planar surfaces of the elastic medium. Obviously, this
system is lacking a length scale, too. Unlike surface and interface waves, wedge
waves are one-dimensionally (1D) guided waves in the sense that their associated
displacement field is localized at the wedge tip and decays to zero away from the
apex line. Monochromatic acoustic wedge waves (AWWs) may be characterized by
a one-dimensional wave-vector parallel to the wedge tip. Because of their 1D
character, they propagate without diffraction. Acoustic wedge waves were dis-
covered in numerical calculations in the early seventies [25, 26]. In isotropic media
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as well as anisotropic media with the mid-plane of the wedge being a reflection
plane, wedge waves may be distinguished by their symmetry properties. They are
either symmetric (even) or anti-symmetric flexural (ASF, odd) modes [27]. The
latter symmetry type of acoustic wedge waves is illustrated in Fig. 8.1. The
numerical findings of [27] and later systematic studies on wedge wave existence in
isotropic media [28] revealed that for Poisson ratios in the range of practical
materials and wedge angles equal to or smaller than 90°, only ASF modes exist. In
anisotropic media, the situation is much more complex [29]. For slender wedges
(opening angles typically smaller than 60° in isotropic media), more than one
wedge wave branch exists, and the velocity of wedge waves belonging to a certain
branch decreases with decreasing opening angle of the wedge.

For precise calculations of the speeds and displacement patterns of linear
AWWs, numerical methods have to be used. In the pioneering works [25, 26], two
approaches were used, namely the finite element method [25] and an expansion of
the displacement field in a double series of Laguerre functions. This expansion is
carried out after having applied a conformal mapping of the wedge with arbitrary
opening angle into a rectangular wedge [27, 30]. This latter method has been
extended for the computation of the kernel in the equation governing wave-form
evolution of AWWs due to second-order nonlinearity [31]. In order to obtain
analytic results in the limiting case of slender wedges, approximations like
thin-plate theory with varying plate thickness [32] and an expansion in powers of
the wedge angle [33] have been introduced. A wealth of results was obtained on the
basis of ray theory, i.e. geometric acoustics [34, 35].

The geometric acoustics approximation and the direct expansion of the wedge
wave displacement field in powers of the wedge angle have been used in investi-
gations of nonlinear properties of AWWs, the prior to harmonic generation and

Fig. 8.1 Anti-symmetric
flexural (ASF) acoustic wedge
wave. θ : opening angle of the
wedge
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nonlinear mixing [36, 37], the latter to self-interaction and third-harmonic gener-
ation due to third-order nonlinearity [38].

Already shortly after the discovery of AWWs, first experiments on nonlinear
properties were carried out [39, 40]. Adler et al. [40] investigated experimentally
harmonic generation and nonlinear mixing of two input waves at a rectangular edge
of LiNbO3. Effects due to second-order nonlinearity were found to be relatively
small in comparison to those on surface waves, unlike third-order nonlinear effects,
which had appreciable magnitude. The authors attributed this finding to the sym-
metry of the wedge modes in this system. Later, Krylov and Parker derived non-
linear evolution equations for wedge waves of even and odd symmetry. In the case
of even wedge modes, the evolution equation contains an effective second-order
nonlinearity similar to the corresponding equation for Rayleigh waves. However,
for ASF modes, i.e. wedge waves of odd symmetry, it is an effective third-order
nonlinearity that occurs in the evolution equation, and no second-order term is
present. Unfortunately, this work remained unpublished.

In the following section, we shall first present a derivation of a nonlinear evo-
lution equation for nonlinear AWWs which are either of even symmetry or which
propagate in a wedge that has no reflection symmetry with respect to its mid-plane.
This derivation differs to some extent from the one given in [31] and is closer to
numerical calculations of the kernel functions arising in this equation. In Sect. 8.3,
consequences of the evolution equation and their experimental verification with
laser ultrasound will be discussed. Especially the tendency towards shock formation
at anisotropic wedges will be briefly compared with the corresponding phenomenon
for surface and bulk acoustic waves.

When weak dispersion of AWWs, which arises if the tip of the wedge is trun-
cated, for example, is taken into account in the evolution equation, solitary wave
solutions of this equation can be found numerically. For a simplified version of this
evolution equation including weak linear dispersion with a specific dependence of
the frequency on wavelength, we derive an analytic expression for a solitary wave
solution, which is compared with a corresponding solution of the nonlinear evo-
lution equation for SAWs with a specific dispersion law [16].

In the last section, the derivation of a nonlinear evolution equation for AWWs is
extended to account for third-order nonlinearity. This is especially relevant for ASF
modes in isotropic wedges, where the effective second-order nonlinearity vanishes.
From a mathematical point of view, the situation is comparable to the nonlinear
evolution equation for Bleustein-Gulyaev waves mentioned above [24]. Very
recently, nonlinear effects on guided acoustic waves have gained renewed interest,
partly because of their relevance for non-destructive evaluation (NDE) to detect
pre-fatigue at an early stage [41]. Defects give rise to modifications of the elastic
properties of a material, which may affect especially its higher-order elastic con-
stants [42]. The defects arising as a result of cyclic load, for example, may cause the
elastic medium to become weakly anisotropic with no reflection symmetry with
respect to the mid-plane of the wedge. For this situation, an evolution equation is
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derived that governs waveform evolution of “largely anti-symmetric flexural”
wedge waves and which contains simultaneously an effective second-order and
third-order nonlinearity.

8.2 Evolution Equation with Second-Order
Nonlinearity Only

The following derivations refer to a wedge geometry with a Cartesian coordinate
system defined in Fig. 8.2. We start with the Lagrangian L for a nonlinear elastic
medium,

L=
Z
V

1
2
ρ uα̇uα̇ −Φ

� �
d3x , ð8:2:1Þ

where ρ is the mass density of the elastic medium and uα(x1, x2, x3, t), α = 1, 2, 3,
are the Cartesian components of the displacement field, depending on the material
coordinates xβ, β = 1, 2, 3, and time t. Cartesian indices are denoted by lower-case
Greek letters, and summation over repeated Cartesian indices is implied. A dot on a
symbol denotes derivative with respect to time of the corresponding quantity. The
integration in (8.2.1) has to be performed over the volume V of the undeformed
elastic medium. The density of potential energy Φ is expanded in powers of dis-
placement gradients (uα,β is the partial derivative of the displacement component uα
with respect to xβ),

Fig. 8.2 Wedge geometry
and coordinate system.
Mid-plane of wedge indicated
with dashed boundary
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Φ=
1
2
Cαβ μν uα, β uμ, ν +

1
6
Sαβ μν γδ uα, β uμ, ν uγ, δ

+
1
24

Sαβ μν γδ κλ uα, β uμ, ν uγ, δ uκ, λ + O ð∇uÞ5
� �

.
ð8:2:2Þ

In an elastic medium without pre-stress, the components of the fourth-rank
tensor C are the second-order elastic constants, the components of the sixth-rank
tensor S are linear combinations of second-order and third-order elastic constants
and those of the eighth-rank tensor S are linear combinations of second-order,
third-order and fourth-order elastic constants [43].

The displacement field is now expanded in a complete set of functions in the
following way:

uαðx1, x2, x3, tÞ=
Z∞
−∞

∑
I
fIðx2, x3; qÞ eiqx1 aðαÞI ðq, tÞ dq

2π
. ð8:2:3Þ

The functions fI may, but need not, depend on the 1D wave-vector q. The reality
of the displacement field is guaranteed by the requirements

fIð x2, x3; − qÞ= f *I ðx2, x3; qÞ, aðαÞI ð− q, tÞ = aðαÞ*I ðq, tÞ . ð8:2:4Þ

In (8.2.4) and the following, a star at a symbol denotes the complex conjugate.
The quantities aI

(α)(q, t) may be the node displacements in a 2D finite element
scheme with fI being shape functions, for example. A perfect homogeneous wedge
does not contain any length scale. This suggests the form

fIð x2, x3; qÞ= f Îðjqjx2, jqjx3Þ ð8:2:5Þ

for the functions fI. (We note that for finite element calculations of nonlinear
quantities, the ansatz (8.2.5) may not be favorable as it makes the mesh q-depen-
dent.) In our numerical calculations, we follow [26, 27, 30, 31] and choose fI as a
product of two Laguerre functions φn with I being a combined index of the two
non-negative integer indices of the two Laguerre functions,

f ð̂m, nÞð y, zÞ=φmðs1ηðy, zÞÞ φnðs2ζðy, zÞÞ, ð8:2:6Þ

where η(y, z), ζ(y, z) is a linear transformation that maps the wedge with opening
angle θ into a rectangular one [27], and s1, s2 are dimensionless factors that may be
chosen to optimize convergence in the numerical calculations [44].

After inserting (8.2.3) with (8.2.5) in (8.2.1) with (8.2.2), Hamilton’s principle
yields the following equation of motion for the expansion coefficients aI

(α)(q, t):
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− ∑
J
NIJðqÞ að̈αÞJ ðqÞ= ∑

J
MðαβÞ

IJ ðqÞ aðβÞJ ðqÞ

+
1
2
∑
J,K

Z∞
−∞

V ðαβγÞ
IJK ð− q, k, q− kÞ aðβÞJ ðkÞ aðγÞK ðq− kÞ dk

2π

+
1
6

∑
J,K, L

Z∞
−∞

Z∞
−∞

W ðαβγδÞ
IJKL ð− q, k, k0, q− k− k0Þ

× aðβÞJ ðkÞ aðγÞK ðk0Þ aðδÞL ðq− k− k0Þ dk
2π

dk0

2π
+ Oða4Þ.

ð8:2:7Þ

The “mass matrix” N,

NIJðqÞ=
ZZ
A

f
*̂
I ðjqjx2, jqjx3Þ ρ f Ĵðjqjx2, jqjx3Þ dx2 dx3, ð8:2:8Þ

where A is the cross section of the infinite wedge, becomes a positive real multiple
of the unit matrix if the functions fI are orthogonal and normalized appropriately.
With the choice (8.2.5), (8.2.6) we obtain

NIJðqÞ= δIJN0ðqÞ ð8:2:9Þ

with N0(q) = ρ/(q2 s1 s2 d), where d is the determinant of the linear map η(y, z),
ζ(y, z). Explicit expressions for the quantities M, V, W on the right-hand side of
(8.2.7) in terms of the material constants in (8.2.2) and the functions fI are given in
Appendix A.

We now write the time-dependent coefficients aI
(α)(q, t) in the form of an

expansion in powers of a typical strain ε and introduce a stretched time coordinate
τ = ε t,

aðαÞI ðq, tÞ= ε að̃αÞI ðq, t, τÞ + ε2 bðαÞI ðq, t, τÞ + ε3cðαÞI ðq, t, τÞ +Oðε4Þ, ð8:2:10Þ

which is inserted in the equation of motion (8.2.7) with (8.2.9). At first order of ε
the equation of motion admits a solution of the form

að̃αÞI ðq, t, τÞ =wðαÞ
I ðqÞAðq, τÞ e− iqvW t, ð8:2:11Þ

where w is an eigenvector of the matrix M corresponding to a wedge wave. It
depends only on the sign, not on the modulus of q, and we have to require
w(q) = w*(−q). The eigenvalue that corresponds to this eigenvector is N0 (q vW)

2,
and vW is the phase velocity of the wedge wave.

At second order of ε we obtain from the equation of motion (8.2.7)
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−N0ðqÞ bð̈αÞI ðqÞ− ∑
J
MðαβÞ

IJ ðqÞ bðβÞJ ðqÞ

= − 2iN0ðqÞqvWwðαÞ
I ðqÞ ∂

∂τ
AðqÞ+ 1

2

Z∞
−∞

∑
J,K

V ðαβγÞ
IJK ð− q, k, q− kÞ

8<
:

× wðβÞ
J ðkÞwðγÞ

K ðq− kÞAðkÞAðq− kÞ dk
2π

�
e− iqvW t.

ð8:2:12Þ

Equation (8.2.12) constitutes a system of linear inhomogeneous differential
equations for the unknown functions b(q, t). To ensure for this system of equations
the existence of a solution that is bounded as function of t, a compatibility condition
has to be satisfied, which can be brought into the form

2iN0ðqÞqvW ∑
I, α

jwðαÞ
I j2 ∂

∂τ
AðqÞ= 1

2

Z∞
−∞

∑
I, J,K

V ðαβγÞ
IJK ð− q, k, q− kÞ

× wðαÞ
I ð− qÞwðβÞ

J ðkÞwðγÞ
K ðq− kÞAðkÞAðq− kÞ dk

2π
.

ð8:2:13Þ

This is the nonlinear evolution equation for the amplitudes A(q) of AWWs with
wavevectors q. The scaling properties of the function V, which follow from Eqs.
(A.3) and (A.9) in Appendix A, allow (8.2.13) to be cast into the form

i
∂

∂τ
BðqÞ= qvW

Zq

0

Gðk ̸qÞ BðkÞBðq− kÞ dk
2π

8<
:
+2

Z∞
q

ðq ̸kÞ2 G*ðq ̸kÞ BðkÞB*ðk− qÞ dk
2π

9=
;

ð8:2:14Þ

in terms of displacement gradient amplitudes B(q) = iqA(q). This equation involves
only positive 1D wavevectors q, k. The (in general complex) dimensionless func-
tion G(X) has the property G(X) = G(1 − X) and hence needs to be computed for
arguments X in the interval [0, 1/2] only. Explicitly,

GðXÞ= − i

N ̂Xð1−XÞ ∑
I, J,K

V ðαβγÞ
IJK ð− 1,X, 1−XÞ wðαÞ*

I ð1Þ wðβÞ
J ð1Þ wðγÞ

K ð1Þ, ð8:2:15Þ
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where

N ̂=4N0ð1Þv2W ∑
I, α

jwðαÞ
I j2. ð8:2:16Þ

In Fig. 8.3, the modulus of the complex function G is shown for wedge
geometries in the anisotropic material silicon. One of the two surfaces of the wedge
is a (111) surface. The angle between the apex line of the wedge and the [1 −1 0]
direction is denoted by φ (Fig. 8.4). Figure 8.3 shows |G| as function of X and φ for
wedges with opening angle θ = arcos(1/3) = 70.53°. A strong dependence of |G|
on the angle φ is clearly seen. The second-order and third-order elastic constants of
silicon used in the calculation of |G| were taken from [45] and for the density, the
value 2328 kg/m3 was chosen. The eigenvectors w(q) were normalized such that
the energy density associated with a linear wedge wave, integrated over the wedge’s
cross section and divided by |A(q)|2, has a fixed value.

Fig. 8.3 Modulus of kernel
G(X) in the evolution
Eq. (8.2.14) for silicon as
wedge material. The rotation
angle φ is defined in Fig. 8.4.
Wedge angle θ = 70.5°

Fig. 8.4 Rotation of wedge
geometry with respect to a
crystallographic coordinate
system
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8.3 Nonlinear Evolution of Acoustic Wedge Pulses

The right-hand side of the evolution Eq. (8.2.14) for AWWs is a sum of two
integrals. The first represents frequency up-conversion, as it drives high-frequency
waves by combining two waves with lower frequencies. The second integral gives
rise to frequency down-conversion, i.e. driving a wave with frequency lower than
the frequency of one of the two waves that it combines in the nonlinear driving
term. When comparing (8.2.14) with the nonlinear evolution equation for SAWs
propagating on the planar surface of a homogeneous elastic medium that may be
anisotropic, the essential difference is found to be the power of (q/k) in front of the
complex-conjugate of the kernel function in the second integral. In the case of
wedge waves, this power is equal to two, while in the evolution equation for SAWs
it is equal to one. A consequence of this finding is that in the case of wedge waves,
frequency down-conversion is less efficient than for SAWs, which means that
phenomena like steepening of a wave front and shock formation happen more
rapidly with wedge waves than with surface waves.

Recently, detailed experimental investigations of nonlinear pulse shape evolu-
tion have been carried out at rectangular silicon wedges with the help of laser
excitation and detection of the acoustic pulses [46]. Pulse shapes were recorded at
two observation points at the wedge tip having different distances from the exci-
tation point. In this way, pulse shortening, steepening and the tendency to shock
formation was clearly observed. Similarly to the situation with SAW pulses, the
qualitative behavior of the pulse shape is largely determined by the phase angle of
G(1/2), i.e. the value of the complex kernel function at its argument X = 1/2. On the
other hand, shock formation at a solid surface, generated by a pulsed line source on
the surface, strongly differs from its counterpart at solid wedges as in the latter case,
the strain pulse contracts to a quasi one-dimensional object at the tip of the wedge.

Numerical simulations of wedge wave pulses with the evolution Eq. (8.2.14),
including a small linear damping term, over distances up to and even beyond the
shock-formation distance, revealed that the high-frequency part of the power
spectrum of the pulse develops a power-law behavior, |B(q)| ∼ qκ. The value for the
exponent κ found in the numerical simulations was very close to the value −1/3,
which is the exponent occurring in the formal solution B(q) = BW q−1/3 of the
evolution Eq. (8.2.14), where q > 0 and BW is a complex constant. These findings
are analogous to results obtained earlier by Hunter [47] for nonlinear SAWs. He
pointed out that a slightly simplified version of the nonlinear evolution equation for
SAWs has formally a power-law solution with exponent −2/3, and he found a
power-law spectrum with this exponent in numerical simulations over long prop-
agation distances. These results for nonlinear wedge and surface waves may also be
compared to the shock wave solution of the Burger’s equation. Its power spectrum
develops the well-known q−1 power law [48].

For various reasons, wedge waves can become weakly dispersive [49], which
can be accounted for in the derivation of the evolution equation. It leads to a linear
term of the form q2 ΔW(q) B(q) on the right-hand side of (8.2.14). The explicit
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dependence of ΔW on q is most easily determined for small variations of the mass
density or elastic moduli of the material over the cross section of the wedge. For
this purpose, we decompose the mass density ρ and tensor of linear elastic constants
C into their averages over the cross section, denoted by an overbar, and a
position-dependent deviation that we scale as being proportional to the expansion
parameter ε,

ρðx2, x3Þ= ρ+ ε δρðx2, x3Þ, Cðx2, x3Þ= C+ ε δCðx2, x3Þ , ð8:3:1Þ

and obtain

ΔWðqÞ= 2vW
qN ̂

∑
I, J

wðαÞ*
I ðqÞ wðβÞ

J ðqÞ
n

×
ZZ

A
gðμÞ*I ðx2, x3; qÞ δCαμ βνðx2, x3Þ gðνÞJ ðx2, x3; qÞ
h

− δαβ f
*̂
I ðjqjx2, jqjx3Þ ðqvWÞ2 δρðx2, x3Þ f Ĵðjqjx2, jqjx3Þ

i
dx2 dx3

o
.

ð8:3:2Þ

Other sources for linear dispersion are truncation of the tip of the edge and
coating of one or both of the wedge’s surfaces with a film of different material. In
the long-wavelength limit, the quantity ΔW(q) is independent of q in the case of
coating and proportional to q in the case of truncation [49].

Solitary pulse solutions of the evolution equation including the linear dispersion
term have been determined numerically [50, 51] as limiting cases of periodic pulse
train solutions with a numerical approach applied earlier to the analogous case of
SAWs. (Details are given in [51]). In the special case of the linear dispersion law
ΔW(q) = −Z q2 with constant coefficient Z and the kernel function G(X) approxi-
mated by a complex constant G0 = −i |G0| e

iϕ, an analytic solitary wave solution
can be found. In terms of the displacement amplitudes A(q), the evolution equation
with the above choice for the kernel and the linear dispersion law becomes for
q > 0

i
∂

∂τ
AðqÞ= vW jG0j eiϕ

Zq

0

kðq− kÞAðkÞAðq− kÞ dk
2π

8<
:

+ 2e− iϕq2
Z∞
q

k − 1ðk− qÞAðkÞAðk− qÞ dk
2π

9=
; + Zq4 AðqÞ.

ð8:3:3Þ
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Inserting the ansatz

Aðq, τÞ=A0eiϕq exp − qðβ+ iκ vWτÞ½ � ð8:3:4Þ

for q > 0 in (8.3.3), two relations are obtained for the three parameters A0, β and κ .
The parameter A0 is fixed by the constants in the evolution Eq. (8.3.3),

A0 = 60π Z ̸jG0j, ð8:3:5Þ

while the two remaining parameters are related via

κ=15 Z ̸β3. ð8:3:6Þ

The displacement amplitudes are usually defined as the Fourier transform of a
Cartesian component uα (or a linear combination of components) of the displace-
ment field at the wedge tip,

uαðx1, 0, 0, tÞ= ε2Re
Z∞
0

expðiqξÞAðq, τÞ dq
2π

+ Oðε2Þ

= εUðξ, τÞ + Oðε2Þ,
ð8:3:7Þ

where ξ = x1 − vW t. For the solitary wave solution with displacement amplitudes
(8.3.4) we find the algebraic form

Uðξ, τÞ =
2A0

β2 + ðξ− κ vWτÞ2
h i2 cosϕ β2 − ðξ− κvWτÞ2

h i
− 2 sinϕ βðξ− κvWτÞ

n o
,

ð8:3:8Þ

which differs from the Lorentzian form of the solitary wave solutions of a simplified
evolution equation for SAWs with a KdV-type dispersion law (Eq. 3.14 in [16]).
This one-parameter family of solitary wave solutions is analogous to the corre-
sponding family of one-soliton solutions of the Benjamin-Ono or KdV type, where
width, peak height and speed are governed by one parameter.

For a linear dispersion law corresponding to truncation of the wedge tip in the
long-wavelength limit and a kernel function corresponding to a wedge cut out of a
silicon crystal, solitary pulse solutions have been determined numerically and first
numerical simulations of their collision behavior have been performed. A result is
shown in Fig. 8.5. If the ratio of the peak amplitudes of the two incoming pulses is
1/5, it was found that both pulses largely survive the collision, and the collision
scenario is reminiscent of that for KdV solitons (Fig. 8.5a). However, in the case of
the peak ratio being 1/10, the smaller of the two pulses appears to break up after the
collision.

8 Nonlinear Acoustic Wedge Waves 173



8.4 Evolution Equation with Second- and Third-Order
Nonlinearity

The kernel function G in the evolution Eq. (8.2.14) vanishes in the case of ASF
modes (odd wedge modes) if the mid-plane of the wedge is a reflection plane,
which is always the case in isotropic elastic media. We shall now address this
situation. Simultaneously, we treat the case of the reflection symmetry with respect
to the mid-plane being slightly broken. This is accounted for by decomposing the
tensor of second-order elastic constants C and the sixth-rank and eighth-rank ten-
sors S, occurring in (8.2.2), in a part that satisfies the reflection symmetry and a
small deviation that we scale to be of order ε,

C=Cð0Þ + εCð1Þ, S= Sð0Þ + ε Sð1Þ. ð8:4:1Þ

As a consequence, the Hermitian matrix M and the quantities V and W may be
decomposed in the same way,

M =Mð0Þ + εMð1Þ, V =V ð0Þ + εV ð1Þ, W =W ð0Þ + εW ð1Þ, ð8:4:2Þ

where, with the definitions in Appendix A,

Mðn, αβÞ
IJ ðqÞ=

ZZ
A

gðμÞ*I ðx2, x3; qÞCðnÞ
αμ βνg

ðνÞ
J ðx2, x3; qÞ dx2 dx3 , ð8:4:3Þ

for n = 0,1, and analogous expressions for V(n) and W(n). In the following
derivation, we shall again use the expansion (8.2.10) and introduce a second
stretched time coordinate T = ε2 t.

Proceeding as in Sect. 8.2, we obtain at first order of ε Eq. (8.2.11), where w is
now an eigenvector of the matrix M(0), corresponding to a wedge wave of odd
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Fig. 8.5 Collision of two solitary pulse solutions of the evolution Eq. (8.2.14) with a linear
dispersion term. For details see text. Ratio of peak amplitudes 1/5 (a) and 1/10 (b)
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symmetry with velocity vW in the absence of the small symmetry-breaking part
ε C(1) of the tensor of second-order elastic constants.

At second order of ε we obtain (8.2.12) with V replaced by V(0) and with the
additional term

∑
J
Mð1, αβÞ

IJ ðqÞ wðβÞ
J ðqÞAðqÞe− iqvW t ð8:4:4Þ

on the right-hand side. Since the symmetry with respect to the mid-plane of the
wedge implies

∑
I, J,K

V ð0, αβγÞ
IJK ð− q, k, q− kÞwðαÞ*

I ðqÞwðβÞ
J ðkÞwðγÞ

K ðq− kÞ=0, ð8:4:5Þ

the compatibility condition, which has to be satisfied to guarantee a bounded
solution for b, reduces to

2iN0ðqÞqvW ∑
I, α

jwðαÞ
I ðqÞj2 ∂

∂τ
AðqÞ

= ∑
I, J

wðαÞ*
I ðqÞMð1, αβÞ

IJ ðqÞwðβÞ
J ðqÞAðqÞ.

ð8:4:6Þ

This implies that A(q) depends on τ via

Aðq, τ,TÞ∼ expð− iqΔvW , 1τÞ. ð8:4:7Þ

In the following, we shall include the correction ε ΔvW,1 of the wedge wave
velocity due to the symmetry breaking part ε C(1) of the second-order elastic
constants in vW. This implies that the amplitudes A(q) no longer depend on τ .

The coefficients b are decomposed into two parts,

bðαÞI ðq, tÞ= e− iqvW t ΔwðαÞ
I ðqÞAðqÞ +

Z∞
−∞

hðαÞI ðq, kÞAðkÞAðq− kÞ dk
2π

8<
:

9=
;. ð8:4:8Þ

The first term in the curly brackets on the right-hand side of (8.4.8) yields a
correction to the displacement field of the linear wedge wave with wavevector q due
to the symmetry-breaking part ε C(1) of the second-order elastic constants. The
quantities hI

(α)(q, k) in the second term in the curly brackets are the unique solutions
of the inhomogeneous linear equations

∑
J

N0ðqÞ ðqvWÞ2δIJ δαβ −Mð0, αβÞ
IJ ðqÞ

h i
hðβÞJ ðq, kÞ

=
1
2
∑
J,K

V ðαβγÞ
IJK ð− q, k, q− kÞwðβÞ

J ðkÞwðγÞ
K ðq− kÞ

ð8:4:9Þ
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for fixed q and k. We note that the right-hand side of (8.4.9) corresponds to even
symmetry with respect to the mid-plane of the wedge. Therefore, (8.4.9) has a
unique solution, and the matrix H with elements

HðαβÞ
IJ ðqÞ=N0ðqÞ ðqvWÞ2δIJ δαβ −Mð0, αβÞ

IJ ðqÞ; ð8:4:10Þ

i.e. the contents of the square brackets on the left-hand side of (8.4.9), can be
inverted in the subspace of even symmetry. Note that H(q) is independent of the
modulus of q and H(−q) = H*(q). The inverse of the matrix H(q) in this subspace
will be denoted by Γ(q).

At third order of ε, the equation of motion (8.2.7) yields

−N0ðqÞ cð̈αÞI ðqÞ− ∑
J
MðαβÞ

IJ ðqÞ cðβÞJ ðqÞ

= − 2iN0ðqÞqvWwðαÞ
I ðqÞ ∂

∂T
AðqÞ+QðαÞ

I ðqÞAðqÞ
�

+
1
2

Z∞
−∞

∑
J,K

V ð1, αβγÞ
IJK ð− q, k, q− kÞwðβÞ

J ðkÞwðγÞ
K ðq− kÞ

"

+ ∑
J,K

V ð0, αβγÞ
IJK ð− q, k, q− kÞ ΔwðβÞ

J ðkÞ wðγÞ
K ðq− kÞ+wðβÞ

J ðkÞ ΔwðγÞ
K ðq− kÞ

� �

− ∑
J

2N0ðqÞq2vW ΔvW , 1 δαβ δIJ −Mð1, αβÞ
IJ ðqÞ

� �
hðβÞJ ðq, kÞ

�
AðkÞAðq− kÞ dk

2π

+
Z∞
−∞

Z∞
−∞

1
2
∑
J,K

V ð0, αβγÞ
IJK ð− q, k, q− kÞ hðβÞJ ðk, k′ÞwðγÞ

K ðq− kÞAðq− kÞAðk− k′Þ
�"

+ wðβÞ
J ðkÞ hðγÞK ðq− k, k′ÞAðkÞAðq− k− k′Þ

�
Aðk′Þ

+
1
6
W ð0, αβμνÞ

IJKL ð− q, k, k′, q− k− k′ÞwðβÞ
J ðkÞwðμÞ

K ðk′ÞwðνÞ
L ðq− k− k′Þ

× AðkÞAðk′ÞAðq− k− k′Þ	 dk
2π

dk′

2π

�
e− iqvW t.

ð8:4:11Þ

The terms on the right-hand side of (8.4.11) are ordered according to their degree
of nonlinearity with respect to the displacement amplitudes A. The linear term
involving the quantity Q is related to higher-order corrections to the velocity and
displacement field of the linear wedge waves due to the symmetry-breaking part
ε C(1) of the second-order elastic constants. The inhomogeneous system of differ-
ential equations (8.4.11) has solutions for the quantities c that are bounded func-
tions of t, if a compatibility condition is satisfied that is obtained by multiplying the
right-hand side of (8.4.11) by wI

(α)(−q), summing over I and α and equating the
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result with zero. In the equation obtained in this way, the linear term involving
Q gives rise to a correction of order ε2 to the wedge wave velocity. The linear term
is eliminated by including this second-order correction in vW. After transition
from displacement amplitudes A(q, T) to displacement-gradient amplitudes
B(q, T) = iqA(q, T), the compatibility condition for (8.4.11) takes on the form

i
∂

∂T
BðqÞ = vWq

Z∞
−∞

K2ð− q, k, q− kÞBðkÞBðq− kÞ dk
2π

+ vWq
Z∞
−∞

Z∞
−∞

K3ð− q, k, k0, q− k− k0ÞBðkÞBðk0ÞBðq− k− k0Þ dk
2π

dk0

2π
,

ð8:4:12Þ

which is the nonlinear evolution equation for the displacement-gradient amplitudes.
It contains both an effective second-order and third-order nonlinearity. Explicit
expressions for the two kernel functions K2 and K3 in terms of the quantities defined
above are given in Appendix B. These expressions allow for a quantitative deter-
mination of the two kernel functions, once the second-order, third-order and
fourth-order elastic constants of the wedge material are known. In analogy to the
case of nonlinear shear-horizontal surface waves in piezoelectric media
(Bleustein-Gulyaev waves) [24], the function K3 results as a sum of a direct part
(B.2), involving the eighth-rank tensor S in the expansion of the potential energy in
(8.2.2) (third-order nonlinearity) and an indirect contribution (B.3) due to cascaded
second-order nonlinearity.

In the case of perfect reflection symmetry with respect to the mid-plane of the
wedge, i.e. K2 = 0, the growth rate of the third harmonic of a wedge wave with
wave-vector q is governed by

T =K3ð− 3q, q, q, qÞ. ð8:4:13Þ

The quantity

S=K3ð− q, − q, q, qÞ+K3ð− q, q, − q, qÞ+K3ð− q, q, q, − qÞ ð8:4:14Þ

determines the size of a self-induced frequency shift of this wave. (Note that T and
S are independent of the modulus of q.) For the isotropic material fused quartz, the
quantity T has been evaluated numerically, using an expansion of the displacement
field in a double series of Laguerre functions, (8.2.3)–(8.2.6). The second-, third-,
and fourth-order elastic constants of fused quartz were taken from [52–54],
respectively. For the mass density, the value 2203 kg/m3 was chosen. Figure 8.6
contains first results for the dependence of T on the wedge angle θ for the slowest
wedge mode. The direct and indirect contributions to T are displayed, too. The data
shown in Fig. 8.6 reveal a strong compensation of both contributions for wedge
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angles below 60°, which substantially reduces the efficiency of third-harmonic
generation. The normalization of the eigenvectors w(q) was chosen such that at the
tip of the wedge, the component un = − sin((0.5π − θ)/2) u2 + cos((0.5π − θ)/2) u3
of the displacement field normal to the lower wedge surface in Fig. 8.2 is given by

unðx1, tÞ=
Z∞
−∞

AðqÞ exp iqðx1 − vWtÞ½ � dq
2π

. ð8:4:15Þ

A quantitative determination of K3 requires much higher numerical efforts than
calculations of K2, and it has been found difficult to obtain convergent results for
the direct contribution to T for wedge angles larger than 70° with the approach
chosen.

For the slowest wedge wave branch in slender isotropic wedges, the
leading-order terms in an expansion of T and S in powers of the wedge angle θ were
evaluated [38, 55], using the results for the displacement field of linear wedge
waves [33]. It was found that the ratio T/S vanishes linearly with θ . This means that
for the lowest wedge wave branch in wedges with sufficiently small wedge angle,
the effect of a self-induced frequency shift should be dominant over higher har-
monic generation. It was also found that to leading order in θ, the kernel K3 (both
the direct and the indirect contribution) is independent of third-order and
fourth-order elastic constants and depends on the second-order Lamé constants and
the mass density of the wedge material only.

Fig. 8.6 Efficiency T of
third-harmonic generation,
defined in (8.4.13), as
function of wedge angle θ
(dashed). Direct contribution
(dotted) and indirect
contribution (solid) to T
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8.5 Conclusions

Acoustic wedge waves exhibit a variety of nonlinear propagation effects which are
investigated since their discovery in the early seventies. For the nonlinear properties
of these 1D guided waves in the non-dispersive or weakly dispersive regime, the
reflection symmetry with respect to the mid-plane of the wedge plays a key role.

If this symmetry is broken by anisotropy of the wedge material, nonlinear
propagation properties of wedge waves are governed by an evolution equation
containing a non-local second-order nonlinearity, which is similar to the corre-
sponding nonlinear evolution equation for Rayleigh-type surface acoustic waves or
for Stoneley waves. However, there is a subtle but important difference, which is
related to the 1D character of wedge waves in contrast to acoustic waves guided by
a 2D surface or interface. In the non-dispersive regime, this difference leads to faster
build-up of higher harmonics and a different exponent in the power-law behavior of
the Fourier spectrum of wedge waves near the shock-formation distance. The
typical features of nonlinear pulse evolution of acoustic wedge waves, following
from the evolution equation in the absence of dispersion, have recently been
demonstrated in laser-ultrasound experiments for rectangular silicon wedges [46].

In the presence of weak dispersion, the evolution equations for surface waves
and for wedge waves both admit solitary wave solutions. The characteristic dif-
ference in the evolution equations mentioned above influences to some extent the
shape of solitary pulses, but it does not affect the scaling relation between peak
height, width and speed of a solitary pulse, which exists if the linear dispersion can
be approximated by a power law.

If the mid-plane of the wedge is a mirror plane, which pertains especially to
isotropic wedges, the effective nonlinearity in the evolution equation for wedge
waves is of third order. Computations of the kernel function in the third-order
nonlinear term require considerable numerical efforts, but are feasible with an
approach based on an expansion of the displacement field in a double series of
Laguerre functions. If the mirror symmetry with respect to the mid-plane is only
weakly broken, for example by defects with a texture in an isotropic matrix
material, both second-order and third-order nonlinearity are present, which should
lead to interesting phenomena.

The nonlinear effects on acoustic wedge waves discussed here pertain to elastic
media with density of potential energy that can be expanded in powers of dis-
placement gradients. Defects like dislocations or cracks may give rise to nonlin-
earities which are associated with potential energy terms that do not allow for such
an expansion [56]. First experiments with wedge waves in materials, which are
expected to contain such nonlinearities, have been reported in [57] and open up a
new direction in the field of nonlinear wedge waves.
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Appendix A

We define the operator

DαðqÞ= iq for α=1
∂ ̸∂xα for α=2, 3,

�
ðA:1Þ

and the quantities

gðαÞI ðx2, x3; qÞ=DαðqÞf Îðjqjx2, jqjx3Þ , ðA:2Þ

which possesses the scaling property for q > 0

gðαÞI ðx2, x3; qÞ=XgðαÞI ðXx2, Xx3; q ̸XÞ ðA:3Þ

and, if the function fI is real,

gðαÞI ðx2, x3; − qÞ= gðαÞ*I ðx2, x3; qÞ. ðA:4Þ

The elements of the matrix M in (8.2.7) may then be expressed in the form

MðαβÞ
IJ ðqÞ=

ZZ
A

gðμÞ*I ðx2, x3; qÞCαμ βνg
ðνÞ
J ðx2, x3; qÞ dx2 dx3 . ðA:5Þ

The right-hand side of (A.2) implies that M does not depend on |q|, that

MðαβÞ
IJ ðqÞ=MðβαÞ*

JI ðqÞ ðA:6Þ

and, if the functions fI are all real, which is the case with the choice (8.2.6), that

MðαβÞ
IJ ð− qÞ=MðαβÞ*

IJ ðqÞ. ðA:7Þ

For the quantities V and W we obtain expressions analogous to (A.5),

V ðαβγÞ
IJK ð− q, k, q− kÞ=

ZZ
A

Sαμ βν γλ g
ðμÞ
I ðx2, x3; − qÞ

× gðνÞJ ðx2, x3; kÞ gðλÞK ðx2, x3; q− kÞdx2 dx3,
ðA:8Þ

W ðαβγδÞ
IJKL ð− q, k, k0, q− k− k0Þ=

ZZ
A

Sαμ βν γλ δκ gðμÞI ðx2, x3; − qÞ

× gðνÞJ ðx2, x3; kÞ gðλÞK ðx2, x3; k0ÞgðκÞL ðx2, x3; q− k− k0Þdx2 dx3
ðA:9Þ
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with scaling properties that follow from (A.3).

Appendix B

The kernel function in the effective second-order nonlinearity of the evolution
Eq. (8.4.12) may be expressed in the form

K2ð− q, k, q− kÞ= − iq

N ̂ kðq− kÞ
× ∑

I, J,K
V ð1, αβγÞ
IJK ð− q, k, q− kÞwðαÞ

I ð− qÞwðβÞ
J ðkÞwðγÞ

K ðq− kÞ
n

+ V ð0, αβγÞ
IJK ð− q, k, q− kÞ wðαÞ

I ð− qÞwðβÞ
J ðkÞ ΔwðγÞ

K ðq− kÞ
h

+ wðαÞ
I ð− qÞ ΔwðβÞ

J ðkÞwðγÞ
K ðq− kÞ+ΔwðαÞ

I ð− qÞ wðβÞ
J ðkÞwðγÞ

K ðq− kÞ
io

.

ðB:1Þ

It depends only on the signs and on ratios of the 1D wavevectors q, k, q − k, and
it vanishes if the reflection symmetry with respect to the mid-plane of the wedge is
not broken.

The kernel function in the effective third-order nonlinearity in (8.4.12) consists
of a direct contribution, which is linear in the components of the eighth-rank tensor
S, and an indirect contribution, which is quadratic in the sixth-rank tensor S,
K3 = K3,d + K3,i, where

K3, dð− q, k, k0, q− k − k0Þ= − q

3N ̂ k k0 ðq− k − k0Þ
× ∑

I, J,K, L
W ð0, αβγδÞ

IJKL ð− q, k, k0, q− k − k0Þ wðαÞ
I ð− qÞ wðβÞ

J ðkÞ wðγÞ
K ðk0Þ wðδÞ

L ðq− k− k0Þ
h i

,

ðB:2Þ

and

K3, ið− q, k, k0, q− k− k0Þ= − q

N ̂ k k0 ðq− k− k0Þ
× ∑

I, J,K, L
wðαÞ
I ð− qÞ wðβÞ

J ðkÞ V ð0, αβγÞ
IJK ð− q, k, q− kÞ ΓðγλÞ

KL ðq− kÞ
h

× V ð0, λμνÞ
LMN ð− q+ k, k0, q− k− k0ÞwðμÞ

M ðk0Þ wðνÞ
N ðq− k− k0Þ

i
.

ðB:3Þ
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Chapter 9
Analysis of Nonlinear Wave Propagation
in Hyperelastic Network Materials

Hilal Reda, Khaled ElNady, Jean-François Ganghoffer,
Nikolas Karathanasopoulos, Yosra Rahali and Hassan Lakiss

Abstract We analyze the acoustic properties of microstructured repetitive network
material undergoing configuration changes leading to geometrical nonlinearities.
The effective constitutive law of the homogenized network is evaluated succes-
sively as an effective first nonlinear 1D continuum, based on a strain driven
incremental scheme written over the reference unit cell, taking into account the
changes of the lattice geometry. The dynamical equations of motion are next
written, leading to specific dispersion relations. The inviscid Burgers equation is
obtained as a specific wave propagation equation for the first order effective con-
tinuum when the expression of the energy includes third order contributions,
whereas a perturbation method is used to solve the dynamical properties for the
effective medium including fourth order terms. This methodology is applied to
analyze wave propagation within different microstructures, including the regular
and reentrant hexagons, and plain weave textile pattern.
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9.1 Introduction

The analysis of wave propagation in hyperelastic media depends initially on the
type of constitutive law. When considering microstructured solids prone to large
deformations, the effective constitutive law written in the large strains regime
reflects the impact of the microstructure, and can be obtained thanks to suitable
homogenization schemes instead of being postulated directly in a phenomenolog-
ical manner.

In recent years, different materials have been analyzed in the context of aniso-
tropic finite-strain elasticity; these include composites, foam-like structures, 2D and
3D textile preforms and synthetic solids [1, 2]. Cellular solids, by contrast to
compact materials, are two or three dimensional bodies divided into cells, the walls
of which are made of a solid material capable of undertaking large elastic defor-
mations in the elastic regime, before plastic failure or fracture occurs. There are
numerous examples of such network structures, including repetitive large scale
deployable structures like antenna, 3D textiles, cellular materials and especially
auxetic structures (those with negative Poisson’s ratio) having excellent damping
and impact absorption capabilities [3].

We shall in the current paper use the discrete asymptotic homogenization method
[3–5] which is perfectly suited to the discrete architecture of different types of net-
works which can be modeled with beam like structural elements, in order to compute
their effective nonlinear static and dynamic response. Due to the very small bending
rigidity of the beams building such networks, the nonlinear response is essentially
due to the change of network configuration, meaning that the beam orientation and
length change with ongoing deformation. We shall thus mostly account for geo-
metrical nonlinearities at the microlevel of the network. The geometrical nonlinear
behavior of cellular structures and network materials has been extensively studied in
[6, 7], considering especially foams, and using simplified pin jointed models for
which the bending contribution of the skeleton struts has been neglected. Wang and
Cuitino [8] proposed another approach accounting for axial, bending and twisting
deformations at local level. One study based on a homogenization technique was
given in [9]. Linear effective models developed to analyze structures on the basis of a
beam model were presented in homogenization of the underlying microstructure [10,
11], in which stretching and simultaneous bending occur. This initial linear was
extended more recently in [12] to build the stress-strain relation and strain energy
function for an effective hyperelastic cellular material with arbitrary symmetry. An
alternative approach was proposed in [13] using a computational homogenization to
derive a nonlinear constitutive model for lattice materials [14, 15].

A lot of attention has been paid in the literature to the propagation of elastic
waves in the linear context [16–19], with comparatively less work devoted to wave
propagation in nonlinear media.

The propagation of elastic waves in nonlinear materials and structures is
accompanied by a number of new phenomena such as amplitude-dependent dis-
persion relations, or the occurrence of subsonic and supersonic modes that can
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never be observed in homogeneous linear media [20–23]. As another aspect, the
propagation of waves in a nonlinear medium enriched by second gradient terms is
studied in [24]; the authors show that two modes can propagate: an evanescent
subsonic mode that disappears after a certain wavenumber and a supersonic mode
characterized by an increase of the frequency with the wavenumber.

These features entail that the solutions of the wave propagation equations are
more complex compared to the linear case, and they depend on the form of the
dynamical equilibrium equations derived from the constitutive law. For example,
the solitary surface waves discovered by John Scott Russell [25] in 1834 have been
developed as solution of the Boussinesq equation [26], the Benjamin-Bona-Mahony
(BBM) equation [27], the Korteweg & de Vries (KdV) equation [28], the
Camassa-Holm (CH) equation [29]. The shock displacement wave can be used for
nonlinear dynamical problems in the form of Burger’s equation; as an alternative,
the perturbation method can be used for certain kinds of constitutive laws [30].

Dispersion has been accounted for by higher-order derivatives of the displace-
ment field due to the underlying discrete structure of the elastic medium in Mar-
adudin [31] and more, recently in Hao et al. [32].

We rely in the present work on the discrete homogenization method developed
in [14, 15] for predicting the effective nonlinear elastic responses of repetitive
lattices, taking into consideration changes of the microstructure geometry under
applied loads. The predictive nature of the employed homogenization technique
allows in the present contribution the identification of a strain energy density of
hyperelastic models at the mesoscopic level, that characterize the effective con-
tinuum. The identified hyperelastic constitutive models are then involved in the
analysis of nonlinear wave propagation in repetitive network materials (represented
by the constructed effective substitution medium). We advocate thereby novel
aspects in this paper. The obtained forms of the nonlinear constitutive law identified
for three different network materials leads to different types of waves, the dispersive
behavior of which is analyzed.

The outline of this contribution is as follows: Sect. 9.2 is devoted to a synthetic
description of the discrete homogenization method in a large strains context, which
constitutes the basis of this work. The incremental update of the kinematic and
static variables at the mesoscopic level of the effective Cauchy continuum
accounting for the evolution of the network geometry will be described in algo-
rithmic format. In Sect. 9.3, virtual simulations based on the developed discrete
homogenization technique will be used for the calibration of a strain energy density
of a hyperelastic model for three different lattices, leading to two different forms of
the strain energy density function. Wave propagation analysis is done in Sect. 9.4,
based on the identified strain energy hyperelastic functions. We conclude by a
summary of the work and perspectives of developments in Sect. 9.5.

Regarding notations, vectors and tensors are denoted by boldface symbols; the
transpose of t second order tensor is denoted with a superscript T, for instance FT.
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9.2 Incremental Scheme for the Computation
of the Effective Hyperelastic Effective Models

The adopted computational method of the effective nonlinear response of lattice
materials relies on a two steps methodology: the ground state effective moduli are first
evaluated in the initial small strains regime, followed by the evaluation of the non-
linear subsequent response, based on the update of the lattice configuration (geom-
etry) when subjected to an increased kinematic loading imposed over the identified
unit cell. We rely for the purpose of computing the effective nonlinear response on the
discrete homogenization method (abbreviated DH method in the sequel) to replace
the initially discrete structure by a nonlinear elastic effective continuum.

The homogenization of the periodic network towards a Cauchy continuum at the
mesoscopic level relies on the condensation of the existing nodal rotations (which
exist at the crossing nodes between the structural elements of the network), which
are expressed versus the deformation applied over the unit cell, using the equilib-
rium equations. We refer the reader for more details related to the asymptotic
homogenisation technique to [14, 15]. The homogenization methods accounts for
the large changes of network configurations occurring due to the large imposed
kinematic loadings. The lattice geometry is updated at each new increment of the
external load applied to the unit cell boundary, based on which new effective
properties are evaluated. The main steps of the DH method leading to the nonlinear
response of the homogenized continuum are written in algorithmic format in Box 1.
Note that although the main source of nonlinearities at microscopic level is the
modification of the network geometry, the obtained constitutive law at the meso-
scopic level is a nonlinear relation between stress and strain.

A dedicated code has been constructed to solve the nodal kinematical unknowns
(displacements) of each beam within the repetitive unit cell, which defines the
so-called localization problem that has to be solved at each new increment. The
code is written in symbolic language and it uses an input file including the initial
reference unit cell topology and the mechanical properties of the structural elements
(treated as Timoshenko beams); it delivers as an output the homogenized
mechanical response in both the linear and nonlinear regimes (for different kine-
matic loadings imposed over the repetitive unit cell), from which the tangent
effective moduli can be extracted.

Box 1 Algorithm for the nonlinear discrete homogenization of repetitive
lattices
For each increment n, impose the Lagrangian strain tensor ΔE kð Þ

Gn applied over
the unit cell boundary;

For each iteration k:

1. Initialization: compute the effective mechanical properties in the linear
regime based on discrete homogenization in the linear framework [1, 5].
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2. Compute the incremental Second Piola-Kirchhoff stress tensor [14, 15],
based on the tangent stiffness matrix KT , n

ΔS kð Þ
n =KT , n:ΔE

kð Þ
Gn

3. If convergence is reached, go to next step, otherwise loop again.
4. Update Cauchy stress at increment n+1ð Þ by a push-forward of the

Lagrangian stress from configurations Ωn to Ωn+1

σ kð Þ
n+1 = J − 1

n Fn ⋅ SðkÞn +ΔS kð Þ
n

n o
⋅FT

n = J − 1
n Fn ⋅ SðkÞn ⋅FT

n

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

σðkÞn

+ J − 1
n Fn ⋅ ΔS kð Þ

n

� �
⋅FT

n

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δσ kð Þ
n

5. Update the network configuration from Ωn to Ωn+1.
6. Repeat steps 1–5 up to the maximum applied strain over the unit cell.

Since the DH method is predictive, it can be conceived as a virtual testing
method (instead of doing real measurements, which can be costly) to provide a
database of uniaxial loading response to identify a strain energy density for an
assumed hyperelastic effective homogeneous material.

9.3 Identification of a Hyperelastic Strain Energy Density
for the Hexagonal Lattice, the Re-entrant Lattice
and Plain Weave Textile

We shall calibrate a strain energy function of two preselected hyperelastic models
for the three investigated lattices (Fig. 9.1), considering the 1D context of
microstructured beams operating under pure tensile loadings, as pictured in
Fig. 9.1.

In such situations, the sole kinematic degree of freedom is the scalar displace-
ment along the beam, variable uðxÞ, with a spatial gradient denoted by the scalar
quantity u, x (the comma denotes the partial derivative).

We use in the sequel the following microstrucrural geometrical and mechanical
parameters for the three considered microstructures. The hexagonal reentrant lattice
is one the most known and studied auxetic lattice in the literature, since the work of
Gibson and Ashby in the late eighties. The re-entrant lattice geometry we adopt is
based on three beams (Fig. 9.2): beams b2 and b3 have a negative angle with
respect to the horizontal line (θ = −15°, Fig. 9.1b). The geometrical parameters
and material properties for plain weave and twill are given in Tables 9.1 and 9.2.
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Fig. 9.1 Configuration of 1D micro-structured beams including either of the three investigated
lattices: a classical hexagonal lattice, b re-entrant hexagonal lattice and c textile plane weave

Mechanical properties of weft and warp made of PET are given in Table 9.2; we
intentionally choose very different moduli to represent an unbalanced fabric,
leading to an expected anisotropic behavior.

The tensile, flexural, and torsion rigidities of the beam segments resulting from
the weft and warp moduli are given in Table 9.3.

The following two forms of the hyperelastic function W =W Fð Þ are selected,
depending upon the transformation gradient F =1+ u, x in the present 1D situation,
representative of classical elastic Cauchy materials, which are coined Form 1 and
Form 2 here and in the sequel:

• Form 1: The strain energy density takes the folllowing quartic expression in the
deformation form [24]

W =Au, x +B
u, xð Þ2
2

+C
u, xð Þ4
4

• Form 2: The strain energy density takes the cubic expression of the deformation
form (we use the same notation for the material coefficients as for previous form
of the strain energy density)

W =Au, x +B
u, xð Þ2
2

+C
u, xð Þ3
3

The coefficients A,B,Cð Þ therein are microstructure dependent material coeffi-
cients that shall be identified in the sequel. Note that the coefficients A,B and C may
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differ in respective expressions Form 1 and Form 2, but we nevertheless use the
same notations for the material coefficients.

The successive higher order powers of the displacement gradients can be con-
ceived as an enrichment of the constitutive law to account for higher order

Fig. 9.2 Linear (red) and nonlinear (green) dispersion curves for a the hexagonal network, b the
re-entrant network and c the textile plane weave

Table 9.1 Plain weave fabric configuration parameter

Plain weave Set of input geometric data

Weft Lf1 = 0.618 mm – θf = 40° df = 0.27 mm

Warp Lp1 = 0.56 mm – θp = 40° dp = 0.25 mm

Table 9.2 Elastic properties
of weft and warp yarns

Set of input material data

Weft Esf = 1889 MPa Gsf = 756 MPa νf = 0.25
Warp Esp = 13,853

MPa
Gsp = 5541 MPa νp = 0.25
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nonlinearities that are activated depending on the intensity of the applied loading.
Restricting the energy density to a quadratic expansion clearly would correspond to
a linear elastic material. Since the reference configuration can be selected such that
the stress is nil, it implies that the coefficient A can be discarded.

Note that there is no unique choice of the mesoscopic (homogenized) consti-
tutive law; observe further that the adopted choice of the strain energy density there
above means that we restrict the mesoscopic stress to be at most a cubic function of
its conjugated strain.

The constitutive law can be derived from the form taken by the strain energy
density of the hyperelastic model; the first Piola-Kirchhoff stress is computed as the
partial derivative of the strain energy density, thus it holds for the two forms of
energy

T =
∂W
∂F

⇒ T =A+Bu, x +C u, xð Þ3 for Form 1
T =A+Bu, x +C u, xð Þ for Form 2

�
ð9:1Þ

In the present 1D context, it holds the identity between the first Piola-Kirchhoff
stress and Cauchy stress measure

T xð Þ= σ xð Þ ð9:2Þ

We shall in the sequel and as a matter of simplification of notations omit the x
dependency. Note that the strain energy density can easily be expressed versus the
stretch, due to the relation λ=F in the present 1D context.

The material parameters are identified based on a combination of virtual tensile
test performed over the unit cell of the three considered lattices; their identification
proceeds from the minimization of the following function with respect to the set of
material parameters A,B,C

Min
A,B, C

T A, B, Cð Þ: = TDH −Tmodel
�� ��2n o1 ̸2

ð9:3Þ

The function T A, B, Cð Þ there above is built as the quadratic measure of the
error between the DH stress component TDH and its analytical counterpart Tmodel,
obtained from one of the hyperelastic potential given there above.

The material constants of the model are identified from a least square method (9
sampling points are used), relying on uniaxial tension as the kinematic loading

Table 9.3 Mechanical
properties of weft and warp

Beam rigidity Beams at
Weft Warp

Tensile rigidity klf1, 2 =
Esf Af

Lf1, 2
klp1, 2 =

EspAp

Lp1, 2

Flexural rigidity ktf 1 =
12Esf If

Lf 1ð Þ3 ktp1 =
12EspIp

Lp1ð Þ3
Torsional fi krf 1 =

Gsf Jf
Lf1

krp1 =
GspJp
Lp1
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imposed over the lattice unit cell. The function Lsqcurve fit in the Optimization
Toolbox of MATLAB has been used [14, 15] to identify the coefficients (A, B, C
and D) of the strain energy density for these three lattices (Fig. 9.1) based on the
incremental scheme developed in Sect. 9.2; they are listed in Table 9.4.

We shall in the next section rely on the two different selected forms of the strain
energy density to analyze nonlinear wave propagation.

9.4 Analysis of Nonlinear Wave Propagation
in the Homogenized Hyperelastic Continua

Different types of nonlinear wave propagation equations are considered in this
work: harmonic plane waves based on the perturbation method [30], solitary waves
for the Boussinesq type equation, and shock waves for Burger’s equation [33].

We shall consider the following non-dimensional system parameters:

k L the dimensionless wave number,
ωL
0ffiffi
E
ρ

p the dimensionless frequency,

cpffiffiffi
E
ρ*

p , cgffiffiffi
E
ρ*

p the dimensionless phase and group velocities respectively, built from the

effective density ρ*,
E, ρ, L the Young modulus, density and length of the beam structures respectively.

9.4.1 Wave Propagation Analysis for the Form 1
of the Hyperelastic Effective Medium Energy

Considering first Form 1 of the nonlinear strain energy, we can write the dynamical
equilibrium equation as:

∂σij
∂xj

� 	
= ρ*uj̈ ð9:4Þ

Table 9.4 Coefficients in [MPa] of the two forms of the hyperelastic strain energy potential

Form 1 Form 2
A B C A B C

Hexagonal −0.1 40.1 1469.3 0.0604 22.218 316.5386
Re-entrant −0.4939 244.775 10220.08 0.0999 156.3594 1896.04
Plain weave −0.0929 124.129 330.3384 0.0103 116.0903 101.9276

9 Analysis of Nonlinear Wave Propagation … 193



Inserting the constitutive law into the dynamical equilibrium, Eq. 9.8, leads to

∂ A+Bu, x +Cu3, x

 �

∂x

 !
= ρ*u ̈ ⇒ B

∂
2u
∂x2

� 	
|fflfflfflfflffl{zfflfflfflfflffl}
Linear part

+ 3C
∂
2u
∂x2

∂u
∂x

� 	2
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NonLinear part

= ρ*u ̈ ð9:5Þ

The first step in the analysis of the nonlinear dispersion relation in the effective
continuum medium is the introduction of the dimensionless time τ=ω t (with ω the
frequency) and the parameter ν to enforce the non-linearity in the dynamical
equation,C= υC, thus leading to the asymptotic expansion of frequency and axial
displacement (here truncated to the first order), successively

ω=ω0 + υω1,

u= u0 + υ u1,
ð9:6Þ

Substituting those asymptotic developments (Eq. 9.6) into the nonlinear wave
equation Eq. 9.8 and ordering versus the successive powers of the small parameter
υ produces a set of equation as follows:

O υ0ð Þ: B ∂
2u0
∂x2 − ρ* ω2

0
∂
2u0
∂τ2 = 0

O υ1ð Þ: B ∂
2u1
∂x2 − ρ* ω2

0
∂
2u1
∂τ2 = − 2ρ*0 ω0ω1

∂
2u0
∂τ2 − 3C ∂

2u0
∂x2

∂u0
∂x


 �2 ð9:7Þ

The first order equation at order O υ0ð Þ describes linear wave propagation in the
effective (linear) medium.

We take planar harmonic waves as a solution of the O υ0ð Þ equation:

u0 =A exp i τ− kxð Þ=A cos τ− kxð Þ ð9:8Þ

in which k is the wavenumber and A the wave amplitude. Subsequent substitution
of the expression of the wave solution into the O υ1ð Þ term results in the partial
differential equation

O υ1

 �

: B
∂
2u1
∂x2

− ρ* ω2
0
∂
2u1
∂τ2

= − 2ρ* ω0ω1 A cos kx− τð Þ+ 3
4
CA3k4 cos kx− τð Þ ð9:9Þ

Removing the secular terms (those in factor of cosðkx− τÞ) leads to the algebraic
equation

− 2ρ* ω0ω1A+
3
4
CA3k4 = 0 ⇒ω1 =

3CA2k4

8ρ* ω0
ð9:10Þ

where ω1 is the corrected frequency based on the nonlinear terms. The frequency is
then updated versus the wave amplitude as follows:
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ω=ω0 +
3CA2k4

8ρ* ω0
ð9:11Þ

The dispersion relation for the three investigated lattices involves an
amplitude-dependent frequency in the context of a nonlinear effective medium,
based on Eq. 9.11.

Figure 9.2 illustrates the dispersion relation based on Eq. 9.11 for the classical
and reentrant hexagonal networks and the textile plane weave structure. Dispersion
shifts occur for the longitudinal wave through the introduction of the nonlinear parts
represented by the corrected frequency ω1 this behavior is observed for the three
investigated lattices.

9.4.2 Wave Propagation Analysis for Form 2
of the Hyperelastic Energy

Recall that the strain energy density is selected as a cubic function of the linearized
strain

W =Au, x +B
u, xð Þ2
2

+C
u, xð Þ3
3

ð9:12Þ

which entails the following expression of Cauchy stress

σ =A+Bu, x +Cu2, x ð9:13Þ

The dynamical equilibrium equation based on this constitutive law writes:

∂ A+Bu, x +Cu2, x

 �

∂x

 !
= ρ*u ̈ ⇒ B

∂
2u
∂x2

� 	
|fflfflfflfflffl{zfflfflfflfflffl}
Linear part

+ 3C
∂
2u
∂x2

∂u
∂x

� 	� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

NonLinear part

= ρ*u ̈ ð9:14Þ

Note that for this type of equation, harmonic plane waves cannot be considered
as solutions, due to the non-vanishing secular term.

Using the change of variable y= x− ω
k t and f = ∂u

∂y and after a simple transfor-
mation, Eq. (9.14) writes as follows:

B
∂
2u
∂y2

� 	
|fflfflfflfflffl{zfflfflfflfflffl}
Linear part

+ 3C
∂
2u
∂y2

∂u
∂y

� 	� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

NonLinear part

= ρ*
ω

k

� �2∂2u
∂y2

⇒ B− ρ*
ω

k

� �2� 	
∂f
∂y

� 	
+ 3Cf

∂f
∂y

� 	� 	
=0

ð9:15Þ
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Equation (9.15) is of inviscid Burger’s type, a fundamental partial differential
equation occurring in various areas of applied mathematics, such as fluid
mechanics, nonlinear acoustics, gas dynamics, traffic flow. The inviscid Burgers’
equation is a conservation equation, more generally a first order quasi-linear
hyperbolic equation. Shock waves are solution of the above equation; mathemati-
cally, a shock wave type solution can be obtained by the integration of the solitary
wave (Fig. 9.3).

The solution of the dynamical equilibrium equation can then be expressed in
terms of the displacement as

u yð Þ=
Z

f ðyÞ dy=
Z

−
A
2
+

A s2

2 1−EðsÞ ̸KðsÞð Þ sn
2 h, sð Þ

� 	
dy, ð9:16Þ

in which function f(y) describes solitary waves propagation and u(y) shock waves,
where s is the universal constant describing the degree of nonlinearity 0≤ s≤ 1ð Þ,
sn(.) the elliptic Jacobin sine, and K(s), E(s) are the complete elliptic integrals of the
first and second kind respectively, h= k0

2 y and k0 is the propagation constant related
to the wavenumber k as follows:

k=
π

2K sð Þ k0 ð9:17Þ

The strain amplitude can be calculated from the following equation

3 1−EðsÞ ̸KðsÞð Þ= − 3CA
k20

ð9:18Þ

Fig. 9.3 a Shape of the solitary strain wave and b shock wave

196 H. Reda et al.



In the limiting case s→ 0 (which corresponds to the linear situation), the solution
of Eq. (9.16) is reduced to the harmonic plane wave,

f yð Þ= −
A
2
cos kyð Þ→ u= −

A
2k

sin kyð Þ, with k= k0

In the opposite case, when s→ 1, the solution (9.16) describes a localized
solitary strain wave with

f yð Þ= −
A
2
sech2 k0yð Þ→ u yð Þ= −

A
k0

tanh k0yð Þ.

Compression solitary waves can exist for negative coefficients A < 0, whereas
dilatation solitary waves (tension waves) will be obtained when A > 0. From the
results, we expect based on the definition of shock waves the occurrence of a set of
supersonic modes, describing the propagation of waves with a velocity higher than
the linear velocity (the velocity of non-dispersive waves); this phenomenon can
indeed be observed in Fig. 9.4 for the three investigated lattices. When moving

Fig. 9.4 Dispersion relation with different values of parameter s based on Burger’s equation for
a the hexagonal lattice, b the re-entrant lattice and, c textile plane weave
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from a weak nonlinearity (for low values of s) to a high nonlinearity (at high values
of s), an important shift in the frequency band structure occurs. The influence of the
nonlinearity is more pronounced for the hexagonal lattice and the textile structure in
comparison to the re-entrant lattice, due to the presence of a large partial band gap
between the linear mode and the nonlinear modes in these two configurations.

Figure 9.5 shows the frequency for the supersonic longitudinal mode for the
three lattices versus the degree of nonlinearity s. It appears from Fig. 9.5 that for all
values of parameter s between 0 and 1, the supersonic mode always occurs; these
results are in very good arguments with those obtained in Fig. 9.4.

9.5 Conclusion

We analyze in this contribution nonlinear wave propagation occurring within
microstructured beams including a repetitive network material undergoing config-
uration changes under pure tensile loadings, leading to geometrical nonlinearities.
Three types of repetitive microstructures have been considered in order to exem-
plify the analysis of (nonlinear) wave propagation: the hexagonal network, its
re-entrant version, and plain wave textile.

The effective nonlinear constitutive law has been identified from a microme-
chanical scheme in terms of the strain energy density expressed as a nonlinear
function of the small strain tensor; first order grade 1D homogenized continuum
have been thereby identified in the nonlinear range, based on a strain driven

Fig. 9.5 Frequency band
structure versus the degree of
nonlinearity (parameter s) for
the hexagonal lattice (in red),
the re-entrant lattice (in green)
and textile plane weave (in
blue)

198 H. Reda et al.



incremental scheme written over a reference unit cell taking into account the
variation of the lattice geometry. The coefficients of the selected constitutive models
have been identified for three specific network materials based on the proposed
homogenization scheme.

The dynamical equations of motion have been next written for two different
Forms of the constitutive law - successively discarding and including second order
terms - originating from the selected strain energy density, leading to specific
dispersion relations. The inviscid Burgers equation is obtained as a specific wave
propagation equation for the first order effective continuum, whereas a perturbation
method was used for the second form of energy density.

The generalization of such nonlinear wave propagation analyses to 2D situations
will be performed in future work, based on suitable hyperelastic constitutive laws
obtained from the homogenization of the existing microstructure.
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Chapter 10
Multiscale Modeling of 2D Material
MoS2 from Molecular Dynamics
to Continuum Mechanics

Kerlin P. Robert, Jiaoyan Li and James D. Lee

Abstract Research on two dimensional (2D) materials, such as Graphene and
Molybdenum disulfide (MoS2), now involves thousands of researchers worldwide,
implementing cutting edge technology to study them. Due to the extraordinary
properties of 2D materials, research extends from fundamental science to novel
applications of 2D materials. This work introduces atomistic simulation method-
ologies, based on interatomic potential, as a tool to unveil the mechanical and
thermal properties at nanoscale of MoS2, a material that has attracted most research
interests among all 2D materials. Young’s modulus, Poison’s ratio, heat conduc-
tivity and heat capacity at atomic scale are studied. These findings lend compelling
insights into the atomistic mechanism of MoS2. Then, based on these useful
information, we perform concurrent multiscale modeling of MoS2 from molecular
dynamics simulation in atomic region to finite element analysis in continuum
region.

10.1 Introduction

Free-standing 2D crystals were believed to be unstable at nonzero temperatures
[10]. This point of view has been disproved since Geim and his colleague dis-
covered a simple but novel method to isolate single atomic layers of graphene from
graphite [7]. Since then, 2D materials are being heavily studied due to many
valuable properties they exhibit. MoS2, a 2D dichalcogenide, that has attracted a
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great deal of attention recently because of its unique properties in electronic and
optoelectronic applications, is the core material studied in our paper. Due to its
layered structure, low coefficient of friction and reactivity, it is widely used as a
solid lubricant and hydrodesulfurization catalyst. MoS2 has been attracting plentiful
research interests in order to overcome the shortage of graphene and broadening the
range of applications of 2D materials.

From an engineering point of view, understanding the material properties of 2D
materials under various conditions is crucial for tailoring the electrical and
mechanical properties of 2D-material-based devices at nanoscale. Even at nanos-
cale, molecular systems typically consist of a vast number of atoms. Molecular
dynamics (MD) simulations enable us to understand the assemblies of molecules in
a structure, and the microscopic interactions between them. In the microscopic
region where critical physical phenomena occur we perform MD and solve for the
atomistic trajectory of the atoms using the velocity verlet method. This theoretical
model of classical MD provides a solid foundation for our bottom-up sequential
multiscale modeling, through which we obtained material properties including the
elastic constants, thermal conductivity, specific heat, and thermal expansion coef-
ficients for thermoelasticity of MoS2. We then perform concurrent multiscale
modeling from MD to thermoelasticity for MoS2. Lee et al. [11] performed similar
multiscale modeling for graphene.

10.2 Crystal Structure and Interatomic Potential of MoS2

MoS2 identifies as a hexagonal crystal system where the layer of Mo is sandwiched
between two layers of S. The crystal structure of MoS2 can be described as follows:
each primitive cell has three atomswith position vectors: oneMo atom at ð0, 0, 0Þ, and
two S atoms at ð0, c1ffiffi

3
p , ±c2Þ. The three base vectors are: ðc1, 0, 0Þ, ð− 1

2 c
1,

ffiffi
3

p
2 c1, 0Þ

and ð0, 0, 2c2 + c3Þ, where c1 = 0.316 nm, c2 = 0.2422 − ðc1Þ2 ̸3
h i1 ̸2

nm, and

c3 = 0.350 nm (Fig. 10.1).
Within a 2D layer of MoS2 the major interaction is due to the covalent bonds

between atoms. In our case the weak van-der Waals forces acting between two
layers of MoS2, which is only found in a bulk system, can be ignored. That being
said, we incorporate the two-body and three-body Stillinger-Weber (SW) potential
based on covalent bonding, developed by Jiang et al. [9], in our MD simulation of
Mo-S system. This potential is able to yield good agreements with experimental
observations and Density Functional Theory (DFT) calculations on structure and
energetics of Mo molecules, 2D Mo structures, 3D Mo Crystals, S molecules, and
Mo-S binary crystal structures. The SW potential treats the bond bending by a
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two-body interaction, while the angle bending is described by a three-body inter-
action. The total potential energy within a system of N atoms is

V = ∑
i< j

V2 i, jð Þ+ ∑
i< j< k

V3 i, j, kð Þ, ð10:1Þ

where

V2 = εA Bσpr − p
ij − σqr − q

ij

� �
exp σ rij − aσ

� �− 1
h i

, ð10:2Þ

V3 = ελ exp γσ rij − aσ
� �− 1 + γσ rik − aσð Þ− 1

h i
cos θjik − cos θ0
� �2. ð10:3Þ

Then the interatomic forces acting on atom i, atom j, and atom k can be simply
obtained as

f i = −
∂V
∂ri

, f j = −
∂V
∂rj

, fk = −
∂V
∂rk

. ð10:4Þ

Fig. 10.1 Crystal structure of MoS2. Schematic shows Mo-Mo, S-S, Mo-S bond distances and
S-S planar distances [17]
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10.3 Molecular Dynamics

MD was first introduced by Alder and Wainwright [1, 2] to study the interactions of
hard spheres. Rahman [16] carried out the first simulation using a realistic potential
for liquid argon. The first MD simulation of a realistic system was done by Still-
inger and Rahman [18] for liquid water. MD simulations enable us to study 2D
materials in the nanometer scale with over a million molecules. In classical MD the
trajectories of atoms are then determined by the Newton’s law

miv ̇i = f i +φi, i= ½1, 2, 3, . . . .,N�, ð10:5Þ

where N is the total number of atoms in the system, i.e. including Mo and S atoms;
mi, v ̇i, and f i are the mass, acceleration, and interatomic force of atom i, respec-
tively; φi represents forces other than interatomic force acting on atom i, i.e. φi

could be any combination of applied force, body force including Lorentz force,
fictitious force due to the translation and rotation of the coordinate system, and
thermal force due to the presence of thermostat.

A detailed formulation of Maxwell’s equations and Lorentz force at atomistic
level was given by de Groot and Suttorp [5]. For non-relativistic electromagnetics,
φi was obtained

φi = qifEe + c− 1vi ×Beg+ ∑
N

j=1, j≠ i
qiq j rij

ðrijÞ3, ð10:6Þ

where qi is the electric charge of atom i; Ee andBe are the external electric and
magnetic fields, respectively; c is the speed of light; rij ≡ ri − r j; rij ≡ rijk k. It is seen
that the last term on the right-hand side of Eq. (10.6) is the Coulomb forces
between atom i and atom j. It is worthwhile to note that, due to the non-relativistic
approximation, i.e., vik k< < c, the Lorentz force exists only between charged
atoms and the external Ee andBe

fields; between charged atoms themselves only
Coulomb forces exist.

It is noticed that, in MD simulation, temperature is a dependent variable. Usu-
ally, but not correctly, it was expressed as

T =
∑N

i=1 m
iðvi ⋅ viÞ

Ndof kB
, ð10:7Þ

where Ndof is the number of degrees of freedom of the system; kB is the Boltzmann
constant.

Temperature Control: Nosé-Hoover Thermostat

The revolutionary Nosé-Hoover dynamics, originally introduced by Nosé [14, 15]
and developed further by Hoover [8], modified Newtonian dynamics so as to
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reproduce canonical and isobaric-isothermal ensemble equilibrium systems. How-
ever, there is an increasing interest in conducting MD simulations which do not fall
within the classification of these classical ensembles. Li and Lee [12] pointed out
the need to reformulate the Nosé-Hoover thermostat to locally regulate the tem-
peratures at many distinct regions without introducing the unphysical linear and
angular momenta. In this way, the trajectories of atoms and molecules can be
generated more rigorously and accurately by Non-equilibrium Molecular Dynamic
(NEMD) simulations.

After the reformulation, we define the Nose-Hoover thermal velocity as

v ̃i ≡ vi − v ̄−ηi, ð10:8Þ

where v ̄ is the average velocity of a group of atoms in question; ηi =ω× rĩ; ω is the
angular velocity; rĩ is the relative position vector of atom i in the group considered.
Now, the temperature of group g is calculated as

Tg =
1

Ndof
g kB

∑
ng

i=1
miv ̃i ⋅ v ̃i, ð10:9Þ

where Ndof
g =3ng − 6 is the number of degrees of freedom of group g. One may

readily prove that rigid body translation and rotation have no contribution to the
temperature [11]. The subtraction of 6 from 3ng is due to the elimination of linear
and angular momenta from the velocity field in the calculation of the Nose-Hoover
thermal velocity.

The governing equations for a material system with upgraded Nosé-Hoover
Thermostats should now be expressed as

miv ̇i = f i +φi − χgm
iv ̃i, i∈ group g, ð10:10Þ

where − χgm
ivĩ is named as Nosé-Hoover temperature force. The role of χg is

similar to damping coefficient, except that χg is not a constant—instead it is gov-
erned by

χ ġ =
1

τ2gTo
g
ðTg −To

g Þ, ð10:11Þ

where τg is a specified time constant associated with group g; To
g is the target

temperature of the Nose-Hoover thermostat. It is noticed that if group g doesn’t
have a thermostat, then it is a special case with χg = χ ġ =0. From now on, if there is
no ambiguity, we use the general case for description and derivation.
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The Hamiltonian of the entire system can be generalized as,

H = ∑
Ng

g=1
∑
i∈ g

1
2
mivi ⋅ vi −

Z t

0

φiðsÞ ⋅ viðsÞds
8<
:

9=
;

+ ∑
Ng

g=1

1
2
Qgχ

2
g +

Qg

τ2g

Z t

0

χgðsÞds
8<
:

9=
;+Vðr1, r2, r3, . . . , rNÞ,

ð10:12Þ

where V is the total interatomic potential energy of the entire system, and

Qg ≡Ndof
g kBTo

g τ
2
g. ð10:13Þ

It is seen that the Hamiltonian, H, consists of four parts: (1) the kinetic energy
which is the sum of kinetic energies of all atoms, i.e., 1

2m
ivi ⋅ viði=1, 2, 3, . . . ,NÞ,

(2) the potential energy Uðr1, r2, r3, . . . , rNÞ, which in principle cannot be divided
into a summation of subsets, (3) the work done by force φi ½i=1, 2, 3, . . . ,N�,
and (4) the sum of thermal energy Eg ½g=1, 2, 3, . . . ,Ng� of all groups, where

Eg ≡
1
2
Qgχ

2
g +

Qg

τ2g

Z t

0

χgðsÞds
8<
:

9=
;. ð10:14Þ

One may also prove that the Hamiltonian is a constant. We also notice that

Eġ =Ndof
g kBχgTg. ð10:15Þ

Actually Eġ is the flow of energy per unit time out of group g due to the action of
Nosé-Hoover thermostat.

10.4 Thermoelasticity and Sequential Multiscale Modeling

10.4.1 Governing Equations of Thermoelasticity

In small-strain thermoelasticity (a branch of continuum mechanics), the relevant
balance laws and constitutive equations may be expressed as [3, 4, 6]:

ρov ̇=∇ ⋅σ+ ρoφ, ð10:16Þ

ρoe ̇− σ:∇v+∇ ⋅ q− ρoh=0, ð10:17Þ
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σij = − βijðT − Tref Þ+Aijklekl, ð10:18Þ

ρoe ̇= ρoγT ̇+Aijkleijek̇l, ð10:19Þ

qi = − κijT, j, ð10:20Þ

where ρo is the mass density in the reference state; u is the displacement vector and
v= u̇ is the velocity vector; σ is the Cauchy stress tensor; e is the internal energy
density; q is the heat flux; T is the absolute temperature; Tref is the reference
temperature; e is the strain tensor, i.e. ðeij ≈ ðui, j + uj, iÞ ̸2Þ; β is named as the
thermal expansion coefficients; A are the elastic constants; κ is the thermal con-
ductivity; γ is the specific heat; φ is the body force per unit mass. Notice that, in
thermoelasticity, the Cauchy stress is derivable from a scalar-valued Helmholtz free
energy density function; stress tensor and strain tensor are both symmetric.
Therefore, one has

βij = βji, Aijkl =Ajikl =Aijlk =Aklij. ð10:21Þ

It is emphasized that in continuum mechanics (CM), temperature is an inde-
pendent variable. Therefore an energy equation, Eq. (10.17) is needed. On the
contrary, Nosé-Hoover Thermostat is not needed—all one needs to do is to set
temperature-specified boundary conditions. Of course, one may set
heat-flux-specified boundary conditions too. Also, the temperature field and dis-
placement field in CM are functions of spatial and temporal variables—that is why
we see terms such as ∇ ⋅σ,∇u,∇v,∇ ⋅q, and∇T in Eqs. (10.16)–(10.20). From
now on, we refer the temperature in continuum mechanics as continuum temper-
ature, to distinguish it from atomistic temperature in molecular dynamics.

In finite element analysis, relate the displacement and temperature fields with
their nodal values as

ui =NiαUα, eij =BijαUα

T =NξTξ, T, k =CkξTξ
, ð10:22Þ

Then it is straightforward to obtain the dynamic finite element equations as

MU ̈+KU=PT+F1 +F2, ð10:23Þ

GT ̇+HT+ TrefPTU̇= −Q1 +Q2. ð10:24Þ

The detailed expressions of M, K, P, G, H, F1, F2, Q1, andQ2 are given by
Lee et al. [11].

Now it is noticed that, if one has the values of A,β,κ, and γ, then one may
proceed to solve Eqs. (10.23), (10.24) for UðX, tÞ and TðX, tÞ. If further we can
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obtain those material properties from molecular dynamics (MD) simulation, then
this approach is named as a sequential multiscale modeling.

10.4.2 Elastic Constants

In experimental works, the mechanical properties of 2D material nanosheets are
usually measured by performing AFM nano-indentation. In theoretical works, there
are several atomistic modeling and simulation tools, such as DFT, molecular
mechanics (MM), and MD. MD simulations can realize a variety of loading cases,
including nano-indentation, tension, compression, and bending, to calculate the
Young’s modules and Poisson’s ratio. In Voigt’s convention, one may rewrite
Eq. 10.18 as

σ11
σ22
σ33
σ23
σ31
σ12

�����������

�����������
= −

β11
β22
β33
β23
β31
β12

�����������

�����������
ðT − Tref Þ+

A1111 A1122 A1133 A1123 A1131 A1112

A1122 A2222 A2233 A2223 A2231 A2212

A1133 A2233 A3333 A3323 A3331 A3312

A1123 A2223 A3323 A2323 A2331 A2312

A1131 A2231 A3331 A2331 A3131 A3112

A1112 A2212 A3312 A2312 A3112 A1212

�����������

�����������

e11
e22
e33
γ23
γ31
γ12

�����������

�����������
,

ð10:25Þ

where γ23 = 2e23, γ31 = 2e31, γ12 = 2e12.
In simple strain problem, the deformation can be expressed as

x
y
z

������
������=

1+ e1 γ12 γ13
γ21 1 + e2 γ23
γ31 γ32 1 + e3

������
������
X
Y
Z

������
������ or xk =FkKXK , ð10:26Þ

which implies the Green’s deformation tensor, and Lagrangian strain tensor can be
calculated as

CKL =FkKFkL, EKL = ðCKL − δKLÞ ̸2. ð10:27Þ

From the Lagrangian strains one may obtain their approximate small-strain
counter-parts. We employ SW potential to describe the interatomic interactions
among atoms. The interatomic forces acting on atoms can be obtained as mentioned
in Sect. 10.2. In MD simulation, let the whole specimen have N atoms. There are
six independent simple strains that can be created, from which the position vectors,
ri i∈ ½1, 2, 3, . . . .,N�, of all atoms can be determined. Because these six cases are
static cases, the virial stress tensor are reduced to
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S= −
1
Ω

∑
N

i=1
ri⊗f i, ð10:28Þ

where Ω is the volume of the whole specimen. For each case, we obtain six
components of the virial stress, from which the elastic constants can now be
deduced as

Aklmn = Skl ̸emn. ð10:29Þ

In general, the stress-strain relation is nonlinear and we focus our attention to
small strain theory, therefore, to evaluate the elastic constants, those specified
strains, e11, e22, e33, γ12, γ23, and γ31, should be in the linear elastic range.

10.4.3 Thermal Conductivity

Now suppose we have several atomic groups lined up in series and let the 1st group
be subjected to Nose-Hoover thermostat at atomistic temperature TH and let the last
group be subjected to Nose-Hoover thermostat at atomistic temperature TL. Those
groups in between do not have Nosé-Hoover thermostat. After the system reaches
steady state, one may obtain the thermal energies EH andEL as

EH ≡
1
2
QHχ

2
H +

QH

τ2H

Z t

0

χHðsÞds
8<
:

9=
;, ð10:30Þ

EL ≡
1
2
QLχ

2
L +

QL

τ2L

Z t

0

χLðsÞds
8<
:

9=
;. ð10:31Þ

Because, in MD simulation, atomistic temperature is a statistical quantity and
involves significant amount of noises, one may plot the thermal energies EH andEL

as functions of time, which can be approximated by two straight lines. Numerically
one should obtain (cf. Eq. (10.15))

ΔEH

Δt
≈EḢ =Ndof

H kBχHTH ,
ΔEL

Δt
≈E ̇L =Ndof

L kBχLTL, ð10:32Þ

where EḢ andE ̇L should be approximately equal in magnitude but opposite in sign.
The heat flux q in magnitude is equal to EḢ andE ̇L divided by cross sectional area;
the temperature gradient is equal to ΔT ̸ΔL, where ΔT = TH −TL and ΔL is the
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distance between the centers of mass of the two atomic groups controlled by
Nose-Hoover thermostats.

Rewriting Eq. 10.20 in Voigts convention as

q1
q2
q3

������
������= −

κ11 κ12 κ13
κ21 κ22 κ23
κ31 κ32 κ33

������
������
T, 1
T, 2
T, 3

������
������, ð10:33Þ

one can calculate the thermal conductivity κ from heat flux density q and tem-
perature gradient along the transportation direction.

10.4.4 Specific Heat and Thermal Expansion Coefficient

We now recall two constitutive equations in small strain thermoelasticity

ρoe ̇= ρoγT ̇+Aijkleijek̇l, ð10:18�Þ

σij = − βijT +Aijklekl, ð10:19�Þ

where γ and β are the specific heat and thermal expansion coefficients, respectively.
In MD simulation, one may consider a group of atoms in relaxed and idealized
state, i.e., absolute zero temperature, vanishing interatomic forces, and vanishing
virial stresses. Then imagine that this group of atoms is put into a rigid box and
prohibited to move out of the box. In this situation, the strain and the strain rate are
zero, Eqs. (10.18*), (10.19*) are re-written as

Sij = − βijT , e ̇= γT ̇. ð10:34Þ

Here we assume that the Cauchy stress tensor in continuum mechanics is
equivalent to the virial stress tensor in MD simulation [19]. This may be considered
as an approximation. But, without it, it is very difficult, even impossible to bridge
the gap between atoms and genuine continuum.

Now let the atomistic temperature of atoms in the box be raised to a specified
temperature T by Nose-Hoover thermostat and, after steady state is reached, one
may calculate virial stresses Sij and internal energy density e (sum of potential
energy and thermal energy divided by total mass of atoms). It results

βij = − Sij ̸T , γ =
e
T
. ð10:35Þ
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10.5 Concurrent Multiscale Modeling from Atoms
to Genuine Continuum

To implement the concurrent multiscale modeling, we divide the solution domain
into two regions, namely the non-critical region (or far field) and the critical region
(or the atomic region) where the stress concentrations, crack initiation and propa-
gation, dislocations, and other critical physical phenomena may occur. We have
successfully modeled the critical region (the atomic region) using MD Simulations
and the non-critical region (continuum region) using Finite Element Methods.

The atomic region is further divided into Ng groups, each consisting of ng atoms,
which results in a total of N atoms. Let the first Mg groups have Nosé-Hoover
thermostats, Ng >Mg. For example, Fig. 10.2b shows Ng =22 and Mg =17. These
Mg groups are linked to the first Mg nodes in the GC region (cf. Fig. 10.2a). It is
noticed that there are Ng −Mg =5 groups not controlled by thermostats because
they are not linked to any node in the genuine continuum (GC) region. By con-
sidering the Ng groups as nodes and incorporating into the finite element mesh of
GC (cf. Fig. 10.2a), we can obtain an apparent FE mesh as shown in Fig. 10.2c.
This results in the formation of an interface between the atomic region and con-
tinuum region. In the interface each node is corresponding to a group of atoms, not
just a single atom (cf. Fig. 10.2a, b).

At this moment we make the following 2 major assumptions

Assumption 1 Each node in the interface is anchored at the mass center of its
corresponding group.

Assumption 2 The sum of heat fluxes into the node and its corresponding group is
zero.

Now, we recall the equations governing the atomic region as

miv ̇i = f i +φi + f iint − χgm
iv ̃i, ð10:10�Þ

χ ġ =
1

τ2gTc
g
ðTa

g −Tc
gÞ, ð10:11�Þ

Ta
g =

1

Ndof
g kB

∑
ng

i=1
miv ̃i ⋅ v ̃i, ð10:9�Þ

E ̇g =Ndof
g kBχgT

a
g . ð10:15�Þ

However, we replace Tg to Ta
g to emphasize that now it is the atomistic tem-

perature of group g calculated through the Nose Hoover thermal velocity v ̃i in the
atomic region. Similarly target temperature To

g is replaced by Tc
g to indicate the

target temperature of the group g is no longer a constant, but the nodal temperature
of the corresponding node g in the GC region, g∈ ½1, 2, 3, . . . .,Mg�. The term f iint
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introduced into Eq. (10.10*) represents the interaction between the atoms in group
g and their corresponding node g in the GC region.

We recall and rewrite the finite element equations for the GC region as

MU ̈+KU=PT+F1 +F2 +Fint, ð10:23�Þ

GT ̇+HT+ TrefPTU ̇= −Q1 +Q2 +Qint. ð10:24�Þ

It is seen that, for those nodes anchored in groups of atoms in the atomic region,
we add Fint and Qint to the governing equations; for other nodes, Fint =Qint = 0.

Fig. 10.2 a Finite element mesh in the genuine continuum region, b groups of atoms in the
atomic region, c apparent FE mesh
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The time step used in the atomic region and the continuum region is denoted by
Δta andΔtc, respectively. Ratio of time steps Ntime, which should be an integer, is
defined as

Ntime ≡Δtc ̸Δta or Δtc =NtimeΔta. ð10:36Þ

We employ the velocity verlet method to solve Eqs. (10.10*), (10.11*) and
central difference method to solve Eqs. (10.23*), (10.24*).

10.5.1 Interfacial Conditions

At each node/group in the interface, one should have the following two conditions:

∑
i∈ g

f iint +Fg
int = 0, ð10:37Þ

Qg
int =E ̇g =Ndof

g kBχgT
a
g . ð10:38Þ

The first condition, Eq. (10.37), simply means the sum of interactive forces of
the node/group pair should be vanishing. Recall that Eġ is the flow of energy per
unit time out of group g due to the action of Nosé-Hoover thermostat. Therefore, the
second condition simply says Eġ should be the inward flow of energy per unit time
to the corresponding node g.

We now re-write Eq. (10.10*) and Eq. (10.23*) respectively as

miu ̈i =miv ̇i = f i +φi + f iint − χgm
iv ̃i ≡ f ī + f iint, ð10:39Þ

MU ̈= −KU+PT+F1 +F2 +Fint ≡ F̄+Fint, ð10:40Þ

where ui denotes the position vector of atom i. In this work, lumped-mass system is
adopted, i.e. the mass matrix M is diagonalized and hence nodal mass is well
defined. Similarly, the G matrix in Eq. (10.24*) is also diagonalized. Equa-
tion (10.37) leads to

MgÜg + ∑
i∈ g

miüi = F̄g + ∑
i∈ g

f ī. ð10:41Þ

Assumption 10.1, that we made, says node g is anchored at the mass center of
group g. It implies
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Üg =
∑i∈ g m

iuï

∑i∈ g mi ≡
∑i∈ g m

iuï

mg ≡u ̈gavg. ð10:42Þ

To ensure Eq. (10.42), one needs

üi =
f ī

mi +U ̈g −
∑i∈ g f

ī

mg . ð10:43Þ

Substituting Eq. (10.42) into Eq. (10.41) results

Üg =
1

Mg +mg F̄g + ∑
i∈ g

f ī
( )

. ð10:44Þ

In addition to the interfacial conditions, we need to impose boundary condition,
either displacement-specified or force specified, at each component of each node,
similarly, impose boundary condition, either temperature-specified or heat
flow-specified, at each node, at outer boundary of GC region, but not at inner
boundary, which is the interface.

10.5.2 Multiple Time Scale Algorithm

There are two regions, atomic and continuum, and therefore there are two time
scales, n andm. Then time t equals

tðn,mÞ= nΔtc +mΔta. ð10:45Þ

It is seen that tðn+1, 0Þ= tðn,NtimeÞ. First, suppose at tðn, 0Þ we know un, 0,
an, 0 ≡un̈, 0, χn, 0,vn, − 1

2 = uṅ, − 1
2, Un, 0, Vn, 0 ≡ U̇n, 0, An, 0 ≡U ̈n, 0, Tn, 0, and Ṫn, 0. The

numerical procedures to solve Eqs. (10.10*), 10.11*), 10.23*), (10.24*) are
described in detail by Lee et al. [11]. Then all the unknown variables are updated as

Un, 0, Vn, 0, Tn, 0, An, 0, Tn, 0 → Un+1, 0, Vn+1, 0, Tn+1, 0, An+1, 0, Tn+1, 0,

ð10:46Þ

un,m, vn,m− 1
2, an,m, χn,m → un,m+1, vn,m+ 1

2, an,m+1, χn,m+1. ð10:47Þ
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10.5.3 Sample Problems and Numerical Results

To show the flexibility and extent of the concurrent multiscale theory, in this work
we have studied MoS2, a 2D material consisting two kinds of atoms, characterized
by strong in-plane covalent bonding and weak out of plane van der Waals bonding
which give them a layered structure.

10.5.3.1 Material Constants Obtained from MD Simulations

The interatomic potential for MoS2 used in this work is Stillinger Weber potential.
In the continuum region, we model the material as a 2D thermoelastic solid with its
material properties obtained from MD simulation (cf. Sect. 10.4). The material
properties may be summarized as follows:

σ11
σ22
σ12

������
������= −

0.3675 x 10− 5

0.3408 x 10− 5

0.3981 x 10− 5

������
������ðT −Tref Þ+

0.00489 0.00181 0
0.00181 0.00488 0

0 0 0.001505

������
������
e11
e22
γ12

������
������,

ð10:48Þ

q1
q2

����
����= − 0.8924 x 10− 9 0

0 0.7637 x 10− 9

����
���� T, 1
T, 2

����
����, ð10:49Þ

γ =0.5444 x 10− 2. ð10:50Þ

In this work, we use atomic units, i.e., the dimensions and units of stress,
temperature, heat expansion coefficient, heat flux, thermal conductivity, and specific
heat are

½σ�= Hartree
Bohr3

, ½T �=Kelvin, ½β�= Hartree
Bohr3 Kelvin

½q�= Hartree
τBohr2

, k½κ�= Hartree
τBohrKelvin , ½γ�= Hartree

meKelvin

, ð10:51Þ

where

Hartree = 4.3597482 × 10− 18 J
Bohr = 5.29177249× 10− 11 m
τ=2.418884326555 × 10− 17 s
me =9.10938291× 10− 31 kg

. ð10:52Þ
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10.5.3.2 Case Study

The entire specimen is divided into two regions: (1) the finite element mesh of the
continuum region has 138 nodes and 108 2D 4-noded plane elements, shown in
Fig. 10.2a; (2) the atomic region is further divided into 22 groups, as shown in
Fig. 10.2b. There are 756 atoms in group 1 and in group 17, 1512 atoms in each of
the other 20 groups, i.e. 504 Mo atoms each associated with 2 S atoms. There are
31,752 atoms in the atomic region. One may take a close look and find that group i
and its corresponding node iði=1, 2, 3, . . . , 17Þ form 17 node/group pairs. For the
purpose of presentation, one may consider, and view later, the finite element mesh
of the entire specimen has 143 nodes (143 = 138 + 5 groups) and 120 elements
(120 = 108 + 2(5 + 1)), as shown in Fig. 10.2c. In this view, one may say this
specimen had a crack and the crack tip is located at the centroid of group 18. In this
work the time steps are set at Δta =20 τ=0.4838 femto second and Δtc =20Δta. It
is emphasized that, from the concurrent multiscale modeling, one can obtain the
positions of the centroids, the atomistic temperatures, and the virial stress tensors of
the 22 groups. Therefore, later in the Tecplot, one may see the graphic represen-
tations of a mixture of Cauchy stress tensors and continuum temperatures at 121
nodes (121 = 138 – 17) together with virial stress tensors and atomistic tempera-
tures at 22 groups. The boundary conditions are specified as

Along top edge

T =Tref

uy =
85

t
tr
ðBohrÞ, t≤ tr

85ðBohrÞ, t≥ tr

8<
: . ð10:53Þ

Along the bottom edge

T = Tref

uy =
− 85

t
tr
ðBohrÞ, t≤ tr

− 85ðBohrÞ, t≥ tr

8<
: . ð10:54Þ

where tr =2500Δtc =50000Δta; Tref =300K. It means there is no temperature
gradient; the elongation, after time t≥ tr, is a constant. The positions of 31,752
atoms at different time steps are shown in the VMD plots in Fig. 10.3. One may
observe the crack opening and crack propagations along multiple fronts. It means,
in critical region, MD simulation can be and should be utilized to investigate
problems in fracture mechanics and fatigue crack propagation. The temperatures
(continuum and atomistic), virial stresses are shown in the Tecplots (cf. Fig. 10.4).
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Fig. 10.3 VMD plots at various time steps: a t=5000Δtc; b t=6000Δtc, right before crack
branching; c t=7000Δtc, crack propagating and branching
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10.6 Conclusion and Future Work

In this work, the atomic region of the specimen we studied is in the range of
nanometers to tens of nanometers. Although MD simulation has established itself as
a widely employed simulation technique for the study of material behaviors at
nanoscale, the extension of MD into computational science over a realistic range of
length and time is limited, even with a state-of-the-art supercomputer. On the other
hand, continuum physics is simply invalid for material systems at nanoscale
because, to say the least, stress-strain relation cannot replace interatomic potential;
treatment of temperature is totally different from that in MD. Therefore, this
development of a unified theory and associated computational methods for strongly
coupled simulations in order to investigate materials from atomic scale to macro-
scale, becomes necessary in a practical viewpoint.

In addition to drawing attention based on some of its admirable properties, MoS2
also became popular because it has superior properties than graphene. Although
graphene possesses good electrical conductivity thanks to its electron mobility, it
fails at switch control due to its gapless band structure. MoS2 helps implement
switch control with its direct band gap of 1.8 eV; this influences the sensitivity of
the material allowing it to be used as an effective transistor. However it cannot
match graphene in electron mobility. Therefore, fabrication of hybrid structures
based on 2D materials by taking advantages of the individual component is one of
latest research trends [13].

Fig. 10.4 a Continuum and atomistic temperature variations at t=7000Δtc; Cauchy stress σ22
and virial stress S22 ðHartree ̸Bohr3Þ at b t=5000Δtc, c t=6000Δtc, d t=7000Δtc
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Chapter 11
Gradient Elasticity Effects
on the Two-Phase Lithiation
of LIB Anodes

Ioannis Tsagrakis and Elias C. Aifantis

Abstract A coupled gradient chemoelasticity theory is employed to model the
two-phase mechanism that occurs during lithiation of silicon nanoparticles used to
fabricate next generation Li-ion battery (LIB) anodes. It is shown that the strain gra-
dient length scale is able to predict the propagation of an interface front of nonzero
thickness advancing from the lithiated to unlithiated region without necessarily
including higher-order concentration gradients of the Li ions. Larger strain gradient
coefficients (elastic internal lengths) induce more diffused interfaces and faster lithia-
tion, which affect both internal strain and stress distributions in a similar way. Estimates
for the migration velocity of the phase boundary are obtained and a range of values of
the strain gradient length scale is shown to simulate the observed experimental results.

11.1 Introduction

It is with great pleasure and honor to dedicate this article to the memory of a dear
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between mechanical, thermal, chemical and electromagnetic effects. The present
contribution is strongly motivated by his work; i.e. on the development and use of
generalized coupled continuum theories to interpret mechanically-induced nonlin-
ear phenomena observed in natural and modern engineering systems. The particular
chemomechanical problem considered herein concerns the internal stress devel-
opment and propagation of a lithiated front wave observed during Li-intercalation
of nanostructured silicon-based composite anodes.

A first attempt for using elasticity theory to model the huge volumetric expan-
sions occurring in rechargeable Li-ion battery (LIB) anodes containing active Si or
Sn nanoparticles embedded within a glass or ceramic matrix, was provided in [1].
Soon after that, linear elastic fracture mechanics (LEFM) considerations were
employed in [2] to model crack patterns in nanostructured composite anodes and
assess the optimum configuration of nanodomains (nanospheres, nanofibers, nan-
odiscs) that prevent cracking. Later, a rather complex gradient damage theory was
used [3] to derive estimates for the local geometry, volume fraction and spacing of
the “active” nanodomains which minimize anode damage during Li insertion/
de-insertion under electrochemical cycling.

A first mechanics-oriented review on lithium-ion batteries with emphasis on the
synergy between elasticity and electrochemistry was provided in [4]. In addition to
anode chemomechanical degradation, detrimental phase separation in cathodes was
also discussed by coupling elasticity to Cahn’s theory [5, 6] of spinodal decom-
position. Concurrently, the topic became quite popular in the mechanics community
[7–12] and a number of rigorous but often complex formulations on elasticity or
plasticity coupled with diffusion were proposed and applied to interpret cracking in
anodes and phase separation in cathodes. With the exception of [13], none of these
formulations takes into account the higher-order gradients due to the strain field,
even though higher-order gradients for the concentration field are often considered.
Moreover, with the exception of [14, 15], the nonlinear nature of the lithiation
phenomenon and the influence of different internal lengths (elastic and chemical) on
the accompanied phase transition-like process is not addressed. A related “phase
field” theory based on the introduction of higher-order gradients of the order
parameter do not explicitly separate between the effects of higher-order strain
gradients and higher-order concentration gradients.

Our modest aim here is to provide and utilize a relatively simple thermodynamic
framework considering higher-order gradients in both the strain and the concen-
tration field for modeling the lithiation of Si anodes during electrochemical cycling.
Experimental results on crystalline [16] as well as amorphous silicon [17] have
shown that this process occurs through a two-phase mechanism, where an amor-
phous LixSi ðx≅ 3.75Þ phase grows and separated from the unlithiated phase by a
sharp interface of about 1 nm thick. Accordingly, the kinetics of lithiation is
characterized by the migration of this interface which can interpreted either by
employing diffusion arguments of Cahn–Hilliard type [18] or by considering the
interfacial chemical reaction of lithium and silicon [19].

In the present contribution, we build on a revision of our previously published
model [14] on coupled higher-order strain gradient—concentration gradient phase
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transformations of spinodal type and utilize it to simulate the development and front
propagation of the lithiated phase that a spherical Si particle undergoes during
electrochemical charging. The implications of the strain gradient and concentration
gradient coefficients (internal lengths) on the Li concentration distributions, as well
as, on the induced stress and strain profiles are also investigated.

11.2 Theoretical Framework of Gradient Chemoelasticity

In a recent article of the authors [14], it has been shown that the thermodynamic
coupling of strain gradient elasticity with Cahn-Hilliard diffusion can be originated
by assuming that the Helmholtz free energy density is non-convex and depends in
addition to the concentration ðcÞ and the strain ðεÞ, on the concentration gradient
∇c of the chemical species (Li-ions) and the gradient of the hydrostatic strain field
ð∇tr εÞ. We relax somewhat this assumption here to include the gradient of the full
strain field ∇ε. In other words, our starting constitutive assumption for the free
energy density is of the form ψ =ψ ̂ c,∇c, ε,∇εð Þ, where c denotes the local nominal
concentration (in moles per unit volume) of the diffusing species (e.g. Li in LixSi), ε
is the displacement compatible infinitesimal strain tensor, i.e. ε= ∇u+ ð∇uÞT� �

̸2,
while ∇ε= ∂ε

∂xi
⊗ e ̂i is its gradient (a 3rd order tensor). The thermodynamically

consistent constitutive equations for the chemical potential μ and the Cauchy stress
σij derived for this general model read (see also in [15])

μ=
∂ψ ̂
∂c

−
∂

∂xi

∂ψ ̂
∂c,i

� �
, σij =

∂ψ ̂
∂εij

−
∂

∂xk

∂ψ ̂
∂εij, k

� �
, ð11:1Þ

while the components of the associated traction-like vectors have the form

ξi =
∂ψ ̂
∂c,i

, ti = σijnj + τiDmnm −Dj nk
∂ψ ̂
∂εij, k

� �
, τi =

∂ψ ̂
∂εij, k

njnk, ð11:2Þ

where Dj ≡ ∂j − njnk∂k is the tangential component of the gradient operator ∇= f∂jg
on the boundary ∂P of the material domain P.

In the present work, the following specific constitutive equation for ψ ̂ is
considered

ψ ̂ c,∇c, ε,∇εð Þ= f ðcÞ+ κ

2
∇c ⋅ ∇c+

1
2
εe ⋅ C εe + ℓ2

ε

2
∇εe ⋅ C∇εe, ð11:3Þ

where εe = ε− ρM is the infinitesimal elastic strain tensor with ρ: = c ̸cmax

(0≤ ρ≤ 1) denoting the normalized concentration, while cmax is the concentration
when all the accommodating sites in the host material are filled (i.e. at the fully
lithiated state). The term ρM represents the lattice misfit (stress-free) strain of the
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two materials which varies linearly with the composition (Vegard’s law). For
simplicity, we assume that the intercalation process induces only isotropic com-
pressions and expansions of the surrounding material and consequently M =Mo1,
where Mo is a constant scalar strain measure. Moreover, Cεe =2Gεe + λðtr εeÞ1 for
an isotropic host material, where G, λ are the Lamé parameters which are assumed
to be constants, though in a more general consideration they will depend on con-
centration. It is noted that Eq. (11.3) is different from that proposed in [15], where
the gradient ∇ε of the total strain was used instead of ∇εe.

The first two terms in Eq. (11.3) are identical with the original Cahn-Hilliard
expression for the free energy density of a non-homogeneous binary solution [5],
where f ðcÞ is the chemical free energy density of a stress-free system of uniform
concentration c. This function is able to describe the co-existence of two phases
provided that it is non-convex with two minima and a maximum in between (i.e. a
double-well function). For this reason, the well-known regular solution model of
the form

f ðcÞ= μ0c+RTcmax ρ ln ρ+ ð1− ρÞ ln ð1− ρÞ+ αρð1− ρÞ½ � ð11:4Þ

is adopted, where R is the universal gas constant, T is the absolute temperature, and
μ0 is a reference value of the chemical potential of the diffusing species. Equa-
tion (11.4) is able to describe phase transition or phase separation phenomena as
long as α>2. In this connection, it is noted that amorphous phases (e.g. LixSi) are
simply considered to evolve according to an ideal hypothesis for regular solutions,
and hence Eq. (11.4) should be viewed only as a mathematical function with double
energy wells [18], without loss of generality.

For the specific form of the Helmholtz free energy density defined by Eqs. (11.3)
and (11.4), Eq. (11.1) gives the following gradient dependent constitutive expres-
sions for the chemical potential and the stress tensor

μ= μ0 +RT ln ρ
1− ρ

� �
+ αð1− 2ρÞ

h i
− κcmax∇2ρ

− ð2G+3λÞMo tr ε−ℓ2
ε∇

2tr ε
� 	

− 3Moðρ−ℓ2
ε∇

2ρÞ� �
̸cmax

)
, ð11:5Þ

σ =2Gε+ λðtr εÞ1−ℓ2
ε∇

2 2Gε+ λðtr εÞ1½ �− ð2G+3λÞMoðρ−ℓ2
ε∇

2ρÞ 1, ð11:6Þ

where 1 is the 2nd order identity tensor. By calculating the hydrostatic stress
σh = trσ ̸3 from Eq. (11.6), it is rather straightforward to show that Eq. (11.5) can
be recast into the following standard stress-dependent form of the chemical
potential

μ= μ0 +RT ln
ρ

1− ρ

� �
+ αð1− 2ρÞ


 �
− κcmax∇2ρ−ΩLiσh, ð11:7Þ

where ΩLi = 3Mo ̸cmax is the partial molar volume of the diffusing species. More-
over, Eq. (11.6) can be also recast into the form σ = σc −ℓ2

ε∇
2σc, where
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σc: = 2Gε+ λðtr εÞ1− ð2G+3λÞMoρ1 denotes the classical (non-gradient) part of
the stress. Then, the traction-like parameters in Eq. (11.2) obtain the form

ξ= κcmax∇ρ−ℓ2
εΩLi∇σch, t= σn+ ðDmnmÞτ −ℓ2

ε∇s ⋅ ∇nσ
cð Þ, τ =ℓ2

ε ∇nσ
cð Þn,
ð11:8Þ

where ∇nσc = nkσcij, k eî ⊗ e ̂j is the normal gradient of σc on the boundary ∂P, while
∇s ⋅T =DjTij eî is the tangential divergence of the 2nd order tensor T.

The set of the constitutive equations is completed by the flux versus chemical
potential expression

j= − cB∇μ; B=
Do

RT
ð1− ρÞ1, ð11:9Þ

where B denotes the mobility tensor which has been assumed diagonal and iso-
tropic, and Do is the inter-diffusion coefficient. Substituting Eq. (11.8) into the local
mass conservation law ∂c

∂t +∇ ⋅ j=0 and dividing the resulting equation by cmax

yields
∂ρ

∂t
=

Do

RT
ð1− 2ρÞ∇ρ ⋅ ∇μ+ ρð1− ρÞ∇2μ
� �

. ð11:10Þ

Finally, the set of the governing equations is completed by the standard equi-
librium condition ∇ ⋅ σ = 0, which with the aid of the previously stated linear
approximation for the strain-displacement relation ε= ∇u+ ð∇uÞT� �

̸2 gives

Gð∇2u−ℓ2
ε∇

4uÞ+ ðλ+GÞ∇ ∇⋅u−ℓ2
ε∇

2ð∇⋅uÞ� �
− ð2G+3λÞMo∇ ρ−ℓ2

ε∇
2ρ

� 	
=0.

ð11:11Þ

In this connection, it is noted that the quasi-static form ∇ ⋅ σ = 0 of the
momentum balance equation used in the present analysis implies that body forces
and inertial effects are considered negligible. The feasibility of this approximation is
based on the fact that time scales associated with species diffusion are usually
considerably longer than those associated with wave propagation (see, e.g. in [11],
and references quoted therein), as well as, external gravitational forces exerted in
the micro-specimens are much smaller than the mechanical forces between adjacent
micro-volumes.

11.3 Modeling Lithiation of a Spherical Silicon Particle

11.3.1 Governing Equations

Under spherically symmetric conditions, i.e., ρ= ρðr, tÞ and u= uðr, tÞer̂,
Eq. (11.11) obtains the form
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∂

∂r
1
r2

∂

∂r
r2 u−ℓ2

ε

∂

∂r
1
r2
∂ðr2uÞ
∂r


 �� �
 �� 
=

2G+3λ
2G+ λ

Mo
∂ðρ−ℓ2

ε∇
2ρÞ

∂r
. ð11:12Þ

Taking into account that the non-vanishing components of strain are εrr = ∂u ̸∂r
and εθθ = εφφ = u ̸r, and thus, tr ε= 1

r2
∂ðr2uÞ
∂r , Eq. (11.12) can be integrated with

respect r to obtain

tr ε− ℓ2
ε∇

2tr ε=
2G+3λ
2G+ λ

Moðρ−ℓ2
ε∇

2ρÞ+CðtÞ, ð11:13Þ

where CðtÞ is an integration function that depends on the mechanical boundary
conditions. Using Eq. (11.13), the chemical potential in Eq. (11.5) can be expressed
only in terms of the normalized concentration, i.e.,

μ= ln
ρ

1− ρ

� �
+ αð1− 2ρÞ+ βρ− ðℓ2

c + βℓ2
εÞ∇2ρ, ð11:14Þ

where μ : = ðμ− μ0 −ΩLiCðtÞÞ ̸RT defines a dimensionless potential,
ℓc: =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κcmax ̸RT

p
denotes an internal length scale associated with the concentration

gradient term of the Helmholtz free energy density, and β : = 4Gð2G+3λÞM2
o ̸

ð2G+ λÞRTcmax is a dimensionless material parameter. Equation (11.14) has the
general form μ= gðρÞ−ℓ2∇2ρ, where ℓ2 =ℓ2

c + βℓ2
ε . Therefore, the effects of

concentration and strain gradients can be combined into a single internal length ℓ
and hence, they are mathematically (but not physically) indistinguishable. More-
over, as long as there are non-vanishing misfit strains, the standard interfacial term
ðκ ̸2Þ∇c ⋅ ∇c in Eq. (11.3) could be omitted, and yet the model could predict the
width of the interphase because of the strain gradient length scale.

For a silicon particle of diameter d, Eqs. (11.10) and (11.14) can be recast into
their dimensionless counterparts

∂ρ

∂t
= ð1− 2ρÞ∇ρ ⋅ ∇ μ+ ρð1− ρÞ∇2

μ

μ= ln
ρ

1− ρ

� �
+ αð1− 2ρÞ+ βρ− ℓ

2
c + βℓ

2
ε

� �
∇2

ρ

9>>=
>>;, ð11:15Þ

where ∇ is the gradient operator with respect the normalized radial coordinate
r=2r ̸d, t=4Dot ̸d2 is a dimensionless time parameter, while ℓc =2ℓc ̸d and
ℓε =2ℓε ̸d.
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11.3.2 Material and Model Parameters

Suitable values of the material constants for the Si ̸LixSi system are obtained from
the literature or by some simple calculations. In particular, at a stress-free state of
full lithiation (i.e., Li4.4Si and ρ=1), we have εrr = εθθ = εϕϕ =Mo which gives
uðrÞ=Mor. Accordingly, for a corresponding 310% volume expansion [20], we
obtain

4πðr+MorÞ3 ̸3
h i

− 4πr3 ̸3½ �
4πr3 ̸3

= 3.1 ⇒ ð1+MoÞ3 − 1= 3.1⇒Mo =4.11 ̸3 − 1 ≅ 0.6.

ð11:16Þ

Experiments have shown that the Li-rich phase at room temperature likely
consists of amorphous Li3.75Si [16, 17] rather than the fully lithiated alloy Li4.4Si,
and hence the normalized Li concentration in the actual Li-rich phase is
ρ2 = 3.75 ̸4.4≅ 0.852. The half of this value, i.e., ρ=0.426 is used to calculate the
elastic parameters via the linear rule of mixtures. In fact, nanoindentation experi-
ments have shown that Young’s modulus of lithiated silicon decline with increasing
lithium content (see, for example, in [21] and references quoted therein). However,
as noted in the previous section, a constant value is adopted in the present con-
tribution for the sake of simplicity. In particular, the value E=77.5 GPa is used
which corresponds to the Young’s modulus for ρ=0.426 and it is calculated using a
linear rule of mixtures between that of pure amorphous silicon (104.6 GPa) and
fully lithiated silicon (41 GPa). A similar rule between Poisson’s ratio of amor-
phous silicon (0.22) and that of pure lithium (0.36) gives ν=0.28.

The maximum nominal Li concentration (which corresponds to the fully lithiated
alloy Li4.4Si) is cmax = 3.667 × 105 mole ̸m3 [18] and thus, at T =300K, we have
RTcmax = 914.6 MPa. The above values yield β≅ 84.84 for the dimensionless
material parameter in Eq. (11.15)2.

Equation (11.15)2 can predict the occurrence of a phase transition as long as its
homogeneous part

gðρÞ= ln
ρ

1− ρ

� �
+ αð1− 2ρÞ+ βρ, ð11:17Þ

is non-convex with a maximum followed by a minimum. Then, under quasistatic
conditions in one-dimensional infinite medium, a transition solution between two
phases of concentrations ρ1 and ρ2, respectively satisfies the following equations
[22, 23]

Zρ2
ρ1

½gðρÞ− μ�=0, μ= gðρ1Þ= gðρ2Þ, ð11:18Þ
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where the first relation is the Maxwell’s equal area rule (Fig. 11.1). Given that
ρ2 = 0.852 (i.e. the concentration of the actual Li-rich phase), the system of
Eq. (11.18) can be numerically solved with respect ρ1, μ and α. The calculated
value for the last coefficient is α≅ 44.9 and it is then employed for the dynamic
problem of Eq. (11.15) in order to enforce the Li-rich phase to take its actual
concentration ρ2 = 0.852.

Concerning the concentration gradient coefficient, the value
κ=1.49 × 10− 20 Nm6 ̸mole2 is computed from the corresponding constant
κ=2× 10− 9 J ̸m found in [18], where κ= κc2max. This gives ℓc =1.48 nm, which in
turn for a silicon particle of diameter d=140 nm corresponds to ℓc =0.0211.

11.3.3 Initial and Boundary Conditions

For the solution of the Eq. (11.15), a state of uniform concentration ρo =10− 4 is
used as an initial condition to avoid the logarithmic singularity of chemical
potential at ρ=0. The corresponding uniform initial value of μ is μo = gðρoÞ.
Throughout the lithiation process the so-called variational boundary condition
∇ρ ⋅ njr=1 = 0 is employed. This is natural for systems without surface energies or
surface diffusion, but it can also be used in time-dependent problems to enforce
chemical potential continuity at the boundary of the system [24]. Concerning the
second boundary condition the lithiation process is assumed divided in two stages.
In the first one, the particle is charged galvanostatically, with a uniform lithium flux
through its free surface, which is determined by the current equality condition [25]
as jjr=1 = i ̸zF, where i is the surface current density (per area), z=1 is the valence
number of a Li-ion, and F is the Faraday constant. In terms of normalized quan-
tities, this boundary condition reads

ρð1− ρÞ ∂μ
∂r

����
r=1

= i; i : =
d ̸2

zFDocmax
i. ð11:19Þ

Fig. 11.1 Equal area rule
satisfied by a transition
solution between Li-poor and
Li-rich phases
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Since the study of current density effects is beyond the scope of the present
contribution, the fixed value i=1 is employed for the dimensionless current density.

The galvanostatic charging continues until the normalized concentration at the
surface of the particle reaches the lithiated phase value ρ2 = 0.852. Thereafter, the
concentration on the boundary is held fixed at this value while the insertion process
continues. As discussed in [26], this type of two-stage charging is quite close to the
boundary conditions as applied using a battery simulator (Butler-Volmer kinetics),
with the second stage being characterized as potentiostatic.

11.3.4 Numerical Solution

The system of Eq. (11.15) in association with the aforementioned initial and
boundary conditions is solved numerically with aid of the method of lines. In
particular, weighted residuals (Galerkin) method is employed and the variables ρ
and μ are interpolated in space using the spectral element method. The interior
nodes of each element are distributed at the zeros of Lobatto polynomials over the
canonical (local) interval ½− 1, 1�, and cubic splines with Lagrange end conditions
are used for the interpolation within each element. The same set of nodes is also
used to evaluate elemental integrals according to the Gauss-Lobatto quadrature.
Since the system of ordinary differential equations resulting from this spatial dis-
cretization is usually stiff, it is integrated with respect to normalized time by the
backward differentiation formulas (Gear’s method). Numerical experimentation
with different interpolation schemes shows that 40 spectral elements with 7 nodes
each are enough to avoid spurious discretization effects.

The obtained normalized concentration profiles at different lithiation times and
for negligible strain gradient effects (i.e., ℓε =0) are depicted in Fig. 11.2, where
the value t≈ 0.06 corresponds to the ending of the galvanostatic stage and the
initiation of the potentiostatic one. The rest of the concentration distributions show
the migration of the interface between the Li-rich and the Li-poor phases, and they

Fig. 11.2 Normalized
concentration profiles during
potentiostatic charging at
different lithiation times and
for negligible strain gradient
effects (i.e., ℓε =0)
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are comparable with those presented in [18] using a model of finite elastoplasticity
without strain gradients. It is also noted that identical profiles with these of
Fig. 11.2 are obtained by setting ℓc =0 and ℓε =1.48 ̸

ffiffiffi
β

p
=0.16 nm, as follows

from the coupling of the two internal lengths in Eq. (11.14).
From the profiles for t≈ 3 to t≈ 45 the average normalized velocity of the

interface is estimated as v≈ 0.0132. For a silicon particle of diameter d=140 nm
and an inter-diffusion coefficient Do =10− 16 m2 ̸s [27], this value yields a
migration velocity v≈ 0.018 nm ̸s which is about 3.3 times smaller than the
experimental value of 0.06 nm ̸s [17].

The effect of the strain gradient coefficient on the interface is depicted in
Fig. 11.3, where the normalized concentration distributions are plotted when the
interface is at the same position (determined by the position of ρ=0.5), for different
values of ℓε. As expected from the concentration gradient coefficient in
Eq. (11.15)2, higher values of ℓε render thicker (i.e. more diffused) interfaces. This,
in turn, leads to higher lithiation rates as shown in Fig. 11.4, where the average
normalized concentration of lithium vs. dimensionless time is illustrated. Conse-
quently larger migration velocities of the interface are predicted. The aforemen-
tioned experimental value of 0.06 nm ̸s can be roughly approximated for some
value of ℓε between 0.3ℓc and 0.4ℓc.

Fig. 11.3 Effect of the strain
gradient length scale ℓε on
normalized concentration
profiles at two different
positions of the interface

Fig. 11.4 Effect of the strain
gradient length scale ℓε on the
evolution of the average Li
concentration
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11.3.5 Stress and Strain Radial Profiles

Regarding the mechanics boundary conditions, we assume that at the outer surface
the silicon particle is traction free, i.e.,

σrrjr=1 = 0, ℓ2
ε

∂σcrr
∂r

����
r=1

= 0, ð11:20Þ

where the latter follows from Eq. (11.8)3, while the former is the standard (phys-
ical) stress free condition rather than the full variationally consistent traction of
Eq. (11.8)2.

Then, Eq. (11.12) can be solved analytically to obtain the displacement profile in
terms of the normalized concentration, i.e.,

uðr, tÞ= 2G+3λ
2G+ λ

Mo
r2
Rr
0
ζ ρðζ, tÞ−ℓ2

ε∇
2ρðζ, tÞ� �

ζ+ℓε sinh
r− ζ
ℓε

� �
− r cosh r− ζ

ℓε

� �h i
dζ+

C1ðtÞr+C2ðtÞ
ffiffiffiffiffiffi
πℓε
2r

q
I3 ̸2

r
ℓε

� �
9>=
>;,

ð11:21Þ

where C1ðtÞ and C2ðtÞ are integration functions which are determined by
Eq. (11.20), and ImðzÞ denotes the modified Bessel functions of the first kind and
order m. The problem can then be solved by using the calculated concentration
distributions ρðζ, tÞ and calculating numerically the integral in Eq. (11.21). Because
C1ðtÞ and C2ðtÞ involve also lengthy integrals and have complicated expressions, an
alternative numerical scheme is adopted. In particular, we start by considering the
following weak form of the stress equilibrium equation

4π
Z1

0

δu
∂σrr
∂r

+
2
r
ðσrr − σθθÞ


 �
r2dr=0, ð11:22Þ

where u=2u ̸d is a normalized displacement. Using the constitutive formula of
stress tensor from Eq. (11.6), along with the boundary conditions of Eq. (11.20)
and integrating by parts Eq. (11.22) yields

R1
0

δεrrσHrr +2δεθθσHθθ +ℓ2
ε

∂δεrr
∂r

∂σHrr
∂r +2 ∂δεθθ
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where σH : = 2Gε+ λðtr εÞ1 denotes the Hookean stress. Equation (11.23) is
numerically solved by interpolating the displacement as well as the already com-
puted concentration profiles. In particular, because of the higher-order derivatives
appeared in Eq. (11.23), C1-continuous Hermite finite elements are employed,
while the integrals are calculated by using 5-point Gauss quadrature. The same
nodes used for the concentration problem are employed also for the mechanical
one. The final linear system reads KU= f , where the vector U contains nodal
displacements and their derivatives, the force-like vector depends on the concen-
tration distribution and the stiffness matrix is constant. Then, total strains are cal-
culated via the numerical counterpart of the relations εrr = ∂u ̸∂r and εθθ = u ̸r,
while the stresses are evaluated from Eq. (11.6). The obtained results are depicted
in Figs. 11.5 and 11.6.

As shown, the thicker interface predicted by higher values of ℓε results in more
diffused stress and strain profiles around it. Moreover, the effect of ℓε is more
pronounced at the interface while it practically dies out within the two phases where
gradients are vanished. It is noted that the stress values predicted are rather large
(σ ̸ESi =0.2 corresponds to σ ≈ 21 GPa), and hence plasticity and/or crack initiation
are likely to occur at the early stages of lithiation. In this connection, it is noted that

Fig. 11.5 Effect of the strain gradient length scale ℓε on the stress distributions, for two different
positions of the interface. The value ESi =104.6 GPa has been used for the Young’s modulus of
amorphous silicon [21]

Fig. 11.6 Effect of the strain gradient length scale ℓε on the total strain distributions, for two
different positions of the interface
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if a strain failure criterion is assumed then, higher values of ℓε predict a stronger
specimen, as implied by the maximum value of εrr in Fig. 11.5.

The evolution of the volume increase can be evaluated by the relation
ΔV ̸V = 1+ uð1, tÞ½ �3 − 1, and it is depicted in Fig. 11.7. Since volume expansion
is an increasing function of the average concentration, their evolution graphs are
similar as follows by comparing Figs. 11.4 and 11.7. Accordingly, faster lithiations
predicted by higher values of ℓε induce faster volume expansions.

11.4 Conclusions

A simple gradient chemoelasticity model was developed and applied to simulate the
two-phase lithiation of a spherical Si nanoparticle that is free to expand.
A two-stage charging process is considered, i.e., a galvanostatic stage followed by a
pontetiostatice one, with the phase transition being developed in the latter. The
model predicts velocities of the lithiation front in agreement with experimental
observations as well as large internal stress and strain distributions which can be
mediated by the action of an external pressure exerted by the surrounding matrix for
a nanocomposite anode. This is a task to be undertaken in the future in a similar
way done in [2] for the case of linear elasticity without explicit consideration of
nonlocal diffusion and two-phase separation.
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Chapter 12
Generalized Continua Concepts
in Coarse-Graining Atomistic
Simulations

Shuozhi Xu, Ji Rigelesaiyin, Liming Xiong, Youping Chen
and David L. McDowell

Abstract Generalized continuum mechanics (GCM) has attracted increased
attention in the context of multiscale materials modeling, an example of which is a
bottom-up GCM model, called the atomistic field theory (AFT). Unlike most other
GCM models, AFT views a crystalline material as a continuous collection of lattice
points; embedded within each point is a unit cell with a group of discrete atoms. As
such, AFT concurrently bridges the discrete and continuous descriptions of mate-
rials, two fundamentally different viewpoints. In this chapter, we first review the
basics of AFT and illustrate how it is realized through coarse-graining atomistic
simulations via a concurrent atomistic-continuum (CAC) method. Important aspects
of CAC, including its advantages relative to other multiscale methods, code
development, and numerical implementations, are discussed. Then, we present
recent applications of CAC to a number of metal plasticity problems, including
static dislocation properties, fast moving dislocations and phonons, as well as
dislocation/grain boundary interactions. We show that, adequately replicating
essential aspects of dislocation fields at a fraction of the computational cost of full
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atomistics, CAC is established as an effective tool for coarse-grained modeling of
various nano/micro-scale thermal and mechanical problems in a wide range of
monatomic and polyatomic crystalline materials.

12.1 Generalized Continuum Mechanics (GCM)

In classical continuum mechanics (CCM), a material consists of continuously
distributed material points with infinitesimal size that fill the entire region of an
infinite space they occupy [1]. The micro-scale kinetics or dynamics are implicitly
averaged. The physical properties of each point are determined only by the
deformation and history of that point, i.e., each point behaves independently fol-
lowing the same constitutive law. Interactions between these points take place only
through the balance equations. Mechanics of real materials, however, deals with
finite-sized materials with finite-sized material points, e.g., a large number of
molecules, or the primitive unit cell of a crystal. From the atomic viewpoint, there is
a lower limit to divisibility for any material, as continuum quantities such as mass
density only have physical meaning in regions actually containing matter. Thus,
CCM fails to describe the materials deformation at the atomic/nano-scale.

Limitations of CCM have motivated the development of various enhanced
methods, a vast number of which aim at tackling the locality issue. Among these
methods, a weakly nonlocal theory, named generalized continuum mechanics
(GCM, also known as microcontinuum field theory), extends the classical field
theory to microscopic space and time scales [2]. In GCM, materials are envisioned
as a continuum collection of deformable point particles. Each point particle, with a
finite size, has a continuous internal deformation which is represented by some
vectors attached to it. Accordingly, a particle is identified by its position vector
R and some director vectors attached to this point Ξα in the undeformed state. In a
solid crystal, R is employed to describe the continuous lattice deformation, in which
the material is viewed as a collection of infinitesimal point particles, while Ξα

considers each point particle with finite size and describes its continuous internal
deformation. Both R and Ξα have their own motions or mappings to the deformed
states r and ξα at time t, respectively, i.e.,

R → tr, Ξα → R, tξα, α=1, 2, 3, . . . , N ð12:1Þ

Such a medium is called microcontinuum of grade N. By introducing Ξα, the
microcontinuum naturally brings length and time scales into the field theories; by
considering the ratio of the external characteristic length to the internal character-
istic length, the GCM theories are nonlocal in character. For the first grade
microcontinuum (N = 1), Ξ1 are three deformable directors, conferring each point
particle nine extra degrees of freedom (DOFs) compared to the local theory. This is
the micromorphic continuum. The other two are the microstretch continuum and the
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micropolar continuum, which can be achieved by constraining the director vectors
in certain ways.

In the last seven years, Maugin [1–7] dedicated an extensive effort to the
understanding and dissemination of GCM by offering a historical perspective, deep
mathematical and physical insights, as well as a clear explanation of its essences.
Maugin [3] summarized and discussed three possible paths towards the general-
ization of continuum mechanics: “involving an additional microstructure at each
material point”, “introducing higher order gradients of the displacement in the
energy density (weak nonlocal theory)”, and “considering spatial functionals for
the constitutive equations (strongly or truly nonlocal theory)”. Maugin [3] further
posited and addressed three questions: “(1) Do we need GCM at all? (2) Do we find
the necessary tools in what exists nowadays? (3) What is the relationship between
discrete and continuous descriptions if there must exist a consistent relationship
between the two?”

For the third question, Maugin [3] wrote “the author personally believes that any
relationship that can be established with a sub-level degree of physical description
is an asset that no true physicist can discard”. This perspective is based on the
distinction between atomic and continuous descriptions of matter; for the former,
matter is manifested as discrete particles, whereas for the latter, matter is infinitely
divisible. These two different views lead to fundamentally different theories. The
“material point”, Maugin [2] wrote, “is quite suspiciously defined in a classical
continuum”; “A point is the intersection of two immaterial (zero-thickness) curves
on a two-dimensional surface. This, Newton already knew in his ‘Principia
Mathematica’ where mass at a so-called ‘material point’ can only be defined by
density multiplied by volume”. To avoid introducing the physical concept of a
material point, CCM textbooks use global conservation laws to derive the local
balance laws by purely mathematical means, leaving the question on the conditions
under which the differential form of balance laws are valid unanswered. While
continuum physics is always an approximation to the underlying discrete molecular
physics, GCM is undoubtedly a better approximation than CCM to the description
of real materials. It helps to bridge the gap between continuum and atomic views of
materials.

12.2 Atomistic Field Theory (AFT)

In micromorphic field theory, the motion of point particles is governed by con-
servation equations of mass, microinertia, generalized spin, linear momentum, and
energy. Based on micromorphic field theory, Chen and Lee [8] proposed a new
GCM model, called the atomistic field theory (AFT), which treats a crystalline
material as a continuous collection of material points (unit cells), but with each
material point possessing internal DOFs that describe the movement of atoms inside
each unit cell, as shown in Fig. 12.1. In this way, the micromorphic theory is
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connected with molecular dynamics (MD) and encompasses the atomic scale [9].
Here, the local density function is continuous at the level of the unit cell, but
discrete in terms of the discrete atoms inside the unit cell [10, 11].

AFT differs from CCM in that it has two-level structure description of materials.
It is also distinct from popular generalized continuum theories, such as the Cosserat
theory [12], micropolar theory, [13, 14], micromorphic theory [15–20], or other
generalized continuum theories [21, 22], in that the sub-level structure and physical
description are not continuous but discrete. As a result of the discrete sub-level
description in AFT, only balance of linear momentum is relevant to the dynamics.
A comparison of the material description in AFT with those in GCM and CCM is
presented in Table 12.1.

The main theoretical tool to link the atomic to the continuum description is
statistical mechanics [23–26]. Statistical mechanics views thermodynamics and

Fig. 12.1 Macro- and micro-motions of a material particle P in a micromorphic theory and
b AFT. Left in a and b is the reference state at time 0 while right is the deformation state at time
t. X and x are the positions of the mass center of the unit cell, Ξ and ξ are internal positions, Yα and
yα are positions of atom α with respect to X and x, respectively, Na is the number of atoms in a unit
cell. Reproduced with permission from Ref. [11]

Table 12.1 Comparison of CCM, top-down formulated theories of GCM, and AFT

Theory Material
description

Constituents
of materials

Internal DOF Governing laws Constitutive
relations

CCM A single
phase single
component
continuum

0D Material
point
without
structure

None Conservation of
mass, linear and
angular momentum,
and energy

11
constitutive
relations

GCM A continuum
with
embedded
microstructure

Finite-sized
material
particles

3 in
micropolar,
9 in
micromorphic

Conservation of
mass, micro-inertia,
linear and angular
momentum,
generalized spin,
and energy

20
constitutive
relations

AFT A crystal
structure as
lattice + basis

Atoms 3 Na (Na is
the number of
atoms in one
basis)

Conservation of
mass, linear
momentum, and
energy

Interatomic
potential
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continuum mechanics as coarse-grained (CG) descriptions of classical N-body
dynamics, and defines “coarse-graining” as “the process of representing a system
with fewer degrees of freedom than those actually present in the system” [27]. From
this definition, existing CG models are either atomistic CG models that are derived
bottom-up from the underlying atomistic model or phenomenological models that
have no direct connection to the underlying atomistic model. Existing
coarse-graining methods for derivation of atomistic CG models can be further
divided into three categories [11]: (1) reducing the order of particle representation
of the molecular structure, e.g., the super-atom method, united-atom method, and
multiscale-CG [28–31], (2) assuming continuous deformation of the lattice (affine
or using some other imposed shape functions), e.g., quasicontinuum (QC) [32],
hot-QC [33–35] and coarse-grained molecular dynamics (CGMD) [36], and
(3) deriving an equivalent continuum field representation for the atomistic system,
e.g., the Irving-Kirkwood (IK) statistical mechanics formulation of hydrodynamics
[37], MD formulation of micromorphic theory [17–20], and the AFT formulation
[8, 9]. These are shown in Table 12.2.

Different from other GCM theories that are derived via a top-down approach,
AFT is bottom-up derived from the underlying atomistic model, and hence it is also
a CG atomistic model. The AFT formulation is an extension of the IK formulation
of “the hydrodynamics equations for a single component, single phase system” [37]
to a two-level structural description of general crystalline materials. It employs the
two-level crystalline materials description in solid state physics, i.e., crystal struc-
ture = lattice + basis [38]. As a result of its bottom-up atomistic formulation, all the

Table 12.2 Comparison of atomistic CG methods. ODE and PDE stand for ordinary differential
equations and partial differential equations, respectively

Atomistic CG
methods

Route to CG Entities in
simulations

Representative
CG models

Governing
laws

Governing
equations

Structural
reduction

From atoms to
super-atoms
through
grouping many
atoms into one
super-atom

Super-atoms Super-atom
method, united
atom method,
multiscale-CG
[28–31]

Newtonian
Mechanics

2nd order
ODE

Assuming
homogeneous
displacements
of atoms

From atoms to
rep-atoms
using the
Cauchy-Born
rule or other
prescribed
shape
functions

Representative
atoms

QC [32],
hot-QC [33–35]

Energy
minimization

1st order
ODE

Using
continuum
representation

From atomistic
to continuum
using statistical
mechanics

Material points IK
hydrodynamics
[37], AFT [8, 9]

Conservation
laws

2nd order
PDE
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essential atomistic information of the material, including the atomic-level crystal
structure and the interactions between atoms, is attained. The formulation naturally
leads to a concurrent atomistic-continuum representation of the materials governed
by a single set of balance equations for both atomic and continuum regions, as an
exact consequence of Newton’s second law [8, 9], in the following forms,

dρα

dt
+ ρα ∇x ⋅ v+∇yα ⋅Δvα

� �
=0 ð12:2Þ

ρα
d
dt

v+Δvαð Þ=∇x ⋅ tα +∇yα ⋅ τα + fαext ð12:3Þ

ρα
deα

dt
=∇x ⋅ qα +∇yα ⋅ jα + tα:∇x v+Δvαð Þ+ τα:∇yα v+Δvαð Þ ð12:4Þ

where x is the physical space coordinate of the continuously distributed lattice;
yα α=1, 2, . . . , Nað Þ, with Na being the total number of atoms in a unit cell, is the
subscale internal variable describing the position of atom α relative to the mass
center of the lattice located at x; ρα, ρα v+Δvαð Þ, and ραeα are the local densities of
mass, linear momentum, and internal energy, respectively; v+Δvα is the
atomic-level velocity and v is the velocity field; fαext is the external force field; t

α and
qα are the momentum flux and heat flux due to the homogeneous deformation of
lattice, respectively; τα and jα are the momentum flux and heat flux due to the
reorganizations of atoms within the lattice cells, respectively.

For conservative systems, i.e., in the absence of an internal source that generates
or dissipates energy, the energy equation (Eq. 12.4) is equivalent to the linear
momentum equation (Eq. 12.3). We remark that, supplemented with the inter-
atomic force field, the first two AFT balance equations (Eqs. 12.2 and 12.3) are
sufficient for a wide range of thermal and mechanical problems, some of which will
be discussed in Sect. 12.4. Employing the classical definition of kinetic tempera-
ture, which is proportional to the kinetic part of the atomic stress, the linear
momentum equations can be expressed in a form that involves the internal force
density and temperature T [39–41], i.e.,

ραu ̈αðxÞ+ γαkB
ΔV

∇xT = fαintðxÞ+ fαextðxÞ, α=1, 2, . . . , Na ð12:5Þ

where uαðxÞ is the displacement of atom α at point x; the superposed dots denote
the material time derivative; ΔV is the volume of the finite-sized material particle
(the primitive unit cell for crystalline materials) at x; kB is the Boltzmann constant;
γα = ρα ̸∑Na

α=1 ρ
α, and fαint is the internal force density and is a nonlinear nonlocal

function of relative atomic displacements. For systems with a constant temperature
field or a constant temperature gradient, the temperature term in Eq. 12.5 can be
considered as a surface traction on the boundary or a body force in the interior of
the material, fαTðxÞ [40]. Denoting the finite element shape function as ΦξðxÞ, the
Galerkin weak form of Eq. 12.5 can be written as
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Z

ΩðxÞ

ΦξðxÞ ραüαðxÞ+ fαTðxÞ− fαintðxÞ− fαextðxÞ
� �

dx=0 ð12:6Þ

where ΩðxÞ is the simulation domain; the integral, using Gaussian quadrature, can
be approximated by a weighted sum of the evaluations of the integrand at a set of
integration points, leading to a set of discretized governing equations with the finite
element nodal displacement as the unknowns to be solved.

In summary, AFT coarse-grains a discrete atomistic model by introducing an
equivalent continuum description, i.e., by formulating a GCM representation of the
underlying atomistic model. The field equations are then discretized and solved
using finite element method (FEM). This process can be interpreted using Maugin’s
insightful and inspirational remarks: “continualization” is “to construct sensible
models”; “discretization” is “to be able to solve problems” [2].

12.3 The Concurrent Atomistic-Continuum
(CAC) Method

12.3.1 A Comparison Between CAC and Other Multiscale
Methods

The AFT-based concurrent atomistic-continuum (CAC) method outlined in this
chapter is an integral finite element approach for coarse-grained atomistics that
admits description of dislocation nucleation, migration, and interaction with or
without adaptive coarse-graining [9, 42–44], in contrast to QC. A CAC model, in
general, has two domains: an atomistic domain containing atoms and a
coarse-grained domain containing elements, as shown in Fig. 12.2. CAC employs a
unified atomistic-continuum integral formulation (Eq. 12.6) with elements that have
discontinuities between them and an underlying nonlocal interatomic
force-displacement relation as the only constitutive relation. Ghost forces arising
from a change of the underlying continuum formulation and energy summation
rules in other approaches based on domain decomposition or coarse-graining are
not an issue in CAC since the underlying integral formulation and constitutive
framework do not change. Dislocations can be modeled throughout the entire
domain, whether at full atomistic resolution or coarse-grained, because the elements
are assumed to have faces on slip planes of the lattice, e.g., {111} and {110} planes
in face-centered cubic (FCC) and body-centered cubic (BCC) lattices, respectively.
This sets it apart from methods that require full atomistic resolution at the dislo-
cation core. In contrast to QC, which has the objective of seeking convergence of
the adaptively coarse-grained solution to that of the full atomistic solution for
various field problems, CAC can have multiple purposes. On the one hand, it can
coarse-grain in regions away from atomistic domains of interest and capture
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long-range fields of dislocations, as in coupled atomistic and discrete dislocation
(CADD) [45, 46]. On the other hand, it can model dislocations across a range of
length scales to access trends and provide support for mechanistic understanding of
coarse scale behavior of fields of dislocations, smearing individual cores but pre-
serving the net Burgers vector, representing long-range and approximating
short-range interactions. While QC typically seeks the most accurate and efficient
solution to dislocation plasticity via adaptive remeshing of the domain near dis-
locations to full atomistic resolution, CAC can resolve full atomistics if necessary
near interfaces or crack tips, but allows dislocations to nucleate, multiply, migrate,
and interact even in the coarse-grained domain along interfaces between elements,
introducing the option to coarse-grain dislocation fields over larger scales.

Like QC, CAC employs the same interatomic potential in both coarse-grained
and atomistic domains where dislocations evolve and interact. This introduces
systematic coarse-graining error, which originates from displacement approxima-
tion (i.e., the shape function) and the numerical integration. As the element size is
reduced, the CAC predictions properly converge to the fully atomistic results. The
coarse-graining error can be quantified and balanced with the high computational
demands of remeshing, according to the purposes of the mesoscale modeling, for
example in representation of dislocation core structures and short-range

Fig. 12.2 a–b A 2-D CAC simulation domain consisting of an atomistic domain (right) and a
coarse-grained domain (left). The atomistic domain is composed of atoms (black circles), which
follow the same governing equations in the atomistic simulation. The coarse-grained domain
consists of elements of varying size that have discontinuities between them, each of which contains
a large number of underlying atoms with the nodes (red circles) as the only DOFs. Only the force/
energy on integration points (green circles) and nodes are calculated. In a, an edge dislocation (red
⊥) is located in the atomistic domain. Upon applying a shear stress on the simulation cell, the
dislocation migrates into the coarse-grained domain in b, where the Burgers vector spreads out
between elements. c–d In 3-D, elements have faces on {111} planes and on {110} planes in an
FCC and a BCC lattice, respectively. The positions of atoms within each element (open circles) are
interpolated from the nodal positions. Reproduced with permission from Ref. [43]
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interactions. It can also be minimized by use of adaptive remeshing, based on the
level of the nodal displacement between elements [47]; this is necessary for general
field problems to allow dislocation migration along arbitrary extended slip planes.
However, remeshing need not be carried out to fully atomistic level, but can involve
simply splitting larger continuum elements containing many atoms. Unlike QC,
CAC does not employ the assumption of continuous lattice deformation throughout
the coarse-grained domain and admits dislocation activity/displacement disconti-
nuity between elements. As such, it pursues gradual coarse-graining from full
atomistic resolution upward. For example, if trends of behavior or collective
mechanisms are to be considered as a function of microstructure or stress state, as is
often the case in applications of dislocation dynamics (DD) models [48–57], CAC
may offer a means to support such parametric studies.

12.3.2 Code Development

The first version of the CAC numerical tool was developed by Xiong and Chen [57,
58] and Deng et al. [39, 59]. The reformulated balance equations [9] were
numerically implemented using FEM with trilinear finite element shape functions
and nodal integration. Later, the form and capabilities of the CAC method were
extended substantially in modeling quasistatic and dynamics behavior of disloca-
tions: elements that have discontinuities between them were employed, and the
Gaussian quadrature was used for integration in the coarse-grained domain [42, 60–
66]. Yang et al. [67–70] rewrote the CAC code for multiscale simulation of
polycrystalline ionic materials. Based on this code, Chen et al. [71–74] extended the
CAC method for space- and time-resolved simulation of the transient processes of
the propagation of heat pulses in single crystals and across GBs [72] as well as the
interactions between heat pulses and moving dislocations [71]; a new shape
function was designed to facilitate the seamless passing of waves between the
atomistic and coarse-grained domains [73]. More recently, Xu et al. [44] developed
PyCAC, a novel numerical implementation of the CAC approach. In PyCAC, the
CAC method is implemented in Fortran 2008 with a distributed-memory spatial
decomposition parallel algorithm, while a Python scripting interface is built to
provide a robust user interface to facilitate parametric studies via CAC simulations
without interacting with the underlying Fortran code and to improve handling of
input, output, and visualization options. For example, the finite element nodal
positions obtained in CAC simulations can be mapped back to atomic positions
through the Python interface; in this way, the atomic trajectories can be visualized
using common atomistic configuration viewers such as AtomEye [75] and OVITO
[76]. It has been demonstrated that the PyCAC code has a good parallel scaling
performance and is an efficient, user-friendly, and extensible CAC simulation
environment [44].
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12.3.3 Numerical Implementations in PyCAC

The PyCAC code [44] can simulate monatomic pure FCC and pure BCC metals
using the Lennard-Jones [77] and the many-body embedded-atom method
(EAM) [78] interatomic potentials in a constant temperature field. The energy
equation (Eq. 12.5) and the term fαT (Eq. 12.6) have not yet been implemented
because they have small effects on mechanical response in the case of constant
temperature. We remark that (i) there is ongoing work in interpreting fαT and in
comparing different descriptions of temperature in the coarse-grained domain [25,
26], and (ii) for monatomic crystals Na =1ð Þ, yα vanishes, and atom α sits at the
nodal site; Eqs. 12.2–12.4 reduce to the balance equations in CCM.

In the coarse-grained domain, the integral in Eq. 12.6 is approximated using
Gaussian quadrature, in which the positions and weights of the integration points
are usually determined by the order of the integrand. It is, however, difficult to
employ a unified set of integration points within an element because that the
interatomic potential-based fαintðxÞ can be a complicated and highly non-linear
function and that the variation of the integrand is not uniform within an element
[43, 79]. To circumvent this problem, each element is divided into a number of
non-overlapping subregions. In this way, one only needs to determine the order of
the integrand within each subregion, which is usually lower than that within the
entire element and is more easily approximated. In practice, either the first order
[42] or the second order [43] Gaussian quadrature can be adopted, with a trilinear
shape function ΦξðxÞ, and the force on node ξ is

F ξ =
∑μ ωμΦμξFμ

∑μ ωμΦμξ
+Fξext ð12:7Þ

where ωμ is the weight of integration point μ, Φμξ is the shape function of node ξ at
integration point μ, Fμ is the interatomic potential-based atomic force on integration
point μ, and Fξext is the external force applied on node ξ. We refer the readers to
Refs. [43, 79] where details of the Gaussian quadrature, subregion, and integration
points are presented.

In the atomistic domain, an atom can be viewed as a special finite element for
which the shape function Φξ in Eq. 12.6 reduces to 1 at the atomic site, and the
force on atom α is simply

Fα = −∇αE+Fαext ð12:8Þ

where E is the interatomic potential-based internal energy and Fαext is the external
force applied on atom α. As such, common atomistic simulation techniques are
employed: Newton’s third law is employed to promote efficiency in calculating the
force, pair potential, local electron density, and stress; the short-range neighbor
search employs a combined cell list [80] and Verlet list [81] method.
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Distinguished by how F and F are subsequently used, two main types of CAC
simulations—dynamic CAC and quasistatic CAC, by analogy with MD and
molecular statics (MS), respectively—have been developed. In dynamic CAC, the
equation of motion (Eq. 12.6) or its modified form of each node/atom is solved
directly using the velocity Verlet algorithm [82]. In quasistatic CAC, F and F are
used to adjust the nodal and atomic positions, respectively, at each increment of
system loading during energy minimization. For example, in both conjugate gra-
dient and steepest descent algorithms, F and F are taken as the initial directions
along which the nodes and atoms should move, respectively [43]. In practice, a
third type of CAC simulation—hybrid CAC—can be employed to perform periodic
energy minimization during a dynamic CAC simulation, so as to enable the con-
strained multiscale optimization for a sequence of non-equilibrium defect config-
urations in materials [83, 84]. In all types of CAC simulations, the nodes in the
coarse-grained domain and the atoms in the atomistic domain interact with each
other at each simulation step and are updated concurrently. More specific details of
PyCAC, including the input script format and a few example problems, can be
found in the PyCAC user’s manual that is hosted on www.pycac.org.

12.4 Applications of the CAC Method to Metal Plasticity

Metal plasticity is a multiscale phenomenon that is manifested by irreversible
microstructure rearrangement associated with nucleation, multiplication, interac-
tion, and migration of dislocations [85]. Long-range field interactions between
dislocations, along with the short-range dislocation reactions, are extremely
important to describe in predicting the overall plastic behavior of materials at the
macroscopic level. The former necessitates large solution scales, while the latter
demands treatment of core effects using accurate underlying interatomic potentials.
Metal plasticity therefore requires concurrent coupling across various scales.

In the context of dislocation/crack mediated metal plasticity, CAC has been used
in a number of applications. These include impact of a rigid ball against a plate in an
ideal FCC single crystal [59] and a SrTiO3 polycrystal [69], brittle fracture in an ideal
FCC crystal [39] and SrTiO3 [67], ductile fracture in Cu [47], dislocation nucleation
from notched specimens in Cu, Ni, and Al [42, 60, 61], nanoindentation in Cu [43,
60] and SrTiO3 [67], nucleation and growth of dislocation loops in Cu, Al, and Si [62,
63], dislocation nucleation fromGBs in SrTiO3 [69], crack/GB interactions in SrTiO3

[68], stationary dislocations in Cu, Ni, and Al [43, 86], quasistatic [43], subsonic
[47], and transonic [66] dislocation migration in Cu, Ni, and Al, quasistatic dislo-
cation migration across the atomistic/coarse-grained domain interface in Cu and Al
[43], screw dislocation cross-slip in Ni [87], edge dislocations bowing out from
obstacles in Al [88], dislocation multiplication from Frank-Read (FR) sources in Cu,
Ni, and Al [86], dislocation/void interactions in Ni [65], dislocation/stacking fault
interactions in Ni, Al, and Ag [89], sequential transfer of curved dislocations across
GBs in Cu, Al, and Ni [83, 84], dislocation/phonon interactions in Cu [66, 71] and
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Ni [64], phonon waves passing the atomistic/coarse-grained domain interface in 1D
monatomic, diatomic, and triatomic crystals [90] and Cu single crystals [73], as well
as phonon heat transport across a Σ19 symmetric tilt grain boundary (STGB) in Cu
polycrystals [72]. The success of these calculations suggests the viability of using
CAC simulations to study metal plasticity phenomena in a sufficiently large 3D
model, which would normally be inaccessible to atomistics.

We remark that applications to date of the quasistatic CAC implementation [43]
have been limited to monatomic crystals [43, 44, 79, 83, 84, 86, 87, 88, 89], while
polyatomic crystals have been considered in dynamic CAC applications [57, 58, 62,
67, 68, 69, 70, 90]. Nevertheless, there is no theoretical challenge in applying
quasistatic CAC to polyatomic crystals. The quasistatic implementation is consid-
ered useful for modeling reaction pathways for thermally activated dislocation
processes in a manner that avoids the overdriven character of dynamic simulations.
Hybrid CAC, with periodic energy minimization (e.g., every 50 time steps) while
using quenched dynamics at each time step, may be regarded to accord with the
concept of a sequence of constrained equilibrium states as espoused in internal state
variable theory [91, 92], traversing the energy landscape such that each stage of the
process (even with no dislocation flux) corresponds to a non-zero thermodynamic
force (the Peach-Koehler force on a dislocation), due to elastic interactions. In the
following, we discuss applications of the CAC method to static dislocation prop-
erties, fast moving dislocations and phonons, as well as dislocation/GB interactions.

12.4.1 Static Dislocation Properties

A question arises as to how well the non-singular dislocation core and associated
Burgers vector [93–95] are described in the coarse-grained domain in CAC. For this
purpose, quasistatic CAC simulations have been carried out to study certain
benchmark problems, including generalized stacking fault energy (GSFE) [43],
dislocation core structure/energy/stress fields [43, 86], and Peierls stress [86]. It is
found that the coarse-grained domain predicts a less relaxed dislocation core. As a
result, compared with atomistics, the coarse-grained domain exhibits a wider
stacking fault width [43], a lower SFE [43], a larger core radius [86], a higher core
energy [86], a lower Peierls stress [86], and a lower critical shear stress for dislo-
cation bowing-out between obstacles [86, 88]; a dislocation also changes its local
structure when passing across the numerical atomistic/coarse-grained domain
interface [43].

To further understand the representation of dislocations in the coarse-grained
domain in CAC, we calculate the disregistry and distribution of the Nye tensor [95,
96] around an edge and a screw dislocation in Cu. The fully coarse-grained sim-
ulation cell, with a size of 180 nm × 32 nm × 6.5 nm along the x, y, and z di-
rection, respectively, contains about 3 million atoms; periodic boundary conditions
(PBCs) are applied along the dislocation line direction, i.e., the z direction, while
the x and y boundaries are assumed traction free. The interatomic interactions are
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described using an EAM potential [97], which gives an equilibrium lattice constant
a0 = 3.615Å. After displacing some nodes/atoms by b=

ffiffiffi
2

p
̸2

� �
a0 along a ⟨110⟩

direction on a {111} plane, a damped dynamic CAC simulation [42] is conducted
for 1 million steps with a time step of 1 fs at a near zero temperature to achieve an
equilibrium full dislocation, which is dissociated into two Shockley partial dislo-
cations with an intrinsic stacking fault in between [93, 94]. For comparison,
damped MD simulations are also performed using LAMMPS [98]. Based on the
interpolated atomic positions in the CAC simulations or the atomic positions in the
MD simulations, the disregistry along the Burgers vector direction and the Nye
tensor α are calculated, the latter of which uses Atomsk [99] following Hartley and
Mishin [100]. The calculations of α are conducted on atoms within an area around
the dislocation: 10 nm by 4.5 nm along the x and y axes, respectively; larger
calculation areas do not change the results.

Figure 12.3 shows that there exists a linear correlation between disregistry and
atomic position within an element, because of the trilinear shape/interpolation
functions employed in the coarse-grained domain. For the Nye tensor α, only α13
and α33 among the nine components are presented in Fig. 12.4 because they cor-
respond to the edge and screw components of the partial dislocations, respectively.
In both figures, with the smallest finite elements (64 atoms/element), results of the
CAC simulations agree well with those of the MD simulations; with an increasing
element size, the disregistry deviates and the separation between the two partial
dislocations changes. Nevertheless, for the same dislocation, an integration of α
within the calculation area, i.e., the Burgers vector, yields identical result between
CAC and MD, suggesting that the net Burgers vector (and so the long-range stress
field) of a dislocation is indeed preserved in the coarse-grained domain in CAC.

We emphasize it is not our intent here to shed light on improved understanding
of static dislocation core level phenomena, but rather to establish that CAC

(a) Edge disloca on (b) Screw disloca on

Fig. 12.3 Disregistry—the difference in the dislocation-induced displacement fields between two
layers of atoms across the slip plane—of the a edge and b screw dislocations in Cu; The results in
CAC with varying element size are compared with those of MD. ux and uz are the disregistry
components along the Burgers vector direction, i.e., the x and z directions in cases of the edge and
screw dislocation, respectively. b=

ffiffiffi
2

p
̸2

� �
a0 is the magnitude of the Burgers vector of a

dislocation, where a0 is the lattice constant
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adequately replicates essential aspects of dislocation fields, laying solid foundations
for more complicated dislocation-mediated metal plasticity problems. The
coarse-graining errors in the static dislocation properties are not essential in certain
cases, e.g., dislocation/GB interactions (Sect. 12.4.3), because the dislocation has a
correct core structure once it migrates into the atomistic domain in which the
dislocation/defect interactions to be investigated take place.

12.4.2 Fast Moving Dislocations and Phonons

While much is known about static dislocations, the physics of dislocations moving
near and above the sonic velocity in crystals remains relatively lightly explored [93,
94]. A dislocation moving in a lattice excites atomic vibrations and emits acoustic
phonons [101]. The friction created by these interactions slows down the disloca-
tion motion and reduces the mean distance between adjacent dislocations, leading
to a stronger coupling between the long-range stress fields than that for static
dislocations [66]. CAC is well-suited to explore fast moving dislocations and
phonons because it concurrently captures the highly nonlinear time-dependent
atomic-scale dislocation cores and the long-range elastic fields away from the cores.

For a fast moving dislocation in an otherwise perfect lattice, Xiong et al. [66]
reported that (i) subject to the same resolved shear stress, the coarse-grained domain
predicts a higher dislocation velocity, a larger phonon wavelength, and a larger

Fig. 12.4 Left: Nye tensor distribution around an edge or a screw dislocation in Cu, colored by
the magnitude of two components α13 and α33. CAC simulations with different element size (Nape

is the number of atoms per element) are employed, with the MD results also shown for
comparison. Right: Separation of Shockley partial dislocations (based on α13) with respect to the
element size, in the cases of an edge and a screw dislocation. Both quantities converge to MD
(horizontal lines) as each element has a smaller Nape. The partial dislocation is assumed to sit at the
mass center of the all surrounding atoms with the corresponding Nye tensor component that is
larger than half the maximum value among all atoms. The partial dislocation position is
unambiguously decided because most atoms have a value that is very close to either the maximum
value or 0
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magnitude of the dislocation core stress field oscillation than the atomistic domain
due to the linear shape/interpolation functions employed in the elements, and (ii) a
fast moving dislocation has a velocity-dependent asymmetric stress field in which
the leading partial dislocation possesses a higher stress level than the trailing partial
dislocation as a result of the emitted phonon waves. In 1D monatomic, diatomic,
and triatomic crystals, Xiong et al. [90] confirmed that the coarse-grained domain is
able to reproduce complete phonon branches. In dynamic CAC simulations of
dislocation/void interactions, Xiong et al. [65] discovered an inertia-induced tran-
sition from the Hirsch looping mechanism to the shearing mechanism, with the result
that a relatively large void (∼5 nm in diameter), which is a strong barrier for qua-
sistatic dislocations, can behave as a weak barrier to dislocation motions under high
strain-rate dynamic conditions. By performing fully coarse-grained atomistic simu-
lations of dislocation/phonon interactions, Xiong et al. [64, 66] and Chen et al. [71]
found that (i) the sub-THz phonon drag coefficient on dislocation migration increases
with the increase of phonon wave packet magnitudes or sizes but is insensitive to the
incident angles [64], and (ii) phonons reduce the dislocation energy, with some
energy lagging behind the decelerated dislocation or dispersed around the arrested
dislocation through emission of secondary phonon waves [66, 71]. In Cu poly-
crystals, Chen et al. [72] showed that the phonon/GB interactions alter the phonon
focusing direction and locally reconstruct the GB, as shown in Fig. 12.5.

However, the fact that a dislocation may have different mobility, phonon
wavelength, and dislocation core stress field in atomistic and coarse-grained
domains raises the question of how the interface between the atomistic and
coarse-grained domain affects the phonon transport in CAC [74]. The outstanding
issue of a spurious wave reflection problem at the atomistic/continuum domain
interface, encountered by many domain decomposition multiscale modeling
methods [48], is mainly caused by the differences in material descriptions and

Fig. 12.5 Time sequences of the normalized kinetic energy of transient heat flow in CAC
simulations of a 2D Cu polycrystal. The GBs, rendered in full atomistic resolution, are indicated by
white solid arrows. The phonons, with a wavelength of 5–250 nm, are generated in the simulation
cell center using a coherent phonon pulse model [102]. With simultaneous ballistic and diffusive
thermal transport, the phonon-focusing caustics are deflected by the GBs, which are indicated by
the dashed white arrows in c. In e, only 60% of the total kinetic energy initially excited by the heat
pulse is transmitted across the GBs; the phonon/GB interactions also give rise to the local GB
structure change. Adapted with permission from Ref. [72]
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governing equations between the atomistic and continuum models, which results in
a mismatch in phonon dispersion relations. In CAC, due to the fact that
coarse-graining cuts off short wavelength phonons [72, 73, 90], the phonon dis-
persion relations in the atomistic and coarse-grained domains overlap with each
other only for wavevector that is smaller than a certain value. For this reason, CAC
simulations of phonon/GB interactions [72] only involved medium- or
long-wavelength phonons because the GB region is rendered in atomistic resolu-
tion. Recently, new shape/interpolation functions, different from the original tri-
linear ones, have been developed and applied to 1D elements to preserve the
complete phonon information when a short-wavelength phonon seamlessly prop-
agates across multiple atomistic/coarse-grained domain interfaces [73]. Work is
underway to extend the new shape/interpolation functions to 2D and 3D for more
complicated crystalline materials.

12.4.3 Dislocation/GB Interactions

The mechanism for slip transfer of lattice dislocations that migrate to and interact
with GBs is one of the most pressing yet unresolved issues facing GB engineering
and polycrystal plasticity [103]. Although in situ transmission electron microscope
experiments capture the real-time dynamic process of slip transfer, they are unable
to discern 3D atomic-scale events at the dislocation/GB interaction sites to yield
quantitative information [104]. The multiscale nature of the sequential transfer of
slip across GBs, in which both the atomic scale structure of the interface and the
long-range fields of dislocation pile-ups are important, also poses challenges from
the perspective of computational simulation [85]. For example, dislocation-based
continuum approaches such as the crystal plasticity FEM (CPFEM) and rule-based
DD are not readily applicable to simulate the interactions between dislocations and
GBs because they usually do not naturally incorporate the necessary microscopic
DOFs associated with the GBs and other evolving internal state variables that relate
to detailed slip transfer criteria [48, 105]. On the other hand, atomistic simulations,
which are preferred for understanding local GB structure-specific slip transfer
responses, are limited by the size of the computational cell in considering the
long-range stress field [106].

We performed hybrid CAC simulations [44] to study the sequential slip transfer
of mixed character dislocations across a Σ3{111} coherent twin boundary (CTB) in
Cu, Ni, and Al [83, 84], as well as a Σ11{113} STGB in Ni [84]. In all simulations,
the GBs are rendered in full atomistic resolution while the coarse-grained domain is
used to accommodate long distance migration of dislocation pile-ups, which are
introduced either by multiplication from an FR source [83, 86] or Volterra knives
[84], the latter case is shown in Fig. 12.6a. The dislocations then move towards the
GB subjected to a constant applied shear stress.

For a Σ3 CTB in Cu and Al [83], it is found that, under a relatively small shear
stress, (i) in Cu, the leading screw segment cuts into the twinned grain, i.e., the CTB
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acts as a barrier to dislocation motion; (ii) in Al, the leading segment is absorbed
and glides on the CTB, which acts as sinks for lattice dislocations. In particular for
Al, four dislocation/CTB interaction modes are identified, which are affected by
applied shear stress, dislocation line length, and dislocation line curvature. This
study highlights the complexity of dislocation/GB interactions, as well as the sig-
nificance to let dislocations evolve freely in 3D and to probe the mechanisms of slip
transfer in polycrystalline and twinned metals using sufficiently large models. In
comparison, prior atomistic simulations in the literature [106] are limited to a small
set of simulation parameters: low applied shear stresses and short/straight dislo-
cation lines enforced by PBCs.

In Ni, five EAM potentials [108–112] were employed in CAC simulations of
dislocation/GB interactions [84]. For the Σ3 CTB, the leading screw segment is
transmitted into the twinned grain using two interatomic potentials (Fig. 12.6d),
but is absorbed and glides on the CTB when the other three potentials are employed
(Fig. 12.6e). In both reactions, each dislocation always follows the
recombination-redissociation process, without forming any CTB dislocations in the
process of recombination, as shown in Fig. 12.6c. For the Σ11 STGB, however,

Fig. 12.6 a Bicrystal simulation cells used to study sequential slip transfer of five
a0 ̸2ð Þ 110½ � 11 ̄1ð Þ dislocations (red S) across a Σ3 1 ̄11ð Þ CTB in Ni. An atomistic domain is
meshed in the vicinity the CTB; the jagged interstices at the cell boundaries are also filled in with
atoms, which are not shown here. Away from the GBs and cell boundaries are coarse-grained finite
elements, each containing 2197 atoms. All cell boundaries are assumed traction free to allow a full
3D description. Exploded views of the GB region appear in the lower region, where atoms in
different (110) atomic layers have different colors; the Σ3 CTB is composed of all D structural
units, and so all sites along the CTB are equivalent for dislocation impingement. b–e Snapshots of
dislocation pile-up with dominant leading screw character impinging against the CTB. Atoms are
colored by adaptive common neighbor analysis [107]: red are of hexagonal-close packed local
structure, blue are BCC atoms, and all FCC atoms are deleted. In a five incoming dislocations
approach the CTB subject to an applied shear stress. In b the leading dislocation is constricted at
the CTB, where two Shockley partial dislocations are recombined into a full dislocation. In c with
Mishin-EAM [108] and Voter-EAM [109] potentials, the dislocation effectively cross-slips into the
outgoing twinned grain via redissociation into two partials. In d with Angelo-EAM [110],
Foiles-EAM [111], and Zhou-EAM [112] potentials, the redissociated dislocation is absorbed by
the CTB, with two partials gliding on the twin plane in opposite directions. Adapted with
permission from Ref. [84]
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all five EAM potential fits predict dislocation absorption, during which the leading
partial dislocation in the incoming grain splits into a STGB partial dislocation and a
stair-rod type dislocation, which subsequently reacts with the trailing partial dis-
location in the incoming grain to form another STGB partial dislocation. This work
highlights the uncertainty in computed dislocation-interface reactions associated
with the deployment of a variety of interatomic potentials and suggests that the
applicability of dislocation/GB interaction criteria in the literature derived from
limited studies may be limited [106].

12.5 Conclusions

In this chapter, we first review the basics of GCM in Sect. 12.1 and establish, in
accordance with the insights of Maugin, that GCM is a better approximation than
CCM to the description of real materials. In Sect. 12.2, the theoretical foundations
and governing equations of AFT are introduced, in comparison with several rep-
resentative CG models in the literature. Fundamentally different from CG particle
models and most field theories such as the micromorphic theory, AFT views a
material as a continuous collection of material points, while embedded within each
point there is a group of discrete atoms, providing an analytical link between the
continuum quantities and the atomic variable. In Sect. 12.3, we discuss important
aspects of the AFT-based CAC approach, including its advantages relative to other
multiscale modeling methods, code development, and numerical implementations.
Applications of CAC to metal plasticity are reviewed in Sect. 12.4, with an
emphasis on static dislocation properties, fast moving dislocations and phonons, as
well as dislocation/GB interactions. It is shown that CAC provides largely satis-
factory predictive results at a fraction of the computational cost of the fully ato-
mistic version of the same models.

The CAC applications discussed in this chapter, as well as all others in the last
decade, establish that the CAC method is useful at intermediate length scales
between fully-resolved atomistics and mesoscale modeling approaches such as DD,
phase field method, and CPFEM. In this regard, CAC can serve as a complement to
methods at the lower and higher length scales. The CAC method is especially useful
to explore problems in which full atomistic resolution is required in some regions
(e.g., complex atomistic phenomena involving dislocations reactions with other
defects), with coarse-graining employed elsewhere to support representation of
dislocation interactions and transport. In such cases, dislocation lines span between
fully resolved atomistic and coarse-grained domains with the same constitutive
equation used everywhere. Compared with MD/MS, CAC is advantageous in that
with greatly reduced DOFs, the key characteristics of complex dislocation behavior
can be reasonably well described, despite the coarse-graining errors. Compared
with DD, in which only the dislocation lines are resolved, CAC simulations contain
more DOFs and are less computationally efficient; however, CAC resolves
dislocation core effects explicitly, in addition to long-range elastic interactions.
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It is anticipated that CAC may assist in computational techniques at higher length
scales by providing useful guidance regarding the form of higher scale constitutive
models.

Future applications of the CAC method to metal plasticity include slip transfer of
more general dislocation types with different curvatures across more general GBs,
the “valve effect” in fracture [113], and dislocation substructure evolution [114]. In
terms of the methodological development, we will implement higher order shape/
interpolation functions and/or enrichment functions within elements to admit dis-
locations in element interior regions, as well as design adaptive mesh refinement
schemes for dislocation migration. For finite temperature dynamic problems, the
next step is to develop a novel description of the temperature in the coarse-grained
domain such that it is consistent with that in MD [25]. Another future extension,
which is more challenging, is to advance non-equilibrium finite temperature
dynamic CAC for non-conservative systems, requiring the implementation of the
balance equation of energy (Eq. 12.4).
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Chapter 13
Bending of a Cantilever
Piezoelectric Semiconductor
Fiber Under an End Force

Chunli Zhang, Xiaoyuan Wang, Weiqiu Chen and Jiashi Yang

Abstract This paper presents a theoretical analysis on the bending and shear of a
cantilever ZnO piezoelectric semiconductor fiber under a transverse end force. The
phenomenological theory of piezoelectric semiconductors consisting of Newton’s
second law of motion, the charge equation of electrostatics, and the conservation of
charge of electrons and holes is used. The equations are linearized for a small end
force and small electromechanical fields as well as small carrier concentration
perturbations. A first-order, one-dimensional theory for the bending of ZnO fibers
with shear deformation is derived from the linearized three-dimensional equations.
An analytical solution is obtained. The electromechanical fields and carrier con-
centrations are calculated. It is found that the electric potential is nearly constant
along the fiber except near the fixed end of the cantilever, and that the electron
distribution over a cross section is due to the transverse shear force and the
piezoelectric constant e24.
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13.1 Introduction

Relatively recently, various one-dimensional piezoelectric semiconductor nanos-
tructures have been synthesized such as ZnO fibers, tubes, belts and spirals [1–3].
They can be made into single structures [4–7] or in arrays [8–11], and have been
used to make energy harvesters for converting mechanical energy into electrical
energy [12–16], field effect transistors [1, 2, 17], acoustic charge transport devices
[18], and strain, gas, humidity and chemical sensors [1, 19].

This paper is concerned with ZnO piezoelectric semiconductor fibers which have
been used in the flexural deformation mode [2, 4, 5, 13, 20, 21] for various devices.
We perform a theoretical analysis on the flexure of a cantilever ZnO nanofiber
under a transverse end force. A deep understanding of this problem is fundamen-
tally important to the development and optimization of devices based on the flexure
of ZnO fibers. The basic behaviors of piezoelectric semiconductors can be
described by the conventional phenomenological theory [22] consisting of the
equations of linear piezoelectricity [23] and the equations of the conservations of
charge of electrons and holes [24]. Because of the anisotropy of piezoelectric
materials, the electromechanical couplings in them, and the nonlinearity associated
with the drift currents of electrons and holes which are the products of the unknown
carrier concentrations and the unknown electric field [24], theoretical analyses of
piezoelectric semiconductor devices normally present considerable mathematical
challenges. In the present paper the theory is linearized under the assumption of a
small end force and hence small carrier concentration perturbations.
A one-dimensional theory for the bending of ZnO fibers with shear deformation is
then derived from the three-dimensional linearized theory in the manner of Mindlin
[25–28]. The linearization and the development of the one-dimensional theory are
crucial in the mathematical simplification of the problem and make the theoretical
results in this paper possible.

13.2 Three-Dimensional Equations

We use the Cartesian tensor notation [23]. The indices i, j, k, l assume 1, 2, and 3.
A comma followed by an index indicates a partial derivative with respect to the
coordinate associated with the index. A superimposed dot represents a time
derivative. For a piezoelectric semiconductor, the three-dimensional phenomeno-
logical theory consists of the equation of motion, the charge equation of electro-
statics, and the conservation of charge for electrons and holes (continuity equations)
[22–24, 29]:
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Tji, j = ρuï,

Di, i = q p− n+N +
D −N −

A

� �
,

Jni, i = qn ̇,

Jpi, i = − qp ̇,

ð13:1Þ

where T is the stress tensor, ρ the mass density, u the mechanical displacement
vector, D the electric displacement vector, q=1.6 × 10− 19 coil the electronic
charge, p and n the concentrations of holes and electrons, N +

D and N +
A the con-

centrations of impurities of donors and accepters, and JPI and JbI the hole and
electron current densities. In (13.1), we have neglected carrier recombination and
generation. Constitutive relations accompanying (13.1) can be written in the fol-
lowing form:

Sij = sEijklTkl + dkijEk,

Di = diklTkl + εTikEk,

Jni = qnμnijEj + qDn
ijn, j,

Jpi = qpμpijEj − qDp
ijp, j,

ð13:2Þ

where S is the strain tensor, E the electric field vector, SEijkl the elastic compliance,
dkij the piezoelectric constants, εTij the dielectric constants, μnij and μpij the carrier
mobilities, and Dn

ij and Dp
ij the carrier diffusion constants. The superscripts “E” and

“T” in SEijkl and εTij will be dropped in the rest of the paper. The strain S and the
electric field E are related to the mechanical displacement u and the electric
potential φ through

Sij = ðui, j + uj, iÞ ̸2, ð13:3Þ

Ei = −φ, i. ð13:4Þ

With the compressed matrix notation for tensor indices [23], the material con-
stants sijkl and dijk in (13.2) can be represented by the matrices spq and dir with p, q,
r = 1, …, 6. Similarly, Sij and Tij are represented by Sp and Tq. We write

n= n0 +Δn, p= p0 +Δp, ð13:5Þ

where

n0 =N +
D , P0 =N −

A , ð13:6Þ
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and they are constants for uniform impurities which we assume in this paper. Then
(13.1)2-4 become

Di, i = qðΔp−ΔnÞ ,
Jni, i = q

∂Δn
∂t

,

Jpi, i = − q
∂Δp
∂t

.

ð13:7Þ

Consider the case of small Δn and Δp. We linearize (13.2)3,4 as

Jni = qn0μnijEj + qDn
ijðΔnÞ, j,

Jpi = qp0μ
p
ijEj − qDp

ijðΔpÞ, j.
ð13:8Þ

This type of linearization has been used in the analysis of piezoelectric semi-
conductors before [22, 30–35]. It has also been used in the macroscopic theory of
ionic conductors [36, 37], a mathematically equivalent problem where the equi-
librium or motion of ions are also governed by drift under an electric field and
diffusion due to concentration gradients. Fully nonlinear theories for elastic semi-
conductors involving large deformations and strong fields can be found in [38–43].

13.3 One-Dimensional Equations

Consider a ZnO fiber with a circular cross section as shown in Fig. 13.1. It is
slender with L >> a. The left end is fixed. The right end is under the action of a
transverse shear force fy.

To develop a one-dimensional theory for the bending and extension of the fiber
in the y-z plane with shear deformation, we make the following approximations of
the relevant mechanical displacements, electric potential, and carrier concentrations
[25–28]:

x1, xx2, y

L

a 
c

x3, z

fyFig. 13.1 A ZnO fiber with
its c-axis along x3
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u2ðx, tÞ≅ vðx3, tÞ,
u3ðx, tÞ≅wðx3, tÞ+ x2ψðx3, tÞ,
φðx, tÞ≅ϕð0Þðx3, tÞ+ x2ϕð1Þðx3, tÞ,

Δnðx, tÞ≅ nð0Þðx3, tÞ+ x2nð1Þðx3, tÞ,
Δpðx, tÞ≅ pð0Þðx3, tÞ+ x2pð1Þðx3, tÞ,

ð13:9Þ

where vðx3, tÞ is the flexural displacement, wðx3, tÞ the extensional displacement
which is not present in the bending of the fiber in Fig. 13.1 but is included for other
possible applications of the equations to be derived, and ψðx3, tÞ the shear defor-
mation associated with flexure. The relevant strains, electric fields and carrier
concentration gradients are

S3 = S33 = u3, 3 =w, 3 + x2ψ , 3, S4 = 2S23 = u2, 3 + u3, 2 = v, 3 +ψ ,

E2 = −φ, 2 = −ϕð1Þ, E3 = −φ, 3 = −ϕð0Þ
, 3 − x2ϕ

ð1Þ
, 3 ,

Δn, 2 = nð1Þ, Δn, 3 = nð0Þ, 3 + x2n
ð1Þ
, 3 ,

Δp, 2 = pð1Þ, Δp, 3 = pð0Þ, 3 + x2p
ð1Þ
, 3 .

ð13:10Þ

For bending in the y-z plane, the main stress components are T3 and T4.
Therefore we introduce the following stress relaxation for thin fibers:

T1 = T2 = T5 =T6 ≅ 0. ð13:11Þ

From the constitutive relations in (13.2)1,2, for the relevant strain and electric
displacement components, we have

S3 = s33T3 + d33E3, S4 = s44T4 + d15E2,

D2 = d15T4 + ε11E2, D3 = d33T3 + ε33E3.
ð13:12Þ

We invert (13.12)1,2 for expressions of stresses in terms of strains and substitute
the resulting expressions into (13.12)3,4. Then (13.12) becomes

T3 = T33 = c3̄3S3 − e3̄3E3 = c3̄3ðw, 3 + x2ψ , 3Þ+ e3̄3ðϕð0Þ
, 3 + x2ϕ

ð1Þ
, 3 Þ,

T4 = T32 = c4̄4S4 − e1̄5E2 = c4̄4ðv, 3 +ψÞ+ e1̄5ϕð1Þ,

D2 = e1̄5S4 + ε1̄1E2 = e1̄5ðv, 3 +ψÞ− ε1̄1ϕ
ð1Þ,

D3 = e3̄3S3 + ε3̄3E3 = e3̄3ðw, 3 + x2ψ , 3Þ− ε3̄3ðϕð0Þ
, 3 + x2ϕ

ð1Þ
, 3 Þ,

ð13:13Þ
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where (13.10) has been used and the effective material constants for thin fibers are

c3̄3 = 1 ̸s33, c ̄44 = 1 ̸s44, e ̄33 = d33 ̸s33, e ̄15 = d15 ̸s44,

ε1̄1 = ε11 − d215 ̸s44, ε ̄33 = ε33 − d233 ̸s33.
ð13:14Þ

The relevant constitutive relations for the currents are the following ones from
(13.8):

Jn2 = qn0μn11E2 + qDn
11n,̄ 2 = − qn0μn11ϕ

ð1Þ + qDn
11n

ð1Þ,
Jn3 = qn0μn33E3 + qDn

33n,̄ 3

= − qn0μn33ðϕð0Þ
, 3 + x2ϕ

ð1Þ
, 3 Þ+ qDn

33ðnð0Þ, 3 + x2n
ð1Þ
, 3 Þ,

Jp2 = qp0μ
p
11E2 − qDp

11p,̄ 2 = − qp0μ
p
11ϕ

ð1Þ − qDp
11p

ð1Þ.
Jp3 = qp0μ

p
33E3 − qDp

33p,̄ 3

= − qp0μ
p
33ðϕð0Þ

, 3 + x2ϕ
ð1Þ
, 3 Þ− qDp

33ðpð0Þ, 3 + x2p
ð1Þ
, 3 Þ,

ð13:15Þ

where (13.10) has been used. Then the axial force N, the bending moment M, the
transverse shear force Q, the zero-order and first-order moments of the relevant
electric displacement and current components can be expressed as

N =
Z
A
T3dA= c3̄3Aw, 3 + e3̄3Aϕ

ð0Þ
, 3 ,

M =
Z
A
x2T3dA= c3̄3Iψ , 3 + e3̄3Iϕ

ð1Þ
, 3 ,

Q=
Z
A
T4dA= c4̄4Aðv, 3 +ψÞ+ e1̄5Aϕð1Þ,

Dð0Þ
2 =

Z
A
D2dA= e1̄5Aðv, 3 +ψÞ− ε1̄1Aϕð1Þ,

Dð0Þ
3 =

Z
A
D3dA= e3̄3Aw, 3 − ε3̄3Aϕ

ð0Þ
, 3 ,

Dð1Þ
3 =

Z
A
x2D3dA= e3̄3Iψ , 3 − ε3̄3Iϕ

ð1Þ
, 3 ,

ð13:16Þ

and
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Jnð0Þ2 =
Z
A
Jn2dA= − qn0μn11Aϕ

ð1Þ + qDn
11An

ð1Þ,

Jnð0Þ3 =
Z
A
Jn3dA= − qn0μn33Aϕ

ð0Þ
, 3 + qDn

33An
ð0Þ
, 3 ,

Jnð1Þ3 =
Z
A
x2Jn3dA= − qn0μn33Iϕ

ð1Þ
, 3 + qDn

33In
ð1Þ
, 3 ,

Jpð0Þ2 =
Z
A
Jp2dA= − qp0μ

p
11Aϕ

ð1Þ − qDp
11Ap

ð1Þ,

Jpð0Þ3 =
Z
A
Jp3dA= − qp0μ

p
33Aϕ

ð0Þ
, 3 − qDp

33Ap
ð0Þ
, 3 ,

Jpð1Þ3 =
Z
A
x2J

p
3dA= − qp0μ

p
33Iϕ

ð1Þ
, 3 − qDp

33Ip
ð1Þ
, 3 ,

ð13:17Þ

where I and A are the moment of inertia and the area of the fiber cross section, i.e.,

I =
Z
A
x22dA=

πa4

4
, A= πa2. ð13:18Þ

The one-dimensional equations of motion, the charge equation of electrostatics
and the conservation of charge for electrons and holes are obtained by integrating
(13.1) and their products with x2 over the fiber cross section. The results are

N, 3 = ρAẅ,

Dð0Þ
3, 3 = qAðpð0Þ − nð0ÞÞ,

Jnð0Þ3, 3 = qAn ̇ð0Þ,

Jpð0Þ3, 3 = − qAp ̇ð0Þ,

ð13:19Þ

and

Q, 3 = ρAv ̈,
M, 3 −Q= ρIψ ̈,

Dð1Þ
3, 3 −Dð0Þ

2 = qIðpð1Þ − nð1ÞÞ,
Jnð1Þ3, 3 − Jnð0Þ2 = qInð̇1Þ,

Jpð1Þ3, 3 − Jpð0Þ2 = − qIp ̇ð1Þ.

ð13:20Þ

13 Bending of a Cantilever Piezoelectric Semiconductor … 267



The substitution of (13.16) and (13.17) into (13.19) and (13.20) gives two sets of
second-order linear ordinary differential equations. One is for w, ϕð0Þ, nð0Þ, and pð0Þ

which are related to extension. The other is for v, ψ , ϕð1Þ, nð1Þ and pð1Þ which are
related to flexure with shear deformation.

13.4 A Cantilever Under a Transverse End Force

For the cantilever in Fig. 13.1, since there is only a transverse shear force fy at the
right end which causes bending with shear but not extension, the extension-related
fields of w, ϕð0Þ, nð0Þ, and pð0Þ all vanish and (13.19) is not needed. In addition, we
limit ourselves to the case of an n-type semiconductor so that pð1Þ vanishes too and
(13.20)5 is trivially satisfied. The four remaining fields are v, ψ , ϕð1Þ and nð1Þ. For
static bending, the relevant equations from (13.20), (13.16) and (13.17) are

Q, 3 = 0,

M, 3 −Q=0,

Dð1Þ
3, 3 −Dð0Þ

2 = qIðpð1Þ − nð1ÞÞ,
Jnð1Þ3, 3 − Jnð0Þ2 = 0,

ð13:21Þ

Q= c ̄44Aðv, 3 +ψÞ+ e1̄5Aϕð1Þ,

M = c3̄3Iψ , 3 + e3̄3Iϕ
ð1Þ
, 3 ,

Dð0Þ
2 = e1̄5Aðv, 3 +ψÞ− ε1̄1Aϕð1Þ,

Dð1Þ
3 = e3̄3Iψ , 3 − ε3̄3Iϕ

ð1Þ
, 3 ,

Jnð0Þ2 = − qn0μn11Aϕ
ð1Þ + qDn

11An
ð1Þ,

Jnð1Þ3 = − qn0μn33Iϕ
ð1Þ
, 3 + qDn

33In
ð1Þ
, 3 .

ð13:22Þ

The boundary conditions are

vð0Þ=0, ψð0Þ=0, MðLÞ=0, QðLÞ= fy, ð13:23Þ

Dð1Þ
3 ð0Þ=0, Jnð1Þ3 ð0Þ=0, Dð1Þ

3 ðLÞ=0, Jnð1Þ3 ðLÞ=0, ð13:24Þ

where we have assumed an electrically isolated fiber. There are no concentrated
charges at the ends and there are no currents flowing in or out of the fiber at its ends.
For bending without extension, the carrier concentration perturbation is simply
Δn= x2nð1Þ, an odd function of x2 that satisfies the charge neutrality condition
automatically.
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The substitution of (13.22) into (13.21) gives four second-order ordinary dif-
ferential equations with constant coefficients for v, ψ , ϕð1Þ and nð1Þ. With some
algebra, it can be found that the general solution of the four equations is

ϕð1Þ =C1 sinh λ1x3 +C2 cosh λ1x3 +C3 sinh λ3x3 +C4 cosh λ3x3

−
Dn

11A
Dn

33ε33I
e3̄3c4̄4 − e1̄5c3̄3

c4̄4

� �
C5

a2
,

ð13:25Þ

ψ = −
e3̄3
c3̄3

C1 sinh λ1x3 +C2 cosh λ1x3 +C3 sinh λ3x3 +C4 cosh λ3x3ð Þ

+
C5

2
x23 +C6x3 +C7 +

Dn
11Ae3̄3

Dn
33ε33Ic ̄33

e3̄3c4̄4 − e1̄5c3̄3
c4̄4

� �
C5

a2
,

ð13:26Þ

nð1Þ =
1
qI

h
ðε33Iλ21 − ε11AÞðC1 sinh λ1x3 +C2 cosh λ1x3Þ

+ ðε33Iλ23 − ε11AÞ× ðC3 sinh λ3x3 +C4 cosh λ3x3Þ

−
ðDn

33ε33I
2 −Dn

11ε11A
2Þðe3̄3c4̄4 − e1̄5c3̄3Þ

Dn
33ε33Ic ̄44

C5

i
,

ð13:27Þ

v= ðe3̄3
c3̄3

−
e1̄5
c4̄4

Þ½ 1
λ1

ðC1 cosh λ1x3 +C2 sinh λ1x3Þ

+
1
λ3

ðC3 cosh λ3x3 +C4 sinh λ3x3Þ�− C5

6
x33 −

C6

2
x23

+
c3̄3I
c4̄4A

−
Dn

11Aðe3̄3c4̄4 − e1̄5c3̄3Þ2
Dn

33ε33Ic ̄33c2̄44a2

 !
C5 −C7

" #
x3 +C8,

ð13:28Þ

where C1 through C8 are eight arbitrary constants. λ1 through λ4 are the four roots
of the following equation:

λ4 − a1λ2 + a2 = 0 ð13:29Þ

where

a1 =
qμn33n0
Dn

33ε33
+

ðDn
33ε11 +Dn

11ε33ÞA
Dn

33ε33I
, a2 =

qμn11An0
Dn

33ε33I
+

Dn
11ε11A

2

Dn
33ε33I2

. ð13:30Þ

Substituting (13.25)–(13.28) into the boundary conditions in (13.23) and
(13.24), we obtain eight linear equations for C1 through C8. These equations are
solved on a computer.
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13.5 Numerical Results and Discussion

As an example, consider the ZnO fiber in [44]. The geometric parameters are that
L = 600 nm and a = 25 nm. fy =80 nN. n0 =N +

D =1023 m−3 [44]. The material
constants of ZnO are from [23]. However, we were only able to find one of the
diffusion constants for ZnO. Therefore Dn

11 =Dn
33 is used in our calculation. For

these parameters, λ1 through λ4 are all real and so are (13.25)–(13.28). In addition,
λ1 = − λ2 and λ3 = − λ4. Numerical results show that in this case Δn is as large as n0
and is no longer a small perturbation. Therefore, we reduce the end force to fy= 0.2
nN while maintaining all other parameters the same as those in [44]. Then Δn is an
order of magnitude smaller than n0 and the linearization in (13.8) is valid.

The mechanical fields in the fiber are shown in Fig. 13.2 where d = 2a is the
diameter of the fiber. The shear force Q is a constant along the fiber. The bending
moment M is a linear function along the fiber being equal to –fyL at the left end and
vanishing at the right end. These are obvious from statics. The deflection u2 in (a) is
uniform over the cross section according to the displacement approximation in
(13.9). It vanishes at the left fixed end and increases monotonically toward the right
end. The axial displacement u3 = x2ψ in (b) varies linearly in x2 over a cross section
and vanishes at the left end because of the prescribed boundary condition ψð0Þ=0
there. These are familiar mechanical behaviors of the bending of a cantilever. ψ in
(c) contributes to the shear strain S4 according to (13.10). It is related to the constant
shear force Q by (13.16) and varies gradually along the fiber. It vanishes at the left
end because of the boundary condition there. The shear strain S4 in (d) is uniform
over a cross section according to (13.10) within the approximation of the
one-dimensional model. It varies very little along the fiber as dictated by the
constant shear force Q except near the left end. The shear stress T4 is a constant over
a cross section according to (13.13). Since it produces a constant shear force along
the fiber, T4 is a constant everywhere in the fiber and hence is not plotted. The axial
strain S3 in (e) and the axial stress T3 in (f) both vary linearly over a cross section
according to (13.10) and (13.13). They are large at the left end where the bending
moment is large and are small or vanish at the right end where the bending moment
vanishes. From the three-dimensional theory of elasticity, it is well known that
while the one-dimensional bending theory developed in this paper can predict the
mechanical fields accurately along the most part of the fiber, it cannot predict the
stresses (and strains) close to the fixed end. Therefore, the real stresses at the left
end are more complicated than what is shown, but they are statically equivalent to
the ones in Fig. 13.2.

Figure 13.3 shows the electrical fields in the fiber. (a) shows that the potential
distribution varies very little along the fiber except near the left end. For the same
fiber, the electric potential distribution obtained theoretically in [45] is constant
along the entire fiber without the drastic change near the left end. Mathematically,
what led to the z-independence of the potential in [45] is the reasoning after (21) of
[45]. Because of the remnant charge on the right-hand side of (19) of [45] is
z-independent, it is reasoned in [45] that the electric potential is also z-independent.
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Fig. 13.2 Distributions of mechanical fields. d = 2a is the diameter of the fiber. a Flexural
displacement u2 = v. b Axial displacement u3 = x2ψ . c ψ . d Shear strain S4. e Axial strain S3.
f Axial stress T3
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Fig. 13.3 Distributions of electrical fields. d = 2a is the diameter of the fiber. a Electric potential
φ= x2ϕð1Þ, 0≤ x3 ≤ 600 nm. b Electric potential, 50≤ x3 ≤ 600 nm. c Transverse electric field E2.
d Transverse electric displacement D2. e Axial electric field E3. f Axial electric displacement D3

272 C. Zhang et al.



However, since the electric potential appears in (19) of [45] in its second-order
spatial derivatives, it is only safe to say that some combination of the second-order
derivatives of the potential is z-independent, but not necessarily the potential itself.
Physically, the presence of T3 in Fig. 13.2f can affect the axial electric field E3

through the piezoelectric constant e33 and cause the z-dependence of the electric
potential. (a) shows that the z-independence of the potential in [45] is a good
approximation for the most part of the fiber except when it is very close to the left
end. The potential varies linearly over the cross section according to (9) but the
variation can hardly be seen in (a) because of the drastic variation of the potential
near the left end. The potential distribution in (b) without a small region at the left
end shows clearly the linear variation of the potential over the cross section, which
is what matters in the application in [44, 45]. The behaviors of E2 in (c) and D2 in
(d) are similar. They are both uniform over a cross section according to (13.10) and
(13.13), and are nearly constant along the most part of the fiber except near the left
end. The axial electric field E3 in (e) and electric displacement D3 in (f) both vary
linearly over the cross section according to (13.10) and (13.13). E3 is determined by

ϕð1Þ
, 3 which is large at the left end. D3 depends on ψ , 3 which varies along the entire

fiber.
Figure 13.4a shows the carrier concentration perturbation Δn= x2nð1Þ in the fiber

due to the end force. Since Δn varies drastically near the left end, we plot Δn again
in (b) without a small region near the left end. (b) shows the linear variation of Δn
over a cross section according to (13.9) clearly. Δn is produced by the E2 in
Fig. 13.3c which is negative. Therefore, the electrons move toward the upper
surface of the fiber. We note that this electron distribution is caused by the shear
force Q or the related shear stress T4 through e24 = e15, rather than the bending
moment M or the axial stress T3. The total electron concentration n= n0 +Δn is
shown in (c) and (d) with or without a small region near the left end. There are more
electrons at the upper surface of the fiber than at the lower surface.

φ= x2ϕð1Þ and Δn= x2nð1Þ show that the behaviors of the electric potential and
the electron concentration perturbation are determined by ϕð1Þ and nð1Þ. In
Fig. 13.5, ϕð1Þ and nð1Þ are plotted for different values of the applied end force f = fy
for a fixed n0 = 1023/m3. (a) and (c) show that both ϕð1Þ and nð1Þ are nearly constant
except near the fixed left end where they are large and vary rapidly. For the
applications we are interested in, the behavior away from the fixed end is relevant
and the one-dimensional model in this paper is effective there. To show the
behavior of ϕð1Þ and nð1Þ away from the fixed end more clearly, they are plotted in
(b) and (d) again, respectively, without a small region near the fixed end. It can be
seen that a larger end force corresponds to a larger ϕð1Þ or nð1Þ as expected.
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In Fig. 13.6, ϕð1Þ and nð1Þ are plotted for different values of the initial electron
concentration n0 for a fixed fy = 0.2 nN. (b) and (d) show that a larger n0 corre-
sponds to a smaller ϕð1Þ and a larger nð1Þ away from the fixed end. This may be
explained by that when n0 is large there are more electrons participating in resisting
the production of ϕð1Þ.

Fig. 13.4 Electron concentration. d = 2a is the diameter of the fiber. a Δn= x2nð1Þ, 0≤ x3 ≤ 600
nm. b Δn= x2nð1Þ, 50≤ x3 ≤ 600 nm. c n= n0 +Δn, 0≤ x3 ≤ 600. d n= n0 +Δn, 50≤ x3 ≤ 600 nm
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13.6 Conclusions

The theoretical framework in this paper consisting of the macroscopic theory of
piezoelectric semiconductors, its linearization for small fields, and the
one-dimensional theory for thin fibers can produce basic theoretical results fun-
damental to the understanding of the behaviors of thin ZnO fibers. In the bending of
a cantilever ZnO fiber by a transverse end force, the end force applied in [44] is
relatively large and is beyond the linear theory in the present paper, but the results
presented in the present paper for smaller end forces can still provide basic
understanding of the problem. The electric potential is found to be nearly a constant
for the most part along the fiber except near its fixed end. Therefore, treating the
electric potential as z-independent [45] may be viewed as a good approximation.
The variation of the electron concentration over a cross section is caused by the
shear stress T4 through the piezoelectric constant e24. The perturbation of the
electron concentration is similar to the electric potential, varying rapidly near
the fixed end only.

Fig. 13.5 Effects of the end force f = fy. n0 = 1023/m3. a Electric potential ϕð1Þ. b Electric
potential ϕð1Þ (magnified). c Electron concentration perturbation nð1Þ. d Electron concentration
perturbation nð1Þ (magnified)
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Chapter 14
Contact Mechanics in the Framework
of Couple Stress Elasticity

Thanasis Zisis, Panos A. Gourgiotis and Haralambos G. Georgiadis

Abstract The purpose of this work is to present general solutions for
two-dimensional (2D) plane-strain contact problems within the framework of the
generalized continuum theory of couple-stress elasticity. This theory is able to
capture the scale effects, which are often observed in indentation problems with
contact lengths comparable to the material microstructure. To this end, we for-
mulate a number of basic contact problems in terms of singular integral equations
using the pertinent Green’s function that corresponds to the solution of the analogue
of the Flamant-Boussinesq problem of a half-space in couple-stress elasticity. In
addition, we also provide results concerning the more complex traction
boundary-value problem involving a deformable layer (again within couple-stress
elasticity) of finite thickness superposed on a rigid half-space. We show that the
contact behavior of materials with couple-stress effects depends strongly upon their
microstructural characteristics, especially when the characteristic dimension of the
microstructure becomes comparable to macroscopic characteristic dimensions of
the contact problem. The latter lengths could be either the contact length/area or
even the thickness of the layer.
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14.1 Introduction

Contact situations between two bodies occur in a multitude of engineering appli-
cations ranging from mechanical and civil engineering to materials science. On the
one hand, small scale contacts appear in indentation tests for the extraction of
material properties, in the area of mechanical engineering and/or material science
while, on the other hand, a multitude of structures is founded in reinforced concrete
footings or pads buried at relatively shallow depths beneath the ground surface.
There, large-scale contacts take place between the footings and the deformable
ground. Furthermore, the microscopic as well as the macroscopic behavior of most
materials with distinct microstructural characteristics (i.e. non-homogeneous
microstructure) like, for example, ceramics, composites, cellular materials, foams,
masonry, bone tissues, glassy and semi-crystalline polymers, are strongly influ-
enced by the microstructural lengths of the material, especially in the presence of
large stress (or strain) gradients [1]. This effect of the microstructure upon the
macroscopic mechanical response of the materials is usually referred to as “size
effect”.

Size effects have been observed in indentation tests especially when the contact
area is comparable to the material microstructure. In particular, it has been shown
that a strong size effect emerges upon the hardness in polycrystalline, cellular and
polymer materials especially in the sub-micrometer depth regime. In fact, the
indentation hardness of metals and ceramics increases by a factor of two as the
width of the indent size decreases from 10 to 1 μm [2–4]. Moreover, indentation of
thin films showed an increase in the yield stress with decreasing film thickness [5].
Fleck et al. [6] showed that the size effect on hardness is related to the high stress/
strain gradients present in shallow indentations. Although material hardening is
attributed to the combined presence of geometrically necessary dislocations asso-
ciated with plastic strain gradients and statistically stored dislocations associated
with plastic strains, strain gradients are also important for materials that deform
purely elastically. In fact, there is evidence that certain polymers exhibit significant
size effects under purely elastic deformation [7, 8]. In addition, Maraganti and
Sharma [1] showed that gradient effects are expected to play a significant role in the
elastic deformation of complex cellular-type materials with coarse-grained struc-
ture. In light of the above, and taking into account that the indentation technique has
evolved to a standard method for material characterization, the investigation of the
microstructural effects upon the macroscopic behavior of the indented material in
the elastic regime is of paramount importance [9].

The study of size effects of microstructured materials upon various loading
conditions involves roughly two different approaches. The first approach takes into
account the discrete morphology of the material through discrete modeling and
directly incorporates into the model the details of the material microstructure. The
second approach involves the use of generalized continuum theories according to
which the microstructural characteristics are smeared out but the characteristic
microstructural length is retained. The generalized continuum approach is a very
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powerful one since it can be incorporated efficiently into large computations.
However, it lacks the detailed description of a discrete representation due to the fact
that it treats the microstructural characteristic lengths in an average sense. Discrete
modeling of the material microstructure during indentation has been carried out
using classical theories [10–14], whereas phenomenological approaches based on
generalized continua have been also extensively followed [15–20].

Couple-stress elasticity, also known as Cosserat theory of elasticity with con-
strained rotations, is an effective generalized continuum theory, successfully
modeling size effects in many engineering problems. This theory is the simplest
gradient theory in which couple-stresses appear. In particular, the couple-stress
theory assumes an augmented form of the Euler-Cauchy principle with a
non-vanishing couple traction, and a strain-energy density that depends upon both
the strain and the gradient of rotation. Such assumptions are appropriate for
materials with granular structure, where the interaction between adjacent elements
may introduce internal moments. In this way, characteristic material lengths may
appear representing in an average sense the material microstructure. The presence
of these material lengths implies that the couple-stress theory encompasses the
analytical possibility of size effects, which are absent in the classical theory. The
fundamental concepts of the couple-stress theory were first introduced by Cauchy
[21], Voigt [22] and the Cosserat brothers [23], but the subject was generalized and
reached maturity only in the 1960s through the works of Toupin [24], Mindlin and
Tiersten [25], and Koiter [26].

The physical relevance of the material length scales as introduced through
generalized continuum theories has been the subject of numerous theoretical and
experimental studies. For instance, Chen et al. [27] developed a continuum model
for cellular materials showing that its continuum description obeys a gradient
elasticity theory of the couple-stress type. The intrinsic material length was natu-
rally identified with the cell size. Tekoglu and Onck [14] compared the analytical
results of various gradient type generalized continuum theories with the computa-
tional results of discrete models of Voronoi representations of cellular
microstructures. The analysis within the elastic regime assessed the capabilities of
generalized continuum theories in capturing size effects in cellular solids. A recent
study by Bigoni and Drugan [28] determined the couple-stress moduli via
homogenization of heterogeneous materials. Moreover, Shodja et al. [29] utilizing
ab initio DFT calculations evaluated the characteristic material lengths of the gra-
dient elasticity theory for several fcc and bcc metal crystals.

Furthermore, experiments with phonon dispersion curves indicate that for most
metals, the characteristic internal length is of the order of the lattice parameter,
about 0.25 nm while other small-molecule materials have larger internal charac-
teristic lengths [30]. For example, for the semiconductor gallium arsenide (GaAs),
Zhang and Sharma [30] estimated a characteristic length of about 0.82 nm, while
Lakes [31] estimated a microstructural length for graphite H257 of the order of
2.8 nm. On the other hand, in foams and cellular materials the characteristic lengths
are comparable to the average cell size, whereas in laminates is of the order of the
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laminate thickness. For example, dense polyurethane foams exhibit a microstruc-
tural length about 0.33 mm [32], while for human bones it is around 0.5 mm [33].

14.2 Basic Equations in Plane-Strain

Here, we briefly recall certain elements of the linearized plane-strain theory of
couple-stress elasticity for homogeneous and isotropic elastic solids. A more
detailed exposition of the theory under plane-strain conditions was given in the
work by Muki and Sternberg [15] for the quasi-static case, and more recently by
Gourgiotis and Piccolroaz [34] for the dynamical case (including micro-inertia
effects).

The rectangular components of the asymmetric stress (σxx, σxy, σyx, σyy ) and
couple stress (mxz, myz ) are shown in Fig. 14.1, which act upon the faces of an
infinitesimal rectangular element of unit thickness. If the stresses and couple
stresses vary across the element, the shear stresses (σxy, σyx ) are not necessarily
equal and if the shear stresses are equal or even zero the couple stresses need not
vanish.

For a body that occupies a domain in the x, yð Þ—plane under conditions of plane
strain, the displacement field takes the general form

ux ≡ ux x, yð Þ≠ 0, uy ≡ uy x, yð Þ≠ 0, uz ≡ 0. ð14:1Þ

Further, for the kinematical description, the following quantities are defined in
the framework of the geometrically linear theory

εxx =
∂ux
∂x

, εyy =
∂uy
∂y

, εxy = εyx =
1
2

∂uy
∂x

+
∂ux
∂y

� �
ð14:2Þ

ω=
1
2

∂uy
∂x

−
∂ux
∂y

� �
, κxz =

∂ω

∂x
, κyz =

∂ω

∂y
, ð14:3Þ

Fig. 14.1 Rectangular
components of stress and
couple stress
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where ε is the usual strain tensor, ω is the rotation, and ðκxz, κyzÞ are the
non-vanishing components of the curvature tensor (i.e. the gradient of rotation)
expressed in dimensions of [length]−1.

Accordingly, assuming vanishing body forces and body couples, the equations
of equilibrium in the present circumstances reduce to

∂σxx
∂x

+
∂σyx
∂y

=0,
∂σxy
∂x

+
∂σyy
∂y

=0, σxy − σyx +
∂mxz

∂x
+

∂myz

∂y
=0, ð14:4Þ

Equations (14.4) are the Cosserat equations of equilibrium in two dimensions.
Moreover, the constitutive equations read

εxx = 2μð Þ− 1 σxx − ν σxx + σyy
� �� �

, εyy = 2μð Þ− 1 σyy − ν σxx + σyy
� �� �

,
εxy = 4μð Þ− 1 σxy + σyx

� � ð14:5Þ

and

κxz = 4μℓ2� �− 1
mxz, κyz = 4μℓ2� �− 1

myz ð14:6Þ

where μ, ν and ℓ stand, respectively, for the shear modulus, Poisson’s ratio, and the
characteristic material length of couple-stress theory.

The compatibility equations in terms of the stress and the couple stress com-
ponents assume then the following form

∂
2σxx
∂y2

−
∂
2

∂x∂y
σxy + σyx
� �

+
∂
2σyy
∂x2

= ν∇2 σxx + σyy
� �

, ð14:7Þ

∂mxz

∂y
=

∂myz

∂x
, ð14:8Þ

mxz = − 2ℓ2 ∂

∂y
σxx − ν σxx + σyy

� �� �
+ℓ2 ∂

∂x
σxy + σyx
� �

, ð14:9Þ

myz =2ℓ2 ∂

∂x
σyy − ν σxx + σyy

� �� �
−ℓ2 ∂

∂y
σxy + σyx
� �

. ð14:10Þ

Notice that only three of the four equations of compatibility are independent.
Indeed, Eqs. (14.8)–(14.10) imply (14.7), while Eqs. (14.7), (14.9) and (14.10)
yield (14.8) [14, 15]. Furthermore, the complete solution of Eqs. (14.4) admits the
following representation in terms of the Mindlin’s stress functions [35]
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σxx =
∂
2Φ
∂y2

−
∂
2Ψ

∂x∂y
, σyy =

∂
2Φ
∂x2

+
∂
2Ψ

∂x∂y
, σxy = −

∂
2Φ

∂x∂y
−

∂
2Ψ
∂y2

, σyx = −
∂
2Φ

∂x∂y
+

∂
2Ψ
∂x2

ð14:11Þ

and

mxz =
∂Ψ
∂x

,myz =
∂Ψ
∂y

, ð14:12Þ

where Φ≡Φ x, yð Þ and Ψ≡Ψ x, yð Þ are two arbitrary but sufficiently smooth functions.
Substitution of Eqs. (14.11) and (14.12) into (14.9) and (14.10) results in the
following pair of differential equations, for the stress functions

∂

∂x
Ψ−ℓ2∇2Ψ
� �

= − 2 1− νð Þℓ2∇2 ∂Φ
∂y

� �
, ð14:13Þ

∂

∂y
Ψ−ℓ2∇2Ψ
� �

=2 1− νð Þℓ2∇2 ∂Φ
∂x

� �
, ð14:14Þ

which, accordingly, lead to the uncoupled PDEs:

∇4Φ=0, ð14:15Þ

∇2Ψ−ℓ2∇4Ψ=0. ð14:16Þ

The above representation reduces to the classical Airy’s representation as the
quantities ℓ, ∂xΨ, and ∂yΨ tend to zero. In addition, combining Eqs. (14.2)–(14.5),
and (14.11)–(14.12), one can obtain the following relations connecting the dis-
placement gradients with Mindlin’s stress functions

∂ux
∂x

=
1
2μ

∂
2Φ
∂y2

−
∂
2Ψ

∂x∂y
− ν∇2Φ

� �
, ð14:17Þ

∂uy
∂y

=
1
2μ

∂
2Φ
∂x2

+
∂
2Ψ

∂x∂y
− ν∇2Φ

� �
, ð14:18Þ

∂ux
∂y

+
∂uy
∂x

= −
1
2μ

2
∂
2Φ

∂x∂y
−

∂
2Ψ
∂x2

+
∂
2Ψ
∂y2

� �
. ð14:19Þ
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14.3 Green’s Functions

The definition of a Green’s function can be used mathematically to derive solutions
to point load problems, either within the elastic body or on its surface. A multitude
of Green’s functions within the context of classical elasticity are available in the
literature for different surface geometries (see e.g. [36]). In a 2D setting, the
problem of determining the stress and displacement fields in an isotropic half-plane
subjected to a concentrated line load on its surface is the celebrated
Flamant-Boussinesq problem (see Fig. 14.2). The Flamant-Boussinesq solution of
classical elasticity is discussed among others, e.g., by Love [37], Fung [38],
Timoshenko and Goodier [39], and enjoys important applications mainly in Contact
Mechanics and Tribology, since it can be used as a building block for the formu-
lation of complicated contact problems [40–42].

In the context of generalized continuum theories, concentrated load problems
have been extensively studied suggesting solutions that significantly depart from
the predictions of classical elasticity (for a thorough review on the subject see the
recent work of Anagnostou et al. [43]). Regarding the couple-stress theory, Muki
and Sternberg [15] were the first to derive the asymptotic fields for the stress field in
the Flamant-Boussinesq problem while Gourgiotis and Zisis [44] provided a full
field solution for the same problem.

In what follows, we examine two basic 2D configurations: a half-plane
(−∞< x<∞ , y ≥ 0Þ, and a layer of finite thickness h bonded on a rigid substrate
(−∞< x<∞ , 0 ≤ y ≤ hÞ (see Fig. 14.2). In both cases plane strain conditions
prevail. The point of application of the concentrated load is taken as the origin
(x= y=0Þ of a Cartesian rectangular coordinate system. The intensities of the
concentrated loads are expressed in dimensions of [force][length]−1.

In both cases the boundary conditions along the surface (y = 0Þ become

σyyðx, 0Þ= −Pδ xð Þ for −∞< x<∞, ð14:20Þ

σyxðx, 0Þ=0 for −∞< x<∞, ð14:21Þ

(a) (b)

Fig. 14.2 Normal force acting on the surface of a an elastic half-plane and b an elastic layer of
thickness bonded on a rigid substrate
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myzðx, 0Þ=0 for −∞< x<∞, ð14:22Þ

where δ xð Þ is the Dirac delta distribution.
For the case of the layer of finite thickness, two sets of boundary conditions can

be defined at the interface (y= hÞ between the layer and the rigid substrate:

(i) The first set suggests vanishing displacements and rotations at the interface:

ux x, hð Þ=0 for −∞< x<∞, ð14:23Þ

uy x, hð Þ=0 for −∞< x<∞, ð14:24Þ

ωz x, hð Þ=0 for −∞< x<∞, ð14:25Þ

(ii) The second set suggests vanishing displacements and couple stresses at the
interface:

ux x, hð Þ=0 for −∞< x<∞, ð14:26Þ

uy x, hð Þ=0 for −∞< x<∞, ð14:27Þ

myz x, hð Þ=0 for −∞< x<∞, ð14:28Þ

The boundary conditions (14.23)–(14.25) correspond to an over-constrained
version of the classical elasticity solution, while boundary conditions (14.26)–
(14.28) allow for a direct comparison of the current solution with the corresponding
classical elasticity results. Finally, it is noted that the solution procedure for the case
of a tangential load acting on the surface of a half-plane is directly analogous to
what will be presented next and for this reason is omitted for sake of brevity.

The presented boundary value problems are attacked with the aid of the Fourier
transform on the basis of the stress function formulation introduced earlier. The
direct Fourier transform and its inverse are defined as follows

f ð̂ξÞ=
Z∞
−∞

f ðxÞ eiξxdx, f ðxÞ= 1
2π

Z∞
−∞

f ð̂ξÞ e− iξxdξ, ð14:29Þ

where i ≡ − 1ð Þ1 ̸2.
The transformation of Eqs. (14.15) and (14.16) through (14.29)2 yields the

following ODEs for the transformed stress functions
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d4Φ̂
dy4

− 2ξ2
d2Φ̂
dy2

+ ξ4Φ̂=0, ð14:30Þ

ℓ2 d
4Ψ̂
dy4

− 1+ 2ℓ2ξ2
� � d2Ψ̂

dy2
+ ξ2 1 +ℓ2ξ2

� �
Ψ̂=0. ð14:31Þ

Accordingly, the transformed displacements take the following form

ux̂ =
1
2μξ

i 1− νð Þ d
2Φ̂
dy2

− ξ
dΨ̂
dy

+ iνξ2Φ̂
� �

, ð14:32Þ

uŷ =
1

2μξ2
1− νð Þ d

3Φ̂
dy3

− 2− νð Þξ2 dΦ̂
dy

− iξ3Ψ̂
� �

. ð14:33Þ

The governing Eqs. (14.30) and (14.31) in conjunction with the compatibility
Eqs. (14.13) and (14.14) assume the following general solutions

Φ̂ ξ, yð Þ= C1 ξð Þ+ yC2 ξð Þ½ �e− ξj jy + C3 ξð Þ+ yC4 ξð Þ½ �e ξj jy, ð14:34Þ

Ψ̂ ξ, yð Þ= − 4iℓ2 1− νð ÞξC2 ξð Þe− ξj jy +C5 ξð Þe− γy

− 4iℓ2 1− νð ÞξC4 ξð Þeξy +C6 ξð Þeγy. ð14:35Þ

where γ ≡ γ ξð Þ= ℓ− 2 + ξ2
� �1 ̸2

. The functions Cq ξð Þ (q=1, . . . , 6Þ will be deter-
mined through the enforcement of the pertinent boundary conditions. Note that in
the case of a half-plane the solution should be bounded as y→∞ which implies
that: C3 =C4 =C6 = 0.

Utilizing the fact that u ̂x x, ξð Þ and uŷ x, ξð Þ are odd and even functions of ξ,
respectively, a general representation of the components of the displacement field
reads

ux x, yð Þ= − i
π

Z∞
0

ux̂ ξ, yð Þ sin ξxð Þ dξ, ð14:36Þ

uy x, yð Þ= 1
π

Z∞
0

uŷ ξ, yð Þ cos ξxð Þ dξ. ð14:37Þ

It is worth noting that for the layer problem both ux̂ and uŷ are bounded as ξ→ 0,
which implies that the displacement field is also bounded as x→∞. On the other
hand, for the half-plane problem, the integrand in (14.37) behaves as uŷ =O ξ− 1� �
for ξ→ 0, and, thus, uy exhibits a logarithmic behavior as x→∞. These obser-
vations hold true also in the classical elasticity theory.
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For the Flamant-Boussinesq problem in the context of couple stress theory the
displacement field assumes the following form [44]

ux x, yð Þ= P
2μπ

Z∞
0

T1 ξð Þ
T0 ξð Þ sin ξxð Þdξ, ð14:38Þ

uy x, yð Þ= P
2μπ

Z∞
0

T2 ξð Þ
T0 ξð Þ cos ξxð Þdξ, ð14:39Þ

with

T1 ξð Þ=4ℓ2 1− νð Þξ2γe− γy + γ yξ− 1+ 2νð Þ− 4ℓ2 1− νð Þξ3� �
e− ξy,

T2 ξð Þ=4ℓ2 1− νð Þξ3e− γy + γ yξ+2 1− νð Þð Þ− 4ℓ2 1− νð Þξ3� �
e− ξy,

T0 ξð Þ= ξ γ − 4 1− νð Þℓ2ξ2 ξ− γð Þ� �
.

Note that analogous expressions for the displacement field have also been found
for the layer problem, however these expressions are lengthy and are not reported
here for the sake of brevity.

The asymptotic behavior of the tangential and normal displacements in the
context of couple-stress elasticity for a half-space was examined near the point of
the application of the concentrated load by Gourgiotis and Zisis [44] by employing
theorems of the Abel-Tauber type and examining the behavior of the transformed
solutions for the displacements as ξ→∞. In fact, it was shown that

uasymptx x, yð Þ= P
2μπ 3− 2νð Þ tan− 1 x

y

� �
− 1− 2νð Þ xy

r2

� 	
, ð14:40Þ

uasympty x, yð Þ= −
P

2πμ ð3− 2νÞ 1− 2νð Þ y
2

r2
+ 2 1− νð Þlog rð Þ

� 	
, ð14:41Þ

as r→ 0 with r= x2 + y2ð Þ1 ̸2. It is noted that the displacement components exhibit
the same asymptotic behavior both in couple-stress and in classical elasticity,
however, the detailed structure of these fields is different. The strain components
can be readily calculated from Eqs. (14.36) and (14.37) through appropriate
derivations. It can be shown that the strains remain singular and behave as
εij =O r − 1ð Þ as r→ 0. However, in marked contrast with the classical theory, the
rotation is bounded at the point of application of the load. It is recalled that in the
classical theory the rotation is singular, exhibiting an ∼ r − 1 variation as r→ 0.
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In order to formulate the 2D contact problems, it is convenient to work in terms
of the displacement gradients, thereby eliminating arbitrary constants [45]. To this
respect, the quantity duy ̸dx is evaluated at the surface of the half-plane (y = 0Þ as

duy
dx

=
1
π

Z∞
0

g ξð Þ sin ξxð Þ dξ, ð14:42Þ

with g ξð Þ= − ξu ̂y ξ, 0ð Þ.The integral in (14.42) is divergent since g ξð Þ=O 1ð Þ as
ξ→∞. In order to make g ξð Þ explicit and separate its singular and regular parts, it is
expedient to examine the asymptotic behavior of g ξð Þ as ξ→∞. By using the

Abel-Tauber theorem and noting that: lim
ξ→∞

g ξð Þ= g∞ ξð Þ= − Pð1− νÞ
μð3− 2νÞ , we decom-

pose g ξð Þ as
g ξð Þ= g∞ ξð Þ+ g ξð Þ− g∞ ξð Þð Þ. ð14:43Þ

Equation (14.42) takes then the following form

duy
dx

=
1
π

Z∞
0

g∞ ξð Þ sin ξxð Þdξ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

singular part

+
1
π

Z∞
0

g ξð Þ− g∞ ξð Þ½ � sin ξxð Þdξ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regular part

, ð14:44Þ

which, after utilizing results of the theory of the generalized functions and singular
distributions [46], Eq. (14.44) can be finally written as

duy
dx

= −
P
πμ

1− νð Þ
3− 2νð Þ

1
x
+

P
πμ

N xð Þ, ð14:45Þ

where

N xð Þ= 2 1− νð Þ2
3− 2νð Þ

Z∞
0

2ℓ2ξ2 γ − ξð Þ− γ

γ +4ð1− νÞℓ2ξ2 γ − ξð Þ sin ξxð Þdξ. ð14:46Þ

Equation (14.45) will be used next to construct the integral equations for the
contact problems.

Before proceeding any further, we present some representative results regarding
the displacements and the rotation for the Flamant-Boussinesq problem in the
context of the couple-stress elasticity. In Fig. 14.3, the normal displacement and the
rotation are illustrated at the surface of the half-plane (y=0Þ for various Poisson’s
ratios. The classical elasticity results are also overlaid. Regarding the normal dis-
placement uy, it can be seen that the logarithmically singular response of the
classical solution is retained in the couple-stress solution as well. Note that the
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classical elasticity solution for the present normalization is independent of the
Poisson’s ratio, while the solution of the couple-stress elasticity for the same nor-
malization retains dependence upon ν. Further, regarding the rotation ω, it is shown
that the classical elasticity solution is unbounded at the point of the application of
the load, however, this singular response is eliminated in the couple-stress elas-
ticity, showing zero rotation at the same point. Of course, the effect of the Poisson’s
ratio in the case of the couple-stress elasticity is apparent in contrast to the classical
elasticity case for the present normalization. It is emphasized that the effect of the
couple stresses is significant near the point of the application of the load where the
rotation/strain gradients are more pronounced. Indeed, the couple-stress solution
approaches the classical one while the effect of the Poisson’s ratio disappears
moving further from the load source.

Results for the layer problem in couple-stress elasticity are presented in
Fig. 14.4. In particular, Fig. 14.4 illustrates the variation of the normal displace-
ment for selected values of the Poisson’s ratio and the two different sets of
boundary conditions that occur at the layer/rigid substrate interface, Eqs. (14.23)–
(14.28). In the case of couple-stress elasticity the deformation and rotational
characteristics at the surface depend upon both the Poisson’s ratio and the nor-
malized length h ̸ℓ. For fixed layer thickness h and increasing ℓ or increasing
Poisson’s ratio the layer becomes stiffer. In fact, it can be seen that both ℓ and ν
play an important role in the qualitative characteristics of the behavior of the layer’s
surface. Note that in all the cases the classical elasticity layer solution is added. In
general, all the significant variations are observed in a region that extends about 2h
laterally to the point of the application of the load and the gradient effects become
important for decreasing h ̸ℓ—a stiffer layer can be obtained by reducing the
thickness h or increasing the microstructural length ℓ.

Moving further from the point of the application of the load the effect of the
rotation gradients decreases and the results regarding all the measured quantities

(a) (b)

Fig. 14.3 Dimensionless a normal displacement and b rotation along the surface of the half-plane
due to the application of normal point load P. Results are shown for different Poisson’s ratios ν

290 Th. Zisis et al.



converge to those of classical elasticity. In fact, for increasing h ̸ℓ ratio the region
of significance of the effect of the rotation gradients decreases. It is concluded that
for h>50ℓ the displacements and the rotation have essentially converged to those
obtained by classical elasticity excluding of course the singular behavior of the
rotation observed in classical elasticity.

Finally, it is instructive to examine the behavior of the equivalent stress in order
identify the severest stress-states and accordingly the potential regions that plas-
ticity may emerge. In the context of couple stress theory, the shape of the equivalent
stress contours depends upon the microstructural characteristics of the material. For
a plane-strain configuration, we introduce a general form of the equivalent stress as
[47, 48]

(a) (b)

(c) (d)

Fig. 14.4 The behavior of the surface of a layer of thickness h under the action of a normal point
force in the context of couple stress elasticity. The normalized normal displacements μuy ̸P are
presented as a function of the normalized distance x ̸h from the point of the application of the load
P for two different Poisson’s ratio and different boundary conditions at the interface.
a ν=0, ωz x, hð Þ=0, b ν=0, myz x, hð Þ=0, c ν=0.5, ωz x, hð Þ=0, d ν=0.5, myz x, hð Þ=0

14 Contact Mechanics in the Framework of Couple Stress Elasticity 291



σeq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1
2

s2xx + s2yy + s2zz
� 

+
1
4
σ2xy +

1
2
σxyσyx +

1
4
σ2yx +

1
2ℓ2 m2

xz +m2
yz

� � 	s
,

ð14:47Þ

with sij = σij − 1
3 δijσκκ being the deviatoric stress. When the equivalent stress

reaches the material yield stress yielding will commence. As it is shown in
Fig. 14.5, the equivalent stress depends strongly upon the microstructural charac-
teristic length ℓ and the Poisson’s ratio ν, assuming fixed layer thickness h. In
particular, it is observed that for decreasing ℓ the maximum equivalent stress
increases and the region of maximum equivalent stress expands vertically while it
rather shrinks horizontally. For ℓ→ 0 (h ̸ℓ→∞—classical elasticity solution), the
maximum of the equivalent stress is shifted inside the layer and the potential
yielding region increases substantially almost reaching the interface between the
layer and the rigid substrate. We further note that the effect of the different
boundary conditions at the interface is almost insignificant for the equivalent stress.

14.4 Formulation of Contact Problems

Consider now the stresses produced in an elastic half-plane by the action of a rigid
indenter pressed into the surface as shown in Fig. 14.6. A Cartesian coordinate
system Oxyz is attached at the center line of the geometry. A load P is applied to the
indenter which, in the plane strain case, has dimensions of [force][length]−1.

Fig. 14.5 Contours of normalized equivalent stress σeqh ̸P for different ratios h ̸ℓ. Results are
presented for the two different boundary conditions at the interface, namely (a1 − i1) ωz x, hð Þ=0
and (a2 − i2) myz x, hð Þ=0. Two different values of the Poisson’s ratio are considered: ν=0 and
ν=0.5
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We begin by considering the case of the flat punch indenting a flat surface under
the action of a vertical load P acting eccentrically by a distance e so that the punch
tilts by an angle φ (Fig. 14.6a). In this case, the two bodies are making contact over
a long strip of width c lying parallel to the z-axis. The type of contact depends upon
the tilt angle φ and may be complete (c=2bÞ or receding (c= a+ bÞ as will be
described later. If e=0 then φ=0 and consequently c=2b—that is the classical flat
punch contact problem (Fig. 14.6b).

Next, we examine the limit of the Hertzian elliptical contact where one axis of
the ellipse becomes considerably larger than the other axis [40]. This limit corre-
sponds to a cylindrical indenter of radius R with its axis lying parallel to the z-axis
in the current coordinate system pressed in contact with a half-plane under the
action of the force P. The two bodies are making contact over a long strip of width
c=2b (Fig. 14.6c). Finally, results are given for the pressure below a wedge
indenter pressed in contact with an elastic half-plane (Fig. 14.6d). In this case, in
order for the deformations to be sufficiently small and lie within the frame of the

(a) (b)

(c) (d)

Fig. 14.6 a Tilted flat punch indentation problem, b ‘Standard’ flat punch indentation problem,
c Indentation by a cylindrical indentor and d Indentation by a wedge indentor. The contact
problem of the tilted flat punch leads to two different distinct cases depending upon the tilt angle φ.
One case suggests that the contact is complete i.e. the contact width is c=2b, while the second
case suggests that the contact is receding i.e. the contact width is c= a+ b
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linear theory, the semi-angle α of the wedge must be close to 90◦ (in our analysis
we have taken α=88◦).

For the points lying within the contact area D= − b< x< a, y = 0f g after
loading, we have the following general geometrical boundary condition: uy = kðxÞ,
which, depending on the type of the profile, takes the following forms:

(a) kðxÞ= δ−φx, for the tilted flat punch,
(b) kðxÞ=0, for the “standard” flat punch,
(c) kðxÞ= δ− 1

2R x
2, for the cylindrical indenter,

(d) kðxÞ= δ− xj j cot αð Þ, for the wedge indenter.

where δ is a positive constant. Note that for cases (b), (c) and (d), the contact is
complete so that a= b, whereas in case (a) the contact is receding i.e. a< b.

Regarding the traction boundary conditions, we note that since no restriction is
imposed on ux and dux ̸dy under the indenter, the rotation ω is arbitrary at the contact
area. Thus, by enforcing the principle of virtual power [26], we approximate zero
shear and couple tractions under the indenter. In view of the above, the following
traction boundary conditions hold for a frictionless and smooth contact [18]

σyyðx, 0Þ=0 for x∉D, ð14:48Þ

σyxðx, 0Þ=0 for −∞< x<∞, ð14:49Þ

myzðx, 0Þ=0 for −∞< x<∞, ð14:50Þ

which are accompanied by the auxiliary conditionsZ
D

σyy x, 0ð Þdx= −
Z
D

p xð Þdx= −P, ð14:51Þ

and (for the case of the tilted flat punch)Z
D

σyy x, 0ð Þx dx= −
Z
D

p xð Þx dx= −M, ð14:52Þ

where p xð Þ ≥ 0 is the pressure below the indenter, P is the applied load, e is the
load eccentricity and M =Pe is the applied moment. Moreover, since the indented
surface is an unbounded region, the above boundary conditions must be supple-
mented by the regularity conditions at infinity

σij → 0,miz → 0 as r→∞. ð14:53Þ
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14.5 Singular Integral Equation Approach

Our objective now is the determination of the contact-stress distribution below the
rigid indenter and the determination of the associated contact length. Now suppose
that the surface of the half-plane is subjected to a distributed normal load p ξð Þ per
unit length. The stress and displacement fields can be found by superposition using
the Flamant-Boussinesq solution as the pertinent Green’s function—i.e. treating
distributed load as the limit of a set of point loads of magnitude p ξð Þdξ. It should be
noted that the Flamant-Boussinesq solution automatically satisfies the traction-free
boundary conditions (14.49) and (14.50).

In view of the above, the tangential gradient of the normal displacement at the
surface of the half-plane (Eq. 14.45) assumes the following form

−
1− νð Þ
3− 2νð Þ

Z1

− 1

p sð Þ
r− s

ds+
Z1

− 1

N ̃ r− sð Þp sð Þ ds= 2πμ
a+ b

dk rð Þ
dr

, rj j≤ 1, ð14:54Þ

where the normalized regular kernel is defined now as

N ̃ r− sð Þ= 2 1− νð Þ2
3− 2νð Þ

Z∞
0

2q2ζ2 γ ̃− ζð Þ− γ ̃
� �

γ ̃+4 1− νð Þq2ζ2 γ ̃− ζð Þ� �
" #

sin ζ r− sð Þð Þdζ, ð14:55Þ

where γ ̃= ζ2 + q− 2
� �1 ̸2

and

x=
a+ b
2

r+ dð Þ, t= a+ b
2

s+ dð Þ, ξ= 2
a+ b

ζ,ℓ=
a+ b
2

q. ð14:56Þ

with d= ða− bÞ ̸ða+ bÞ. Note that the first integral in the integral equation (14.54)
is interpreted in the Cauchy principal value (CPV) sense. In fact, the CPV integral
in Eq. (14.54) dominates the regular kernel and therefore determines the nature of
the singularity of the pressure p sð Þ at the endpoints of the contact region

The numerical solution of the singular integral Eq. (14.54) together with the
complementary conditions (14.51) and (14.52) is accomplished by means of the
collocation method for each indenter profile.

14.5.1 Indentation by a Flat Punch

Guided by the results concerning the modification of stress singularities in the
presence of couple stresses [15, 45], the general solution for the pressure distri-
bution admits the representation:
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p sð Þ=w sð Þ ⋅ ∑
∞

j=0
BjP

ðα, βÞ
j sð Þ, sj j≤ 1, ð14:57Þ

where Pðα, βÞ
j sð Þ are the Jacobi polynomials orthogonal to the weight function

w sð Þ= 1− sð Þα 1+ sð Þβ, − 1< α, βð Þ<1ð Þ, ð14:58Þ

with α=1 ̸2+N, β= − 1 ̸2+M, and N, Mð Þ arbitrary integers. The parameters
α, βð Þ depend upon the type of contact (complete or receding) and the type of the
indentor.

Employing now the well-known Gauss-Jacobi integration formulas for singular
CPV integrals [49, 50], the integral Eq. (14.54) is reduced to a system of algebraic
relations; viz.,

∑
∞

j=0
Bj −

1− νð Þ
3− 2νð Þ

2− k

sin πα
Pð− α, − βÞ
j− k rð Þ+ Qj rð Þ

� 	
= − μφ, rj j<1, ð14:59Þ

where k= − α− β is the index of the singular integral Eq. (14.54), and

Qj rð Þ= 1
π

Z1

− 1

w sð ÞPðα, βÞ
j sð ÞN ̃ r− sð Þ ds. ð14:60Þ

Furthermore, the auxiliary conditions (14.51) and (14.52) become now

Z1

− 1

p sð Þds= 2P
a+ bð Þ ,

Z1

− 1

p sð Þ sds= 4M +2P b− að Þ
a+ bð Þ2 . ð14:61Þ

Two cases are now considered. In the first case, the applied moment is relatively
small so that the contact is expected to be complete across the face of the punch
(c=2b, a= bÞ. In the second case, the applied moment is sufficiently high, causing
one corner of the punch to lift out of contact, and therefore for the contact extremity
to be positioned at some point along the punch face (c= a+ b, aj j< bÞ—see
Fig. 14.6a, b.

14.5.1.1 Complete Contact

In this case, the pressure is singular at both ends of the contact width. Therefore, the

weight function in Eq. (14.59) becomes: w sð Þ= 1− s2ð Þ− 1 ̸2 (i.e. α = β = − 1 ̸2Þ.
In addition, the auxiliary conditions (14.62) are simplified to the following form:
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Z1

− 1

pðsÞds= P
b
,

Z1

− 1

pðsÞs ds= M
b2

, ð14:62Þ

which, taking into account (14.58), imply that

B0 =
P
πb

, B1 =
4M
πb2

. ð14:63Þ

Note that in complete contact the regular integral in (14.61) is evaluated using
the standard Gauss-Chebyshev quadrature method.

The system of Eq. (14.60) is solved by truncating the series at j = n and using a
collocation technique with collocation points chosen as the roots of the second kind
Chebyshev polynomial Un rð Þ, viz. rj = cos jπ ̸ n+1ð Þð Þ with j=1, 2, . . . , n. In this
way, a system of n linear algebraic equations is formed that enables us to evaluate
the remaining n unknowns: the n− 1 coefficients Bj (j=2, . . . , nÞ and the unknown
tilt angle φ. If e=0 the moment M vanishes and consequently we have: B2n+1 = 0
(see Fig. 14.6b).

14.5.1.2 Receding Contact

Only the flat punch indenter exhibits receding contact characteristics. In this case,
the pressure is zero at the right end of the contact area, so that α=1 ̸2 and
β= − 1 ̸2. Accordingly, the weight function becomes: w sð Þ= 1− sð Þ1 ̸2 1 + sð Þ− 1 ̸2

and the auxiliary conditions are given in Eq. (14.62), which, in view of (14.58),
imply that

B0 =
2P

π a+ bð Þ , B1 =
4 4M +P 3b− að Þð Þ

π a+ bð Þ2 . ð14:64Þ

The system of equations in (14.60) is now solved by using a collocation method

with collocation points chosen as the roots of the Jacobi polynomial Pð− 1 ̸2, 1 ̸2Þ
n+1 rð Þ,

viz. rj = cos 2j− 1ð Þπ ̸ 2n+3ð Þð Þ with j=1, 2, . . . , n+1. Here, in order to derive
results for constant ratio ℓ ̸b, we consider the contact length a as a prescribed
quantity and let the eccentricity e to float. The resulting n+1 linear algebraic
equations are then utilized in conjunction with Eq. (14.65) to evaluate the coeffi-
cients Bj, the tilt angle φ, and the unknown eccentricity e.
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14.5.2 Indentation by a Cylindrical Indenter

In classical elasticity the contact tractions for the cylindrical indenter problem are
not singular at the end-points of the contact width x=± b [46]. In this case, the

weight function in Eq. (14.59) becomes: w sð Þ= 1− s2ð Þ1 ̸2 that is α= β=1 ̸2.
Accordingly, guided by the results concerning the modification of stress singular-
ities in the presence of couple stresses [45], we assume that the pressure distribution
assumes the following form:

p sð Þ= ∑
∞

n=0
anUn sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− s2

p
, ð14:65Þ

where Un sð Þ are the Chebyshev polynomials of the second kind. Employing now
the well-known Gauss-Chebyshev integration formulas for singular CPV integrals
[48–50], the integral Eq. (14.54) is reduced to a system of algebraic relations; viz.,

∑
∞

n=0
an −

1− νð Þπ
3− 2ν

Tn+1 rð Þ+Wn rð Þ
� �

= −
μπb
R

r, rj j≤ 1, ð14:66Þ

where Wn rð Þ= R 1
− 1 Un sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− s2

p
N ̃ r− sð Þds is regular integral which can be eval-

uated by the standard Gaussian quadrature method. It is remarked that the contact
area b is not known a priori and will be determined from the solution of the
boundary value problem. Now, Eq. (14.67) is solved using an appropriate collo-
cation technique with collocation points chosen as the roots of Tn+1 rð Þ,
viz.rj = cos 2j− 1ð Þπ ̸ 2 N +1ð Þð Þð Þ with j=1, 2, . . . ,N +1. The complementary
condition (14.51) is then used for the evaluation of the unknown contact area b.

14.5.3 Indentation by a Wedge Indenter

Next, we consider the problem of the sharp wedge indenter. As in the classical
theory [40], we assume that the pressure is non-singular at the end points of the
contact area. In this case, the singular integral Eq. (14.53) takes the following form

−
1− ν

3− 2ν

Z1

− 1

p sð Þ
r− s

ds+
Z1

− 1

N ̃ r− sð Þp sð Þ ds= − μπ sgn rð Þ cot α, ð14:67Þ

where sgnðÞ is the signum function, and α is the half-angle of the indenter
(Fig. 14.6d). For the solution of the singular integral Eq. (14.68), the approach
proposed by Ioakimidis [51] (see also [45]) is adopted where the loading function
presents jump discontinuities. Again, as in the case of the cylindrical indenter, the
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unknown contact length b will be determined from the solution of (14.67) together
with the complementary condition (14.51). The functional equation is solved by
employing the same collocation scheme as in the case of the cylindrical indenter
noting however that the solution exhibits slower convergence.

14.6 Results and Discussion

We now proceed to the discussion of the results obtained for the indentation
problems presented previously. In what follows, we investigate the effect of the
ratio ℓ ̸b (normalized indent size) and the Poisson’s ratio ν upon the contact
pressure distribution, the contact width, and the average pressure. Finally contour
plots of the equivalent stress are presented for the case of the cylindrical indenter.

Departing from Fig. 14.7, we present selected characteristic pressure distribu-
tions below the indenter resulting from the application of the load P at various
normalized eccentricities e ̸b from the center of the punch. Results are shown for
the cases of classical elasticity ℓ ̸b=0ð Þ and couple-stress elasticity for a material
with ℓ ̸b = 0.5 and for two Poisson’s ratios namely, ν = 0 and ν = 0.5.

We begin by reporting some general results that correspond to the case of
e ̸b=0—the ‘standard’ flat punch indentation problem where no tilt is applied. As
it has been shown by Muki and Sternberg [15] and Zisis et al. [45], when ℓ ̸b
increases from zero the pressure distribution curves depart from and then again
approach the classical elasticity result. As the load is translated from the center line
of the punch e ̸b>0ð Þ the pressure distribution curves change qualitatively. At
e ̸b=0.5 and independently of the Poisson’s ratio, the pressure distribution attained
for the classical elasticity case (red line) suggests that the punch is at the limit
between the complete and the receding contact regime. In this case, the classical

(a) (b)

Fig. 14.7 The normalized pressure distribution c p xð Þ ̸P as a function of the normalized distance
x ̸b from the left corner of the indenter. Results are shown for two different Poisson’s ratios a ν=0
and b ν=0.5
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pressure at the right corner of the punch reduces to zero while at the left corner it
remains square-root singular. However, the pressure distribution that corresponds
to the couple-stress elasticity case shows that the flat punch is still in complete
contact for a material with ℓ ̸b=0.5. Further increase of the load eccentricity
implies that the contact characteristics change from complete to receding also in
couple-stress elasticity. Note that, unlike the classical elasticity, the limit eccen-
tricity elim between complete to receding contact depends now, in addition to
contact half-width b, upon the Poisson’s ratio ν, and the characteristic material
length ℓ. Nonetheless, the limit eccentricity in couple-stress elasticity is indepen-
dent of the magnitude of the load P, as in the classical theory [52]. For example,
when ν=0 and ℓ ̸b=0.5 the limit eccentricity is elim =0.61b. At this eccentricity,
the contact region below the indenter for the classical elasticity case is equal to
c=1.59b (recall that c=2b is the complete contact width). Larger values of
eccentricity would produce receding contact conditions both in classical and in
couple-stress theory and the contact widths would progressively reduce. This
reduction is more pronounced for larger values of the Poisson’s ratio. However, it
should be mentioned that the difference in the extent of the receding contact region
in couple-stress elasticity and in classical elasticity reduces as e ̸b→ 1. The
response is qualitatively similar to the case of an incompressible material ν=0.5ð Þ
and for this reason no separate comment is required. The above results imply that
for the same eccentricity, greater resistance against the reduction of the contact
width is observed when couple-stress effects are taken into account.

Figure 14.8 presents details of the pressure distribution characteristics below the
cylindrical indenter. It is observed that the cylindrical indenter suggests a pressure
distribution that depends monotonically upon the ratio ℓ ̸b. Moreover, for
increasing ratios ℓ ̸b, the pressure below the indenter increases significantly. In
fact, as ℓ ̸b→∞ the pressure tends to the limit

ffiffiffiffiffiffiffiffiffiffiffiffi
3− 2ν

p
pclas xð Þ. On the other hand,

as ℓ ̸b→ 0, we recover the classical elliptical pressure distribution. A qualitatively
similar behavior is observed for the case of the wedge indenter in Fig. 14.9. The
effect of the ratio ℓ ̸b upon the pressure ratio distribution becomes more significant
as we approach the sharp tip of the indenter (x→ 0Þ where both solutions exhibit
logarithmic type singularities.

One of the most important information that one can obtain from indentation
experiments is the indentation area (which essentially reduces to a contact width in
the 2D case presented here) and the average pressure as a function of the ratio ℓ ̸b
(indent size). To this purpose, the half-contact width b is normalized with the
corresponding half contact width bclas in classical elasticity. Note that

bclas = 4 1− ν2ð ÞPR ̸ πEð Þð Þ1 ̸2 (see for example [40]). In the same spirit, the average
pressure pav ≡P ̸ð2bÞ is normalized with the corresponding pav, clas. Results are
shown for the two cases studied previously, i.e. the cylindrical and the wedge
indenters.

In Fig. 14.10a, the dependence of the normalized contact width b ̸bclas is shown
as a function of the ratio ℓ ̸b, for different values of the Poisson’s ratio ν. The
contact width for both cylindrical and wedge indenters depends strongly upon the
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ratio ℓ ̸b. Indeed, it is observed that for increasing ℓ ̸b the measured contact width
b decreases significantly. The qualitative dependence of the contact width upon ℓ ̸b
is the same for both the cylindrical and wedge indenters. For ℓ ̸b>2, a plateau is
attained and no effect of the ratio ℓ ̸b upon the contact width is further observed. It
should be emphasized that due to the characteristic dependence of the contact width
upon the ratio ℓ ̸b, in practice, experimental results regarding the internal material
length may be attained in the region 0.1 <ℓ ̸b<1, where this dependence is more
pronounced.

Next, Fig. 14.10b illustrates the effect of the ratio b ̸ℓ on the normalized average
pressure (hardness) pav ̸pav, clas. It is observed that when couple-stress effects are
taken into account (ℓ≠ 0Þ, the hardness increases significantly compared to the

(a) (b)

Fig. 14.8 Distribution of the pressure below the cylindrical indenter with respect to the
normalized distance x ̸b for various ratios ℓ ̸b. Results are shown for Poisson’s ratios: ν=0 and
0.5

(a) (b)

Fig. 14.9 Distribution of the pressure below the wedge indenter with respect to the normalized
distance x ̸b for different ratios ℓ ̸b. Results are shown for Poisson’s ratios: ν=0 and 0.5
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classical prediction. For example, in the case of a wedge indenter and for a material
with ν=0.3 and b ̸ℓ=2, a 57% increase is noted in the average contact pressure.
As b ̸ℓ increases the hardness decreases monotonically reaching the limit value of
unity. Similar indentation size effects have been reported in the experiments per-
formed by Han and Nikolov [8] during the elastic deformation of polymers and
particularly of silicone. In fact, indentation experiments with a Berkovich indentor
carried out on heterochain polymers such as polycarbonate (PC), epoxy, poly-
ethylene terephthalate (PET) and polyamide 66 or nylon66 (PP66), showed an
increased hardness with decreasing indentation depths, an experimental result
which is qualitatively very similar to our pav versus b relation presented in
Fig. 14.8b. Furthermore, they reported that the depth at which the hardness starts to
increase depends strongly, in the elastic deformation regime, upon the type of the
polymer under consideration. In particular, they reported that the hardness at small
indentation depths (or small contact areas) can increase from 0% to as much as
300%. In accord, our analysis showed that, depending on the Poisson ratio, a
maximum increase of about 30–55% for the cylindrical and an increase of about
65–130% for the wedge indentor is attained for a contact area (length) twice the size
of the characteristic material length (b ̸ℓ=1Þ (see Fig. 14.10).

For experimental purposes, both cylindrical and wedge indenters may be used in
order to extract the characteristic material length ℓ of the indented material but from
a practical perspective possible material failure in the highly stressed region
immediately below the wedge tip, may limit the applicability of the present anal-
ysis. The cylindrical indenter, though less sensitive to the variations of ℓ ̸b, is not
susceptible to these drawbacks and may in reality be the best geometry to inves-
tigate the effect of material length scale on the behavior of a microstructured elastic
material.

(a) (b)

Fig. 14.10 a Dependence of the dimensionless contact radius b ̸bclas upon the ratio ℓ ̸b and
Poisson’s ratio ν. b Dependence of the dimensionless average pressure pav ̸pav, clas upon the ratio
b ̸ℓ and Poisson’s ratio ν. Results are shown for the cylindrical and wedge indenters
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Finally, contours of the normalized equivalent stress
ffiffiffi
R

p
̸
ffiffiffiffiffiffi
μP

p
σeq are presented

in Fig. 14.11 for the case of the cylindrical indenter in classical elasticity and
couple stress elasticity (ℓ ̸b=0.1, 0.1 and 1) for selected values of Poisson’s ratio
ν. It is observed that for increasing ℓ ̸b the attained maximum equivalent stress
increases while shifts to the surface of the half-plane. It should be noted that while
in classical elasticity the equivalent stresses vanish outside the contact area, in the
case of couple stress elasticity the equivalent stresses do not essentially vanish at the
surface and extend laterally outside the contact area. This is due to the fact that the
stress components (σxx, σxy ) as well as the couple-stress mxz do not vanish at the
surface in the case of the couple stress elasticity as opposed to the case of classical
elasticity.

(a) (b)

(c) (d)

(e) (f)

Fig. 14.11 Contour fields of normalized equivalent stress
ffiffiffi
R

p
̸
ffiffiffiffiffiffi
μP

p
σeq for the case of the

cylindrical indentor for Classical elasticity and Couple stress elasticity (ℓ ̸b=0.1, 0.1 and 1) and
selected values of Poisson’s ratio ν
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14.7 Conclusions

In the present study, the half-plane Green’s functions have been derived within the
framework of the generalized continuum theory of couple-stress elasticity. This
theory introduces a characteristic material length in order to describe the pertinent
scale effects that emerge from the underlying microstructure. Accordingly, the
Green’s function is used for the formulation of some classical two-dimensional
plane strain contact problems in terms of singular integral equations. The present
results exhibit significant departure from the predictions of classical elasticity. In
particular, for the flat punch case the corresponding results showed that as ℓ ̸b
increases from zero, the pressure departs from and then again approaches the
classical solution. For the case of tilted punch, it was shown that the limit value of
the load eccentricity elim between complete and receding contact strongly depends
upon the Poisson’s ratio and the micromechanical length ℓ. This is in marked
contrast with the classical elasticity case where the limit eccentricity is always
elimclas =0.5b, independently of the Poisson’s ratio. On the other hand, for the
cylindrical and wedge indentation problems, it was shown that for increasing ratio
ℓ ̸b the pressure below the indenter increases significantly compared to the classical
elasticity predictions. Moreover, it was in general shown that as the characteristic
material length ℓ increases the contact width b decreases. With the presented results
we shed light into salient details of the contact behavior of material with
microstructure that may effectively act as general guidelines for the elastic inden-
tation of microstructured solids. Indentation introduces a more complex loading
situation, and can effectively act as a good alternative to common tests like simple
shear and pure bending in order to identify the characteristic material length and
provide more accurate information closer to real-life conditions.
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Chapter 15
Radiation from Equivalent Body Forces
for Scattering of Surface Waves
by a Near-Surface Cylindrical Cavity

Chao Yang and Jan D. Achenbach

Abstract The scattering of incident surface waves by a cylindrical cavity of
arbitrary shape near the free surface of an elastic half-space is considered in this
paper. The scattered field is represented by the radiation from equivalent body
forces. The equivalent body forces due to the horizontal and vertical displacement
components of the incident surface wave are determined separately. It is found that
the equivalent body forces are double forces parallel and normal to the free surface
of the half-space. By the use of the elastodynamic reciprocity theorem, the surface
waves generated by the equivalent double forces are obtained in terms of properties
of the incident wave, the cross-sectional area of the cavity and the elastic constants
of the elastic half-space. The superposition of the surface waves generated by the
equivalent body forces represents the scattered field of surface waves.

Keywords Scattering ⋅ Surface wave ⋅ Cavity ⋅ Equivalent body forces
Reciprocity theorem

15.1 Introduction

Cavities are common defects in structures. They may form due to imperfection
during the processing of materials or as a result of damage accumulation in service
[1, 2]. Because the evolution of cavities has the potential to cause failures of
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materials and structures [3, 4], it is of importance to nondestructively characterize
cavities for structure health monitoring and other applications. One method that is
used for cavity characterization is the evaluation of elastic wave scattering, since
cavities are non-uniformities in structures and thus can act as scatterers for elastic
waves.

Because surface waves are very sensitive to surface and near-surface defects, they
can be usefully employed for the characterization of near-surface cavities. Although
the propagation of surface waves in a homogenous elastic half-space is well
understood [5, 6], since these waves were first investigated by Lord Rayleigh [7],
analytical solutions for the scattering of surface waves are very complicated, espe-
cially for cavities of arbitrary shape. For wavelengths that are sufficiently larger than
the largest characteristic dimension of the cavity, one potential method to simplify
the analysis is to use the representation by equivalent body forces employed in
acoustic emission [8–10]. In earlier work [11], it was shown that for long wave-
lengths the scattering of longitudinal waves by a cavity of general shape in a body of
infinite extent can be represented by radiation from equivalent body forces in the
undamaged body. By introducing the approximation that strains in the virtual cavity
may be considered as constant for long wavelength incidence, the equivalent body
forces were easily obtained and the scattered field was expressed in a simple form.

In this paper, we use the equivalent body force representation to consider the
scattering of surface waves by a cylindrical cavity of general cross-section located
near the free surface of a homogeneous, isotropic, linearly elastic half-space. For
long wavelengths, the equivalent body forces for the scattering of an incident
surface wave are decomposed into the equivalent body forces due to a locally plane
longitudinal wave and the equivalent body forces due to a locally plane transverse
wave. The equivalent body forces are double forces. Once the system of equivalent
body forces has been formulated, the scattering of surface waves by a 2D cavity
reduces to a radiation problem of determining the wave motion generated by time
harmonic line loads.

The problem of the dynamic response to a time-harmonic line load applied to the
surface as well as the interior of a half-space was first studied by Lamb [12]. Using
integral transform techniques, the problem was discussed in some detail by
Achenbach [5] and Graff [6]. Integral transform techniques are cumbersome
because of the complicated integral evaluation involved. Based on the reciprocity
theorem [13], an alternative approach without integral transforms was devised by
Achenbach [14]. The reciprocity approach, which was discussed in some detail by
Achenbach [15], is simple, straightforward, and makes it possible to separately
calculate different wave modes by selecting suitable virtual wave solutions. The
surface wave solutions obtained by the reciprocity approach were validated by Phan
et al. [16, 17] for line loads applied to the surface of a half space.

In the present paper, the reciprocity approach is used to determine the surface
wave radiation from equivalent body forces. The surface waves generated by the
equivalent body forces are expressed in simple forms and are shown to be both
symmetric and anti-symmetric with respect to the vertical plane where the forces are
applied. For a few more recent applications of the reciprocity theorem, we refer to
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Achenbach [18] for a review of related topics, Achenbach [19] for an elastic
half-space with depth-dependent properties, Sergey [20] for a hierarchy of elastic
waveguides, and Shi et al. [21] for randomly rough surfaces.

15.2 Formulation

Figure 15.1 shows the two-dimensional configuration of a plane surface wave, uin,
incident on a cylindrical cavity near the free surface of a homogeneous, isotropic,
linearly elastic half-space, which is referred to a Cartesian coordinate system ðx, zÞ,
such that the plane z=0 coincides with the surface of the half-space. The interaction
of the incident surface wave with the cavity generates scattered surface waves, usc,
in both the forward and the backward directions. It should be noted that the scat-
tered waves include both body waves and surface waves, but the surface waves
predominate at some distance from the scatterer, since the body waves suffer
geometrical attenuation.

For plane surface waves the following expressions for the displacement com-
ponents in the frequency domain can be found in many textbooks, see, e.g.:
[15, p. 133],

u+
x = iAURðzÞeikx, ð15:1Þ

u+
z =AWRðzÞeikx, ð15:2Þ

for propagation in the positive x-direction, and

u−
x = − iAURðzÞe− ikx, ð15:3Þ

u−
z =AWRðzÞe− ikx, ð15:4Þ

x

z

h

o

( )g z

uin

usc usc

usc

Fig. 15.1 The configuration
of a plane surface wave
incident on a near-surface
cylindrical cavity
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for propagation in the negative x-direction. In these expressions, A is the amplitude
with length dimension, k is the wave number, k=ω ̸cR, where cR is the phase
velocity of surface waves, and the term e− iωt has been omitted. The functions URðzÞ
and WRðzÞ are defined by

URðzÞ= d1e− pz + d2e− qz, ð15:5Þ

WRðzÞ= d3e− pz − e− qz, ð15:6Þ

where

d1 = −
1
2
k2 + q2

kp
, d2 =

q
k
, d3 =

1
2
k2 + q2

k2
. ð15:7a; b; cÞ

The quantities p and q are given by

p2 = k2 −
ω2

c2L
= k2ð1− c2R

c2L
Þ, ð15:8Þ

q2 = k2 −
ω2

c2T
= k2ð1− c2R

c2T
Þ, ð15:9Þ

where cT and cL are the phase velocities of transverse and longitudinal waves,
respectively. Substitution of Eqs. (15.8) and (15.9) into Eq. (15.7) yields

d1 = −
1
2

ð2− c2R ̸c2TÞ
ð1− c2R ̸c2LÞ1 ̸2 ,

d2 = ð1− c2R ̸c2TÞ1 ̸2,

d3 =
1
2
ð2− c2R ̸c2TÞ.

ð15:10a; b; cÞ

The stress components corresponding to Eqs. (15.1)–(15.4) may be written as

τ+xx =ATxxðzÞeikx, ð15:11Þ

τ+xz = τ+zx = iATxzðzÞeikx, ð15:12Þ

for Eqs. (15.1) and (15.2), and

τ−xx =ATxxðzÞe− ikx, ð15:13Þ

τ−xz = τ−zx = − iATxzðzÞe− ikx, ð15:14Þ
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for Eqs. (15.3) and (15.4). The plus and minus superscript signs correspond to
surface waves propagating in the positive and the negative x-directions, respec-
tively, and

TxxðzÞ= μðd4e− pz + d5e− qzÞ, ð15:15Þ

TxzðzÞ= μðd6e− pz + d7e− qzÞ, ð15:16Þ

d4 =
1
2
ðk2 + q2Þ 2p

2 − q2 + k2

pk2
, d5 = − 2q, ð15:17a; bÞ

d6 =
k2 + q2

k
, d7 = −

k2 + q2

k
. ð15:17c; dÞ

We also have

τ+zz =ATzzðzÞeikx, ð15:18Þ

τ−zz =ATzzðzÞe− ikx, ð15:19Þ

where

TzzðzÞ= μðd8e− pz + d9e− qzÞ, ð15:20Þ

d8 = −
1
2
ðk2 + q2Þ2

pk2
, d9 = 2q. ð15:21a; bÞ

The boundary conditions at z=0 are

τzzjz=0 = 0, τzxjz=0 = 0. ð15:22a; bÞ

By virtue of Eqs. (15.12), (15.14), (15.18) and (15.19), Eq. (15.22) yields

d6 + d7 =
k2 + q2

k
−

k2 + q2

k
=0, ð15:23Þ

d8 + d9 = −
1
2
ðk2 + q2Þ2

pk2
+ 2q=0. ð15:24Þ

Equation (15.24) may be rewritten as

ðk2 + q2Þ2 − 4pqk2 = 0. ð15:25Þ
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By substituting p and q from Eqs. (15.8) and (15.9) into Eq. (15.25), we then
obtain the well-known equation for the phase velocity of Rayleigh surface waves:

2− c2R ̸c2T
� �2 − 4 1− c2R ̸c2L

� �1 ̸2
1− c2R ̸c2T
� �1 ̸2

= 0. ð15:26Þ

15.3 Equivalent Body Forces

The 2D superposition principle for the scattering by a cylindrical cavity in a
half-space is shown in Fig. 15.2. Figure 15.2c shows that the scattered field is
equivalent to the field generated by the application of tractions on the surface of the
cavity. As shown in Fig. 15.2b, these tractions are the negative of the corre-
sponding tractions generated by the incident wave on the boundary of a “virtual”
cavity in the undamaged body. The virtual cavity is of the same shape as the actual
cavity and is indicated by a dashed line in Fig. 15.2b.

It is difficult to rigorously solve for the field scattered by a cylindrical cavity in
a half space. Thus in this section, following an earlier paper by Yang and

(b) 
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uin
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z

Fig. 15.2 The superposition principle for scattering by a cylindrical cavity
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Achenbach [11], we seek solutions for equivalent body force loading in the
undamaged half-space that produces elastodynamic radiation to represent the
scattered field, for incident surface waves of wavelengths sufficiently larger than the
largest characteristic length dimension of the cavity. The body force loading is
determined on the basis of the loading on the surface of the virtual cavity, or
equivalently on the deformation of the region inside the virtual cavity.

The displacements for the incident plane surface wave propagating in the pos-
itive x-direction are given by Eqs. (15.1) and (15.2), where A is the amplitude of the
incident wave. For long wave incidence relative to the dimensions of the cavity, the
displacements in the virtual cavity may be simplified to

ux = iAURðhÞeikx, uz =AWRðhÞeikx, ð15:27a; bÞ

where h is the depth of the cavity center from the free surface as shown in Fig. 15.1,
and the time dependence term e− iωt has been omitted.

For the displacement given by Eq. (15.27a), the corresponding strain in the
virtual cavity can be written as

εxx = −AkURðhÞeikx. ð15:28Þ

For long wavelengths, Eq. (15.28) may be further simplified to

εxx = −AkURðhÞ. ð15:29Þ

In the Cartesian coordinate system shown in Fig. 15.1, we may write the length
increment across the virtual cavity in the x-direction at a fixed value of z as

Δuxðx, zÞ= − gðzÞAkURðhÞ, ð15:30Þ

where gðzÞ is the length at position z across the cavity in the x direction. The length
increment given by Eq. (15.30) may then be represented by a concentrated strain
along x=0:

Δεxxðx, zÞ= − gðzÞAkURðhÞδðxÞ, ð15:31Þ

where δðxÞ is the Dirac delta function. Note that Eq. (15.30) can be obtained by
integrating Eq. (15.31) over x. Further integration over z yields the concentrated
strain at ð0, hÞ as

εDxxðx, zÞ= −AkURðhÞδðxÞδðz− hÞ
Zzmax

zmin

gðzÞdz. ð15:32Þ
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Equation (15.32) may be rewritten as

εDxxðx, zÞ= −AA ̃kURðhÞδðxÞδðz− hÞ, ð15:33Þ

where Ã is the cross-sectional area of the cavity. Using Hooke’s law, we may then
write the stresses corresponding to the strain εDxxðx, zÞ as

τDxx = − ðλ+2μÞAA ̃kURðhÞδðxÞδðz− hÞ, ð15:34Þ

τDzz = − λAA ̃kURðhÞδðxÞδðz− hÞ, ð15:35Þ

where λ and μ are the Lame elastic coefficients of the half space material.
Similarly, for the displacement given by Eq. (15.27b), the corresponding strains

in the virtual cavity may be written as

εxz = εzx =
1
2
∂uz
∂x

=
1
2
ikAWRðhÞeikx. ð15:36Þ

For long wavelengths, Eq. (15.36) may be simplified to

εxz = εzx =
1
2
ikAWRðhÞ. ð15:37Þ

Completely analogous to the way shown before, the concentrated strains are
obtained as integrations of εxz and εzx over the area Ã:

εDxzðx, y, zÞ= εDzxðx, y, zÞ=
1
2
ikAA ̃WRðhÞδðxÞδðz− hÞ. ð15:38Þ

The stresses corresponding to the strains εDxzðx, y, zÞ and εDzxðx, y, zÞ can then be
written as

τDxz = τDzx = μikAA ̃WRðhÞδðxÞδðz− hÞ. ð15:39Þ

The equations of motion in a region around the virtual cavity can now be written
as

∂τDxx
∂x

+
∂τxx
∂x

+
∂τDzx
∂z

+
∂τzx
∂z

= − ρω2ux, ð15:40Þ

∂τDzz
∂z

+
∂τzz
∂z

+
∂τDxz
∂x

+
∂τxz
∂x

= − ρω2uz. ð15:41Þ

The body force terms follow from Eqs. (15.40) and (15.41). As an example, we
consider
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fx =
∂τDxx
∂x

. ð15:42Þ

Substitution of Eq. (15.34) in Eq. (15.42) yields

fx = ðλ+2μÞAÃkURðhÞδ′ðxÞδðz− hÞ. ð15:43Þ

Note that the sign of fx has been changed to make the fields generated by
Eq. (15.43) applicable to the half-space with the actual cavity.

The body force in the z-direction follows from Eqs. (15.35) and (15.41) as

fz = λAA ̃kURðhÞδðxÞδ′ðz− hÞ, ð15:44Þ

where the sign has been changed as in Eq. (15.43). The equivalent double forces
corresponding to ux are shown in Fig. 15.3.

By using Eqs. (15.39)–(15.41), we obtain the body forces corresponding to uz as

fxz =
∂τDxz
∂x

, ð15:45Þ

and

fzx =
∂τDzx
∂z

. ð15:46Þ

In order that these body forces represent the loading on the actual cavity we
change the signs as compared to Eq. (15.39), and we write

fxz = − iμkAA ̃WRðhÞδ′ðxÞδðz− hÞ, ð15:47Þ

x

z

o

xf

zf

Fig. 15.3 Equivalent double forces corresponding to ux
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and

fzx = − iμkAA ̃WRðhÞδðxÞδ′ðz− hÞ. ð15:48Þ

The corresponding equivalent double forces are shown in Fig. 15.4.
In the next section we determine the surface wave radiation generated by the

equivalent body forces defined by Eqs. (15.43), (15.44), (15.47) and (15.48).

15.4 Surface Waves Generated by the Equivalent
Body Forces

In Sect. 15.3, it has been shown that the equivalent body forces corresponding to an
incident plane Rayleigh wave can be separated into those corresponding to ux, the
horizontal displacement component of the incident wave, and those corresponding
to uz, the vertical component of the incident wave. The equivalent body forces that
will be taken into account are double forces.

15.4.1 Surface Waves Generated by the Equivalent
Body Forces Due to ux

Let us first consider the surface wave motion generated by the double force along
the x-axis corresponding to ux, which is given by Eq. (15.43) as,

f DFx =FDF
x δ′ðxÞδðz− hÞ, ð15:49Þ

where

FDF
x = ðλ+2μÞAA ̃kURðhÞ. ð15:50Þ

x

z

o

xzf

zxf

Fig. 15.4 Equivalent double
forces corresponding to uz
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In Eqs. (15.49) and (15.50) the superscript DF stands for a double force, and
FDF
x with dimension of force, is the magnitude of the double force. Since the double

force given by Eq. (15.49) is symmetric with respect to x=0, the surface waves
generated by the double force are also symmetric with respect to x=0. Following
Eqs. (15.1)–(15.4) and (15.11)–(15.14), the corresponding surface wave displace-
ment and stress components may then be written as

u+ ,DFx
x = iCDFxU

RðzÞeikx, u+ ,DFx
z =CDFxW

RðzÞeikx, ð15:51Þ

τ+ ,DFx
xx =CDFxTxxðzÞeikx, τ+ ,DFx

xz = τ+ ,DFx
zx = iCDFxTxzðzÞeikx, ð15:52Þ

for x>0, and

u− ,DFx
x = − iCDFxU

RðzÞe− ikx, u− ,DFx
z =CDFxW

RðzÞe− ikx, ð15:53Þ

τ− ,DFx
xx =CDFxTxxðzÞe− ikx, τ− ,DFx

xz = τ− ,DFx
zx = − iCDFxTxzðzÞe− ikx, ð15:54Þ

for x<0, where TxxðzÞ and TxzðzÞ are defined by Eqs. (15.15)–(15.17a–d), and CDFx

is the amplitude of the surface waves to be determined.
To determine CDFx , we employ the elastodynamic reciprocity theorem which

was derived elsewhere [15, p. 41]. In a linearly elastic isotropic solid, for a region
V with boundary S, the time-harmonic fields, ui, τij and body forces fi of two distinct
states, State A and State B, are related by

Z
V
ðf Ai uBi − f Bi u

A
i ÞdV =

Z
S
ðuAi τBij − uBi τ

A
ijÞnjdS, ð15:55Þ

where nj denotes the components of the unit vector along the outward normal to
S. For V, we take the region defined by a≤ x≤ b, and 0≤ z< +∞. The geometry is
shown in Fig. 15.5. For State A, the body force is defined by Eq. (15.49), and the

x

x a=

z

h

o

DF
xf nn

x b=

n n

V

S

Fig. 15.5 Geometry of the region for the application of the reciprocity theorem
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surface wave displacement and stress components are given by Eqs. (15.51)–
(15.54). For state B, we take a virtual surface wave propagating in the positive
x-direction with amplitude B:

uBx = iBURðzÞeikx, uBz =BWRðzÞeikx, ð15:56Þ

τBxx =BTxxðzÞeikx, τBxz = τBzx = iBTxzðzÞeikx. ð15:57Þ

For the present application of the reciprocity theorem the contour is shown in
Fig. 15.5. The reciprocity relation given by Eq. (15.55) then becomes

Z
V
f DFx uBx dV =LDFx , ð15:58Þ

where

LDFx =
Z +∞

0
ðu+ ,DFx

x τBxx + u+ ,DFx
z τBxz − uBx τ

+ ,DFx
xx − uBz τ

+ ,DFx
xz Þ��x= bdz

+
Z +∞

0
ðu− ,DFx

x τBxx + u− ,DFx
z τBxz − uBx τ

− ,DFx
xx − uBz τ

− ,DFx
xz Þ��x= að− 1Þdz.

ð15:59Þ

Note that in Eq. (15.58), only the term f DFx uBx appears, since only the body force
f DFx is considered. In the right-hand side of Eq. (15.59), the first term is the contour
integral along x= b and the second term along x= a. The contour integral on the
surface z=0 vanishes due to the traction-free boundary conditions, and the contour
integral at z→ +∞ does not contribute to Eq. (15.59) since the surface wave
displacements are exponentially small far from the free surface.

For the integral in Eq. (15.58), by substituting Eq. (15.49) and uBx from
Eq. (15.56), we obtain

Z
V
f DFx uBx dV =

Z
V
iBFDF

x URðzÞeikxδ′ðxÞδðz− hÞdV

= iBFDF
x

Z b

a
eikxδ′ðxÞdx

Z +∞

0
URðzÞδðz− hÞdz= kBFDF

x URðhÞ,
ð15:60Þ

where the following property of the Dirac delta function and its derivative has been
used:

ϕðξÞδ′ðξ− ξ0Þ= −ϕ′ðξ0Þδðξ0Þ. ð15:61Þ
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By substituting expressions defined by Eqs. (15.51), (15.52), (15.56) and
(15.57) in Eq. (15.59), the integral along x= b, i.e., the first term in the right-hand
side of Eq. (15.59), becomes

R +∞
0 ðu+ ,DFx

x τBxx + u+ ,DFx
z τBxz − uBx τ

+ ,DFx
xx − uBz τ

+ ,DFx
xz Þ��x= bdz

=
R +∞
0

½iBCDFxU
RðzÞTxxðzÞe2ikb + iBCDFxW

RðzÞTxzðzÞe2ikb�−
½iBCDFxU

RðzÞTxxðzÞe2ikb + iBCDFxW
RðzÞTxzðzÞe2ikb�

( )
dz

=0

, ð15:62Þ

and the integral along x= a, i.e., the second term in the right-hand side of
Eq. (15.59), becomes

R +∞
0 ðu− ,DFx

x τBxx + u− ,DFx
z τBxz − uBx τ

− ,DFx
xx − uBz τ

− ,DFx
xz Þ��x= að− 1Þdz

=
R +∞
0

½iBCDFxU
RðzÞTxxðzÞ− iBCDFxW

RðzÞTxzðzÞ�+
½iBCDFxU

RðzÞTxxðzÞ− iBCDFxW
RðzÞTxzðzÞ�

 !
dz

=2iBCDFx

R +∞
0 ½URðzÞTxxðzÞ−WRðzÞTxzðzÞ�dz

=2iBCDFxI

, ð15:63Þ

where

I =
Z +∞

0
½URðzÞTxxðzÞ−WRðzÞTxzðzÞ�dz, ð15:64Þ

Equations (15.62) and (15.63) show that at x= b, the two waves are
co-propagating and yield no contribution to Eq. (15.59) as the relevant terms cancel
out upon substitution. Thus the contribution to Eq. (15.59) is only from the
counter-propagating waves at x= a.

Following Eqs. (15.62)–(15.64), the evaluation of Eq. (15.59) then results in

LDFx =2iIBCDFx , ð15:65Þ

where I is defined by Eq. (15.64), and by using Eqs. (15.5), (15.6), (15.15) and
(15.16) can be evaluated as

I = μJ, ð15:66Þ

where

J =
d1d4 − d3d6

2p
+

d1d5 + d2d4 − d3d7 + d6
p+ q

+
d2d5 + d7

2q
. ð15:67Þ

Note that J is dimensionless.
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The equality of Eqs. (15.58) and (15.63) yields

LDFx =2iμJBCDFx = kBFDF
x URðhÞ. ð15:68Þ

We then obtain

CDFx =
k
2i
FDF
x URðhÞ
μJ

. ð15:69Þ

By substituting FDF
x given by Eq. (15.50), Eq. (15.69) becomes

CDFx = −
λ+2μ
2μ

iAA ̃k2½URðhÞ�2
J

. ð15:70Þ

For x>0, following Eqs. (15.51), (15.53) and (15.70), the displacements at
position ðx, zÞ of the surface waves generated by the equivalent double force in the
x-direction corresponding to ux may then be written as

u+ ,DFx
x =

λ+2μ
2μ

AA ̃k2½URðhÞ�2
J

URðzÞeikx, ð15:71Þ

u+ ,DFx
z = −

λ+2μ
2μ

iAA ̃k2½URðhÞ�2
J

WRðzÞeikx, ð15:72Þ

while for x<0 we have

u− ,DFx
x = −

λ+2μ
2μ

AÃk2½URðhÞ�2
J

URðzÞe− ikx, ð15:73Þ

u− ,DFx
z = −

λ+2μ
2μ

iAA ̃k2½URðhÞ�2
J

WRðzÞe− ikx. ð15:74Þ

The equivalent double force along the z-axis corresponding to ux is

f DFz =FDF
z δðxÞδ′ðz− hÞ, ð15:75Þ

where

FDF
z = λAA ̃kURðhÞ. ð15:76Þ

Due to the symmetric of the double force with respect to x=0, the corresponding
displacements are also symmetric with respect to x=0 andmay be written for x>0 as
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u+ ,DFz
x = iCDFzU

RðzÞeikx, u+ ,DFz
z =CDFzW

RðzÞeikx, ð15:77Þ

and for x<0:

u− ,DFz
x = − iCDFzU

RðzÞe− ikx, u− ,DFz
z =CDFzW

RðzÞe− ikx. ð15:78Þ

In Eqs. (15.77) and (15.78) CDFz is the amplitude of the surface waves. For
x>0, the corresponding stresses may then be written as

τ+ ,DFz
xx =CDFzTxxðzÞeikx, τ+ ,DFz

xz = τ+ ,DFz
zx = iCDFzTxzðzÞeikx, ð15:79Þ

while for x<0 we have

τ− ,DFz
xx =CDFzTxxðzÞe− ikx, τ− ,DFx

xz = τ− ,DFx
zx = − iCDFxTxzðzÞe− ikx. ð15:80Þ

To determine CDFz , we again use the reciprocity relation given by Eq. (15.55),
where the region V is taken as shown in Fig. 15.5. The virtual wave for State B is
again selected as a surface wave propagating in the positive x-direction with
amplitude B, and the displacement and stress components are given by Eqs. (15.56)
and (15.57). For State A, the body force is given by Eq. (15.75) and the corre-
sponding displacements and stresses are given by Eqs. (15.77)–(15.80). Equa-
tion (15.55) then becomes Z

V
f DFz uBz dV = LDFz , ð15:81Þ

where

LDFz =
Z +∞

0
ðu+ ,DFz

x τBxx + u+ ,DFz
z τBxz − uBx τ

+ ,DFz
xx − uBz τ

+ ,DFz
xz Þ��x= bdz

+
Z +∞

0
ðu− ,DFz

x τBxx + u− ,DFz
z τBxz − uBx τ

− ,DFz
xx − uBz τ

− ,DFz
xz Þ��x= að− 1Þdz.

ð15:82Þ

The integrals in Eq. (15.82) yield similar results as those given by Eqs. (15.62)
and (15.63), where CDFx should be replaced by CDFz . Equation (15.82) then results
in

LDFz =2iμJBCDFz . ð15:83Þ

For the integral given Eq. (15.81) we obtain by substituting Eq. (15.75) and uBz
from Eq. (15.56)
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Z
V
f DFz uBz dV =

Z
V
FDF
z δðxÞδ′ðz− hÞBWRðzÞeikxdV

=BFDF
z

Z +∞

0
WRðzÞδ′ðz− hÞdz

Z b

a
eikxδðxÞdx= −BFDF

z
dWRðzÞ

dz

����
z= h

,

ð15:84Þ

where dWRðzÞ ̸dzjz= h is dWRðzÞ ̸dz at z= h.
The equality of Eqs. (15.83) and (15.84) then yields

CDFz = −
FDF
z

2iμJ
dWRðzÞ

dz

����
z= h

. ð15:85Þ

Using Eq. (15.76), Eq. (15.85) becomes

CDFz =
λ

2μ
iAA ̃kURðhÞ

J
dWRðzÞ

dz

����
z= h

. ð15:86Þ

Using Eqs. (15.77), (15.78) and (15.86), the displacements at position ðx, zÞ of
the surface waves generated by the equivalent double force in the z-direction cor-
responding to ux may then be written as

u+ ,DFz
x = −

λ

2μ
AA ̃kURðhÞ

J
dWRðzÞ

dz

����
z= h

URðzÞeikx, ð15:87Þ

u+ ,DFz
z =

λ

2μ
iAA ̃kURðhÞ

J
dWRðzÞ

dz

����
z= h

WRðzÞeikx, ð15:88Þ

for x>0, and

u− ,DFz
x =

λ

2μ
AA ̃kURðhÞ

J
dWRðzÞ

dz

����
z= h

URðzÞe− ikx, ð15:89Þ

u− ,DFz
z =

λ

2μ
iAA ̃kURðhÞ

J
dWRðzÞ

dz

����
z= h

WRðzÞe− ikx, ð15:90Þ

for x<0. Since dWRðzÞ ̸dzjz= h is OðkÞ the surface waves defined by Eqs. (15.87)–
(15.90) are of the same order as Eqs. (15.71)–(15.74).
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15.4.2 Surface Waves Generated by the Equivalent Body
Forces Due to uz

In Sect. 15.4.1, the elastodynamic reciprocity theorem has been used to determine
the surface waves generated by the equivalent body forces corresponding to ux, the
horizontal displacement component of the incident surface wave. In this section we
consider the surface waves generated by the equivalent body forces corresponding
to uz, the vertical displacement component of the incident wave, given by
Eqs. (15.2) and (15.4). Corresponding to uz, the equivalent body forces consist of a
double force with forces in the z-direction and one with forces in the x-direction,
which are shown in Fig. 15.4. We again use the elastodynamic reciprocity theorem
to consider the surface waves generated by the two double forces.

The equivalent double force with forces in the z-direction corresponding to uz is
given by

f DFxz =FDF
xz δ′ðxÞδðz− hÞ, ð15:91Þ

where

FDF
xz = − iμkAÃWRðhÞ. ð15:92Þ

As shown in Fig. 15.4, the equivalent double force in the z-direction is
antisymmetric with respect to x=0. The corresponding surface waves are also
antisymmetric. Following Eqs. (15.1)–(15.4) and (15.11)–(15.14), for the dis-
placements and stresses corresponding to f DFxz , we may then write

u+ ,DFxz
x = iCDFxzU

RðzÞeikx, u+ ,DFxz
z =CDFxzW

RðzÞeikx, ð15:93Þ

τ+ ,DFxz
xx =CDFxzTxxðzÞeikx, τ+ ,DFxz

xz = τ+ ,DFxz
zx = iCDFxzTxzðzÞeikx, ð15:94Þ

for x>0, and

u− ,DFxz
x = iCDFxzU

RðzÞe− ikx, u− ,DFxz
z = −CDFxzW

RðzÞe− ikx, ð15:95Þ

τ− ,DFxz
xx = −CDFxzTxxðzÞe− ikx, τ− ,DFxz

xz = τ− ,DFxz
zx = iCDFxzTxzðzÞe− ikx, ð15:96Þ

for x<0, where CDFxz is the amplitude of the surface waves to be determined.
The region V is again taken as that shown in Fig. 15.5, and Eqs. (15.91)–(15.96)

are the relevant expressions for the body force, and the displacements and the
stresses corresponding to State A. For State B, we again select the virtual wave as a
surface wave propagating in the positive x-direction with amplitude B, where the
corresponding displacements and stress components are given by Eqs. (15.56) and
(15.57). The reciprocity relation given by Eq. (15.55) then becomes
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Z
V
f DFxz uBz dV = LDFxz , ð15:97Þ

where

LDFxz =
Z +∞

0
ðu− ,DFxz

x τBxx + u− ,DFxz
z τBxz − uBx τ

− ,DFxz
xx − uBz τ

− ,DFxz
xz Þ��x= að− 1Þdz.

ð15:98Þ

Note that in Eq. (15.98) the contour integral along x= b again disappears
because the surface waves are propagating in the same direction.

By substituting Eq. (15.91) and uBz from Eq. (15.56), the integral given by
Eq. (15.97) yields

Z
V
f DFxz uBz dV =

Z
V
FDF
xz δ′ðxÞδðz− hÞBWRðzÞeikxdV

=BFDF
xz

Z b

a
eikxδ′ðxÞdx

Z +∞

0
WRðzÞδðz− hÞdz= − ikBFDF

xz WRðhÞ.
ð15:99Þ

For the integral given by Eq. (15.98), by substituting Eqs. (15.56), (15.57),
(15.95) and (15.96), we obtain

LDFxz =
Z +∞

0
ðu− ,DFxz

x τBxx + u− ,DFxz
z τBxz − uBx τ

− ,DFxz
xx − uBz τ

− ,DFxz
xz Þ��x= að− 1Þdz

= −
Z +∞

0

½iBCDFxzU
RðzÞTxxðzÞ− iBCDFxzW

RðzÞTxzðzÞ�+
½iBCDFxzU

RðzÞTxxðzÞ− iBCDFxzW
RðzÞTxzðzÞ�

( )
dz

= − 2iBCDFxz

Z +∞

0
½URðzÞTxxðzÞ−WRðzÞTxzðzÞ�dz

= − 2iBCDFxzμJ.

ð15:100Þ

The equality of Eqs. (15.99) and (15.100) then yields

CDFxz = −
iAA ̃k2½WRðhÞ�2

2J
, ð15:101Þ

where Eq. (15.92) has been used, and J is defined by Eq. (15.67).
By using Eqs. (15.93), (15.95) and (15.101), the displacements at position ðx, zÞ

of the surface waves generated by the equivalent double force in the z-direction
corresponding to uz may then be written as
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u+ ,DFxz
x =

AA ̃k2½WRðhÞ�2
2J

URðzÞeikx, ð15:102Þ

u+ ,DFx
z = −

iAÃk2½WRðhÞ�2
2J

WRðzÞeikx, ð15:103Þ

for x>0, and

u− ,DFxz
x =

AA ̃k2½WRðhÞ�2
2J

URðzÞe− ikx, ð15:104Þ

u− ,DFxz
z =

iAA ̃k2½WRðhÞ�2
2J

WRðzÞe− ikx, ð15:105Þ

for x<0.
The equivalent double force with forces in the x-direction corresponding to uz is

f DFzx =FDF
zx δðxÞδ′ðz− hÞ, ð15:106Þ

where

FDF
zx = − iμkAA0WRðhÞ. ð15:107Þ

Similarly to Eqs. (15.93) and (15.95), the displacements of the corresponding
surface waves are also antisymmetric and may be written as

u+ ,DFzx
x = iCDFzxU

RðzÞeikx, u+ ,DFzx
z =CDFzxW

RðzÞeikx, ð15:108Þ

for x>0, and

u− ,DFzx
x = iCDFzxU

RðzÞe− ikx, u− ,DFzx
z = −CDFzxW

RðzÞe− ikx. ð15:109Þ

for x<0, where CDFzx is the amplitude of the surface waves to be determined. The
corresponding stresses may then be written as

τ+ ,DFxz
xx =CDFxzTxxðzÞeikx, τ+ ,DFxz

xz = τ+ ,DFxz
zx = iCDFxzTxzðzÞeikx, ð15:110Þ

τ− ,DFxz
xx = −CDFxzTxxðzÞe− ikx, τ− ,DFxz

xz = τ− ,DFxz
zx = iCDFxzTxzðzÞe− ikx. ð15:111Þ

For the application of the reciprocity relation given by Eq. (15.55), we take the
region V as shown in Fig. 15.5, and State B as a virtual surface wave propagating in
the positive x-direction with amplitude B, whose displacements and stresses are
given by Eqs. (15.56) and (15.57). The body force, the displacements and the
stresses for State A are defined by Eqs. (15.106)–(15.111).

The reciprocity relation given by Eq. (15.55) then reduces to
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Z
V
f DFzx uBx dV = LDFzx , ð15:112Þ

where

LDFzx =
Z +∞

0
ðu− ,DFzx

x τBxx + u− ,DFzx
z τBxz − uBx τ

− ,DFzx
xx − uBz τ

− ,DFzx
xz Þ��x= að− 1Þdz.

ð15:113Þ

Again only the counter propagating waves contribute to the contour integral.
Substitution of Eqs. (15.106)–(15.111) into Eqs. (15.112) and (15.113) yields

CDFzx = −
ikAA ̃WRðhÞ

2J
dURðzÞ

dz

����
z= h

, ð15:114Þ

where dURðzÞ ̸dzjz= h is dURðzÞ ̸dz at z= h.
By using Eqs. (15.108), (15.109) and (15.114), the displacements at position

ðx, zÞ of the surface waves generated by the equivalent double force in the x-
direction corresponding to uz may then be written as

u+ ,DFzx
x =

kAA ̃WRðhÞ
2J

dURðzÞ
dz

����
z= h

URðzÞeikx, ð15:115Þ

u+ ,DFzx
z = −

ikAÃWRðhÞ
2J

dURðzÞ
dz

����
z= h

WRðzÞeikx, ð15:116Þ

for x>0, and

u− ,DFzx
x =

kAA ̃WRðhÞ
2J

dURðzÞ
dz

����
z= h

URðzÞe− ikx, ð15:117Þ

u− ,DFzx
z =

ikAA ̃WRðhÞ
2J

dURðzÞ
dz

����
z= h

WRðzÞe− ikx, ð15:118Þ

for x<0.

15.5 Conclusions

This paper proposes that the scattering of surface waves by a cylindrical cavity of
general cross-section located near the free surface of an elastic half-space can be
represented by the radiation from equivalent body forces. The equivalent body
forces consist of those due to ux, the horizontal displacement component of the
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incident surface wave, and those due to uz, the vertical component of the incident
surface wave. The magnitudes of the equivalent body forces have been determined
and the determination shows that the equivalent body forces are a combination of
double forces. Using the elastodynamic reciprocity theorem, the surface waves
generated by the equivalent double forces have been obtained. The surface waves
generated by the equivalent double forces due to ux and uz are shown to be sym-
metric and antisymmetric, respectively, with respect to the plane x=0.

The expressions given by Eqs. (15.1)–(15.2) and (15.3)–(15.4) represent surface
waves propagating in the positive and the negative x-directions, respectively.
Inspection of the pairs of surface wave displacements generated by equivalent body
forces and given by Eqs. (15.71)–(15.72) and (15.73)–(15.74), Eqs. (15.87)–
(15.88) and (15.89)–(15.90), as well as (15.93), and (15.95), (15.102)–(15.103) and
(15.104)–(15.105), and (15.115)–(15.116) and (15.117)–(15.118), all have the same
forms as Eqs. (15.1)–(15.2) and (15.3)–(15.4) albeit with different constants. Thus
all these displacement pairs represent a surface wave. The superposition of the
surface waves generated by the equivalent body forces represents the scattered field
of surface waves.

The combined use of the equivalent body force representation and the elasto-
dynamic reciprocity theorem shows potential for dealing with more complex
scattering problems.
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