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Chapter 2
To Survive or to Die: How Neurons  
Deal with it

Yubin Wang, Xiaoning Bi, and Michel Baudry

Abstract  Unlike the majority of cells in the organism, neurons have only two 
options during their entire existence, to survive or to die. As a result, they have 
evolved elaborate mechanisms to determine which path they will follow in response 
to a multitude of internal and external signals, and to the wear-and-tear associated 
with the aging process. Until recently, activation of the calcium-dependent protease, 
calpain, had been traditionally associated with neurodegeneration. This chapter will 
review recent findings that indicate that two of the major calpain isoforms present 
in the brain, calpain-1 and calpain-2, play opposite functions in neuronal survival/
death. Thus, calpain-1 activation, downstream of synaptic NMDA receptors, is part 
of a neuronal survival pathway through the truncation of PHLPP1 and the stimula-
tion of the Akt pathway. In contrast, calpain-2 activation is downstream of extrasyn-
aptic NMDA receptors and is neurodegenerative through the truncation of the 
phosphatase, STEP, and the activation of the p38 protein kinase. These findings 
have major significance for our understanding of neurological conditions associated 
with neurodegeneration and for the development of new therapeutic approaches to 
prevent neuronal death in these disorders.
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2.1  �Introduction

Neurons have to perform several basic functions, including growing (from the time 
of differentiation), migrating, responding and adapting to external and internal stim-
uli, and surviving or dying, as a result of continuous challenges and the deleterious 
effects of the aging process. Numerous reviews have discussed the role of calpain in 
neurodegeneration in general (Vosler et al. 2008; Yildiz-Unal et al. 2015), and in 
stroke (Anagli et al. 2009; Koumura et al. 2008) and in traumatic brain injury (TBI) 
(Kobeissy et al. 2015; Liu et al. 2014). Likewise, numerous studies have attempted 
to use calpain inhibitors to reduce neurodegeneration in both stroke and TBI (Anagli 
et al. 2009; Bartus et al. 1994a, b; Cagmat et al. 2015; Hong et al. 1994; Li et al. 
1998; Markgraf et al. 1998; Siklos et al. 2015; Tsubokawa et al. 2006). While some 
studies have reported some positive effects of calpain inhibitors in TBI (Thompson 
et al. 2010), other studies have not confirmed these results. In particular, overexpres-
sion of the endogenous calpain inhibitor, calpastatin, was reported to reduce the 
formation of the Spectrin Breakdown Product (SBDP), resulting from calpain-
mediated truncation of spectrin, a widely used biomarker of calpain activation and 
potentially neurodegeneration (Yan and Jeromin 2012), but had no effect on neuro-
degeneration (Schoch et  al. 2012). Another recent study concluded that even a 
blood-brain barrier- and cell-permeable calpain inhibitor, SNJ-1945, did not have a 
sufficient efficacy and a practical therapeutic window in a model of controlled corti-
cal impact (Bains et al. 2013).

Several reasons could account for the failure to develop clinical applications of 
such inhibitors, including their lack of specificity/potency/selectivity (Donkor 
2011), and the incomplete knowledge regarding the functions of the major calpain 
isoforms in the brain, calpain-1 and calpain-2 (aka μ- and m-calpain). Work from 
our laboratory over the last 5 years has revealed new features of these two enzymes, 
which significantly changed our understanding of their functions in the brain. 
Specifically, we found that calpain-1 and calpain-2 play opposite functions in both 
synaptic plasticity and neuroprotection/neurodegeneration (Baudry and Bi 2016). 
Thus, calpain-1 activation is required for theta burst stimulation-induced long-term 
potentiation (LTP) and for certain types of learning and memory, and is neuropro-
tective (Wang et al. 2013, 2014). Calpain-1 is neuroprotective due to the degrada-
tion of the PH domain and Leucine rich repeat Protein Phosphatase 1 (PHLPP1β) 
and the resulting activation of the Akt survival pathway. On the other hand, calpain-
2 activation limits the magnitude of LTP and restricts learning, and is neurodegen-
erative due to the cleavage of STEP and the stimulation of death pathways (Wang 
et al. 2013, 2014). In addition, we found that ischemia-induced damage to retinal 
ganglion cells was exacerbated in calpain-1 knock-out mice, indicating that calpain-
1 inhibition is likely to counteract the potential beneficial effects of calpain-2 inhibi-
tion if non-selective calpain inhibitors are used (Wang et al. 2016b). These findings 
could account for the failure of the previous studies to convincingly demonstrate the 
role of calpain in neurodegeneration, and for the lack of clear efficacy of the previ-
ously tested calpain inhibitors, which did not discriminate between calpain-1 and 
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calpain-2. It is also important to stress that calpain activation has also been impli-
cated in diffuse axonal injury (Wang et  al. 2012a), which has been proposed to 
represent an important component of the pathophysiology of TBI (Xiong et  al. 
2013), although at this point, there is no information regarding which calpain iso-
form is involved.

In this chapter, we will first discuss how calpain-1 and calpain-2 activation 
appear to be closely related to the stimulation of synaptic and extra-synaptic NMDA 
receptors, respectively. We will then review the mechanisms underlying the neuro-
protective effects of calpain-1 activation, which will be followed by a discussion of 
the mechanisms involved in calpain-2-mediated neurodegeneration. These two 
aspects will be illustrated by studies using intra-ocular NMDA injection to produce 
acute neurodegeneration of retinal ganglion cells. Finally, we will discuss the poten-
tial clinical implications of these findings and our current efforts to develop selec-
tive calpain-2 inhibitors as a new approach for neuroprotection in conditions 
associated with acute neurodegeneration.

2.2  �Calpains and NMDA Receptors

NMDARs play critical roles in both physiological and pathological conditions, and 
several studies have shown that NMDA receptor localization is responsible for 
opposite consequences of NMDA receptor stimulation for neuronal survival or 
death; thus, synaptic NMDAR activation provides neuroprotection, while extrasyn-
aptic NMDARs are linked to pro-death pathways (Hardingham and Bading 2010). 
The Akt and MAP kinase/extracellular signal-regulated kinase (ERK1/2) pathways 
are two key pro-survival pathways downstream of synaptic NMDARs (Hardingham 
et al. 2001; Papadia et al. 2005; Wang et al. 2012b). Akt phosphorylates and inhibits 
various pro-apoptotic substrates, such as glycogen synthase kinase-3 (GSK3), fork-
head box O (FOXO) (Soriano et  al. 2006), apoptosis signal-regulating kinase 1 
(ASK1) (Kim et al. 2001), p53 (Yamaguchi et al. 2001), and Bcl2-associated death 
promoter (BAD) (Downward 1999). On the other hand, ERK1/2 activates the sur-
vival nuclear transcription factor, cyclic-AMP response element binding protein 
(CREB) (Hardingham et al. 2001). Although some protein kinases linking NMDARs 
to Akt and ERK have been found (Krapivinsky et al. 2003; Perkinton et al. 2002), 
how Akt and ERK1/2 were activated by synaptic but not extrasynaptic NMDARs 
was not clearly understood until recently.

PH domain and Leucine rich repeat Protein Phosphatase 1 (PHLPP1) exhibits 
two splice variants, PHLPP1α and PHLPP1β, which share amino acid sequence 
similarity but have different sizes (140 kDa and 190 kDa, respectively). PHLPP1α 
dephosphorylates Akt at Ser473  in cancer cells (Gao et  al. 2005) and neurons 
(Jackson et  al. 2010), and its down-regulation is related to cell survival in CNS 
(Chen et al. 2013; Liu et al. 2009; Saavedra et al. 2010). PHLPP1β inhibits ERK1/2 
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by binding and trapping its activator Ras in the inactive form (Shimizu et al. 2003). 
PHLPP1β was previously shown to be degraded by calpain in hippocampus, and its 
degradation contributes to novel object recognition memory (Shimizu et al. 2007). 
Thus, PHLPP1 was a good candidate to link NMDA receptor stimulation to Akt and 
ERK regulation.

Using primary neuronal cultures, we showed that calpain-1 and calpain-2 are 
activated by different NMDAR populations (synaptic vs. extrasynaptic NMDARs) 
and regulate different substrates (PHLPP1 and STEP) to produce opposite effects 
on neuronal fate (neuroprotection and neurodegeneration) (Fig. 2.1). Interestingly, 
calpain-induced cleavage of PHLPP1β and the resulting ERK activation were previ-
ously shown to regulate synaptic plasticity (Shimizu et al. 2007). We showed that 
calpain-1-mediated PHLPP1β degradation was specifically triggered by synaptic 
but not extra-synaptic NMDAR activation and contributed to the neuroprotective 
effects of synaptic NMDAR activation. In addition, PHLPP1α, which 

Fig. 2.1  Schematic representation of the links between synaptic and extrasynaptic NMDARs and 
calpain-1 and calpain-2. Calpain-1 is rapidly stimulated by the calcium influx generated by synap-
tic NMDA receptor activation, resulting in PHLPP1α/β degradation. This produces the activation 
of Akt and ERK, which triggers the stimulation of neuroprotective cascades. On the other hand, 
extrasynaptic NMDA receptors containing NR2B subunits trigger ERK activation, calpain-2 phos-
phorylation/activation and the activation of STEP and p38, leading to neurodegeneration. 
Moreover, calpain-2 activation has been linked to apoptosis through the truncation of anti-apoptotic 
factors
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dephosphorylates and inhibits Akt, was also cleaved by calpain-1 following synap-
tic NMDAR activation. Calpain cleavage of PHLPP1 1α and β was necessary and 
sufficient for synaptic NMDAR-induced activation of the Akt and ERK pathways, 
since calpain inhibition blocked, while PHLPP1 knockdown mimicked, the effects 
of synaptic NMDAR activation on Akt and ERK pathways. PHLPP1 suppressed 
Akt and ERK pathways under basal conditions; following synaptic NMDAR activa-
tion, calpain cleaves PHLPP1α and β, thus releasing the inhibition of these two 
major pro-survival signaling cascades in neurons. Consistently, calpain-1-mediated 
cleavage of PHLPP1 was required for the neuroprotective effects of synaptic 
NMDARs, as calpain inhibition blocked the neuroprotection elicited by synaptic 
NMDAR activation. We further confirmed these results using PHLPP1 knockdown, 
as down-regulation of PHLPP1 not only suppressed the blockade of neuroprotec-
tion caused by calpain inhibition but also induced neuroprotection without synaptic 
NMDAR activation. Consistent with our results, a recent study reported that 
PHLPP1 knockout mice are more resistant to ischemic brain injury (Chen et  al. 
2013). Thus, PHLPP1 should be considered as a novel potential target for the treat-
ment of neurodegenerative diseases.

As previously reported (Xu et al. 2009), we found that calpain activated by extra-
synaptic NMDAR stimulation cleaved STEP and caused neuronal death (Wang 
et al. 2013). It had previously been proposed that prolonged or excessive activation 
of calpain was responsible for calpain-mediated neurotoxicity, whereas brief and 
limited calpain activation could be involved in the regulation of synaptic plasticity. 
However, prolonged activation of synaptic NMDARs (by Bic and 4-AP treatment) 
for as long as 3 days did not result in STEP cleavage, nor in neuronal damage, but 
produced neuroprotection against starvation and oxidative stress. On the other hand, 
activation of extrasynaptic NMDARs did not affect PHLPP1 or its downstream 
pathways, strongly suggesting that there are two separate pools of calpain down-
stream of synaptic and extrasynaptic NMDARs, which regulate different substrates 
and therefore exert separate functions.

The possibility that calpain-1 and calpain-2 could exert different roles in CNS 
had not been extensively discussed. However, the discovery that calpain-2 could be 
activated by phosphorylation (Zadran et al. 2010), coupled with the identification of 
PTEN as a specific calpain-2 substrate (Briz et al. 2013), raised the possibility that 
calpain-1 and calpain-2 could play distinct functions. Interestingly, synaptic 
NMDAR activation did not result in the degradation of PTEN, a specific calpain-2 
substrate, further supporting the idea that synaptic NMDAR activation does not 
activate calpain-2. The use of calpain-1 and calpain-2 specific inhibitors also con-
firmed this idea, as a calpain-2 specific inhibitor did not affect synaptic NMDAR-
dependent PHLPP1 cleavage and neuroprotection but blocked extrasynaptic 
NMDAR-dependent STEP cleavage and neurotoxicity. In contrast, a calpain-1 spe-
cific inhibitor blocked synaptic NMDAR-mediated effects but not extrasynaptic 
NMDAR-mediated neurotoxicity. Down-regulation of calpain-1 and calpain-2 by 
specific siRNAs in cultured neurons also indicated that only calpain-1 knockdown 
blocked synaptic NMDAR-mediated neuroprotective pathways. In addition, knock-
down of calpain-2 but not calpain-1, by AAV-shRNA transfection increased survival 
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of primary hippocampal neurons following NMDA treatment (Bevers et al. 2009). 
Results obtained in cultured neurons were further confirmed using a model of 
NMDA-induced neurotoxicity in acute hippocampal slices from young mice, which 
had previously indicated that NMDA treatment of acute hippocampal slices caused 
neurotoxicity in young but not adult rats (Zhou and Baudry 2006), probably because 
young rats have more NR2B-containing NMDARs, which are preferentially local-
ized extrasynaptically (Tovar and Westbrook 1999). In hippocampal slices prepared 
from young calpain-1 knock-out mice, NMDA induced the degradation of STEP but 
not PHLPP1, and exacerbated neurotoxicity, as compared to slices prepared from 
wild-type mice. On the other hand, calpain-2 specific inhibition by applying either 
a selective calpain-2 inhibitor in slices from wild-type mice or a non-selective cal-
pain inhibitor in slices from calpain-1 knock-out mice blocked NMDA-induced 
degradation of STEP and suppressed neurotoxicity (Wang et al. 2013).

Together, these results demonstrate that calpain-1 is preferentially activated by 
synaptic NMDAR stimulation, whereas calpain-2 is preferentially activated by 
extrasynaptic NMDAR stimulation. Calpain-1 was shown to be localized in synap-
tic compartments (Perlmutter et al. 1988), where it could regulate synaptic function 
through its action on synaptic elements such as cytoskeletal and scaffolding pro-
teins, as well as glutamate receptors (Liu et al. 2008). Little is known regarding the 
ultrastructural localization of calpain-2  in neurons. One of the newly discovered 
physiological roles of calpain-2 is to regulate activity-dependent local protein syn-
thesis (Briz et al. 2013; Wang and Huang 2012), which takes place not in synapses 
but in nearby extrasynaptic areas (Frey and Morris 1998; Steward and Wallace 
1995). In addition, calpain-2 has been reported to control synaptogenesis in den-
dritic shafts through constitutive proteolysis of the cytoskeletal protein, cortactin 
(Mingorance-Le Meur and O’Connor 2009). These findings would suggest that 
calpain-2 is localized, at least in part, in extrasynaptic domains (Fig. 2.1).

The existence of separate signaling pathways for calpain-1 and calpain-2 sug-
gested that these two calpain isoforms belong to different protein scaffolds, which 
could segregate them in different neuronal compartments. PHLPP1 could be cleaved 
by both purified calpain-1 and calpain-2 in membrane fractions, yet it was cleaved 
only by calpain-1 following synaptic NMDAR activation in hippocampal slices, 
suggesting that substrate specificity for calpains depends not only on amino acid 
sequences within substrates, but also on localization and scaffolding of both sub-
strates and calpains in neurons. Co-immunoprecipitation experiments confirmed 
that NR2A-containing NMDARs, PSD95, calpain-1 and PHLPP1, form a complex 
in neurons. Furthermore, synaptic NMDAR activity recruited calpain-1 to this 
NMDAR multi-protein complex; such recruitment could facilitate the proteolysis of 
PHLPP1 and possibly other calpain-1 substrates in the complex. In contrast, cal-
pain-2 was not present in this complex under basal conditions nor was it recruited 
by activity, consistent with the absence of calpain-2 activation following synaptic 
NMDAR activation. It is likely that a calpain-2-containing multi-protein complex is 
associated with extrasynaptic NMDARs. How could activation of extrasynaptic 
NMDARs results in calpain-2 activation? It has been repeatedly shown that NR2B 
subunits are enriched in extrasynaptic NMDARs (Papouin and Oliet 2014), and that 
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their activation is critical for excitotoxicity (Chazot 2004). Interestingly, NR2B 
directly binds RasGRF1, which provides a link between NMDAR activation and 
ERK activation (Krapivinsky et al. 2003). As we have shown that ERK activation 
directly phosphorylates and activates calpain-2 (Zadran et al. 2010), this pathway is 
likely responsible for the prolonged activation of calpain-2 following stimulation of 
extrasynaptic NMDA receptors (Fig. 2.1). In addition, we discussed elsewhere the 
existence of different PDZ binding domains in the C-terminal of calpain-1 and cal-
pain-2, which could account for their differential subcellular distribution (Baudry 
and Bi 2016).

2.3  �Calpain-1 Activation and Neuroprotection

As discussed above, calpain-1 is downstream of synaptic NMDARs and as such, we 
postulated that it has a neuroprotective function. This notion was supported by 
results obtained in cultured neurons, where we demonstrated that calpain-1 activa-
tion following stimulation of synaptic NMDARs was neuroprotective against star-
vation- and oxidative stress-mediated neurotoxicity (Wang et  al. 2013). Previous 
studies have shown that normal stimulation of synaptic NMDA receptors is required 
to limit the extent of apoptotic neuronal death during the postnatal period, as block-
ade of these receptors during this period increases the extent of apoptotic neuronal 
death (Monti and Contestabile 2000). Calpain activity is higher in cerebellum than 
in cortex or hippocampus across different mammalian species (Baudry et al. 1986). 
An immunohistochemical study revealed that the major calpain isoform expressed 
in cerebellar neurons is calpain-1 (Hamakubo et  al. 1986). Calpain-1 activity in 
cerebellum during prenatal and early postnatal period is high, as compared to that  
in adulthood (Simonson et  al. 1985), suggesting a potential role for calpain-1  in 
cerebellar development. Interestingly, a CAPN1 missense mutation in the Parson 
Russell Terrier dog breed has been associated with spinocerebellar ataxia (Forman 
et al. 2013).

Loss of cerebellar granule cells (CGCs) induced by different mechanisms results 
in ataxia (Hashimoto et al. 1999; Kim et al. 2009; Pennacchio et al. 1998; Shmerling 
et al. 1998). NMDAR activity is essential for CGC survival during the critical stage 
of cerebellar development (Monti and Contestabile 2000; Balazs et al. 1988; Monti 
et  al. 2002; Moran and Patel 1989), although the underlying mechanism has 
remained elusive. NMDAR-induced activation of the nuclear factor CREB is 
required (Monti et al. 2002), and CREB is a target of the pro-survival kinase Akt 
(Du and Montminy 1998).

As discussed above, synaptic NMDAR-mediated calpain-1 activation results in 
the degradation of PHLPP1. PHLPP1 dephosphorylates and inhibits Akt, and is 
involved in tumorigenesis (Chen et  al. 2011), circadian clock (Masubuchi et  al. 
2010), learning and memory process (Wang et al. 2014; Shimizu et al. 2007), and 
autophagy (Arias et  al. 2015). Calpain-1-mediated degradation of PHLPP1 acti-
vates Akt and promotes neuronal survival (Wang et al. 2013), and we postulated that 
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calpain-1 mediated regulation of PHLPP1 and Akt could be involved in NMDAR-
dependent CGC survival during postnatal development.

We analyzed apoptosis in the brain during the postnatal period in wild-type and 
calpain-1 KO mice (Wang et al. 2016a). Calpain-1 KO mice exhibited abnormal 
cerebellar development, including enhanced apoptosis of CGCs during the early 
postnatal period, and reduced granule cell density and impaired synaptic transmis-
sion from parallel fiber to Purkinje cells in adulthood, resulting in an ataxia pheno-
type. All these defects are due to deficits in the calpain-1/PHLPP1/Akt pro-survival 
pathway in developing granule cells, since treatment with an Akt activator during 
the postnatal period or crossing calpain-1 KO mice with PHLPP1 KO mice restored 
most of the observed alterations in cerebellar structure and function in calpain-1 KO 
mice (Wang et al. 2016a). To reverse reduced pAkt levels in cerebellum of calpain-1 
KO mice during the early postnatal period, we treated them from PND1 to PND7 
with a PTEN inhibitor, bisperoxovanadium (bpV) (0.5  mg/kg, i.p., twice daily), 
which has been shown to activate Akt (Boda et al. 2014; Li et al. 2009; Mao et al. 
2013). BpV injection significantly increased pAkt levels in cerebellum of develop-
ing KO mice, and completely prevented the enhanced apoptosis in cerebellum and 
cerebrum of calpain-1 KO mice at PND7 (Fig. 2.2).

Thus the NMDAR/calpain-1/PHLLP1/Akt pro-survival pathway is active in 
developing CGCs, where it limits the extent of CGC apoptosis. Increased PHLPP1 
and decreased pAkt levels were found in cerebellar homogenates of calpain-1 KO 
mice, indicating that calpain-1 activity normally reduces PHLPP1 levels and main-
tains Akt activated during the postnatal period in cerebellum. The density of pAkt-
positive puncta was reduced in cerebellar granular layer but not in Purkinje or 
molecular layer of calpain-1 KO mice, suggesting that calpain-1-dependent regula-
tion of Akt only takes place in CGCs but not in other cerebellar cell types. Down-
regulation of PHLPP1 restored normal levels of pAkt in developing cerebellum of 
calpain-1 KO mice, indicating that PHLPP1 is downstream of calpain-1 and that its 
level is important for Akt regulation. Finally, reduced Akt activity was associated 
with enhanced CGC apoptosis in calpain-1 KO mice, while increased Akt activity 
was associated with reduced CGC apoptosis in bpV-injected WT and in mice lack-
ing both calpain-1 and PHLPP1.

NMDAR- and calpain-1-mediated neuronal survival during brain development 
was not limited to CGCs, as enhanced apoptosis was present in other brain regions 
such as cortex, striatum and hippocampus in developing calpain-1 KO mice 
(Fig. 2.2). Importantly, calpain-1-mediated neuroprotection is also present in human 
brain, as calpain-1 mutations resulting in lack of function are associated with cere-
bellar ataxia (Wang et al. 2016a; Gan-Or et al. 2016). Furthermore, the important 
roles of calpain-1 in hippocampal neuronal survival during development and in syn-
aptic plasticity in the adult (Wang et al. 2014; Zhu et al. 2015) may contribute to the 
cognitive decline found in ataxia patients with CAPN1 mutations.
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2.4  �Calpain-2 and Neurodegeneration

As mentioned above, there is abundant literature linking calpain activation with 
neurodegeneration. However, very few studies have explored the specific contribu-
tions of calpain-1 and calpain-2 in neurodegeneration. Our in vitro studies clearly 
indicated that calpain-2 activation, but not calpain-1 activation was responsible for 
NMDA-induced excitotoxicity through the activation of STEP. A similar study indi-
cated that down-regulation of calpain-2 but not calpain-1 also increased neuronal 
survival following NMDA treatment of cultured hippocampal neurons (Bevers et al. 

Fig. 2.2  Effects of bpV on apoptosis and Akt in telencephalon of calpain-1 (CAPN1) KO mice 
during the postnatal period. (a–c) TUNEL and DAPI staining of coronal sections at various 
anterior-posterior levels of PND7 calpain-1 KO mice injected from PND1 to PND7 with vehicle or 
a PTEN inhibitor, bisperoxovanadium (bpV) (0.5 mg/kg, i.p., twice daily). Note the clear decrease 
in TUNEL staining in bpv-injected calapin-1 KO mice. (d, e) Levels of Akt and p-Akt and ERK 
and p-ERK in cortex of PND7 calpain-1 KO mice injected from PND1 to PND7 with vehicle or 
bpv (0.5 mg/kg, i.p., twice daily). Results are expressed as means ± SEM of four experiments. 
**p < 0.05, Student’s t-test

2  To Survive or to Die: How Neurons Deal with it



28

2009). In order to further analyze the role of calpain-2 in neurodegeneration in vivo, 
we used a model consisting of direct intraocular NMDA injection in mice. Calpain 
activation had been previously involved in retinal cell death induced by NMDAR 
activation (Chiu et al. 2005; Shimazawa et al. 2010). To test the specific roles of 
calpain-1 and calpain-2 in this process, wild-type (WT) mice were injected systemi-
cally with a calpain-2 selective inhibitor (C2I), Z-Leu-Abu-CONH-CH2-C6H3  
(3, 5-(OMe)2) (Wang et al. 2013, 2014), 30 min before NMDA intravitreal injection. 
Levels of SBDP and of PHLPP1, were determined in retinal extracts 6  h after 
NMDA injection (Fig. 2.3a–c). Akt levels were also measured as a loading control. 
Levels of SBDP were significantly increased and those of PHLPP1 decreased after 
NMDA injection, as compared to control (PBS intravitreal injection), suggesting 
that calpain was activated after NMDA injection. Systemic (intraperitoneal; i.p.) 
injection of C2I significantly suppressed NMDA-induced changes in SBDP but not 
in PHLPP1, suggesting that C2I systemic injection selectively inhibited calpain-2 
but not calpain-1 activation in retina after intravitreal NMDA injection.

Six days after intravitreal injection of NMDA or PBS to WT mice, frozen retinal 
sections were prepared and H&E staining was performed to evaluate cell numbers 
in the ganglion cell layer (GCL) and the thickness of the Inner Plexiform Layer 
(IPL), which contains RGC dendrites. NMDA injection (NMDA plus Vehicle) sig-
nificantly reduced cell numbers in the GCL and IPL thickness, while PBS injection 
(PBS plus Vehicle) had no effect on these parameters (Fig. 2.3d–f). Systemic injec-
tion of C2I 30 min before and 6 h after NMDA injection significantly suppressed the 
reduction in GCL cell numbers and IPL thickness (Fig.  2.3d–f), suggesting that 
calpain-2 activation contributes to NMDA-induced cell death in GCL.

In calpain-1 KO mice, GCL cell number and IPL thickness were not affected by 
vehicle injection. However, the effects of NMDA injection on GCL cell number and 
IPL thickness were larger than in WT mice (Fig. 2.3g–i). GCL cell death in calpain-
1 KO mice after NMDA injection was significantly more severe than that in WT 
mice (Fig.  2.3j), suggesting that calpain-1 supports cell survival in GCL after 
NMDA injection. Systemic injection of C2I to calpain-1 KO mice partially but sig-
nificantly reversed NMDA-induced decrease in GCL cell number and IPL thickness 

Fig. 2.3  (continued) (2 μl of 2.5 mM). Mice were injected i.p. with vehicle (10% DMSO) or C2I 
(0.3 mg/kg) 30 min before intravitreal injection. Quantification of the ratios of SBDP/Akt (b) and 
PHLPP1/Akt (c). n = 4. *p < 0.05, ***p < 0.001. One-way ANOVA followed by Bonferroni test. 
(d) H&E staining of naive, PBS- (control) or NMDA- (2 μl of 2.5 mM) treated retina from WT 
mice injected i.p. with vehicle (10% DMSO) or C2I (0.3  mg/kg) 30  min before and 6  h after 
NMDA injection. H&E staining was performed 7  days after injection. Scale bar  =  30  μm. 
Quantification of cell numbers in GCL (e) and thickness of IPL (f). Six sections in each eye were 
analyzed. n = 4–8 (eyes). *p < 0.05, **p < 0.01, One-way ANOVA followed by Bonferroni test. (g) 
H&E staining of PBS- (control) and NMDA- (2 μl of 2.5 mM) treated retina from calpain-1 KO 
mice injected i.p. with vehicle or C2I (0.3 mg/kg) 30 min before and 6 h after NMDA injection. 
H&E stain was done 7 days after injection. Scale bar = 30 μm. Quantification of cell number in 
GCL (h) and thickness of IPL (i). n = 6. *p < 0.05, **p < 0.01, ***p < 0.001, One-way ANOVA 
followed by Bonferroni test. (j) GCL cell numbers in NMDA-treated WT and KO mice without 
and with C2I treatment. n = 6. **p < 0.01. Two-tailed t-test
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Fig. 2.3  Calpain-2 inhibition reduces, while calpain-1 knockout exacerbates cell death in gan-
glion cell layer induced by NMDA intravitreal injection. (a) Representative immunoblot of indi-
cated proteins in mouse retinal extracts 6 h after intravitreal injection of PBS (control) or NMDA
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(Fig. 2.3g–i). A very similar pattern of results was obtained in a different model of 
acute glaucoma, consisting in a brief period of increased intraocular pressure (Wang 
et al. 2016b). Furthermore, recent studies in a mouse model of TBI also support the 
notion that calpain-2 activation is prolonged and responsible for neuronal death, 
while calpain-1 activation is neuroprotective (Wang et al 2017).

2.5  �Clinical Implications of Specific Calpain-2 Inhibition 
and Calpain-1 Activation

Our results clearly demonstrate that calpain-1 and calpain-2 have opposite functions 
in both synaptic plasticity and neuronal survival/death after acute insults. Thus, 
calpain-1 activation is required for LTP induction and for hippocampus-dependent 
learning and is neuroprotective both during the postnatal developmental period and 
in adulthood following acute insults. On the other hand, calpain-2 activation limits 
the extent of hippocampus-dependent learning and is neurodegenerative following 
acute insults, and in particular excitotoxicity. Our results have important implica-
tions for the development of new approaches for treating diseases associated with 
excitotoxicity, such as epilepsy, stroke, Alzheimer’s and Parkinson’s disease, 
Huntington disease and ischemia. In all these cases, it has been suggested that extra-
synaptic NMDAR activation and STEP degradation are involved in neurodegenera-
tion. Our results would, therefore, suggest that specific inhibition of calpain-2 but 
not calpain-1 would have neuroprotective effects under these conditions. Conversely, 
overexpression or activation of calpain-1, by cleaving PHLPP1 and stimulating pro-
survival cascades, could also have beneficial effects. In addition, calpain-2 activa-
tion is involved in regulating the magnitude of long-term potentiation (LTP) in 
hippocampus, due to the existence of a molecular brake consisting in calpain-2-
mediated PTEN degradation and stimulation of m-TOR dependent PHLPP1β syn-
thesis (Wang et al. 2014). We also showed that low doses of a selective calpain-2 
inhibitor facilitate learning in normal mice, while higher doses, which inhibit cal-
pain-1, impair learning. Thus, a selective calpain-2 inhibitor could be extremely 
beneficial for preventing neurodegeneration, while facilitating certain forms of 
learning and memory. As discussed above, a selective calpain-2 inhibitor prevented 
death of retinal ganglion cells and maintained vision in a mouse model of acute 
glaucoma (Wang et al. 2016b). Calpain inhibitors have previously been proposed to 
represent potential treatments for a variety of eye disorders, including glaucoma and 
macular degeneration (Azuma and Shearer 2008; Paquet-Durand et al. 2007), and 
further studies are needed to assess the potential use of selective calpain-2 inhibitors 
for these disorders. Calpain inhibition has been proposed to represent a therapeutic 
approach for stroke and TBI, although this notion has not been supported by a vari-
ety of experiments. We postulate that the use of selective calpain-2 inhibitors might 
overcome the problems associated with that of non-selective calpain inhibitors. Our 
results in a mouse model of TBI supports this notion, as we have found that 

Y. Wang et al.



31

post-treatment with a selective calpain-2 inhibitor provides a highly significant 
degree of neuroprotection and facilitates behavioral recovery (Wang et  al 2017). 
The potential use of selective calpain-2 inhibitors for chronic neurodegenerative 
disorders needs to be further evaluated. It is important to note that calpain has been 
proposed to participate in neurodegeneration associated with Parkinson’s disease as 
well as Alzheimer’s disease, and it is tempting to speculate that selective calpain-2 
inhibitors might also be beneficial in these disorders.
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