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1 Introduction and Motivations

In the past decades a number of popular methods have been developed for control
of a multi-input and multi-output system S o, including optimal LQ control theory,
pole-placement methods, H2/H∞ control, and Model Predictive Control (MPC).
These methods are intrinsically of centralized nature, i.e. the vector of control ac-
tions u is computed based on the knowledge of the whole state x or output y vectors.
This allows to guarantee properties, in terms of stability, robustness, and perfor-
mance. However, these methods display many limitations in case of large-scale [1]
or complex [2] systems, i.e., systems with a large size, often characterized by the
cooperation of many different parts (e.g., machines, reactors, robots, transportation
systems), and possibly by uncertainties on the system components. Just to mention
the main issues:

• the actuators and the transducers may be highly geographically distributed, and
this may bring about transmission delays or failure issues.

• The control problem grows in size with the dimensionality of the system, and
the related computational burden may, in turn, grow significantly. This is par-
ticularly true for methods, like MPC, where an optimization problem must be
solved at any new sampling time. In turn, these scalability issues may induce
large - and even inadmissible - computational delays, with serious limitations
on the size of practically tractable problems.

• Single components or subsystems can be subject to structural changes, failures,
and some may be removed, added, or replaced. Centralized control systems are
normally non-robust and non-flexible with respect to such occurrences. This
issue may have a big economic impact, since a new design and implementa-
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tion phase for the overall control system must be carried out, with significant
expenses, e.g., due to the required downtime.

All the above reasons motivate the development of new methods for the design of
more flexible control structures where the centralized controller is replaced by a set
of M local regulators, possibly coordinated to recover to the maximum extent the
performance guaranteed by a centralized solution. According to a terminology nowa-
days well accepted, we will define decentralized control structures those where the
local regulators are fed by independent subsets of states and/or outputs and do not
communicate with each other. As a middle-ground solution between centralized and
decentralized control, we will denote by distributed control structures the schemes
where the M local regulators are fed by not necessarily independent subsets of states
and/or outputs and can exchange information to coordinate their actions. A pictorial
representation of centralized, decentralized, and distributed control structures in the
case M = 2 is reported in Figure 1.
The possibility to coordinate and negotiate the local control actions provided by dis-
tributed schemes and made possible thanks to suitable transmission networks fits
very well with an optimization-based framework, where many ideas of game theory
can be applied. Therefore, MPC is probably the best advanced control approach for
the synthesis of distributed control algorithms and for this reason the aim of this
chapter is to present in plain form the main ideas underlying some of the most popu-
lar Distributed MPC (DMPC) algorithms. Since nowadays many survey papers and
books are dedicated to DMPC, this chapter is not aimed to provide an extensive re-
view of all the available DMPC algorithms, for which the reader is referred to [3, 4],
but rather to highlight the main features, properties, and requirements of the major
classes of DMPC methods. With the goal to simplify the presentation some restric-
tive choices will be made: (i) the theoretical properties of the considered methods
will not be examined in detail, and the reader will be referred to the relevant liter-

Fig. 1: Centralized (top panel), decentralized (bottom left panel), and distributed
(bottom right panel) control structures.
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ature; (ii) purely regulation problems will be considered; (iii) the system S o to be
controlled will be assumed to be described by a linear time-invariant discrete-time
model. Some of these assumptions will be re-examined in the final section of the
chapter.

2 Model and Control Problem Decomposition

As it is claimed in [1], “if such (large-scale) systems must be controlled,(. . . ) they ne-
cessitate new ideas for decomposing and dividing the analysis and control problems
of the overall system into rather independent subproblems.” Under this viewpoint
the decomposition of the dynamic large-scale system model and of the control prob-
lem is a preliminary - but key - step for the development of well-posed decentralized
and distributed control procedures. In particular, it is definitely worth noting that the
adopted model decomposition has a strong impact on the features, properties, and
requirements of the control scheme which is designed based on it.

2.1 Model Decomposition

We assume that the large-scale system S o is described by the following linear,
discrete-time model

xo(k+1) = Aoxo(k)+Bou(k)
y(k) = Coxo(k)

(1)

where xo ∈ Rn, u ∈ Rm, y ∈ Rp and, unless otherwise specified, the state xo will
be assumed to be measurable. The state, output, and/or input variables must satisfy
constraints of the general type

xo ∈X o , y ∈ Y , u ∈U (2)

where X o, Y , and U are closed sets of proper dimensions containing the origin.
In order to design M decentralized or distributed MPC regulators guaranteeing

the stability of the origin of the corresponding closed-loop system, the centralized
model (1) must be decomposed into M small scale models Si, also denoted model
partitions. The first problem is that of partitioning the input and output vectors u
and y, i.e., to identify, for each subsystem Si, a local input vector ui ∈ Rmi and
a local output vector yi ∈ Rpi (commonly, it must hold that ∑M

i=1 mi = m and that
∑M

i=1 pi = p). Indeed, a local input/output pair (ui(k),yi(k)) (also denoted channel)
must be attributed to each subsystem on the basis of a specific partitioning criterion.
Often this is based on physical insight; as an alternative, many methods have been
developed and can be adopted to unveil the interactions of MIMO systems. Some of
them are based on the analysis of the static and dynamic interactions among inputs
and outputs see, e.g., [5, 6].
The state-space model, for each subsystem Si, is of the following general type.
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xi(k+1) = Aiixi(k)+Biiui(k)+∑ j �=i(Ai jx j(k)+Bi ju j(k))
yi(k) = Ciixi(k)+∑ j �=i Ci jx j(k)

(3)

where i = 1, . . . ,M, xi ∈ Rni . Many different methods can be used to obtain the mod-
els Si from S o, each corresponding to a different model partition and to a differ-
ent corresponding interconnection graph. A very rough classification can be made
between non-overlapping and overlapping decompositions: in non-overlapping de-
compositions the aggregate state of the Si model is still of order n, that is the one of
the original system S o. On the contrary, in overlapping decompositions the overall
state of the ensemble of models Si is greater than the one of S o, i.e. ∑M

i=1 ni > n.
The characteristics of these two classes will be briefly analyzed in Sections 2.1.1
and 2.1.2.
A critical point regards which constraints should be enforced on the state, output,
and/or input variables of Si, i = 1, . . . ,M, to verify the centralized system con-
straints (2). Note that constraints involving the variables of more than one subsys-
tems (the so-called coupling constraints) may be present, and even they may lie
at the core of specific types of distributed and coordination control problems. For
instance, when subsystems share a common, but limited, input resource some con-
straints of the type ∑M

i=1 ui ∈ Ū (for a suitably defined Ū ) may be enforced. On
the other hand, a number of power generation devices may be asked to produce a
common, but bounded, output, leading to constraints of the type ∑M

i=1 yi ∈ Ȳ . An-
other similar example is the case of coordination of moving robots, where collision
avoidance constraints are enforced: assuming that the robot - or the robot joints -
positions are included in the outputs yi and that two robots (i.e., S1 and S2) are in-
volved, these constraints may be formulated as (y1,y2) ∈Y12, for a suitably-defined
set Y12. In some cases coupling constraints can be verified by enforcing a number
of local constraints at the same time, e.g., when ui ∈Ui for all i = 1, . . . ,M involves
∑M

i=1 ui ∈ Ū . However, this solution may be overly conservative and highly subop-
timal in many contexts and should be discarded, at the price of including coupling
(also said complicating) constraints in the - distributed - control problem formula-
tion. Summing up, from now on we assume that constraints (2) allow to formulate
two types of constraints on the model partition variables: local constraints, to be
enforced for all i = 1, . . . ,M

xi ∈Xi , yi ∈ Yi , ui ∈Ui (4)

and/or coupling constraints, which will be represented as follows for simplicity

(x1, . . . ,xM) ∈XC , (y1, . . . ,yM) ∈ YC , (u1, . . . ,uM) ∈UC (5)

Note, in passing, that there may not be a trivial/direct correspondence between the
state variable xi of Si, i = 1, . . . ,M and the state xo of S o. Therefore, especially -
but not only - when overlapping decompositions are used, it may be critical and/or
ambiguous to translate the constraint xo ∈X o into a number constraints on the lo-
cal state variables xi.
Subclasses of the representation (3) are called input-decoupled when Bi j = 0 for all
i and j �= i or state-decoupled when Ai j = 0 for all i and j �= i. In a wide class of
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control problems, for instance the coordination of independent vehicles with cou-
pling constraints, the subsystems are dynamically decoupled, with Ai j = 0, Bi j = 0,
Ci j = 0 for all i and j �= i, but coupled through the state or control constraints (5).

Some final comments are in order. First, the model (1) is often computed as the
discretization of a continuous time physical system made by the interconnection of
subsystems. In this case, the corresponding matrices have a sparse structure which
should be maintained after discretization. Unfortunately, if a Zero Order Hold trans-
formation is used, this property is lost. To recover it, one should resort to the forward
Euler (fE) discretization approach or to the approximate discretization method de-
scribed in [7], specifically developed for distributed control.
Secondly, models of type (3) include the information on how subsystems have in-
fluence on each other. In other words, if (for j �= i) Ai j �= 0 and/or Bi j �= 0, the
state/input variables of subsystem S j directly impact on the dynamics of subsystem
Si. Consistently, we can define the set of neighbors (or parents) of subsystem Si

as Ni := { j : ‖Ai j‖+‖Bi j‖ �= 0‖} and a corresponding direct interconnection graph,
which highlights the system-wide dependencies between subsystems. Similar inter-
connection (possibly undirected) graphs can be drawn when coupling constraints
are present, i.e., if a coupling constraint involves a set of subsystems, they should be
considered as neighbors.

2.1.1 Non-overlapping Decompositions

Perhaps the most natural choice to decompose S o is to partition the state x into
M non-overlapping sub-vectors xi with ∑M

i=1 ni = n, so that, up to a suitable state
variable permutation, xo = (x1, . . . ,xM) and that the original system can be written
as

⎡
⎢⎣

x1(k+1)
...

xM(k+1)

⎤
⎥⎦ =

⎡
⎢⎣

A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤
⎥⎦

⎡
⎢⎣

x1(k)
...

xM(k)

⎤
⎥⎦+

⎡
⎢⎣

B11 . . . BM1
...

. . .
...

BM1 . . . BMM

⎤
⎥⎦

⎡
⎢⎣

u1(k)
...

uM(k)

⎤
⎥⎦

⎡
⎢⎣

y1(k)
...

yM(k)

⎤
⎥⎦ =

⎡
⎢⎣

C11 . . . C1M
...

. . .
...

CM1 . . . CMM

⎤
⎥⎦

⎡
⎢⎣

x1(k)
...

xM(k)

⎤
⎥⎦

It is intuitive that in the definition of the submodels (3) one should partition the
original state so that the couplings among the subsystems are reduced as much as
possible, i.e. Ai j, Bi j, Ci j, i �= j should be null or “small” (according to a proper
norm or criterion) to the maximum possible extent. In the common practice, the
state permutation/partition can be carried out based on the plant physical insight
or based on available algebraic algorithms. For example, there exist graph-based
methods for reordering the state, input, and output variables in order to highlight
inherent structures, e.g., the presence of weakly interacting subsystems (see, e.g., the
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ε-nested decomposition proposed in [2]) or cascaded configurations (e.g., the lower-
block-triangular LBT decomposition discussed in [2]). Finally, methods have been
proposed in the literature [2] for devising suitable changes of coordinates which
lead to specific system decompositions (e.g., the input and/or output decentralized
forms), at the price of a loss of physical insight.

2.1.2 Overlapping Decompositions

In some cases the coupling strength between different subsystems is relevant, which
prevents the decomposition into disjoint subsystems to result into an effective
control-oriented partition. An alternative to non-overlapping decompositions is to
decompose the systems into subsystems which have some equations (and states) in
common, i.e., carrying out a so-called overlapping decomposition. This may result
in obtaining overlapping but weakly coupled subsystems. Overlapping decomposi-
tions have been widely studied in the past, mainly in the context of decentralized
control, see, e.g., [2].
In the context of DMPC, a number of distributed control methods require the sub-
system interconnections to be represented in the following state-decoupled form

{
xi(k+1) = Aiixi(k)+∑M

j=1 Bi ju j(k)
yi(k) = Cixi(k)

(6)

However, it is rarely possible to obtain a representation of this type by simply apply-
ing a non-overlapping decomposition such as the one described in the previous para-
graphs. Therefore, it is possible to adopt a fully overlapping decomposition where
each subsystem is of full order. The simplest way to obtain this decomposition con-
sists of replicating M times model (1), that is setting, for all i, j = 1, . . . ,M, Aii = Ao,
Bi j = B j,o, Ci = Ci,o, where B j,o is the j-th block column of Bo, while C j,o is the
j-th block row of Co; an alternative procedure is sketched in [8].
In general, overlapping decompositions are non-minimal, since the state dimension
does not decrease (for each subsystem) under the application of the proposed par-
tition. However, as better specified in the following, for subsystem Si, the local
control variable is assumed to be ui, while the u j’s, j �= i are considered as exter-
nal signals, so that the number of variables to be optimized by the local DMPC
algorithm is smaller than in the corresponding centralized problem.

2.2 Partition Properties and Control

The main properties of the model partitions which have a major impact on the re-
sulting decentralized and distributed MPC-based schemes are the following.

• Minimality of the state representation. Minimality (in terms of dimension of
the state/input/output variables for each subsystem) is required to limit the algo-
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rithm computational burden, since the number of involved variables generally
directly impacts on the computational demands of the algorithm. Also, mini-
mal representations demand minimal information to be stored by local memory
units. This, besides requiring scalable memory load, allows for more flexibility
of the resulting control systems. In fact, local model variations at subsystem
level may require the re-design of local control systems only.

• Minimality of the interconnection graph. As discussed, to reduce the proba-
bility of network-induced issues (e.g., transmission delays, channel overloads,
and package losses) the communication burden required by the adopted con-
trol architecture must be reduced as much as possible. To this end, one should
reduce both (i) the number of communication links between subsystems (i.e.,
aiming to have a sparse supporting information transmission network), and (ii)
the amount of communication that they should afford. While (ii) mostly depends
on the type of the adopted control scheme (we defer the reader to Section 4 for
a discussion on this point), (i) may strongly depend upon the approach taken for
model partitioning, since the implementation of distributed schemes commonly
requires to be supported by an underlying communication graph consistent with
the subsystem interconnection graph.

• Descriptive capabilities of the models. Model partitioning may have a negative
effect on the descriptive capabilities of the submodels. It would be desirable, in
fact, that each local controller has the knowledge on how a control action, taken
locally, can impact, not only on the local variables, but also on the variables
of the surrounding subsystems. Similarly, a complete information on how the
control action taken by other subsystems affects local state variables and outputs
may be desired.

It is worth noting that the first and the second requirements are in general conflicting
with the third one. Indeed, fully descriptive models, which are the ones that allow
for full cooperation between local controllers, are often obtained using overlapping -
often fully overlapping - partitions, which are the ones which typically lead to a non-
minimal state representation and for which the interconnection graph is maximal.

2.3 MPC Problem Separability

To briefly introduce the optimization problems involved in the decentralized and
distributed implementations summarized in this chapter, we first introduce the cen-
tralized (non-minimal) model which can be drawn by collecting together all the
partitions (3). We define x = (x1, . . . ,xM), which corresponds to xo, up to a state
permutation, only in case of non-overlapping decompositions. Consistently, we can
describe the overall large-scale system dynamics with a model of the type

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)

(7)
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Note that system (7) is nothing else than an expansion [2] of the corresponding
contracted system (1), since their output free and forced motions must be indeed
equal to each other. Starting with standard centralized MPC, the control action at
each time instant k is obtained by solving a control problem of type

min
u(k),...,u(k+N−1)

J(k) (8a)

subject to the transient constraints (7), (4), (5), for times k, . . . ,k +N − 1, and a
terminal constraint of the type

x(k+N) ∈X f (8b)

In (8a), J(k) is the cost function, while X f in (8b) is the terminal constraint set. As
a common ground of the methods discussed in this chapter, problem (8) is required
to be separable into a number of subproblems to be solved by local computing units.
This first requires that the cost function to be minimized is formally separable, i.e.,

J(k) =
M

∑
i=1

ρiJi(k) (9)

where Ji(k) is a positive-definite (quadratic, for simplicity) function of local input
and state variables of subsystem Si

Ji(k) =
N−1

∑
j=0

[‖xi(k+ j)‖2
Qi
+‖ui(k+ j)‖2

Ri
]+‖xi(k+N)‖2

Pi
(10)

and parameter ρi > 0, where ∑M
i=1 ρi = 1.

Secondly, we need to enforce the terminal constraint (8b) by imposing M local ter-
minal constraints of type xi(k+N) ∈X f ,i, and therefore X f must be defined as the
Cartesian product of M sets X f ,i ⊆ R

ni .
However, separability is not the only requirement for the well-posedness of the
problem, but also some assumptions - required for general-type MPC problems
[8] - must be fulfilled by the “collective” terminal cost and terminal set, i.e.,
Vf = ∑M

i=1 ρi‖xi(k+N)‖2
Pi
= ‖x(k+N)‖2

P, with P =diag(ρ1P1, . . . ,ρMPM) and X f ,
respectively. More specifically Vf and X f must also be a Lyapunov function and a
positively invariant set, respectively, for the expanded system (7), controlled using
a suitable (and possibly decentralized/distributed) auxiliary control law. The latter
requirements are not easily compatible with the separability assumptions: in the se-
quel, for each of the described methods, we will discuss how they are guaranteed.
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3 Decentralized MPC

A simple paradigmatic decentralized method is the one proposed in [9], for large-
scale linear processes subject to local input saturations only. The global model (1),
with stable matrix Ao, is approximated by a number of (possibly overlapping) sub-
systems of type (3) with stable matrices Aii, used for local predictions. The key fea-
ture of decentralized control is that there is no communication between the different
local controllers, as shown in Figure 1. Therefore a modelling error is introduced by
neglecting couplings, i.e., by setting Ai j = 0 and Bi j = 0 for all j �= i, i = 1, . . . ,M.
The proposed decentralized MPC algorithm requires that, at each time instant k, the
following optimization problem is solved by each computational unit.

min
ui(k),...,ui(k+N−1)

Ji(k) (11)

subject to the dynamical model

xi(k+1) = Aiixi(k)+Biiui(k) (12)

and the local input constraints ui(k) ∈Ui, for times k, . . . ,k+N −1. Here no termi-
nal constraint is required in view of the fact that no state constraints are imposed
and that the local system matrices Aii are stable. Indeed, the auxiliary control law is
u(k) = 0 and, correspondingly, the separability of the cost function is obtained by
selecting Pi in such a way that AT

ii PiAii −Pi =−Qi. This, if we neglect the intercon-
nections terms Ai j with j �= i, between subsystems, makes Vf (as defined in the pre-
vious paragraph) a Lyapunov function for the overall - decentralized - system. The
asymptotic stability properties of the control system are proved a posteriori if some
inequality conditions are verified. In general, in order to achieve closed-loop sta-
bility as well as performance in the development of decentralized MPC algorithms,
the interconnections (at least the terms Ai j) between different subsystems should be
weak or the system should display peculiar structures (e.g., acyclic graphs).

A different approach consists of considering couplings as disturbances. For ex-
ample, in [10], a decentralized MPC algorithm for nonlinear discrete time systems
subject to decaying disturbances was presented. In the design of the decentralized
MPC, the effects of interconnections between different subsystems are considered
as perturbation terms whose magnitude depends on the norm of the system states.
No information is exchanged between the local controllers and the stability of the
closed-loop system relies on the inclusion of a contractive constraint in the formula-
tion of each of the decentralized MPC problems. In [11], the stability of a decentral-
ized MPC is analyzed from an input-to-state stability (ISS) point of view. For linear
systems this approach consists of rewriting the subsystem Si model (3) as

xi(k+1) = Aiixi(k)+Biiui(k)+νi(k) (13)

where νi(k) = ∑ j �=i(Ai jx j(k)+Bi ju j(k)) is regarded as an unknown, but bounded
- if local state and input constraints (4) are enforced - disturbance which must be
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compensated or rejected using an ad-hoc robust MPC scheme. Along this line, e.g.,
the algorithm in [12] has been proposed for linear systems, resorting to tube-based
MPC (see [13, 14] and Chapter Robust Optimization for MPC). For more details,
see also Chapter “Scalable MPC Design”.
It is worth remarking that, in all the decentralized schemes described above, no
information is required to be transmitted between local regulators, since only the
information regarding the local state is used in the corresponding MPC optimization
problem (11).

4 Distributed MPC

According to the taxonomy proposed in [3] and nowadays widely used, DMPC al-
gorithms can be broadly classified as follows:

• iterative or non-iterative: in iterative algorithms information can be transmitted
among the local regulators many times within the sampling time. This opens
the way to the design of methods aimed at achieving a global consensus among
the regulators on the actions to be taken within the sampling interval. On the
contrary, in non-iterative algorithms information is transmitted only once in the
sampling period, so that the regulators are required to possess some robustness
properties to compensate for the reduced information available.

• cooperating and non-cooperating: in cooperating algorithms each local regula-
tor tries to minimize a global cost function, so that Pareto - i.e., system-wide
- optimal solutions can be computed, at least in principle. In non-cooperating
algorithms each regulator minimizes its local cost function, with possible con-
flicting goals; in this case, Nash equilibria are to be expected.

• fully connected or partially connected: in fully connected algorithms informa-
tion is transmitted and received from any local regulator to all the others. In
partially connected methods the information is exchanged between any local
regulator and a subset of the others. Although this is not a structural property, it
can strongly influence the properties and the transmission load of the methods
as well as their computational burden.

4.1 Cooperating DMPC

As a prototype algorithm for this class of DMPC methods, we make reference to
the results reported in [8, 15]. The system to be controlled is assumed to be in the
state decoupled form (6): this implies that the transition matrix of the expanded sys-
tem (7) is block-diagonal, i.e., A =diag(A11, . . . ,AMM). For simplicity we assume A
to be asymptotically stable. This ensures the separability of the cost function J(k) as
in (9): in fact we can take u(k) = Kx = 0 (i.e., K = 0) as a - decentralized - auxiliary
control law for the expanded system and we can select Pi, i = 1, . . . ,M in such a
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way that AT
ii PiAii −Pi = −Qi, Qi > 0. This makes Vf a Lyapunov function for the

system x(k+ 1) = Ax(k), as required. Finally, in the present algorithm, only input
constraints are enforced.
At time k all the local MPC control algorithms have knowledge of the overall state
x(k) and of the full system dynamics, meaning that a fully connected communica-
tion network is required to support the transmission of the global state to all the
local control stations.
The following iterative procedure is performed within the sampling period from
time k and time k+1:

• at iteration (negotiation) step p, p ≥ 1, each local controller in Si has the infor-
mation about the possible input sequences of the other subsystems, up−1

j (k+ l),
for l = 1, . . . ,N −1 and j �= i, to be broadcast thanks to the available fully con-
nected communication network; the following (global) optimization problem is
solved at a local level

min
ui(k),...,ui(k+N−1)

J(k) (14)

subject to the expanded model (7) and, for l = 0, . . . ,N −1,

ui(k+ l) ∈Ui (15)

u j(k+ l) = up−1
j (k+ l) ,∀ j �= i (16)

• letting uo
i (k), . . . ,u

o
i (k+N − 1) be the optimal solution, a convex combination

between the solution at the previous iteration and the newly computed one is
used, i.e.

up
i (k+ l) = αiu

p−1
i (k+ l)+(1−αi)u

o
i (k+ l) , l = 0, . . . ,N −1

where αi ∈ (0,1) and ∑M
i=1 αi = 1.

• if a termination condition, which can depend on the elapsed time within the
sampling period or on an optimality test, is satisfied, the iterative procedure ends
and the last computed value up

i (k) is used as ui(k), otherwise a new iteration
starts (p ← p+1)

• when a new measurement is received, (k ← k + 1) the overall procedure is
restarted.

The algorithm requires an initialization for p = 0, which can be obtained based on
the optimal control sequence at the previous time k−1.
As shown in [8, 15] stability of the closed-loop system is guaranteed for any num-
ber of iterations performed within the sampling time; in addition, it can be proven
that the computed solution converges to the one of the corresponding centralized
control system as the number of iterations (p) increases. Finally, the method can
be extended to cope with unstable open-loop systems, provided that a suitable zero
terminal condition is included into the problem formulation, and with tracking prob-
lems [8].
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Interestingly, in [8] it has been shown that, if each local controller adopts a non-
cooperating (selfish) approach and minimizes only its own cost function Ji, conver-
gence to a Nash equilibrium is achieved and no stability guarantees can be proven.
In [16], a further step is done: more specifically, it is shown that it is possible to add,
for each subsystem, a constraint related to the maximal satisfactory and sufficiently
small (denoted satisficing in the papers) cost γi, i.e., Ji(k) ≤ γi. According to [16],
this variation allows to shift from a purely cooperating scheme (denoted also cat-
egorical altruist algorithm) to a scheme (denoted situational altruist) where local
(selfish) constraints are introduced.

4.2 Non-cooperating Robustness-Based DMPC

The algorithm described in [17] is based on the idea that each subsystem i transmits
to its neighbors its planned state reference trajectory x̃i(k + j), j = 1, . . . ,N, over
the prediction horizon and guarantees that, for all j ≥ 0, its actual trajectory lies
in a “tube” centered in x̃i, i.e. xi(k+ j) ∈ x̃i(k+ j)⊕Ei, where Ei is a compact set
including the origin. Then, assuming here for simplicity that the system is input
decoupled, Equation (3) can be written as

xi(k+1) = Aiixi(k)+Biiui(k)+∑
j

Ai jx̃ j(k)+wi(k) (17)

where wi(k) = ∑ j Ai j(x j(k)− x̃ j(k)) ∈ Wi is a bounded disturbance to be rejected
using the tube-based MPC approach [13] (see also Chapter “Robust Optimization
for MPC”), where Wi =

⊕
j Ai jEi. The term ∑ j Ai jx̃ j(k) is equivalent to a non-

manipulable input, known in advance over the prediction horizon, to be properly
compensated.

From (17), the i-th subsystem nominal model [13] is defined as

x̂i(k+1) = Aiix̂i(k)+Biiûi(k)+∑
j

Ai jx̃ j(k) (18)

Letting K=diag(K1, . . . ,KM) be a block-diagonal matrix such that both A+BK and
Aii +BiiKi are stable, the local control law is chosen as

ui(k) = ûi(k)+Ki(xi(k)− x̂i(k)) (19)

From (17) and (19), letting zi(k) = xi(k)− x̂i(k), it holds that

zi(k+1) = (Aii +BiiKi)zi(k)+wi(k) (20)

where wi ∈Wi. Since Wi is bounded and Aii+BiiKi is stable, there exists a robust pos-
itively invariant set Zi for (20) such that, for all zi(k) ∈Zi and wi(k) ∈Wi, one has
zi(k+1)∈Zi. According to the approach developed in [13], given Zi and assuming
that there exist neighborhoods of the origin ΔEi such that
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ΔEi ⊕Zi ⊆ Ei (21)

at any time instant k the i-th subsystem computes the value of ûi(k) in (19) as the
solution to

min
x̂i(k),ûi(k),...,ûi(k+N−1)

Ji(k) (22a)

subject to (18) and the initial state constraint

xi(k)− x̂i(k) ∈Zi (22b)

For l = 0, . . . ,N −1, to guarantee that the difference between xi and x̃i is effectively
limited as initially stated, we require that

x̂i(k+ l)− x̃i(k+ l) ∈ ΔEi (22c)

Both local (4) and coupling (5) constraints can be imposed. This is done by requiring
that, for l = 0, . . . ,N −1

x̂i(k+ l) ∈ X̂i (22d)

(x̃1(k+ l), . . . , x̂i(k+ l) . . . , x̃M(k+ l)) ∈ X̂C (22e)

This requires to suitably define the sets X̂i and X̂C as restricted ones, e.g., by setting
X̂i ⊆Xi �Zi. Although state constraints only have been defined for simplicity, in-
put constraints can be included similarly. Finally, the scheme calls for the definition
of terminal constraints of the type

x̂i(k+N) ∈ X̂ f ,i (22f)

With the optimal solution at time k, it is also possible to compute the predicted value
x̂i(k+N), which is used to incrementally define the reference trajectory of the state
to be used at the next time instant k+1, i.e. x̃i(k+N) = x̂i(k+N).
Condition (21) is a key condition for the well posedness of the present distributed
control scheme. Despite its analysis goes beyond the scope of this chapter, it is worth
remarking that it is equivalent to the so-called tube-based small gain condition for
networks discussed in Chapter “Scalable MPC Design”.
Remarkably, each local control station uses only local state information (i.e., xi(k))
and its neighbors’ planned state trajectories x̃ j(k). The latter is transmitted in a
neighbor-to-neighbor fashion thanks to the available partially connected commu-
nication network.
A significant work has been devoted to the proper definition of separable terminal
cost and constraint sets. In [17, 18] methods for a proper choice of the weights Qi,
Ri, Pi, of sets Ei, and of the terminal set X̂ f ,i guaranteeing the well posedness and
the stabilizing properties of the algorithm are proposed.
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4.3 Distributed Control of Independent Systems

A prototype non-iterative algorithm for independent systems coupled through con-
straints is now described, inspired by the approach described in [19]. The system is
assumed to be affected by an unknown, but bounded noise, so that the robust tube-
based approach of [13] is used also in this case. The model of the i-th subsystem,
i = 1, . . . ,M, is described by

xi(k+1) = Aiixi(k)+Biiui(k)+di(k) (23)

where di(k) ∈Di is a bounded disturbance. The M systems are subject to both local
and coupling constraints (4) and (5), respectively.
For each system i = 1, . . . ,M, the local nominal model

x̂i(k+1) = Aiix̂i(k)+Biiûi(k) (24)

is defined and a stabilizing gain Ki is computed. Also in this case, the local stabiliz-
ing control law is given by

ui(k) = ûi(k)+Ki(xi(k)− x̂i(k)) (25)

and letting zi(k) = xi(k)− x̂i(k), it holds that

zi(k+1) = (Aii +BiiKi)zi(k)+di(k) (26)

In view of the boundedness of the disturbance and the stability of Aii +BiiKi, there
exists a robust positively invariant set Zi for (26) such that, for all zi(k) ∈ Zi and
di(k) ∈Di, one has zi(k+1) ∈Zi.
At any time instant k only one system, say the i-th one, is allowed to update its
future plans by solving a suitable MPC problem, while all the others update their
control variables according to the previously computed control sequence and the
corresponding auxiliary law, i.e. their future nominal control moves computed at
time k are, for all j �= i

û j(k+ l|k) = û j(k+ l|k−1) , l = 0, . . . ,N −2
û j(k+N −1|k) = Kjx̂ j(k+N −1|k−1)

where x̂ j(k+N−1|k−1) is the evolution of the nominal state starting from x̂i(k) =
xi(k) with the sequence û j(k+ l|k−1), l = 0, . . . ,N −2. We also define x̂ j(k+N −
1|k−1) = (Aii +BiiKi)x̂ j(k+N −1|k−1).
On the contrary, the i-th system computes the value of ûi(k) in (19) as the solution
to

min
x̂i(k),ûi(k),...,ûi(k+N−1)

Ji(k) (27a)
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subject to (18) and the initial state constraint

xi(k)− x̂i(k) ∈Zi (27b)

Both local (4) and coupling (5) constraints are forced by requiring that, for l =
0, . . . ,N −1

x̂i(k+ l) ∈ X̂i (27c)

(x̂1(k+ l|k−1), . . . , x̂i(k+ l) . . . , x̂M(k+ l|k−1)) ∈ X̂C (27d)

where the sets X̂i and X̂C are properly restricted subsets of Xi and XC, e.g., by set-
ting X̂i ⊆Xi�Zi. As in the previous algorithms, the scheme calls for the definition
of terminal constraints of the type

x̂i(k+N) ∈ X̂ f ,i (27e)

Similarly to the non-cooperating robustness-based control scheme presented in Sec-
tion 4.2, a partially connected communication network is required to support the
transmission of the planned trajectories x̂ j(k+ l|k−1) to each local control station
from the (constraint-based) neighboring ones.
As described in [19, 20], the basic algorithm here described can be greatly enhanced
to allow for more than one system updating its future plans with the optimization
procedure at each time step. In addition, cooperation is achieved letting each sys-
tem to minimize a global cost function and the communication requirements can be
significantly reduced with respect to an all-to-all solution by exploiting the graph
topology forced by the coupling constraints.
Similar schemes have been devised by other research teams, e.g., [21]. The paper
[22] also extends this method to cope with economic-based cost functions.

4.4 Distributed Optimization

A different approach with respect to the distributed algorithms previously described
consists of computing the optimal solution to the original centralized optimization
problem as the iterative solution to smaller, more tractable, and independent ones.
This idea, which is the basis of many popular decomposition methods, can be traced
back to the early contributions, e.g., [23]. In the context of MPC, the reader is re-
ferred to the recent contributions [24–27].
A sketch of a simple version the popular dual decomposition approach, proposed in
[24], applied to MPC is now described. Constraints of general type can easily be
considered in the present framework, although for simplicity of presentation they
will be neglected here. Consider the set of input decoupled systems

xi(k+1) = Aiixi(k)+Biiui(k)+∑ j �=i Ai jx j(k) (28)
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and the following centralized problem

min
u(k),...,u(k+N−1)

J(k) (29)

In view of the formal separability of the cost function J(k), the coupling between the
subproblems is due to the “coupling variables” νi = ∑ j �=i Ai jx j in (28). Now write
Equation (28), similarly to (13), as

xi(k+1) = Aiixi(k)+Biiui(k)+νi(k) (30)

and, denoting by λi the Lagrange multipliers, consider the Lagrangian function

L (k) =
M

∑
i=1

[Ji(k)+
N−1

∑
l=0

λi(k+ l)(νi(k+ l)−∑
j �=i

Ai jx j(k+ l))] (31)

For the generic vector variable ϕ , let ϕ̄i(k) = [ϕT
i (k) , . . . ,ϕT

i (k+N − 1)]T and
ϕ̄ = [ϕ̄T

1 , . . . , ϕ̄T
M]T . Then, by relaxation of the coupling constraints, the optimization

problem of Equation (29) can be stated as

max
λ̄ (k)

min
ū(k),ν̄(k)

L (k) (32)

or, equivalently

max
λ̄ (k)

M

∑
i=1

J̃i(k) (33)

where, letting Ā ji be a block-diagonal matrix made by N blocks, all equal to A ji,

J̃i(k) = min
ūi(k),ν̄i(k)

[Ji(k)+ λ̄ T
i (k)ν̄i(k)−∑

j �=i

λ̄ T
j (k)Ā jix̄i(k))] (34)

The following two-step iterative procedure is then used at any time step to compute
the optimal solution

1. for a fixed λ̄ , solve the set of M independent minimization problems given by
Equation (34) with respect to ūi(k), ν̄i(k);

2. given the collective values of ū, ν̄ computed at the previous step, solve the max-
imization problem given by (33) with respect to λ̄ . This problem can be solved
in a distributed way using a gradient step, see [24].

To summarize, the described iterative algorithm must be supported by a partially
connected communication network (for both steps 1 and 2, provided that the latter
uses a distributed gradient step). More specifically, at each iteration, for step 1 it
is required that, for all i = 1, . . . ,M, the i-th local computing station receives the
current values of λ j(k + l), l = 1, . . . ,N − 1 by the agents j �= i which have i as
neighbor, i.e., such that i ∈N j; on the other hand, for step 2, it is required that the
i-th station receives the current values of x j(k+ l) by its neighbors j ∈Ni.
It is well recognized that this kind of decomposition approaches are characterized by
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slow convergence, due to the great number of iterations required to obtain a solution.
However, to this regard, many efficient algorithms have been developed, see, for
instance, [26]. In addition, the fundamental properties of recursive feasibility and
stability are not a-priori guaranteed, and can be achieved by a proper definition of
the optimization problem and of the constraints, see [27].
A final remark is due: as noted above and as apparent from (33), the separability of
the cost function J(k) is a major requirement also for this method, as well as - for
constrained problems - the separability of the terminal constraint set. The previously
discussed approaches can be used to this aim, including the one presented in [17, 18].
Also the recent work [28] is devoted to this problem and allows for scalable design.
See Chapter “Scalable MPC Design” for more details.

5 Extensions and Applications

The DMPC algorithms discussed in the previous sections have been designed for
linear, discrete-time, and time invariant systems, and the main approaches and ideas
behind most of the nowadays available methods for the regulation problem have
been described. However, the recent and tumultuous research activity in the field
has produced a number of algorithms dealing with a large variety of systems and
control problems. Among them, we here recall some of the most interesting research
directions, with some references:

• DMPC algorithms have been developed for continuous-time and nonlinear sys-
tems in, e.g., [21, 29–31].

• The output feedback case has been studied in [32], while the tracking problem
has been analyzed, e.g., in [8, 33]. An alternative approach, based on the par-
ticular class of MPC strategies called Command Governor methods, has been
reported in [34] and in the papers referenced therein.

• DMPC for systems affected by stochastic noises has been considered in [35–
37].

• Economic MPC (see Chapter “Economic Model Predictive Control: Some De-
sign Tools and Analysis Techniques”) has been extended to cope with a dis-
tributed implementation in [22, 38].

• The new and emerging field of coalitional control, which can be seen as an evo-
lution of DMPC where the topology of the control structure can vary with time,
has been treated in [39], where an up-to-date literature review is also reported.

Many applications domains of DMPC have been explored, although most of the
reported research still makes reference to simulation studies, with only few real ap-
plications (mainly laboratory experiments). In view of its nature, DMPC fits very
well with the control of large, spatially distributed systems, possibly interconnected
through a network. For this reason, power networks, smart grids, and in general
distributed energy management systems are the natural domains where DMPC can
offer advantages with respect to a centralized solution, see, for instance, [40–44].
Another class of problems where DMPC can have a great potential impact concerns
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the management and control of irrigation canals, as discussed in [45]. The coordi-
nation of multi-vehicle systems with DMPC has been considered, e.g., in [46, 47].
Finally, applications in other fields are described in [48, 49].

6 Conclusions and Future Perspectives

The research activity in Distributed Model Predictive Control has been intense in the
last decade and many methods are nowadays available, see, for instance, the many
contributions reported in [4]. In parallel with the development of new algorithms,
also the most significant fields of application of DMPC have been clarified. In our
opinion, these include networked systems, like power, water, and traffic networks,
the coordination of autonomous vehicles and flying systems (drones), the control of
very large-scale, weakly coupled, systems. However, there is still a significant gap
between research results and real-world applications since most of the DMPC algo-
rithms have only been tested in simulations or with laboratory benchmarks. Among
the most promising future research directions, we believe that the reconfigurability
of DMPC will be a major topic. To this regard, plug-and-play and coalitional con-
trol strategies, possibly driven by external events, will be required to enhance the
ability of DMPC to deal with many real control problems and to provide significant
improvements with respect to the nowadays adopted control solutions.
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31. Liu, J., Muñoz de la Peña, D., Christofides, P.D.: Distributed model predictive control of
nonlinear process systems. AIChE J. 55, 1171–1184 (2007)

32. Farina, M., Scattolini, R.: An output feedback distributed predictive control algorithm. In:
Proceedings of the 50th IEEE Conference on Decision and Control, pp. 8139–8144 (2011)

33. Farina, M., Giulioni, L., Betti, G., Scattolini, R.: An approach to distributed predictive control
for tracking - theory and applications. IEEE Trans. Control Syst. Technol. 22(4), 1558–1566
(2014)

34. Casavola, A., Garone, E., Tedesco, F.: The distributed command governor approach in a nut-
shell. In: Maestre, J.M., Negenborn, R.R. (eds.) Distributed Model Preductive Control Made
Easy. Springer, Berlin (2014)



258 Marcello Farina and Riccardo Scattolini

35. Perizzato, A., Farina, M., Scattolini, R.: Stochastic distributed predictive control of indepen-
dent systems with coupling constraints. In: IEEE Conference on Decision and Control, pp.
3228–3233 (2014)

36. Farina, M., Giulioni, L., Scattolini, R.: Distributed predictive control of stochastic linear sys-
tems with chance constraints. In: American Control Conference, pp. 20–25 (2016)

37. Dai, L., Xia, Y., Gao, Y., Cannon, M.: Distributed stochastic MPC of linear systems with
additive uncertainty and coupled probabilistic constraints. IEEE Trans. Autom. Control 62(7),
3474–3481 (2017)

38. Chen, X., Heidarinejad, M., Liu, J., Christofides, P.D.: Distributed economic MPC: applica-
tion to a nonlinear chemical process network. J. Process Control 22, 689–699 (2012)

39. Fele, F., Maestre, J.M., Camacho, E.F.: Coalitional control: cooperative game theory and con-
trol. IEEE Control Syst. Mag. 37, 53–69 (2017)

40. Wang, D., Glavic, M., Wehenkel, L.: Comparison of centralized, distributed and hierarchical
model predictive control schemes for electromechanical oscillations damping in large-scale
power systems. Int. J. Electr. Power Energy Syst. 58, 32–41 (2014)

41. Ma, M., Chen, H., Liu, X., Allgöwer, F.: Distributed model predictive load frequency control
of multi-area interconnected power system. Int. J. Electr. Power Energy Syst. 62, 289–298
(2014)

42. Larsen, G.K.H., van Foreest, N.D., Scherpen, J.M.A.: Distributed MPC applied to a network
of households with micro-CHP and heat storage. IEEE Trans. Smart Grid 5, 2106–2114
(2014)

43. del Real, A.J., Arce, A., Bordons, C.: An integrated framework for distributed model predic-
tive control of large-scale power networks. IEEE Trans. Ind. Inf. 10, 197–209 (2014)

44. Scherer, H.F., Pasamontes, M., Guzman, J.L., Alvarez, J.D., Camponogara, E., Normey-Rico,
J.E.: Efficient building energy management using distributed model predictive control. J. Pro-
cess Control 24, 740–749 (2014)

45. Fele, F., Maestre, J.M., Hashemy, S.M., Muñoz de la Peña, D., Camacho, E.F.: Coalitional
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