
Control Engineering

Saša V. Rakovi ́c 
William S. Levine
Editors

Handbook 
of Model 
Predictive 
Control





Control Engineering

Series Editor
William S. Levine
Department of Electrical and Computer Engineering
University of Maryland
College Park, MD
USA

Editorial Advisory Board
Richard Braatz
Massachusetts Institute of Technology
Cambridge, MA
USA

Graham Goodwin
University of Newcastle
Australia

Davor Hrovat
Ford Motor Company
Dearborn, MI
USA

Zongli Lin
University of Virginia
Charlottesville, VA
USA

Mark Spong
University of Texas at Dallas
Dallas, TX
USA

Maarten Steinbuch
Technische Universiteit Eindhoven
Eindhoven, The Netherlands

Mathukumalli Vidyasagar
University of Texas at Dallas
Dallas, TX
USA

Yutaka Yamamoto
Kyoto University
Kyoto, Japan

More information about this series at http://www.springer.com/series/4988

http://www.springer.com/series/4988
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Preface

We created this handbook because we believe that model predictive control (MPC) is
one of the most important recent developments in control theory and its applications.
Our reasons for this belief are threefold.

1. MPC is an effective way to control a large and practical class of nonlinear multi-
input multi-output (MIMO) systems.

2. Such systems are becoming more and more common and important as a result
of improvements in sensors and communications coupled with engineer’s desire
to improve the overall system performance.

3. An important impediment to the use of MPC has been that it is computation-
ally demanding. But computing has become ubiquitous, faster, and much less
inexpensive.

The modern automobile, with over 100 computers, at least two communication
networks, and its extensive collection of sensors, is a well-known system that ex-
emplifies these points. A second example is the modern cell phone that includes—
basically as throw-ins—GPS, an inertial measuring unit, a camera, and the ability
to provide walking, driving, or public transit routes almost anywhere. Yet another
example is that many PID controllers are now augmented by both anti-windup and
self-tuning capabilities.

With this in mind, we have collected a set of articles that offer an introduction
to the concepts, ideas, results, tools, and applications of MPC. It is our hope that
anyone with an interest in some aspect of MPC will find, at least, useful information
and suggestions for additional reading in this book. We also hope that this handbook
will facilitate the further development of the theory and practice of MPC.

This handbook is really the work of the authors of the articles in it. We thank
them. We also thank Ben Levitt, Editor, for his encouragement, advice, and support
and Samuel DiBella, Assistant Editor, for his assistance with many of the details of
publication.
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We would also like to express our thanks to all the individuals who contributed
to the articles in the book.

London, UK Saša V. Raković
College Park, MD, USA William S. Levine
March 1, 2018
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The Essentials of Model Predictive
Control

William S. Levine

1 Introduction

Model Predictive Control (MPC) is a method of designing and implementing feed-
back control systems that, in many situations, perform better than those created by
other methods. In addition, MPC provides an effective and general means to design
control systems for a large and practically important set of multiple-input, multiple-
output (MIMO) systems.

Recent technological advances have substantially decreased the costs and in-
creased the capability of computers, sensors, and communications, making the ben-
efit/cost ratio for computationally intensive control systems larger and larger. These
advances have also greatly increased the need for an effective way to design con-
trollers for complex multiple-input, multiple-output systems by making such sys-
tems more and more common. Simultaneously advances in the mathematics and
computational algorithms for optimization have greatly improved the speed and re-
liability of the calculations required by MPC.

MPC requires a large amount of real-time computing but recent advances in com-
puting hardware and software have also greatly reduced the cost and improved the
speed and reliability of these computations.

This article is meant primarily as an introduction to MPC. By focusing on the
historical background and on the simplest problem for which MPC is essential to
the practical solution, it is hoped that it will help the reader understand the more
sophisticated and complicated problems addressed in the rest of this handbook.

The following section provides the intuitive ideas and some of the history behind
MPC. This is followed by a detailed development of MPC for linear systems with
simple inequality constraints on their states and controls. The question of stability
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4 William S. Levine

for linear time-invariant systems with simple inequality constraints on the states
and controls is addressed next. The following section deals with the same collection
of systems when they include exogenous inputs. The question of robustness is ad-
dressed next. This is followed by a somewhat detailed example of the use of MPC to
elucidate the control of posture as it is done by humans. The article then ends with
some brief concluding remarks.

2 Background

This section begins with an intuitive introduction to the basic ideas behind MPC.
This is followed by a brief and biased summary of its history.

2.1 Intuition

Humans actually use an intuitive version of MPC in many aspects of their daily
lives. It is the way that you catch a ball; it is a rational basis for investment. In
both cases, you use a prediction of the future to inform your present decision. A
particularly vivid example is in playing chess. A good player tries to predict all the
possible moves as far into the future as possible before making a move. Unless it
is very close to the end of the game, it is impossible to extend these predictions to
the game’s finish. Thus, the prediction horizon is finite and incomplete. The move
the player chooses is the one that he or she believes is the best one (optimal) given
the prediction. Once the opposing player has moved, the player repeats the predic-
tion/optimization process based on the new situation. If the opponent has made a
predicted move, the player has only to add one more step to his or her previous
prediction. If the opponent’s move was unexpected, the player adjusts his or her pre-
dictions appropriately. This iterative process is repeated until the end game, which
has an explicitly computable solution, is reached.

There are several features of this method that should be emphasized. The first is
that the prediction is only for a finite number of steps (moves). This is because the
cost and complexity of prediction increases very rapidly with the number of steps.
The second is that it is necessary to decide on a best move given the predictions. This
decision requires a performance measure—a criterion that can be used to evaluate
the possible moves. The choice of this performance measure is very difficult in
chess. One has to trade off among positional advantage (strategy) and the benefit
obtained by taking an opponent’s piece (tactics). It is hard to judge the value of a
positional advantage and to compare it to the advantage of having an extra piece or
two. To some extent, the trade off is influenced by the quality of the opponent. A
weak opponent is unlikely to be able to overcome the loss of a piece while a strong
opponent may well have deliberately sacrificed a piece in return for a much better
position.
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The third important feature is that it can be very beneficial in chess to be able to
prune the prediction tree. That is, because there are so many possible moves, and
responses to those moves, it is very helpful to eliminate those sequences of moves
that are obviously bad. It is obvious that the player who can accurately predict n
moves ahead will generally beat a player who can only predict m (m < n) moves
ahead.

All of these aspects of chess repeat themselves in Model Predictive Control. The
basic idea is to use a mathematical model of the system to be controlled to predict
its behavior n time steps into the future (hence, model predictive). Of course, the
prediction depends, as in chess, on the specific control used.

The second step is to choose the best (optimal) predicted future. This requires a
performance measure, that is, a criterion for comparing the different possible futures.
Usually, this criterion takes the form of a “cost” to be minimized. Once the best
sequence of controls is chosen, the first element of the sequence is applied to the
system. This is exactly analogous to making a move in chess. After this first control
value is applied, the system responds, a new measurement is taken, and the problem
is repeated, exactly as in chess. In contrast to chess, this sequence of steps is often
repeated ad infinitum.

As in chess, it can be very difficult to choose a suitable performance measure.
The most common choice is quadratic in both the control signal and the system
states. The reasons for this will be explained shortly. An important issue in choosing
the performance measure is robustness. If one thinks of nature as ones’ opponent,
the situation parallels that in chess. If the source of the disturbances is expected to
be particularly clever and malicious, then a very robust controller is needed. If the
disturbances are expected to be relatively benign, then a more aggressive but less
robust controller would be superior. Again, this will be discussed at greater length.

2.2 History

There was great interest and excitement about control theory in the 1960s. Most of
this centered around three areas of research.

1. The maximum principle—which produced necessary conditions for open-loop
optimal controls under reasonably general assumptions.

2. Dynamic programming—which produced optimal feedback controls but re-
quired impossible amounts of computation for all but the simplest problems.

3. Lyapunov’s method for determining stability—which gave sufficient conditions
for stability when a suitable Lyapunov function could be found.

One of the most exciting results in controls during this period was the derivation
of the linear quadratic regulator (LQR) and the linear quadratic Gaussian regulator
(LQGR) theory [1] and [9]. Kalman, and others, using all three of the tools men-
tioned above, proved that the optimal controller for a linear time-invariant MIMO
system was a linear time-invariant state feedback control. Optimality was with re-
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spect to a quadratic measure of performance. This was deemed to be reasonable
because energy is, in many situations, quadratic. This linear feedback control was
proven to have several very desirable properties. It was guaranteed to exist, to be
unique, and to be asymptotically stable under very mild and reasonable assump-
tions. An explicit formula for the feedback gain was provided and it was relatively
easy to compute.

Because understanding the LQR and LQGR is very important to understanding
MPC, the theory is summarized here. The discrete-time LQR is first.

The discrete-time linear time-invariant dynamics are required to be

x(k+1) = Ax(k)+Bu(k), (1)

where: x(0) = ξ and k = 0,1,2, . . .
A is an n×n real matrix and B is an n×m real matrix.
x(k) is the state at time k and u(k) is the control at time k.

The performance measure (to be minimized) is

J(x(o),u[0,∞)) =
1
2

∞

∑
0
(xT (k)Qx(k)+uT (k)Ru(k)) (2)

where:
Q ≥ 0 is an n × n real symmetric matrix and R > 0 is an m × m symmetric real
matrix.

There are two additional properties of the components of the problem
(A, B, Q, and R) that are needed in order to guarantee that a solution exists, is
unique, and asymptotically stabilizes the closed-loop system. These are that the
system is stabilizable and detectable. These are refinements of the more commonly
known properties of controllability and observability.

Definition: A linear system is stabilizable if and only if its uncontrollable part is
asymptotically stable.

An example of a system that is not stabilizable.

x(k+1) =

[
2 0
0 .3

]
x(k)+

[
0
1

]
u(k) (3)

Note that
x1(k+1) = 2x1(k)

so x1(k) = 2kx1(0). Obviously, there is no controller that can stabilize such a system.

Definition: A linear system is detectable if and only if its unobservable part is
asymptotically stable.
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An example of a system that is not detectable.

x(k+1) =

[
2 0
0 .3

]
(4)

Consider the observation (output)

y(k) = Hx(k) =
[
0 1

]
x(k) = .3x2(k)

As in the previous example,

x1(k+1) = 2x1(k)

so x1(k) = 2kx1(0)

To understand the need for Detectability, note first that because Q is positive semi-
definite and symmetric it can be factored as Q = HT H. One can think of xT QX as
yT y where y = Hx is the “output” of the linear system (1). Thus, the performance
measure assigns zero cost to a state that blows up. The optimal controller ignores
this state—thereby allowing it to blow up.

Theorem 1. Given the stabilizable and detectable LTI system (1) and the perfor-
mance measure (2), there exists (implied by stabilizability) a unique optimal feed-
back control

uopt(k) =−Foptx(k) (5)

where:
Fopt = (R+BT PB)−1BT PA) (6)

and P satisfies the Discrete-Time Algebraic Riccatti Equation (ARE)

AT (P−PB((R+BT PB)−1BT P)A+Q−P = 0 (7)

Furthermore, the closed-loop (optimal) system is asymptotically stable (implied
by detectability).

Important Fact The solution, P, to the discrete-time algebraic Riccatti equa-
tion (7) can be used to produce a Lyapunov Function V (x) = 1

2 xT Px that can then be
used to prove that the closed-loop (optimal) system is asymptotically stable to the
origin.

There is also a very nice solution to the finite-time version of this problem. In this
case, one might as well allow the dynamics as well as Q and R to be time-dependent
as this adds no real complication to either the proofs or the results.

Thus, the discrete-time linear time-varying dynamics are

x(k+1) = A(k)x(k)+B(k)u(k), (8)

where:
x(0) = ξ and k = 0,1,2, . . . ,N +1
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A(k) is an n×n real matrix and B(k) is an n×m real matrix for all k = 1,2, . . . ,N.
x(k) is the state at time k and u(k) is the control at time k.

The performance measure (to be minimized) is

J(x(0),u[0,N)) =
1
2

N

∑
0
(xT (k)Q(k)x(k)+uT (k)R(k)u(k))+

1
2

xT (N +1)Q f x(N +1)

(9)
where Q(k),Q f ≥ 0 are n× n real symmetric matrices and R(k) > 0 is an m×m
symmetric real matrix for all k = 1,2, . . . ,N.

If N is larger than n, there are upper and lower bounds on the performance by
stabilizability and detectability and these bounds are independent of N.

Theorem 2. Given the stabilizable and detectable LTI system (1) and performance
measure (9), there exists a unique optimal feedback control

uopt(k) =−Fopt(k)x(k) (10)

where
Fopt(k) = (R(k)+BT (k)P(k)B(k))−1BT (k)P(k)A(k) (11)

and P(k) satisfies the Discrete-Time Algebraic Riccatti Equation

P(k) = AT (k)P(k+1)−P(k+1)B(k)((R(k)

+BT (k)P(k+1)B(k))−1BT (k)P(k+1))A(k)+Q(k) (12)

With the boundary condition at k = N that P(N +1) = Q f

Note that this implies that the optimal feedback gains are time dependent even if
(A, B, C, and R) are constant. Note also that P(0) is a function of N. Nonetheless,
it is reasonable to expect that limN→∞P(0) = P provided that (A, B, C, and R) are
constant. This is, in fact, true provided the system and performance criterion are
stabilizable and detectable (Please see Proposition 3.1.1 in [2]).

One apparent drawback to these results is the need to feedback the entire state
vector. This issue was addressed and a complete solution developed under two rea-
sonable assumptions. The first step is to modify the model of the plant to include
partial state feedback and perturbations to both the input and the output. The result-
ing model of the plant is shown in Figure 1.

In general, y(k) is a p-vector and C is a p×n matrix. Additionally, the pair A, C
is required to be detectable in order for the following results to produce a stable
closed-loop system.

Given the basic model in Figure 1, the two most common assumptions are ei-
ther that the two disturbance signals are independent of each other and individually
White Gaussian Noise (WGN) or they are present but negligible. In either case the
form of the full-order observer is the same, as shown in Figure 2.

It should be clear from comparing Figures 2 and 1 that the observer consists
of two parts. The first part is a model of the plant to be observed. The second is
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A

CB
u(k) x(k) z(k) y(k)

ξ(k) ν(k)

ΔΣ Σ
++

++

-

Fig. 1: An LTI plant with a control input, u(k), a state disturbance input, ξ (k), and
an output disturbance input, ν(k).

A

CB

)k(y)k(u

Δ ΣΣ
+

+

-
Σ

x(k)^

- -
y(k)^

Ff

Fig. 2: A linear observer for the plant in Figure 1. The inputs are y(k) and u(k), both
of which are known, and the output is x̂(k), an estimate of the state.

a feedback of the error between the predicted observation and the actual one. The
intuitive idea is that the plant model will cause the observer to track the plant in the
absence of errors in the initial conditions when the noise is negligible. When the
noise is WGN, the plant model causes the observer to track the average (mean) state.
The feedback of the observer error drives any deviations from the true value towards
zero provided the closed-loop observer is exponentially stable.

The difference in the observers is in the choice of Ff . If the disturbances are as-
sumed to be negligible, there is considerable freedom in the choice of Ff . The main
requirement is that the resulting closed-loop system (the observer, not the plant) is
exponentially stable. As the observer is implemented entirely in software, saturation
is not a concern. Placing the observer poles further to the left in the complex plane
speeds up the rate at which the estimated state converges to the true state. This is
important because, initially, the state is not known. Placing the closed-loop poles of
the observer so that the observer bandwidth is too large can be problematic because
there is always some noise and it is best to filter it out to the extent possible.

When the disturbances are assumed to be WGN some additional assumptions
are needed. Specifically, suppose that the expected values (means) of ν(k) and ξ (k)
are E(ν(k)) = 0 and E(ξ (k)) = 0 for all k. Furthermore, assume that the covariance
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matrices satisfy E(ξ (k)ξ T ( j))=Ξδ (k− j), E(ν(k)νT ( j))=Θδ (k− j)—withΘ >
0 and Ξ ≥ 0—and E(ν(k)ξ T ( j)) = 0 for all k, j. Note that δ (k) is the discrete time
Dirac delta function so δ (k)= 0 for all k �= 0 and δ (0)= 1. Under these assumptions,
the observer is the Kalman filter for the plant and Ff is given by

Ff = AP̂CT (Θ +CP̂CT )−1, (13)

where P̂ is the solution to an ARE that is slightly different from the one for the LQR
(please see Equation (7) for comparison).

P̂ = A(P̂− P̂CT (Θ +CP̂CT )−1CP̂)AT +Ξ (14)

Regardless of the design method, the observer can be designed offline, prior to
implementation of the controller. One should be aware of a number of issues related
to these observers.

• Under the given assumptions—LTI system perturbed by WGN—the Kalman
filter is the filter that minimizes the covariance of the error in the estimated state,
E((x(x)− x̂(k))(x(x)− x̂(k))T ). If the perturbations are random and White but
not Gaussian, the Kalman filter is the optimal linear filter with respect to the
same performance measure but there could be better nonlinear filters.

• One can think of Θ and Ξ as observer design parameters. They need not char-
acterize the actual disturbances. One needs to be cautious about singular Ξx(k)
because that can cause the Kalman filter to ignore some of its inputs.

• One might ask whether the observer and the state feedback controller are inde-
pendent. In general, this would not be true. In the LTI case discussed here, it
is true. A proof in the deterministic case (negligible noise) can be found in [6]
starting on page 537. Please see [2] starting on page 197 for the stochastic case.

A good introduction to observers of all types can be found in [5]. There are many
books and articles describing the Kalman filter and its variants. Many of the early
papers are reprinted in [15]. A good introduction to the underlying theory is in [4].

Once you have random inputs to the plant the criterion by which you measure
performance needs to account for this unpredictability. Intuitively, it makes sense to
try to drive the average (mean) error to zero and minimize the error variance. Such
a performance measure is

J(Ξ0,u[0,∞)) =
1
2

E{ lim
N→∞

[
N

∑
0
(xT (k)Ξx(k)+uT (k)Θu(k))]}. (15)

Finding the control that minimizes this performance measure subject to the con-
straint described by the plant in Figure 1 results in the Linear Quadratic Gaussian
Regulator (LQGR).

The LQGR is one of the triumphs of the state space version of control theory as it
developed in the very late 1950s and early 1960s. It is a complete feedback solution
to the problem of controlling an LTI system with additive WGN disturbances. It
provides useful background for stochastic MPC and the previous few paragraphs
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Fig. 3: The optimal control for a LTI plant perturbed by WGN, i.e., the LQGR

developed much of the theory. However, it was eventually shown to result in closed-
loop controllers that were not robust. The basic LQGR result is as follows.

Under the previously given assumptions on the plant—including stabilizability
of A,B and detectability ofA,H where HT H = Ξ—and the additional assumptions
that x(0) is Gaussian, E(x(0)) = ξ0, and E((x(0)xT (0)) = Ξ0, the optimal control is
as shown in Figure 3.

Note that this is a regulator problem. The objective of the control is to drive the
mean value of the state to zero. Also, there is a solution to the time-varying version
of this problem. It combines the solution to the time-varying LQR with the time-
varying version of the Kalman Filter.

Given that these results so thoroughly solve the control problem for linear-time
invariant (LTI) systems, it was very surprising to many people that there were rel-
atively few real engineering implementations of this controller. People speculated
that there were at least three reasons.

1. Implementing the controller required mn gains and this might be prohibitively
expensive.

2. Choosing Q and R could be very difficult.
3. The people who actually implemented controllers did not understand the theory

well enough.
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In fact, all of these conjectures were wrong. The most important reason for the
lack of real applications was that the LQR completely ignored actuator saturation.
In practice, this is a fundamental and inescapable limitation on most control sys-
tems, especially in the process industry. The effort to overcome this limitation on
the theory—spearheaded by engineers involved in actually building controllers–led
to MPC.

It was not the case that control engineers of all kinds did not know about ac-
tuator saturation. Theoreticians had long ago realized that actuator saturation was
important and developed a theory of optimal control that could include the effects
of saturation. This was the minimum principle of Pontryagin and his colleagues.
Unfortunately, the minimum principle had three important flaws even under the best
of circumstances. It only provided an open-loop optimal control; it was difficult to
compute the solution; the optimal control problem had to cover only a finite time
except in some very special cases.

Two approaches to solving the computational problem were considered, and their
relative merits debated. The first was to formulate and solve the optimal control
problem in continuous time. The continuous-time necessary conditions had to be
discretized in time in order for them to be solved on the computer. The second was
to discretize the original problem in time and then use linear, quadratic, convex, or
nonlinear programming methods to solve the discrete time problem. It is also quite
natural for digital controllers.

The open-loop optimal control depended on the initial condition and the future
state and control vectors. In practice, feedback controls are far superior to even the
best open-loop controls. Thus, it was important to find a way to obtain closed-loop
controls even if that meant sacrificing the theoretical optimality.

A number of people recognized that a way to approximate the optimal open-
loop controller by a closed-loop controller was to recompute the optimal control at
each new discrete-time instant. In order to do this the future state and control had
to be predicted out to the time at which the optimal control problem terminated.
This prediction needed to be based on a mathematical model of the system to be
controlled.

The potential advantages of such a closed-loop approximation to an optimal con-
trol were, and remain, obvious. However, optimality over a finite time interval does
not, in and of itself, imply stability. This sets the stage for Model Predictive Control.

3 Basics of Model Predictive Control (MPC)

As indicate above, many people saw that a kind of feedback control could be con-
structed out of a sequence of open-loop optimal controls. Rather than give an ab-
stract description of how this can be done, we describe the specific application of
this idea as it is implemented in the simplest MPC algorithm.
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Although one can describe a continuous-time theoretical version of MPC, the
implementation of MPC is usually in discrete time. Thus, we give only the discrete-
time version.

Given dynamics and performance measure identical to those for the infinite-time
LQR (please see Equations (1) and (2)), add the common practical constraints

Umin ≤ ui(k)≤Umax for all i = 1,2, . . . ,M and k = 0,1,2, . . . ,∞ (16)

Xmin ≤ xi(k)≤ Xmax for all i = 1,2, . . . ,N and k = 0,1,2, . . . ,∞ (17)

These constraints arise, for example, in a problem as simple as controlling the
level of water in a tank with a hole in its bottom by pumping water into the tank.
The water level cannot be less than zero or more than the height of the tank. The
control is constrained by the maximum pumping capability, both into and out of the
tank. Notice two things. First, there are constraints on the state in addition to those
on the control. Second, the control constraints are impossible to violate but the state
constraints must be enforced by the controller. It can be extremely important to
insure these constraints are satisfied as terrible things can happen if they are not.

Once the constraints (Equations (16) and (17) are added to the LQR of Theo-
rem 1, the results of the theorem are no longer true if the constraints are ever active,
as they would be in most practical problems. In fact, it is impossible to determine
or compute the optimal control exactly. It is possible to approximate the optimal
control for this constrained LQR by several methods, including MPC.

To do this by MPC one first replaces the infinite-time limit in the performance
measure by a finite-time, N. The resulting optimal control problem then consists of
a set of linear equations with variables {x(1),x(2),. . . ,x(N); u(0),u(1),. . . ,u(N-1)},
a performance measure that is a quadratic function of those same variables, and a
set of linear (really, affine) constraints on those same variables. This optimization
problem starts at k = 0 where the initial state x(0) = x is known. It is a quadratic
programming (QP) problem. Under our assumptions below, the solution to such a
QP always exists, is unique, and can be quickly and accurately computed.

Precisely, the problem is:
Minimize

J(x(0),u[0,N−1)) =
1
2

N−1

∑
0
(xT (k)Qx(k)+uT (k)Ru(k))+

1
2

xT (N)Q f x(N) (18)

where:
Q = HT H ≥ 0 and Q f ≥ 0 are n×n real symmetric matrices and R > 0 is an m×m
symmetric real matrix.

Subject to the constraints:

x(k+1) = Ax(k)+Bu(k), (19)

and the additional constraints given by Equations (16) and (17). The requirements
(assumptions) of stabilizability of A, B and detectability of A, H still apply.
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The simplest MPC algorithm starts at k = 0 by solving the open-loop, finite-time,
optimal control problem described above with known initial state x(0) = x. The
result, as in chess, is a set of control inputs (moves in chess) that are optimal over
the prediction interval (up to time k = N). Denote this sequence of controls by

uopt(x,N) = {uopt(x,N)(0) uopt(x,N)(1) uopt(x,N)(2) . . .uopt(x,N)(N −1)} (20)

The prediction includes a predicted optimal sequence of states

xopt(x,N) = {xopt(x,N)(0) xopt(x,N)(1) xopt(x,N)(2) . . .xopt(x,N)(N −1)} (21)

Note that the entire sequence is denoted by the bold font while the individual
terms include the time and are not bold.

Having computed this sequence (it is temporarily assumed that this happens in-
stantaneously) the first control value in the sequence, uopt(x,N)(0) is applied to the
system which then produces the state x(1). This result may or, more likely, may
not be the predicted value which is xopt(1). This actual state is observed. It then
becomes the initial value of the state in a new optimal control problem. This new
problem is identical to the first one (already solved) except for the initial condition.

The simplest MPC algorithm then solves this new problem and computes an
optimal sequence of optimal controls and predicted states starting at k = 1

uopt(x(1),N+1) = {uopt(x(1),N+1)(1) uopt(x(1),N+1)(2)

uopt(x(1),N+1)(3) . . . uopt(x(1),N+1)(N)} (22)

xopt(x(1),N+1) = {xopt(x(1),N+1)(1) xopt(x(1),N+1)(2)

xopt(x(1),N+1)(3) . . .xopt(x(1),N+1)(N)} (23)

Again, the first control value (u(1) = uopt(x(1),N+1(1)) in the new sequence is
applied to the system which again generates the next value for state vector, x(2).
This value is generally different from the one predicted so the next control value
(u(2)) has to be computed. This is done by solving the same optimization problem
with the new, known, initial condition x(2).

This procedure is repeated ad infinitum and defines and describes the simplest
version of MPC.

Note that the optimization problem is always the same except for the changing
initial state. Thus, the control is a time-invariant function of the current state which
we can denote by x. That is,

κN(x) = uopt(x,N)(0) (24)

1. Obviously, the computation of the optimal control cannot take zero time. But the
computation has to be fast enough and reliable enough to produce a sufficiently
accurate solution within a sample interval. In practice, the “optimal” control is
implemented with a delay of no more than one sampling interval.
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2. One also has to choose a suitable performance measure in order for the optimal
control problem to produce a good sequence of control values.

3. While it is intuitively reasonable to believe that this procedure will produce
a control sequence that is close to the truly optimal one (i.e., the solution to
the infinite time optimal control problem), this is not guaranteed. Additional
conditions to ensure that this is so are needed.

4. Without additional conditions, one cannot be certain that the sequence of actual
states and controls will not violate the constraints.

5. There is not even a guarantee that this closed-loop system is stable. Again, con-
ditions to guarantee asymptotic stability are needed.

In the following section, the conditions that guarantee stability and good perfor-
mance of MPC controllers are developed.

4 Stability of MPC

There are three issues. First, the controlled system must not violate the constraints.
This statement needs some qualification. Some constraints are “soft.” That is, small
violations of the constraint are tolerable. For example, suppose a tank would over-
flow if the level of liquid in it exceeded 5 meters. If the controller is designed with a
constraint that the liquid level is less than 4 meters, small violations of the constraint
are acceptable. Obviously, the same system has a hard level constraint at 5 meters.

There are also constraints that cannot possibly be violated because they are im-
posed by the hardware. An example is amplifier or motor saturation. These limit the
performance of the closed-loop system but cannot be violated. For these constraints
especially, but in general as well, controls and states that satisfy the constraints are
described as feasible in the MPC literature.

Second, it is generally true that the controlled system must be stable.
The third and last issue is performance. An example might be the following. Once

you have guaranteed feasibility and stability, you would like to minimize the cost of
operating the closed-loop system.

The key to most results on the stability of MPC is a pair of results that were
briefly mentioned immediately after Theorem 1. Specifically, the solution to the
unconstrained LQG depends on the Algebraic Riccatti Equation (ARE). The unique
positive definite solution to the ARE, denoted by P, can be used to create a Lyapunov
function

V (x(k)) =
1
2

xT (k)Px(k) (25)

for the unconstrained LQG. This function V (x(k)) is also the performance of the
unconstrained optimal control with initial condition x(k), as measured by the perfor-
mance measure (2).

This suggests that it would be very desirable to make the simplest MPC scheme
outlined in the previous section be equivalent to the LQR for any problem for which
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the constraints are always inactive. Even when the constrains are active, you would
like the simplest MPC to drive the state into a subset of the state space that has two
properties:

1. The constraints are inactive;
2. It is a positive invariant set when the control is the optimal LQR feedback—

when u(k) = Foptx(k).

This would, of course, guarantee exponential stability of the MPC controller.
Another property of the Lyapunov function (25) is very helpful in this program.

Given any constant, c, the set of points (the level set) defined by

{x : V (x)≤ c} (26)

is a positive invariant set for the LQR. This means that any initial condition inside
that set remains in that set if the LQR feedback is the control and the constraints are
never active.

The question is then, how can one construct the MPC problem so that the state
is forced into a level set of the unconstrained LQR optimal controller and, once it
is there, the MPC controller is identical to the optimal LQR controller. There are
several ways to do this. These are nicely discussed in the paper by Mayne et al. [11].
One way is to change the MPC problem in two ways.

1. Change the terminal weighting from Q f to P where P is the solution to the
ARE, Equation (7). In this equation, A and B are determined by the plant but Q
and R are design variables that can be chosen to modify and improve the MPC
controller.

2. Augment the MPC performance measure by a terminal state target set. This
takes the form,

x(N) ∈ Xf (27)

where Xf is a feasible set, in the sense that it satisfies the state constraint of
Equation (17) and has the additional property that the control constraint (16) is
satisfied by uopt(k) =−Foptx(k) (please see Equation (5)) for every x ∈ Xf . The
obvious choice for Xf is the largest level set of the Lyapunov function defined
by the P chosen above (please see Equation (26)) that satisfies these constraints.

The second change fundamentally alters the problem that must be solved in real
time by the MPC controller. Adding the requirement that the state reach this set
makes it certain that there will be initial states for which there is no solution to the
basic MPC computation. That is, no control exists that satisfies the constraints and
would drive the initial state to the target set in time N. Regardless of the choice of N
there will be some initial states for which a solution exists. For these initial states it
is possible to prove that the MPC controller is exponentially stable. Please see ([11]
and/or [14]) for such proofs. In general, increasing N will enlarge the set of initial
states for which the MPC controller results in stability.

It is logically impossible to prove mathematically that a physical system is stable
because the mathematical model that is used in the proof is never exactly the same
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as the physical system. For this reason the sensitivity of the mathematical result to
changes and other inaccuracies in the model is fundamentally important. This issue
is discussed shortly.

5 Exogenous Inputs

So far, the only version of MPC that has been discussed is regulation. That is, a
controller that takes a set of possible initial states, x(0), to 0. Often, one wants the
controlled system to track an external (exogenous) input. For example, in paper-
making, the goal is to keep the thickness of the paper constant—but certainly not
zero. Because the MPC controller is based on a prediction, it is necessary to supply
the desired state to the controller as is shown in the block diagram in Figure 4.

Note that this completely changes the stability question. For LTI systems, ex-
ponential stability implies Bounded-Input Bounded Output (BIBO) stability. That
is,

Definition 1. A system with input u(k) and output y(k) is BIBO stable if and only
if any bounded input (||u|| ≤ M) implies the output is bounded (||y|| ≤C). Note that
the norm is arbitrary.

This is not true for nonlinear systems, not even for systems that are LTI except
for saturation, the class of systems emphasized in this article.

In cases similar to paper-making, where the exogenous input is constant over
long periods of time and is small enough, one can simply subtract the input from
the actual state in the optimization problem that is internal to the MPC controller
to obtain a regulator problem that is identical to the one we described previously.
In this, and similar cases, there is a possible flaw in the simplest MPC. It is easy
to show that the steady-state error in the response of the MPC-controlled system

tnalPCPM
z(k) x(k)

-

+

zdesired(k)

Fig. 4: A generic MPC-controlled system with an exogenous input that is available
to the controller.
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Fig. 5: An MPC controller augmented with an observer and a (hypothetical) distur-
bance so as to have zero steady-state error in response to a step input.

to a step input is generally not zero. This is a well-known and classic problem in
feedback control. The classical solution is to add an integrator to the feedback loop.
An MPC solution to this problem is outlined in Figure 5.

In this figure the desired response, ydesired = yc = constant for all k ≥ 0 and is
a scalar. The dotted line and circle are meant to indicate that the disturbance input
d(k) dos not really exist. Nonetheless, it adds a state to the plant model for which
the controller is designed. The key to the set point tracking problem described here
is the observer. An immediate application of the two main ideas underlying observer
design—include a model of the plant and use error feedback to correct its errors—
provides the solution to the set point tracking problem. One should augment the
plant model in the observer to include a model for the hypothesized disturbance d.

[
x̂(k+1)
d̂(k+1)

][
A 1
0 1

][
x̂(k)
d̂(k)

]
+

[
B
0

]
u(k)+

[
Ff

Fd

](
y(k)−

[
C 1

][x̂(k)
d̂(k)

])
(28)

To show that this leads to zero steady-state error in response to a step input one
has to ignore any disturbances other than d as they would prevent the existence of a
constant steady state. Then, assuming that there is a steady state, the last row of the
observer equation satisfies 0 = Fd(y− ys)− (Cx̂− ys − d̂(k)). As long as Fd is not
zero, this implies that y = ŷ+ d̂. The MPC controller is designed to make ŷ+ d̂ = ys.

A much more thorough discussion of MPC control to track a constant input can
be found in [14] where it is called the set point tracking problem—standard termi-
nology in the process control literature.

Even for the simple set point tracing problem for an LTI system with simple in-
equality constraints and a quadratic performance measure, too large an input signal
could create infeasibility. In that case there would be no MPC solution.

The problem becomes very challenging when the input is less predictable, as
it might be when a human operator is supplying it. An example of this might be
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in a so-called robot surgical system where a doctor explicitly controls the robot
movement through a manipulandum. The extent to which the input is predictable
over the desired MPC time horizon determines the usefulness of MPC for such
problems.

6 Robustness

Precise analyses of robustness begins with precise descriptions of the ways in which
the mathematical model can be different from the model for which we proved sta-
bility. There are two common ways in which this can happen. The first is that the
measurement or estimate of the state that is fed back to the MPC controller can be
corrupted in some way. The second is similar in its effect but different in its cause.
Specifically, the model of the plant used in the MPC calculations is always an ap-
proximation to the real plant. The difference between the two can be viewed as a
disturbance to the feedback. Figures 6 and 7 illustrate this.

It is also possible for the control signal to be perturbed, either by inaccuracies in
its computation or by perturbations that occur in its implementation. These pertur-
bations act on the input to the plant. An example would be the noise signal denoted
by ξ in the LQGR.

The robustness problem is then to guarantee that the controlled system is (a) sta-
ble, (b) feasible. and (c) performs nearly as predicted despite whatever perturbations
are present. As in the observer design problem, the solution depends on the assumed
form of the perturbations. There are again two standard assumptions.

• The perturbations are WGN. This is somewhat optimistic. WGN will certainly
excite every response mode of the system but it scatters its energy over all fre-
quencies. It is also somewhat unrealistic because a physical perturbation must
be bounded and Gaussian random variables are not.

tnalPCPM
z(k) x(k)

-

+

d(k)

Fig. 6: A generic MPC-controlled system with an exogenous input that is not avail-
able to the controller and, thus, acts as a perturbation.
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MPC Plant Model
x(k)

+

+

Actual Plant

Model Error

Fig. 7: A generic MPC-controlled system explicitly showing the error in the model
used to compute the control.

• The perturbations are bounded but chosen by a malevolent nature to be the
worst possible. This is somewhat pessimistic but there are situations where this
is warranted.

It is known that the LQGR is not automatically robustly stable even though the
LQR is [7]. Nonetheless, it has been successfully used in a variety of applications.

The worst-case assumption leads to H∞ control in the LTI case when the perfor-
mance measure is to minimize the response to the worst possible input (Please see
[10] for a detailed introduction).

It is reassuring to know that the basic MPC problem described here (i.e., LTI
systems with convex constraints and a quadratic performance measure) is known to
be robustly asymptotically stable with respect to bounded state and measurement
noise [14]. However, more general nonlinear MPC can be completely nonrobust.
That is, arbitrarily small disturbances can cause instability [8].

Discussions of robustness in Model Predictive Control can be found in the arti-
cles [13] and [12].

7 Example

This example is meant to illustrate some of the ways that the simplest version of
MPC can be used to solve interesting problems as well as some of the limitations of
the approach. The problem is to describe how humans might regulate their upright
standing posture. The full details of the problem and its solution by MPC are con-
tained in [16]. Here the focus is on how MPC was used, how these ideas could be
extended, and open questions about the solution.
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7.1 Background

There are many aspects of the way humans regulate their upright standing posture
that are not understood despite a great deal of experimental and theoretical research.
If we consider only regulation in the sagittal plane (forward and backward but not
side to side), experiments have shown that humans exhibit a continual back and forth
sway. This indicates that the controller cannot be modeled as an LQR. Nonetheless,
it is plausible to believe that the controller is optimal—or nearly so—with respect to
some performance measure. Because the single overriding concern for living things
during the entire history of life on earth has been getting enough food (there are local
exceptions to this nowadays), it is reasonable to propose that the controller attempts
to minimize the metabolic energy expended in maintaining posture. Of course, it
is also important to maintain an upright posture and not to fall. Thus, one wants a
performance measure that penalizes energy expenditure and promotes stability. The
problem is important because falling is a major cause of injury, especially in the
elderly. Understanding the controller might assist in developing methods to reduce
the number of serious falls.

7.2 Dynamics

The dynamics of the human body are extremely complicated. It is necessary to de-
velop a mathematical model that captures the essential dynamical features but is
simple enough to understand and use in computations. It is also important to be able
to either measure or estimate the parameters of the model. A common choice for the
study of posture is to approximate the standing human by a multi-segment inverted
pendulum as shown in Figure 8. Note that the foot does not have toes and is repre-
sented as a triangular solid. The actuators in this system are muscles. It is a gross
oversimplification to represent them as ideal torque generators. This is done to sim-
plify the control problem but it is a useful approximation for the following reason.
The posture problem is mainly to minimize the effect of small perturbations. Thus,
one loses very little in linearizing the dynamics. This linearization would be much
more complicated if more realistic, nonlinear models of muscle were included. In
addition, realistic muscle models would add many more parameters to the model
and these would be difficult to determine accurately.

Experiments have shown that the human response to perturbations of their pos-
ture is different depending on the size of the perturbations. Small disturbances elicit
a so-called “ankle strategy” whereby the knees and hips are locked and the only
reaction is a rotation of the ankles. Larger disturbances are controlled by a “hip and
ankle strategy.” The knee is locked and the response is primarily bending at the hip
and ankle. Still larger perturbations result in rotation at all three joints. However, in
the interest of clarity and simplicity, it will be assumed that the knee joint is locked
in this example. Thus, the model can be regarded as adequate for both small and
intermediate amounts of perturbation.
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Fig. 8: A simplified model of a standing human as viewed from the side. Note that
the knee is assumed to be locked and the arms are held still at the sides.

The mathematical model of this inverted pendulum system is nonlinear and in-
cludes sines, cosines, and squared velocities. Because the range of movements con-
sidered is small, linearization about a vertical (unstable) equilibrium state is reason-
able. This posture is assumed to be with the joint angles φ1 = φ2 = π and all the
velocities and accelerations equal to zero. The result of linearization is a mathemat-
ical model that takes the form[

Q11 Q12

Q21 Q22

][
φ̈1

φ̈2

]
+[

[
R1

R2

]
=

[
ua

uh

]
(29)

where the linearized joint angles are denoted by φ1 and φ2 and ua is the torque
applied at the ankle and uh is the torque applied at the hip.
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We rewrite this in the standard state-space form as

ẋ(t) = Ax(t)+Bu(t) (30)

where x(t) = [φ1(t) φ2(t) φ̇1(t) φ̇2(t)]T and u(t) = [u1(t) u2(t)]T

7.3 Delay

It is known that the time delay between the onset of a postural perturbation and the
response to that perturbation is significant. A detailed discussion of the sources of
this delay can be found in [16]. It is helpful to separate the delay into two compo-
nents, a delay in the feedback (sensing), which is denoted by τs and a delay in the
control, represented by τc. Including these delays in the model results in

ẋ(t) = Ax(t)+Bu(t − τc) with y(t) = x(t − τs) (31)

where you will note that full state feedback is assumed. This is not unreasonable as
there is a plethora of sensors, ranging from proprioceptors in the muscles and joints
and tactile sensors in the feet to vision and the otoliths (accelerometers in the ears).

7.4 Performance Measure

A very good way to address the stability of posture is by means of the Center of Pres-
sure (COP). The ground supports the human by creating a torque about the toes as
well as both horizontal and vertical forces on the foot. As the foot does not move, the
horizontal forces created by the human must be canceled by the horizontal ground
force. Also, the downward vertical forces produced by the human must be canceled
by the torque about the toe, τt , and the vertical force, fv, of ground interaction. The
COP replaces τt by locating fv at the distance from the toe given by the COP as
defined below.

lcop =
τt
fv

(32)

The horizontal position of the human’s Center of Mass (CM) is another possible
measure of stability but it does not account for the effects of velocity.

The COP is also linearized about the same nominal posture, resulting in a func-
tion that is linear in the perturbations of the states and controls.

The performance measure is thus assumed to be quartic or some higher even
order in the linearized COP and quadratic in the linearized controls. Thus,

J(x(0),u[0,∞)) =
1
2

∫ ∞

0
[ql4

cop(t)+ r1u2
1(t)+ r2u2

2(t)]dt (33)
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7.5 Noise and Other Disturbances

There is a small amount of randomness in both neuronal sensing and activation. In
addition to this, the experimental study of posture regulation generally involves de-
liberately inducing disturbances to the posture by horizontally moving the platform
the subjects are standing on. Including this in the continuous-time model would
involve stochastic differential equations and considerable mathematical technicali-
ties. Instead, it is included in the discrete-time model where these complications are
minimal. As solving the MPC problem requires discretization in time there is no
additional loss of generality in doing this.

It is also assumed that the filtering of this noise can be separated from the design
of the deterministic controller. This would certainly not be true if the nonlinearities
were taken into account. But, the perturbations, including the random ones, are small
and saturation does not occur.

7.6 Problem

The problem is then to choose the controls ua(k) and uh(k) for 0≤ k<∞ to minimize
the performance measure, Equation (33) subject to the constraints of Equation (31).

7.7 Solution

Because of the quartic weighting of the displacement of the COP, this is a good
problem to solve by means of MPC. This is especially true because, once it is dis-
cretized in time, it will be a convex programming problem. Such problems always
have a unique global solution if they have a solution at all. This problem certainly
does have a solution.

The first step in applying MPC to this problem is to discretize it in time. This is a
substantial simplification of the mathematics because of the delays and the random
disturbances. In particular, the delays are described by so-called delay states. Thus,
define the discretion interval to be δ and set δ = τc/n where n is the number of time
samples in a time interval of length τc. For simplicity it is assumed that τc = τs but
this is not necessary as long as mδ = τs for some integer m.

Define the discrete-time state vector as

z(k)= [xT (k−n), xT (k−n+1), . . . ,xT (k), uT (k), xT (k−n), . . . , xT (k−1)]T (34)

The discrete-time version of the problem is then

z(k+1) = Adz(k)+Bdu(k)+ξ (k) (35)

y(k) =Cdz(k)+ν(k) (36)
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where:
z(k) = [z1(k) z2(k) z3(k) . . . z16nd+4(k)(k)]

T (37)

and u(k) = [0 0 0 . . . u1(k) u2(k)]T

The performance measure is also discretized in time and given a finite end time,
as is required in order to apply MPC. It becomes

J(x(0),u[0,Nd−1]
) = Σ k=Nd

k=0 [ql4
cop(k)+ r1u2

1(k)+ r2u2
2(k)] (38)

7.8 Results

Detailed results are reported in [16]. Here, Figure 9 demonstrates that the results
agree well with some experimental data. The Stabilogram Diffusion Function (SDF)
was developed to better understand postural sway [3]. In these simulations the per-
turbations were WGN with variance = .005 and the delay was .125 milliseconds.

The analytical results also show that the ankle torque and movement are signif-
icantly larger than those at the hip for small perturbations. The reverse is true for
large perturbations. In addition, the MPC-designed controller uses substantially less
control energy than a similarly specified LQR-designed controller. This difference
increases as the performance weighting on the COP increases from 4 to 6 to 8.

Fig. 9: Simulated SDF (dashed line) compared with experimental SDF (solid line).
The dashed line is the mean of ten different simulated SDFs; light shading shows
the range of ten different noise seeds with the same standard deviation.
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7.9 Discussion

From the viewpoint of neuroscience, the question is whether the human brain and
nervous system could implement a controller similar to the MPC-designed one. The
controller produced by MPC is, ultimately, just a nonlinear controller that includes
an observer. This could be learned or, to a degree, hardwired in the human.

From the viewpoint of the control engineer, there are a number of lessons.

• The problem of designing a controller for an LTI system that has convex state
and actuator constraints can be formulated for performance measures that are
convex in both control and states as in the example just discussed. Such prob-
lems can be solved quickly and with certainty. The result is a nonlinear con-
troller with properties that can be very useful in some situations.

• Such a controller could use significantly less energy than a comparable linear
controller, as in the example.

• Such a controller would be more aligned with specifications that require the
system states to be in a range. Such a specification is much more realistic than
an exact target.

• It should be noted that the closed-loop system in the example is not stable to the
origin. It is believed, but not proven, that the state is confined to a neighborhood
(but not an ε-neighborhood) of the origin provided that the perturbations are
appropriately bounded. This is, again, the realistic requirement.

8 Conclusions

This chapter covers the beginnings of the modern theory of MPC. There are early
applications of MPC that did not use a dynamical state space model. The use of
a state space model facilitated the analysis of stability and the computation of the
controls. Many of the applications of MPC require little more than the material
covered here. More complex applications and theoretical problems require the much
deeper knowledge covered in the rest of this handbook. However, the descriptions
of the more profound results generally assume the knowledge this article is meant
to convey.
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Dynamic Programming, Optimal Control
and Model Predictive Control

Lars Grüne

1 Introduction

Model Predictive Control (MPC), also known as Receding Horizon Control, is one
of the most successful modern control techniques, both regarding its popularity in
academics and its use in industrial applications [6, 11, 15, 28]. In MPC, the con-
trol input is synthesized via the repeated solution of finite horizon optimal control
problems on overlapping horizons. Among the most fundamental properties to be
investigated when analyzing MPC schemes are the stability and (approximate) opti-
mality properties of the closed loop solutions generated by MPC. One interpretation
of MPC is that an infinite horizon optimal control problem is split up into the re-
peated solution of auxiliary finite horizon problems [13].

Dynamic Programming (DP) is one of the fundamental mathematical techniques
for dealing with optimal control problems [4, 5]. It provides a rule to split up a
high (possibly infinite) dimensional optimization problem over a long (possibly infi-
nite) time horizon into auxiliary optimization problems on shorter horizons, which
are much easier to solve. While at a first glance this appears similar to the pro-
cedure just described for MPC, the approach is different, in the sense that in DP
the exact information about the future of the optimal trajectories — by means of
the corresponding optimal value function — is included in the auxiliary problem.
Thus, it provides a characterization of the exact solution, at the expense that the
auxiliary problems are typically difficult to formulate and the number of auxiliary
problems becomes huge — the (in)famous “curse of dimensionality.” In MPC, the
future information is only approximated (for schemes with terminal conditions) or
even completely disregarded (for schemes without terminal conditions). This makes
the auxiliary problems easy to formulate and to solve and keeps the number of these
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problems low, but now at the expense that it does not yield an exact optimal solution
of the original problem anymore.

However, it may still be possible that the solution trajectories generated by MPC
are stable and approximately optimal, and the key for proving such statements is
to make sure that the neglected future information only slightly affects the solu-
tion. The present chapter presents a survey of a selection of results in this direction
and in particular shows that ideas from dynamic programming are essential for this
purpose. As we will show, dynamic programming methods can be used for estimat-
ing near optimal performance under suitable conditions on the future information
(Proposition 6 and Theorem 15 are examples for such statements) but also for ensur-
ing that the future information satisfies these conditions (as, e.g., in Proposition 8 or
Lemma 14(ii)). Moreover, dynamic programming naturally provides ways to derive
stability or convergence from optimality via Lyapunov functions arguments, as in
Proposition 3.

The chapter is organized as follows. In Section 2 we describe the setting and the
MPC algorithm we consider in this chapter. Section 3 collects the results from dy-
namic programming we will need in the sequel. Section 4 then presents results for
stabilizing MPC, in which the stage cost penalizes the distance to a desired equilib-
rium. Both schemes with and without terminal conditions are discussed. Section 5
extends this analysis to MPC schemes with more general stage costs, which is usu-
ally referred to as economic MPC. Section 6 concludes the chapter.

2 Setting, Definitions and Notation

In this chapter we consider discrete time optimal control problems of the form

Minimize JN(x0,u) with respect to the control sequence u, (1)

where N ∈ N∞ := N∪{∞} and

JN(x0,u) =
N−1

∑
k=0

�(x(k),u(k)),

subject to the dynamics and the initial condition

x(k+1) = f (x(k),u(k)), x(0) = x0 (2)

and the combined state and input constraints

(x(k),u(k)) ∈ Y ∀= 0, . . . ,N −1 and x(N) ∈ X (3)

for all k ∈ N for which the respective values are defined. Here Y ⊂ X ×U is the
constraint set, X and U are the state and input value set, respectively, and X := {x ∈
X |∃u ∈ U with (x,u) ∈ Y} is the state constraint set. The sets X and U are metric
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spaces with metrics dX (·, ·) and dU (·, ·). Because there is no danger of confusion we
usually omit the indices X and U in the metrics. We denote the solution of (2) by
xu(k,x0). Moreover, for the distance of a point x ∈ X to another point y ∈ X we use
the short notation |x|y := d(x,y).

For x0 ∈ X and N ∈ N we define the set of admissible control sequences as

U
N(x0) := {u ∈UN |(xu(k,x0),u(k)) ∈ Y ∀k = 0, . . . ,N −1 and xu(N,x0) ∈ X}

and
U
∞(x0) := {u ∈U∞ |(xu(k,x0),u(k)) ∈ Y ∀k ∈ N}

Since feasibility issues are not the topic of this chapter, we make the simplifying
assumption that UN(x0) �= /0 for all x0 ∈X and all N ∈N∞. If desired, this assumption
can be avoided using the techniques from, e.g., [10], [15, Chapter 7], [21, Chapter 5],
or [27].

Corresponding to the optimal control problem (1) we define the optimal value
function

VN(x0) := inf
u∈UN(x0)

J(x0,u)

and we say that a control sequence u�N ∈ U
N(x0) is optimal for initial value x0 ∈ X

if J(x0,u�N) =VN(x0) holds.
It is often desirable to solve optimal control problems with infinite horizon N =∞,

for instance because the control objective under consideration naturally leads to an
infinite horizon problem (like stabilization or tracking problems) or because an opti-
mal control is needed for an indefinite amount of time (as in many regulation prob-
lems). For such problems the optimal control is usually desired in feedback form,
i.e., in the form u�N(k) = μ(x(k)) for a feedback map μ : X→ U. Except for special
cases like linear quadratic problems without constraints, computing infinite horizon
optimal feedback laws is in general a very difficult task. On the other hand, very ac-
curate approximations to optimal control sequences u�N for finite horizon problems,
particularly with moderate N, can be computed easily and fast (sometimes within a
few milliseconds), and often also reliably with state-of-the-art numerical optimiza-
tion routines, even for problems in which the dynamics (2) are governed by partial
differential equations. The following Receding Horizon or Model Predictive Con-
trol algorithm (henceforth abbreviated by MPC) is therefore an attractive alternative
to solving an infinite horizon optimal control problem.

Algorithm 1 (Basic Model Predictive Control Algorithm)
(Step 0) Fix a (finite) optimization horizon N ∈ N and set k := 0;

let an initial value xMPC(0) be given
(Step 1) Compute an optimal control sequence u�N of Problem (1)

for x0 = xMPC(k)
(Step 2) Define the MPC feedback law value μN(xMPC(k)) := u�N(0)
(Step 3) Set xMPC(k+1) := f (xMPC(k+1),μN(xMPC(k))), k := k+1

and go to (Step 1)
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We note that although derived from an open loop optimal control sequence u�N , μN

is indeed a map from X to U , however, it will in general not be given in the form
of an explicit formula. Rather, given xMPC(k), the value μN(xMPC(k)) is obtained by
solving the optimal control problem in Step 1 of Algorithm 1, which is usually done
numerically.

In MPC, one often introduces additional terminal conditions, consisting of a ter-
minal constraint set X0 ⊆ X and a terminal cost F : X0 → R. To this end, the opti-
mization objective JN is modified to

Jtc
N (x,u) =

N−1

∑
k=0

�(x(k),u(k))+F(x(N))

and the last constraint in (3) is tightened to

x(N) ∈ X0.

Moreover, we denote the corresponding space of admissible control sequences by

U
N
0 (x0) := {u ∈ U

N(x0) |xu(N,x0) ∈ X0}

and the optimal value function by

V tc
N (x0) := inf

u∈UN
0 (x0)

J(x0,u).

Observe that the problem without terminal conditions is obtained for F ≡ 0 and
X0 = X.

Again, a control utc�
N ∈ U

N
0 (x0) is called optimal if Vtc

N (x0) = Jtc
N (x0,utc�

N ). Due
to the terminal constraints it is in general not guaranteed that UN

0 (x0) �= /0 for all
x0 ∈ X. We therefore define XN := {x0 ∈ X |UN

0 (x0) �= /0}. For MPC in which Jtc
N is

minimized in Step 1 we denote the resulting feedback law by μ tc
N . Note that μ tc

N is
defined on XN .

A priori, it is not clear, at all, whether the trajectory xMPC generated by the MPC
algorithm enjoys approximate optimality properties or qualitative properties like
stability. In the remainder of this chapter, we will give conditions under which such
properties can be guaranteed. In order to measure the optimality of the closed loop
trajectory, we introduce its closed loop finite and infinite horizon values

Jcl
K (x,μN) :=

K−1

∑
k=0

�(xMPC(k),μN(xMPC(k)))

and
Jcl
∞ (x,μN) := limsup

K→∞
Jcl

K (xMPC(0),μN)

where in both cases the initial value xMPC(0) = x is used.
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3 Dynamic Programming

Dynamic programming is a name for a set of relations between optimal value func-
tions and optimal trajectories at different time instants. In what follows we state
those relations which are important for the remainder of this chapter. For their proofs
we refer to [15, Chapters 3 and 4].

For the finite horizon problem without terminal conditions the following equa-
tions and statements hold for all N ∈ N and all K ∈ N with K ≤ N (using V0(x)≡ 0
in case K = N):

VN(x) = inf
u∈UK(x)

{JK(x,u)+VN−K(xu(K,x))} (4)

If u�N ∈ U
N(x) is an optimal control for initial value x and horizon N, then

VN(x) = JK(x,u
�
N)+VN−K(xu�N

(K,x)) (5)

and

the sequence uK := (u�N(K), . . . ,u�N(N −1)) ∈ U
N−K(xu�N

(K,x))
is an optimal control for initial value xu�N

(K,x) and horizon N −K.
(6)

Moreover, for all x ∈ X the MPC feedback law μN satisfies

VN(x) = �(x,μN(x))+VN−1( f (x,μN(x))). (7)

For the finite horizon problem with terminal conditions the following holds for
all N ∈ N and all K ∈ N with K ≤ N (using V tc

0 (x) = F(x) in case K = N):

V tc
N (x) = inf

u∈UK
N−K(x)

{JK(x,u)+Vtc
N−K(xu(K,x))}, (8)

where U
K
N−K(x0) := {u ∈U

K(x0) |xu(N,x0) ∈XN−K}. If utc�
N ∈U

N
0 (x) is an optimal

control for initial value x and horizon N, then

Vtc
N (x) = JK(x,u

tc�
N )+Vtc

N−K(xutc�
N
(K,x)) (9)

and

the sequence utc
K := (utc�

N (K), . . . ,utc�
N (N −1)) ∈ U

N−K(xutc�
N
(K,x))

is an optimal control for initial value xutc�
N
(K,x) and horizon N −K.

(10)

Moreover, for all x ∈ X the MPC feedback law μ tc
N satisfies

Vtc
N (x) = �(x,μ tc

N (x))+Vtc
N−1( f (x,μ tc

N (x))). (11)

Finally, for the infinite horizon problem the following equations and statements
hold for all K ∈ N:



34 Lars Grüne

V∞(x) = inf
u∈UK(x)

{JK(x,u)+V∞(xu(K,x))} (12)

If u�∞ is an optimal control for initial value x and horizon N, then

V∞(x) = JK(x,u
�
∞)+V∞(xu�∞(K,x)) (13)

and
the sequence uK := (u�∞(K),u�∞(K +1), . . .) ∈ U

∞(xu�∞(K,x))
is an optimal control for initial value xu�∞(K,x).

(14)

The equations just stated can be used as the basis of numerical algorithms, see,
e.g., [5, 17] and the references therein. Here, however, we rather use them as tools
for the analysis of the performance of the MPC algorithm. Besides the equalities,
above, which refer to the optimal trajectories, we will also need corresponding in-
equalities. These will be used in order to estimate Jcl

K and Jcl
∞ as shown in the follow-

ing proposition.

Proposition 2 Assume there is function ε : X → R such that the approximate dy-
namic programming inequality

VN(x)+ ε(x)≥ �(x,μN(x))+VN( f (x,μN(x))) (15)

holds for all x ∈ X. Then for each MPC closed loop solution xMPC and all K ∈ N

the inequality

Jcl
K (xMPC(0),μN)≤VN(xMPC(0))−VN(xMPC(K))+

K−1

∑
k=0

εk (16)

holds for εk = ε(xMPC(k)). If, in addition, ε̂ := limsupK→∞∑
K−1
k=0 εk < ∞ and

liminfK→∞VN(xMPC(K))≥ 0 hold, then also

Jcl
∞ (xMPC(0),μN)≤VN(xMPC(0))+ ε̂

holds. The same statements are true when VN and μN are replaced by their terminal
conditioned counterparts V tc

N and μ tc
N , respectively.

Proof. Observing that xMPC(k+ 1) = f (x,μN(x)) for x = xMPC(k) and using (15)
with this x we have

Jcl
K (xMPC(0),μN) =

K−1

∑
k=0

�(xMPC(k),μN(xMPC(k)))

≤
K−1

∑
k=0

[VN(xMPC(k))−VN(xMPC(k+1))+ εk]

= VN(xMPC(0))−VN(xMPC(K))+
K−1

∑
k=0

εk,
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which shows the first claim. The second claim follows from the first by taking the
upper limit for K → ∞. The proof for the terminal conditioned case is identical. �

4 Stabilizing MPC

Using the dynamic programming results just stated, we will now derive estimates
for Jcl

∞ in the case of stabilizing MPC. Stabilizing MPC refers to the case in which
the stage cost � penalizes the distance to a desired equilibrium. More precisely, let
(x∗,u∗) ∈ Y be an equilibrium, i.e., f (x∗,u∗) = x∗. Then throughout this section we
assume that there is α1 ∈K∞ such that1 � satisfies

�(x∗,u∗) = 0 and �(x,u)≥ α1(|x|x∗) (17)

for all x ∈ X. Moreover, for the terminal cost F we assume

F(x)≥ 0 for all x ∈ X0. (18)

We note that (18) trivially holds in case no terminal cost is used, i.e., if F ≡ 0.
The purpose of this choice of � is to force the optimal trajectories — and thus

hopefully also the MPC trajectories — to converge to x∗. The following proposition
shows that this hope is justified under suitable conditions, where the approximate
dynamic programming inequality (15) plays a pivotal role.

Proposition 3 Let the assumptions of Proposition 2, (17) and (18) (in case of ter-
minal conditions) hold with ε(x) ≤ ηα1(|x|x∗) for all x ∈ X and some η < 1. Then
xMPC(k)→ x∗ as k → ∞.

Proof. We first observe that the assumptions imply VN(x) ≥ 0 or V tc
N (x) ≥ 0, re-

spectively. We continue the proof for VN , the proof for V tc
N is identical. Assume

xMPC(k) �→ x∗, i.e., there are δ > 0 and a sequence kp → ∞ with |xMPC(kp)|x∗ ≥ δ
for all p ∈ N. Then by induction over (15) with x = xMPC(k) we get

VN(xMPC(K)) ≤ VN(xMPC(0))−
K−1

∑
k=0

[
�(xMPC(k),μN(xMPC(k)))− ε(xMPC(k))

]

≤ VN(xMPC(0))−
K−1

∑
k=0

(1−η)α1(|xMPC(k)|x∗)

≤ VN(xMPC(0))− ∑
p∈N

kp≤K−1

(1−η)α1(|xMPC(kp)|x∗)

≤ VN(xMPC(0))−#{p ∈ N |kp ≤ K}(1−η)α1(δ ).

1 The space K∞ consists of all functions α : [0,∞) → [0,∞) with α(0) = 0 which are continuous,
strictly increasing and unbounded.
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Now as K → ∞ the number #{p ∈ N |kp ≤ K} grows unboundedly, which implies
that VN(xMPC(K)) < 0 for sufficiently large K which contradicts the non-negativity
of VN . �

We remark that under additional conditions (essentially appropriate upper bounds
on VN or V tc

N , respectively), asymptotic stability of x∗ can also be established, see,
e.g., [15, Theorem 4.11] or [28, Theorem 2.22].

4.1 Terminal Conditions

In this section we use the terminal conditions in order to ensure that the approximate
dynamic programming inequality (15) holds with ε(x) ≤ 0 and V tc

N (x) ≥ 0. Then
Proposition 2 applies and yields Jcl

∞ (xMPC(0),μ tc
N ) ≤ V tc

N (xMPC(0)) while Proposi-
tion 3 implies xMPC(k)→ x∗. The key for making this approach work is the follow-
ing assumption.

Assumption 4 For each x ∈ X there is ux ∈U with (x,ux) ∈ Y, f (x,ux) ∈ X and

�(x,ux)+F( f (x,ux))≤ F(x).

While conditions like Assumption 4 were already developed in the 1990s, e.g., in
[7, 8, 23], it was the paper [24] published in 2000 which established this condition
as the standard assumption for stabilizing MPC with terminal conditions. The par-
ticular case X= {x∗} was investigated in detail already in the 1980s in the seminal
paper [20].

Theorem 5. Consider the MPC scheme with terminal conditions satisfying (17), (18)
and Assumption 4. Then the inequality Jcl

∞ (x,μ tc
N ) ≤ Vtc

N (x) and the convergence
xMPC(k) → x∗ for k → ∞ hold for all x ∈ XN and the closed loop solution xMPC(k)
with xMPC(0) = x.

Proof. As explained before the theorem, it is sufficient to prove (15) with
ε(x) ≤ 0 and Vtc

N (x) ≥ 0; then Propositions 2 and 3 yield the assertions. The
inequalityV tc

N (x) ≥ 0 is immediate from (17) and (18). For proving (15) with
ε(x)≤ 0, using ux from Assumption 4 with x = xu(N −1,x0) we get

V tc
N−1(x0) = inf

u∈UN−1
0 (x0)

N−2

∑
k=0

�(xu(k,x0),u(k))+F(xu(N −1,x0))

≥ inf
u∈UN−1

0 (x0)

N−2

∑
k=0

�(xu(k,x0),u(k))+ �(x,ux)+F( f (x,ux))

≥ inf
u∈UN

0 (x0)

N−1

∑
k=0

�(xu(k,x0),u(k))+F(xu(N,x0)) = V tc
N (x0)
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Inserting this inequality for x0 = f (x,μ tc
N (x)) into (11) we obtain

Vtc
N (x) = �(x,μ tc

N (x))+Vtc
N−1( f (x,μ tc

N (x)))≥ �(x,μ tc
N (x))+Vtc

N ( f (x,μ tc
N (x)))

and thus (15) with ε ≡ 0. �

A drawback of the inequality Jcl
∞ (x,μ tc

N ) ≤ V tc
N (x) is that it is in general quite

difficult to give estimates for V tc
N (x). Under reasonable assumptions it can be shown

that V tc
N (x)→V∞(x) for N →∞ [15, Section 5.4]. This implies that the MPC solution

is near optimal for the infinite horizon problem for N sufficiently large. However, it
is in general difficult to make statements about the speed of convergence of Vtc

N (x)→
V∞(x) as N → ∞ and thus to estimate the length of the horizon N which is needed
for a desired degree of suboptimality.

4.2 No Terminal Conditions

The decisive property induced by Assumption 4 and exploited in the proof of The-
orem 5 is the fact that Vtc

N−1(x0) ≥ V tc
N (x0). Without this inequality, (11) implies

that (15) with ε ≡ 0 cannot in general be satisfied. Without terminal conditions and
under the condition (17) it is, however, straightforward to see that the opposite in-
equality V tc

N−1(x0)≤V tc
N (x0) holds, where in most cases this inequality is strict. This

means that without terminal conditions we need to work with positive ε . The follow-
ing proposition, which was motivated by a similar “relaxed dynamic programming”
inequality used in [22], introduces a variant of Proposition 2 which we will use for
this purpose.

Proposition 6 Assume there is a constant α ∈ (0,1] such that the relaxed dynamic
programming inequality

VN(x)≥ α�(x,μN(x))+VN( f (x,μN(x))) (19)

holds for all x ∈ X. Then for each MPC closed loop solution xMPC and all K ∈ N

the inequality
Jcl
∞ (xMPC(0),μN)≤V∞(xMPC(0))/α

and, if additionally (17) holds, the convergence xMPC(k)→ x∗ for k → ∞ hold.

Proof. Applying Proposition 2 with ε(x) = (1−α)�(x,μN(x)) yields

Jcl
K (xMPC(0),μN) ≤ VN(xMPC(0))−VN(xMPC(K))

+ (1−α)
K−1

∑
k=0

�(xMPC(k),μN(xMPC(k)))

︸ ︷︷ ︸
=Jcl

K (xMPC(0),μN)

.
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Using VN ≥ 0 this implies αJcl
K (xMPC(0),μN) ≤ VN(xMPC(0)) which implies the

first assertion by letting K → ∞ and dividing by α . The convergence xMPC(k)→ x∗
follows from Proposition 3. �

A simple condition under which we can guarantee that (19) holds is given in the
following assumption.

Assumption 7 There are constants γk > 0, k ∈ N with supk∈N γk < ∞ and

Vk(x)≤ γk inf
u∈U,(x,u)∈Y

�(x,u).

A sufficient condition for Assumption 7 to hold is that � is a polynomial satisfy-
ing (17) and the system can be controlled to x∗ exponentially fast. However, via
an appropriate choice of � Assumption 7 can also be satisfied if the system is not
exponentially controllable, see, e.g., [15, Example 6.7].

The following theorem, taken with modifications from [29], shows that Assump-
tion 7 implies (19).

Proposition 8 Consider the MPC scheme without terminal conditions satisfying

Assumption 7. Then (19) holds with α = 1− (γ2 −1)(γN −1)∏N−1
k=0

(
γk−1
γk

)
.

Proof. First note that for x = x∗ (19) always holds because all expressions vanish.
For x �= x∗, we consider the MPC solution xMPC(·) with xMPC(0) = x, abbreviate
λk = �(xu�N

(k,x),u�N(k)) with u�N denoting the optimal control for initial value x0 = x,
and ν =VN( f (x,μN(x))) =VN(xMPC(1)). Then (19) becomes

N−1

∑
k=0

λk −ν ≥ αλ0 (20)

We prove the theorem by showing the inequality

λN−1 ≤ (γN −1)
N−1

∏
k=2

(
γk −1
γk

)
λ0 (21)

for all feasible λ0, . . . ,λN−1. From this (20) follows since the dynamic programming
equation (4) with x = xMPC(1) and K = N −2 implies

ν ≤
N−2

∑
n=1

�(xu�N
(n,x),u�N(n))+V2(xu�N

(N −1,x))≤
N−2

∑
n=1
λn + γ2λN−1

and thus (21), γ2 ≥ 1 and λ0 = 1 yield

N−1

∑
n=0
λn −ν ≥ λ0 +(1− γ2)λN−1 ≥ λ0 − (γ2 −1)(γN −1)

N−1

∏
k=2

(
γk −1
γk

)
λ0 = αλ0.
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i.e., (20). In order to prove (21), we start by observing that since uK := (u�N(K), . . .,
u�N(N − 1)) is an optimal control for initial value xu�N

(K,x) and horizon N −K, we

obtain ∑N−1
k=p λk =VN−p(xu�N

(p+1))≤ γN−pλp, which implies

N−1

∑
k=p+1

λk ≤ (γN−p −1)λp (22)

for p = 0, . . . ,N −2. From this we can conclude

λp +
N−1

∑
k=p+1

λk ≥
∑N−1

k=p+1λk

γN−p −1
+

N−1

∑
k=p+1

λk =
γN−p

γN−p −1

N−1

∑
k=p+1

λk.

Using this inequality inductively for p = 1, . . . ,N −2 yields

N−1

∑
k=1

λk ≥
N−2

∏
k=1

(
γN−k

γN−k −1

)
λN−1 =

N−1

∏
k=2

(
γk

γk −1

)
λN−1.

Using (22) for p = 0 we then obtain

(γN −1)λ0 ≥
N−1

∑
k=1

λk ≥
N−1

∏
k=2

(
γk

γk −1

)
λN−1

which implies (21). �

This proposition immediately leads to the following theorem.

Theorem 9. Consider the MPC scheme without terminal conditions satisfying As-
sumption 7. Then for all sufficiently large N ∈N the inequality Jcl

∞ (x,μN)≤V∞(x)/α
and the convergence xMPC(k)→ x∗ for k →∞ hold for all x ∈X and the closed loop
solution xMPC(k) with xMPC(0) = x, with α from Proposition 8.

Proof. Since γ∞ := supk∈N γk < ∞ it follows that (γk −1)/γk ≤ (γ∞−1)/γ∞ < 1 for
all k ∈ N, implying that α from Proposition 8 satisfies α ∈ (0,1] for sufficiently
large N. For these N the assertion follows from Proposition 6. �

We note that α from Proposition 8 is not optimal. In [19] (see also [30] and [15,
Chapter 6]) the optimal bound

α = 1− (γN −1)∏N
k=2(γk −1)

∏N
k=2 γk −∏N

k=2(γk −1)
(23)

is derived, however, at the expense of a much more involved proof than that of
Proposition 8. The difference between the two bounds can be illustrated if we as-
sume γk = γ for all k ∈ N and compute the minimal N ∈ N such that α > 0 holds,
i.e., the minimal N for which Theorem 9 ensures the convergence xMPC(k)→ x∗. For
α from Proposition 8 we obtain the condition N > 2+2ln(γ−1)/(lnγ− ln(γ−1))
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while for α from (23) we obtain N > 2+ ln(γ − 1)/(lnγ − ln(γ − 1)). The optimal
α hence reduces the estimate for N roughly by a factor of 2.

The analysis can be extended to the situation in which α in (19) cannot be found
for all x ∈ X. In this case, one can proceed similarly as in the discussion after Theo-
rem 15, below, in order to obtain practical asymptotic stability, i.e., inequality (34),
on bounded subsets of X.

5 Economic MPC

Economic MPC has become the common name for MPC schemes in which the stage
cost � does not penalize the distance to an equilibrium x∗ which was determined a
priori. Rather, � models economic objectives, like high output, low energy consump-
tion, etc. or a combination thereof.

For such general � many of the arguments from the previous section do not work
for several reasons. First, the cost JN and thus the optimal value function VN is not
necessarily nonnegative, a fact which was exploited in several places in the proofs
in the last section. Second, the infinite sum in the infinite horizon objective need not
converge and thus it may not make sense to talk about infinite horizon performance.
Finally, optimal trajectories need not stay close or converge to an equilibrium, again
a fact that was used in various places in the last section.

A systems theoretic property which effectively serves as a remedy for all these
difficulties is contained in the following definition.

Definition 10 (Strict Dissipativity and Dissipativity) We say that an optimal con-
trol problem with stage cost � is strictly dissipative at an equilibrium (xe,ue) ∈ Y

if there exists a storage function λ : X → R bounded from below and satisfying
λ (xe) = 0, and a function ρ ∈K∞ such that for all (x,u) ∈ Y the inequality

�(x,u)− �(xe,ue)+λ (x)−λ ( f (x,u))≥ ρ(|x|xe) (24)

holds. We say that an optimal control problem with stage cost � is dissipative at
(xe,ue) if the same conditions hold with ρ ≡ 0.

We note that the assumption λ (xe) = 0 can be made without loss of generality be-
cause adding a constant to λ does not invalidate (24).

The observation that strict dissipativity is the “right” property in order to ana-
lyze economic MPC schemes was first made by Diehl, Amrit, and Rawlings in [9],
where strict duality, i.e., strict dissipativity with a linear storage function, was used.
The extension to the nonlinear notion of strict dissipativity was then made by An-
geli and Rawlings in [2]. Although recent studies show that for certain classes of
systems this property can be further (slightly) relaxed (see [26]), here we work with
this condition because it provides a mathematically elegant way for dealing with
economic MPC.

Remark 11 Strict dissipativity implies several important properties:



5 Economic MPC 41

(i) The equilibrium (xe,ue) ∈ Y from Definition 10 is a strict optimal equilibrium
in the sense that �(xe,ue) < �(x,u) for all other admissible equilibria of f , i.e.,
all other (x,u) ∈ Y with f (x,u) = x. This follows immediately from (24).

(ii) The optimal equilibrium xe has the turnpike property, i.e., the following holds:
For each δ > 0 there exists σδ ∈L such that2 for all N,P ∈ N, x ∈ X and u ∈
U

N(x) with Juc
N (x,u)≤ N�(xe,ue)+δ , the set Q(x,u,P,N) := {k ∈ {0, . . . ,N −

1}| |xu(k,x)|xe ≥ σδ (P)} has at most P elements. A proof of this fact can be
found, e.g., in [15, Proposition 8.15]. The same property holds for all near
optimal trajectories of the infinite horizon problem, provided it is well defined,
cf. [15, Proposition 8.18].

(iii) If we define the modified or rotated cost �̃(x,u) := �(x,u)− �(xe,ue)+λ (x)−
λ ( f (x,u)), then this modified cost satisfies (17), i.e., the basic property we ex-
ploited in the previous section.

The third property enables us to use the optimal control problem with modified
cost �̃ as an auxiliary problem in our analysis. The way this auxiliary problem is used
crucially depends on whether we use terminal conditions or not. We start with the
case with terminal conditions. Throughout this section, we assume that all functions
under consideration are continuous in xe.

5.1 Terminal Conditions

For the economic MPC problem with terminal conditions we make exactly the same
assumption on the terminal constraint set X0 and the terminal cost F as in the stabi-
lizing case, i.e., we again use Assumption 4. We assume without loss of generality
that F(xe) = 0, which implies that F may attain negative values, because � may be
negative, too.

Now the main trick — taken from [1] — lies in the fact that we introduce an
adapted terminal cost for the problem with the modified cost �̃. To this end, we de-
fine the terminal cost F̃(x) := F(x)+ λ (x). We denote the cost functional for the
modified problems without and with terminal conditions by J̃N and J̃tc

N , respectively,
and the corresponding optimal value functions by ṼN and Ṽ tc

N . Then a straightfor-
ward computation reveals that

J̃tc
N (x,u) = Jtc

N (x,u)+λ (x)−N�(xe,ue), (25)

which means that the original and the modified optimization objective only differ in
terms which do not depend on u. Hence, the optimal trajectories corresponding to
Ṽ tc

N and Vtc
N coincide and the MPC scheme using the modified costs �̃ and F̃ yields

exactly the same closed loop trajectories as the scheme using � and F .

2 The space L contains all functions σ : [0,∞)→ [0,∞) which are continuous and strictly decreas-
ing with limt→∞σ(t) = 0.
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One easily sees that F̃ and �̃ also satisfy Assumption 4, i.e., that for each x ∈ X0

there is ux ∈U with (x,ux) ∈ Y, f (x,ux) ∈ X0 and

�̃(x,ux)+ F̃( f (x,ux))≤ F̃(x) (26)

if � and F satisfy this property.
Moreover, if F̃ is bounded on X0, then (26) implies F̃(x) ≥ 0 for all x ∈ X0.

In order to see this, assume F(x0) < 0 for some x0 ∈ X0 and consider the control
sequence defined by u(k) = ux with ux from (26) for x = xu(k,x0). Then, �̃ ≥ 0
implies F(xu(k,x)) ≤ F(x0) < 0 for all k ∈ N. Moreover, similar as in the proof
of Theorem (3), the fact that �̃ satisfies (17) implies that xu(k,x0) → xe, because
otherwise F(xu(k,x0)) → −∞ which contradicts the boundedness of F . But then
continuity of F in xe implies

F(xe) = lim
k→∞

F(xu(k,x0))≤ F(x0)< 0

which contradicts F(xe) = 0. Hence F̃(x) ≥ 0 follows for all x ∈ X0 (for a more
detailed proof, see [15, Proof of Theorem 8.13]).

As a consequence, the problem with the modified costs �̃ and F̃ satisfies all the
properties we assumed for the results in Section 4.1. Hence, Theorem 5 applies and
yields the convergence xMPC(k)→ xe and the performance estimate

J̃cl
∞ (x,μ tc

N )≤ Ṽ tc
N (x).

As in the stabilizing case, under suitable conditions we obtain Ṽ tc
N (x) → Ṽ∞(x) as

N → ∞. However, this only gives an estimate for the modified objective J̃cl
∞ with

stage cost �̃ but not for the original objective Jcl
∞ with stage cost �.

In order to obtain an estimate for Jcl
∞ , one can proceed in two different ways:

either one assumes �(xe,ue) = 0 (which can always be achieved by adding �(xe,ue)
to �) and that the infinite horizon problem is well defined, which in particular means
that |V∞(x)| is finite. Then, from the definition of the problems, one sees that the
relations

J̃cl
∞ (x,μ tc

N ) = Jcl
∞ (x,μ tc

N )− lim
k→∞

λ (xMPC(k))

and

Ṽ∞(x)≤V cl
∞ (x)− lim

k→∞
λ (xu�∞(k,x)) and V∞(x)≤ Ṽ cl

∞ (x)+ lim
k→∞

λ (xũ�∞(k,x))

hold for xMPC(0) = x and ũ�∞ and u�∞ denoting the optimal controls corresponding to
Ṽ∞(x) and V∞(x), respectively.

Now strict dissipativity implies xũ�∞(k,x) → xe and xu�∞(k,x) → xe as k → ∞ (for
details, see [15, Proposition 8.18]), moreover, we already know that xMPC(k) → xe

as k → ∞. Since λ (xe) = 0 and λ is continuous in xe this implies

Jcl
∞ (x,μ tc

N )→V∞(x)
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as N → ∞, i.e., near optimal infinite horizon performance of the MPC closed loop
for sufficiently large N.

The second way to obtain an estimate is to look at Jcl
K (x,μ tc

N ), which avoids set-
ting �(xe,ue) = 0 and making assumptions on |V∞|. However, while xMPC(k) → xe,
in the economic MPC context — even in the presence of strict dissipativity — the
optimal trajectory xu�N

(k,x) will in general not end near xe, see, e.g., the examples

in [12, 13] or [15, Chapter 8]. Hence, comparing Jcl
K (x,μ tc

N ) and VK(x) will in gen-
eral not be meaningful. However, if for x = xMPC(0) we set δ (k) := |xMPC(k)|xe and
define the class of controls

U
K
δ (K)(x) := {u ∈ U

K(x) | |xu(K,x)|xe ≤ δ (K)} (27)

then it makes sense to compare Jcl
K (x,μ tc

N ) and infu∈UK
δ (K)

(x) JK(x,u). More precisely,

in [14] (see also [15, Section 8.4]) it was shown that there are error terms δ1(N) and
δ2(K), converging to 0 as N → ∞ or K → ∞, respectively, such that the estimate

Jcl
K (x,μ tc

N )≤ inf
u∈UK

δ (K)
(x)

JK(x,u)+δ1(N)+δ2(K) (28)

holds. In other words, among all solutions steering x into the δ (K)-neighborhood of
the optimal equilibrium xe, MPC yields the cheapest one up to error terms vanishing
as K and N become large.

In summary, except for inequality (28) which requires additional arguments, by
using terminal conditions the analysis of economic MPC schemes is not much more
difficult than the analysis of stabilizing MPC schemes. However, in contrast to the
stabilizing case, so far no systematic procedure for the construction of terminal costs
and constraint sets satisfying (26) is known. Hence, it appears attractive to avoid the
use of terminal conditions.

5.2 No Terminal Conditions

If we want to avoid the use of terminal conditions, the analysis becomes consider-
ably more involved. The reason is that without terminal conditions the relation (25)
changes to

J̃N(x,u) = JN(x,u)+λ (x)−λ (xu(N,x))−N�(xe,ue). (29)

This means that the difference between JN and J̃N now depends on u and conse-
quently the optimal trajectories do no longer coincide. Moreover, the central prop-
erty exploited in the proof of Proposition 8, whose counterpart in the setting of this
section would be that λN−1 = �(xu�N

(N −1,x),u�N(N −1)) is close to �(xe,ue), is in
general not true for economic MPC, not even for simple examples, see [12, 13] or
[15, Chapter 8]. Hence, we cannot expect the arguments from the stabilizing case to
work.
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For these reasons, we have to use different arguments, which are combinations
of arguments found in [12, 13, 18]. To this end we make the following assumptions.

Assumption 12 (i) The optimal control problem is strictly dissipative in the sense
of Definition 10.

(ii) There exist functions γV , γṼ , and γλ ∈K∞ as well as ω, ω̃ ∈L such that the
following inequalities hold for all x ∈ X and all N ∈ N∞:

(a) |VN(x)−VN(xe)| ≤ γV (|x|xe)+ω(N)

(b) |ṼN(x)−ṼN(xe)| ≤ γṼ (|x|xe)+ ω̃(N)

(c) |λ (x)−λ (xe)| ≤ γλ (|x|xe)

Part (ii) of this assumption is a uniform continuity assumption in xe. For the optimal
value functions VN and ṼN it can, e.g., be guaranteed by local controllability around
xe, see [12, Theorem 6.4]. We note that this assumption together with the obvious
inequality VN(xe)≤N�(xe,ue) and boundedness of X implies VN(x)≤N�(xe,ue)+δ
with δ = supx∈X γV (|x|xe)+ω(0). Hence, the optimal trajectories have the turnpike
property according to Remark 11(ii).

For writing (in)equalities that hold up to an error term, we use the following
convenient notation: for a sequence of functions aJ : X → R, J ∈ N, and another
function b : X → R we write aJ(x) ≈J b(x) if limJ→∞ supx∈X aJ(x)− b(x) = 0 and
we write aJ(x)<∼Jb(x) if limsupJ→∞ supx∈X aJ(x)− b(x) ≤ 0. In words, ≈J means
“= up to terms which are independent of x and vanish as J →∞”, and <∼J means the
same for ≤.

With these assumptions and notation we can now prove the following relations.
For simplicity of exposition in what follows we limit ourselves to a bounded state
space X. If this is not satisfied, the following considerations can be made for
bounded subsets of X. As we will see, dynamic programming arguments are ubi-
quitous in the following considerations.

Lemma 13 Let X be bounded. Then under Assumptions 12 the following approxi-
mate equalities hold.

(i) VN(x) ≈S JM(x,u�N)+VN−M(xe) for all M �∈Q(x,u�N ,P,N)

(ii) VN(xe) ≈S M�(xe,ue)+VN−M(xe) for all M �∈Q(xe,u�e
N ,P,N)

(iii) ṼN(x) ≈N VN(x)+λ (x)−VN(xe)

Here P∈N is an arbitrary number, S :=min{P,N−M}, u�N is the control minimizing
JN(x,u), u�e

N is the control minimizing JN(xe,u), and Q is the set from Remark 11(ii).
Moreover, (i) and (ii) also apply to the optimal control problem with stage cost �̃.

Proof. (i) Observe that using the constant control u ≡ ue we can estimate VN(xe)≤
JN(xe,u) = N�(xe,ue). Thus, using Assumption 12 we get JN(x,u�N) ≤ N�(xe,ue)+
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γV (|x|xe)+ω(N), hence the turnpike property from Remark 11(ii) applies to the opti-
mal trajectory with δ = γV (|x|xe)+ω(N). This in particular ensures |xu�N

(M,x)|xe ≤
σδ (P) for all M �∈Q(x,u�N ,P,N).

Now the dynamic programming equation (5) yields

VN(x) = JM(x,u�N)+VN−M(xu�N
(M,x)).

Hence, (i) holds with remainder terms R1(x,M,N) =VN−M(xu�N
(M,x))−VN−M(xe).

For any P ∈N and any M �∈Q(x,u�N ,P,N) we have |R1(x,M,N)| ≤ γV (|xu�N
(M,x)|xe)

+ω(N −M)≤ γV (σδ (P))+ω(N −M) and thus (i).
(ii) From the dynamic programming equation (4) and u ≡ ue we obtain

VN(x
e)≤ M�(xe,ue)+VN−M(xe).

On the other hand, from (5) we have

VN(x
e) = JM(x,u�e

N )+VN−M(xu�e
N
(M,xe))

= J̃M(x,u�e
N )︸ ︷︷ ︸

≥0

−λ (xe)+λ (xu�e
N
(M,xe))+M�(xe,ue)+VN−M(xu�e

N
(M,xe))

≥ VN−M(xe)+M�(xe,ue)+
[
VN−M(xu�e

N
(M,xe))−VN−M(xe)

]

+
[
λ (xu�e

N
(M,xe))−λ (xe)

]

Now since VN−M and λ satisfy Assumption 12(ii) and xu�e
N
(M,xe)≈P xe for all M �∈

Q(xe,u�e
N ,P,N), we can conclude that the differences in the squared brackets have

values ≈S 0 which shows the assertion.
(iii) Fix x ∈ X and let u�N and ũ�N ∈ U

N(x) denote the optimal control minimiz-
ing JN(x,u) and J̃N(x,u), respectively. We note that if the optimal control problem
with cost � is strictly dissipative then the problem with cost �̃ is strictly dissipative,
too, with bounded storage function λ ≡ 0 and same ρ ∈ K∞. Moreover, VN(x) ≤
N�(xe,ue) + γV (|x|xe) +ω(N) and ṼN(x) ≤ N�̃(xe,ue) + γṼ (|x|xe), since VN(xe) ≤
N�(xe,ue) and ṼN(xe) = 0. Hence, the turnpike property from Remark 11(ii) applies
to the optimal trajectories for both problems, yielding σδ ∈L and Q(x,u�N ,P,N) for
xu�N

and σ̃δ̃ and Q̃(x, ũ�N ,P,N) for xũ�N
. For all M �∈ Q̃(x, ũ�N ,P,N)∪Q(xe,u�e

N ,P,N)
we can estimate

VN(x) ≤ JM(x, ũ�N)+VN−M(xũ�N
(M))

≤ JM(x, ũ�N)+VN−M(xe)+ γV (σ̃δ̃ (P))+ω(N −M)

≤ J̃M(x, ũ�N)−λ (x)+λ (xe)+M�(xe,ue)+VN−M(xe)+ γV (σ̃δ̃ (P))
+ γλ (σ̃δ̃ (P))+ω(N −M)

<∼S ṼN(x)−λ (x)+VN(x
e)
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for S = min{P,N − M}, where we have applied the dynamic programming equa-
tion (4) in the first inequality, the turnpike property for xũ�N

and Assumption 12

and (29) in the second and third inequality and (i) applied to ṼN , and (ii) applied to
� in the last step. Moreover, λ (xe) = 0 and ṼN(xe) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities
as above, we get

ṼN(x)<∼SVN(x)+λ (x)−VN(x
e)

for all M �∈Q(x,u�N ,P,N)∪ Q̃(xe, ũ�e
N ,P,N). Together this implies

ṼN(x)≈S VN(x)+λ (x)−VN(x
e)

for all M �∈Q(x,u�N ,P,N)∪Q̃(x,u�N ,P,N)∪Q(x,u�e
N ,P,N)∪Q̃(xe, ũ�e

N ,P,N) and S=
min{P,N −M}.

Now, choosing P = �N/5�, the union of the four Q-sets has at most 4N/5 el-
ements, hence there exists M ≤ N/5 for which this approximate inequality holds.
This yields S = �N/5� and thus ≈S implies ≈N , which shows (ii). �

We note that precise quantitative statements can be made for the error terms “hid-
ing” in the ≈J-notation. Essentially, these terms depend on the distance between the
optimal trajectories to the optimal equilibrium in the turnpike property, as measured
by the function σδ in Remark 11(ii), and by the functions from Assumption 12. For
details we refer to [15, Chapter 8].

Now, as in the previous section we can proceed in two different ways. Again, the
first way consists in assuming �(xe,ue) = 0 and the infinite horizon problem is well
defined, implying that |V∞(x)| is finite for all x ∈ X. In this case, we can derive the
following additional relations.

Lemma 14 Let X be bounded, let Assumption 12 hold and assume �(xe,ue) = 0.
Then the following approximate equalities hold.

(i) V∞(x) ≈P JM(x,u�∞)+V∞(xe) for all M �∈Q(x,u�∞,P,∞)
(ii) JM(x,u�∞) ≈S JM(x,u�N) for all M �∈Q(x,u�N ,P,N)

∪Q(x,u�∞,P,∞).

Here P ∈ N is an arbitrary number, S := min{P,N − M} and u�∞ and u�N are the
controls minimizing J∞(x,u) and JN(x,u), respectively.

Proof. (i) The infinite horizon dynamic programming equation (13) yields

V∞(x) = JM(x,u�∞)+V∞(xu�∞(M,x)).

Hence, we obtain

V∞(x) = JM(x,u�∞)+V∞(x
e)+

[
V∞(xu�∞(M,x))−V∞(x

e)
]
.
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From the turnpike property in Remark 11(ii) and Assumption 12 for N = ∞ we
obtain that the term in square brackets is ≈P 0 for all M �∈ Q(x,u�∞,P,∞), which
shows (i).

(ii) The finite horizon dynamic programming equations (4) and (5) imply that
u = u�N minimizes the expression JM(x,u) +VN−M(xu(M,x)). Using the turnpike
property and Assumption 12(ii) for VN this yields

JM(x,u�N)+VN−M(xe)≈S JM(x,u�N)+VN−M(xu�N
(M,x))

≤ JM(x,u�∞)+VN−M(xu�∞(M,x)) ≈S JM(x,u�∞)+VN−M(xe).

for all M �∈Q(x,u�N ,P,N) and S = min{P,N −M}.
Conversely, the infinite horizon dynamic programming equations (12) and (13)

imply that u�∞ minimizes the expression JM(x,u�∞)+V∞(xu�∞(M,x)). Using the turn-
pike property and Assumption 12(ii) for V∞ this yields

JM(x,u�∞)+V∞(x
e) ≈P JM(x,u�∞)+V∞(xu�∞(M,x))

≤ JM(x,u�N)+V∞(xu�N
(M,x)) ≈P JM(x,u�N)+V∞(x

e)

for all M �∈ Q(x,u�∞,P,∞). Combining these two approximate inequalities then im-
plies (ii). �

With these preparations we can state our first theorem on the performance of
economic MPC without terminal conditions.

Theorem 15. Consider the MPC scheme without terminal conditions satisfying As-
sumption 12 and let X be bounded. Then there is δ1 ∈L such that for all x ∈ X the
closed loop solution xMPC(k) generated by this scheme with xMPC(0) = x satisfies
the inequality

Jcl
K (x,μN)+V∞(xMPC(K))≤V∞(x)+Kδ1(N) (30)

for all K,N ∈ N.

Proof. We pick x ∈X and abbreviate x+ := f (x,μN(x)). For the corresponding opti-
mal control u�N , the relation (6) yields that u�N(·+1) is an optimal control for initial
value x+ and horizon N −1. Hence, for each M ∈ {1, . . . ,N} we obtain

�(x,μN(x)) = VN(x)−VN−1(x
+) = JN(x,u

�
N)− JN−1(x

+,u�N(·+1))

= JM(x,u�N)− JM−1(x
+,u�N(·+1)),

where the last equality follows from the fact that the omitted terms in the sums
defining JM(x,u�N) and JM−1(x+,u�N(·+ 1)) coincide. Using Lemma 14(i) for N, x
and M and for N −1, x+ and M −1, respectively, yields

V∞(x)−V∞(x
+) ≈P JM(x,u�∞)+V∞(x

e)− JM−1(x
+,u�∞)−V∞(x

e)

≈P JM(x,u�∞)− JM−1(x
+,u�∞).
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Putting the two (approximate) equations together and using Lemma 14(ii) yields

�(x,μN(x))≈S V∞(x)−V∞(x
+). (31)

for all M ∈ {1, . . . ,N} satisfying M �∈ Q(x,u�N ,P,N)∪Q(x,u�∞,P,∞) and M − 1 �∈
Q(x+,u�N(·+ 1),P,N − 1)∪Q(x+,u�∞(·+ 1),P,∞). Since each of the four Q sets
contains at most P elements, their union contains at most 4P elements and hence if
N > 8P then there is at least one such M with M ≤ N/2.

Thus, choosing P = �(N −1)/8� yields the existence of M ≤ N/2 such that (31)
holds with S = �(N−1)/8�, implying that ≈S in (31) can be replaced by ≈N . Hence,
the error in (31) can be bounded by δ1(N) for a function δ1 ∈L , yielding

�(x,μN(x))≤V∞(x)−V∞(x
+)+δ1(N). (32)

Applying (32) for x = xMPC(k), k = 0, . . . ,K −1, we can then conclude

Jcl
K (x,μN) =

K−1

∑
k=0

�(xMPC(k),μN(xMPC(k)))

≤
K−1

∑
k=0

(
V∞(xMPC(k))−V∞(xMPC(k+1))+δ1(N)

)

≤V∞(x)−V∞(xMPC(K))+Kδ1(N).

This proves the claim. �

The interpretation of inequality (30) is as follows: If we concatenate the closed loop
trajectory (xMPC(0), . . . ,xMPC(K)) with the infinite horizon optimal trajectory ema-
nating from xMPC(K), then the overall cost Jcl

K (x,μN)+V∞(xMPC(K)) is less than
the optimal cost V∞(x) plus the error term Kδ1(N). In other words, for large N the
initial piece of the MPC closed loop trajectory is an initial piece of an approximately
optimal infinite horizon trajectory.

With similar arguments as in the proofs of Lemmas 13 and 14 one can also prove
the approximate equation

VN(x)≈N VN−1(x)+ �(xe,ue).

Using this relation, Lemma 13(iii) and the dynamic programming equation (7), for
x+ = f (x,μN(x)) we obtain

ṼN(x
+) ≈N VN(x

+)+λ (x+)−VN(x
e)

≈N VN−1(x
+)+ �(xe,ue)+λ (x+)−VN(x

e)

= VN(x)− �(x,μN(x))+ �(xe,ue)+λ (x+)−VN(x
e)

≈N ṼN(x)−�(x,μN(x))+ �(xe,ue)+λ (x+)−λ (x)︸ ︷︷ ︸
=−�̃(x,μN(x))

. (33)
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This implies that the modified optimal value function decays in each step, except for
an error term which vanishes as N → ∞. Since ṼN(x) ≥ ρ(|x|xe) and �̃(x,μN(x)) ≥
ρ(|x|xe), from this we can conclude that as k → ∞ the closed loop solution xMPC(k)
converges to a neighborhood of xe, which shrinks down to xe for N → ∞ (for a
rigorous application of this argument, see [15, Section 8.6]). In fact, due to the upper
bound on ṼN induced by Assumption 12(ii), we can even conclude the existence of
β ∈K L and κ ∈L such that for all x ∈X the MPC closed loop solution xMPC(k)
with xMPC(0) = x satisfies

|xMPC(k)|xe ≤ max{β (|x|xe ,k), κ(N)} (34)

for all N,k ∈ N, cf. [15, Theorem 8.33]. This means that the optimal equilibrium xe

is practically asymptotically stable for the MPC closed loop.
We note that already in very simple examples (see again [12, 13] or [15, Chap-

ter 8]) convergence to the optimal equilibrium xe will not hold for the MPC closed
loop. Hence, in the absence of terminal conditions, practical asymptotic stability of
xe is in general the best one can obtain. This also explains the factor K before δ1(N)
in the estimate from Theorem 15. Since the trajectory always has a little distance to
the optimal equilibrium, in each step we collect a small error and these errors sum
up from 0 to K−1, resulting in the factor K in front of the error term. Note, however,
that the fact that the trajectory stays near xe prevents the solution from deteriorating
as k → ∞, even though the error term in (30) tends to infinite for large K.

Due to the fact that the closed loop solution converges to a neighborhood of xe, it
seems plausible that also without terminal conditions we can obtain a performance
estimate for Jcl

K (x,μN) without reference to the infinite horizon problem, similar
to (28). Our last theorem shows that this is indeed possible.

Theorem 16. Consider the MPC scheme without terminal conditions satisfying As-
sumption 12 and let X be bounded. Then there are δ1,δ2,δ3 ∈ L such that for all
x ∈ X the closed loop solution xMPC(k) generated by this scheme with xMPC(0) = x
satisfies the inequality

Jcl
K (x,μN)≤ inf

u∈UK
δ (K)

(x)
JK(x,u)+δ1(N)+Kδ2(N)+δ3(K) (35)

for all K,N ∈ N, for UK
δ (K)(x) from (27) with δ (K) := |xMPC(K)|xe .

Proof. From (33) we obtain

�̃(x,μN(x))≈N ṼN(x)−ṼN( f (x,μN(x))).

We denote the error in this approximate equation by δ2(N). Summing �̃(x,μN(x))
along the closed-loop trajectory then yields

K−1

∑
k=0

�̃(xMPC(k),μN(xMPC(k)))≤ ṼN(x)−ṼN(xMPC(K))+Kδ2(N). (36)
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Now the dynamic programming equation (4) and Assumption 12(ii) yield for all
K ∈ {1, . . . ,N} and all u ∈ U

K
δ (K)(x)

J̃K(x,u) = J̃K(x,u)+ṼN−K(xu(K,x))︸ ︷︷ ︸
≥ṼN(x)

−ṼN−K(xu(K,x))︸ ︷︷ ︸
≤γṼ (δ (K))

≥ ṼN(x)− γṼ (δ (K)). (37)

Due to the non-negativity of �̃, for K ≥ N we get J̃K(x,u)≥ ṼN(x) for all u ∈U
K(x).

Hence (37) holds for all K ∈N. Moreover, we have ṼN(x)≥ 0. Using (36), (37), (29)
and the definition of δ2, for all u ∈ U

K
δ (K)(x) we obtain

Jcl
K (x,μN(x)) =

K−1

∑
k=0

�̃(xMPC(k),μN(xMPC(k)))−λ (x)+λ (xMPC(K))

≤ ṼN(x)−ṼN(xMPC(K))+Kδ2(N)−λ (x)+λ (xMPC(K))

≤ J̃K(x,u)+ γṼ (δ (K))−ṼN(xMPC(K))+Kδ2(N)−λ (x)+λ (xMPC(K))

= JK(x,u)+ γṼ (δ (K))−ṼN(xMPC(K))+Kδ2(N)−λ (xu(K,x))+λ (xMPC(K))

≤ JK(x,u)+ γṼ (δ (K))+Kδ2(N)+2γλ (δ (K)).

Now from (34) we obtain

γṼ (δ (K))+2γλ (δ (K)) ≤ sup
x∈X
γṼ (β (|x|xe ,K))+2γλ (β (|x|xe ,K))

︸ ︷︷ ︸
=:δ3(K)

+ γṼ (κ(N))+2γλ (κ(N))︸ ︷︷ ︸
=:δ1(N)

which finishes the proof. �

The interpretation of this result is similar to that of (28): among all solutions steer-
ing x into the δ (K)-neighborhood of the optimal equilibrium xe, MPC yields the
cheapest one up to error terms vanishing for large K and larger N.

We would like to note that the results from this section have been extended in
various ways. For instance, in many examples it can be observed that the error terms
δ j(N) converge to 0 exponentially fast as N → ∞, i.e., that they are of the form
δ j(N) = CΘN for C > 0 and Θ ∈ (0,1). Conditions under which this can be rigor-
ously proved can be found in [18]. Another extension concerns replacing the opti-
mal equilibrium xe by a periodic orbit. Corresponding results can be found, e.g., in
[3, 25, 31]. Currently, one research focus is the extension of the results to arbitrary
time varying problems, in which xe is replaced by a general time varying trajectory
with certain optimality properties. First results on this topic have appeared in [16].
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6 Conclusions

We have presented a collection of results about the infinite horizon closed loop per-
formance and stability of MPC closed loop trajectories, for both stabilizing and eco-
nomic MPC and for schemes with and without terminal conditions. In the course of
this analysis, we have shown that dynamic programming arguments are needed in a
lot of different places and for various purposes. Dynamic programming thus forms
an indispensable tool for understanding the behavior of MPC schemes.
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Set-Valued and Lyapunov Methods for
MPC

Rafal Goebel and Saša V. Raković

1 Introduction

Model predictive control (MPC), sometimes referred to as the receding horizon
control, is an optimization-based approach to stabilization of discrete-time control
systems. It is well-known that infinite-horizon optimal control, with the Linear-
Quadratic Regulator [1] as the fundamental example, can provide optimal controls
that result in asymptotically stabilizing feedback [8]. MPC generates stabilizing
feedback by using finite-horizon optimal control, which should be computationally
accessible, and yet should preserve the stabilization properties of infinite-horizon
problems. In fact, MPC is best summarized as a repetitive decision making process
in which the underlying decision making takes the form of a finite horizon open
loop optimal control. Because of its inherent ability to systematically handle con-
straints, guarantee stability, and optimize performance, MPC has attracted a great
attention from both theoretical and practical control communities. MPC has been a
very active research field that encapsulates a broad range of underlying conceptual
and implementational issues [11, 12, 16], and that has seen a large number of real
life implementations [13, 14]. A more detailed overview of the state of the affairs
in MPC can be found in comprehensive survey papers [11, 12] and recent mono-
graphs [7, 16]. These references also provide a comprehensive overview of relevant
literature.

This chapter provides a basic overview of MPC, starting from a common formu-
lation in Section 2, and with the aim to demonstrate the utility of set-valued analysis
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in the study of structural properties of MPC. Set-valued analysis deals, among other
things, with how sets — for example, sets of solutions to optimization problems —
depend on parameters and how their structure behaves under operations that may
include minimization. Relevant background in set-valued analysis is included in
the chapter, following [17]; see also the monograph [2], or [15] for other applica-
tions to MPC. Here, set-valued and, more generally, variational analysis tools are
particularly useful in the study of the finite-horizon optimal control problems but
also considerations of robustness of the stabilization properties of MPC. Section 3
shows, by relying on general parametric optimization ideas, that MPC is well-posed
and computationally applicable for a relatively large class of problems. Section 4
of this chapter outlines how Lyapunov techniques can be employed to provide a
priori guarantees of invariance, stability and consistent improvement properties in
MPC. The chapter is closed with Section 5 that outlines a further role of set-valued
methods for analysis of MPC when applied to set-valued control systems.

2 Problem Statement and Assumptions

Consider a discrete-time control system

x+ = f (x,u), (1)

where x ∈R
n represents the state, u ∈R

m represents the control, and f : Rn ×R
m →

R
n is the state transition mapping. The state and the control may be subject to con-

straints. These are not mentioned explicitly here, but are explicit in the next subsec-
tion, where the constraints considered in the optimal control problem may include
both the natural constraints on (1) and constraints introduced in the optimal con-
trol problem to induce desired properties of its solution. The goal is the design of
a control feedback law that asymptotically stabilizes the origin for the closed loop
system.

2.1 Open Loop Optimal Control Problem

The open loop optimal control problem to be solved is a discrete-time finite-horizon
optimal control problem with the dynamics (1); subject to mixed (involving both x
and u) stage constraints (x,u) ∈ Y, where Y⊆ R

n ×R
m is a set; subject to terminal

state constraints x ∈ X f , where X f ⊆ R
n is a set; and with stage cost �(x,u) and

terminal cost Vf (x), where � : Rn ×R
m → R and Vf : Rn → R are functions.

The stage costs, the terminal cost and the terminal constraints, and some of the
stage constraints — some, as there may be natural constraints on (1) already —
might be design parameters (but they might be also specified as an integral part
of the problem at hand). The rough idea is that the stage costs and constraints



2 Problem Statement and Assumptions 55

should be such that an infinite-horizon optimal control problem with them as the
data should result in optimal feedback that is stabilizing. The terminal cost and
constraints should be such that the properties of the finite-horizon optimal control
problem approximate those of the infinite-horizon problem, and in particular such
that the solution of the finite-horizon problem can be used for stabilization purposes.

Fix a positive time horizon N ∈ N
1 — also a design parameter — and consider

an initial condition x ∈ R
n.

The open loop optimal control problem PN(x) to be solved is to minimize
the cost

VN(x,uN−1)

over all feasible control sequences uN−1. The decision variable in PN(x) is the
control sequence

uN−1 := {uk}k∈NN−1 = {u0,u1, . . . ,uN−1}, (2)

identified in what follows with a vector in R
mN . The implementation of uN−1 re-

sults in the predicted sequence of controlled states xN := {xk}k∈NN , identified with
a vector in R

n(N+1). The predicted states xk and controls uk are subject to

dynamical consistency constraints

x0 = x and, ∀k ∈ NN−1, xk+1 = f (xk,uk); (3)

stage constraints
∀k ∈ NN−1, (xk,uk) ∈ Y; (4)

and terminal constraints
xN ∈ X f . (5)

A feasible control sequence for PN(x) is a sequence (2) such that uN−1 and the
resulting xN satisfy (3), (4), and (5). Thus, the set of admissible2 control sequences is

UN(x) := {uN−1 ∈ R
mN : (3), (4) and (5) hold}. (6)

This defines a set-valued mapping UN : Rn ⇒ R
mN . The set XN of all initial con-

ditions x for which there exists an admissible control sequence uN−1 is the N-step
controllability set. In other words,

XN = {x ∈ R
n : UN(x) �= /0} . (7)

The cost to be minimized, over all admissible control sequences, is the sum of
the associated stage costs �(xk,uk), k ∈ NN−1 and the terminal cost Vf (xN), i.e.,
VN(x,uN−1) = ∑N−1

k=0 �(xk,uk)+Vf (xN). For convenience, it is good to consider VN :
R

n ×R
mN → [0,∞] defined as follows:

1
N denotes the set of non-negative integers, and we use NN := {0,1, . . . ,N −1,N} for any N ∈ N.

2 Terms admissible control sequence/s are used interchangeably with feasible control sequence/s.
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VN(x,uN−1) :=

{
∑N−1

k=0 �(xk,uk)+Vf (xN) if uN−1 ∈ UN(x)

∞ if uN−1 �∈ UN(x).
(8)

The optimal value V 0
N(x) for PN(x) or, when thought as a function dependent on x,

the value function for PN is the function V 0
N : Rn → [0,∞] given by

V 0
N(x) := inf

uN−1
VN(x,uN−1). (9)

Note that the constraint that uN−1 be admissible is implicitly present in (9), as, in
view of (8), VN(x,uN−1) = ∞ if the constraint is violated. An open loop optimal
control sequence is any control sequence uN−1 at which the infimum in (9) is at-
tained. The set of optimal open loop control sequences u0

N−1(x) is then

u0
N−1(x) := argmin

uN−1

VN(x,uN−1), (10)

and note that this defines a set-valued mapping u0
N−1 : Rn ⇒ R

mN , which may have
empty values — for example, u0

N−1(x) = /0 if there is no admissible control sequence
(i.e., when x �∈ XN).

2.2 Closed Loop Dynamics

The closed loop dynamics for (1), resulting from iterative solutions to the open-loop
optimal control problem PN(x) described in the previous section, is as follows:

• at a current state x of the system, one solves PN(x);
• assuming a solution exists, one selects an open loop optimal control sequence

uN−1 ∈ u0
N−1(x) (uniqueness need not be guaranteed, even if existence is);

• one applies “the first” control value u0, where uN−1 = {u0,u1, . . . ,uN−1}, to
update the state according to x+ = f (x,u0);

and the procedure is repeated.

2.3 Standing Assumptions

Unless otherwise mentioned, the following assumption is posed throughout the pa-
per. The conditions in it are divided into three groups: regularity, which includes
continuity of the functions and closedness of the sets in the data; growth conditions
on the stage cost or on the stage constraint; and a condition requiring that 0 be a
controlled equilibrium.
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Assumption 1 Regularity assumptions are:

(a) the state transition mapping f : Rn ×R
m → R

n is continuous;
(b) the stage constraint Y⊆ R

n ×R
m is closed;

(c) the terminal constraint X f ⊆ R
n is closed;

(d) the stage cost � : Rn ×R
m → [0,∞) is continuous;

(e) the terminal cost Vf : Rn → [0,∞) is continuous.

Coercivity/growth assumption is:

(f) either �(x,u) ≥ ψ(u) for some radially unbounded ψ : Rm → [0,∞), or the
set-valued mapping Yu : Rn ⇒ R

m, given by

Yu(x) := {u ∈ R
m : (x,u) ∈ Y},

is locally bounded.

“Properness” assumption is:

(g) f (0,0) = 0, (0,0) ∈ Y, 0 ∈ X f .

Coercivity assumption holds, for example, if

�(x,u) = xT Qx+uT Ru

for Q = QT ≥ 0, R = RT > 0, as then �(x,u)≥ ψ(u) = uT Ru; or if

Y= {(x,u) : Cx+Du ∈K}

for a compact K and invertible D, as then Yu(x) = D−1(K−Cx) which is locally
bounded (and continuous).

3 Properties of the Open Loop Optimal Control Problem

3.1 Set-Valued Analysis Background

The set-valued analysis background presented here follows [17]. Definitions are
stated without precise pointers. A set-valued mapping M from R

n to R
m, denoted

M : Rn ⇒ R
m, is understood to associate to every x ∈ R

n a set M(x) ⊆ R
m. M is

outer semicontinuous at x ∈ R
n if for every sequence xi → x, every convergent se-

quence yi ∈ M(xi), one has limi→∞ yi ∈ M(x). An equivalent condition for outer
semicontinuity of M at every x ∈ R

n is that the graph of M, namely the set

{(x,y) ∈ R
n ×R

m : y ∈ M(x)},

be closed. M is continuous at x if in addition to being outer semicontinuous at x, it is
inner semicontinuous at x: for every xi → x and every y ∈ M(x) there exist yi ∈ M(xi)
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for all large enough i so that yi → y. M is locally bounded at x if there exists a
neighborhood X of x such that M(X) :=

⋃
x∈X M(x) is bounded. If M is locally

bounded at x and has closed values, then outer semicontinuity at x is equivalent to
the condition that for every ε > 0 there exist δ > 0 such that M(x′)⊆ M(x)+εB for
every x′ ∈ x+ δB; see [17, Proposition 5.12]. Here, B is the closed unit ball in the
Euclidean norm centered at 0; x+δB is the closed ball of radius δ centered at x; and,
similarly, M(x)+ εB is the closed ε-neighborhood around the set M(x). Similarly,
under local boundedness, inner semicontinuity at x is equivalent to: for every ε > 0
there exist δ > 0 such that M(x)⊆ M(x′)+εB for every x′ ∈ x+δB. Consequently,
if a locally bounded M has closed and nonempty values around x, it is continuous at
x if and only if the Hausdorff distance between M(x′) and M(x) tends to 0 as x′ → x;
see [17, Corollary 5.21].

A set X⊆R
n is said to be a polyhedral set if it can be expressed as the intersection

of a finite family of closed half-spaces or hyperplanes, equivalently, can be specified
by finitely many linear constraints, i.e., constraints fi(x)≤ 0 or fi(x) = 0 where fi is
affine. Image and pre-image of a polyhedral set under a linear mapping is polyhedral;
see [17, Proposition 3.55]. A single-valued mapping f : D→R

m is piecewise linear
if D⊆ R

n is a union of finitely many polyhedral sets, relative to each of which f (x)
is representable as Ax+ b for A ∈ R

m×n, b ∈ R
m. A function f : Rn → (−∞,∞] is

piecewise linear if it is piecewise linear in the sense just defined, with D being the
effective domain of f , namely, the set dom f := {x ∈ R

n : f (x) < ∞}. Similarly, a
function f : Rn → (−∞,∞] is piecewise linear-quadratic (PLQ) if dom f is a union
of finitely many polyhedral sets, relative to each of which f (x) is representable as
xT Ax + bT x + c for A ∈ R

n×n, b ∈ R
n, and c ∈ R. (The terms “piecewise linear”

and “piecewise linear-quadratic” are utilized consistently with terminology of [17]
instead of, perhaps more precise, terms “piecewise affine” and “piecewise affine-
quadratic”.) A PLQ function f : Rn → (−∞,∞] has dom f closed and is continuous
relative to dom f , in the sense that limi→∞ f (xi) = f (x) whenever xi,x ∈ dom f and
xi → x, and thus lower semicontinuous3 on R

n; and if f is also convex then dom f
is also polyhedral; see [17, Proposition 10.21]. A set-valued mapping M : Rn ⇒R

m

is piecewise polyhedral if its graph is a union of finitely many polyhedral sets.

3.2 Parametric Optimization Background

Let φ : Rn ×R
m → [0,∞] be proper, in the sense that it is not ∞ everywhere; lower

semicontinuous; and such that φ(x,u) is level-bounded in u locally uniformly in x:
for each α ∈R, x ∈R

n there exists a neighborhood X of x and a bounded set U such
that {u : φ(x,u) ≤ α} ⊆ U for every x ∈ X. Let p : Rn → [0,∞] and P : Rn ⇒ R

m

be defined by
p(x) = inf

u∈Rm
φ(x,u), P(x) = argmin

u∈Rm
φ(x,u).

3 The function f : Rn → [−∞,∞] is lower semicontinuous at x ∈ R
n ( on R

n ) if f (x) ≤
liminfx→x f (x) ( f (x)≤ liminfx→x f (x) for every x ∈ R

n ).
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It is illustrative to think about parametric optimization in terms of the epigraph of
φ , namely the set

epiφ := {(x,u,r) ∈ R
n ×R

m ×R : φ(x,u)≤ r},

and the epigraph of p, i.e., epi p := {(x,r) ∈ R
n ×R : p(x) ≤ r}. Indeed, epi p is

the projection (x,u,r) �→ (x,r) of epiφ . Lower semicontinuity of φ is equivalent to
epiφ being closed. In general, a projection of a closed set need not be closed; for
example project the epigraph of ex onto the y-axis. The level-boundedness assump-
tion addresses this issue. Furthermore, epiφ is a convex set if and only if φ is a
convex function, and since projections of convex sets are convex sets, this suggests
that convexity of φ is inherited by p. Similarly, certain further piecewise structures
of φ are also inherited.

General Regularity [17, Theorem 1.17] implies that p is proper, lower semicon-
tinuous, and for each x ∈ dom p, P(x) is nonempty and compact. [17, Theorem 7.41]
implies that P is outer semicontinuous with respect to p-attentive convergence: if
xi → x ∈ dom p, p(xi) → p(x), ui ∈ P(xi) and ui converge, then limi→∞ ui ∈ P(x),
and P is locally bounded relative to any set on which p is bounded from above.

Continuity [17, Theorem 1.17] implies that p is continuous at every x for which
there exists u ∈ P(x) such that x �→ φ(x,u) is continuous at x. Additionally, if φ is
continuous relative to domφ , then p is continuous at every x at which the set-valued
mapping x �→ {u : (x,u) ∈ domφ} is continuous. This can be deduced from [17,
Theorem 7.41(b)] but is easy to see directly. Indeed, under the assumptions above,
let u∈P(x) and consider xi → x. By continuity of the mentioned set-valued mapping,
there exist ui → u such that (xi,ui) ∈ domφ . By continuity of φ relative to domφ ,
φ(xi,ui)→ φ(x,u). Thus

limsup
i→∞

p(xi)≤ limsup
i→∞

φ(xi,ui) = φ(x,u) = p(x)

and p is upper semicontinuous4 at x. Together with previously established lower
semicontinuity of p at every x, this amounts to continuity at x.

Convexity and Structure Suppose now that φ is additionally a convex function.
Then p is a convex function and P has convex values, by [17, Proposition 2.22],
while by [17, Theorem 7.41], P is locally bounded and outer semicontinuous on the
interior of dom p. One immediate consequence of convexity of p is the continuity
of p on the interior of dom p; see [17, Theorem 2.35]. Another consequence of con-
vexity is preservation of further structure that φ may have. [17, Proposition 3.55]
implies that if φ is convex and piecewise linear, then p is convex and piecewise lin-
ear. [17, Corollary 11.16 and Proposition 11.32] imply that if φ is convex and piece-
wise linear-quadratic, then p is convex and piecewise linear-quadratic and P(x) is
polyhedral at each x ∈ dom p. More can be shown, via an argument that underscores
the value of analysis of mappings using their graphs. Convexity and PLQ structure
of φ is equivalent to the subdifferential mapping ∂φ of φ , in the sense of convex

4 The function f : Rn → [−∞,∞] is upper semicontinuous at x ∈R
n ( on R

n ), if limsupx→x f (x)≤
f (x) ( limsupx→x f (x)≤ f (x) for every x ∈ R

n ).
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analysis,5 being piecewise polyhedral [17, Proposition 12.30]. Then u ∈ P(x) if and
only if 0 is in the subdifferential of the convex function u �→ φ(x,u) at u. Equiva-
lently, thanks to [17, Exercise 10.22], if and only if there exists y ∈ R

n such that
(y,0) ∈ ∂φ(x,u). Thus, the graph of P is the projection (x,u,y,z) �→ (x,u) of the
intersection of the graph of ∂φ with (Rn ×R

m ×R
n ×{0}). The graph of ∂φ is a

union of finitely many polyhedral sets, hence the said intersection has this property,
and thus so does the projection. Consequently, if φ is convex and PLQ, then P is
piecewise polyhedral.

3.3 Existence and Structure of Optimal Solutions

Under Assumption 1, the N-step controllability set XN is nonempty, as 0 ∈ XN .
Since VN(x,uN−1) is nonnegative and finite for every admissible uN−1, V 0

N(x) is
finite for every x ∈ XN and, by convention, infinite elsewhere. The set

UN :=
{
(x,uN−1) ∈ R

n ×R
mN : (3), (4) and (5) hold

}

is closed. Roughly, the limit of a sequence of feasible controls, for different initial
conditions, is feasible for the limiting initial condition. This set is, in fact, the graph
of the set-valued mapping UN : Rn ⇒ R

mN defined in (6), associating with each x
the set of admissible control sequences. Consequently, UN is outer semicontinuous.
The cost to be minimized in PN(x), that is VN : Rn ×R

mN → [0,∞] given by (8), can
be restated as

VN(x,uN−1) :=

{
∑N−1

k=0 �(xk,uk)+Vf (xN) if (x,uN−1) ∈ UN ,

∞ if (x,uN−1) �∈ UN .
(11)

Since ∑N−1
k=0 �(xk,uk)+Vf (xN) is continuous and UN is closed, VN is a lower semi-

continuous function. It is also proper – it is finite at x = 0, since the zero sequence is
an admissible control and has a finite cost. Finally, VN(x,uN−1) is level bounded in
uN−1, locally uniformly in x. In fact, if �(x,u)≥ ψ(u) for some radially unbounded
ψ then VN(x,uN−1) is level bounded in uN−1 uniformly over all x (and indepen-
dently of the properties of UN); while if Yu is bounded in u locally uniformly in x,
then UN is locally bounded in x, which is sufficient for the needed property of VN .
Consequently, results in Section 3.2 yield:

Theorem 1. V 0
N : Rn → [0,∞] is proper and lower semicontinuous, V 0

N(x) is finite if
and only if x ∈XN, and for every x ∈XN, the set of minimizers u0

N−1(x) is nonempty
and compact.

5 For a convex f : Rn → (−∞,∞], ∂ f (x) =
{

y ∈ R
n : ∀x′ ∈ R

n, f (x′)≥ f (x)+ yT (x′ − x)
}

, and
if f is differentiable at x ∈ R

n then ∂ f (x) reduces to ∇ f (x).
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If x ∈XN and uN−1 is such that (x,uN−1) is interior to UN , then x �→VN(x,uN−1)
is continuous at x and V 0

N is continuous at x. A different approach to continuity of V 0
N ,

since VN is continuous relative to the set on which it is finite (i.e., XN), is through
continuity of UN .

Theorem 2. If x ∈ XN and UN is continuous at x, then V 0
N is continuous at x. If V 0

N
is continuous at x, then u0

N−1 is outer semicontinuous and locally bounded at x, and
thus continuous if it is single-valued.

Continuous dependence of UN on x naturally occurs when the state transition
mapping f is affine and the stage constraint set Y and the terminal constraint set
X f are convex. Then, the set UN is convex and since UN is the graph of UN , [17,
Theorem 5.9] implies that UN is continuous at every x in the interior of its domain.
If, additionally, the stage and terminal costs are convex, the problem PN(x) is a
convex optimization problem: the function VN in (11) is convex. Indeed, convexity
is preserved under summation and composition of a convex function with an affine
mapping. This structure is preserved under the operation of minimization over uN−1.

Theorem 3. Suppose that the state transition mapping f is affine; the stage con-
straint set Y and the terminal constraint set X f are convex sets; and the stage cost
� and terminal cost Vf are convex functions. Then, XN is convex, V 0

N is convex, and
hence continuous at every point in the interior of its domain XN, and u0

N−1(x) is
convex for every x ∈ XN.

Under the assumptions of Theorem 3, which ensure convexity of VN , further as-
sumptions on the data ensure that VN is also PLQ. The assumptions are that Y and
X f be polyhedral and � and Vf be PLQ. Indeed, the PLQ structure of VN follows
as sums of convex PLQ functions and compositions of convex PLQ functions with
affine mappings are PLQ; [17, Exercise 10.22]. The PLQ structure is also preserved
under the operation of minimization over uN−1.

Theorem 4. Suppose that, in addition to hypotheses of Theorem 3, Y and X f are
polyhedral. If � and Vf are PLQ, then, in addition to properties asserted in Theo-
rem 3, XN is polyhedral, V 0

N is PLQ, and u0
N−1 is piecewise polyhedral, while its

values u0
N−1(x) are polyhedral sets for all x ∈XN, and in case of u0

N−1 being single-
valued, u0

N−1 is piecewise linear. If � and Vf are piecewise linear, then, furthermore,
V 0

N is piecewise linear.

A special but important case that fits under the assumptions of Theorem 4 is the
polyhedrally constrained linear-quadratic regulator, described in the remark below.
For consequences of favorable structure, of the value function and of the minimizer
in this case, for computation and implementation, see [3] and related literature.

Remark 1. Suppose that:

– f (x,u) = Ax+Bu for appropriately-sized matrices A, B;
– Y and X f are polyhedral;
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– �(x,u) = xT Qx+uT Ru with appropriately-sized symmetric matrices Q, R where
Q is positive semidefinite and R is positive definite;

– Vf (x) = xT Px with appropriately sized positive semidefinite matrix P.

Then UN is polyhedral; since � and Vf are quadratic functions, VN is quadratic on
UN ; and thus VN is, in particular, PLQ (recall (11)). Furthermore, �(x,u) is strictly
convex in u for each fixed x, so VN is strictly convex in uN−1 on UN(x) for each fixed
x ∈ XN . Thus, for each x ∈ XN the minimization in (9) has a unique solution and
so uN−1 is single-valued on XN . Theorem 4 and generic properties of convex PLQ
functions imply that:

– XN is nonempty and polyhedral;
– V 0

N is a convex and PLQ function, continuous relative to XN ;
– u0

N−1 is piecewise linear, continuous relative to XN .

4 Asymptotic Stability and Related Issues

The actual implementation of open loop optimal control problem PN(x) finds, while
minimizing VN(x,uN−1) over uN−1, the set u0

N(x) := {u0
k(x)}k∈NN−1 of open loop

optimal control sequences. By Theorem 1, for every x ∈ XN , u0
N(x) is nonempty

and so open loop control sequences exist. Without assumptions guaranteeing the
uniqueness of the open loop optimal control sequence at each x, this process leads
to a set-valued feedback law

κN(x) =
{

u0
0 : {u0

0,u
0
1, . . . ,u

0
N−1} ∈ u0

N−1(x)
}

(12)

As the MPC law κN is not necessarily a single-valued function, the resulting con-
trolled MPC dynamics is most precisely modeled as:

x+ ∈ FN(x), FN(x) := { f (x,u) : u ∈ κN(x)}. (13)

Section 3 stated basic properties of the optimization problem PN(x) under the stand-
ing assumptions. Further conditions on the data are required to ensure the following
two properties:

• Strong Positive Invariance (a.k.a. Recursive Feasibility), i.e., the property
that given any x ∈ XN , we have that (x,u) ∈ Y for any u ∈ κN(x), and that any
x+ ∈ FN(x) remains in XN , i.e., FN(x)⊆ XN , so that (13) can be iterated.

The strong positive invariance property ensures that complete solutions x := {xk}k∈N
to (13) exist from every initial point x0 ∈ XN , and satisfy xk ∈ XN for every k ∈ N.
The corresponding realized control sequences u := {uk ∈ κN(xk)}k∈N are such that
(xk,uk) ∈ Y for every k ∈ N.

• Strong Asymptotic Stability of the origin for x+ ∈ FN(x) of (13) in the follow-
ing sense:
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– for every ε > 0 there exists δ > 0 such that, for every solution x = {xk}k∈N
to x+ ∈ FN(x) of (13), if x0 ∈XN satisfies ‖x0‖< δ , then ‖xk‖< ε for every
k ∈ N, and

– every solution x = {xk}k∈N to x+ ∈ FN(x) of (13) with x0 ∈ XN converges
to 0.

This asymptotic stability property is, usually, the true goal of MPC. In the current
setting, where the dynamics (13) is set-valued, the term “strong” underlines that
the two desired properties above hold for all solutions. This is in contrast with
weak asymptotic stability, where the desired properties are expected to hold only
for some solution. The term asymptotic stability is henceforth used interchangeably
with strong asymptotic stability.

The set of conditions below stipulates that the terminal constraints set X f and
cost function Vf are a control invariant set and a local control Lyapunov-like func-
tion. The first condition leads to recursive feasibility, the second leads to the optimal
value function V 0

N being a Lyapunov-like function. Subject to further conditions in
Section 4.3, V 0

N is a Lyapunov function and strong asymptotic stability can be de-
duced.

Assumption 2 For all x ∈ X f there exists a u ∈ R
m such that

(a) (x,u) ∈ Y, and f (x,u) ∈ X f ,

and
(b) Vf ( f (x,u))≤Vf (x)− �(x,u).

4.1 Strong Positive Invariance (a.k.a. Recursive Feasibility)

The N-step controllability set XN was defined in (7). It is clear that if x ∈ XN , then
x+ coming from (13) is in XN−1, but, in general, it need not be in XN .

Proposition 1. Suppose that Assumption 2(a) holds. Then

∀x ∈ XN , ∀u ∈ κN(x), (x,u) ∈ Y, and f (x,u) ∈ XN . (14)

Proof. Take any x ∈ XN and any u ∈ κN(x). Then u = u0 for some optimal,
in particular admissible, uN−1 = {u0,u1, . . . ,uN−1}. Thus, (x,u) ∈ Y. Let xN :=
{x0,x1, . . . ,xN} be the sequence of states resulting6 from uN−1 and initial condi-
tion x. In particular, xN ∈ X f . By Assumption 2(a) there exists a uN ∈ R

m such
that (xN ,uN) ∈ Y and xN+1 = f (xN ,uN) ∈ X f . Take any such uN and corresponding
xN+1 = f (xN ,uN). Consider

u′
N−1 = {u1,u2, . . . ,uN}, x′

N = {x1,x2, . . . ,xN+1}. (15)

6 We say that xN results from uN−1 and x if, for each k ∈ NN−1, xk+1 = f (xk,uk) with x0 = x.
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Notice that, by construction, x′
N results from u′

N−1 and the initial condition x′ =
f (x,u), and that, since uN−1 is admissible for the initial condition x, u′

N−1 is admis-
sible for the initial condition x′. Thus f (x,u) ∈ XN and the proof is done.

Proposition 1 demonstrates that the control invariance of the terminal constraint
set X f is preserved through design of MPC, and it is reflected via strong positive in-
variance of the N-step controllability set XN . From the numerical point of view, the
strong positive invariance property associated with the MPC law κN assures that its
computation is not sensitive with respect to selections induced by a specific numer-
ical algorithm used for solving the underlying open loop optimal control problem
PN(x) (i.e., positive invariance of XN is preserved with any selection u(x) ∈ κN(x)).

4.2 Strong Lyapunov Decrease (a.k.a. Cost Reduction)

It is a tradition in conventional MPC to utilize the value function V 0
N as a Lyapunov

function for the related closed loop dynamics. This is typically done by ensuring that
the values of the value function V 0

N decrease along the controlled state trajectories
by the value of the stage cost functions �. In other words, it is desirable to ensure
that the Lyapunov decrease, as specified locally in Assumption 2(b), is maintained
by MPC design. It turns out that this is indeed possible under Assumption 2.

Proposition 2. Suppose that Assumption 2 holds. Then

∀x ∈ XN , ∀u ∈ κN(x), V 0
N( f (x,u))≤V 0

N(x)− �(x,u). (16)

Proof. Take any x ∈XN , any u ∈ κN(x), and any optimal uN−1 such that u = u0. By
Assumption 2 there exists a uN ∈R

m such that (xN ,uN)∈Y and xN+1 = f (xN ,uN)∈
X f , and Vf (xN+1) ≤ Vf (xN)− �(xN ,uN). Take any such uN and the corresponding
xN+1 = f (xN ,uN). Define u′

N−1 and x′
N as in (15). Let x′ = f (x,u). As in the proof

of Proposition 1, u′
N−1 is admissible for the initial condition x′ and results in x′

N .
Furthermore,

VN(x
′,u′

N−1) =
N

∑
k=1

�(xk,uk)+Vf (xN+1)

=
N−1

∑
k=1

�(xk,uk)+ �(xN ,uN)+Vf (xN+1)

=−�(x0,u0)+
N−1

∑
k=0

�(xk,uk)+ �(xN ,uN)+Vf (xN+1)

≤ −�(x0,u0)+
N−1

∑
k=0

�(xk,uk)+Vf (xN)

=−�(x,u)+V 0
N(x),
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where the last equality follows from optimality of uN−1. Since V 0
N(x

′) ≤
VN(x′,u′

N−1), one obtains

V 0
N( f (x,u))≤V 0

N(x)− �(x,u).

The proof is finished.

4.3 Strong Positive Invariance and Strong Asymptotic Stability

In view of Propositions 1 and 2, MPC law yields strong positive invariance of the
N-step controllability set XN , and it also ensures the strong Lyapunov decrease. As-
suming that K∞-class functions7 lower and upper bound the value function V 0

N this
means that the origin is strongly asymptotically stable for the MPC controlled dy-
namics x+ ∈ FN(x) with the region of attraction being equal to N-step controllability
set XN . The existence of the related K∞-class upper bound, under already displayed
assumptions, reflects requirements for weak constrained controllability of consid-
ered problem setting. The developments of this section are summarized below.

Theorem 3. Suppose that Assumption 2 holds and

• there exists a K∞-class function α such that

∀(x,u) ∈ Y, α(‖x‖)≤ �(x,u),

• there exists a K∞-class function β such that

∀x ∈ XN , V 0
N(x)≤ β (‖x‖).

Then the N-step controllability set XN is strongly positively invariant for the MPC
controlled dynamics x+ ∈ FN(x). Furthermore, the origin is strongly asymptotically
stable for the MPC controlled dynamics x+ ∈ FN(x) with the region of attraction
being equal to the N-step controllability set XN.

Proof. Proposition 1 established strong positive invariance of the N-step controlla-
bility set XN , so that equivalently ∀x ∈ XN , ∀u ∈ κN(x), (x,u) ∈ Y, and

∀x ∈ XN , FN(x)⊆ XN .

Proposition 2 established strong Lyapunov decrease property of the value func-
tion over the N-step controllability set XN : for all x ∈ XN , and all u ∈ κN(x),
V 0

N( f (x,u))≤V 0
N(x)−�(x,u). Due to the assumed bound on �, this decrease property

becomes
∀x ∈ XN , ∀x+ ∈ FN(x), V 0

N(x
+)≤V 0

N(x)−α(‖x‖).

7 A function f : [0,∞)→ [0,∞) is called a K∞-class function if it is continuous, strictly increasing,
f (0) = 0, and f (x)→ ∞ as x → ∞.
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Since � and Vf are nonnegative, �(x,u) ≤ VN(x,uN−1) for every (x,u) ∈ Y and so
α(‖x‖)≤VN(x,uN−1). This and the assumed bound on V 0

N yield

∀x ∈ XN , α(‖x‖)≤V 0
N(x)≤ β (‖x‖),

so that the value function V 0
N is a Lyapunov function verifying strong asymptotic

stability of the origin for the MPC controlled dynamics x+ ∈ FN(x) with the region
of attraction being equal to the N-step controllability set XN .

4.4 Set-Valued Approach to Robustness of Asymptotic Stability

Considering set-valued dynamics is convenient for the analysis of robustness of
asymptotic stability, even if the nominal dynamics x+ ∈ FN(x) defined for x ∈ XN

is single-valued, i.e., reduces to x+ = FN(x). Indeed, if, for simplicity, κN(x) is
single-valued, then measurement error e and external perturbation d alter the nomi-
nal dynamics to

x+ = f (x,κN(x+ e))+d,

and passing to set-valued dynamics can capture the behaviors resulting from all
(small enough) e and d, and other perturbations. To that end, one considers dynamics
which are “an enlargement” of the nominal dynamics. Let ρ : Rn → [0,∞) be a
function. Define

X
ρ
N := {x ∈ R

n : (x+ρ(x)B)∩XN �= /0}, and

∀x ∈ X
ρ
N , FρN(x) := {v ∈ X

ρ
N : v ∈ z+ρ(z)B, z ∈ FN(x+ρ(x)B)}

and set FρN(x) to be empty for x �∈X
ρ
N , just as FN(x) is considered empty outside XN .

If one thinks of ρ(x) as a bound on the measurement error at x, then X
ρ
N includes

all points that are within measurement error of XN . Similarly, then the enlarged
dynamics FρN(x) considers all values z of FN at points within the measurement error
of x, and then allows for external perturbations of those z’s with magnitude bounded
by ρ(z).

If XN is closed, FN is outer semicontinuous and locally bounded (as it is, in
particular, if FN is a continuous function on XN), and ρ is continuous, then X

ρ
N is

closed and FρN is outer semicontinuous and locally bounded; see [17, Lemma 5.17].
Additionally, if XN is strongly positively invariant for the nominal dynamics, then
FρN(x) is nonempty at each x ∈X

ρ
N and, since v ∈X

ρ
N are considered, XρN is strongly

positively invariant for the dynamics x+ ∈ FρN(x). More importantly, the just men-
tioned regularity properties of XN and FN are sufficient to guarantee robustness of
asymptotic stability, in the following sense:

Theorem 6. Suppose that XN is closed. Suppose that FN is outer semicontinuous
and locally bounded, as it automatically is if FN is a continuous function on XN.
Suppose that the origin is asymptotically stable for the nominal dynamics x+ ∈
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FN(x) on XN, which entails strong positive invariance of XN for x+ ∈ FN(x). Then
there exists a continuous and positive definite ρ : Rn → [0,∞) such that the origin is
strongly asymptotically stable for the enlarged dynamics

x+ ∈ FρN(x) (17)

on X
ρ
N, with the basin of attraction equal to X

ρ
N.

The result is a special case of [5, Theorem 7.21]. In [5], a modified concept
of asymptotic stability is considered; here, given the strong positive invariance of
X
ρ
N , that concept reduces to the standard (strong) asymptotic stability. In the result

above, the magnitude of perturbations ρ(x) decreases to 0 as the state x approaches
the origin, and the result guarantees true asymptotic stability. Related results that
allow for constant and positive magnitude of perturbations at all x usually conclude
semiglobal practical stability; see, for example, [5, Lemma 7.20].

Section 3.3 provided some results on when outer semicontinuity of κN and thus of
the closed loop dynamics FN can be expected. These were usually tied to continuity
of V 0

N . It turns out that continuity of V 0
N , if it is a Lyapunov function as described

in the proof of Theorem 3, or continuity of any other Lyapunov function for the
nominal dynamics is sufficient for robustness of asymptotic stability, even if FN or
XN lack the regularity required by the result above. For an exposition of the relation
between the regularity of Lyapunov functions and robustness, see the survey [9].
For multivalued dynamics in continuous time, the connection between smoothness
of Lyapunov functions and robustness of asymptotic stability was made by [4]. For
discrete time, equivalence between robustness of asymptotic stability and existence
of continuous Lyapunov functions was shown in [10]. That such equivalences also
hold when state constraints are present, subject to altering the asymptotic stability
concept for the case where strong positive invariance may fail, is evidenced in [5].

For example when lack of continuous Lyapunov functions or lack of regularity of
the feedback and the closed-loop dynamics leads to lack of robustness of asymptotic
stability, and for further discussion, see [6], or Chapter 8 in [7].

4.5 Consistent Improvement

Increasing the horizon length N in the optimization problem PN(x) increases com-
putational complexity. It is then desirable to know if it also improves the perfor-
mance and applicability of MPC. Methods similar to those already employed in this
section show that, under the same assumptions, this is indeed the case.

Let uN−1 = {u0,u1, . . . ,uN−1} be an admissible control sequence for PN(x), i.e.,
uN−1 ∈ UN(x), and let xN be the resulting trajectory. Then xN ∈ X f , and under As-
sumption 2(a), there exists uN so that (xN ,uN) ∈ Y and xN+1 := f (xN ,uN) ∈ X f .
Then,

uN = {u0,u1, . . . ,uN}
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is an admissible control sequence for PN+1(x). Thus, admissible controls for the
horizon N can be augmented to form admissible controls for the horizon N + 1.
In particular, for a given initial condition x, if there exists an admissible control
for horizon N, then there exists one for the horizon N + 1, and so X f := X0 ⊆
XN ⊆XN+1. Under additional Assumption 2(b), the uN above can be chosen so that
Vf (xN+1)+ �(xN ,uN)≤Vf (xN) also holds. If uN−1 is optimal, one obtains

V 0
N+1(x)≤

N−1

∑
k=0

�(xk,uk)+ �(xN ,uN)+Vf (xN+1)≤
N−1

∑
k=0

�(xk,uk)+Vf (xN) =V 0
N(x).

In summary:

Proposition 3. Under Assumption 2, for all N ∈ N,

X0 := X f ⊆ XN ⊆ XN+1, and ∀x ∈ XN+1, V 0
N+1(x)≤V 0

N(x).

(Here, by convention, V 0
0 (x) =Vf (x) for all x ∈ X f , and V 0

0 (x) = ∞ otherwise.)

5 Set-Valued Control Systems

Set-Valued System Discontinuous control systems and uncertain control systems
are perhaps major classes of control systems that motivate the consideration of a
generalized form of control systems, which are governed by

x+ ∈ F(x,u), (18)

where, as before, x ∈ R
n and u ∈ R

m are the current state and control, respectively,
while x+ ∈R

n is the successor state and F : Rn ×R
m ⇒R

n is a set-valued mapping.
These generalized control systems provide a convenient mathematical framework to
treat discontinuous control systems, via their set-valued regularization, and single-
valued systems with uncertainty (or a perturbation or opponent’s action) where one
wishes to account for every possible uncertain action. For a discontinuous control
system, given by a discontinuous f : Rn ×R

m →R
n, following the ideas of Fillipov

and Krasovskii for continuous-time systems, one may want to consider the control
system given by the closure of f . The closure of f , denoted by F : Rn ×R

m ⇒
R

n, is the set-valued mapping whose graph is the closure of the graph of f .8 For
a single-valued control system x+ = f (x,u,w) with uncertainty w ∈ W, one may
want to consider the set-valued control system x+ ∈ F(x,u), F(x,u) := { f (x,u,w) :
w ∈ W}. When discontinuous control systems are considered directly within MPC
framework, the question of well-posedness becomes more delicate. Likewise, when
the uncertain control systems are treated, it is necessary to consider robust variants
of MPC as the use of open loop optimal control is not appropriate.

8 In other words, for each (x,u) ∈R
n ×R

m, the set F(x,u) is the set of all limits z = limi→∞ zi with
zi = f (xi,ui) and (xi,ui)→ (x,u).
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When set-valued control systems are used as models for underlying control sys-
tems, it is necessary to “define rules” determining the successor state at a given state
and control. Depending on the nature of the corresponding process modeled as set-
valued control system, the successor state might be chosen either by the decision
maker or alternatively it might be produced as a result of the action by an external
entity. The ramification of this observation is that it is necessary to differentiate be-
tween weak and strong formulations of MPC, as discussed briefly in what follows.

5.1 Weak Formulation of MPC

The weak formulation is concerned with set-valued control systems, for which the
decision maker chooses, at a given current state x, both the current control u and
successor state x+ ∈ F(x,u). Thus, the optimization problem to be solved has, as de-
cision variables, both the sequence of controls uN−1 := {uk}k∈NN−1 and the sequence
of states xN := {xk}k∈NN . For convenience, introduce yN given by

yN := {x0,u0,x1,u1, . . . ,xN−1,uN−1,xN}. (19)

Within this setting, the dynamical consistency constraints take the following form

x0 = x and, ∀k ∈ NN−1, xk+1 ∈ F(xk,uk). (20)

Then the set of admissible decision variables, given an initial condition x, is then

YN(x) := {yN : (20), (4) and (5) hold}, (21)

which defines a set-valued mapping YN : Rn ⇒ R
n(N+1)+mN . The cost to be mini-

mized is the same cost as in Section 3, with the difference it now is a function of
x and yN . (Since x is embedded in an admissible yN through (20), one could omit
the x dependence, but for connections to parametric optimization, it is reasonable to
display it.)

VN(x,yN) :=

{
∑N−1

k=0 �(xk,uk)+Vf (xN) if yN ∈ YN(x)

∞ if yN �∈ YN(x).
(22)

Thus, the optimization problem to be solved is

V 0
N(x) := inf

yN
VN(x,yN), (23)

and the set of optimal processes is

y0
N(x) := argmin

yN
VN(x,yN). (24)
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For the purposes of basic existence and lower semicontinuity results for this opti-
mization problem, similar to what was done in Section 3 for PN(x), the assumption
of continuity of the function f is replaced by outer semicontinuity of F. This prop-
erty of F arises naturally when discontinuous functions f are regularized, and can
be equivalently expressed in terms of the graph of F.

Assumption 3 The graph F of the set-valued mapping F

F := {(x+,x,u) ∈ R
n ×R

n ×R
m : x+ ∈ F(x,u)}, (25)

is a closed set such that (0,0,0) ∈ F (i.e., 0 ∈ F(0,0)).

When the condition (a) of the regularity assumptions, and 0 = f (0,0) part of
the condition (g) of the “properness” assumptions in Assumption 1 are replaced by
Assumption 3, the regularity of the related optimal solutions (i.e., the value function
V 0

N specified in (23) and the set of associated optimal processes specified in (24)) is
guaranteed in the sense of Theorem 1. In particular, the value function V 0

N : Rn →
[0,∞] is proper and lower semicontinuous. Furthermore, V 0

N(x) is finite if and only if
x ∈ XN , and, for every x ∈ XN , the set of optimal processes y0

N(x) is nonempty and
compact. Here, the related N-step controllability set XN is specified by

XN = {x ∈ R
n : YN(x) �= /0} .

The open loop optimal processes induce directly the MPC control law and con-
trolled dynamics, both of which are well defined for every x ∈XN . In general, these
are set-valued feedback control law

κN(x) = {u0
0 : {x0

0,u
0
0,x

0
1,u

0
1 . . . ,x

0
N−1,u

0
N−1,x

0
N} ∈ y0

N(x)},

and related set-valued controlled dynamics

x+ ∈ FN(x), FN(x) = {x0
1 : {x0

0,u
0
0,x

0
1,u

0
1 . . . ,x

0
N−1,u

0
N−1,x

0
N} ∈ y0

N(x)}.

Clearly, for every x ∈ XN , and every x+ ∈ FN(x), there exists a u ∈ κN(x) such
that x+ ∈ F(x,u). In fact, by construction, for every x ∈ XN , it holds that FN(x) ⊆
F(x,κN(x)). It is worth noting that, at a given x, a simultaneous selection is made of
a successor state and current control pair (x+,u)

(x+,u) ∈ CN(x) := {(x0
1,u

0
0) : {x0

0,u
0
0,x

0
1,u

0
1 . . . ,x

0
N−1,u

0
N−1,x

0
N} ∈ y0

N(x)}.

In order to guarantee the related invariance, stability, robustness, and consistent
improvement properties, Assumption 2 needs to be modified as follows.

Assumption 4 For all x ∈ X f there exists a u ∈ R
m and x+ ∈ R

n such that

(a) (x,u) ∈ Y, x+ ∈ F(x,u), and x+ ∈ X f ,
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and
(b) Vf (x

+)≤Vf (x)− �(x,u).

Under these hypotheses, the N-step controllability set XN is strongly positively in-
variant for the MPC controlled dynamics, while the value function V 0

N verifies the
related Lyapunov decrease condition in the strong sense (relative to the MPC con-
trolled dynamics), i.e.,

∀x ∈ XN , ∀(x+,u) ∈ CN(x), V 0
N(x

+)≤V 0
N(x)− �(x,u).

Consequently, under these modified hypotheses and with the lower and upper
bounds on the value function V 0

N as in Theorem 3, the conclusions of Theorem 3
remain valid. In particular, the N-step controllability set XN is strongly positively
invariant for the MPC controlled dynamics x+ ∈ FN(x), while the origin is strongly
asymptotically stable for the MPC controlled dynamics x+ ∈ FN(x) with the region
of attraction being equal to the N-step controllability set XN . The set-valued fram-
ing of robustness of asymptotic stability, as presented in Section 4.4, applies to this
setting without change. Finally, within this setting, consistent improvement is also
ensured, analogously to Proposition 3.

Remark 2. An alternative approach to the weak formulation may be, through some
modeling tricks, to reduce this case to the standard setting discussed in previous
sections. To that end, one can introduce auxiliary controls ν0,ν1, . . . ,νN−1; add, to
stage constraints, the constraint that, for each k ∈ NN−1, νk ∈ F(xk,uk) which is
equivalent to (νk,xk,uk) being in the graph F of F; and consider the trivial dynamics
xk+1 = νk. Such dynamics is continuous, and if Assumption 3 holds, the added stage
constraints (νk,xk,uk)∈ F fit within our standing assumption since F is closed. How
Assumption 4 and further stability considerations carry over is not pursued here.

5.2 Strong Formulation of MPC

The strong formulation is concerned with set-valued control systems, for which the
decision maker chooses, at a given current state x, only the current control u, while
the actual successor state x+ is chosen by an external entity subject to no other rules
than dynamical rule x+ ∈ F(x,u). Clearly, in this setting, the state (and control) pre-
dictions become set-valued. Thus, it is necessary employ control policyϒN−1, which
is a sequenceϒN−1 := {υk}k∈NN−1 of, possibly set-valued, closed loop control func-
tions υk with values υk(xk). The use of control policy ϒN−1 allows for different
control actions uk(xk) = υk(xk) at different possible predicted states xk. (The use of
open loop control sequences restricts the control action uk(x0) to be the same for
all possible predicted states xk.) Within this setting, the dynamical consistency con-
straints have to be taken in the strong sense, as expressed in terms of set-dynamics

∀k ∈ NN−1, Xk+1 := {xk+1 : xk+1 ∈ F(xk,uk), xk ∈ Xk, uk ∈ υk(xk)}
with X0 := {x}. (26)
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Consequently, the stage constraints are required to be satisfied in the strong sense

∀k ∈ NN−1, ∀xk ∈ Xk, ∀uk ∈ υk(xk), (xk,uk) ∈ Y, (27)

and, likewise, the terminal constraints are required to be satisfied in the strong sense

∀xN ∈ XN , xN ∈ X f . (28)

Since the predicted states xk ∈ Xk and controls uk ∈ υ(xk) are set-valued, minimizing
the cost function VN of (8) also needs to be taken in an adequate sense. A frequently
utilized approach is the worst-case design, i.e., minimizing, by selecting an admis-
sible control policy ϒN−1, the maximal value of the cost VN over the possible pred-
icated processes {x0,u0,x1,u1, . . . ,xN−1,uN−1,xN} formed from possible predicted
states xk ∈ Xk, controls uk ∈ υ(xk) and successor states xk+1 ∈ F(xk,uk). (Naturally,
a number of alternatives to the worst-case design can also be considered.)

All in all, the strong formulation of MPC requires the utilization of closed loop
optimal control (i.e., functional optimization), and thus further elaboration on this
topic lies beyond the intended scope of this article.
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Stochastic Model Predictive Control

Ali Mesbah, Ilya V. Kolmanovsky, and Stefano Di Cairano

1 Introduction

Stochastic Model Predictive Control (SMPC) accounts for model uncertainties and
disturbances based on their statistical description. SMPC is synergistic with the well-
established fields of stochastic modeling, stochastic optimization, and estimation. In
particular, SMPC benefits from availability of already established stochastic models
in many domains, existing stochastic optimization techniques, and well-established
stochastic estimation techniques. For instance, the effect of wind gusts on an air-
craft can be modeled by stochastic von Kármán and Dryden’s models [21] but no
similar deterministic models appear to exist. Loads or failures in electrical power
grids, prices of financial assets, weather (temperature, humidity, wind speed and
directions), computational loads in data centers, demand for a product in market-
ing/supply chain management are frequently modeled stochastically thereby facili-
tating the application of the SMPC framework.

A comprehensive overview of various approaches and applications of SMPC has
been given in the article [33]. Another overview article [27] in Encyclopedia of
Systems and Control is focused on tube SMPC approaches. This chapter provides a
tutorial exposition of several SMPC approaches.
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S. V. Raković, W. S. Levine (eds.), Handbook of Model Predictive Control,
Control Engineering, https://doi.org/10.1007/978-3-319-77489-3 4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77489-3_4&domain=pdf
mailto:mesbah@berkeley.edu
mailto:ilya@umich.edu
mailto:dicairano@ieee.org
https://doi.org/10.1007/978-3-319-77489-3_4


76 Ali Mesbah, Ilya V. Kolmanovsky, and Stefano Di Cairano

2 Stochastic Optimal Control and MPC with Chance Constraints

Consider a stochastic, discrete-time system,

xt+1 = f (xt ,ut ,wt), (1a)

yt = h(xt ,vt), (1b)

where t is the time index; xt ∈ R
nx , ut ∈ R

nu , and yt ∈ R
ny are the system states,

inputs, and outputs, respectively; wt ∈ R
nw denotes disturbances; vk ∈ R

nv denotes
measurement noise; and functions f : Rnx ×R

nu ×R
nw → R

nx and h : Rnx ×R
nv →

R
ny define system state and output equations, respectively. The uncertain initial state

x0 is described by the known probability distribution P[x0]. The independent and
identically distributed random variables in the noise sequences {wt} and {vt} have
known probability distributions P[w] and P[v], respectively.

The system (1) represents a Markov decision process, as the successor state xt+1

can be determined from the current state xt and input ut [29]. Let It denote the vector
of system information that is causally available at time t,

It := [yt , . . . ,y0,ut−1, . . . ,u0],

with I0 := [y0]. The conditional probability of state xt given It , i.e., P[xt |It ], can be
computed via recursive Bayesian estimation [15]

P[xt |It ] =
P[yt |xt ]P[xt |It−1]

P[yt |It−1]
, (2a)

P[xt+1|It ] =
∫

P[xt+1|xt ,ut ]P[xt |It ]dxt , (2b)

with P[x0|I−1] := P[x0]. We use Ext and Pxt to denote, respectively, the expected
value and the probability of an event with respect to the stochastic state xt (with
uncertainty P[xt |It ]) as well as the random variables wk and vk for all k > t.

Let N ∈ N be the prediction horizon.1 Consider an N-stage control sequence,

ΠΠΠ := {π0,π1, . . . ,πN−1}, (3)

where πk ∈ U⊂ R
nu and U is a nonempty measurable set for the inputs. Define the

control cost function as

JN(xt ,ΠΠΠ) = Ext

[
ct+N(xt+N)+

N−1

∑
k=0

ct+k(xt+k,πt+k)
]
, (4)

where ct+k : Rnx ×U→ [0, ∞) and ct+N : Rnx → [0, ∞) denote the stage-wise cost in-
curred at the (t +k)th stage of control and at the terminal stage, respectively. Define

1 For notational convenience, the control and prediction horizons are considered to be identical.
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a joint chance constraint of the form

Pxt+k [g(xt+k)≤ 0 ]≥ 1−δ , k = 1, . . . ,N, (5)

where g : Rnx →R
nc denotes state constraints, composed of nc > 1 inequalities; and

δ ∈ [0, 1) denotes the maximum allowed probability of state constraint violation.
The chance constraint (5) is generally nonconvex and intractable [3, 7]; see [18, 36]
for treatment of chance-constrained optimization.

Remark 1. When the probabilistic uncertainties in (1) are bounded, hard state con-
straints can be enforced by setting δ = 0 in (5). This implies that g(xt)≤ 0 must be
satisfied for all realizations of system uncertainties.

Given the (uncertain) knowledge of the system state at sampling time t, i.e.,
P[xt |It ], the stochastic optimal control problem (OCP) for system (1) can be posed as

min
ΠΠΠ

JN(xt ,ΠΠΠ) (6a)

s.t.: xt+k+1|t = f (xt+k|t ,πt+k|t ,wk|t), k = 0, . . . ,N −1, (6b)

πt+k|t ∈ U, k = 0, . . . ,N −1, (6c)

Pxt+k|t [g(xt+k|t)≤ 0 ]≥ 1−δ , k = 1, . . . ,N, (6d)

wk|t ∼ P[w], k = 0, . . . ,N −1, (6e)

xt|t ∼ P[xt |It ], (6f)

where xt+k|t and ut+k|t denote2 the state and input computed at time t + k based on
the knowledge of P[xt |It ]. Note that the chance constraint (6d) enforces the state
constraints with respect to P[xt |It ] as well as the future noise sequence over the
horizon N.

In theory, the stochastic OCP (6) can be solved offline using Bellman’s principle
of optimality [2]. The resulting optimal control policy ΠΠΠ ∗ can then be implemented
in a receding-horizon manner by applying ut = π∗

t to the stochastic system (1) at
every sampling time t that P[xt |It ] is estimated from (2). The principle of optimal-
ity requires that the optimal control cost at each control stage satisfy the Bellman
equation for stochastic dynamic programming. To this end, the control input πt at
each stage t must be designed via a nested minimization of the expected sum of the
current control cost and the optimal future control cost, which is computed based
on the knowledge of the future state P[xt+1|It+1] (e.g., see [34]). Although solv-
ing the Bellman equation will result in an optimal closed-loop control policy, it is
well-known that stochastic dynamic programming suffers from the so-called curse
of dimensionality for practically sized systems [6].

2 Hereafter we use the common notation in predictive control to differentiate prediction time in-
stances t + k from time t at which predictions are made.
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In recent years, a plethora of SMPC strategies have been presented that seek on-
line solution of an approximate surrogate for the stochastic OCP (6) in a receding-
horizon manner. Generally speaking, SMPC strategies neglect the effect of the con-
trol input πt on the knowledge of the future state P[xt+1|It+1] to avoid the formidable
challenge of solving the Bellman equation [26, 33]. In the remainder of this chap-
ter, three SMPC strategies are introduced for receding-horizon control of stochastic
linear systems.

3 Scenario Tree-Based MPC

The scenario tree-based stochastic MPC approach was introduced in [4], and relies
upon multi-stage stochastic programming [9]. The general idea behind tree-based
stochastic MPC is to compute a closed-loop policy based on scenarios determined by
predictions of the stochastic disturbance sequences. Due to causality, the predicted
states and related control sequences result arranged in a tree structure. The first
application of this methodology, in the context of robust min-max MPC was in [45].
In the stochastic context, each tree node is further associated with a probability of
reaching it, based on the probability of the scenario to realize. Such a probability
can be used to selectively trim parts of the tree that are unlikely to realize in order
to restrict the number of nodes in the tree and reduce the computational effort. For
other scenario-based approaches, see [10, 44] and references in [33].

In this section we modify the notations slightly, reserving subscripts to designate
the nodes of the scenario tree, and using x(t), u(t), w(t), etc., to denote the variables
at the current time instant, t.

The system is modeled as a parameter varying discrete-time linear system, possi-
bly with an additive disturbance,

x(t +1) = A(w(t))x(t)+B(w(t))u(t)+F(w(t)), (7)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the input, and w(t) ∈ W is a scalar
stochastic disturbance, which takes values in a finite set {w̄1, . . . , w̄s} ⊂R. The state
and input vectors in (7) are subject to the pointwise-in-time constraints of the form,

x(t) ∈X , u(t) ∈U , ∀t ∈ Z0+, (8)

which must hold for all t ≥ 0, where X ⊆ R
nx , U ⊆ R

nu , are polyhedral sets. The
probability mass function p(t) of w is assumed to be known or predictable at all

times, that is, for all t ∈R0+, p j(t) =P[w(t) = w̄ j], such that p j(t)≥ 0,
s

∑
j=1

p j(t) = 1

is known, and it can be predicted for τ > t based only on the information known at
time t. This includes the cases when p(t) is constant, or varies in a pre-defined
way, or when it is defined by a stochastic Markov process with state z, and z(t +
1) = fM(z(t)), p(t) = p(z(t)), where z(t) is known at time t. In the latter case, the
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disturbance realization in W represents the combinations of disturbances on the
system and the (discrete) transitions of the Markov process. The main restriction
imposed by this assumption is that p cannot depend on the system state x, since
the system evolution is affected by the input u, and hence p(τ), τ > t, will not be
predictable based only on data at time t.

3.1 Scenario-Tree Construction

Due to the presence of the stochastic disturbance, the MPC aims at minimizing the
expected value of a given cost function, that is

E[JN(t)] =E

[
N

∑
k=1

x(t + k|t)�Qx(t + k|t)+
N−1

∑
k=0

u(t + k)�Ru(t + k)

]
, (9)

where N ∈ Z+ is the prediction horizon, and Q = Q� ≥ 0, R = R� > 0 are
weight matrices of appropriate dimensions. Since |W | is finite, p(t) is known, and
p(t + k) can be predicted based only on the information at time t, one can enu-
merate all the admissible realizations of the stochastic disturbance sequence along
the finite horizon N, and their corresponding probabilities. The N-steps scenario
ωN
� ∈ W N is the �th realization of a sequence of N consecutive disturbance values,
ωN = [w(0), . . . ,w(N −1)], and its q steps prefix ωN,q is the subsequence composed
of only its first q elements ωN,q = [w(0), . . . ,w(q−1)]. Thus, one can optimize (9)
by optimizing

E[JN(t)] =
sN

∑
�=1

JN(t|ωN
� (t))P[ω

N
� (t)|z(t)],

with constraints that enforce causality, i.e., u(t+k|ωN
j )= u(t+k|ωN

i ) for all i, j such

that ωN,k
i = ωN,k

j . However, the optimization problem obtained in this way is large,
because it considers all disturbance sequences, even those that occur with arbitrarily
small probability.

In the scenario tree-based MPC, (7), (8), and the predicted evolution of p(t +
k) are used to construct a variable horizon optimization problem where only the
disturbance sequences that are more likely to realize are accounted for, and hence
the size of the optimization problem is reduced. The scenario tree describes the most
likely scenarios of future disturbance realizations, and is updated at every time step
using newly available measurements of the state x(t), and updated information to
predict the disturbance probability p(t + k). In order to explain the scenario tree-
based approach, we introduce the following notations:

• T = {N1,N2, . . . ,Nn}: the set of the tree nodes. Nodes are indexed progres-
sively as they are added to the tree, i.e., N1 is the root node and Nn is the last
node added;

• pre(N ) ∈T : the predecessor of node N ;
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• succ(N ,w) ∈T : the successor of node N for w ∈W ;
• πN ∈ [0,1]: the probability of reaching N from N1;
• xN ∈R

nx , uN ∈R
nu , wN ∈W : the state, input, and disturbance value, respec-

tively, associated with node N , where xN1 = x(t), and wN1 = w(t);
• C = {C1,C2, . . . ,Cc}: the set of candidate nodes, i.e., C = {N �∈ T | ∃(i, j) :
N = succ(Ni,w j)};

• S ⊂ T : the set of leaf nodes, with cardinality denoted by nleaf = |S |, i.e.,
S = {N ∈T | succ(N ,w j) �∈T , ∀ j ∈ {1, . . . ,s}}.

Every path from the root node to a leaf node is a scenario in the tree and describes a
disturbance realization that will be accounted for in the optimization problem. The
procedure to construct the scenario tree is as follows.

Starting from the root node N1, which is associated with w(t), we construct a list
C of candidate nodes by considering all the possible s future values of the distur-
bance in W and their realization probabilities. Note that the probability of reaching
a node can be computed by multiplying the conditional transition probabilities along
the path leading to a given node from the root node. The candidate with maximum
probability Ci∗ is added to the tree and removed from C . The procedure is repeated
by adding at every step new candidates as children of the last node added to the
tree, until the tree contains nmax nodes. The scenario-tree construction, summarized
in Algorithm 1, expands the tree in the most likely direction, so that the paths with
higher probability are extended longer in the future, because they may have larger
impact on the overall performance. This leads to a tree with variable depth, where
the paths from the root to the leaves may have different lengths and hence different
prediction horizons, see Figure 1.

Algorithm 1: SMPC tree generation procedure
1: At any step k:
2: set T = {N1}, πN1 = 1, n = 1, c = s;
3: set C =

⋃s
j=1

{
succ(N1,w j)

}
4: while n < nmax do
5: for all i ∈ {1,2, . . . ,c}, do
6: compute πCi ;
7: end for
8: set i∗ = argmaxi∈{1,2,...,c} πCi ;
9: set Nn+1 = Ci∗ ;

10: set T =T ∪{Nn+1};
11: set C =

⋃s
j=1{succ(Ci∗ , w j)}∪ (C \Ci∗ );

12: set c = c+ s−1, n = n+1;
13: end while



3 Scenario Tree-Based MPC 81

k k+1 k+2 k+3
prediction step

Fig. 1: Graphical representation of a multiple-horizon optimization tree. Some roof-
to-leaves paths have length 2, others have length 3. Hence, different scenarios may
have different prediction horizons.

3.2 Scenario-Tree Stochastic Optimization Problem

The scenario-tree constructed with Algorithm 1 is exploited to construct the MPC
optimization problem at each time instant t. For the sake of simplifying the notations,
in what follows we use xi, ui, yi, wi, πi and pre(i) to denote xNi , uNi , yNi , wNi , πNi

and pre(Ni), respectively.
Given the maximum number of nodes, nmax, at any time t, the scenario-tree

based stochastic MPC performs the following operations: (i) it constructs the tree
T (t,nmax) based on w(t); (ii) it solves the following stochastic MPC based on
T (t,nmax):

min
u ∑

i∈T (t,nmax)\{N1}
πix

�
i Qxi + ∑

i∈T (t,nmax)\S
πiu

�
i Rui (10a)

s.t. x1 = x(t), (10b)

xi = Apre(i)xpre(i) +Bpre(i)upre(i) +Fpre(i), i ∈T (t,nmax)\{N1}, (10c)

xi ∈X , i ∈T (t,nmax)\{N1}, (10d)

ui ∈U , i ∈T (t,nmax)\S , (10e)

where u = {ui : Ni ∈ T (t,nmax)\S } is the multiple-horizon input sequence and
where Ai, Bi, and Fi define the dynamics associated to node i and determined by the
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stochastic disturbance at node i, and hence by the scenario according to which i is
reached; (iii) it applies u(t) = u1 = uN1 as a control input to the system (7).

In Problem (10), causality is enforced by the tree structure, since if ωN,k
i = ωN,k

j ,

i.e., the two scenarios share the same path in the tree at least until the kth level,
and since a single control input is associated to each node in the tree, it follows
automatically that u(t +h|ωN

j ) = u(t +h|ωN
i ) for all h = 0, . . . ,k. Indeed, causality

is enforced based on equal disturbance sequences, as opposed to, for instance, [45],
where causality is enforced based on reaching the same state, possibly by different
disturbance sequences. Thus, the approach of (10) may result in redundant decision
variables, but it allows for simpler formulation as an optimization problem.

In fact, Problem (10) is a quadratic program (QP) with nu(nmax −nleaf) variables.
If the scenario tree T is fully expanded, i.e., all the leaf nodes are at depth N and
all parent nodes have s successors, which obviously requires nmax = sN+1−1

s−1 , the
objective function (10a) is equivalent to (9). Otherwise, (10a) is an approximation
of (9) based on the scenarios with highest probability, and thus nmax determines the
representativeness-complexity tradeoff of the approximation.

Based on Problem (10), the scenario-tree stochastic MPC results in a closed-loop
prediction policy. Since there are multiple predictions, i.e., multiple tree nodes, of
the future state values and to each a control action is associated, the input at any
predicted step changes as a function of the disturbance realizations up to such step.
Thus, the control action implicitly encodes feedback from the past disturbances.

3.3 Extensions and Applications

The Scenario-tree based MPC is a fairly general framework that allows for solving
stochastic MPC problems with a precision that is related to the amount of available
computational resources. Several extensions have been presented in the literature.

In terms of modeling, in [5] it is shown that p(t) can be generated by sev-
eral classes of stochastic processes, possibly in an approximate discretization, such
as the generalized autoregressive conditional heteroskedasticity (GARCH), and
Markov chains with transition matrix T , and emission matrix E, where z is the
Markov chain state and

Ti j = P[z(t +1) = z j|z(t) = zi], (11a)

Ei j = P[w(t) = w̄ j|z(t) = zi] = p j(zi). (11b)

A simplified formulation of the Markov chain is the case where z = w, resulting in
P[w(t +1)] = fM(w(t)) so that Ti j = P[w(t +1) = w̄ j|w(t) = w̄i] and E = I.

For the case where F(w) = 0, for all w ∈ W , and there are no (hard) con-
straints, uniform mean square exponential stability of the closed-loop system is
demonstrated in [5] by designing offline a stochastic Lyapunov function satisfying
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V (x) = xTSx, E[V (x(t +1))]−V (x(t))≤ x(t)TLx(t), where S,L > 0, which is then
enforced as a constraint at the root node of the scenario tree N1 in Problem (10) by
the quadratic constraint,

s

∑
i=1

pi(t)(Aix1 +Biu1)
�S(Aix1 +Biu1)≤ x�1 (S−L)x1,

with Ai = A(wi), Bi = B(wi). For the constrained case, in [5] it is suggested to con-
struct an invariant ellipsoid [25]

E = {x : x�Sx ≤ γ} ⊂X ,

and a linear controller u = Kx, such that E is robust positive invariant for the poly-
topic difference inclusion with vertices [A(w),B(w)], w ∈W , controlled by u = Kx,
and for all x ∈ E , Kx ∈U . The invariant ellipsoid is exploited to construct another
constraint to be added in Problem (10),

(Aix1 +Biu1)
�S(Aix1 +Biu1)≤ γ , ∀i : pi(t)> 0,

which guarantees recursive constraint satisfaction.
The scenario tree-based MPC is applied to energy management of a hybrid elec-

tric powertrain in [43]. In [16], also motivated by the application to the energy man-
agement of hybrid electric powertrains, the case where the stochastic disturbance
representing driver actions is learned onboard during vehicle operation has been
presented. In particular, in [16] the actions of the vehicle driver are modeled as a
Markov chain with time-varying and initially unknown transition probabilities that
are estimated with an iterative algorithm from the transition frequencies,

P[w(t +1) = w̄ j|w(t) = w̄i] =
ni j

ni
, (12)

where ni j is the number of transitions of w between values w̄i and w̄ j and ni is the
number of time instants w takes the value w̄i in the observed data. The so-estimated
Markov chain is used to adapt the scenario tree construction in the stochastic MPC
for optimizing the energy efficiency of the hybrid electric vehicle, and it is shown
that with the learning of the Markov chain, the overall performance is very close to
the one from an MPC with exact preview, on both synthetic and experimental data.
Along these lines, [8] reports an application of the scenario tree-based stochastic
MPC to adaptive cruise control where the Markov chain is used to model the actions
of the vehicle which is ahead in traffic.

In terms of numerical algorithms, the scenario tree-based MPC results in QPs
that are larger than those from nominal MPC, but have a special structure that can
be exploited to reduce the computational effort. For instance, in [23] an algorithm
based on the alternating direction method of multipliers (ADMM) was proposed,
that exploits the structure and scales more favorably with the number of nodes in
the tree than structure-ignoring algorithms, and allows for parallel implementation.
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4 Polynomial Chaos-Based MPC

Polynomial chaos-based MPC strategies have been developed for receding-horizon
control of stochastic linear [24, 38] and nonlinear systems [1, 17, 37] subject to prob-
abilistic model uncertainty in initial conditions and parameters. The term polyno-
mial chaos was introduced by Norbert Wiener in the seminal paper [47], in which a
generalized harmonic analysis was applied to Brownian motion-like processes. The
basic notion of polynomial chaos is to expand finite-variance random variables by an
infinite series of Hermite polynomials, which are functions of a normally distributed
input random variable [11]. The polynomial chaos framework has recently been gen-
eralized to non-Gaussian random variables by establishing the convergence proper-
ties of polynomials that are orthogonal with respect to possibly non-Gaussian input
random variables [48]. The orthogonality of polynomials in generalized polynomial
chaos (gPC) enables obtaining sample-free, closed-form expressions for propaga-
tion of high-order moments of states through the system dynamics. Alternatively,
polynomial chaos expansions can be used as a surrogate for the system model for
performing Monte Carlo simulations efficiently via algebraic operations in order to
construct the probability distribution of states. This section uses gPC to present a
sample-free formulation for SMPC of stochastic linear systems with probabilistic
model uncertainty.

4.1 System Model, Constraints, and Control Input
Parameterization

Consider a stochastic, linear system described by the prediction model

xt+k+1|t = A(θ)xt+k|t +B(θ)ut+k|t +Dwt+k|t , (13)

where θ ∈ R
nθ denotes the unknown system parameters that are modeled as (time-

invariant) probabilistic uncertainties with probability distribution P[θ ]; and the
stochastic noise wt+k|t is a zero-mean Gaussian process with covariance Σw. The
notation in (13) is as in (1). The probability distribution of parameters, P[θ ], quan-
tifies our subjective belief in the unknown parameters, whereas the parameters are
fixed in the true system.

A joint chance constraint of the form (5) is imposed, where the state constraint
g(xt+k|t)≤ 0 takes the form of a polytope

Pxt+k|t [ C�xt+k|t ≤ d ]≥ 1−δ , k = 1, . . . ,N, (14)

with C ∈ R
nx×nc and d ∈ R

nc . The control cost function is defined as

JN(xt ,U) = Ext

[ N−1

∑
k=0

||xt+k|t ||2Q + ||ut+k|t ||2R
]
, (15)
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where Q and R are symmetric and positive definite weight matrices; and U :=
[ut|t , . . . ,ut+N−1|t ] denotes the vector of control inputs over the prediction horizon.
We choose to parameterize the control inputs ut+k|t as an affine function of state [20]

ut+k|t = Lkxt+k|t +mk, k = 1, . . . ,N, (16)

where Lk ∈R
nu×nx and mk ∈R

nu denote the feedback gains and control actions over
the prediction horizon, respectively. The affine-state feedback parameterization (16)
allows to account for the effect of state feedback over the prediction horizon. The
underlying notion of (16) is that the system state will be known at the future time
instants. Thus, the controller will have the state/disturbance information when de-
signing the future control inputs over the prediction horizon.

Remark 2. It is generally impossible to guarantee satisfaction of the input bounds,
i.e., ut(xt) ∈ U, when the stochastic noise wt is unbounded. To alleviate this short-
coming of (16), a saturation function can be incorporated into the affine feedback
control policy to enable direct handling of hard input bounds in the presence of
unbounded stochastic noise [22].

The key challenges in the above discussed setup for SMPC arise from: (i) prop-
agation of the probabilistic model uncertainty and stochastic noise through the pre-
diction model (13), and (ii) computational intractability of the joint chance con-
straint (14). We use a gPC-based uncertainty propagation method to obtain closed-
form expressions for the mean and covariance of the predicted state as explicit func-
tions of the control input. A moment-based surrogate is then presented for (14) in
terms of the Mahalanobis distance [30], which is exact when the system state has a
multivariate normal distribution.

4.2 Generalized Polynomial Chaos for Uncertainty Propagation

The gPC seeks to approximate a stochastic variable ψ(ξ ) in terms of a finite expan-
sion of orthogonal polynomial basis functions

ψ(ξ )≈ ψ̂(ξ ) :=
p

∑
i=0

aiφi(ξ ) = a�Λ(ξ ), (17)

where a := [a0, . . . ,ap]
� denotes the vector of expansion coefficients; Λ(ξ ) :=

[φ0(ξ ), . . . ,φp(ξ )]� denotes the vector of multivariate polynomial basis functions
φi of maximum degree l with respect to the random variables ξ ∈ R

nξ ; and p+1 =
(nξ+l)!

nξ !l! denotes the total number of expansion terms. The basis functions belong to

the Askey scheme of polynomials, which includes a set of orthogonal basis functions
in the Hilbert space defined on the support of the random variables. Thus, the basis
functions φi must be chosen in accordance with the probability distribution of the
random variables ξ , as established in [48]. The orthogonality of the basis functions
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implies that 〈φi(ξ ),φ j(ξ )〉= 〈φ 2
i (ξ )〉δi j, where 〈h(ξ ),g(ξ )〉=

∫
Ω h(ξ )g(ξ )P[ξ ]dξ

denotes the inner product induced by P[ξ ] and δi j denotes the Kronecker delta func-
tion. Hence, the expansion coefficients ai in (17) can be obtained via

ai =
〈ψ̂(ξ ),φi(ξ )〉
〈φi(ξ ),φi(ξ )〉

,

which can be computed analytically for linear and polynomial systems [19].
For a particular realization of the stochastic system noise w in (13), the poly-

nomial chaos expansions (PCEs) (17) can be used for efficient propagation of the
model uncertainty θ through (13). Propagation of model uncertainty will yield the
probability distribution of state conditioned on the noise realization, i.e., P[x̂t+k|t |w],
which can then be integrated over all possible realizations of w to obtain the com-
plete probability distribution of the (polynomial chaos-approximated) state

P[x̂t+k|t ] =
∫ ∞

−∞
P[x̂t+k|t |w]P[w]dw. (18)

When the distribution of stochastic noise, P[w], is Gaussian, the moments of the
probability distribution P[x̂t+k|t ] in (18) can be readily defined in terms of the coef-
ficients of x̂t+k|t . To this end, we approximate each predicted state and control input
as well as the unknown parameters in the system matrices A(θ) and B(θ) in (13)
by PCEs of the form (17). Define x̃i,t+k|t = [ai0,t+k|t , . . . ,aip,t+k|t ]

� and ũi,t+k|t =

[bi0,t+k|t , . . . ,bip,t+k|t ]
� to denote the coefficients of PCEs for the ith predicted state

and control input, respectively. The coefficients of PCEs for all states and control in-
puts can be concatenated into vectors x̃t+k|t := [x̃�1,t+k|t , . . . , x̃

�
nx,t+k|t ]

� ∈R
nx(p+1) and

ũt+k|t := [ũ�
1,t+k|t , . . . , ũ

�
nu,t+k|t ]

� ∈ R
nu(p+1), respectively. Using the Galerkin pro-

jection [19], the error in a gPC-based approximation of the prediction model (13),
which arises from truncation in PCEs, can be projected onto the space of the multi-
variate basis functions {φi}p

i=0. This allows for expressing the prediction model (13)
in terms of the coefficients of the PCEs for states and control inputs

x̃t+k+1|t = Ax̃t+k|t +Bũt+k|t +Dwt+k|t , (19)

where

A =
p

∑
i=0

Ai ⊗Ψi; B =
p

∑
i=0

Bi ⊗Ψi; D = D⊗ ep+1;

Ψi :=

⎡
⎢⎣
σ0i0 · · · σ0ip

...
. . .

...
σpi0 · · · σpip

⎤
⎥⎦ ;

Ai and Bi are the projections of A(θ) and B(θ) onto the ith basis function φi; σlmn =
〈φl ,φm,φn〉/〈φ 2

l 〉; and ea = [1,0, . . . ,0]� ∈ R
a.
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The orthogonality property of the multivariate polynomial basis functions can
now be used to efficiently compute the moments of the conditional probability dis-
tribution P[x̂t+k|t |w] in terms of the coefficients x̃t+k|t . The conditional mean and
variance of the ith predicted state are defined by

E[x̂i,t+k|t |w]≈ x̃i0,t+k|t(w), (20a)

E
[
x̂2

i,t+k|t |w
]
≈

p

∑
j=0

x̃2
i j ,t+k|t(w)〈φ 2

j 〉. (20b)

Similarly, the state feedback control law (16) is projected as

ũt+k|t = Lt+k|t x̃t+k|t +mt+k|t , (21)

where Lt+k|t = Lt+k|t ⊗ Ip+1 and mt+k|t = mt+k|t ⊗ ep+1. When w is a zero-mean
Gaussian white noise with covariance Σw, x̃t+k|t will be a Gaussian process with
mean x̄t+k|t and covariance Γt+k|t as defined by

x̄t+k+1|t = (A+BLt+k|t)x̄t+k|t +Bmt+k|t (22a)

ΣΣΣ t+k+1|t = (A+BLt+k|t)ΣΣΣ t+k|t(A+BLt+k|t)
�+DΣΣΣwD�. (22b)

Note that (x̄t|t ,ΣΣΣ t|t) is initialized based on the knowledge of state xt . Using (20)–(22)
and the law of iterated expectation, tractable expressions are derived for describing
the mean and variance of each (polynomial chaos-approximated) state x̂i,t+k|t

E[x̂i,t+k|t ] = E
[
E[x̂i,t+k|t |w]

]
(23)

≈ E[x̃i0,t+k|t(w)] = x̄i0,t+k|t ,

and

E[x̂2
i,t+k|t ] = E

[
E[x̂2

i,t+k|t |w]
]

(24)

≈ E
[ p

∑
j=0

x̃2
i j ,t+k|t(w)〈φ 2

j 〉
]
=

p

∑
j=0

E[x̃2
i j ,t+k|t ]〈φ 2

j 〉

=
p

∑
j=0

[
x̄ 2

i j ,t+k|t +ΣΣΣ i j i j ,t+k|t
]
〈φ 2

j 〉,

respectively. It is important to note that the moments (23)–(24) can be expressed as
explicit functions of the control inputs, i.e., the decision variables L and m in (22).
The sample-free, closed-form expressions (23)–(24) for the moments of the pre-
dicted states are highly advantageous for gradient-based optimization methods since
they avoid possible convergence problems associated with sampling.



88 Ali Mesbah, Ilya V. Kolmanovsky, and Stefano Di Cairano

4.3 Moment-Based Surrogate for Joint Chance Constraint

We look to replace the joint chance constraint (14) with a deterministic surrogate
defined in terms of the mean and covariance of the predicted state xt+k|t . Consider
x ∼ N (x̄,Σ) as an nx-dimensional multivariate Gaussian random vector and let
X := {ζ : C�ζ ≤ d}. This allows for rewriting the joint chance constraint (14) as

P(x ∈X ) =
1√

(2π)nx det(Σ)

∫
X

e−
1
2 (ζ−x̄)�ΣΣΣ−1(ζ−x̄)dζ ≥ 1−δ . (25)

To obtain a relaxation for (25), define the ellipsoid Er := {ζ : ζ�ΣΣΣ−1ζ ≤ r2} with
radius r. Expression (25) is guaranteed to hold when

x̄⊕Er ⊂X =⇒ P(x ∈X )> P(x ∈ x̄⊕Er) = 1−δ ,

which indicates that the smallest radius of ellipsoid Er must be chosen such that
P(x ∈ x̄⊕Er) = 1−δ [46]. Equivalently, P(x ∈ x̄⊕Er) = 1−δ can be represented
in terms of a chi-squared cumulative distribution function Fχ2

n
with n degrees of

freedom

P(x ∈ x̄⊕Er) = P
(
(x− x̄)�ΣΣΣ−1(x− x̄)≤ r2)= Fχ2

n
(r2) =

γ
(

n
2 ,

r2

2

)
Γ
(

n
2

) , (26)

where γ is the lower incomplete Gamma function and Γ is the complete Gamma
function. This implies that the radius r can be selected such that Fχ2

n
(r2) = 1− δ

in order to guarantee that x̄ ⊕ Er ⊂ X . For the expression (26) to hold, the ellip-
soid Er must lie in the intersection of half-spaces H j := {ζ : c�j ζ ≤ d j}, where
c j ∈ R

nx is the jth column of C and d j ∈ R is the jth element of d. We use
the result of the following lemma to derive an expression for guaranteeing the
inclusion of Er in the half-spaces H j, which relies on the Mahalanobis distance
dM(x) =

√
(x− x̄)�Σ−1(x− x̄) [30].

Lemma 1. The Mahalanobis distance to the hyperplane h�x = g is given by

dM(x�) = (g−h�x̄)√
h�Σh

, where x� = x̄+ (g−h�x̄)√
h�Σh

δx and δx = Σh√
h�Σh

.

Lemma 1 indicates that x� is the “worst-case” vector at which the ellipsoid Er

with radius dM(x�) intersects the hyperplane, while δx is the direction along which
x� lies. Lemma 1 leads to the assertion that x̄⊕Er ⊂X is equivalent to

(d j − c�j x̄)√
c�j Σc j

≥ r, j = 1, . . . ,nc. (27)

Expression (27) results in an exact moment-based surrogate for the joint chance
constraint (14)
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c�j x̄t+k|t + r
√

c�j Σt+k|tc j ≤ d j, j = 1, . . . ,nc, (28)

where x̄t+k|t and Σt+k|t are, respectively, the mean and covariance of the predicted
state xt+k|t in (13); and r must satisfy Fχ2

nc
(r2) = 1−δ . The mean and covariance of

the predicted state can be approximated in terms of the gPC-based moment expres-
sions (23)–(24).

4.4 Sample-Free, Moment-Based SMPC Formulation

We now present a sample-free formulation for SMPC of system (13). Using the
gPC-based prediction model (19) and the input parameterization (21), the control
cost function (15) can be (approximately) rewritten as

JN(xt ,LN,mN) = Ext

[ N−1

∑
k=0

‖x̃t+k|t‖2
Q +‖Lt+k|t x̃t+k|t +mt+k|t‖2

R
]
,

where Q = Q⊗W ; R = R⊗W ; W = diag(〈φ 2
0 〉,〈φ 2

1 〉, . . . ,〈φ 2
p〉); and LN and mN

are the vectors of decision variables over the prediction horizon N. The sample-free
SMPC algorithm involves solving the following OCP

min
LN,mN

JN(xt ,LN,mN)

s.t.: x̄t+k+1|t = (A+BLt+k|t)x̄t+k|t +Bmt+k|t , k = 0, . . . ,N −1,

ΣΣΣ t+k+1|t = (A+BLt+k|t)ΣΣΣ t+k|t(A+BLt+k|t)
�+DΣΣΣwD�, k = 0, . . . ,N −1,

c�j E[x̂t+k|t ]+ r
√

c�j
(
E[x̂t+k|t x̂

�
t+k|t ]−E[x̂t+k|t ]E[x̂t+k|t ]�

)
c j ≤ d j, ∀ j, k = 1, . . . ,N,

Lt+k|t x̃t+k|t +mt+k|t ∈ U, k = 0, . . . ,N −1.
(29)

The prediction model in the above OCP describes the evolution of the mean x̄t+k|t
and covariance ΣΣΣ t+k|t of the coefficients of the PCEs of the states, x̃t+k|t , over the
prediction horizon. The prediction model is initialized using the knowledge of the
true state xt at each sampling time t. The surrogate for the joint chance constraint is
defined in terms of the mean and covariance of the polynomial chaos-approximated
states x̂t+k|t , which are computed in terms of the mean x̄t+k|t and covariance ΣΣΣ t+k|t
using the expressions (23)–(24).
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4.5 Extensions

A limitation of gPC is the ability to handle random variables with arbitrary proba-
bility measures (e.g., parameter uncertainties with correlated or multimodal distri-
butions obtained from Bayesian estimation). An alternative to gPC, termed arbitrary
polynomial chaos (aPC), that can address this shortcoming has recently been pre-
sented [39]. The aPC allows for constructing a set of orthogonal polynomial basis
in terms of the raw moments of the uncertainties using a multivariate generalization
of the Gram-Schmidt process [35]. The aPC holds promise for devising efficient,
sample-free algorithms for stochastic optimization and SMPC of systems with cor-
related probability uncertainty.

5 Stochastic Tube MPC

Tube MPC for control of deterministic systems under uncertainty has been devel-
oped in [31, 32, 40–42]. Stochastic tube MPC approaches have been proposed in
[12–14, 28] and described in the book [26]. The approach in [28] exploits linear
models affected by stochastic disturbances without assuming that disturbance val-
ues are normally distributed. This approach is further discussed in this section and
illustrated with an example.

5.1 System Model, Disturbance Model and Constraints

The control design exploits a linear prediction model of the form,

xt+k+1|t = Axt+k|t +But+k|t +Dwt+k|t , (30)

where xt+k|t ∈ R
nx and ut+k|t ∈ R

nu are the predicted state and control sequences
k steps ahead starting from the current time t, and the elements of the disturbance
sequence, wt+k|t ∈ R

nw , are assumed to be zero mean, identically distributed, and
independent for different k. Furthermore, these disturbance values are compactly-
supported,

wt+k|t ∈Π = {w : |wi| ≤ αi, i = 1, · · · ,nw}. (31)

Probabilistic chance constraints are imposed as

Pxt [yt+k|t =Cxt+k|t ≤ ymax]≥ 1− ε , (32)

where, to simplify the exposition, the case of the scalar output, y ∈R
1, is considered.
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5.2 Tube MPC Design

The tube MPC controller is formed as a combination of the nominal state feedback
and manipulatable input adjusted by the MPC controller,

ut+k|t = Kxt+k|t +gt+k|t , (33)

where the matrix Φ = (A+BK) is Schur and the sequence gt+k|t , k = 0, · · · ,N −1,
is optimized, with gk|t = 0 for k ≥ N. The receding horizon implementation involves
using the first element of the optimized sequence, g∗

t|t , leading to a feedback law,

ut = uMPC(xt) = Kxt +g∗
t|t , (34)

where xt is the current state at the time instance t and ut is the control input at t.
The linearity of the prediction model permits to decompose the predicted state

based on the superposition principle as

xt+k|t = zt+k|t + et+k|t , (35)

where zt+k|t is the state prediction based on the nominal system,

zt+k+1|t =Φzt+k|t +Bgt+k|t , (36)

and et+k|t is the error induced by the disturbance, given by

et+k+1|t =Φet+k|t +Dwt+k|t . (37)

Tube MPC approaches generally proceed by steering the state of the nominal sys-
tem (36) with tightened constraints to account for the contributions of the error
system (37).

The constraint (32) imposed over the prediction horizon can now be re-stated as

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax − γk, k = 1,2, · · · (38)

where
P

[
C[Φk−1D Φk−2D · · · D 0 · · ·0]Wt ≤ γk

]
= 1− ε , (39)

and

Gt =

⎡
⎢⎢⎢⎣

gt|t
gt+1|t

...
gt+N−1|t

⎤
⎥⎥⎥⎦ , Wt =

⎡
⎢⎢⎢⎣

wt|t
wt+1|t

...
wt+N−1|t

⎤
⎥⎥⎥⎦ .

The computation of γk in (39) requires constructing the distribution of

C(Φk−1Dwt|t + · · ·+Dwt+k−1|t),
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for t = 0 (since problem characteristics are time-invariant). This can be performed
offline by numerical approximation of the convolution integrals or by random sam-
pling methods. In the random sampling approach, Nw disturbance sequence scenar-
ios are generated and the smallest number γ̃k is found such that N∗/Nw ≥ 1 − ε ,
where N∗ is the number of sequences for which C(Φk−1Dwt|t + · · ·+Dwt+k−1|t)≤
γ̃k. As Nw → ∞, we expect that γ̃k → γk.

In the case of wk|t being independent and identically distributed, the Chebyshev
inequality can be used to replace γk with bounds based on

γk ≤ κ
√

CPkCT, κ2 =
1− ε
ε

, Pk+1 =ΦPkΦT+DE[wwT]DT , P0 = 0, k= 0,1,2, · · · .
(40)

To guarantee recursive feasibility, the constraint (38) is tightened to ensure that a
feasible extension of Gt of the type “shift by 1 and pad by 0” exists at time t+1. This
can be assured, as the disturbance takes values in a compact set, by the following
“worst-case” constraints:

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax −βk, k = 1,2, · · · , (41)

βk = max{γk,γk−1 +ak−1,γk−2 +ak−2 +ak−1, · · · ,γ1 +a1 + · · · ,ak−1,0}, (42)

ak = max
w∈Π

CΦkDw.

The sequence {βk} is monotonically nondecreasing and upper bounded by a com-
putable upper bound.

Minimizing the cost function defined for a given xt by

JN = Ext

N−1

∑
k=0

[x�t+k|tQxt+k|t +u�
t+k|tRut+k|t ]+E[x�t+N|tPxt+N|t ], (43)

is replaced equivalently by minimizing

J̃N =
N−1

∑
k=0

[z�t+k|tQzt+k|t +u�
t+k|tRut+k|t ]+ z�t+N|tPzt+N|t ,

which is a quadratic function of Gt . Hence the following optimization problem is
solved

G
∗
t = argmin

Gt

J̃,

subject to

C[Φk−1B Φk−2B · · · B 0 · · ·0]Gt +CΦkzt ≤ ymax −βk, k = 1,2, · · · ,N,

zN|t ∈ S,

where S is a finitely determined inner approximation of the maximum output admis-
sible set defined by constraints,
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{zN : CΦ jzN ≤ ymax −βN+ j, j = 0,1, · · ·}.

The terminal constraint set can be constructed as

S = {zN : CΦ jzN ≤ ymax −βN+ j, j = 1, · · · , N̂,

CΦ lzN ≤ ymax − β̄ , l = N̂ +1, · · · , N̂ +n∗},

where n∗ must be sufficiently large, and

β̄ = γ1 +
N̄

∑
j=1

a j

for N̄ sufficiently large.

5.3 Theoretical Guarantees

Theoretical guarantees for the closed-loop behavior under the tube SMPC law are
available for the case when J̃N in (43) is modified to an infinite prediction horizon
cost (the control horizon is still N),

J̃N = Ext

∞

∑
k=0

[x�t+k|tQxt+k|t +u�
t+k|tRut+k|t − lss], (44)

where
lss = lim

k→∞
Ext (x

�
t+k|tQxt+k|t +u�

t+k|tRut+k|t),

is the steady-state value of the stage cost under the control ut+k|t = Kxt+k|t . This
value can be computed as

lss = trace(Θ(Q+K�RK)), Θ −ΦΘΦ� = DE[ww�]D�.

Note that (44) is a quadratic function of Gt (the details of the computations of this
function are given in Chapter 6 of [26]). Then, under suitable assumptions, given
feasibility at the time instant t = 0, the problem remains feasible at all future time
instants, and causes the closed loop system to satisfy the probabilistic constraint (39)
and the quadratic stability condition,

lim
t→∞

1
t

t

∑
k=0

Ex0

[
x�k Qxk +u�

k Ruk

]
≤ lss.
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5.4 Mass-Spring-Damper Example

We consider a mass-spring-damper example with the model and constraint given by

mẍ1 + cẋ1 + kx1 = w−u, (45)

y = x1 ≤ ymax, (46)

with m = 1, c = 0.1, k = 7, and ymax = 1. The model is converted to the form (30)
by defining x = [x1, x2]

T and using the sampling period, ΔT = 0.1 sec. The distur-
bance force samples, wt , are assumed to be distributed according to the truncated
Gaussian distribution, with zero mean, standard deviation of 1

12 and truncation inter-
val [−0.2,0.2].

Two methods to compute γk were considered, one based on random sampling and
the other one based on Chebyshev’s inequality. Over a 1000 simulated trajectories,
a constraint violation rate metric was defined, as the maximum over t of the fraction
of trajectories violating the constraints at the instant t. See Figure 2. The trajectories
for ε = 0.2, corresponding to 80% confidence of constraint satisfaction, are shown
in Figure 3.
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Fig. 2: Expected and estimated rate of constraint violations.

5.5 Extensions

The above approach utilizes the so-called polytopic stochastic tubes. Stochastic
tubes with ellipsoidal cross-section to bound ek|t with probability at least 1− ε can
also be used. Polytopic tubes can be extended to handle both additive and multiplica-
tive uncertainties. Typical assumptions involve

(A(q),B(q),w(q)) = (A(0),B(0),0)+
m

∑
j=1

(A( j),B( j),w j)q( j)
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where q( j) are scalar random variables and qt = [q(1)t ,q(2)t , · · · ,q(m)
t ]� are indepen-

dent for different time instants, identically distributed and have known probability
distribution.
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Fig. 3: Trajectories on x1-x2 plane for ε = 0.2, bottom plot: zoomed-in. Constraint
is shown by the dashed vertical line.
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42. Raković, S.V., Levine, W.S., Açıkmeşe, B.: Elastic tube model predictive control. In: Ameri-
can Control Conference (ACC), pp. 3594–3599. IEEE, Piscataway (2016)

43. Ripaccioli, G., Bernardini, D., Di Cairano, S., Bemporad, A., Kolmanovsky, I.: A stochastic
model predictive control approach for series hybrid electric vehicle power management. In:
American Control Conference, Baltimore, pp. 5844–5849 (2010)

44. Schildbach, G., Fagiano, L., Frei, C., Morari, M.: The scenario approach for stochastic model
predictive control with bounds on closed-loop constraint violations. Automatica 50(12), 3009–
3018 (2014)

45. Scokaert, P.O., Mayne, D.: Min-max feedback model predictive control for constrained linear
systems. IEEE Trans. Autom. Control 43(8), 1136–1142 (1998)

46. Van Hessem, D.H., Scherer, C.W., Bosgra, O.H.: LMI-based closed-loop economic optimiza-
tion of stochastic process operation under state and input constraints. In: Proceedings of the
40th IEEE Conference on Decision and Control, Orlando, pp. 4228–4233 (2001)

47. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)
48. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential

equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.3999
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.3999


Moving Horizon Estimation

Douglas A. Allan and James B. Rawlings

1 Introduction

Because model predictive control (MPC) uses a system model to predict and opti-
mize system behavior, knowledge of the system’s state is essential for good control
performance. In practice, however, only noisy measurements are available. In the
best case, they are measurements of the entire state, so only perturbations due to
measurement noise need be considered in controller design. In a much more indus-
trially relevant case, however, only a subset of system states are measured. Never-
theless, almost all MPC algorithms require a good estimate of the initial state. Thus
reconstructing a system’s state from noisy measurements is a vital control problem.

The most famous method of estimating a system’s state from measurements is the
Kalman filter [9]. For linear systems with Gaussian disturbances and noises, it is the
statistically optimal state estimator, i.e., it maximizes the conditional density of the
state given the measurements. Furthermore, because of its linear, recursive update
formula, state estimates can be calculated quickly and efficiently. The Kalman filter
is the first choice of state estimators when linear system models are used, and, by
design, many nonlinear state estimators reduce to the Kalman filter when applied to
linear systems.

In general, there have been two approaches to nonlinear state estimation. The
first is to design a parallel dynamical system, termed an observer, that takes the
original system’s outputs as inputs and produces, as an output, an estimate of the
original system’s state. The design of such observers is an active area of research;
a presentation of recent results on the subject is available in [17] and [16]. Two
particular observers of note are the extended Kalman filter (EKF) and the unscented
Kalman filter.
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The extended Kalman filter has two components to its state: an estimate of the
system’s actual state and an estimate of the covariance matrix of the estimated state.
The estimated state is propagated forward in time using the nonlinear system equa-
tion. This estimate is corrected by linearizing the system model at the estimated
state and applying the Kalman filter equations to the covariance matrix. This pro-
cedure is relatively easy to implement and produces a state estimate quickly, but is
difficult to tune and is provably reliable only for systems that are nearly linear [8].
The unscented Kalman filter is an observer that takes an ensemble of states nearby
the estimated state, runs the ensemble through the nonlinear system model, and uses
the statistics of the ensemble for the state update [8]. This approach can work bet-
ter than the EKF on systems with highly nonlinear dynamics [24] or measurements
[25].

The second approach is to take a nonlinear process model and optimize to find the
state trajectory that is “most likely” to have produced the observed measurements.
Two types of disturbances are usually considered: state disturbances and measure-
ment disturbances. State disturbances affect the system’s state directly, and thus
have effects that propagate forward in time. Measurement disturbances only appear
to have affected the system’s state and do not affect the system’s evolution. These
disturbances are usually decomposed into zero-mean components that do not persist,
and persistent integrating disturbances. We do not consider estimating these integrat-
ing disturbances here; an interested reader can see [15] for disturbance estimation
in the linear case and [23, Ch. 5] for the nonlinear case. For the zero-mean compo-
nent of disturbances, a stage cost measures how “likely” each type of disturbance
is to have occurred, with larger disturbances “less likely” than smaller disturbances.
These naive notions of likelihood coincide with the statistical notion of choosing a
state estimate with maximum likelihood for linear systems with zero-mean Gaus-
sian noises when an appropriate quadratic stage cost is chosen [6]. A prior estimate
is often used in order to sum up information not included in the optimization prob-
lem. So the optimization-based state estimator minimizes the sizes of noises and
deviation from the prior estimate needed to explain the measurements of the system
over a certain time horizon.

In order for a state estimator to be of use, it must faithfully reconstruct the sys-
tem’s state. Therefore, estimator stability is a vital property. Furthermore, the stabil-
ity of the estimator must not be destroyed by the presence of state and measurement
noise. Therefore estimator robustness is an equally vital property. Not all estimators
are stable; if an unstable linear system has no outputs, the best estimate is created
by the evolution of the state’s prior estimate. If there is error in this prior estimate,
the gap between the true state and the estimate increases without bound [23, Ch. 1].
Therefore, in order for a stable estimator to exist, the system must satisfy certain
assumptions.

The most common assumptions are observability and detectability. A system is
observable if its state can be reconstructed from a finite number of measurements,
whereas a system is detectable if any two trajectories that produce the same measure-
ments asymptotically approach one another. These properties are well-understood
for linear systems, and one can determine if a system is observable or detectable
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by the satisfaction of certain matrix rank conditions [27, p. 271, 317]. Here, we
consider nonlinear detectable systems. A popular notion of nonlinear detectability
is incremental input/output-to-state stability (i-IOSS) [28]. This condition is neces-
sary for a full-order (i.e., a state dimension equal to that of the system) observer
to exist for a system, and has been used in many results on nonlinear optimization-
based state estimation. The essential idea of i-IOSS is that the distance between any
two trajectories of a system is bounded by the distance between the initial condi-
tions, and the magnitude of the difference between the disturbances and the outputs
of the system.

Optimization-based state estimation generally takes one of two forms: full infor-
mation estimation (FIE) and moving horizon estimation (MHE). In FIE, all measure-
ments are included in the optimization problem, while in MHE only a finite number
of recent measurements are included. In general, FIE is computationally intractable,
but it provides useful theoretical benchmarks for the performance of MHE. Further-
more, for unconstrained linear systems with a quadratic stage cost, it reduces to the
Kalman filter. FIE was first shown to be a stable estimator in the case of observable
nonlinear systems with no disturbances in [18], and it was shown to be a robustly
stable and convergent estimator in the case of convergent disturbances in [23, 1st
Ed.]. The proof of estimator convergence in the case of converging disturbances
was subsequently streamlined in [20]. By adding an extra “max-term” to the objec-
tive function to penalize the largest stage cost, the authors in [7] proved the robust
stability of FIE for bounded disturbances for a particular form of i-IOSS. This result
was extended to additional forms of i-IOSS in [5]. Although these results with a
max-term obtain robust stability in the case of bounded disturbances, they are not
provably convergent when the disturbances converge to zero. An analysis that shows
that FIE is robustly stable in the presence of bounded disturbances remains elusive.

Moving horizon estimation was first motivated for linear systems by the possi-
bility of using constraints to improve the predictions of the Kalman filter by forbid-
ding aphysical state and disturbance estimates in [10] and [14]. These results were
extended to observable nonlinear systems with no prior weighting in [11]. The con-
cept of the arrival cost for moving horizon estimation was introduced in [19]. The
arrival cost is a function of the system’s state that gives the cost of the full informa-
tion problem such that it terminates at a given state value. It has the property that,
when used as a prior weighting, MHE is equivalent to FIE. Although it cannot be
found directly except in special cases such as the Kalman filter for linear systems,
it is a useful point of comparison for the prior weighting. The authors of [19] found
that MHE is stabilizing when the prior weighting is a lower bound of the arrival cost.
This result was extended in [23, 1st. Ed.] to robust stability in the case of convergent
disturbances.

Recently, there have been several new results demonstrating the robust stability
for MHE. Inspired by the results in [7], in [12] it was shown that MHE with a max-
term is stabilizing for certain i-IOSS systems so long as a sufficiently long horizon
is used. This result was extended to MHE without a max-term in [13]. Furthermore,
it was shown that MHE is convergent for convergent disturbances, with or without a
max-term. In [4], it was shown for a more general class of systems that MHE with a
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max-term is stabilizing with a sufficiently long horizon if the functions dictating the
robust stability of FIE using the same prior weighting and stage costs satisfy certain
assumptions.

As we might expect in a field under active development, the assumptions that
these works use are somewhat opaque, and the systems to which they apply are
not fully understood. In particular, both results rely on exponential decay arguments
and result in exponential convergence of the estimator. However, it is not completely
clear how an estimator can be exponentially convergent without the system being ex-
ponentially detectable. Here, we present a version of the results in [13] generalized
by using assumptions similar to those in [4]. Furthermore, we show, by arguments
similar to the convergence proofs of MHE, that these systems indeed have a certain
form of exponential detectability. The proof of MHE convergence has been stream-
lined by use of the maximization form, rather than the sum form, of i-IOSS. When
the property of input-to-state stability (ISS) was originally introduced in [26], the
author noted that taking the maximum of the K L and K functions, rather than
the sum, resulted in the same property, and the same is true of i-IOSS. We introduce
some suggestive notation for pairwise maximization, inspired by the max-plus alge-
bra, to assist in proofs when many elements are being maximized at once. The end
result is shorter and simpler proofs than when using the standard sum approach.

Preliminaries The vector space of real numbers is denoted R
n, and nonnegative

scalar real numbers are denoted R≥0. The set of nonnegative integers is denoted I≥0,
and sets of integers from i to j (inclusive) are denoted Ii: j. We define |·| to be the
Euclidean norm. We denote sequences (d(0),d(1),d(2), . . .) := d, and denote the
supremum norm of a sequence supk≥0 |d(k)| := ‖d‖. Maximums of a sequence in
certain intervals are denoted maxk∈Ii: j |d(k)| := ‖d‖i: j.

A function α : R≥0 → R≥0 is of class K if it is zero at the origin, continuous,
and strictly increasing. It is said to be of class K∞ if in addition lims→∞α(s) =∞. A
function φ : I≥0 → R≥0 is of class L if it is nonincreasing and if limk→∞ φ(k) = 0.
A function β : R≥0 × I≥0 → R≥0 is of class K L if for each fixed k the function
β (·,k) is of class K and if for each fixed s the function β (s, ·) is of class L . The
function β (·) ∈ K L is separable if there is some α(·) ∈ K and φ(·) ∈ L such
that β (s,k)=α(s)φ(k). The operator �·� denotes the floor function, the function that
returns the greatest integer less than its argument, and the operator �· denotes the
ceiling function, the function that returns the least integer greater than its argument.

We wish to use the maximization form of i-IOSS because it is convenient for
manipulating K functions, but do not wish for the notation to become burdensome.
Inspired by the max-plus algebra, we denote pairwise maximization max{a,b} :=
a⊕b, in which a,b∈R. This operation is associative, i.e., (a⊕b)⊕c= a⊕(b⊕c) :=
a⊕b⊕ c for c ∈ R, and nondecreasing functions distribute across it, i.e., if σ(s) is
nondecreasing we have that σ(a ⊕ b) = σ(a)⊕σ(b). In particular, we have that
(a⊕ b)+ c = (a+ c)⊕ (b+ c), c(a⊕ b) = ca⊕ cb for c ≥ 0, and for σ ∈ K we
have that σ(a ⊕ b) = σ(a)⊕ σ(b). Note that the operation ⊕ does not associate
with addition, i.e., a⊕ (b+ c) �= (a⊕b)+ c = (a+ c)⊕ (b+ c).
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2 Systems of Interest

We consider general nonlinear discrete-time systems of the form

x+ = f (x,w)

y = h(x)+ v

in which x ∈R
n is the system state, w ∈R

g is the process noise, y ∈R
p is the process

output, and v ∈ R
p is the measurement noise. For simplicity, we do not consider

control inputs here. Under appropriate assumptions (e.g., requiring uniformity with
respect to controls as in [23, Sec. 4.6]), these results extend to systems with control
inputs.

One useful definition of detectability for nonlinear systems is incremental
input/output-to-state stability (i-IOSS).

Definition 1 (i-IOSS). A system x+ = f (x,w) with a measurement function y= h(x)
is incrementally input/output-to-state stable (i-IOSS) if there exist β (·) ∈K L and
γw(·),γv(·) ∈ K such that for any two initial conditions x1(0) and x2(0) and input
sequences w1 and w2 we have that

|x1(k)− x2(k)| ≤ β (|x1(0)− x2(0)| ,k)⊕ γw(‖w1 −w2‖0:k−1)

⊕ γv(‖y1 −y2‖0:k−1)

for all k ≥ 0.

However, the recent results on the robust stability of MHE rely on a stronger as-
sumption than i-IOSS. In [13], the authors assume that the K L function β (s,k)
admits an upper bound for times k ≥ 1 of the form Csaφ(k) for some C > 0, a ≥ 1,
and φ ∈ L . Because at time k = 0 we have the trivial inequality |x1(0)− x2(0)| ≤
|x1(0)− x2(0)|, any system that satisfies this assumption admits an upper bound of
(Csa + s)φ(k) for all k ≥ 0. We use a more general assumption from [4]. Because
a stability link is derived from FIE in [4], the assumption there is about a K L
function derived from the robust stability of FIE, but here we apply it to the K L
function in the definition of i-IOSS.

Assumption 1 The system x+ = f (x,w), y = h(x) is i-IOSS and furthermore, for
every s > 0 there exists some T ≥ 0 and η ∈ (0,1) such that

β (s,T )≤ ηs

for all s ≤ s.

This assumption requires the K L function to eventually become a contraction map
on all intervals from the origin to s. In [4], a sufficient condition for this assumption
is provided: that β (s,k) admits an upper bound σ(s)φ(k) for σ(·) ∈K and φ(·) ∈
L such that σ(·) is Lipschitz continuous at the origin. This sufficient condition is
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a more general form of the assumption made in [13], and in fact permits a much
stronger conclusion about the form of β (·). All systems that satisfy this sufficient
condition are actually locally exponentially i-IOSS.

Definition 2 (Local Exponential i-IOSS). A system x+ = f (x,w) with a measure-
ment function y = h(x) is incrementally input/output-to-state stable (i-IOSS) if there
exist γw(·),γv(·) ∈ K such that, for every δ > 0 and for any two initial conditions
x1(0) and x2(0) such that |x1(0)− x2(0)| ≤ δ and input sequences w1 and w2, there
exist C(δ )≥ 1 and λ (δ ) ∈ (0,1) such that

|x1(k)− x2(k)| ≤C(δ ) |x1(0)− x2(0)|λ (δ )k ⊕ γw(‖w1 −w2‖0:k−1)

⊕ γv(‖y1 −y2‖0:k−1)

for all k ≥ 0.

Note that this exponential i-IOSS is “local” in the sense that it applies to all states
that start sufficiently close to one another, rather than applying to all states in
some set.

We first require a minor result on locally Lipschitz K function upper bounds of
functions. This result is similar to that of Proposition 14 in [22].

Proposition 1 (Locally Lipschitz Upper Bound). If a function V : C → R
n, in

which C ⊆ R
m is closed, is Lipschitz continuous at a point x0 and locally bounded,

then there exists a locally Lipschitz function σ(·) ∈ K such that |V (x)−V (x0)| ≤
σ(|x− x0|) for all x ∈ C .

The proof of this proposition is included in the appendix. Now we demonstrate that
both Assumption 3 in [13] and the sufficient condition provided in [4] are equivalent
to local exponential i-IOSS.

Proposition 2. Suppose a system is i-IOSS with β (·) ∈K L and γw(·),γv(·) ∈K .
Then the following statements are equivalent:

1. The system admits a K L function β (s,k) = σx(s)φ(k) for some σx(·) ∈ K∞
that is Lipschitz continuous at the origin and φ(·) ∈L .

2. For every s> 0 there exists some η ∈ (0,1) and some T > 0 such that β (s,T )≤
ηs for all s ≤ s. Furthermore, β (s,0) is Lipschitz continuous at s = 0.

3. For every s> 0, there exist C > 0 and λ ∈ (0,1) such that for any two initial con-
ditions x1(0) and x2(0) satisfying |x1(0)− x2(0)| ≤ s and every two disturbance
sequences w1 and w2, the system’s state trajectories satisfy |x1(k)− x2(k)| ≤
C |x1(0)− x2(0)|λ k ⊕ γw(‖w1 −w2‖k−1)⊕ γv(‖y1 −y2‖k−1).

4. The system admits a K L function β (s,k) = γx(s)λ k for some γx(·) ∈K∞ that
is Lipschitz continuous at the origin and λ ∈ (0,1).

The proof of this proposition is also provided in the appendix.
So all systems that satisfy the assumption made in [13] are locally exponentially

i-IOSS. This result also explains why a result similar to robust exponential stability
is given by Lemma 3 in [4], which uses the sufficient condition equivalent to State-
ment 2. Now, Assumption 1 is somewhat weaker. It is satisfied by systems that are
“eventually” locally exponentially i-IOSS. Consider a system
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x+1 =
√

x2

x+2 = 0

This system is incrementally stable, and we have that

|Δx(k)| ≤
(√

|Δx(0)|+Δx(0)
)
(1/2)k−1

for all k ≥ 0, in which Δx(k) := x1(k)−x2(k). Furthermore, we have that |Δx(k)|= 0
for all k ≥ 2. Thus, when this system is augmented with the trivial measurement
function h(x) = 0, it is i-IOSS and satisfies Assumption 1. However, because of the
square-root term, it is not locally exponentially i-IOSS. Thus Assumption 1 is more
general than local exponential i-IOSS. However, what this system shows is that an
exponential bound can be used after a certain amount of time elapses in the system.
We conjecture that all systems that satisfy Assumption 1 are this way.

Furthermore, by an argument similar to that used in the proof of Proposition 2,
all systems that satisfy Assumption 1 admit a K L function of the form α(s)λ k

in their statements of i-IOSS, in which α(·) ∈ K∞ but is not necessarily Lipschitz
continuous at the origin. However, unlike in Proposition 2, not all systems that admit
such a K L function satisfy Assumption 1. For example, consider the system

x+1 =
√

x2

x+2 = (1/2)x2

As in the previous system, this system is incrementally stable and admits the bound

|Δx(k)| ≤
(√

|Δx(0)|+ |Δx(0)|
)
(1/2)k−1

for all k ≥ 0. However, because x2 is not mapped to zero in finite time, the square-
root term prevents any sort of bound of the form |Δx(k)| ≤ηs for all s ≤ s. Therefore
Assumption 1 is not reducible to a K L bound of the form α(s)λ k.

Although there are major differences between how inputs and outputs affect the
evolution of a system (namely, that one affects the evolution of the state and one
does not), both process and measurement noises enter into the analysis of MHE in
the same way. For simplicity, we define a combined disturbance

d := (w,v)

and note that if we define a function γd(s) := γw(s)⊕γv(s) we have the i-IOSS bound

|Δx(k)| ≤ β (|Δx(0)| ,k)⊕ γw(‖Δd‖k−1)

for all k ≥ 0, in which Δd := d1 −d2.
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3 MHE Setup

Now that the systems of interest have been characterized, we move to the design of
the moving horizon estimator. MHE uses a nonlinear model to forecast a system’s
behavior over a certain horizon based on an initial estimate of the system’s state
(prior) and then optimizes to find the smallest disturbances to this forecast necessary
to explain the system’s measurements. This process is illustrated in Figure 1. The
estimator’s stage cost dictates which disturbances are deemed to be “more likely”
than others. For example, a weighted least squares stage cost implies that many
small disturbances are more likely than a few large ones, whereas an �1 stage cost
implies that several small disturbances and one large disturbance are equally likely.
The most popular stage cost is quadratic, because of its association with a Gaussian
distribution of disturbances. The prior is taken into account with a prior weight-
ing. Because the prior is usually not correct, it is important to be able to move it
to produce a state trajectory that is more in line with the measurements produced.
However, without any prior weighting, a system must be observable for an estima-
tor to converge. Therefore careful choice of a prior weighting is necessary for good
MHE performance.

We define the MHE objective function for some horizon length N to be

VN(χ ,ωωω,ννν ,x) := ρVp(χ ,x)+
N−1

∑
k=0

�(ω(k),ν(k)) (1)

in which Vp(·) is the prior weighting and ρ > 0 is some constant that is chosen to
achieve robust stability. We then define the optimal estimation problem

min
χ ,ωωω,ννν

VN(χ(t −N),ωωω,ννν ,x)

s.t. χ+ = f (χ ,ω)
y = h(χ)+ν

Note that when there are k < N measurements, we use a sum from 0 to k−1, i.e., we
define the MHE problem to be the full information problem. Note that in practice
the final measurement, y(N), should be included in the problem as well, but we do
not include it for simplicity. All results derived for this prediction form of MHE, so-
called because it estimates x(N) without the measurement y(N), can be extended to
filtering MHE, the form of MHE that does include y(N). State and state disturbance
constraints can be included in MHE as well. For physical systems with variables
such as absolute temperatures and concentrations, nonnegativity constraints do not
just improve estimates by excluding nonsensical values, but are often necessary for
the system model to be well-defined in the first place. If constraints are included
in the formulation of MHE, the actual states and disturbances must always satisfy
them, or else the estimator may not converge [23, Ch. 4].
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Fig. 1: Moving horizon estimation uses a system model and optimization to recon-
cile past measurements over a horizon of length N.

Next, the prior x needs to be chosen. We assume that there exists some initial
estimate of the system’s state x0 as part of the problem statement. But once the
estimator has been online for at least N sampling times, this prior is obsolete. Ide-
ally, the prior weighting would summarize all the previous measurements exactly,
but except in the case of the Kalman filter’s recursive update formula, such a prior
weighting is computationally intractable. In order to include the most information
in the moving horizon problem, then, MHE’s estimate of the state at k−N, x̂(k−N),
is used as a prior. Because the prior x̂(k−N) is estimated from measurements from
k−N −1 to k−2N, the horizon is, in a way, extended to be twice as long. Further-
more, that MHE estimate uses a prior x̂(k−2N), so information is propagated from
earlier problems to later ones.

However, the filtering update is not without problems. Because it uses a much
earlier estimate, it can take a long time to recover from a bad initial prior. This re-
covery process can involve periodic behavior in the state estimate, as seen in [2] and
[29]. As an alternative, the estimate of x(k−N) at time k−1, x̂(k−N|k−1), can be
used as a prior instead. Both strategies are compared in Figure 2. Because this prior
is generated using measurements from k−N − 1 to k− 1, those measurements are
“counted twice” in the optimization problem. For linear systems, this correlation can
be corrected for by updating the prior weighting [23, Sec. 4.3.4]. For nonlinear sys-
tems, the prior is often somewhat arbitrary, so while this correlation should be kept
in mind, there is not necessarily an easy way to correct for it. Despite its poorer the-
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smoothing update

filtering update

k − 2N k − N k

Time

y

yk−2N:k−N −1

yk−N −1:k −2

MHE problem at k
yk −N:k −1

Fig. 2: The filtering prior is created using measurements from k− 2N to k−N − 1,
whereas the smoothing prior uses measurements from k−N −1 to k−1. As a result,
measurements from k−N to k−1 are counted twice in the MHE problem when the
smoothing prior is used. (From [23, Ch. 4].)

oretical properties, it often gives much better performance than the filtering update
in practice, as in [29]. Here, we use the filtering prior for its theoretical properties.

We next make several assumptions about the stage cost and prior weighting.

Assumption 2 (Continuity) The functions f (·), h(·), �(·), and Vp(·) are continu-
ous.

Assumption 3 (Positive Definite Cost Function) There exist γ
p
(·), γ p(·), γs

(·),
γs(·) ∈K∞ such that

γ
p
(|χ− x|)≤Vp(χ ,x)≤ γ p(|χ− x|)

γ
s
(|(ω,ν)|)≤ �(ω,ν)≤ γs(|(ω,ν)|)

Assumption 4 (Lipschitz Continuity of Function Composition) The function
γ−1

p
(2γ p(s)) is Lipschitz continuous at the origin.

Assumption 5 (Contractivity of Function Composition) For every s> 0 and η ∈
(0,1), there exists a value of ρ > 0 such that

γd(2γ−1
s
(2ργ p(s)))≤ ηs

for all s ∈ [0,s].
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Assumptions 2 and 3 guarantee that the optimization problem is well posed and
that, asymptotically, larger deviations from the prior and larger noises are penal-
ized more than smaller deviations and noises. These assumptions are standard in
the literature (e.g., [23, Ch.4]). The other assumptions are newer and require some
discussion.

In [13], it is assumed (Assumptions 3 and 4) that γ
s
(·), γs(·), γ p

(·), and γ p(·)
all have the form of Csα for some C,α > 0, in which the upper and lower bounds
of each function use the same power. Under those conditions, Assumption 4 holds.
Furthermore, the combination of Assumptions 4 and 5 in [13] guarantees that the
conditions of Assumption 5 here hold. The main assumption of Theorem 2 in [4] is
essentially a combination of Assumptions 1 and 5.

In general, Assumptions 4 holds when the functions γ
p
(·) and γ p(·) admit lower

and upper bounds, respectively, of the form Csα in a neighborhood of the origin,
in which both power-law bounds have the same power. Similarly, if γd(·) is locally
Lipschitz and γ

s
(s) ≥ Csβ , in which β ≤ α , in a neighborhood of the origin, then

Assumption 5 holds.

Remark 1. The relationship between �(·) and Vp(·) required by Assumption 5 is the
opposite of that between an MPC controller’s stage cost and terminal cost. The
controller requires a terminal cost that is as least as steep as that of the stage cost, so
it can serve as a local control Lyapunov function. The estimator, by contrast, requires
a prior weighting that is at most as steep as that of the stage cost. This assumption
is similar to Condition C2 in [19], in which the prior weighting is assumed to be a
lower bound to the estimator’s arrival cost.

We use a definition of robust asymptotic stability similar to that provided in [23,
Ch. 4].

Definition 3 (Robust Asymptotic Stability). A state estimator is robustly asymp-
totically stable if there exist δ1,δ2 > 0, βe(·) ∈ K L , and γe(·) ∈ K such that if
|x(0)− x| ≤ δ1 and ‖d‖ ≤ δ2, then we have that

|x̂(k)− x(k)| ≤ βe(|x− x(0)| ,k)⊕ γe(‖d‖0:k−1)

for all k ∈ I≥0.

Remark 2 (Globality). Note that the authors of [13] and [4] call the properties they
establish robust global asymptotic stability. While those properties are global in the
sense that they apply regardless of where the initial condition x(0) is, they are not
global in the sense that the estimators are robustly stable regardless of the error in
the prior estimate |x− x(0)|. As we do here, those papers restrict the size of initial
estimate error. Here, we prefer to reserve the term global for estimators that are
global in both senses.
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4 Main Results

In order to prove the robust stability of MHE, we first need a result that bounds
the estimator error within the MHE problem in terms of the error in the prior and
the size of the disturbances. This proposition is similar to Lemma 7 in [13]. Because
both disturbances are combined into a single variable and the fact that maximization
is used rather than addition, the proof is significantly streamlined, and we include it
in the appendix.

Proposition 3. For any MHE problem satisfying Assumptions 2 and 3 applied to an
i-IOSS system, we have for all k ≤ N that

|e(k)| ≤β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),k)⊕ γd(2γ−1

s
(2ργ p(

∣∣ep
∣∣)))

⊕β (2γ−1
p
((2N/ρ)γs(‖d‖0:N−1)),k)⊕ γd(2γ−1

s
(2Nγs(‖d‖0:N−1)))

in which ep := x− x and e(k) := x(k)− x̂(k).

Finally, we present the result on robust asymptotic stability. First, we note that by
choosing a long enough horizon N and small enough ρ in (1), we can obtain a con-
traction mapping for the error using the filtering prior, |x̂(k−T )− x(k−N)|, using
Proposition 3. Next, we apply this contraction mapping repeatedly to obtain expo-
nential convergence in estimator error once the estimator’s horizon is filled, i.e.,
once k ≥ N. Finally, we bound the error from times 0 to N −1 when the initial prior
is being used. These elements are combined into a statement of robust stability.

Theorem 1 (Robust Asymptotic Stability of MHE). For every s > 0, there exists
a T and ρ such that if N ≥ T and

∣∣ep
∣∣≤ s, then there exist βe(·) ∈K L , γe(·) ∈K ,

and δ > 0 such that if ‖d‖ ≤ δ , then

|e(k)| ≤ βe(
∣∣ep

∣∣ ,k)⊕ γe(‖d‖)

for all k ≥ 0. Furthermore, if limk→∞ |d(k)|= 0, then limk→∞ |e(k)|= 0.

Proof. Let s̃ := β (2γ−1
p
(2γ p(s)),0). By Assumption 4 and Proposition 1 there exists

some Lp(s̃) > 0 such that for all s ∈ [0, s̃], we have that 2γ−1
p
(2γ p(s)) ≤ Lps. Let

š := Lp(s̃)s̃. By Assumption 1, for every η ∈ (0,1) there exists T ≥ 0 such that
β (s,T ) ≤ ηs for all s ∈ [0, š]. Note that because γ−1

p
(2γ p(s)) ≥ s and β (s,0) ≥ s,

we have that š ≥ s. Choose λ ∈ (0,1). We thus have that there exists some T ≥ 0
such that

β (2γ−1
p
(2γ p(s)),T )≤ β (Lp(s̃)s,T )≤ ηLp(s̃)s ≤ λ s

for all s ≤ s̃.
By Assumption 5, we can fix ρ sufficiently small such that γd(2γ−1

s
(2ργ p(s)))≤

λ s for all s ∈ [0, s̃]. Suppose that N ≥ T . Because we use a filtering prior (i.e., x(k) =
x̂(k−N) for all k ≥ N), by Proposition 3 we have for all k ≥ 0 that
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|e(k+N)| ≤β (2γ−1
p
(2γ p(|e(k)|)),N)⊕ γd(2γ−1

s
(2ργ p(|e(k)|)))

⊕β (2γ−1
p
((2N/ρ)γs(‖d‖k:k+N−1)),N)

⊕ γd(γ−1
s
(2Nγs(‖d‖k:k+N−1)))

≤λ |e(k)|⊕λ |e(k)|
⊕β (2γ−1

p
((2N/ρ)γs(‖d‖k:k+N−1)),0)

⊕ γd(γ−1
s
(2Nγs(‖d‖k:k+N−1)))

=λ |e(k)|⊕ γe(‖d‖k:k+N−1) (2)

in which γe(s) := β (2γ−1
p
((2N/ρ)γs(s)),0) ⊕ γd(γ−1

s
(2Nγs(s))), and note that

γe(·) ∈K .
Next, we require bounds on |e(k)| for k ∈ I0:N−1. Because there are not enough

measurements to fill the horizon yet, all of these MHE problems use x0 as their prior.
Thus, by applying Proposition 3, we have that

|e(k)| ≤β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),0)⊕ γd(2γ−1

s
(2ργ p(

∣∣ep
∣∣)))

⊕β (2γ−1
p
((2k/ρ)γs(‖d‖0:k−1)),0)⊕ γd(γ−1

s
(2kγs(‖d‖0:k−1)))

≤β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),0)⊕ γd(2γ−1

s
(2ργ p(

∣∣ep
∣∣)))

⊕β (2γ−1
p
((2N/ρ)γs(‖d‖0:k−1)),0)⊕ γd(γ−1

s
(2Nγs(‖d‖0:k−1)))

=σx(
∣∣ep

∣∣)⊕ γe(‖d‖0:k−1) (3)

in which σx := β (2γ−1
p
(2γ p(s)),0), and note both that σx(·) ∈K∞ and that σx(s)≥

s ≥ λ s ≥ γd(2γ−1
s
(2ργ p(s))) for all s ∈ [0, s̃]. Because γe(·) ∈K , there exists some

δ > 0 such that if ‖d‖ ≤ δ , then γe(‖d‖)≤ s̃.
Next, we prove by induction that

|e(k+ jN)| ≤ λ jσx(
∣∣ep

∣∣)⊕ max
i∈I0: j−1

(
λ j−i−1γe(‖d‖iN:(i+1)N−1)

)
⊕ γe(‖d‖ jN: jN+k−1)

for all j ≥ 0 and k ∈ I0:N−1. The base case is (3). Now we perform the inductive
step.

Inductive Case Suppose that

|e(k+ jN)| ≤ λ jσx(
∣∣ep

∣∣)⊕ max
i∈I0: j−1

(
λ j−i−1γe(‖d‖iN:(i+1)N−1)

)
⊕ γe(‖d‖ jN: jN+k−1)

for some j ≥ 0. By applying (2), we have that

|e(k+( j+1)N)| ≤λ |e(k+ jN)|⊕ γe(‖d‖k+ jN:k+( j+1)N−1)

≤λ
(
λ jσx(

∣∣ep
∣∣)⊕ max

i∈I0: j−1

(
λ j−i−1γe(‖d‖iN:(i+1)N−1)

)
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⊕ γe(‖d‖ jN: jN+k−1)
)
⊕ γe(‖d‖k+ jN:k+( j+1)N−1)

=λ j+1σx(
∣∣ep

∣∣)⊕ max
i∈I0: j−1

(
λ j−iγe(‖d‖iN:(i+1)N−1)

)

⊕λγe(‖d‖ jN: jN+k−1)⊕ γe(‖d‖k+ jN:k+( j+1)N−1)

≤λ j+1σx(
∣∣ep

∣∣)⊕ max
i∈I0: j−1

(
λ j−iγe(‖d‖iN:(i+1)N−1)

)

⊕ γe(‖d‖ jN:( j+1)N−1)⊕ γe(‖d‖( j+1)N:k+( j+1)N−1)

=λ j+1σx(
∣∣ep

∣∣)⊕max
i∈I0: j

(
λ j−iγe(‖d‖iN:(i+1)N−1)

)

⊕ γe(‖d‖( j+1)N:k+( j+1)N−1)

which is the required statement.
Note that an immediate consequence of this statement is that

|e(k+ jN)| ≤ λ jσx(
∣∣ep

∣∣)⊕ γe(‖d‖0: jN+k−1)

for all k ∈ I0:N−1 and all j ≥ 0. Let λ �k/N�σx(s) := βe(s,k), and note that βe(·) ∈
K L . Thus we have for all k ≥ 0 that

|e(k)| ≤ βe(
∣∣ep

∣∣ ,k)⊕ γe(‖d‖0:k−1)

and thus MHE is robustly asymptotically stable.
Finally, we demonstrate that, if d converges to zero, then |e(k)| converges to zero.

Fix ε > 0. Because d converges to zero, there exists some K1 such that γe(‖d‖k:∞)≤
ε for all k ≥ K1. Let d̄ := maxk∈I0:N�K1/N |d(k)|. There exists some K2 such that

λ �K2/N�d̄ ≤ ε . Finally, there exists some K3 such that βe(
∣∣ep

∣∣ ,K3)≤ ε . For all N j+
k ≥ (K1 +K2 +2N)⊕K3, we have that

|e(k+ jN)| ≤ λ jσx(
∣∣ep

∣∣)⊕ max
i∈I0: j−1

(
λ j−i−1γe(‖d‖iN:(i+1)N−1)

)
⊕ γe(‖d‖ jN: jN+k−1)

≤ ε⊕ max
i∈I0:�K1/N 

(
λ j−i−1γe(‖d‖iN:(i+1)N−1)

)
⊕ γe(‖d‖N�K1/N :∞)

≤ ε⊕ d̄λ �(K1+K2+N)/N�−�K1/N −1 ⊕ ε

Because �a+b� ≤ �a�+ �b� and �a ≤ �a�+1, we have that

|e(k+ jN)| ≤ ε⊕ d̄λ �K1/N�+�K2/N�+1−�K1/N −1

≤ ε⊕ d̄λ �K1/N�+�K2/N�+1−�K1/N 

≤ ε⊕ d̄λ �K1/N +�K2/N�−�K1/N 

≤ ε⊕ ε = ε

and thus e(k) converges to zero.
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This type of exponential decay argument was initially presented in [12] in the case
of MHE with a maximum term in the objective function, and was extended to MHE
without a maximum term in [13]. The form of the argument presented here more
closely resembles that presented in [4] using a maximum term in its MHE for a
broader class of systems than that in [12]. The argument here extends the results in
[13] to a similar class of systems as in [4].

5 Numerical Example

We conclude with a numerical example illustrating the application of MHE, along-
side the extended Kalman filter (EKF) and unscented Kalman filter (UKF), to a
batch chemical reaction. This example is similar to the example in [3] in which
the EKF fails, and was adapted from Example 4.41 in [23]. Consider the reversible
dimerization of a species A into its dimer B catalyzed by an enzyme E

A+E � AE

2AE � B+2E

For an isothermal batch reactor, the evolution of the concentrations of the species A,
B, and the complex AE is given by the following differential equations

dcA

dt
=−k1cA(ct − cAE)+ k−1cAE

dcAE

dt
= k1cA(ct − cAE)− k−1cAE −2k2c2

AE +2k−2cB

dcB

dt
= k2c2

AE − k−2cB

in which ci is the concentration of species i, ct is the total concentration of enzyme
initially in the reactor, ki is the forward rate of reaction i, and k−i is the reverse
rate of reaction i. The parameters used were k1 = 0.05, k−1 = 0.005, k2 = 0.02,
k−2 = 0.001, and ct = 1.

Suppose that the concentrations of these species cannot be measured individually,
but rather the sum of cA, cAE, and cB can be measured, i.e.,

h(cA,cAE,cB) = cA + cAE + cB

The code used to generate these figures was adapted from the code which gen-
erated Figures 4.5–4.71 in [23, Ch. 4]. We used CasADi2 [1], an algorithmic (auto-
matic) differentiation framework available for C++, Python, MATLAB, and Octave,

1 Available at http://jbrwww.che.wisc.edu/home/jbraw/mpc/figures.html.
2 Available at www.casadi.org.

http://jbrwww.che.wisc.edu/home/jbraw/mpc/figures.html
www.casadi.org
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and MPCTools,3 a set of high-level functions for CasADi to streamline the formu-
lation of optimal control and estimation problems, to discretize this set of ODEs.
We used the fourth-order Runge-Kutta method with a sampling time of 0.5. We aug-
mented this discrete-time model with an additive state disturbance, such that it had
a form

x+ = f (x)+w

When the system was simulated, each element of w was chosen by an independent
normal distribution with zero mean and standard deviation 0.001. The measurement
was disturbed with a normally distributed additive disturbance with zero mean and
standard deviation 0.0076. For the MHE stage cost, we used

�(w,v) =
1

(0.001)2 |w|2 + 1
(0.0076)2 |v|2

i.e., a least squares objective with the inverse of the disturbance covariance matrices
as weights, as in the recursive least squares formulation of the Kalman filter. These
covariance matrices were also used for the EKF and UFK. A horizon of length 32
was used, and the final measurement was included.

For a prior weighting, we used

Vp(x,x) =
1
4
|x− x|2

Nonnegativity constraints were enforced for all concentrations, while cAE was
constrained to be less than ct. While simulating the system, if any disturbances
caused the true concentrations to leave the feasible region, the concentrations were
clipped to the nearest feasible point. We simulated two cases for the EKF and UKF,
one case where the estimates were clipped to feasibility, and one in which they
were not. The EKF’s estimate was clipped immediately after its update formula. Be-
cause the UKF samples an ensemble of points, called sigma points, around the esti-
mated state, both the estimate and the sigma points need to be clipped. The sigma
points were rescaled to be feasible in x and weighted as in [30], run through the
system model, then clipped again (due to w). The state estimators were all initial-
ized with a prior of x̂ = [0,0.5,3]T , while the actual system started with a state of
x = [0.8,0.1,0.0]T .

The results of the EKF and UKF are given in Figure 3 and the results of MHE
are given in Figure 4. MHE converges to the true states much faster than the two
other strategies, despite the bad prior, and all state estimates are physically realistic.
Thus, in this case, MHE is a stable and reliable estimator.

3 Available at https://bitbucket.org/rawlings-group/octave-mpctools.

https://bitbucket.org/rawlings-group/octave-mpctools
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(a) When clipping is not used (top), the EKF
predicts unphysical negative concentrations.
When clipping is used (bottom), ĉB is ini-
tially very large while both ĉA and ĉAE are
zero. At time 180, the estimates abruptly
converge to the true states.
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(b) When clipping is not used (top), the UKF
also predicts negative concentrations. When
clipping is used (bottom), the estimate ĉA
grows to over 250, several orders of magni-
tude above its true value, before the estima-
tor settles down by time 100 and converges.

Fig. 3: States (solid) and state estimates (dashed) for the EKF and UFK.
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Fig. 4: States (solid) and state estimates (dashed) for MHE. Although ĉA initially
follows cB and ĉB initially follows cA, MHE converges to the true states relatively
quickly (note the changed time axis scale).



116 Douglas A. Allan and James B. Rawlings

6 Conclusions

Here, we presented a version of the robust stability of MHE in the case of bounded
disturbances in [13] generalized by assumptions from [4]. It may seem that these
results settle the question of the stability and convergence of MHE for a fairly large
class of systems, but many questions still remain unanswered. Probably the largest
question for these results without max-terms in the objective function is whether
or not a longer horizon improves estimator performance. Inspection of the K and
K L function constructed in the proof of robust stability shows that these func-
tions increase with the estimation horizon N. Although it is necessary to have a
sufficiently long horizon for the estimator to work, it is not apparent from these
results whether lengthening the horizon always results in improved estimator per-
formance, or whether there is an optimal horizon length, after which estimator per-
formance deteriorates. For MPC, it is known that a longer horizon always improves
the controller’s nominal closed-loop performance, and the main trade-off is between
performance and computation time.

Addition of the max-term to the objective function does allow the K and K L
function bounds for robust stability to be independent of the horizon length, but it is
unclear whether a longer horizon impacts estimator convergence. Full-information
estimation with the max-term has not been proven to converge when the distur-
bances converge, so it may be that the longer the horizon length in MHE with a
max-term, the longer it takes for the state estimate to converge. For these reasons,
despite the fact that MHE has been proven to be robustly stable without reference to
the full-information problem, the full-information problem remains important. Un-
derstanding a problem with the longest horizon possible grants understanding of
MHE problems with long horizons.

Appendix

Proof (Proposition 1). Without loss of generality, assume that x0 = 0 and that
V (0) = 0. Because V (·) is Lipschitz continuous at the origin, there exists some δ > 0
and L > 0 such that if |x| ≤ δ we have that |V (x)| ≤ L |x|. Let (s(n)) be a strictly
increasing and unbounded sequence such that s(n) > δ for all n ∈ I≥0. Define a
sequence (M̃(n)) such that

M̃(n) := sup
x∈C

|V (x)| subject to |x| ≤ s(n)

for all n ∈ I≥0. We have that M̃(n) is finite for all n ∈ I≥0 because V (·) is locally
bounded. Define another sequence (M(n)) such that

M(n) := max(M̃(n),Lδ )
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Note that (M(n)) is a nondecreasing sequence. Now define a piecewise linear func-
tion

α̃(s) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ls if s ∈ [0,δ/2]

Lδ
2

+(M(0)−Lδ/2)
s−δ/2
δ/2

if s ∈ (δ/2,δ ]

M(0)+(M(1)−M(0))
s−δ

s(0)−δ if s ∈ (δ ,s(0)]

M(n)+(M(n+1)−M(n))
s− s(n−1)

s(n)− s(n−1)
if s ∈ (s(n−1),s(n)]

The function α̃(s) is continuous, nondecreasing, and α̃(0) = 0. Furthermore, be-
cause it is piecewise-linear, it is locally Lipschitz. Because α̃(s(n−1)) = M(n), we
also have that

|V (x)| ≤ M(n)≤ α̃(|x|) if |x| ∈ (s(n−1),s(n)]

We have a similar bound for |x| ∈ (δ ,s(0)]. Finally, from the Lipschitz bound, we
have that |V (x)| ≤ α̃(|x|) if |x| ≤ δ and thus for all x ∈ C . Finally, let α(s) :=
s+ α̃(s). We have that α(·) is strictly increasing, continuous, zero at the origin, and
asymptotically unbounded. Thus α(·) ∈K∞. Furthermore, α(·) is piecewise-linear
and thus locally Lipschitz, and is therefore the required bound.

Proof (Proposition 2). We prove this proposition by showing first that Statement 1
implies Statement 2, next that Statement 2 implies Statement 3, and then finally
that Statement 3 implies Statement 4. Because Statement 4 is a restatement of State-
ment 1 with a particular form of the L function, the proof is then complete.

Proof (Statement 1 Implies Statement 2 (adapted from [1], Lemma 6)). Fix η ∈
(0,1) and s > 0. We seek to find T such that σx(s)φ(T )≤ ηs for all s ≤ s. This con-
dition is equivalent to φ(T )≤ηs/σx(s) for all s ∈ (0,s] and φ(T )≤η lims↓0 s/σx(s).
Because σx(s) is Lipschitz continuous at zero, there exists some L > 0 and δ > 0
such that σx(s)≤ Ls for 0 ≤ s ≤ δ . Thus, we have that s/σx(s)≥ s/(sL) = 1/L > 0
for s ≤ δ . Furthermore, s/σx(s) > 0 and s/σx(s) is continuous for all s > 0. Thus
we have that infs≤s s/σx(s) := ζ > 0. Finally, we require T such that φ(T )≤ ηζ ≤
s/σx(s) for s ≤ s. Because both η ,ζ > 0 and φ(·) ∈L , there exists a T that fulfills
this condition. Finally, because σx(s) is Lipschitz at the origin, we have that β (s,0)
is Lipschitz at s = 0.

Remark 3. Because the only place where s/σx(s) might equal zero is at s = 0, this
proof also implies that if there exists a single s > 0, η ∈ (0,1), and T > 0 such that
σx(s)φ(T )≤ ηs for all s ∈ [0,s], then we can find such a T for every s > 0.

Proof (Statement 2 Implies Statement 3). For brevity, we define x1(k)− x2(k) :=
Δx(k), w1 − w2 := Δw, and y1 − y2 := Δy. Fix s > 0 and choose T such that
β (s,T )≤ ηs for all s ∈ [0,s]. First, we prove by induction in n that
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|Δx(k+nT )| ≤ ηn |Δx(0)|⊕ γw(‖Δw‖0:k+nT−1)⊕ γy(‖Δy‖0:k+nT−1) (4)

for all k ≥ 0 and n ≥ 1 if Δx(0)≤ s.
Base Case Suppose that Δx(0)≤ s. Then we have that

|Δx(k+T )| ≤ β (Δx(0),k+T )⊕ γw(‖Δw‖0:k+T−1)⊕ γy(‖Δy‖0:k+T−1)

≤ β (Δx(0),T )⊕ γw(‖Δw‖0:k+T−1)⊕ γy(‖Δy‖0:k+T−1)

≤ η |Δx(0)|⊕ γw(‖Δw‖0:k+T−1)⊕ γy(‖Δy‖0:k+T−1)

by the fact that β (·) is nonincreasing in its second argument and by Statement 2.
Inductive Case Suppose that (4) holds for some n ∈ I≥0. We have that

|Δx(k+nT )| ≤ ηn |Δx(0)|⊕ γw(‖Δw‖0:k+nT−1)⊕ γy(‖Δy‖0:k+nT−1)

for all k ≥ 0. Suppose further that

γw(‖Δw‖0:k+nT−1)⊕ γy(‖Δy‖0:k+nT−1)> s

We then apply the original i-IOSS bound to obtain

|Δx(k+(n+1)T )| ≤ β (|Δx(0)| ,k+(n+1)T )⊕ γw(‖Δw‖0:k+(n+1)T−1)

⊕ γy(‖Δy‖0:k+(n+1)T−1)

Furthermore, we have that

β (|Δx(0)| ,k+nT )≤ β (|Δx(0)| ,T )≤ η |Δx(0)| ≤ ηs < s

Thus we have that the K L function bound is unnecessary, and therefore we
have that

|Δx(k+(n+1)T )| ≤γw(‖Δw‖0:k+(n+1)T−1)⊕ γy(‖Δy‖0:k+(n+1)T−1)

≤ηn+1 |Δx(0)|⊕ γw(‖Δw‖0:k+(n+1)T−1)

⊕ γy(‖Δy‖0:k+(n+1)T−1)

trivially. Now suppose that

γw(‖Δw‖0:k+nT−1)⊕ γy(‖Δy‖0:k+nT−1)≤ s

Because we have that ηn |Δx(0)| ≤ s, we have that |Δx(k+nT )| ≤ s so we can apply
the i-IOSS bound from Δx(k+nT ) to obtain

|Δx(k+(n+1)T )| ≤β (|Δx(k+nT )| ,T )⊕ γw(‖Δw‖k+nT :k+(n+1)T−1)

⊕ γy(‖Δy‖k+nT :k+(n+1)T−1)

≤η |Δx(k+nT )|⊕ γw(‖Δw‖k+nT :k+(n+1)T−1)

⊕ γy(‖Δy‖k+nT :k+(n+1)T−1)
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≤ηn+1 |Δx(0)|⊕ηγw(‖Δw‖0:k+nT−1)

⊕ηγy(‖Δy‖0:k+nT−1)⊕ γw(‖Δw‖k+nT :k+(n+1)T−1)

⊕ γy(‖Δy‖k+nT :k+(n+1)T−1)

≤ηn+1 |Δx(0)|⊕ γw(‖Δw‖0:k+(n+1)T−1)

⊕ γy(‖Δy‖0:k+(n+1)T−1)

Thus we have that (4) for n implies (4) for n+1, completing the proof by induction.
Now we bound |Δx(k)| for k ∈ I0:T−1. We have that

|Δx(k)| ≤ β (|Δx(0)| ,k)⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

≤ β (|Δx(0)| ,0)⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

because β (·) is nonincreasing in its second argument. Because β (s,0) is Lipschitz at
s = 0, by Proposition 1 there exists some locally Lipschitz function ᾱ(·) ∈K∞ such
that β (s,0)≤ ᾱ(s) for all s ∈R≥0. Because ᾱ(·) is locally Lipschitz and β (s,0)≥ s,
there exists some K ≥ 1 such that for all s ∈ [0,s], we have that ᾱ(s)≤ Ks. Thus we
have that

|Δx(k)| ≤ K |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1) (5)

for all Δx(0) such that |Δx(0)| ≤ s. Because we have that (4) holds for n ≥ 1 and
k ≥ 0 and that (5) holds for n= 0 and k ≥ 0, we can combine these equations to write

|Δx(k+nT )| ≤ Kηn |Δx(0)|⊕ γw(‖Δw‖0:k+nT−1)⊕ γy(‖Δy‖0:k+nT−1)

for all Δx such that |Δx| ≤ s. We can then eliminate the index n using the floor
function �·� to obtain the bound

|Δx(k)| ≤ Kη�k/T� |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

Note that η�k/T� ≤ (1/η)ηk/T , so we have that

|Δx(k)| ≤ (K/η)ηk/T |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

Finally, let C := K/η and λ := η1/T . We have that

|Δx(k)| ≤Cλ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0) such that |Δx(0)| ≤ s.

Proof (Statement 3 Implies 4). We prove this statement in two steps. We first show
that although both λ and C in Statement 3 depend on s, the dependence of λ on
s can be removed by increasing C(s). We can remove this dependence because the
term dependent on the initial conditions decays to be less than some smaller s within
finite time. We then turn the function C(s)s into a K∞ function.

First, let (s(n)) be a strictly increasing and unbounded sequence such that s(n)>
0 for all n ∈ I1:∞. By Statement 3, there exists sequences (C(n)) and (λ (n)) such
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that C(n)≥ 1 and λ (n) ∈ (0,1) and that

|Δx(k)| ≤C(n)λ (n)k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0) such that |Δx(0)| ≤ s(n) for all n ∈ I1:∞. Without loss of generality,
assume that (C(n)) and that (λ (n)) are nondecreasing. Let λ := λ (1). We prove by
induction that there exists a sequence (C̃(n)) such that

|Δx(k)| ≤ C̃(n)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0) such that |Δx(0)| ≤ s(n) and all n ∈ I1:∞. The base case is given by
Statement 3 for s(1).

Inductive Case Suppose for some n we have that

|Δx(k)| ≤ C̃(n)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0) such that |Δx(0)| ≤ s(n). We also have that

|Δx(k)| ≤C(n+1)λ (n+1)k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0) such that |Δx(0)| ≤ s(n+1). Let

N :=

⌈
logλ (n+1)

(
s(n)

s(n+1)C(n+1)

)⌉

in which �· is the ceiling function. For all Δx(0) such that |Δx(0)| ≤ s(n +
1), we have that C(n + 1)λN |Δx(0)| ≤ s(n). Suppose that γw(‖Δw‖0:k−1) ⊕
γy(‖Δy‖0:k−1) < C(n + 1)λN |Δx(0)|. Then we have that |Δx(k)| ≤ C(n +
1)λN |Δx(0)| alone, and thus we can apply the bound for all Δx(0) ≤ s(n) to
obtain for all k ≥ N that

|Δx(k)| ≤C̃(n)λ k−N |Δx(N)|⊕ γw(‖Δw‖N:k−1)⊕ γy(‖Δy‖N:k−1)

≤C̃(n)λ k−NC(n+1)λ (n+1)N |Δx(0)|⊕ γw(‖Δw‖0:k−1)

⊕ γy(‖Δy‖0:k−1)

=
C̃(n)C(n+1)λ (n+1)N

λN λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)

⊕ γy(‖Δy‖0:k−1)

Define

C̃(n+1) := C̃(n)C(n+1)

(
λ (n+1)
λ

)N

and we have the required bound. Now suppose that γw(‖Δw‖0:k−1)⊕γy(‖Δy‖0:k−1)≥
C(n+1)λN |Δx(0)|. Then, because the K L function is nonincreasing, we have that

|Δx(k)| ≤ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)
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≤ C̃(n+1)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

which is the required bound. Both of these bounds apply for k ≥ N. For k < N,
note that

C(n+1)λ (n+1)k =
C(n+1)λ (n+1)k

λ k λ k

≤ C(n+1)λ (n+1)N

λN λ k

≤ C̃(n+1)λ k

because λ ≤ λ (n+1). Therefore we also have that

|Δx(k)| ≤ C̃(n+1)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for k < N and thus for all k ∈ I≥0. Thus the statement is proven for n+ 1, and the
first part of the proof is complete.

Next, define

α̃(s) :=

{
C(1)s if s ∈ [0,s(1)]

C(n)s if s ∈ (s(n−1),s(n)] for n ≥ 2

Note that this function is Lipschitz continuous at the origin and locally bounded.
Furthermore, note that by construction we have that

|Δx(k)| ≤ α̃(|Δx(0)|)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0). By Proposition 1, there exists a locally Lipschitz function α(·) ∈K∞
such that α̃(s)≤ α(s) for all s ∈ R≥0. Thus we have that

|Δx(k)| ≤ α(|Δx(0)|)λ k |Δx(0)|⊕ γw(‖Δw‖0:k−1)⊕ γy(‖Δy‖0:k−1)

for all Δx(0), and so the result is established.

Proof (Proposition 3). By Assumptions 2 and 3, the MHE problem has a solution
(x̂(0), d̂). Denote the estimated state at time k within the MHE problem as x̂(k). By
Assumption 3, we have that

ργ
p
(
∣∣êp

∣∣)⊕ γ
s
(‖d̂‖0:N−1)≤ ργ p

(
∣∣êp

∣∣)+ γ
s
(‖d̂‖0:N−1)≤VN(x̂(0), d̂,x)

in which êp := x− x̂(0). Furthermore, by optimality, we have that

VN(x̂(0), d̂,x)≤VN(x(0),d,x)

≤ ργ p(
∣∣ep

∣∣)+Nγs(‖d‖0:N−1)

≤ 2ργ p(
∣∣ep

∣∣)⊕2Nγs(‖d‖0:N−1)
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Combining these bounds and rearranging, we obtain the following bounds
∣∣êp

∣∣≤ γ−1
p
(2γ p(

∣∣ep
∣∣)⊕ (2N/ρ)γs(‖d‖0:N−1)) (6)

= γ−1
p
(2γ p(

∣∣ep
∣∣))⊕ γ−1

p
((2N/ρ)γs(‖d‖0:N−1))

‖d̂‖ ≤ γ−1
s
(2ργ p(

∣∣ep
∣∣)⊕2Nγs(‖d‖0:N−1)) (7)

= γ−1
s
(2ργ p(

∣∣ep
∣∣))⊕ γ−1

s
(2Nγs(‖d‖0:N−1))

From the system’s i-IOSS bound, we have that

|e(k)| ≤ β (|e(0)| ,k)⊕ γd(‖d− d̂‖0:N−1)

= β (|x̂(0)− x+ x− x(0)| ,k)⊕ γd(‖d− d̂‖0:N−1)

≤ β (
∣∣ep

∣∣+ ∣∣êp
∣∣ ,k)⊕ γd(‖d‖0:N−1 +‖d̂‖0:N−1)

≤ β (2
∣∣ep

∣∣⊕2
∣∣êp

∣∣ ,k)⊕ γd(2‖d‖0:N−1 ⊕2‖d̂‖0:N−1)

We next substitute (6) and (7) into this expression.

|e(k)| ≤β (2
∣∣ep

∣∣⊕2γ−1
p
(2γ p(

∣∣ep
∣∣))⊕2γ−1

p
((2N/ρ)γs(‖d‖0:N−1)),k)

⊕ γd(2‖d‖0:N−1 ⊕2γ−1
s
(2ργ p(

∣∣ep
∣∣))⊕2γ−1

s
(2Nγs(‖d‖0:N−1)))

=β (2
∣∣ep

∣∣ ,k)⊕β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),k)⊕ γd(2γ−1

s
(2ργ p(

∣∣ep
∣∣)))

⊕β (2γ−1
p
((2N/ρ)γs(‖d‖0:N−1)),k)⊕ γd(2‖d‖0:N−1)

⊕ γd(γ−1
s
(2Nγs(‖d‖0:N−1)))

Note that because γ
p
(s)≤ γ p(s)≤ 2γ p(s), we have that s ≤ γ−1

p
(2γ p(s)). A similar

argument follows for γ
s
(·) and γs(·). Thus we have that the term β (2

∣∣ep
∣∣ ,k) ≤

β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),k) and the term γd(2‖d‖0:N−1)≤ γd(γ−1

s
(2Nγs(‖d‖0:N−1))), so

we can eliminate them from the maximization. Thus we have

|e(k)| ≤β (2γ−1
p
(2γ p(

∣∣ep
∣∣)),k)⊕ γd(2γ−1

s
(2ργ p(

∣∣ep
∣∣)))

⊕β (2γ−1
p
((2N/ρ)γs(‖d‖0:N−1)),k)⊕ γd(γ−1

s
(2Nγs(‖d‖0:N−1)))

for all k ≥ 0, which is the desired result.
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Probing and Duality in Stochastic Model
Predictive Control

Martin A. Sehr and Robert R. Bitmead

1 Introduction

In a general nonlinear setting, stochastic optimal control involves the propagation
of the conditional probability density of the state given the input signal and output
measurements. This density is known as the information state in control circles and
as the belief state in artificial intelligence and robotics squares. The choice of con-
trol signal affects the information state so that state observability becomes control-
dependent. Thus, the feedback control law needs to include aspects of probing in
addition to, or more accurately in competition with, its function in regulation. This
is called duality of the control. In the linear case, this connection is not problem-
atic since the control signal simply translates or recenters the conditional density
without other effect. But for nonlinear systems, this complication renders all but the
simplest optimal control problems computationally intractable.

The usual recourse for receding horizon stochastic optimal control or stochas-
tic MPC (SMPC) is to drop optimality and to use a more simply computed or ap-
proximated statistic from the conditional density, such as the conditional mean, and
to move on from there. There have been a number of approaches, mostly hinging
on replacement of the measured true state by a state estimate, which is computed
via Kalman filtering [30, 39], moving-horizon estimator [36], tube-based minimax
estimators [26], etc. These designs, often for linear systems, separate the estima-
tor design from the control design. The control problem may be altered to accom-
modate the state estimation error by methods such as: constraint tightening [39],
chance/probabilistic constraints [28], and so forth. We do not seek to provide a com-
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prehensive survey of the myriad alternative approaches proposed for SMPC. For
that, we recommend the numerous available references such as [13, 19, 25, 27].

In this chapter, we develop the connections and consequences of duality in SMPC.
Our approach will begin with the analysis of stochastic observability and include
three practical examples – from TCP/IP computer communications, from parame-
ter estimation, and from cellular mobile communications – where duality plays an
indispensable part of the control solution. That is, where control resources are dedi-
cated to the diminution of plant state uncertainty. The aim is to draw attention to the
presence of probing in these engineered solutions and to highlight the importance
of duality in optimal stochastic control.

2 Stochastic Optimal Control and Duality

2.1 The State, the Information State, and the Bayesian Filter

Our formulation commences with the general nonlinear Markovian stochastic sys-
tem

xt+1 = f (xt ,ut ,wt), x0, (1)

yt = h(xt ,vt). (2)

Here: xt is the system state, ut is the control input signal, yt is the output measure-
ment signal, wt is the white process noise, vt is the white measurement noise, and
functions f (·, ·, ·) and h(·, ·) are presumed sufficiently well-behaved so that densi-
ties, joint, marginal and conditional, exist. Denote the signal measurements up to
time t by

Zt = {y0,u0, . . . ,ut−1,yt}, Z0 = {y0}. (3)

Then the information state is defined to be the conditional probability density func-
tion (pdf)

ξt = pdf(xt |Zt). (4)

The Markovian nature of (1–2) yields [20, 34] the immediate property that the infor-
mation state is propagated by the Bayesian filter:

ξt =
pdf(yt |xt)ξt|t−1∫

pdf(yt |xt)ξt|t−1 dxt
, ξ0|−1 = pdf(x0), (5)

ξt+1|t
"
=

∫
pdf(xt+1|xt)ξt dxt . (6)

The Bayesian filter consists of two familiar pieces:
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(i) Measurement update (5) relies on: the measurement function h(·, ·) of (2), the
density of vt , and ξt|t−1. The denominator term serves to recover a normalized
density.

(ii) Time update (6) propagates using: f (·, ·, ·), the control signal ut , the densities
of wt , and ξt .

In the linear gaussian case, these comprise the Kalman filter equations. For modest
state dimensions, the Bayesian filter can be computed either from density points
over a grid in state-space or by using the Particle filter [7, 34].

2.2 Stochastic Optimal Control and the Information State

In stochastic optimal control, the state-space system (1–2) is accompanied by an
objective function,

JN(ξ0,UN−1)
"
= E

[
N−1

∑
j=0

c(x j,u j)+ cN(xN)

]
, (7)

to be minimized over feedback signals UN−1 = {u0, . . . ,uN−1} causally computed
from the measurements and previous controls. The Markovian property of the state
equation further implies that the optimal control is a function solely of the informa-
tion state [20],

uoptimal
j = π j(ξ j). (8)

Here the sequence of functionals, {π j(·)}, is the sequence of optimal feedback poli-
cies. The optimal policies are found by solving the Stochastic Dynamic Program-
ming Equation (SDPE),

Vt(ξt) = inf
πt (·)

E [c(xt ,πt(ξt))+Vt+1(ξt+1)] , (9)

commencing from the terminal value

VN(ξn)
"
= E[cN(ξN)].

The expectations, E, in these expressions are over the corresponding ξ j densities
and the future w j and v j+1 densities.

An important and inherent feature of optimal control is that the computed value
functions, Vt(ξt) and particularly V0(ξ0), inform us of the optimal controlled perfor-
mance. Once approximations are introduced and optimality foregone, then the rela-
tionship between computed values and optimal values is compromised, although it
is possible in some cases to relate achieved and computed values to optimal using
monotonicity ideas [3].
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2.3 Duality and the Source of Intractability

We note from time update (6) that the future information states depend explicitly on
the control signals. This is captured in the SDPE calculation at time t through the
appearance of ξt+1 in the second term in (9). Further, since the SDPE is solved back-
wards in time from ξN , each calculation needs to propagate the dependence of this
terminal information state on the intervening controls. In practice and if possible,
the SDPE is solved backwards in time to yield, successively, value function VN(·),
then optimal feedback policy πN−1(·), then value function VN−1, optimal feedback
policy πN−2(·), etc. While, as in the deterministic case, the (famously cursed) dimen-
sionality of the solution explodes with horizon N, the necessity of carrying forward
the computation of the future information states adds a crippling burden, even in the
simplest of optimal control problems.

An example in [15], and briefly reprised in Section 5.2 below, studies approxi-
mately optimal transmission power control in cellular mobile wireless communica-
tions. Four power values are considered with a stationary additive white gaussian
noise channel, whose fade value may take one of four values. The known gaussian
noise densities are sampled at twenty points and a horizon of N = 5 is taken. This ap-
proximate calculation of optimal controls, occupying perhaps a millisecond in real
time, takes over thirty minutes on a high-performance desktop computer even at this
level of coarseness.

3 Stochastic MPC and Deterministic MPC

In our variant of stochastic MPC, a horizon-N optimal control problem (7) is solved
at time t from information state ξt . The solution of this horizon-N problem is,
from (8),

uMPC
t = π0(ξt). (10)

As with deterministic MPC, this control (10) is applied, measurements taken, then
the information state is updated to ξt+1, before the finite-horizon problem is re-
solved for uMPC

t+1 = π0(ξt+1). A bound on the infinite-horizon performance (with a
discount factor) is established in [29] for this control in receding horizon relative
to stochastic infinite-horizon-optimal control. Needless to say, this stochastic MPC
preserves the dual aspects of the optimal control policy π0(·) provided the horizon
exceeds one. It also inherits the general computational intractability, even for modest
horizons. Although some avenues to amelioration are explored in Section 6.

We highlight a central departure of stochastic optimal control from its determinis-
tic counterpart. The solution generated via the SDPE (9) and the Bayesian filter (5)–
(6) is either a sequence of optimal control policies {π j(·)}, j = 0, . . . ,N−1, from (8)
(at best) or the current value of the control signal ut = π0(ξt) (at least). Since the
Bayesian filter update depends explicitly on the measured output yt , it is not pos-
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sible to produce an a priori sequence of predicted information states, say {ξt+ j|t},
for states more than one step ahead. By the same token, one cannot construct a
sequence of future controls, say {ut+ j|t}, which might form part of a feasible but un-
used tail control sequence. In this fashion, stochastic optimal control and its reced-
ing horizon MPC variant deviate from the deterministic version. This complicates
the establishment of recursive feasibility and asymptotic stability following from
approaches such as those pioneered in [18]. Paraphrasing this paragraph, stochastic
optimal control is inherently closed-loop and open-loop optimal control does not
exhibit duality.

Linear quadratic Gaussian optimal control, and hence LQG-based MPC formu-
lations such as [4], obey the separation principle; the optimal controller combines
the optimal full-state feedback control with the state replaced by its least-squares
optimal estimate based on input–output measurements. That is,

uLQG
t =−KLQ

t x̂LS
t .

Building on this approach, certainty equivalent MPC uses a state estimate in place
of the actual state in the MPC solution. In linear quadratic problems, the conditional
mean state estimate appears in the optimal output feedback control. Further, the
quality (covariance) of this estimate is unaffected by the control value itself and so
duality and excitation are unnecessary and absent. Although the closed-loop perfor-
mance does depend on the covariance value.

Duality in stochastic optimal control is not an optional add-on but is inherent in
the optimal solution and, true to appearances, is antagonistic to regulation perfor-
mance, were the precise state known. One might be inclined to make an attempted
end-run around the cost of duality with stabilization to the origin and argue that,
since the controlled state should be small, there is no real need to probe it. But
this belies the nature of the problem. If we truly know that the state is close to
zero, then the information state will reflect this and the optimal control will adjust
the excitation accordingly, i.e. not by much. However, if the quality of knowledge
that the state is actually zero is poor, then excitation is needed to, sequentially and
optimally, refine the state density and then apply the appropriate regulation action,
which might indeed be close to zero. Of course, if one does not really care about the
state provided that it is close to zero, one should alter the optimization criterion, not
the solution.

4 Stochastic Reconstructibility and Its Dependence on Control

The role of probing and duality in stochastic optimal control lies in the dependence
of the quality of the current state estimate on the choice of control signal. In linear
systems, the archetypal such quality measure is the state estimate covariance and
linearity dictates that there is no effect of the control on this covariance. Indeed, for
linear systems the control signal’s effect on the output is simply exactly computed
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and serves solely to translate the density of the output signal. By contrast for non-
linear systems, there can be a strong dependence of estimate quality on the control
signal. Further, there is no single measure of estimate quality such as conditional
covariance, which might be easily attached to the information state arising from a
control policy. Here we present two notions of estimate quality which will then be
analyzed with regard to stochastic MPC.

4.1 Linear Regression and the Cramér-Rao Lower Bound

Consider the estimation of the fixed parameter vector θt ∈ R
k

θt+1 = θt , (11)

in the linear regression model with Gaussian noise,

yt = φT
t θt + vt , t = 0,1, . . . ,M −1. (12)

Here the k-vector regressor sequence {φt} is known and Gaussian noise {vt} ∼
N (0,σ2I) with σ2 known. Rewrite this as M rows

Y =ΦTθ +V.

Then we have the following characterization of identifiability, i.e. the uniqueness of
the Maximum Likelihood estimate, and its corresponding goodness of fit.

Theorem 1 ([16]). The Maximum Likelihood estimate,θ̂M, of θ is

θ̂M = (ΦΦT )−1ΦY =

(
M−1

∑
t=0
φtφT

t

)−1 M−1

∑
t=0
φt yt ,

and this achieves the Cramér-Rao lower bound on covariance

E
[
(θ − θ̂M)(θ − θ̂M)T ]= σ2F−1,

where

F =
M−1

∑
t=0
φtφT

t , (13)

is the Fisher Information Matrix associated with this linear regression.

Regarding (11)–(12) as the state and measurement equations, this is a state esti-
mation problem for constant state θ . One interprets the invertibility and conditioning
of the Fisher Information Matrix, F , of the regressor sequence, {φt}, as central to
the estimation quality via the Cramér-Rao bound. This is familiar from system iden-
tification [11] in terms of experiment design for parameter estimation, which is the
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context in which Fisher and others proposed these measures. Anderson and Johnson
[2] extend these ideas from identification to adaptive control and illustrate that per-
sistence of excitation of the input signal carries over to excitation of the regressor
vector sequence subject to controllability conditions. This idea is taken further in
the behavioral setting of linear systems by Willems et al. [38].

Theorem 2 ([38]). Consider a system of McMillan degree n with input signal ut ∈
R

m and output signal, yt ∈ R
p, for times t = 0,1, . . . ,M − 1. Define the order-k

regression vector

φ k
t =

[
uT

t−1 uT
t−1 . . . uT

t−k yT
t−1 . . . yT

t−k

]T
,

and corresponding order-� input-only regression vector

U �
t =

[
uT

t−1 uT
t−2 . . . uT

t−�

]T
.

Provided the parameter vector satisfies dim(θ) = 2k ≤ 2n and the number of data
samples M ≥ 4k−1,

ρ1I2k >
M

∑
j=2k

U 2k
j U 2kT

j > ρ2I2k > 0 ⇒ ρ3I2k >
M

∑
�=k

φ k
� φ

kT

� > ρ4I2k > 0. (14)

That is, Theorem 1 establishes the dependence of the parameter (state) estimate’s
variance on the input/output signal properties in regression problems via the Fisher
Information Matrix F . Theorem 2 shows that these excitation requirements can
be transferred to the input/control signal alone. Further analysis is provided in [12,
14]. The province of [2] is adaptive control, where the parameters are continuously
estimated – so the parameters’ evolution is described by (11) driven by additive
white noise (as in (20) below) – and rely on control excitation per (14) uniformly
over time t. This is a nonlinear problem, since the regressor and the parameter vector,
each of which is a part of the system state, are multiplied in (12). In the context of
stochastic MPC with unknown and varying parameter θt , Genceli and Nikolau [10]
and Marafioti et al. [24] present approaches to maintaining the excitation of the state-
based regressor vectors in an MPC problem using constraints on the control signal
similar to (14). This solution is imposed exogenously and is not part of the dual
solution. The resultant persistently exciting MPC is a state-feedback with memory
[24]. This is discussed in Section 5.3 shortly.

4.2 Conditional Entropy Measure of Reconstructibility

Reconstructibility is concerned with the capability to calculate precisely the current
state value xt from the current data Zt defined in (3). Naturally, such precision is not
feasible for a stochastic system such as (1). In [23], an alternative notion of stochas-
tic reconstructibility is developed based on comparison between conditioning on the
full input–output data, Zt , and conditioning solely on the input data
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Ut = {u0, . . . ,ut−1}, U−1 = /0. (15)

Such an input-only state estimate might be generated by simulation of the system
dynamics (1). Reconstructibility is linked to the state estimate quality improvement
of ξt = pdf(xt |Zt) versus ϕt = pdf(xt |Ut), which in turn attempts to quantify the
benefit of including the output measurements with the input signals.

Effecting this comparison requires having a scalar measure of estimate quality.
The authors of [23] use conditional entropy. The entropy of a random q-vector θ
with P(θ) = pdf(θ) is defined [6] as

H(θ) =−
∫
Rq

lnP(θ)dP(θ).

Equations (1)–(2) may be used to propagate the joint, marginal and conditional den-
sities: P(xt), P(Zt), P(Ut), P(xt ,Zt), P(xt ,Ut). From here, we define the conditional
entropies

H(xt |Zt) = H(xt ,Z
t)−H(Zt), (16)

H(xt |Ut) = H(xt ,U
t)−H(Ut). (17)

Definition 1 ([23]). Stochastic system (1–2) with initial state density ξ0|−1 is recon-
structible if for any scalar measurable function g(·) :Rn →R, either H(g(xt)|Ut)= 0
or H(g(xt)|Zt)< H(g(xt)|Ut).

Zero entropy events are deterministic. The separate consideration of zero entropy
events is due to the inability to reduce further their entropy.

The difference in conditional entropies in Definition 1 serves as a measure of
reconstructibility. For Gaussian systems, we have the following result for entropy.

Lemma 1 ([6]). For Gaussian random n-vector x ∼N (x̄,Σ),

H(x) =
1
2

ln((2πe)n det(ΣΣΣ)) .

When applied to linear systems driven by Gaussian noise, we arrive at the connec-
tion below, which result builds on the Kalman filter as the propagator of the (Gaus-
sian) conditional state density.

Lemma 2 ([23]). The linear system driven by Gaussian noises wt , vt possessing full-
rank covariances and input ut ,

xt+1 = Fxt +Gut +wt ,

yt = Hxt + vt ,

is reconstructible according to Definition 1 if and only if

KerFn ⊃ KerO,

where n is the dimension of xt and O is the observability matrix of the pair [F,H].
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Evidently, the kernel test in Lemma 2 is the standard reconstructibility test for linear
systems. Further, it depends in no way on the properties of the input sequence {ut},
which is in contrast to the general nonlinear case.

In Section 5.1 below, we use this conditional entropy measure of reconstructibil-
ity to quantify the state estimation improvement achieved by specific control laws.

5 Three Examples of Dualized Stochastic Control

With these concepts of state reconstructibility, we now move on to consider three ex-
amples of “dualized” stochastic control. That is, artificially imposed control signal
excitation injected to improve on-line state estimation even though at the expense
of regulation performance. As the truly optimal dual solution is computationally in-
tractable, these approaches are suboptimal and are included to provide examples of
viable solutions to stochastic optimal control problems. There are many practical
examples of such dualized control [1, 8, 9, 17] but at least the first two of the three
examples below are revealing in their being implemented realized engineered solu-
tions to stochastic control problems in which the state value must be estimated in
order to achieve any control performance and the process of ensuring an adequate
estimate runs counter to the regulation objective. That is, in Robotics parlance, a
compromise between exploration and exploitation is selected. While evidently sub-
optimal, since the optimal solution is intractable, each of these approaches focuses
on an achievable simplified compromise.

5.1 Internet Congestion Control in TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is the familiar end-to-end
network data communication standard. It operates with data packets sent into the
network by the source computer addressed to the destination computer. Since the
protocol is end-to-end, it does not rely on internal network signals from relay nodes
and, accordingly, must manage network congestion without this information. Upon
packet arrival at the destination, it responds to the source with a small acknowledge-
ment (ACK) data packet indicating successful arrival of that specific packet. This
latter packet is unacknowledged by the source.

Within the network, data packets are routed from node to node. Data arriving at
a node is placed into a buffer (memory) and then released to a downstream node
depending on the available link capacity. Congestion occurs when the capacity fails
to accommodate the arriving data and the buffer overflows. Depending on the node
logic, the arriving data can be dropped when the buffer overflows (Drop Tail oper-
ation) or randomly deleted when the buffer begins to approach overflow (Random
Early Detection operation). In each case, the packet dropping causes a failed com-
munication and, hence, absence of ACK, which indicates network congestion.
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Network congestion is managed at the source computer using the Additive In-
crease Multiplicative Decrease (AIMD) window management control rule. Upon
receipt of the ACK for a packet, the source increases the packet size by one and
then transmits again. As ACKs arrive, the packet length increases linearly with the
number of successfully transmitted packets. When an ACK fails to arrive, i.e. times
out or arrives out of sequence, then the source responds by halving the packet size
before retransmitting the presumed lost packet data. The packet send rate is illus-
trated in Figure 1 and exhibits the standard sawtooth pattern as the congested levels
of transmission are broached [22]. Since the downstream capacity at each node is
itself subject to stochastic packet arrivals, the capacity changes over time, which is
depicted by the sharp drops in data send rates with AIMD.

From a control perspective, the additive increase of AIMD is destined to cause
congestion and, thereby, to precipitate the halving of transmission rate with its atten-
dant effect on overall data rates. This is immanent dual behavior – in order to facili-
tate control performance by revealing the capacity upper bound to transmission rate,
it proves necessary to expose this rate and then suffer the control performance conse-
quences. Yet, unless the capacity is revealed, it is not possible to transmit efficiently.
In [23], the authors compute the mutual information

I(x;y) = H(x)−H(x|y),

for the initial downstream capacity limit given the received ACK sequence. They do
this for the AIMD window control law and again for a constant transmission rate
control law yielding

IAIMD(c0,{ACKk}) = H(c0)−H(c0|{ACKk}) = 0.96951,

Iconst(c0,{ACKk}) = 0.52143.

Evidently, AIMD significantly improves the reconstructibility of the bottleneck
node capacity.

We do not imply that the presence of duality in the control law is evidence of
optimality, only that this practical solution to capacity reconstructibility possesses
this feature. Indeed, AIMD is devised as a congestion control approach rather than
as a throughput maximizing technique. It is not immediately apparent what an opti-
mization objective might be for such a problem.

5.2 Equalization in Cellular Wireless

In cellular mobile communications, transmission power control is critical for bat-
tery life and for interference management. The mobile station (MS) and the serving
base station (BS) need to cooperate to manage transmission power in the face of
the time-varying channel between MS and BS. The radio channel at cellular fre-
quencies is well modeled by six-tap finite-impulse (FIR) response system to cap-
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Fig. 1: Packet send rate for AIMD window control in TCP/IP. Duality is present
through the enforced breaching of the capacity limits, {ct j : j = 1,2,3}, to make
this performance-related state reconstructible.

ture both the signal fading properties and the inter-symbol interference introduced
by reflections and path-length differences. Naturally, the two channels, MS-to-BS
and BS-to-MS, which occupy different frequencies, need to be equalized to remove
the inter-symbol interference and to maintain adequate signal-to-noise ratio at the
receiver and thereby ensure reliable digital communication. The interference sup-
pression objective tempers exceeding the reliable communication power.

To aid in fitting the FIR channel model, each transmitted packet contains a mid-
amble training signal, which is known to both the transmitter and receiver and there-
fore is information-free. Figure 2 from Steele [35] depicts the presence of this train-
ing signal and quantifies the cost to the overall system data rate.

The training signal is a tangible artifact of duality; its presence diminishes the
data rate yet its absence precludes power management and reliable communication
without undue interference. The engineered cellular system clearly strikes a balance
between these aspects without claims of optimality but demonstrated adequacy and
robustness.

In the recent paper [15], Ha and Bitmead study a simplified variant of the cellular
channel equalization problem in which solely the fade is present and an optimal
power usage is sought. The transmission model is an additive white Gaussian noise
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Fig. 2: GSM cellular packet data structure illustrating the 26-bit mid-amble training
signal per 114 bits of message data (from [35]).

(AGWN) channel.

xt = f ut−1, x0 = f ,

yt = xt + vt , t = 1,2, . . . ,N.

Parameter f is the constant but unknown channel fade. Input signal,

ut = ptat ,

where at is a binary training signal symbol, known to MS and BS, and pt is the
square root of the transmission signal power known only to the transmitter. Channel
noise, vt , is zero-mean Gaussian white noise of known variance, σ2

w. Signal yt is
the measured signal at the receiver. How should one choose the power sequence,
{pt : t = 1, . . . ,N}, to minimize the summed squared deviation from the optimal
known f -value

p�
2
=
γ�σ2

w

f
, (18)

along the horizon1? This now is a single-parameter nonlinear stochastic optimal
control problem, which exhibits the beauty and horror of duality in its (approximate)
solution. The information state of (4) is the conditional pdf of the fade f ,

ξt = pdf( f |yt).

Since the fade is presumed static, the time-update (6) has ξt+1|t = ξt , while the zero-
mean, variance σ2

w Gaussian nature vt yields

pdf(yt |xt) =
1√

2ξσw
exp

(
− 1

2σ2
w
(yt − xt)

2
)
,

1 Here γ� is the target signal-to-noise ratio for a given bit-error rate [21].
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or,

pdf(yt | f̂t) =
1√

2ξσw
exp

(
− 1

2σ2
w

[
vt −ut−1( f − f̂t)

]2
)
.

=
1√

2ξσw
exp

(
− 1

2σ2
w

[
vt − pt−1at−1( f − f̂t)

]2
)
, (19)

where f is the true fade value. The role of the transmission power, p2
t−1, becomes ap-

parent in the measurement-update refinement of the density ξt via (5). Larger power
causes the argument of the exponential in (19) to amplify the difference between
the actual fade f and the argument of the conditional density, f̂t . That is, increased
transmission power rapidly sharpens the conditional density of the fade value with
each measurement yt . This is depicted in Figure 3 below showing the passage from
ξt−1 to ξt for differing transmission power values.

Recall that the transmission power control problem is posed and solved at the
transmitter and the selected power value is not communicated to the receiver, which
separately computes and communicates the received signal-to-noise ratio. The in-
formation state ξt is computed at the receiver but forms part of the power control
calculation at the transmitter via the SDPE (9). The overall aim is to achieve reliable
communication, indicated by signal-to-noise ratio reaching or exceeding γ� above,
while minimizing the total message energy. The duality appears because correct es-
timation of fade f is required for reliability and depends on high-energy training
with the objective of limiting the overall use of energy in the transmission. Here
the selection of transmission power is the control signal which is optimized at the
transmitter. The study in [15] sets up this nonlinear stochastic optimal control prob-
lem in a highly simplified situation of: four possible fade values, four corresponding
signal power options, horizon-five optimization, and twenty-point approximation of
Gaussian densities. The computational demand of this solution is prohibitive to its
application in practice.

For real cellular communications systems, the duality is perhaps even more
closely tied to the presence of the training signal itself. Clearly, were the channel
fade and FIR model known precisely, the corresponding transmission power and
equalizer would be clear. However, a significant fraction of available data-carrying
capacity is devolved to the transmission of the information-free training signal to
facilitate learning the channel model. In both the study of [15] and in the practi-
cal system, there is a crucial devotion of radio resources towards increasing the
reconstructibility of the channel model state. This commitment both diminishes and
enables reliable communication.

5.3 Experiment Design in Linear Regression for MPC

Section 4.1 introduced the idea of persistent input signal excitation and parameter
identifiability via (14). Augmenting the system description (12) in Theorem 2 by
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Fig. 3: A priori and a posteriori channel fade densities for differing transmission
powers indicating the improvement in fade resolution for increased transmission
energy.

the constant parameter state equation (11)

θt+1 = θt +wt , (20)

it is immediate to equate persistent input excitation with uniform θ -state recon-
structibility from the input–output data. Within the context of MPC, Marafioti
et al. [24] study the inclusion of a control input persistent excitation condition (14)
into the stationary constraint set associated with the determination of the receding-
horizon optimal control at time t.

In stochastic MPC, a horizon-N optimal control problem (7) is solved at time t
from information state ξt . Where the system state includes the parameter vector θt ,
ξt is the conditional joint state-parameter density. The solution of this horizon-N
problem is given by (10),

uMPC
t = π0(ξt),
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from (8). Since the raison d’être of MPC is the capacity for constraint handling, this
optimal control problem will typically be a constrained optimization. To this set of
constraints [24] adds an additional excitation constraint reflecting the left-hand side
of (14) for t ≥ M −1,

ρ1I2k >
M

∑
j=2k

U 2k
(t−M+1)+ jU

2kT

(t−M+1)+ j > ρ2I2k > 0, (21)

where 2k is the dimension of the parameter vector, U �
j is defined in Theorem 2

and M is now the excitation horizon. Where this additional constraint (21) is active,
the resultant horizon-N MPC controller must necessarily be of diminished (finite-
horizon N) computed performance V0(ξt) of (9) compared with the MPC controller
without the excitation constraint. Thus, duality embodied by the excitation require-
ment negatively impacts performance.

Distinctions between stochastic MPC and deterministic MPC were explored in
Section 3. Here we point to another intriguing feature of the persistent excitation re-
quirement imbued by the receding horizon and dovetailing with the formulation of
stochastic MPC discussed earlier. As with deterministic MPC, this stochastic MPC
control (10) is: applied; measurements taken; information state updated to ξt+1; be-
fore the finite-horizon problem is re-solved for uMPC

t+1 = π0(ξt+1). Along the MPC
solution horizon {t + j : j = 0, . . . ,N −1}, constraint (21) applies solely to the first
MPC control value uMPC

t and asserts a constraint in terms of past control values
{uMPC

t−M−2k+1, . . . ,u
MPC
t−1 }. It is pointless to apply an excitation condition along the fu-

ture control horizon past the first value, since: it is only this first value which is
computed in stochastic MPC; and, of the horizon-N solution, it is only this value
which is actually applied. This results in a feedback controller with memory be-
yond just ξt , because the excitation constraint insists on carrying past control values.
Formally, because of this requirement of the excitation constraint, one could aug-
ment the information state to include the precisely known prior control values and
preserve the identity of the controller as separated.

6 Tractable Compromise Dualized Stochastic MPC Algorithms

The three examples of dualized stochastic control discussed above are provided to
reinforce the requirement of control signal excitation in output feedback stochastic
optimal control. The corresponding formulation of stochastic MPC in Section 3 il-
lustrates the inheritance of computational intractability from stochastic optimal con-
trol in general for horizons beyond one. Recall that this intractability stems from the
requirement to propagate the information state within the solution of the Stochastic
Dynamic Programming Equation (9) to calculate the dual solution. If the excita-
tion is otherwise managed, such as is done in the preceding Section 5.3, then more
manageable formulations of MPC are possible at the expense of optimality. Indeed
chapter “Stochastic Model Predictive Control” of this book explores a range of such
approaches in stochastic MPC with an emphasis on linear systems, where duality
requirements are diminished, relaxed, or more simply met via excitation.
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We next explore in a preliminary fashion some tractable compromise MPC algo-
rithms yielding a range of duality properties ranging from non-dual through to fully
dual but approximate problems. The cost of moving away from the formal stochas-
tic optimal control methodology is a disconnect from the optimal infinite-horizon
performance. The following set of approaches is by no means complete, but serves
our purpose of discussing duality in stochastic MPC before handing off to the more
complete analysis of some of these algorithms in chapter “Stochastic Model Predic-
tive Control”. Most approaches considered in the literature fall into the following
category of non-dual approaches to nonlinear stochastic MPC. We do note that per-
formance estimates can always be computed for stochastic control solutions using
simulation. What evanesces with approximations is the relationship to the optimal
performance apart from providing a simulated upper bound to it.

6.1 Non-dual Approaches

6.1.1 Particle-Based Methods

One possible compromise algorithm inheriting the closed-loop structure of stochas-
tic MPC relies on approximation of the information state, the conditional state den-
sity, via a particle filter [7, 34]. This approximation, which may be interpreted as a
numerical implementation of the Bayesian filter, allows arbitrary degree of accuracy
in terms of representing the information states at the cost of increasing the degree
of computational complexity. The state conditional densities are propagated, not as
complete functions on R

nx as in the Bayesian filter, but as particles or samples from
this conditional density. Samples of the state together with samples of the noise
processes then can be iterated through the system dynamics to yield a sample of
new state values as members of the predicted conditional density. The measurement
update involves the resampling of this collection of samples using the Metropolis-
Hastings Algorithm. The net result is that, at each stage of the Bayesian estimator,
the state conditional density is described by a set of samples distributed according
to that density. As the number of samples increases, so too does the accuracy in
approximating the underlying densities. Needless to say, this procedure is amenable
for moderate state dimensions only.

This numerically sampled information state can be combined naturally with the
recent advances in Scenario MPC, described in chapter “Stochastic Model Predic-
tive Control” Section 3, where stochastic state-feedback MPC problems are approx-
imated by solving over a collection of sampled scenarios. In the output-feedback
case considered here, these scenarios can naturally be initialized with the particles
of the particle filter. Such approaches of combined particle propagation and scenario
optimization have been explored in [5, 31]. The particle filter accounts for past data
in its delivery of a set of samples distributed under the state conditional density,
while the Scenario method then propagates randomly selected particles equipped
with their own simulated realizations of the noise processes into the future.
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Using combinations of particle filtering and simulation tools such as scenario
methods allows tractable implementations of stochastic MPC on reasonable prob-
lem dimensions. However, while these approaches lead to computationally tractable
solutions, they lose duality as a result of circumventing solution of the Stochastic
Dynamic Programming Equation (9). Simulation of the process noise, as is per-
formed when using scenario methods, results in evaluation of the MPC cost in an
open-loop sense, without accounting for feedback through the measured output vari-
ables.

6.1.2 Certainty Equivalence Methods

The same non-dual, open-loop effects occur in certainty equivalent control, where
the information state conditional density is replaced by a single dimension-nx state
estimate. This results in a very significant reduction in complexity of the problem
and melds with linear quadratic Gaussian approaches to optimal output feedback
control, where the solution separates into the optimal, conditional mean, state esti-
mate coupled with the LQ-optimal linear state feedback gain. However, solving a
full-state-feedback version of the Stochastic Dynamic Programming Equation (9)
does not account for dependence of future information states on the control inputs
and thereby does not allow for optimal probing through the control law. However,
as mentioned previously in this chapter, both certainty equivalent control and the
combined particle/scenario approach used to approximate stochastic MPC can be
artificially augmented by imposing probing constraints in the optimization problem
(see also Section 5.3). The resulting control signals will be of a probing nature, albeit
not optimally so. This loss of optimality generally inhibits performance guarantees
with respect to infinite-horizon stochastically optimally controlled closed-loop per-
formance.

6.2 Dual Optimal POMDPs

An alternative approach to circumventing solution of the Stochastic Dynamic Pro-
gramming Equation (9) with loss of duality is casting the stochastic MPC prob-
lem on a class of systems which permit computationally tractable solution of the
stochastic control problem. One such class of systems is captured by Partially Ob-
servable Markov Decision Processes (POMDPs), which have been explored for use
in stochastic MPC in [32, 33, 37]. POMDPs are output feedback control problems
in which the system equation (1) preserves its Markov structure but operates over a
finite state space. Likewise, the output process yt of (2) also takes a finite set of possi-
ble values. That is, (1)–(2) describe a controlled Hidden Markov Model. The action
space of control values determines the associated transition matrix of the Markov
chain and it too is limited to be finite. The optimal control criterion function (7)
is modified accordingly. Computationally, the exploration of the stochastic optimal
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output feedback control problem now takes place over a finite space, which if di-
mensions are managed well can be computed preserving finite-horizon optimality,
and thereby duality, of the MPC solution.

There are two possible applications of this stochastic MPC on POMDPs. Firstly,
the system dynamics may be naturally captured by a POMDP model, as is the case
in a number of applications including decision problems in healthcare and robotics,
where the finite state, observation, and action spaces associated with POMDPs are
often natural to a given control problem. In this case, the resulting control inputs
exhibit optimal probing and infinite-horizon performance results akin to those avail-
able for stochastic MPC. Secondly, one may approximate nonlinear dynamic models
by POMDPs, resulting in a tradeoff between quality of the approximation and com-
putational demand in solving the resulting stochastic MPC problem. In this latter
case, optimal probing and infinite-horizon performance results hold with respect to
the approximate POMDP dynamics. Varying the degree of approximation, e.g. by
increasing the number of possible state values, enables approximation of the true
dual optimal stochastic MPC law by the POMDP dual control, although it is not
clear how the system approximation error extends to performance error bounds.

It is informative to mention the link between the particle-scenario approach and
POMDP-MPC. In the former technique, the stochastic elements are managed by
sampling, the propagation of samples, and the averaging of performance functions.
In the POMDP approach, one might contemplate the state Markov chain as describ-
ing a fixed gridding of the state-space underpinning the approximate evolution of a
continuous state. By extending this gridding into the control design, it is possible to
include duality. In all of these approximate approaches, our experience is that the
forward solution of the SDPE (9) – via gridding in POMDPs, sampling in scenar-
ios, or full solution as in [15] – proves to be the bottleneck process in the solution
compared with propagating the state conditional density or any of its approximants.

7 Conclusion

This chapter has broached the subject of duality in stochastic optimal control and,
as a result, its presence in formulations of stochastic MPC based on stochastic op-
timal control in nonlinear systems. Our aim has been to highlight two central as-
pects: the reliance of optimality on probing to manage future information states
along the horizon, and the attendant computational intractability. The benefit ac-
crued is infinite-horizon stochastic MPC performance quantitatively comparable
to truly stochastically optimal. We provide three examples of suboptimal control
in which the probing requirements are necessarily included into the formulation
of a workable engineering solution. We also briefly assess some approximations
which address tractability. In chapter “Stochastic Model Predictive Control”, fur-
ther detailed formulation and analysis of stochastic MPC is explored, primarily in
application to linear systems, where duality is frequently a non-issue or where ade-
quate probing can be enforced simply through methods such as those described in
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Section 5.3. These tractable approaches to stochastic MPC are very important and
illuminating, since they handle practical uncertainty and robustness questions well.
In a sense, the requirement to know densities and models so accurately as to be able
to solve the stochastic optimal control problems is itself a show-stopper and approx-
imate tractable methods are preferred. However, the practical examples of mobile
wireless power control and of TCP/IP congestion control provide a touchstone for
the importance of ensuring state reconstructibility through control and of the cost
to performance due to excitation, which in turn is the price necessarily exacted for
achieving any performance at all.
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Economic Model Predictive Control:
Some Design Tools and Analysis Techniques

David Angeli and Matthias A. Müller

1 Model-Based Control and Optimization

Designing a controller for a complex system is a process that entails multiple steps
and decisions. Normally performance requirements, combined with economical and
technological considerations, inform the selection of sensors and actuators. Even
when such selection has been completed, and the scope of available control author-
ity as well as information about the system’s state have been identified, defining a
detailed control strategy will normally entail a number of trade-offs and conflicting
objectives. Given limited resources, possible disturbances and incomplete informa-
tion, this is to be expected. In a realistic scenario, the task of settling such trade-offs
may be daunting, unless appropriate mathematical tools are developed.

One of the most compelling techniques for approaching this problem is through
model-based control. Rather than heuristically tuning knobs of a predefined control
architecture, model-based control attempts, as a preliminary step, the formalization
of a mathematical model underlying the evolution of all key variables involved in
the system’s dynamics. This may be done via first principles or, directly, by suitable
identification techniques based on Input-Output data alone, or a combination of the
two.
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e-mail: d.angeli@imperial.ac.uk

M. A. Müller
Institute for Systems Theory and Automatic Control, University of Stuttgart, 70550 Stuttgart,
Germany
e-mail: matthias.mueller@ist.uni-stuttgart.de

© Springer International Publishing AG, part of Springer Nature 2019
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A mathematical model allows one to translate the process of selecting and
tuning a specific controller into an optimization problem. This is done provided
performance requirements (often conflicting) can be quantified in terms of a single
cost functional whose minimization is supposed to resolve such trade-offs in the
best possible way. Designing cost functionals might itself be non-trivial as not all
performance specifications have a clear “economic” interpretation. However, one
can foresee a trial and error procedure in which cost functionals may be iteratively
adapted and upgraded if the final control design is found to be underperforming in
some respect. All other sorts of concerns, such as actuators and sensors limitations,
safety and operational constraints, the allowed dynamics of the considered plant,
maximal and minimal inflows and outflows, etc., are instead represented as con-
straints of the optimization problem. The field of Optimal Control has developed in
order to investigate mathematical tools for pursuing this type of approach. While
physical insight might be useful in some respects, the mathematics is such that even
an user with limited experience and understanding of the process to be controlled
can find the optimal solution. Model Predictive Control, [36], on the other hand, has
developed as an evolution of optimal control (introduced by practitioners) which
is meant to allow a treatment of problems normally out of the range of classical
optimal control applications, often due to the so-called “curse of dimensionality,”
[19]. Namely, every realistic problem, involving more than a few variables and
constraints, can hardly be treated by means of the analytical set of tools available
in optimal control. Model Predictive Control, in its simplest form, attempts to solve
on-line a finite-horizon optimal control problem for a single given initial configu-
ration, and deploys the optimal control action determined in this way according to
a rolling-horizon strategy, viz. only implementing the first part of the optimal input
sequence and reformulating, afterwards, a similar optimal control problem over a
shifted time window.

When the process to be controlled is meant to spend most of the time in steady-
state conditions, with all variables at equilibrium except for possible minor fluctu-
ations due to process or sensor disturbances, it is tempting to separate profitability
maximization (deciding at which point in state and input space it is best to operate
the plant) from dynamical considerations, involving how to actually steer the plant’s
state towards the desired region and how to possibly stabilize it at some desirable
equilibrium in the presence of disturbances that might lead it to drift away.

This hierarchical approach has, historically, developed in the control of chemi-
cal plants. Such systems, while often nonlinear and subject to hard constraints of
different nature, have relatively slow process dynamics, so that one could afford to
compute some solution to an optimal control problem within the inter-sample time
interval, even with relatively modest computational power.

According to this paradigm, [25], a higher level device, called the Real Time
Optimization (or RTO layer), is responsible for choosing set-points for all system’s
variables in order to maximize profit (in steady state) given the current operational
constraints, market conditions (prices of raw materials, energy and products) or
other factors which may affect profit. This is a static optimization problem in that
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the feasible set of considered input and states corresponds to equilibria which meet
all operational constraints. It is in general a non-convex and non-linear (and for both
reasons hard) optimization problem. Algorithms for its solutions might not have
guaranteed convergence within any reasonable amount of time but, on the other
hand, this is solved basically off-line, only when the operational constraints or,
more likely, the market conditions have changed. Architectures with an even larger
number of layers are often also envisioned, again as a result of tackling phenomena
occurring at different time-scales.

The RTO forwards the computed set-points to an Advanced Control Layer, where
an often linearized Model Predictive Control algorithm is responsible for solving
on-line an optimal Tracking problem, namely, in the case of constant set-points,
steering the systems’ state towards the best possible equilibrium as quickly as pos-
sible. Notice that, during transient operations, when the Advanced Control Layer
is acting and devising the appropriate control action, profitability concerns are no
longer affecting the selection of the control variable. Indeed, while the predictive
controller is still an optimization-based controller and operates on the basis of an
underlying cost functional, the latter is devised in order to induce tracking towards
the desired set-point, and need not bear any resemblance to the original profitability
function maximized by the RTO.

This approach, which is widely adopted, has some important advantages:

• Computational: the hardest nonconvex programs are only solved off-line or on
a much slower time-scale than Advanced Control Layer and do not involve
dynamics, thus drastically reducing their size and complexity;

• Robustness: stability and robustness guarantees are easier to be tackled on a
linearized model; moreover, nonlinear models, if not derived by first principles
are often affected by uncertainty and may only be reliable near equilibrium or
in small regions of state space so that envisioning a global optimization involv-
ing both the transient and the regime of operations may be unrealistic or even
dangerous;

On the other hand, the hierarchical separation might not be ideal in situations where

• market conditions change frequently and on a time-scale which is comparable
to the time-constants of the process dynamics;

• nonlinearity and non-convexity may result in complex optimal regimes of op-
erations, viz. achievable only by keeping the system on a trajectory which is
not an equilibrium state; in this respect, large profitability enhancements can
sometimes occur, for specific models and within certain parameter ranges.

When the quality of the model at hand is deemed appropriate within a region
much larger than the equilibrium manifold and if computational power is not a crit-
ical issue, it seems therefore appropriate to integrate these two layer into a single
one that is responsible to optimize the dynamics (and not only the “static behav-
ior”) of the system on the ground of an optimal control problem deployed within a
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rolling-horizon approach and explicitly taking into account a profitability measure
in its definition. This is the goal of Economic Model Predictive Control. While such
an approach has a certain intuitive and practical appeal, it is only in recent years
that a more systematic analysis of its implications regarding performance, stability
and robustness (to name a few) has been attempted. This chapter will provide the
reader a self-contained introduction to the main results in this relatively new area of
research. Pointers to the relevant literature will be provided when space constraints
do not allow an in depth discussion of the material presented.

2 Formulation of Economic Model Predictive Control

In its basic formulation Economic Model Predictive Control looks at deterministic
plants governed by finite-dimensional difference equations of the following type:

x(t +1) = f (x(t),u(t)) (1)

where x(t) ∈X⊂R
n is the state variable, and u(t) ∈U⊂R

m is the control variable.
For the sake of simplicity, X and U are assumed to be compact sets. The function
f : X×U→ X is continuous, and ideally known without uncertainty.

In addition we assume that state and control variables be, in the light of opera-
tional and safety considerations, constrained to a certain compact set Z ⊂ X×U.
We say that a solution x(t) and corresponding control input u(t) are feasible if the
following is fulfilled:

(x(t),u(t)) ∈ Z ∀ t ∈ N. (2)

The goal of the control design is to maximize profit or, equivalently, minimize
costs, both during transient and steady-state operation. The latter are quantified by
means of a scalar valued function � : X×U→ R, with �(x,u) representing the cost
incurred for operating the plant at state x, subject to input u, throughout a sampling
interval. In more general scenarios, of course, both f and � might be time-dependent
but, for the sake of simplicity, it is useful to consider situations in which costs and
dynamics do not change significantly over the considered time window.

As customary in traditional MPC and Optimal Control, the stage cost is inte-
grated over a (discrete) interval of length N, which is usually referred to as the
prediction horizon. The rationale for this choice is to have a sufficiently long time
window to assess (in a way which is not too short-sighted) the value of taking one
particular course of action over another. Mathematically, the integrated cost is de-
fined as below:

J�(x,u) =
N−1

∑
t=0

�(x(t),u(t))+ψ f (x(N)). (3)
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In the following we adopt the convention of denoting by bold fonts finite
sequences of indexed variables: for instance, x := [x(0),x(1), . . . ,x(N)], u =
[u(0),u(1), . . . ,u(N −1)] where the length of the sequence should be clear from the
context. Notice that a final weighting function ψ f (·) might or might not be present,
depending on the considered formulation of EMPC. Its usefulness is intuitively un-
derstood considering that it could mitigate the effect of taking short-sighted actions
by providing some bound to the best achievable cost incurred in operation over
an infinite or very long horizon. More on this later, when the so-called terminal
ingredients will be discussed in detail.

The main difference between tracking MPC and Economic MPC, at the defini-
tion level, is in the stage cost, �(x,u). Typically, this is taken to be a positive definite
quadratic form of state and input, in the former, while it may be an arbitrary con-
tinuous function in the latter case. For instance, �(x,u) = x′Qx+ u′Ru is a typical
choice in tracking MPC. If a different equilibrium state-input pair is of interest, say
(xs,us), then a suitable expression is normally:

�(x,u) = (x− xs)
′Q(x− xs)+(u−us)

′R(u−us). (4)

In other words, the stage-cost � is designed in order to penalize deviations from
an assigned set-point, rather than optimize the plant’s profits. While non-quadratic
and more general expressions could be used to such endeavor, the usual approach
to induce convergence of the closed-loop system’s trajectories towards the desired
set-point is to take �(x,u) positive definite with respect to the point (xs,us). In other
words:

0 = �(xs,us)< �(x,u) ∀(x,u) �= (xs,us). (5)

Inequality (5) need not hold for � in Economic MPC set-ups, even if (xs,us) is
chosen to be the best feasible equilibrium, viz.

�(xs,us) = min
(x,u) ∈ Z

x = f (x,u)

�(x,u). (6)

This fact is emphasized in Figure 1.
We are now ready to formally define an Economic Model Predictive Control

scheme. In particular, at each time t, and assuming exact knowledge of current state
x(t), the following optimization problem is solved:

minz,v J�(z,v)
subject to
(z(k),v(k)) ∈ Z k ∈ {0, . . . ,N −1}
z(k+1) = f (z(k),v(k)) k ∈ {0, . . . ,N −1}
z(N) ∈ X f

z(0) = x(t),

(7)

where X f is a compact set, whose properties will be later addressed when discussing
the role of terminal ingredients in Economic MPC. Let z�,v� denote any optimal
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Fig. 1: Stage cost �(x,u) for Tracking and Economic MPC

solution of problem (7) (this is non-unique in general), we define a state feedback
by choosing the current control input u(t) according to u(t) = v�(0).

At the following sampling time the v� vector previously computed is discarded
(though normally used as a warm start for the optimizer in a suitably shifted ver-
sion of itself), and the problem is solved again from the resulting value of initial
state x(t + 1). The iterative application of this procedure implicitly defines a state-
feedback law,

u(t) = k(t,x(t)) := v�(0). (8)

This is, in general, a time-varying, nonlinear, and possibly set-valued feedback.
Time dependence, in particular, may arise as a result of time-varying terminal
penalty functions or constraints, as well, of course, of time-varying costs and con-
straints which, for the sake of simplicity, we are not addressing.

Throughout this chapter, when we talk about the closed-loop system, we there-
fore understand the system evolving according to the following difference equation
(or more precisely in the case of multiple optimal solutions, difference inclusion):

x(t +1) ∈ f (x(t),k(t,x(t))). (9)

Given the current state x(t), the feasible set Ft is defined as follows:

Ft := {x(t) ∈ X : ∃(z,v) fulfilling constraints in (7) }. (10)

More sophisticated formulations of EMPC are possible to allow, for instance, av-
erage constraints (on infinite or finite windows) or take into account uncertainty in
predictions. We will mention such variants in a later section.
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3 Properties of Economic MPC

While solutions of the closed-loop system might not be uniquely defined, typically
they share the same guaranteed stability, feasibility and performance properties.
These are normally guaranteed through the adoption of suitable terminal ingredi-
ents. These are also commonly adopted in Tracking MPC and are usually terminal
constraints (equality or set-membership) and terminal penalty functions. They have
technical implications concerning several features of the closed-loop systems dy-
namics, such as recursive feasibility, average asymptotic performance, and stability.
We discuss them separately throughout the following section.

3.1 Recursive Feasibility

Recursive feasibility is the property that for any initial condition x(0)∈F0 solutions
of (9) fulfill for all t ∈ N x(t) ∈Ft . Indeed, due to the presence of hard constraints
in (7), feasible solutions may fail to exist. The property of recursive feasibility then
ensures that, provided the system’s state is updated according to its nominal dynam-
ics, feasibility is preserved at all times. This fact is normally shown by induction, by
directly proving the following implication:

x(t) ∈Ft ⇒ x(t +1) = f (x(t),k(t,x(t))) ∈Ft+1. (11)

There are several ways by which this can be guaranteed.

3.1.1 Terminal Equality Constraints

One way to ensure recursive feasibility is to constrain the final predicted state z(t)
to be equal to a predesigned feasible solution x�(t). In particular, by endowing prob-
lem (7) with the following constraint:

z(N) = x�(t). (12)

This can alternatively be formulated as z(N) ∈ X f where X f = {x�(t)}. Notice that
in such a case the penalty function ψ f does not play any role in defining the optimal
input sequence and may, without loss of generality, be taken as 0. A particularly
simple choice of x�(t) is when equilibrium solutions are considered. In particular
one may take x�(t) = xs, as defined in (6). This results in a time-invariant state-
feedback law. Alternatively, another relevant situation arises when x�(t) is periodic
with some period T . In particular, then, x�(t) = x�(t mod T ). The periodic solution
can potentially be selected optimally, by solving the minimization problem shown
below:
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minx,u∑T−1
t=0 �(x(t),u(t))

subject to

x(1) = f (x(0),u(0))
...
x(T −1) = f (x(T −2),u(T −2))
x(0) = f (x(T −1),u(T −1))

(x(t),u(t)) ∈ Z ∀t ∈ {0, . . . ,T −1}.

(13)

3.1.2 Terminal Set (or Terminal Inequality Constraint)

Another possibility is to enforce a terminal set-membership constraint

z(N) ∈ X f .

The closed set X f is chosen to be a control invariant set. In particular, then:

∀x ∈ X f , ∃u ∈ U : (x,u) ∈ Z and f (x,u) ∈ X f .

Sometimes it may be useful to have an explicit expression for the control action u
that keeps the state x in X f . We denote such a feedback policy by κ f (x). A special
case of control invariant set is, for example, the equilibrium manifold. This choice
corresponds to:

X f = {x ∈ X : ∃u : (x,u) ∈ Z and x = f (x,u)}. (14)

This was proposed in [24] in the context of tracking MPC and in [13] in the context
of economic MPC and is normally referred to as Generalized Terminal Equality
Constraint. The main advantage of such a generalized terminal equality constraint
is that a possibly (much) larger feasible set is obtained than when using a fixed
terminal equality constraint (or a region around some fixed equilibrium).

While, given the economic nature of the problem at hand, selection of X f should
seek to optimize the economic cost within X f in some sense (for instance, on aver-
age when operating a viable solution), standard techniques for designing control in-
variant sets can be adopted as in classical MPC. For instance, the paper [1] provides
simple linearization-based techniques for designing invariant ellipsoids (around pre-
selected equilibrium states) and associated penalty functions. Other design tech-
niques are of course possible, such as time-varying terminal sets, see [4]. Systematic
numerical approaches to the design and selection of X f in an economic and nonlin-
ear context are, however, yet to be developed.

The basic idea behind most recursive feasibility proofs is that the optimal solution
z�t , v�t computed at time t can be used to generate a feasible solution at time t +1. In
fact, in the absence of exogenous disturbances the following equality holds:

x(t +1) = f (x(t),k(t,x(t))) = f (z�(0),v�(0)) = z�(1)
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In particular, then the sequence [z�(1), . . .z�(N)], [v�(1), . . . ,v�(N − 1)] may serve
as the initial section of a solution feasible at time t + 1. The last control move and
terminal state can be obtained, in the case of terminal equality constraints simply by
considering the sequences:

z̃ = [z�(1), . . .z�(N),x�(t +1)], ṽ = [v�(1), . . . ,v�(N −1),u�(t)].

For the case of terminal set-membership constraints:

z̃= [z�(1), . . .z�(N), f (z�(N),κ f (z
�(N)))], ṽ= [v�(1), . . . ,v�(N−1),κ f (z

�(N))].

It is worth pointing out that the set of feasible initial conditions, F0, is, in general,
dependent on both the terminal set and the length of the prediction horizon. We
emphasize this dependence by denoting it F0(N,X f ). Having a larger feasible set
at time 0 is of course of great practical interest. This can be achieved by considering
the following monotonicity property:

N1 ≤ N2 and X
1
f ⊆ X

2
f ⇒F0(N1,X

1
f )⊆F0(N2,X

2
f ). (15)

3.2 Asymptotic Average Cost

One way to assess the validity of an economic controller is to verify the long-run
average cost incurred in closed-loop operation of the system. In particular, letting
x(t) be a solution of (9) and u(t) ∈ k(t,x(t)) the associated control input, we may
define the average asymptotic cost as:

J̄ := limsup
T→+∞

∑T−1
t=0 �(x(t),u(t))

T
. (16)

Many Economic MPC schemes come with a priori bounds on the possible values of
J̄ as a result of the chosen terminal ingredients.

3.2.1 Terminal Feasible Trajectory

Given a feasible trajectory x�(t), u�(t), that we adopt as a terminal constraint as in
equation (12), we may let:

J� := lim
T→+∞

∑T−1
t=0 �(x�(t),u�(t))

T
. (17)

Then, the following inequality holds:

J̄ ≤ J� (18)
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as shown in Lemma 1 of [4]. In other words, the asymptotic average cost in closed-
loop is never worse than the average cost of the feasible solution adopted as the
terminal constraint. Both equality or strict inequality are possible, in fact. The sim-
plest form of such bound is found when x�(t) is a constant (i.e. the best feasible
equilibrium) or periodic [3]. A general method to derive such bounds is based on
feasibility at time t+1 of the shifted sequences z̃ and ṽ. This property, as customary
in traditional MPC, allows one to derive a useful dissipation inequality fulfilled by
the cost-to-go function defined below

V�(x) := minz,v J(z,v)
subject to
(z(k),v(k)) ∈ Z k ∈ {0, . . . ,N −1}
z(k+1) = f (z(k),v(k)) k ∈ {0, . . . ,N −1}
z(N) ∈ X f

z(0) = x

(19)

along solutions of the closed-loop system. In particular, exploiting suboptimality of
the feasible shifted state and input sequences at time t +1, we see that

V�(x(t +1))≤ J�(z̃, ṽ) = J�(z�,v�)− �(x(t),k(t,x(t)))+ �(x�(t),u�(t))
= V�(x(t))− �(x(t),k(t,x(t)))+ �(x�(t),u�(t))

(20)

Adding the previous inequality over a finite time interval implies:

V�(x(T ))−V�(x(0)) =
T−1

∑
t+0

V�(x(t +1))−V�(x(t))

≤
T−1

∑
t=0

−�(x(t),k(t,x(t)))+ �(x�(t),u�(t)).

Dividing by T and taking liminfs letting T grow to infinity in both sides yields the
desired inequality.

3.2.2 Terminal Penalty Function

When adopting a more general form of terminal constraint, such as the control-
invariant set X f , a priori guaranteed bounds on the asymptotic closed loop average
cost may still be possible. To this end, however, the terminal penalty function ψ f (·)
needs to fulfill a suitable inequality. This generalizes the idea of a control Lyapunov
function, usually adopted for tracking MPC, to the context of Economic MPC. An
appropriate condition, in the case of X f being a control invariant neighborhood of
an equilibrium (xs,us) of interest, is the following:

ψ( f (x,κ f (x)))≤ ψ(x)− �(x,κ f (x))+ �(xs,us), (21)
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a condition first proposed in [1]. In this case, suboptimality of the feasible shifted
state and input sequences at time t +1 yields

V�(x(t +1))≤ J�(z̃, ṽ) = J�(z
�,v�)− �(x(t),k(t,x(t)))+ �(z�(N),κ f (z

�(N)))

+ψ f ( f (z�(N),κ f (z
�(N))))−ψ f (z

�(N))

= V�(x(t))− �(x(t),k(t,x(t)))+ �(z�(N),κ f (z
�(N)))

+ψ f ( f (z�(N),κ f (z
�(N))))−ψ f (z

�(N)). (22)

Thanks to (21), the previous inequality can be further simplified into:

V�(x(t +1))≤V�(x(t))− �(x(t),k(t,x(t)))+ �(xs,us). (23)

This is of the same form as (20) when the terminal feasible solution is constant.
Hence, the following a priori performance bound can be guaranteed:

J̄ ≤ �(xs,us). (24)

3.2.3 Adaptive Terminal Weight

When Generalized Terminal Equality constraints are used, the following terminal
weighting function is proposed:

ψ(x) := minu �(x,u),
subject to
(x,u) ∈ Z

x = f (x,u)

(25)

and ψ f (x) is then replaced by β (t)ψ(x), where β (t) is an adaptive coefficient, up-
graded in order to tune the relative weight of the cost associated to the final equi-
librium state. Under suitable upgrading rules for β , interesting asymptotic perfor-
mance bounds are derived in [28]. In particular, the rationale behind the proposed
update rules for the terminal weight is such that β is increased whenever the terminal
steady-state of the optimal predicted trajectory is far away from the best reachable
equilibrium (in N steps). To be more precise, define the best reachable steady-state
cost (in N steps) from a given initial condition x as

�min(x) := minz,v �(z,v),
subject to
(z,v) ∈ Z

z = f (z,v)
x ∈F0(N,{z})

A simple update rule can now be defined as

β (t +1) = β (t)+α(‖ψ(z�(N))− �min(x(t))‖). (26)
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This update rule ensures that β→∞ if the terminal predicted steady-state z�(N) does
not converge to the best reachable steady-state. This property (together with some
technical conditions) can then be used to show that for the resulting closed-loop sys-
tem, the terminal predicted steady-state cost ψ(z�(N)) can be upper bounded by the
cost of the best steady-state which is robustly reachable from the ω-limit set of the
closed loop [28]. Since as shown above in (18), the asymptotic average performance
can be upper bounded by J� as defined in (17), this result leads the conclusion that
also the closed-loop asymptotic average performance can be upper bounded by the
cost of the best steady-state which is robustly reachable from the ω-limit set of the
closed loop. Besides the simple update rule (26), also more elaborate update rules
have been proposed in [28], for which similar closed-loop performance statements
can be derived. For example, one can allow resets of β (to some constant c) in order
to avoid unnecessarily large terminal weights.

The above obtained closed-loop performance bounds for economic MPC with an
adaptive terminal weight are rather of conceptual nature and not necessarily verifi-
able a priori, since they depend on the resulting ω-limit set of the closed loop. Im-
proved bounds have been obtained in [29], for a setting where a generalized terminal
region constraint instead of a generalized terminal equality constraint was used. This
means that we use a terminal region around the whole equilibrium manifold instead
of a terminal region around some (fixed) steady-state. In this case, it can be shown
that if this generalized terminal region is designed properly, the terminal predicted
steady-state cost ψ(z�(N)) (and hence also the closed-loop average performance)
converges to a local minimum of the stage cost � on the set of feasible steady-states.
In case of linear systems with convex stage cost and constraints, convergence to the
globally optimal steady-state cost can be shown, recovering the above result (24)
when using a terminal equality constraint at the optimal equilibrium or a terminal
region around this equilibrium.

3.3 Stability of Economic MPC

An advantage of designing terminal ingredients for tracking MPC is that the stan-
dard argument for recursive feasibility also allows a Lyapunov-based analysis of the
controlled system’s behavior. In fact, the cost to go function V�(x) is seen to fulfill
a dissipation inequality along solutions of the closed-loop system and, under minor
technical assumptions, can be used as a candidate Lyapunov function to carry out
proofs of stability and convergence for the desired equilibrium state [22].

This is no longer the case for Economic Model Predictive Control. For instance,
inequality (23) does not guarantee monotonicity with respect to time of V�(x(t)),
because it is not necessarily true that �(xs,us) ≤ �(x(t),k(t,x(t))). In fact, the cost
at the terminal equilibrium is not necessarily a global minimum of the stage-cost
function, even if (xs,us) might be the feasible state-input equilibrium pair of lowest
cost.
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As a result, even when initialized at xs, the closed-loop system’s solution might
drift towards a different regime of operation: because of instability phenomena or
because xs is not an equilibrium in closed-loop. Bounds on asymptotic average cost,
such as (24), tell us that when this happens it is in order to yield a regime of oper-
ation that is at least as economically rewarding as the best equilibrium. In general,
however, stability of the underlying best equilibrium state xs cannot be expected.

While convexity-based arguments were employed at first for the case of linear
systems and convex cost functionals [37], only later Lyapunov-based insights were
gained into stability of Economic MPC [9]. The major breakthrough in [9] was to
introduce a rotated stage-cost function, defined as �(x,u) + λ̄T [x − f (x − u)]. Un-
der suitable terminal equality constraints, it is seen that the extra-term in the cost-
function does not affect the optimal solution of (7). A similar construction was later
proposed in [3]. In particular, for any function λ : X→ R, one may define the asso-
ciated rotated cost as:

L(x,u) = �(x,u)+λ (x)−λ ( f (x,u)). (27)

where the previous construction is thus a special case obtained for linear functions
λ (x) = λ̄T x. Notice that, along any solution:

N−1

∑
t=0

L(x(t),u(t)) =

(
N−1

∑
t=0

�(x(t),u(t))

)
+λ (x(0))−λ (x(N)). (28)

Hence, assuming, for instance, z(N) = x�(t) is the terminal constraint, one may rec-
ognize that the optimal solution of (7) is not affected by having either � or L as the
stage-cost. This is of interest, for stability analysis, because choosing λ appropri-
ately, the rotated stage cost might admit a global minimum at (xs,us), namely:

L(xs,us) = min
(x,u)∈Z

L(x,u), (29)

so that an Economic MPC scheme ends up being equivalent to a tracking MPC
scheme with rotated stage cost. In fact, in such a case,

L(xs,us)≤ L(x,u) ∀(x,u) ∈ Z. (30)

Rearranging the different terms and exploiting the equation xs = f (xs,us), the latter
inequality reads:

λ ( f (x,u))−λ (x)≤ �(x,u)− �(xs,us), (31)

and is therefore a dissipativity condition for system (1) with respect to the supply
rate s(x,u) = �(x,u)− �(xs,us). For technical reasons, this condition needs to be
slightly strengthened.
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Definition 1. (Strict Dissipativity) System (1) is strictly dissipative with respect to
the supply rate s(x,u) := �(x,u)− �(xs,us), if there exists a continuous function
λ : X→ R and a positive definite function ρ , such that:

λ ( f (x,u))−λ (x)≤ −ρ(|x− xs|)+ �(x,u)− �(xs,us) (32)

Notice that condition (32) implies that xs is (strictly) the best feasible equilibrium
and that the system is, in fact, suboptimally operated outside this equilibrium (in an
asymptotic average sense), [2].

As anticipated, dissipativity plays a crucial role in establishing stability of Eco-
nomic MPC. We sketch the basic argument below, for the case of a terminal equality
constraint, z(N) = xs. In fact, under strict dissipativity (32), we see that:

L(xs,us)+ρ(|x− xs|)≤ L(x,u), ∀(x,u) ∈ Z. (33)

Moreover, by virtue of (28), the optimal solution of

minz,v JL(z,v)
subject to
(z(k),v(k)) ∈ Z k ∈ {0, . . . ,N −1}
z(k+1) = f (z(k),v(k)) k ∈ {0, . . . ,N −1}
z(N) = xs

z(0) = x(t),

(34)

where a rotated stage cost L(x,u) is adopted, is the same as the one for (7). Letting
VL(x) define the minimum of problem (34) and exploiting (33), we see that

VL(x(t +1))≤VL(x(t))−L(x(t),k(t,x(t)))+L(xs,us)≤ −ρ(|x(t)− xs|). (35)

Since VL(x)−VL(xs) is seen to be a positive definite function, condition (35) implies,
by standard Lyapunov analysis, asymptotic stability of the equilibrium xs within the
feasibility region of problem (7).

When adopting a formulation with a terminal penalty function (rather than a
terminal equality constraint), one may realize that:

N−1

∑
t=0

L(x(t),u(t))+Ψf (x(N))=

(
N−1

∑
t=0

�(x(t),u(t))

)
+λ (x(0))+Ψf (x(N))−λ (x(N))

=

(
N−1

∑
t=0

�(x(t),u(t))

)
+ψ f (x(N))+λ (x(0)).

provided the rotated terminal cost is defined as:

Ψf (x) = ψ f (x)+λ (x). (36)
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The previous derivation shows that solution of (7) is not affected when L and Ψf

replace � and ψ f , respectively, in the definition of the cost-functional. Thus, stability
analysis can then be carried out under strict dissipativity, along the same lines as in
the case of terminal equality constraints (see [1]).

Remarkably, dissipativity conditions are seen to be not only sufficient, but also
necessary for optimal steady-state operation, in a suitable sense. Namely, as dis-
cussed above, under the dissipativity condition (31), the system is optimally oper-
ated at steady-state, and under the strict dissipativity condition (32) suboptimally op-
erated outside the optimal equilibrium. This means that each other feasible state and
input sequence pair yields a worse (strictly worse) asymptotic average performance
than the optimal steady-state cost �(xs,us). One can show that the converse state-
ment is also true under a certain controllability condition [33]. While the proof of
sufficiency of dissipativity for optimal steady-state operation follows rather straight-
forwardly from the dissipation inequality and the definition of the latter property, the
converse result is a bit more involved and can be shown by a contradiction argument.
Namely, assuming that the system is not dissipative and using the controllability con-
dition, one can construct a specific (periodic) state and input sequence which results
in a lower average cost than the best equilibrium cost, contradicting optimal steady-
state operation [33]. This converse result together with the above stability analysis
allows the following interpretation. If steady-state operation is optimal, the system
is dissipative with respect to the supply rate s(x,u) := �(x,u)− �(xs,us), which in
turn (in its strict form) can be used to conclude that the closed loop converges to the
optimal steady-state (xs,us). This means that the closed loop “does the right thing”,
i.e., “finds” the optimal operating behavior.

It is worth mentioning that dissipativity conditions can not only be used to estab-
lish optimality of steady-state solutions over other more complex regimes of opera-
tion, but also exploited in order to find the best asymptotic average performance of
the system. This may be defined as:

�� := infx(.),u(·) liminfT→+∞
∑T−1

t=0 �(x(t),u(t))
T

subject to
(x(t),u(t)) ∈ Z

x(t +1) = f (x(t),u(t))

(37)

and happens to be related to dissipativity by the following equality:

�� := sup{� ∈ R : ∃λ (·) continuous : λ ( f (x,u))≤ λ (x)+ �(x,u)− �, ∀(x,u) ∈ Z}.

This equality was first derived for continuous time systems in [16] and later adapted
to discrete-time systems in [21].

Finally, we remark that not only optimal steady-state operation can be charac-
terized via a suitable dissipativity condition, but also the more general case where
periodic operation is optimal [32, 40].
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3.4 EMPC Without Terminal Ingredients

In economic MPC schemes without terminal ingredients, the terminal constraint
z(N) ∈ X f in (7) is omitted and the terminal cost in (3) is chosen to be zero. Using
no terminal constraints may lead to algorithmic advantages (since the possibly re-
strictive terminal constraint is absent), and also the optimal steady-state, the optimal
periodic orbit or some feasible terminal trajectory x�(·), u�(·) (depending on how the
terminal region constraint is formulated, cf. Section 3.2) need not be known for im-
plementing the economic MPC scheme. On the other hand, guaranteeing recursive
feasibility is not as straightforward as in the case of suitably defined terminal in-
gredients, neither is the establishment of (a priori) closed-loop performance bounds
that typically requires knowledge of the optimal operating behavior.

The main insight which is employed in economic MPC schemes without ter-
minal constraints is the so-called turnpike property [11, 41]. This property means
that open-loop optimal trajectories z� resulting from application of the optimal solu-
tion v� to Problem (7) spend most of the time in a neighborhood N of the optimal
operating behavior (e.g., a neighborhood of the optimal steady-state xs if steady-
state operation is optimal, etc.). Importantly, the number of time instants where the
optimal trajectory is outside of this neighborhood depends on the size of N , but
is independent of the prediction horizon N. In [17], it was shown that the same
strict dissipativity condition as employed in Section 3.3, i.e., strict dissipativity with
respect to the supply rate s(x,u) = �(x,u)−�(xs,us), together with suitable controlla-
bility conditions is sufficient for the turnpike property at the optimal steady-state xs

(compare also [15] for a continuous-time version of this result). In fact, also con-
verse statements showing necessity of strict dissipativity for the turnpike behavior
have recently been obtained [18]. The turnpike property at xs can now be used to
conclude practical asymptotic stability of the optimal steady-state for the resulting
closed-loop system, using again VL as a (practical) Lyapunov function, i.e., the op-
timal value function of the MPC problem using the rotated stage cost L, see [20]
(compare also [14] for a continuous-time version of this result). In particular, it was
shown that the size of the neighborhood of the optimal steady-state xs into which the
closed loop converges depends on the prediction horizon N and decreases to zero
as N → ∞. Interestingly, a candidate input sequence ṽ for the next time instant t +1
is not necessarily constructed by appending some control value at the end (as is the
case when using terminal constraints, see Section 3.1), but at some point where the
optimal predicted trajectory is close to the optimal steady-state xs as guaranteed by
the turnpike property. A generalization of these results to the case where the opti-
mal operating behavior is some general periodic orbit (instead of a steady-state) has
been presented in [27].
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4 EMPC with Constraints on Average

While classical Model Predictive Control always affords solutions that converge, at
least nominally, towards the desired reference signal, Economic Model Predictive
Control is not always stabilizing and may result in closed-loop behaviors that do
not converge towards the best equilibrium or towards the underlying feasible solu-
tion adopted as a terminal ingredient. Under such circumstances it makes sense to
want to guarantee, for the closed-loop behavior, specific additional constraints to be
fulfilled on average, rather than pointwise in time. A typical example could be the
outflow of a plant, which rather than constraining to be always greater or equal than
a given flow rate, might be required to fulfill a similar inequality only in an average
sense. Relaxing constraints in this way, if deemed suitable from an operational point
of view, can in fact improve profitability margin of a plant simply because we are
carrying out an optimization over a larger set of feasible solutions. Most EMPC con-
trol schemes can be endowed with constraints on average quantities. In particular,
we may define the asymptotic average of a signal v as the following set:

Av[v] =

{
v̄ : ∃{Tn}+∞n=1 : lim

n→+∞
Tn =+∞ and v̄ = lim

n→+∞

∑Tn−1
k=0 v(k)

Tn

}
. (38)

For most signals v of interest, Av[v] is actually a singleton, corresponding to the
asymptotic average of the signal. However, in general, a signal might have more
than one asymptotic average when it keeps spending longer and longer time periods
close to several values. Economic MPC with constraints on average allows to define
an auxiliary output variable:

y(t) = h(x(t),u(t)) (39)

where h : X×U→R
p, and require that for the controlled system and given a convex

set Y the following holds:
Av[y] ∈ Y.

To this end, the following definitions and augmented set-up were proposed in [3]:

Yt+1 = Yt ⊕Y⊕{−h(x(t),u(t))}, (40)

where ⊕ denotes set-sum. In particular Y0 can be initialized as an arbitrary compact
convex set. The iteration leads to

Yt = tY⊕Y0 ⊕
{
−

t−1

∑
k=0

h(x(k),u(k))

}
.

Therefore the set Yt grows in size with linear speed Y/sampling time, in all allowed
directions, while being shifted around by a quantity equal to the “integral” of h.
Problem (7) can then be augmented as follows
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minz,v J�(z,v)
subject to
(z(k),v(k)) ∈ Z k ∈ {0, . . . ,N −1}
z(k+1) = f (z(k),v(k)) k ∈ {0, . . . ,N −1}
z(N) ∈ X f

z(0) = x(t),
∑N−1

k=0 h(z(k),v(k)) ∈ Yt .

(41)

Recursive feasibility, guaranteed satisfaction of all constraints in closed-loop and
performance bounds can be derived for this EMPC scheme along similar steps as
in the previous cases. When the set Y can be defined as a polyhedron, suitable
relaxed notions of dissipativity on averagely constraints solutions are also proposed
in [3]. These are used in [30] to derive asymptotic convergence results for Economic
MPC with constraints on average. Another possibility suggested in [30] is to use
suitably designed constraints on average in order to induce asymptotic convergence
towards equilibria that would otherwise be unstable. Average constraints on finite
time windows are also a possibility, and are proposed in [31].

5 Robust Economic Model Predictive Control

In real-world applications, the presence of disturbances and model uncertainties is
typically unavoidable. Hence it is of paramount interest to obtain closed-loop per-
formance and stability guarantees despite such disturbances. To this end, some of
the techniques developed in the context of robust stabilizing (tracking) MPC can be
helpful, in particular for addressing issues of robust feasibility, [23, 34, 35]. How-
ever, it turns out that just transferring, e.g., tube-based MPC approaches to an eco-
nomic MPC context without suitable adaptations can lead to a suboptimal closed-
loop performance. This observation can be illustrated by the following simple moti-
vating example.

0 2.55

0

x

C
os
t �̂

Fig. 2: Stage cost �̂ in the motivating example of Section 5.
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Consider the system x(t+1) = x(t)+u(t) with stage cost �(x,u) = �̂(x) as shown
in Figure 2. Clearly, the system is trivially optimally operated at the optimal steady-
state x = u= 0, since the cost function �̂ is positive definite (i.e., a tracking cost func-
tion). Now suppose that some additive disturbances are present, satisfying w(t)∈W

for all t ∈ N and some compact set W. If a standard tube-based MPC scheme such
as the one in [26] is employed, one can show that the closed-loop system converges
to a robust positively invariant (RPI) set Ω1 centered at origin, which is exemplar-
ily depicted in red in Figure 2. The size of this RPI set scales with the size of the
disturbance set W. Now if W is large enough, one can see that a better average per-
formance might be obtained if the economic MPC scheme is such that the closed
loop converges to an RPI set Ω2 centered, e.g., at x = 2.5, which is exemplarily
depicted in green in Figure 2. Namely, while �̂(2.5) > �̂(0) = 0, the average of �̂
over Ω2 is smaller than that of �̂ over Ω1.

Motivated by this fact, several different robust economic MPC schemes have
been proposed in the literature where some knowledge about the present distur-
bances is incorporated into the cost function employed within the repeatedly solved
optimization problem. Depending on the available knowledge of the disturbances,
different closed-loop performance guarantees can then be derived. To this end, sup-
pose that the real (disturbed) system is given by x(t + 1) = f (x(t),u(t),w(t)) with
w(t) ∈ W for all t ∈ N and some compact set W, and denote the corresponding
nominal system by ξ (t + 1) = f (ξ (t),ν(t),0). Furthermore, we assume that some
robust control invariant setΩ has been determined such that if the error between the
real and nominal state at time t is contained in Ω , the same is true at time t +1 inde-
pendent of the disturbance w(t) ∈W and the (nominal) input ν(t). This is typically
achieved by using some prestabilization or additional (error) feedback, i.e., using
u = φ(x,ξ ,ν) (in the linear case, e.g., φ(x,ξ ,ν) = K(x− ξ )+ν can be chosen, in
which case the computation ofΩ reduces to determining an RPI set). As in standard
(stabilizing) tube-based MPC, one can show that the real closed-loop system is con-
tained in the set Ω around the nominal system state. In order to account for this fact
within the repeatedly solved optimization problem, the following two cost functions
have been proposed:

�max(ξ ,ν) := max
ω∈Ω

�
(
ξ +ω,φ(ξ +ω,ξ ,ν)

)
(42)

�int(ξ ,ν) :=
∫
Ω
�
(
ξ +ω,φ(ξ +ω,ξ ,ν)

)
dω (43)

Here, �max is such that the worst case cost within the set Ω around the nominal state
and input is considered, while in �int the average over all values inΩ is taken. Using
these cost functions within a suitably defined tube-based MPC scheme based on the
one in [26], the following closed-loop average performance bounds can be derived
in a similar fashion as shown in Section 3.2 for the nominal case. For �int as defined
in (43), it was shown in [5] that

limsup
T→∞

1
T

T−1

∑
t=0

�int(ξ (t),ν(t))≤ �int(zs,vs),
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where ξ (·) and ν(·) are the resulting nominal state and input sequences and (zs,vs)
is the optimal steady-state minimizing �int. Since the real closed-loop state is con-
tained in the set Ω around the nominal closed-loop state, this can be interpreted
as an average performance result for the real closed-loop system, averaged over all
possible disturbances. For �max as defined in (42), one can directly obtain an average
performance bound for the real closed-loop system (independent of the realization
of the disturbance), as shown in [6]:

limsup
T→∞

1
T

T−1

∑
t=0

�(x(t),u(t))≤ �max(zs,vs).

Here, (zs,vs) is the optimal steady-state minimizing �max.
If additional information about the distribution of the disturbance is available,

improved performance bounds can be obtained. This was shown in [7] for linear sys-
tems subject to additive disturbances. Here, one can directly minimize the expected
value cost of predicted states and inputs, i.e., in (7) the following (prediction-time
dependent) cost function is used:

�int
k (z(k),v(k)) := E{�(x(t + k),u(t + k))|x(t)} .

Using a suitable tube-based MPC scheme based on [8], the following closed-loop
average performance bound has been obtained in [7]:

limsup
T→∞

1
T

T−1

∑
t=0

E{�(x(t),Kx(t)+u(t))|x(0)} ≤ �int
∞ (zs,vs). (44)

Here, �int
∞ is defined by taking the expected value of the cost � over the RPI set Ω ac-

cording to the steady-state error distribution, and (zs,vs) is the optimal steady-state
minimizing �int

∞ . The bound (44) then says that the expected closed-loop average
cost given the initial condition x(0) is upper bounded by the best expected steady-
state cost.

6 Conclusions

The chapter motivates and introduces Economic Model Predictive Control as a
method to merge the Real Time Optimization layer and the Control Layer within
a single optimization layer which is responsible of controlling the plant and opti-
mizing its economic performance. The main relevant analytical tools and results are
illustrated in a self-contained way and pointers to relevant in-depth literature on the
topic are provided. In particular, we emphasized the role played by terminal ingre-
dients in determining issues related to recursive feasibility, asymptotic performance
and stability of nominal and robust Economic Model Predictive Control. The theory
that emerged in the last few years has reached already a considerable maturity and
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is still developing with a number of issues of theoretical and practical relevance cur-
rently under investigation by the scientific control community. While we have made
an effort to propose a coherent perspective on Economic Model Predictive Control
we are aware that several recent developments did not find space in the present chap-
ter. We would like to mention some of them:

• Formulation of tracking MPC schemes matching locally a given Economic
Model Predictive Control, [39];

• Lyapunov-based Economic Model Predictive Control, [12];
• EMPC with generalized optimal regimes of operation, [10];
• Stochastic Economic Model Predictive Control, [38].
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Nonlinear Predictive Control for
Trajectory Tracking and Path Following:
An Introduction and Perspective

Janine Matschek, Tobias Bäthge, Timm Faulwasser, and Rolf Findeisen

Setpoint stabilization subject to constraints is a common control task in many appli-
cations, spanning from temperature control of chemical processes to speed control
of engines and drives. Nonlinear model predictive control has shown to be a valuable
tool to stabilize such systems in an efficient and nearly optimal way. While many
control problems can be reformulated as setpoint-stabilization problems, there are
problems which are difficult to reformulate, or for which a reformulation leads to
performance limitations. Examples are tracking problems, where the controlled vari-
able should follow a known or unknown time-dependent reference signal, such as
synchronization problems in electrical networks. In other cases, it is demanded to
track a geometric curve as precisely as possible, while the timing where to be when
is of secondary interest, which leads to so-called path-following problems. Further-
more, sometimes the main interest is to directly optimize a cost objective, while sat-
isfying constraints, which is typically referred to as economic operation. The first
part of this work provides an introduction to different control objectives, spanning
from setpoint stabilization, trajectory tracking, path following, to economic opera-
tion. The second part outlines how these objectives can be achieved in the frame
of nonlinear model predictive control. By presenting a theoretical analysis as well
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as simulation studies, we underline the main differences and advantages of the ap-
proaches and objectives. We conclude with an outlook and perspective, providing
insights into challenging open research problems.

1 Introduction and Motivation

The importance of control and automation in everyday life is increasing rapidly.
Not only in industrial applications, like robotic manufacturing systems and chemi-
cal plants, but also in home-used devices ranging from basic kitchen equipment to
entertainment gadgets, control is more widespread than ever.

Many control problems can be formulated as classical setpoint-stabilization prob-
lems, cf. Figure 1, top left.

Setpoint-stabilization approaches are best suited for systems that demand con-
stant operation, e.g. operating a chemical plant at a given chemical equilibrium
or stabilizing the operation of a gas turbine at a constant speed. Model Predictive
Control (MPC) is well suited for such control tasks, especially if constraints are
present [54]. Also, the theoretical aspects of MPC for setpoint stabilization are well-
understood. There are many application examples of MPC for setpoint stabilization,
such as the temperature control in a greenhouse [16], the control of liquid level and
temperature in a continuous stirred tank reactor [63], or the control of the oxygen
level in coke production [67].

Besides stabilization, additional control objectives are becoming increasingly im-
portant, such as operational performance and constraint satisfaction. However, the
desired operating point of the system is often not fixed. Rather it may change fre-
quently or continuously over time. Examples are the tracking of a reference orbit
for satellites or the realization of a time-varying production recipe in pharmaceu-
tical production systems. Following such time-varying references is typically de-
noted as trajectory tracking and the reference which the system should follow is
parametrized by time, cf. Figure 1, top right. Note that different terminologies for
trajectory-tracking problems can be found in the literature: if the reference signal is
unknown, defined or generated by an exogenous system, terms like model follow-
ing, servo control problem, or output regulation are used, see, e.g., [5] and [39]. We
follow along classic lines of [7] and deliberately denote all these cases as trajectory-
tracking problems.

By now, many results on predictive control for trajectory tracking exist, see, e.g.,
[21, 29, 42, 45, 47–49, 53]. Application examples range, e.g., from the control of
UAVs [1, 41], mobile robots [43], to medical applications like artificial pancreas
[38], just to mention a few.

Some tasks arising in applications are neither setpoint stabilization nor trajectory-
tracking problems. Examples are automated driving or milling operations along pre-
defined paths of a production machine. In these cases, the reference is a geometric
path instead of a fixed time-dependent state or output trajectory, cf. Figure 1, bottom
left. Furthermore, the path-following performance—i.e., staying on a track or road—
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Fig. 1: Overview of different control objectives. Besides classical constant (setpoint
stabilization) and time-dependent references (trajectory tracking), parametrized ref-
erences (path following) or economic operation are of interest.

is of crucial interest. A series of nonlinear control approaches exist to tackle these
problems, spanning from transversal feedback linearization [2, 8, 31, 59], backstep-
ping [15, 64], to Lyapunov-based control strategies [1]. Model predictive control ap-
proaches allow to additionally consider performance requirements and constraints,
cf. [22]. Applications of MPC for path-following problems span, for example, from
robotic manipulators [26, 52], the control of an X-Y-table [44], up to the control of
a tower crane [10].

Remark 1 (A Priori Unknown References). For certain applications, the complete
reference that is to be tracked or followed might be available, e.g. due to an offline-
planning procedure. This reference can then be exploited directly. In other cases, the
reference is not known directly and must, for example, be recovered or cannot be
used in a prediction of the system behavior. An example is the synchronization of
satellite orbits, where the precise position of the other satellites is a priori unknown.
We focus on the case that the reference is known. MPC approaches for unknown
references can, for example, be found in [47–49].
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Even more general, in some applications, economically optimal operation has
highest priority. The values of the states or inputs are secondary, as long as con-
straints are satisfied. In such cases the controller should directly maximize an eco-
nomic objective or benefit [23], see Figure 1, bottom right. Example applications are
climate control for a building operated in a smart grid [37] or chemical processes
with changing operating conditions [13].

In the following, we focus on the use of Nonlinear Model Predictive Control
(NMPC) for setpoint tracking, trajectory tracking, path following, and economic

known reference (offline planning) unknown
reference
(online

planning)

direct
economic
objective

MPC for
Setpoint

Stabilization
Section 3

MPC for
Trajectory
Tracking
Section 4

MPC for
Path

Following
Section 5

Tracking
MPC

Economic
MPC

Section 6

constant
reference

rss

time-
dependent
reference

rtt(t)

para-
metrized
reference

rpf(θ)

Fig. 2: The formulation of MPC explicitly relies on the specific task description.
While MPC can use references that are either known or unknown a priori, it is also
possible to directly consider an economic objective in the predictive control formu-
lation (Economic MPC). In this chapter, we focus on MPC for trajectory tracking
and path following for known references, considering offline planning. While in tra-
jectory tracking the timing of the reference (i.e., the reference speed) is fixed, in
path following the evolution of the reference is determined online by the controller.

operation. We outline the problem-specific objectives of the different problems in
Section 2 and suitable NMPC formulations in Sections 3 to 6, see also Figure 2.
Special emphasis is put on trajectory tracking and path following, also outlined by
several simulation examples.

Besides an introduction to the solution of the different problems, we aim to un-
derline that identifying the correct problem formulation for the different tasks is as
important as selecting a suitable control approach.
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2 Setpoint Stabilization, Trajectory Tracking, Path Following,
and Economic Objectives

Often, a control task can be formulated and tackled from different directions. In this
section, we introduce different control tasks and their respective objective. We dis-
tinguish those by the corresponding reference and its dependencies, e.g., on time, cf.
Figure 1, while concentrating on the basic concepts behind the task definitions. Note
that we do not focus on disturbance rejection or robust control problems. Instead, we
refer to [60, 61] and the references therein.

We consider nonlinear, continuous-time, constrained systems of the form

ẋ = f (x,u), x(0) = x0 (1a)

y = h(x) (1b)

with the constrained system states x ∈ X ⊆ R
nx , inputs u ∈ U ⊆ R

nu , and outputs
y ⊆ R

ny .1 Note that system outputs do not necessarily correspond to the taken mea-
surements. They rather refer to the variables of interest; i.e., they refer to the con-
trolled variables.

The subsequently introduced control objectives focus on the specific task at hand,
i.e. setpoint stabilization, trajectory tracking, path following, and purely economic
desires. Performance objectives, such as minimizing energy, will be discussed in the
predictive control formulations.

2.1 Setpoint Stabilization

Many control problems and methods consider the problem of regulation or stabi-
lization of a setpoint, i.e. operating the system close to a setpoint or efficiently re-
turning it to the setpoint is the main objective. This task is achieved by designing a
controller for stabilizing the desired stationary point/setpoint rss, i.e. by minimizing
the setpoint stabilization error

ess(t) = y(t)− rss (2)

by steering the system output y to the setpoint rss.
If state constraints are present, it is important to verify that the reference point

corresponds to feasible points in the state space:

1 We focus on continuous-time systems described by differential equations. Extensions towards
distributed parameter systems or discrete-time systems are subject to future work, respectively,
easily possible.
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Assumption 2.1. The reference point rss is contained in the pointwise image of X
under the output map h(x): rss ∈ h(X ) where h(X ) = {y ∈ R

ny |X $ x �→ y = h(x)}.

This leads to the following setpoint stabilization task:

Task 2.1 (Constrained Output Setpoint Stabilization) Given system (1) and the
reference setpoint rss, design a controller that achieves:

i) Convergence to the Setpoint: The system output (1b) converges to the setpoint
rss, i.e.

lim
t→∞

‖ess(t)‖= lim
t→∞

‖h(x(t))− rss‖= 0.

ii) Constraint Satisfaction: The constraints on the states x(t)∈X and on the inputs
u(t) ∈ U are satisfied for all times t ≥ 0.

Typically, stabilizing a constant desired setpoint rss implies a corresponding steady
state input uss, such that there exists xss ∈ X with 0 = f (xss,uss) and yss = h(xss) =
rss. Therefore, we introduce the “input error” variable wss(t) = u(t)− uss that ap-
proaches zero as the output error ess(t) goes to zero.

Note that it is assumed that the setpoint rss is explicitly given, see also Figure 2.
Finding suitable setpoints is often based on static optimization, e.g. searching for a
solution which minimizes a given cost function, usually subject to constraints.

2.2 Trajectory Tracking

Applications often require the tracking of changing setpoints or of time-dependent
references, leading to trajectory-tracking control. Application examples are the dy-
namic operation of power plants, e.g. due to changing renewable stock source, and
the tracking of cyclic reference signals in synchronization tasks, e.g. in electrical
networks. Hereby, the time-varying reference can be given by the operator, gener-
ated by an offline planner, or it might be generated at run time by an online-planning
algorithm.

Depending on whether the reference is a priori known or unknown (i.e., planned
before/offline or at runtime/online), different control strategies exist, see Figure 2. In
the case of a priori unknown references, the tracking problem is inherently uncertain.
In particular, the prediction of the control error is lacking information about the
future reference signal. In Section 4, we rely on a priori known reference signals, so
that the prediction of the system error can be utilized to exploit the benefits of MPC.

The control task in trajectory tracking is to design a controller that achieves
tracking of the time-dependent reference rtt(t), i.e. minimizing the tracking error
ett(t) = y(t)− rtt(t). Note that this leads to an explicit dependency of the error dy-
namics on time and therefore to a time-varying control problem which needs partic-
ular attention in the controller design, see Section 4. Again, as we consider control
of the outputs under state constraints, we need to define rtt in such a way that no
state constraints are violated:



2 Setpoint Stabilization, Trajectory Tracking, Path Following, and Economic Objectives 175

Assumption 2.2. The reference trajectory rtt(t) is contained in the pointwise image
of X under the output map, i.e. rtt(t) ∈ h(X ) for all t.

Additionally, we assume that the input utt that is required to perfectly follow the
reference is known a priori and can later on be used in the MPC scheme. Similar
to the case of setpoint stabilization, tracking rtt(t) usually implies a corresponding
input signal utt(t), such that there exists xtt(t) ∈ X , defined for all t ≥ 0, with ẋtt =
f (xtt,utt) and ytt = h(xtt) = rtt. Hence, we introduce the “input error” wtt(t) = u(t)−
utt(t) that goes to zero when ett(t) converges to zero.

Task 2.2 (Constrained Output Trajectory Tracking) Given system (1) and the
reference trajectory rtt(t), design a controller that achieves:

i) Convergence to the Trajectory: The system output (1b) converges to the refer-
ence trajectory rtt(t), i.e.:

lim
t→∞

‖ett(t)‖= lim
t→∞

‖h(x(t))− rtt(t)‖= 0.

ii) Constraint Satisfaction: The constraints on the states x(t)∈X and on the inputs
u(t) ∈ U are satisfied for all times t ≥ 0.

As the time dependency of the reference leads to a time-varying error and con-
trol objective, which needs special consideration in the controller design, trajectory-
tracking formulations should only be used when this time dependency is inherent
and relevant to the task. In tasks where, e.g., the following of a curve or manifold
is the primary goal, without a predefined timing along the curve, path-following
problems are an alternative.

2.3 Path Following

Many applications demand precise following of a given reference curve, rather than
achieving a pre-defined speed. Considering the speed along a curve as a degree
of freedom provides additional flexibility in the controller design. For example, in
lane tracking for autonomous vehicles, human-robot co-operative tasks, deburring,
or cutting, it is often not relevant when a state or position is reached, as long as it is
reached within a close margin of error at some point in time.

This leads to so-called path-following problems: A geometric reference path
should be followed as precisely as possible without an a priori fixed dependency
on time. The reference path is often parametrized by a dimensionless path parame-
ter θ , and the evolution of this parameter is decided by the controller.
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We define the reference path as a parametrized regular curve in the output space

P =
{

y ∈ R
ny |[θstart,θend] $ θ �→ y = rpf(θ)

}
(3)

with the parametrization rpf : R→ R
ny . For constraint satisfaction we assume that:

Assumption 2.3. The path P is contained in the pointwise image of the state con-
straints under the output map, i.e. P ⊂ h(X ).

Remark 2 (Connection to Manifold Stabilization and Reference Inputs). Exact path
followability requires that the system can stay on the path once it started on it and
that the error between the input and the reference-generating input should go to
zero if started somewhere else. Those reference inputs can be obtained either in an
analytical way (this is tractable, e.g., for input-affine systems with a well defined
relative degree and for differentially flat systems) or by optimization, see, e.g., [18,
25]. However, it is important to note that convergence of

epf(t) = y(t)− rpf

to zero implies (under mild technical assumptions) that the state x converges to a
manifold in the state space [18, 57, 58]. Moreover, in many relevant applications,
the reference input upf can be described as a function of θ and its time derivatives
[18, 25].

Summarizing, the problem of path following can be stated as follows:

Task 2.3 (Constrained Output Path Following) Given system (1) and the path
P (3), design a controller that achieves:

i) Path Convergence: The system output (1b) converges to the set P , i.e.:

lim
t→∞

‖epf(t)‖= lim
t→∞

‖h(x(t))− rpf(θ(t))‖= 0.

ii) Monotonous Forward Motion: The system moves along P in the direction of
increasing values of θ , i.e. θ̇(t)≥ 0 and lim

t→∞
θ(t) = θend.

iii) Constraint Satisfaction: The constraints on the states x(t)∈X and on the inputs
u(t) ∈ U are satisfied for all times t ≥ 0.

Sub-task ii) can be relaxed, allowing backward motion. Furthermore, constraints
on the desired velocities along the reference can be enforced, in the limit leading to
trajectory-tracking formulations. As will be discussed later, it is important to note
that path following, used to improve a tracking performance, will not necessarily
lead to longer task execution times, cf. Section 5.2.1. In comparison to trajectory
tracking, path following may achieve higher accuracy and smaller errors due to the
direct utilization of an additional degree of freedom, i.e. the reference evolution.
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Besides addressing path-following problems with predictive control, cf.
Section 5, several other approaches to path-following control can be found in
the literature. One large research field is path-following control using transversal
feedback linearization, in which the task space is transformed into a transversal
task direction (convergence to the geometric path or submanifold) and a tangen-
tial direction (moving along the path), done, e.g., in [2], [31], and [59]. In [1],
Lyapunov-based control is combined with adaptive switching supervisory control
to solve the path-following problem. Backstepping techniques are used, e.g., in [15]
to obtain robust adaptive path following of underactuated ships, as well as in [64]
for robust path following for a class of nonlinear systems.

2.4 Economic Objectives

Occasionally, no specific path, setpoint, or trajectory shall be tracked or is provided
by a planner. Rather, the control input should be such that the system behaves opti-
mally with respect to a given objective, while the achieved exact states and inputs
are of secondary interest, cf. Figure 2. Examples are chemical plants where a maxi-
mum profit or product quality is desired, while the actual state evolution is of minor
importance. Removing the separation between reference design/planning (e.g., cal-
culating the optimal setpoint for a given cost) and controlling the system to reach
this point can increase the flexibility and improve performance. Put differently, the
controller can exploit all available degrees of freedom to improve performance. Pre-
dictive control is well suited to handle economic objectives, which is referred to as
Economic MPC, see, e.g., [17, 23, 62] and the references therein.

3 A Brief Review of MPC for Setpoint Stabilization

We briefly recap MPC for the stabilization of constant references as it builds the
foundation for the tracking of time-dependent references and path-following formu-
lations. MPC allows for the consideration of nonlinear, coupled, and constrained sys-
tems, making it a good choice for the implementation of various control tasks [61].

We consider a sampled-data feedback perspective, see, e.g., [30, 32], as many
real-world systems operate in continuous time. We assume that the system (1) fulfills
the following assumptions:

Assumption 3.1. The state constraint set X is closed, the input constraint set U is
compact.
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Assumption 3.2. The system dynamics f : Rnx ×R
nu → R

nx and the output map
h : Rnx → R

ny are assumed to be sufficiently often continuously differentiable and
locally Lipschitz for all (x,u)T ∈ X ×U .

Assumption 3.3. For any piecewise continuous input signal u(·) and for all initial
points x0 ∈ X , system (1) admits a unique absolutely continuous solution.2

In setpoint stabilization, we want to stabilize a constant reference point rss. Typi-
cally, in setpoint stabilization problems, the considered cost functional is

Jss (x(tk), ūk(·)) =
∫ tk+T

tk
Lss (ēss(τ), w̄ss(τ)) dτ+Ess (x̄(tk +T )) . (4)

Here, Lss :Rny ×R
nu →R

+
0 denotes the stage cost or cost function, Ess :Rnx →R

+
0 is

called terminal penalty, and T is the prediction horizon. We denote predicted signals
with ·̄, while the index k in ūk indicates that this is the optimal input based on the
measurements available at sampling instant tk. The signal to be optimized in the
optimal control problem is the input uk(·). In our case, the input is assumed to be
piecewise continuous, i.e. uk(·) ∈ PC(U). Therefore, the optimal control problem
that is solved at every sampling instant can be formulated as

minimize
ūk(·)∈PC(U)

Jss (x(tk), ūk(·)) (5a)

subject to

˙̄x(τ) = f (x̄(τ), ūk(τ)), x̄(tk) = x(tk) (5b)

ēss(τ) = h(x̄(τ))− rss (5c)

w̄ss(τ) = ūk(τ)−uss (5d)

x̄(τ) ∈ X , ūk(τ) ∈ U (5e)

x̄(tk +T ) ∈ Ess ⊆ X , (5f)

which have to hold for all τ ∈ [tk, tk +T ]. From the input signal ūk, only the first part
until the next sampling instant is used and the optimization is repeated in a receding-
horizon fashion. Here, (5b) defines the system dynamics and (5c) can be regarded
as the system output defining the stabilization error. It determines the difference
between the system output and the constant reference rss. Additionally, (5d) defines
the difference between the input and the reference-generating input value. In (5e),
the state and input constraints are covered and (5f) restricts the state at the end of
the prediction horizon to be inside the terminal region Ess.

Remark 3 (Structure of the Cost Functional). Since the reference (desired setpoint)
is defined in the output space, the stage cost Lss does merely penalize errors of

2 The class of considered input functions could be readily extended to measurable controls. Here,
for the sake of simplicity, we focus on the more application relevant setting of piecewise constant
control signals.
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the outputs of the system, which makes it semi-definite with respect to the states.
However, the terminal cost Ess and the terminal constraint set Ess depend on the
system states rather than the outputs.

3.1 Comments on Convergence and Stability

By now, stability of MPC for discrete-time formulations with constant references
under state feedback is well-understood and can be guaranteed with an appropriate
selection of terminal state constraints and end costs. For an overview of different
approaches, see, e.g., [54], discussing terminal equality constraints, only a terminal
cost, dual mode, i.e. no terminal cost, or both terminal cost and constraint set, among
others. Additionally, one may also enforce stability without terminal constraints [33,
40, 46]. However, whenever Lss penalizes system outputs instead of states, additional
conditions are required, due to semi-definiteness of the stage cost with respect to the
states. Stability guarantees can, for example, be obtained if additional detectability
properties are satisfied. For example, [61] relies on input/output-to-state stability
of the open-loop system, while [50] requires weak detectability of the considered
system and the usage of a weak detector.

In sampled-data NMPC, achieving stability in the sense of convergence can, for
example, be achieved by suitable choices of the stage cost Lss, terminal cost Ess, and
terminal constraint set Ess [28], which can be summarized as follows:

Assumption 3.4. The stage cost Lss : Rny ×R
nu → R

+
0 is continuous, Lss(0,0) = 0

and it is lower bounded by a class K∞ function α1 such that Lss(ess,wss)≥α1(‖ess‖)
for all (ess,wss).

Assumption 3.5. The terminal cost Ess : Rnx → R
+
0 is positive semi-definite and

continuously differentiable in x.

Assumption 3.6. The terminal constraint set Ess ⊆ X is compact.

Assumption 3.7. For all x̃∈Ess and the considered sampling time δ > 0, there exists
an input uE(·) ∈ PC(U) such that, for all τ ∈ [0,δ ),

∂Ess

∂x
· f (x(τ),uE(τ))+Lss(ess(τ),wss(τ))≤ 0

and the closed-loop solution stays in the terminal region x(τ) = x(τ , x̃|uE)∈ Ess; i.e.,
the terminal region Ess is control invariant.

Provided that these assumptions hold, one can state the following theorem to
address Task 2.1:

Theorem 1. If the optimal control problem (5) is feasible for the initial time instant
t0 and its stage cost, terminal cost, and the terminal constraints satisfy Assump-
tions 3.4-3.7, then the optimal control problem (5) is recursively feasible and the
error ess(t) = y(t)− rss converges to zero under sampled-data NMPC.
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Note that while the stage cost depends on the outputs, the terminal cost and the
terminal constraint depend on the states of the system; see also Remark 3. This
choice is motivated by the fact that we need to upperbound the cost-to-go (which
is state dependent) to show convergence. Convergence of the state instead of the
output (error) is obtained, for example, by additionally assuming that the system
is input/output-to-state stable and by replacing the lower bound in Assumption 3.4
with Lss(ess,wss)≥ α1(‖ess‖)+α1(‖wss‖). However, this might be of minor impor-
tance, since even without those additional assumptions, all states at the end of each
prediction horizon are bounded in the compact set Ess and therefore do not grow to
infinity.

3.2 Setpoint Stabilization of a Lightweight Robot

We illustrate the different tasks and approaches by considering the control of a
robotic manipulator, depicted in Figure 3. The robot’s end-effector pose should
follow a reference. For setpoint stabilization, this reference consists of a constant
Cartesian position of the robot end effector. The KUKA lightweight robot [9] is
modelled by the nonlinear dynamics

B(q)q̈ = T ,

with the inertia matrix B depending on the joint angles q, the angular accelerations q̈,
and the motor torques T in each joint. For the sake of simplicity, we neglect friction
and Coriolis effects and assume a complete compensation of torques originating
from gravity.

Fig. 3: Robot for manipu-
lation tasks.

With the transformation χ1 = q, χ2 = q̇, and the input
μ = T , the system dynamics become

χ̇ =

(
χ̇1

χ̇2

)
=

(
χ2

B−1(χ1)μ

)
(6a)

γca = hca(χ1). (6b)

Here, the output function hca(χ1) is the forward kinemat-
ics that map from the joint space into Cartesian space.

The performance of sampled-data setpoint stabiliza-
tion NMPC, for a setpoint change of 10 cm in the Carte-
sian x-direction at t = 2s is shown in Figure 4. The in-
stantaneous jump in the reference leads to a significant
overshoot of the end-effector position, even when exploiting knowledge about it in
the prediction. Avoiding such overshoot can be achieved in different ways. Firstly,
one could tune the controller to be less aggressive, i.e. reduce the weights on the
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Cartesian position errors. This would reduce the overshoot while, on the other hand
side, it also reduces the position accuracy in the non-transient phases and increases
the transition time. Secondly, one can reformulate the problem into the form of a
time-dependent, sufficiently smooth trajectory. Doing so leads directly to trajectory-
tracking formulations, as outlined in the following section.
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Fig. 4: Position of the end effector under NMPC.

4 Model Predictive Control for Trajectory Tracking

Trajectory tracking aims at following a timed reference, which is conceptually easy
to integrate into the predictive control formulation, by modifying the considered
cost functional to:

Jtt (x(tk), ūk(·)) =
∫ tk+T

tk
Ltt (ētt(τ), w̄tt(τ)) dτ+Ett (x̄(tk +T )) . (7)

Here, Ltt : Rny ×R
nu → R

+
0 and Ett : Rnx → R

+
0 denote the cost function and the

end penalty for the trajectory-tracking problem, respectively. The resulting optimal
control problem, solved at the sampling instants, becomes

minimize
ūk(·)∈PC(U)

Jtt (x(tk), ūk(·)) (8a)

subject to

˙̄x(τ) = f (x̄(τ), ūk(τ)), x̄(tk) = x(tk) (8b)

ētt(τ) = h(x̄(τ))− rtt(τ) (8c)

w̄tt(τ) = ūk(τ)−utt(τ) (8d)

x̄(τ) ∈ X , ūk(τ) ∈ U (8e)

x̄(tk +T ) ∈ Ett ⊆ X , (8f)
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which have to hold for all τ ∈ [tk, tk +T ]. The main differences with respect to the
setpoint stabilization problem (5) are that both the reference trajectory rtt(t) and the
input reference utt(t) are time-dependent.

4.1 Convergence and Stability of Tracking NMPC

Since the reference is time-dependent, the tracking error is inherently time-varying,
which renders direct application of setpoint-stabilization results challenging.

As it is assumed that the reference trajectory is known in advance, the time-
varying nature of the problem can be tackled by exploiting time-varying terminal
constraints, see, e.g., [21, 29, 42, 53].

The following assumptions [18, 21] ensure convergence for output tracking using
sampled-data NMPC:

Assumption 4.1. The stage cost Ltt : Rny ×R
nu → R

+
0 is continuous, Ltt(0,0) = 0

and is lower bounded by a class K∞ function α1 such that Ltt(ett,wtt) ≥ α1(‖ett‖)
for all (ett,wtt).

Assumption 4.2. The terminal cost Ett : Rnx →R
+
0 is positive semi-definite and con-

tinuously differentiable in x.

Assumption 4.3. The terminal constraint set Ett ⊆ X is compact and time-varying.

Assumption 4.4. For all x̃ ∈ Ett and the considered sampling time δ > 0, there exists
an admissible input uE(·) ∈ PC(U) such that, for all τ ∈ [0,δ ),

∂Ett

∂x
· f (x(τ),uE(τ))+Ltt(ett(τ),wtt(τ))≤ 0

and the closed-loop solution fulfills x(τ) = x(τ , x̃|uE) ∈ Ett; i.e., the terminal region
is control invariant.

In comparison to setpoint stabilization, differences arise from the fact that the
terminal constraint set Ett is now time-dependent (see Assumption 4.3) due to the
inherently time-varying tracking error. For a detailed discussion on how to construct
corresponding terminal regions, see [18, 21].

Similarly to Section 3, stability of the closed loop in the sense of convergence
can be ensured to solve Task 2.2:

Theorem 2 ([18, 21]). If the optimal control problem (8) is feasible for the initial
time instant t0 and the stage cost, the terminal cost and the terminal constraints
satisfy Assumptions 4.1–4.4, then (8) is recursively feasible and the tracking error
ett converges to zero under sampled-data NMPC.
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4.2 Trajectory-Tracking Control of a Lightweight Robot

Motivated by the simulation results for setpoint stabilization in Section 3.2, we for-
mulate the control goal as a trajectory-tracking problem. The time-dependent ref-
erence rtt(t) is chosen to model a smooth transient between two constant values to
make it comparable to the simulation of the setpoint stabilization. The NMPC for-
mulation for trajectory tracking (8) uses this reference and the dynamic model of
the robot (6). In both the setpoint stabilization and trajectory-tracking examples, the
same cost function including the weights and same structure of the optimal control
problem is used except from the reference definition. Figure 5 shows the perfor-
mance of the closed loop for this setting. When comparing Figure 5 with Figure 4,
the same time for the transition phase is adopted. As can be seen, the robot is able to
follow the reference so that no overshooting occurs, which is crucial for safe perfor-
mance. Nevertheless, tracking errors of up to 8mm appear, as the robot is not able
to follow the planned trajectory. Among other reasons, this originates from the fact
that the offline planning of the reference did not take the actual abilities of the con-
trolled system, resembled by the system dynamics and constraints, into account and
planned a trajectory that is hard to follow given an a priori fixed timing of the ref-
erence. One way to overcome this problem is the use of path-following approaches,
as outlined in the following section.
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Fig. 5: Cartesian position of the end effector under NMPC with trajectory tracking.

5 Model Predictive Control for Path Following

As visible from the robot example in Section 4.2, it can be beneficial to consider
the speed of reference evolution as a degree of freedom, in order to achieve op-
timal tracking performance. Such problems, i.e. following a curve or manifold as
closely as possible, appear in many applications, spanning from autonomous driv-
ing, robotics, production systems, up to crystallization processes.

As outlined in Section 2.3, we consider that the reference path is known and
given by a geometric curve, parametrized by a path parameter θ . The dependency
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of the path parameter θ on time can be considered as an additional degree of free-
dom. Often, however, influencing θ directly can lead to undesired effects, such as
undesired jumps in the reference. To avoid these effects and for reasons of stability,
adding additional filtering dynamics, i.e. “virtual” system dynamics can be advan-
tageous [26, 52]. An example of simple virtual speed/filtering dynamics is the use
of an integrator chain. To this end, the virtual system states z1, z2, . . ., zρ , and the
virtual system input v are introduced:

⎛
⎝

ż1
ż2

...
żρ

⎞
⎠=

⎛
⎝

0 1 0 ··· 0
0 0 1 ··· 0
...

. . .
. . . 1

0 0 0 ··· 0

⎞
⎠

⎛
⎝

z1
z2

...
zρ

⎞
⎠+

⎛
⎝

0
...
0
1

⎞
⎠v, (9)

where θ = z1 is the virtual system output and ρ ≥ 1 is some constant. A differential
algebraic, respectively, geometric explanation of these dynamics can be found in
[22, 58].

Depending on the task at hand, one can consider additional constraints on the
virtual state z: limits on the path parameter to satisfy specific start and end points of
the reference θ = z1 ∈ [θstart,θend], and limits on the reference speed by θ̇ = z2 ≥ 0
to ensure forward motion along the reference. In particular, the states are restricted
to a closed set, i.e. z ∈ Z ⊂ R

ρ , and the input v belongs to a compact set v ∈ V ,
where both sets contain the origin in their interiors.

The predictive control formulation for path following is based on an expanded
system state, adding the virtual states to the dynamics and introducing the virtual
input v as additional input. In the cost functional, the deviation from the path is
penalized suitably:

Jpf (x(tk), z̄(tk), ūk(·), v̄k(·))

=
∫ tk+T

tk
Lpf

(
ēpf(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ+Epf (x̄(tk +T ), z̄(tk +T )) .

(10)

Note that the cost function Lpf : Rny ×R×U ×V → R
+
0 and the end penalty

Epf : Rnx ×R
ρ → R

+
0 now also include the virtual system states z, the input v, and

the output θ .
The resulting optimal control problem, solved at the sampling instants, becomes

minimize
(ū(·),v̄(·))∈PC(U×V)

Jpf (x(tk), z̄(tk), ūk(·), v̄k(·)) (11a)

subject to

˙̄x(τ) = f (x̄(τ), ūk(τ)), x̄(tk) = x(tk) (11b)

ēpf(τ) = h(x̄(τ))− rpf(z̄1(τ)) (11c)
˙̄z(τ) = l(z̄(τ), v̄k(τ)), z̄(tk) = z(tk) (11d)

θ̄(τ) = z̄1(τ) (11e)

x̄(τ) ∈ X , ūk(τ) ∈ U (11f)
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z̄(τ) ∈ Z, v̄k(τ) ∈ V (11g)

(x̄(tk +T ), z̄(tk +T ))T ∈ Epf ⊂ X ×Z, (11h)

which need to hold for all τ ∈ [tk, tk+T ]. Herein, (11b) are the system dynamics with
the path-following error (11c) as output. Furthermore, the dynamics are augmented
by the virtual system dynamics (11d) with the path parameter θ as its output (11e).
Both the original and the virtual system inputs and states are constrained to their
respective sets (11f)–(11g). Note that, in contrast to trajectory tracking and setpoint
stabilization, the optimal control problem has as an additional input v, providing an
additional degree of freedom for the path-following problem.

5.1 Convergence and Stability of Output Path-Following NMPC

As the controlled system now contains both the original dynamics plus the virtual
path system, the following assumptions are required for concluding convergence:

Assumption 5.1. The stage cost Lpf : Rny ×R×U ×V → R
+
0 is continuous and is

lower bounded by a class K∞ function α1 such that Lpf(epf,θ ,u,v)≥ α1(‖(epf,θ −
θend)

T‖) for all (epf,θ ,u,v).

Assumption 5.2. The terminal cost Epf : Rnx ×R
ρ → R

+
0 is positive semi-definite

and continuously differentiable in x and z.

Assumption 5.3. The terminal constraint set Epf ⊆ X ×Z is compact.

Assumption 5.4. For all (x̃, z̃)T ∈ Epf and the considered sampling time δ > 0, there
exist inputs (uE ,vE)T(·) ∈ PC(U ×V) such that for all τ ∈ [0,δ )

(
∂Epf

∂x
,
∂Epf

∂ z

)
·
(

f (x(τ),uE(τ))
l(z(τ),vE(τ))

)
+Lpf(epf(τ),θ(τ),uE(τ),vE(τ))≤ 0

and the closed-loop solution x(τ) = x(τ , x̃|uE) and z(τ) = z(τ , z̃|vE) stay in Epf; i.e.
the terminal region is control invariant.

Considering that these assumptions hold, one can solve Task 2.3 and obtain the
following convergence and stability results for predictive path following [18, 22]:

Theorem 3. If the optimal control problem (11) is feasible for the initial time instant
t0 and the stage cost, the terminal cost, and the terminal constraints are chosen to
fulfill Assumptions 5.1–5.4, then (11) is recursively feasible and the path-following
error epf converges to zero under sampled-data NMPC.

Proving Theorem 3 basically relies on the possibility of reformulating the path-
following problem into the setpoint stabilization of an extended system, where the
additional requirements of, e.g., the forward motion of the path are captured by the
(extended) state constraints. For an extensive discussion and a complete convergence
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proof as well as insights into the computation of suitable terminal control laws and
terminal regions to fulfill the stated assumptions, the reader is referred to [18, 22].
Stability proofs for path following for discrete-time systems and state feedback can
be obtained in a straightforward manner from setpoint stabilization problems, fol-
lowing the classical ideas, as for example presented in [54].

5.2 Path-Following Control of a Lightweight Robot

We consider the control of the lightweight robot, see Section 3.2, to illustrate the
concept of path following and to outline the main differences to trajectory tracking.
To do so, we compare two trajectory-tracking approaches with different velocity pro-
files and a path-following implementation. Firstly, we show and compare the nomi-
nal behavior (no model-plant mismatch, no external disturbances) and secondly, we
present the performance under an external, unknown disturbance.

The robot is supposed to follow a path which is given by a Lissajous figure in
the y-z-plane, composed of cosine and sine terms, whereas the third dimension is
composed of hyperbolic tangent functions, cf. Figure 6. The path is parametrized by
time for the trajectory-tracking case and by the time-depending path parameter in
the path-following case.

The virtual dynamics for the path evolution are chosen to be of second order:

ζ̇ =

(
ζ̇1

ζ̇2

)
=

(
ζ2

v

)
(12a)

θ = ζ1, (12b)
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Fig. 6: Cartesian reference path for all shown simulations.
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with the virtual system input v and the virtual states ζ . Note that, for trajectory
tracking, the dynamics are given by (6) where the decision variables of the optimal
control problem are the robot inputs (joint torques) μtt = T . In case of path follow-
ing, one needs to consider the augmented system dynamics, given by (6) and (12).

The augmented input/decision variable μpf =
(
T ,v

)T
is composed of the joint

torques and the virtual system input v that represents the additional degree of free-
dom in the path-following scheme.

5.2.1 Nominal Case

In robotics, large position errors are likely to occur due to high accelerations and
acceleration changes (jerks). A naive way to compensate for this effect is to slow
down the overall reference trajectory, as considered in Scenario 1.

Scenario 1 (trajectory tracking with a “low” velocity): The maximum velocity
of the reference was set to 0.031 1/s so that the desired movement is completed after
40s, see also Figure 7(a). In this case, the maximum absolute position errors are
3.99×10−2 mm, 1.33×10−2 mm, and 1.11×10−2 mm in x-, y-, and z-direction,
respectively. Even though the errors are small, Scenario 1 will not be preferred in
practice. Using a reduced overall reference speed, the transition times are increased,
which often results in decreased economic profits. Gaining higher accuracy by slow-
ing down the overall process is thus only a suboptimal option.

Scenario 2 (trajectory tracking with a “normal” velocity): We use a trajectory
tracking with higher reference velocity than in Scenario 1. Allowing a higher maxi-
mum velocity of 0.1 1/s leads to an end time of 20 s instead of 40 s, see Figure 7(b)
(dotted line). The maximum absolute tracking errors for Scenario 2 are 0.38 mm,
0.13 mm, and 0.12 mm in x-, y-, and z-direction, respectively. Comparing the posi-
tion errors with Scenario 1, one sees that they differ in magnitude. This underlines
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(a) Trajectory tracking (Scenario 1) with
maximum reference speed of 0.031 1/s and
runtime of 40 s.
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(b) Trajectory tracking (Scenario 2, dotted),
and path following (Scenario 3, dashed),
both with the maximum reference speed of
0.1 1/s and run time of 20 s.

Fig. 7: Velocity profiles.
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Fig. 8: Root mean squared error of Scenarios 2 (blue) and Scenario 3 (black) in all
Cartesian directions. Unlike Scenario 1, Scenario 2 and 3 are comparable since they
complete the task after the same time and use the same maximum velocity.

the sensitivity of the performance with respect to time. However, as before, slowing
down the overall process is often not acceptable.

Scenario 3 (path following): For path following, no predefined timing for the
reference is used. Rather, the controller adjusts the path evolution online based on
the predicted position errors, cf. Figure 7(b). Hereby, a tradeoff between fast con-
vergence to the endpoint of the path and high accuracy is found. As can be seen
in Figure 7(b), both the second scenario (dotted) and the third scenario (dashed)
require the same time for completion (20s) and use the same maximum velocity
of 0.1 1/s.

For both scenarios, the mean errors are shown in Figure 8. As can be seen, po-
sition errors in all directions are smaller for path following, without slowdown of
the overall process. Especially in the Cartesian x-direction, an improvement of 82%
was achieved.

The largest position error occurs around t = 12s. At this time point, the reference
velocity in the path-following scenario was decreased to improve the performance.
The large errors at this time result from a rapid change of the reference acceleration
in the Cartesian x-direction, as shown in Figure 9. Since both scenarios work with
different timing laws, the plots of reference curves over time, depicted in solid line
style, differ. In the zoomed-in region around t = 12s, the path deviation in the tra-
jectory tracking (dotted) from its reference can be seen, whereas the path following
approach (dashed) follows the turn more precisely.

Note that the cost function weights and all other parameters for the trajectory
tracking and the path following were chosen to be identical, i.e. the performance
increase is a direct result of the problem formulation and not due to any tuning of
cost functions.
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Fig. 9: Comparison of path following and trajectory tracking in the x-direction.

5.2.2 Disturbance Case

Next, we consider the closed-loop behaviors of the NMPC schemes under the influ-
ence of an external disturbance, appearing at t = 12.5s: the end effector is displaced
by 10mm in y-direction and is locked there for 0.5s. The considered disturbance
is motivated by a collaborative working scenario, in which the robot could collide
with or unexpectedly be stopped by another robot, human, or work piece. Similarly,
unexpected material property changes, such as changes in solidity, can lead to the
same effect. In the case of trajectory tracking, the reference is supposed to follow the
predefined velocity profile under all circumstances. This leads to a larger error as,
in the meantime, the reference continues to move on along the Lissajous curve with
the predefined (non-adjustable) speed. Once the blockage is overcome, the robot re-
sumes to the current reference position, resulting in a “shortcut.” Thus, the reference
is not tracked at all, see Figure 10, dotted line.

In contrast to this, the path-following approach is also able to adjust the reference
speed to minimize the position errors, see also Figure 11. Right after the displace-
ment occurs, the controller chooses to slow down the reference, so that the position
error stays as small as possible and precise following is obtained, see also Figure 10.

As outlined, path following is able to generate velocity profiles for a geometric
path that allow for higher position accuracy without sacrificing overall runtime. This
includes the nice side effect of no need for an additional (iterative) path velocity
planning. Secondly, in case of disturbances, which are of increasing importance in
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Fig. 11: Reference velocity profile of trajectory tracking (dotted) and path following
(dashed) for the disturbance case.

future co-operative manufacturing systems, path following can utilize an additional
degree of freedom in the control structure (the virtual system input) to achieve high
performance.
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5.3 Extensions of Path Following

The outlined approach for MPC for path-following problems can be expanded in
several directions:

Path Following with Velocity Assignment Path following allows to pre-assign a
velocity profile or corridor. Basically, the convergence of the path velocity (reference
speed) to the desired velocity can be enforced, which can be expressed in a similar
way as in Task 2.3, by adjusting sub-task ii):

Task 5.1 (Constrained Output Path Following with Velocity Assignment)
Given system (1) and the path P (3), design a controller that achieves:

i) Path Convergence: The system output y = h(x) converges to the set P , i.e.:

lim
t→∞

‖epf(t)‖= lim
t→∞

‖h(x(t))− rpf(θ(t))‖= 0.

ii) Path Velocity Convergence: The path velocity θ̇ converges to the desired veloc-
ity profile θ̇ref, i.e. lim

t→∞
‖θ̇(t)− θ̇ref(t)‖= 0.

iii) Constraint Satisfaction: The constraints on the states x(t)∈X and on the inputs
u(t) ∈ U are satisfied for all times t ≥ 0.

One can easily adapt the optimal control problem (11) to achieve path following with
velocity assignment; i.e., instead of penalizing the distance of the path parameter
θ = z1 to its endpoint θend in the cost function Lpf, one considers the difference
between its time derivative θ̇ = z2 and the desired velocity.

By choosing the weight on the velocity error high, the path following comes
closer to a trajectory-tracking formulation. More details about path following with
velocity assignment can, e.g., be found in [22].

Multi-Dimensional Path Following In some applications, additional degrees of
freedom with respect to the path to be followed exist. An intuitive example is a car

2D corridor
1D path
system evolution

y2

y1

Fig. 12: Two-dimensional path following.
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following a road, where an exact tracking of a curve is not desired. Rather, the car
should stay on the lane, which could be wider than the car’s dimensions. Similar
cases occur for ships, airplanes, or unmanned aerial vehicles, which often are only
required to stay in a certain corridor-path. They can and should utilize the additional
degrees of freedom, for example to minimize time or energy consumption. We refer
to those as multi-dimensional path following or general manifold stabilization prob-
lems. Hereby, the path P , which in classical path following is a one-dimensional
curve/manifold in the output space, is extended to be a higher-dimensional submani-
fold of the output space, cf. Figure 12. In this case, the extended path is characterized
not only by one, but by multiple path parameters

Θ =
(
θ1, θ2, . . . , θn

)T
, (13)

with vector-valued constraintsΘstart ≤Θ ≤Θend. Hereby, the first component ofΘ
corresponds to the path parameter in the previous sections, i.e. defining the evolution
over time. The remaining parameters θi with 2 ≤ i ≤ n define spatial degrees of
freedom. Their lower and upper bounds span a corridor around the original path, in
which the controller is free to choose its actual path. For discussions and examples,
see [24] and the recent results [11, 65].

Non-spatial Paths It is important to stress that the path does not need to be a
“spatial curve.” In principle, it can be defined with respect to any state variable or
combinations/projections of such. For example, [52] considers the problem of force
control in robotics, where the desired contact forces are parametrized by the path
parameter. Similarly, one could consider temperatures in building control problems,
concentrations in chemical reactors, etc. as path variables.

6 Economic MPC

We briefly discuss and introduce Economic MPC to set it in relation to the outlined
setpoint stabilization, trajectory-tracking, and path-following formulations. In com-
parison to the aforementioned NMPC formulations, in Economic MPC no direct
reference to be achieved is given. Rather, the controller should directly optimize sys-
tem operation by minimizing an (economic) performance specification. The closed-
loop values for the states and inputs are unimportant, as long as they stay in certain
bounds. Doing so avoids the pre-calculation of a setpoint, reference trajectory, or
path, possibly allowing to fully exploit the potential of the process with respect to
some economic cost functional Jeco.

The basic formulation for an economic MPC cost functional becomes:

Jeco (x(tk), ūk(·)) =
tk+T∫
tk

Leco (x̄(τ), ūk(τ)) dτ+Eeco (x̄(tk +T )) , (14)
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while the optimal control problem is then the minimization of (14) subject to the
system dynamics (1) and potentially state, input, and terminal constraints, x̄ ∈ X ,
ū ∈ U and x̄(tk +T ) ∈ Eeco.

Note that no explicit reference appears. This allows to react to changing plant
conditions (like external parameters or disturbances) without the explicit need of
setpoint or reference calculations.

Other approaches use combined stage costs that result in a trade-off between
stability and profitability, such as Dual Objective MPC, i.e. more than one (per-
haps competitive) control goals should be achieved [3, 12, 51, 65]. Examples for
such cases are, e.g., to find a tradeoff between observability and stabilizability of a
system [12]. In general, a combination of economic and regulatory criteria can be
formulated as

Jeco (x(tk), ūk(·)) =
tk+T∫
tk

a ·Leco(x̄(τ), ūk(τ))+(1−a) ·Lss/tt/pf(ē(τ), ūk(τ))dτ , (15)

with a tuning parameter 0 ≤ a ≤ 1 to define priorities in the tradeoff. For a → 1,
the economic cost would dominate, while for a → 0, the stabilization/tracking cost
would be the leading factor.

6.1 Convergence and Stability of Economic MPC

Recursive feasibility of Economic MPC can be shown in similar ways as with clas-
sical MPC approaches (e.g., setpoint stabilization), i.e. using terminal constraints
[17, 62]. However, since optimal system operation might not be characterized by
a steady state of the closed-loop system (e.g., it could also involve cyclic/periodic
operation), stability or convergence cannot be expected in general [56]. In cases
where the optimal operating point in fact is a steady state of the system—i.e., the
system under considerations is said to be optimally operated at steady state [56]—,
asymptotic stability of this steady state under Economic MPC can be established.
Hereby, strict dissipativity of the underlying optimal control problem combined with
suitable controllability properties is sufficient and (under suitable assumptions) nec-
essary for the existence of such an optimal steady state [6, 56]. While [14] is using a
terminal equality constraint to construct a Lyapunov function and show asymptotic
stability, [4] replaces the terminal equality constraint by a terminal set and terminal
cost. Furthermore, in [20, 34, 36], Economic MPC without terminal constraints and
without any terminal conditions is discussed, respectively. It should be noted that
[19, 20, 34, 36] exploit the fact that dissipativity of the optimal control problem im-
plies the existence of a so-called turnpike property in the open-loop solutions to the
optimal control problem. We remark that turnpike properties allow establishing re-
cursive feasibility in Economic MPC without terminal constraints [19, 20, 23]. The
close relations between dissipativity and turnpike properties have been investigated
in detail for continuous-time optimal control problems [27] and discrete-time for-
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mulations [35]. However, there are cases in Economic MPC where the performance
of the best reachable steady state can be improved by periodic orbits [55, 66]. For
more details on Economic MPC, we refer to the recent overviews [17, 23].

7 Conclusions and Perspectives

Many control problems cannot be formulated as setpoint stabilization problems or
the reformulation as such leads to a significantly decreased performance. In the first
part of this chapter, we reviewed different types of control objectives and outlined
the key differences. We especially focused on trajectory-tracking and path-following
problems and set them into relation to setpoint stabilization and economic control
objectives. As shown, it is very important to select and formulate the problem in the
correct framework, otherwise the performance can be significantly deteriorated.

In the second part, we outlined how the desired control objectives can be tack-
led in the framework of nonlinear model predictive control, taking constraints into
account. Based on a review of NMPC for setpoint stabilization, we outlined predic-
tive control formulations for trajectory tracking and path following. Special focus
was put on the comparison of NMPC for trajectory tracking and path following, to
clarify the key differences with respect to the achievable performance, stability, and
constraint satisfaction. The observations have been underlined considering the con-
trol of a lightweight robot subject to external disturbances. Finally, we outlined the
main idea behind economic predictive control, which aims to directly optimize a
desired economic objective without considering a reference.

It is important to note that we did not focus on robustness of trajectory-tracking
or path-following predictive control. Furthermore, we limited the presentation to the
case of known references, which can be directly exploited in the predictions.

While significant progress has been achieved in recent years, there are also many
interesting and challenging problems for further development. Robust trajectory
tracking and path following formulations and robustness analysis of nominal for-
mulations are still in their infancy. As the direct consideration of uncertainty is im-
portant for many applications, such as automatic driving, there is a strong demand
to develop suitable methods. Possible starting points can be MPC approaches based
on robust invariant set considerations.

Moreover, the fusion of control and path planning becomes increasingly impor-
tant in autonomous systems applications. Examples are robots that operate in a
highly dynamic environment, as well as vehicles in dynamic traffic situations. Sepa-
rating these tasks into a planning and a control level will lead to a decreased perfor-
mance, as quick reactions to dynamic environment changes are often a necessity.

Furthermore, often references and paths are not known a priori, but might also
not be free for optimization, as considered in economic predictive control. Examples
are synchronization problems of robot swarms or power networks, as well as auto-
matic driving subject to the uncertain behavior of other vehicles. This remedy might
be overcome by fusing tracking and path following control with learning-based ap-
proaches.
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12. Böhm, C., Findeisen, R., Allgöwer, F.: Avoidance of poorly observable trajectories: a predic-
tive control perspective. IFAC Proc. Vol. 41(2), 1952–1957 (2008)

13. Chen, X., Heidarinejad, M., Liu, J., Christofides, P.D.: Distributed economic MPC: application
to a nonlinear chemical process network. J. Process Control 22(4), 689–699 (2012)

14. Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model
predictive control. IEEE Trans. Autom. Control 56(3), 703–707 (2011)

15. Do, K.D., Jiang, Z.P., Pan, J.: Robust adaptive path following of underactuated ships. Auto-
matica 40(6), 929–944 (2004)

16. El Ghoumari, M., Tantau, H.J., Serrano, J.: Nonlinear constrained MPC: real-time implemen-
tation of greenhouse air temperature control. Comput. Electron. Agric. 49(3), 345–356 (2005)

17. Ellis, M., Durand, H., Christofides, P.: A tutorial review of economic model predictive control
methods. J. Process Control 24(8), 1156–1178 (2014)

18. Faulwasser, T.: Optimization-Based Solutions to Constrained Trajectory-Tracking and Path-
Following Problems. Number 3 in Contributions in Systems Theory and Automatic Control.
Shaker Verlag, Herzogenrath, Otto-von-Guericke University Magdeburg (2013)

19. Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on an exact turnpike
property. In: Proceedings of the 9th IFAC Symposium on Advanced Control of Chemical
Process (ADCHEM), pp. 525–530 (2015)
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56. Müller, M.A., Angeli, D., Allgöwer, F.: On necessity and robustness of dissipativity in eco-
nomic model predictive control. IEEE Trans. Autom. Control 60(6), 1671–1676 (2015)

57. Nielsen, C., Maggiore, M.: Output stabilization and maneuver regulation: a geometric ap-
proach. Syst. Control Lett. 55, 418–427 (2006)

58. Nielsen, C., Maggiore, M.: On local transverse feedback linearization. SIAM J. Control Optim.
47, 2227–2250 (2008)

59. Nielsen, C., Fulford, C., Maggiore, M.: Path following using transverse feedback linearization:
application to a maglev positioning system. Automatica 46(3), 585–590 (2010)
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Hybrid Model Predictive Control

Ricardo G. Sanfelice

1 Summary

Model Predictive Control (MPC) is a powerful method for the control of dynamical
systems under constraints. Due to its computational nature, MPC is typically for-
mulated in discrete time, though some continuous-time approaches are available. In
addition, the literature features several MPC strategies that are labeled as hybrid, ei-
ther due to features of the state of the system, its dynamics, or the control algorithm.
The term hybrid in the context of MPC has been used to refer to systems that are to
be controlled (or the control algorithm) with continuous-valued and discrete-valued
state components; e.g., in the control of a thermostat system, a continuous-valued
state component would represent temperature and a discrete-valued state component
would represent whether the heating/cooling device is on or off. The term hybrid has
also been used in the literature for systems with dynamics whose right-hand sides
depend discontinuously on their state or on their input. In addition, the term hy-
brid has also been used to emphasize nonsmoothness in the control algorithm, for
instance, when the algorithm switches between different control laws or when it is
implemented using the sample-data control paradigm.

Due to the need for digitally implementable control algorithms, it is natural to
consider dynamical models given in discrete time. In fact, the vast majority of the
results in the literature of hybrid MPC fall into such a category. This article presents
those strategies first. There are also a number of strategies that follow a sampled-data
control approach. Rather than discretizing the system to control, such approaches in-
corporate into the mathematical models the continuous-time dynamics of the plant
as well as the (periodic) discrete events at which computations occur. These type of
strategies are presented after the ones for discrete-time systems. Strategies for sys-
tems with combined continuous and discrete dynamics in which the state variables
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may flow and, at times exhibit jumps due to state or input conditions are scarce.
As argued in Section 3, new advances in hybrid dynamical systems are needed to
develop those strategies.

In light of the outlined state of the art, this chapter covers hybrid MPC results in
each of the main three forms seen in the literature and is organized as follows:

1. Discrete-time MPC for systems modeled as discrete-time systems with discon-
tinuous right-hand sides (Section 2.1);

2. Discrete-time MPC for systems modeled as discrete-time systems with a state
that contains continuous and discrete-valued states (Section 2.2);

3. Discrete-time MPC for systems modeled as discrete-time systems using mem-
ory and logic variables (Section 2.3);

4. Continuous-discrete MPC for systems modeled as continuous-time systems,
with piecewise continuous inputs (Section 2.4.1) and piecewise constant inputs
(Section 2.4.2);

5. Continuous-discrete MPC for systems modeled as continuous-time systems
with local static state-feedback controllers (Section 2.5);

6. Discrete-time MPC for systems modeled as continuous-time linear systems
with impulses (Section 2.6).

Each of these approaches are summarized in an unifying framework to facilitate
comparison. In particular, the core optimization problem to solve in each approach
is formally stated. Computational solutions to each such problem can be obtained
using algorithms to solve nonlinear optimization problems available literature; see,
e.g., [20].

2 Hybrid Model Predictive Control

The MPC strategies presented in this section perform the following tasks:

• Measure the current state of the system to control;
• Predict for a finite amount of time – the so-called prediction horizon – the

trajectories of the system to control from the current state and for a family of
allowed input signals;

• Select an input signal that is a minimizer of a given cost functional, which po-
tentially depends on the predicted trajectories and the input, and that satisfies a
terminal constraint (if one is given);

• Apply the input signal for a finite amount of time – the so-called control
horizon.

Most MPC algorithms perform these tasks repetitively in the order listed. The fol-
lowing sections provide details on these tasks for each of the strategies listed in
Section 1. Regardless of the type of model used, and unless otherwise stated, the
state and the input of the system to control are denoted as x and u, while the
state and input constraints (if any) are denoted as X and U , respectively. When
the model of the system to control is of discrete-time type, the notation x+ indi-
cates the value of the state after a discrete-time step. Discrete time is denoted as
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k, which takes values in N := {0,1,2 . . .}. For continuous-time models, the nota-
tion ẋ denotes the derivative with respect to ordinary time. Ordinary time is denoted
as t, and takes values from R≥0 := [0,∞). The MPC strategies require solving an
optimization problem using the current state of the system. Since the strategies
presented in this article are stated for time-invariant systems, we treat the current
state as an initial condition, and denote it as x0. The prediction horizon in dis-
crete time is denoted N ∈ N>0 := {1,2, . . .}, while in continuous time is denoted
by T ∈ R>0 := (0,∞). Similarly, the control horizon in discrete time is denoted
Nc ∈ N>0 := {1,2, . . .}, while in continuous time is denoted by Tc ∈ R>0 := (0,∞).
We also define N<N := {0,1,2, . . . ,N − 1} and N≤N := {0,1,2, . . . ,N} for a given
N ∈N>0. Given a vector x, |x| denotes its Euclidean norm and given p ∈ [1,∞], |x|p
denotes its p-norm. Given n ∈N>0, Rn denotes the Euclidean space of dimension n.

2.1 Discrete-Time MPC for Discrete-Time Systems
with Discontinuous Right-Hand Sides

MPC for discrete-time systems that have piecewise-linear but discontinuous right-
hand sides is studied in [23]. Under the name Piecewise Affine System (PWA), the
systems considered in [23] take the form

x+ = Aix+Biu+ fi (1)

y = Cix+Diu (2)

subject to x ∈Ωi,u ∈ Ui(x), i ∈ S (3)

where S := {1,2, . . . ,s} with s finite, the sequence of constant matrices {(Ai,Bi, fi,Ci,
Di)}i∈S has elements with appropriate dimensions, {Ωi}s

i=1 is a collection of poly-
hedra such that ⋃

i∈S

Ωi = X

where X is the state space and

int(Ωi)∩ int(Ω j) = /0 ∀i �= j, i, j ∈ S

where, for each x ∈ Ωi, Ui(x) is the set of allowed inputs. The subset of elements i
in S for which 0 ∈ Ωi is denoted as S0, while all of the other elements in S define
S1. The origin of (1)–(3) is assumed to be an equilibrium state with u = 0, and the
requirement fi = 0 for all i ∈ S0 is further imposed. It should be noted that in [23],
this class of systems is referred to as hybrid, presumably due to the right-hand side
being discontinuous – in fact, in general, the map

(x,u) �→ {Aix+Biu+ fi : i ∈ S,x ∈Ωi,u ∈ U(x) }

defined on
⋃

i∈S
⋃

x∈Ωi
({x}×U(x)) is discontinuous.
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Given the current state x0, a prediction horizon N ∈ N>0, a terminal constraint
set X f , a stage cost L, and a terminal cost F , the problem of interest consists of
minimizing the cost functional

J (x, i,u) := F(x(N))+
N−1

∑
k=0

L(x(k), i(k),u(k))

whose argument is actually k �→ (x(k), i(k),u(k)), which is subject to the con-
strained dynamics in (1)–(3). Note that k �→ x(k) is uniquely defined by x0 and
k �→ (i(k),u(k)). The initial state for the x component is such that x(0) = x0 and
the final value is restricted to x(N) ∈ X f . The argument k �→ (x(k), i(k),u(k)) of the
functional is such that x(k) is uniquely defined for each k ∈ N≤N , while (i(k),u(k))
is uniquely defined for each k ∈ N<N .

The problem to solve at each discrete-time instant is as follows:

Problem 1. Given the current state x0, a prediction horizon N ∈N>0, a terminal
constraint set X f , a stage cost L, and a terminal cost F

minJ (x, i,u)

subject to

x(0) = x0

x(N) ∈ X f

x(k+1) = Ai(k)x(k)+Bi(k)u(k)+ fi(k) ∀k ∈ N<N

y(k) =Ci(k)x(k)+Di(k)u(k)
x(k) ∈Ωi(k), u(k) ∈ Ui(k)(x(k)), i(k) ∈ S

}
∀k ∈ N≤N

A minimizer1 k �→ (x∗(k), i∗(k),u∗(k)) defines the value of the cost functional
J ∗(x0) = J (x∗, i∗,u∗).

A typical choice of the functions L and F in the cost functional J is

L(x, i,u) = |Qix|p + |Riu|p, F(x) = |Px|p

for some p ∈ [1,∞], where {(Qi,Ri)}i∈S and P are matrices of appropriate dimen-
sions. When p = 1 or p = ∞, Problem 1 can be rewritten as a mixed integer linear
program (MILP). When the stage and terminal costs are quadratic, Problem 1 can
be rewritten as a mixed integer quadratic program (MIQP).

Key properties of Problem 1 were reported in [23], which due to space constraints
are not included here. Under suitable assumptions, conditions guaranteeing recur-

1 Or, equivalently, k �→ (i∗(k),u∗(k)), due to k �→ x∗(k) being uniquely defined by x0 and k �→
(i∗(k),u∗(k)).
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sive feasibility and asymptotic stability of the origin are given in [23, Theorem III.2].
Properties of and techniques for the computation of the terminal cost and terminal
constraint set are also given; see [23, Section IV and Section V]. The issue of ex-
istence of minimizers for Problem 1 requires careful treatment, in particular, due
to the partitions of the state space introduced by the sets Ωi. Furthermore, due to
Problem 1 being a nonconvex nonlinear optimization problem, the authors of [23]
suggest to use optimization solvers such as fmincon and fminunc in Matlab.

2.2 Discrete-Time MPC for Discrete-Time Systems
with Mixed States

An MPC formulation for discrete-time systems to handle switching among differ-
ent linear dynamics, on/off inputs, logic states and their transitions, as well as logic
constraints on input and state variables is given in [5–8, 23]. The nominal mod-
els considered therein, which are called Mixed Logical Dynamical (MLD) systems,
are discrete-time systems involving continuous-valued and discrete-valued states,
inputs, and outputs, as well as constraints depending on the states, the inputs, and
the outputs. These system models are given as

x+ = Ax+B1u+B2δ +B3z+B4 (4)

y = Cx+D1u+D2δ +D3z+D4 (5)

subject to E2δ +E3z ≤ E1u+E4x+E5 (6)

In most MLD models in the literature, the state vector x is partitioned as (xc,x�),
where xc ∈ R

nc are the continuous-valued components and x� ∈ {0,1}n� are the
discrete-valued components of x. Similarly, the input u is partitioned as (uc,u�) ∈
R

mc ×{0,1}m� and the output y as (yc,y�) ∈ R
pc ×{0,1}p� . The continuous-valued

auxiliary variables z ∈ R
rc and the discrete-valued auxiliary variables δ ∈ {0,1}r�

are added to capture constraints, logic statements, and the such. The matrices A,
{Bi}3

i=1, B4, C, {Di}3
i=1, D4, and {Ei}5

i=1 have suitable dimensions. Given the cur-
rent state x0, a prediction horizon N ∈ N>0, and a terminal constraint set X f , the
problem of interest consists of minimizing the cost functional

J (x,z,δ ,u)

whose argument is actually k �→ (x(k),z(k),δ (k),u(k)), and is subject to the con-
strained dynamics in (4)–(6). The initial state for the x component is such that
x(0) = x0 and its final value is restricted to x(N) ∈ X f . In the literature, this class
of dynamical systems is referred to as hybrid mainly due to having a discontinuous
right-hand side and due to the states, inputs, and outputs having continuous-valued
and discrete-valued components.
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The problem to solve at each discrete-time instant is as follows:

Problem 2. Given the current state x0, a prediction horizon N ∈N>0, a terminal
set X f , and a cost functional J

minJ (x,z,δ ,u)
subject to

x(0) = x0

x(N) ∈ X f

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)+B4 ∀k ∈ N<N

y(k) =Cx(k)+D1u(k)+D2δ (k)+D3z(k)+D4

E2δ (k)+E3z(k)≤ E1u(k)+E4x(k)+E5

}
∀k ∈ N≤N

A minimizer k �→ (x∗(k),z∗(k),δ ∗(k),u∗(k)) defines the value of the cost func-
tional J ∗(x0) = J (x∗,z∗,δ ∗,u∗).

A particular choice of the cost functional J made in [5–8, 23] is

J (x,z,δ ,u) =
N−1

∑
k=0

(|Qx(k)|p + |Ru(k)|p + |Qδ δ (k)|p + |Qzz(k)|p)+ |Px(N)|p

for some p ∈ [1,∞]. The term inside the sum is the stage cost, which, given matrices
Q, Qδ , and Qz, involves the value of the current and predicted state x, input u, and
auxiliary variables (δ ,z) for N − 1 steps in the future. The last term in J is the
terminal cost.

Perhaps the most comprehensive reference about Problem 2 is Chapter 18 of the
recent monograph [8]. Therein, the authors consider the same model (but with B4 =
0 and D4 = D5) in Section 18.1. By picking the cost functional above, Problem 2 is
formulated as a MIQP or MILP, according to the choice of p. A complete rewrite of
Problem 2 including slack variables is given in (18.28) in the said reference. Mixed-
integer optimization methods suitable to solve Problem 2 are also outlined. The
chapter concludes with discussions on how to derive state feedback solutions via
the batch approach and the recursive approach. This class of systems is referred to
as hybrid due to the right-hand side being discontinuous and due to the states, inputs,
and outputs having continuous-valued and discrete-valued components.

2.3 Discrete-Time MPC for Discrete-Time Systems Using Memory
and Logic Variables

Variations of the basic MPC formulation, obtained by adding memory and logic
states, for discrete-time systems of the following form is proposed in [42]:
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x+ = g(x,u) (7)

subject to x ∈ X ,u ∈ U (8)

The set X defines the constraint on the state and U is the set of allowed inputs.
Recall from chapter “The Essentials of Model Predictive Control” of this handbook
(see also chapters “Dynamic Programming, Optimal Control and Model Predictive
Control” and “Set-Valued and Lyapunov Methods for MPC”) that the basic MPC
formulation consists of minimizing the cost functional

J (x,u) := F(x(N))+
N−1

∑
k=0

L(x(k),u(k))

where x is the current state, N ∈ N>0 is the prediction horizon, L is the stage
cost, and F is the terminal cost. The function k �→ x(k) in the cost functional J is
the solution to (7)–(8) at time k, starting from the initial condition x0 and under the
influence of the input sequence k �→ u(k). The two variations of this MPC formula-
tion proposed in [42] are described next.

To incorporate memory in the selection of the input, define the buffer gain as
μ > 1, the memory horizon as M ∈ N>0,M ≤ N, and the memory state as � =
(�1, �2, . . . , �M). The optimization problem in [42] involving the memory state � that
is to be solved at each discrete-time instant is as follows:

Problem 3. Given the current state x0, a prediction horizon N ∈ N>0, a stage
cost L, a terminal cost F , a buffer gain μ > 1, a memory horizon M ∈N>0 such
that M ≤ N, and the current memory state �, solve the following problems:

Problem 3a:

minJ (x,u)

subject to

x(0) = x0

x(k+1) = g(x(k),u(k)) ∀k ∈ N<N

u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k �→ (x∗(k),v∗(k)) and define
V (x0) = J (x∗,v∗) as the associated value function.2

Problem 3b:

minJ (x,u)

subject to

2Note that the only constraint on v∗(N) is for it to belong to U .
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x(0) = x0

x(k+1) = g(x(k),u(k)) ∀k ∈ N<N

u(k−1) = �k ∀k ∈ {1,2, . . . ,M}
u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k �→ (x∗(k),w∗(k)) and define
W (x0, �) = J (x∗,w∗) as the associated value function.

After solving3 Problem 3a and Problem 3b, update the memory state accord-
ing to

�+ =

{
(v∗(1),v∗(2), . . . ,v∗(M)) if W (x0, �)> μV (x0)
(w∗(1),w∗(2), . . . ,w∗(M)) if W (x0, �)≤ μV (x0)

and the minimizing control input k �→ u∗(k) is4

u∗ =

{
v∗ if W (x0, �)> μV (x0)
w∗ if W (x0, �)≤ μV (x0)

Problem 3a provides a solution to the standard MPC problem without memory
states. The solution from this problem is used in Problem 3b, which uses the cur-
rent value of the memory state � as it enforces that the first M entries of u, namely,
(u(0),u(1), . . . ,u(M −1)), are equal to �. The selection of the control input is such
that when the improvement provided by the solution to the standard MPC problem
is significant when compared to the one with the memory states. The optimal con-
trol input u∗ is given by v∗ in Problem 3a when the improvement provided by the
solution to that problem (namely, k �→ (x∗(k),v∗(k))) is “significantly better” – as
characterized by the buffer gain μ > 1 – than the improvement provided by the
solution to the problem involving memory states (namely, k �→ (x∗(k),w∗(k)) in
Problem 3b). More precisely, if the value function of the problem that does not use
information about the previous solution (i.e., Problem 3a) is a factor 1/μ ∈ (0,1)
smaller than the value function of the problem solved using previous information
(i.e., Problem 3b), namely,

V (x0)<
1
μ

W (x0, �) (9)

then the optimal solution comes from Problem 3a and the memory state is updated
with the input component of the solution to that problem. Note that when V (x0) ≥

3The solution component x∗ in Problem 3a and in Problem 3b would be most likely different, but
we use the same label due to not being part of the logic.
4The state component k �→ x∗(k) associated to k �→ u∗(k) is obtained by applying u∗ to the system

to control.
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1
μW (x0, �) and the control horizon is equal to one, the input applied to the system to
control would be �1 and that � is subsequently updated to (�2, �3, . . . , �M,w∗(M)).

To incorporate logic states in the selection of the input, define the buffer gain as
μ > 1, the logic state as q taking its value from Q := {1,2, . . . , q̄} where q̄ ∈ N>0,
and, for each q ∈ Q, define the cost functional

Jq(x,u) := Fq(x(N))+
N−1

∑
k=0

Lq(x(k),u(k))

where Lq is the stage cost and Fq the terminal cost associated with q. The proposed
optimization problem involving a logic variable q to solve at each discrete-time
instant is as follows:

Problem 4. Given the current state x0, a prediction horizon N ∈ N>0, stage
costs {Lq}q∈Q, terminal costs {Fq}q∈Q, and a buffer gain μ > 1, solve the
following problem for each q ∈ Q:

Problem 4-q:

minJq(x,u)

subject to

x(0) = x0

x(k+1) = g(x(k),u(k)) ∀k ∈ N<N

u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k �→ (xq∗(k),vq∗(k)) and define
Vq(x0) = Jq(xq∗,vq∗) as the associated value function.

After solving Problem 4-q for each q ∈ Q, pick

q∗ ∈ argmin
q∈Q

Vq(x0)

update the logic state according to

q+ =

{
q∗ if Vq(x0)> μVq∗(x0)
q if Vq(x0)≤ μVq∗(x0)

and the minimizing control input k �→ u∗(k) is

u∗ =

{
vq∗ if Vq(x0)> μVq∗(x0)
vq if Vq(x0)≤ μVq∗(x0)
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The value functions Vq(x0) associated to each optimal solution obtained in Prob-
lem 4-q are compared when determining a new value of the logic variable. Such
value of q is denoted as q∗, and is such that Vq∗(x0) is among those minimizers in
{Vq(x0)}q∈Q with “enough improvement” – as characterized by μ –when compared
to the value function associated to the current value of q. In fact, according to Prob-
lem 4, a change on the value of the logic variable occurs when there exists q∗ ∈ Q
such that

Vq∗(x0)<
1
μ

Vq(x0) (10)

Discussions in [42] indicate that the MPC strategies with memory states and
logic variables guarantee robustness to small measurement noise. Such robustness
is possible due to the hysteresis mechanism incorporated by conditions (9) and (10)
in the strategies above. It is also likely that these MPC strategies confer robustness
to other classes of perturbations, mainly due to the said hysteresis mechanism they
implement, which, in particular, prevents the control law from chattering.

Several other variants of MPC for discrete-time systems are available in the litera-
ture. In particular, [44] and [45] propose a discrete-time MPC strategy that explicitly
accounts for computation time and events.

2.4 Periodic Continuous-Discrete MPC for Continuous-Time
Systems

In this section, we present model predictive control strategies for continuous-time
systems that periodically recompute an input signal solving the optimization prob-
lem and apply it over a bounded horizon. Such MPC strategies appear in the litera-
ture under the name continuous-discrete MPC.

2.4.1 With Piecewise Continuous Inputs

MPC for continuous-time systems with input constraints is proposed in [10]. The
class of systems is given by

ẋ = f (x,u) x ∈ R
n, u ∈ U (11)

where U is the input constraint set. The right-hand side f is assumed to be twice
continuously differentiable, to satisfy f (0,0) = 0, and such that it leads to unique
solutions under the effect of piecewise right-continuous input signals. The input
constraint set U is assumed to be compact, convex, and with the property that 0
belongs to the interior of U .

Given the current state x0, a prediction horizon T > 0, a terminal constraint set
X f , a stage cost L, and a terminal cost F , the problem of interest consists of mini-
mizing the cost functional

J (x,u) := F(x(T ))+
∫ T

0
L(x(τ),u(τ))dτ (12)
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whose argument is actually t �→ (x(t),u(t)) which is subject to the constrained dy-
namics in (11). The initial condition is such that x(0) = x0, and the value of x after
T seconds is restricted to X f . More precisely, the problem to solve every T seconds
is as follows:

Problem 5. Given the current state x0, a prediction horizon T > 0, a terminal
constraint set X f , a stage cost L, and a terminal cost F

minJ (x,u)

subject to

x(0) = x0

x(T ) ∈ X f

d
dt

x(t) = f (x(t),u(t)) ∀t ∈ (0,T )

u(t) ∈ U ∀t ∈ [0,T ]

A minimizer t �→ (x∗(t),u∗(t)) defines the value of the cost functional J ∗(x0) =
J (x∗,u∗).

In [10], the approach to solve this problem consists of picking X f to be a neigh-
borhood of the origin that is invariant in forward time for the closed-loop system
resulting from using a (local) linear state-feedback law of the form Kx, and by pick-
ing F so that the terminal cost upper bounds the infinite horizon cost from X f .
According to [10], the design of the set X f , the gain K, and the function F can
be performed offline. Due to the value of the cost functional providing a bound to
an infinite horizon cost problem, the authors refer to this strategy as quasi-infinite
horizon nonlinear MPC.

The application of the stabilizing linear feedback law Kx to the system (11) gen-
erates a solution-input pair t �→ (x(t),u(t)) that satisfies the input and terminal con-
straints, for any initial condition x0 ∈ X f . Therefore, the feasible set of initial condi-
tions to Problem 5 includes X f . The actual moving horizon implementation of the
MPC strategy in [10] would not use the (local) linear state-feedback law, but rather,
guarantee feasibility. The moving horizon implementation would recursively apply
the open-loop optimal control solution for δ < T seconds. The constant δ defines
the sampling period for obtaining new measurements of the state of the plant. At
such events, the optimal solution to the open-loop problem is recomputed and then
the input to the plant is updated.

Note that forward/recursive feasibility of the closed-loop is guaranteed by the
terminal constraint and the local feedback law Kx. This is because, as stated in [10],
the MPC strategy can be thought of as a receding horizon implementation of the
following switching control strategy:

• Over a finite horizon of length T , apply the optimal input obtained by solving
Problem 5 so as to drive the state to the terminal set;
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• Once the state is in the terminal set, switch the control input to the (local) linear
state-feedback law so as to steer the state to the origin.

Recently, this strategy was extended in [1] to the case where the MPC law is
recomputed at time instances that are not periodic.

2.4.2 With Piecewise Constant Inputs

A minimizing input t �→ u∗(t) obtained from a solution to Problem 5 is a piecewise-
continuous function defined on an interval of length equal to the prediction horizon
T . Using a similar continuous-discrete MPC strategy, in [27], the class of inputs
allowed is restricted to piecewise-constant functions and the strategy is of sample-
and-hold type. More precisely, the input u satisfies the following:

(�) The input signal u is a piecewise-constant function with intervals of constant
value of length δ seconds, within the control horizon Ncδ , where Nc ∈N>0 and
Ncδ ≤ T .

In such a (zero-order) sample-and-hold approach, the input applied to the plant re-
mains constant in between the sampling events. In [27], this mechanism is modeled
by adding an extra state xu to the system with the following dynamics:

ẋu = 0 in between sampling events

x+u = κ(x) at sampling events

*2inwhere κ denotes the function assigning the feedback at each event. Further-
more, the setting in [27] allows for state constraints x ∈ X in (11), where X is the
state constraint set.

Given the current state x0, a prediction horizon T , a sampling time δ ∈ (0,T ], a
control horizon Ncδ ≤ T , and a terminal constraint set X f , the problem formulated
in [27] is that of minimizing (12) at every sampling time instant, where

F(x) = x�Px, L(x,u) = x�Qx+u�Ru (13)

*2infor given matrices P, Q, and R of appropriate dimensions. The argument
of (12) is actually t �→ (x(t),u(t)) with the input component being a piecewise con-
stant function.

The problem to solve at each periodic sampling event occurring every δ seconds
is as follows:

Problem 6. Given the current state x0, a prediction horizon T > 0, a sampling
time δ ∈ (0,T ], a control horizon Ncδ ∈ (0,T ], a terminal constraint set X f ,
and matrices P, Q, and R

minJ (x,u)

subject to
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x(0) = x0

x(T ) ∈ X f

d
dt

x(t) = f (x(t),u(t)) ∀t ∈ (0,T )

x(t) ∈ X , u(t) ∈ U ∀t ∈ [0,T ]

u satisfies (�)

A minimizer t �→ (x∗(t),u∗(t)) defines the value of the cost functional J ∗(x0) =
J (x∗,u∗).

A somewhat related problem that involves periodic continuous-discrete MPC for
continuous-time systems with piecewise constant inputs was studied in [32]. In that
reference, MPC is used to solve the problem of finding a sampled version of a
continuous-time controller that leads to a trajectory of the resulting sample-data
system that is as close as possible to the trajectory of the closed-loop system with
the original continuous-time controller. To characterize closeness between them,
the stage cost of the MPC problem in [32] penalizes the error between the two
trajectories.

2.5 Periodic Continuous-Time MPC for Continuous-Time Systems
Combined with Local Static State-Feedback Controllers

A strategy uniting two controllers for the asymptotic stabilization of the origin of
continuous-time systems in affine control form is provided in [13]; see also [11,
Chapter 5]. The family of continuous-time systems considered in [13] is given by

ẋ = f1(x)+ f2(x)u x ∈ R
n, u ∈ U (14)

where U = {u : |u| ≤ umax } for some umax ≥ 0 and f1(0) = 0.
One of the controllers in the proposed strategy is a continuous-discrete MPC

controller with piecewise-constant inputs and implemented with periodic sampling,
similar to the strategy presented in Section 2.4.2. The stage cost used has the same
form as in (13). In [13], this particular continuous-discrete MPC algorithm is de-
signed so that, at each periodic sampling event, Problem 6 is solved with control
horizon equal to the prediction horizon T and no state constraint set.

The second controller in the strategy in [13] consists of a family of finitely many
locally stabilizing static state-feedback controllers {κ1,κ2, . . . ,κr}, r ∈N>0, that are
designed using a family of control Lyapunov functions {V1,V2, . . . ,Vr}, following
the universal construction proposed in [24]. These individual control laws can be
designed to satisfy the input constraint in (14). When the second controller is the
one applied to (14), the particular element in the family that is actually used is such
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that x belongs to its basin of attraction, which in [13] is defined by a sublevel set of
the control Lyapunov function associated with that controller.

The two controllers outlined above are combined via a strategy that uses the static
state-feedback controllers as “fall-back” in the event that the continuous-discrete
MPC controller is unable to achieve closed-loop stability, which could be the case
when Problem 6 does not have a solution or does not terminate before δ seconds.
The strategy proposed for combining them is as follows. The control system in (14)
is treated as the switching system

ẋ = f1(x)+ f2(x)uσ x ∈ R
n, u ∈ U

where t �→ σ(t) ∈ {1,2} is a switching signal that determines which controller is
being used: σ = 1 indicates that u = u1 with u1 assigned by the MPC control law
κ , and σ = 2 that u = u2 with u2 assigned by an element in the family of static
state-feedback laws {κ1,κ2, . . . ,κr}. The particular selection of σ in [13] is

σ(t) =
{

1 if t ∈ [0, T̄ )
2 if t ∈ [T̄ ,∞) (15)

where T̄ is the smallest time such that

L f1Vi(x(T̄ ))+L f2Vi(x(T̄ ))κ(T̄ )≥ 0 (16)

or the MPC algorithm fails to provide an output value, where i ∈ K := {1,2, . . . ,r} is
such that x(0) belongs to the basin of attraction induced by the static state-feedback
controller κi. The idea behind the state-based triggering condition (16) is that since
x(0) is in the basin of attraction of a controller in the family {κ1,κ2, . . . ,κr}, then
a solution guarantees a strict decrease of the control Lyapunov function associated
with that controller.

The work in [13] also includes a switching strategy that is designed to enhance
closed-loop performance. Also, an extension to these strategies for the case when
the right-hand side of (14) includes additive uncertainties is proposed in [29]. See
also [30].

2.6 Periodic Discrete-Time MPC for Continuous-Time Linear
Systems with Impulses

MPC for linear time-invariant systems with impulses in the state, and with state and
input constraints is proposed in [37]. The set of times at which impulses occur are
predetermined and given by the sequence of times

{tk}k∈N, tk = kδ
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where δ > 0 is the sampling (or, as defined in [37], the impulsive) period. The class
of impulsive systems is given by

ẋ(t) = Ax(t) ∀t ∈ R≥0, t �= kδ (17)

x(t+) = x(t)+Buk ∀t = kδ (18)

for each k ∈ N, where t �→ x(t) is a solution associated to {uk}k∈N and such that

x(t) ∈ X ∀t ∈ R≥0, uk ∈ U ∀k ∈ N

and x(t+) is the right limit of x(t) at t = kδ .
The MPC problem in [37] employs over approximation techniques to reduce the

infinite number of constraints arising from the dynamics of (17)–(18) to a finite set
of inequalities. For a given δ > 0, the collection {Ai}K

i=1 is introduced to define a
polytopic over approximation for the flows of (17)–(18), namely, choose {Ai}K

i=1
such that

{exp(At) : t ∈ [0,δ ] } ⊂ co{Ai}K
i=1

To determine the stage cost L, define the polytope

S(x,u) = co{Ai}K
i=1 (x+Bu)

and, given a set Z and a terminal constraint set X f ⊂ Z that, for some feedback, is
invariant for (17)–(18), define the input constraint

U f (x) =
{

u ∈ U : exp(Aδ )(x+Bu) ∈ X f ,S(x,u)⊂ Z
}

With these definitions, the stage cost L is given by the distance to the set

D =
{
(x,u) : x ∈ X f ,u ∈ U f (x)

}

which is the graph of U f on X f .
Within the above setting, given the current state x0, a prediction horizon N ∈N>0,

a terminal constraint set X f , and a set Z , the problem formulated in [37] consists of
minimizing the cost functional

J (x,u) =
N−1

∑
k=0

L(x(τk),u(τk))

whose argument is k �→ (x(τk),u(τk)), where x(τk) is the evaluation at the N future
impulse times τk of the solution to (17)–(18) from x0 resulting from applying u(τk)
at the impulse times, where for some k0 ∈ N,

τk = tk+k0

and
u(τk) = uk+k0
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for each k ∈ {0,1, . . . ,N −1}. The constraints associated to the minimization prob-
lem are: (i) the polytope S remains within the state constraint set X , and (ii) the
value of the resulting solution reaches the terminal constraint set X f at the end of
the prediction horizon N. More precisely, the problem to solve at each periodic
impulsive event is as follows:

Problem 7. Given the current state x0, a prediction horizon N ∈N>0, a terminal
constraint set X f , a set Z , and a stage cost L

minJ (x,u)

subject to

x(0) = x0

x(τN) ∈ X f

ẋ(t) = Ax(t) ∀t ∈ (0,Nδ ), t �= τk

x(t+) = x(t)+Bu(t) ∀t = τk

u(τk) ∈ U
S(x(τk),u(τk))⊂ X

⎫⎪⎪⎬
⎪⎪⎭

∀k ∈ {0,1, . . . ,N −1}

A minimizer k �→ (x∗(k),u∗(k)) defines the value of the cost functional
J ∗(x0) = J (x∗,u∗).

In [37], instead of imposing the conditions involving the impulsive system in
Problem 7 that are in the first two lines of the expressions within the brace, condi-
tions on the solution x evaluated at each τk are imposed. Such a difference is possible
due to the impulses occurring periodically and the continuous-time dynamics being
linear. In fact, the values of the solution at the instants τk are given by the solution
to the discrete-time system

x+ = exp(Aδ )(x+Bu)

from x(0) = x0 and under the effect of the input equal to u(τk). The stability notion
used therein only requires closeness and convergence of the values of the solution
at the instants τk, which the authors refer to as a weak property. Following such a
discretization approach, it is shown in [37] that Problem 7 can be formulated as a
convex quadratic program (when L is convex). The MPC strategy in [37] combines
features of impulsive systems and of sample-data systems, and is one of the MPC
approaches found in the literature that is closest to hybrid dynamical systems, as
introduced in the next section.
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3 Towards MPC for Hybrid Dynamical Systems

Hybrid dynamical systems are systems with states that can evolve continuously (or
flow) and, at times, have abrupt changes (or jump). Such systems may have state
components that are continuous valued as well as components that are discrete val-
ued, similar to the discrete-time systems described in Section 2.2. The conditions
allowing continuous or discrete changes typically depend on the values of the state,
the inputs, and outputs. The development of MPC strategies for such systems is
in its infancy, possibly the most related strategy being the one described in Sec-
tion 2.6 (even though it essentially replaces the flows by exp(Aδ ) due to assum-
ing periodic impulses occurring every δ seconds). On the other hand, research on
methods to solve optimal control problems for hybrid dynamical systems has been
quite active over the past few decades, and such developments could be exploited to
develop MPC strategies for such systems. In particular, maximum principles of op-
timal control following Pontryagin’s maximum principle [33] have been generated
for systems with discontinuous right-hand side [38] and for certain classes of hybrid
systems [15, 36, 39]. Shown to be useful in several applications [12, 39], these prin-
ciples establish necessary conditions for optimality in terms of an adjoint function
and a Hamiltonian satisfying the “classical” conditions along flow, in addition to
matching conditions at jumps.

Numerous frameworks for modeling and analysis of hybrid systems have ap-
peared in the literature. These include the work of Tavernini [40], Michel and Hu
[31], Lygeros et al. [26], Aubin et al. [4], and van der Schaft and Schumacher [43],
among others. In the framework of [16, 17] the continuous dynamics (or flows) of
a hybrid dynamical system are modeled using differential inclusions while the dis-
crete dynamics (or jumps) are captured by difference inclusions. Trajectories to a
hybrid dynamical system conveniently use two parameters: an ordinary time param-
eter t ∈ R≥0, which is incremented continuously as flows occur, and a discrete time
parameter j ∈ N, which is incremented at unitary steps when jumps occur. The con-
ditions determining whether a trajectory to a hybrid system should flow or jump are
captured by subsets of the state space and input space. In simple terms, given an
input (t, j) �→ u(t, j), a trajectory (t, j) �→ x(t, j) to a hybrid system satisfies, over
intervals of flow,

d
dt

x(t, j) ∈ F(x(t, j),u(t, j))

when
(x(t, j),u(t, j)) ∈C

and, at jump times,
x(t, j+1) ∈ G(x(t, j),u(t, j))

when
(x(t, j),u(t, j)) ∈ D



216 Ricardo G. Sanfelice

The domain of a trajectory x is denoted domx, which is a hybrid time domain [17].
The above definition of trajectory (or solution) implicitly assumes that domx =
domu = dom(x,u).

In this way, a hybrid dynamical system is defined by a set C, called the flow set, a
set-valued map F , called the flow map, a set D, called the jump set, and a set-valued
map G, called the jump map. Then, a hybrid system with state x and input u can be
written in the compact form

H :

{
ẋ ∈ F(x,u) (x,u) ∈C
x+ ∈ G(x,u) (x,u) ∈ D

(19)

The objects defining the data of the hybrid system H are specified as H =
(C,F,D,G). The state space for x is given by the Euclidean space R

n while the
space for inputs u is given by the set U . The set C ⊂R

n ×U defines the set of points
in R

n ×U in which flows are possible according to the differential inclusion defined
by the flow map F : C ⇒R

n. The set D ⊂R
n ×U defines the set of points in R

n ×U
from where jumps are possible according to the difference inclusion defined by the
set-valued map G : D ⇒ R

n.
Given the current value of the state x0, and the amount of flow time T and the

number of jumps J to predict forward in time, which define a hybrid prediction
horizon (T,J), an MPC strategy will need to compute trajectories of (19) over the
window of hybrid time [0,T ]×{0,1, . . . ,J} for all possibly allowed inputs. The fact
that different inputs may be applied from the current state x0 suggests that there
may be multiple possible trajectories of (19) from such a point. While this feature
is already present in the receding horizon approaches in [8, 9, 19, 27, 28, 34], the
hybrid case further adds nonuniqueness due to the potential nonuniqueness of so-
lutions to (19), in particular, due to overlaps between the flow and the jump sets.
To deal with nonuniqueness, one would need a set-valued model for prediction that
includes all possible predicted hybrid trajectories (and their associated inputs) from
x0 and over [0,T ]×{0,1, . . . ,J}.

An appropriate cost functional for an MPC strategy for (19), defined over the
prediction horizon (T,J), may take the form

J (x,u) :=
∫

t:(t, j)∈dom(x,u),0≤t≤T
Lc(x(t, j),u(t, j))dt

+ ∑
j:(t, j)∈dom(x,u),0< j≤J

Ld(x(t j, j),u(t j, j))+F(x(T,J))
(20)

where t1, t2, . . . , t j, . . . are the jump times of (x,u). The first two arguments of J
correspond to a solution to (19) from x0 = x(0,0). The function Lc captures the
stage cost of flowing and Ld captures the stage cost of jumping relative to desired
subsets of the state space and the input space, respectively. The function F defines
the terminal cost. The key challenge is in establishing conditions such that the value
function, which at every point x0 is given by

J �(x0) := J (x�,u�)
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with (x�,u�) being minimizers of J from x0, certifies the desired asymptotic stabil-
ity property by guaranteeing that the stage cost approaches zero.

The goal of any MPC strategy for (19) would certainly be to minimize the cost
functional J in (20) over the finite-time hybrid horizon [0,T ]×{0,1, . . . ,J} defined
by the hybrid prediction horizon (T,J). Given the current value of the state x0, a
potential form of this control law would be

κc(x0) := u� (21)

*2inwhere the choice of the function u� is updated when a timer τc reaches the
hybrid control horizon Nc +Tc ≤ T + J, and the dynamics of τc are as follows:

τ̇c = 1

*2inwhen τc ∈ [0,Nc +Tc], and

τ+c =

⎧⎨
⎩
τc +1 when (x,u) ∈ D,τc < Nc +Tc

0 when (x,u) �∈ D,τc ≥ Nc +Tc

{τc +1,0} otherwise

*2inwhen (x,u) �∈ D or τc ≥ Nc +Tc. These dynamics enforce that the timer in-
creases during flows, so as to count ordinary time, and that at every jump of the
hybrid dynamical system (19), the counter is incremented by one (this is in the
first entry of difference equation for τc), while when the timer has counted at most
Nc +Tc seconds of flow and Nc +Tc jumps, is reset to zero (this is the second entry
in τ+c – the last entry is when both events can occur). For the current value of the
state x0, the function u� used for feedback could be chosen so that

u� ∈ argmin
u : (x,u)∈S(x0) subject to Problem H

J (x,u) (22)

which is then applied to the hybrid system over the hybrid horizon with length given
by T seconds of flow and J jumps from the current time (t ′, j′). Above, S(x0) de-
notes the set of state/input pairs (x,u) that satisfy the dynamics of H and also the
conditions in the MPC strategy, which is denoted as Problem H and part of ongoing
research efforts is to formally define it. An initial formulation appeared in [3]; see
also [2].

It should be pointed out that, for purely continuous-time or discrete-time systems,
it is not generally known if the controllers designed to satisfy the necessary condi-
tions for optimality imposed by Pontryagin-like maximum principles or Bellman-
like approaches confer a margin of robustness to perturbations of the closed loop.
In fact, it is well known that discontinuous controllers obtained from solving opti-
mal control laws may not be robust to small perturbations [21]; see also [35]. This
difficulty motivates the generation of hybrid control strategies with prediction that
guarantee optimality and robustness simultaneously.

For general nonlinear systems, continuity of the state-feedback law plays a key
role in the establishment of robustness of the induced asymptotic stability property
[25, 41]. Early results establishing that discontinuities in the feedback can lead to
a closed-loop system with zero margin of robustness appeared in books by Filip-
pov [14] and Krasovskii [22]; see also [21] for an insightful relationship between
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solution concepts to nonsmooth systems. Control laws (both open-loop and closed-
loop) solving optimal control problems may not be continuous, which may indicate
a lack of robustness when applied to the system to control. Such lack of robustness
may also be present in receding horizon controllers. In particular, when the asso-
ciated optimization problem involves state constraints or terminal constraints, and
the optimization horizon is small, the asymptotic stability of the closed-loop system
may have absolutely no robustness: arbitrarily small disturbances may keep the state
away from the desired set [18]. On the bright side, results in [17] indicate that, for
the case of no inputs, mild properties of the data of (19) lead to an upper semicontin-
uous dependence of the solutions with respect to initial conditions, which, in turn,
guarantees that asymptotically stable compact sets for H (without inputs) are robust
to small perturbations.

4 Further Reading

• Discrete-time MPC with hybrid flavor: [5–7, 23, 42];
• Continuous-discrete MPC with hybrid flavor: [10, 13, 27, 29, 32, 37];
• Hybrid dynamical systems: [1–3, 16, 17].
• Software tools for modeling and some MPC problems with hybrid flavor:

– Multi-Parametric Toolbox (MPT) 3
http://control.ee.ethz.ch/∼mpt

– The Hybrid Toolbox
http://cse.lab.imtlucca.it/∼bemporad/hybrid/toolbox
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Model Predictive Control of Polynomial
Systems

Eranda Harinath, Lucas C. Foguth, Joel A. Paulson, and Richard D. Braatz

1 Introduction

Model predictive control (MPC) is the most widely used approach for the advanced
control of complex dynamical systems due to its ability to straightforwardly han-
dle multivariable dynamics, incorporate input and state constraints, and trade-off
between competing sets of objectives [1, 26]. Linear MPC refers to the family of
MPC strategies in which linear models are used to predict the system dynamics sub-
ject to only linear constraints. Although most real industrial processes are inherently
nonlinear, linear MPC has been well-studied for two main reasons: (i) a variety of
highly reliable techniques and software are available for the identification of linear
models and (ii) linear models yield good results when the plant is operating in the
neighborhood of a specific operating point [3].

On the other hand, nonlinear model predictive control (NMPC) refers to MPC
schemes involving a nonlinear objective function or nonlinear constraints, usually
due to the use of nonlinear models. Demand for higher product quality, tighter spec-
ifications, and tougher environmental regulations necessitate high closed-loop per-
formance over a wide range of operating conditions. This fact, combined with the
inherent nonlinearity in most real systems (such as chemical, pharmaceutical, and
biological systems), motivates the development of NMPC methods [1].

For discrete-time systems, linear MPC is directly formulated as a convex
quadratic optimization (in case of quadratic objective function) which can be solved
efficiently to the global minimum. A key advantage is that any local minimum
detected is also a global minimum, and many efficient numerical algorithms exist
that are guaranteed to converge to the global minimum. The inherent nonconvexity
of general NMPC problems, however, makes them very expensive to solve to global
optimality, which has limited their successful application to real problems [24].
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Development of practical algorithms for NMPC that circumvent these issues is
an active area of research (see, e.g., [1, 31] and the citations therein). This chapter
describes an approach that considers a particular broad class of nonlinear dynam-
ical systems and constraints described by means of polynomial functions [8, 24].
Many systems of industrial importance can be directly transformed into polynomial
systems. Other nonlinear systems can be approximated as polynomial systems by
expanding all nonlinear functions in terms of a Taylor series and truncating them to
a finite number of terms. Furthermore, Taylor’s theorem can be used to rigorously
bound the approximation error [8].

For discrete-time polynomial systems, open-loop optimal control with a polyno-
mial cost function is a polynomial optimization. Many different software packages
(that use a suite of algorithms embedded with heuristics) are available for solving
general polynomial optimizations. Furthermore, methods exist for reducing the orig-
inal polynomial optimization to a semidefinite program (SDP) via the theory of mo-
ments [13] or the theory of nonnegative polynomials [14]. Using these methods, a
global minimum of the original nonconvex polynomial MPC problem can be ob-
tained by solving a series of convex SDPs. The fact that these algorithms converge
fairly quickly in practice for a broad class of polynomial programs illustrates the
vast potential of polynomial MPC.

The remainder of the chapter is organized as follows. In Section 2, the MPC
problem for discrete-time polynomial systems is formulated as a polynomial op-
timization. In Section 3, the methods to solve these polynomial optimizations to
global optimality are briefly discussed, and a promising sum-of-squares (SOS)-
based method is reviewed. Section 4 reviews the methods for fast polynomial MPC,
including methods to formulate the original MPC problem as a convex problem
and methods for explicit polynomial MPC. Section 5 discusses methods by which
nonlinear systems can be exactly written or approximated as polynomial systems.
Finally, an outlook for future research is provided in Section 6.

Notation. Let Rn denote the set of real vectors with n elements, and R
n×m denote

the set of real matrices with n rows and m columns. For x ∈ R
n, R[x] is the set of

real polynomials, R[x]p is the set of vectors of real polynomials of dimension p, and
R[x]p×q is the set of matrices of real polynomials of dimension p×q.

2 Model Predictive Control of Discrete-Time Polynomial Systems

Consider a discrete-time nonlinear dynamical system

xk+1 = f (xk,uk), (1)

subject to state and input constraints of the form

xk ∈ X, (2)

uk ∈ U, (3)
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where k ≥ 0 is the discrete-time index, x ∈ R
n are the system states, and u ∈ R

m

are the control inputs. The function f : Rn ×R
m →R

n is a real polynomial function
in x and u and has the origin as an equilibrium point, i.e., f (0,0) = 0. The set X
is a closed subset of Rn, and the set U is a compact subset of Rm, both containing
the origin. In their most general forms, X and U are semialgebraic sets given by the
union of a finite number of real polynomial equations and inequalities in x and u,
respectively.

Suppose that all initial states xk are available at time instant k. Then, the open-
loop optimal control problem to be solved at each time instant k is given by

min
uk

JN(xk,uk) (4a)

subject to xk|k = xk, (4b)

xi+1|k = f (xi|k,ui|k), (4c)

ui|k ∈ U, (4d)

xi|k ∈ X, (4e)

xk+N|k ∈ Xf , i = k, . . . ,k+N −1, (4f)

with the cost function

JN(xk,uk) :=
k+N−1

∑
i=k

l(xi|k,ui|k)+F(xk+N|k), (5)

where uk := [u�
k|k,u

�
k+1|k, . . . ,u

�
k+N−1|k]

� is the concatenated control input vector,
N > 0 is the length of the control horizon, xi|k is the predicted state at time instant
i > k obtained by applying the input sequence uk|k, . . . ,ui−1|k to the system (1) from
initial states xk, and Xf is the terminal constraint set.

The set Xf is assumed to be a semialgebraic subset of R
n. Similarly to [24],

the stage cost l : Rn ×R
m → R is assumed to be a real polynomial function in x

and u with l(0,0) = 0, and the terminal penalty F : Rn → R is assumed to be a
real polynomial function in x with F(0) = 0. The optimal solution for the MPC
problem (4) is denoted by

u�
k := [u��k|k ,u

��
k+1|k, . . . ,u

��
k+N−1|k]

�. (6)

Under a receding horizon implementation, the first element of u�
k , i.e.,

κN(xk) := u�k|k(xk), (7)

is applied to the system (1). The implicit MPC controller κN is a feedback control
law as (4) is solved at each time instant k using the measured or estimated states xk.
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3 Polynomial Optimization Methods

This section summarizes global solution methods for the MPC optimization (4) that
can be recast as a polynomial optimization, where the objective function and con-
straints are multivariate polynomials [24]. For simplicity of notation, consider a
general polynomial optimization that can be described as

p�0 = min
x∈S

p0(x), (8)

where the closed semialgebraic set S is given by

S = {x ∈ R
n|pi(x)≥ 0, i = 1, · · · ,k}, (9)

p0 : R[x]n → R is the polynomial objective function, x ∈ R
n are the decision vari-

ables, and pi are polynomial constraints. The global optimum of the problem (8) is
denoted by p�0.

Although the general polynomial optimization (8) is nonconvex and NP-hard
[19], the intrinsic properties of this class of optimization can be utilized to develop
tailored algorithms to find the global solution. Development of polynomial program-
ming algorithms has received much attention in the literature. As a result, polyno-
mial programming solvers have been developed based on the solution of relaxed
optimizations that can be solved in polynomial time, in which “relaxed” refers to
an optimization whose solution provides a lower bound on the original optimiza-
tion. A series of relaxed optimizations are solved, and their solutions are guaranteed
to converge monotonically to the solution of the original polynomial optimization
[9, 21].

The basic idea behind polynomial optimization algorithms is to derive convex
relaxations of the original problem (8). The most common relaxation methods yield
SDP or linear programs (LPs). Solving the relaxed problems provides a lower bound
for the optimum p�0. The theory of nonnegative polynomials [19] and the theory
of moments [13] are the most popular relaxation techniques for polynomial opti-
mizations and naturally give rise to SDP problems. The moment-based relaxation
directly relaxes the primal problem (8) while the theory of nonnegative polynomials
instead indirectly relaxes the primal problem by tightening the dual of (8) using SOS
decompositions. Hierarchies of these SDP relaxation methods can be used to find
lower bounds for (8) successively. In the high-level optimization tools SOSTOOLS
[21] and Gloptipoly [9], the hierarchical SOS and moment-based SDP relaxations
have been implemented, respectively.

Below is a description of an SOS-based relaxation method for solving the poly-
nomial optimization (8).
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3.1 Sum-of-Squares Decomposition

Checking whether a polynomial is nonnegative is an important task in algebraic
geometry [19]. The existence of an SOS decomposition is a sufficient condition for
nonnegativity of a polynomial and is defined below.

Definition 1 (SOS). A polynomial h(x)∈R[x] with degree 2d, d = 1,2, . . ., is called
an SOS polynomial if there exists a finite number m of polynomials hi(x) such that

h(x) =
m

∑
i=1

h2
i (x). (10)

Not every positive semidefinite polynomial can be written as an SOS polyno-
mial, i.e.,

h(x) =∑
i

h2
i (x) ∈∑[x]⊂ N+(x), (11)

where∑[x] is the set of SOS polynomials and N+ is the set of nonnegative polynomi-
als in R[x]. By employing a “Gram Matrix” technique, the necessary and sufficient
conditions for the existence of an SOS decomposition for any given polynomial are
presented in [5]. In [19], the Gram Matrix result is used to prove that the existence
of an SOS decomposition can be checked by solving an SDP. This guaranteed cer-
tificate that can be checked in polynomial time for SOS polynomials leads to the
development of SOS-based optimization algorithms (see [6, 19] for further discus-
sions on SOS polynomials).

One of the earliest applications of SOS techniques is reported in [29], in which
a method for finding the global lower bounds for polynomial functions is presented.
Recently, the control literature has extensively used SOS-based techniques both for
polynomial systems [19, 32] and non-polynomial systems [4, 18]. The next section
summarizes a way in which SOS methods can be used to globally solve the polyno-
mial optimization (8).

3.2 Dual Approach via SOS Decomposition

This section describes hierarchical SDP relaxation methods that successively find
lower bounds for global polynomial optimizations [13, 19]. A dual problem formu-
lation for (8) is presented by using the generalized Lagrangian function method as
discussed in [12]. The generalized Lagrangian function for the polynomial optimiza-
tion (8) is written as

L(x,s1(x), · · · ,sk(x)) = p0(x)−
k

∑
i=1

si(x)pi(x), (12)
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where si(x) ∈∑[x] with a finite degree can be interpreted as generalized Lagrangian
multipliers [12] or generalized Karush-Kuhn-Tucker (KKT) multipliers [13].

The Lagrangian dual for (8) is given by

λ � = max
si(x)∈∑[x]

min
x∈Rn

L(x,s1(x), · · · ,sk(x)), (13)

where λ � ≤ p�0. The Lagrangian dual (13) can be rewritten as

max t, (14a)

subject to L(x,s1(x), · · · ,sk(x))− t ≥ 0, (14b)

∀ x ∈ R
n and si(x) ∈∑[x].

Replacing the nonnegativity condition (14b) with a stronger SOS polynomial s0

gives

α� =max t, (15a)

subject to L(x,s1(x), · · · ,sk(x))− t = s0, (15b)

x ∈ R
n, and si(x) ∈∑[x], ∀ i = 0, . . . ,k.

Once the degree of the SOS polynomials si are fixed, such that

max{deg(s0),deg(pisi)} ≤ 2β , (16)

where β ≥ max{deg(p0)/2,deg(pi)/2} for all i = 1, . . . ,k, the dual problem (15)
can be solved via an SDP [19]. The SOS relaxation gives a lower bound, i.e., α� ≤
λ � ≤ p�0.

In hierarchical SDP relaxation methods, the optimization (15) is solved sequen-
tially, and each problem can be solved efficiently by using an interior-point SDP
solver, e.g., SeDuMi [30]. Tools such as SOSTOOLS or YALMIP [49], which are
implemented in MATLAB, can be used to parse the optimization problem.

Denote the optimum of the relaxed problem (15) at the jth iteration as α�
j . By

increasing the degree of the SOS polynomials si, the lower bound α�
j for the global

optimization problem can be improved. However, this procedure increases the de-
grees of freedom in the relaxed SDP problem exponentially [24]. For hierarchical
sequential SDP relaxation problems, it has been shown that

α�
j ≤ α�

j+1 ≤ p�0. (17)

Furthermore, the relaxed solution has been shown to monotonically converge to the
global optimum [13]. At a particular iteration, the global optimum can be detected
via generalized KKT conditions as discussed in [13]. When the global optimum is
reached, i.e., when α�

j = p�0, the constrained global optimization has a primal SDP
formulation (corresponding to the dual of the relaxed dual problem). The optimal
solution of this primal problem provides the global minimizer x�.
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Remark 1. The dual optimization problem (15) can also be derived using Putinar’s
representation theorem [13, 23, 24], which utilizes the Positivstellensatz argument.

4 Fast Solution Methods for Polynomial MPC

As discussed in Section 2, the MPC optimization (4) is directly formulated as a
polynomial optimization of the form (8). This problem can be solved to global op-
timality by iteratively solving a series of convex relaxations. However, the number
of iterations, corresponding to the order of the SOS polynomials used in these relax-
ations, may be large for certain problems. Since the number of decision variables
in the convex relaxation grows exponentially with the SOS polynomial order, each
iteration becomes increasingly more expensive to solve. The computational effort
required to solve the problem to global optimality is likely prohibitive for problems
with a relatively large number of states, inputs, and/or horizon.

Methods have been developed to take advantage of sparsity within the convex re-
laxations of (8), which can provide a significant reduction in complexity [12]. This
idea and others represent an active area of research in the field of polynomial opti-
mization, which greatly benefits from the development of efficient SOS decomposi-
tion techniques and SDP solvers. The MPC problem adds additional structure and
sparsity to the problem, which can be taken advantage of during implementation of
the controller.

One interesting route, discussed below, is the direct formulation of the MPC
problem as an SOS problem for a particular class of polynomial systems and con-
straints. This problem can then be solved to global optimality with a single convex
SDP, which avoids the iterative approach discussed above. Alternatively, the original
MPC problem (4) can be solved offline using parametric optimization (the so-called
explicit MPC). Methods for solving (4) explicitly using algebraic geometry methods
are also explored below.

4.1 Convex MPC for a Subclass of Polynomial Systems

One of the most studied subclasses of the more general polynomial systems (1) are
the so-called input-affine polynomial systems, described by

xk+1 = fa(xk)+B(xk)uk, (18)

where fa(x) ∈ R[x]n denotes a polynomial function with fa(0) = 0, and B(x) ∈
R[x]n×m denotes the polynomial input matrix. Typically, the literature assumes
that (18) can be written in the state-dependent representation [22]

xk+1 = A(xk)Z(xk)+B(xk)uk, (19)
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where A(xk) ∈ R[x]n×n is the system polynomial matrix, and Z(xk) ∈ R[x]nn is a
polynomial vector. By exploiting the linear-like structure of (19), global stabilizing
control [6], optimal control [11], and robust control [10] design techniques have
been presented for continuous-time polynomial systems using state-dependent lin-
ear matrix inequalities (LMIs). These state-dependent LMIs are then represented
directly with SOS decompositions. Convex constraints for the controller synthesis
problem can also be included by parametrizing a Lyapunov function based on the
structure of matrix B(x). For details, see [22] and citations therein.

The current literature formulates the synthesis of feedback control laws by min-
imizing upper bounds of the infinite-horizon cost. These formulations are typically
convex but suboptimal. Convex formulations are thus restricted to a particular class
of polynomial systems even for optimal control. As such, MPC for these restricted
systems is relatively unexplored. An exception is [16] which derives an MPC algo-
rithm for input-affine polynomial systems by formulating the optimization directly
as an SDP by parametrizing a Lyapunov function for the closed-loop system simi-
larly as in [22].

4.2 Explicit MPC Using Algebraic Geometry Methods

As discussed in the introduction, limitations to online computations make the direct
implementation of NMPC difficult or (in some cases) impossible. Even in the case of
linear MPC, in which the optimization is a convex QP, the development of methods
for quickly solving the MPC optimization online is still an active area of research.
An interesting approach, introduced in [2], is to compute the control law offline
by solving the optimization parametrically as a function of the initial states. The
optimal control law is then implemented online as a lookup table, which greatly
decreases the online computational cost of the controller.

When polynomial systems and constraints are considered, the standard MPC for-
mulation requires the solution to a polynomial optimization. In contrast to the linear
case, a closed-form expression for its solution is not guaranteed to exist (as it may
involve implicit algebraic functions).

The parametric optimization of interest in this chapter is that of solving (4) for
any value of the parameter xk. Since the system is assumed to be time invariant, the
time index k can be dropped, and (4) can be rewritten as

min
u

JN(u,x) (20a)

subject to g(u,x)≤ 0, (20b)

where x ∈ R
n are the initial states, u ∈ R

mN are the decision variables representing
the control inputs over the horizon, JN ∈R[x1, . . . ,xn,u1, . . . ,umN ] is the polynomial
objective function, and g ∈ R[x1, . . . ,xn,u1, . . . ,umN ]

q is the polynomial vector rep-
resenting all constraints in (4). The goal is to find a computational procedure for
evaluating the maps
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u�(x) : Rn → R
mN , (21)

J�N(x) : Rn → R, (22)

for any value of the parameter x in the region of interest. Methods for evaluating
these maps are presented in [7] and [27]. These methods rely on techniques derived
from the algebraic geometry literature and are summarized below.

In [7], cylindrical algebraic decomposition (CAD) is used to evaluate the map
from the initial states to the corresponding optimizer (21) and optimal cost func-
tion (22). Given a finite set of polynomials in n variables, a CAD is a special partition
of Rn into cells over which all polynomials have constant signs. The mathematical
details behind CAD are illustrated by an example in [7].

In the first parametric optimization algorithm proposed in [7], the CAD cor-
responding to the polynomial expressions in the optimal control problem is con-
structed offline. Then, the online portion of the algorithm only consists of determin-
ing the cell in which the initial states x lie, finding the optimal cost J�N by exploring
the cylinder above this cell, and determining the optimizer u� by lifting to the space
of the decision variables. Thus, the algorithm only requires traversing a tree and
solving univariate polynomial equations online. Readers interested in more details
are referred to [7].

The second algorithm presented in [7] involves the parametric solution of the
resulting KKT optimality conditions for (20), given by

∇uJ(u,x)+∑q
i=1 μi∇ugi(u,x) = 0, (23a)

μigi(u,x) = 0, (23b)

μi ≥ 0, (23c)

g(u,x)≤ 0, (23d)

where gi are the polynomial elements of the constraint vector g in (20b), and μi ∈
R+ are the Lagrange multipliers for each i = 1, . . . ,q. The first two relations (23a)
and (23b) form a square system of polynomial equations. The proposed algorithm
involves solving this system of polynomial equations symbolically as a function of x.
The idea is to use Gröbner bases to compute generalized companion matrices for a
candidate optimizer (as a function of x) offline. Then, three steps must be performed
online: (i) calculate all critical points of (23a) and (23b) using the eigenvalues of the
companion matrices evaluated at a given x, (ii) eliminate any infeasible solutions by
checking if μi ≥ 0 and g(u,x) ≤ 0, and (iii) find the feasible candidate solution u�

with the smallest objective function value J�N .
Finally, a homotopy-based algorithm for evaluating the maps (21) and (22) is

described in [27]. The basic idea is to solve the parametric optimization offline using
homotopy continuation with a multihomogeneous start system. Online, the solution
can then be constructed for different initial states x̃ using the known solutions for
x when they are in the same family. Readers interested in more details are referred
to [27].
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The next section describes the use of Taylor series approximations to control
general nonlinear systems by approximating them as polynomial systems. Also dis-
cussed is the use of Taylor’s theorem to generate an uncertain polynomial system
that allows for robust handling of the truncation error.

5 Taylor Series Approximations for Non-polynomial Systems

Different strategies for MPC can be used depending on the original description of
the system. If the original system can be exactly written as a polynomial system,
the above methods can be directly applied to nominal MPC. If not, the system can
be approximated as a polynomial where the approximation error represents an ad-
ditional source of uncertainty. This section discusses the use of Taylor’s theorem
to approximate non-polynomial systems as polynomial systems and subsequently
provides rigorous bounds on the approximation error.

5.1 Taylor’s Theorem

Consider a non-polynomial discrete-time system

x+ = f (x), (24)

where x ∈R
n is the system state and x+ is the successor state at the next time instant.

When f is k times continuously differentiable, systems of this form can be approx-
imated as polynomial systems by employing a kth-order Taylor series expansion.
Polynomial control algorithms can then be applied directly to this approximation.
Alternatively, the error associated with the approximation can be bounded using
Taylor’s theorem. The error can then be treated as an uncertainty, and the resulting
uncertain system can be controlled by using robust control methods for polynomial
systems. This section briefly summarizes Taylor’s theorem for multivariate systems
and demonstrates the utility of this theorem using a simple example. A discussion
of robust control methods for polynomial systems is provided in Section 6.

To concisely state Taylor’s theorem for higher dimensional systems, we begin by
summarizing multi-index notation for an nth-order system. For the index α ∈ R

n,
define the operations

|α| = α1 + · · ·+αn, (25a)

α! = α1! · · ·αn!, (25b)

xα = xα1
1 · · ·xαn

n . (25c)
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Using this notation, the higher order partial derivatives of the multivariate sys-
tem (24) can be written as

Dα fi =
∂ |α | fi

∂xα1
1 · · ·∂xαn

n
. (26)

The kth-order Taylor series expansion of fi, centered at a, is defined by

Pi(x;k,a) = ∑
|α |≤k

Dα fi(a)
α!

(x−a)α , i = 1, . . . ,n (27)

when fi is k times differentiable at the point a.
If fi is k+1 times differentiable at the point a, the multivariate version of Taylor’s

theorem states that

fi(x) = ∑
|α |≤k

Dα fi(a)
α!

(x−a)α + ∑
|β |=k+1

Ri,β (x)(x−a)β , (28)

where Ri,β (x) are the remainder functions associated with Pi(x;k,a).
Taylor’s theorem is sometimes extended to state that, if x is in a compact set B,

the remainder terms can be bounded using the inequality

|Ri,β (x)| ≤
1
β !

max
|γ |=|β |

max
y∈B

|Dγ f (y)|, x ∈ B. (29)

5.2 Example

The practical implementation of Taylor’s theorem for bounding control trajectories
is best illustrated by the use of an example. Consider the discrete-time nonlinear
dynamical system

x+1 = f1(x1,x2) = x1x0.7
2 +0.3, (30a)

x+2 = f2(x1,x2) = ln(x2 +1)+0.05. (30b)

Assume that, for the time period of interest, the states will lie within the region
0.3 ≤ xi ≤ 0.7, i = 1,2, which is denoted by Π (the validity of this assumption
is confirmed later). Within this region Π , the system (30) can be (conservatively)
represented as the uncertain polynomial system

x+ =

[
P1(x;3,a)
P2(x;3,a)

]
+

[
θ1

θ2

]
, (31)
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where

Pi(x;3,a) = fi(a)+
∂ fi

∂x1
(a)(x1 −a1)+

∂ fi

∂x2
(a)(x2 −a2)+

∂ 2 fi

∂ 2x1
(a)

(x1 −a1)
2

2!

+
∂ 2 fi

∂x1∂x2
(a)(x1 −a1)(x2 −a2)+

∂ 2 fi

∂ 2x2
(a)

(x2 −a2)
2

2!

+
∂ 3 fi

∂x3
1

(a)
(x1 −a1)

3

3!
+

∂ 3 fi

∂ 2x1∂x2
(a)

(x1 −a1)
2(x2 −a2)

2!

+
∂ 3 fi

∂x1∂ 2x2
(a)

(x1 −a1)(x2 −a2)
2

2!
+
∂ 3 fi

∂ 3x2
(a)

(x2 −a2)
3

3!
,

the center of Π is a = [a1 a2]
� = [0.5 0.5]�, and the elements of the vector θ =

[θ1 θ2]
� are bounded by

min
x∈Π

{ fi(x)−Pi(x;3,a)} ≤ θi ≤ max
x∈Π

{ fi(x)−Pi(x;3,a)}. (32)

These bounds on the uncertain parameters θi can be found using global optimiza-
tion algorithms such as branch-and-bound methods. Although these bounds may be
computationally expensive to compute, the computation is completely offline. Al-
ternatively, relaxations can be used to compute the bounds on the θi at the expense
of introducing additional conservatism. The system (31) is affine in the uncertain
parameter θ , which can make robust controller algorithms easier to derive.

Alternatively, (29) can be applied directly to achieve an uncertain system of the
form

x+ =

[
P1(x;3,a)
P2(x;3,a)

]
+

⎡
⎢⎢⎢⎣
θ1 ∑

|β |=4

(x−a)β

β !

θ2 ∑
|β |=4

(x−a)β

β !

⎤
⎥⎥⎥⎦ , (33)

where bounds on the parameters θi can be found by directly applying (29). In this
case, the terms containing the uncertain parameters θi are dependent on the state.
Although robust control algorithms are more difficult to derive with such state-
dependent terms, the uncertain system (33) can be less conservative than the sys-
tem (31).

The state trajectories for the original non-polynomial system (24) are shown in
Figures 1 and 2, respectively, for both initial states equal to 0.5. Also shown in
the figures are the trajectories of the approximate polynomial system and bounds
on the trajectory of the true non-polynomial system (24) given by the uncertain
systems (31) and (33). In this example, the state-dependent bounds obtained using
system (33) are less conservative on average than the state-independent bounds ob-
tained using system (31), but the upper bound for the state-independent uncertain
system is slightly less conservative for much of the time.
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Fig. 1: The trajectory of the first state of the non-polynomial system (24) and of the
approximate polynomial system are shown in black and dashed blue, respectively.
State-independent and state-dependent bounds on the first state are shown in red and
green, respectively.

6 Outlook for Future Research

While the field of deriving efficient methods for solving polynomial optimizations is
relatively mature, many opportunities remain for contributing to the theory of MPC
for polynomial systems.

One interesting direction involves developing tailored polynomial optimization
algorithms for MPC. A current challenge with implementing MPC is that it may be
impracticable to achieve the global solution of the nonconvex optimization within
the required sampling time interval. However, as discussed in [17], solving for the
global solution is not necessary for achieving asymptotic stability of the closed-
loop system. Rather, only a feasible solution is needed to guarantee the existence
of a Lyapunov function [28]. In the case of polynomial systems, although current
polynomial optimization algorithms have the potential to find the global solution of
polynomial programs within a few iterations (see, e.g., [13]), no direct way is avail-
able for extracting a feasible solution in a given iteration if the solver is unable to
find the global solution within the required sampling time interval. It would be use-
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Fig. 2: The trajectory of the second state of the non-polynomial system (24) and
of the approximate polynomial system are shown in black and dashed blue, respec-
tively. State-independent and state-dependent bounds on the second state are shown
in red and green, respectively.

ful if polynomial optimization solvers would provide a certificate for feasibility for
MPC optimization problems within a sampling time interval. One strategy would
be to first find a feasible solution within a specific time frame by exploiting inher-
ent properties of the polynomial optimizations, and then try to solve for the global
solution in the remaining time.

A method for reducing the online computational cost of polynomial MPC in-
volves reducing the number of constraints in the polynomial optimization to be
solved online. Zheng [33] proposed to enforce constraints on the first control move
and relax constraints on subsequent control moves within the prediction horizon.
The justification for the approach is that only the first calculated control move will
actually be implemented. Although this method poses significant theoretical chal-
lenges (e.g., recursive feasibility), the approach could significantly reduce the online
computational cost of NMPC algorithms.

Another opportunity for future research in MPC for polynomial systems involves
the exploration of output-feedback MPC. The fact that the separation principle does
not apply directly to nonlinear systems suggests that it may be beneficial to formu-
late the NMPC algorithm to simultaneously design the observer and controller. This
concept has not been well-explored in the polynomial systems literature.
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Another significant contribution to the field could be made by the application of
robust MPC (RMPC) control techniques to polynomial systems. Uncertainty is un-
avoidable in real-world systems, and the approximation of a non-polynomial system
as a polynomial system results in a bounded error term which can be treated as an
uncertain parameter. Both inherent model uncertainty and approximation error mo-
tivate the application of RMPC techniques, which have been well-studied for linear
systems [25], to polynomial systems.

Stochastic model predictive control (SMPC) has also been fairly well-studied for
linear systems as a method to reduce the conservatism associated with set-based
RMPC. The application of SMPC techniques to polynomial systems would be a
valuable contribution. Many SMPC algorithms employ sampling techniques to prop-
agate uncertainty through the dynamic system. In these cases, propagation of uncer-
tainty through polynomial systems would not likely be much more difficult than
propagation of uncertainty through linear systems. Other techniques employ meth-
ods such as polynomial chaos theory to propagate uncertainty [20]. These methods
could also be extended to polynomial systems since both collocation and Galerkin
projection can be applied to polynomial systems. A particular challenge for SMPC
is the correct implementation of chance constraints in order to obtain meaningful
guarantees for the closed-loop system (see [20] for details).

All of these directions for polynomial MPC have the potential to influence the
field, both in terms of theoretical impact as well as practical implementation.

Acknowledgements Funding is acknowledged from the Novartis-MIT Center for Continuous
Pharmaceutical Manufacturing.
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Distributed MPC for Large-Scale
Systems

Marcello Farina and Riccardo Scattolini

1 Introduction and Motivations

In the past decades a number of popular methods have been developed for control
of a multi-input and multi-output system S o, including optimal LQ control theory,
pole-placement methods, H2/H∞ control, and Model Predictive Control (MPC).
These methods are intrinsically of centralized nature, i.e. the vector of control ac-
tions u is computed based on the knowledge of the whole state x or output y vectors.
This allows to guarantee properties, in terms of stability, robustness, and perfor-
mance. However, these methods display many limitations in case of large-scale [1]
or complex [2] systems, i.e., systems with a large size, often characterized by the
cooperation of many different parts (e.g., machines, reactors, robots, transportation
systems), and possibly by uncertainties on the system components. Just to mention
the main issues:

• the actuators and the transducers may be highly geographically distributed, and
this may bring about transmission delays or failure issues.

• The control problem grows in size with the dimensionality of the system, and
the related computational burden may, in turn, grow significantly. This is par-
ticularly true for methods, like MPC, where an optimization problem must be
solved at any new sampling time. In turn, these scalability issues may induce
large - and even inadmissible - computational delays, with serious limitations
on the size of practically tractable problems.

• Single components or subsystems can be subject to structural changes, failures,
and some may be removed, added, or replaced. Centralized control systems are
normally non-robust and non-flexible with respect to such occurrences. This
issue may have a big economic impact, since a new design and implementa-
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tion phase for the overall control system must be carried out, with significant
expenses, e.g., due to the required downtime.

All the above reasons motivate the development of new methods for the design of
more flexible control structures where the centralized controller is replaced by a set
of M local regulators, possibly coordinated to recover to the maximum extent the
performance guaranteed by a centralized solution. According to a terminology nowa-
days well accepted, we will define decentralized control structures those where the
local regulators are fed by independent subsets of states and/or outputs and do not
communicate with each other. As a middle-ground solution between centralized and
decentralized control, we will denote by distributed control structures the schemes
where the M local regulators are fed by not necessarily independent subsets of states
and/or outputs and can exchange information to coordinate their actions. A pictorial
representation of centralized, decentralized, and distributed control structures in the
case M = 2 is reported in Figure 1.
The possibility to coordinate and negotiate the local control actions provided by dis-
tributed schemes and made possible thanks to suitable transmission networks fits
very well with an optimization-based framework, where many ideas of game theory
can be applied. Therefore, MPC is probably the best advanced control approach for
the synthesis of distributed control algorithms and for this reason the aim of this
chapter is to present in plain form the main ideas underlying some of the most popu-
lar Distributed MPC (DMPC) algorithms. Since nowadays many survey papers and
books are dedicated to DMPC, this chapter is not aimed to provide an extensive re-
view of all the available DMPC algorithms, for which the reader is referred to [3, 4],
but rather to highlight the main features, properties, and requirements of the major
classes of DMPC methods. With the goal to simplify the presentation some restric-
tive choices will be made: (i) the theoretical properties of the considered methods
will not be examined in detail, and the reader will be referred to the relevant liter-

Fig. 1: Centralized (top panel), decentralized (bottom left panel), and distributed
(bottom right panel) control structures.
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ature; (ii) purely regulation problems will be considered; (iii) the system S o to be
controlled will be assumed to be described by a linear time-invariant discrete-time
model. Some of these assumptions will be re-examined in the final section of the
chapter.

2 Model and Control Problem Decomposition

As it is claimed in [1], “if such (large-scale) systems must be controlled,(. . . ) they ne-
cessitate new ideas for decomposing and dividing the analysis and control problems
of the overall system into rather independent subproblems.” Under this viewpoint
the decomposition of the dynamic large-scale system model and of the control prob-
lem is a preliminary - but key - step for the development of well-posed decentralized
and distributed control procedures. In particular, it is definitely worth noting that the
adopted model decomposition has a strong impact on the features, properties, and
requirements of the control scheme which is designed based on it.

2.1 Model Decomposition

We assume that the large-scale system S o is described by the following linear,
discrete-time model

xo(k+1) = Aoxo(k)+Bou(k)
y(k) = Coxo(k)

(1)

where xo ∈ Rn, u ∈ Rm, y ∈ Rp and, unless otherwise specified, the state xo will
be assumed to be measurable. The state, output, and/or input variables must satisfy
constraints of the general type

xo ∈X o , y ∈ Y , u ∈U (2)

where X o, Y , and U are closed sets of proper dimensions containing the origin.
In order to design M decentralized or distributed MPC regulators guaranteeing

the stability of the origin of the corresponding closed-loop system, the centralized
model (1) must be decomposed into M small scale models Si, also denoted model
partitions. The first problem is that of partitioning the input and output vectors u
and y, i.e., to identify, for each subsystem Si, a local input vector ui ∈ Rmi and
a local output vector yi ∈ Rpi (commonly, it must hold that ∑M

i=1 mi = m and that
∑M

i=1 pi = p). Indeed, a local input/output pair (ui(k),yi(k)) (also denoted channel)
must be attributed to each subsystem on the basis of a specific partitioning criterion.
Often this is based on physical insight; as an alternative, many methods have been
developed and can be adopted to unveil the interactions of MIMO systems. Some of
them are based on the analysis of the static and dynamic interactions among inputs
and outputs see, e.g., [5, 6].
The state-space model, for each subsystem Si, is of the following general type.
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xi(k+1) = Aiixi(k)+Biiui(k)+∑ j �=i(Ai jx j(k)+Bi ju j(k))
yi(k) = Ciixi(k)+∑ j �=i Ci jx j(k)

(3)

where i = 1, . . . ,M, xi ∈ Rni . Many different methods can be used to obtain the mod-
els Si from S o, each corresponding to a different model partition and to a differ-
ent corresponding interconnection graph. A very rough classification can be made
between non-overlapping and overlapping decompositions: in non-overlapping de-
compositions the aggregate state of the Si model is still of order n, that is the one of
the original system S o. On the contrary, in overlapping decompositions the overall
state of the ensemble of models Si is greater than the one of S o, i.e. ∑M

i=1 ni > n.
The characteristics of these two classes will be briefly analyzed in Sections 2.1.1
and 2.1.2.
A critical point regards which constraints should be enforced on the state, output,
and/or input variables of Si, i = 1, . . . ,M, to verify the centralized system con-
straints (2). Note that constraints involving the variables of more than one subsys-
tems (the so-called coupling constraints) may be present, and even they may lie
at the core of specific types of distributed and coordination control problems. For
instance, when subsystems share a common, but limited, input resource some con-
straints of the type ∑M

i=1 ui ∈ Ū (for a suitably defined Ū ) may be enforced. On
the other hand, a number of power generation devices may be asked to produce a
common, but bounded, output, leading to constraints of the type ∑M

i=1 yi ∈ Ȳ . An-
other similar example is the case of coordination of moving robots, where collision
avoidance constraints are enforced: assuming that the robot - or the robot joints -
positions are included in the outputs yi and that two robots (i.e., S1 and S2) are in-
volved, these constraints may be formulated as (y1,y2) ∈Y12, for a suitably-defined
set Y12. In some cases coupling constraints can be verified by enforcing a number
of local constraints at the same time, e.g., when ui ∈Ui for all i = 1, . . . ,M involves
∑M

i=1 ui ∈ Ū . However, this solution may be overly conservative and highly subop-
timal in many contexts and should be discarded, at the price of including coupling
(also said complicating) constraints in the - distributed - control problem formula-
tion. Summing up, from now on we assume that constraints (2) allow to formulate
two types of constraints on the model partition variables: local constraints, to be
enforced for all i = 1, . . . ,M

xi ∈Xi , yi ∈ Yi , ui ∈Ui (4)

and/or coupling constraints, which will be represented as follows for simplicity

(x1, . . . ,xM) ∈XC , (y1, . . . ,yM) ∈ YC , (u1, . . . ,uM) ∈UC (5)

Note, in passing, that there may not be a trivial/direct correspondence between the
state variable xi of Si, i = 1, . . . ,M and the state xo of S o. Therefore, especially -
but not only - when overlapping decompositions are used, it may be critical and/or
ambiguous to translate the constraint xo ∈ X o into a number constraints on the lo-
cal state variables xi.
Subclasses of the representation (3) are called input-decoupled when Bi j = 0 for all
i and j �= i or state-decoupled when Ai j = 0 for all i and j �= i. In a wide class of
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control problems, for instance the coordination of independent vehicles with cou-
pling constraints, the subsystems are dynamically decoupled, with Ai j = 0, Bi j = 0,
Ci j = 0 for all i and j �= i, but coupled through the state or control constraints (5).

Some final comments are in order. First, the model (1) is often computed as the
discretization of a continuous time physical system made by the interconnection of
subsystems. In this case, the corresponding matrices have a sparse structure which
should be maintained after discretization. Unfortunately, if a Zero Order Hold trans-
formation is used, this property is lost. To recover it, one should resort to the forward
Euler (fE) discretization approach or to the approximate discretization method de-
scribed in [7], specifically developed for distributed control.
Secondly, models of type (3) include the information on how subsystems have in-
fluence on each other. In other words, if (for j �= i) Ai j �= 0 and/or Bi j �= 0, the
state/input variables of subsystem S j directly impact on the dynamics of subsystem
Si. Consistently, we can define the set of neighbors (or parents) of subsystem Si

as Ni := { j : ‖Ai j‖+‖Bi j‖ �= 0‖} and a corresponding direct interconnection graph,
which highlights the system-wide dependencies between subsystems. Similar inter-
connection (possibly undirected) graphs can be drawn when coupling constraints
are present, i.e., if a coupling constraint involves a set of subsystems, they should be
considered as neighbors.

2.1.1 Non-overlapping Decompositions

Perhaps the most natural choice to decompose S o is to partition the state x into
M non-overlapping sub-vectors xi with ∑M

i=1 ni = n, so that, up to a suitable state
variable permutation, xo = (x1, . . . ,xM) and that the original system can be written
as ⎡

⎢⎣
x1(k+1)

...
xM(k+1)

⎤
⎥⎦ =

⎡
⎢⎣

A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤
⎥⎦
⎡
⎢⎣

x1(k)
...

xM(k)

⎤
⎥⎦+

⎡
⎢⎣

B11 . . . BM1
...

. . .
...

BM1 . . . BMM

⎤
⎥⎦
⎡
⎢⎣

u1(k)
...

uM(k)

⎤
⎥⎦

⎡
⎢⎣

y1(k)
...

yM(k)

⎤
⎥⎦ =

⎡
⎢⎣

C11 . . . C1M
...

. . .
...

CM1 . . . CMM

⎤
⎥⎦
⎡
⎢⎣

x1(k)
...

xM(k)

⎤
⎥⎦

It is intuitive that in the definition of the submodels (3) one should partition the
original state so that the couplings among the subsystems are reduced as much as
possible, i.e. Ai j, Bi j, Ci j, i �= j should be null or “small” (according to a proper
norm or criterion) to the maximum possible extent. In the common practice, the
state permutation/partition can be carried out based on the plant physical insight
or based on available algebraic algorithms. For example, there exist graph-based
methods for reordering the state, input, and output variables in order to highlight
inherent structures, e.g., the presence of weakly interacting subsystems (see, e.g., the
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ε-nested decomposition proposed in [2]) or cascaded configurations (e.g., the lower-
block-triangular LBT decomposition discussed in [2]). Finally, methods have been
proposed in the literature [2] for devising suitable changes of coordinates which
lead to specific system decompositions (e.g., the input and/or output decentralized
forms), at the price of a loss of physical insight.

2.1.2 Overlapping Decompositions

In some cases the coupling strength between different subsystems is relevant, which
prevents the decomposition into disjoint subsystems to result into an effective
control-oriented partition. An alternative to non-overlapping decompositions is to
decompose the systems into subsystems which have some equations (and states) in
common, i.e., carrying out a so-called overlapping decomposition. This may result
in obtaining overlapping but weakly coupled subsystems. Overlapping decomposi-
tions have been widely studied in the past, mainly in the context of decentralized
control, see, e.g., [2].
In the context of DMPC, a number of distributed control methods require the sub-
system interconnections to be represented in the following state-decoupled form

{
xi(k+1) = Aiixi(k)+∑M

j=1 Bi ju j(k)
yi(k) = Cixi(k)

(6)

However, it is rarely possible to obtain a representation of this type by simply apply-
ing a non-overlapping decomposition such as the one described in the previous para-
graphs. Therefore, it is possible to adopt a fully overlapping decomposition where
each subsystem is of full order. The simplest way to obtain this decomposition con-
sists of replicating M times model (1), that is setting, for all i, j = 1, . . . ,M, Aii = Ao,
Bi j = B j,o, Ci = Ci,o, where B j,o is the j-th block column of Bo, while C j,o is the
j-th block row of Co; an alternative procedure is sketched in [8].
In general, overlapping decompositions are non-minimal, since the state dimension
does not decrease (for each subsystem) under the application of the proposed par-
tition. However, as better specified in the following, for subsystem Si, the local
control variable is assumed to be ui, while the u j’s, j �= i are considered as exter-
nal signals, so that the number of variables to be optimized by the local DMPC
algorithm is smaller than in the corresponding centralized problem.

2.2 Partition Properties and Control

The main properties of the model partitions which have a major impact on the re-
sulting decentralized and distributed MPC-based schemes are the following.

• Minimality of the state representation. Minimality (in terms of dimension of
the state/input/output variables for each subsystem) is required to limit the algo-
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rithm computational burden, since the number of involved variables generally
directly impacts on the computational demands of the algorithm. Also, mini-
mal representations demand minimal information to be stored by local memory
units. This, besides requiring scalable memory load, allows for more flexibility
of the resulting control systems. In fact, local model variations at subsystem
level may require the re-design of local control systems only.

• Minimality of the interconnection graph. As discussed, to reduce the proba-
bility of network-induced issues (e.g., transmission delays, channel overloads,
and package losses) the communication burden required by the adopted con-
trol architecture must be reduced as much as possible. To this end, one should
reduce both (i) the number of communication links between subsystems (i.e.,
aiming to have a sparse supporting information transmission network), and (ii)
the amount of communication that they should afford. While (ii) mostly depends
on the type of the adopted control scheme (we defer the reader to Section 4 for
a discussion on this point), (i) may strongly depend upon the approach taken for
model partitioning, since the implementation of distributed schemes commonly
requires to be supported by an underlying communication graph consistent with
the subsystem interconnection graph.

• Descriptive capabilities of the models. Model partitioning may have a negative
effect on the descriptive capabilities of the submodels. It would be desirable, in
fact, that each local controller has the knowledge on how a control action, taken
locally, can impact, not only on the local variables, but also on the variables
of the surrounding subsystems. Similarly, a complete information on how the
control action taken by other subsystems affects local state variables and outputs
may be desired.

It is worth noting that the first and the second requirements are in general conflicting
with the third one. Indeed, fully descriptive models, which are the ones that allow
for full cooperation between local controllers, are often obtained using overlapping -
often fully overlapping - partitions, which are the ones which typically lead to a non-
minimal state representation and for which the interconnection graph is maximal.

2.3 MPC Problem Separability

To briefly introduce the optimization problems involved in the decentralized and
distributed implementations summarized in this chapter, we first introduce the cen-
tralized (non-minimal) model which can be drawn by collecting together all the
partitions (3). We define x = (x1, . . . ,xM), which corresponds to xo, up to a state
permutation, only in case of non-overlapping decompositions. Consistently, we can
describe the overall large-scale system dynamics with a model of the type

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)

(7)
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Note that system (7) is nothing else than an expansion [2] of the corresponding
contracted system (1), since their output free and forced motions must be indeed
equal to each other. Starting with standard centralized MPC, the control action at
each time instant k is obtained by solving a control problem of type

min
u(k),...,u(k+N−1)

J(k) (8a)

subject to the transient constraints (7), (4), (5), for times k, . . . ,k +N − 1, and a
terminal constraint of the type

x(k+N) ∈X f (8b)

In (8a), J(k) is the cost function, while X f in (8b) is the terminal constraint set. As
a common ground of the methods discussed in this chapter, problem (8) is required
to be separable into a number of subproblems to be solved by local computing units.
This first requires that the cost function to be minimized is formally separable, i.e.,

J(k) =
M

∑
i=1
ρiJi(k) (9)

where Ji(k) is a positive-definite (quadratic, for simplicity) function of local input
and state variables of subsystem Si

Ji(k) =
N−1

∑
j=0

[‖xi(k+ j)‖2
Qi
+‖ui(k+ j)‖2

Ri
]+‖xi(k+N)‖2

Pi
(10)

and parameter ρi > 0, where ∑M
i=1ρi = 1.

Secondly, we need to enforce the terminal constraint (8b) by imposing M local ter-
minal constraints of type xi(k+N) ∈X f ,i, and therefore X f must be defined as the
Cartesian product of M sets X f ,i ⊆ R

ni .
However, separability is not the only requirement for the well-posedness of the
problem, but also some assumptions - required for general-type MPC problems
[8] - must be fulfilled by the “collective” terminal cost and terminal set, i.e.,
Vf = ∑M

i=1ρi‖xi(k+N)‖2
Pi
= ‖x(k+N)‖2

P, with P =diag(ρ1P1, . . . ,ρMPM) and X f ,
respectively. More specifically Vf and X f must also be a Lyapunov function and a
positively invariant set, respectively, for the expanded system (7), controlled using
a suitable (and possibly decentralized/distributed) auxiliary control law. The latter
requirements are not easily compatible with the separability assumptions: in the se-
quel, for each of the described methods, we will discuss how they are guaranteed.
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3 Decentralized MPC

A simple paradigmatic decentralized method is the one proposed in [9], for large-
scale linear processes subject to local input saturations only. The global model (1),
with stable matrix Ao, is approximated by a number of (possibly overlapping) sub-
systems of type (3) with stable matrices Aii, used for local predictions. The key fea-
ture of decentralized control is that there is no communication between the different
local controllers, as shown in Figure 1. Therefore a modelling error is introduced by
neglecting couplings, i.e., by setting Ai j = 0 and Bi j = 0 for all j �= i, i = 1, . . . ,M.
The proposed decentralized MPC algorithm requires that, at each time instant k, the
following optimization problem is solved by each computational unit.

min
ui(k),...,ui(k+N−1)

Ji(k) (11)

subject to the dynamical model

xi(k+1) = Aiixi(k)+Biiui(k) (12)

and the local input constraints ui(k) ∈Ui, for times k, . . . ,k+N −1. Here no termi-
nal constraint is required in view of the fact that no state constraints are imposed
and that the local system matrices Aii are stable. Indeed, the auxiliary control law is
u(k) = 0 and, correspondingly, the separability of the cost function is obtained by
selecting Pi in such a way that AT

ii PiAii −Pi =−Qi. This, if we neglect the intercon-
nections terms Ai j with j �= i, between subsystems, makes Vf (as defined in the pre-
vious paragraph) a Lyapunov function for the overall - decentralized - system. The
asymptotic stability properties of the control system are proved a posteriori if some
inequality conditions are verified. In general, in order to achieve closed-loop sta-
bility as well as performance in the development of decentralized MPC algorithms,
the interconnections (at least the terms Ai j) between different subsystems should be
weak or the system should display peculiar structures (e.g., acyclic graphs).

A different approach consists of considering couplings as disturbances. For ex-
ample, in [10], a decentralized MPC algorithm for nonlinear discrete time systems
subject to decaying disturbances was presented. In the design of the decentralized
MPC, the effects of interconnections between different subsystems are considered
as perturbation terms whose magnitude depends on the norm of the system states.
No information is exchanged between the local controllers and the stability of the
closed-loop system relies on the inclusion of a contractive constraint in the formula-
tion of each of the decentralized MPC problems. In [11], the stability of a decentral-
ized MPC is analyzed from an input-to-state stability (ISS) point of view. For linear
systems this approach consists of rewriting the subsystem Si model (3) as

xi(k+1) = Aiixi(k)+Biiui(k)+νi(k) (13)

where νi(k) = ∑ j �=i(Ai jx j(k)+Bi ju j(k)) is regarded as an unknown, but bounded
- if local state and input constraints (4) are enforced - disturbance which must be
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compensated or rejected using an ad-hoc robust MPC scheme. Along this line, e.g.,
the algorithm in [12] has been proposed for linear systems, resorting to tube-based
MPC (see [13, 14] and Chapter Robust Optimization for MPC). For more details,
see also Chapter “Scalable MPC Design”.
It is worth remarking that, in all the decentralized schemes described above, no
information is required to be transmitted between local regulators, since only the
information regarding the local state is used in the corresponding MPC optimization
problem (11).

4 Distributed MPC

According to the taxonomy proposed in [3] and nowadays widely used, DMPC al-
gorithms can be broadly classified as follows:

• iterative or non-iterative: in iterative algorithms information can be transmitted
among the local regulators many times within the sampling time. This opens
the way to the design of methods aimed at achieving a global consensus among
the regulators on the actions to be taken within the sampling interval. On the
contrary, in non-iterative algorithms information is transmitted only once in the
sampling period, so that the regulators are required to possess some robustness
properties to compensate for the reduced information available.

• cooperating and non-cooperating: in cooperating algorithms each local regula-
tor tries to minimize a global cost function, so that Pareto - i.e., system-wide
- optimal solutions can be computed, at least in principle. In non-cooperating
algorithms each regulator minimizes its local cost function, with possible con-
flicting goals; in this case, Nash equilibria are to be expected.

• fully connected or partially connected: in fully connected algorithms informa-
tion is transmitted and received from any local regulator to all the others. In
partially connected methods the information is exchanged between any local
regulator and a subset of the others. Although this is not a structural property, it
can strongly influence the properties and the transmission load of the methods
as well as their computational burden.

4.1 Cooperating DMPC

As a prototype algorithm for this class of DMPC methods, we make reference to
the results reported in [8, 15]. The system to be controlled is assumed to be in the
state decoupled form (6): this implies that the transition matrix of the expanded sys-
tem (7) is block-diagonal, i.e., A =diag(A11, . . . ,AMM). For simplicity we assume A
to be asymptotically stable. This ensures the separability of the cost function J(k) as
in (9): in fact we can take u(k) = Kx = 0 (i.e., K = 0) as a - decentralized - auxiliary
control law for the expanded system and we can select Pi, i = 1, . . . ,M in such a
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way that AT
ii PiAii −Pi = −Qi, Qi > 0. This makes Vf a Lyapunov function for the

system x(k+ 1) = Ax(k), as required. Finally, in the present algorithm, only input
constraints are enforced.
At time k all the local MPC control algorithms have knowledge of the overall state
x(k) and of the full system dynamics, meaning that a fully connected communica-
tion network is required to support the transmission of the global state to all the
local control stations.
The following iterative procedure is performed within the sampling period from
time k and time k+1:

• at iteration (negotiation) step p, p ≥ 1, each local controller in Si has the infor-
mation about the possible input sequences of the other subsystems, up−1

j (k+ l),
for l = 1, . . . ,N −1 and j �= i, to be broadcast thanks to the available fully con-
nected communication network; the following (global) optimization problem is
solved at a local level

min
ui(k),...,ui(k+N−1)

J(k) (14)

subject to the expanded model (7) and, for l = 0, . . . ,N −1,

ui(k+ l) ∈Ui (15)

u j(k+ l) = up−1
j (k+ l) ,∀ j �= i (16)

• letting uo
i (k), . . . ,u

o
i (k+N − 1) be the optimal solution, a convex combination

between the solution at the previous iteration and the newly computed one is
used, i.e.

up
i (k+ l) = αiu

p−1
i (k+ l)+(1−αi)u

o
i (k+ l) , l = 0, . . . ,N −1

where αi ∈ (0,1) and ∑M
i=1αi = 1.

• if a termination condition, which can depend on the elapsed time within the
sampling period or on an optimality test, is satisfied, the iterative procedure ends
and the last computed value up

i (k) is used as ui(k), otherwise a new iteration
starts (p ← p+1)

• when a new measurement is received, (k ← k + 1) the overall procedure is
restarted.

The algorithm requires an initialization for p = 0, which can be obtained based on
the optimal control sequence at the previous time k−1.
As shown in [8, 15] stability of the closed-loop system is guaranteed for any num-
ber of iterations performed within the sampling time; in addition, it can be proven
that the computed solution converges to the one of the corresponding centralized
control system as the number of iterations (p) increases. Finally, the method can
be extended to cope with unstable open-loop systems, provided that a suitable zero
terminal condition is included into the problem formulation, and with tracking prob-
lems [8].
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Interestingly, in [8] it has been shown that, if each local controller adopts a non-
cooperating (selfish) approach and minimizes only its own cost function Ji, conver-
gence to a Nash equilibrium is achieved and no stability guarantees can be proven.
In [16], a further step is done: more specifically, it is shown that it is possible to add,
for each subsystem, a constraint related to the maximal satisfactory and sufficiently
small (denoted satisficing in the papers) cost γi, i.e., Ji(k) ≤ γi. According to [16],
this variation allows to shift from a purely cooperating scheme (denoted also cat-
egorical altruist algorithm) to a scheme (denoted situational altruist) where local
(selfish) constraints are introduced.

4.2 Non-cooperating Robustness-Based DMPC

The algorithm described in [17] is based on the idea that each subsystem i transmits
to its neighbors its planned state reference trajectory x̃i(k + j), j = 1, . . . ,N, over
the prediction horizon and guarantees that, for all j ≥ 0, its actual trajectory lies
in a “tube” centered in x̃i, i.e. xi(k+ j) ∈ x̃i(k+ j)⊕Ei, where Ei is a compact set
including the origin. Then, assuming here for simplicity that the system is input
decoupled, Equation (3) can be written as

xi(k+1) = Aiixi(k)+Biiui(k)+∑
j

Ai jx̃ j(k)+wi(k) (17)

where wi(k) = ∑ j Ai j(x j(k)− x̃ j(k)) ∈ Wi is a bounded disturbance to be rejected
using the tube-based MPC approach [13] (see also Chapter “Robust Optimization
for MPC”), where Wi =

⊕
j Ai jEi. The term ∑ j Ai jx̃ j(k) is equivalent to a non-

manipulable input, known in advance over the prediction horizon, to be properly
compensated.

From (17), the i-th subsystem nominal model [13] is defined as

x̂i(k+1) = Aiix̂i(k)+Biiûi(k)+∑
j

Ai jx̃ j(k) (18)

Letting K=diag(K1, . . . ,KM) be a block-diagonal matrix such that both A+BK and
Aii +BiiKi are stable, the local control law is chosen as

ui(k) = ûi(k)+Ki(xi(k)− x̂i(k)) (19)

From (17) and (19), letting zi(k) = xi(k)− x̂i(k), it holds that

zi(k+1) = (Aii +BiiKi)zi(k)+wi(k) (20)

where wi ∈Wi. Since Wi is bounded and Aii+BiiKi is stable, there exists a robust pos-
itively invariant set Zi for (20) such that, for all zi(k) ∈Zi and wi(k) ∈Wi, one has
zi(k+1)∈Zi. According to the approach developed in [13], given Zi and assuming
that there exist neighborhoods of the origin ΔEi such that
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ΔEi ⊕Zi ⊆ Ei (21)

at any time instant k the i-th subsystem computes the value of ûi(k) in (19) as the
solution to

min
x̂i(k),ûi(k),...,ûi(k+N−1)

Ji(k) (22a)

subject to (18) and the initial state constraint

xi(k)− x̂i(k) ∈Zi (22b)

For l = 0, . . . ,N −1, to guarantee that the difference between xi and x̃i is effectively
limited as initially stated, we require that

x̂i(k+ l)− x̃i(k+ l) ∈ ΔEi (22c)

Both local (4) and coupling (5) constraints can be imposed. This is done by requiring
that, for l = 0, . . . ,N −1

x̂i(k+ l) ∈ X̂i (22d)

(x̃1(k+ l), . . . , x̂i(k+ l) . . . , x̃M(k+ l)) ∈ X̂C (22e)

This requires to suitably define the sets X̂i and X̂C as restricted ones, e.g., by setting
X̂i ⊆Xi &Zi. Although state constraints only have been defined for simplicity, in-
put constraints can be included similarly. Finally, the scheme calls for the definition
of terminal constraints of the type

x̂i(k+N) ∈ X̂ f ,i (22f)

With the optimal solution at time k, it is also possible to compute the predicted value
x̂i(k+N), which is used to incrementally define the reference trajectory of the state
to be used at the next time instant k+1, i.e. x̃i(k+N) = x̂i(k+N).
Condition (21) is a key condition for the well posedness of the present distributed
control scheme. Despite its analysis goes beyond the scope of this chapter, it is worth
remarking that it is equivalent to the so-called tube-based small gain condition for
networks discussed in Chapter “Scalable MPC Design”.
Remarkably, each local control station uses only local state information (i.e., xi(k))
and its neighbors’ planned state trajectories x̃ j(k). The latter is transmitted in a
neighbor-to-neighbor fashion thanks to the available partially connected commu-
nication network.
A significant work has been devoted to the proper definition of separable terminal
cost and constraint sets. In [17, 18] methods for a proper choice of the weights Qi,
Ri, Pi, of sets Ei, and of the terminal set X̂ f ,i guaranteeing the well posedness and
the stabilizing properties of the algorithm are proposed.
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4.3 Distributed Control of Independent Systems

A prototype non-iterative algorithm for independent systems coupled through con-
straints is now described, inspired by the approach described in [19]. The system is
assumed to be affected by an unknown, but bounded noise, so that the robust tube-
based approach of [13] is used also in this case. The model of the i-th subsystem,
i = 1, . . . ,M, is described by

xi(k+1) = Aiixi(k)+Biiui(k)+di(k) (23)

where di(k) ∈Di is a bounded disturbance. The M systems are subject to both local
and coupling constraints (4) and (5), respectively.
For each system i = 1, . . . ,M, the local nominal model

x̂i(k+1) = Aiix̂i(k)+Biiûi(k) (24)

is defined and a stabilizing gain Ki is computed. Also in this case, the local stabiliz-
ing control law is given by

ui(k) = ûi(k)+Ki(xi(k)− x̂i(k)) (25)

and letting zi(k) = xi(k)− x̂i(k), it holds that

zi(k+1) = (Aii +BiiKi)zi(k)+di(k) (26)

In view of the boundedness of the disturbance and the stability of Aii +BiiKi, there
exists a robust positively invariant set Zi for (26) such that, for all zi(k) ∈ Zi and
di(k) ∈Di, one has zi(k+1) ∈Zi.
At any time instant k only one system, say the i-th one, is allowed to update its
future plans by solving a suitable MPC problem, while all the others update their
control variables according to the previously computed control sequence and the
corresponding auxiliary law, i.e. their future nominal control moves computed at
time k are, for all j �= i

û j(k+ l|k) = û j(k+ l|k−1) , l = 0, . . . ,N −2
û j(k+N −1|k) = Kjx̂ j(k+N −1|k−1)

where x̂ j(k+N −1|k−1) is the evolution of the nominal state starting from x̂i(k) =
xi(k) with the sequence û j(k+ l|k−1), l = 0, . . . ,N −2. We also define x̂ j(k+N −
1|k−1) = (Aii +BiiKi)x̂ j(k+N −1|k−1).
On the contrary, the i-th system computes the value of ûi(k) in (19) as the solution
to

min
x̂i(k),ûi(k),...,ûi(k+N−1)

Ji(k) (27a)
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subject to (18) and the initial state constraint

xi(k)− x̂i(k) ∈Zi (27b)

Both local (4) and coupling (5) constraints are forced by requiring that, for l =
0, . . . ,N −1

x̂i(k+ l) ∈ X̂i (27c)

(x̂1(k+ l|k−1), . . . , x̂i(k+ l) . . . , x̂M(k+ l|k−1)) ∈ X̂C (27d)

where the sets X̂i and X̂C are properly restricted subsets of Xi and XC, e.g., by set-
ting X̂i ⊆Xi&Zi. As in the previous algorithms, the scheme calls for the definition
of terminal constraints of the type

x̂i(k+N) ∈ X̂ f ,i (27e)

Similarly to the non-cooperating robustness-based control scheme presented in Sec-
tion 4.2, a partially connected communication network is required to support the
transmission of the planned trajectories x̂ j(k+ l|k−1) to each local control station
from the (constraint-based) neighboring ones.
As described in [19, 20], the basic algorithm here described can be greatly enhanced
to allow for more than one system updating its future plans with the optimization
procedure at each time step. In addition, cooperation is achieved letting each sys-
tem to minimize a global cost function and the communication requirements can be
significantly reduced with respect to an all-to-all solution by exploiting the graph
topology forced by the coupling constraints.
Similar schemes have been devised by other research teams, e.g., [21]. The paper
[22] also extends this method to cope with economic-based cost functions.

4.4 Distributed Optimization

A different approach with respect to the distributed algorithms previously described
consists of computing the optimal solution to the original centralized optimization
problem as the iterative solution to smaller, more tractable, and independent ones.
This idea, which is the basis of many popular decomposition methods, can be traced
back to the early contributions, e.g., [23]. In the context of MPC, the reader is re-
ferred to the recent contributions [24–27].
A sketch of a simple version the popular dual decomposition approach, proposed in
[24], applied to MPC is now described. Constraints of general type can easily be
considered in the present framework, although for simplicity of presentation they
will be neglected here. Consider the set of input decoupled systems

xi(k+1) = Aiixi(k)+Biiui(k)+∑ j �=i Ai jx j(k) (28)
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and the following centralized problem

min
u(k),...,u(k+N−1)

J(k) (29)

In view of the formal separability of the cost function J(k), the coupling between the
subproblems is due to the “coupling variables” νi = ∑ j �=i Ai jx j in (28). Now write
Equation (28), similarly to (13), as

xi(k+1) = Aiixi(k)+Biiui(k)+νi(k) (30)

and, denoting by λi the Lagrange multipliers, consider the Lagrangian function

L (k) =
M

∑
i=1

[Ji(k)+
N−1

∑
l=0

λi(k+ l)(νi(k+ l)−∑
j �=i

Ai jx j(k+ l))] (31)

For the generic vector variable ϕ , let ϕ̄i(k) = [ϕT
i (k) , . . . ,ϕT

i (k+N − 1)]T and
ϕ̄ = [ϕ̄T

1 , . . . , ϕ̄T
M]T . Then, by relaxation of the coupling constraints, the optimization

problem of Equation (29) can be stated as

max
λ̄ (k)

min
ū(k),ν̄(k)

L (k) (32)

or, equivalently

max
λ̄ (k)

M

∑
i=1

J̃i(k) (33)

where, letting Ā ji be a block-diagonal matrix made by N blocks, all equal to A ji,

J̃i(k) = min
ūi(k),ν̄i(k)

[Ji(k)+ λ̄T
i (k)ν̄i(k)−∑

j �=i

λ̄T
j (k)Ā jix̄i(k))] (34)

The following two-step iterative procedure is then used at any time step to compute
the optimal solution

1. for a fixed λ̄ , solve the set of M independent minimization problems given by
Equation (34) with respect to ūi(k), ν̄i(k);

2. given the collective values of ū, ν̄ computed at the previous step, solve the max-
imization problem given by (33) with respect to λ̄ . This problem can be solved
in a distributed way using a gradient step, see [24].

To summarize, the described iterative algorithm must be supported by a partially
connected communication network (for both steps 1 and 2, provided that the latter
uses a distributed gradient step). More specifically, at each iteration, for step 1 it
is required that, for all i = 1, . . . ,M, the i-th local computing station receives the
current values of λ j(k + l), l = 1, . . . ,N − 1 by the agents j �= i which have i as
neighbor, i.e., such that i ∈ N j; on the other hand, for step 2, it is required that the
i-th station receives the current values of x j(k+ l) by its neighbors j ∈Ni.
It is well recognized that this kind of decomposition approaches are characterized by
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slow convergence, due to the great number of iterations required to obtain a solution.
However, to this regard, many efficient algorithms have been developed, see, for
instance, [26]. In addition, the fundamental properties of recursive feasibility and
stability are not a-priori guaranteed, and can be achieved by a proper definition of
the optimization problem and of the constraints, see [27].
A final remark is due: as noted above and as apparent from (33), the separability of
the cost function J(k) is a major requirement also for this method, as well as - for
constrained problems - the separability of the terminal constraint set. The previously
discussed approaches can be used to this aim, including the one presented in [17, 18].
Also the recent work [28] is devoted to this problem and allows for scalable design.
See Chapter “Scalable MPC Design” for more details.

5 Extensions and Applications

The DMPC algorithms discussed in the previous sections have been designed for
linear, discrete-time, and time invariant systems, and the main approaches and ideas
behind most of the nowadays available methods for the regulation problem have
been described. However, the recent and tumultuous research activity in the field
has produced a number of algorithms dealing with a large variety of systems and
control problems. Among them, we here recall some of the most interesting research
directions, with some references:

• DMPC algorithms have been developed for continuous-time and nonlinear sys-
tems in, e.g., [21, 29–31].

• The output feedback case has been studied in [32], while the tracking problem
has been analyzed, e.g., in [8, 33]. An alternative approach, based on the par-
ticular class of MPC strategies called Command Governor methods, has been
reported in [34] and in the papers referenced therein.

• DMPC for systems affected by stochastic noises has been considered in [35–
37].

• Economic MPC (see Chapter “Economic Model Predictive Control: Some De-
sign Tools and Analysis Techniques”) has been extended to cope with a dis-
tributed implementation in [22, 38].

• The new and emerging field of coalitional control, which can be seen as an evo-
lution of DMPC where the topology of the control structure can vary with time,
has been treated in [39], where an up-to-date literature review is also reported.

Many applications domains of DMPC have been explored, although most of the
reported research still makes reference to simulation studies, with only few real ap-
plications (mainly laboratory experiments). In view of its nature, DMPC fits very
well with the control of large, spatially distributed systems, possibly interconnected
through a network. For this reason, power networks, smart grids, and in general
distributed energy management systems are the natural domains where DMPC can
offer advantages with respect to a centralized solution, see, for instance, [40–44].
Another class of problems where DMPC can have a great potential impact concerns
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the management and control of irrigation canals, as discussed in [45]. The coordi-
nation of multi-vehicle systems with DMPC has been considered, e.g., in [46, 47].
Finally, applications in other fields are described in [48, 49].

6 Conclusions and Future Perspectives

The research activity in Distributed Model Predictive Control has been intense in the
last decade and many methods are nowadays available, see, for instance, the many
contributions reported in [4]. In parallel with the development of new algorithms,
also the most significant fields of application of DMPC have been clarified. In our
opinion, these include networked systems, like power, water, and traffic networks,
the coordination of autonomous vehicles and flying systems (drones), the control of
very large-scale, weakly coupled, systems. However, there is still a significant gap
between research results and real-world applications since most of the DMPC algo-
rithms have only been tested in simulations or with laboratory benchmarks. Among
the most promising future research directions, we believe that the reconfigurability
of DMPC will be a major topic. To this regard, plug-and-play and coalitional con-
trol strategies, possibly driven by external events, will be required to enhance the
ability of DMPC to deal with many real control problems and to provide significant
improvements with respect to the nowadays adopted control solutions.
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31. Liu, J., Muñoz de la Peña, D., Christofides, P.D.: Distributed model predictive control of
nonlinear process systems. AIChE J. 55, 1171–1184 (2007)

32. Farina, M., Scattolini, R.: An output feedback distributed predictive control algorithm. In:
Proceedings of the 50th IEEE Conference on Decision and Control, pp. 8139–8144 (2011)

33. Farina, M., Giulioni, L., Betti, G., Scattolini, R.: An approach to distributed predictive control
for tracking - theory and applications. IEEE Trans. Control Syst. Technol. 22(4), 1558–1566
(2014)

34. Casavola, A., Garone, E., Tedesco, F.: The distributed command governor approach in a nut-
shell. In: Maestre, J.M., Negenborn, R.R. (eds.) Distributed Model Preductive Control Made
Easy. Springer, Berlin (2014)



258 Marcello Farina and Riccardo Scattolini

35. Perizzato, A., Farina, M., Scattolini, R.: Stochastic distributed predictive control of indepen-
dent systems with coupling constraints. In: IEEE Conference on Decision and Control, pp.
3228–3233 (2014)

36. Farina, M., Giulioni, L., Scattolini, R.: Distributed predictive control of stochastic linear sys-
tems with chance constraints. In: American Control Conference, pp. 20–25 (2016)

37. Dai, L., Xia, Y., Gao, Y., Cannon, M.: Distributed stochastic MPC of linear systems with
additive uncertainty and coupled probabilistic constraints. IEEE Trans. Autom. Control 62(7),
3474–3481 (2017)

38. Chen, X., Heidarinejad, M., Liu, J., Christofides, P.D.: Distributed economic MPC: applica-
tion to a nonlinear chemical process network. J. Process Control 22, 689–699 (2012)

39. Fele, F., Maestre, J.M., Camacho, E.F.: Coalitional control: cooperative game theory and con-
trol. IEEE Control Syst. Mag. 37, 53–69 (2017)

40. Wang, D., Glavic, M., Wehenkel, L.: Comparison of centralized, distributed and hierarchical
model predictive control schemes for electromechanical oscillations damping in large-scale
power systems. Int. J. Electr. Power Energy Syst. 58, 32–41 (2014)
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Scalable MPC Design

Marcello Farina, Giancarlo Ferrari-Trecate, Colin Jones, Stefano Riverso,
and Melanie Zeilinger

1 Introduction and Motivations

Nowadays, automation is rapidly evolving from the one-regulator-one-system set-
ting to distributed control architectures for large interconnections of subsystems.
Progresses in this direction are motivated by technologies such as CyberPhysical
Systems (CPS), the Internet of Things, Industry 4.0, and the Industrial Internet
[1–3], which are gaining wider and wider popularity in academia and industry. Fu-
eled by progress in communication networks, MEMS, and distributed computing,
these frameworks are closely related and hinge on the coupling of myriads of smart
sensors and actuators for providing innovative services [3]. In fact, they are expected
to impact a range of applications, including manufacturing, transportation, coopera-
tive robotics, smart environments, green buildings, public utilities, and smart grids.
In this vision, a central role is played by the concept of flexibility of CPSs. Ideally,
the control technology should allow subsystems to join and leave a CPS with mini-
mal supervision efforts.
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This chapter describes modular control architectures based on MPC that can be
easily updated when the CPS topology changes. In order to achieve such a level of
flexibility, the design of local controllers should be scalable. Intuitively, this means
that the complexity of the synthesis algorithm must be independent of the total num-
ber of subsystems. Moreover, the addition or removal of a subsystem should require,
at most, the update of a limited number of controllers. In scalable design, the main
challenge is how to preserve collective properties of interest, such as stability, after
the plug-in and -out of subsystems. To this purpose, we will introduce the concept
of Plug-and-Play (PnP) design [4], where the addition and removal of subsystems
can be automatically denied if the control layer cannot be updated in a safe manner.
The use of MPC for building local regulators is particularly interesting because it
allows to easily handle multivariable subsystems and to guarantee the fulfilment of
constraints on local variables.

The chapter is structured as follows. Scalable and PnP design are introduced in
Section 2. These approaches will be described in general terms, as they are inde-
pendent of the nature of local controllers. Section 3 is devoted to the mathematical
tools needed for achieving scalability of MPC design in presence of constraints on
variables of subsystems. The main PnP MPC schemes available in the literature
[4–6] are reviewed in Section 4. We provide a tutorial description by adopting the
simplest possible setting and by deferring generalizations and related approaches
to Section 5. Section 6 discusses two applications of the proposed methods in the
fields of power networks and smart grids. Concluding remarks, as well as directions
of future research, are given in Section 7.

Notation. We use a : b for the set of integers {a,a + 1, . . . ,b}. The column
vector with s components v1, . . . ,vs is v = (v1, . . . ,vs). The symbol ⊕ denotes the
Minkowski sum, i.e. A = B⊕C means A = {a : a = b+ c, b ∈ B, c ∈ C}. More-
over,

⊕s
i=1 Gi = G1 ⊕ . . .⊕Gs. The symbol 1α (resp. 0α ) denotes a column vector

with α ∈ N elements all equal to 1 (resp. 0). The identity matrix of size n is In.
The pseudo-inverse of a matrix A ∈ R

m×n is denoted with A†. A matrix A ∈ R
n×n is

asymptotically stable if all its eigenvalues λ verify |λ |< 1.

Definition 1 (RPI and RCI sets). Consider the discrete-time system x(t + 1) =
f (x(t),u(t),w(t)), with state x(t)∈R

n, input u(t)∈U⊆R
m, and disturbance w(t)∈

W⊂R
n. The set X⊆R

n is Robust Control Invariant (RCI) if ∀x(t) ∈X there exists
u(t) ∈U such that x(t +1) ∈X, ∀w(t) ∈W. For the system x(t +1) = f (x(t),w(t)),
the set X is Robust Positively Invariant (RPI) if x(t)∈X⇒ x(t+1)∈X, ∀w(t)∈W.

2 Scalable and Plug-and-Play Design

A CPS can be represented as a graph of interconnected subsystems Σ[i] i ∈
M = 1 : M, see Figure 1. Edges represent physical or communication inter-
actions involving the exchange of local variables, such as states and inputs.
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Fig. 1: CPS with a decentralized control
architecture and plug-in of a subsystem.
The original CPS is composed of subsys-
tems Σ[ j], j ∈ 1 : 4 (solid gray arrows are
coupling channels). Plug-in of subsystem
5 in a parent based framework: plug-in
tests and design of local controllers must
be executed for Σ[1], Σ[4], and Σ[5]. Dashed
gray arrows are coupling channels that
will be activated after the plug-in of Σ[5].

The direction of coupling channels de-
fines, for each subsystem Σ[i], a set of
parents (or influencing subsystems) Ni

and a set of children (or influenced sub-
systems) Si. As an example, in Figure 1
one has N3 = {2,4} and S3 = {2}.

As also discussed in chapter “Dis-
tributed MPC for Large-Scale Sys-
tems”, in decentralized and distributed
control, the goal is to design local con-
trollers C[i], each associated to a subsys-
tem Σ[i], i ∈ M for achieving desired
collective behaviors, such as stability
or the fulfilment of constraints on some
variables.
In this chapter we focus on the problem
of designing a single controller C[i] and
discuss the complexity of the synthesis
algorithm as the system size grows. We
use the maximal amount of information
that one is allowed to use in control
design as a proxy of complexity and
distinguish between the following ap-
proaches. The design is decentralized if
the synthesis of C[i] is based on a model
of Σ[i] only. This approach, introduced
the 70s, has been considered in a series of papers, see [7–10] and the references
therein. A less restrictive approach is parent-based design, where the synthesis of
C[i] exploits models Σ[ j], j ∈ Ni (but not the associated controllers C[ j]). One can
extend decentralized and parent-based design by allowing for the use of l-th order
parents, defined according to the coupling topology. We say that a control design
algorithm is scalable if l is fixed and does not depend on M. For simplicity, in this
chapter we set l = 1.

Parent-based design has two attractive features: (i) the information required for
control synthesis flows as in the coupling graph, which is usually sparse, (ii) the
plug-in of a subsystem (say Σ[M+1]) requires to retune, at most, the controllers of its
children. The latter point, illustrated in Figure 1, stems from the observation that the
parents of Σ[ j], j �∈ {i}∪S[i] do not change if ΣM+1 is added, and hence no additional
information is available for updating the controllers C[ j] in a parent-based fashion.
Similar remarks apply to the unplugging of a subsystem.

The key problem in scalable design is how to guarantee collective properties in
spite of the limited information available for local control synthesis. In some cases,
this goal is impossible to achieve [9, 10] and this emphasizes the importance of
providing conditions about feasibility of scalable synthesis.
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A framework for addressing these issues is provided by PnP design, as defined
in [4]. Assume subsystem ΣM+1 issues a plug-in request (i.e., Σ5 in Figure 1). One
would like that Σ[M+1] and its children execute a numerical test for checking the
existence of local controllers capable of preserving key properties after the addition
of Σ[M+1]. If the plug-in test fails, the addition of Σ[M+1] is denied. Moreover, for
preserving scalability of the whole design procedure, the test itself must be scalable.
Similar considerations apply to the removal of a subsystem.

When a scalable design algorithm is complemented with a plug-in/out test, we
call it PnP. As an example of PnP synthesis, in Figure 1, subsystems 1, 4, and 5
must successfully run a local plug-in test before re-designing the corresponding
controllers and letting Σ[5] be added. The connection of Σ[M+1] at a given time instant
t̄ is termed hot plug-in and t̄ is called the plug-in time. Sometimes, a hot plug-in
requires a preparation phase for steering subsystems Σ[ j], j ∈ Si to a desired state.
The attainability of these conditions must be also checked in the plug-in test.

The term PnP, borrowed from computer science, indicates the possibility of
adding or removing subsystems in a safe way and with minimal effort. PnP is there-
fore naturally related to the concept of flexible CPSs that can be adapted over time in
a seamless way. Besides flexibility, PnP design offers the following advantage. First,
building and storing a global model of the system is not required, as local models
must be transmitted only between parents and children. This allows the application
of PnP control to systems with a very large number of subsystems. Second, as it will
be shown in Sections 3 and 4, parents often transmit to children only partial infor-
mation. This allows one to comply with privacy requirements, in terms of models,
which arise in CPSs such as public utilities or smart grids where subsystems have
different owners. Third, PnP design provides a framework for replacing components
in industrial systems with minimal re-engineering and in a safe way.

In this chapter, we consider CPSs modeled as discrete-time Linear Time-
Invariant (LTI) systems

x+ = Ax+Bu, (1)

where x ∈ R
n and u ∈ R

m are the state and the input, respectively, at time t and x+

stands for x at time t +1. We will use the notation x(t), u(t) only when necessary.
As more thoroughly discussed in chapter “Distributed MPC for Large-Scale Sys-
tems”, the model (1) is decomposed in a number of interacting submodels. In this
chapter we consider a non-overlapping decomposition and we partition the state into
M vectors x[i] ∈R

ni , i ∈M such that x = (x[1], . . . ,x[M]), and n =∑i∈M ni. Similarly,
the input is partitioned into vectors u[i] ∈ R

mi , i ∈ M such that u = (u[1], . . . ,u[M])
and m = ∑i∈M mi.
The dynamics of the i− th subsystem results to be described as follows:

Σ[i] : x+[i] = Aiix[i] +Biu[i] +w[i], w[i] =
M

∑
j=1, j �=i

Ai jx[ j], (2)

where Ai j ∈R
ni×n j , i, j ∈M and Bi ∈R

ni×mi . According to (2), the matrix A in (1) is
formed by blocks Ai j, i, j ∈M and, moreover, Ni = { j : Ai j �= 0, j �= i} and Si = { j :
A ji �= 0, j �= i}. From (2) one also obtains B = diag(B1, . . . ,BM). Finally, we assume
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that the states and the inputs of subsystems Σ[i], i ∈M must fulfill local constraints
x[i] ∈Xi and u[i] ∈Ui. If we define the sets X=∏i∈M Xi and U=∏i∈M Ui, then we
obtain the following constraints for the collective system (1)

x ∈ X, u ∈ U. (3)

Besides linearity of local dynamics and coupling terms w[i], the model (1)–(3) as-
sumes no coupling through inputs or constraints. In spite of these simplifications,
this setting will allow us to illustrate the main challenges of scalable and PnP control
based on MPC. Relaxations of the above assumptions will be discussed in Section 5.

3 Concepts Enabling Scalable Design for Constrained Systems

The aim of this section is to present the main tools that have been used in the liter-
ature for achieving scalability of MPC design. Existing approaches consider decen-
tralized or distributed MPC architectures, as defined in chapter “Distributed MPC
for Large-Scale Systems”, and aim at synthesizing local controllers C[i] for pro-
viding collective stability and fulfillment of constraints (3) at all times. The key
ingredient of local MPC design is the availability of structured state-feedback con-
trollers guaranteeing the existence, for each subsystem, of an invariant set contained
in the state constraints. For scalability of MPC design, these sets must be defined in
a parent-based fashion. The approaches in Section 3.1 assume decentralized state-
feedback controllers and invariant sets that do not change over time. Section 3.2, in-
stead, considers a distributed state-feedback law and time-varying invariant sets that
can be computed off-line (and updated on-line) using information only from parents.
These approaches are complementary. The notions of invariance in Section 3.1 are
tailored to the development of decentralized controllers. As such, they are simpler
than those in Section 3.2, conceived for distributed architectures requiring a com-
munication network. On the other hand, invariant sets in Section 3.1.2 exist only if
a suitable small-coupling condition is verified. Instead, invariant sets in Section 3.2
might exist even for CPSs with tightly coupled subsystems.

3.1 Tube-Based Small-Gain Conditions for Networks

The MPC approach in [4, 5] is based on the idea of treating the coupling w[i] in (2)
as a disturbance. For simplicity, in this section we neglect input constraints, i.e. U=
R

m. Moreover, we assume that Xi are bounded sets containing the origin in their
interior. In MPC, constraint satisfaction in presence of bounded disturbances can be
addressed through the tube approach described in [11]. This requires to define

(i) the nominal (i.e., unperturbed) prediction model

Σ̂[i] : x̂+[i] = Aiix̂[i] +Biv[i] (4)
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(ii) a local control law in the form

u[i] = v[i] +κi(x[i]− x̂[i]), (5)

which relates u[i] in (2) with v[i] in (4).
(iii) a state feedback function κi and a set Zi including the origin in its interior such

that x[i](t) is confined in a tube of section Zi centered in x̂[i](t),

x[i](0) ∈ x̂[i](0)⊕Zi ⇒ x[i](t) ∈ x̂[i](t)⊕Zi, ∀t ≥ 0, (6)

or, equivalently, such that the error z[i] = x[i]− x̂[i] verifies

z[i](0) ∈ Zi ⇒ z[i](t) ∈ Zi, ∀t ≥ 0, (7)

Note that the set Zi does not depend on v[i] because, from (2) and (4), the error
dynamics is

z+[i] = Aiiz[i] +Biκi(z[i])+w[i]. (8)

Therefore, the design of the two control terms in (5) can be done separately, by

(a) choosing κi and the corresponding set Zi,
(b) designing a local MPC controller based on the decoupled model (4), so as to

steer x̂[i] as desired. From (6), the goal is to guarantee, at all times,

x̂[i](t)⊕Zi ⊆ Xi, (9)

so that constraints x[i] ∈ Xi are fulfilled.

In order to achieve (9) for nonzero nominal states, the following strict inequality
must be verified

Zi ⊂ Xi (10)

for all i ∈M . Moreover, (10) implies that there is a nonempty set X̂i such that

X̂i ⊕Zi ⊆ Xi (11)

and then, if the local MPC controller guarantees x̂[i] ∈ X̂i at all times, constraints are
fulfilled irrespective of the coupling.

Condition (10) is critical and it can be interpreted as a tube-based small-gain
condition for networks. To clarify this recall that, from (7) and (8), Zi is an RPI set
for the disturbance set (i.e., the coupling set)

Wi =
⊕
j∈Ni

Ai jX j. (12)



3 Concepts Enabling Scalable Design for Constrained Systems 265

Therefore Zi is a function of Wi, say Zi = f IS
i (

⊕
j∈Ni

Ai jX j). Accordingly, (10)
becomes

f IS
i (

⊕
j∈Ni

Ai jX j)⊂ Xi, (13)

and since the inclusion must hold for all i ∈ M , the network-wide nature of (13)
becomes apparent. Indeed, f IS

i are gain functions that represent the ability of each
subsystem (8) to attenuate the effect of the bounded disturbance w[i] on z[i]. In par-
ticular, the control function κi in (8) has the role to (and should be designed in order
to) reduce as much as possible the impact of w[i] on Zi.
Two conditions are required for (13) to hold: (i) each local f IS

i must be sufficiently
small, and (ii) the coupling terms Ai j must be sufficiently small. However, the pre-
cise meaning of “sufficiently small” is largely application-dependent. Furthermore,
the degree of coupling depends on how subsystems are defined. Often, subsystems
are not identified a priori and there are several algorithms for computing decompo-
sitions where subsystems are weakly coupled [12]. Finally, the effect of coupling
terms Ai j can be reduced (or even eliminated) by extending the control law (5) so as
to embody coupling attenuation terms, as discussed in Section 5.
In Sections 3.1.1 and 3.1.2 we address how (13) can be rewritten in an analyti-
cal form; in particular, we will highlight that the main difference between the ap-
proaches in [4] and [5] lies in the criterion used for defining κi(·) and the set Zi.

3.1.1 Tube-Based Small-Gain Condition for Networks Using RPI Sets

The solution proposed in [4] requires κi(·) to be linear, i.e.

κi(x[i]− x̂[i]) = Ki(x[i]− x̂[i]), (14)

where Ki ∈ R
mi×ni is a gain matrix. This implies that (8) becomes

z+[i] = Fiz[i] +w[i], (15)

where Fi = Aii +BiKi. If Fi is asymptotically stable, there is a nonempty minimal
RPI (mRPI) set Zi for (15) with disturbance w[i] ∈

⊕
j∈Ni

Ai jX j, given by [13]

Zi =
∞⊕

k=0

Fk
i

⊕
j∈Ni

Ai jX j. (16)

We assume, as in [4], that sets Xi are zonotopes, i.e., centrally symmetric convex
polytopes described by Xi = {Fix[i] ≤ 1r̄i} where the matrix Fi ∈ R

r̄i×ni is given
and rank(Fi) = ni. In [4] it is shown that the small-gain condition (10) is verified if,
for all i ∈M
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∑
j∈Ni

∞

∑
k=0

||FiF
k

i Ai jF
†
j ||∞ < 1. (17)

The fulfillment of (17) also guarantees that A+BK is asymptotically stable, where
K =diag(K1, . . . ,KM). This means that the local gains Ki define a decentralized con-
troller stabilizing the CPS (1), when v[i] = 0, i ∈M .
Note that (17) is a parent-based condition that can be checked locally by subsystem
Σ[i]. The computation of Ki under constraints (17) is therefore a nonlinear optimiza-
tion problem that can be used as a plug-in test [4].

3.1.2 Tube-Based Small-Gain Condition for Networks Using RCI Sets

The method proposed in [14] computes the set Zi before defining the feedback law
κi that makes Zi RPI. In other words, it first looks for an RCI set Zi verifying (10)
for the disturbance w[i] ∈ Wi. When constraints Xi are polytopes, this operation
can be done following the procedure in [15]. In detail, by exploiting an appropriate
parametrization of RCI sets, the computation of Zi can be cast into a Linear Pro-
gramming (LP) problem. The LP depends only on the polyhedron Wi and therefore,
in view of (12), it provides a parent-based optimization problem that can be used as
a plug-in test.

As shown in [15], for a given vector z[i], the function κi associated to Zi can be
evaluated by solving another LP problem. Differently from the computation of Zi,
which is performed offline, this has to be done at each time instant for obtaining the
control variable u[i] in (5).

Besides allowing the fulfillment local constraints, the feedback κi has another key
feature: it guarantees that the origin of the CPS (1) is asymptotically stable when x̂[i]
and v[i] in (5) are null. This property, shown in [16, proof of Theorem 1, steps 2
and 3], exploits the fact that “disturbances” w[i] influencing the state dynamics are
not exogenous variables (as in tube MPC, see [11]), but they depend on states of
parent subsystems.

3.2 Distributed Invariance

If the coupling between subsystems is stronger, then robust control can no longer be
used to compensate for system interactions, and the small-gain conditions outlined
in the previous section will fail. In these cases, controllers are needed that utilize
more information in their decision-making process via communication of the states
of parent’s subsystems. In this section, we outline how a sparse structured Lyapunov
function can be designed, and then utilized to enforce a less-conservative form of
distributed invariance, which comes at the cost of increased communication and
design complexity.
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The goal of this section is to define a structured invariant set, for which contain-
ment of a given local state can be determined using only information from the local
subsystem and its parents. Such a set can then be employed as a terminal condi-
tion to ensure recursive feasibility and constraint satisfaction of the entire CPS, as
outlined in Section 4.2.1. The primary challenge in this case is that invariance of a
coupled collection of subsystems is a fundamentally global property.

We begin by assuming that a structured control law exists that stabilizes the un-
constrained system.

Assumption 1 (Structured Linear Controller). There exists a linear control law u =
Kx such that the system x+ = (A+BK)x is asymptotically stable and block Ki j is
non-zero only if Ai j is non-zero.

We define the notation xNi to mean the vector containing only the states of the
subsystems Ni (in an appropriate ordering), where we recall that Ni is the set of
parents of the ith subsystem.

We begin by defining a structured Lyapunov function V (x).

Theorem 1 (Adapted from [17]). If there exist, for all i ∈ M , functions Vi(x[i]) and
γi(xNi), as well as positive constants β1, β2 and β3 such that for all i ∈M

β1‖x[i]‖2 ≤Vi(x[i])≤ β2‖x[i]‖2 ,

Vi(x
+
[i])−Vi(x[i])≤ γi(xNi)−β3‖x[i]‖2 , (18)

and the global condition

∑
i∈M

γi(xNi)≤ 0 (19)

is satisfied, then V (x) = ∑i∈M Vi(x[i]) is a Lyapunov function for the system x+ =
(A+BK)x.

Conditions (18) and (19) ensure that while some of the local terms Vi(x[i]) may
increase in any given time step, the global function V decreases at every time step.
This property can be used to define time-varying local invariant sets, as shown in
the following.

Based on the local function Vi, we define the parameterized level sets

Xi(αi) := {x[i] |Vi(x[i])≤ αi} (20)

and the global set X(ααα) = Πi∈M Xi(αi), where ααα = (α1, . . . ,αM). We evolve the
parameter ααα according to the dynamic system

α+
[i] = α[i] + γi(xNi) ∀i ∈M (21)

and use the shorthand ααα+ = ααα + γγγ(x) for (21). Note that we now have a dynamic
set of sets X(ααα), which evolve according to the state of the system.

The following Lemma follows from (21) and from Theorem 1.
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Lemma 1. If x ∈ X(ααα), then x+ = (A+BK)x ∈ X(ααα+) = X(ααα+ γγγ(x)).

Even if, as shown above in Lemma 1, the system states remain within the time-
varying sets Xi(αi), it is not obvious that the set X(ααα) will still satisfy the system
constraints: X(ααα)⊆X and KX(ααα)⊆U. The following theorem provides conditions
for such invariance.

Theorem 2 (Adapted from [18]). Let ᾱ > 0 be a scalar such that the level set X̄ :=
{x |V (x) ≤ ᾱ} is a subset of X and KX̄ ⊂ U. If ∑αi = ᾱ , αi > 0 and X(ααα) ⊆ X̄,
then

x+ = (A+BK)x ∈ X(ααα+) = X(ααα+ γγγ(x))
X(ααα+)⊂ X̄ ⊂ X

We now have a system of sets Xi(x) and functions γi(xNi) that are based only on
local and parent states. Specifically, containment of the state x in the set X(ααα) can
be tested locally using information stored at the local subsystem only. Evolution
of the state dynamics ααα can be done via a single communication of the states of
the parent subsystems. In Section 4.2, we will demonstrate that these are the key
properties required to develop a recursively feasible and stabilizing MPC scheme,
and how these components can be adapted online due to changes in the system
structure (plug-in/unplugging).

4 Scalable Design of MPC

In the following, we focus on MPC architectures that can be designed in a scalable
way by exploiting the notions of invariance introduced in Section 3. More precisely,
the decentralized MPC scheme in Section 4.1 will hinge on the results in Section 3.1,
while the distributed MPC approach in Section 4.2 will leverage time-varying dis-
tributed invariance described in Section 3.2. In both cases, we will discuss how to
perform local MPC design in a PnP fashion, so as to allow for the addition and
removal of subsystems. While control design is here meant as an off-line task, in
Section 4.2.3 we will illustrate how to enable the hot plug-in/out of subsystems with-
out violating constraints on states and inputs. The algorithm will be presented as a
complement to the distributed MPC scheme in Section 4.2. Nevertheless, it could
be easily adapted to cope also with the decentralized MPC solution in Section 4.1.

4.1 PnP-MPC Based on Robustness Against Coupling

We describe on-line computations and off-line design steps required by the decen-
tralized MPC schemes in [4, 5], which are based on the tube-based small-gain condi-
tions for networks in Section 3.1. The goal of the local MPC regulator for system Σ[i]
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is to provide v[i] so as to guarantee (9). Following the approach in [11] the control
signal u[i] in (5) is computed online as

u[i](t) = v[i](t|t)+κi(x[i](t)− x̂[i](t|t)), (22)

where x[i](t) is the current local state and v[i](t|t), x̂[i](t|t) are the optimal values of
variables v[i](0) and x̂[i](0), respectively, appearing in the MPC optimization prob-
lem

min
x̂[i](0)

v[i](0:Ni−1)

Ni−1

∑
k=0

�i(x̂[i](k),v[i](k))+Vfi(x̂[i](Ni)) (23a)

x[i](t)− x̂[i](0) ∈ Zi (23b)

x̂[i](k+1) = Aiix̂[i](k)+Biv[i](k) k ∈ 0 : Ni −1 (23c)

x̂[i](k) ∈ X̂i k ∈ 0 : Ni −1 (23d)

x̂[i](Ni) ∈ X̂ fi (23e)

that must be solved at each time t. In (23), the integer Ni > 0 is the control horizon
(that can be different for each subsystem), �i is the stage cost, Vfi is the terminal cost,
X̂ fi is the terminal set, and X̂i are state constraints for the dynamics (23c), which
corresponds to the nominal system Σ̂[i] in (4). Some remarks are due. First, (23) does
not depend on states x[ j](t), j �= i and therefore the control law (22) is decentralized.
Second, following the approach in [11], also the initial state of system (23c) is op-
timized at each time instant. Third, in terms of computational complexity, (23) is a
standard tube MPC problem for a system of order ni [11].

Next, we describe the offline design problem that has to be solved at location
i in order to define all elements appearing in (22) and (23). As a first step, one
has to check the existence of the RPI set Zi = f IS

i (
⊕

j∈Ni
Ai jX j) (and the associated

control law κi(·)) including the origin in its interior and verifying (10). The existence
of Zi and κi(·), as discussed in Section 3.1, requires the fulfillment of the tube-based
small-gain condition for networks (13). Moreover, it provides a plug-in condition:
if Zi or κi(·) do not exist, the addition of subsystem Σ[i] must be denied. All these
operations can be carried out by solving two different parent-based optimization
problems, described in Sections 4.1.1 and 4.1.2.
Second, one has to derive the state constraints X̂i verifying (11). In Sections 4.1.1
and 4.1.2 we describe two algorithms, based on different parametrizations of X̂i and
requiring an implicit representation of Zi (Section 4.1.2 ) or not (Section 4.1.1).

Third, the remaining quantities in (23) must fulfill standard assumptions for guar-
anteeing recursive feasibility and convergence in a centralized MPC setting. Specif-
ically, one must define an auxiliary control law κaux

i (x̂[i]) and a corresponding termi-

nal set X̂ fi such that (i) X̂ fi ⊆ X̂i is an invariant set for x̂+
[i] = Aiix̂[i] +Biκaux

i (x̂[i]) and

(ii) ∀x̂[i] ∈ X̂ fi , Vfi(x̂
+
[i])−Vfi(x̂[i]) ≤ −�i(x̂[i],κaux

i (x̂[i])). We highlight that there are



270 M. Farina et al.

several methods, discussed, e.g., in [19], for defining κaux
i , �i(·), Vfi(·) and X̂ fi ver-

ifying these assumptions. Importantly, these ingredients can be defined at a purely
local level, requiring no information from neighboring systems.
The following statement, summarizing Theorem 1 in [4] and Theorem 9 in [5], char-
acterizes stability and constraint satisfaction for the closed-loop collective system.

Theorem 1. Assume that, for all subsystems, plug-in tests are passed and the local
MPC controllers (23) are designed following one of the methods described above.
Define the feasibility region for the MPC-i problem as

X
F
i = {s[i] ∈ Xi : (23) is feasible for x[i](t) = s[i]},

and the collective feasibility region as XF =∏i∈M X
F
i . Then,

(i) if x(0) ∈ X
F , i.e. x[i](0) ∈ X

F
i for all i ∈ M , the state constraints in (3) are

fulfilled at all time instants;
(ii) the origin of the closed-loop system is asymptotically stable and X

F is a region
of attraction.

Consider now the plug-in of a new subsystem Σ[M+1] at time t̄. Theorem 1 implies
that, for preserving stability and constraint satisfaction, one has to (i) run plug-in
tests and design new controllers for system Σ[M+1] and its children and (ii) guarantee
that x[ j](t̄) ∈X

F
j for j ∈ {M+1}∪Si, where XF

j are the feasibility regions for the
new MPC controllers. This provides an additional hot plug-in condition that might
require a preparation phase before hot plug-in. Algorithms for this task are described
in Section 4.2.3.

4.1.1 PnP-MPC Exploiting the Small-Gain Conditions for Networks Using
RPI Sets

As recalled in Section 3.1.1 the PnP-MPC scheme in [4] assumes that κi is
parametrized as in (14) and that Xi is a zonotope. The parent-based design phase
relies on the following result [4, Proposition 1]: if there are matrices Ki such that
Aii+BiKi is asymptotically stable and the small-gain condition (17) is verified, then
one can always define suitable RPI sets Zi and zonotopes

X̂i = { f̂ T
i,rx̂[i] ≤ l̂i,∀r ∈ 1 : ¯̂ri}= {x̂[i] = Ξ̂id̂i, ||d̂i||∞ ≤ l̂i} (24)

In particular, there is a δi > 0 such that Zi can be chosen as a δi-outer approximation
of the minimal RPI set, see [13]. We highlight that, in (24) the “shape” of X̂i (i.e.,
vectors f̂i,r and matrix Ξ̂i) must be defined a priori, but the parameter l̂i, acting as a
zooming factor, can be determined jointly with δi via simple scalar inequalities, see
[4, Proposition 1] for details.
Based on this result, in [4] a nonlinear optimization problem is proposed for jointly
computing Ki, δi > 0, and l̂i, as well as for verifying (17). More specifically, in order
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to guarantee asymptotic stability of the local dynamics Aii +BiKi, the algorithm in
[4] assumes that Ki is the LQ control gain associated to matrices Qi ' 0 and Ri ( 0,
which are supplied by the user.

4.1.2 PnP-MPC Exploiting the Small-Gain Conditions for Networks Using
RCI Sets

The parent-based design phase in [5] relies on a two-stage procedure, stemming
from the considerations made in Section 3.1.2. The first step is to check for the
existence of a suitable RCI Zi by solving a parent-based LP (see Section 3.1.2).
This is a plug-in test and, if passed, it provides as a by product points z̄ f

[i] ∈ R
ni ,

f ∈ 1 : qi whose convex hull is Zi. This implicit representation of Zi allows one to
derive LP problems both for evaluating the control law κi(x[i]) and for computing

the set X̂i. As remarked in Section 3.1.2, the computation of κi(x[i]) is required at

each time instant for deriving u[i] in (22). Instead, the set X̂i must be computed once
for all at the design stage.

4.2 PnP-MPC Based on Distributed Invariance

In this section we first note that the structured invariant sets and Lyapunov func-
tions developed in Section 3.2 can be used to develop a recursively feasible MPC
formulation, which can be deployed using distributed optimization. Following this,
we focus on the problem of distributed design/synthesis and extend this to enable
plug-and-play.

4.2.1 Implementation of Distributed MPC

The goal is to utilize standard distributed optimization tools to solve the MPC op-
timization problem online. To use such algorithms effectively, we require that the
collective MPC problem can be written in the form minzi∈Zi ∑ fi(zi) s.t.∑ Lizi = c,
where the matrices Li are sparse and couple only adjacent subsystems.

By utilizing the structured Lyapunov function and the invariant sets developed in
Section 3.2, we can pose a standard centralized MPC problem in exactly this desired
form

V �(x̄) = minimize
x,u ∑

i∈M
Ji(x[i],u[i]) (25a)

subject to (x[i],u[i],w[i]) ∈ Ci(x̄[i],Xi(αi)) ∀i ∈M (25b)

w[i] =
M

∑
j=1, j �=i

Ai jx[ j] ∀i ∈M (25c)
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where the local value functions and constraint sets are defined as

Ji(x[i],u[i]) =Vi(x[i](N))+
N−1

∑
k=0

li(xi(k),ui(k))

Ci(x̄[i],Xi(αi)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(x[i],u[i],w[i])

∣∣∣∣∣∣∣∣∣∣

x[i](0) = x̄[i]

(x[i](k),u[i](k)) ∈ Xi ×Ui

x[i](N) ∈ Xi(αi)

x[i](k+1) = Aiix[i](k)+Biu[i](k)+w[i](k)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the current state of the system is x̄, and the MPC control law for the ith
subsystem is defined as κ[i](x[i]) := u[i](0)

�, where u� is the optimizer of the above
problem. In addition, at each time step, we update the level set vector α according
to the dynamics (21).

Standard MPC theory tells us that if V (x) is a Lyapunov function and Xf ⊂X is an
invariant set for an appropriately defined control law u = Kx, which is feasible (i.e.,
Kx ∈ U for all states in X(ααα)), then the system x+ = Ax+Bκ(x) is asymptotically
stable, satisfies system constraints and the feasible set of (25) is recursively feasible,
where κ(x) is the optimizer u�(0) of (25). (See [19] and [18] for full technical
requirements and formal statements.)

The algorithm for evaluation of the control law is now:

1. Each system measures its local state x̄[i].
2. Solve MPC problem (25) by distributed optimization, where subsystems itera-

tively communicate to reach consensus on the optimal trajectory1. Note that it
is the specific sparsity structure developed for the terminal sets that enables this
distributed optimization, and therefore a distributed control architecture.

3. Each subsystem applies the local control input u[i](0) obtained in Step 2.
4. Each subsystem updates the local terminal set to Xi(α+

i ) = Xi(αi + γi(xNi)) ac-
cording to (21).

4.2.2 Distributed Synthesis

Deployment of the distributed MPC scheme outlined above requires the computa-
tion of the elements Vi(x) and γi(x) of the Lyapunov function V(x) in a distributed
and plug-and-play fashion.

We begin by assuming a quadratic structure for all required functions

Vi(x) := xT Pix, Pi ' 0

γi(x) := xTΓix

li(x,u) := xT Qix+uT Riu, Qi ' 0, Ri ( 0

1 See, for example, [20] for an overview of distributed optimization methods.
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where we note that Γi is not required to be positive definite. We restrict Pi, Qi, and Ri

to be nonzero only for the variables associated to the ith subsystem, x[i] and u[i], and
the matrix Γi to be non-zero only for the variables associated to the ith subsystem
and its parents xNi .

Our goal is to develop an optimization problem that can be solved via distributed
optimization through communication with only parent subsystems in order to syn-
thesize the components Pi, Γi, and a structured control law K, such that the closed-
loop system satisfies the conditions of Theorem 2, which can now be stated as

(Ai +BiKi)
T Pi(Ai +BiKi)−Pi ) −(Qi +KT

i RiKi)+Γi ∀i ∈M (26)

∑
i∈M

Γi = 0 (27)

where Ki is the ith row of the linear control law K, which is non-zero only for the
variables associated to the ith subsystem and its parents xNi .

We note that the conditions (26) are a standard LQR formulation for each subsys-
tem independently, with a linear coupling constraint for the relaxation terms Γi. As a
result, standard conversions can be used to transform (26) into a set of local convex
LMI conditions, with a sparse linear coupling constraint (27), which can be solved
using standard distributed optimization tools. In summary, when a subsystem wants
to join the CPS, the plug-in test amounts to the solution of a parent-based LMI for
guaranteeing that (26) and (27) will hold after plug-in. Moreover, the LMI can be
solved through a distributed optimization scheme involving the subsystem and its
parents only. See [18] for details.

4.2.3 Plug-and-Play and Hot-Transitions

The distributed MPC scheme presented in Section 4.2.1 guarantees recursive feasi-
bility for a given network configuration. This section addresses recursive feasibility
during a network change. If systems request to plug-in/-out during closed-loop op-
eration, the parent-based plug-and-play principle involves the following main steps:
A redesign phase updating the MPC problem components, i.e. structured terminal
conditions, for children of dis-/connecting subsystems; and a transition phase com-
puting a feasible reference to change safely between configurations.

The plug-in test in this case consists of feasibility of both steps, the existence
of structured terminal conditions for the new network configuration and the exis-
tence of a feasible transition behavior. In the following, we present one realization
of these two phases focusing on low-complexity calculations, more details can be
found in [6]. Let C denote the set of children of all subsystems plugging-in or -out,
respectively, which are collected in the set P .

Redesign Phase:

1. Structured terminal cost: Compute Vi(x[i]),γi(x[Ni]) satisfying Theorem 1 for all
i ∈ C ∪P , given Vi(x[i]),γi(x[Ni]) for all i ∈M \C .

2. Structured terminal constraint: Reallocate α[i] such that ∑α[i]i∈M = ᾱ .
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Note that because recursive feasibility is ensured by the transition phase, the set
sizes α[i] can be arbitrarily re-allocated for the new network configuration.

Transition Phase: If the PnP request happens during operation, the current state
of the network may be an infeasible initial state for the modified MPC controller
computed during the redesign phase for the modified network. This can be addressed
by computing an intermediate reference steady-state xss

[i] ∀i ∈M to be tracked, from
which the modified MPC problem is feasible:

minimize ∑
i∈C∪P

fi(x[i], x̃[i],x
ss
[i]) (28a)

subject to (x[i],u[i],w[i]) ∈ Ci(x̄[i],{xss
[i]}) ∀i ∈ C ∪P (28b)

(x̃[i], ũ[i], w̃[i]) ∈ Ci(x
ss
[i],X

mod
i (α[i])) ∀i ∈ C ∪P (28c)

w[i] =
M

∑
j=1, j �=i

Ai jx[ j], w̃[i] =
M

∑
j=1, j �=i

Ai jx̃[ j] ∀i ∈ C ∪P (28d)

xss
[i] =

M

∑
j=1

Ai jx
ss
[ j] +Biu

ss
[i](k) ∀i ∈ C ∪P (28e)

where the cost functions f[i] can be chosen to realize a desired objective on the
transition steady-state. Following similar arguments as in Sections 4.2.1 and 4.2.2 it
can be shown that the synthesis in the redesign phase as well as the computation of
the transition steady-state can be performed using standard distributed optimization
tools. Note that we have limited the redesign and transition phase to subsystems
plugging-in or -out as well as their children. This may however be restrictive and via
distributed optimization, Step 2. of the redesign phase as well as the computation
of the steady-state can similarly be performed for all systems i ∈ M to provide
feasibility of the plug-in test for a larger set of network changes.

Given recursive feasibility ensured by the redesign together with the transition
phase, constraint satisfaction and stability of the closed-loop system under the pro-
posed plug-and-play procedure follows.

5 Generalizations and Related Approaches

The decentralized PnP-MPC regulators presented in Sections 4.1 and 4.2 have been
extended along several directions. In [4] and [5] it is shown how to deal with in-
put constraints and subsystems where some parameters change after the addition
or removal of parent subsystems. An extension to distributed MPC architectures is
presented in [14], where communication between controllers is used for counter-
acting coupling between subsystems. More precisely, by allowing the transmission
of states from parents to children, one can add to u[i] in (5) the term ∑ j∈Ni

Ki jx[ j]
where the gains Ki j allow to shrink the coupling set Wi used in the design of the
local MPC controllers. When subsystems are tightly interconnected, this approach
can dramatically increase the chances to pass the plug-in tests described in Sec-
tions 3.1.1 and 3.1.2. PnP-MPC for subsystems affected by bounded additive distur-
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bances is discussed in [21]. The key idea is to embed disturbances in the coupling
terms that local tube-based MPC tries to counteract. For dealing with input-coupled
subsystems, a similar approach can be taken, by treating terms Bi ju[ j] as additional
disturbances for subsystem Σ[i] [22].

The state-feedback controllers in Sections 4.1 and 4.2 are extended to the output-
feedback scenario in [21]. The proposed solution relies on a distributed state-
estimation scheme where each local estimator reconstructs the state of the corre-
sponding subsystem only by using state estimates from parents. As shown in [21], in
a bounded-error setting, the design of a local estimator can be done in a parent-based
fashion and complemented with a plug-in test similar to (17). PnP state-estimation
in a stochastic setting has been addressed in the recent paper [23], by exploiting an
approach based on Kalman filtering.

Generalizations of PnP-MPC to subsystems with nonlinear dynamics have been
proposed in [22], [24], and [25]. While [22] and [24] assume “matched” nonlin-
ear terms that can be modified through the control input u[i], the control schemes
in [26] apply to subsystems with general nonlinear dynamics and coupled through
constraints. This requires the use of operators for bounding the magnitude of non-
linearities that can increase conservativity.

PnP-MPC has been also integrated with distributed fault detection for developing
fault-tolerant control architectures. The main goal is to automatize the following op-
erations without spoiling stability and constraint satisfaction for the whole CPS: (i)
once a fault is detected, to unplug automatically the faulty subsystem for preventing
fault propagation the CPS and (ii) once the issue has been solved, to plug in again
the disconnected subsystem. Under the assumption that local states and coupling
variables are measured, the PnP design of model-based local fault detectors has
been presented in [24] for bounded disturbances and uncertainties. This approach
has been extended to the case of stochastic uncertainties with known statistics in
[27]. The case of stochastic uncertainties with unknown statistics and local output
observations has been addressed in [28], relying on local Luenberger-like observers.
Methods in [24] have been also complemented with a fault isolation logic for deal-
ing with banks of faults [29].

A small number of approaches have been developed that generate distributed in-
variant sets, or invariant sets that require only communication between neighboring
subsystems. While these approaches require a centralized synthesis step, they could
be studied in a plug-and-play setting. Some ideas along this direction have been pro-
vided in [30]. In [31], distributed invariance conditions are developed for local sets
evolving under a linear coupled dynamic system and in [32] an NMPC framework
is developed that uses an implicit terminal invariance condition that can be encoded
via distributed sets by using a cyclically changing horizon length, which thus avoids
the requirement of explicitly incorporating a structured invariant set in the MPC
formulation.

Most of the above PnP approaches to MPC and state estimation have been im-
plemented in the PnPMPC toolbox for MatLab [33], which also offers a software
framework for facilitating the modeling of large-scale systems and the computation
of RPI and RCI sets.
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6 Applications

In the recent years, scalable and PnP control design principles have been used to
address control problems in a number of applications including district heating [34],
HVAC systems [35], vapor compression systems [36], thermo-fluid processes [37],
and microgrids [38–42].

In Section 6.1, we illustrate how the MPC approaches discussed in the previous
sections can be used for the synthesis of secondary frequency controllers in power
networks. In Section 6.2 we will show how methods for handling the hot plug-in of
subsystems described in Section 4.2.3 can be exploited for managing the charging
of electric vehicles.

6.1 Frequency Control in Power Networks

In this section, we describe an output-feedback PnP-MPC approach to the design of
the Automatic Generation Control (AGC) layer for a Power Network System (PNS).
For each area the main control objective is to regulate to zero the frequency deviation
from a nominal value (e.g., 50 Hz in Europe), thus guaranteeing frequency regula-
tion for the overall PNS. The proposed PNS is composed of 5 generation areas con-
nected as in Figure 2: mathematical models, constraints on input, state, output, and
disturbance variables, as well as control and simulation parameters, can be found in
Chapter 9 and Appendix A in [22]. The design of each output-feedback controller
follows the procedure described in Algorithm 9.2 in [22]. For each generation area
a PnP distributed local state estimator is designed: stability and convergence of the
overall state estimator can be guaranteed using similar arguments as in Section 3.1.1

Fig. 2: Power network system. For each area i ∈ 1 : 5, ΔPL,i is the load, ΔPre f ,i is
the reference power setpoint, and Δωi is the frequency deviation from the nominal
network value. Arrows represent tie-lines and Pi j is the transferred active power.
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(see [22, Chapter 9]). Then, for each generation area, a PnP-MPC robust controller
is designed as described in Section 5 and [22, Chapter 9].

In the following, we propose two scenarios: in Scenario 1 we consider Σ[5] discon-
nected from the PNS and then, in Scenario 2, we connect it by means of a plugging-
in operation.
In Figure 3 we show the performance of the proposed output-feedback PnP-MPC
architecture: frequency deviations in each area are kept close to zero despite persis-
tent disturbances and power reference set-points change to compensate load steps
in each area.2
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Fig. 3: Simulation Scenario 1: frequency deviation (left) and load reference set-point
(right) in each area controlled by the proposed output-feedback PnP-MPC.

In Scenario 2, Σ[5] is connected to the PNS through areas Σ[2] and Σ[4]: this
plugging-in operation is completed by designing a new output-feedback PnP-MPC
controller for Σ[5] and re-tuning controllers for areas Σ[2] and Σ[4]. Therefore only
the set of children of area 5 must re-tune their controllers, thus the plugging-in op-
eration is not propagated in the network. In Figure 4 we show performance of the
closed-loop system: thanks to the re-tuning of the output-feedback PnP-MPC con-
trollers for Σ[2] and Σ[4], the plugging-in operation of Σ[5] does not compromise the
overall stability of the PNS, thus frequency deviations in each area are kept close to
zero. An example of unplugging operation is given in [22, Chapter 9]. The applica-
tion of the distributed MPC schemes in Section 4.2 to the PNS model is described
in [6].

It is worth noting that the design algorithms are completely scalable: even with a
large number of generation areas the complexity of local control design scales with
the number of parent subsystems only. Additionally, scalability is obtained with
minor performance losses with respect to centralized MPC. Indeed, as shown for
the state-feedback controller in [22, Chapter 6] the proposed control scheme obtains
similar tracking performance compared to centralized MPC. On the other hand, the

2 Tie-line powers are shown in Chapter 9 in [22].
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Fig. 4: Simulation Scenario 2: frequency deviation (left) and load reference set-point
(right) in each area controlled by the proposed output-feedback PnP-MPC.

approach based on robustness against coupling helps in reducing the transfer of
active power Pi j among areas during transients and at the state-steady. The PNS
model, as well as the PnP MPC design algorithms used in this section, is available
in the PnPMPC-toolbox for MatLab [33].

6.2 Electric Vehicle Charging in Smart Grids

The automatic management of electric vehicles (EVs) in the context of demand re-
sponse schemes represents a new challenge for electricity grids due to their varying
connectivity imposed by their users. This section discusses the use of PnP tech-
niques for their optimal energy management in order to provide both voltage regula-
tion at a local and short time scale, as well as load shaping services on a longer time
scale. PnP MPC offers the capability to address this goal for varying connections
of electric vehicles with user requirements in the form of deadlines, while ensuring
satisfaction of critical grid constraints.

We consider a radial distribution network with traditional control elements in
the form of capacitors, battery banks at select buses and three different types of
loads: Fixed loads that cannot be controlled, shapeable EV loads with flexible power
profile but requiring a fixed amount of energy in a fixed time period, and deferrable
EV loads, which can be delayed but have a fixed power profile. It is assumed that
the grid with only fixed loads is designed such that traditional control devices can
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maintain voltages within constraints. Additional loads, in particular electric vehicles,
increase power demand and voltage drop and cannot be balanced purely with control
devices. As shapeable loads can always be connected at zero power, the goal is to
determine feasible connection times for deferrable loads, as well as optimal power
profiles for shapeable loads to regulate voltage and minimize peak power.

The control scheme proposed in [43] addresses this problem by means of the hot
plug-in strategy proposed in Section 4.2.3, ideally suited to address plug-in requests
during closed-loop operation of other sub-systems. An MPC problem is first formu-
lated for computing the optimal power profile for shapeable loads in the presence of
connected deferrable loads. The optimal transition in case of additional deferrable
loads requesting to connect is then obtained by solving a variant of the transition
problem (28), returning the fastest connection time and the optimal profile for sha-
peable loads until connection. After connection, the MPC controller is again applied
with the modified number of deferrable loads.

In the following case study, we consider a 55-bus distribution network (Southern
California Edison) shown in Figure 5 (left), which was previously studied in [43, 44].
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Fig. 5: 55-bus distribution test network with battery storage devices (left). Evolution
of voltages at all buses during closed-loop and PnP operation (right).
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Fig. 6: Real power in the network for the controlled system with deferrable loads
(left) and the uncontrolled system with deferrable loads (right).

Seven additional battery storage devices are connected as illustrated in Figure 5
(left). Fourteen shapeable EV loads connect over the simulation, between 1 and 2
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vehicles at a time. Nine PnP requests with varying numbers of deferrable EV loads
between 1 and 5 vehicles at a time are considered, out of which two requests have
to be deferred. The details including the model, constraints, control and simulation
parameters can be found in [43]. Figure 6 highlights the load shaping effect of the
controller compared to the uncontrolled case. Figure 5 (right) shows the voltages
at all 55 buses during closed-loop operation, including PnP requests and transition
phases, demonstrating that constraints are satisfied at all times.

Figure 7 shows the overall cumulative deferrable and shapeable loads during a
deferrable load request at 11h (bus 28), while four shapeable loads (bus 5, 6, 9,
19) and four deferrable loads (bus 4, 5, 16 and 17) are already connected and an
additional shapeable load connects at 11h (bus 15).

Fig. 7: Evolution of cumulative shapeable loads (top) and deferrable loads (middle):
one deferrable load requests to plug-in at 11h and is delayed to connect at 11h30.
Colored bars show implemented power, grey bars planned power.

The load is delayed to be connected at 11h30 to ensure feasibility of the grid. The
total implemented and planned loads are shown before and after the delayed request.
It can be seen that during the transition phase (11h-11h30), shapeable loads adapt
their signal to accommodate the new load as quickly as possible while ensuring
feasibility of the grid.

7 Conclusions and Perspectives

This chapter was devoted to a tutorial description of MPC solutions for CPSs that
can be synthesized in a scalable way, independently of the number of subsystems
and of their interconnection topology. We also reviewed the concept of PnP de-
sign and showed how to update existing controllers for performing plug-in/out of
subsystems in a reliable and secure way. Until now, existing algorithms for scalable
MPC design considered only “flat” decentralized or distributed control architectures.
However, for managing large-scale CPS, hierarchical control structures might be
more appropriate. This raises the issue of studying how the addition and removal of



References 281

a subsystems can impact higher control layers, and how they can be updated in a
scalable fashion.

The controllers reviewed in this chapter hinge on MPC formulations based on
notions of invariance. Another interesting research topic would be to understand if
scalable control design can be performed using alternative approaches to MPC that
avoid the explicit use of invariant sets.

Acknowledgements The material in Section 6.2 is based on the work of Caroline Le Floch and
we are grateful for making the simulation results available.
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Università degli Studi di Pavia, 2014. Available: http://sisdin.unipv.it/pnpmpc/phpinclude/
papers/phd thesis riverso.pdf

23. Farina, M., Carli, R.: Partition-based distributed Kalman filter with plug and play features.
IEEE Trans. Control Netw. Syst. 5(1), 560–570 (2018). https://doi.org/10.1109/TCNS.2016.
2633786

24. Riverso, S., Boem, F., Ferrari-Trecate, G., Parisini, T.: Plug-and-play fault detection and con-
trol reconfiguration for a class of nonlinear large-scale constrained systems. IEEE Trans. Au-
tom. Control 61(12), 3963–3978 (2016). https://doi.org/10.1109/TAC.2016.2535724

25. Lucia, S., Markus, K., Findeisen, R.: Contract-based predictive control of distributed systems
with plug and play capabilities. IFAC-PapersOnLine 48(23), 205–211 (2012). Available:
http://dx.doi.org/10.1016/j.ifacol.2015.11.284

26. Lucia, S., Markus, K., Findeisen, R.: Contract-based predictive control of distributed systems
with plug and play capabilities. IFAC-PapersOnLine 48(23), 205–211 (2015). Available:
http://dx.doi.org/10.1016/j.ifacol.2015.11.284

27. Boem, F., Riverso, S., Ferrari-Trecate, G., Parisini, T.: Stochastic fault detection in a plug-and-
play scenario. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka,
15–18 December 2015, pp. 3137–3142. https://doi.org/10.1109/CDC.2015.7402689

28. Boem, F., Carli, R., Farina, M., Ferrari-Trecate, G., Parisini, T.: Scalable monitoring of inter-
connected stochastic systems. In: Proceedings of the 55th IEEE Conference on Decision and
Control, Las Vegas, 12–14 December 2016, pp. 1285–1290

29. Boem, F., Riverso, S., Ferrari-Trecate, G., Parisini, T.: A plug-and-play fault diagnosis ap-
proach for large-scale systems. In: IFAC 9th Safeprocess, Paris, 2–4 September 2015, pp.
601–606

30. Riverso, S., Rubini, D., Ferrari-Trecate, G.: Distributed bounded-error state estimation based
on practical robust positive invariance. Int. J. Control 88(11), 2277–2290 (2015)
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Efficient Convex Optimization for Linear
MPC

Stephen J. Wright

1 Introduction

In linear model predictive control (linear MPC), the problem to be solved at each de-
cision point has linear dynamics and a quadratic objective. This is a classic problem
in optimization — quadratic programming (QP) — which is convex when (as is usu-
ally true) the quadratic objective is convex. It remains a convex QP even when linear
constraints on the states and controls are allowed at each stage, or when only linear
functions of the state can be observed. Moreover, this quadratic program has special
structure that can be exploited by algorithms that solve it, particularly interior-point
algorithms.

In deployment of linear MPC, unless there is an unanticipated upset, the
quadratic program to be solved differs only slightly from one decision point to
the next. The question arises of whether the solution at one decision point can be
used to “warm-start” the algorithm at the next decision point. Interior-point methods
can make only limited use of warm-start information. Active-set methods, which
treat a subset of the inequality constraints (the active set or working set) as equality
constraints at each iteration, are much better in this regard. Although the cost of
solving the quadratic program from scratch is typically more expensive with the
active-set approach than with interior-point, the cost of updating the solution at a
decision point using solution information from the prior point is often minimal.

We start by outlining the most elementary control problem that arises in linear
MPC — the LQR formulation — and interpret methods for solving it from both
a control and optimization perspective. We then generalize this formulation to
allow constraints on states and inputs, and show how interior-point methods and
parametrized quadratic programming methods can be used to solve such models
efficiently.
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2 Formulating and Solving LQR

We consider the following discrete-time finite-horizon LQR problem:

min
x,u

1
2

N−1

∑
j=0

(xT
j Qx j +uT

j Ru j +2xT
j Mu j)+

1
2 xT

NQ̃xN (1a)

subject to x j+1 = Ax j +Bu j, j = 0,1, . . . ,N −1, (x0 given), (1b)

where x j ∈ R
n, j = 0,1, . . . ,N and u j ∈ R

m, j = 0,1, . . . ,N − 1; and x =
(x1,x2, . . . ,xN) and u = (u0,u1, . . . ,uN−1). This is a convex quadratic program if
and only if we have [

Q M
MT R

]
' 0, Q̃ ' 0, (2)

where the notation C ' D indicates that C −D is positive semidefinite. When the
convexity condition holds, the solution of (1) can be found by solving the following
optimality conditions (also known as the Karush-Kuhn-Tucker or KKT conditions)
for some vector p = (p0, p1, . . . , pN−1) with p j ∈ R

n:

Qx j +Mu j +AT p j − p j−1 = 0, j = 1,2, . . . ,N −1, (3a)

Q̃xN − pN−1 = 0, (3b)

Ru j +MT x j +BT p j = 0, j = 0,1, . . . ,N −1, (3c)

−x j+1 +Ax j +Bu j = 0, j = 0,1, . . . ,N −1, (3d)

for some given value of x0. The costates p j, j = 0,1, . . . ,N − 1 can be thought of
as Lagrange multipliers for the state equation (1b). Since (3) is simply a system of
linear equations, we can obtain the solution using standard techniques of numerical
linear algebra. This can be done in a particularly efficient manner, because when the
variables and equations are ordered appropriately, the coefficient matrix of this linear
system is banded. We order both equations and variables in a stagewise manner, to
express (3) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R BT

B 0 −I
−I Q M AT

MT R BT

A B 0 −I
−I Q M AT

. . .
. . .

. . .
. . .

. . .
A B 0 −I

−I Q M AT

MT R BT

A B 0 −I
−I Q̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

p0

x1

u1

p1
...

xN−1

uN−1

pN−1

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−MT x0

Ax0

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4)
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This system is square, with dimension N(2n+m) and bandwidth 2n+m − 1. (A
matrix C is said to have bandwidth b if Ci j = 0 whenever |i− j|> b.)

Since factorization of a square matrix of size q with bandwidth b requires O(qb2)
operations, the cost of factoring the coefficient matrix in (4) is O(N(m+n)3), which
is linear in the number of stages N. A careful implementation of the banded factor-
ization can exploit the fact that the band is “narrower” in some places than others,
and thus attain further savings. If we denote the coefficient matrix in (4) by C, the
vector of unknowns by z, and the right-hand side by Ex0, where E is the matrix[
−M |AT |0 | . . . |0

]T
, an LU factorization of C with row partial pivoting has the

form
PC = LU, (5)

where P is a permutation matrix and L and U are lower- and upper-triangular factors
whose bandwidth is a small multiple of (m+ n).1 Using this factorization, we can
write the system (4) as

PCz = LUz = PEx0. (6)

Thus we can obtain the solution z, for a given value of x0, as follows:

• Calculate Ex0;
• Apply permutations to obtain P(Ex0);
• Solve Ly = PEx0 via forward-substitution to obtain y;
• Solve Uz = y via back-substitution to obtain z.

Note that the LU factorization need not be recomputed for each x0; only the four
steps above need be performed. The two steps involving triangular substitution are
the most computationally expensive; these require O(N(m+n)) operations.

The system (4) can alternatively be solved by a block-elimination technique that
is equivalent to a well-known concept in control: the Riccati equation. We describe
this approach below in the more general context of solving the banded linear system
that arises at each iteration of an interior-point method.

3 Convex Quadratic Programming

Before introducing constraints into the LQR formulation (1), as happens in MPC
subproblems, we introduce convex quadratic programs using general notation, and
discuss their optimality conditions and the basic framework of primal-dual interior-
point methods. We write the general problem as follows:

min
w

1
2 wTV w+ cT w subject to Kw = b, Lw ≤ l, (7)

1 The LU factorization does not exploit the fact that the coefficient matrix is symmetric. The LDLT

factorization is commonly used for such matrices, but unfortunately the permutations required in
this factorization tend to destroy the band structure, so it is not appropriate here.
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where V is a positive semidefinite matrix. Solutions w of (7) are characterized com-
pletely by the following first-order optimality conditions (usually known as Karush-
Kuhn-Tucker or KKT conditions): There are vectors λ and τ such that

V w+ c+KTλ +LT τ = 0, (8a)

Kw = b, (8b)

0 ≥ Lw− l ⊥ τ ≥ 0, (8c)

where the notation a ⊥ b means that aT b = 0. Here, λ and τ are the Lagrange
multipliers for the constraints Kw = b and Lw ≤ l, respectively.

Primal-dual interior-point methods for (7) are often motivated as path-following
methods that follow a so-called central path to a solution of (8) (see [14]). To define
the central path, we first rewrite (8) equivalently by introducing slack variables s for
the inequality constraints:

V w+ c+KTλ +LT τ = 0, (9a)

Kw = b, (9b)

Lw+ s = l, (9c)

0 ≤ s ⊥ τ ≥ 0. (9d)

The conditions on s and τ together imply that for each component of these vectors
(si and τi) we have that both are nonnegative and at least one of the pair is zero. We
can express these conditions by defining the diagonal matrices

S := diag(s1,s2, . . .), T := diag(τ1,τ2, . . .),

and writing s ≥ 0, τ ≥ 0, and STe = 0, where e = (1,1, . . .)T . (Note that STe is the
vector whose components are s1τ1,s2τ2, . . . .) We can thus rewrite (9) as follows:

V w+ c+KTλ +LT τ = 0, (10a)

Kw = b, (10b)

Lw+ s = l, (10c)

STe = 0, (10d)

s ≥ 0, τ ≥ 0. (10e)

The central-path equations are obtained by replacing the right-hand side of (10d) by
μe, for any μ > 0, to obtain

V w+ c+KTλ +LT τ = 0, (11a)

Kw = b, (11b)

Lw+ s = l, (11c)

STe = μe, (11d)

s > 0, τ > 0. (11e)
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It is known that (11) has a unique solution for each μ > 0, provided that the original
problem (7) has a solution.

Primal-dual interior-point methods generate iterates (wk,λ k,τk,sk), k =
0,1,2, . . . , that converge to a solution of (8). Strict positivity is maintained for
all components of sk and τk, for all k; that is, sk > 0 and τk > 0. At step k, a search
direction is generated as a Newton-like step for the square nonlinear system of
equations formed by the four equality conditions in (11), for some value of μ that
is chosen by a (somewhat elaborate) adaptive scheme. These Newton equations are
as follows:

⎡
⎢⎢⎣

V KT LT 0
K 0 0 0
L 0 0 I
0 0 Sk T k

⎤
⎥⎥⎦
⎡
⎢⎢⎣
Δwk

Δλ k

Δτk

Δsk

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

rk
w

rk
λ

rk
τ

rk
st

⎤
⎥⎥⎦ , (12a)

where

⎡
⎢⎢⎣

rk
w

rk
λ

rk
τ

rk
st

⎤
⎥⎥⎦=−

⎡
⎢⎢⎣

V wk + c+KTλ l +LT τk

Kwk −b
Lwk + sk − l
SkT ke−μke

⎤
⎥⎥⎦ , (12b)

where Sk = diag(sk
1,s

k
2, . . .) and T k = diag(tk

1 , t
k
2 , . . .). The step along this direction

has the form

(wk+1,λ k+1,τk+1,sk+1) := (wk,λ k,τk,sk)+αk(Δwk,Δλ k,Δτk,Δsk),

where αk > 0 is chosen to maintain strict positivity on the s and τ vectors, that is,
τk+1 > 0 and sk+1 > 0.

Some block elimination is usually applied to the system (12a), rather than factor-
ing the matrix directly. By substituting out for Δsk, we obtain

⎡
⎣V KT LT

K 0 0
L 0 −(T k)−1Sk

⎤
⎦
⎡
⎣Δwk

Δλ k

Δτk

⎤
⎦=

⎡
⎣ rk

w
rk
λ

rk
τ − (T k)−1rk

st

⎤
⎦ . (13)

(Note that the matrix (T k)−1Sk is positive diagonal.) We can further use the third
row in (13) to eliminate Δτk, to obtain the following block 2×2 system

[
(V +LT (Sk)−1T kL) KT

K 0

][
Δwk

Δλ k

]
=

[
rk

w −LT (Sk)−1T k(rk
τ − (T k)−1rk

st)
rk
λ

]
. (14)

In practice, the forms (13) and (14) are most commonly used to obtain the search
directions. We see below that the form (14) applied to a constrained version of (1)
leads (with appropriate ordering of the variables) to a linear system with the same
structure as (4).
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4 Linear MPC Formulations and Interior-Point Implementation

We now describe an extension of (1), more common in applications of linear MPC,
in which the inputs uk and states xk are subject to additional constraints at each
stage k = 1,2, . . . ,N − 1. The final state xN is often also constrained, with the goal
of steering the state into a certain polyhedral set at the end of the time horizon,
from which an unconstrained LQR strategy can be pursued from that point forward
without fear of violating the stagewise constraints.

We start with the formulation of linear MPC, in its most natural form (involving
both states and inputs at each time point) and in a condensed form in which all
states beyond the initial state x0 are eliminated from the problem. We then derive
KKT conditions for the original formulation and show how the structure that is
present in linear MPC allows primal-dual interior-point methods to be implemented
efficiently.

4.1 Linear MPC Formulations

We define the linear MPC problem as follows:

min
x1,...,xN ,u0,...,uN−1

1
2

N−1

∑
j=0

(xT
j Qx j +uT

j Ru j +2xT
j Mu j)+

1
2 xT

NQ̃xN (15a)

subject to x j+1 = Ax j +Bu j, j = 0,1, . . . ,N −1, (x0 given); (15b)

Gu j +Hx j ≤ h, j = 0,1, . . . ,N −1; (15c)

FxN ≤ f . (15d)

The linear constraints (15c), (15d) define polyhedral regions; these could be bounds
(upper and/or lower) on individual components of x j and u j, more complicated lin-
ear constraints that are separable in x j and u j, or mixed constraints that involve states
and inputs together.

We obtain a condensed form of (15) by using the state constraints (15b) to elimi-
nate x1,x2, . . . ,xN . We start by aggregating the variables and constraints in (15) into
a representation that disguises the stagewise structure. We define

x̄ :=

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

x2
...

xN

⎤
⎥⎥⎥⎥⎥⎦
, ū :=

⎡
⎢⎢⎢⎣

u0

u1
...

uN−1

⎤
⎥⎥⎥⎦ , h̄ :=

⎡
⎢⎢⎢⎢⎢⎣

h
h
...
h
f

⎤
⎥⎥⎥⎥⎥⎦
,
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Q̄ :=

⎡
⎢⎢⎢⎢⎢⎣

Q
Q

. . .
Q

Q̃

⎤
⎥⎥⎥⎥⎥⎦
, R̄ :=

⎡
⎢⎢⎢⎣

R
R

. . .
R

⎤
⎥⎥⎥⎦ , M̄ :=

⎡
⎢⎢⎢⎢⎢⎣

M
M

. . .
M

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
,

H̄ :=

⎡
⎢⎢⎢⎢⎢⎣

H
H

. . .
H

F

⎤
⎥⎥⎥⎥⎥⎦
, Ḡ :=

⎡
⎢⎢⎢⎢⎢⎣

G
G

. . .
G

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
,

and note that the objective (15a) can be written as

1
2

[
x̄T Q̄x̄+ ūT R̄ū+2x̄T M̄ū

]
, (16)

while the constraints (15c) and (15d) can be written

Ḡū+ H̄x̄ ≤ h̄. (17)

From the state equation (15b), we have

x̄ = Āx0 + B̄ū, (18)

where

B̄ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
B

AB B
A2B AB B

...
...

. . .
AN−1B AN−2B AN−3B . . . B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Ā :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
A
A2

A3

...
AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

By substituting (18) into (16) and (17), we obtain the following condensed form
of (15):

min
ū

1
2 ūT (R̄+ B̄T Q̄B̄+ B̄T M̄+ M̄T B̄)ū+ xT

0 ĀT (Q̄B̄+ M̄)ū (20a)

subject to
[
Ḡ+ H̄B̄

]
ū ≤ h− H̄Āx0. (20b)

We have omitted a quadratic term in x0 from the objective in (20a), because it is
independent of the variable ū and thus does not affect the solution. That is, the prob-
lem defined by (16), (17), (18) is equivalent to the problem defined by (20) in that
the solution of (20) is identical to the ū component of the solution of (16), (17), (18).
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4.2 KKT Conditions and Efficient Interior-Point Implementation

We can follow the methodology of Section 3 to write down the KKT optimality con-
ditions. As in Section 2, we use p j to denote the costates (or Lagrange multipliers
for the state equation (15b)). We introduce λ j, j = 0,1, . . . ,N −1 as Lagrange multi-
pliers for Gu j ≥ g, ζ j, j = 0,1, . . . ,N −1 as multipliers for the constraints Hx j ≤ h,
and β as the vector of Lagrange multipliers for the constraint FxN ≤ f . The KKT
conditions, following the template (8), as follows:

Qx j +Mu j +AT p j − p j−1 +HTζ j = 0, j = 1,2, . . . ,N −1, (21a)

Q̃xN +FTβ − pN−1 = 0, (21b)

Ru j +MT x j +BT p j +GTλ j = 0, j = 0,1, . . . ,N −1, (21c)

−x j+1 +Ax j +Bu j = 0, j = 0,1, . . . ,N −1, (21d)

0 ≥ Gu j +Hx j −h ⊥ λ j ≥ 0, j = 0,1, . . . ,N −1, (21e)

0 ≥ FxN − f ⊥ β ≥ 0. (21f)

By introducing slack variables sλj for the constraints Gu j +Hx j ≤ h and sβ for the
constraint FxN ≤ f , we obtain the following formula (cf. (9)):

Qx j +Mu j +AT p j − p j−1 +HTζ j = 0, j = 1,2, . . . ,N −1, (22a)

Q̃xN +FTβ − pN−1 = 0, (22b)

Ru j +MT x j +BT p j +GTλ j = 0, j = 0,1, . . . ,N −1, (22c)

−x j+1 +Ax j +Bu j = 0, j = 0,1, . . . ,N −1, (22d)

Gu j +Hx j + sλj = h, j = 0,1, . . . ,N −1, (22e)

FxN + sβ = f , (22f)

0 ≤ sλj ⊥ λ j ≥ 0, j = 0,1, . . . ,N −1, (22g)

0 ≤ sβ ⊥ β ≥ 0. (22h)

By proceeding with the primal-dual interior-point approach, as described in Sec-
tion 3, we solve the following system of equations to be solved at iteration k, ob-
tained by specializing the form (14) to the structure of the MPC problem (see [13]):
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0 BT

B 0 −I
−I Q1 M1 AT

MT
1 R1 BT

A B 0 −I
−I Q2 M2 AT

. . .
. . .

. . .
. . .

. . .
A B 0 −I

−I QN−1 MN−1 AT

MT
N−1 RN−1 BT

A B 0 −I
−I Q̃N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu0
Δ p0
Δx1
Δu1
Δ p1

...
ΔxN−1
ΔuN−1
Δ pN−1
ΔxN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̃u
0

r̃p
0

r̃x
1

r̃u
1

r̃p
1
...

r̃x
N−1

r̃u
N−1

r̃p
N−1
r̃x

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)
where[

Q j Mj

MT
j R j

]
=

[
Q M

MT R

]
+

[
GT

HT

]
(Sλj )

−1Dλj
[
G H

]
, j = 1,2, . . . ,N −1,

R0 = R+GT (Sλ0 )
−1Dλ0 G,

Q̃N = Q̃+FT (Sβ )−1DβF,

and

Sλj = diag((sλj )1,(s
λ
j )2, . . .), j = 0,1, . . . ,N −1,

Sβ = diag((sβ )1,(s
β )2, . . .),

Dλj = diag((λ j)1,(λ j)2, . . .), j = 0,1, . . . ,N −1,

Dβ = diag(β1,β2, . . .).

We omit definitions of the terms in the right-hand side of (23); we refer to the general
form of Section 3 for information on how to construct this vector. We note that the
initial state x0 appears linearly in r̃u

0 and r̃p
0 .

This system can be solved using direct LU factorization of the coefficient ma-
trix, as described in Section 2. But we describe here an alternative approach based
on block-factorization of the matrix, which is essentially identical to solving a
discrete-time, time-varying Riccati equation. We follow the derivation of [11, Sec-
tion 3.3] to describe this technique. The key step is to use (23) to find matrices
ΠN ,ΠN−1, . . . ,Π1 of size n×n and vectors πN ,πN−1, . . . ,π1 such that

− pk−1 +ΠkΔxk = πk, k = N,N −1, . . . ,1. (24)

We find a recursive formula, working backwards from N. We see immediately
from (4) that (24) is satisfied for k = N by setting

ΠN = Q̃N , πN = r̃x
N . (25)
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Now supposing that the relationship (24) holds for some k, with known values of
Πk and πk, we obtain formulas for Πk−1 and πk−1. By combining (24) with three
successive block rows from the system (23), we obtain the system

⎡
⎢⎢⎣
−I Qk−1 Mk−1 AT

MT
k−1 Rk−1 BT

A B 0 −I
−I Πk

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δ pk−2

Δxk−1

Δuk−1

Δ pk−1

Δxk

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎣

r̃x
k−1

r̃u
k−1

r̃p
k−1
πk

⎤
⎥⎥⎦ . (26)

By eliminating Δ pk−1 and Δxk, we obtain the reduced system

[
−I Qk−1 +ATΠkA ATΠkB+Mk−1

0 BTΠkA+MT
k−1 Rk−1 +BTΠkB

]⎡
⎢⎢⎣
Δ pk−2

Δxk−1

Δuk−1

⎤
⎥⎥⎦=

[
r̃x

k−1 +ATΠkr̃p
k−1 +ATπk

r̃u
k−1 +BTΠkr̃p

k−1 +BTπk

]
.

(27)
Finally, by eliminating Δuk−1, we obtain

−Δ pk−2 +Πk−1Δxk−1 = πk−1, (28)

where

Πk−1 = Q+ATΠkA− (ATΠkB+M)(R+BTΠkB)−1(BTΠkA+MT ), (29a)

πk−1 = r̃x
k−1 +ATΠkr̃p

k−1 +ATπk

− (ATΠkB+M)(R+BTΠkB)−1(r̃u
k−1 +BTΠkr̃p

k−1 +BTπk). (29b)

A recursive argument based on symmetry of all Qk and Rk reveals that all Πk, k =
N,N − 1, . . . ,1 are symmetric, and the matrix inversions in (29) can be performed
whenever R is positive definite, a sufficient condition that is usually assumed in
practice. The formula (29a) along with the initialization (25) is the discrete-time,
time-varying Riccati equation. The more familiar algebraic Riccati equation is the
limit of (29a) obtained by settingΠk =Πk−1 =Π , and assuming that all Qk, Rk, and
Mk are identically equal to Q, R, and M, respectively. We obtain

Π = Q+ATΠA− (ATΠB+M)(R+BTΠB)−1(BTΠA+MT ). (30)

Having computed Πk and πk for k = N,N −1, . . . ,1, we proceed to solve (23) as
follows. By combining the first two rows of (23) with the formula (24) for k = 1, we
obtain ⎡

⎣R BT

B 0 −I
−I Π1

⎤
⎦
⎡
⎣Δu0

Δ p0

Δx1

⎤
⎦=

⎡
⎣ r̃u

0
r̃p

0
π1

⎤
⎦ . (31)

This square system (with 2n+m rows and columns) can be solved to find Δu0, Δ p0,
and Δx1. We now use the second row of (27) along with the equations involving
both Δxk and Δxk−1 to obtain the following formulas:
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Δuk−1 = (R+BTΠkB)−1

[
r̃u

k−1 +BTΠkr̃p
k−1 +BTπk − (BTΠkA+MT

k−1)Δxk−1
]
, (32a)

Δxk = AΔxk−1 +BΔuk−1 − r̃p
k−1, (32b)

which we iterate forward for k = 2,3, . . . ,N to obtain all inputs Δu0,Δu1, . . . ,ΔuN−1

and all states Δx1,Δx2, . . . ,ΔxN . The costates Δ p1,Δ p2, . . . ,Δ pN−1 can be recov-
ered directly by substituting Δx2,Δx3, . . . ,ΔxN into (28).

5 Parametrized Convex Quadratic Programming

The linear MPC is actually a convex QP that is parametrized by the current (initial)
state x0. In this section we formulate parametrized QP in general terms, write down
optimality conditions, and describe a primal-dual active-set approach for finding its
solution for some value of x0, when the solution is already known for a (usually
nearby) value of x0. This approach leverages “warm-start” information from the
current solution, and is often able to find the new solution quickly when the change
to x0 is small, as is often the case in the MPC context, unless an unmodeled upset
occurs.

Omitting the equality constraints in (7) (which are not required for our applica-
tion to linear MPC), we write the parametrized form as follows:

min
w

1
2 wTV w+ cT w− (Jx0)

T w subject to Lw ≤ l +Ex0. (33)

Note that this formulation corresponds exactly to the condensed form (20) of the
linear MPC problem. We assume throughout this section that V is a positive definite
matrix (so that this QP is strongly convex), L is a matrix of size mI × p, J and E are
matrices, and x0 is the parameter vector. Following (8), we can write the optimality
conditions as follows:

V w+ c+LT τ = Jx0, (34a)

0 ≥ Lw− l −Ex0 ⊥ τ ≥ 0. (34b)

Because of the complementarity conditions (34b), we can identify an active set A ⊂
{1,2, . . . ,mI} that indicates which of the mI inequality constraints are satisfied at
equality. That is, i ∈A only if Li·w = (l+Ex0)i, where Li· denotes the ith row of L.
It follows from this definition and (34b) that

Li·w < (l +Ex0)i for all i /∈A ; τA ≥ 0; τA c = 0; (35)

where τA = [τi]i∈A and τA c = [τi]i/∈A . (Note that A c denotes the complement of
A in {1,2, . . . ,mI}.) We can substitute these definitions into (34) to obtain

V w+ c+LT
A τA = Jx0, (36a)
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LA w = (l +Ex0)A , (36b)

LA cw ≤ (l +Ex0)A c , (36c)

τA ≥ 0, (36d)

τA c = 0. (36e)

At this point, we can make several interesting observations. Let us define the set
P of points x0 such that the feasible region for (33) is nonempty, that is,

P := {x0 |Lw ≤ l +Ex0 for some w} .

First, because of the strong convexity of the quadratic objective, a solution of (36) is
guaranteed to exist for all x0 ∈P . Second, the set P is a polyhedron. This follows
from the fact that P is the projection onto x0 space of the polyhedral set

{(w,x0) |Lw ≤ l +Ex0} ,

and the projection of a polyhedron onto a plane is itself polyhedral. Similar logic
indicates that the subset of P that corresponds to a given active set A is also poly-
hedral. By fixing A in (36), we can note that the set

PA := {x0 |(w,τ ,x0) satisfies (36) for some w,τ} (37)

is the projection of the polyhedron defined by (36) onto x0-space, so is itself polyhe-
dral.

5.1 Enumeration

The last observation above suggests an enumeration approach, first proposed in [1,
2] and developed further by [9, 10, 12] and others. We describe this approach for
the case in which the row submatrices LA of L have full row rank, for all possible
active sets A of interest. In this case, because V is positive definite, the vectors w
and τA are uniquely determined by the conditions (36a), (36b), that is,

[
w
τA

]
=

[
V LT

A
LA 0

]−1 [ −c+ Jx0

(l +Ex0)A

]
=

[
zw,A +Zw,A x0

zτ ,A +Zτ ,A x0

]
, (38)

where
[

zw,A

zτ ,A

]
:=

[
V LT

A
LA 0

]−1 [−c
lA

]
,

[
Zw,A

Zτ ,A

]
:=

[
V LT

A
LA 0

]−1 [
J

EA

]
, (39)

where EA is the row submatrix of E corresponding to A . (Nonsingularity of the
matrix that is inverted in (38) follows from positive definiteness of V and full row
rank of LA .) We can substitute into (36c), (36d) to check the validity of this solution,
that is,
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LA c(zw,A +Zw,A x0)≤ lA c +EA c x0, (40a)

zτ ,A +Zτ ,A x0 ≥ 0. (40b)

In fact, these inequalities along with the definitions (39) provide another charac-
terization of the set PA defined in (37): PA is exactly the set of vectors x0 that
satisfies the linear inequalities (40), which we can express as YA x0 ≤ yA , where

YA :=

[
LA c Zc,A −EA c

−Zτ ,A

]
, yA :=

[
lA c −LA c zw,A

zτ ,A

]
. (41)

An enumeration approach stores the pairs (YA ,yA ) for some or all of the A
for which PA is nonempty. Then, when presented with a particular value of the
parameter x0, it identifies the set A for which YA x0 ≤ yA . The solution (w,τA ) can
then be recovered from (38), and we set τA c = 0 to fill the remaining components
of the Lagrange multiplier vector.

Enumeration approaches shift much of the work in calculating solutions of (33)
offline. The pairs (YA ,yA ) can be pre-computed for all A for which PA is
nonempty. The online computation consists of testing the conditions YA x0 ≤ yA
for the given x0. The order of testing can be crucial, as we want to identify the
correct A for this value of x0 as quickly as possible. (The approach in [9] main-
tains a table of the most frequently occurring instances of A .) Full enumeration
approaches become impractical quickly as the dimensions of the problem (and par-
ticularly the number of constraints mI) increase. Partial enumeration stores only
the pairs (YA ,yA ) that have occurred most frequently and/or most recently during
plant operation; when an x0 is encountered that does not fall into any of the poly-
hedra currently stored, the solution can be computed from scratch, or some subop-
timal backup strategy can be deployed. For plants of sufficiently high dimension,
this approach too becomes impractical, but these enumeration approaches can be an
appealing and practical way to implement linear MPC on small systems.

5.2 Active-Set Strategy

For problems that are too large for complete or partial enumeration to be practical,
the conditions (36) can be used as the basis of an active-set strategy for solving (33).
Active-set strategies make a series of estimates of the correct active set for (36),
changing this estimate in a systematic way by a single index i∈{1,2, . . . ,mI} (added
or removed) at each iteration. This approach can be highly efficient in the context of
linear MPC, when the parameter x0 does not change greatly from one decision point
to the next. If a solution of (33) is known for value of x0 and we need to know a new
solution for a nearby value, say xnew

0 , it can often be found with just a few changes
to the active set, which requires just a few steps of the algorithm. We give just an
outline of the approach here; further details can be found in [3–5].

Before proceeding, we pay a little attention to the issue of degeneracy, which
complicates significantly the implementation of active-set approaches. Degeneracy
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is present when there is ambiguity in the definition of the active set A for which (36)
holds at a certain parameter x0, or when the active constraint matrix LA fails to have
full row rank. Degeneracy of the former type occurs when there is some index i ∈
{1,2, . . . ,mI} such that both (Lw− l−Ex0)i = 0 and τi = 0 for (w,τ) satisfying (34).
Thus, for A satisfying (34), we may have either i ∈A or i /∈A ; there is ambiguity
about whether the constraint i is really “active.” (Constraints with this property are
sometimes called “weakly active.”) Degeneracy of the latter type — rank-deficiency
of LA — leads to possible ambiguity in the definition of τA . Specifically, there may
be multiple vectors τA that satisfy conditions (36a) and (36d), that is,

LT
A τA =−V w− c+ Jx0, τA ≥ 0. (42)

For a particular A and a particular choice of (w,τ) satisfying (36), both types of
degeneracy may be present. These degeneracies can be resolved by choosing τA to
be an extreme point of the polyhedron represented by (42), and removing from A
those elements i for which τi = 0.

We note that there is no ambiguity in the value of w for a given parameter x0; the
positive definiteness assumption on V precludes this possibility.

To account for the possibility of degeneracy, active-set algorithms introduce the
concept of a working set. This is a subset W of {1,2, . . . ,mI} that is an estimate
of the (possibly ambiguous) optimal active set A from (36), but with the additional
property that the row constraint submatrix LW has full rank. Small changes are made
to the working set W at each step of the active-set method, to maintain the full-rank
property but ultimately to converge to an optimal active set A for (36).

Let x0 be the value of the parameter for which a primal-dual solution of (36) is
known, for a certain active set A . By doing some processing of (36), as discussed in
the previous paragraph, we can identify a working set W ⊂A such that (36) holds
when we replace A by W and, in addition, LW has full row rank.

Suppose we wish to calculate the solution of (33) for a new value xnew
0 , and define

Δx0 := xnew
0 −x0. We can determine the effect of replacing x0 by xnew

0 on the primal-
dual solution components (x,τW ) by applying (36a) and (36b) to account for the
change in x0 (similar to what we did in (38)):

[
Δw
ΔτW

]
=

[
V LT

W
LW 0

]−1 [
JΔx0

(EΔx0)W

]
, (43)

If we can take a full step along this perturbation vector without violating the other
conditions (36c) and (36d), we are done! To check these conditions, we need to
verify that

LW c(w+Δw)≤ (l +Exnew
0 )W c , τW +ΔτW ≥ 0. (44)

If these conditions do not hold, it is necessary to make systematic changes to the
active set W . To start this process, we find the longest steplength that can be taken
along (Δw,ΔτW ) while maintaining (36c) and (36d). That is, we seek the largest
value of α in the range (0,1] such that

LW c(w+αΔw)≤ (l +Ex0 +αEΔx0)W c , τW +αΔτW ≥ 0. (45)
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We call this value αmax; it can be calculated explicitly from the following formulas:

iP := arg min
i∈W c

(l +Ex0)i −Li·w
Li·Δw− (EΔx0)i

, αmax,P :=
(l +Ex0)iP −LiP·w
LiP·Δw− (EΔx0)iP

, (46a)

iD := argmin
i∈W

− τi

Δτi
, αmax,D :=− τiD

ΔτiD
, (46b)

αmax := min(1,αmax,P,αmax,D). (46c)

The constraint that “blocks” α at a value less than 1 — either iP or iD from (46) —
motivates a change to the working set W . If one of the Lagrange multipliers τi for
i ∈W goes to zero first, we remove this index from W , allowing the corresponding
constraint to move away from its constraint boundary at the next iteration. Alterna-
tively, if one of the constraints i becomes active, we add this index to the working
set W for the next iteration. We may need to do some postprocessing of the working
set in the latter case, possibly removing some other element of the working set to
maintain full rank of LW . In both of these cases, we update the values of x0, w, and τ
to reflect the step just taken, recalibrate the parameter perturbation vector Δx0, and
repeat the process. If there are no blocking constraints, and a full step can be taken,
then we have recovered the solution and the active-set algorithm declares success
and stops.

The active-set procedure is summarized as Algorithm 1. An example of the poly-
hedral decomposition of parameter space is shown in Figure 1. In this example, four
steps of the active-set method (and three changes to the working set) are required to
move from x0 to the new parameter xnew

0 .

Algorithm 1: Online Active Set Approach
Given current parameter x0, new parameter xnew

0 , current primal-dual solution (w,τ) and
working set W obtained from the active set A satisfying (36) as described in the text;
Set αmax = 0;
while αmax < 1 do

Set Δx0 := xnew
0 − x0;

Solve (43) for Δw and ΔτW , and set ΔτW c = 0;
Determine maximum steplength αmax from (46);
Set x̃0 ← x0 +αmaxΔx0, w̃ ← w+αmaxΔw, τ̃ ← τ+αmaxΔτ;
if αmax = 1 then

Set wnew ← w̃, τnew ← τ̃ , A ←W and STOP;
else if αmax = αmax,D then

Remove dual blocking constraint iD from working set: W ←W \{iD};
else if αmax = αmax,P then

Add primal blocking constraint iP to the working set: W ←W ∪{iP}, possibly removing
some other element of A if necessary to maintain full rank of LW ;

end if
Set x0 ← x̃0, w ← w̃, τ ← τ̃;

end while
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0
new

x0

x

Fig. 1: Polyhedral decomposition of parameter space, showing path from x0 to xnew
0

6 Software

Software packages are available online that facilitate efficient implementations of
two of the approaches discussed in this chapter. The object-oriented code OOQP for
structured convex quadratic programming [7, 8] can be customized to linear MPC
problems; its C ++ data structures and linear algebra modules can be tailored to
problems of the form (15) and to solving systems of the form (23). The modeling
framework YALMIP supports MPC; its web site shows several examples for set-
ting up models and invoking underlying QP software (such as OOQP and general
commercial solvers such as Gurobi).

The qpOASES solver [5, 6], which implements the approach described in Sec-
tion 5.2, is available in an efficient and well-maintained implementation.
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Implicit Non-convex Model Predictive
Control

Sebastien Gros

1 Introduction

In this chapter, we consider continuous non-convex MPC problems of the form:

MPC(x̂) min
x,u

T (x(tf))+
∫ tf

0 L(x(.),u(.))dτ (1a)

s.t. x(0)− x̂ = 0 (1b)

ẋ(t) = F(x(t),u(t)) , t ∈ [0, tf], (1c)

H(x(t),u(t))≤ 0, t ∈ [0, tf], (1d)

T(x(tf))≤ 0 (1e)

where x̂ ∈ R
n is the current estimation of the state of the physical system, function

F : Rn ×R
m �→ R

n is a model of the system dynamics, function H : Rn ×R
m �→

R
c represents the physical limitations of the system, and functions L : Rn ×R

m �→
R, T : Rn �→ R are the Lagrange cost and terminal cost, respectively. Function T :
R

n �→ R
cT imposes constraints on the terminal state of the MPC prediction, and is

instrumental in most theories discussing the stability and recursive feasibility of the
MPC scheme.

The continuous control law implicitly defined by (1) is the input u(0) obtained
by solving (1) for a given state estimation x̂. In practice (1) cannot be solved contin-
uously, and the control input delivered by (1) ought to be discretized in one form or
another, see Section 4.

Non-convexity in Model Predictive Control can arise from any of the functions
L, T being non-convex, the feasible set described by H or T being non-convex, or
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from the model function F being nonlinear. The cost functions and feasible set are
often (though not always) chosen convex by design, and the model nonlinearity is
the most common source of non-convexity in practice.

From a computational point of view, problem (1) is approached via discretiza-
tion techniques, whereby the continuous problem is transformed into a discrete one,
holding a finite number of variables. The discretized MPC can then be written in a
fairly generic form as a parametric Nonlinear Program (pNLP) [35]:

DMPC(x̂i) : min
w

φ (w, x̂i) (2a)

s.t. g(w, x̂i) = 0 (2b)

h(w, x̂i)≤ 0 (2c)

where w ∈R
v is a vector of decision variables forming approximate representations

of the continuous solution x(.), u(.). The solution of the pNLP (2) cannot be com-
puted continuously. In the following, we label Δ t the sampling time at which the
solution is updated, and x̂i := x̂(i ·Δ t) the corresponding state estimations, which
act as parameters in the pNLP. A crucial observation that is at the core of im-
plicit real-time MPC techniques discussed in this chapter is that, assuming that the
pNLP (2) is solved at a high frequency such that the successive discrete state es-
timations x̂i, i = 0,1, . . . are close to each other, then under some conditions the
successive solutions w(x̂i) , i = 0,1, . . . are also close to each other. This feature can
be exploited to facilitate the computations of successive solution to pNLP (2), see
Section 5.

The transformation from (1) to (2), often labelled transcription or more simply
discretization gives rise to functions φ : Rv ×R

n �→ R, gRv ×R
n �→ R

ng and hRv ×
R

n �→ R
nh . The discretization will be briefly detailed in Section 4. We will consider

here that functions φ , g, and h are at least twice continuously differentiable. We
will label w� (x̂i) the optimal solution associated to (2). The non-convexity of the
continuous problem (1) makes, in general, the NLP (2) non-convex.

In this chapter, we focus on tested numerical methods to solve pNLP (2) in real
time, and detail the required conditions such that one can “safely” apply them. We
will focus on methods aiming at computing numerical solutions to (2) that are close
approximations of its exact solutions. We need to underline here that we will only
be able to provide a summary of these methods here. Such methods are extensively
relying on properties of pNLPs. In the next section, we briefly review those prop-
erties that will be important for us. Figure 1 offers a graphical overview of this
chapter.
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MPC Problem (1)
function of x̂(t)

pNLP (2)
parametrized by x̂i ≡ x̂(iΔ t)

SQP methods

IP methods

Solution approaches,
Sec. 3

Exploit similarity
z(x̂i+1) ≈ z(x̂i)
for warm starting

Path Following methods,
Sec. 5

Structure of
the linear algebra
underlying NMPC

Structure,
Sec. 7

Sensitivity of
simulations

Sensitivity,
Sec. 6

Discretization,
Sec. 4

x̂i+1 ≈ x̂i

Fig. 1: Schematic of the material presented in this chapter

2 Parametric Nonlinear Programming

In order to develop solution approaches to MPC problems, we need to first point
to some concepts underlying pNLPs. A natural question that arises in this context
are the properties of function w� (x̂i) implicitly defined by (2). In order to state the
properties that will be helpful in the following, we need to briefly define some key
concepts. We refer to, e.g., [44] for more details on the notions presented below.

Definition 1. the KKT conditions associated to problem (2) are defined as:

∇wL (w,λ ,μ, x̂i) = 0, μ ≥ 0 (3a)

g(w, x̂i) = 0, h(w, x̂i)≤ 0 (3b)

μ�h(w, x̂i) = 0 (3c)

where L is the Lagrange function of (2) defined as:

L (w,λ ,μ, x̂i) = φ (w, x̂i)+λ�g(w, x̂i)+μ�h(w, x̂i) (4)

and λ ,μ are referred to as the multipliers or dual variables associated to (2). A point
w is called a KKT point if there is a unique set of multipliers such that the triplet
(w,λ ,μ) satisfies the KKT conditions (3).

We observe that the primal-dual solution z :≡ (w�,λ �,μ�) of (2) is an implicit func-
tion of the parameters x̂i. We will use the notation z(x̂i) in the following. Addition-
ally, we will call the active set at a given solution z(x̂i) the set of indices j of the
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inequality constraint function for which h j = 0, μ j > 0. The corresponding jth con-
straint is then said (strictly) active. In a situation where h j = 0, μ j = 0 occurs, we
label the corresponding constraint h j as weakly active.

Definition 2. LICQ & SOSC: a feasible point w of (2) satisfies the Linear Indepen-
dence Constraints Qualification (LICQ) iff the gradients of the equality and active
inequality constraints are linearly independent. Moreover, such a point is said to
satisfy the Strong Second Order Sufficient Conditions (SOSC) if

d�∇2
wL (w,λ ,μ, x̂i)d > 0, ∀ d ∈C(w,λ ,μ, x̂i), d �= 0, (5)

where C(w,λ ,μ) is the critical cone as defined in, e.g., [44, Chapter 12.5].

If w is a KKT point of (2) and satisfies the LICQ and SOSC, then it is a local
minimizer for problem (2).

Theorem 1. If problem (2) satisfies LICQ and strong SOSC at z(x̂i), then the primal-
dual parametric solution z(x̂i) is (locally) continuous. Moreover, if the solution does
not include weakly active constraints, then it is (locally) differentiable with respect
to x̂i. See, e.g., [44].

In the following, the notion of solution path will be extensively used. This con-
cept will be used in the following sense. We will assume that the state estimation
x̂(t) is continuous with respect to the physical time t. We will then label z(x̂(t)) the
solution path of the problem. Theorem (1) then lets us discuss the continuity and dif-
ferentiability of z(x̂(t)). It is important to observe here that the successive solutions
z(x̂i) for i = 0, . . . are then points of the solution path, and that repeatedly solving
pNLP (2) in real time for the successive state estimations x̂i is in fact an attempt at
following the solution path z(x̂(t)) as faithfully as possible.

The failure of Theorem (1) is illustrated via the simple following example

min
w

1
2 (w1 − x̂i)

2 +w2
2 (6a)

s.t. e−w2
1−2w2

2 − 1
2 ≤ 0 (6b)

whose solution path is displayed in Figure 2. One can observe that the determinant
of the Hessian of the Lagrange function drops to zero (Figure 2, right graph) at a
specific value of the (scalar) parameter x̂i. A failure of SOSC ensues. At this specific
point a bifurcation in the solution path occurs (Figure 2, left graph), i.e. the solution
path splits in two individual branches.

3 Solution Approaches to Nonlinear Programming

Generic solution approaches to solve numerically a pNLP of the form (2) are itera-
tive, and rely on the sufficient smoothness of the functions φ , g, and h involved in the
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problem. It is important to understand here that the non-convexity of the pNLP (2)
makes it in general impossible to guarantee that a solution computed by these meth-
ods is a global solution of the problem. Hence in practice, one relies instead on local
solutions to (2). We ought to briefly discuss the two most popular solution approach
to compute numerical solutions to pNLP (2).

3.1 SQP

Starting from an initial guess ẑ0
i of the true solution z(x̂i) of pNLP (2), Successive

Quadratic Programming is based on iterating the parametric Quadratic Programs
(pQPs):

pQP(x̂i) : min
Δw

1
2
Δw�∇2

wL Δw+∇wφ�Δw, (7a)

s.t. g+∇wg�Δw = 0, (7b)

h+∇wh�Δw ≤ 0, (7c)

where ∇2
wL , ∇wφ , g, ∇wg, h, ∇wh are evaluated at the current primal-dual guess

ẑk
i (the superscript k denotes the iteration counter) and for the given set of parameter

x̂i, see, e.g., [11, 30, 45, 57]. The primal-dual guess is then updated according to

ẑk+1
i ← ẑk

i +αΔz, (8)

where Δz= (Δw,λQP,μQP) is the primal-dual solution of the pQP (7), and α ∈]0,1]
is the step-size.
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Fig. 2: Bifurcation in the pNLP (6) with w ∈ R
2 and x̂i ∈ R, resulting from the non-

convex inequality constraint (6b) (grey ellipse, left graph), causing the solution path
to divide in two branches (black curves, left graph). The Hessian of the Lagrange
function becomes singular precisely where the bifurcation occurs (see right graph).
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If LICQ and SOSC hold at the solution z(x̂i) of pNLP (2), then one can show
that the SQP iteration converges locally (i.e., for the initial guess ẑ0

i being suffi-
ciently close to the true solution z(x̂i)) for α = 1. This local convergence occurs at
a quadratic rate, i.e.

∥∥∥ẑk+1
i − z(x̂i)

∥∥∥≤C
∥∥∥ẑk

i − z(x̂i)
∥∥∥2

(9)

for some constant C > 0. This strong contraction rate occurs in a set Q(x̂i) of the
primal-dual space, with z(x̂i)∈ Q(x̂i). The set Q(x̂i) can be small and highly convo-
luted, even for simple problems. SQP methods often make use of reduced steps, by
taking α < 1. This allows the iteration to converge for a larger set of initial guesses
ẑ0

i , but the quadratic contraction rate (9) can then be significantly degraded. See,
e.g., [44] for more details.

The SQP iteration is typically carried out until the KKT conditions (3) associated
to pNLP (2) are sufficiently close to being satisfied. It is important to underline
here that the local convergence (9) of the SQP iteration is very strong: every SQP
iteration k allows one to double the “number of accurate digits” in ẑk+1

i such that a
few iterations are typically enough to reach machine precision. It is also crucial to
observe that this strong convergence hinges on the initial guess being close enough
to the true solution z(x̂i), i.e. ẑ0

i ∈ Q(x̂i).
It is also useful to point out here that the size of the set Q(x̂i) where a quadratic

contraction occurs, as well as the magnitude of the constant C is directly related to
how “close” the pNLP (2) is to a convex Quadratic Program (QP), i.e. how close the
equality and inequality constraints (2b) and (2c) are to being linear and how close
the cost function (2a) is to being quadratic. This notion of “closeness” of the pNLP
to a QP is best formalized via quantifying how nonlinear the KKT conditions (3)
are, i.e. via the Lipschitz constant of their Jacobian [44].

3.2 Interior-Point Methods

Interior-point methods have been extensively used in the context of optimal control,
see, e.g., [63]. A difficulty with solving the KKT conditions (3) is that the comple-
mentarity slackness condition (3c) is disjunctive, in the sense that it imposes that
hi and μ i cannot be both non-zero at the same time. Hence the manifold satisfy-
ing (3c) is intrinsically non-smooth. Primal-dual interior point methods relax this
non-smooth manifold into a smooth one, by disturbing condition (3c) via a small
positive constant τ [21, 22, 42, 46]. The relaxed KKT conditions read as:

rτ (z, x̂i) =

⎡
⎣ ∇wL (z, x̂i)

g(w, x̂i)
μ�h(w, x̂i)+ τ

⎤
⎦= 0, (10)
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where h(w, x̂i) < 0 and μ > 0 must hold. For τ > 0, a classic Newton method can
then be applied to (10) to find solutions to rτ (zτ (x̂i) , x̂i) = 0, via the following
iteration starting from an initial guess ẑ0

i,τ :

Δz = −∂rτ
∂z

−1

rτ

∣∣∣∣∣
ẑk

i,τ , x̂i

(11a)

ẑk+1
i,τ ← ẑk

i,τ +αΔz (11b)

where α ∈]0,1] is an adequately chosen step-size. The iteration (11) has similar
convergence properties to the SQP iteration described above, locally converging to
the relaxed solution zτ (x̂i) at a quadratic rate when α = 1 can be selected. However,
zτ (x̂i) differs from the true solution with an error ‖zτ (x̂i)− z(x̂i)‖ that is in the
order of τ , see, e.g., [63], hence it is desirable to solve (10) for τ small.

Because Newton methods are hindered when the Lipschitz constant associated to
the Jacobian of the residual ∂rτ

∂z is high, a fairly large relaxation of the complemen-
tarity slackness condition (3c) makes it easier to solve (10), hence a reasonably large
τ is desirable. This observation especially holds when the Newton iterations solv-
ing (10) need to perform a change of Active-Set, i.e. when it has to go through the
(smoothened) “corner” in the complementarity slackness manifold. Primal-dual inte-
rior point methods resolve this trade-off by interweaving iterations of the form (11)
with a careful reduction of parameter τ , until both τ and ‖rτ‖ are small [63]. We
ought to underline here that the quadratic local convergence of the iteration (11) is
degraded whenever τ is reduced, unless sufficiently small changes are made in τ
and ad-hoc tools such as Mehrotra predictors [43] are deployed.

Similarly to SQP methods, primal-dual interior point methods must be provided
with an initial guess ẑ0

i,τ to get the iteration (11) started. Unfortunately, since the
iteration is typically started for a τ “large” so as to be able to negotiate possible
changes of Active-Set efficiently, an initial guess close to the true solution, i.e. ẑ0

i,τ ≈
z(x̂i), is not necessarily a good one because zτ (x̂i) can differ significantly from
z(x̂i) for τ “large.” This difficulty of “warm-starting” (i.e., forming good initial
guesses for) interior point methods is well known, see, e.g., [56, 59], and poses
some challenges in the context of real-time implicit MPC. Note that in the context
of SQP methods, the pQP (7) is often itself solved using an Interior-Point method
similar to what has been described in this section. In that case, the only nonlinearity
in (10) stems from the relaxed complementarity slackness condition.

4 Discretization

We will now discuss the conversion of a continuous MPC scheme of the form (1)
into the discrete pNLP (2). The former is infinite-dimensional as its solution is made
of the continuous input profile u(t) and the corresponding continuous trajectory x(.),
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and must be approximated, in one way or another, by a finite set of variables that
can be manipulated in the computer.

The discretization of (1) requires the discretization of both the continuous input
profile u(.) and of the corresponding state trajectories x(.). The continuous input
profile is commonly approximated via a piecewise-constant one, typically matching
the discrete time grid i ·Δ t on which the solutions of the pNLP (2) are updated. On
the prediction window τ ∈ [0, tf] used in the MPC scheme, the piecewise-constant
input profile then reads as:

u(τ) = uk, τ ∈ [kΔ t, (k+1)Δ t), for k = 0, . . . ,N −1 (12)

The predicted state trajectories x(τ) resulting from the initial conditions x̂i and
an input profile u0,...,N−1 can then be obtained via a numerical simulation of the
continuous dynamics (1c). Numerical simulations then hold an approximation of
the continuous trajectory x(.) in the form of a finite number of “checkpoints” xk, j

corresponding to a (not necessarily uniform) time grid τk, j, with k = 0, . . . ,N − 1,
j = 0, . . . ,d −1 and τk, j ∈ [tk, tk+1].

4.1 Single Shooting Methods

A straightforward approach to discretize the continuous MPC scheme (1) into its
pNLP counterpart (2) can rely on adopting w = {u0, . . . ,uN−1} cast in a vector for-
mat, as decision variables, and computing the discrete trajectories xi, j as functions
of the inputs and initial conditions x̂i via an ad-hoc computer code. For the sake of
illustration let us consider the ineffective but simple explicit Euler approach, which
would generate the discrete states xk, j using the recursion:

x0,0 = x̂i, xk+1,0 = xk,d , (13a)

xk, j+1 = xk, j +
(
τk, j+1 − τk, j

)
F
(
xk, j,uk

)
, j = 0, . . . ,d −1 (13b)

for k = 1, . . . ,N −1. Note that here τk,d = τk+1,0 would hold. The cost function (1a)
can then be approximated using a quadrature rule such as:

φ (w, x̂i) = T
(
xN−1,d

)
+

N−1

∑
k=0

d−1

∑
j=0

(
τk, j+1 − τk, j

) L
(
xk, j+1,uk

)
+L

(
xk, j,uk

)
2

(14)

while the inequality constraints (1d)–(1e) can be enforced on the discrete time grid,
i.e. function h gathers the constraints:

H
(
xk, j,uk

)
≤ 0, k = 0, . . . ,N −1, j = 0, . . . ,d (15)

and T
(
xN−1,d

)
≤ 0. Note that in this approach, the pNLP (2) does not hold an equal-

ity constraints function g. This type of approach, labelled Single-Shooting, is not
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uncommon amongst practitioners of optimal control. While effective in some cases,
Single-Shooting is known to be problematic for many optimal control and MPC
problems, and alternative discretization schemes have been developed to address its
shortcomings. The main issue with Single-Shooting is that the recursion (13) tends
to “accumulate” the nonlinearity and (possible) instability of the continuous dynam-
ics F, see, e.g., [1]. As a result, even for mildly nonlinear and unstable continuous
dynamics, the relationship from x̂i, u0,...,N−1 to the discrete state trajectory xk, j can
become extremely nonlinear and sensitive on a long prediction horizon tf. This issue,
in turn, has a detrimental impact on the convergence of iterative methods deployed
on solving the resulting pNLP. Indeed, because of the potentially high nonlinear-
ity of the simulations carried out in Single-Shooting, the region Q(x̂i) around the
primal-dual solution z(x̂i) where the quadratic convergence (9) occurs can become
extremely small, hence requiring extremely good (i.e., very close to the true solu-
tion) initial guesses ẑ0

i . For these reasons, schemes tackling MPC numerically are
typically based on alternative discretization methods.

4.2 Multiple Shooting Methods

Multiple Shooting methods address the problems described above by avoiding the
deployment of long simulations in the discretization of the continuous MPC prob-
lem (1), see, e.g., [6–8]. The key idea behind Multiple-Shooting is to divide the
time span [0, tf] selected in the MPC scheme into smaller intervals, and perform
the simulation separately on each on these intervals, starting from “artificial” initial
conditions that we will label xk in the following.

For the sake of simplicity, it is fairly common to perform this division using the
time grid t0,...,N−1 selected for the discretization (12) of the input profile. Similarly to
the remarks on (13), while high-performance simulation codes ought to be used for
the simulations, let us illustrate the Multiple-Shooting approach here via the explicit
Euler scheme. In that context, one would write the simulation function f(xk,uk) =
xk,d where xk,d is provided by the recursion:

xk,0 = xk, (16a)

xk, j+1 = xk, j +
(
τk, j+1 − τk, j

)
F
(
xk, j,uk

)
, j = 0, . . . ,d (16b)

Note that the only difference between (16) and (13) is that in (13) the initial condi-
tions xk,0 on each interval [tk, tk+1] are inherited from the previous interval, while
they are dictated by the variables xk in (16). In Multiple-Shooting methods, the
variables xk with k = 0, . . . ,N then become decision variables in the pNLP, and the
continuity of the simulation between the time intervals becomes part of the equal-
ity constraint. The pNLP arising from a Multiple-Shooting approach to discretizat-
ing (1) is typically deployed as:

min
w

(14) (17a)
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s.t. g(w, x̂i) =

⎡
⎢⎢⎢⎣

x̂i −x0

f(x0,u0)−x1
...

f(xN−1,uN−1)−xN

⎤
⎥⎥⎥⎦= 0 (17b)

h(w) =

⎡
⎢⎢⎢⎣

h(x0,u0)
...

h(xN−1,uN−1)
T(xN)

⎤
⎥⎥⎥⎦≤ 0 (17c)

where the decision variables are w = {x0,u0, . . .xN−1,uN−1,xN}. The benefit of
Multiple-Shooting stems from the integration functions f(xk,uk) becoming asymp-
totically linear as Δ t = tk+1 − tk → 0, regardless of the integration scheme in use.
Hence, the constraint function (17b) can be made in theory arbitrarily close to linear
by dividing the prediction horizon [0, tf] using a sufficiently fine time grid t0,...,N−1

(i.e., a larger N). This is clearly limited in practice by the number of extra variables
introduced in the pNLP (17), making it increasingly computationally heavy to tackle.
As discussed in Section 3, decreasing the nonlinearity of the constraint functions in
the pNLP tends to improve the behavior of the iterative methods (e.g., SQP or IP)
deployed on solving the pNLP (in terms of speed and region of convergence).

We ought to underline again here that the numerical simulation methods (13)
and (16) have been chosen for their simplicity in illustrating the discussion, but
are in practice a poor choice of numerical integration method. More advanced in-
tegration methods, ranging from explicit Runge-Kutta schemes to implicit methods
depending on the specific continuous dynamics at hand, prove to be more effective.
A large suite of high-performance, efficient integration methods have been devel-
oped for the specific purpose of forming the constraint function g and its gradient
∇g in (17b) at a minimum computational cost. Detailing these methods is out of the
scope of this chapter, but we refer the reader to, e.g., [33, 48–50, 52] for detailed
discussions on this question.

4.3 Direct Collocation Methods

Direct Collocation methods [4, 5, 62] take the Multiple-Shooting idea one step
further. Multiple-Shooting introduces the intermediate discrete states xk ≡ xk,0 for
k = 0, . . . ,N − 1 as decision variables in the pNLP but “hides” the remaining dis-
crete states xk,i for i = 1, . . . ,d − 1 from the pNLP, only reporting the functions
f(xk,uk) = xk,d in the constraints. Hence the pNLP solver manipulates these hidden
discrete states xk,i “indirectly,” via manipulating the intermediate initial conditions
xk = xk,0 and the inputs u0,...,N−1. In contrast, Direct Collocation methods introduce
all discrete states xk,i supporting the approximation of the continuous dynamics as
decision variables in the pNLP, i.e. the set of decision variables becomes:
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w =
{

x0,0, . . . , x0,d , u0, . . . , xN−1,0, . . . , xN−1,d , uN−1
}

(18)

The constraint function g(w, x̂i) then holds all the equations describing the rela-
tionship between successive states. For example, for the sake of illustration, in the
case of a simulation based on a simple explicit Euler scheme, the Equation (13)
would be all introduced in the equality constraints (2b) for k = 0, . . . ,N − 1 and
j = 0, . . . ,d −1.

In practice, the simulation of the dynamics ought to be supported by more effi-
cient methods than the explicit Euler scheme used here in (13) for our illustration. In
fact, Direct Collocation methods most often use specific high-order implicit Runge-
Kutta schemes, see, e.g., [5]. It is useful to specify that all collocation methods yield
constraint equations where the dynamics F

(
xk, j,uk

)
appear linearly (as in (13)), i.e.

the nonlinearity of the equality constraints in Direct Collocation methods comes
from the nonlinearity of the continuous dynamics only, and are linear if the continu-
ous dynamics are linear.

The inequality constraint function can then be imposed on every discrete state,
i.e. function h(w) gathers the constraints H

(
xk, j,uk

)
≤ 0 for k = 0, . . . ,N − 1 and

j = 0, . . . ,d, and the terminal constraint T
(
xN−1,d

)
≤ 0.

Because Direct Collocation methods perform the simulation (via enforcing the
equations underlying the integration scheme) and the optimization together in the
pNLP, they are often referred to as simultaneous optimal control methods. Multiple-
Shooting methods arguably carry out a part of the simulation within the pNLP by
enforcing continuity of the simulations, and are therefore often labelled as semi-
simultaneous optimal control methods, in contrast to both single-shooting and direct
collocation methods.

Similarly to Multiple-Shooting methods, Direct Collocation methods offer a way
to treat the dynamics in the pNLP that reduces the nonlinearity of the simulations as
the discrete time grid τk, j becomes finer. Direct Collocation methods have therefore
the same benefit as Multiple-Shooting methods as they tend to yield regions where
full-step iterative optimization methods have a quadratic convergence that are larger
than in the Single-Shooting case. Because Direct Collocation methods “divide” the
simulation into finer elements (time grid τk, j instead of tk), it is often observed in
practice that the resulting convergence of iterative methods is slightly better than
using Multiple-Shooting methods, unless some specific corrections are deployed in
the Multiple-Shooting scheme [54]. This benefit is obtained, however, at the price
of having more decision variables in the resulting pNLP. We finally ought to specify
that Direct Collocation methods share some similarities with pseudo-spectral meth-
ods, see, e.g., [28].

5 Predictors & Path-Following

Section 3 points to the benefit of having good initial guesses when deploying an it-
erative method to compute a numerical solution for pNLP (2). Theorem 1 discusses
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the continuity and differentiability of the solution path z(x̂(t)), which can be ex-
ploited to form initial guesses in the context of real-time MPC.

In this section we will develop first-order, local predictors of the solution path at a
given solution z(x̂i), associated to the discrete time ti. Such predictors can then form
first-order approximation of the next solution z(x̂i+1) at the next discrete time ti+1.
This concept of predictors of the solution path plays a key role in many real-time
NMPC methods. We detail them next.

The primal-dual solution to the pNLP (2), i.e. z(x̂i) is implicitly described by (10)
at τ = 0, i.e. by r0 (z, x̂i) = 0. The implicit function theorem (IFT) ensures that:

∂z(x̂i)

∂ x̂i

∣∣∣∣
z(x̂i),x̂i

= −∂r0

∂z

−1 ∂r0

∂ x̂i

∣∣∣∣∣
z(x̂i),x̂i

(19)

holds at all primal-dual solutions z(x̂i) where ∂r0
∂z is full rank, which is guaranteed

if the pNLP fulfills both LICQ and SOSC and if no constraint is weakly active.
The sensitivity of the solution z(x̂i) of the pNLP described by (19) allows one to
build tangential predictors of the pNLP solution path. Indeed, assuming one has
computed a solution z(x̂i) for a parameter value x̂i, a first-order prediction for the
next parameter value x̂i+1 can be formed as:

z(x̂i+1) = z(x̂i)+
∂z(x̂i)

∂ x̂i

∣∣∣∣
z(x̂i),x̂i

(x̂i+1 − x̂i)

︸ ︷︷ ︸
1st-order predictor

+O
(
‖x̂i+1 − x̂i‖2

)
, (20)

as long as no constraint is weakly active.
Unfortunately, the first-order predictor (20) can be a poor predictor when a

change of active set occurs near the solution z(x̂i) at which the predictor is formed.
At a change of active set, the continuity of the solution path entails that a constraint
becomes weakly active. The solution path then typically loses its differentiability,
as a change of active sets typically yields a “corner” in the solution path z(x̂(t)),
which is not captured by the first-order predictor (20). This effect can be observed
in Figure 3.

Note that the first-order predictor described in (19)–(20) can be identically
formed for the relaxed solution path zτ (x̂i) with τ > 0, replacing r0, z(x̂i) by rτ ,
zτ (x̂i) in (19)–(20). See Figure 3 for an illustration. In that context, the “corners”
in the solution path created by changes of active set are smoothed out into “sharp
turns.” The larger τ the smoother the turn is, making it easier to approximate using
a first-order predictor of the form (20). Unfortunately, a large τ also increases the
discrepancy between the relaxed solution path zτ (x̂(t)) and the exact one z(x̂(t)),
rendering the relaxed solution less valid.
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To address the problem of dealing with changes of active set in first-order predic-
tors, one can turn to the QP predictor:

predQP(Δ x̂i) : min
Δw

1
2
Δw�∇2

wL Δw+∇wL
�Δw+Δ x̂�

i ∇x̂iwL Δw,(21a)

s.t. g+∇wg�Δw+∇x̂ig
�Δ x̂i = 0, (21b)

h+∇wh�Δw+∇x̂ih
�Δ x̂i ≤ 0, (21c)

formed at a given point z(x̂i) of the solution path, delivering the primal-dual update
Δz = (Δw,λQP,μQP) parametrized by Δ x̂i = x̂i+1− x̂i, where λQP,μQP are the dual
variables delivered by the parametric QP (21). We can then write the predictor:

z(x̂i+1) = z(x̂i)+Δz(x̂i+1 − x̂i)︸ ︷︷ ︸
QP predictor

+O
(
‖x̂i+1 − x̂i‖2

)
(22)

which is a (typically) non-smooth first-order predictor of the solution path, but valid
regardless of changes of active set.

One can verify that if no constraint is weakly active at the solution z(x̂i) where
QP (21) is formed, then the predictor (22) is locally identical to the first-order pre-
dictor (20). However, the QP-based predictor (22) can anticipate (to a first-order
accuracy) possible changes in the active set resulting from perturbations Δ x̂i. See
Figure 4 for an illustration. One ought to observe that the anticipation of a coming
change of active set is performed at the expense of solving QP (22), as opposed
to using a simple matrix factorization in (19) and a matrix-vector multiplication
in (20). The former is generally computationally considerably more expensive than
the latter.

Note that ∇wL can be replaced by ∇wφ in (21a) without affecting the primal so-
lution Δw. However, this replacement changes the dual variables λQP,μQP returned
by the QP from being steps on z to being the actual new dual variables z, such that
the predictor formula (22) would have to be slightly modified for the dual variables.

5.1 Parametric Embedding

Consider the following pNLP parametrized by x̂i+1:

EpNLP(x̂i+1) : min
w,p

φ (w,p) , (23a)

s.t. g(w,p) = 0, (23b)

h(w,p)≤ 0, (23c)

p− x̂i+1 = 0, (23d)

where the decision variable p has been introduced and forced to match the param-
eter x̂i+1 via constraint (23d). This procedure of introducing a “copy” of the pNLP
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x̂i

w

Fig. 3: Illustration of a solution path of a pNLP (solid black curve) and of the relaxed
solution path (τ > 0, dashed black curve). The tangential predictor associated to the
solution path and its relaxed version yielded by (20) are depicted as grey lines (solid
and dashed, resp.) associated to specific points z(x̂i) (square) and zτ (x̂i) (circle) of
the solution paths. The pNLP underlying this solution path has a change of active
set at the parameter value highlighted by the vertical dashed line. At this parameter
value, the solution path z(x̂i) is not differentiable, and is poorly approximated by
the tangential predictor.

x̂i

w

Fig. 4: Illustration of a solution path of a pNLP (solid black curve). The QP-based
predictor resulting from (21)–(22) at the point outlined by a circle is represented by
the solid grey lines. The QP-based predictor, while still being a first-order predic-
tor, is capable of anticipating changes of active set, and “capturing” corners in the
solution path.

parameters as decision variable is labelled parametric embedding. In the specific
case where the embedded parameter is the vector of initial conditions x̂i+1 arising
in MPC, parametric embedding is also labelled initial-value embedding.

One can verify that for a primal-dual initial guess z(x̂i) with matching initial
value p = x̂i, a full (i.e., with α = 1) step taken using the solution Δz delivered
by (23) subjected to a parameter value x̂i+1 matches the QP prediction (21)–(22).
After the full step, the linear equality constraint (23d) ensures that p = x̂i+1. Sub-
sequent steps holding x̂i+1 as the parameter in use then yield classic SQP steps,
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often labelled corrections steps, which adjust the solution further until convergence
is reached.

In the case the primal-dual initial guess provided to the SQP method deployed
on (23) is not a primal-dual solution of (2) for the parameter value x̂i, then the first
SQP step deployed on (23) can be construed as a “mixture” of prediction (for the
new parameter value x̂i+1) and correction (for the inexact primal-dual guess).

Initial-value embedding is not fundamentally different than the QP predictor tech-
nique (21)–(22). Indeed, it can be verified that (23) delivers the same solution as (21),
and the same subsequent steps (provided that Δ x̂i is set to zero in (21) after the first
step is taken). However, initial-value embedding offers a straightforward and conve-
nient way of deploying a QP-based prediction-correction technique in the context
of parametric Nonlinear-Programming.

5.2 Path Following Methods

The prediction techniques described so far in this section aim at forming efficient
path-following methods, which in the context of real-time MPC aim at keeping up
with the physical reality imposed by the system we aim at controlling. Indeed, since
the state estimation x̂(t) is changing all the time, the solution z(x̂(t)) is continuously
evolving along the solution path, following the “physical clock” represented by t.
Path following in the context of real-time MPC then aims at delivering solutions ẑi

that are always close to the current exact solution z(x̂(t)).
Arguably the simplest approach to follow a solution path would rely on an algo-

rithm of the form depicted in Figure 5, whereby upon receiving a new state estima-
tion x̂i+1, the solution estimated at time ti, i.e. ẑi, is updated to a new estimate ẑi+1

matching x̂i+1 by taking a (full) SQP step based on the available data ẑi, x̂i+1. Such
a procedure does not make use of the predictor effects detailed earlier, and can be
construed as a pure correction algorithm. It performs nonetheless effectively when
ẑ0 ≈ z(x̂0) and if the successive state estimations x̂i and corresponding solutions
z(x̂i) are sufficiently close to each other, see Figure 7 left graph for an illustration.
A caveat of this approach, though, lies in that the preparation phase whereby the QP
problem (7) is formed (upper square block in Figure 5) requires that the state esti-
mation x̂i+1 is known. Since the preparation of the QP problem (7) requires compu-
tational time, it adds to the delay already imposed by solving the QP problem (7) be-
tween obtaining a new state estimation x̂i+1 and delivering an updated solution ẑi+1.

To circumvent this problem, prediction-correction techniques can help us. Indeed,
since the prediction-correction QP (21) (or its “embedded version” (23)) is formed
based on the data ẑi, x̂i available at time ti, it can be prepared without knowledge
of x̂i+1, and solved once x̂i+1 is obtained. The procedure is illustrated in Figure 6.
Because the prediction-correction QP (21) can be formed without knowing the new
state estimation x̂i+1, the delay between obtaining x̂i+1 and delivering a solution
update ẑi+1 is limited to the computational time required to solve the prediction-
correction QP (21) (or its “embedded version” (23)).
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ẑi; x̂i+1

ẑi+1 = ẑi +Δz

g;h; g; h; φ ;HÑ Ñ Ñ

Fig. 5: Schematic of a (pure) Corrector path-following algorithm.
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at ẑi; x̂i
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solve QP (21) to get Δzx̂i+1

ẑi; x̂i

ẑi+1 = ẑi +Δz

x̂i g;h; g; h; φ ;HÑ Ñ Ñ

Fig. 6: Schematic of a Predictor-Corrector path-following algorithm.

For a sufficiently small difference between x̂i and x̂i+1, and if the primal-dual
guess ẑi is close to the exact solution z(x̂i) for the parameter x̂i, then the solution
update ẑi+1 delivered by Algorithm 6 is close to the exact new solution z(x̂i+1). The
notion of “closeness” can be more formally described here via the bound:

‖ẑi+1 − z(x̂i+1)‖ ≤ c

∥∥∥∥ x̂i+1 − x̂i

ẑi − z(x̂i)

∥∥∥∥
2

(24)
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which holds locally for some positive constants c. The proof of this bound is omit-
ted here but follows from classical analysis on the contraction of the (exact) Newton
iteration [44], and extends to the QP prediction-correction case. More detailed anal-
ysis of the contraction of predictor-corrector schemes can be, e.g., found in [15].
The intuition behind (24) can be construed fairly simply: the prediction-correction
algorithm depicted in Figure 6 exploits all the first-order information available to
compute the solution update, and therefore eliminates the first-order errors between
ẑi+1 and the true solution z(x̂i+1), such that the remaining error is of order two.
The behavior of the prediction-correction algorithm is illustrated in Figure 7, center
graph.

Prediction-correction techniques can also be deployed in the context of Interior-
Point methods [68, 69], as detailed in Algorithm (PFIP). In this context, a linear
predictor-corrector of the form (20) is used, adopting the adequate parameter τ in
forming the sensitivities ∂zτ (x̂i)

∂ x̂i
in (19). The resulting predictor-corrector step, how-

ever, does not in its simple form anticipate changes of active set, and tends to per-
form poorly when such a change has to be accounted for at a low value of τ . A
natural trade-off then arises between having 1) a relatively large τ , allowing for an
accurate following of the relaxed solution manifold zτ (x̂(t)) but not being close
to the exact manifold z(x̂(t)), and 2) a small τ , allowing the relaxed manifold to
be close to the exact one, i.e. zτ (x̂(t)) ≈ z(x̂(t)), but making it harder to follow
using predictor-corrector techniques. This behavior is illustrated in Figure 7, right
graph.

In order to address this trade-off, a natural approach is to consider the path-
following of a solution manifold for τ relatively large, and introduce in algorithm 3
extra iterations of the Newton method (11) while reducing τ in order to get closer to
the exact solution manifold. The algorithm then ought to return both the predictor-
corrector update (to be used in subsequent prediction-correction steps) and the re-
fined solution based on the further iterations and a reduction of τ , see, e.g., [67].

Algorithm: Predictor-corrector IP path-following method (PFIP)
Input : ẑi,τ , x̂i, x̂i+1

Take full predictor-corrector step

ẑi+1,τ ← ẑi,τ −
[
∂rτ
∂z

−1(
rτ +

∂rτ
∂ x̂i

(x̂i+1 − x̂i)

)]
ẑi,τ ,x̂i

(25)

return ẑi+1,τ

5.3 Real-Time Dilemma: Should We Converge the Solutions?

The algorithm described in Figure 6 delivers at each discrete time ti solution approx-
imations ẑi that are meant to be close to the exact solutions z(x̂(ti)), but it does not
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Path-following as per Fig. 5 Path-following as per Fig. 6 Path-following for IP (PFIP)

x̂ix̂i x̂i

ww w
Fig. 7: Illustration of the corrector path-following algorithm depicted in Figure 5
(left graph) and of the predictor-corrector path-following algorithm depicted in Fig-
ure 6 (middle graph) of a pNLP solution path (solid black curves). The right graph
depicts the behavior of the Interior-Point path-following algorithm (PFIP). The cir-
cles represent the solutions delivered by the algorithms, all starting with an exact
solution at the leftmost side of the graphs. The predictors (QP-based or linear) built
at the black circles are displayed as grey lines. The Interior-Point path-following
algorithm uses a relaxation parameter τ = 2 ·10−3.

consider iterating further these approximations to full convergence. Clearly, nothing
prevents one to perform further iterations (whether they are SQP iterations or New-
ton iterations in the context of IP methods, possibly with a reduction of τ) in order
to improve the accuracy of ẑi before delivering it as a control solution to the system.
In this section, we discuss why doing so can be counterproductive.

In order to explain this statement in a simple way,let us assume that in order to
deliver control solutions at each discrete time ti, the algorithm described in Figure 6
is further iterated N times after the first solution estimate ẑ0

i = ẑi obtained from
the predictor-corrector. Let us assume that these further iterations (requiring one to
reform and resolve the pQP) take a computational time of titer. The total time to
perform these tasks is therefore tQP +Ntiter, where tQP is the time required to solve
pQP (21).

By the time the N iterations have been performed, the system state will have
moved to x̂(ti + tQP +Ntiter) �= x̂(ti), which has a corresponding solution
w(x̂(ti + tQP +Ntiter)) �= w(x̂(ti)). Hence the larger N is, the more accurately one
approximates the true solution w(x̂(ti)), but the worse the mismatch between that
solution and the true solution w(x̂(ti + tQP +Ntiter)) at that time. Because of the
strong local contraction rate of the SQP iterations, very early in the iterations the
mismatch dominates the solution inaccuracy. It is therefore recommended in prac-
tice to skip these further iterations altogether (N = 0), and rather to always base
the computations on the most recent state estimation. This principle is graphically
illustrated in Figure 8.

Clearly, one can improve this situation by accounting for the computational time
delay, iterating on the MPC problem using a model-based prediction of x̂(t +Ntiter)
obtained from the state estimation x̂(t) instead of using x̂(t) itself. However, be-
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Error pred.-corr.

Error after Nth iter.

ti ti+1

x̂i x̂i+1

z(x̂i+1)

z(x̂i)
z(x̂(t))

z0i
z1i z2i z3i

Solving QP Iteration timeIteration timeIteration time

Fig. 8: Illustration of the real-time dilemma (see Section 5.3) for N = 3. Further it-
erations after the initial approximate solution z0

i obtained from prediction-correction
yield a more accurate solution ẑN

i , but also require computational time, during which
x̂(t) changes. If ẑ0

i is close to the true solution, very early in the iterations ẑk
i ≈ z(x̂i)

will hold at close to machine precision, but z(x̂i) ≈ z(x̂(t)) will rapidly not hold
anymore, such that after a few iterations, ẑk

i will become a poor approximation of
z(x̂(t)).

cause of disturbances and model error, the prediction is still corrupted by errors
which grows with N and the trade-off is not fundamentally addressed.

5.4 Shifting

We need here to discuss a trivial yet crucial operation that needs to be introduced
in schematic 6 in order to obtain a good path-following performance. This opera-
tion labelled shifting is computationally inexpensive, but allows one to modify ẑi

into a guess for the next step i+ 1 that is as close as possible to the expected new
solution z(x̂i+1). In order to best justify shifting, let us assume for the sake of the
argument that the pNLP (2) is a discretization of an infinite-horizon MPC scheme,
i.e. tf = ∞, and let us assume that the model supporting the MPC scheme is perfect.
The infinite-dimensional primal-dual solution z(x̂i) would then include both the in-
finite discrete input profile u0,...,∞ and the corresponding discrete states x0,...,∞. If
the model supporting the MPC scheme and the state estimation are perfect, then the
next state of the physical system will match the prediction, i.e. x̂i+1 = x1. Moreover,
if the prediction horizon is infinite, then the optimal control solution starting from
x̂i+1 = x1 will be given by u1,...,∞ with the corresponding states x1,...,∞.
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Using these observations, for the approximate primal-dual solution ẑi correspond-
ing to the state estimation x̂i at physical time ti, containing the discrete control input
û0,...,N−1 and the corresponding discrete state trajectories x̂0,...,N , it is reasonable to
update the guess for the next time instant ti+1 by shifting the primal-dual solution
i.e. by performing:

uk ← uk+1, k = 0, . . . ,N −2 (26a)

xk ← xk+1, k = 0, . . . ,N −1 (26b)

in the ascending order of k. The shifting operation provides a very good primal initial
guess if the prediction horizon is sufficiently long, and the model sufficiently good.
In the case an exact Hessian∇2

wL is used, the same operation ought to be performed
on the dual variables corresponding to the equality and inequality constraints in the
pNLP.

One can observe that the operation (26) does not update the primal guess for the
last input uN−1 and last state xN . Different approaches are in use here. It is actually
common to not update these variables at all, and leave it to the predictor-corrector
step to correct them. Alternatively, after the shifting procedure (26) is performed,
one can update the last input uN−1 based on the LQR approximation of the MPC
scheme at the current solution, based on the state xN−1 = xN , and then update xN

using xN ← f(xN−1,uN−1). In practice, and for a reasonably long discrete horizon
N, it is often observed that the overall performance of the real-time MPC scheme is
not much affected by the choice of strategy to generate uN−1 and xN .

Note that the shifting strategy described here applies to Multiple-Shooting meth-
ods, but it can be similarly deployed on Direct Collocation methods, by shifting
together all the intermediate discrete states xk, j belonging to the main time intervals
k, i.e.:

xk, j ← xk+1, j, k = 0, . . . ,N −1, j = 0, . . . ,d (27)

5.5 Convergence of Path-Following Methods

The convergence of predictor-corrector path-following methods is formally ana-
lyzed in, e.g., [13–16, 69]. We will limit the discussion here to an informal rea-
soning. The difference between successive approximate solutions ẑi delivered by
predictor-corrector path-following methods and the true solution z(x̂i) arises from
two sources: the error inherited from the previous solution ẑi−1 used as an initial
guess (with shifting) for time ti and disturbances. The latter are actual physical dis-
turbances, model errors and to a smaller extent the use of a finite horizon tf (see
discussion in Section 5.4). In the absence of disturbances, predictor-corrector path-
following methods deployed on optimal control problems (and using shifting) in-
herit the quadratic local convergence rate of SQP techniques, and converge to the
exact solution path z(x̂(t)) very quickly, if started within the region Q(x̂(t)).
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It is important to stress here that outside the region Q(x̂(t)), full prediction-
correction steps may diverge, and reduced-steps may converge very slowly. A prob-
lem can then occur if the disturbances push the approximate solutions ẑi out of
the region Q(x̂i). Indeed, if the disturbances “override” the strong contraction rate
of the prediction-correction steps to the point of moving ẑi out of Q(x̂i), then the
contraction rate is likely to degrade such that disturbances then are likely to move
ẑi+1 even further away from the solution path, and ultimately lead to a catastrophic
failure of the predictor-corrector path-following algorithm. In order to prevent such
failure, one ought to rely on ẑi ∈ Q(x̂i) for all time instant ti, see Figure 9 for an
illustration. The problem then becomes one of setting up the algorithm so as to limit
the impact of the disturbances on the predictor-corrector path-following algorithm.

In practice, this is achieved by making the sampling frequency of the MPC
scheme Δ t as small as possible. Indeed, provided that the dynamics (1c) have con-
tinuous solutions and assuming that the state estimation x̂(t) are noise-free, it is
straightforward to verify that the smaller the sampling time Δ t the “less time” the
disturbance and model errors have to corrupt the guesses delivered via shifting. In-
deed, to the limit Δ t → 0 the state estimation and solutions coincide, i.e. x̂i+1 = x̂i

and ẑi+1 = ẑi, such that disturbances lose their impact on the predictor-corrector
path-following algorithm. The effect of a finite prediction horizon as a disturbance
in the scheme also decreases as Δ t = tf/N becomes smaller (for tf held constant).

The reliability of implicit MPC schemes based predictor-corrector path-
following methods therefore hinges on Δ t being small. This observation is arguably
at the core of the research effort aimed at delivering algorithms that achieve very
high computational speeds.

6 Sensitivities & Hessian Approximation

A crucial aspect of the methods detailed so far is that deploying iterative methods
to solve the pNLP arising from the discretization of the continuous MPC problem
using simultaneous methods requires one to form the constraint function g and its
gradient ∇g. In the context of Multiple-Shooting methods, the latter requires one to
form the gradients ∇xk f(xk,uk) and ∇uk f(xk,uk) for k = 0, . . . ,N −1. Additionally,
forming the Hessian ∇2

wL , which, as detailed in (4), comprises the term:

λ�g(w, x̂i) = λ�
0 (x̂i −x0)+

N−1

∑
k=0

λ�
k+1 (f(xk,uk)−xk+1) , (28)

where the vectors λ k form a partition of the dual variables λ , requires forming
the second-order directional sensitivities ∇2

w
(
λ�

k+1f(xk,uk)
)

of the simulation func-
tions for k = 0, . . . ,N −1.

It ought to be underlined here that evaluating the simulation functions, f(xk,uk)
their sensitivities and their second-order directional sensitivities can be computation-
ally expensive, as it requires evaluating and differentiating the simulation codes used



326 Sebastien Gros

x̂

z(
x̂)

Q(x̂)

Fig. 9: Illustration of the region of quadratic convergence Q(x̂) around the true
solution path z(x̂) (in light grey), with a predictor-corrector path-following method
deployed to a changing x̂i (circles).

to evaluate the functions f(xk,uk). These codes are typically recursive and therefore
yield functions of high symbolic complexity, which are expensive to differentiate.
However, the recursive structure of the simulation functions can be exploited for
efficiency. Tools to perform the differentiation of the code evaluating the simulation
functions f(xk,uk) are commonly referred to as Algorithmic Differentiation (AD)
tools, and effective methods for differentiating simulation functions are available,
see, e.g., [2, 3, 10, 19, 29, 34, 40, 52, 54, 55, 64].

While the simulation functions f(xk,uk) need to be evaluated at every step of
iterative methods, it is not uncommon to deploy SQP or IP methods that do not
evaluate the sensitivities at every step. It is, e.g., common in the context of MPC to
skip the evaluation of the second-order sensitivities altogether, and replace the exact
Hessian ∇2

wL by an approximation [9, 12]. In the context of MPC, because least-
squares cost functions are often used, the Gauss-Newton Hessian approximation
is arguably the most popular one [44]. In that context, and assuming that the cost
function of pNLP (2) can be put in the least-squares form φ (w, x̂i) =

1
2 ‖R(w, x̂i)‖2,

the Gauss-Newton approximation reads as:

∇2
wL ≈ ∇wR(w, x̂i)∇wR(w, x̂i)

� (29)

and is valid if the function R(w, x̂i) is either close to linear and/or close to zero
at the solution of the pNLP, and if the functions g(w, x̂i) and h(w, x̂i) are close
to linear. It is interesting to observe here that when using a Gauss-Newton Hessian
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approximation, one does not need to keep track of the dual part (λ ,μ) of the solution
in the path-following method, as it is then not used anywhere in forming the QP (21).

Alternative Hessian approximations can be used such as the iterative approxima-
tion BFGS [44], or even application-specific approximations, see, e.g., [31]. In any
case, care should be taken to ensure that the sparsity structure present in the exact
Hessian ∇2

wL is not degraded in its approximation. Using inexact first-order sensi-
tivities is also possible, see, e.g., [9, 23, 41, 65, 66], but must be performed carefully
[47], or using a special treatment [51, 53].

It is interesting to note that when using a discretization based on Direct Collo-
cation, the equality constraint function g(w, x̂i) becomes a list of linear combina-
tion of the nonlinear continuous dynamics F(., .), such that computing the first and
second-order sensitivities of the equality constraint function is fairly straightforward
(though it can be computationally expensive).

7 Structures

Iterative methods such as SQP or IP ultimately rely on the factorization of (possibly)
large matrices at every iteration, whether for solving the linear system (11) or for
solving the QP (7). The computational complexity of matrix factorizations depends
heavily on the sparsity and sparsity pattern of the matrix to be factorized. Hence, in
this section we will briefly discuss the sparsity pattern of the matrices one needs to
form QP (7), or in the Newton iteration (11). Indeed, while simultaneous methods
such as Multiple-Shooting and Direct Collocation have strong benefits (discussed in
Section 4), they also introduce a large number of decision variables in the pNLP (2)
resulting from the discretization of (1), which in turn results in creating large matri-
ces in the QP (7) or in the linear system (11). However, the matrices resulting from
simultaneous methods also have a strong sparsity, and very specific sparsity patterns.
Deploying real-time MPC using simultaneous methods hinges on exploiting these
patterns effectively.

We display here the typical sparsity patterns arising from a specific optimal con-
trol problem with x(t) ∈ R

2, u(t) ∈ R, N = 20 and d = 3 for the three discretiza-
tion methods detailed in Section 4, see Figures 10, 11 and 12 for Single-Shooting,
Multiple-Shooting, and Direct Collocation, respectively. One can observe that while
simultaneous optimization techniques yield larger matrices, these matrices are thinly
banded, which can be exploited for achieving high computational speed in solving
the QP (7) or iterating the linear system (11).

Note that it is fairly straightforward to verify here that the Lagrange function
resulting from simultaneous methods is separable. That is, in, e.g., the Multiple-
Shooting case, using (17) and (28) one can observe that

∂ 2L

∂xi∂x j
= 0,

∂ 2L

∂xi∂u j
= 0,

∂ 2L

∂ui∂u j
= 0 for i �= j (30)
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resulting in the block-diagonal structure one can observe in Figure 11, right graphs.
Similar observations hold for Direct Collocation methods, yielding block-diagonal
Hessians as in Figure 12, right.
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Fig. 10: Illustration of the sparsity pattern of the Jacobian of the inequality con-
straints and of the Hessian of the Lagrange function in the pNLP resulting from a
discretization based on Single-Shooting, see Section 4.1. Note that Single-Shooting
methods typically hold no equality constraints (beyond possibly initial value embed-
ding).
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Fig. 11: Illustration of the sparsity pattern of the Jacobian of the inequality con-
straints and of the Hessian of the Lagrange function in the pNLP resulting from
a discretization based on Multiple-Shooting, see Section 4.2. One can observe the
banded structure of ∇g, and the block-diagonal structure of ∇2

wL . Note that in this
context, the Jacobian of the inequality constraints is typically block-diagonal, and
omitted here.

Describing the techniques available to exploit these structures is beyond the
scope of this chapter, we refer the reader to, e.g., [17, 18, 18–20, 23–27, 36–
39, 58, 60, 60, 61, 61] for more details. It can be interesting to note that the structure
present in the equation underlying the simulation of the dynamics can also be often
exploited in several ways, see, e.g., [32, 50, 52–54].
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Fig. 12: Illustration of the sparsity pattern of the Jacobian of the inequality con-
straints and of the Hessian of the Lagrange function in the pNLP resulting from a
discretization based on Direct Collocation, see Section 4.3. Note that in this context,
the Jacobian of the inequality constraints is typically block-diagonal, and omitted
here.

8 Summary

Let us summarize here the information provided in this chapter. The deployment of
nonlinear MPC problems most often requires one to solve the underlying optimal
control problem on-line (i.e., implicitly) and in real-time rather than explicitly and
off-line. Unfortunately, nonlinear MPC problem usually yields non-convex optimal
control problems, for which it is difficult to guarantee that the solutions computed
are global.

In order to solve the continuous NMPC problem in the computer, a discretiza-
tion of the problem is required. The discretization method adopted is often crucial
for the performance of the overall real-time NMPC scheme. Simultaneous or semi-
simultaneous discretization techniques are most often preferred, as they allow the
existing iterative methods dedicated to solving the optimization problem numeri-
cally to converge faster and more reliably.

If the NMPC solution is updated at a high frequency, the successive solutions
of the NMPC problem are typically not changing much between the discrete time
instants where the solution is updated. The similarity between these solutions is
exploited in real-time on-line NMPC schemes, using shifting and methods inherited
from parametric Nonlinear Programming, which allow one at any discrete time to
fully exploit the information obtained at the previous time instant.

Ultimately, all iterative solution approaches dedicated to solving the optimiza-
tion problem underlying the discretized NMPC scheme rely heavily on matrix fac-
torizations. Simultaneous optimal control methods yield optimal control problems
that have a very distinctive structure, which translates into a linear algebra that has
very distinctive sparsity patterns. In real-time NMPC, these patterns must be fully
exploited when performing the matrix factorizations.
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Finally, for semi-simultaneous discretization techniques, forming the linear alge-
bra required in the iterative solution approaches to solve the successive optimization
problems often requires the differentiation of simulations of the model dynamics in-
volved in the continuous NMPC scheme. The differentiation of simulations ought
to exploit the recursive structure present in most simulation codes. For fully simulta-
neous techniques, the recursive structure of simulation translates directly into struc-
tures in the linear algebra, which ought to be exploited in the matrix factorization.

The reliability of on-line real-time NMPC schemes hinges on achieving high sam-
pling frequencies for updating the NMPC solution, hence all the aspects mentioned
above ought to be exploited so as to minimize the computational time required to up-
date the NMPC solution. It is then important to ensure that the solution path does not
hold bifurcations (as illustrated in example (6)), and it is useful to keep in mind that
“extremely” nonlinear continuous models remain challenging for on-line real-time
NMPC schemes.
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Convexification and Real-Time
Optimization for MPC with Aerospace
Applications

Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behçet Açıkmeşe

1 Introduction

Model Predictive Control (MPC) or Receding Horizon Control (RHC) is a form of
control in which the control action at the current time is obtained by solving online,
at each sampling instant, a finite horizon open-loop optimal control problem. This
process yields a sequence of optimal control problems to be solved at each time
instance. An important advantage of MPC is its ability to cope with hard constraints
on controls and states, which are widely applicable in aerospace systems due to strict
mission and resource constraints, and the need for control robustness (see [4, 46]).
For a more detailed discussion on MPC, the reader is referred to [25, 38, 40].

The majority of the computational burden associated with MPC lies in solving
finite horizon optimal control problems. Consequently, advances in optimal control
theory are highly influential in the field of MPC. Optimal control theory has a rich
history, and is an outgrowth of the classical calculus of variations. Centuries of
work culminated in the 1950s and 1960s with the results of Pontryagin’s Maximum
Principle [45]. These results provide not only some analytical solutions, but more
importantly powerful theoretical analysis tools.

In practice and in the absence of analytical solutions, optimal control problems
must be solved numerically, and thus may be discretized and approximated as finite
dimensional parameter optimization problems (i.e., the direct method). Therefore,
the brunt of the work done in solving an MPC problem consists of solving such op-
timization problems. With recent advances in hardware and numerical optimization
algorithms, the computational challenges of MPC have become more tractable. In
particular, improvements in the efficiency of numerical convex optimization algo-
rithms has promoted their proliferation in a wide variety of applications [12].
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Due to recent advances, the optimal solutions of a large class of convex opti-
mization problems can be computed in polynomial time using either generic Sec-
ond Order Cone Programming (SOCP) solvers [18] or customized solvers that take
advantage of specific problem structures (see [19, 37]). Moreover, if a feasible so-
lution exists, these algorithms are guaranteed to find the global optimal solution in
a bounded number of iterations. Conversely, these algorithms provide a certificate
of infeasibility if no feasible solution exists. As a result, these advances have en-
abled the use of MPC in a variety of contexts, including electronic automotive and
aerospace systems. The interested reader is referred to [14, 53, 56] for more details
on real-time MPC applications.

However, most real-world problems are inherently non-convex, and thus diffi-
cult to solve. Therefore, algorithms that solve non-convex optimization problems
in real-time are needed for MPC. Most early attempts at solving non-convex opti-
mal control problems (e.g., [13, 26]) first discretize the problem (see [30]) and then
use general nonlinear programming solvers to obtain solutions. Same strategy is
also employed in nonlinear MPC, however by taking advantage of specific problem
structures (e.g., [17, 55]). Still, general nonlinear optimization methods have some
challenges that are not easily overcome. First, there are few known time complexity
bounds. For example, Interior Point Methods (IPMs) have polynomial time com-
plexity when applied to convex problems [41], but require much more effort such
as a Levenberg-Marquardt-type parameter search (see chapter 17 of [42]) when ap-
plied to non-convex problem, which is not particularly suitable for online MPC. Sec-
ond, they can be sensitive to initial guesses, sometimes leading to divergence even
when a feasible solution exists. To alleviate initial guess dependency, one may use,
for instance, a line search framework in Sequential Quadratic Programming (SQP)
(see chapter 18 of [42]), but this will again slow down the convergence. Besides,
iterative methods like SQP often require additional steps, such as Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updates, to convexly approximate the Hessian for their
subproblems. Such steps usually do not come cheap computationally [22]. In sum-
mary, these drawbacks usually render traditional non-convex optimization methods
unsuitable for real-time and safety-critical applications, where computation speed
and guaranteed convergence are of utmost importance.

In the meantime, the success of real-time convex optimization methods motivates
the formulation of non-convex optimal control problems in a convex programming
framework. We have seen a growing number of works exploring the idea of convex-
ification for aerospace applications, such as rendezvous [29, 31], swarm formation
flying [3, 24], planetary entry [32, 54], and obstacle avoidance [23]. While the re-
sults of the numerical experiments look promising, few theoretical proofs are pro-
vided.

Inspired by another aerospace application, the planetary soft landing of au-
tonomous rockets [10], recent results have introduced a procedure known as Loss-
less Convexification [1, 2, 28]. It proves that a class of non-convex optimal control
problems can be posed as equivalent convex optimization problems that recover the
solution to the original problems. More recently, an iterative algorithm called Suc-
cessive Convexification (SCvx) [21, 34, 35] has been introduced to solve problems
with non-convex nonlinear dynamics and state-constraints, and it provides proofs of
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global convergence. In contrast to SQP based iterative methods, SCvx uses a first or-
der model, which naturally convexifies the subproblem and hence does not require
Hessian approximation steps. These two convexification techniques provide rigor-
ous attempts to solve complex non-convex optimal control problems in real-time,
and they form the main focus of this chapter.

2 Convexification

In this section, we cover basic convexification techniques for optimal control prob-
lems. Among these problems, convex ones have some of the most attractive prop-
erties, and are tied closely with their convex parameter optimization counterparts.
[8] gives a rigorous treatment of this class of problems. Real-world optimal control
problems, however, are generally non-convex, and oftentimes need to be convexified
before they can be solved reliably and efficiently.

We first outline a typical finite horizon optimal control problem. To this end, we
will use t to denote time, t0 and t f to denote the initial and (finite) final time. Note
that t0 and t f can be free variables. We denote the system state as x(t) : [t0, t f ] →
R

n, and the control input as u(t) : [t0, t f ] → R
m. The control input u is assumed

to be at least Lebesgue integrable on [t0, t f ]. More specifically, we assume that u
is measurable and essentially bounded, i.e. bounded almost everywhere (a.e.), on
[t0, t f ]: u ∈ L∞[t0, t f ]

m, with the ∞-norm defined as

‖u‖∞ := esssup
t∈[t0,t f ]

‖u(t)‖,

where ‖ · ‖ is the Euclidean vector norm on R
m, and esssup represents the essential

supremum. The system dynamics, with the system state x and the control input u,
are described as

ẋ(t) = f (x(t),u(t), t) a.e. t0 ≤ t ≤ t f ,

where f : Rn ×R
m ×R → R

n is the control-state mapping. f is Fréchet differen-
tiable with respect to all arguments, and is nonlinear in general. Due to the differen-
tiability of f and the Lebesgue integrability of u, x is continuous on [t0, t f ]. Hence,
x ∈ W1,∞[t0, t f ]

n, where W1,∞[t0, t f ]
n is the space of absolutely continuous functions

on [t0, t f ] with measurable and essentially bounded (first order) time derivatives. The
1-norm of this space is defined by

‖x‖1,∞ := max{‖x‖∞,‖ẋ‖∞}.

With these two norms, it can be shown that both L∞[t0, t f ]
m and W1,∞[t0, t f ]

n are
Banach spaces (see [33] for more details). In addition to dynamics, most real-world
problems include control and state constraints that must hold for (almost) all t ∈
[t0, t f ]. For simplicity, we assume these constraints are time invariant. That is, we
assume that u(t)∈U and x(t)∈X . In general, U ⊆R

m and X ⊆R
n are assumed
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to be non-empty non-convex sets. Lastly, the problem includes an objective (or cost)
functional, that is to be minimized. The objective functional is generally assumed to
be convex, since non-convex objectives can simply be reformulated as non-convex
constraints (i.e., moving the non-convexity from the cost to the constraints).

We are now ready to present the general formulation of a non-convex constrained
optimal control problem.

Problem 1 (Original Non-convex Problem). Determine a control function u∗ ∈
L∞[t0, t f ]

m, and a state trajectory x∗ ∈W1,∞[t0, t f ]
n, which minimize the convex func-

tional
J(x,u) := ϕ(x(t f ), t f )+

∫ t f

t0
L(x(t),u(t), t) dt, (1a)

subject to the constraints

ẋ(t) = f (x(t),u(t), t) a.e. t0 ≤ t ≤ t f , (1b)

u(t) ∈U a.e. t0 ≤ t ≤ t f , (1c)

x(t) ∈X t0 ≤ t ≤ t f , (1d)

where ϕ : Rn ×R→R is the terminal cost, L : Rn ×R
m ×R→R is the running cost,

and both are convex and Fréchet differentiable.

Different sources of non-convexity can be observed in Problem 1. In particular, if
the dynamics are nonlinear, then (1b) represents a non-convex constraint. Similarly,
a non-convex U renders (1c) into a non-convex constraint, and a non-convex X
renders (1d) non-convex. These sources of non-convexity can be addressed using
the following convexification techniques:

• Lossless convexification.
• Successive convexification.
• Successive convexification with state constraints.

Each of the aforementioned methods is introduced to handle one source of non-
convexity in Problem 1. The methods can be applied independently, or simultane-
ously with proper precautions.

2.1 Lossless Convexification of Control Constraints

The first technique we consider is called lossless convexification. Its primary pur-
pose is to handle non-convex control constraints, which appear in a wide range of
engineering applications. This method introduces a relaxation to the non-convex
control constraint through the use of a slack variable. Lossless convexification guar-
antees that if a feasible solution exists, the optimal solution of the relaxed optimal
control problem is also the optimal solution to the original non-convex problem.
This property is called the equivalence.

Lossless convexification was introduced in [2] for a fuel optimal planetary land-
ing problem. Though there are a number of state constraints in this problem, the
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equivalence proof was carried out by assuming that the state constraints could only
be active on a set with measure zero. This is a strong assumption since it cannot be
verified before solving the problem. A more general result was obtained in [1]. In-
stead of focusing on a specific landing problem, lossless convexification was proven
for a more general class of optimal control problems with convex cost, linear dynam-
ics, convex state constraints, and a special class of non-convex control constraints.
This paper represents the first instance where the equivalence property of lossless
convexification was related to properties of the dynamical system. It was shown that,
under a few other minor assumptions, the equivalence property holds if the linear
system is controllable. This is a very powerful result since most systems of inter-
est are designed to be controllable. The theory presented in this section is primarily
based on this paper.

The theory of lossless convexification of control constraints was extended to non-
linear systems by [11]. Here, the authors identified the dependence of the equiva-
lence property on gradient matrices having full rank along the optimal state and con-
trol trajectories – a condition that is difficult to verify a-priori (nevertheless, some
special cases were treated rigorously). Since no convexification was applied to the
nonlinear dynamics, Mixed Integer Linear Programming (MILP) is required to solve
the optimal control problem, which quickly becomes computationally intractable.

Attention returned to planetary landing in [5], where the authors focused on an
additional thrust pointing constraint. In this paper, the authors developed a geomet-
ric insight that establishes a connection with normal systems (i.e., systems where the
Hamiltonian is maximized at the extreme points of a projection of the relaxed set of
feasible controls). However, a small perturbation to the problem was introduced in
order to complete the proof, thus rendering the results less rigorous in terms of the
treatment of active state constraints and the handling of thrust pointing constraints.
Both of these were addressed in [28], which contains the most general lossless con-
vexification results. It states that the equivalence holds whenever the state space is
a strongly controllable subspace, which extended the controllability concept used
by [1], and recovered their result as a special case. The work also naturally han-
dled pointing constraints in a rigorous manner and answered the question of when
lossless convexification can be achieved without having to perturb the problem.

2.1.1 Theory

The theory of lossless convexification is largely based on the result in [1], and also
includes enhancements from [28]. The system we consider has convex cost, linear
dynamics, and convex state constraints, which makes the control constraints the
single source of non-convexity. The corresponding optimal control problem can be
formulated as follows.

Problem 2 (Linear Dynamics, Non-convex Control Constraints). Determine a
control function u∗ ∈ L∞[t0, t f ]

m, and a state trajectory x∗ ∈W1,∞[t0, t f ]
n, which min-

imize the functional
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J(x,u) := h0(t0, t f ,x(t0),x(t f ))+ k
∫ t f

t0
g0(u(t)) dt, (2a)

subject to the constraints

ẋ(t) = A(t)x(t)+B(t)u(t)+E(t)w(t) a.e. t0 ≤ t ≤ t f , (2b)

u(t) ∈U , x(t) ∈X a.e. t0 ≤ t ≤ t f , (2c)(
t0, t f ,x(t0),x(t f )

)
∈ E , (2d)

where h0 : R×R×R
n ×R

n → R is the end cost, g0 : Rm → R is the running cost,
and both are convex and Fréchet differentiable. k ≥ 0 is a scalar, A : R+ → R

n×n,
B : R+ → R

n×m, and E : R+ → R
n×p are piecewise analytic functions of time t.

w(t) ∈ R
p is a known exogenous input. X ⊆ R

n is the convex set of feasible states,
U ⊆ R

m is the set of feasible control inputs, and E ⊂ R
2n+2 is the set of feasible

boundary conditions.

Here U represents a class of non-convex sets that satisfy

U =U1 \U2, U2 =
q⋂

i=1

U2,i ⊂U1, (3)

where U1 and U2 are, respectively, compact convex and open convex sets with

U2,i = {u ∈ R
m : gi(u)< 1} , i = 1, . . . ,q,

where gi, i= 1, . . . ,q, are convex functions that are bounded on U1, that is, there
exists some ḡ ∈ R such that gi(u) ≤ ḡ, ∀u ∈ U1, i = 1, . . . ,q. Note that U2 ∩ ∂U1

is empty, where ∂U1 represents the set of extremal points of U1. This follows from
the fact that U2 ⊂U1 and that U2 ∩∂U2 is empty.

The main difficulty in the convexification of Problem 2 is the non-convex control
constraints defined by the set U (shown in Figure 1a). As an example, Figure 1b
gives the thrust bound constraints, ρ1 ≤ ‖Tc(t)‖ ≤ ρ2, which are quite broadly ap-
plicable in the realm of optimal control.

Fig. 1: Non-convex set of feasible control inputs.
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To address this difficulty, we will use lossless convexification, and the concept
of which is best captured by geometric insight. Using planetary soft landing as an
example, we have U = {u ∈ R

2 : 1 ≤ ‖u‖ ≤ ρ}, which is a two-dimensional non-
convex annulus. However, we can lift it to a convex cone by introducing a third
dimension σ , and extending the annulus in this direction (see Figure 2). We denote
the resulting set as V , and in this case V = {(u,σ)∈R

3 : σ ≥ 1, ‖u‖ ≤ min(ρ ,σ)}.
Clearly, V is in a higher dimensional space and U ⊂V , i.e. we are solving a relaxed

Convexification

ux

uy

ux

uy

σ

Non-convex set of
feasible controls

Convex set of
feasible controls

U

v

Fig. 2: Convexification of the Control Magnitude Constraint for Planetary Soft Land-
ing. The annulus represents the actual non-convex control constraints U in (ux,uy)
space, which is lifted to a convex cone V in (ux,uy,σ) space.

problem. The set V also contains control inputs that are not feasible for Problem 2.
Hence, it is not trivial to establish the equivalence of solutions between these two
sets. However, by carefully designing the convex relaxation, it can be shown that
under certain conditions, an optimal solution of the relaxed problem will be feasible
and optimal for the original non-convex problem (Problem 2).

Problem 3 (Convex Equivalence of Problem 2). Determine a control function u∗ ∈
L∞[t0, t f ]

m, and a state trajectory x∗ ∈W1,∞[t0, t f ]
n, which minimize the functional

J(x,u) := h0(t0, t f ,x(t0),x(t f ))+ kξ (t f ), (4a)

subject to the constraints

ẋ(t) = A(t)x(t)+B(t)u(t)+E(t)w(t) a.e. t0 ≤ t ≤ t f , (4b)

ξ̇ (t) = σ(t) a.e. t0 ≤ t ≤ t f , (4c)

(u(t),σ(t)) ∈ V , x(t) ∈X a.e. t0 ≤ t ≤ t f , (4d)(
t0, t f ,x(t0),x(t f ),ξ (t0),ξ (t f )

)
∈ Ẽ , (4e)

where σ(t) ∈ R is a slack control variable, ξ (t) ∈ R is the corresponding state
variable, and Ẽ ⊂ R

2n+4 is the set of relaxed feasible boundary conditions. Here
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V ⊆ R
m+1 is the set of relaxed feasible control inputs,

V =
{
(u,σ) ∈ R

m+1 : σ ≥ 1 and u ∈U1 ∩V2(σ)
}

(5)

with V2(σ) =
⋂q

i=io
V2,i(σ) where

V2,i(s) := {u ∈ R
m : gi(u)≤ s} , io =

{
0 for k > 0
1 for k = 0

.

This V set is a generalization of the convex cone in Figure 2, and it can easily be
shown to be convex. Therefore, Problem 3 is a convex optimal control problem, and
its finite dimensional approximation can be solved to global optimality in polyno-
mial time, see [12, 41]. Further, under certain conditions, solutions of Problem 3 are
also solutions of Problem 2, and that is the main result of lossless convexification,
because it enables us to solve a much harder non-convex problem by solving its con-
vex relaxation in a lossless fashion. It really opens up the gate to real-time optimal
control.

To concisely explain the result, first we may define the sets of feasible and opti-
mal solutions for both original and convexified problems.

Definition 1. The sets of all feasible solutions of the original Problem 2 and the
convexified Problem 3 are denoted by FO and FR, respectively. (t0, t f ,x,u) ∈ FO

and (t0, t f ,x,ξ ,u,σ) ∈ FR if they satisfy the dynamics and the state and control
constraints of the two problems, respectively, a.e. [t0, t f ]. F ∗

O and F ∗
R represent the

respective sets of optimal solutions, with optimal costs J∗
O and J∗

R.

Next are the two generally required conditions in lossless convexification. In many
cases it is straightforward to verify these conditions. A detailed discussion can be
found in [1].

Condition 1. The pair {A(·),B(·)} is controllable and the set of feasible controls U
satisfies U †

2 = {0}, where U † :=
{

v ∈ R
m : ∃c ∈ R s.t. vT u = c ∀u ∈U

}
.

Condition 2. (t0, t f ,x,ξ ,u,σ) ∈F ∗
R and

(
−kσ(t0)−

∂h0

∂ t0
, kσ(t f )−

∂h0

∂ t f
,
∂h0

∂x(t0)
,
∂h0

∂x(t f )

)

is not orthogonal to E , where E is given by (2d).

The next theorem presents a fundamental result that establishes conditions under
which the optimal solution of the convexified problem is indeed feasible for the
original non-convex problem.

Theorem 1. Suppose that Condition 1 holds. If (t0, t f ,x,ξ ,u,σ) satisfies Condi-
tion 2 and additionally

x(t) ∈ intX ∀ t ∈ [t0, t f ], (6)

then (t0, t f ,x,u)∈FO.
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The proof of this result is non-trivial and it uses Pontryagin’s Maximum Principle
(see in [9, 45]), which can be found in [1].

Besides this general result concerning feasibility, [1] also addresses optimality
for several different cases often seen in aerospace optimal control applications. For
instance, for the class of problems that has an integral cost on the controls, which is
applicable to many minimum fuel planetary soft landing applications, we have

U = {u ∈ R
m : 1 ≤ g0(u)≤ ρ}, (7)

and the relaxed convex set given by (5) is

V =
{
(u,σ) ∈ R

m+1 : σ ≥ 1, g0(u)≤ min(ρ ,σ)
}
. (8)

Then the following theorem gives the conditions for an optimal control of the con-
vexified problem to also define an optimal solution for the original problem, see [1]
for a proof.

Theorem 2. Suppose that U satisfies (7), k>0, and Condition 1 is satisfied for the
original Problem 2. If (t0, t f ,x,ξ ,u,σ) satisfies Condition 2 and additionally the
condition in (6), then (t0, t f ,x,u)∈F ∗

O.

Although lossless convexification results presented in Theorems 1 and 2 provide
a theoretical tool to tackle non-convexities, they have their limitations, too. First,
they do not handle the thrust pointing constraints, or more generally, constraints
of the form Cu(t) ≤ d. The pointing constraints ensure that the translational ma-
neuver does not require the spacecraft to be oriented outside of a desired pointing
cone, which usually results in a reduction of performance [5]. Another imperfection
would be the additional interior condition in (6), which is more or less restrictive and
not particularly easy to verify beforehand. These two shortcomings were addressed
in [28] by introducing the notion of the friend of a linear system and the strongly
controllable subspace. All of the conditions in that paper can be checked a priori,
and are satisfied for many applications since strong controllability is often designed
into the systems.

2.1.2 Application

Throughout the section, we have mentioned the planetary soft landing problem as an
interesting example, which is gaining renewed interest due to emergence of reusable
rockets [10], of the lossless convexification technique. The objective is to search for
the thrust (control) profile Tc and an accompanying translational state trajectory
(r, ṙ) that guide a lander from an initial position r0 and velocity ṙ0 to rest at the
prescribed target location on the planet while minimizing the fuel consumption. The
problem considers planets with a constant rotation rate (angular velocity), a uniform
gravity field, and negligible aerodynamic forces during the powered-descent phase
of landing. When the target point is unreachable from a given initial state, a precision
landing problem (or minimum landing error problem) is considered instead, with the
objective to first find the closest reachable surface location to the target and second
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to obtain the minimum fuel state trajectory to that closest point. The setup of this
problem is shown in Figure 3.

X

Y

Z

Origin

Landing Target

Glideslope
Constraint

Initial Position

Initial
Velocity

Optimal
Trajectory

Fig. 3: The setup of minimum landing error powered descent guidance problem.
The glide-slope constraint requires the spacecraft to remain in a cone defined by the
minimum slope angle γ .

In this problem there are several state and control constraints. The main state
constraints are the glide-slope constraint on the position vector and an upper bound
constraint on the velocity vector magnitude. The glide-slope constraint is imposed to
ensure that the lander stays at a safe distance from the ground until it reaches its tar-
get. The upper bound on velocity is needed to avoid supersonic velocities for planets
with atmosphere, where the control thrusters can become unreliable. Both of these
constraints are convex and they fit well to the lossless convexification framework.

The control constraints, however, are challenging since they define a non-convex
set of feasible controls. We have three control constraints (see Figure 4): Given any
maneuver time (time-of-flight) t f , for all t ∈ [0, t f ],

• Convex upper bound on thrust, ‖Tc(t)‖ ≤ ρ2.
• Non-convex lower bound on thrust, ‖Tc(t)‖ ≥ ρ1 > 0.

Pointing
Envelope

Intersection

(a) π=2 ≤ θ ≤ π

Pointing
Envelope

Intersection

(b) 0 ≤ θ ≤ π=2

Fig. 4: Planar representation of thrust bounds and thrust pointing limits constraints.



2 Convexification 345

• Thrust pointing constraint n̂T Tc(t)/‖Tc(t)‖ ≥ cosθ where ‖n̂‖ = 1 is a unit
vector and 0 ≤ θ ≤ π is the maximum allowable angle of deviation from the
direction given by n̂, which is convex when θ ≤ π/2 and non-convex when
θ > π/2.

The details of the modeling and the parameters of the numerical simulation can
be found in [5]. Here our focus is to demonstrate the effectiveness of the lossless
convexification by showing some simulation results. Three numerical experiments
were performed for various pointing-constraints: i) unconstrained; ii) 90◦ constraint;
iii) 45◦ constraint. The results are overlaid in Figure 5.

Fig. 5: Simulation results with three different pointing constraints: Unconstrained
(U), θ = 90◦ (90) and θ = 45◦ (45). Thrust pointing and magnitude constraints are
satisfied for the optimal solution, as seen in the first two plots. The last plot is the
position trajectory of each solution.

The pointing angle is relative to local vertical, which aligns the pointing cone n̂
vector along the coordinate frame X axis. The attitude pointing plot indicates that the
solution of the relaxed problem ensures the satisfaction of the pointing constraints
for the original problem. The throttle level plot shows that the thrust bounds are sat-
isfied. These two plots indicate that the solution of the convexified relaxed problem
remains valid for the original problem. The last plot of Figure 5 overlays the posi-
tion trajectories. The 45◦ case overshoots the target along the Y axis to satisfy the
pointing constraint. Interestingly, the 90◦ constrained path takes a more direct route.

2.2 Successive Convexification

Compared with lossless convexification, Successive Convexification (SCvx) is a
recent development, and the main reference for this subject is [34]. SCvx is an
iterative algorithm designed to tackle the non-convexity resulting from nonlinear
dynamics, and the extended versions of SCvx can also handle certain types of non-
convex state constraints [35] and inter-sample constraints [21].

The basic idea is to successively linearize the dynamical equations, and solve a
sequence of convex subproblems, specifically Second Order Cone Programmings
(SOCPs). While similar ideas in both finite dimensional optimization problems
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(e.g., [27, 43]) and optimal control problems (e.g., [39, 47]) have long been tried,
few convergence results were reported. The SCvx algorithm, on the other hand,
presents a systematic procedure. More importantly, through a continuous-time con-
vergence analysis, we guarantee that the SCvx algorithm will converge, and the
solution it converges to will at least recover local optimality for the original prob-
lem. To facilitate convergence, virtual control and trust regions are incorporated
into our algorithm. The former acts like an exact penalty function (see [39, 57]), but
with additional controllability features. The latter is similar to standard trust-region-
type updating rules as in [16], but the distinction lies in that we solve each convex
subproblem to full optimality.

Note that similar ideas based on Sequential Convex Programming (SCP) have
been proposed in, for example, [6, 15, 49] to handle obstacle avoidance problems.
While these methods usually perform well in practice, few general convergence re-
sults are reported. Hence here the convergence result accompanying the SCvx al-
gorithm marks one of the first rigorous attempts on this subject. On the other hand,
SQP type of methods along with a line search (or trust region) framework do have
rigorous convergence results derived under certain conditions (see, e.g., [44]). As
aforementioned, however, these methods usually require more computational effort
each iteration than the SCvx algorithm due to the additional Hessian approximation
steps, and because of the nature of line search (or in the trust region case, the fact
that each subproblem is only approximately solved), the overall rate of convergence
will also be slower than SCvx. Based on these two observations, we consider the
Scvx algorithm to be more suitable for real-time applications.

2.2.1 Theory

Since SCvx focuses on nonlinear dynamics, the original problem we are solving
will be Problem 1, with U and X assumed to be convex or at least already con-
vexified. Also, to eliminate potential non-convexity as a result of the free final time,
we assume t0 = 0 and t f = T are fixed. Note that we only take this measure for
theoretical simplicity, because in practice there are a couple of ways to get around
this issue (see, e.g., [50]). Now, the only source of non-convexity lies in the nonlin-
ear dynamics (1b). Since it is an equality constraint, an obvious way to convexify it
is linearization by using its first order Taylor series approximation. The solution to
the convexified problem, however, won’t necessarily be the same as its non-convex
counterpart. To recover optimality, we need to come up with an algorithm that can
find a solution, which satisfies at least the first order optimality condition of the
original problem. A natural approach would be executing this linearization succes-
sively, i.e. at kth succession, we linearize the dynamics about the control and the
corresponding trajectory computed in the (k−1)th succession. This procedure is re-
peated until convergence, which essentially forms the basic idea behind the SCvx
algorithm.
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Linearization

Assume the (i−1)th succession gives us a solution (xi−1(t),ui−1(t)). Let A(t),B(t),
and C(t) be the partial derivative of f (xi−1(t),ui−1(t), t) with respect to x,u, and t
respectively, and d(t) = x(t)−xi−1(t), and w(t) = u(t)−ui−1(t), then the first order
Taylor expansion about that solution will be

ḋ(t) = A(t)d(t)+B(t)w(t)+C(t)+H.O.T.. (9)

This is a linear system with respect to d(t) and w(t), which are our new states and
control, respectively. The linearization procedure gets us the benefit of convexity,
but it also introduces two new issues, namely artificial infeasibility and approxima-
tion error. We will address them in the following two subsections.

Virtual Control

SCvx method can sometimes generate infeasible problems, even if the original non-
linear problem itself is feasible. That is the artificial infeasibility introduced by the
linearization. In such scenarios, the undesirable infeasibility obstructs the iteration
process and prevents convergence. The most evident example of this arises when the
problem is linearized about an unrealistically short time horizon, i.e. the final time
T is too small. In such a case, one can intuitively see that there is no feasible con-
trol input that can satisfy the prescribed dynamics and constraints. To prevent this
artificial infeasibility, we introduce an additional control input v(t), called virtual
control, to the linear dynamics (9) (without the higher order terms):

ḋ(t) = A(t)d(t)+B(t)w(t)+E(t)v(t)+C(t), (10)

where E(t) can be chosen based on A(t) such that the pair (A(t),E(t)) is controllable.
Then, since v(t) is unconstrained, any state in the feasible region can be reachable
in finite time. This is why this virtual control can eliminate the artificial infeasibility.
For example, on autonomous vehicles the virtual control can be understood as a
synthetic acceleration that acts on the vehicle, which can drive the vehicle virtually
anywhere in the feasible area. Since we want to resort to this virtual control as
needed, it will be heavily penalized via an additional term λγ(Ev) in the cost, where
λ is the penalty weight, and γ(·) is the penalty function, defined by

γ(·) := esssup
t∈[0,T ]

‖ · (t)‖1,

where ‖ ·‖1 is the L1 norm on R
n. For example, ‖x(t)‖1 =∑n

i=1 |x(t)|. Thus we have

γ(Ev) := esssup
t∈[0,T ]

‖E(t)v(t)‖1.

Now the penalized cost after linearization will be defined as

L(d,w) := J(x,u)+λγ(Ev), (11)
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while the penalized cost before linearizing can be formulated in a similar fashion:

P(x,u) := J(x,u)+λγ(ẋ− f ), (12)

where J(x,u) is the original cost functional defined in (1a).

Trust Regions

Another concern is that the SCvx algorithm can potentially render the problem un-
bounded. A simple example will be linearizing the cost y1(x) = 0.5x2 at x = 1 to get
y2(x) = x−0.5. Now if going left is a feasible direction, then the linearized problem
could potentially be unbounded while the nonlinear problem will definitely find its
minimum at x = 0. The reason is: when large deviation is allowed and occurs, the
linear approximation sometimes fails to capture the distinction made by nonlinear-
ity, for instance y1(x) attains its stationary point at x = 0, while y2(x) certainly does
not.

To mitigate this risk, we ensure that the linearized trajectory does not deviate
significantly from the nominal one obtained in the previous succession, via a trust
region on our new control input,

‖w‖∞ ≤ Δ, (13)

and thus our new state will be restricted as well due to the dynamic equations. The
rationale is that we only trust the linear approximation in the trust region. Figure 6
shows a typical convergence process of this trust-region type algorithm in solving
a 2-D problem. The algorithm can start from virtually anywhere, and manages to
converge to a feasible point. Note that the figure also demonstrates virtual control,
as the trajectory deviates from the constraint in the first few successions.

Cost Lines
NL Constraint
Trust Region
Accepted Iteration

10.80.60.40.2

1
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0.4

0.2

0
X1

X
2

0
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-0.2

-0.4

-0.4

-0.6
-0.6

-0.8-1

Fig. 6: Typical convergence process with virtual control and trust regions.
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The SCvx Algorithm

The final problem formulation and the SCvx algorithm can now be presented. Con-
sidering the virtual control and the trust regions, a convex optimal control subprob-
lem is solved at the kth succession:

Problem 4 (Convex Subproblem). Determine w∗ ∈ L∞[0,T ]m, and d∗ ∈W1,∞[0,T ]n,
which minimize L(d,w) in (11), subject to constraints (10), (13), as well as

uk(t)+w(t) ∈U,

xk(t)+d(t) ∈ X .

With this convex subproblem in hand, SCvx algorithm is given by Algorithm 1.

Algorithm 1: Successive Convexification (SCvx)

Input Select initial state x1 and control u1 s.t. x1 ∈ X and u1 ∈U . Initialize trust region
radius with positive Δ1 and lower bound Δl . Select positive penalty weight λ , and
parameters 0 < ρ0 < ρ1 < ρ2 < 1 and α > 1.

Step 1 At each succession k, solve Problem 4 at (xk,uk,Δk) to get an optimal solution
(dk,wk).

Step 2 Compute the actual change in the penalized cost (12):

ΔJ(xk,uk) := ΔJk = J(xk,uk)− J(xk +dk,uk +wk),

and the predicted change by linear approximation:

ΔL(dk,wk) := ΔLk = J(xk,uk)−L(dk,wk).

if ΔLk = 0 then
Stop, and return (xk,uk);

else
Compute the ratio ρk = ΔJk/ΔLk.

end if

Step 3

if ρk < ρ0 then
Reject this step, contract the trust region radius, i.e. Δk ← Δk/α and go back to Step 1;

else
Accept this step, i.e. xk+1 ← xk +dk, uk+1 ← uk +wk, and update Δk+1 by

Δk+1 =

⎧⎪⎨
⎪⎩
Δk/α , if ρk < ρ1;

Δk, if ρ1 ≤ ρk < ρ2;

αΔk, if ρ2 ≤ ρk.

end if
Δk+1 ← max{Δk+1,Δl}, k ← k+1, and go to Step 1.

This algorithm is of trust region type, and follows standard trust region radius
update rules with some modifications. One important distinction lies in the subprob-
lem to be solved at each succession. Since the subproblem (usually QP that may not
be convex) is relatively expensive to solve, conventional trust region algorithms per-
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form a line search along the Cauchy arc to achieve a “sufficient” cost reduction [16].
In the SCvx algorithms, however, a full convex optimization problem is solved to
speed up the overall process. As a result, the number of successions can be sig-
nificantly less by achieving more cost reduction at each succession. Thanks to the
algorithm customization techniques [19, 20], we are able to solve each convex sub-
problem fast enough to outweigh the negative impact of solving to full optimality.

In Step 2, the ratio ρk is used as a metric for the quality of linear approximations.
A desirable scenario is when ΔJk agrees with ΔLk, i.e. ρk is close to 1. Hence
ρk ≥ ρ2 means our linear approximation predicts the cost reduction well, then we
may choose to enlarge the trust region in Step 3, i.e., we put more faith in our
approximation. Otherwise, we may keep the trust region unchanged, or contract its
radius if needed. The most unwanted situation is when ρk is negative, or close to
zero. The current step will be rejected in this case, and one has to contract the trust
region and re-optimize at (xk,uk).

Convergence Analysis

One can find the full details of the convergence analysis in [34], which made use
of exact penalty function, separating hyperplane theorem, generalized derivatives
and asymptotic analysis, etc. For simplicity, here we will only state the final result
without proofs.

Theorem 3. If the SCvx algorithm (Algorithm 1)generates an infinite sequence
{xk}, then {xk} has limit points, and if any limit point x̄ is feasible for Problem 1,
then it is a local optimum of Problem 1.

2.2.2 Application

Throughout this chapter, we have alluded to a translational 3-degree-of-freedom
(DoF) planetary landing problem. When aerodynamic forces are neglected (e.g., for
Mars applications), the vehicle’s equations of motion can be expressed as

ṁ =−αΓ (t),
ṙ(t) = v(t),

v̇(t) =
1

m(t)
Tc(t)+g,

where m, r, and v are the mass, position, and velocity of the vehicle, respectively. We
use Tc to denote the commanded thrust, and Γ to denote the slack control variable
used to upper bound the norm of Tc (as outlined in Problem 3). g denotes the local
gravitational acceleration, which we assume is constant, and α is a positive constant
that relates the commanded thrust magnitude to the rate of mass consumption.

Since the mass depletion rate is a function of the control variable, m becomes a
state variable, and the dynamics are rendered nonlinear in the variables m, r, v, Γ ,
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and Tc. Fortunately, using the variable substitution introduced in [2], we can resolve
this issue by defining the following variables.

z(t)� logm(t) , u(t)� Tc(t)
m(t)

, σ(t)� Γ (t)
m(t)

.

Thus, we are able to express the dynamics in linear form as

ż(t) =−ασ(t),
ṙ(t) = v(t),

v̇(t) = u(t)+g.

The dynamics are now linear, the problem can be solved via lossless convexifica-
tion, and the final mass and thrust profiles can be obtained by applying the variable
substitution backwards to solve for m and Tc.

Now, consider a more complicated problem: modeling the rocket/rover using 6-
DoF equations of motion. The equations of motion are now given by

ṁ(t) =−α‖TB(t)‖2,

ṙI(t) = vI(t),

v̇I(t) =
1

m(t)
C
(
qB←I(t)

)
TB(t)+gI ,

q̇B←I(t) =
1
2
Ω(ωB(t))qB←I(t),

Jω̇B = [l×]TB(t)− [ωB(t)×]JωB(t),

where subscript I and B are used to denote the inertial and body frame, respectively.
We use qB←I to denote a unit quaternion rotating from inertial frame to body frame,
and C

(
qB←I(t)

)
to denote the corresponding direction cosine matrix. ω is the an-

gular velocity, l is the constant position vector of the engine gimbal point, and J
represents the moment of inertia.

Due to the introduction of quaternion kinematics and rigid-body dynamics, we
are represented with a set of tightly coupled nonlinear equations. This problem is
highly non-convex, and thus we can no longer apply the results of lossless convexifi-
cation. Instead, we turn to successive convexification to handle the non-convexities.
In addition to the artificial infeasibility and unboundedness problems discussed
in Section 2.2.1, the successive convexification method (as well as other sequential
optimization methods) often suffers from high-frequency oscillations in the control
solution (e.g., see [32]). To circumvent this, the control variables can be augmented
to the state, and their rate can be controlled instead. This has the effect of decoupling
state and control constraints, resulting in smoother control profiles.

Below we present a landing trajectory in Figure 7, generated by a successive con-
vexification algorithm for a 6-DoF rocket equipped with a single gimbaled engine.
The parameters of this problem were chosen to accentuate the non-minimum phase
behavior that appears when using a 6-DoF model. Note that such behavior is not
observed when a 3-DoF model is used instead. In this example, the solution was
obtained in seven iterations. The discrepancy between the dots and the solid curves
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in the early iterations is due to linearization errors and the use of virtual controls.
For a more detailed treatment, the reader is referred to [51].
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Fig. 7: On the left, the planar 6-DoF trajectory is shown. The solid points indicate
time discretization points, the blue (b) and red (r) lines represent the vehicle body
axis and thrust vector at each instance in time, and the solid green line represents
the path of the vehicle. On the right, the red line (0) represents the trajectory used to
initialize the process, the green (1) and the blue (2) represent the first two iterations,
and the black (C) represents the converged solution (7th iteration). The dots rep-
resent the results of the parameter optimization problem, whereas the solid curves
represent the trajectories propagated using the generated control input.

3 Real-Time Computation

So far, we have shown that convexification is a powerful tool for solving real-world,
constrained optimal control problems. Now, we focus on methods for solving the
resulting convex optimal control problems in real-time using onboard embedded
computers. These methods have direct application to iterative techniques such as
successive convexification.

The first step towards solving constrained optimal control problems in real-time
is to discretize the continuous time system dynamics and constraints, which is typ-
ically accomplished by selecting a finite sequence of points in time and utilizing
either a zero or first order hold control discretization (see [2] for more details on the
discretization). The method used to discretize the continuous time problem should
be chosen with care, as the selection will have a large impact on the real-world
performance of the control system. The discretized optimal control problem is then
converted into the canonical form of optimization problems in (14).

minimize cT x subject to : Ax = b, x ∈K , (14)
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where x ∈ R
n is the solution variable, c ∈ R

n is a linear functional that maps the
solution variable to a cost, A ∈ R

p×n relates solution variables to constraint equa-
tions with b ∈R

p on the right-hand side, and K ⊂R
n is the domain of the solution

variable and is formed by the Cartesian product of convex cones. A straightforward,
but tedious process produces the A matrix along with the b and c vectors, and there
are freely available tools online that perform this task (e.g., CVX and YALMIP).

Once in canonical form, a variety of Interior Point Method solvers can be used
to solve convex optimization problems to global optimality with polynomial time
complexity and convergence guarantees (SDPT3, SeDuMi, ECOS, Bsocp, Gurobi,
CPLEX). In the case of successive convexification, these same solvers are used to
solve the convex sub-problems for each iteration.

While computationally efficient, convex solvers may not always perform at the
level needed to solve optimal control problems onboard in real-time. Moreover,
many applications require solving similar optimization problems over and over
again, only varying some problem parameters (such as initial conditions and final
conditions). Customized solvers for specific problem classes were developed for
these reasons (see [19, 36]). We begin by noting that optimal control problems nat-
urally translate into sparse optimization problems, that is, the A matrix is typically
over 90% sparse (i.e., only 10% of the elements are non-zero). In order to classify
problems according to their sparsity structure, we formally define a problem class.

Definition 2. Given A0 ∈ R
p×n, b0 ∈ R

p, c0 ∈ R
n, and K0 ⊂ R

n, a problem class,
P , is defined as:

P = {A ∈ R
p×n,b ∈ R

p,c ∈ R
n,K ⊂ R

n : str(A)≤ str(A0),str(b)≤ str(b0),

str(c)≤ str(c0),K =K0},

where the ≤ operator denotes element-wise inequality, and str maps any non-zero
element to a 1 and leaves 0 elements undisturbed, thereby forming the sparsity struc-
ture of its input. Thus, (A,b,c,K )∈P if any zero element in (A0,b0.c0,K0) is also
a zero element in (A,b,c,K ). Consequently, a problem class can be interpreted as
an upper bound on the sparsity structure of (A,b,c). The framework for generating
a customized solver for a specific problem class is shown in Figure 8.

Embedded systems typically operate in environments with stringent time require-
ments and limited memory. With this in mind, suppose that a given embedded sys-
tem solves a set of problems P0 ⊆P . Then, the problem class and an upper bound
on its size is known at compile time. Thus, the exact amount of memory that is
necessary to solve P is statically allocated, removing the need for dynamic mem-
ory allocation altogether. This property is highly valued in the development of soft-
ware for safety-critical systems because it eliminates memory leaks and more im-
portantly, reduces the complexity of flight software verification. Furthermore, the
customized solver is free of the logical operations introduced by sparse algorithms.
This is accomplished by keeping track of non-zero element interactions and gener-
ating code that handles sparse operations directly. That is, once the interaction be-
tween two non-zero elements has been determined, one line of C code is generated
to directly and correctly handle the interaction without any logic. This customized
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sparse framework supports IPM algorithms, and customized solvers include an IPM
tailored to the problem class.

A, b, c, and K are
passed to general solver. Solution is obtained.

Non-zero element
interactions recorded.

Explicit code generated.
Code compiled.

Executable is obtained.

Performed offline.

Solve any problem
in P.

Fig. 8: Flow diagram for explicit code generation.

For comparison, the planetary landing, also known as powered descent guidance
problem (see [2]) was solved using a variety of solvers, and their performance is
presented in Figure 9a. ECOS and Bsocp (in-house solver) are among the fastest
of the tested generic solvers, so Figure 9b focuses on the performance of ECOS,
Bsocp, and customized Bsocp solvers. We note that 700 solution variables were
sufficient for planning a divert trajectory onboard a rocket-powered vertical take-off
and landing vehicle during real-world tests in 2012–2013 (see [48] and [20]). For
problems of this size, customized solvers provide at least an order of magnitude
improvement in computation times.
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Fig. 9: Runtime Benchmarks for a broad range of solvers and problem sizes.
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Recently, both convexification methods are also tested in real-world exper-
iments for quadrotor motion planning problems including real-time obstacle
avoidance. Timing statistics from the experiments are reported in [52], and
they again demonstrate the real-time capability of these convexification tech-
nologies. Interested reader can find videos of these experiments in the YouTube
channel [7].

4 Concluding Remarks

To summarize, this chapter gives a general picture of convexification methods for
MPC and how they can be implemented in real-time computation. In Section 2,
we introduce two convexification methods. Namely, the lossless convexification and
the successive convexification. The former addresses a class of non-convex control
constraints, while the latter aims at non-convexities raised by nonlinear dynam-
ics and certain types of non-convex state constraints. They can be used indepen-
dently or in combination, depending on the type of problems one tries to solve.
In Section 3, we present methods for solving convex optimal control problems
in real-time using onboard embedded computers. Moreover, we give the general
idea behind the implementation of customized solvers, where sparsity in the prob-
lem structure is explored. Throughout this chapter, the planetary soft landing prob-
lem is used as an example to demonstrate how convexification works in real-world
settings.

Though there are proposed solutions to nonlinear MPC (e.g. [17, 55]), so far
most MPC methods focus on linear control systems, due to the lack of efficient and
reliable solutions to online nonlinear programming. Therefore, convexification tech-
niques could potentially have major impact on the progress of MPC research. They
not only offer methods or algorithms that can be implemented in real-time, but also
provide theoretical guarantees (i.e. proofs of equivalence or convergence), which are
extremely valuable for aerospace applications. Thus, we may conclude this chapter
by claiming that the convexification technologies, such as what we covered here,
have the clear potential to make MPC research applicable to current control systems,
as well as enabling new applications, especially in the emerging area of autonomous
systems.
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Explicit (Offline) Optimization for MPC

Nikolaos A. Diangelakis, Richard Oberdieck, and Efstratios N. Pistikopoulos

1 Introduction

MPC has become the accepted standard for complex constrained multivariable con-
trol problems in the process industries [15]. Starting from the current state, an open-
loop optimal control problem is solved over a finite horizon. The computation is
repeated at the next time step, considering the new state and over a shifted hori-
zon. This moving horizon policy relies on a discrete-time linear/non-linear dynamic
model, respects all input and output constraints, and optimizes a performance in-
dex. In this chapter, we discuss (i) the reformulation of the linear MPC problem
with quadratic performance index into a (mixed integer) quadratic programming
problem, free of equality constraints, via successive substitution of state and output
variables, over the finite horizon, (ii) the explicit/multi-parametric solution of the
(mixed integer) quadratic programming problem as a function of parameters and
(iii) the theoretical properties of the solution.

1.1 From State-Space Models to Multi-Parametric Programming

As an example, consider the problem of regulating to the origin the discrete-time,
linear, time invariant system:
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{
xk+1 =Axk +Buk

yk =Cxk,
(1)

under the following constraints:

xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax, umin ≤ uk ≤ umax. (2)

The MPC problem corresponding to regulating a discrete-time, linear, time invari-
ant system to its origin is called a linear quadratic regulator and is presented in
Equation (3) for the case of a quadratic performance index.

minimize
u

xT
NPxN +

N−1

∑
k=1

xT
k Qxk +

M−1

∑
k=0

uT
k Ruk

subject to

{
xk+1 = Axk +Buk

yk =Cxk

xmin ≤ xk ≤ xmax, ∀k ∈ [0,N]

ymin ≤ yk ≤ ymax, ∀k ∈ [0,N]

umin ≤ uk ≤ umax, ∀k ∈ [0,M −1]

uk = uM, ∀k ∈ [M+1,N −1]

(3)

where N is the prediction horizon, M ≤ N the control horizon, Q ' 0 the weight
for the states, R ' 0 the weight for the inputs, P the final state weight calculated as
discussed in [15], xmin and xmax the lower and upper bound on xk, respectively, umin

and umax the lower and upper bound on uk, respectively and ymin and ymax the lower
and upper bound on yk, respectively.

Remark 1. It is equally possible to use a linear performance index such as the 1/∞-
norm.

Based on Equation (1) every state vector for which k ≥ 1 can be reformulated as
follows:

xk =Akx0 +
k−1

∑
k∈[1,M], i=0

Ak−i−1Bui+

+
k

∑
k∈[M+1,N], j=M

AN− j−1BuM−1, ∀k ∈ [1,N].

(4)

Equation (4) is linear in x0 and ui, ∀i ∈ [0,M−1]. A simple example of its appli-
cation is given in Table 1 for N = 6, M = 4.
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Table 1: State substitution based on Equation (1)

Prediction horizon: 6, Control horizon: 4

k = 1 x1 = Ax0 +Bu0

k = 2 x2 = A2x0 +ABu0 +Bu1

k = 3 x3 = A3x0 +A2Bu0 +ABu1 +Bu2

k = 4 x4 = A4x0 +A3Bu0 +A2Bu1 +ABu2 +Bu3

k = 5 x5 = A5x0 +A4Bu0 +A3Bu1 +A2Bu2 +(AB+B)u3

k = 6 x6 = A6x0 +A5Bu0 +A4Bu1 +A3Bu2 +
(
A2B+AB+B

)
u3

The states of the system can therefore be expressed as a linear function of the
form of Equation (5).

xk = Arx0 +
M

∑
i=0

Br,iui, ∀i ∈ [0,M −1], (5)

where Ar and Br,i are fixed matrices corresponding to the linear reformulation
based on the original discrete-time, linear, time invariant system. Note that the states
of the system are expressed as a linear function of the initial state values x0 and the
control variables ui, ∀i ∈ [0,M −1].

Equivalently, the outputs of the system can be expressed as a linear function by
substitution (Equation 6):

yk =C
[
Arx0 +

M

∑
i=0

Br,iui
]
, ∀i ∈ [0,M −1]. (6)

By substituting Equations (5) and (6) into the original MPC formulation of Equa-
tion (3) we get linear inequality constraints based on the upper and lower bounds
and three quadratic terms corresponding to (i) the quadratic term of the control vari-
ables, (ii) the bilinear term between the control variables and the initial states, and
(iii) the quadratic term of the initial states. In order for this to be more compre-
hensive, we consider a simple example based on Equations (3), (4), and (6) for a
prediction horizon of 2 and a control horizon of 1.

After rearranging the terms, the resulting quadratic programming problem is pre-
sented in Equation (7):
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minimize
u0

uT
0

[
[AB+B]T P [AB+B]+BT QB+R

]
︸ ︷︷ ︸

H

u0+

+uT
0

[
[AB+B]T

[
P+PT ]AA+BT [

Q+QT ]A
]

︸ ︷︷ ︸
Z

x0+

+ xT
0

[
[AA]T PAA+AT QA

]
︸ ︷︷ ︸

M̂

x0

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
−B

AB+B
−AB−B

CB
−CB

I
−I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

u0 ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xmax

−xmin

xmax

−xmin

ymax

−ymin

umax

−umin

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A
A

−AA
AA
−CA
CA
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
S

x0

⎡
⎢⎢⎣

I
−I
C
−C

⎤
⎥⎥⎦

︸ ︷︷ ︸
CRA

x0 ≤

⎡
⎢⎢⎣

xmax

−xmin

ymax

−ymin

⎤
⎥⎥⎦

︸ ︷︷ ︸
CRb

(7)

where H is the quadratic term for the control variables, Z the bilinear term be-
tween the control variables and initial states, M̂ the quadratic term for the initial
states, I the identity matrix and 0 a zero matrix, all of appropriate dimensions. Note
that the term xT

0 M̂x0 does not affect the outcome of the optimization problem as it is
a positive number that cannot be affected via the optimization procedure, therefore
it will hereon be omitted.

Remark 2. In the cases where the performance index of the MPC problem (Equa-
tion 3) is linear via a 1/∞-norm formulation, it can be equivalently shown that:

• The objective function of the optimization problem remains linear. The two
terms that result from the reformulation correspond to (i) the linear term of the
control variables and (ii) the linear term of the initial states.

• The reformulation of the constraints of the problem remains the same. A set of
constraints may be added to preserve the properties of the infinite norm.

• The corresponding optimization problem becomes a linear programming prob-
lem under linear constraints.

Hereon for simplicity, the real control variables will be presented in the vector
form u = [uT

0 ,u
T
1 , . . . ,u

T
M−1]

T and x will denote the state values at T = 0. For com-
pletion, a linear term cT u will be taken into account in the objective function (i.e.,
Equation 8)
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minimize
u

uT Hu+uT Zx+ cT u

subject to Gu ≤W +Sx

CRAx ≤CRb.

(8)

Problem 8 corresponds to a convex [39] multi-parametric quadratic programming
(mp-QP) problem where the parameters are the initial states x and the control vari-
ables u are the optimization variables.

1.2 When Discrete Elements Occur

In many applications, there are situations where the state-space system in Equa-
tion (1) is not sufficient to describe the dynamics of the system to a sufficient degree
of accuracy. Reasons for this may be the presence of discrete actuators or states, de-
cision variables or nonlinearities in the system response. One way to deal with these
challenges is the introduction of binary variables, i.e. variables which only adhere
to the values 0 and 1. Based on the introduction of these variables, it is possible to
(i) model any bounded integer variable, (ii) model switches and binary decisions as
well as (iii) partition a nonlinear system into smaller regions, where linearized ver-
sions of the system response can be combined together (piecewise linearizations).

Reviewing the literature and advancements of modelling with binary variables
goes beyond the scope of this chapter. For further reference, the interested reader
is directed to the following references which provide some key results in this area:
[13, 35, 61].

One of the key advantages of using binary variables to approximate nonlinearities
is thereby that the linear nature of the constraints can be preserved. Thus, the result-
ing MPC problems are mixed-integer linear or quadratic programming (MILP and
MIQP, respectively) problems, depending on the performance index chosen. Thus,
consequently to the continuous case, if the dependence on the initial state is con-
sidered explicitly, then this results in a multi-parametric MILP or MIQP (mp-MILP
and mp-MIQP, respectively).

2 Multi-Parametric Linear and Quadratic Programming:
An Overview

Consider the following mp-QP problem:

z(x) = minimize
u

(Hu+Zx+ c)T u

subject to Gu ≤W +Sx

u ∈ R
n

x ∈ X := {x ∈ R
q |CRAx ≤CRb}

(9)

with H ∈R
n×n ( 0, Z ∈R

n×q, c ∈R
n, G ∈R

m×n, W ∈R
m, S ∈R

m×q, CRA ∈R
r×q,

CRb ∈ R
r and X is compact.
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Remark 3. The properties discussed below are also valid for mp-LP problems of the
form:

z(x) = minimize
u

cT u

subject to Gu ≤W +Sx

u ∈ R
n

x ∈ X := {x ∈ R
q |CRAx ≤CRb}

(10)

Note however that due to the positive semi-definite nature of problem (10),1 this
might lead to dual degeneracy, as discussed in Section 2.2.

Remark 4. In order to facilitate readability, throughout this chapter equality con-
straints will be omitted in the problem formulations of multi-parametric program-
ming problems as they can be understood as inequality constraints which have to be
active in the entire parameter space (i.e., they are always part of the active set).

As sets defined by halfspaces are closely related to multi-parametric programming,
we define the notion of a polytope as follows:

Definition 1. The set P is called an n-dimensional polytope if and only if it
satisfies:

P :=
{

x ∈ R
n |aT

i x ≤ bi, i = 1, . . . ,m
}
, (11)

where m is finite.

2.1 Theoretical Properties

The key question when considering problem (9) is how to obtain the parametric
solution u(x) and λ (x), where λ denote the Lagrangian multipliers.2 In the open
literature, two ways have been presented:

Post-optimal sensitivity analysis: Consider problem (9), let f (u,x) and gi(u,x) ≤
0 denote the objective function and the i-th constraint, respectively and let x
be fixed to x0, such that the inequalities CRAx0 ≤ CRb are satisfied. Then the
resulting quadratic programming (QP) problem can be solved using the Karush-
Kuhn-Tucker (KKT) conditions, which are given by:

1 Problem (10) can be viewed as a special case of problem (9) with Q = 0n×n and H = 0n×q, which
is inherently positive semi-definite.
2 For an introduction into the concept of Lagrangian multipliers and duality in general, the reader
is referred to the excellent textbook by C. A. Floudas [28].
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∇uL = ∇u f (u,x0)+
m

∑
i=1
λi∇ugi (u,x0) = 0 (12a)

gi (u,x0)≤ 0,λi ≥ 0,∀i = 1, . . . ,m (12b)

λigi (u,x0) = 0,∀i = 1, . . . ,m, (12c)

where the optimal solution is given by the optimizer u0 and the Lagragian mul-
tipliers λ0 = [λ1,λ2, . . . ,λm]

T . This consideration leads to the main theorem on
post-optimal sensitivity analysis:

Theorem 1 (Basic Sensitivity Theorem [27]). Let x0 be a vector of parame-
ter values and (u0,λ0) the solution derived from the KKT conditions in Equa-
tion (12), where λ0 is non-negative and u0 is feasible. Also assume that: (i) strict
complementary slackness (SCS) holds; (ii) the binding constraint gradients are
linearly independent (LICQ: Linear Independence Constraint Qualification);
and (iii) the second-order sufficiency conditions (SOSC) hold [11, 28, 45, 46].
Then, in the neighborhood of x0, there exists a unique, once differentiable func-
tion [u(x) ,λ (x)] satisfying Equation (12) with [u(x0) ,λ (x0)] = (u0,λ0), where
u(x) is a unique isolated minimizer for problem (9) and

(
du(x0)

dx
,

dλ (x0)

dx

)
=−

(
M−1

0

)
N0, (13)

where

M0 =

⎛
⎜⎜⎜⎝

∇2
uuL ∇ug1 · · · ∇ugm

−λ1∇T
u g1 −g1

...
. . .

−λm∇T
u gm −gm

⎞
⎟⎟⎟⎠ (14a)

N0 =
(
∇2

x,uL ,−λ1∇T
x g1, . . . ,−λm∇T

x gm
)T

(14b)

L = f (u,x)+
m

∑
i=1
λigi (u,x). (14c)

As a result of Theorem 1 the parametric solutions u(x) and λ (x) are affine func-
tions of x around x0.

Parametric solution of the KKT conditions: Consider problem (9) and Equa-
tion (12) without fixing x to x0. Additionally, let k be a candidate active set,
then the corresponding KKT conditions are given as3:

∇uL (u,λ ,x) = ∇u

(
(Hu+Zx+ c)T u

)
+∇u

(
∑
i∈k

λi (Giu−Wi −Six)

)

= Hu+Zx+ c+GT
k λk = 0 (15a)

3 Assuming no degeneracy, in the case of mp-LP problems, the cardinality of the active set k is
card(k) = n and thus the parametric solution is directly given as u(θ) = G−1

k (Wk +Skx).
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Gku−Wk −Skx = 0. (15b)

Thus, Equation (15a) is reformulated such that

u =−H−1 (Zx+ c+GT
k λk

)
. (16)

Note that H is invertible since it is positive definite. The substitution of Equa-
tion (16) into Equation (15b) results in:

−GkH−1 (Zx+ c+GT
k λk

)
−Wk −Skx = 0

⇒ λk (x) =−
(
GkH−1GT

k

)−1 (
Wk +Skx+GkH−1 (Zx+ c)

)
, (17)

which can be substituted into Equation (16) to obtain the full parametric solu-
tion.

Once the parametric solution has been obtained, the set over which it is valid is
defined by feasibility and optimality requirements:

Gu(x)≤W +Sx (Feasibility of u(x)) (18a)

λ (x)≥ 0 (Optimality of u(x)) (18b)

CRAx ≤CRb (Feasibility of x) (18c)

For mp-LP and mp-QP problems, Equation (18) denotes a set of linear inequalities,
and thus the critical region where a parametric solution is optimal is a polytope.
Since this analysis is valid for any feasible point x0, the main properties of mp-LP
and mp-QP solutions are given as follows:

Definition 2. A function u(x) : X →R
n, where X ∈R

q is a polytope, is called piece-
wise affine if it is possible to partition X into non-overlapping polytopes, called
critical regions, CRi and

u(x) = Kix+ ri, ∀x ∈CRi. (19)

Remark 5. The definition of piecewise quadratic is analogous.

Theorem 2 (Properties of mp-QP solution [15, 24]). Consider the mp-QP prob-
lem (9). Then the set of feasible parameters Xf ⊆ X is polytopic, the optimizer
u(x) : Xf �→ R

n is continuous and piecewise affine, and the optimal objective func-
tion z(x) : Xf �→ R is continuous, and piecewise quadratic.

Remark 6. The case of mp-LP problems is more complex due to the positive semi-
definiteness of the objective function. This may lead to issues with degeneracies
(see Section 2.2) which require the use of special algorithms for their consideration.
However, note that Theorem 2 still holds and an optimal objective function z(x) :
Xf �→ R can be found which is continuous, convex, and piecewise affine [31].

Remark 7 (Active set representation). Each critical region in an mp-LP or mp-QP
problem is uniquely defined by the optimal active set associated with it, and the
solution of problem (9) can be represented as the set of all optimal active sets.
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2.1.1 Literature Review

Parametric4 programming was first considered in 1952: for the linear case, Orchard-
Hays considered in the unpublished M.S. thesis the case of switching the optimal
basis as a function of a varying parameter [30], while Markowitz considered the
quadratic case conceptually in his famous “Portfolio selection” paper [48]. Since
then, many researchers have discovered new properties of parametric and multi-
parametric programming problems: in 1972, Gal and Nedoma showed that the so-
lution to an mp-LP problem is continuous, its optimal objective function is convex
and the optimal active sets form a connected-graph [32]. In 2002 Dua et al. proved
that the solution to an mp-QP problem is continuous and its optimal objective func-
tion is conditionally convex5 [24], while Tøndel et al. showed a year later that under
certain conditions the Lagrange multipliers are continuous and it is possible to in-
fer the optimal active sets of adjacent critical regions [73]. Lastly, in 2017 it was
shown that the optimal active set of an mp-QP problem is also given by a connected
graph6 [55].

2.2 Degeneracy

One of the most important issues encountered in linear and quadratic programming
is degeneracy. However, since the solution to a strictly convex QP is guaranteed
to be unique, some types of degeneracy do not occur in QP and consequentially
in mp-QP problems. Thus, for completion consider a standard mp-LP problem,
where degeneracy generally refers to the situation where the active set for a specific
LP problem (e.g., problem (10) with x = 0) cannot be identified uniquely.7 Com-
monly, the two types of degeneracy encountered are primal and dual degeneracy (see
Figure 1):

Primal degeneracy: In this case, the vertex of the optimal solution of the LP is
overdefined, i.e. there exist multiple sets k1 �= k2 �= . . . �= ktot such that:

uk1 = uk2 = . . .= uktot , (20)

where uk = G−1
k Wk.

4 In general, the term “parametric” refers to the case where a single parameter is considered, while
“multi-parametric” suggests the presence of multiple parameters.
5 It is convex, if the following z-transformation is applied u = z− 1

2 H−1Zx, based on the nomen-
clature of problem (9).
6 In an excellent technical note from 2002, Baotić actually already commented on the connected
graph nature of the problem, however without providing a formal proof or further discussion on
the topic [7].
7 This does not consider problems arising from scaling, round-off computational errors or the
presence of identical constraints in the problem formulation.
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By inspection of Figure 1a, it is clear that primal degeneracy is caused by the
presence of constraints which only coincide with the feasible space, but do not
intersect it. Thus, if any of these constraints would be chosen to be part of
the active set of the corresponding parametric solution, this results in a lower-
dimensional critical region,8 and only one active set k exists for which a full-
dimensional critical region results, and it is constituted by those constraints
which intersect with the feasible space.

Remark 8. Constraints which coincide but do not intersect with the feasible
space are also referred to as weakly redundant constraints.

Dual degeneracy: If there exists more than one point u having the same opti-
mal objective function value z, then the optimal solution is not unique. Thus,
there exist multiple sets k1 �= k2 �= . . . �= ktot with uk1 �= uk2 �= . . . �= uktot

such that:
zk1 = zk2 = . . .= zktot , (21)

where zk = cT uk.
In general, the effect of primal degeneracy within the solution procedure of
mp-LP problems is manageable, since it can be detected by substituting uk

into the constraints and if necessary solving one LP problem for each con-
straint. However, dual degeneracy is more challenging as the different active
sets might result in full-dimensional, but potentially overlapping, critical re-
gions. In particular since the optimal solutions uk differ, the presence of dual
degeneracy might eliminate the continuous nature of the optimizer described in
Theorem 2. However, three approaches have been proposed to generate continu-
ous optimizers as well as non-overlapping critical regions [44, 56]. The most
promising one is thereby the application of lexicographic perturbation tech-
niques, which is based on the idea that the problem of dual-degeneracy only
arises because of the specific numerical structure of the objective function and
the constraints [44]. In order to overcome the degeneracy, the right-hand side
of the constraints and the objective function are symbolically perturbed in order
to obtain a single, continuous optimizer for the solution of the mp-LP prob-
lem. Note that the problem is not actually perturbed, but only the result of a
proposed perturbation is analyzed and enables the formulation of a continuous
optimizer.

2.2.1 Literature Review

Degeneracy is a crucial topic for mp-LP and mp-QP problems, as they result in the
problem to be not well-behaved anymore, which may lead to overlapping regions,

8 Consider Figure 1a: if the constraint which only coincides at the single point with the feasible
space is chosen as part of the active set, the corresponding parametric solution will only be valid
in that point.
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u1 u1

u2 u2

(a) (b)

Fig. 1: Primal and dual degeneracy in linear programming. In (a), primal degeneracy
occurs since there are three constraints which are active at the solution, while in (b)
dual degeneracy occurs since there is more than one point (u1,u2) which features
the optimal objective function value.

unexplored regions, and failures of the solution algorithms. Thus, it has been dis-
cussed by several researchers in depth: in 1972, Gal and Nedoma showed that for
mp-LP problems, dual degeneracy leads to a disconnected graph and more than one
graph needs to be obtained from the algorithm [32].9 Other theoretical discussions
by Rockafellar and Klatte and co-workers considered the conditions under which
a continuous optimizer would be obtained, including minimum norm selection and
Steiner point selection [62, 63]. However, despite these theoretical developments
dual degeneracy was not taken into account in the first mp-LP algorithms [14, 17].
These were only considered later, when Spjøtvold et al. suggested to reformulate
mp-LP problems locally into mp-QP problems to obtain a non-overlapping and com-
plete solution. [66]. However, the most comprehensive and important treatment of
degeneracy was published in 2007, when Jones et al. discussed the use of lexico-
graphic perturbation, which enables the direct solution of the mp-LP problem in
the face of dual degeneracy by observing the effect of a small perturbation on the
problem [44].

2.3 Solution Algorithms for mp-LP and mp-QP Problems

Based on Theorem 2 and Remark 7, it is possible to consider the solution to prob-
lem (9) either as a set of non-overlapping polytopes which cover the feasible param-
eter space Xf or as a set of optimal active sets, which generate the critical regions
based on the parametric solution u(x) ,λ (x). This has given rise to three distinct
types of solution approaches: a geometrical approach, a combinatorial approach,
and a connected-graph approach for mp-LP problems.

9 A similar approach was presented in 2006 by Olaru and Dumur [56].
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Remark 9. Other approaches for the solution of problem (9) involve vertex enumer-
ation [51], graphical derivatives [59], or the reformulation as a multi-parametric
linear complementarity problem [20, 42, 47], which can be solved in a geometrical
[37] or combinatorial [38] fashion.

The geometrical approach: Possibly the most intuitive approach to solve mp-QP
problems of type (9) is the geometrical approach. It is based on the geometrical
consideration and exploration of the parameter space X . The key idea is to fix a
point x0 ∈ X , solve the resulting QP, and obtain the parametric expressions u(x)
and λ (x) alongside the corresponding critical region CR. Then, a new, feasible
point x1 /∈CR is fixed and the same procedure is repeated until the entire param-
eter space has been explored. The different contributions differ in the way the
parameter space is explored: in [15, 24], the constraints of the critical region are
reversed, yielding a set of new polytopes which are considered separately. As
this introduces a large number of artificial cuts [73], the step-sized approach has
gained importance, as it calculates a point on the facet of each critical region
and steps away from it orthogonally (see Figure 2) [7, 12].
However the geometrical approach presented in [7, 12] is only guaranteed to
provide the full parametric map if the so-called facet-to-facet property is ful-
filled [68]:

Definition 3 (Facet-to-facet property). Let CR1 and CR2 be two full-dimensional
disjoint critical regions. Then the facet-to-facet property is said to hold if
F =CR1 ∩CR2 is a facet of both CR1 and CR2.

Additionally, researchers have proposed techniques to infer the active set of the
adjacent critical region:

Theorem 3 (Active set of adjacent region [73]). Consider the active set of a full-
dimensional critical region CR0 in minimal representation, k = {i1, i2, . . . , ik}.
Additionally, let CRi be a full-dimensional neighboring critical region to CR0

and assume that the linear independent constraint qualification holds on their
common facet F = CR0 ∩H, where H is the separating hyperplane. Moreover,
assume that there are no constraints which are weakly active at the optimizer
u(x) for all x ∈CR0. Then:

Type I: If H is given by Gik+1u(x) = Wik+1 + Sik+1x, then the optimal active set
in CRi is {i1, . . . , ik, ik+1}.

Type II: If H is given by λik (x) = 0, then the optimal active set in CRi is
{i1, . . . , ik−1}.

Consequently, the following corollary is stated:

Corollary 1 (Facet-to-facet conditionality [68]). The facet-to-facet property
holds between CR0 and CRi, if the conditions of Theorem 3 are fulfilled.

Remark 10. In mp-LP problems, it can be shown that the facet-to-facet property
is inherently violated [55]. Therefore, it is tendentially not advisable to use an
algorithm based on the facet-to-facet property for mp-LP problems.
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x0

X

(a) (b) (c)

X

x0

X

x000x0
x0

x0

Fig. 2: A graphical representation of the geometrical solution procedure of exploring
the parameter space based on the step-size approach. Starting from an initial point
x0 ∈ X , in (a) the first critical region CR0 is calculated (shown with dashed lines).
In (b), a facet of CR0 is identified and a step orthogonal to that facet is taken to
identify a new point x0 /∈ CR0, while in (c) the new critical region associated with
x0 is identified, and the remaining facet from CR0 is identified combined with the
orthogonal step from it to identify a new point.

The combinatorial approach: As stated in Remark 7, every critical region is
uniquely defined by the corresponding optimal active set. Thus, a combina-
torial approach has been suggested, which considers the fact that the possible
number of active sets is finite, and thus can be exhaustively enumerated. In
order to make this approach computationally tractable, the following pruning
criterion is stated:

Lemma 1 (Pruning of active sets [34]). Let k be an infeasible candidate active
set, i.e. ⎧⎨

⎩(u,x)

∣∣∣∣∣∣
Gku =Wk +Skx
G ju ≤Wj +S jx, ∀ j /∈ k

x ∈ X

⎫⎬
⎭= /0. (22)

Then any set k′ ⊃ k is also infeasible and may be pruned.10

Thus, the following branch-and-bound approach has been presented [34] (see
Figure 3):

Step 1: Generate a tree consisting of all possible active sets.
Step 2: Select the candidate active set with the lowest cardinality of the active

set and check for feasibility. If it is infeasible, prune that node and all its
child nodes.

Step 3: Obtain the parametric solution of the selected node accordingly and
check whether the resulting region is non-empty.

Step 4: If there are nodes to explore, go to Step 2. Otherwise terminate.

This approach has been shown to be particularly efficient when symmetry is
present [25, 26], and has been extended to include Theorem 3 to only consider
active sets with a matching cardinality [2, 3].

10 In other words: if k is infeasible, so is its powerset.
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...

...

...

...

Pruned

infeasible

Fig. 3: A graphical representation of the combinatorial approach for the solution
of mp-QP problems. All candidate active sets are exhaustively enumerated based
on their cardinality. The computational tractability arises from the ability to discard
active sets if infeasibility is detected for a candidate active set which is a subset of
the currently considered candidate.

The connected graph approach [32, 55]: Since the parametric solution of a critical
region can be obtained solely based on the active set k (see Equation (16)),
the combinatorial approach is a simple and robust solution approach to prob-
lem (9), as it does not feature the limitations of the geometrical approach such
as the necessity to consider facet-to-facet properties and step-size determination.
However, even when considering the pruning criteria stated in Lemma 1, only a
small percentage of the considered active sets result in a full-dimensional criti-
cal region. Thus, the key to a more efficient algorithm is to decrease the number
of candidate active sets. In order to achieve this, the results on connected graphs
from mp-LP problems [32] are extended to the mp-QP case:

Definition 4 (mp-QP Graph). Let each optimal active set k of an mp-QP prob-
lem be a node in S . Then the nodes k1 and k2 are connected if (a) there exists
x∗ ∈ Xf such that k1 and k2 are both optimal active sets and (b) the conditions
of Theorem (3) are fulfilled on the facet or it is possible to pass from k1 to k2 by
one step of the dual simplex algorithm. The resulting graph G is fully defined
by the nodes S as well as all connections Γ , i.e. G = (S ,Γ )

Corollary 2 (Connected graph for the mp-QP solution). Consider the solution
to an mp-QP problem and let x1, x2 ∈ Xf be two arbitrary feasible parameters
and k1 ∈ S be given such that x1 ∈ CR1. Then there exists a path

{
k1, . . . ,k j

}
in the mp-QP graph G = (S ,Γ ) such that x2 ∈CR j.
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3 Multi-Parametric Mixed-Integer Linear and Quadratic
Programming: An Overview

Consider the following multi-parametric mixed-integer quadratic programming (mp-
MIQP) problem

z(x) = minimize
u,y

(Hω+Zx+ c)T ω

subject to Gu+Ey ≤W +Sx

u ∈ R
n, y ∈ {0,1}p, ω =

[
uT yT ]T

x ∈ X := {x ∈ R
q |CRAx ≤CRb} ,

(23)

where H ∈R
(n+p)×(n+p) ( 0, Z ∈R

(n+p)×q, c ∈R
(n+p), G ∈R

m×n, E ∈R
m×p, W ∈

R
m, S ∈ R

m×q and X is compact.
The properties discussed below are also valid for multi-parametric mixed-integer

linear programming (mp-MILP) problems of the form:

z(x) = minimize
u,y

cTω

subject to Gu+Ey ≤W +Sx

u ∈ R
n, y ∈ {0,1}p, ω =

[
uT yT ]T

x ∈ X := {x ∈ R
q |CRAx ≤CRb} ,

(24)

3.1 Theoretical Properties

The properties of the solution of mp-MIQP problems of type (23) are given by the
following theorem, corollary, and definitions.

Theorem 4 (Properties of mp-MIQP solution [18]). Consider the optimal solution
of problem (23) with H ( 0. Then, there exists a solution in the form

ui (x) = Kix+ ri if x ∈CRi, (25)

where CRi, i = 1, . . . ,M is a partition of the set Xf of feasible parameters x, and the
closure of the sets CRi has the following form

CRi =
{

x ∈ X |xT Ĝi, jx+ ĥT
i, jx ≤ ŵi, j, j = 1, . . . , ti

}
, (26)

where ti is the number of constraints that describe CRi.

Corollary 3 (Quadratic boundaries [18]). Quadratic boundaries arise from the com-
parison of quadratic objective functions associated with the solution of mp-QP prob-
lems for different feasible combinations of binary variables. This means that if the
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term Ĝi, j in Equation (26) is non-zero, it adheres to the values given by the differ-
ence of the quadratic optimal objective functions in the critical regions featuring this
quadratic boundary.

The structural information known for mp-MIQP problems from Theorem 4 and
Corollary 3 is clearly much more restricted than the information available for mp-
QP problems from Theorems 2 and 3, Corollary 1, and Lemma 7. This is due to
the fact that the presence of binary variables creates a discontinuous feasible space,
which despite the convexity of H in problem (23) restricts the knowledge which can
readily be inferred.

Definition 5 (Envelope of solutions [24]). In order to avoid the nonconvex critical
regions described by Corollary 3, an envelope of solutions is created where more
than one solution is associated with a critical region. The envelope is guaranteed
to contain the optimal solution, and a point-wise comparison procedure among the
envelope of solutions is performed online.

Definition 6 (The exact solution). The exact solution of an mp-MIQP problem de-
notes the explicit calculation of Equations (25) and (26) for every critical region,
and consequently no envelopes of solutions are present.

3.1.1 On the Notion of Exactness

The notion of the exact solution for mp-MIQP problems as the explicit calculation of
Equations (25) and (26) for every critical region does not imply that solutions which
feature envelopes of solutions are incorrect or approximate. As stated in Definition 5,
such implicit solutions are guaranteed to describe the optimal solution. Thus, the
term exactness does not indicate any difference in the evaluation of the numerical
value of the solution, but a difference in the solution structure itself. The merit of
an exact solution, and by extension of the algorithm presented in this chapter, is
the explicit availability of the critical region description in its potentially nonconvex
form given in Equation (26). This enables the assignment of one solution to each
region, and consequently an assessment of the impact and meaning of each region.

This is relevant as the solution to a multi-parametric programming problem not
only yields the optimal solution for any feasible parameter realization considered,
but also information regarding the structure of the underlying optimization problem.
For example, the consideration of when a certain binary variable is 0 or 1 may imply
when a certain decision such as a valve position is decided. This enables insights and
post-optimal analysis akin to sensitivity analysis. However, such an analysis is only
possible if the exact solution of the problem is obtained, and not a solution featuring
envelopes of solutions, as then the critical region partitioning in itself does not have
any meaning.
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3.2 Solution Algorithms

3.2.1 Literature Overview

Several authors have proposed strategies for the solution of mp-MILP and mp-
MIQP problems. First, Acevedo and Pistikopoulos presented a branch-and-bound
approach, where at the root node the binary variables are relaxed and the result-
ing mp-QP problem is solved [1]. For each subsequent node, a binary variable is
fixed to a specific value and the resulting mp-QP problem is solved, followed by a
suitable comparison procedure with a previously obtained upper bound in order to

Fig. 4: A graphical representation of the branch-and-bound algorithm. The algo-
rithm starts from the root node, where all binary variables are relaxed. Subsequently,
at each node a binary variable is fixed, the resulting mp-QP problem is solved and
the solution is compared to a previously established upper bound to produce an up-
dated, tighter upper bound and to prune any part of the parameter space which is
suboptimal.
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produce a tighter upper bound and to prune any part of the parameter space which
is guaranteed to be suboptimal. This approach was extended to mp-MIQP problems
by Axehill et al. and Oberdieck et al. to consider the non-convexity of the critical
regions induced by the quadratic nature of the objective function [6, 53] (Figure 4).

Later on, Dua et al. described a decomposition approach, where a candidate in-
teger variable combination is found by solving a mixed-integer nonlinear program-
ming (MINLP) problem11 [23, 24]. After fixing this candidate solution, the resulting
mp-QP problem is solved and the solution is compared to a previously obtained up-
per bound, which results in a new, tighter upper bound, and a new iteration begins.
The introduction of suitable integer and parametric cuts to the MINLP ensures that
previously considered integer combinations as well as solutions with a worse ob-
jective function value are excluded. A schematic representation of this approach is
given in Figure 5.

Check for new
combination of
binary variables

Fix y* and
solve mp-QP

Upper Bound

Compare and
update the

Pick new
critical region

Fig. 5: A graphical representation of the decomposition algorithm. The algorithm
starts with an upper bound, from where a critical region is selected. After obtaining
a new candidate integer solution, the solution of the corresponding mp-QP problem
yields a new solution for the given critical region. This solution is then compared
with the upper bound and an updated, tighter upper bound results.

Remark 11. In addition, Borrelli et al. presented an exhaustive enumeration proce-
dure of all possible combinations of binary variables [17].

As the decomposition algorithm is used in the remaining part of the chapter, it is
now discussed in more detail.

11 In the case of mp-MILP problems, the MINLP becomes a mixed-integer linear programming
problem.
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3.3 The Decomposition Algorithm

The decomposition algorithm consists of three parts: calculation of a new candidate
integer solution via the solution of a MINLP problem, solving the mp-QP problem
resulting from fixing the candidate integer solution in the original mp-MIQP prob-
lem, and comparing the obtained solution to a previously obtained upper bound.
Note that the initial upper bound is set to ∞.

3.3.1 Calculation of a New Candidate Integer Solution

A candidate integer solution is found by solving the following global optimization
problem:

zglobal = minimize
u,y,x

(Hω+Zx+ c)T ω

subject to Gu+Ey ≤W +Sx

(Hω+Zx+ c)T ω− ẑi (x)≤ 0

∑
j∈Ji

y j − ∑
j∈Ti

y j ≤ card(Ji)−1

u ∈ R
n, y ∈ {0,1}p, ω =

[
uT yT ]T

x ∈CRi,

(27)

where i = 1, . . . ,v and v is the number of critical regions that constitute the upper
bound, ẑi (x) is the objective function value of the upper bound in the critical re-
gion CRi considered, and Ji and Ti are the sets containing the indices of the integer
variables ŷi associated with the upper bound ẑi (x) that attain the value 0 and 1, re-
spectively, i.e.

Ji =
{

j|ŷi
j = 1

}
(28a)

Ti =
{

j|ŷi
j = 0

}
. (28b)

Remark 12. Without loss of generality, it is assumed that CRi only features one up-
per bound ẑi (x) in problem (27).

3.3.2 mp-QP Solution

Once a candidate integer solution has been found, it is fixed in the mp-MIQP prob-
lem, thus resulting in an mp-QP problem. This problem can be solved with any
mp-QP solver described before.
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3.3.3 Comparison Procedure

Within the algorithm, the solution obtained from the mp-QP problem is compared
to a previously obtained current best upper bound ẑ(x) to form a new, tighter upper
bound. This can be expressed as:

z(x) = min {ẑ(x) ,z∗ (x)} , (29)

where z∗ (x) denotes the piecewise quadratic, optimal objective function obtained by
solving the mp-QP problem resulting by fixing the candidate solution of the binary
variables obtained from the solution of problem (27). The solution of Equation (29)
requires in turn the comparison of the corresponding objective functions in each
critical region CRi, i.e.

Δz(x) = ẑ(x)− z∗i (x) = 0, (30)

where z∗i (x) denotes the objective function within the i-th critical region of the solu-
tion of the mp-QP problem. Due to the quadratic nature of the objective functions,
Δz(x) might be nonconvex. Within the open literature, two strategies for the solution
of problem (29) have been presented,

No objective function comparison: This approach, pioneered in [22] and first ap-
plied to mp-MIQP problems in [24], does not consider Equation (30) and stores
both solutions, ẑ(x) and z∗i (x), in CRi, thus creating an envelope of solutions.

Objective function comparison over the entire CR: This approach was first pre-
sented for the solution of multi-parametric dynamic programming (mp-DP)
problems [18], but has been applied to mp-MIQP problems in [6]. In this
approach, Equation (30) is solved over the entire critical region CRi, i.e. the
following (possibly nonconvex) quadratic programming problem is solved:

δmax = max
x∈CRi

Δz(x) (31a)

δmin = min
x∈CRi

Δz(x) . (31b)

Note that solving Equation (31) is not straightforward since it may be noncon-
vex. The results of solving Equation (31) allow for the following conclusions:

δmax ≤ 0 → z1 (x)≥ z2 (x) ∀x ∈CRi (32a)

δmin ≥ 0 → z1 (x)≤ z2 (x) ∀x ∈CRi. (32b)

If δmin < 0 and δmax > 0, then both solutions are kept and an envelope of solu-
tions is created.

Remark 13. Without loss of generality it was assumed in Equation (30) that
only one objective function is associated with each critical region, and that no
envelope of solutions is present (see Definition 5).
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4 Discussion and Concluding Remarks

In this chapter, we discussed the reformulation of the MPC problem in Equation (3)
into the equivalent form of the multi-parametric programming problem in Equa-
tion (8) by treating the initial state vector as parameters and solving the control
variables as a function thereof. In addition, alternative formulations of the control
problems based on the nature of the performance index (quadratic or linear) and
the existence of binary/integer decision variables have been presented. Lastly, we
presented the theoretical properties and solution algorithms for mp-LP, mp-QP, mp-
MILP, and mp-MIQP problems.

In the following, we qualitatively discuss the advantages and disadvantages of
using multi-parametric programming for the application of MPC.

4.1 Size of Multi-Parametric Programming Problem and Offline
Computational Effort

Since its conception, advances in computational hardware and algorithmic develop-
ments have significantly increased the size of problems that can be tackled. How-
ever, although multi-parametric programming has been proven to solve problems
with parametric vectors with more than 40 elements [58], there is no general guide-
line as to what problem size can generally be solved for, as this is highly problem
dependent. Note that this limitation is imposed by the computing power and avail-
able storage on a given machine, and does not indicate the inability to solve large
problems from an algorithmic standpoint.

Similarly to the size of the parametric vector, a larger number of constraints and
optimization variables pose a greater challenge in terms of acquiring a parametric
solution. This becomes clear by considering the maximum number of critical re-
gions as the maximum number of possible active sets, which is given by m!

n!(m−n)!
for mp-LP problems, where n is the number of optimization variables and m is the
number of inequality constraints. However, for mp-QP problems this number is sig-
nificantly larger as the solution is not guaranteed to lie on a vertex, and is given by

n
∑

i=0

m!
i!(m−i)! .

In the case of mp-MILP and mp-MIQP problems, the offline computational effort
is significantly affected by the size of binary variables. These problems require the
solution of one mp-LP/mp-QP problem for every considered feasible combination
of binary variables.

In order to alleviate these increasingly high computational requirements, paral-
lelization can be employed. Parallelization inherently exploits independent aspects
of an algorithm and distributes them on different machines, where these indepen-
dent subproblems are computed in parallel. The disjoint nature of the critical re-
gions thereby naturally generates independent subproblems which can be solved in
parallel.



380 Nikolaos A. Diangelakis, Richard Oberdieck, and Efstratios N. Pistikopoulos

Hence it is possible to choose between continuing the current computation locally
or to return the results to the main algorithm and perform a re-distribution of the
problems. The resulting trade-off is between an increased overhead resulting from
the information transfer between the machines and the possibility of calculating
possibly suboptimal or unnecessary solutions, as the re-distribution always ensures
that the algorithm performs optimally. Since at the end of the algorithm all results
are combined together, the final solution is always optimal.

Consequently, the parallelization strategy can be summarized as follows:

Step 1: Formulation of the sequential solution algorithm
Step 2a: Identification of the most external iterative procedure
Step 2b: Identification of the independent elements computed at each iteration
Step 2c: Definition of ρlimit

12

Step 3: Connection to different machines and equal distribution of elements
Step 4: Execution of the current computation locally until (i) the predefined termi-

nation criteria are met or (ii) the number of iterations has reached ρlimit

Details regarding the application of the parallelization algorithm in multi-
parametric programming can be found in [52] and used via [54].

4.2 Size of the Solution and Online Computational Effort

The two major advantages of multi-parametric/explicit MPC are its ability to pro-
vide a “map of solutions” a priori and its effortless online applicability. In the first
case, the fact that the entire control problem is solved offline provides great insight
regarding the effect that the initial state vector values have on the optimal control
action. This helps the control developer understand the control behavior and guar-
antee the optimality of the solution. Furthermore, in the presence of (measured)
disturbances within the control scheme the same can be guaranteed.

The effortless online applicability is a direct result of the nature of the MPC prob-
lem. The (mixed-integer) linear or quadratic formulation of the problem guarantees
that the optimal control action is linear with respect to the parameters, in this case
the initial state vector values. Furthermore, the critical regions for which an optimal
action remains optimal is also a polytope, except in the case of the exact solution of
mp-MIQP problems.13 The fact that the explicit expression of the optimal control
action is linear results in fast MPC computations without the need of solving an op-

12 The limiting iteration number ρlimit is the maximum number of iterations performed on a single
machine before the result is returned to the main algorithm.
13 Note that in the case of the envelopes of solutions approach to the mp-MIQP problem the critical
regions are polytopes but a comparison procedure between alternative solutions is necessary.
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timization problem online. It is fair to say that the major burden of the optimization
based MPC application has therefore been alleviated.14

The computationally most expensive step with respect to the application of multi-
parametric/explicit MPC is the identification of the critical region within which
the parameter vector lies. In essence, it is a set membership test of a series of dis-
joint polytopes whose union might be convex or non-convex, depending on whether
the multi-parametric programming problem features binary variables. While it is
possible to exhaustively enumerate all polytopes until θ ∗ ∈ CRi has been found,
such an approach becomes computationally problematic in the case of larger sys-
tems with potentially thousands of critical regions. In addition, from a practical
view point, it is equally important to provide an upper bound on the worst-case
scenario for the point location problem.15 Thus, starting with works in [41, 72],
several researchers have considered the design of efficient algorithms [4, 5, 8–
10, 16, 19, 29, 33, 36, 40, 43, 49, 50, 57, 67, 74, 75].

4.3 Other Developments in Explicit MPC

The material outlined in this chapter covers the standard use of explicit MPC for
continuous and mixed-integer systems. However, the area of explicit MPC has fea-
tured several other developments, some of the most important ones are described in
the following:

Continuous-time explicit MPC: The optimal control strategies for discrete-type sys-
tems of type (1) are determined off-line by solving multi-parametric program-
ming problems of type (9) or (23) in the case of a quadratic performance in-
dex and continuous or hybrid systems. On the other hand, for systems with
continuous-time dynamics it is necessary to consider so-called multi-parametric
dynamic optimization (mp-DO) problems, which lead to an infinite dimen-
sional problem. Within the literature, two different strategies have been pro-
posed to solve an mp-DO. One way is to transform the mp-DO problem into
a finite-dimensional multi-parametric problems via control vector parameteri-
zation [64], while the other way is to solve the mp-DO problem directly in
the infinite-dimensional form using variational approaches. While the theory
presented earlier in this chapter is applicable to the finite-dimensional reformu-
lation, for the infinite dimensional problems, it has been proposed to transform
the optimization problems into a boundary value problem derived from the cor-
responding optimality conditions [65, 71].
These insights have led to the recent development of a unified framework, which
combines the formulation of the control problem as an mp-DO with the track-

14 Note that this claim refers mainly to alleviating the necessity of optimization hardware equip-
ment for the application of optimization based MPC as the explicit solution enables the use of
MPC-on-a-chip as described in [60].
15 If the sampling time of a system is 1μs, but the point location of the explicit MPC controller
may require up to 5μs, the explicit MPC controller cannot be applied in practice.
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ing of the necessary conditions for optimality (NCO), namely multi-parametric
NCO-tracking [71]. The aim of this method is to convert an online dynamic op-
timization problem into a measurement-based feedback control problem. This
combination of mp-DO and NCO-tracking enables the relaxation of the fixed
switching structure from an NCO-tracking perspective, as it constructs the crit-
ical regions which correspond to different optimal switching structures. This
leads to a great reduction in the number of critical regions and the explicit solu-
tion of the continuous-time MPC problem.

Decentralized explicit MPC: As discussed in Section 4.1, the application of explicit
MPC is often limited by the size of the problems under consideration. While in
some cases it is the single system that requires a prohibitively large number of
states or control variables, there are other cases where the system consists of
several interconnected elements. The advantage of explicit MPC is that these el-
ements can be solved independently, and then linked to each other by expressing
the input of one element as the output of another. This has gained some recent
interest in the research community, where the use of vertical and horizontal de-
centralization enables the use of explicit MPC, with its inherent advantages, for
large and complex systems [69, 70]. This strategy was, for example, success-
fully applied in [58] for periodic systems and in [21] for combined heat and
power systems.
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Real-Time Implementation of Explicit
Model Predictive Control

Michal Kvasnica, Colin N. Jones, Ivan Pejcic, Juraj Holaza, Milan Korda,
and Peter Bakaráč

1 Simplification of MPC Feedback Laws

1.1 Preliminaries

We consider the control of discrete time, linear time-invariant (LTI) systems

x+ = Ax+Bu, (1)

where x ∈ R
nx is the state vector, u ∈ R

nu are the control inputs, A ∈ R
nx×nx and

B ∈ R
nx×nu are constant matrices, and the pair (A, B) is stabilizable. The state and

input variables are subject to constraints x ∈ X ⊆ R
nx , u ∈ U ⊆ R

nu where X
and U are assumed to be polyhedral sets containing the origin in their respective
interior. The constrained finite time optimal control problem for the LTI system
in Equation (1) is then given by

min
UN

x�N PxN +
N−1

∑
k=0

(
x�k Qxk +u�

k Ruk

)
(2a)

s.t. xk+1 = Axk +Buk, k = 0, . . . ,N −1, (2b)

xk ∈X , k = 0, . . . ,N −1, (2c)

uk ∈U , k = 0, . . . ,N −1, (2d)

xN ∈X f , (2e)
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where Q ∈ R
nx×nx , R ∈ R

nu×nu , and P ∈ R
nx×nx are the weighting matrices with

Q = Q� ' 0, R = R� ( 0, P = P� ' 0, N denotes the prediction horizon, xk

and uk are the vectors of predicted states and inputs at time instant k, respectively,
UN = [u�

0 , . . . ,u
�
N−1]

� ∈ R
Nnu is the sequence of optimized control actions, and X f

denotes the polyhedral terminal set constraint.
It is well known, see, e.g., [10, Chapter 12] that, by using the substitution xk =

Akx0 +
k−1
∑
j=0

Ak−1− jBu j, the MPC problem in Equation (2) can be translated into a

parametric quadratic program (mp-QP) of the form

min
UN

1/2 U�
N HUN + x�0 FUN (3a)

s.t. GUN ≤ w+Ex0, (3b)

where x0 is the initial condition of the problem in Equation (2), and H ∈ R
Nnu×Nnu ,

F ∈R
nx×Nnu , G ∈R

q×Nnu , w ∈R
q, E ∈R

q×nx are given matrices with q denoting the
number of inequality constraints in Equation (3b). Moreover, with Q, R, P in Equa-
tion (2a) being positive (semi)definite symmetric matrices, the Hessian H is positive
definite and thus invertible. As demonstrated, e.g., by [7], the mp-QP represented
by Equation (3) admits a closed-form solution

U�
N = κ(x0), (4)

with the function κ :Rnx →R
Nnu mapping the initial conditions x0 onto the sequence

of optimal control inputs U�
N . Moreover, since the mp-QP Equation (3) is assumed

to be strictly convex with H ( 0, κ is a continuous piecewise affine (PWA) function

κ(x) =

⎧⎪⎪⎨
⎪⎪⎩

L1x+ �1 if x ∈R1
...

LMx+ �M if x ∈RM

(5)

where
Ri = {x ∈ R

nx | Zix ≤ zi}, i = 1, . . . ,M, (6)

are polyhedral critical regions with Zi ∈ R
ci×nx , zi ∈ R

ci describing the half-spaces
of each region and ci denoting the number of half-spaces of the i-th region. More-
over, Li ∈ R

Nnu×nx , �i ∈ R
Nnu are locally optimal gains of the i-th local feedback

law. Finally, M denotes the total number of critical regions. In what follows we re-
fer to the function κ in Equation (5) as the explicit solution to the MPC problem
in Equation (2). Its data, i.e., the matrices Zi, zi, Li, �i can be computed by solving
the mp-QP in Equation (3) off-line, e.g., by the Multi-parametric toolbox [18], the
Hybrid toolbox [5], or the POP toolbox [32].

Once the explicit MPC feedback law κ in Equation (5) is constructed, the on-
line implementation of MPC, i.e., the process of obtaining U�

N for a given initial
condition x0 = x(t), boils down to a mere evaluation of κ(x0). Such an evaluation
is fast and simple since, among other factors, it does not involve divisions. Only
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multiplications and additions are required to identify U�
N for a given value of x0.

These properties foretell explicit MPC for implementation on embedded platforms
with severe restrictions on available implementation resources.

1.2 Complexity of Explicit MPC

The main limitation of explicit MPC lies in its implementation complexity. Specif-
ically, the target implementation hardware has to posses enough computational
power to evaluate κ(x0) on-line, and requires a sufficient capacity to store the pa-
rameters Zi, zi, Li, �i as in Equations (5) and (6) in the memory. We refer to the
former as the computational complexity of explicit MPC feedback laws, while the
latter will be referred to as the space complexity.

The computational complexity depends on the type of algorithm employed to
evaluate κ(x) for a given value of x from Equation (5). Various options are available.
The simplest approach is the sequential search procedure where one loops through
the critical regions, stopping once x ∈Ri� is satisfied for some i� ∈ {1, . . . ,M}. Sub-
sequently, U�

N is obtained via U�
N = Li�x+�i� . Since the critical regions are polyhedra

as in Equation (6), checking the inclusion x ∈Ri involves the validation of inequal-
ities Zix ≤ zi. Clearly, in the worst case one needs to loop through all regions. This
requires a total of

C (κ) = 2nxnuN +
M

∑
i=1

ci(2nx +1) (7)

floating point operations with the first terms representing the effort of evaluating
U�

N = Lix + �i for the “active” critical region and the second one accounting for
checking the inclusion x ∈ Ri for each of the M critical regions (each of them con-
sisting of ci half-spaces). A computationally more effective way to evaluate κ(x)
is to organize the critical regions into a binary search tree [38] or an axis-aligned
search tree [11], to employ a lattice representation of the PWA function κ [39], or to
resort to graph-based approaches [19]. In all cases the evaluation effort is decreased
at the expense of having to construct and to store a suitable search structure.

The space complexity is determined by the amount of data required to describe
the PWA function κ in Equation (5). Specifically, storing Li, �i, Zi, zi in Equations (5)
and (6) in the memory of the implementation hardware amounts to a total of

S (κ) = MNnu(nx +1)+
M

∑
i=1

ci(nx +1), (8)

floating point numbers. The first term in Equation (8) represents the size of local
feedback gains Li, �i, while the second term accounts for the size of the critical re-
gions Ri, represented by the matrices Zi and vectors zi. Since the prediction horizon
N, as well as the state and input dimensions nx, nu is fixed, the main driving force
behind the space complexity of explicit MPC feedback laws is twofold: the number
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of critical regions, and the size (i.e., the number of facets) of each critical region. It
should be noted that both of these figures are entirely problem dependent.

Remark 1. In the spirit of the receding horizon implementation of MPC, only the
first element of U�

N , i.e., u�0, is applied to the plant and the remaining elements are
discarded. Then the computation of U�

N is repeated at the subsequent time instant for
a fresh value of the initial condition x0 = x(t). It follows that only the first nu rows of
the matrices Li and �i in Equation (5) are required for closed-loop implementation
of explicit MPC via Equation (5), which then reduces to u�0 = κ(x0). Consequently,
one can immediately decrease the computational complexity C (κ) and the space
complexity S (κ) by dropping N from the first term in Equations (7) and (8), re-
spectively.

1.3 Problem Statement and Main Results

In what follows we aim at decreasing the computational and space complexities of
explicit MPC feedback laws in Equation (5), represented by Equations (7) and (8),
respectively, by attacking the two main complexity drivers: the number of critical
regions (M) and the amount of data required to represent each region (ci). This task
is achieved by replacing a given explicit MPC feedback law κ by a different func-
tion κ̃ of smaller complexity. Two classes of methods are introduced. The first one
aims at constructing κ̃ that is a performance lossless replacement of the original
function κ in the sense that κ̃(x) = κ(x) for all x in the domain of κ . In other words,
the simpler feedback law U�

N = κ̃(x) preserves optimality with respect to the MPC
problem in Equation (2) for all initial conditions that satisfy the constraints in Equa-
tions (2b)–(2e). The second class of methods sacrifices optimality in favor of reduc-
ing complexity, but preserves other important control-theoretical properties, such as
recursive feasibility and closed-loop stability. Thus, κ̃ will be only an approximate
replacement of the original explicit MPC feedback law κ .

In the remainder of this chapter we review various procedures for the reduction of
computational and space complexities of explicit MPC. Two classes of methods are
discussed. First, in Section 2 we review three methods for obtaining an explicit MPC
controller of reduced complexity while maintaining the piecewise affine nature of κ̃
as in Equation (5). Subsequently, in Section 3 we report a procedure for obtaining
approximate MPC feedback laws for control of nonlinear systems. Here, the ob-
tained controllers involve closed-loop stability guarantees and optimize closed-loop
performance with respect to a given metric.
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2 Piecewise Affine Explicit MPC Controllers of Reduced
Complexity

In this section we discuss the synthesis of simple explicit MPC controllers where
the feedback law attains a piecewise affine structure as in Equation (5). First, in
Sections 2.1 and 2.2 we derive a feedback law κ̃ that is simpler than the optimal
controller κ without sacrificing optimality, i.e., κ̃(x) = κ(x) for all x from the do-
main of κ . Then, in Section 2.3 we show how to construct an approximate feedback
law κ̃ ≈ κ by trading complexity for suboptimality. In all cases, κ̃ is a piecewise
affine function as in Equation (5).

2.1 Clipping-Based Explicit MPC

The clipping-based approach to complexity reduction in explicit MPC, introduced
in [25], aims at decreasing the computational and space complexity of Equations (7)
and (8) by reducing the number of regions of the feedback law κ in Equation (5).
It is based on the premise that, due to the presence of input constraints in Equa-
tion (2d), the optimal control action will become saturated at the boundary of the
input constraint set U in some regions of the explicit MPC feedback law in Equa-
tion (5). A frequent case is when the input constraints are hyper-rectangular, i.e.,
U = {u | umin ≤ u ≤ umax}. The central idea of this approach is to create a replace-
ment feedback law κ̃ by removing from the original feedback law κ the critical
regions in which the optimal control action is saturated either at umin or at umax, fol-
lowed by covering the removed regions by geometric extensions of the remaining
regions. The equivalence between κ and κ̃ is then established by artificially clipping
the value of κ̃ at umin and umax, respectively. As a consequence, the procedure de-
scribed here allows one to replace the (complex) PWA feedback law κ by a simpler
function κ̃ without sacrificing optimality.

The idea is illustrated graphically in Figure 1. The example shows an explicit
MPC feedback law κ(x) defined over six critical regions. In three of them (R1, R5,
R6) the optimal control action is saturated at umin = −1, while in R3 the upper
saturation, i.e., u� = umax = 1 is attained. By removing the “saturated” regions R1,
R3, R5, R6 and by extending the unsaturated regions R2 and R4 one obtains the
function κ̃ . Consequently, κ̃(x) = κ(x) for all x ∈R2 ∪R4. In the remainder of the
domain of κ , the equivalence is attained by clipping the value of κ̃(x) to umin and
umax, as shown in the right-most part of Figure 1.
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Fig. 1: From left to right: the original explicit MPC feedback law κ(x), the aug-
mented feedback law κ̃(x), the clipped version φ(κ̃(x)).

Technically speaking, the objective is to construct the PWA function

κ̃(x) = L̃ jx+ �̃ j if x ∈ R̃ j, (9)

where R̃ j, j = 1, . . . ,M̃ are polyhedra, and the clipping function φ such that
φ(κ̃(x)) = κ(x) for all x in the domain of κ . The procedure for constructing the
polyhedra R̃ j, along with local gains L̃ j, �̃ j, j = 1, . . . ,M̃ is reported as Algorithm 1.

Algorithm 1: Clipping-based complexity reduction
INPUT: Explicit MPC feedback law κ as in Equation (5) with M critical regions.
OUTPUT: Augmented feedback law κ̃(x) = L̃ jx+ �̃ j if x ∈ R̃ j , j = 1, . . . ,M̃ with M̃ < M

regions.
1: Determine the index set Iunsat = {i ∈ {1, . . . ,M} | umin < κ(x)< umax} of unsaturated

regions.
2: for each unsaturated region i ∈Iunsat do
3: Identify the subset of half-space indices J ⊆ {1, . . . ,ci} over which the neighbor of Ri is

a saturated region.
4: Form a new polyhedron R̃i = {x | Z̃ix ≤ z̃i} by removing from Ri the half-spaces indexed

by J , i.e., let Z̃i = [Zi]\J and z̃o = [zi]\J .

5: Let R̃i = R̃i \
⋃

j∈Iunsat\iRi.

6: Store region(s) R̃i and matrices L̃i = Li, �̃i = �i.
7: end for

The algorithm processes all unsaturated critical regions Ri of the original ex-
plicit MPC feedback law κ sequentially. For each region, it first determines the
half-spaces over which Ri has a saturated neighbor. Subsequently, these half-spaces
are removed in Step 4, which leads to a new polyhedron R̃i as a geometric extension
of Ri, i.e., R̃i ⊇ Ri. However, when doing so, one must prevent that R̃i intersects
with other unsaturated regions. This is performed by the set difference operation
in Step 5. In the best case (when the set difference is empty for all unsaturated re-
gions processed by the algorithm), the procedure constructs the augmented feedback
law κ̃ defined over M̃ = Munsat regions, where Munsat is the number of unsaturated
regions of κ . However, the set difference between a polyhedron R̃i and a (possibly
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non-convex) union of polyhedra
⋃

j∈Iunsat\iRi performed in Step 5 can lead to a sub-

division of R̃i into several polyhedra, see, e.g., [4]. Software algorithms to compute
such a set difference can be found, e.g., in the Multi-Parametric Toolbox.

Once the simple augmented feedback law κ̃ as in Equation (9) is constructed, its
equivalence to the original (complex) feedback κ is recovered by clipping the value
of κ̃(x) to umin and umax, respectively. Technically, this is achieved by evaluating the
clipping function

φ(κ̃(x)) =

⎧⎪⎨
⎪⎩

umax if κ̃(x)≥ umax,

umin if κ̃(x)≤ umin,

κ̃(x) otherwise.

(10)

Efficiency of the presented procedure, expressed as the ratio M/M̃, depends on the
number of unsaturated regions in Equation (5). If the feedback law κ does not con-
tain any saturated regions, then no simplification can be achieved. As observed, e.g.,
in [16], the number of unsaturated regions depends mainly on two factors: tightness
of the input constraint set U and the selection of the input penalty R in Equation (2a).
The tighter the constraints and/or the lower R is, the more regions will become satu-
rated, hence enabling the presented approach to be more efficient.

To illustrate the efficacy of the proposed clipping-based procedure to reduce com-
plexity of explicit MPC feedback laws, consider the open-loop unstable model of an
F14 fighter jet in the lateral axis [30], whose states represent the pitch and attack
angles and the respective angular velocities, with the flap angle as control input:

ẋ =

[−0.015 −60.57 0 −31.170
0.0001 −1.341 0.993 0
0.0002 43.25 −0.869 0

0 0 1 0

]
x+

[ 13.14
−0.251
−1.577

0

]
u. (11)

The states are constrained by |xi| ≤ 10, i = 1, . . . ,4, and the control command
is bounded by |u| ≤ umax. The model in Equation (11) was discretized using a
sampling time of 0.01 seconds and the MPC problem in Equation (2) was formu-
lated with Q = P = R = 1, and prediction horizon N = 15. We have investigated
how tightness of input constraints (represented by umax) impacts the number of un-
saturated regions, which is the main factor that determines efficiency of the pro-
posed scheme. Therefore, we have computed explicit RHMPC feedback laws for
umax = {2, 4, 6, 8, 10}. Each feedback law κ was then processed by Algorithm 1 to
obtain the replacement function κ̃ . The results are summarized in Table 1. Columns
of the table report, respectively, maximal control amplitude umax, complexity of the
original feedback κ (in terms of the number M of critical regions, the worst-case
computational complexity per Equation (7) in FLOPS, and the space complexity
per Equation (8) in floating point numbers), complexity of the replacement func-
tion κ̃ , and the complexity reduction ratio. In all cases we got M̃ = Munsat, i.e., the
augmented function κ̃ always consisted only of the unsaturated regions of κ .

As expected, both the computational complexity represented by Equation (7),
and the space complexity of Equation (8) decrease proportionally to the ratio M/M̃.
This fraction decreases when the input constraints become less strict, as pointed out
above. As a consequence, this example demonstrates that the implementation com-
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Table 1: Results for the F14 example.

umax Original feedback κ Augmented feedback κ̃ M/M̃

M C (κ) [FLOPS] S (κ) M̃ C (κ̃) [FLOPS] S (κ̃)
2 1,167 49,998 47,500 170 8,226 7,705 6.9
4 1,290 56,292 53,360 221 11,442 10,640 5.8
6 1,391 61,086 57,860 289 14,874 13,840 4.8
8 1,438 63,096 59,770 317 16,188 15,075 4.5
10 1,507 66,030 62,560 364 18,192 16,980 4.1

plexity of explicit MPC (both in terms of computation and space) can be improved
by factors ranging from 4 to 7 just by exploiting the geometric properties of the
explicit MPC feedback laws.

2.2 Regionless Explicit MPC

Another option to decrease the computational and the space complexity of explicit
MPC feedback laws without sacrificing optimality is to reduce the amount of data re-
quired for storage of individual critical regions Ri in Equation (5), i.e., the size of the
matrices Zi ⊆ R

ci×nx , zi ⊆ R
nx , i = 1, . . . ,M in Equation (6). Specifically, we show

that, in fact, one does not need to describe the critical regions using individual half-
spaces captured by matrices Zi, zi. Instead, the critical regions are constructed on-
the-fly using the constraints of the mp-QP problem in Equation (3). The advantage
being that the underlying data (represented by matrices G, w, E in Equation (3b))
are stored just once and shared among all regions. An example is provided to illus-
trate that such a procedure yields considerable reduction of the space complexity of
explicit MPC.

In conventional explicit MPC, the critical regions Ri in Equation (6) are obtained
by investigating the Karush-Kuhn-Tucker (KKT) optimality conditions for the mp-
QP problem in Equation (3):

HU�+F�x+G�
A λ

� = 0, (12a)

GU� ≤ w+Ex, (12b)

λ � ≥ 0, (12c)

λ �
i (GAiU

�−wAi −EAi x) = 0. (12d)

Here, A ⊆ {1, . . . ,q} is the index set of constraints that are active for some value
of the parameter vector x with q denoting the total number of inequality constraints
in Equation (3b), and GA are the rows of G indexed by A . For each fixed A ,
Equations (12a) and (12d) give

[
H G�

A
GA 0

][
U�

λ �

]
=

[
−F�x

wA +EA x

]
. (13)
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Recall that the Hessian H in Equation (3) is assumed to be positive definite, thus
invertible, and GA is assumed to have full row rank.1 Then solving for U� and λ �

from Equation (13) yields

U� = LA x+ �A , (14a)

λ � = SA x+ sA , (14b)

with

LA = H−1
(

GA (GA H−1G�
A )−1(EA +GA H−1F�)−F�

)
(15a)

�A = H−1G�
A (GA H−1G�

A )−1wA , (15b)

SA =−(GA H−1G�
A )−1(EA +GA H−1F�), (15c)

sA =−(GA H−1G�
A )−1wA . (15d)

Therefore, the optimal Lagrange multipliers λ � as well as the primal optimizer U�,
are both affine functions of the parameter x. The region of validity of the expressions
in Equations (14b) and (14a) is then obtained by plugging the respective expressions
into the primal and dual feasibility constraints Equations (12b) and (12c), respec-
tively. As both λ � and U� are affine functions of x, Equations (12b)–(12c) yield a
set of linear inequalities in x:

[
GLA −E
−SA

]
︸ ︷︷ ︸

ZA

x ≤
[

w−G�A
sA

]
︸ ︷︷ ︸

zA

, (16)

that constitute the critical region RA as in Equation (6). The remaining critical
regions of κ in Equation (5) are then constructed similarly by exploring all other
optimal active sets A . These can be obtained either by an exhaustive enumeration
as proposed in [17], or by exploiting the geometry of existing critical regions, see,
e.g., [3, 6, 9].

To sum up, by using the procedure described above, for each optimal active set Ai

one obtains the locally optimal feedback gains Li := LAi , �i := �Ai as in Equations (5)
and (14a) that define the primal optimizer U�

N , along with the associated polyhedral
critical region Ri given per Equations (6) and (16) with Zi := ZAi , zi := zAi . In
view of Equation (16), each critical region consists of q half-spaces. However, in
practice, some of these half-spaces will be redundant and can be removed. Therefore
each region will be defined by ci ≤ q inequalities. Moreover, since the expressions
in Equation (16) depend on the choice of the active set, the inequalities will, in
general, be different for each region. This leads to the necessity of describing each
critical region by its own set of data.

The idea behind the regionless approach is to abolish the necessity of explicitly
storing each critical region in the memory of the implementation hardware. Instead,

1 If GA does not have a full row rank, it is always possible to identify a subset of A such that all
rows of GA are linearly independent, see, e.g., [37].
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the inclusion x ∈Ri is validated by directly checking the primal and dual feasibility
conditions in Equations (12b) and (12c), respectively. To do so, one needs to store
three ingredients in the memory: the primal constraints, represented by matrices
G, w, E from Equation (3b), the expressions for the primal optimizer as in Equa-
tion (14a), i.e., Li, �i, i = 1, . . . ,M, and the matrices Si, si that describe the dual
optimizer as in Equation (14b). Then the inclusion x ∈ Ri, required by the sequen-
tial search procedure to evaluate the function κ for a given value of the parameter
vector x is done as follows:

1. compute U = Lix+ �i;
2. compute λ = Six+ si;
3. check if GU ≤ w+Ex (primal feasibility) and λ ≥ 0 (dual feasibility).

If all inequalities in the ultimate step are satisfied, then, by Equation (12), the pair
(U,λ ) is optimal for a given value of x. In practice, however, one would first com-
pute and check the dual optimizer before validating the primal one since its cardi-
nality is smaller. In fact, the cardinality of λ is, at most, Nnu. On the other hand, we
have q primal constraints with q - Nnu in practice.

The storage complexity of the regionless format is then

S (κ) = 2MNnu(nx +1)+q(Nnu +nx +1), (17)

where the first term accounts for the storage of the primal and the dual optimizer,
i.e., the matrices Li, �i, Si, si, and the second one determines the size of the pri-
mal constraints G, w, E from Equation (3b). Comparing this figure to Equation (8)
we see that the regionless format consumes less memory provided M > N, a con-
dition that is often satisfied. In fact, usually M - N in practice, since the number
M of critical regions grows, in the worst case, exponentially with the prediction
horizon N.

To highlight the benefits of the described approach, we have investigated the
control of a 10-tray rectification column, described in [15]. The plant was modeled
as an LTI system with nx = 13 states and one input. For such a system we have
subsequently formulated the MPC problem per Equation (2) with the prediction
horizon N = 40, and calculated the explicit MPC feedback law as in Equation (5)
by the Multi-Parametric Toolbox. The solution consisted of 1,095 critical regions in
the 13-dimensional parametric space. The total memory footprint of such a region-
based explicit controller was 40 megabytes, the majority of which was consumed
by the description of the critical regions. The regionless representation of the same
feedback law, on the other hand, only requires 224 kilobytes of storage capacity, a
reduction of two orders of magnitude. The regionless description was subsequently
exported to C-code and implemented in Simulink. Experimental results under the
proposed controller are shown in Figure 2.
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2.3 Piecewise Affine Approximation of Explicit MPC

The second principal approach to reducing the computational and space complex-
ities of explicit MPC feedback laws U�

N = κ(x) in Equation (5) is to replace the
function κ by a different function κ̃ such that the control sequence UN = κ̃(x)
satisfies the constraints in Equation (3b), but κ̃ is allowed to be suboptimal, i.e.,
κ̃(x) �= κ(x) for some (or even for all) points x. Various approaches to accomplish
this task have been proposed in the literature, ranging from using barycentric inter-
polation [21], through the application of machine learning algorithms [12, 13, 22]
and neural networks [35], up to approximating the explicit MPC control law by
polynomials [26, 33, 34].

In what follows we show how to synthesize a replacement PWA function κ̃ that,
when used as a feedback law UN = κ̃(x), provides recursive constraint satisfaction
and is as close as possible to the original complex explicit MPC feedback law κ as
in Equation (5) in some measure. The presented approach is based on [20].

Given is the explicit PWA MPC feedback law κ(x) as in Equation (5) with a total
of M polyhedral critical regions Ri, i = 1, . . . ,M as in Equation (6). Let a new set
of regions R̃ j, j = 1, . . . ,M̃ with M̃ < M and

⋃
iRi =

⋃
j R̃ j be given. We seek the

parameters L̃ j, �̃ j, j = 1, . . . ,M̃ of the PWA function
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Fig. 2: Experimental results for the rectification column example. The dashed line
represents the setpoint to be tracked.
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κ̃(x) = L̃ jx+ �̃ j if x ∈ R̃ j, j = 1, . . . ,M̃, (18)

such that:

1. UN = κ̃(x) satisfies the constraints in Equation (3b), i.e., UN is always feasible;
2. the integrated squared error

∫
∪iRi

‖κ(x)− κ̃(x)‖2
2 dx (19)

is minimized, i.e., κ̃(x) is as close as possible to κ(x) with respect to the mea-
sure in Equation (19).

If L̃ j, �̃ j satisfying these properties could be found, the replacement feedback
law in Equation (18) is an approximate replacement of the original (complex) ex-
plicit MPC feedback law in Equation (5). It should be noted that various perfor-
mance measures can be considered instead of Equation (19). For example, one
could minimize the worst-case error between κ(x) and κ̃(x), i.e., to minimize
‖κ(x)− κ̃(x)‖∞ over all x ∈ ∪iRi. Alternatively, one could minimize the point-wise
error ∑K

i=1 ‖κ(xi)− κ̃(xi)‖2
2 over a set of points x1, . . . ,xK obtained, for instance, by

gridding the domain of κ .
Let

C∞ = {x | ∃uk ∈U s.t. Axk +Buk ∈X , ∀k ≥ 0} (20)

be the control invariant set for the system in Equation (1) subject to state and in-
put constraint sets X and U , respectively. Under mild assumptions, the set C∞
is a polyhedron that can be computed using a recursive algorithm described, e.g.,
in [8, 14], and implemented in the MPT toolbox [18]. Then the parameters L̃ j �̃ j,
j = 1, . . . ,M̃ of the replacement PWA function κ̃ in Equation (18) that minimizes
the integrated squared error criterion of Equation (19) can be found by solving the
following optimization problem:

min
L̃ j ,�̃ j

∫
∪ jR̃ j

‖κ(x)− κ̃(x)‖2
2 dx (21a)

s.t. L̃ jx+ �̃ j ∈U , ∀x ∈
⋃

j

R̃ j (21b)

Ax+B(L̃ jx+ �̃ j) ∈ C∞, ∀x ∈
⋃

j

R̃ j. (21c)

Since the sets C∞, and R̃ j, j = 1, . . . ,M̃ are assumed to be polyhedra, the constraints
in Equations (21b) and (21c) are linear in the unknowns L̃ j, �̃ j. The objective func-
tion in Equation (21a), on the other hand, is nonlinear in the decision variables.
However, it can be translated into a convex quadratic function using the following
result, due to [2]:

Lemma 1. Let f be a homogeneous polynomial of degree d in n variables, and let
s1, . . . ,sn+1 be the vertices of an n-dimensional simplex Δ . Then
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∫
Δ

f (y)dy = β ∑
1≤i1≤···≤id≤n+1

∑
ε∈{±1}d

((
d

∏
j=1
ε j

)
· f (∑d

k=1 εksik)

)
, (22)

where

β =
vol(Δ)

2dd!
(d+n

d

) , (23)

and vol(Δ) is the volume of the simplex.

To apply Lemma 1 to the objective function Equation (21a) consider, for each
(i, j) combination, the tessellation of the intersections Ri ∩ R̃ j into simplices Δk.
Moreover, let fi, j,k(x) := ‖κi(x)− κ̃ j(x)‖2

2 with κi(x) = Lix+ �i and κ̃ j = L̃ jx+ �̃ j

restricted to a particular simplex Δk. Then fi, j,k(x) := x�Qi, jx+q�
i, jx+ ri, j with

Qi, j = L�
j L j −2L jL̃i + L̃�

i L̃i, (24a)

qi, j = 2(L�
j �̃i + L̃�

i �̃i − L̃�
i � j −L�

j �̃i), (24b)

ri, j = ��j � j −2��j �̃i + �̃�i �̃i. (24c)

It follows that the integrated squared error between κ and κ̃ can be obtained by re-
placing the objective function in Equation (21a) by the evaluation of the expression
in Equation (22) for all fi, j,k defined above. Since f j, j,k are convex quadratic func-

tions of L̃ j and �̃ j, the optimization problem in Equation (21) can thus be posed as a
convex quadratic program (QP) that can be solved using off-the-shelf tools.

The complete procedure can be summarized as follows:

1. Obtain the regions R̃ j, j = 1, . . . ,M̃ with M̃ < M, e.g., by solving the MPC
problem in Equation (2) for a shorter prediction horizon.

2. Tessellate the intersections Ri ∩ R̃ j into simplices Δk for all i, j pairs for which
the intersection is non-empty.

3. Solve the QP problem in Equation (21) with the objective function in Equa-
tion (21) replaced by Equation (22) to obtain L̃ j, �̃ j.

Since the QP problem enforces input constraints via Equation (21b) and invariance
via Equation (21c), the resulting PWA function κ̃ as in Equation (18) will provide
recursive constraint satisfaction. Moreover, by minimizing the integrated squared
error as in Equation (19), κ̃ will be the best possible approximation of the orig-
inal explicit MPC feedback law κ . Naturally, the quality of the approximation is
inversely proportional to the complexity of the function κ̃ , i.e., the higher M̃ (the
number of regions of κ̃), the lower approximation error as in Equation (19) can be
achieved.

To illustrate the procedure, consider an inverted pendulum mounted on a moving
cart, whose linearization around the upright unstable equilibrium reads

⎡
⎢⎢⎣

ṗ
p̈
φ̇
φ̈

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 1 0 0
0 −0.182 2.673 0
0 0 0 1
0 −0.455 31.182 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p
ṗ
φ
φ̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
1.818

0
4.546

⎤
⎥⎥⎦u, (25)



400 M. Kvasnica et al.

where p is the position of the cart, ṗ is the cart’s velocity, φ is the pendulum’s
angle from the upright position, and φ̇ denotes the angular velocity. The control in-
put u is proportional to the force applied to the cart. The system in Equation (25)
was then discretized using the sampling time of 0.1 seconds. The optimal (complex)
controller U�

N = κ(x) in Equation (5) was then constructed by solving the MPC prob-
lem in Equation (2) with prediction horizon N = 8, penalties Q = diag(10,1,10,1),
R = 0.1, and constraints |p| ≤ 1, | ṗ| ≤ 1.5, |φ | ≤ 0.35, |φ̇ | ≤ 1, |u| ≤ 1. Using the
MPT toolbox we have obtained the explicit MPC feedback law κ defined over 943
polytopes of the 4-dimensional state-space. Subsequently, we have solved the same
problem for shorter prediction horizons to obtain new sets of polyhedral regions
R̃ j with M̃ = 35 for N = 1, M̃ = 117 for N = 2, and M̃ = 273 for N = 3. Finally,
we have searched for the parameters L̃ j, �̃ j of the replacement PWA feedback law as
in Equation (18) by solving the QP problems in Equation (21). For each investigated
case, we have then evaluated the suboptimality of the replacement feedback law κ̃
by measuring the average settling time (AST) of the pendulum, starting from a non-
zero initial condition. The results are reported in Table 2. As can be seen, optimizing
the parameters of κ̃ in Equation (18) via the QP problems in Equation (21) allows
one to employ fairly simple control laws at a modest loss of performance. Moreover,
the complexity of the replacement feedback law is a design choice that can be used
to trade performance for complexity.

Table 2: Complexity and suboptimality comparison for the pendulum example.

Prediction horizon Number of regions AST Suboptimality

1 35 5.1 s 59.4%
2 117 3.7 s 15.6%
3 273 3.4 s 6.3%
8 943 3.2 s 0.0%

3 Approximation of MPC Feedback Laws for Nonlinear Systems

3.1 Problem Setup

This section describes a method for designing explicit MPC controllers for control of
nonlinear systems. The obtained controllers involve closed-loop stability guarantees
and closed-loop performance optimized with respect to a given metric. The method
is based on the stability verification results of [23] which are in turn inspired by [36].

Figure 3 depicts the design scheme. We consider a quadratic programming (QP)
based MPC controller whose coefficients defining the cost/constraint matrices and
vectors are the control tuning parameters grouped into the tuning vector η ∈R

nη . In
particular, even though the controlled system is nonlinear, the optimization problem
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underlying the MPC controller is a convex QP and hence amenable to explicit MPC
implementation or tailored online QP solvers.

Specifically we assume a system of the form

x+ = fx(x,u), (26a)

y = fy(x), (26b)

with the only assumption being that fx and fy are multivariate polynomials. In gen-
eral, the output y does not need to be the physical output of the dynamical system
but, for example, the estimate of the state provided by a state estimator whose dy-
namics are lumped into the function fx, or several consecutive values of the physical
output whose previous values are recorded as a part of the state x. Similarly, the map-
ping fy(·) can encode the so-called lifting of the state to a higher dimensional space,
where the underlying non-linear dynamical system is well approximated by a linear
dynamical system (see [24] for details of this procedure).

MPC

Stability

Parameter
tuning

verification

Closed-loop

performance

h

h

Fig. 3: Design scheme.

In the following sections we describe in detail the blocks of the control scheme
depicted in Figure 3.

3.2 A QP-Based MPC Controller

We assume that at each step of the closed-loop operation the MPC controller solves
a QP optimization problem parametrized by the output y ∈ R

ny and the tuning pa-
rameters η ∈ R

nη . The QP has the form

minimize
θ∈Rnθ

1
2θ

�H θ + y�Bθ

subject to C θ ≤ d
(27)
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where θ ∈ R
nθ is the decision vector, matrix H ∈ R

nθ×nθ is symmetric positive
(semi)definite, B ∈ R

ny×nθ , C ∈ R
nd×nθ and d ∈ R

nd . Given a solution θ to (27),
the control input is obtained as

u = κ(θ), (28)

where κ is a given multivariate polynomial (typically just a selection of some com-
ponents of θ ). The tuning parameters vector η in (27) is

η =

⎡
⎢⎢⎣

svec(H )
vec(B)
vec(C )

d

⎤
⎥⎥⎦ ,

where vec(·) denotes a vectorization of a matrix and svec(·) a symmetric vectoriza-
tion (i.e., the elements uniquely defining a symmetric matrix arranged in a column
vector). The constraints on the parameter vector η are the positive (semi)definiteness
of H and possibly other constraints arising from application requirements, e.g.,
sparsity pattern of H or the fact that the vector θ of decision variables should not
cause inputs that violate the plant input constraints (thereby fixing a part of C and
d to constraint θ for this requirement).

3.3 Stability Verification

The tuning procedure of Figure 3 uses the stability verification from [23] for the
closed-loop interconnection of the QP-based controller described in Section 3.2 and
the dynamical system (26). For the purpose of stability verification, one needs to
observe that the KKT system associated to the optimization problem (27) is a basic
semialgebraic set, i.e., the intersection of finitely many polynomial equalities and
inequalities. Indeed, the KKT conditions of (27) read

H θ +B�y+C�λ = 0 (29a)

λ�(C θ −d) = 0 (29b)

λ ≥ 0 (29c)

d −C θ ≥ 0, (29d)

where λ ∈ R
nd is the vector of Lagrange multipliers associated with the constraint

C θ ≤ d. The KKT conditions are a system of polynomial equalities and inequalities
in (θ ,y,η ,λa,λb) where the vector η contains the coefficients of the QP problem,
as described in Section 3.2. By defining

Ty,η := {θ ∈ R
nθ | ∃λ ∈ R

nλ s.t. g(θ ,λ ,y,η)≥ 0, h(θ ,λ ,y,η) = 0} (30)
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where

h(θ ,λ ,y,η)=
[
H θ +B�y+C�λ
λ�(C θ −d)

]

and

g(θ ,λ ,y,η) =
[

λ
d −C θ

]
,

we observe that the control input generated by the MPC controller satisfies

u ∈ κ(Ty,η), (31)

provided that constraint qualification conditions hold such that each minimizer
of (27) satisfies the KKT conditions (29).

3.3.1 Lypunov Analysis

As a result, the question of stability of the closed-loop interconnection of (26) and
the QP-based MPC controller boils down to the question of stability of the difference
inclusion obtained by interconnecting (26) and (31). Stability of such a difference
inclusion can be analyzed using Lyapunov methods. For a given parameter value η ,
the closed-loop interconnection of (26) and the QP-based controller is stable if there
exists a Lypunov function Vη such that

Vη(x
+,θ+,λ+)−Vη(x,θ ,λ )≤ −‖c(x)‖2

2, (32a)

Vη(x,θ ,λ )≥ 0, (32b)

for all
(x,θ ,λ ,x+,θ+,λ+) ∈ Kη

where

Kη = {(x,θ ,λ ,x+,θ+,λ+) | x+ = fx(x,κ(θ)),

ĥη(θ ,λ ,x) = 0, ĝη(θ ,λ ,x)≥ 0,

ĥη(θ+,λ+,x+) = 0, ĝη(θ+,λ+,x+)≥ 0}, (33)

with

ĥη(θ ,λ ,x) := h(θ ,λ , fy(x),η), (34a)

ĝη(θ ,λ ,x) := g(θ ,λ , fy(x),η). (34b)

To be more precise, the conditions (32) imply only c(xk) → 0, where c(·) is a
given vector multivariate polynomial. If stability of the full state x is desired, then
one selects c(x) = x. However, as remarked above, the state x may not represent only
the physical state of the system but also, for instance, the state of the estimator in
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which case one may be interested only in the stability of a certain subset of the state
x which would translate to choosing c(x) =Cx for some matrix C.

3.3.2 Sum-of-Squares Certificates

In general, seeking a Lyapunov function satisfying conditions (32) is hard since one
searches over the class of all functions and requires the satisfaction of the inequali-
ties (32a) and (32b) for all elements of Kη . In order to obtain computable stability
certificates, we restrict the class of Lyapunov functions to the set of all polynomials
and replace the nonnegativity conditions (32a) and (32b) by sufficient polynomial
sum-of-squares (SOS) conditions. This is possible precisely because all data is poly-
nomial and hence the set Kη is defined by polynomial equalities and inequalities.
Setting

ξ := (x,θ ,λ ,x+,θ+,λ+),

the sufficient SOS conditions read

V (x,θ ,λ )−V (x+,θ+,λ+)−‖x‖2
2 = σ0(ξ ) (35a)

+σ1(ξ )�ĝ(θ ,λ ,x)+σ2(ξ )�ĝ(θ+,λ+,x+)

+ p1(ξ )�ĥ(θ ,λ ,x)+ p2(ξ )�ĥ(θ+,λ+,x+)

+ p3(ξ )(x+− fx(x,κ(θ))

V (x,θ ,λ ) = σ̄0(ξ )+ σ̄1(ξ )�ĝ(θ ,λ ,x)+ p̄1(ξ )�ĥ(θ ,λ ,x), (35b)

where σi(ξ ) and σ̄i(ξ ) are SOS multipliers and pi(ξ ) and p̄i(ξ ) polynomial multi-
pliers of compatible dimensions and pre-specified degrees. The satisfaction of (35a)
implies the satisfaction of (32a) and the satisfaction of (35b) implies the satisfac-
tion of (32b) for all ξ ∈ Kη . Therefore, a sufficient condition for stability of the
closed-loop interconnection of (26) and the MPC controller is feasibility of the SOS
problem:

find V,σ0,σ1,σ2, p1, p2, p3, p4, σ̄0, σ̄1, p̄1

s.t. (35a), (35b)
σ0,σ1,σ2, σ̄0, σ̄1 SOS polynomials
V, p1, p2, p3, p̄1 arbitrary polynomials,

(36)

where the decision variables are the coefficients of the polynomials

(V,σ0,σ1,σ2, p1, p2, p3, σ̄0, σ̄1, p̄1).

Since a polynomial σ(ξ ) of degree 2d is SOS if and only if there exists a positive
semidefinite matrix W such that σ(ξ ) = βd(ξ )�Wβd(ξ ), where βd(ξ ) is the vector
of all monomials of total degree no more than d, the SOS problem (36) translates
to a semidefinite programming (SDP) feasibility problem (see, e.g., [27] for more
details on SOS programming). Importantly, the translation of the SOS problem (36)
to a conic form accepted by common SDP solvers (e.g., MOSEK [38]) can be done
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automatically using freely-available high-level modelling tools such as Yalmip [28].
The stability of the closed-loop interconnection of a QP controller and a nonlinear
dynamical system can hence be readily verified using convex optimization.

While the SOS problem (36) verifies global stability of the closed-loop system, a
local stability verification over a set

X = {x | φi ≥ 0, i = 1, . . . ,nφ} (37)

where φi are polynomial functions is also possible, as described in [23]. In partic-
ular, the local version is achieved by adding the inequality constraints of (37) to
the set (30) and by subsequently assigning them the SOS multipliers in the condi-
tions (35). Although the obtained Lyapunov function would involve the guaranteed
decrease (35a) over the set X, this does not guarantee the invariance of the closed-
loop system over the set X. A sufficient condition for invariance in X is that the
initial state is within the largest sub-level set of the Lyapunov function which is con-
tained in X. For a more detailed description of this concept and stability certification
of this section, the reader is referred to [23].

3.4 Closed-Loop Performance

The goal of the design procedure is to find a stabilizing tuning parameter η that
minimizes a closed-loop performance metric of the form

Jη(x0) =
∞

∑
k=0

αkl(xk,uk) (38)

for a range of initial states x0 and with the discount factor α ∈ (0,1]. The stage cost
l can be non-convex even though the optimization problem underlying the MPC
controller is a convex QP (27). In order to take into account various starting points
x0, the minimization of Jη(x) is carried out on average over a given region of interest
Y ⊂ R

nx by considering as the performance metric

P(η) =
∫

Y
Jη(x)w(x)dx, (39)

with w being a given nonnegative weighting function. In practice the objective func-
tion P(η) is approximated by uniform sampling from Y and by truncation of the
infinite sum in (38); i.e., we minimize

P̂(η) =
M

∑
i=1

N

∑
k=0

αkl(xi
k,u

i
k), (40)

where the initial conditions xi
0, i = 1, . . . ,M, are sampled uniformly from Y.
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3.5 Parameter Tuning

The parameter tuning can be formulated as an optimization problem of the form

minimize
η∈Rnη

P(η)+δst(η)

subject to η ∈Ω ,
(41)

where P(η) is the performance metric (39) possibly evaluated approximatively
as (40), the set Ω is modelling some basic requirements on the tuning parameters η
(e.g., symmetry and positive definiteness of the matrix H ), and δst(η) is a function
indicating the existence of the SOS stability certificate of (36):

δst(η) =
{

0, for η with a stability certificate (36),
+∞, otherwise.

(42)

In what follows, the tuning problem (41) is addressed with a method that con-
sists of two phases. The first phase searches for feasible solutions of (41). This
is done by introducing into (35a) a SOS slack polynomial function whose pres-
ence is, as described in the sequel, minimized as much as possible by consider-
ing the slack’s integral over a unit box as a cost function quantifying the slack’s
presence. This minimization problem can be tackled by a black-box optimization
method such as Bayesian optimization which is used in the numerical example of
this document. The second phase takes the tuning parameters feasible in (41) (i.e.,
parameters η ∈ Ω with δst(η) = 0) obtained in the first phase and employs them
as the initial conditions for minimization of the performance metric P(η) in (41).
This minimization can as well be performed by Bayesian optimization due to whose
data exploitation property the region with initial stabilizing tuning parameters will
be under focus for further exploration in order to minimize P(η).

3.5.1 First Phase: Minimization of the SOS Slack

For the purpose of obtaining feasible vectors η in (41), a SOS slack polynomial
function σslk(ξ ) is introduced in (35a) as

V (x,θ ,λ )−V (x+,θ+,λ+)−‖x‖2
2 = σ0(ξ )−σslk(ξ ) (43)

+σ1(ξ )�ĝ(θ ,λ ,x)+σ2(ξ )�ĝ(θ+,λ+,x+)

+ p1(ξ )�ĥ(θ ,λ ,x)+ p2(ξ )�ĥ(θ+,λ+,x+)

+ p3(ξ )(x+− fx(x,κ(θ)),

while (35b) will be retained without modification. In the case when σslk(ξ ) is of
the same degree as σ0(ξ ), the difference of the SOS polynomials σ0(ξ )−σslk(ξ )
can express any arbitrary polynomial up to that common degree [1]. Thus, pro-
vided σ0(ξ ) and σslk(ξ ) are of a degree that is no smaller than the degrees of the
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other polynomial terms participating in (43), the SOS feasibility problem consisting
of (43) and (35b) has a feasible solution for any fixed parameter η due to the pres-
ence of the slack σslk(ξ ). To have a solution that has as small a presence of the slack
as possible for fixed η (ideally σslk(ξ ) = 0 for all ξ ), in addition to the constraint
set consisting of (43) and (35b) we introduce a cost function that is the integral of
the slack polynomial over a unit box:

∫
B
σslk(ξ )dξ =

nβ

∑
i=1

vi

∫
B
βi(ξ )dξ , (44)

where B is the unit box and σslk(ξ ) = ∑
nβ
i=1 viβi(ξ ) with vi being the polynomial

coefficients and βi(ξ ) their corresponding monomials. As the integrals of the mono-
mials βi(ξ ) over the unit box B are constant values that can be precomputed in
advance, the expression (44) is a weighted sum of the coefficients vi of σslk(ξ ). No-
tice that due to the nonnegativity of the SOS polynomial σslk(ξ ), the integral (44)
can be zero only if σslk(ξ ) = 0 for all ξ which is equivalent to the case where the
slack is not present.

The previous discussion summarizes to the following SOS programming prob-
lem

Iσ (η) = min.
∫

Y
σslk(ξ )dξ

s.t. (43), (35b)

σslk,σ0,σ1,σ2, σ̄0, σ̄1 SOS polynomials

V, p1, p2, p3, p̄1 arbitrary polynomials,

(45)

where Iσ (η) denotes the problem’s optimal value. Since the cost of (45) is a lin-
ear function of the polynomial coefficients (as can be seen in (44)), the SOS prob-
lem (45) is equivalent to an SDP and can be solved efficiently. As the control pa-
rameters η feasible in the original problem (41) are those for which the slack is
identically equal to zero (i.e., they are in the set {η | Iσ (η) = 0 ,η ∈ Ω}), they cor-
respond to the set of optimal solutions of the problem

min. Iσ (η)
s.t. η ∈Ω ,

(46)

where each evaluation of Iσ (η) is done by solving (45).
The slack minimization problem (46) can be addressed by using Bayesian op-

timization which is a derivative-free method for finding global optimal solutions
under constraints. It is applicable to the problems of the form (41) and (46) where
black-box cost functions P(η) and Iσ (η) are involved. The constraint set can be
specified either explicitly (like the set Ω in (41) and (46)) or as an error in the evalu-
ation of the cost (e.g., the +∞ values in (41) caused by the δst(η) term). The values
of the cost function are allowed to be either deterministic (like with Iσ (η) in (46)) or
stochastic (like with P(η) in (41) in case when the approximate evaluation (40) with
random samples is used). For information pertaining to the practical application of
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Bayesian optimization, the reader is referred to [29]. From an algorithmic point of
view, the algorithm operates in such a way that at each iteration of the Bayesian
optimization the currently available cost evaluation pairs, e.g. {ηi, Iσ (ηi)}, are used
to build a statistical model of the cost function based on Gaussian Processes. This
statistical model is then used to build a so-called acquisition function a(η) which is
such that its minimizer represents the next sampling point η that balances between
exploitation of the currently known cost values {ηi, Iσ (ηi)} and exploration of the
less known regions of the cost function Iσ (η). The feature that the next sampling
point η is determined by minimizing the acquisition function a(η) instead of oper-
ating with the actual cost function (Iσ (η) or P(η)) makes the algorithm particularly
suitable for problems where the evaluation of the cost is time consuming or in some
other sense expensive.

3.5.2 Second Phase: Minimization of the Performance Metric

The second phase takes a certain number of the solutions generated in the first phase
(which are due to Iσ (η) = 0 property feasible in (41)) and uses them as the initial
conditions to start the Bayesian optimization algorithm on the performance opti-
mization problem (41). Due to the exploration property of the Bayesian optimiza-
tion, the solutions obtained in the first phase will be different among themselves
and as the initial points in the second phase they would provide information to
the Bayesian optimization algorithm about the location of a stabilizing region. As
such, it would be a region of focus for further investigation due to the data exploita-
tion property of Bayesian optimization. Addressing the problem (41) by Bayesian
optimization without the stabilizing initials coming from the first phase would in-
volve difficulties in locating a stabilizing region as the only values available to the
Bayesian optimization until the first stabilizing parameter η is encountered would
be +∞, which (in contrast to the slack integral) are not informative about the dis-
tance to stabilizing parameters and cannot be used to give an indication where to
sample next in order to reach a stabilizing region.

3.6 Numerical Example

This section demonstrates the synthesis on a system model (26) of the form

x+1 = 0.9x1 +0.2x2 +0.1x1x2 +2u, (47)

x+2 =−0.3x1 +0.6x2 −0.4x1x2, (48)

y = x, (49)

with input constraint

−umax ≤ u ≤ umax (50)
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where umax = 1. The QP controller (27) is selected to be of size 2 (i.e., θ ∈R
2) with

the C and d fixed to

C =

⎡
⎢⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎥⎦ , d =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , (51)

and the elements of the symmetric positive definite matrix H ∈R
2×2 and of matrix

F ∈ R
2×2 are selected for the tuning parameters, resulting in η ∈ R

7. The system
input u is selected to be the first component of the decision vector θ resulting in (28)
being u = [1 0]θ . Since the first component of θ is constrained as −1 ≤ θ1 ≤ 1
by the first two rows of the specified G and d in (51), the input constraint (50) is
guaranteed to be satisfied.

Fig. 4: The obtained QP control law. The component θ1 of the decision vector θ
corresponds to the plant input.
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Fig. 5: Evolution of the state vector, input signal and the Lyapunov function values
along the state trajectory starting from x0 = [−4.99,−1.97]�. Without the control
action (i.e., with u = 0), the evolution of the state vector starting from this x0 is
unstable.



410 M. Kvasnica et al.

The synthesis is run with a box shaped local stability set (37) of the form

X = {x | −xbnd ≤ xi ≤ xbnd , i = 1,2} (52)

where xbnd = 5. The Lyapunov function V (x) is selected to be of order four, the
SOS polynomial multipliers σ(ξ ) of order two, the arbitrary polynomial multipliers
p(ξ ) of order two, and the SOS slack polynomial σslk(ξ ) of order four. After 240
Bayesian optimization iterations applied to the phase one problem (46), 8 stabiliz-
ing controllers were obtained. The average time per Bayesian optimization iteration
in the first phase was 13.68 seconds. The obtained stabilizing controllers were then
used as the initial conditions for a total of 240 Bayesian optimization iterations
applied to the phase two problem (41) that optimizes performance P(η). The per-
formance criteria P(η) was chosen to have a stage cost l(x,u) = x�x with discount
factor α = 1, and it was evaluated approximately by using (40) with N = 100 and
M = 100. The average time per Bayesian optimization iteration in the second phase
was 18.91 seconds. The obtained H and F matrices are

H =

[
0.8957 −0.2267
−0.2267 1

]
, F =

[
0.5193 −0.7642
0.0388 0.4387

]
, (53)

which result in the QP control law (27) plotted in Figure 4. The trajectory of the
state vector, input signal, and Lyapunov values along the trajectory starting from a
randomly generated initial point x0 is represented in Figure 5.
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28. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings
of the CACSD Conference, Taipei (2004)

29. MathWorks: Statistics and machine learning toolbox: User’s guide (r2016b). https://www.
mathworks.com/help/pdf doc/stats/stats.pdf, September 2016

30. Milne, G.W.: Grumman f-14 benchmark control problem solution using BLKLAB. In: IEEE
Control Systems Society Workshop on Computer-Aided Control System Design, December
1989, pp. 94–101

31. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual (2016)
32. Oberdieck, R., Diangelakis, N.A., Papathanasiou, M., Nascu, I., Pistikopou-

los, E.: Pop-parametric optimization toolbox. Ind. Eng. Chem. Res. 55(33),
8979–8991 (2016)

https://www.mathworks.com/help/pdf_doc/stats/stats.pdf
https://www.mathworks.com/help/pdf_doc/stats/stats.pdf


412 M. Kvasnica et al.

33. Oishi, Y.: Direct design of a polynomial model predictive controlle. IFAC Proceedings Vol-
umes 45(13), 633–638 (2012)

34. Oishi, Y.: Simplified approaches to polynomial design of model predictive controllers. In:
2013 IEEE International Conference on Control Applications (CCA), pp. 960–965 (2013)

35. Parisini, T., Zoppoli, R.: A receding-horizon regulator for nonlinear systems and a neural
approximation. Automatica 31(10), 1443–1451 (1995)

36. Primbs, J.A.: The analysis of optimization based controllers. Automatica 37(6), 933–938
(2001)

37. Spjøtvold, J., Tøndel, P., Johansen, T.A.: A Method for Obtaining Continuous Solutions to
Multiparametric Linear Programs. In: IFAC World Congress, Prague (2005)

38. Tøndel, P., Johansen, T.A., Bemporad, A.: Evaluation of piecewise affine control via binary
search tree. Automatica 39(5), 945–950 (2003)

39. Wen, Ch., Ma, X., Ydstie, B.E.: Analytical expression of explicit MPC solution via lattice
piecewise-affine function. Automatica 45(4), 910–917 (2009)



Robust Optimization for MPC

Boris Houska and Mario E. Villanueva

1 Introduction

This chapter aims to give a concise overview of numerical methods and algorithms
for implementing robust model predictive control (MPC). In contrast to nominal
(certainty-equivalent) MPC, which is by now used in many industrial processes,
robust MPC has—at least so far—found much fewer real-world applications. On
the one hand, this is due to the fact that nominal MPC often exhibits a certain
robustness—as a feedback controller it is inherently able to reject disturbances.
Thus, for applications where safety is less critical, a robust MPC formulation, which
explicitly models the influence of uncertainty, might simply not be needed. On the
other hand, the limited deployment of robust MPC controllers in real-life may very
well be due to the numerical challenges associated with their implementation. These
challenges range from the need to model the uncertainty affecting the process to the
intractability of general nonlinear formulations—therefore, restricting real-time im-
plementations of robust MPC to simplified models or conservative approximations
of the general nonlinear problem. It is also important to notice that the modeling
decisions and the problem formulation often influence the choice of an appropriate
numerical method. Thus, if one has a process for which it is necessary to explic-
itly take robustness aspects into account when designing an MPC controller, it is
important to know about which tools and algorithms are available.

The focus of the present chapter is to discuss convex approximations of linear
robust MPC as well as numerical methods for nonlinear robust MPC, leading to
practical implementations. In particular, the advantages and disadvantages of vari-
ous approaches are explained. Our aim is to explain and summarize highlights of the
robust MPC literature from a new and somehow unifying perspective, but, as such,
we do not present any new technical contributions. Moreover, different overviews
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of robust MPC can be found elsewhere in the literature. For example, the book chap-
ter [69, Chapter 3] by J. Rawlings and D. Mayne and the plenary article [64] by
S.V. Raković discuss a great variety of methods for robust MPC for linear discrete-
time systems as well as the trade-off between computational complexity and accu-
racy. Because our aim is to give a self-consistent overview of numerical methods for
robust MPC, some sections of this chapter may overlap with these existing reviews.
Nevertheless, this chapter reviews these methods not only from a different, higher-
level perspective but also with a much stronger focus on numerical aspects that arise
when dealing with nonlinear continuous-time systems, while more theoretical prop-
erties, such as closed-loop stability of the controller, are not addressed.

2 Problem Formulation

We assume that we have a dynamic process model of the form

∀t ∈ R, ẋ(t) = f (x(t),u(t),w(t)),

which is affected by an unknown but bounded disturbance input. Here, x : R→ R
nx

denotes the state trajectory, u : R → R
nu the control input, and w : R → R

nw the
external disturbance or process noise. The function f : Rnx ×R

nu ×R
nw → R

nx is—
unless otherwise stated—nonlinear, but assumed to be integrable in all its arguments
and Lipschitz continuous in its first argument. It is assumed that the process model
is specified together with1

1. a closed set X⊆ R
nu modeling the state constraints,

2. a compact set U ∈K
nu modeling the control constraints,

3. and a compact set W ∈K
nw modeling the disturbance constraints.

Notice that even if the state x0 ∈ R
nx of the system at time t is known, the future

state cannot be predicted accurately. This is due to the fact that the function w is
unknown to us. However, one important assumption of MPC is that the system state
can be measured, i.e., the controller can react to disturbances in closed-loop mode.
In the following, the function μ : R×X → U denotes a feedback law. For a given
initial value x0 ∈ R

nx , the associate closed loop system can be written in the form

∀t ∈ [0,T ], ẋ(t) = f (x(t),μ(t,x(t)),w(t)), with x(0) = x0 . (1)

Now, a feedback law μ : [0,T ]×X→ U is called feasible on the time horizon [0,T ]
and for a given initial value x0 ∈ R

nx , if all solutions x of the above closed-loop
system satisfy x(t) ∈ X for all t ∈ [0,T ] and for all possible uncertainties w, which
satisfy w(t) ∈W for all t ∈ [0,T ].

Robust MPC controllers search at every sampling time for feasible feedback laws
μ , which are optimal among all feasible feedback laws on a given finite horizon with

1 the set of compact and convex and compact sets in R
n are denoted, respectively, by K

n and K
n
C.
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respect to a given control performance criterion. Putting aside theoretical and nu-
merical difficulties associated to robust MPC, its practical implementation is mostly
analogous to certainty-equivalent MPC. This means that an optimization problem is
solved starting from a state measurement x0 (whenever it is available) and shifting
the time in a receding-horizon manner. The optimal control input u(0) = μ(0,x0)
is then sent to the real process. Throughout this chapter we assume that the state
measurement is accurate and that the feedback is instantaneous.

The remainder of this section is devoted to different ways of formulating these
problems mathematically, as well as their interconnections and particular chal-
lenges.

2.1 Inf-Sup Feedback Model Predictive Control

A mathematical formulation of robust MPC calls for the optimization over feasible
feedback laws as defined in the previous section. Let

ξ (t,x0,μ ,w) = x(t)

denote the solution of (1) as a function of x0, μ , and w. An inf-sup feedback model
predictive controller is given by

inf
μ:R×X→U

sup
w:R→W

∫ T

0
l(ξ (t,x0,μ ,w))dt +m(ξ (T,x0,μ ,w))

s.t. sup
w:R→W

hX (ξ (t,x0,μ ,w))≤ 0 for all t ∈ [0,T ] ,
(2)

where the function hX : Rnx → R is such that X = {x ∈ R
nx | hX(x) ≤ 0}. Here,

l : Rnx → R denotes the stage cost and m : Rnx → R the terminal cost. Although the
stage cost may also depend on the control, i.e., l(ξ (t,x0,μ ,w),μ(t,ξ (t,x0,μ ,w))),
this chapter omits this dependency in favor of a more compact notation.

Min-Max MPC Variants

Mathematical theories which analyze under which assumptions the above inf-sup
formulation can be replaced by a min-max formulation, can mostly be found in
the field of functional analysis and optimal control theory. In particular, these can
be found in the context of the analysis of viscosity solutions of the Hamilton-
Jacobi-Bellman-Isaacs equation [14, 25] as well as Pontryagin’s maximum prin-
ciple [45, 61]. In general, however, it is difficult to check whether a Lebesgue-
integrable minimizer μ of (2) exists. In the context of this paper, this question is—to
a certain extent—less relevant as long as the objective is bounded from below on the
feasible set, as is the case for standard tracking objectives. This is because as numer-
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ical methods for solving (2) focus on finding feasible but potentially sub-optimal
(also called conservative) points of (2).

2.2 Set-Based Robust Model Predictive Control

An alternative formulation of the inf-sup feedback MPC uses the concept of reach-
able sets. Let2

X(t,x0,μ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xt ∈ R
nx

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈W nx
1,2, ∃w ∈ Lnw

2 : ∀τ ∈ [0, t],

ẋ(τ) = f (x(τ),μ(τ ,x(τ)),w(τ))

x(0) = x0 , x(t) = xt

w(τ) ∈W

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

denote the set of all possible solutions of the closed-loop system at time t for a given
feedback law μ and for a given initial value x0 ∈R

nx . Continuous-time robust MPC
optimizes the future feedback policy μ by solving the optimization problem

inf
μ:R×X→U

∫ T

0
�(X(t,x0,μ))dt +M (X(T,x0,μ))

s.t. X(t,x0,μ)⊆ X for all t ∈ [0,T ] .
(3)

Here, the function � : Knx → R denotes a scalar performance measure while the
function M : Knx → R denotes the scalar terminal cost.

By definition of the closed-loop reachable set X(t,x0,μ), the feasible sets of (2)
and (3) coincide. In principle, one could define the objective functions � and M
in dependence on l and m in such a way that complete equivalence of the inf-sup
and the set-based formulations is achieved. However, as we will see further below a
more important practical consideration is that the choice of the numerical solution
method eventually depends on the particular problem formulation and, of course,
also on how the objective function is modelled.

Topological Properties

From a pure mathematical perspective one might argue that problems of the form (3)
are rather well-understood in the sense that the topological properties of the sets
X(·,μ ,x0) have been analyzed exhaustively in the context of viability theory [3]
and differential inclusions [73]. This connection becomes apparent once the set

2 We denote with Ln
2 the set of n-dimensional L2-integrable functions. Similarly, W n

1,2 denotes the
associated Sobolev space of weakly differentiable and L2-integrable functions on [0,T ] with L2-
integrable weak derivatives.
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X(·,μ ,x0) is interpreted as the solution set of the differential inclusion

ẋ(t) ∈F (t,x(t),μ) with x(0) = x0

with set-valued right-hand side

F (t,x(t),μ) = { f (x(t),μ(t,x(t)),w(t)) | w(t) ∈W} .

For example, it is known that if the right-hand set F (t,x(t),μ) of this differential
inclusion is convex and compact, the sets X(t,μ ,x0) are compact under suitable
assumptions on μ and f [24]. This result can also be used as a starting point for
analyzing whether minimizers of (3) exist [45, 74].

Discrete-Time Variant

Most of the methods in this chapter can also be applied for the case that the dynamic
process is given in the form of a discrete-time system,

∀k ∈ {1, . . . ,N}, xk+1 = f (xk,uk,wk).

Here,3 x = [x1, . . . ,xN ], u = [u0, . . . ,uN−1], and w = [w0, . . . ,wN−1] denote, respec-
tively, the states, controls, and disturbances. The formulation of the associated ro-
bust MPC problem is analogous to the continuous-time case,

inf
μ0,...,μN−1:X→U

N−1

∑
k=0

�(Xk(x0,μ))+M (XN(x0,μ))

s.t. Xk(x0,μ)⊆ X for all k ∈ {0, . . . ,N}
(4)

with

Xk+1(x0,μ) =

⎧⎪⎪⎨
⎪⎪⎩

xk+1 ∈ R
nx

∣∣∣∣∣∣∣∣

∃x ∈ R
nx×N , ∃w ∈ R

nw×(N−1) : ∀i ∈ {0, . . . ,k},

xk+1 = f (xk,μk(xk),wk),

wk ∈W

⎫⎪⎪⎬
⎪⎪⎭

.

The optimization variables, μ0, . . . ,μN−1 : X → U, correspond to the sequence of
future feedback policies.

3 The symbols used for continuous-time models will also be used for discrete-time. Since hybrid
models are not considered in this chapter, no confusion should arise from this abuse of notation.
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2.3 Numerical Challenges

So far, we have introduced two basically equivalent mathematical formulations for
the robust optimal feedback control problem. Both formulations showcase different
properties of the problem and also motivate different numerical solution methods.
Regardless of the chosen formulation, it is clear that robust MPC problems are more
difficult to solve than certainty-equivalent MPC problems. The two main reasons
are that

1. the predicted vector-valued state trajectory x of certainty-equivalent MPC has
to be replaced by a set-valued tube X(·,x0,μ), and

2. the optimization variable μ of the robust MPC problem (3) is a feedback law,
i.e., a function of the current time t and the current state x(t), rather than a single
open-loop control trajectory u : [0,T ]→ U.

Looking at these points, it may appear that (3) involves the extra difficulty of com-
puting the set-valued tube. However, (2) is a bi-level optimization problem and, as
a consequence, the construction of numerical algorithms for computing rigorous
solutions will require information about the solution set of the closed-loop system,
too.

For anything but the simplest of systems, attempting to solve the infinite dimen-
sional robust optimal feedback control problem with high numerical accuracy may
be futile. In part, because the set-valued tube X(·,μ ,x0) cannot, apart from very
simple cases, be stored accurately, and, in part, because algorithms to optimize over
general feedback functions do not exist. Therefore, the focus of modern numerical
robust MPC algorithms is mostly on computing sub-optimal but feasible feedback
laws. Thus, the remainder of this chapter is devoted to presenting numerical algo-
rithms that either exploit particular structures in the problem, e.g. linearity of the
dynamics, or construct tractable approximations of the problem.

3 Convex Approximations for Robust MPC

Because the robust MPC problem needs to be solved in real-time, it would be favor-
able if we could generate approximate solutions of (3) by solving a convex optimal
control problem. Unfortunately, for general robust MPC problems, such convex ap-
proximations are hard to find. Nevertheless, for the case that the system dynamics
is affine in the states and controls and under suitable additional conditions on the
constraints and objective, it is possible to use tools from the field of convex opti-
mization to construct tractable conservative approximations of (2) or (3). Therefore,
the purpose of the following sections is to outline the main successful strategies,
which lead to reasonably accurate and scalable convex approximations. Here, “scal-
able” means that we exclude exhaustive state-space partitioning methods as used in
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the field of dynamic programming or explicit robust MPC for a moment, which are,
however, reviewed at a later point in this chapter.

3.1 Ellipsoidal Approximation Using LMIs

Let us consider a linear system of the form

f (x(t),u(t),w(t)) = A(t)x(t)+B(t)u(t) with w(t) = [A(t),B(t)] .

We assume that the sets U = E (U) and X = E (P) are ellipsoids4 with given shape
matrices5 P ∈ S

nx
+ and U ∈ S

nu
+ and that the uncertainty set6

W= co({[A1,B1], . . . , [Am,Bm]})

is a polytope with given vertices [Ai,Bi] ∈ R
nx×(nx+nu). Following a (conservative)

linear parametrization of the feedback law, u(t) = K(t)x(t), the associated closed-
loop system is an uncertain linear system of the form

ẋ(t) = (A(t)+B(t)K(t))x(t) with x(0) = x0 .

It can be checked easily that the reachable set of this differential equation can
be overestimated by an ellipsoidal tube, X(t,μ ,x0) ⊆ E (P(t)), if the time-varying
shape matrix P satisfies the Lyapunov differential inequality

Ṗ(t) ' (A(t)+B(t)K(t))P(t)+P(t)(A(t)+B(t)K(t))T (5)

P(0) ' x0xT0 . (6)

This matrix inequality needs to hold for all t ∈ [0,T ] and all matrix-valued functions
A,B, which satisfy [A(t),B(t)]∈W for all t ∈ [0,T ]. The control constraint, u(t)∈U,
can be written as

∀ξ ′ ∈ E (P(t)), K(t)ξ ′ ∈ E (U) ⇔ K(t)P(t)K(t)T )U .

In order to proceed, one needs to apply two convex analysis “tricks”:

1. We introduce the variable substitution Y (t) = K(t)P(t) to get rid of the bilin-
ear terms in (5). As long as the search is constrained to positive functions
P(t) ( 0, this substitution is invertible, i.e., optimizing over the function
Y : [0,T ] ∈ R

nu×nx is equivalent to optimizing over the feedback gain ma-
trix K(t) = Y (t)P(t)−1.

4 In this chapter, E (Q) := {Q
1
2 v | vᵀv ≤ 1} denotes an n-dimensional ellipsoid with positive

semidefinite shape matrix Q.
5 The set of symmetric positive semidefinite matrices in R

n×n is denoted by S
n
+.

6 We use the notation co(S) for the convex hull of a set S.
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2. Since the right-hand expression in (5) is affine in w(t) = [A(t),B(t)] it is suffi-
cient to enforce this inequality at the vertices of the polytope W rather than for
all points inside this polytope.

In summary, (5) holds for all A,B with [A(t),B(t)] ∈W if

Ṗ(t)' AiP(t)+P(t)AT
i +BiY (t)+Y (t)TBT

i , ∀t ∈ [0,T ]

P(0)' x0xT0 ,

holds for each i ∈ {1, . . . ,m}, with Y (t) =K(t)P(t). The state and control constraints
can now be enforced through

P(t)) P and K(t)P(t)K(t)T = Y (t)P(t)−1Y (t)T )U .

The latter inequality is “quadratic-over-linear” in (Y,P) and thus convex. By using
Schur complements, this inequality can alternatively be written in the form of the
linear matrix inequality (

U Y (t)

Y (t)T P(t)

)
' 0 ,

which has the additional advantage that the inverse of P(t) is not needed. Now, a
conservative approximation of (3) is given by

inf
P,Y

∫ T

0
�(E (P(t))dt +M (E (P(T )))

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀t ∈ [0,T ], ∀i ∈ {1, . . . ,m} :

Ṗ(t)' AiP(t)+P(t)AT
i +BiY (t)+Y (t)TBT

i

P(0)' x0xT0

0 )
(

U Y (t)

Y (t)T P(t)

)

0 ≺ P(t)) P .

(7)

If one models the objective in such a way that the expression in the Lagrange and
Mayer term are convex in P, for example, with

�(X ′) = max
ξ ′∈X ′

‖ξ ′‖2
2 =⇒ �(E (P(t)) = λmax(P(t)) and M (X ′) = 0 ,

the optimization problem (7) is a convex optimal control problem. Every feasible
solution (Y,P) of (7) yields a control law,

μ(t,ξ ′) = Y (t)P(t)−1ξ ′ ,

which is a feasible point of the original robust MPC problem (3).
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The above linear matrix inequality (LMI) based approximation of robust MPC
has (in a very similar variant) been proposed in [39, 82]. Of course, one could
think of many other variants and extensions of the convex robust MPC approxima-
tion (7). For example, one could try to extend the above analysis by working with
affine rather than linear control parametrizations or by extending the formulation
for other types of objectives or other uncertainty models. Some of these variants
lead to convex optimization problems or at least to optimization problems, which
are convex with respect to most of their optimization variables, as discussed exten-
sively in J. Löfberg’s Ph.D. thesis [47]. However, the main idea of most of these
LMI relaxations is to substitute the equation

Y (t) = K(t)P(t)

(or similar variable transformations) at some point in the derivation in order to elim-
inate bilinear terms. For a more general overview on LMIs in systems and control,
we refer to the textbook [13], because many of the methods in this book can be used
as a starting point to construct LMI relaxations or other types of convex approxima-
tions of robust MPC.

Feasibility

In general, (7) is a conservative approximation of the original robust MPC problem.
Thus, the semi-definite state constraint, P(t)) P, may lead to infeasibility—even if
the original robust MPC problem was perfectly well-formulated and feasible. Nev-
ertheless, under the additional assumption that there exists a Ȳ ∈R

nu×nx such that P̄
satisfies

∀i ∈ {1, . . . ,m},

⎧⎪⎨
⎪⎩

0 ' AiP̄+ P̄AT
i +BiȲ + ȲTBT

i

P̄ )
(

U Ȳ

ȲT P̄

)
,

(8)

then E (P̄) is a robust forward invariant set, i.e., (7) is feasible (and remains recur-
sively feasible) as long as the initial value satisfies x0 ∈ E (P̄).

3.2 Affine Disturbance Feedback

A second approach for approximating the robust feedback policy optimization prob-
lem by a convex optimization problem is based on affine disturbance feedback pa-
rameterization. This approach can be applied to linear systems of the form

f (x(t),u(t),w(t)) = Ax(t)+Bu(t)+w(t) .
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In contrast to the model from the previous section, the matrices A ∈ R
nx×nx and

B ∈ R
nx×nu are assumed to be given, i.e., the uncertainty w enters in the form of an

additive offset only. Next, the main idea is to introduce a linear feedback parameter-
ization with memory, i.e., a control law of the form

u(t) =
∫ t

0
L(t,τ)x(τ)dτ ,

where the function L : R×R→ R
nu×nx becomes the new optimization variable. At

this point, one should be clear in mind that the formulation of (3) was based on
the assumption that the feedback law, μ(t,x(t)), depends on the current state only,
but does not have memory. This assumption is not restrictive, as the current (exact!)
state measurement contains all the relevant information that is needed to predict
the future evolution of the system. However, if we restrict ourselves to affine state
feedback laws, it may be that the optimal feedback law depends on previous state
measurements, i.e., the principle of information separation into future and past is
violated. Now, the main observation is that optimizing over the set of affine state
feedback laws with memory is equivalent to optimizing over the class of affine dis-
turbance feedback laws of the form7

u(t) =
∫ t

0
M(t,τ)w(τ)dτ ,

where M : R×R→ R
nu×nx is now the new optimization variable. This equivalence

becomes apparent8 by noticing that the disturbance function can be computed from
w(τ) = ẋ(τ)− Ax(τ)− Bu(τ), if we know the functions x and u on the horizon
τ ∈ [0, t]. The mathematical advantage of this change of variables is that the state at
time t,

x(t) = H(t,x0)◦M

is an affine functional in M. Here, H(t,x0) denotes an affine operator,

H(t,x0)◦M = eAtx0 +
∫ t

0
eA(t−τ)

(
B
∫ τ

0
M(τ ,τ ′)w(τ ′)dτ ′+w(τ)

)
dτ ,

mapping the function M to x(t). Consequently, if the sets X and U are convex, the
set of feasible disturbance feedback functions,

CM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M : R×R→ R
nu×nx

∣∣∣∣∣∣∣∣∣∣

∀w : [0,T ]→W,∀t ∈ [0,T ],
∫ t

0
M(t,τ)w(τ)dτ ∈ U

H(t,x0)◦M ∈ X

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

7 The idea to use affine disturbance feedback parametrization in order to approximate robust MPC
can be found, in different variants, in [7, 12, 44] as well as in an early article by J. Löfberg [48].
8 Details about this equivalence statement together with a formal proof in the discrete-time setting
can be found in an article by Goulart and Kerrigan [28].
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is convex. Similarly, if we have worst-case objectives of the form

�(X ′) = max
ξ ′∈X ′

l(ξ ′) and M (X ′) = max
ξ ′∈X ′

m(ξ ′)

with convex functions l and m, the corresponding parametric functionals

�(X(t,μ ,x0)) = �̃(t,M,x0) = max
w,w(τ)∈W

l (H(t,x0)◦M)

and M (X(T,μ ,x0)) = M̃ (M,x0) = max
w,w(τ)∈W

m(H(t,x0)◦M)

are convex in M, since the maximum over convex functions remains convex. Con-
sequently, a conservative approximation of (3) is given by the convex optimization
problem

inf
M∈CM

∫ T

0
�̃(t,M,x0)dt +M̃ (M,x0) . (9)

Of course, in order to solve (9) one still needs to discretize the function M—
preferably without destroying convexity. For example, if one uses piecewise con-
stant discretization of M on the 2-dimensional discrete-time grid,

{t0, t1 . . . , tN}×{t0, t1 . . . , tN}, 0 = t0 < t1 < .. . < tN = T ,

the resulting problem is convex with O(N2) matrix-valued optimization variables,
as worked out in an article by Goulart and Kerrigan [28]. Thus, in general, affine dis-
turbance feedback parametrization based robust MPC typically leads to algorithms
which scale (at least) quadratically with the discrete-time prediction horizon length
N. There are, however, variants which enforce additional structure of the function
M, e.g., by setting M(t,τ) = 0 for |t −τ | ≥ t̄ for a given constant t̄ > 0. This leads to
computationally less demanding but more conservative convex approximations of
the original robust MPC problem. Methods for analyzing the conservatism of affine
disturbance feedback parametrizations in the context of robust MPC can be found
in [77].

Moreover, the above linear feedback parametrization with memory is at most
as but in general less conservative than the linear feedback parametrization from
Section 3.1 as used in the early article by M.V. Kothare and co-workers [39]. A
discussion of more general feedback parametrization structures can also be found in
the overview article by S.V. Raković [64].

4 Generic Methods for Robust MPC

There are three main classes of generic numerical algorithms for robust nonlinear
MPC, namely, (Approximate) Dynamic Programming based approaches, Scenario-
Tree MPC based approaches, and Tube-MPC based approaches.
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4.1 Inf-Sup Dynamic Programming

Dynamic programming based methods for robust MPC are, at least in principle,
analogous to dynamic programming methods for nominal MPC. This means that
one introduces the so-called cost-to-go (or value) function

V (t,y) = inf
μ:R×X→U

sup
w:R→W

∫ T−t

0
lX(ξ (τ ,y,μ ,w))dτ+m(ξ (T − t,y,μ ,w))

for (t,y) ∈ [0,T ]×R
nx , where we use the shorthand

lX(ξ ) =

{
l(ξ ) if ξ ∈ X

∞ otherwise .

It is known since a long time that the function V can formally be obtained as the vis-
cosity solution of an inf-sup Hamilton-Jacobi-Bellman equation (also known under
the name “Hamilton-Jacobi-Bellman-Isaacs equation”). This, is a partial differential
equation (PDE) of the form

− ∂
∂ t

V (t,y) = inf
ν∈U

sup
ω∈W

{
lX(y)+∇yV (t,y)T f (y,ν ,ω)

}

V (T,y) = m(y)

(10)

on the domain [0,T ]×R
nx . Now, one can use numerical tools from the field of partial

differential equations in order to find an approximate solution. If a minimizer exists,
an optimal feedback law can be picked as

μ∗(t,y) ∈ argmin
ν∈U

sup
ω∈W

{
lX(y)+∇yV (t,y)T f (y,ν ,ω)

}
.

PDE solvers for Hamilton-Jacobi-Bellman equations have been developed in [57]
and there exists efficient software for solving this type of PDEs, e.g., the level-set
toolbox by Mitchell and co-workers [55, 56]. An appealing feature of the above
Hamilton-Jacobi-Bellman equation is that if we manage to solve this PDE, we can
have access to a globally optimal feedback law. This is important for certain non-
convex robust MPC scenarios, e.g., in the context of obstacle avoidance problems
in robotics [27].

A common criticism of (numerically accurate) generic methods based on a di-
rect solution of (10) is that these approaches can only be applied to problems with
a small number of states. This is due to the fact that, at least in general, one has
to use a grid in the state space in order to construct accurate approximations of the
function V , as discussed in [31]. In practice, the corresponding adaptive grid based
methods often only work well for generic problem with nx ≤ 3 states. Neverthe-
less, for the case that the differential equations have additional structure, it is pos-
sible to solve (10) for higher dimensional problems. For example, in recent articles
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by M. Chen, S. Bansal, and co-workers [4, 18] min-max Hamilton-Jacobi Bellman
equations have been solved numerically for (simplified) quadcopter models with up
to nx = 10 differential states by exploiting the rather particular structures of these
models.
Remark: Notice that the inf-sup Hamilton-Jacobi PDE is closely related to its asso-
ciated sup-inf version, which is obtained by swapping the inf and the sup operation
in (10). As discussed in [14], the solutions of the inf-sup and the sup-inf Hamilton-
Jacobi PDE coincide under mild technical assumptions. This result can also be ex-
pected intuitively, as the feedback is instantaneous. To see this, consider a differen-
tial game where both us and our adverse player (nature) are choosing all control and
disturbance reactions instantaneously. Clearly, if both players can choose their ac-
tions continuously in time, one cannot distinguish between who plays first and who
plays last. This is in contrast to the discrete-time min-max dynamic programming
recursion, which is reviewed below and for which the min and the max operation
cannot be exchanged.

Discrete-Time Variant

The discrete-time analog of the Hamilton-Jacobi-Bellman PDE (10) is known under
the name dynamic programming recursion,

Vk(y) = min
ν∈U

max
ω∈W

lX(y)+Vk+1( f (y,ν ,ω))

VN(y) = m(y)
(11)

for all k ∈{0, . . . ,N−1} and all y∈R
nx . Here, the function sequence VN ,VN−1, . . . ,V0

can be found by solving the above backward recursion. Next, an optimal solution
of the associated discrete-time robust MPC problem can be found as

μ∗
k (y) ∈ argmin

ν∈U
max
ω∈W

lX(y)+Vk+1( f (y,ν ,ω)) .

Discrete-time dynamic programming recursions are the basis for a number of exist-
ing robust MPC tools.

1. For the special case that the discrete-time system f is affine; m is piecewise
quadratic; and U, X, and W are polytopic, it can be shown that the functions Vk

are piecewise quadratic and can be constructed explicitly [6]. A corresponding
robust MPC tool is available as part of the multi-parametric toolbox MPT [32],
which can be used in combination with Yalmip [49].

2. For the special case that the discrete-time system f is affine, m is piecewise
affine; and U, X, and W are polytopic, approximate robust dynamic program-
ming methods have been developed in [9, 20]. These construct which construct
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piecewise affine upper- and lower bounds on the function Vk, leading to a sub-
optimal robust MPC controller with guarantees.

Other dynamic programming or approximate dynamic programming tools and meth-
ods can be found in [8, 83].

4.2 Scenario-Tree MPC

The scenario-tree approach [72], sometimes also referred to as Multi-Stage MPC,
is a method for generating optimistic approximations of the discrete-time robust
MPC problem (4). This means that if we have a continuous-time problem, we have
to discretize this problem first. Now, the main idea is to choose a discrete inner
approximation W = {w̃1, . . . , w̃m} ⊆ W of the disturbance set. We also define the
index set I = {1, . . . ,m}. Next, an optimistic scenario based approximation of (4)
can be written in the form

inf
x̃,ũ

N−1

∑
k=0

�
({

x̃k,i1,...,ik | i1, . . . , ik ∈I
})

+M ({x̃N,i1,...,iN | i1, . . . , iN ∈I })

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀k ∈ {0, . . . ,N}, ∀ik ∈I ,

x̃k+1,i1,...,ik+1 = f (x̃k,i1,...,ik , ũk,i1,...,ik , w̃ik+1) ∈ X

ũk,i1,...,ik ∈ U

x̃0 = x0 .

(12)

The optimization variables of this problem, x̃ ∈ R
nx·dN and ũ ∈ R

nu·dN−1 , contain
the states and associated optimal control reactions of all possible scenarios. Notice
that one can pick m possible uncertanties w̃i1 ∈ W in the first step. For each of
these scenarios, one can choose a control reaction ũ1,i1 . In the second step, there are
already m2 possible scenarios; and so on. Thus, in total, there are dN − 1 possible
scenarios with

dN = 1+m+m2 + . . .+mN =
mN+1 −1

m−1
.

A visualization of this approach for m = 2 can be found in Figure 1. Notice that
this approach is not rigorous in the sense that it does not necessarily lead to a fea-
sible control law. This is due to the fact that only a finite number of uncertainty
scenarios is taken into account. Nevertheless, this optimistic approximation may be
sufficiently accurate for practical purposes if m is large. Moreover, if a probability
distribution of the disturbance inputs wk is available, one may choose the points w̃i

according to this distribution such that additional information about the probability
distribution of future states can be inferred.
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Fig. 1: Visualization of optimized discrete-time scenarios obtained for an obstacle
avoidance problem and m = 2. After the first discrete-time step, the airplane may be
at one out of 2 possible positions in the state-space. After two time steps, there are
already 4 possible positions, and so on, leading to an exponentially large number
of scenarios for long horizons. The corresponding feedback control inputs are opti-
mized in such a way that the possible positions of the airplane (dots) never overlap
with the obstacle.

The practical applicability of the scenario-tree approach is limited by the fact that the
number of scenarios increases exponentially with the time horizon N. This means
that the scenario approach can only be used for small N (in practice often N ≈ 3).
On the other hand, this approach is applicable to robust MPC problems with many
states, nx - 1, which can be seen as an advantage compared to dynamic program-
ming or tube based approaches. Current research on scenario-tree approaches mostly
focus on the development of solvers, which can exploit the particular structure of
the optimization problem (12), as well as on heuristics for reducing the number of
scenarios [23, 50].

4.3 Tube MPC

As mentioned in the introduction, often the problem formulation motivates the
choice for an appropriate numerical method. A detailed analysis of (3) suggests that
a direct method for solving this robust MPC problem can be obtained by construct-
ing parametric outer approximations of the tube X(·,μ ,x0). The main idea (sketched
in Figure 2) is simple but elegant: tube-based MPC approaches, as formalized by
Raković, Mayne, and collaborators [43, 63], compute an outer approximation of the
set of all possible states that can be reached under all possible (continuous-time)
disturbance scenarios.

Obviating for a moment that the outer optimization in (3) is still an optimal con-
trol problem over feedback laws, the development of scalable numerical algorithms
for tube MPC relies on our ability to construct tractable representations of the tube.
In particular, the over approximations of the closed-loop reachable sets must be con-
structed, stored, and propagated efficiently.
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Fig. 2: In contrast to Scenario-Tree MPC from Figure 1, Tube MPC optimizes a
single set-valued tube in the state space, which encloses all possible scenarios. The
tube (shaded area) may not intersect with the infeasible region in the state-space, in
this case an obstacle.

Due to its importance among robust MPC methods, the next section is devoted to
presenting the main strategies used to construct tube MPC based control algorithms.

5 Numerical Methods for Tube MPC

In this section we present strategies to construct tube model predictive control algo-
rithms. These strategies present some answers to the two main difficulties of tube
MPC: the outer optimization over feedback laws and the practical construction of
tubes for the inner optimization. Both problems can be addressed by appropriate
parametrizations, first, of the feedback law, and second, of the reachable set outer
approximations.

5.1 Feedback Parametrization

The most common class of feedback parametrizations for constructing approxima-
tions of (3) is that of affine feedback laws of the form

μ̃[K,k](t,x) = K(t)x+ k(t) .

If we substitute μ = μ̃[K,k] in (3), the new optimization variables are the matrix-
valued function K : R → R

nu ×R
nx and the vector-valued additive offset function

k : R→ R
nu . In this case, the control constraint,

∀t ∈ [0,T ], K(t)X(t, μ̃[K,k],x0)+ k(t)⊆ U ,

has to be added explicitly in order to ensure that the control law is feasible. Clearly,
this and other feedback parameterizations lead to conservative approximations
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of (3). This means that if the corresponding optimization problem has a solution,
we find a control law that ensures that all constraints are satisfied for all possible
uncertainty scenarios. In some articles, e.g. in [84], it has been suggested to pre-
compute a suitable feedback gain K and only optimize k online, which leads to a
simpler optimization problem but an even more conservative approximation of (3).
Similarly, one can use more expensive but less conservative feedback parametriza-
tions, e.g., by optimizing over polynomial feedback laws or piecewise affine control
laws [6].

The optimization variable μ of the robust MPC controller (3) is sometimes called
an “ancillary control law” (see, e.g., [69]), because it is only needed to compute
feasible set-valued tubes in the state-space. Thus, even if we substitute a linear feed-
back parametrization of μ , the actual robust MPC controller realizes a nonlinear
control law, because μ is recomputed whenever a new measurement becomes avail-
able. However, there are two notable practical variants of robust MPC, which use
the feedback law μ explicitly:

1. Offline Robust MPC, also called (approximate) Explicit MPC, solves (3) approx-
imately offline, e.g., on a sufficiently long horizon (or with periodic boundary
conditions on the tube) and over a suitable class of parametric feedback laws,
and then uses the optimal feedback law to control the process.

2. Real-Time Robust MPC uses an optimized feedback law μ to control the process
at a high sampling rate, but updates μ every now-and-then depending on how
long the numerical routine needs to solve (3). For this variant, one would usually
optimize over a class of feedback laws that can be evaluated efficiently in online
mode.

5.2 Affine Set-Parametrizations

The formulation of (3) is based on the introduction of the set-valued tubes X(·,μ ,x0).
Unfortunately, it is not possible to store general sets in a computer. Consequently,
many set based numerical methods for robust MPC focus on the construction of
computer representable sets, which approximate the exact reachable set from out-
side. Examples of frequently used computer-representable sets are intervals, zono-
topes, polytopes, ellipsoids, and polynomial sets. All these sets have in common that
they can be written in the form

C ∗E+ c = {Cx+ c | x ∈ E} ,

where E ⊆ R
m is a compact basis set. The matrix C ∈ R

n×m and the vector c ∈ R
n

are the coefficients of the set parametrization. As the coefficient matrix [C,c] is finite
dimensional it can be stored in a computer. For example, in order to store an interval,
one would use the unit box,

E= {x ∈ R
n | ‖x‖∞ ≤ 1} ,
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Table 1: List of frequently used computer-representable sets with polynomial stor-
age complexity.

Set Basis set E Coefficients Storage
complexity

Interval

{x ∈ R
n | ‖x‖∞ ≤ 1} C ∈ R

n×n
+ ; c ∈ R

n

C diagonal
O(n)

Zonotope

{x ∈ R
m | ‖x‖∞ ≤ 1} C ∈ R

n×m; c ∈ R
n O(nm)

Polytope {
x ∈ R

m
+ | ∑i xi = 1

}
C ∈ R

n×m; c ∈ R
n O(nm)

Ellipsoid

{x ∈ R
n | ‖x‖2 ≤ 1} C ∈ R

n×n; c ∈ R
n

C symmetric and p.s.d.
O(n2)

Polynomial set
{(1;x1;x1x2; : : : ;xs

r)
ᵀ

with x ∈ [−1,1]r }
C ∈ R

n×(r+s
r ); c = 0 O(nrs)

as the basis set. The coefficient c can in this case be interpreted as the center of the
interval box. The matrix C is then required to be non-negative and diagonal such
that the diagonal entries can be interpreted as the widths of the box in different co-
ordinate aligned directions. If one allows more general coefficient matrices C, one
can also represent rotated (non-coordinate aligned) interval boxes. Table 1 lists a
number of affine set parametrizations [17], which are frequently used in the con-
text of robust MPC. Notice that some numerical set-based computing algorithms
use variants of the above affine set parametrizations. For example, if we work with
ellipsoids with center c = q and symmetric and positive semi-definite (p.s.d.) shape
matrix Q, {

Q
1
2 x+q | ‖x‖2 ≤ 1

}
,

it is sometimes more convenient to store the shape matrix Q directly instead of its
symmetric square-root C = Q

1
2 .
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5.3 Tube MPC Parametrization

In the context of tube MPC, the key for developing practical implementations is to
construct parametric coefficient functions

C(·,μ ,x0) : [0,T ]→ R
nx×m and c(·,μ ,x0) : [0,T ]→ R

nx ,

such that

∀t ∈ [0,T ], X(t,μ ,x0) ⊆ C(t,μ ,x0) ·E+ c(t,μ ,x0)

for a suitable basis set E ⊆ R
m, m ∈ N. For example, if E is a unit box, unit ball,

or unit simplex, one obtains zonotopic, ellipsoidal, or polytopic tubes. Notice that
there exist a variety of set-valued integrators from the field of set-valued computing,
which can be used to construct the functions C and c systematically.

These integrators can be used in combination with a suitable feedback parame-
terization, e.g., the affine feedback parametrization μ̃[K,k]. This leads to the conser-
vative approximation of the original robust MPC problem

inf
k:R→R

nx

K:R→R
nu×nx

∫ T

0
�(C(t, μ̃[K,k],x0) ·E+ c(t, μ̃[K,k],x0))dt

+M (C(T, μ̃[K,k],x0) ·E+ c(T, μ̃[K,k],x0))

s.t.

⎧⎪⎪⎨
⎪⎪⎩

∀t ∈ [0,T ] :

C(t, μ̃[K,k],x0) ·E+ c(t, μ̃[K,k],x0)⊆ X,

K(t)(C(t, μ̃[K,k],x0) ·E+ c(t, μ̃[K,k],x0))⊆ U

(13)

Depending on the particular choice of M , �, X, and U, this optimization problem
can be discretized and processed further in order to arrive at a standard nonlinear
programming problem. One remaining challenge, however, is that the resulting op-
timization problem is non-convex in general. Nevertheless, in principle, the above
parametrization based tube MPC approach leads to practical implementations. For
example in [69] a practical implementation of this approach for robust control of an
exothermic reactor can be found.

Notice that there exist a great variety of variants of the above outlined approaches
for Tube MPC such as Homothetic Tube MPC [66] or Elastic Tube MPC [67]. We
also refer to [64, 65] for a more general overview on parametrized Tube MPC.

5.4 Tube MPC Via Min-Max Differential Inequalities

One way to avoid parametrizing the feedback control law is to make use of a differ-
ent parametrization of (3). Here, the main idea is to rewrite the problem in terms of
so-called Robust Forward Invariant Tubes (RFITs). An RFIT is a set-valued func-
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tion X : R → K
nx for which there exists a feedback control μ : R×R

nx → U, such
that

X(t2)⊇
⋃

x1∈X(t1)

X(t2 − t1,x1,μ)

for all t1, t2 ∈ R with t1 ≤ t2. Let X denote the set of all RFITs for the dynamic
system on [0,T ]. The set-based MPC problem (3) can alternatively be written in the
form

inf
X∈X

∫ T

0
�(X(t))dt +M (X(T ))

s.t.

{
X(t)⊆ X, ∀t ∈ [0,T ],

X(0) = {x0} .

(14)

Now, we have traded optimizing over the feedback policy μ by an optimization
problem over RFITs. Fortunately, if we restrict ourselves to input-affine nonlinear
systems,

ẋ(t) = f (x(t),u(t),w(t)) = g(x(t),w(t))+G(x(t))u(t) ,

and restrict the class of RFITs to those with compact and convex cross-sections
X(t) ∈ K

nx
C , we can, at least in some cases, arrive at conservative but tractable ap-

proximations of (3). The construction of such approximations requires the use of
the support function

∀c ∈ R
n , σ [Z](c) := max

z∈Z
cᵀz ,

of a compact and convex set Z ⊆R
n. In [81] it is shown that if a set valued function

X : R→K
nx
C satisfies for almost all t ∈ [0,T ]

d
dt
σ [X(t)](c)≥ min

ν∈U
max
ξ ,ω

⎧⎪⎨
⎪⎩cᵀ f (ξ ,ν ,ω)

∣∣∣∣∣∣∣
cᵀξ = σ [X(t)](c)

ξ ∈ X(t)

ω ∈W

⎫⎪⎬
⎪⎭ , (15)

for each c ∈R
nx , and the function σ [X(·)](c) is, for all c ∈R

nx , Lipschitz continuous
on [0,T ], then it is an RFIT for the dynamic system on [0,T ]. Thus, any solution of

inf
X

∫ T

0
�(X(t))dt +M (X(T ))

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a.e. t ∈ [0,T ],

Inequality (15),

X(t)⊆ X ,

X(0) = {x0}

(16)

is a feasible point of (14). Problem (16) is not a standard optimal control problem,
as it includes a semi-infinite differential inequality constraint. However, one can use
the same set parametrization strategies as in Section 5.3 in order to reformulate (16).
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This leads to a band-structured optimization problem, whose complexity scales lin-
early with the horizon length.

One of the key features of (16) is that it does not require a parametrization of
the feedback law. Thus, the conservatism of the proposed approach depends only
on the parametrization of the tube cross-sections X(t). In fact, in case the chosen
parametrization has a smooth boundary with positive curvature, the feedback law
inducing the tube is a nontrivial nonlinear function given by

μ(t,y) = μ∗
t

(
GX(t)(y)

)
with μ∗(c) := argmin

ν∈U
cᵀG

(
G−1

X(t)
(c)

)
ν .

Here, GX(t) : bdX(t) → S nx−1 denotes the Gauss map of X(t) and its inverse is

given by9

G−1
X(t)

(c) = argmax
ξ∈X(t)

cᵀξ .

As it stands, even the solution of a parametrized version of Problem (16) is nontrivial.
But, as discussed in [80, 81], some parametrizations, e.g. ellipsoids, of the tube
cross-sections, lead to practical implementations of robust MPC controllers, as well
as explicit expressions for the feedback law μ .
Remark: The above min-max differential inequality uses properties of the boundary
of robust forward invariant tubes of continuous-time systems, which have, at least
in similar variants, been analyzed in earlier articles by Nagumo (see, e.g., [10] for a
discussion of Nagumo’s theorem) as well as in the context of viability theory [3]. As
these boundary properties rely on differential analysis, the corresponding methods
can, at least in the above form, only be applied to continuous-time systems.

6 Numerical Aspects: Modern Set-Valued Computing

This section gives a concise introduction to set-valued arithmetics for factorable
functions and associated tools for set-valued integration. The corresponding meth-
ods can be used as a basis for the implementation of tube-based model predictive
control algorithms.

6.1 Factorable Functions

A function ϕ is called factorable if it can be represented as a finite recursive compo-
sition of atom operations ϕi ∈L , with i ∈ {1, . . . ,nϕ}, from a given finite library

L = {+,∗,sin,exp, log, . . .} .

9 The boundary of Z ⊂R
n is denoted by bdZ, while S n−1 denotes the n-dimensional unit sphere.



434 Boris Houska and Mario E. Villanueva

This library typically includes binary sums, binary products, and a number of uni-
variate atom functions such as trigonometric functions, exponentials, as well as loga-
rithms. In practice, factorable functions over a given library L are represented in the
form of a computational graph, which can be obtained in most object oriented pro-
gramming languages by using operator overloading or source code transformation,
as visualized in Figure 3. Notice that the result ai, which is obtained after applying
an atom operation ϕi, is stored temporarily. Thus, the input arguments of the atom
operations ϕi are either components of the input vector x or intermediate results of
previously computed operations, i.e., components of the intermediate result vector
a, as shown in the example in Figure 3. In general, the recursion can be written in
the form

∀k ∈ {1, . . . ,nφ}, a ← [a,ϕk(x,a)]
T ,

Fig. 3: Visualization of the computational graph of the function ϕ(x) = sin(x1 ∗
x2) + cos(x1). The intermediate results a1,a2, and a3 may or may not be deleted
after a function evaluation depending on whether they are needed as part of other
function evaluations.

where a is initialized with the empty vector, but then the dimension of a in-
creases by 1 after every atom evaluation.10 The function value ϕ(x) = Pϕa with
Pϕ ∈ {0,1}nout×nϕ corresponds to selected components of a, i.e., every row of the
matrix Pϕ has one entry, which is equal to 1.

Many modern computer algorithms and software explicitly exploit the structure
of the computational graph of factorable functions. Examples include algorithmic
differentiation [1, 2, 30], modeling environments for convex optimization [29, 49]
and optimal control [34], global optimization algorithms and software [16, 54, 71],
and many set arithmetic routines [15], which are reviewed in the next section.

10 In practical implementations, the memory allocation policies for function evaluations depend
on the compiler and hardware. For MPC applications on embedded hardware one often uses static
memory. For example, in modern code-generation based MPC solvers for small-scale systems the
memory for all components of a of all online function evaluations is pre-allocated [34].
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6.2 Set Arithmetics

Let ϕ be a given factorable function and E ∈K
m a given basis set. The goal of a set

arithmetic is to construct an enclosure function Φ of the image set map of ϕ with
respect to the basis set E, i.e., such that

{ϕ(x) | x ∈C ·E} ⊆Φ(C) ·E (17)

for any coefficient matrix C ∈ R
n×m. Here, we use the same notation as in Sec-

tion 5.2, but we leave away the offset parameter c, since we can always redefine

E← E×{1}

if we want to include such offsets. Now, the main idea is to build up the function Φ
recursively by passing through the computational graph of the factorable function
ϕ . This means that we need to construct enclosure functions Φi for every atom
operation ϕi such that

∀y ∈C ·E, [yT,ϕi(y)]
T ∈Φi(C) ·E .

for all feasible coefficient matrices C ∈ R
(nin+i−1)×m and all i ∈ {1, . . . ,nϕ}. The

enclosure function Φ is then given by the finite recursive composition

Φ = Pϕ ∗ [Φnϕ ◦ . . .◦Φ2 ◦Φ1] ,

which satisfies (17) by construction.
The key to constructing the enclosure (17) is the definition of the arithmetic rule

operating on the coefficient matrix C. For example, interval arithmetics, one of the
oldest and most basic set arithmetics, proceeds by defining bounding rules for bi-
nary sums and products as well as for all univariate atom operations in the given
library L . These bounding rules can, for example, be based on simple inclusions
such as

[c1,c1]+ [c2,c2] ⊆ [c1 + c2,c1 + c2] ,

[c1,c1]∗ [c2,c2] ⊆ [min{c1c2,c1c2,c1c2,c1c2}, max{c1c2,c1c2,c1c2,c1c2} ] ,
e[c,c] ⊆

[
ec,ec

]
,

and so on—depending on which atom operations one wants to include in L . Fi-
nally, in order to obtain the desired parametrization for the enclosure, the endpoint
representation of the interval can be converted into a midpoint-radius representation,
i.e.

[c,c] = mid([c,c])+ rad([c,c])[−1,1] ,

with

mid([c,c]) =
c+ c

2
and rad([c,c]) =

c− c
2

.
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Table 2: References about arithmetics using particular classes of basis sets (com-
pare Table 1) and associated software tools. The second column lists the storage
complexity of the used set representations, which usually coincides with the compu-
tational complexity per atom enclosure operation. However, there are some excep-
tions. For example, some atom operation bounding rules for ellipsoidal arithmetic
may have computational complexity O(n3), if dense matrix–matrix multiplications
are not avoided in the implementation.

Set Representation Complexity Software References

Intervals O(n) FILIB++ [44], PROFIL [38] [58, 59]

Ellipsoids O(n2) Ellipsoidal Toolbox [42], [40, 41]

MC++ [15], CRONOS [16] [35, 78, 79]

Zonotopes O(nm) INTLAB (Affine Arithmetic) [70], [19, 26]

Polytopes O(nm) BARON [71], ANTIGONE [54] [5, 75]

GLOMIQO [53], MPT3 [32]

Taylor models O(nrs) COSY INFINITY [52], MC++, CRONOS [46, 51]

Chebychev models O(nrs) CHEBFUN [21], MC++ [22, 62, 76]

Even though intervals are easy to store and propagate, the corresponding set arith-
metics can lead to large overestimation, particularly for large values of nϕ . This
wrapping effect can, however, be mitigated by using more accurate set represen-
tations. For example, rules for the construction and propagation of ellipsoids, zono-
topes, polytopes, and polynomial models also exist in the literature. Table 2 presents
a non-exhaustive list of different set-arithmetics together with packages implement-
ing them.
Notice that some but not all of the set arithmetic tools in Table 2 have been devel-
oped originally for applications in control. For example, the polyhedral relaxations
of the software packages BARON [71, 75] and ANTIGONE [54] have been devel-
oped in the context of solving general factorable optimization problems to global
optimality, although these methods can, at least in principle, be used in the con-
text of robust control, too. Other tools, e.g., the Ellipsoidal Toolbox [42], focus on
particular set operations and limited libraries L , as ellipsoidal calculus has origi-
nally been developed in the context of reachable set computations for linear control
systems [40]. For a more general overview about set theoretic methods in control
(with a strong focus on linear systems) we refer to the textbook of Blanchini and
Miani [10].

It is clear that none of the above affine set arithmetics yields exact enclosures, if
the exact image set is not computer representable with respect to the chosen basis
set. In practice, interval arithmetics often yields very conservative enclosures, and,
at least, in the context of set-valued integration for nonlinear ODEs, it can be shown
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that ellipsoidal, zonotopic, or other affinely invariant set arithmetics lead to more
stable (and, consequently more accurate) enclosures as discussed in the following
section and in [36]. The accuracy of more expensive set arithmetics such as Tay-
lor models is often analyzed approximately, i.e., for sets with a “sufficiently small”
diameter [11]. The analysis of the conservatism of polynomial set arithmetics on
larger domains is, however, still an active field of research [22, 62].

6.3 Set-Valued Integrators

The solution of continuous-time ODEs is typically not factorable. This implies that
the set-arithmetic methods from the previous section are not directly applicable to
bound the reachable set of the closed-loop system

ẋ(t) = f (x(t),μ(t,x(t)),w(t)) with x(0) = x0 ,

which is needed in the context of tube based MPC. In order to slightly simplify the
following discussion, we assume that this ODE can be written in the form

ẋ(t) = g(t,x(t), p) with x(0) = x0

with a finite dimensional uncertain parameter p ∈ P ∈ K
np by parametrizing the

uncertain function w, e.g., using a polynomial parametrization

w(t)≈
N

∑
k=0

pktk .

This parametrization can be done in a rigorous manner by over-estimating the asso-
ciated parametrization error and constructing the set P appropriately, such that

X(t,μ ,x0)⊆

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xt ∈ R
nx

∣∣∣∣∣∣∣∣∣

∃x ∈W nx
1,2, ∃p ∈ P : ∀τ ∈ [0, t],

ẋ(τ) = g(τ ,x(τ), p)

x(0) = x0 , x(t) = xt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

as discussed in full detail in [33, 37]. Next, a local Taylor expansion of the solution
trajectory of the parametric ODE can be obtained by constructing the functions

χ0(t,x, p) = x

χk(t,x, p) =
1
k

(
∂χk−1(t,x, p)

∂x
g(t,x, p)+

∂χk−1(t,x, p)
∂ t

)

for all k ∈ {1, . . . ,s+ 1}, where s ∈ N is the order of the expansion. If g is smooth
and factorable, the functions χk are smooth and factorable, too, and can be gener-
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ated automatically by using algorithmic differentiation [30]. Thus, any affine set
arithmetic can be used to construct enclosure parameters Dk ∈ R

nx×m and dk ∈ R
nx

of the factorable auxiliary functions χk

{ χk(t,x, p) | x ∈C(t,μ ,x0) ·E+ c(t,μ ,x0), p ∈ P } ⊆ Dk ·E+dk

for k ∈ {0,1, . . . ,s} and

{ χk(t,x, p) | t ∈ [0,h], x ∈C(t,μ ,x0) ·E+ c(t,μ ,x0), p ∈ P } ⊆ Ds+1 ·E+ds+1

for a suitable basis set E ⊆ K
m and for a suitable step-size h > 0. It follows from

Taylor’s theorem that

x(t + τ) ∈C(t + τ ,μ ,x0) ·E+ c(t + τ ,μ ,x0)

with

C(t + τ ,μ ,x0) =
s+1

∑
k=0

Dkτk and c(t + τ ,μ ,x0) =
s+1

∑
k=0

dkτk

for all τ ∈ [0,h] as long as x(t) ∈C(t,μ ,x0) ·E+c(t,μ ,x0). Thus, one can construct
enclosure functions C,c in a recursive way by using suitable step-sizes. This yields
a continuous-time enclosure

X(t,μ ,x0)⊆C(t,μ ,x0) ·E+ c(t,μ ,x0) ,

which is valid on the whole time horizon t ∈ [0,T ], as needed in the context of tube-
based MPC having (13) in mind. Here, one remaining difficulty is how to control the
step-size h during the integration. In the literature, various strategies can be found,
which have been devised to deal with this problem. The first strategy proceeds by
first choosing an optimistic h but then rejects the step if the over-estimation is too
large. Most validated integrators, such as COSY-INFINITY [52], VSPODE [46],
and VALENCIA-IVP [68], are based on this or variants of this strategy.11 In [36] a
reversed two-phase algorithm was introduced, which proceeds in a slightly different
way by constructing a parametric enclosure that is valid on the whole time horizon.
The step-size is then refined in a second phase in order to reduce the step size only
if the approximation error of the Taylor expansion is large compared to the overesti-
mation that cannot be avoided anyhow due to other set arithmetic operations.
Another practical problem with set integrators is that so-called “bound explosion
phenomena” may be observed. Such bound explosions occur if one uses too con-
servative set arithmetics such that the associated overestimation effects are growing

11 Early set-valued integrators, as, for example, developed by Nedialkov and Jackson [60], are not
based on direct algorithmic differentiation based Taylor expansion of the solution trajectory, but
more advanced Hermite-Obreschkoff integration schemes, which have the advantage that they can
deal more efficiently with stiff dynamic systems. Some of the above-mentioned software packages
are also using more advanced integration schemes, but the basic ideas for bounding the reachable
set enclosures are, nevertheless, very similar to the easy-to-implement Taylor expansion based
method, which has been outlined in this section.
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over time. In the worst case, these wrapping effects can lead to unstable (or unrea-
sonably conservative) bounds—even if the original ODE was perfectly stable. As
it was shown in [36] stable set-integrators can be constructed for asymptotically
stable systems and for set-parametrizations, if one uses set arithmetics, which are
invariant under affine transformations. For example, an affine transformation of an
ellipsoid or a zonotope is again an ellipsoid or zonotope. Thus, most implementa-
tions of ellipsoidal and zonotopic set-arithmetics can be expected to be invariant
under affine transformation, while standard interval arithmetic does not have such a
property. A generic implementation of stable set-valued integrators for a variety of
set-parametrizations can be found as part of the CRONOS library [16].

7 Conclusions

Although exact inf-sup feedback MPC problems are intractable in general, this
chapter has reviewed a large number of practical numerical methods, which can
be used to construct conservative approximations of robust MPC. For the case that
the system dynamics is linear, one can either rely on methods from the field of
ellipsoidal approximation and linear matrix inequalities in control or use affine dis-
turbance parametrizations to construct highly scalable implementations based on
convex optimization. Moreover, this chapter has reviewed three main classes of
generic methods for robust MPC, namely, Dynamic Programming, Scenario-Tree
MPC, and Tube MPC. These methods have in common that they are—at least in
principle—applicable to both linear and nonlinear dynamic processes, although ma-
ture software packages for general nonlinear robust MPC are not available yet and
most practical implementations still focus on specialized classes of systems, often
linear process models.
The second part of this chapter had a strong focus on reviewing state-of-the-art nu-
merical methods for Tube MPC. This focus is motivated by recent developments in
the field of modern set-valued computing, or, more specifically, affine set-arithmetic
and set-valued integration, which can be considered as the basis for Tube MPC
based methods. While traditional tools for computing set enclosures are often based
on rather conservative interval arithmetic, the trend of modern set-arithmetics goes
towards using polynomial set representations, often in combination with ellipsoidal
or zonotopic remainder bounds, which are invariant under affine transformations
and the basis for stable reach-set integration. These new tools are opening new per-
spectives for Tube MPC based implementations of robust MPC, although the de-
velopment of mature tools for generic robust nonlinear MPC remains an important
challenge for future research.
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48. Löfberg, J.: Approximations of closed-loop MPC. In: Proceedings of the 42nd IEEE Confer-
ence on Decision and Control, Maui, pp. 1438–1442 (2003)
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Scenario Optimization for MPC

Marco C. Campi, Simone Garatti, and Maria Prandini

1 Introduction

Model Predictive Control (MPC) is a methodology to determine control actions
in the presence of constraints that has proven effective in many real applications.
Instead of addressing an infinite-horizon problem, which would be hard to deal
with due to computational difficulties, in MPC one solves at each point in time
a finite-horizon constrained problem, and implements only the first control ac-
tion that has been determined; then, the procedure is repeated at the next instant
of time by shifting the prediction horizon ahead of one unit of time (receding
horizon).

In many control problems, disturbances are a fundamental ingredient. In MPC,
disturbances have been dealt with along two different approaches, namely robust
MPC and stochastic MPC. In robust MPC (e.g., [4, 5, 23, 34, 47, 50]), the control
cost is optimized against the worst disturbance realization, while also guaranteeing
constraints satisfaction. The drawback with this approach is that it generates conser-
vative control actions. To overcome this drawback, an average cost with probabilis-
tic constraints is considered in stochastic MPC where a violation of the constraints
is accepted provided the probability of this to happen is kept below a given thresh-
old (e.g., [3, 9, 18, 19, 21, 46, 49, 53]). In the stochastic optimization literature,
probabilistic constraints of this type are often called “chance-constraints,” see, e.g.,
[44, 45].
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Chance-constraints are known for being very hard to deal with. One reason is that
they are highly non-convex even when the original problem is born within a convex
setup where the constraints are convex for any given realization of the disturbance.
As a matter of fact, solutions to MPC with chance-constrained constraints have
been proposed for specific cases only such as linear systems with either bounded
and i.i.d. (independent and identically distributed) [9, 18, 19] or Gaussian [21] dis-
turbances. In this chapter, we describe an alternative scheme to deal with stochas-
tic MPC ([43]). This scheme is grounded in some recent developments in stochas-
tic optimization where the chance-constraints are replaced by variants obtained by
sampling finitely many realizations of the disturbance (scenario approach). Consid-
ering a finite sample of realizations makes the problem computationally tractable
while the link to the original chance-constrained problem is established by a rig-
orous theory. With this approach, one gains the important advantage that no as-
sumptions on the disturbance, such as boundedness, independence or Gaussianity, is
required.

This chapter is organized as follows. In the first section the mathematical setup
of study is introduced. After a digression to summarize some relevant results of the
scenario approach in Section 3, Section 4 describes how the scenario methodology
can be applied to MPC. The closing Section 5 presents a simulation study for a
mechanical system.

2 Stochastic MPC and the Use of the Scenario Approach

Consider a linear system whose state xt ∈ R
n evolves according to the equation

xt+1 = Axt +But +Dwt ,

where ut ∈R
m is the control input, wt ∈R

l , l ≤ n, is a stochastic disturbance with a
possibly unbounded support, and D is full-rank.

We assume that the entire state vector of the system is known at each time instant
and focus on the finite-horizon optimization problem that needs to be solved at each
point in time τ of a stochastic MPC scheme that implements a receding horizon
strategy. Specifically, we consider the following quadratic cost

J = E

[
M

∑
i=1

xT
τ+iQixτ+i +

M−1

∑
i=0

uT
τ+iRiuτ+i

]
, (1)

where M is the horizon length and Qi = QT
i ' 0 and Ri = RT

i ( 0 have appropriate
dimensions, subject to the probabilistic constraint:

P{ f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1)≤ 0} ≥ 1− ε , (2)
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where f : Rn×M+m×M → R
q is a q-dimensional function and the inner inequality

in (2) is interpreted componentwise. In the above expressions, probability P refers to
the stochastic nature of the disturbance and E is the expected value associated with it.
In the probabilistic constraint (2), condition f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) ≤ 0
is not required to hold for all possible disturbance realizations and parameter
ε ∈ (0,1) quantifies the admissible probability of constraint violation. Allowing for
an ε violation improves the control system performance and, moreover, when the
disturbance has unbounded support, allowing for a small probability of constraint
violation can be the only way to avoid infeasibility of the optimization problem. In
practice, applications exist where violating a constraint may result in severe dam-
ages of equipments or in important malfunctionings, in which case one may not
be willing to allow for an ε-violation. In many other cases, however, sporadic con-
straint violations are tolerable and cause little damage. For example, exceeding the
load capacity in power lines for a short time does not cause any plant damages and,
in a totally different field, high blood glucose is not a cause of cellular damage if it
happens for short periods. Similar examples can be found in a variety of contexts.
This is the frame where stochastic MPC finds application.

In many cases, function f in (2) is used to enforce input saturation constraints in
addition to constraints on the allowed state values. If, for instance, f is given by

f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) =

⎡
⎣ sup

i=0,...,M−1
‖Suτ+i‖∞− ū

sup
i=1,...,M

‖Cxτ+i‖∞− ȳ

⎤
⎦ , (3)

where S and C are matrixes in Rq×m and Rp×n respectively, then, ū and ȳ are limits
on linear combinations of the inputs and of the state values. In the following, we
shall consider generic but convex functions f .

Note that when the noise is Gaussian and constraints are missing, minimizing (1)
gives a standard LQG control problem which admits analytical solution. Instead,
in the presence of constraints, or when the noise is not Gaussian, the problem of
finding the optimal solution becomes quite challenging. Hence, one can concentrate
on specific structures by which the control actions are determined.

To find a suitable structure, one can think of reconstructing the noise from the
state according to the equation

wτ+i = D†(xτ+i+1 −Axτ+i −Buτ+i),

where D† is pseudo-inverse and then parameterize the control action as an affine
function of the disturbance

uτ+i = γi +
i−1

∑
j=0
θi, jwτ+ j, (4)
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with γi ∈ R
m and θi, j ∈ R

m×n.1 This parametrization was indeed proposed in [30]
(and, independently in [6]) where it was also shown that (4) is equivalent to consid-
ering policies that are affine in the state (i.e., to every affine in the state policy μτ+i,
there correspond γi and θi, j such that (4) returns the same control action as μτ+i and
vice versa).

The fundamental advantage gained by adopting (4) is that the control cost and
the constraints become convex in the variables γi and θi, j (when the control action
is parameterized as an affine function of the state, this fails to be true). We shall
write this control cost and the constraints explicitly in Section 4 after introducing
suitable notations. There, we shall further show that by sampling the noise realiza-
tions (scenario approach) and enforcing the constraints only on the realizations that
have been sampled, one obtains a standard convex problem that can be solved with
conventional optimization methods. The so-found solution carries precise guaran-
tees of satisfaction of the original chance-constrained constraint. Proving this deep
result calls for the use of the scenario theory that is briefly summarized in the next
section.

3 Fundamentals of Scenario Optimization

Consider the following constrained convex optimization problem

min
x∈X ⊆Rd

�(x) subject to:

x ∈Xδ , δ ∈ Δ ,
(5)

where �(x) is a convex function, δ ∈Δ is an uncertain parameter, and X and Xδ are
convex and closed sets. In normal situations, Δ has infinite cardinality. Uncertainty
in (5) can be dealt with along two distinct approaches. The first one consists in en-
forcing satisfaction of all constraints, that is one optimizes the cost �(x) over the set⋂
δ∈ΔXδ (robust approach). Alternatively, one may want to satisfy the constraints

with “high probability” (stochastic approach). Along this second approach one sees
the uncertainty parameter δ as a random element with a probability P, and seeks a
solution that violates at most a fraction of the constraints that has small probability
(chance-constrained solution). This second approach is often more advantageous in
that it returns less conservative designs.

Notoriously, finding a solution to (5) that carries a high probability of constraints
satisfaction is a very difficult task [44]. In [7, 8], the following scenario problem is
introduced, where N values of δ , say δ (1), . . . ,δ (N), are randomly sampled from P

one independently of the others and these N values provide the only constraints that
are enforced in the optimization problem:

1 Often, the total number of parameters is reduced as compared to (4) by imposing internal relation
among parameters. This is further discussed in Section 4. When all θi, j are set to zero, one obtains
a classical setup where optimization is directly performed on the control actions.
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min
x∈X ⊆Rd

�(x) subject to:

x ∈Xδ (i) , i ∈ {1,2, . . . ,N}.
(6)

Since (6) has a finite number of constraints, it can be solved at low computational
cost. On the other hand, the obvious question to ask is whether (6) gives a chance-
constrained solution. An answer is found in the following fundamental theorem that
has been established in [12].2

Definition 1 (violation probability). The violation probability of a given x ∈X is
defined as V (x) = P{δ ∈ Δ : x /∈Xδ}.

Theorem 1 ([12]). Let x∗N be the solution to (6). It holds that

P
N{V (x∗N)> ε} ≤

d−1

∑
i=0

(
N
i

)
ε i(1− ε)N−i. (7)

From (7) one obtains that PN{V (x∗N)≤ ε}≥ 1−∑d−1
i=0

(N
i

)
ε i(1−ε)N−i, which shows

that the cumulative probability distribution of V (x∗N) is bounded by a Beta distribu-
tion. This result, as all results in the scenario theory, is distribution-free, that is, it
holds for all distributions P. Moreover, it is not improvable since in [12] it is proven
that the result is tight and holds with equality for a class of problems there named
“fully-supported.” By setting ∑d−1

i=0

(N
i

)
ε i(1− ε)N−i ≤ β , the interpretation of Theo-

rem 1 is that the scenario solution is, with (high) probability 1−β , a feasible solu-
tion for a chance-constrained problem where one is allowed to violate an ε-fraction
of the constraints.

To offer a more immediate understanding of the theorem, a pictorial representa-
tion of the result is given in Figure 1. In the figure, the N samples δ (1), . . . , δ (N)

are represented as a single multi-sample (δ (1), . . . , δ (N)) from ΔN . In ΔN there
is a “bad set” represented in grey such that, if we extract a multi-sample in the
bad set, then the theorem does not provide us with any conclusions. This, how-
ever, happens with tiny probability since β can be made very small, say 10−10,
without having to increase N excessively (this fact is discussed in [12] and it is
also touched upon later in this chapter for the particular setup of MPC). In all
other cases, the multi-sample maps into a finite convex optimization problem, the
scenario problem, that we can easily solve and the corresponding solution auto-
matically satisfies all the other unseen constraints except for a small fraction ε
of them.

Scenario optimization has been introduced in [7], and has ever since attracted
an increasing interest. Robustness properties have been studied in [8, 12, 20]
and, under regularization and structural assumptions, further investigated in [2, 11,

2 In [12], a mild assumption of existence and uniqueness of the solution (Assumption 1 in [12]) is
made which we do not report here for conciseness of presentation. Moreover, paper [12] considers
linear cost functions but the extension to generic convex functions is straightforward.
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optimization
direction

Fig. 1: Visualization of Theorem 1.

48, 55]. Papers [13, 29] consider constraints removal, and [54] examines multi-
stage problems. Generalizations to a non-convex setup are proposed in [1, 28, 31].
See also [8, 16, 24, 36, 42, 51, 52] for a comparison of scenario optimization
with other methods in stochastic optimization. Besides MPC, scenario optimiza-
tion has found application to fields ranging from machine learning and prediction
[10, 15, 22, 37] to quantitative finance [33, 39–41], from management to con-
trol design [16]. For next use in this chapter, we also recall here the main result
from [29].

Theorem 2 ([29]). Fix a value k ≤ N; remove k constraints from problem (6) ac-
cording to a given, arbitrary, rule; find the solution x∗k,N of the so-obtained problem,
and assume that the rule has been designed so that the k constraints that have been
removed are violated.3 It holds that

P
N{V (x∗k,N)> ε} ≤

(
k+d −1

k

) k+d−1

∑
i=0

(
N
i

)
ε i(1− ε)N−i. (8)

Constraints removal is important to improve the performance of the scenario
program and Theorem 2 quantifies the violation when a solution that violates k
constraints is considered.

3 Violation of the removed constraints must hold almost surely with respect to the scenario realiza-
tions and for any N, see [29] for a broad discussion.
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4 The Scenario Approach for Solving Stochastic MPC

By defining the following vectors of state, input, and disturbance signals

x+ =

⎡
⎢⎢⎢⎣

xτ+1

xτ+2
...

xτ+M

⎤
⎥⎥⎥⎦ u =

⎡
⎢⎢⎢⎣

uτ
uτ+1

...
uτ+M−1

⎤
⎥⎥⎥⎦ w =

⎡
⎢⎢⎢⎣

wτ
wτ+1

...
wτ+M−1,

⎤
⎥⎥⎥⎦

one can write
x+ = Fxτ +Gu+Hw

u = Γ +Θw,
(9)

where matrices F, G, and H are given by

F =

⎡
⎢⎢⎢⎣

A
A2

...
AM

⎤
⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎢⎣

B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B

⎤
⎥⎥⎥⎥⎦ H =

⎡
⎢⎢⎢⎢⎣

D 0n×l · · · 0n×l

AD D
. . .

...
...

. . .
. . . 0n×l

AM−1D · · · AD D

⎤
⎥⎥⎥⎥⎦ ,

and Γ andΘ contain the parameters of the control law and are given by

Γ =

⎡
⎢⎢⎢⎣
γ0
γ1
...

γM−1

⎤
⎥⎥⎥⎦ Θ =

⎡
⎢⎢⎢⎢⎣

0m×l 0m×l · · · 0m×l

θ1,0 0m×l
. . .

...
...

. . .
. . . 0m×l

θM−1,0 · · · θM−1,M−2 0m×l

⎤
⎥⎥⎥⎥⎦ .

Let us start by considering the constraints. Since the state and input vectors x+
and u are linear functions of the design parameters Γ and Θ (equation (9)), and
function f (x+,u) in (2) is convex, then f (Fxτ +GΓ +(H+GΘ)w,Γ +Θw) is a
convex function of Γ andΘ .

As for the control cost (1), letting

Q =

⎡
⎢⎣

Q1 · · · 0n×n
...

. . .
...

0n×n · · · QM

⎤
⎥⎦ R =

⎡
⎢⎣

R0 · · · 0m×m
...

. . .
...

0m×m · · · RM−1

⎤
⎥⎦

the cost can be expressed as follows:

J(Γ ,Θ) = E
[
xT
+Qx++uT Ru

]
= (Fxτ +GΓ )T Q(Fxτ +GΓ )+2(Fxτ +GΓ )T Q(H+GΘ) ·E [w]

+ tr
[
(H+GΘ)T Q(H+GΘ) ·E

[
wwT ]]+Γ T RΓ +2Γ T RΘ ·E [w]

+ tr
[
ΘT RΘ ·E

[
wwT ]] ,
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which is a quadratic convex function of Γ andΘ .
Hence, the optimization problem to be solved at time τ can be written as the

following chance-constrained optimization problem

min
Γ ,Θ

J(Γ ,Θ) subject to:

P{ f (Fxτ +GΓ +(H+GΘ)w,Γ +Θw)≤ 0} ≥ 1− ε .
(10)

As it has been remarked in previous sections, the probabilistic constraint in (10)
poses severe difficulties that can even lead to a conundrum in solving the problem.
In the scenario approach, this difficulty is addressed by replacing the infinite amount
of noise realizations with finitely many realizations sampled according to the noise
distribution, as described in the following. Let w(i), i = 1,2, . . . ,N, be realizations
of the noise vector w obtained by simulating the model of the noise.4 In this context,
the scenario problem is written as

min
Γ ,Θ

J(Γ ,Θ) subject to:

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))≤ 0, i ∈ {1,2, . . . ,N},
(11)

which corresponds to replacing the probabilistic constraint in (10) with N determin-
istic constraints, one for each noise realization.

Problem (11) is a standard convex optimization problem, with a convex cost
J(Γ ,Θ) and a finite number of convex constraints. Problems of this type can be
efficiently solved via standard numerical solvers like those implemented in the in-
terfaces CVX [32] or YALMIP [35]. Moreover, by using the theory presented in the
previous section, one can show that the following result holds.

Theorem 3. Select a “confidence parameter” β ∈ (0,1). Then, the solution
(Γ ∗

N ,Θ ∗
N) to the scenario problem (11) satisfies the relation

P{ f (Fxτ +GΓ ∗
N +(H+GΘ ∗

N)w,Γ ∗
N +Θ ∗

Nw)≤ 0} ≥ 1− ε ,

with probability no smaller than 1 − β , where (d is the number of optimization
variables)

ε = min

{
2
N

(
ln

1
β
+d

)
,1

}
. (12)

Theorem 3 states that the scenario solution is feasible for problem (10) where ε
is given by the right-hand side of (12) with confidence 1−β . The scenario solution
cannot be guaranteed to be always feasible because of the stochastic nature of its
construction. However, infeasibility is such a rare event that it can be neglected in
practice. To see this, fix ε and make N explicit in (12) with respect to ε and β , so
obtaining

4 In a standard LQG setting, this would require generating M independent Gaussian noise terms
for each realization. In the scenario approach, however, there is no limitation on the noise structure
and the noise can, e.g., be generated by an ARMA (Auto-Regressive Moving-Average system) or
by any other model.
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N =
2
ε

(
ln

1
β
+d

)
.

Here, N increases logarithmically with 1/β , so that enforcing a very small value
of β , like β = 10−7 or even β = 10−10, can be done without rising N to too high
values.

Formula (12) provides an explicit expression for ε as a function of N and β and
can be derived from Theorem 1. Precisely, equation (12) is obtained by making
explicit the right-hand side of equation (7) with respect to ε; see [2] for technical
details.

Further, the cost function in the scenario problem (11) can be improved by re-
moving some of the scenario constraints. The price to pay for this is an increase
in the violation probability ε . To be precise, suppose that, from the N disturbance
realizations, k realizations are removed according to Algorithm 1.5

The so-obtained solution satisfies the remaining N − k constraints and is fea-
sible, with probability no smaller than 1 − β , for the chance-constrained prob-
lem (10) with a violation probability ε as given in the next theorem, which di-
rectly follows from the right-hand side of equation (8) by making it explicit with
respect to ε .

Theorem 4. Select a ‘confidence parameter’ β ∈ (0,1). Then, the solution
(Γ ∗

k,N ,Θ
∗
k,N) obtained by removing k of the N constraints in (11) via Algorithm 1

satisfies the relation

P{ f (Fxτ +GΓ ∗
k,N +(H+GΘ ∗

k,N)w,Γ ∗
k,N +Θ ∗

k,Nw)≤ 0} ≥ 1− ε ,

with probability no smaller than 1 − β , where (d is the number of optimization
variables)

ε = min

{
k
N
+

d +h+
√

h2 +2(d + k)h
N

,1

}
, (13)

with h = ln 1
β +d

(
1+ ln d+k

d

)
.

In equation (13), k/N is the empirical violation probability and the guaranteed
violation ε is obtained by adding a margin to it. Letting k be proportional to N,
k = γN, one obtains that the margin is O

(
logN/

√
N
)
, so that ε approaches γ = k/N

as N grows to infinity.

5 Algorithm 1 is a greedy removal algorithm which is here introduced because it can be imple-
mented at relatively low computational cost. Other alternatives exist, and the paper [13] offers an
ample discussion on this matter. Algorithm 1 comes to termination provided that at each step an
active constraint can be found whose elimination leads to a cost improvement. This is a very mild
condition.
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Algorithm 1: Scenario Algorithm with constraints removal
1: Solve problem (11) and store the solution.
2: Let i run over 1,2, . . . ,N and find the constraints violated by the stored solution (the first

time that this point 2 is entered, the set of violated constraints is empty), that is, find the
indexes i such that

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))> 0.

Let these indexes be j1, j2, . . . , jL. If L is equal to k, then halt the algorithm and return the
stored solution.

3: Find the active constraints for the stored solution, i.e., the indexes i such that

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i)) = 0.

Let these indexes be i1, i2, . . . , iq.
4: For h = 1,2, . . . ,q

Solve problem

min
Γ ,Θ

J(Γ ,Θ) subject to:

f (Fxτ +GΓ +(H+GΘ)w(i),Γ +Θw(i))≤ 0, i ∈ {1,2, . . . ,N}/{ih, j1, j2, . . . , jL}.

If the obtained cost is better than the cost of the stored solution, then delete the
currently stored solution and store the last computed solution.

End For
5: Goto 2

As said, (13) is obtained by making equation (8) explicit with respect to ε . By in-
stead making this same equation explicit with respect to N, one sees that the smallest
N so that (8) holds scales as

N = O

(
d + ln 1

β

(ε− ε ′)2

)
,

where we have put ε ′ = k/N. This relation reveals some interesting features of the
computational complexity of the scenario optimization algorithm. If ε ′ is selected
to be close to the desired violation probability ε , then N becomes large. Provably,
this leads to solutions that better approximate the solution to the chance-constrained
problem (10); however, this is obtained at the price of an increase of the compu-
tational burden. In a given application, the choice of a suitable ε ′ comes from a
compromise between quality of the solution and computational tractability. In many
cases the extreme choice of taking ε ′ = 0 (i.e., k = 0, no constraint removal) already
gives acceptable results.

In closing this section, one additional word deserves to be spent on the control
parametrization (4). In (4), one has d = mM+ml (M−1)M

2 , where mM is the number

of optimization variables in Γ and ml (M−1)M
2 is the number of those inΘ . In various
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applications, the quadratic dependence on the horizon length M poses a hurdle in the
applicability of the scenario approach due to the linear dependence of N on d. This
may suggest alternative parameterizations that keep the total number of parameters
lower, and some choices are illustrated below.

1. uτ+i = γi +
i−1
∑

j=i−r
θi, jwτ+ j, which corresponds to (blank entries are zero values):

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1,0
...

. . .

θr,0
. . .

. . .
. . .

. . .
. . .

θM−1,M−1−r · · · θM−1,M−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+ml
(

r(M −1− r)+ (r−1)r
2

)
;

2. uτ+i = γi +
i−1
∑
j=0
θi− jwτ+ j, which corresponds to:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1

θ2
. . .

...
. . .

. . .
θM−1 · · · θ2 θ1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+ml(M −1);

3. uτ+i = γi +
i−1
∑

j=i−r
θi− jwτ+ j, which corresponds to:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
...

. . .

θr
. . .

. . .
. . .

. . .
. . .

θr · · · θ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, d = mM+mlr;
4. uτ+i = γi, i.e., Θ = 0. In this case, d = mM. At times, this parametrization has

been combined with a fixed linear state-feedback controller,

uτ+i = γi + K̄xτ+i, K̄ fixed,

to improve performance [18, 19].
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5 Numerical Example

We consider a numerical example inspired by [21].

Fig. 2: Scheme of the mechanical system (l̄1, l̄2, l̄3, l̄4 are masses nominal positions).

The mechanical system in Figure 2 is composed by four masses and four springs.
The state of the system is formed by the mass displacements, d1, d2, d3, and d4, from
the nominal positions (i.e., the positions at the equilibrium when the input is zero,
l̄1, l̄2, l̄3 and l̄4), and by the displacements derivatives, ḋ1, ḋ2, ḋ3, and ḋ4 (superscript
dot denotes derivative). The control input is u = [u1,u2,u3]

T , where u1, u2, and u3

are forces acting on the masses as shown in Figure 2.
All masses and stiffness constants are equal to 1, i.e., m1 = m2 = m3 = m4 = 1

and k1 = k2 = k3 = k4 = 1. Assuming that the control action is held constant over
the sampling period, the discrete-time model of the system is given by

xt+1 = Axt +But +Dwt ,

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.19 0.35 0.03 0.00 0.71 0.14 0.01 0.00
0.35 0.22 0.35 0.04 0.14 0.71 0.14 0.01
0.03 0.35 0.23 0.39 0.01 0.14 0.71 0.14
0.00 0.04 0.39 0.58 0.00 0.01 0.14 0.85

−1.28 0.44 0.12 0.01 0.19 0.35 0.03 0.00
0.44 −1.15 0.45 0.13 0.35 0.22 0.35 0.04
0.12 0.45 −1.15 0.57 0.03 0.35 0.23 0.39
0.01 0.13 0.57 −0.71 0.00 0.04 0.39 0.58

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.39 0.00 −0.04
−0.39 0.04 −0.42
−0.04 0.39 −0.04
−0.00 −0.42 −0.00

0.57 0.01 −0.14
−0.58 0.13 −0.71
−0.13 0.57 −0.14
−0.01 −0.71 −0.01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and wt is an additional stochastic disturbance that affects the system. For simplicity,
in this simulation section we assume that wt is a bi-variate white Gaussian noise
with zero mean and covariance matrix I2×2, and that

D =

[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]T

,

which means that the external disturbance affects the fourth mass only.
The system is at rest at the initial time, that is, xτ = 0. The goal is to design a

control action over a time-horizon M = 5 that gets the masses to be close to the
nominal positions at the final time instant despite the presence of the noise. During
operation, the springs are required to stay in their linear operation domain, a require-
ment which can be explicitly accounted for by imposing a constraint on the spring
deformations, while the control action has also to satisfy saturation limits.

To be specific, we consider the average control cost (1) and set

Qi =

⎧⎪⎨
⎪⎩

08×8 i < 5[
I4×4 04×4

04×4 04×4

]
i = 5

, and Ri = 10−6I3×3 ∀i. (14)

Moreover, in (3) we let S = I and

C =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0 04×4

0 −1 1 0
0 0 −1 1

⎤
⎥⎥⎦ ,

so that

Cxτ+i =

⎡
⎢⎢⎣

d1,τ+i

d2,τ+i −d1,τ+i

d3,τ+i −d2,τ+i

d4,τ+i −d3,τ+i

⎤
⎥⎥⎦

represents the springs deformation at time τ+ i, and consider the probabilistic con-
straint

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 1− ε , (15)
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In this problem, using a probabilistic constraint finds justification because an excess
of deformation can be tolerated as long as it does not happen too often, while relax-
ing the input saturation constraint leads to a less conservative design while hitting
the saturation limits may rarely generate some deviation from the designed behavior.

For the actual implementation, the scenario approach was used. The control ac-
tion was parameterized according to (4) (full parametrization), resulting in d = 75.
N = 1500 realizations of the disturbance were sampled and the scenario problem
in (11), with no removed constraints, was solved, which gave the solution (Γ ∗

N ,Θ ∗
N).

For the sake of comparison, the LQG solution, (Γ ∗
LQG,Θ ∗

LQG), was also computed by
minimizing the cost with no input and state constraints. All numerical results were
obtained by means of CVX, [32] with the solver MOSEK, [38].

The two cost values were J(Γ ∗
N ,Θ ∗

N) = 0.709 and J(Γ ∗
LQG,Θ ∗

LQG) = 0.481, which
gives a 31% improvement for the LQG cost. On the other hand, as expected, the
LQG solution often violates constraints, and a Monte-Carlo simulation showed a
23% probability of constraints violation. In the scenario design, we have instead
that, with high confidence 1−10−6, it holds that

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 0.926;

The actual probability of constraints satisfaction, computed by means of a Monte-
Carlo simulation, was found to be 97%.7

To better appreciate the difference between the two designs (scenario and LQG),
Figure 3 displays the cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ and
of supi=1,...,5 ‖Cxτ+i‖∞ obtained via Monte-Carlo methods when the input and state
are generated by the scenario and the LQG designs.

When N is large, resorting to the scenario approach with no constraints removal
returns solutions that carry high guarantees of constraints satisfaction which, how-
ever, are also poorly performing because the design is close to the worst-case (ro-
bust) design. Here, with N = 1500 we already had a significant decrease of per-
formance as compared to LQG. To improve the scenario control performance, we
next resorted to constraints removal and applied Algorithm 1 with k �= 0. Table 1

6 The value ε = 0.08 was computed from (7) by bisection instead of using the explicit formula in
Theorem 3.
7 It is perhaps worth mentioning that it is possible to obtain better evaluations of constraints satis-
faction by using the results of the recent contribution [14]. Specifically, from Theorem 2 of [14], it
can be proven for the present setup that, with high confidence 1−10−6, it holds that

P

{
sup

i=0,...,4
‖uτ+i‖∞ ≤ 1.8 and sup

i=1,...,5
‖Cxτ+i‖∞ ≤ 1.8

}
≥ 1− ε(s∗N),

where ε(·) is a function defined over the integers given in the paper and s∗N is the number of the
so-called “support constraints” that have been found in the problem at hand. In other words, ε(s∗N)
is not a-priori determined and it is a-posteriori tuned to the number of support constraints. The
interested reader is referred to [14] for a more-in-depth discussion. In the present simulation, it
turned out that the number of support constraints was 34, resulting in 1− ε(34) = 0.949.
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Fig. 3: Cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ (lower plot) and
supi=1,...,5 ‖Cxτ+i‖∞ (upper plot) for the scenario design (solid line) and LQG con-
trol (dotted line).

summarizes the results obtained for k = 0,10,20, . . . ,50. In the table, “Guaranteed
prob.” refers to the bound on the probability of constraints satisfaction guaranteed
with confidence 1−10−6 and obtained from (8) by means of bisection, and “Actual
prob.” is the actual probability computed via Monte-Carlo methods. As it appears,

Table 1: A comparison between scenario designs with different number of removed
scenarios.

k J(Γ ∗
k,N ,Θ

∗
k,N) Guaranteed prob. Actual prob.

0 0.709 0.92 0.971
10 0.661 0.881 0.967
20 0.629 0.871 0.959
30 0.597 0.863 0.952
40 0.575 0.854 0.947
50 0.564 0.845 0.937

constraint removal leads to a rapid improvement of the performance, while the prob-
ability of constraints satisfaction decreases more gently. This shows the ability of
Algorithm 1 to remove portions of the uncertainty domain that have a strong impact
on the cost function, a feature which is missing on LQG. Figure 4 shows the cumu-
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lative probability distributions of supi=0,...,4 ‖uτ+i‖∞ and of supi=1,...,5 ‖Cxτ+i‖∞ for
(Γ ∗

N,0,Θ ∗
N,0), (Γ ∗

N,50,Θ
∗
N,50) and the LQG control.
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Fig. 4: Cumulative probability distributions of supi=0,...,4 ‖uτ+i‖∞ (lower plot) and
supi=1,...,5 ‖Cxτ+i‖∞ (upper plot) for (Γ ∗

0,N ,Θ ∗
0,N) (solid line), (Γ ∗

50,N ,Θ
∗
50,N) (dashed

line), and LQG control (dotted line).

6 Extensions and Future Work

In the present chapter, the main focus has been on the application of the scenario
approach to the solution of the finite-horizon chance-constrained optimization prob-
lem (10). The resulting MPC scheme consists in the implementation of scenario
optimization over a receding horizon; that is, at every time τ only the first control
action uτ is applied and, after that the system has moved to the new state xτ+1, the
whole optimization process is repeated. This poses additional challenges that have
been partly addressed in the literature and that are hinted at here.

A first issue concerns with the recursive feasibility of (11). It may happen that
the stochastic noise pushes the state to a far distant condition such that a bounded
input cannot succeed in satisfying the constraints in the next time period. This issue
has been addressed in [25–27] by introducing a suitable relaxation to the scenario
framework as described in this chapter.
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A second issue refers to studying the constraint satisfaction in the long run. Often
the constraint f (xτ+1, . . . ,xτ+M,uτ , . . . ,uτ+M−1) ≤ 0 comes in the form of input or
state saturation limits that apply at every point in time. For this case, the paper [49]
presents a study which quantifies the asymptotic proportion of times when these
limits are violated over the total number of time instants passed.

A final point that deserves to be mentioned is the possibility of applying the
scenario-based MPC scheme to nonlinear systems. Nonlinearity introduces an ad-
ditional difficulty relating to the convexity assumption made in this chapter since
convexity fails to be true for nonlinear systems even when the function f setting
the constraints is convex in its arguments. More specifically, Theorems 1 and 2 of
Section 3 are grounded on the fact that, in a convex setup, the solution to (6) is deter-
mined by a limited and known number of constraints (those that are called support
constraints in the literature, see [7], which are no more than the number of optimiza-
tion variables). In contrast, in a non-convex setup the number of support constraints
cannot be a-priori bounded and it can actually be arbitrarily large. Even though the
corresponding analysis has not been fully developed at the time this chapter is being
written, we envisage that the wait-and-judge perspective of [14, 17] can be used in
this context to circumvent this difficulty: the support constraints are determined af-
ter the solution has been found and the evaluation of constraint violation is adapted
to the found number of support constraints based on the theory of [14, 17].
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Nonlinear Programming Formulations
for Nonlinear and Economic Model
Predictive Control

Mingzhao Yu, Devin W. Griffith, and Lorenz T. Biegler

1 Introduction

Model Predictive Control (MPC) is widely accepted in the process industries as a
generic multivariable controller with constraint handling. More recently, MPC has
been extended to Nonlinear Model Predictive Control (NMPC) in order to realize
high-performance control of highly nonlinear processes. In particular, NMPC allows
incorporation of detailed process models (validated by off-line analysis) and also
integrates with on-line optimization strategies consistent with higher-level tasks,
including scheduling and planning. NMPC for tracking and so-called “economic”
stage costs, as well as associated state estimation tasks, are reviewed, formulated,
and analyzed in considerable detail in [24, 28]. Due to advances described in [5, 23],
fundamental stability and robustness properties of NMPC are well-known, and many
of the key issues related to the applicability and relevance of NMPC are well under-
stood.

This study expands on these key issues by examining existence and uniqueness
properties of nonlinear programs (NLPs), and the stability and sensitivity of their
solutions. With the former, nominal trajectories can be determined for NMPC sub-
problems, and robustness of the NMPC controller (through input to state stability)
is guided by the latter. We also show that the formulation of the NMPC subprob-
lem has a key impact on these NLP properties, and we emphasize how proper NLP
formulations allow these stability properties to hold. Finally the existence of NLP
solutions that are differentiable with respect to problem data leads to the develop-
ment of sensitivity-based NMPC, which greatly reduces on-line computation and
computational delay.

The remainder of this section introduces NLP-based strategies for NMPC to set
the stage for the analysis. Section 2 then provides some background properties for
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the NLP subproblem of NMPC, including sufficient conditions for optimality and
constraint qualifications, which are used to reformulate the NMPC subproblem in
order to promote stability and differentiability of NLP solutions. Section 3 relates
these properties to asymptotic stability, input to state stability (ISS), and input to
state practical stability (ISpS). Sections 4 and 5 extend these concepts to Economic
NMPC, and present three NLP formulations that lead to stability guarantees. Finally,
Section 6 demonstrates these results on two case studies related to chemical process
control with first principle nonlinear models, and Section 7 concludes the chapter.

1.1 NLP Strategies for NMPC

Consider the following discrete-time nonlinear dynamic model of the plant with
uncertainties:

xk+1 = f̂ (xk,uk,wk)

= f (xk,uk)+d(xk,wk) (1)

where xk ∈ ℜnx , uk ∈ ℜnu , and wk ∈ ℜnw are the plant states, controls, and distur-
bance signals, respectively, defined at time steps tk with integers k > 0. The map-
ping f : ℜnx+nu �→ ℜnx with f (0,0) = 0 represents the nominal model, while the
term d :ℜnx+nu+nw �→ℜnx with d(0,0) = 0 is used to describe modeling errors, es-
timation errors, and disturbances. We assume that f (·, ·) and d(·, ·) are Lipschitz
continuous with respect to their arguments, and that the noise wk is drawn from a
bounded set W .

With this model description, we compute an estimate of the current state x(k)
that can be used for our nonlinear model-based controller (NMPC), defined by the
following nonlinear programming problem (NLP):

JN(p0) := min
zl ,vl

Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl) (2a)

s.t. zl+1 = f (zl ,vl) l = 0, . . .N −1 (2b)

z0 = p0 (2c)

zl ∈ X,vl ∈ U,zN ∈ X f . (2d)

Here p0 = xk is a fixed parameter in the NLP determined by the actual or estimated
plant state. We assume that the states and controls are restricted to the domains X

and U, respectively. X f is the terminal set with X f ⊂ X. We also assume that N
is sufficiently long and Ψ(zN) is sufficiently large. As a result, zN ∈ X f is always
true for the solution of (2). As shown in [26] and [12], this allows X f to be omitted
in (2), although we do not remove terminal constraints from all formulations shown
here. The set U is compact and contains the origin; the sets X and X f are closed and
contain the origin in their interiors. The stage cost is given by ψ(·, ·) :ℜnx+nu →ℜ,
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while the terminal cost is denoted by Ψ(·) : ℜnx → ℜ; both are assumed to have
Lipschitz continuous second derivatives.

Also note that we assume that the algebraic variables of dynamic and algebraic
equation (DAE) systems may be rewritten as y = ηy(x,u). A detailed treatment of
DAE systems can be found in [36].

2 Properties of the NLP Subproblem

We reformulate Problem (2), with x = (z0, . . . ,zN ,v0, . . . ,vN−1) and p = xk as:

min
x

F(x, p), s.t. c(x, p) = 0, g(x, p)≤ 0. (3)

An important characterization of the solution of (3) is the concept of a KKT point,
which satisfies the Karush-Kuhn-Tucker conditions for (3):

Definition 1. (KKT, see [25]) KKT conditions for Problem (3) are given by:

∇F(x∗)+∇c(x∗)λ +∇g(x∗)ν = 0 (4)

c(x∗) = 0, 0 ≤ ν ⊥ g(x∗)≤ 0

for some multipliers (λ ,ν), where x∗ is a KKT point. We also define L(x,λ ,ν) =
F(x)+ c(x)Tλ +g(x)Tν as the Lagrange function of (3).

A constraint qualification (CQ) is required so that a KKT point is a necessary
condition for a local minimizer of (3) [25]. For problem (3) the following CQ is
widely invoked.

Definition 2. (LICQ, [25]) The linear independence constraint qualification (LICQ)
holds at x∗ when the gradient vectors

∇c(x∗, p) and ∇g j(x∗, p); ∀ j ∈ J where J = { j|g j(x∗, p) = 0} (5)

are linearly independent. LICQ also implies that the multipliers λ ,ν are unique.

In addition, we define Strict Complementarity as follows:

Definition 3. (Strict Complementarity, [7]) At the solution x∗ of problem (3) with
multipliers (λ ,ν), the strict complementarity condition (SC) holds for ν if and only
if ν j −g j(x∗, p)> 0 for each j ∈ J.

The strong second order condition (SSOSC) requires positive definiteness of the
Hessian in constrained directions and is given as follows.

Definition 4. (SSOSC, [29]) For the KKT point to be a strict local optimum, strong
second order sufficient conditions (SSOSC) hold at x∗ with multipliers λ and ν if

qT∇xxL(x∗,λ ,ν , p)q > 0 for all q �= 0 (6)
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such that

∇ci(x∗, p)T q = 0, i = 1, ..,nc

∇g j(x∗, p)T q = 0, for ν j > 0, j ∈ J.
(7)

Note that if SSOSC is not satisfied at the KKT point x∗, then it is straightforward to
show that it can be satisfied for a modified problem. By adding

‖x−x∗‖2
Q (8)

to the objective in (3), the solution of this modified problem is still (x∗,λ ,ν), the
same KKT point. Moreover, if the positive semi-definite matrix Q is chosen with
sufficiently large eigenvalues for ZT QZ (where Z is a basis of the nullspace of
active constraint gradients in Definition 4), then SSOSC can always be satisfied for
the related problem at x∗. In fact, a term related to (8) is automatically added in
the IPOPT solver as part of its regularization strategy, and IPOPT always solves a
modified problem that satisfies SSOSC.

Finally, we state a key property related to the parametric sensitivity of (3).

Theorem 1. (Implicit function theorem applied to (4), [7]) Let x∗(p) be a KKT point
that satisfies (4), and assume that SC, LICQ, and SSOSC hold at x∗. Further let the
functions F,c,g be at least k+1 times differentiable in x and k times differentiable
in p. Then

• x∗ is an isolated minimizer, and the associated multipliers λ and ν are unique.
• for p in a neighborhood of p0 the set of active constraints remains unchanged,
• for p in a neighborhood of p0 there exists a k times differentiable function

s(p) =
[
x∗(p)T , λ (p)T , ν(p)T

]
that corresponds to a locally unique minimum

for (3).

More general results on uniform continuity of the solution of (3) can be derived
under the following condition.

Definition 5. (MFCQ, [25]) For Problem (3), the Mangasarian-Fromovitz constraint
qualification (MFCQ) holds at the optimal point x∗(p) if and only if

• ∇c(x∗, p) is linearly independent.
• There exists a vector q such that

∇c(x∗, p)T q = 0,∇g j(x∗, p)T q < 0 ∀ j ∈ J. (9)

MFCQ implies that the set of KKT multipliers is a closed convex polytope [9]. An-
other useful constraint qualification is given as:

Definition 6. (CRCQ, [16]) For Problem (3), the constant rank constraint qualifica-
tion (CRCQ) holds at (x∗, p0), when for all subsets J̄ ⊂ J, the gradients:

∇g j(x, p) j ∈ J̄ and ∇c(x, p) (10)
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retain constant rank near the point (x∗, p0).

Finally, if MFCQ holds at a KKT point but not LICQ, the multipliers λ ,ν are no
longer unique, and we need a more general second order condition.

Definition 7. (GSSOSC, [27]) The generalized strong second order sufficient condi-
tion (GSSOSC) is said to hold at x∗ when the SSOSC holds for all KKT multipliers
λ ,ν .

For KKT points, MFCQ and GSSOSC are the weakest conditions under which
the perturbed solution of problem (3) is locally unique [20]. Under these conditions
we cannot expect x∗(p) to be differentiable (because active sets are nonunique).
However, with these conditions and CRCQ, directional derivatives for x∗(p) can be
calculated with a particular QP formulation [27], and this is sufficient to obtain sensi-
tivity updates in an NMPC context. This is important for both robust reformulations
and advanced-step strategies based on NLP sensitivity [34, 35, 38].

2.1 NMPC Problem Reformulation

To develop a robust problem formulation we remove X f (based on arguments from
[26], assuming that N is sufficiently large) and relax X with �1 penalty terms. We
assume without loss of generality that X and U can be represented by simple upper
and lower bounds on zl and vl , respectively, and we rewrite the bounds on X as
inequalities g(zl)≤ 0. This leads to the following reformulation of (2):

JN(x(k)) = min
zl ,vl ,ξl

Ψ(zN)+
N−1

∑
l=0

(ψ(zl ,vl)+ρξ T
l 1) (11)

s.t. zl+1 = f (zl ,vl), l = 0, . . . ,N −1

z0 = xk

g(zl)≤ ξl ,vl ∈ U,ξl ≥ 0, l = 0, . . . ,N −1

where ξl is an auxiliary variable vector and 1 = [1,1, . . . ,1]T . It is easy to see that
the gradients of the equality constraints contain a nonsingular basis matrix, and are
linearly independent. Moreover, it is straightforward to show that the MFCQ always
holds at the solution of (11) (see [17]). Under these conditions the multipliers of (11)
are bounded. Moreover, when the inequalities are linear, as in most definitions of X
and U, CRCQ is also satisfied. Finally, with (8) GSSOSC is easy to satisfy through
the addition of a sufficiently large quadratic regularization term. These terms are
quite compatible with tracking stage costs as well as economic stage costs [17].

Moreover, if (2) has a solution, then selecting ρ larger than a finite threshold,
ρ > ρ̄ , should drive ξl to zero, where ρ̄ is the dual norm of the multipliers at the
solution of problem (2). If ξl = 0, then the solution of (11) is identical to the solution
of problem (2). Therefore, nominal stability properties of (11) are identical to those
of (2). Since a solution with ξl > 0 for arbitrarily large values of ρ implies that
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problem (2) is locally infeasible, we assume that a finite ρ̄ can be found as long as
problem (2) is well-posed. This corresponds to the common assumption that there
exists a feasible input sequence, which steers the system to the terminal set, i.e., the
horizon N is long enough to satisfy the terminal conditions.

3 Nominal and ISS Stability of NMPC

This section reviews well-known results on nominal and robust stability for the
NMPC controller u = κ(x) [19, 23]. Here we return to the system (1) and rewrite
this as:

xk+1 = f̂ (xk,κ(xk),wk) (12)

where x ∈ X is a vector of states, the set X ⊂ R
nx is closed and bounded, the

controls u : Rnx → R
nu are a mapping of the current state (i.e., the control law), and

w ∈W⊆ R
nw is a vector of disturbances.

Assumption 2 The set X ⊆ R
nx is robustly positive invariant for f (·, ·, ·). That is,

f̂ (x,κ(x),w) ∈X holds for all x ∈X , w ∈W. Furthermore, supk∈Z+
|w|= ||w||.

Definition 8. (Comparison Functions). A function α : R+ → R+ is of class K if it
is continuous, strictly increasing, and α(0) = 0. A function α : R+ →R+ is of class
K∞ if it is a K function and lims→∞α(s) =∞. A function β : R+×Z+ →R+ is of
class K L if, for each t ≥ 0, β (·, t) is a K function, and, for each s ≥ 0, β (s, ·) is
nonincreasing and limt→∞β (s, t) = 0.

Definition 9. (Attractivity). The system (12) is attractive on X if limk→∞ xk = 0 for
all x0 ∈X .

Definition 10. (Stable Equilibrium Point). The point x = 0 is called a stable equi-
librium point of (12) if, for all k0 ∈ Z+ and ε1 > 0, there exists ε2 > 0 such that
|xk0 |< ε2 ⇒ |xk|< ε1 for all k ≥ k0.

Definition 11. (Asymptotic Stability). The system (12) is asymptotically stable on
X if limk→∞ xk = 0 for all x0 ∈X and x = 0 is a stable equilibrium point.

We highlight that asymptotic stability is only possible for disturbances wk that
converge to a constant. See Appendix B of [28] for the preceding definitions.

Assumption 3 (Nominal Stability Assumptions of NMPC)

• The terminal penaltyΨ(·) satisfiesΨ(z)> 0,∀z ∈ X f \{0},
• There exists a local control law u = κ f (z) defined on X f , such that f (z,κ f (z))∈
X f ,∀z ∈ X f , andΨ( f (z,κ f (z)))−Ψ(z)≤ −ψ(z,κ f (z)),∀z ∈ X f .

• The optimal stage costψ(x,u)=ψ(x,κ(x)) satisfies αp(|x|)≤ψ(x,u)≤αq(|x|)
where αp(·) and αq(·) are K functions.
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Nominal stability of NMPC can be paraphrased by the following theorem.

Theorem 4. (Nominal Stability of NMPC [28]) Consider the moving horizon prob-
lem (2) and associated control law u = uid that satisfies Assumption 3. Then, JN(x)
from problem (11) is a Lyapunov function and the closed-loop system is asymptoti-
cally stable.

For the analysis of robust stability properties of the NMPC we consider Input-to-
State Stability (ISS) [18, 23].

Definition 12. (Input-to-State Stability)

• The system (1) is ISS in X if there exists a K L function β , and a K function
γ such that for all w in the bounded set W ,

|x(k)| ≤ β (|x(0)|,k)+ γ(|w|), ∀k ≥ 0, ∀x(0) ∈ X (13)

• A function V (·) is called an ISS-Lyapunov function for system (1) if there exist
a set X, K functions α1,α2,α3, and σ such that ∀x ∈ X and ∀w ∈W , we have
α1(|x|)≤V (x)≤ α2(|x|) and V ( f̂ (x,u,w))−V (x)≤ −α3(|x|)+σ(|w|)

Moreover, if X is a robustly invariant set for system (1) and V (·) is an ISS-Lyapunov
function for this system, then the resulting system is ISS in X [5, 23]. Note that for
problem (11), X=ℜnx .

We note that, in the nominal case (with no disturbances), ISS reduces to asymp-
totic stability. The following is a useful extension of ISS.

Definition 13. (ISpS): Under Assumption 16, the system (12) is input-to-state prac-
tically stable (ISpS) on X if |xk| ≤ β (|x0|,k)+ γ(||w||)+ c holds for all x0 ∈ X
and k ≥ 0, where β ∈K L , γ ∈K , and c ∈ R+.

We highlight that ISpS is more flexible than ISS as the sequence is relaxed by a
non-vanishing constant c. As a result, however, there is no guarantee of asymptotic
stability in the nominal case. See [22] for the preceding two definitions. Furthermore,
we use a Lyapunov theorem generalized to allow for a path-dependent Lyapunov
function that has wk, the disturbance sequence up until time k, as an argument.

Theorem 5. If the system (12) admits a function V (k,wk,x0) satisfying:

α1(|xk|)≤V (k,wk,x0)≤ α2(|xk|)+ c1 (14a)

V (k+1,wk+1,x0)−V (k,wk,x0)

≤ −α3(|xk|)+σ(|wk|)+ c2, (14b)

∀ x0 ∈X , w ∈W , k ∈ Z+

where α1,α2,α3 ∈ K∞, σ ∈ K , and c1,c2 ∈ R+ then V (k,wk,x0) is an ISpS Lya-
punov function for (12).
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Finally, we make the following assumptions and establish robust stability of the
NMPC controller from the following theorem.

Assumption 6 (Robust Stability Assumptions)

• The solution of problem (11), given by s∗(p), satisfies MFCQ, GSSOSC, and
CRCQ. From Theorem 1, the objective function and s∗(p) are therefore continu-
ous and differentiable with respect to p and the resulting feedback law, derived
from s∗(p), can be represented as u = κ(x). As a result, JN(x) is Lipschitz with
Lipschitz constant LJ.

• d(x,w) is Lipschitz with respect to its arguments with Lipschitz constant Ld and
|d(x,0)| ≤ α0(|x|), where α0(|x|) is a K function.

Theorem 7. (Robust Stability of NMPC (Theorem 2 in [23], see also [18]) Under
Assumptions 3 and 6 with α0(|x|) ≤ δ

LJ
αp(|x|) and δ ∈ (0,1) is an arbitrary real

number, the cost function JN(x) obtained from the solution (11) is an ISS-Lyapunov
function and the resulting closed-loop system is ISS.

4 Economic NMPC with Objective Regularization

When an optimization-based controller such as MPC is used, a natural extension
is to include the economic criterion directly into the cost function of the controller.
This approach is often referred to as Economic MPC (eMPC), and has been gaining
increased interest in recent years [1, 10, 12, 13, 15, 17, 32]. Moreover, a comple-
mentary chapter of this handbook [2] provides detailed development and survey of
eMPC controllers and their properties.

For eMPC, we first consider the following steady state optimization problem for
economic NMPC with xs and us as optimal steady state solutions.

minx,uψec(x,u) (15)

s.t. x = f (x,u)

u ∈ U,x ∈ X.

The dynamic optimization problem for economic NMPC is defined as follows:

V (x(k)) := min
vl ,zl

N−1

∑
l=0

ψec(zl ,vl) (16)

s.t. zl+1 = f (zl ,vl), l = 0, . . .N −1

z0 = xk,zN = xs

vl ∈ U,zl ∈ X.

We consider a stage cost given by ψec(·, ·) : ℜnx+nu → ℜ, which is assumed to
be Lipschitz continuous. To simplify the problem formulations, we use an NMPC
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formulation with terminal equality constraints that incorporate the steady state op-
timum xs, instead of the origin. Therefore, in contrast to tracking NMPC, which
approaches the origin, the stage cost for economic NMPC (eNMPC) ψec(·, ·) can
have arbitrary forms, which represent process economics.

Regarding the stability analysis for economic NMPC, we follow the Lyapunov
stability framework and we can derive the following inequality with the standard
assumptions for setpoint tracking NMPC:

V (xk+1)−V (xk)≤ −(ψec(xk,uk)−ψec(xs,us)) (17)

For setpoint tracking NMPC, the stage cost ψ tr(x,u) usually takes a quadratic
form. With this inequality, the tracking objective is decreasing monotonically and
thus it can be shown to be a Lyapunov function. For economic NMPC, however,
the economic stage cost ψec(x,u) can have an arbitrary form that represents the eco-
nomic information for process operation. For an arbitrary economic objective, the
right-hand side of inequality (17) may not be always negative since the optimal so-
lution (xs,us) may not be the global minimum of ψec(x,u) for all x and u. Therefore
the value function for economic NMPC may not be directly used as a Lyapunov
function to demonstrate the stability of the closed-loop system.

To guarantee the stability for economic NMPC, additional properties are needed.
First, as shown in [2, 3], dissipativity can be used to establish the stability for eco-
nomic NMPC.

Definition 14. [3] A control system x+ = f (x,u) is dissipative with respect to a
supply rate s : X×U→ R if there exists a function λ : X→ R, such that

λ ( f (x,u))−λ (x)≤ s(x,u) (18)

for all feasible control-input pairs. If in addition ζ : X → R≥0 a positive definite
function (ζ (xs) = 0 and ζ (x)> 0 for all x �= xs) exists such that

λ ( f (x,u))−λ (x)≤ −ζ (x)+ s(x,u) (19)

then the system is said to be strictly dissipative.

By choosing λ (x) = λ̄T x for some λ̄ ∈R
n, the dissipativity assumption is equiv-

alent to the following:

min
x,u

ψec(x,u)+ λ̄T (x− f (x,u))≥ ψec(xs,us) (20)

As pointed out in [3], the dissipativity assumption can be fulfilled if the economic
stage cost and dynamic model form a strongly dual problem. More importantly, this
leads to the concept of rotated stage cost [3, 6] defined as follows:

φ(x,u) = ψec(x,u)+λT (x− f (x,u)) (21)
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where λ are the multipliers from the equality constraints in the steady state optimiza-
tion problem (15). Moreover, it has been shown in [14, 17] that if the rotated stage
cost φ(x,u) is strongly convex, then strong duality property together with the stabil-
ity of the corresponding economic NMPC can be guaranteed. These results provide
sufficient conditions to establish stability for economic NMPC. Note that these con-
ditions can be satisfied by adding quadratic regularization terms to the economic
stage cost, which will be discussed in the following section.

4.1 Regularization of Non-convex Economic Stage Costs

For a general economic stage cost ψec(x,u) and process dynamic model f (x,u),
properties like dissipativity, strong duality, or strong convexity are not fulfilled in
general. To guarantee such properties, an easy remedy is to add quadratic regulariza-
tion terms to the original economic stage cost. After introducing the regularization
terms, the modified steady state problem and the corresponding regularized rotated
stage cost are defined as follows:

minx,uψec(x,u)+
1
2
‖(x,u)− (xs,us)‖2

Q (22)

s.t. x = f (x,u)

u ∈ U,x ∈ X.

φreg(x,u) = ψec(x,u)+λT (x− f (x,u))+
1
2
‖(x,u)− (xs,us)‖2

Q

(23)

where (xs,us) are the optimal solutions to the original optimization problem (15). Q
is a diagonal regularization weighting matrix.

As shown in [6, 17] stability of the economic NMPC controller can be realized
through the following procedure. First, we consider the rotated controller with ro-
tated stage cost φ(x,u) as the objective function. With a sufficiently large regulariza-
tion matrix Q, the regularized rotated stage cost φreg(x,u) becomes strongly convex.
As shown in [17], a local optimal solution from problem (22) is therefore a global
minimum for the regularized rotated stage cost. With this result, the value function
of this rotated controller decreases monotonically based on inequality (17) and is
asymptotically stable. Moreover, we know that the economic NMPC controller has
the same solution as the rotated controller, as their objective functions only differ
by a constant, which means that stability of regularized economic NMPC follows
directly.

While adding regularization terms is easy, finding appropriate regularization
weights that guarantee the stability of economic NMPC could be a challenging task.
In [17], a systematic approach to find the sufficient regularization weights has been
proposed. The key idea is to apply the Gershgorin theorem to find the sufficient
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regularization matrix Q, which makes the regularized rotated stage cost φreg(x,u)
strongly convex. The proposed condition for Gershgorin weights is shown as fol-
lows:

qi > ∑i �= j |hi, j|−hi, j (24)

where qi are the diagonal elements of the regularization weighting matrix Q and hi, j

are the elements of matrix H = ∇2φ(x,u), the Hessian matrix of the rotated stage
cost φ(x,u) in (21). With condition (24) satisfied, the Hessian of the regularized
rotated stage cost φreg(x,u) is positive definite and thus strongly convex. Based on
this simple criterion, we can determine the sufficient regularization weights that
guarantee stability of economic NMPC. We denote this approach, with full-state
regularization, as eNMPC-fr.

On the other hand, it should be noted that this condition (24) must be satisfied
for all u ∈ U,x ∈ X. In other words, we need to check this criterion over the entire
space of (x,u) so that the regularized rotated stage cost is guaranteed to be strongly
convex. In practice, we can sample a sufficient number of possible combinations
of states and controls in order to check this criterion. In [4], the author divides the
feasible regions of every variable, including differential states, algebraic variables
and controls, into N grid points and calculates the Hessian matrix of the rotated
stage cost at each grid point. Though all calculations are done offline, they can be
cumbersome, especially as the required number of calculations for (24) increases
exponentially with the dimension of state and control variables. With this approach,
regularization may be required for most system variables (i.e., dynamic states, al-
gebraic variables and controls), which could lead to very conservative economic
performance.

To overcome this issue, we propose an economic NMPC formulation with a reg-
ularization on a reduced set of variables. The key idea is that we only focus on
a subset of states, termed critical states, and determine regularization weights for
these critical states only. As shown in the next subsection, such an approach leads
to much easier determination of regularization weights as well as less conservative
performance.

4.2 Economic NMPC with Regularization of Reduced States

With a slight notational change we restate problem (15) and denote it as eNMPC-S:

min
x̄,x̂,u

ψec(x,u)

s.t. x̄ = f1(x̄, x̂,u) (eNMPC-S)

x̂ = f2(x̄, x̂,u)

(x̄, x̂) ∈ X,u ∈ U.
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In problem eNMPC-S, the system states x are divided into two subsectors
xT = [x̄T , x̂T ] ∈ X. Here x̄ represent critical states of the system, which will be con-
sidered for systematic analysis and may require regularization to stabilize economic
NMPC controller, while x̂ represent noncritical system states. Critical states can
be identified through structural analysis of the original optimization problem given
by (15). For example, the states that are directly involved in the economic stage cost
could be treated as critical states, since they directly affect the optimal solutions to
the economic NMPC controller.

For the NMPC problem, we apply the robust problem formulation in [35] by re-
laxing X, written as g(zl)≤ 0, with �1 penalty terms as in (11). Equivalently, we can

also define g( j)
+ (zl) = max(0,g( j)(zl)), ψ(zl ,vl) :=ψ(zl ,vl)+ρ‖g+(zl)‖1. Note that

this stage cost is no longer differentiable everywhere, but still Lipschitz continuous,
which is sufficient for the stability analysis. As in (11), with constraint qualifications
and second order conditions (e.g., MFCQ, CRCQ and GSSOSC) satisfied, and a suf-
ficiently large penalty weight ρ , the optimal solution of the reformulated problem
is the same as the original optimization problem and the penalty terms equal zero.
Similarly, terminal equality constraints can also be removed with �1 penalty terms.
For this we choose a penalty parameter ρt which is large enough so that zN = xs at
the optimal solution.

We define the reformulated dynamic optimization problem for the economic
NMPC controller (eNMPC) as follows:

V (x(k)) = min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψec(zl ,vl)+ρt ||zN − xs||

s.t. z̄l+1 = f1(z̄l , ẑl ,vl) (eNMPC)

ẑl+1 = f2(z̄l , ẑl ,vl),vl ∈ U, l = 0, . . .N −1.

z̄0 = x̄k, ẑ0 = x̂k

To partition the critical and noncritical system states for analysis, we introduce the
following assumption.

Assumption 8

• For steady state economic problem eNMPC-S, x̂ can be uniquely determined by
(x̄,u).

With Assumption 8, x̂ can be uniquely calculated via the square equation system
f2(., .) with fixed values of x̄ and u. Under Assumption 8, the noncritical states x̂
can be expressed as a function of critical states x̄ and controls u, which leads to
the following reformulated steady state optimization problem, which we denote as
eNMPC-SA:

min
x̄,x̂,u

ψec(x,u)

s.t. x̄ = f1(x̄, x̂,u) (eNMPC-SA)
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x̂ = η(x̄,u)
(x̄, x̂) ∈ X,u ∈ U.

Note that there may not exist an explicit form for function η(·, ·), but we can at least
determine this steady state relationship based on implicit function theorem under
Assumption 8.

Next we introduce a modified DAE system, where critical states x̄ are determined
by the original dynamic model, but noncritical states x̂ are treated as algebraic vari-
ables. We assume that this modified system is an index 1 DAE. By defining extended
states ṽl+1 = vl , we then apply the same robust reformulation and have the following
economic NMPC controller eNMPC-A:

V (x̄(k)) = min
zl ,ẑl ,vl

N−1

∑
l=0

ψec(zl ,vl)+ρt ||zN − xs||

s.t. z̄l+1 = f1(z̄l , ẑl ,vl), l = 0, . . .N −1

ẑl = η(z̄l , ṽl), l = 1, . . .N (eNMPC-A)

z̄0 = x̄k

ẑ0 = h(x̄k,uk)

vl , ṽl ∈ U.

To simplify this process and avoid over-regularization, we consider only the crit-
ical state and control variables, and add these reduced regularization terms to the
objective of the unregularized controller eNMPC.

To analyze the stability property with this modified regularization, we first study
the stability of controller eNMPC-A, where all of the noncritical states are treated as
algebraic variables. For controller eNMPC-A, a much simpler and less conservative
regularization can be obtained. Then we analyze the stability of eNMPC after adding
the reduced regularization obtained from eNMPC-A, by considering the effect of
errors introduced by this approximation. Similar to the previous analysis, we also
consider a rotated stage cost defined by the steady state problem eNMPC-SA as
follows:

φ(x,u) = ψec(x,u)+λT (x̄− f1(x̄,η(x̄,u),u) (25)

It should be noted that only a subset of model equations are rotated, and λ are the
multipliers only for the equality constraints that have been rotated.

As before, using the rotated stage cost φ(x,u) as the objective has the same so-
lution as minimizing the original economic stage cost. Moreover, using the follow-
ing parametric NLP formulation pNLP(t), with parameter t, problems eNMPC and
eNMPC-A can be linked by setting t = 1 and t = 0, respectively.
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min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψec(zl ,vl)+ρt ||zN − xs||

s.t. z̄l+1 = f1(z̄l , ẑl ,vl), l = 0, . . .N −1 (pNLP(t))

ẑl = η(z̄l , ṽl)+ t( f2(z̄l−1, ẑl−1,vl−1)−η(z̄l , ṽl)), l = 1, . . .N

z̄0 = x̄k

ẑ0 = η(x̄k,uk)+ t(x̂k)−η(x̄k,uk)

vl ,ṽl ∈ U.

Finally, for the approximation of the noncritical states, we introduce an error
(“noise”) vector w(k) = [w0 . . .wN ]

T with entries defined as follows:

w0 = x̂(k)−η(x̄(k),u(k−1)) (26)

wl = f2(z̄l−1, ẑl−1,vl−1)−η(z̄l , ṽl) l = 1 . . .N (27)

This noise vector w(k) represents the differences in the values of ẑl given by the
dynamic function and steady state relationship. For the above parametric NLP prob-
lem, when t = 0, we have problem eNMPC-A. On the other hand, when t = 1, we
have problem eNMPC.

The following theorem shows that when w(k) = 0, the stability property can
be guaranteed for controller eNMPC by adding regularization terms only for critical
states x̄ and u. In this special case, noncritical states collapse into algebraic variables
and controller eNMPC is equivalent to eNMPC-A.

Theorem 9. When w(k) = 0 and Assumption 8 holds, controller eNMPC can be
made asymptotically stable by adding a sufficiently large regularization on reduced
sets of states z̄ and v.

The proof of this theorem can be found in [36].
Then we consider the stability property for controller eNMPC for cases where

w(k) �= 0, and the controller eNMPC can be treated as the controller eNMPC-A cor-
rupted with non-zero noise terms w(k). The process model for controller eNMPC-A
is defined as follows:

k+1 = f1(x̄k,uk,η(x̄k,uk−1)) (28)

while the true process model is defined as follows:

k+1 = f1(x̄k,uk,η(x̄k,uk−1)+w0) (29)

Here w0 is the first element of the noise vector w(k) and is defined as k̂−η(x̄k,uk−1),
which represents the difference in the values of x̂ at time k for eNMPC and
eNMPC-A.



4 Economic NMPC with Objective Regularization 479

We now analyze the stability property for controller eNMPC-A when the pro-
cess model is given by Equation (29), which is the nominal process model. For this
case, model mismatch exists between the nominal process model and the control
model (28) for controller eNMPC-A. We also introduce the assumption that w(k)
is always bounded. Along with additional standard assumptions for robust stabil-
ity, we establish the Input-to-State Stability (ISS) property for controller eNMPC-A
with Theorem 13.

Assumption 10

• The noise vector w(k) = [w0 . . .wN ]
T is drawn from a bounded set W with an

upper bound w̄.

Assumption 10 is a key assumption for the following stability analysis, which as-
sumes bounded deviations of the dynamic noncritical states x̂ from their algebraic
approximations, i.e. dynamic states x̂ have a similar behavior as algebraic variables.
For example, this occurs with noncritical states that have very fast dynamics.

Assumption 11 Robust stability assumptions

• The optimal solution to problems eNMPC and eNMPC-A is continuous with
respect to xk and w.

• V (xk) is Lipschitz with respect to xk, with a positive Lipschitz constant Lv.
• Model equations f1, f2 and steady state relationship η are Lipschitz continuous

with its arguments with corresponding Lipschitz constants.

Theorem 12. Under Assumption 8, 10, and 11, controller eNMPC-A, with a suffi-
ciently large regularization on z̄ and v, is ISS when the process model is given by
Equation (29) and w(k) �= 0.

The proof of this theorem can be found in [36].
Because controller eNMPC is linked to controller eNMPC-A through pNLP(t),

we can derive the stability property for controller eNMPC by treating this controller
as controller eNMPC-A corrupted with non-zero noise terms w(k). This leads to the
following assumption and theorem.

Theorem 13. Under Assumption 8, 10, and 11, controller eNMPC can be made ISpS,
by adding a sufficiently large regularization on z̄ and v.

The proof of this theorem can be found in [36].
From the above results, we can guarantee ISpS of the economic NMPC controller

by regularizing critical states x̄, under the assumption that the deviations in noncriti-
cal states x̂ from their algebraic predictions are bounded. Unlike exogenous process
disturbances, which always exist and are independent of process states, the noise
vector w(k) in our analysis may have some different properties that could lead to
stronger stability results. With the following theorem, we can show that asymptotic
stability can be established for eNMPC with a stronger assumption for w(k).
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Assumption 14 The noise vector |w(k)| ≤ δ
Lw

(|x̄k − x̄s|), where
δ
Lw

(|x̄k − x̄s|) ≤
w̄,Lw = 2LV ,δ ∈ [0,1), after a finite number of iterations K.

In Assumption 14, we assume that as critical states x̄ approach to steady state,
the vector w(k) is bounded by the distance of x̄ to the optimal steady state, which is
stronger than Assumption 10. However, this assumption may hold for cases where
x̄k and x̂k are close to steady state; the deviations of dynamic states x̂k and their
algebraic predictions are bounded by a decaying bound and w(k) will go to zero as
x̄ converges to steady state x̄s.

Theorem 15. Under Assumption 14, controller eNMPC can be made asymptotically
stable, by adding a sufficiently large regularization on reduced sets of states z̄
and v.

The proof of this theorem can be found in [36].
In this section, we have shown that, with a sufficiently large regularization on a re-

duced set of system states, the stability of controller eNMPC can still be maintained.
Though controller eNMPC-A has a stronger stability result than controller eNMPC,
we only use the modified process model to determine reduced regularization weight.
From the modified model, we can derive a reduced Hessian in the space of critical
states. By making the reduced Hessian positive definite in the reduced space, we
can find sufficient regularization weights for critical states, and add these reduced
regularization terms to the objective of the unregularized controller eNMPC. We
denote this controller as eNMPC-rr and observe that it still uses the original dy-
namic model, which gives accurate predictions in terms of the dynamic behavior of
both states x̄ and x̂, but with a reduced regularization for the stage cost. Additional
details on calculating the reduced regularization weights and theorem proofs are
given in [36].

Selection of critical states can have direct impacts on the performance of con-
troller eNMPC-rr. Based on the previous stability results, we can see that dynamic
states that have similar performance as their algebraic counterparts may be removed
from regularization analysis by treating them as algebraic variables. These states
can be located via time scale analysis of the original system. For states with very
fast time scales, Assumption 10 may be satisfied implicitly and no regularization is
required for these states.

Finally, selecting the appropriate critical states for regularization also requires a
good understanding of the dynamic process model structure. For example, we can
conduct a structural analysis of the dynamic model to see if there are inherently un-
stable states. If so, we need to treat these unstable states as critical states as well. In
addition, the coupling of states may provide hints to remove unnecessary states for
regularization analysis. For instance, if there is strong dependency of some states on
the others, like the slaving relationship for algebraic variables, then these dependent
states can be treated as noncritical.
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5 Economic MPC with a Stabilizing Constraint

Finally, we introduce a less restrictive economic MPC formulation eNMPC-sc as
well as related formulations to highlight advantages and disadvantages. It has been
recently suggested to replace the tracking regularization terms in the objective with
a stabilizing constraint [37]. The eNMPC-sc controller solves the NLP:

min
zl ,vl

N−1

∑
l=0

ψec(zi,vi) (30a)

s.t. zl+1 = f (zl ,vl ,0) l = 0, . . . ,N −1 (30b)

z0 = xk (30c)

zl ∈ X, vl ∈ U l = 0, . . . ,N −1 (30d)

zN = xs (30e)
N−1

∑
l=0

ψ tr(zl ,vl)−V (k−1,wk−1,x0)

≤ −δ ψ tr(xk−1,uk−1) (30f)

where δ ∈ (0,1] is a scalar parameter. After the NLP is solved, we inject the control
law uk = v0 into the system and set

V (k,wk,x0) :=
N−1

∑
i=0
ψ tr(zk

i ,v
k
i ), (31)

where (zk
i ,v

k
i ) is the solution of (30) at time k. We thus note that V (k− 1,wk−1,x0)

is the value function at time k−1.
Once the control is injected into the system we wait for it to evolve to xk+1 and

use the value function V (k,wk,x0) in (30f) to solve (30) at xk+1, and repeat the
procedure. Note that the initial value V (0,w0,x0) may simply be chosen sufficiently
large to ensure that (30f) is inactive at the solution of the problem solved at time
k = 0. The advantages of this formulation are that we do not require a solution
to the tracking problem, and this formulation provides a looser constraint with the
same stability properties.

To establish ISpS for the proposed economic MPC controller we must ensure
uniform continuity of the value function. This property is not guaranteed for the
formulation (30), but can be achieved by softening the state constraints, as is done
in (11), and rewriting the problem formulation as follows:

min
zl ,vl

N−1

∑
l=0

ψec(zi,vi)+ρ

(
ξ S +ξ ss,L +ξ ss,U +

N−1

∑
l=0

ξ x
l

)
(32a)

s.t. zl+1 = f (zl ,vl ,0) l = 0, . . . ,N −1 (32b)

z0 = xk (32c)
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gx(zl)≤ ξ x
l ,vl ∈ U l = 0, . . . ,N −1 (32d)

−ξ ss,L ≤ zN − xs ≤ ξ ss,U , ξ x
l ,ξ

S,ξ ss,L,ξ ss,U ≥ 0 (32e)
N−1

∑
l=0

ψ tr(zl ,vl)−V (k−1,wk−1,x0)≤ −δ ψ tr(xk−1,uk−1)+ξ S (32f)

where ξ x
l ,ξ

S,ξ ss,L,ξ ss,U are auxiliary variables and ρ ∈ R+ is a penalty parame-
ter. To analyze this controller, we consider the following assumptions and stability
theorem:

Assumption 16 (A)The set X ⊆R
nx is robustly positive invariant for f (·, ·, ·). That

is, f (x,κ(x),w) ∈ X holds for all x ∈ X , w ∈ W. (B) The set W is bounded and
||w|| := supk∈Z+

|w|. (C) f is uniformly continuous with respect to w.

Theorem 17. Let Assumption 16 hold. Then there exists V (k,wk,x0) such that
eNMPC-sc is ISpS.

See [11] for proof. We also note that δ = 1 in (32f) corresponds to the most
constrained Lyapunov function, and δ approaching zero corresponds to the least
constrained. The parameter δ is thus a tuning parameter that shapes closed-loop
behavior. A large δ forces a faster approach to the steady state, and small δ allows
for more economic flexibility.

Moreover, by dualizing (32f) and moving it into the objective, we observe that
this constraint acts as a regularization term. Its weight is determined by the optimal
Lagrange multiplier of (32f) and thus changes at each time instant k (i.e., the weight
is adaptive). This Lagrange multiplier can be interpreted as the price of stability. For
more details, see [37].

6 Case Studies

6.1 Nonlinear CSTR

To compare the performance of different economic NMPC strategies proposed in
the previous sections, we first consider a nonlinear continuous stirred tank reactor
(CSTR), taken from [6], with a first order irreversible reaction A → B. The mass
balances for reactant A and product B are shown as follows:

dcA

dt
=

F
V
(cA f − cA)− kcA (33a)

dcB

dt
=

F
V
(−cB)+ kcA (33b)

where cA and cB denote the concentrations of components A and B, respectively, in
mol/l. The manipulated input flow is F in l/min, the reactor volume is V = 10 l, the
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rate constant is k = 1.2 l/(mol ·min), and cA f = 1 mol/l is the feed concentration.
In addition, we set variable bounds as 10 ≤ q ≤ 20 and 0.45 ≤ cB ≤ 1 which are
softened with auxiliary variables that are penalized in the objective function in the
NLP. The economic stage cost is:

ψec(cA,cB,F) =−F

(
3cB − 1

2

)
(34)

The steady state used for the tracking objective is c∗A = 0.55, c∗B = 0.45, F∗ = 14.67,
so ψec

ss =−12.47.
We compare the performance of eNMPC-sc with a regularized economic MPC

controller. Regularization weights for the latter, Q = diag(qA,qB,qF) are calculated

in [36]. For the full regularization strategy, regularization terms
1
2
‖x− xs‖2

Q are re-

quired for F and x = cA,cB with qA = 1.55, qB = 0.44, and qF = 1.98. For reduced
regularization, we chose cA as the critical state, and find the regularization weights
for the reduced system, with qA = 1.55, and qF = 1.55.

We discretize the CSTR model using a three-point Radau collocation with a fi-
nite element length of 0.5 min with the prediction horizon N = 200. The initial
conditions cA,0 = 0.2 mol/l, cB,0 = 1 mol/l, and we apply the robust reformulation to
constraints on cB, which softens the variable bounds with �1 norm penalty in the ob-
jective function. The penalty weight ρ is 106. We implement the problem in AMPL
[8] and solve the NLPs with IPOPT [31].

For this case study, we compare the performance of tracking NMPC and differ-
ent formulations of economic NMPC, including eNMPC-sc with stabilizing con-
straint, eNMPC-fr with full regularization, eNMPC-rr with reduced regulariza-
tion as well as pure economic NMPC (with Q = 0). A comparison of the accumu-
lated stage costs is listed in the following table. A short simulation length of K = 9
is chosen so that we can focus on the dynamics that occur before the set-point is
reached.

Table 1: CSTR example, comparing the accumulated cost

∑K
k=0ψec(xk,uk)−ψec

ss
Tracking −37.8078
eNMPC-fr −38.5496
eNMPC-rr −38.7547
eNMPC-sc, δ = 0.01 −45.1846
Purely economic −45.6851

From Table 1, we can see that pure economic NMPC has the best economic per-
formance. eNMPC-sc has a similar cost to the pure economic case, which is better
than the cases with regularization terms. Moreover, we can observe a slight improve-
ment by reduced regularization over full regularization. We also compare the varia-
tions of economic stage cost ψec(xk,uk)−ψec

ss for economic NMPC with different
formulations in Figure 1. First we can see that, by adding full regularization, reduced
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regularization or imposing an inequality constraint, economic NMPC leads to fast
convergence to the optimal steady state. However, pure economic NMPC leads to
an oscillatory profile. We can also see that cases with reduced regularization have a
similar trend as the full regularization case, and the case with a stabilizing constraint
has similar behavior as the purely economic case, especially in the first few NMPC
cycles.

1098

Tracking
eNMPC-sc
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eNMPC-fr
Pure economic
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Fig. 1: Variations of stage cost for different controllers in the CSTR example.

6.2 Large-Scale Distillation System

We now consider the large-scale process system shown in Figure 2 with two distil-
lation columns in series. The full model is omitted here for brevity, but is available
in [21]. Each column is based on the model described in [30], with the main differ-
ence that we consider three components, A, B, and C. The bottom stream of the first
column (with flowrate B1) is the feed to the second column (with flowrate F2). The
distillate of the first column (with flowrate D1) is specified at 95% A, the distillate
of the second column (with flowrate D2) is specified at 95% B, and the bottoms of
the second column (with flowrate B2) is specified at 95% C. Vapor flowrates in the
reboilers of the two columns are VB1 and VB2 , respectively. We assume constant rel-
ative volatilities with αA = 2,αB = 1.5, and apply the Francis weir formula for tray
hydraulics. Each column has 41 equilibrium stages including the reboiler, leading
to a dynamic model with 246 state and 8 control variables.

The economic cost is the cost of feed and energy to the reboilers minus the cost
of the products, that is ψec = pF ·F1 + pV (VB̄,1 +VB̄,2)− pA ·D1 − pB ·D2 − pC ·B2,
where pF = $1/mol is the price of feed, pi for i = A,B,C is the price of compo-



6 Case Studies 485

Fig. 2: Distillation Flowsheet.

nent i with pA = $1/mol, pB = $2/mol, and pC = $1/mol, pV = $0.008/mol is
the price per mole vaporized in the reboilers, and the indices represent the first or
second column. The feed to the first column is saturated liquid, with composition
at 40 mol% A, 20 mol% B and 40 mol% C. Product purities are implemented as
inequality constraints. We discretize the DAE system using three point Radau col-
location and use a finite element length of 1 min and N = 25. Each NLP (32) has
120,000 variables, 108,000 equality constraints, and 14,000 inequality constraints.
The models are implemented in AMPL and solved with IPOPT.

Finding sufficient regularization weights in the full variable space is much more
cumbersome due to the size of the system. Here, the entire state space is gridded and
the Hessian of the steady state problem is evaluated at each grid point. We denote
the controller with full-space regularization obtained from the Gershgorin Circle
theorem as eNMPC-fr. The Gershgorin weights for all the variables are reported
in [33].

To reduce the effort to determine sufficient regularization weight, we consider the
reduced regularization strategy. As critical states we choose the tray holdups at the
top of the first column, and the top and bottom of the second column, as these states
directly impact the distillates in the economic function. Additional regularization
terms are associated with four manipulated variables, the reflux and boilup rates
for the two columns. With the reduced regularization strategy, the reduced Hessian
needs to be positive definite over the feasible regions of only 7 variables, rather than
for all of the variables; this significantly simplifies determination of the weights. We
obtain the reduced Hessian via numerical perturbations, calculate its eigenvalues
μi(x,u) at sampling points j and find a regularization weight Q = (q+ ε)I where
q = max(0,max j,i −μi(x j,u j)), ε = 10−3.

In this example, we compare the performance of tracking NMPC and different
formulations of economic NMPC, including eNMPC-sc with a stabilizing con-
straint, eNMPC-fr with full regularization, eNMPC-rr with reduced regulariza-
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tion as well as pure economic NMPC. A comparison of accumulated stage costs
over ten time steps (∑K

k=0ψec(xk,uk)−ψec
ss ) from the same initial condition for vari-

ous cases is shown in Table 2. Again, we choose a short simulation length of K = 9
to emphasize dynamic performance. Also, we choose ρ = 104 for this example. The
steady state cost, ψec

ss , is −0.223.

Table 2: Distillation example, comparing the accumulated cost and solution times

∑K
k=0 (ψec(xk,uk)−ψec

ss ) Average CPU sec.
Tracking −20.7330 69.0
eNMPC-fr −22.6650 72.0
eNMPC-rr −26.2324 181.8
eNMPC-sc, δ = 0.01 −28.6706 309.2
Economic −28.6458 272.3

From the results shown in Table 2, we can see that eNMPC-sc provides eco-
nomic benefit over regularized formulations eNMPC-fr and eNMPC-rr. Com-
pared with full regularization strategy, eNMPC-rr with reduced regularization
achieves better economic performance. In addition, the efforts to calculate sufficient
regularization weights are greatly reduced. Lastly, all formulations of eNMPC have
better economic performance over tracking NMPC.

The variations of economic stage cost ψec(xk,uk) for all cases are shown in the
Figure 3. We can see that eNMPC-sc with a very small δ = 0.01 has nearly the
same behavior as pure economic NMPC with most significant variations. But this
case gives the best economic performance. eNMPC-fr behaves similarly as track-
ing NMPC with least variations, due to conservative regularization terms on most
system variables. Compared with eNMPC-fr, eNMPC-rr has more oscillations

Fig. 3: Variations of stage cost for different controllers in the double distillation
column example.
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but improves the economic performance with smaller regularization weights and
far fewer regularization terms. The computational times for these eNMPC cases
are also shown in Table 2. By comparing the results from Table 2, we observe that
regularization is beneficial for computational performance but sacrifices economic
performance.

7 Conclusions

This work describes robustly stable NMPC formulations for both tracking and eco-
nomic cases. Robustness may be obtained by softening the state variable inequality
constraints with auxiliary variables that are treated as �1 penalties. We show both
the nominal and robust stability of tracking NMPC reformulated in this way. For the
economic case, we show multiple methods for stabilization. These include objective
regularization based on the full state-space (eNMPC-fr), objective regularization
based on a reduced set of states (eNMPC-rr), and the addition of a stabilizing con-
straint (eNMPC-sc). We then demonstrate these results on a small CSTR example
and a large case study with two distillation column models in series. In general, we
observe that tracking NMPC and eMPC-fr behave similarly in economic perfor-
mance, while eNMPC-sc has economic performance closer to pure eNMPC. While
eNMPC-sc has ISpS stability guarantees it tends to require longer solution times.
Finally, eNMPC-rr provides a good compromise, with ISpS stability, intermediate
economic performance, and relatively short solution times.

Acknowledgements

This work is partially supported by the National Science Foundation Graduate Re-
search Fellowship Program Grant No. DGE1252522. The second author also thanks
the Choctaw Nation of Oklahoma, the Pittsburgh Chapter of the ARCS foundation,
the ExxonMobil Graduate Fellowship program, and the Bertucci Graduate Fellow-
ship program for generous support.

References

1. Amrit, R., Rawlings, J.B., Biegler, L.T.: Optimizing process economics online using model
predictive control. Comput. Chem. Eng. 58, 334–343 (2013)

2. Angeli, D.: Handbook of Model Predictive Control. Chapter Economic Model Predictive
Control, p. yyy. Birkhüser, Basel (2018)
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Part III
Applications



Automotive Applications of
Model Predictive Control

Stefano Di Cairano and Ilya V. Kolmanovsky

Model Predictive Control (MPC) has been investigated for a significant number of
potential applications to automotive systems. The treatment of these applications
has also stimulated several developments in MPC theory, design methods, and al-
gorithms, in recent years. This chapter provides an overview of automotive appli-
cations for which MPC has been considered and approaches to MPC development,
deployment, and implementation that have been pursued. First, a brief history of
MPC applications to automotive systems and features that make MPC appealing for
such applications are discussed. Then, for the main automotive control sub-domains,
key first principle models and opportunities that these provide for the application of
MPC are described. Next, we detail the key steps and guidelines of the MPC design
process tailored to automotive systems. Finally, we discuss numerical algorithms for
implementing MPC, and their suitability for automotive applications.

1 Model Predictive Control in Automotive Applications

There are very few devices that are as pervasive in our world as cars. Reports show
that close to 90 million cars and light commercial vehicles were sold worldwide in
2016. Recent innovations in car mechanics, electronics, and software have been fast
paced to respond to growing stringency of fuel economy, emissions, and safety reg-
ulations, as well as to market-driven pressures to provide customers with improved
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performance, drivability, and novel features. Advanced control methods that are ca-
pable of optimizing the vehicle operation, and can reduce the time-to-market for
increasingly complex automotive systems are clearly needed.

It thus comes as no surprise that, in recent years, a significant interest in model
predictive control (MPC) has been shown in the automotive industry. The research
on applications of MPC to automotive systems has been steadily growing both in
industry and academia to address some of the challenges of this application domain.
Yet MPC is a significant step up from the classical control methods, such as PID,
and its implementation in industrial practice presents challenges on its own.

The purpose of this chapter is to provide a short tutorial on the development
of MPC-based solutions for automotive systems. Towards this end, we first briefly
review the history of MPC applications to automotive systems, and we highlight
the benefits that MPC can provide as well as the challenges faced by MPC in this
domain. Then, given that MPC is a model-based control approach, for the main
automotive control areas, such as powertrain control, chassis control, and energy
management, we describe the key first principle models that can be used for MPC
design, and the control objectives that need to be achieved. Next, we detail common
steps of MPC design for automotive systems. Finally, we consider the computational
aspects that are important for real-time implementation and deployment of MPC
solutions on automotive computing platforms.

While this chapter represents a tutorial overview of MPC design for automotive
systems based on the author’s first-hand experience, due to scope and length limita-
tions it is not able to serve as a comprehensive survey of the entire body of literature
on automotive applications of MPC. A brief survey is available in [48].

1.1 A Brief History

Some of the first investigations of MPC for automotive systems can be traced back to
the mid ’90s, with [46] where MPC was applied to idle speed control being a notable
case. In those years, the numerical algorithms for MPC were too computationally
demanding for the “then-current” vehicle micro-controllers, and hence such studies
were usually only simulation-based.

Two new developments in the early 2000s gave a significant boost to the inves-
tigation of MPC-based automotive control and have led to the rapid growth of re-
lated applications and literature. Firstly, the scientific community interest in hybrid
dynamical systems led to the development of hybrid MPC [7], which allowed to
control processes with switching dynamics. This opened up opportunities for the ap-
plication of MPC to control of transmissions [2, 8, 42, 78], to traction control [15],
and to control of semiactive suspensions [38]. Systems with mode-dependent objec-
tives, such as direct injection, stratified charge engines [39], or requiring piecewise
linearizations, such as camless engine actuators [23], HCCI engines [12, 68], or
vehicle stability control functions [29] could now be handled. Secondly, the applica-
tion of parametric programming techniques resulted in the development of explicit
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MPC [6] that synthesizes the control law, and hence avoids the need to run an op-
timization algorithm online in the micro-controller. This led to the possibility of
experimentally testing several controllers in real, production-like, vehicles includ-
ing, about 12 years after the initial development, a refined MPC-based idle speed
control [24], and an MPC-based diesel engine airpath control [64, 75]. From then,
the applications of MPC have picked up both in powertrain control [30] and chassis
(or vehicle dynamics) control [5, 29], with some industry research centers being at
the forefront in developing these applications, see, e.g., [48, 61, 79].

Starting from the mid-2000s, MPC-based control has been considered for hy-
brid and electric vehicles, including fuel-cell vehicles. Some of the early contribu-
tions include [6, 58, 77]. The development of MPC strategies for different hybrid
electric powertrain configurations has then been considered in more depth, e.g., for
ERAD [70], series [28], and powersplit [14] configurations. Due to the complexity
of the hybrid powertrains and the attempt to use MPC to directly optimize fuel con-
sumption, these controllers were often rather difficult to implement in the vehicle.
An interesting case is [28], where instead of optimizing directly the fuel consump-
tion, MPC was used as an energy buffer manager to operate the engine smoothly
and with slow transients, leading to a design simple enough to be implementable
in a prototype production vehicle, yet still achieving significant benefits in terms
of fuel economy. The resulting controller in [28] was actually implemented experi-
mentally in such road-capable vehicle, which allowed to assess its performance in
production-like computing hardware.

Currently, advanced MPC methods are being investigated both for improving ex-
isting features, and for future applications in autonomous, and connected vehicles.
Some examples are Lyapunov-based MPC for network control in automotive sys-
tems [17], stochastic MPC for cooperative cruise control [74], robust and stochastic
MPC for autonomous driving [18, 31, 53], and several applications exploiting V2V
and V2I communications [59, 63]. Such an expansion has been also supported by
the development of low complexity optimization algorithms that now allow for solv-
ing quadratic programs in automotive micro-controllers without the need to generate
the explicit solutions, that have combinatorial complexity in terms of memory and
computations. Still several challenges in terms of computation, estimation, and de-
ployment remain, that will require significant investigations in the next several years,
to increase the range of feasible applications. How ongoing advances in the areas of
cloud computing, connectivity, large data sets, and machine learning can help tackle
these challenges is also to be fully discovered.

1.2 Opportunities and Challenges

Due to regulations, competition, and customer demands, automotive control applica-
tions are driven by the need for robustness, high performance, and cost reduction all
at the same time. The investigation of MPC for several automotive control problems
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has been mainly pursued due to MPC features that are helpful and effective in ad-
dressing such requirements and in achieving optimized operation. The key strengths
of MPC are summarized in Table 1 and discussed next.

Strengths Challenges

Simple multivariable design High computational load
Constraint enforcement Process models sometimes unavailable
Inherent robustness Nonlinearities during transients
Performance optimization Dependence on state estimate quality
Handling of time delays Non-conventional design and tuning process
Exploiting preview information

Table 1: Strengths and challenges for MPC in automotive applications.

A solid starting point for MPC development is that while the processes and dy-
namics taking place in the vehicle are interdependent and may be fairly complex,
they are well studied and understood, and, for most, detailed models are available.
This enables the application of model-based control methods, such as MPC.

Due to the aforementioned requirements, often driven by emissions, fuel con-
sumption, and safety regulations, the number and complexity of actuators for in-
fluencing the vehicle operation is increasing. Some interesting examples are tur-
bochargers, variable cam timing, electric motors, active steering, differential brak-
ing, regenerative braking. As more actuators become available, methods that can
coordinate them to achieve multiple objectives, i.e., control multivariable, multiob-
jective systems, may achieve superior performance than control designs that are
decoupled into several single-variable loops. MPC naturally handles multivariable
systems without additional design complexity, thus simplifying the development of
such multivariable controllers. This has been demonstrated, for instance, for spark-
ignition (SI) engine speed control [26, 30, 46], vehicle-stability control by coordi-
nated steering and braking [29, 33], and airpath control in turbocharged diesel en-
gines [64, 75]. Furthermore, while it may still be difficult to obtain globally robust
MPC designs, it is well known that often MPC provides inherent local robustness,
as it can be designed to locally recover the LQR behavior, including its gain and
phase margin guarantees.

Another advantage is that the tight requirements imposed by operating condi-
tions, regulations, and interactions with other vehicle systems can often be easily
formulated in terms of constraints on process variables. By enforcing constraints
by design, rather than by time-consuming tuning of gains and cumbersome protec-
tion logics, MPC can reduce the development and calibration time by a significant
amount [16, 29, 30, 38, 75].

The problem of ensuring high performance can often be approached through the
optimization of an objective function. The ability to perform such an optimization
is another key feature of MPC. In fact, this was at the root of the interest of several
researchers in hybrid and electric vehicles [14, 28, 70, 81]. Even if it may be diffi-
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cult to directly formulate the automotive performance measures as a cost function
for MPC, it is usually possible to determine indirect objectives [26, 28] that, when
optimized, imply quasi-optimal (or at least very desirable) behavior with respect to
the actual performance measured.

Besides these macro-features, MPC has additional capabilities that are useful
in controlling automotive processes. For instance, the capability of including time
delay models, possibly of different length in different control channels, is very bene-
ficial, as several engine processes are subject to transport delays and actuator delays.
Also, new technologies and regulations in communication and connectivity, outside
and inside the car, allow for obtaining preview information that MPC can exploit
to achieve superior performance [32, 74]. This is even more relevant in the context
of autonomous and connected vehicles [21], due to the available long-term informa-
tion, for instance from mid to long range path planners, and from shared information
among vehicles.

However, there are also several challenges to the large scale deployment of MPC
in automotive applications [19], which are also summarized in Table 1 and discussed
next.

First, MPC has larger computational load and memory footprint than classical
control methods, while automotive micro-controllers are fairly limited in terms of
computing power. Since the vehicle must operate in challenging environments, e.g.,
temperatures ranging from −40oC to +50oC, the achievable processor and memory
access frequencies are limited. The need to reduce the cost, and the shorter devel-
opment and validation time often prevents introducing new processors sized for the
need of a specific controller. Rather, the controller must fit in a given processor.

Second, not all the automotive processes have well-developed models. Combus-
tion and battery charging/discharging are examples of processes that are still dif-
ficult to model precisely, and suitable models for them still remain an area under
study. While some of the gaps can be closed using partially data-driven models, one
has to be careful in applying MPC in this setting as such models may not generalize
well.

Even for the processes that are better understood, the dynamics are intrinsically
nonlinear. This third challenge is more relevant in automotive than in other fields,
e.g., in aerospace, because, due to external effects, e.g., the driver, the traffic, the
road, many automotive processes are continuously subject to fast transients during
which the nonlinearities cannot be easily removed by linearization around a steady
state.

A further complicating factor is that several variables in automotive processes
are not measured, and the sensors for estimating them may be heavily quantized
and noisy. Thus, a fourth challenge for MPC, which needs the state value for initial-
izing the prediction model, is the need of state estimators, whose performance will
significantly affect the overall performance of the control system. The estimator per-
formance will depend on the sensors that in automotive applications are reduced in
number and have limited capabilities, once again due to cost and harsh environment.

Fifth and final challenge, is the difference in the development process of MPC
and classical controllers, e.g., PID. While the latter are mostly calibrated by gain
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tuning, MPC requires prediction model development and augmentation, definition
of horizon and cost, and tuning of the weights of the cost function terms. As these
are often not taught in basic control design courses, calibration engineers in charge
of deploying and maintaining the controllers in the vehicle may find difficulties with
the development of MPC. Hopefully, this entire handbook is a step towards solving
this problem.

1.3 Chapter Overview

The rest of this chapter is structured based on the above discussion of strengths and
challenges, with the aim of providing a guide for MPC development in automotive
applications.

Due to the model-based nature of MPC, and the need for the MPC developer to
acquire an understanding of the process models used for design, we first describe
(Section 2) the key models to be used for MPC development in the areas of power-
train (Section 2.1), vehicle dynamics (Section 2.2), and energy management (Sec-
tion 2.3). Our description of such models provides a starting point for the develop-
ment of MPC solutions for these applications and enhances the understanding of
the opportunities for using MPC in these applications. Then, we provide general
guidelines for controller development (Section 3). Finally, we discuss the computa-
tional challenges and the key features of the algorithms used for MPC deployment
in automotive applications (Section 4).

2 MPC for Powertrain Control, Vehicle Dynamics, and Energy
Management

In this section we consider key automotive control areas in which the application
of MPC has been considered and can have an impact. For each area we first describe
the key models for model-based control development, and then, in light of these
models, we briefly highlight what impact MPC may have.

2.1 Powertrain Control

Powertrain dynamics involve the generation of engine torque and transfer of such
torque to the wheels to generate traction forces.

The engine model describes the effects of the operating conditions and engine ac-
tuators on the pressures, flows and temperatures in different parts of the engine, and
on the torque that the engine produces. The engine actuators range from the standard
throttle, fuel injectors, and spark timing to more advanced ones, such as variable ge-
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Fig. 1: Schematics of a naturally aspirated spark ignition engine, with focus on the
air path.

ometry turbines (VGT), exhaust gas recirculation (EGR) valves, and variable cam
timing (VCT) phasers, among others.

The engine model itself is, in general, composed of two parts, the airpath model,
which describes the flow and mixing of the different gases in the engine, and the
torque production model, which describes the torque generated from the combustion
of the gas mixture.

For naturally aspirated spark ignition (SI), i.e., conventional gasoline, engines
(see the schematic in Figure 1) the airpath model is relatively simple and represents
the cycle averaged dynamics of the pressure in the intake manifold, under an isother-
mal assumption, and the flow from the throttle to the intake manifold and from the
intake manifold into the engine cylinders,

ṗim =
RTim

Vim
(Wth −Wcyl), (1a)

Wcyl = ηvol
Vd pim

RTim

N
120

≈ γ2
γ1

pimN + γ0, (1b)

Wth =
Ath(ϑ)√

RTamb
pambφ

(
pim

pamb

)
, (1c)

where W , p, T , V denote mass flow, pressure, temperature, and volume, respectively,
φ is a nonlinear function which represents the throttle flow dependence on the pres-
sure ratio across the throttle [44, App.C], the subscripts im, th, amb, cyl refer to the
intake manifold, the throttle, the ambient, and the cylinders, respectively, N is the en-
gine speed, usually in revolutions per minute (RPM), Vd is the engine displacement
volume, ηvol is the volumetric efficiency, R is the gas constant, Ath is the throttle
effective flow area, which is a function of throttle angle, ϑ , and γi, i ∈ Z0+ denote
engine-dependent constants, that are obtained from engine calibration data.
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Crankshaft

Fig. 2: Schematics of a turbocharged compression ignition engine, with focus on the
air path. In comparison with the SI engine in Figure 1, note the absence of throttle
and spark plugs, and the interconnected dynamics of exhaust and intake manifold,
through EGR valve and turbine-compressor.

For modern compression ignition (CI), i.e., diesel, engines (see the schematic in
Figure 2), the airpath model is substantially more complex, especially because these
engines are usually turbocharged and exploit EGR, which renders the isothermal
assumption inaccurate. Furthermore, the EGR valve and the turbocharger effectively
couple the intake manifold with the exhaust manifold, which then must be included
in the model. As a result, the diesel engine models include pressures, densities (ρ),
and burned gas fraction (F) in both the intake (im) and exhaust (em) manifolds,

ṗim =
cpR

cvVim
(WcomTcom −WcylTim +WegrTem), (2a)

ρ̇im =
1

Vim
(Wcom −Wcyl +Wegr), (2b)

Ḟim =
(Fem −Fim)Wegr −FimWcom

ρimVim
, (2c)

ṗem =
cpR

cvVem
(WcylTcyl −WturTem −WegrTem − Q̇em/cp), (2d)

ρ̇em =
1

Vem
(Wcyl −Wtur −Wegr), (2e)

Ḟem =
(Fem −Fim)Wegr

ρemVem
, (2f)

where cp, cv are the gas specific heats at constant pressure and constant temperature,
respectively, Q̇ is the heat flow, and the subscripts egr, com, tur refer, respectively,
to the exhaust gas being recirculated, the compressor, and the turbine.
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Equations in (2a) must be coupled with the equations describing the flows. While
the cylinder flow equation is the same as in (1b) for the SI engine model, and the
EGR flow is controlled by a valve resulting in an equation similar to (1c), the re-
maining flows are determined by the turbocharger equations,

Wcom =
pamb√
Tamb

φcom(Ntc/
√

Tamb, pim/pamb), (3a)

Wtur =
pem√
Tem

φtur(χvgt, pep/pem), (3b)

Ṅtc =
γ3
Jtc

ηturWtur(Tem −Tep)−ηcomWcom(Tim −Tamb)

Ntc
, (3c)

where ep refers to the exhaust pipe, χvgt is the variable geometry turbine actuator
position, Ntc, and Jtc are the speed and inertia of the turbocharger, φcom and φtur,
ηcom, and ηtur, are the flow parameters and efficiencies of turbine and compressor.

It is worth noting that in recent years downsized gasoline engines that are tur-
bocharged have become more common. Their airpath model is a hybrid between
the SI and CI models, since they have SI combustion and throttle, but also a tur-
bocharger, although, in general, with a smaller fixed geometry turbine, and possibly
a wastegate and variable valve timing instead of the EGR valve [72].

The second part of the engine model is the torque production model, which de-
scribes the net torque output generated by the engine. This model has the form,

Me = Mind(t − td)−Mfr(N)−Mpmp(pim, pem,N), (4)

where Mind, Mfr, Mpmp are the indicated, friction, and pumping torques, respectively.
The indicated torque is the produced torque and its expression depends on the engine
type. For SI engines,

Mind ≈ κspk(t − tds)γ4
Wcyl

N
, (5a)

κspk ≈
(

cos(α−αMBT)
)γ5 , (5b)

where α and αMBT are the ignition angle and the maximum brake torque ignition
angle, and κspk is the torque ratio achieved by spark ignition timing. Since CI en-
gines are not equipped with spark plugs, and the air-to-fuel ratio in these engines
may vary over a broad range, the indicated torque equation is usually obtained from
engine calibration data, e.g., as

Mind = findCI(Wf ,N,Fim,δ ), (6)

where Wf is the fuel flow, and δ represents to the fuel injection parameters (e.g.,
start of injection).

The final component in the engine models represents the transfer of the torque
from the engine to the wheels. In general, the engine speed (in RPM) is related to
the engine torque Me, inertia of the crankshaft and flywheel Je, and load torque ML
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by

Ṅ =
1
Je

30
π
(Me −ML). (7)

The load torque model varies largely depending on whether the vehicle has an au-
tomatic transmission, which includes a torque converter, or a manual transmission
with dry clutches. Depending on the compliance of the shafts and the actuation of
the clutches, the steady state component of the torque load is

ML =
rw

gr
Ftrac +Mlos +Maux,

where Mlos, Maux are the torque losses in the driveline and because of the auxiliary
loads, rw is the wheel radius and gr is the total gear ratio between wheels and engine
shaft, usually composed of final drive ratio, transmission gear ratio, and, if present,
torque converter ratio.

2.1.1 MPC Opportunities in Powertrain Control

Powertrain control has likely been the first, and probably the largest, application
area of MPC in automotive systems. In conventional SI engines, when the driver
is pressing on the gas pedal, the vehicle is in torque control mode and there are
basically no degrees of freedom available for control. Thus, the main opportunities
for MPC application are in the so-called closed-pedal operation, i.e., when the gas
pedal is released, and the vehicle is in a speed control mode.

An example is idle speed control [26] where the spark timing and the throttle
are actuated to keep a target speed while rejecting external disturbances. The engine
speed must be kept from becoming too small, otherwise the engine may stall, and
the throttle and spark timing are subject to physical and operational constraints, for
instance due to knocking or misfiring. Thus, the optimal control problem that defines
the MPC law can be formulated as

min
α ,ϑ

TN

∑
t=0

(N(t)− rN(t))
2 +wϑΔϑ(t)2 +wα(α(t)−αr(t))

2 (8a)

s.t. α(t)≤ α(t)≤ α(t), ϑ(t)≤ ϑ(t)≤ ϑ(t), N(t)≥ N(t) (8b)

where wϑ , wα are positive tuning weights, and rN , αr are references that are constant
or slowly varying based on engine temperature.

During deceleration control, the engine speed is controlled to follow a reference
trajectory that causes the vehicle to decelerate smoothly and energy-efficiently, and
still allows for the engine to rapidly resume torque production, if acceleration is
needed, see Figure 3. In this case the problem is similar to (8), except that the refer-
ence speed trajectory is time varying and a first order model for it is often available
and may be used for preview.
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Both idle speed control and deceleration control are multivariable control prob-
lems in which actuators are subject to constraints and the dynamics are affected
by delays of different lengths in different control channels. Based on guidelines in
Table 1, both idle speed control and deceleration control are clearly good applica-
tion areas for MPC. On the other hand, the dynamics are clearly nonlinear in both
of these problems. Since idling takes place near a setpoint, a linearized model for
idling is fairly accurate. For deceleration control the system operates in a transient
all the time, and hence it is often convenient to develop a low-level controller that
linearizes the dynamics. In such a control architecture, MPC can exploit constraints
to ensure that the interaction with the low level controller is effective. For deceler-
ation control, a low level controller is tasked with delivering the demanded torque,
thus transforming the pressure-based model into a torque-based model, where the
torque response is modeled as a first order system subject to delay

Ṅ(t) =
1
Je
(κ̂spkMair(t)+uspk(t − tds)−ML(t)), (9a)

Ṁair(t) =
1
τair

(−Mair(t)+uair(t − td(t)), (9b)

Mair(t)≤ Mair(t)≤ Mair(t), (9c)

ΔκMair(t)≤ uspk(t − tds)≤ Δκ Mair(t). (9d)

The multiplicative relation between spark timing and torque is converted into an ad-
ditive one subject to linear constraints by introducing a virtual control representing
the torque modification obtained from spark actuation. This is possible with MPC
due to the capability of handling constraints.
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Fig. 3: Experimental test of MPC-based deceleration control from [30]. Engine
speed N, reference r, and tracking error εN , torque converter turbine speed NT , gear
gi, and controller enabling signal enab, vehicle speed vspd, torque from airflow Mair

and torque ratio from spark κspk are shown.

CI engines are far more complex and have more degrees of freedom than nat-
urally aspirated gasoline engines, due to EGR, VGT, and multiple fuel injections
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that must be exploited throughout the entire operating range to achieve a suitable
tradeoff between torque delivery and emissions. In general, in diesel engines the
fuel flow Wf is determined based on the pedal position and current engine speed,
and from that, the setpoints for other variables such as the intake manifold pres-
sure and either mass airflow through the compressor or EGR rate are determined.
Then, a feedback controller is developed that actuates the VGT, EGR valve, and
possibly intake throttle, to track these setpoints. Also in this case we obtain a multi-
variable control problem with constraints on actuators and process variables, such as
intake and exhaust manifold pressures, EGR rate, turbocharger speed, turbine tem-
perature, compressor surge margin, etc. The MPC solution can be simplified [52]
by pursuing a rate-based formulation, constraint remodeling, intermittent constraint
enforcement, and by combining it with nonlinear static or dynamic inversion.

Recent publications [10, 11] have reported that MPC has been scheduled for
production by General Motors in collaboration with Odys, with specific solutions
disclosed for turbocharged SI engine control and control of CVT gear ratio.

2.2 Control of Vehicle Dynamics

Vehicle dynamics models are derived from the planar rigid body equations of mo-
tion. For normal driving that involves neither high performance driving nor low
speed maneuvers, the single track model, also known as a bicycle model, shown in
Figure 4, is common. This model is described by

m(v̇x − vyψ̇) = Fx f +Fxr, (10a)

m(v̇y + vxψ̇) = Fy f +Fyr, (10b)

Jzψ̈ = � f Fy f − � jFyr, (10c)

where m is the vehicle mass, ψ is the yaw rate, vx, vy are the components of the
velocity vector in the longitudinal and lateral vehicle direction, Jz is the moment of
inertia about the vertical axis, � f , �r are the distances of front and rear axles from
the center of mass. In (10), Fi j, i ∈ {x,y}, j ∈ { f ,r} are the longitudinal and lateral,
front and rear tire forces expressed in the vehicle frame [67],

Fx j = fl(α j,δ j,σ j,μ ,Fz j), Fy j = fc(α j,δ j,σ j,μ ,Fz j), Fz j =
� j

� f + �r
mg, (11)

where δ j is the steering angle at the tires, α j is the tire slip angle, and σ j is the slip
ratio, for front and rear tires j ∈ { f ,r}, and μ is the friction coefficient between tires
and road. The slip angles and the slip ratios relate the vehicle tractive forces with the
vehicle velocity and the wheel speeds, thereby coupling the vehicle response with
the powertrain response,

α j = tan−1
(

vy j
vx j

)
, (12a)
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vl j = vy j sinδ j + vx j cosδ j, vc j = vy j cosδ j − vx j sinδ j, (12b)

σ j =

{ rω j
vx j

−1 if vx j > rω j,

1− rω j
vx j

if vx j < rω j,
(12c)

where vx j, vy j, j ∈ { f ,r}, are the longitudinal and lateral components of the vehicle
velocity vector at the tires. In, (11), the functions fl , fc define the tire forces that
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Fig. 4: Schematics of the single track model for the lateral vehicle dynamics. The
most relevant vectors for describing the model are also shown.

are in general determined by data or according to a model such as Pacejka’s or
Lu’Gre [54].

In the above-mentioned normal driving conditions, the longitudinal and lateral
dynamics are often decoupled, yielding a lateral dynamics model where vx is con-
stant, and, with a further linear approximation of the lateral tire forces as a function
of the slip angles, resulting in

mv̇y = −Cf +Cr

vx
vy −

(
vx +

Cf � f −Cr�r

vx

)
ψ̇+Cf δ , (13a)

Jzψ̈ = −Cf � f −Cr�r

vx
vy −

Cf �
2
f +Cr�

2
r

vx
ψ̇+ � fCf δ +Mbr, (13b)

where we used the relation α f = (vy + � f ψ̇)/vx, αr = (vy − �rψ̇)/vx, and we have
included a moment Mbr that can be generated by applying non-uniform forces at
different wheels, for instance by differential braking. In (13), Cf , Cr are the front
and rear lateral tire stiffnesses for the single model, i.e., twice the tire stiffness of
the double track model, which correspond to a linear approximation of the lateral
tire forces as functions of the slip angles, Fy j =Cjα j.

Similarly, the longitudinal dynamics are also simplified by neglecting the lateral
dynamics, resulting in

mv̇x = ∑
j∈ f ,r

fl(0,0,σ j,μ ,Fz j)−Fres ≈Cx
fσ f +Cx

rσr −Fres, (14a)

Fres = Faero +Froll +Fgrade ≈
1
2
ρairA f cdv2

x +mgcr cosθrd +mgsinθrd, (14b)
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where Cx
f , Cx

r are the front and rear longitudinal tire stiffnesses, that represent a
linear approximation of the longitudinal tire forces as functions of the slip ratio
Fx j = Cx

jσ j. The slip ratio changes based on the torques exerted on the wheels by
the engine and the brakes, thus relating the powertrain and braking system actuation
with the vehicle motion. In (14) we have included the effects of resistance forces
due to airdrag, rolling, and road grade. Here, ρair is the density of air, A f is the
vehicle frontal area, Cd is the drag coefficient, θrd is the road grade, cr is the rolling
resistance coefficient, and g is the gravity acceleration. The longitudinal vehicle
dynamics can be linked to the powertrain torque production in several ways. For low
bandwidth applications, such as cruise control, one can approximate Cx

fσ f +Cx
rσr ≈

Ftrac, where the driveline shafts are assumed to be rigid. The tractive force Ftrac is
the response of a first order-plus-delay system, representing the force at the wheels
applied from the powertrain side,

Ḟtrac =− 1
τF

Ftrac +
1
τF

uF(t − tF).

If shaft compliance is considered, the tractive torque Mtrac = Ftracrw is caused by the
slip between the wheel half-shafts and the rigid transmission shaft, so that

Mtrac = ks(θe −θwgr)+ds(θ̇e − θ̇wgr), (15)

where ks and ds are the half-shafts stiffness and damping, θe, θw are the engine and
wheel shaft angles, and gr is the total gear ratio between engine and wheels.

The active control of the vertical vehicle dynamics is mainly obtained by ac-
tive and semi-active suspensions. The simplest model is the quarter-car model [47],
where each suspension is independent from the others. The standard quarter-car
model describes the vertical vehicle dynamics as two masses, the unsprung mass
Mus representing the car wheel, with stiffness kus and damping dus, and the sprung
mass Ms, representing one quarter of the car body, connected by a spring-damper
with stiffness and damping ks, ds, the passive component of the suspension, and
with a force Fa acting between them. Such a force is generated by the active or
semi-active suspension actuator.

The equations of motions for the sprung and unsprung mass are

Msẍs = cs(ẋus − ẋs)+ ks(xus − xs)−Fa, (16a)

Musẍus = ct(ṙ− ẋus)+ ks(r− xus)+ cs(ẋs − ẋus)+ ks(xs − xus)+Fa, (16b)

where xs is the position of the sprung mass, xus is the position of the unsprung mass,
Fa is the actuator force, and r is the local road height with respect to the average.

The objective of the suspension control is to limit tire deflections, hence ensur-
ing that the vehicle maintains good handling, to limit suspension deflections, hence
ensuring that the suspension does not run against its hard stops causing noise, vibra-
tions and harshness (NVH) and wear, and to limit sprung mass accelerations, hence
resulting in a comfortable ride. The type of actuator, e.g., hydraulic, electromagnetic,
etc., and its overall capabilities, e.g., active or semi-active, may require additional
models for the actuator dynamics, and possibly constraints limiting its action, such
as force ranges or passivity constraints.



2 MPC for Powertrain Control, Vehicle Dynamics, and Energy Management 507

2.2.1 MPC Opportunities in Vehicle Dynamics

MPC of longitudinal vehicle dynamics has been applied to adaptive cruise control
(ACC), see, e.g., [61]. The objective of adaptive cruise control is to track a vehicle
reference speed r while ensuring a separation distance d from the preceding vehi-
cle, related to the head-away time Th, and comfortable ride, all of which can be
formulated as

min
Ftrac

TN

∑
t=0

(vx(t)− rv(t))
2 +wFΔuF(t)

2 (17a)

s.t. F trac ≤ Ftrac(t)≤ F trac, (17b)

d(t)≥ Thvx(t), (17c)

where wF is a positive tuning weight. For ACC, interesting opportunities are opened
when a stochastic description of the velocity of the traffic ahead is available or can
be estimated [13], or, in the context of V2V and V2I, when there is perfect preview
through communication [74]. Also, using an economic cost can help reduce fuel
consumption, with minimal impact on travel time [65]. Additional potential appli-
cations in longitudinal vehicle dynamics still to be investigated in depth are launch
control and gear shifting. More recent applications involve braking control for col-
lision avoidance systems, see, e.g., [59] possibly by using again V2X to exploit
preview information.

The interest in MPC for lateral dynamics spans multiple applications, especially
lateral stability control and lane keeping, up to autonomous driving. A challenging
case [29] is the coordination of differential braking moment and steering to enforce
cornering, i.e., yaw rate reference rψ tracking, and vehicle stability, i.e., avoiding
that the slip angles become so large that the vehicle spins out of control. Such a
problem is challenging due to its constrained multivariable nature and to the need
to consider nonlinear tire models. A viable approach has been to consider piecewise
linear tire models, resulting in the optimal control problem

min
Δδ ,Mbr

TN

∑
t=0

(ψ̇(t)− rψ(t))
2 +wδΔδ (t)2 +wbrMbr(t)

2 (18a)

s.t. |Mbr(t)| ≤ Mbr, |δ (t)−δ (t −1)| ≤ Δδ , |δ (t)| ≤ δ , (18b)

fc j(α j) =

⎧⎨
⎩

−d jα j + e j if α j > p j,
Cjα j if |α j| ≤ p j,
d jα j − e j if α j <−p j,

(18c)

|α j| ≤ α j, (18d)

where wδ , wbr are positive tuning weights, and then using either a hybrid MPC or
a switched MPC approach, where the current linear model is applied for prediction
during the entire horizon.
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Fig. 5: Schematic of a powersplit HEV architecture. The arrows indicate the allowed
power flow directions. The series HEV architecture is obtained by removing the link
(1), thus the mechanical couplings are simply mechanical connections. The parallel
HEV architecture is obtained by removing the generator and hence links (2) and (3).

As for the vertical dynamics, MPC offers interesting possibilities for active sus-
pension control when preview of the road is available [32, 60], for instance obtained
from a forward looking camera. MPC may also be beneficial in semi-active suspen-
sion control, since the passivity condition

Fa(ẋs − ẋus)≥ 0, (19)

can be enforced in MPC as a constraint, which ensures that only commands that are
realizable by a semi-active actuator are actually issued. Constraint (19) is nonlinear,
but can be enforced by mixed-logical constraints

[δv = 1] ↔ [ẋs − ẋus ≥ 0], (20a)

[δF = 1] ↔ [Fa ≥ 0], (20b)

[δv = 1] ↔ [δF = 1], (20c)

where δv, δF are auxiliary binary variables, thus resulting in a hybrid MPC [38].
Finally, for more advanced systems that aim at coordinating all the suspensions

in the vehicle [41], the multivariable nature of MPC can be very effective.

2.3 Energy Management in Hybrid Vehicles

The novel element in hybrid powertrains is the presence of multiple power gener-
ation devices, e.g., engine, motor, generator, and energy storage devices, e.g., fuel
tank, battery, flywheel. The most common hybrid vehicles are hybrid electric vehi-
cles (HEV) where the internal combustion engine is augmented with electric motors
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and generators, and batteries for energy storage. For HEV there are a several com-
ponent topologies that determine the configurations of the power coupling, the most
common being series, parallel, powersplit, and electric rear axle drive (ERAD).

The presence of multiple power generation devices requires modeling the power
balance. A general model for the mechanical power balance that ultimately de-
scribes the amount of power delivered to the wheels is

Pveh = Peng −Pgen +Pmot −Plos
mec, (21)

where Pveh is the vehicle power for traction, Peng is the engine power, Pgen is the
mechanical power used to generate electrical energy to be stored in the battery, Pmot

is the electrical power used for traction, and Plos
mec accounts for the mechanical power

losses. In advanced HEV architectures, such as the powersplit architecture in Fig-
ure 5, motoring and electric energy generation can be accomplished by multiple
components, since, despite the names that indicate their preferred usage, both the
motor and the generator can convert mechanical energy into electrical energy, and
the other way around.

The electrical power balance, that is used to determine the power delivered
to/from the battery, is often modeled as

Pbat = Pmot −Pgen +Plos
gen +Plos

mot, (22)

where Pbat is the power flowing from the battery and Plos
gen, Plos

mot are the losses in
electric energy generation and in the electric motoring, respectively.

As opposed to the fuel tank, the battery power flow is bi-directional and the
stored energy is usually quite limited, thus the energy stored in the battery should
be tracked and it is, in fact, the main state of the HEV energy model. The energy
stored in the battery is related to the stored charge, which is normalized with respect
to the maximum to obtain the battery state of charge (SoC) SoC = Qbat

Qmax
. The battery

power, voltage, and current are related by

Pbat = (V oc
bat − IbatRbat)Ibat,

where V oc
bat is the open circuit battery voltage, Ibat is the battery current, and Rbat is

the battery internal resistance. This results in the state of charge dynamics

˙SoC =−
V oc

bat −
√

V oc
bat

2 −4RbatPbat

2RbatQmax
.

Considering a power coupling that is kept under voltage control and representing
the battery as a large capacitor, i.e., ignoring internal resistance, we obtain a simpler
representation

˙SoC =−ηbat(Pbat,SoC)
Pbat

V cc
batQmax

,
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where ηbat is the battery efficiency, that, for feedback control, can be well approx-
imated by one or two constants [28], the latter case modeling different efficiencies
in the charging and discharging process.

The main control problem specific to HEV powertrains is the management of
the energy in order to minimize the consumed fuel subject to charge sustaining
constraints

min
∫ t f

ti
Wf (t)dt (23a)

s.t. SoC(ti) = SoC(t f ), (23b)

where the fuel flow Wf is related to the engine power by a function that depends
on the engine operating point, Wf = f f (Peng,N). As opposed to conventional power-
trains, in most HEV configurations, even for a given engine power and wheel speed,
there are degrees of freedom in selecting the engine operating point, i.e., engine
speed and engine torque, that can be leveraged by the energy management strategy.

2.3.1 MPC Opportunities in Hybrid Vehicles

Due to the focus on optimizing the energy consumption subject to constraints on
power flows and battery state of charge, HEV energy management has been an ex-
tensively studied target for MPC application.

The key idea is to construct a finite horizon approximation of the fuel consump-
tion cost function (23a), augmented with a term penalizing large differences of SoC
at the end of the horizon, which can be interpreted as the augmented Lagrangian
form of the charge sustaining constraint (23b). The cost function can also include
additional terms such as SoC reference tracking. Furthermore, constraints on vari-
ous power flows and battery SoC can also be included, resulting in the following
optimal control problem,

min
Pbat,...

FN(SoC(TN))+
TN−1

∑
t=0

Wf (t)+wsoc(SoC(t)− rSoC(t))
2 (24a)

s.t. Peng(t)−Pgen(t)+Pmot(t)−Plos
mec(t) = Pdrv(t), (24b)

SoC ≤ SoC(t)≤ SoC, (24c)

|Pbat(t)| ≤ Pbat. (24d)

The mechanical power equation (21) is enforced as a constraint in (24) to ensure that
the vehicle power is equal to the driver-requested power Pdrv. The actual number
of degrees of freedom in (24) varies with the HEV architecture. For a powersplit
architecture, shown in Figure 5, in its entirety, it is equal to two. For a parallel
architecture, where there is no generator, and for a series architecture, where there
is no pure mechanical connection between engine and wheels, it is equal to one.
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Exploiting the simplicity of the latter, an MPC was developed in [28] which was
deployed on a prototype production series HEV that was fully road drivable.

It is interesting to note that the cost function in HEV energy management is
of economic type and, in retrospect, HEV energy management was probably the
first real-world application of economic MPC, showing in fact the possibility of
steady state limit cycles or offsets [28]. In recent years, multiple advanced MPC
methods have been applied to HEV energy management, including stochastic MPC
in [71] where the driver-requested power is predicted using statistical models, pos-
sibly learned from data during vehicle operation.

2.4 Other Applications

Given that the field of automotive control is large, it is impossible to provide a
comprehensive account for all automotive applications of MPC in a single chap-
ter. In this chapter we focused on the three areas described above, which have
been very actively researched over the last few years. However, there are several
other applications that could be noted, including, among others, emission control
in SI, e.g., [73, 76], and CI engines, e.g., [49, 50] engines, transmission control,
e.g., [2, 8, 42, 78], control of gasoline turbocharged engines, e.g., [1, 72], control of
homogeneous combustion compression ignition (HCCI) engines, e.g., [12, 68], and
energy management of fuel-cell vehicles, e.g., [3, 4, 77].

3 MPC Design Process in Automotive Applications

This section aims at providing guidelines for a design process for MPC in automo-
tive applications. While not a standard, it has been applied by the authors in multiple
designs that were eventually tested in vehicles, and it has been proved useful and ef-
fective in those applications. We focus on linear MPC, because, as discussed later,
this has been so far the main method used in automotive applications, primarily due
to computational and implementation requirements. However, the design process
extends almost directly to nonlinear MPC.

The MPC design amounts to properly constructing components of the finite
horizon optimal control problem to achieve the desired specifications and control-
oriented properties. We consider the finite horizon optimal control problem

min
U(t)

x′t+N|tPxt+N|t +
N−1

∑
k=0

z′t+k|tQzt+k|t +u′
t+k|tRut+k|t (25a)

xt+k+1|t = Axt+k|t +But+k|t , (25b)

yt+k|t =Cxt+k|t +Dut+k|t , (25c)

zt+k|t = Ext+k|t , (25d)
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ut+k|t = κ f xt+k|t , k = Nu, . . . ,N −1, (25e)

xt|t = x(t), (25f)

y ≤ yt+k|t ≤ y, k = Ni, . . .Ncy, (25g)

u ≤ ut+k|t ≤ u, k = 0, . . .Ncu −1, (25h)

HNxt+N|t ≤ KN , (25i)

where the notation t + k|t denotes the k-step prediction from measurements at time
t, U(t) = {ut+0|t . . .ut+N−1|t} in the control input sequence to be optimized, x,u,y,z
are the prediction model state, input, constrained outputs, and performance output
vectors, u,u,y,y are lower and upper bounds on input and constrained output vectors,
P,Q,R are weighting matrices, N,Ncu,Ncy,Nu are non-negative integers defining the
horizons, κ f is the terminal controller, and HN ,KN describe the terminal set. Next,
we discuss the role of each of these components in achieving the specifications that
are common in automotive applications.

3.1 Prediction Model

Several dynamical processes occurring in automotive applications are well stud-
ied and have readily available physics-based models, some of which have been de-
scribed in Sections 2.1–2.3. In MPC design it is desirable to start from such physics-
based models. However, many of them may be of unnecessarily high order, may be
nonlinear, and may have several parameters to be estimated for different vehicles.
Hence, the first step in MPC design is usually to refine the physics based model by:

• simplifying the model to capture the relevant dynamics based on the specific
application and controller requirements, e.g., the sampling period, by lineariza-
tion, model order reduction, etc.

• estimating the unknown parameters by gray-box system identification methods,
e.g., linear/nonlinear regression, step response analysis, etc.;

• time-discretizing the dynamics to obtain a discrete-time prediction model.

Even for the relatively simple case of idle speed control, in [26] due to computa-
tional requirements, the powertrain model (1), (4) is linearized around the nominal
idle operating point. The model structure is known from physics, and it consists
of two transfer functions, from throttle and spark to engine speed, each of second
order and subject to delays, where the latter also has a stable zero. The model param-
eters are identified from the step responses, with the models for the delays removed
during identification, to be added again later, see Figure 6.

The result of the first model construction step is a linear, discrete-time con-
strained model for the physical process,

xm(t +1) = Amxm(t)+Bmum(t), (26a)

ym(t) = Cmxm(t)+Dmum(t), (26b)
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Fig. 6: Validation of identification of engine model for idle speed control from
nonlinear model data (left) and experimental data (right) in throttle and spark up-
down steps from [26]. Upper plot: data (solid), continuous-time linear model (dash),
discrete-time linear model (dash-dot). Lower plot: continuous-time model error
(solid) discrete-time model error (dash-dot).

zm(t) = Emxm(t), (26c)

where xm ∈ R
nm is the state vector, um ∈ R

mm is the input vector, ym ∈ R
pm is the

constrained output vector, and zm ∈ R
qm is the performance output vector.

The process model (26) usually needs to be augmented with additional states and
artificial dynamics in order to achieve the problem specifications, such as tracking
of references, non-zero, and possibly unknown, steady state input values, rejection
of certain classes of disturbances, e.g., constant, sinusoidal, etc. Further modifica-
tions may be made to account for additional information available in the system,
such as preview on disturbances or references, or known models for those. Typical
augmentations are the incremental input formulation

u(t +1) = u(t)+Δu(t),

the inclusion of integral action to track constant references and reject constant un-
measured disturbances,

ι(t +1) = ι(t)+TsCιz(t),

and the inclusion of disturbance models

η(t +1) = Adη(t),
d(t) = Cdη(t),

where the disturbance model state η is measured in the case of measured distur-
bances, while in the case of unmeasured disturbance it is estimated by disturbance
observers. A case of particular interest is the inclusion of buffers, which allow to
account for preview on disturbances and references,

ξ (t +1) =

[
0 I
0 c

]
ξ (t),

χ(t) =
[

1 0 . . . 0
]
ξ (t),
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where c is usually either 1 or 0 depending on whether, after the preview window,
the last value in the buffer is to be held constant or set to 0. Delay buffers can be
formulated in the same way, by adding as input at the beginning of the buffer the
signal that is delayed. Note that an exact linear model of the delay buffer can be
formulated in discrete-time, albeit with the resolution of the sampling period, while
in continuous-time one must resort to Padé approximations, that may introduce fic-
titious non-minimum phase behaviors and mislead the control decisions.

Due to its intrinsic feedforward-plus-feedback nature, MPC is often applied for
reference tracking. However, the application of MPC to these problems is not as
simple as for linear controllers, because the constraints usually prevent from simply
“shifting the origin” to translate the tracking problem into a regulation problem. In
automotive applications, it is also difficult to compute the equilibrium associated
with a certain reference value r, due to the uncertainties in the model and the unmea-
sured disturbances. If one wants to avoid adding a disturbance observer, it may be
effective to apply the velocity (or rate-based) form of the model, where both the state
and input are differentiated, and the tracking error em is included as an additional
state

Δxm(t +1) = AmΔxm(t)+BmΔum(t), (27a)

em(t) = em(t −1)+EmΔxm(t)+Δr(t), (27b)

ym(t) = ym(t −1)+CmΔxm(t)+DmΔum(t), (27c)

where Δr is the change in reference signal. For MPC applications one need to add
integrators (27c) to reformulate ym in terms of the state and input changes, Δxm,
Δum, except for the cases where the constraints are originally in differential form.

The more common augmentations in relations to specifications commonly found
in automotive control applications are summarized in Table 2. Applying all the aug-
mentations results in a higher order prediction model,

Specification Model Augmentation
Piecewise constant reference or Incremental input
measured disturbance
Measured non-predictable disturbance Constant disturbance model
Previewed reference/disturbance Preview reference/disturbance buffer
Known time delay Delay buffer
Unmeasured constant disturbance Output/tracking error integral action

Output disturbance and observer
Reference tracking Reference model and tracking error,

velocity form

Table 2: List of common specifications and related augmentations to the process
model to handle them.
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xt+k+1|t = Axt+k|t +But+k|t , x =

[
xm

xp

]
∈ R

n, u =

[
um

up

]
∈ R

m, (28a)

yt+k|t = Cxt+k|t +Dut+k|t , y =

[
ym

yp

]
∈ R

p, (28b)

zt+k|t = Ext+k|t , z =

[
zm

zp

]
∈ R

q, (28c)

where x,u,y,z are the prediction model state, input, constrained outputs, and per-
formance output vectors, xp,up,yp,zp are the augmented state, input, constrained
outputs, and performance output vectors.

3.2 Horizon and Constraints

The constraints are usually enforced on the constrained output vector, and on the
input. While enforcing the constraints directly on the states is certainly possible, it
is more convenient to introduce the vector y specifically for this use, which allows to
enforce state, mixed state-inputs, and, possibly even pure input constraints through
a single vector. Thus, the constraints are formulated as

yt+k|t ∈ Ym, ut+k|t ∈Um, (29)

where Ym and Um are the admissible sets for constrained output and input vectors,
respectively. Enforcing constraints on the prediction model y and u, which include
augmentation, often allows to formulate (29) as simple bounds

y ≤ yt+k|t ≤ y, u ≤ ut+k|t ≤ u, (30)

which are easier to specify and to handle in an optimization problem.
In automotive applications, the sampling period Ts is often equal to the period

of the control cycle for the function being developed. However, for the prediction
model to be accurate, it is expected that the sampling period Ts is small enough to
allow for 3-10 steps in the settling of the fastest dynamics, following a reference
step change. If this is not the case, upsampling or downsampling may be advised,
resulting in the prediction model sampling period and the control loop period to
be different, and appropriate strategies, such as move blocking or interpolation, are
applied to bridge such a difference.

The choice of the prediction horizon N is related to the prediction model dynam-
ics. In general, N should be slightly larger, e.g., 1.5×-3×, than the number of steps
for the settling of the slowest (stable) prediction model dynamics, following a ref-
erence step change. This requirement relates to the choice of the sampling period
so that the total amount of prediction steps is expected to be 5-30 times the ratio
between the slowest and the fastest (stable) system dynamics. To be more correct,
since the controller usually alters the response of the open-loop system, the rele-
vant settling time for the choice of the prediction horizon is that of the closed-loop
system, which leads to an iterative selection procedure.
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For adjusting the computational requirements in solving the MPC problem, other
horizons can be defined. The control horizon Nu determines the number of control
steps left as free decision variables to the controller, where for k ≥ Nu the input is
not an optimization variable but rather assigned by a pre-defined terminal controller,

ut+k|t = κ f xt+k|t , k = Nu, . . . ,N −1. (31)

The constraint horizons, for outputs and inputs, Ncy,Ncu, respectively, determine for
how many steps the constraints are enforced,

y ≤ yt+k|t ≤ y, k = Ni, . . . ,Ncy, u ≤ ut+k|t ≤ u, k = 0, . . . ,Ncu −1, (32)

where Ni ∈ {0,1} depending on whether output constraints are enforced or not at
the initial step. Enforcing output constraints at the initial step is reasonable only if
the input directly affects the constrained outputs. By choosing Nu, one determines
the number of optimization variables, nv = Num and by choosing Ncy,Ncu, one de-
termines the number of constraints, nc = 2(p(Ncy +Ni)+m(Ncu)). This defines the
size of the optimization problem.

3.3 Cost Function, Terminal Set and Soft Constraints

The cost function encodes the objectives of MPC and their priority. For classical, i.e.,
not economic, MPC, the control specifications are formulated as variables that are
to be controlled to 0. The variables are either a part of the process model (26) or are
included in the prediction model (28) by the augmentations discussed in Section 3.1.
In general the MPC cost function is

Jt = x′t+N|tPxt+N|t +
N−1

∑
k=0

z′t+k|tQzt+k|t +u′
t+k|tRut+k|t , (33)

where the performance outputs of the prediction model z = Ex can model objectives
such as tracking, e.g., by z = Cx−Crxr, where xr is the reference model state, and
r = Crxr is the current reference. In (33), Q ≥ 0, R > 0 are the matrix weights that
determine the importance of the different objectives: for a diagonal weight matrix Q,
the larger the ith diagonal component, the faster the ith performance output will be
regulated to 0. It is important to remember that weights determine relative priorities
between objectives. Hence, increasing the jth performance output weight may slow
down the regulation of the ith performance output.

Very often, the control specifications are given in terms of “domain quantities,”
such as comfort, NVH (noise, vibration, harshness), consistency, i.e., repeatability
of the behavior, and it is not immediately clear how to map them to corresponding
weights in the cost function (33). While the mappings tend to be application depen-
dent, some of the common mappings are reported in Table 3, where we stress that
the outputs and inputs, and their derivatives, refer to the plant outputs, which may



3 MPC Design Process in Automotive Applications 517

be a part of the performance outputs or inputs, depending on the performed model
augmentations.

Specification Corresponding weights
Regulation/Tracking error weight on plant output error
Energy weight on plant input
Noise, vibration, weight on plant output acceleration,
and harshness (NVH) and plant input rate of change
Consistency weight on plant output velocity,

and plant input rate of change
Comfort weight on plant output acceleration and jerk,

and model input rate of change

Table 3: List of “domain terms” specifications and weights that often affect them.

In (33), P ≥ 0 is the terminal cost, which is used to guarantee at least local sta-
bility. There are multiple ways to design P. The most straightforward and more
commonly used approach in automotive applications is to choose P to be the solu-
tion of the Riccati equation, constructed from A, B in the prediction model (28), and
Q, R in the cost function (33),

P = A′PA+Q−A′PB(B′PB+R)−1B′PA.

This method can be used, after some modifications, also for output tracking [25].
Alternative approaches are based on choosing P to be the solution of a Lyapunov
equation for systems that are asymptotically stable, or on choosing P as the closed-
loop matrix of the system stabilized by a controller, which, for linear plants and
controllers, can be computed via LMIs. The terminal controller u = κ f x used after
the end of the control horizon is then chosen accordingly, being either the LQR
controller, constantly 0, or the stabilizing controller, respectively.

The use of terminal set constraint HNxt+N|t ≤ KN to guarantee recursive feasibil-
ity and stability in the feasible domain of the MPC optimization problem has seen
a fairly limited use in automotive applications. This is primarily due to the many
disturbances and modeling errors acting on the prediction model, which may cause
infeasibility of such a constraint, and to the need to keep the horizon short because
of computational requirements. In practice, for ensuring that the optimization prob-
lem admits a solution, constraint softening is often applied. A quadratic program
(QP) with soft constraints can be formulated as

min
v,s

1
2

v′Hv+ρs2 (34a)

s.t. Hv ≤ K +Ms, (34b)

where s is the slack variable for softening the constraints, M is a vector of 0 and 1
that determines which constraints are actually softened, and ρ is the soft penalty, that
usually satisfies ρI - Q. In general, only output constraints are softened, because
input constraints should always be feasible for a well-formulated problem. More
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advanced formulations with multiple slack variables giving different priorities to
different constraints are also possible, as well as different weighting functions for
the constraint violation, such as using the absolute value of s.

4 Computations and Numerical Algorithms

As mentioned in Section 1, a key challenge for implementing MPC in automotive
applications is accommodating its significantly larger computational footprint when
compared to standard automotive controllers, i.e., PID. As MPC is based on solving
a finite time optimal control problem, the MPC code is significantly more complex,
and it may involve iterations, checking of termination conditions, and sub-routines,
as opposed to the integral and derivative updates and the “one-shot” computation of
the three terms in the PID feedback law.

The embedded software engineers that are ultimately responsible for controller
deployment need to face this additional complexity, and need to shift from a con-
troller that evaluates a function to a controller that executes an algorithm. For the
technology transfer of MPC from research to production to have some chances of
success, one must, at least initially, reduce such a gap as much as possible by propos-
ing simple MPC implementations, and then gradually move towards more advanced
implementations when confidence in MPC builds up.

Furthermore, cost is a key driver in the automotive development. Automotive
engineers often consider advanced control methods as a pathway to reducing the
cost of sensors and actuators, while still achieving robustness and efficiency through
software. If the control algorithms are so complex that they require the development
of new and more expensive computational platforms, their appeal is significantly
reduced. Hence, the control developers should always strive to fit the controller in
the existing computing hardware, rather than assume that computing hardware that
is able to execute it will become available.

Clock Instructions Instr./s RAM ROM
dCPU 1000s MHz CISC 100s GIPS 10s GB 1000s GB

aMCU 100s MHz RISC 1000s MIPS 1000s kB 10s MB

Table 4: A comparison of current characteristic ranges for desktop processors
(dCPU) and automotive micro-controllers (aMCU).

The common practice found in many research papers of extrapolating the real-
time behavior of MPC in an automotive micro-controller unit (aMCU) from the
one that is seen in a desktop CPU (dCPU) is potentially misleading as aMCUs and
dCPUs have significantly different capabilities, see Table 4. First, one needs to con-
sider that powerful aMCUs usually run more than ten feedback loops, and proba-
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bly an even larger number of monitoring loops, and hence the actual computation
power available for a single controller is only a fraction of what is available in the
entire aMCU. The difference between instruction sets (RISC vs CISC) and the sim-
pler structure of the aMCU memory architecture results in a significantly different
numbers of instructions per seconds (IPS) for the aMCUs with respect to dCPUs.
Most of the differences are due to the need for the aMCU to work in extreme envi-
ronments, e.g., ambient temperature ranges between −40oC and +50oC, and even
higher near the engine, in which a dCPU is not required to operate and may be even
prevented from starting. This is also the cause of the major differences in the size of
execution memory, which is normally DRAM in dCPU, but is in general permanent
(e.g., SRAM, EPROM, or Flash) in aMCU, with higher cost and physical size, and
hence lower quantities and speeds. In fact, for several embedded platforms, memory
access may actually be the bottleneck [83].

Because of this, and since also processor-specific code optimization, by engi-
neers or custom compilers, may play a very significant role, the evaluation of the
computational load of an MPC controller in an aMCU can only be extrapolated
using the following approximations (in decreasing order of reliability)

• computing the worst case number of operations per type, the number of instruc-
tion per operation type, and hence the total number of instructions per controller
execution,

• executing the controller on the specific platform, computing the cost per itera-
tion, and estimating the allowed number of iterations per sampling period,

• evaluating the execution time in a dCPU, estimating the ratio of IPS between
dCPU and aMCU, and using that to estimate the execution time in aMCU.

However, according to Table 4, what is often restricting is the memory, both for
execution and data. Hence the memory occupancy of the controller is something to
be very mindful of. Indeed, PIDs need a minimal amount of memory, 3 gains, 2 extra
variables for integral and derivative error, and very few instructions. MPC requires
significantly more program and data memory than PID, and hence a careful choice
of the numerical algorithm is often critical to the success of the application. Based
on the previous discussions, algorithms with limited memory usage and relatively
simple code may be preferred, at least initially.

4.1 Explicit MPC

Explicit MPC has had a significant impact on the implementation of the first MPC
solutions in experimental vehicles. Some examples, tested in fully functional and
road-drivable (and in several cases road-driven) vehicles are in [15, 26, 28–30, 61,
64, 75, 78, 84].

In explicit MPC, the optimizer of the MPC problem is obtained by evaluating
a pre-computed function of the current prediction model state, possibly including
references and other auxiliary states,
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umpc(x) =

⎧⎪⎨
⎪⎩

F1x+G1 if H1x ≤ K1,
...

Fsx+Gs if Hsx ≤ Ks,

(35)

where s is the total number of regions, see Figure 7 for some examples.
The main advantages of explicit MPC and the reasons it has been the first effec-

tive method of MPC deployment in experimental automotive applications are:

• Simple execution code: explicit MPC is a lookup table of affine controllers,
selected by evaluating linear inequalities.

• Basic operations: the controller implementation requires only sums, multiplica-
tions, and comparisons.

• Predictability: the worst case number of operations is easily computed.

Additional benefits include the possibility of computing explicit MPC, with few
modifications, also for hybrid and switched systems, which allowed for the applica-
tion of switched and hybrid MPC to automotive control problems [15, 29, 61, 64,
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Fig. 7: Section of the partitions of the explicit multivariable linear MPC for idle
speed control from [26] (left) and for the switched linear MPC steering controller
from [29].

75, 78], the possibility of building explicitly the closed-loop system and hence study-
ing its local and global stability, and the possibility of using only the regions that
are most often visited, while utilizing a backup controller otherwise, thus reducing
memory requirements.

On the other hand, the explicit MPC data memory occupancy and worst case num-
ber of operations grows proportionally to the number of active-sets of constraints nas,
and hence exponentially with the number of constraints/variables according to

nas ≤
min{nc,nv}

∑
h=0

(
nc

h

)
, (36)
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where nv is the number of variables, and nc is the number of constraints, both of
which are proportional to the length of the horizon(s). Because of (36), explicit MPC
is limited to applications with relatively short horizon, few control inputs, and few
constraints. Another limitation is that the algorithm to construct the explicit law (35)
is too complex to be implemented in the vehicle, and hence explicit MPC cannot be
easily tuned or adjusted after deployment.

4.2 Online MPC

In problems with many control inputs, long prediction horizons and many con-
straints, explicit MPC may be too complex to store for real-time usage, or even
to compute. Also, if the prediction model changes over time, it is very difficult to
adjust accordingly the explicit solution, while it is relatively simple to update the
data of the optimal control problem. In these cases, the online solution of the MPC
optimal control problem may be preferable, and hence online MPC has been applied
to automotive problems with the above features.

Among such problems, in [33], a quadratic programming solver and a nonlinear
programming solver were used online for controlling an autonomous vehicle, which
enabled using a long horizon to take maximum advantage of the known reference
trajectory. The nonlinear programming solver was based on sequential quadratic
programming, and both the nonlinear program and quadratic program solvers used
active-set methods. In [34] an online active-set solver was used to solve quadratic
programs for controlling MAP and MAF in a diesel engine using EGR and VGT.
The online solver was used due to the many constraints imposed by the problem,
and the need to update the matrices of the model depending on the current operating
point, i.e., using in fact a linear-parameter varying model of the diesel engine. In [5],
due to the need for using a relatively long horizon for vehicle dynamics cornering
performance and stability control at the limit of performance, an interior point solver
was used online. While the solvers have been tested in real vehicles, the computing
platforms were dedicated rapid prototyping units and custom micro-controllers that
may be more capable than production aMCU, in particular, because they are dedi-
cated to the controller being developed, while aMCUs run multiple controllers.

Active-set and interior-point methods have fast convergence rate, but they often
use linear algebra libraries for solving systems of linear equations at each iteration of
the optimization. Using these libraries may require a fairly large amount of memory,
for both data and code storage, and for execution, and achieving portability of these
libraries to certain micro-controllers may not be straightforward. Alternatively, first-
order methods often have slower convergence rate, but have much simpler code and
hence require less memory, and they are independent of third parties libraries.

First order methods are essentially based on updating the current solution z(h)s in
the direction determined by a function hs of the gradient of the cost function J with
a stepsize αs, followed by the projection onto the feasible set F
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ẑ(h+1)
s = ẑ(h)s −αs(z

(h)
s ) ·hs

(
d

dzs
J(zs)

∣∣∣∣
z(h)s

)
, (37a)

z(h+1)
s = projF

(
ẑ(h+1)

s

)
, (37b)

where zs may contain additional variables other than those of the original optimiza-
tion problem, and the choice of the stepsize αs, of the function hs, and of the addi-
tional variables, differentiate the methods.

In recent years, several low complexity first-order methods for MPC have been
proposed, based on Nesterov’s fast gradient algorithm [69], Lagrangian meth-
ods [57], nonnegative least squares [27], and alternating direction method of multi-
pliers (ADMM) [37, 40, 66]. For instance, in [31] the method in [27] was used for
vehicle trajectory tracking.

4.3 Nonlinear MPC

Most of the previous discussion focused on linear MPC because, at least until very
recently, that was the only class of MPC that realistically could have been im-
plemented in automotive systems. Nonlinear MPC is significantly more complex,
which is to a large extent due to the algorithm for solving the nonlinear programming
problem. For instance, in [33] the authors after implementing a nonlinear method
chose to implement a linear time-varying method based on local linearization and
quadratic programming, to reduce the computational load. As another example, the
paper [43] concerned with diesel engine air path control states that “currently it
is not possible to implement NMPC in real time due to the limited computational
power available.” However, this is starting to change in more recent years, in part
thanks to the research aimed at tailoring nonlinear solvers to MPC problems.

Some applications of nonlinear MPC to automotive systems [36, 55, 82] are
based on the C/GMRES method reported in [62]. This method appears quite ef-
fective if the objective is to solve a nonlinear optimal control problem with equality
constraints, only few inequality constraints, and few changes of the active-set. This
is due to the changes to the active sets possibly causing discontinuities in the dual
variables, and sometimes also in the primal variables, see, e.g., [56], which is in
conflict with the smooth update rule of the continuation methods. Various inequal-
ity constraint enforcement techniques for diesel engines in the context of the method
in [62] are considered and compared in [51].

More recently [1, 35], some applications are being investigated based on the so-
called real-time iteration (RTI) scheme [45], which is based on combining effective
integrators for multiple-shooting methods with sequential quadratic programming,
where usually only one step of optimization is actually performed.

Expanding the reliability and reducing the computational cost of nonlinear MPC
methods will probably be a key effort in the upcoming years to allow for significant
use in automotive applications.
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5 Conclusions and Future Perspectives

MPC has been extensively employed for research in automotive control, and is ma-
turing for product deployment. The main opportunities are in using MPC for optimal
multivariable constrained control, for exploiting preview information, and for han-
dling systems subject to time delays. As a consequence, MPC has been investigated
in several applications in powertrain, lateral and longitudinal vehicle dynamics, and
energy management of HEV. In the upcoming years the number of applications of
MPC to autonomous vehicles [33, 53, 59] is expected to grow, where MPC may need
to be integrated with higher level planning methods [21, 31], decision logics [80],
and connected cooperative driving [63, 74], possibly within some kind of distributed
architecture.

While many challenges presented by MPC deployment have been overcome
by research on specific applications, research efforts are still necessary to address
them in general ways, and some challenges for product deployment are still not
entirely solved. These include the construction of models, and effective approxi-
mations thereof, the numerical algorithms for linear [27, 40, 66, 69] and nonlinear
MPC [45, 62], the calibration and reconfiguration methods [20, 22], and the design
process, to which, hopefully, this chapter has contributed.

References

1. Albin, T., Ritter, D., Abel, D., Liberda, N., Quirynen, R., Diehl, M.: Nonlinear MPC for a
two-stage turbocharged gasoline engine airpath. In: Proceedings of 54th IEEE Conference on
Decision and Control, pp. 849–856 (2015)

2. Amari, R., Alamir, M., Tona, P.: Unified MPC strategy for idle-speed control, vehicle start-up
and gearing applied to an Automated Manual Transmission. In: Proceedings of IFAC World
Congress, Seoul (2008)

3. Arce, A., Alejandro, J., Bordons, C., Ramirez, D.R.: Real-time implementation of a con-
strained MPC for efficient airflow control in a pem fuel cell. IEEE Trans. Ind. Electron.
57(6), 1892–1905 (2010)

4. Bambang, R.T., Rohman, A.S., Dronkers, C.J., Ortega, R., Sasongko, A., et al.: Energy man-
agement of fuel cell/battery/supercapacitor hybrid power sources using model predictive con-
trol. IEEE Trans. Ind. Inf. 10(4), 1992–2002 (2014)

5. Beal, C.E., Gerdes, J.C.: Model predictive control for vehicle stabilization at the limits of
handling. IEEE Trans. Control Syst. Technol. 21(4), 1258–1269 (2013)

6. Beck, R., Richert, F., Bollig, A., Abel, D., Saenger, S., Neil, K., Scholt, T., Noreikat, K.E.:
Model predictive control of a parallel hybrid vehicle drivetrain. In: Proceedings of 44th IEEE
Conference on Decision and Control, pp. 2670–2675 (2005)

7. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints.
Automatica 35(3), 407–427 (1999)

8. Bemporad, A., Borrelli, F., Glielmo, L., Vasca, F.: Optimal piecewise-linear control of dry
clutch engagement. In: 3rd IFAC Workshop on Advances in Automotive Control, Karlsruhe,
pp. 33–38 (2001)

9. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator
for constrained systems. Automatica 38(1), 3–20 (2002)



524 Stefano Di Cairano and Ilya V. Kolmanovsky

10. Bemporad, A., Bernardini, D., Long, R., Verdejo, J.: Model predictive control of turbocharged
gasoline engines for mass production. In: WCX: SAE World Congress Experience (2018)

11. Bemporad, A., Bernardini, D., Livshiz, M., Pattipati, B.: Supervisory model predictive control
of a powertrain with a continuously variable transmission. SAE Technical Paper, No. 2018-
01-0860 (2018)

12. Bengtsson, J., Strandh, P., Johansson, R., Tunestal, P., Johansson, B.: Model predictive control
of homogeneous charge compression ignition (hcci) engine dynamics. In: Proceedings of
IEEE International Conference on Control Applications, Munich, pp. 1675–1680 (2006)

13. Bichi, M., Ripaccioli, G., Di Cairano, S., Bernardini, D., Bemporad, A., Kolmanovsky, I.:
Stochastic model predictive control with driver behavior learning for improved powertrain
control. In: Proceedings of 49th IEEE Conference on Decision and Control, Atlanta, GA, pp.
6077–6082 (2010)

14. Borhan, H., Vahidi, A., Phillips, A.M., Kuang, M.L., Kolmanovsky, I.V., Di Cairano, S.: MPC-
based energy management of a power-split hybrid electric vehicle. IEEE Trans. Control Syst.
Technol. 20(3), 593–603 (2012)

15. Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An MPC/hybrid system approach to trac-
tion control. IEEE Trans. Control Syst. Technol. 14(3), 541–552 (2006)

16. Canale, M., Milanese, M., Novara, C.: Semi-active suspension control using fast model-
predictive techniques. IEEE Trans. Control Syst. Technol. 14(6), 1034–1046 (2006)

17. Caruntu, C.F., Lazar, M., Gielen, R.H., van den Bosch, P., Di Cairano, S.: Lyapunov based
predictive control of vehicle drivetrains over can. Control Eng. Pract. 21(12), 1884–1898
(2013)

18. Carvalho, A., Gao, Y., Lefevre, S., Borrelli, F.: Stochastic predictive control of autonomous
vehicles in uncertain environments. In: 12th International Symposium on Advanced Vehicle
Control (2014)

19. Di Cairano, S.: An industry perspective on MPC in large volumes applications: potential ben-
efits and open challenges. In: 4th IFAC Symposium on Nonlinear Model Predictive Control,
pp. 52–59 (2012)

20. Di Cairano, S.: Model adjustable predictive control with stability guarantees. In: Proceedings
of the American Control Conference, pp. 226–231 (2015)

21. Di Cairano, S.: Control and optimization of autonomous vehicles. In: IEEE-VTS Connected
and Autonomous Vehicles Summer School. http://resourcecenter.vts.ieee.org/vts/product/
events/VTSEVTWPI003 (2016)

22. Di Cairano, S., Bemporad, A.: Model predictive control tuning by controller matching. IEEE
Trans. Autom. Control 55(1), 185–190 (2010)

23. Di Cairano, S., Bemporad, A., Kolmanovsky, I., Hrovat, D.: Model predictive control of mag-
netically actuated mass spring dampers for automotive applications. Int. J. Control 80(11),
1701–1716 (2007)

24. Di Cairano, S., Yanakiev, D., Bemporad, A., Kolmanovsky, I., Hrovat, D.: An MPC design
flow for automotive control and applications to idle speed regulation. In: Proceedings of 48th
IEEE Conference on Decision and Control, pp. 5686–5691 (2008)

25. Di Cairano, S., Pascucci, C.A., Bemporad, A.: The rendezvous dynamics under linear
quadratic optimal control. In: Proceedings of 51st IEEE Conference on Decision and Control,
pp. 6554–6559 (2012)

26. Di Cairano, S., Yanakiev, D., Bemporad, A., Kolmanovsky, I.V., Hrovat, D.: Model predictive
idle speed control: design, analysis, and experimental evaluation. IEEE Trans. Control Syst.
Technol. 20(1), 84–97 (2012)

27. Di Cairano, S., Brand, M., Bortoff, S.A.: Projection-free parallel quadratic programming for
linear model predictive control. Int. J. Control 86(8), 1367–1385 (2013)

28. Di Cairano, S., Liang, W., Kolmanovsky, I.V., Kuang, M.L., Phillips, A.M.: Power smoothing
energy management and its application to a series hybrid powertrain. IEEE Trans. Control
Syst. Technol. 21(6), 2091–2103 (2013)

http://resourcecenter.vts.ieee.org/vts/product/events/VTSEVTWPI003
http://resourcecenter.vts.ieee.org/vts/product/events/VTSEVTWPI003


References 525

29. Di Cairano, S., Tseng, H., Bernardini, D., Bemporad, A.: Vehicle yaw stability control by
coordinated active front steering and differential braking in the tire sideslip angles domain.
IEEE Trans. Control Syst. Technol. 21(4), 1236–1248 (2013)

30. Di Cairano, S., Doering, J., Kolmanovsky, I.V., Hrovat, D.: Model predictive control of engine
speed during vehicle deceleration. IEEE Trans. Control Syst. Technol. 22(6), 2205–2217
(2014)
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Applications of MPC in the Area of
Health Care

G. C. Goodwin, A. M. Medioli, K. Murray, R. Sykes, and C. Stephen

1 Introduction

Health care represents one of the largest expenditures of GDP throughout the world.
Control problems are ubiquitous in health care systems. Indeed, any situation in
which measurements are used to modify an action can be viewed as a feedback
control problem. At this level of abstraction, almost all functions in the health care
system can be viewed as feedback control problems.
Examples include:

• Staff rostering with real-time adjustment to account for illness or varied work-
load.

• Delivery of drugs to a hospital in response to the outbreak of an infectious
disease.

• Allocation of patient priority (triage) in emergency departments to ensure ap-
propriate and timely management.

• Ambulance scheduling to minimise arrival times and account for recent ambu-
lance movements, traffic conditions & weather.

• Adjustment of a long-term treatment plan for a patient based on, say, a monthly
visit by the patient to the treating physician.

• Real-time adjustment of drug delivery based on minute-by-minute observations
of the patient’s response, e.g., in an intensive care situation.
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The goal of the current chapter is to examine the role that Model Predictive Con-
trol (MPC) can play in developing improved control strategies in the area of health
care. The aim is to illustrate the broad applicability of MPC rather than to give a
comprehensive survey.

2 Is MPC Relevant to Health Problems?

One of the core advantages of MPC is that it provides a rigorous framework within
which control problems can be articulated. Thus MPC establishes a set of core ques-
tions that underly feedback control problems. Examples of these questions are:

• What defines the “state” of the system?
• How does the state evolve with time?
• How do manipulated inputs and external disturbances influence the evolution of

the state?
• Are there hard constraints on input, output and/or state variables?
• What are the performance goals?
• Are the model parameters fixed or do they change with time?
• What direct measurements are available?
• What indirect data is available which may help define the “state”?
• Is an observer necessary to combine model information with past data to esti-

mate the state?

MPC directly addresses these questions through the associated problem formula-
tion.

Some of the attributes most commonly claimed for MPC are:

• its capacity to handle multi-variable systems,
• its capacity to include input/output constraints,
• its capacity to treat nonlinear systems, and
• its ability to facilitate precise articulation of goals via the associated cost func-

tion.

These attributes are germane to health care problems making the MPC framework a
natural way to formulate the associated feedback design problem.

3 Special Characteristics of Control Problems in the Area
of Health

There are several aspects of health problems that uniquely impact the application of
MPC in this area. Some of these are discussed below:
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3.1 Safety

Patient safety, in health applications, is understandably paramount. Hence, any au-
tomation system must satisfy a set of regulations before it can be applied to, or tested
on, patients. Some of the mechanisms that ensure patient safety are:

• Formulation of research that clearly defines the need, efficacy, safety and its
ethical appropriateness.

• Approval from a Government agency (FDA in the USA, or TGA in Australia)
before any new drug, device or technology is released to the public.

Due to these safety regulations, the application of complex control theory (including
MPC) is necessarily more conservative in health care than in other areas. New ideas
usually go through an exhaustive set of checks and balances before they appear in
real-world products. To quote just one area with which the authors are familiar, the
reader may be surprised to learn that PID (with some embellishments) aimed at in-
sulin delivery for Type 1 Diabetes [7] has just reached the market place. MPC has
been contemplated for this problem but a large-scale free-living trial is only now
about to begin. Moreover, it is not immediately obvious whether MPC (or indeed,
even PID) offers real benefits over a simple injection of insulin proportional to the
carbohydrate content of meals (with some simple adjustments for current blood glu-
cose level and upcoming exercise).

3.2 Background Knowledge

Current medical practice is based on many years of past clinical experience. Thus
there are no “quick fixes” in the area of health. Indeed, anyone contemplating ap-
plying MPC to a health problem will first need to become very familiar with the
biology and clinical practice relevant to the problem. Thus, in common with all real-
world problems, a control engineer working in the area of health is faced with the
substantial task of learning about the problem. This is necessary to achieve a “com-
mon language” when discussing health problems with medical professionals and to
gain an appreciation of the true complexity of the problem. Only through this col-
laboration can we hope to define the actual need and then be in a position to select
the control approach that will appropriately meet that need.

3.3 Models

Models in the health area have distinctive characteristics and terminology. For ex-
ample, in drug therapy, it is usual to distinguish:

• Pharmacokinetics—the dynamics of the transport of a drug through the
body, and
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• Pharmacodynamics—the dynamics of the drug on the patient’s state once the
drug arrives at an action site

The above distinction is useful when developing the structure of models but may
not be quite so relevant if one focuses on the observed input–output behaviour. Bio-
logical insights can also play an important role in suggesting a model structure. The
level of biological insight used in models leads to questions of black box, grey box
or white box modelling.

3.4 Population Versus Personalised Models

Many models used in the area of health are based on averages across a particular
population of patients. However, when treating an individual, a personalised model
may be more appropriate. The distinction between these classes of models can be
very important when developing MPC solutions for health problems, see [63].

4 Specific Examples Where MPC Has Been Used in the Area
of Health

As discussed above, MPC has the potential to be used in many areas of health care.
To illustrate the broad range of applications achieved to date, we will briefly discuss
the following problems:

• Ambulance Scheduling.
• Joint Movement
• Management of Type 1 Diabetes
• Anaesthesia
• HIV
• Cancer
• Chronic Inflammation

The first of these examples is an operational issue in the health area. The second
example relates to mechanicals aids. The remaining five examples refer to drug
delivery systems. Further details of these applications are given in the sequel.

4.1 Ambulance Scheduling

The application of stochastic MPC to ambulance scheduling has been described
in [30]. The basic idea of the ambulance scheduling problem is that when an ambu-
lance becomes free (e.g. by being released at a hospital) or an emergency incident
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occurs, then a real-time control decision arises, that is, where should the ambulance
be sent. Possible control decisions could be

• stay at the hospital,
• go to the home station for the specific ambulance,
• go to another station,
• do a lower priority job (e.g. patient transfer), or
• take a rest break.

The best decision depends on a host of factors, including

• the state of the system (e.g. where all ambulances currently are, what the ambu-
lances are doing, the current emergency incidents and their status),

• the time of day, day of week, week of year,
• the probable location and time of future incidents,
• current emergency department loads, and whether or not they are able to take a

patient and treat them appropriately, and
• current environmental conditions (e.g., traffic, weather, etc.).

The goal of the associated feedback control problem is to minimise the (average)
time to reach high-priority incidents. Indeed, most countries have goals of, say,
reaching 50% of ‘priority-one’ emergencies within a specified time period, e.g. 12
minutes. Even small improvements can be important since ambulance scheduling is
associated with life and death issues. For example, research has shown that every
minute of delay in reaching a cardiac emergency reduces the probability of survival
by 10% [70]. In view of the huge impact on society, it is not surprising that emer-
gency services have been the subject of considerable research effort. Work on this
problem can be found in [48, 70] and [80]. Also, there exists commercial software
that addresses related problems [38]. A common theme in past work has been to
utilise approximate dynamic programming. This has been shown to lead to signifi-
cant improvements in operational performance [80].

There are six key requirements necessary to formulating this problem in the con-
text of Stochastic MPC:

1. Choice of a model that describes the movement of emergency vehicles in re-
sponse to dispatch instructions. The dispatch orders are the ‘control actions’
and are discrete in nature, i.e., send vehicle A to location B.

2. Selecting a cost function that measures the desired performance.
3. Formulation of a suitable system state for the system which will typically con-

tain both integer (e.g., vehicle A has a patient on-board) and real variables (e.g.,
vehicle A is at location B).

4. Articulation of the environment in which the system operates including distur-
bances (e.g., where and when future incidents may occur). These are random
variables with an (associated) probability distribution.

5. Choice of a simulation tool. The model of the system is complex and not typi-
cally based on a set of differential equations. Hence, calculating the response to
a specified decision and a given set of future disturbance scenarios is achieved
through simulations.
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6. Choice of a sampling strategy. In [30] an event based strategy was chosen rather
than time based one.

Details of the application of MPC to this problem are available in [30].

4.2 Joint Movement

As an illustration of the broad spectrum of applications of MPC in the health area,
we next outline the application of MPC to joint movement control.

Joint movement has been extensively researched in biomedical engineering with
the aim of better understanding joint control and developing prosthetics and ex-
oskeletons that can replace and/or guide a damaged or absent extremity. Joint move-
ment involves planning and execution of muscle contractions across a joint in a
controlled manner so as to produce a desired force on, or movement of, the bones to
which the muscle is attached. This controlled movement is achieved through the pair-
ing of muscles: one agonist which generates movement in the desired direction and
the other an antagonist which provides a counter force correcting over-contraction
and providing a steadying force.

MPC has been proposed by many researchers as a method of accurately con-
trolling the desired movement of prosthetics or exoskeletons [6, 41, 79] and for
humanoid robots [43]. Some conditions that this method of control aims to address
include foot drop [6], full or partial paralysis, and providing aid to patients who are
amputees.

There are several physiological aspects that need to be modelled for MPC to work
effectively for joint movement. Some of these are:

• Reflexive muscle characteristics including stiffness and torque
• Joint dynamics
• Activation dynamics
• Antagonist activation
• Stretch reflex (joint angle vs fibre length)

The use of MPC in this area is appealing since it can use nonlinear models. These
models are widely accepted. One example is an inverted pendulum model to de-
scribe heel and toe link and bipedal posture. This has been used [6, 76, 77] as a
model for the motion of walking. MPC has also been used to simulate the neural
plasticity of the brain. Reference [76] suggests a related learning algorithm. Refer-
ence [41] uses an exoskeleton to map the dynamics of a finger joint to generate a
more accurate model via equivalent equations.

MPC of joints is often considered a single input, single output system, requir-
ing strong input and output constraints to generate the desired effect. The input is
the torque (or force) needed to reach the desired equilibrium point. This must be
consistent with the force capable of being produced by the joint [79]. The output
is typically either the angle of one bone with respect to another in the joint, or the
position of the limb in space. Whatever the output, it must abide by the constraints
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relevant to human muscles, ligaments, tendons and bones [6, 41, 76, 77, 79]. These
constraints are aimed at ensuring that the prosthetic has similar mechanics to the
human joint and therefore that no harm will come to the joint. When an equilibrium
is required to be reached, then the output constraints need to be altered to satisfy
this equilibrium [43].

Both implicit and explicit MPC control laws have been considered for this area.
The associated time constant is of the order of seconds. Endpoint MPC has been pro-
posed in [79] for an exoskeleton controlling gait. Reference, [6] used offline MPC,
with no environmental feedback, to derive the best motion based on constraints,
which conserves energy for correction of foot drop. Although accurate models have
been well developed in the field of joint movement, further progress in modelling is
likely to enhance the effectiveness of MPC in this area.

4.3 Type 1 Diabetes Treatment

Type 1 diabetes is a disease which affects the cells in the pancreas that are respon-
sible for producing insulin [2, 65]. Insulin is required to transport glucose into the
cells for energy and into muscles and liver for storage. Further, if insufficient insulin
is available then this can result in the acute and possibly life-threatening condition
called diabetic ketoacidosis (DKA).

As a result, people with type 1 diabetes are unable to regulate their blood glucose
level (BGL). If the BGL rises above 140mg/dL (7.8 mM), the patient is said to be
hyperglycaemic. Extended periods of hyperglycaemia result in long-term complica-
tions including cardiovascular disease, kidney damage, blindness, and nerve dam-
age [2]. Similarly, serious short-term effects result from hypoglycaemia, the state in
which the BGL drops below 70mg/dL (3.9 mM). These short-term complications in-
clude anxiety, tremor, pallor, poor concentration, seizures, coma, neurological dam-
age and, in extreme cases, death [2, 29].

With an autoimmune attack having compromised the body’s ability to regulate
blood glucose levels, type 1 diabetes patients use the ingestion of carbohydrate to
raise the BGL and the injection of insulin analogues to lower the BGL. It is common
practice that the required insulin dosing is determined by a clinician based on the
patient’s insulin requirement per gram of carbohydrate ingested. This allows the
patient to calculate a single injection of insulin for each meal [78]. Additional insulin
may also be given if the patient’s BGL is too high. This is based on the patient’s
historical trends.

There are currently multiple models used in the area of type 1 diabetes. These
are used for both simulation and control purposes. Some of the models used are the
Bergman Minimal Model [9], Hovorka model [37], and the Dalla Man model [20].
Modified versions of these are also used.
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In type 1 diabetes there are several effects and delays that need to be captured in
the model. These factors include:

• The rate of subcutaneous insulin delivery and its associated rate of absorption.
• Subcutaneous and plasma insulin concentration and rate of change of concen-

tration.
• The rate of insulin clearance (how long it takes for the insulin to leave the body).
• Blood glucose concentration and the effect of insulin on plasma glucose.
• The food absorption dynamics including the rate of absorption of glucose from

meals.
• The patient’s sensitivity to insulin.
• The rate of endogenous glucose production.
• The increase in glucose uptake, and decrease in endogenous glucose production

in response to the presence of glucose.
• Sensor dynamics and the relationship between the measured interstitial fluid

glucose concentration (typically measured by a continuous glucose monitor
(CGM)) and the blood glucose concentration.

Several types of MPC have been suggested for the management of type 1 dia-
betes. Some of the controllers suggested are linear [61, 72], non-linear [69, 82],
implicit [1, 47, 61, 82], explicit [62], and stochastic [34]. The majority of controllers
used are one-sided i.e., only account for the positive flow of insulin. This is because
insulin can be injected but not removed from the body. Some very recent research
has simulated the efficacy of bi-hormonal controllers where the input can be either
insulin or glucagon. The hormone glucagon acts to raise the BGL in the case of a
hypoglycaemic event [5].

Typically, the BGL is the only available measurement but there can be ten or
more states. Thus various observers have been proposed. One of the main observers
that has been implemented for type 1 diabetes is the Kalman filter [5, 12, 61, 72].

Feedforward controllers have been suggested in diabetes control to mitigate the
impact of delays experienced in the body [1]. The use of feedforward is consistent
with the well-known fact that the optimal BGL response occurs when insulin is de-
livered before a meal is ingested [33]. A major difficulty associated with applying
MPC to blood glucose regulation is related to the inability to predict future distur-
bances such as exercise, stress and food consumption.

For this system, a hard constraint is usually placed on the input, since negative
insulin flows are impossible. Also, it is important to constrain the output (BGL) to a
range of 70–140mg/dL (3.9–7.8 mM) [34]. The lower limit is particularly important
since hypoglycaemia has the potential for short-term catastrophic consequences.

MPC is under intense scrutiny for diabetes treatment. Many issues need to be
addressed for this application including:

• Model type—linear or nonlinear [6, 8, 34].
• How to calibrate the model for an individual [42].
• Is an observer necessary [46]?
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• How to deal with past disturbances. For example, should measurements of past
insulin delivery, food and exercise be made available to the observer when esti-
mating the patient’s current state?

• Cost function—should one regulate to a set-point or does it suffice to regulate
to a range [44]?

• Input constraints—insulin flow must be positive.
• Output constraints—long-term health issues arise if BGL exceeds an upper

level, short-term health issues arise if BGL falls below a lower level.
• Prediction horizon—the time constants are of the order of hours. Thus actions

taken now may not manifest themselves for many hours. This suggests that
prediction horizons of the order of many hours are necessary.

• Upcoming disturbances such as food, exercise and stress are important and these
events can be associated with a high degree of uncertainty [34].

• The existence of fundamental limitations due to the nature of one side control
action [33].

• Does the available model apply to a population or has it been calibrated for an
individual [63]?

4.4 Anaesthesia

Anaesthesia plays an important role in surgical operations. The three main aspects
of anaesthesia are hypnosis (level of consciousness and amnesia), muscle relaxation
and analgesia. Specific drugs for each aspect are used in combination to induce, and
maintain, unconsciousness, prevent unwanted movement, and block pain from being
felt by the patient during medical procedures [53]. The typical drugs used include
inhaled drugs such as Sevoflurane (hypnosis) and intravenously administered drugs
such as Propofol (hypnosis), Pancuronium bromide (muscle relaxant) and Remifen-
tanil (analgesia) [4, 15, 28, 39, 40, 53]. Hence, an automatic feedback controller for
anaesthesia would be useful due to its potential of increasing patient safety through-
out their procedure [54].

The patient’s level of hypnosis is calculated using the Bispectral Index (BIS),
which is measured using an electroencephalogram (EEG) [40] sometimes in con-
junction with pulse rate [28]. A scale from 0–100 is used where 100 denotes the
patient being fully awake [53]. If the BIS level is too low, this can result in exces-
sive sedation with associated side effects including nausea and vomiting [28, 68],
and a longer recovery time, whilst a BIS level that is too high can result in a patient
becoming aware of their surroundings during surgery [68]. Therefore, it is desirable
that the controller be informed of relevant output constraints including a BIS level
between approximately 40–60, corresponding to a moderate level of hypnosis [40].
Also, there are input constraints: the amount of drug used must be non-negative and
there is an upper limit on the amount of drug that can safely be administered [68].
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The models used in this area are typically compartmental and include:

• Type of drug administration (intravenous or inhalation), and rate of infusion
• Drug concentration and rate of distribution between the central (circulatory) and

peripheral (muscle and fat) compartments
• Time delay between the drug delivery, and its response on the body
• The age, weight, height, gender, and body mass of the patient
• The observed effect of the drug on the patient

The associated pharmacokinetic model is typically linear whilst the pharmacody-
namic model is generally nonlinear. A common choice uses the Hill Curve [4, 15].
Related to the models used in anaesthesia are those described by Schnider, Minto,
Krieger, and Schüttler and Ihmsen [45, 53, 68].

The time constants for anaesthesia are relatively small (order of minutes) when
compared to other medical applications such as diabetes or HIV. Both implicit [28,
67, 68] and explicit [39, 52, 54] MPC have been suggested. The controller needs
to be able to cope with disturbances. However, these usually cannot be suitably
predicted. Therefore, feedforward control has not been used to date. This can be a
disadvantage, as the controller is unaware of the progress of the surgery, and cannot
raise the desired BIS level in response to the surgery coming to an end. This can
prolong the recovery time of the patient [68].

An observer is required for the controller to estimate the current “state” of the
patient and to maintain the desired depth of anaesthesia during the procedure. The
observers that have been proposed in the context of anaesthesia include the Kalman
filter [45], the Extended Kalman filter [67], and multi-parametric Moving Horizon
Estimation [52–54].

4.5 HIV

Human Immunodeficiency Virus, commonly known as HIV, is responsible for the
gradual decline of helper T cells in the body [81]. Helper T cells are an essential
part of the human adaptive immune system. Therefore, a significant decline in their
concentration can result in patients becoming highly susceptible to infection [84].
When the level of helper T cells drops too low, the patient will develop Acquired
Immune Deficiency Syndrome (AIDS). The current treatment for HIV is Highly Ac-
tive Anti-Retroviral Therapy (HAART). This treatment utilises reverse transcriptase
inhibitors and protease inhibitors which act in combination to prevent or slow viral
reproduction and delay the progression of the disease [49]. HAART is an ongoing
treatment since the virus is unable to be entirely eliminated from the body. The harsh
side effects and the high cost of the treatment make an optimal control strategy for
drug delivery desirable.

The models used for HIV control are typically nonlinear and may include some
of the following aspects:
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• The concentration and rate of production and destruction of healthy helper
T cells.

• The rate of viral infection.
• Concentration and depletion rate of infected helper T cells.
• Concentration, rate of virus production by infected cells, and rate of progress of

the virus.
• Development of immune memory, and the immune system’s effect on killing

the virus.
• The effectiveness of the drugs in use.

These interactions are nonlinear, and current models such as the Wordarz-Nowak
model reflect this [60, 84, 85]. The current models for HIV still have many short-
comings. This is generally believed to be a major limitation when designing an MPC
controller for HIV.

MPC is being investigated for HIV treatment in multiple ways. The main appli-
cations of MPC in HIV treatment are Structured Treatment Interruptions (STI) [4,
60, 81, 84] and development of an optimal administration schedule to reduce the
concentration of free virus particles within a specified period of time [64]. The pur-
pose of both of these strategies is to minimise the amount of drug administered, and
consequently minimise the adverse side effects and overall cost of the treatment.
The added purpose of the STI is to encourage the immune system to control the
virus [84, 85].

Due to the large time constant and sampling period (typically weeks to months)
the main type of MPC proposed to date has been implicit, since the computational
time of the controller is not a key limiting factor. The controllers are entirely based
on feedback as there is usually no information available about future disturbances.

The measured variables are typically the concentration of the virus, and some-
times the number of healthy helper T-cells [60]. Since there are other variables, of
relevance, that are not directly measured, this means that an observer is required.
Some of the observers that have been proposed include the Extended Kalman filter
and nonlinear multistate estimation [64], a nonlinear observer [84] and a deadbeat
observer [60].

There are also constraints placed on the amount of drug that should be admin-
istered. This is important to prevent the virus from becoming drug resistant, which
could occur if the dose is too low. Also, this accounts for the toxicity of the drug,
should the dose be too large. For STI, the input constraints are typically between 0
and 1, where 0 denotes no treatment and 1 denotes full treatment. This constraint
has been implemented on the input either as a continuous input or a discrete in-
put [81]. Output constraints can include an upper bound on the viral concentration,
and a lower bound on the concentration of healthy helper T cells.
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4.6 Cancer

Around the world, 39% of the population will be diagnosed with cancer at some
point in their life [56]. In the developed world, cancer is the leading cause of death
in people aged under 85 [25]. The increasing threat of cancer has prompted the
investigation of new and better ways of administering treatment [19]. Developing
treatments for cancer is difficult since the nature of the condition stems from the
replication cycle of normal cells in the body becoming mutated, resulting in uncon-
trollable cell growth and proliferation. These cells can spread throughout the body
undetected since they are not foreign and therefore do not cause an immune reac-
tion. Death often results from these metastases disrupting body tissues and organ
function [14].

Current treatment options include:

1. surgery to remove tumours,
2. radiotherapy which uses concentrated doses of radiation to kill cancer cells,
3. chemotherapy which stops, or slows, the rate of growth of cancer. This treatment

can shrink tumours (although it also attacks healthy cells),
4. immunotherapy which helps the immune system to recognise and kill cancer

cells,
5. targeted therapy which treats cancer by targeting the changes in cancer cells that

help them grow, divide, and spread,
6. hormone therapy that inhibits the production of, or blocks, the action of hor-

mones produced by the body that are known to promote the growth of some
cancers, e.g., oestrogen promotes breast cancer growth,

7. stem cell transplants which can treat cancer in blood cells, and
8. precision medicine which helps doctors select treatments that are most likely to

help patients based on a genetic understanding of their disease [55].

The responsiveness of the patient to particular chemotherapies, hormone and tar-
geted molecular therapies and the associated toxicity of these treatments is depen-
dent on the genetic profile of both the tumour and of the individual. Thus the action
of treatments needs to be monitored and appropriate remedial action taken. Hence,
cancer treatment is again a quintessential feedback control problem.

The physiological aspects of cancer and its treatment (chemotherapy, hormone
therapy and radiotherapy) are typically modelled as follows:

• Tumour growth modelling. Modelling of tumour growth rate and cell phase dis-
tribution via a saturating rate cell cycle model or Gompertz model has been
described in many published papers [13, 19, 24, 25]. It is usually represented by
multiple non-linear differential equations. In the case of leukaemia, a pluripo-
tential stem cell model has been used which predicts the number of red blood
cells compared to white blood cells [57]. For androgen treatment of prostate
cancer a three parameter on-treatment, off-treatment model has been used to de-
scribe the non-linear exponential growth of cells. A relapse factor has also been
included to optimise the treatment protocol [36].
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• Pharmacokinetics. This is usually represented as a linear compartmental oral
dosing structure.

• Pharmacodynamics. A bilinear kill term in the differential equation is usually
added for rate of cell volume growth [24]. This has been used to convey phar-
macodynamic effects in the tumour growth model. In the case of leukaemia, a
linear relationship of drug to nucleated cell count has been used.

• Lymphocyte levels in the body. This is used to monitor the effect of chemother-
apy on the immune system as well as antibody production aimed at increasing
the tumour destruction rate.

• In the case of ultrasound hyperthermia treatment, typical models include a
tissue-tumour model. This represents a one dimensional view of the tumour as
well as surrounding tissue. Different properties of the tumour and surrounding
tissue are used in the Pennes’ bioheat transfer equation [10] which would then
be used to simulate tissue temperature response. For small tumours, or for more
concentrated therapy, a single point model has been used which simplifies the
Pennes’ bioheat transfer equation to an ordinary differential equation [3].

• In the case of real-time motion compensation for radiotherapy treatment, the
models used include the patient support system dynamics [59].

MPC has been investigated for cancer treatment. MPC has been proposed for op-
timising drug delivery and other interventions for chemotherapy, radiotherapy, im-
munotherapy, hormone therapy and other anti-cancer agents. It has also been pro-
posed as a way of optimally delivering ultrasound hyperthermia treatment meth-
ods [3] and for motion compensation in adaptive radiotherapy [59].

Both implicit and explicit MPC have been considered. When the states cannot be
directly measured, an observer is used to estimate the tumour size and characteris-
tics. A Kalman filter has been considered for states that are linear. For states that are
nonlinear, an Extended Kalman filter, unscented Kalman filter or particle filter has
been proposed [19]. The associated time constants are of the order of days. Ultra-
sound therapy has used implicit MPC and a Kalman filter to estimate the tempera-
ture distribution in the tissue, derived from sensors at discrete points in the tumour.
The time constant for this application is of the order of seconds [3]. Tumour mo-
tion compensation utilises sensors on all 3 axes to predict the motion of the tumour
associated with the body’s external movement. A full order state observer has also
been used to estimate velocities from position measurement. An algorithm has also
been used to predict the patient support system feedback. The time constant for this
particular task is of the order of seconds [59].

All cancer treatment options involve constraints which further suggest MPC as a
desirable strategy. Constraints limit the maximum amount of drug that can be deliv-
ered to the patient. In the case of leukaemia the constraint is on the concentration
of the drug metabolite found in the blood [57]. In the case of androgen suppression
for prostate cancer treatment, each variable must be non-negative and changes are
limited to 20% per day [36]. Lymphocyte levels are also monitored and used to con-
strain the upper limit of both dose and period of time for which the body is exposed
to the treatment. As the lymphocyte level depletes, treatment should be lowered or
stopped [13, 19]. For the case of ultrasound hyperthermia therapy, a constraint on
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the maximum temperature used is necessary to minimise the impact of increased
temperature on surrounding tissue. This is monitored via discomfort and blood flow
rates of surrounding vessels [3]. Output constraints are also applied to motion com-
pensation as dictated by the limits of the patient support system dimensions [59].

4.7 Inflammation

Inflammation is a complex biological response to harmful stimuli in tissues often
described as the body’s immunovascular response. It usually presents as oedema
or swelling, redness of the skin if localised, amplified nociception and heat of the
affected area or fever. Too little inflammation can result in progressive tissue de-
struction due to the harmful stimuli, too much inflammation can be crippling and
can lead to patient death from cell damage in various body tissues [66].

Inflammation can be classified as acute or chronic. Acute inflammation is in gen-
eral a result of an event such as microbial invasion or physical injury. This is an
innate form of defence which the body employs to treat injury by creating an en-
vironment that allows rapid access by cells and mediators in response to the injury.
For example, in the case of microbial infection, the body creates an adverse environ-
ment for the foreign pathogens and allows phagocytes to gain access to the infected
area. This cause of inflammation is usually treated with antibiotics.

Chronic inflammation, for example in arthritis, is not a part of the body’s natural
healing process and can cause major discomfort and an inability to use the part of
the body that is affected due to excessive pain and swelling [21]. This calls for effec-
tive management using anti-inflammatory medication, typically Non-Steroidal Anti
Inflammatory Drugs (NSAIDs). Antihistamine drugs can also be used to combat
the oedema, redness and heat [66]. Immunomodulation is employed for chronic and
acute inflammation treatment [21]. The use of pro-inflammatory drugs has been pro-
posed for combating the excessive effects of anti-inflammatory medication, though
it is not commonly used clinically.

All of the presented applications of MPC are in the treatment of chronic inflam-
mation. MPC has been proposed by many authors as an effective scheme to regulate
anti and/or pro-inflammatory drugs to produce the best outcome for the patient [21–
23, 83].

All proposed schemes use a model comprising non-linear differential equations
which consider:

• Number of pathogen cells in the body.
• Number of phagocytic cells (pro-inflammatory/anti-pathogen agents) .
• Tissue damage.
• Anti-inflammatory mediators (for example, cortisol and interleukin-10).

In [21, 22, 83] the model was based on data collected from the patient regarding
the number of activated phagocytes and number of anti-inflammation mediators.
Stochastic differential equations have also been used to account for uncertainty.
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Regarding constraints, the control input, or amount of drug delivered, is con-
strained to be non-negative. Also, an upper bound is typically used to avoid aseptic
death. This is achieved by calculating the difference between the actual number of
anti-inflammatory/pro-inflammatory mediators in the body and the maximum allow-
able number [23].

The only type of MPC that has been used to date for inflammation control is
implicit. The associated time constant is of the order of hours. Many different ob-
servers have been considered for state estimation. For example, [23] proposed an
“ad hoc” observer, while [83] uses a particle filter after determining that a Kalman
filter would be inadequate to estimate pathogen levels and tissue damage.

5 Appraisal

Whilst MPC has clear potential to make a “game-changing” contribution to many
problems in the area of health, it is not a panacea.

Major improvements in performance are not always a result of utilising a more
sophisticated control law. On the contrary, significant improvements often arise from
simply understanding the problem better, being able to act upon the system in a
more authoritative fashion, or by embellishing the control system architecture e.g.,
by adding feed-forward.

Thus, before jumping into the application of MPC to any problem, including
those in the area of health, there are a set of questions that need to be asked. These
questions include:

• Does the system already meet the performance objectives? If not, then what are
the key factors limiting the achievable performance?

• If the performance is (predominantly) limited by model accuracy, how can one
improve the model?

• If the performance is (predominantly) limited by sensors, how can the sensors
be improved or what additional sensors would be helpful?

• If the performance is (predominantly) limited by the actuators, how can one
enhance the existing actuators or what additional manipulated variables would
be helpful?

A difficulty with MPC is that it delivers the “best possible” performance under the
limitations inherited from the available model, sensors and actuators. It does not
explicitly point to the issues that limit performance. To achieve the latter one may
need to temporarily step aside from the MPC framework. In this context, a useful
mechanism may be to ask the following question, “If we were to remove all of
the MPC infrastructure (e.g., constraints, nonlinear behaviours, etc.) what would
classical control ideas tell us?” Issues that naturally arise in this context are:

• Sum of sensitivity and complementary sensitivity is one.
A feedback system cannot simultaneously deliver low sensitivity to measure-
ment errors and disturbances having similar characteristics [11, 74].
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• Bode sensitivity integrals and “sensitivity dirt”.
Reducing the sensitivity of a feedback loop in some (frequency) range necessar-
ily leads to an increase in sensitivity elsewhere [11, 17, 18, 35, 58, 73].

• Robustness versus performance trade-offs.
High performance is inevitably accompanied by greater sensitivity to measure-
ment and model errors [32, Chapter 3], [51, 71].

• Bandwidth limitations arising from model uncertainty.
The achievable closed-loop bandwidth is below the frequency at which the mag-
nitude of the relative model error approaches one [32, Section 8.5].

• Impact of delays and/or large lags.
Delays and large lags inevitably inhibit high closed loop performance since
the information provided by the measurements is “out-of-date” [32, Sec-
tion 8.6.2], [27].

• Sensor limitations (e.g. measurement accuracy).
Poor sensors always result in poor performance since they deliver misleading
information about the system [75].

• Unmeasured and/or unpredictable disturbances.
Unmeasured disturbances negatively impact the performance of observers and
make accurate future predictions problematic [16, 31, 71].

• Inverse response (non-minimum phase behaviour).
Inverse response means that achieving a fast response is associated with under-
shoot [26, 50].

• Actuation imperfections such as slip-stick friction, nonlinearities, response
times etc.
If actuators do not respond as required then high performance control is prob-
lematic since the desired control actions are not delivered in an uncorrupted
fashion to the system [32, Section 8.8.2].

Within this framework, MPC is undeniably a valuable tool. It provides a framework
to set the associated control design question and to provide a rigorous solution that
ensures stability in the presence of known model imperfections, input and output
constraints and certain classes of disturbances.

6 Conclusion

Health is a major component of national expenditure in all developed countries.
Many problems in the area of health are quintessential feedback control problems
since treatment (i.e., adjustment of manipulated variables) is usually a function of
observations (i.e., measured response variables.). Typical control problems in the
area of health involve multi-variable interactions, are nonlinear and have hard con-
straints. Thus MPC arises as a natural tool to achieve improved management and
treatment strategies.
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This chapter has described a number of health related problems to which MPC
has already been applied. The results achieved to date are extremely encouraging.
Beyond the current applications, there exist many other health problems which
could similarly benefit from the application of advanced control tools including
MPC. We are only limited by our vision and courage.
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Model Predictive Control for Power
Electronics Applications

Daniel E. Quevedo, Ricardo P. Aguilera, and Tobias Geyer

1 Introduction

Advances in the field of power electronics allow engineers to manipulate electrical
power and to control its flow efficiently with power levels ranging from milliwatt
to gigawatt. The utilization of power electronics has increased considerably in re-
cent years. In 2015, the overall market size was USD 36 billion [42]. The power
electronics market can be divided into industrial applications, utility-scale power
electronics [13], automotive [14], consumer electronics, aerospace and defense, and
information and communication technology. Notable examples of industrial appli-
cations include renewable energy systems [8], rail traction and motor drives [15].
Power converters have been constantly advanced regarding their semiconductors,
packaging, passive materials, topologies and control techniques [30].

From a control systems perspective, power electronic systems give rise to in-
trinsically challenging design problems. Specifically, three major challenges can be
identified:
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1. Switched dynamics. The main building blocks of power electronic systems are
linear circuit elements, such as inductors, capacitors and resistors, which are
complemented by semiconductor switches. The latter are either actively con-
trolled or (passive) diodes. As a result, when controlling currents, fluxes and
voltages and manipulating the switch positions, power electronic systems con-
stitute switched linear systems, provided that saturation effects of magnetic ma-
terial, delays and safety constraints can be neglected [23, 53].
In general, however, power electronic systems represent switched nonlinear
systems. Nonlinearities arise, for example, when machine variables such as
the electromagnetic torque or stator flux magnitude are directly controlled;
both quantities are nonlinear functions of currents or flux linkages. For grid-
connected converters, the real and reactive power is nonlinear in terms of the
currents and voltages. Saturation effects in inductors and current constraints
lead to additional nonlinearities.

2. MIMO systems. Three-phase power converters have at least three manipulated
variables, i.e., one switch position per phase. In the simplest case, the current
of an inductive load needs to be controlled. When the star point of the load
floats, two linearly independent currents arise, resulting in a system with two
controlled variables and three manipulated variables. For more complicated sys-
tems, such as converters with LC filters and inductive loads, six controlled vari-
ables result. Dc-ac modular multilevel converters (MMC) [36] with n modules
per arm are significantly more complex with up to 6n manipulated variables and
up to 6n+6 controlled variables.

3. Short computation times. The third challenge results from the short sampling
intervals of 1 ms and less that are typically used in power electronic systems.
These short sampling intervals limit the time available to compute the control
actions. To reduce the cost of power electronic converters sold in high volumes,
cheap computational hardware is usually deployed as the control platform. Re-
placing existing control loops with only low computational requirements by
new and computationally more demanding methods exasperates the challenge
of short sampling intervals. This is particularly the case for direct control meth-
ods that avoid the use of a modulator. These methods typically require very
short sampling in the range of 25μs.

To address these challenges, various embodiments of model predictive control
(MPC) principles have emerged as a promising control alternative for power con-
version applications [9, 20, 31, 50, 52, 54]. As we shall see in this chapter, this
popularity of MPC is due to the fact that predictive control algorithms present sev-
eral advantages that make them suitable for the control of power electronic systems:

1. The concepts are intuitive and easy to understand;
2. MPC can handle converters with multiple switches and states, e.g., current, volt-

age, power, torque, etc.;
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3. constraints and nonlinearities can be easily included; and
4. the resulting controller is, in general, easy to implement.

2 Basic Concepts

Various MPC methods have been proposed for controlling power electronic systems.
Here, one can distinguish between formulations that use system models governed
by linear time-invariant dynamics, and those that incorporate nonlinearities. Most
MPC strategies are formulated in a discrete-time setting with a fixed sampling in-
terval, say h > 0. System inputs are restricted to change their values only at the
discrete sampling instants, i.e., at times t = kh, where k ∈ N� {0,1,2, . . .} denotes
the sampling instants.

Since power electronics applications are often governed by nonlinear dynamic
relations, it is convenient to represent the system to be controlled in discrete-time
state space form via:

x(k+1) = f (x(k),u(k)), k ∈ N, (1)

where x(k) ∈ R
n denotes the state value at time k and u(k) ∈ R

m is the plant in-
put. Depending on the application at hand, the system state is a vector, which may
contain capacitor voltages, inductor and load currents, and fluxes.

2.1 System Constraints

An interesting feature of the MPC framework is that it allows one to incorporate
state and input constraints, say:

x(k) ∈ X⊆ R
n, k ∈ {0,1,2, . . .},

u(k) ∈ U⊆ R
m, k ∈ {0,1,2, . . .}.

(2)

State constraints can, for example, correspond to constraints on capacitor voltages
in flying capacitor converters or neutral point clamped converters. Constraints on
load currents can also be modeled as state constraints. Throughout this chapter we
will focus on input constraints, since they naturally arise when controlling power
converters.

Input constraints, u(k) ∈U, are related to the switch positions during the interval
(kh,(k + 1)h]. If a modulator is used, then u(k) will be constrained to belong to
a bounded continuous set. For example, the components of u(k) could correspond
to duty cycles, d(k), or PWM reference signals. In this case, the control input is
constrained by

u(k) = d(k) ∈ U� [−1,1]m ⊂ R
m, k ∈ {0,1,2, . . .}, (3)
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Fig. 1: MPC with continuous control set.

where m denotes the number of phases, see Figure 1. Clearly, the above model can
only approximate switching effects, see also [35]. Nevertheless, as we will see, sev-
eral interesting and powerful controllers for power converters have been developed
by using this simple setting.

On the other hand, in the so-called direct control applications, where no modula-
tor is used, u(k) is constrained to belong to a finite set describing the available switch
combinations. Such approaches have attracted significant attention in the power elec-
tronics community, often under term finite control set MPC (FCS-MPC) [52]. The
main advantage of this predictive control strategy comes from the fact that switch-
ing actions, say S(k), are directly taken into account in the optimization procedure
as constraints on the system inputs, see Figure 2. Thus, the control input is restricted
to belong to a finite set represented by

u(k) = S(k) ∈ U⊂ R
m, k ∈ {0,1,2, . . .}, (4)

where U is an integer set obtained by combining the m switch values. For the control
of multilevel topologies, it is often convenient to consider the resultant phase voltage
level as the control input rather than the switch position of each semiconductor
switch. For example, for a five-level inverter, U= {−2,−1,0,1,2}m.

2.2 Cost Function

A distinguishing element of MPC, when compared to other control algorithms, is
that at each time instant k and for a given (measured or estimated) plant state x(k),
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a cost function over a finite horizon of length N is minimized. The following choice
encompasses many alternatives documented in the literature:

V (x(k),u′(k))� F(x′(k+N))+
k+N−1

∑
�=k

L(x′(�),u′(�)). (5)

Here, L(·, ·) and F(·) are weighting functions, which serve to penalize predicted
system behaviour, e.g., differences between references for voltages and currents and
their predicted values, see Section 2.4.

For example, for a two-level three-phase inverter in orthogonal αβ coordinates,
one can use (see [51])

L(x′(�),u′(�)) = λ1(iα(�)− i�α)
2 +λ2(iβ (�)− i�β )

2.

For a one-phase three-cell flying capacitor converter (FCC) one can choose (see,
e.g., [37])

L(x′(�),u′(�)) = λ1(ia(�)− i�a)
2 +λ2(vc1(�)− v�c1)

2 +λ3(vc2(�)− v�c2)
2.

In (5), predicted plant state values, x′(�), are formed using the system model (1):

x′(�+1) = f (x′(�),u′(�)), � ∈ {k,k+1, . . . ,k+N −1} (6)

where
u′(�) ∈ U, � ∈ {k,k+1, . . . ,k+N −1}
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refers to tentative plant inputs (to be decided). The recursion (6) is initialized with
the current plant state measurement (or estimate), i.e.:

x′(k)←− x(k). (7)

Thus, (6) refers to predictions of the plant states that would result if the plant inputs
at the update times {k,k + 1, . . . ,k +N − 1} were set equal to the corresponding
values in

u′(k)� [u′T (k) u′T (k+1) . . . u′T (k+N −1)]T . (8)

Both, the predicted plant state trajectory and the plant inputs are constrained in
accordance with (2), i.e., we have:

u′(�) ∈ U, ∀� ∈ {k,k+1, . . . ,k+N −1}
x′(�) ∈ X, ∀� ∈ {k+1,k+2, . . . ,k+N}.

Constrained minimization of V (·, ·) in (5) gives the optimizing control sequence
at time k and for state x(k):

uopt(k)� [(uopt(k))T (uopt(k+1;k))T . . . (uopt(k+N −1;k))T ]T . (9)

It is worth emphasizing here that, in general, plant state predictions, x′(�), will
differ from actual plant state trajectories, x(�). This is a consequence of possible
model inaccuracies and the moving horizon optimization paradigm described next.

2.3 Moving Horizon Optimization

Despite the fact that the optimizer uopt(k) in (9) contains feasible plant inputs over
the entire horizon, (kh,(k+N − 1)h], in most MPC approaches, only the first ele-
ment is used, i.e., the system input in (1) is set to

u(k)←− uopt(k).

At the next sampling step, i.e., at discrete-time k + 1, the system state x(k + 1)
is measured (or estimated), the horizon is shifted by one step, and another op-
timization is carried out. This yields uopt(k + 1) and its first element provides
u(k + 1) = uopt(k + 1), etc. As illustrated in Figure 3 for a horizon length N = 3,
the horizon taken into account in the minimization of the cost function V slides
forward as k increases.

The design of observers for the system state is beyond the scope of this chapter.
The interested reader is referred to [2, 17, 25], which illustrate the use of Kalman
filters for MPC formulations in power electronics.
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Fig. 3: Moving horizon principle with horizon length N = 3.

2.4 Design Parameters

As seen above, MPC allows one to treat multi-variable nonlinear systems in an,
at least conceptually, simple way. In addition to choosing the sampling interval h
(which, amongst other things, determines the system model (1)), MPC design essen-
tially amounts to selecting the cost function, i.e., the weighting functions F(·) and
L(·, ·), and the horizon length N.
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As we shall see, the design of the weighting functions should take into account
the actual control objectives and may also consider stability issues [3, 43]).1 For
example, tracking of the desired output and internal voltages and currents (which
are assumed to be given, cf., [48]) can be accommodated into the MPC framework
by choosing weights that penalize a measure of the difference between predicted
and reference values.

For a given sampling frequency 1/h, larger values for the horizon length N will
in general provide better performance, as quantified by the weighting functions F(·)
and L(·, ·). Indeed, one can expect that, for large enough N, the effect of u(k) on
x′(�) for � > k+N will be negligible and, consequently, MPC will approximate the
performance of an infinite horizon optimal controller [27, 45]. On the other hand,
the constrained optimization problem which, in principle, needs to be solved on-
line to find the controller output, has a computational complexity which, in general,
increases with the horizon length. As a consequence, the horizon parameter N allows
the designer to trade-off performance versus on-line computational effort.

3 Linear Quadratic MPC for Converters with a Modulator

Most power converters use a modulation stage to synthesize the switching signals.
To simplify the design of control strategies, it is common practice to separate con-
trol and modulation issues, see, e.g., [29]. By averaging the switching signal, the
switching nature of the power converter can be concealed, provided that the switch-
ing frequency per fundamental frequency is high, a modulation method with a fixed
modulation cycle is used and sampling is performed when the voltage and current
ripples due to modulation are close to zero. If these conditions are fulfilled, one may
use standard methods for the controller design. As we shall see below, for the case
of MPC, the situation is similar.

A particularly simple case of (5)–(6) arises when the cost function is quadratic
and the system model is linear and time-invariant, i.e.:

V (x(k),u′(k)) = x′T (k+N)Px′(k+N)+
k+N−1

∑
�=k

{
x′T (�)Qx′(�)+u′T (�)Ru′(�)

}
,

x′(�+1) = Ax′(�)+Bu′(�),

x′(�) ∈ X⊆ R
n, u′(�) ∈ U⊆ R

m, � ∈ {k,k+1, . . . k+N −1},
(10)

where A and B denote the state-update and input matrices, and P, Q and R are posi-
tive semi-definite matrices of appropriate dimensions. The constraint sets X and U

are polyhedra.

1 Note that the weighting functions should be chosen such that V (·, ·) depends on the decision
variables contained in u′(k), see (8).
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Fig. 4: Topology of the dc-dc buck converter.

Despite the ever growing computational power available and recent advances in
implementing quadratic programming (QP) solvers on embedded system architec-
tures, solving the QP in real-time for power electronics applications poses a highly
challenging problem. When using sampling intervals in the μs range, the computa-
tion times needed to solve the QP typically exceed the sampling interval—often by
one or two orders of magnitude. Rather than solving the mathematical optimization
problem in real-time for the given state vector at the current time-step, the optimiza-
tion problem can be solved offline for all possible states. Specifically, the so-called
(explicit) state-feedback control laws as presented in previous parts of this book can
be computed for all states x(k) ∈ X [6]. Explicit control laws are characterized via
a polyhedral partition of the state space which can be stored in a look-up table. The
optimal control input can thus be read from the look-up table in a computationally
efficient manner.

Example 1. To further illustrate the derivation and properties of the explicit state-
feedback control law of MPC, consider a dc-dc step-down synchronous converter.
The latter is commonly referred to as a buck converter, and it is shown in Figure
4. Using the classic technique of averaging between the on and off modes of the
circuit, the discrete-time system model

x(k+1) = Ax(k)+Bvsd(k) (11)

can be obtained, where vs denotes the unregulated input voltage and d(k) the duty
cycle. The state vector contains the inductor current i� and the output voltage vo, i.e.
x = [i� vo]

T . From Figure 4, the continuous-time system matrices are

F =

[ −R�/L −1/L
Ro

Ro+Rc

L−RcR�C
LC − 1

Ro+Rc

L+RcRoC
LC

]
, G =

[
1/L
Ro

Ro+Rc

Rc
L

]
, (12)

whereas their discrete-time representations in (11) are given by

A = eFh , B =

∫ h

0
eFτGdτ . (13)



560 Daniel E. Quevedo, Ricardo P. Aguilera, and Tobias Geyer

−3 −2 −1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a) Polyhedral partition of the state-space X

2 3

−2
0

2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

(b) Control law uopt(k)

(ki� )
~

(kvo )

(k
d

)

(k
vo

)

~
(ki� )

~

~

Fig. 5: Explicit state-feedback control law for the dc-dc buck converter over the
state-space X spanned by the scaled inductor current ĩ�(k) and the scaled output
voltage ṽo(k)

Adopting the per unit (pu) system, the parameters in (12) are here taken as the
inductor L = 3 pu, capacitor C = 20 pu and output resistor Ro = 1 pu. The internal
resistor of the inductor is set to R� = 0.05 pu and the equivalent series resistance
of the capacitor is Rc = 0.005 pu. The nominal input voltage is assumed to be vs =
1.8 pu.

To allow for variations in the input voltage, it is convenient to scale the system
equations by vs, as proposed in [25]. To this end, we define ĩ� = i�/vs, ṽo = vo/vs

and x̃ = [ĩ� ṽo]
T , and rewrite (11) as

x̃(k+1) = Ax̃(k)+Bd(k) . (14)

Note that, unlike (11), (14) is linear in the state vector and the duty cycle.
The control objective is to regulate the output voltage to its reference v�o and to

maintain the inductor current below its maximal allowed limit i�,max by manipulating
the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem (cf., (10))

V (x̃(k),u(k)) =
k+N−1

∑
�=k

{
(x̃′(�)− x̃�)T Q(x̃′(�)− x̃�)+R(u′(�))2

}
,

x̃′(�+1) = Ax̃′(�)+Bu′(�),

x̃′(�) ∈ X, u′(�) ∈ U, � ∈ {k,k+1, . . . k+N −1},

(15)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ�,max, ĩ�,max]× [−10,10] and U =
[0,1]. Note that ĩ�,max = i�,max/vs and u = d. To facilitate the regulation of the output
voltage to a non-zero reference, we define x̃� = [0 ṽ�o]

T with ṽ�o = v�o/vs. We assume
ṽ�o = 0.5 and choose the horizon N = 3.
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The explicit control law can be computed using the MPT toolbox [33]. The two-
dimensional state-space is partitioned into 20 polyhedra. Using optimal complexity
reduction [24], an equivalent control law with 11 polyhedra can be derived, as shown
in Figure 5(a). The corresponding state-feedback controller providing u(k) = uopt(k)
is shown in Figure 5(b). Note that the duty cycle is limited by zero and one as a result
of the design procedure. An additional patch, such as an anti-windup scheme, is not
required, see also [12].

A similar MPC scheme was proposed in [40]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by in-
troducing Δu(k) = u(k)− u(k − 1) and penalizing R(Δu(�))2 rather than R(u(�))2

in (15). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [40]. Load variations can be addressed by a Kalman
filter, see [25].

In the context of power electronics and drives applications, such MPC formula-
tions have been studied extensively. One of the earliest references is [38], which
proposes an explicit MPC controller in a field-oriented controller setting for an elec-
trical drive. These initial results are extended in [41]. In [7], the speed and current
control problem of a permanent-magnet synchronous machine is solved using MPC.
Drives with flexible shafts are considered in [11], whereas [39] focuses on active
rectifier units with LC filters.

4 Linear Quadratic Finite Control Set MPC

Controlling power converters without a modulator has received significant interest
in recent years, leading to direct control methods. These methods combine the inner
control loop, which typically controls the load currents, and the modulator in one
computational stage. In doing so, the intrinsic delay of the modulator is avoided and
the switching nature of the power converter can be directly addressed.

One of the most popular predictive control strategy for power electronic systems
is FCS-MPC [9, 52]. This predictive control strategy explicitly models the switch
positions by means of a finite control set. This implies that the input constraint set
has a finite number of elements, as, for example, in (4).

In general, large prediction horizons N are preferable when using MPC. However,
finding the optimal input sequence in case of FCS-MPC typically requires one to
solve a combinatorial optimization problem [47]. Interestingly, for some topologies,
one-step horizon MPC provides already good closed-loop performance [31, 50].
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4.1 Closed-Form Solution

Consider again a quadratic cost function and a linear time-invariant system model.
Unlike as in (10), however, the input constraint set U is now a finite control set. Here-
after, we revisit the closed-form expression for the solution to this linear quadratic
FCS-MPC problem, as presented in [26, 47].

Firstly, we define the predicted state sequence

x′
[1:N](k)� [x′T (k+1) x′T (k+2) . . . x′T (k+N)]T . (16)

The subscript [1:N] indicates that, unlike in (8), the state sequence is shifted by one
time step.

Considering an initial system state x′(k) = x(k), see also (7), we obtain

x′
[1:N](k) =Φu′(k)+Λx′(k),

where

Φ �

⎡
⎢⎢⎢⎣

B 0 · · · 0 0
AB B · · · 0 0
...

...
. . .

...
...

AN−1B AN−2 · · · AB B

⎤
⎥⎥⎥⎦ , Λ �

⎡
⎢⎢⎢⎣

A
A2

...
AN

⎤
⎥⎥⎥⎦ .

In the following, we drop the time dependence of the state and input sequences
in order to simplify the notation. The cost function (10) can then be re-written as

V (x,u′) = ν(x)+u′TWu′+2u′T Fx, (17)

where x = x(k), u′ = u′(k) and the term ν(x) is independent of u′. In (17),

W �ΦTQΦ+R ∈ R
Nm×Nm,

F �ΦTQΛ ∈ R
Nm×n,

with
Q � diag{Q, . . . ,Q,P} ∈ R

Nn×Nn,

R � diag{R, . . . ,R} ∈ R
Nm×Nm.

Notice that, if Q and R are positive definite, so is W .

Remark 1 (Unconstrained Solution) If system constraints are not taken into ac-
count, i.e. U� R

m and X� R
n, then V (x,u′) is minimized when

uopt
uc (x)� arg

{
min

u′∈RNm
V (x,u′)

}
�−W−1Fx. (18)
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Fig. 6: Geometrical representation of the optimal solution for FCS-MPC with
u1,u2 ∈ {0,1} and the horizon N = 1.

Based on the unconstrained optimum, it is convenient to rewrite the cost func-
tion (17) as:

V (x,u′) = (u′ −uopt
uc (x))

TW (u′ −uopt
uc (x))+g(x), (19)

where the term g(x) is independent of u′.
To obtain the optimal finite set constrained solution one must find the control

input which minimizes V (x,u′). From (19), it follows that level sets of the cost func-
tion are ellipsoids, where the eigenvectors of W define the principal directions of the
ellipsoid. Thus, the constrained optimizer uopt(x) does not necessarily correspond
to the nearest neighbour of uopt

uc (x) within the constraint set UN .

Example 2. Consider the case where a power converter, modeled as a linear time-
invariant model, has two semiconductor switches, which can take two values, i.e.,
u1,u2 ∈ {0,1}. Thus, the control input belongs to the following finite set:

u ∈ U�
{[

0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
⊂ R

2. (20)

A geometrical representation of the situation for the case when the horizon is N = 1
is depicted in Figure 6 (left). Here, the ellipses, εi centred in uopt

uc , represent all the
points that lead to the same cost. Formally, if a,b ∈ εi then, V (x,a) =V (x,b).

As we move away from the centre, the ellipses become larger, increasing the
cost function value, i.e., if a ∈ ε1 and b ∈ ε2 then, V (x,a) < V (x,b). Thus, in this
example, the optimal solution, which produces the minimum cost function value
is uopt = [1 0]T , despite the nearest vector to the unconstrained solution being u =
[1 1]T . Clearly, the optimal solution is, in general, not the nearest neighbour to the
unconstrained solution.

Based on the above observations, one can derive a closed-form solution to the
finite-set constrained optimization problem at hand.
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Definition 1 (Vector Quantizer (see, e.g., [18])) Consider a set A ⊆ R
n and a

countable (not necessarily finite) set B � {bi} ⊂ R
n, i ∈ I ⊆ N which satisfies

that ∃ε > 0 :| bi − b j |≥ ε ,∀i, j ∈ I . A function qB(·) : A → B is an Euclidean
vector quantizer if qB(a) = bi ∈B if and only if bi satisfies that | a−bi |≤| a−b j |,
for all b j �= bi, where b j ∈ B. The associated quantization error is defined as
η̄B(a)� qB(a)−a.

Theorem 1 ([47]) Denote the elements of UN � U×·· ·×U via {μ1, . . . ,μr}. Con-
sider a matrix H that satisfies HT H =W. Then, the constrained optimizer

uopt(x)� arg

{
min

u′∈UN
V (x,u′)

}
(21)

is given by

uopt(x) = H−1qV
(
H−1uopt

uc (x)
)
= HqV

(
−H−T Fx

)
, (22)

where the vector quantizer qV maps R
Nm to V. The latter set is defined via V �

{ν1, . . . ,νr} ⊂ R
Nm, in which νi = Hμi for all μi ∈ U

N.

Proof. To obtain the optimal solution, we define v′ = Hu′. Now, the cost func-
tion (19) can be expressed as:

V (x,v′)� (v′ −vopt
uc (x))

T (v′ −vopt
uc (x))+g(x), (23)

where
vopt

uc (k)� Huopt
uc (x).

Thus, in terms of v′, the level sets of the cost function describe spheres centred
at vopt

uc , as depicted in Figure 6 (right). Therefore, in terms of these transformed
variables, the nearest vector to the unconstrained solution vopt

uc (x) is indeed the (con-
strained) optimal solution.

Notice that if W is symmetric and positive definite, then it is always possible to
obtain a matrix H that satisfies HT H =W , e.g., H =W 1/2, as chosen in [47].

4.2 Design for Stability and Performance

We will next investigate stabilizing properties of FCS-MPC. For that purpose, we
will include additional terminal constraints in the problem formulation of Sec-
tion 2.2. This will allow us to adapt robust control concepts to suit the problem
at hand.

For our subsequent analysis, we shall assume that the pair (A,B) is stabilizable
and that the matrices Q and R are positive definite. A widely used idea to establish-
ing stability of MPC is based on finding a known control policy, say κ f (x), which
stabilizes the system model within a given terminal region X f , see [49]. In particular,
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for a disturbance-free LTI system with convex constraints, say

x(k+1) = Ax(k)+Bū(k) , (24)

using quadratic MPC, one can use a fixed state feedback gain as a stabilizing con-
troller for the terminal region X f (see Section 2.5 in [49]). To adapt this idea to
systems with finite control inputs, we first introduce an associated convex set via:

Ū� {ū ∈ R
m : |ū| ≤ ūmax} ,

where ūmax ∈ (0,∞) is a design parameter. Since Ū is bounded, so is the quantization
effect, i.e.,

Δq � max
ū∈Ū

|qU (ū)− ū|< ∞. (25)

Note that Δq depends upon ūmax.
Based on this, stability of FCS-MPC can be examined by investigating properties

of a local controller κ f (x) corresponding to the optimal solution presented in (22)
with prediction horizon N = 1. In this case, one has F = BT PA and W = BT PB+R,
so that

uopt
uc (x) = Kx, K =−W−1F. (26)

The above motivates one to impose that the terminal state in the optimization lies
inside a terminal region: x(k+N) ∈ X f , with

X f � {x ∈ R
n : |x| ≤ b} , b � ūmax

|K| . (27)

Within this region the local controller satisfies

κ f (x) = Kx+H−1ηV(x), x ∈ X f , (28)

where ηV(x)� η̄V(W−1/2Kx). Clearly,

|ηV(x)| ≤ |qV
(
HKx

)
−HKx| ≤ |HqU (Kx)−HKx|

≤ |H||qU (Kx)−Kx| ≤ |H|Δq,
(29)

where we have used (25).
Consequently, system (24) with the proposed local controller κ f (x) in (28) can

be expressed via:

x(k+1) = AKx(k)+w f (x(k)), ∀x(k) ∈ X f , (30)

where AK = A+ BK, and w f (x(k)) = BH−1ην(x(k)) represents the effect of the
quantization on the “nominal system”, x(k+1) = AKx(k).

Notice that, in (30), w f (x) is not an external disturbance but a known disconti-
nuity produced by the quantization, which makes (30) a nonlinear system. The key
point here is that w f (x) is bounded on X f . Therefore, the local controller can be
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Fig. 7: Two-level inverter topology.

shown to be stabilizing if it is robust to bounded input disturbances. As shown in
[3], it is convenient to choose the matrix P in (10) as the (unique) solution to the
algebraic Riccati equation

AT
KPAK +Q+KT RK −P = 0. (31)

With this choice, κ f (x) in (28) can be used to guarantee closed-loop stability of
FCS-MPC. Theorem 2, given below, establishes that for all x(0) that belong to the
feasible set XN , the system will be steered by the multi-step predictive controller
towards the terminal region X f ⊆ XN and then (with the same controller) into an
ultimately bounded set DδN

⊂ X f .

Theorem 2 ([3]) Let DδN
�

{
x ∈ X f : |x| ≤ δN

}
be a neighbourhood of the origin,

where

δ 2
N � γNΔ 2

q , γN �
(

1+(1−ρ)N
λmin(Q)(1−ρ)

)
|W |. (32)

Suppose that x(0) ∈ XN and the matrix P in (10) satisfies (31). If Δq in (25) is
bounded by

Δ 2
q <

b2

γN
, (33)

then limsupk→∞ |x(k)| ≤ δN. Furthermore, there exists a finite instant t > 0, such
that after that instant, the system state x(k) converges at an exponential rate, i.e.,
there exists c > 0 and ρ ∈ [0,1), such that

|x(k)|2 ≤ cρk−t |x(t)|2 + γNΔ 2
q ,∀k ≥ t, (34)

where c = λmax(P)/λmin(Q) and ρ = 1−1/c, with λmin(Q)≤ λmax(P).

4.3 Example: Reference Tracking

The topology of a two-level inverter is presented in Figure 7. The associated
continuous-time dynamic model for the three-phase output current, iabc � [ia ib ic]T ,
is



4 Linear Quadratic Finite Control Set MPC 567

u1

u0

u2u3

u4

u5 u6

u h

f

ua

uβ q

xd

umax

x

b

xd�

xq

)b()a(
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diabc(t)
dt

=− r
L

iabc(t)+
1
L
(VdcSabc(t)− vo(t)I3×1), (35)

where Vdc denotes the dc-link voltage and vo stands for the common-mode voltage.
The latter is defined as vo =

1
3 (va + vb + vc), where va, vb and vc are the voltages at

the inverter terminals, see Figure 7. The switch positions, Sabc � [Sa Sb Sc]
T , belong

to the following finite set

S=

{[
0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
0
1
1

]
,

[
1
0
0

][
1
0
1

]
,

[
1
1
0

]
,

[
1
1
1

]}
. (36)

For this converter, the control target is to track three-phase sinusoidal references
of the form:

i�abc(t) = a�
[
sin(ωt) sin(ωt −2π/3) sin(ωt +2π/3)

]T
(37)

We will next illustrate how the preceding ideas can be applied to this situation.
For that purpose, we first note that sinusoidal quantities in a three-phase system can
be transformed into a rotating orthogonal dq reference frame using the so-called
Park transformation. More specifically, the three-phase current iabc in (35) is trans-
formed into the dq frame by the transformation

idq(t) = Γ (t)iabc(t), (38)

where:

Γ (t)� 2
3

[
sin(ωt) sin(ωt − 2π

3 ) sin(ωt + 2π
3 )

cos(ωt) cos(ωt − 2π
3 ) cos(ωt + 2π

3 )

]
, (39)

and idq � [id iq]T .
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Fig. 9: Convergence of the two-level inverter for R = 0.0001I2×2.

Figure 8 (left) shows the typical output voltages of a two-level inverter in a vec-
torial representation in the stationary orthogonal αβ coordinate system. The finite
input set, U, contains the 7 inverter vectors, which are contained by the nominal
input set, Ū, i.e.,

U= {u0, . . . ,u6} ⊂ Ū⊂ R
2. (40)

In this case, the quantization of the nominal input ū ∈ Ū is given by qU(ū) = u1,
thus ηU(ū) = u1 − ū. Notice that the inverter voltage vectors rotate in the dq ref-
erence frame. However, they always will be contained by the nominal input set, Ū,
producing the same maximum quantization error Δq as in the αβ coordinate system.

Thus, considering x = idq and u = Sdq, the discrete-time model of the two-level
inverter in the dq frame is

x(k+1) = Ax(k)+Bu(k), u(k) ∈ U(k), (41)

A =

[
1−hr/L ωh
−ωh 1−hr/L

]
, B = (h/L)VdcI2×2, (42)

where h is the sampling period and

U(k) = Γ (kh)S. (43)

In this case, with a current reference of constant amplitude a�, the reference

x� = i�dq = [a� 0]T (44)

directly follows. The input required to keep this state value is given by
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u� = S�dq = [ra�/Vdc ωLa�/Vdc]
T . (45)

Here, experimental results of the performance of FCS-MPC when applied to a
three-phase two-level inverter are presented. The inverter prototype was built using
discrete insulated-gate bipolar transistors (IGBTs) IRG4PC30KD. The electrical pa-
rameters of the converter-load system are Vdc = 200 V , r = 5Ω and L = 17 mH, see
Figure 7. The predictive strategy was implemented in a standard TMS320C6713
DSP considering a sampling period of h = 100 μs. The desired amplitude for the
output current is a� = 5 A with an angular frequency of ω = 2π50 rad/s.

Following the result in Theorem 1, one obtains for the weighting matrices Q =
I2x2 and R = 2I2x2 that

P = 1.7455I2×2, K =

[
−0.4514 −0.0146
0.0146 −0.4514

]
. (46)

A key observation is that the time-varying constraint set U in (43) can be bounded
by a fixed nominal set Ū. In Figure 8, one can see that when the nominal input ū is
inside the hexagon-shaped boundary, the maximum quantization error, Δq, is given
by the centroid of the equilateral triangle formed by the adjacent inverter vectors.
Therefore, the maximum quantization error is given by Δq = 2

√
3

9 . The associated
nominal input set can be chosen as:

Ū� {ū ∈ R : |ū| ≤ 2Δq},

while the terminal region can be characterized via (see [4] for details):

X f �
{

x ∈ R
n : |x− x�| ≤ umax −|u�|

|K| = 1.3

}

which provides that

|ηU(ū)| ≤ Δq = 2

√
3

9
, ∀x ∈ X f .

Thus, one can anticipate that the system state will be led by the predictive con-
troller to the ultimately invariant set:

DδN
� {x ∈ R

n : |x− x�| ≤ δ = 0.8088} . (47)

The evolution of the two-level inverter using FCS-MPC with N = 1 and start-
ing from id = iq = 0 is depicted in Figure 9. Here, one can see that the predictive
controller leads the system state to the terminal region, X f , and then to DδN

. As
expected for this kind of controller, the inverter voltage spectrum is spread, as can
be observed in Figure 10. If this is undesired, then one can use noise shaping tech-
niques, as described in [10, 46].
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Fig. 10: System state and input trajectories, and inverter voltage spectrum.

5 An Efficient Algorithm for Finite-Control Set MPC

In this section we consider the cost function

V (x(k),u(k)) =
k+N−1

∑
�=k

(y∗(�+1)− y′(�+1))T (y∗(�+1)− y′(�+1)) (48)

+λu(Δu′(�))TΔu′(�) ,

which penalizes the predicted output errors and the control effort

Δu′(�)� u′(�)−u′(�−1) .

The latter is weighted by the non-negative scalar weighting factor λu. The cost func-
tion (48) is minimized subject to
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u(k) ∈ U
N

‖Δu′(�)‖∞ ≤ 1, ∀� ∈ {k,k+1, . . . ,k+N −1} ,
(49)

where the first constraint restricts the sequence of manipulated variables to the set of
feasible switch positions of the converter. In many converters the second constraint
is required to avoid switching in a phase by more than one step up or down.

Owing to the discrete nature of the decision variable u(k), minimizing (48) sub-
ject to (49) is difficult, except for short horizons. In fact, as the prediction horizon
is enlarged and the number of decision variables is increased, the (worst-case) com-
putational complexity grows exponentially, thus, cannot be bounded by a polyno-
mial, see also [47]. The difficulties associated with minimizing V become apparent
when using exhaustive search. With this method, the set of admissible switching se-
quences u(k) is enumerated and the cost function evaluated for each such sequence.
The switching sequence with the smallest cost is (by definition) the optimal one and
its first element is chosen as the control input.

It is easy to see that exhaustive search is computationally feasible only for very
small horizons N, such as one or two. In fact, for N = 5, assuming a three-level
converter, the number of switching sequences amounts to 1.4 ·107.

Techniques from vector quantization [18] and from mathematical programming,
such as branch and bound [19, 34, 44], can be used to reduce the computational bur-
den. However, none of the general methods take advantage of the particular structure
of (48) and the fact that in MPC the solution is implemented in a moving horizon
manner.

To address computational issues, we will exploit the geometrical structure of
the underlying MPC optimization problem and present a practical optimization al-
gorithm. The algorithm uses elements of sphere decoding [28] to provide optimal
switching sequences, requiring only little computational resources, thus, enabling
the use of longer prediction horizons in practical applications [5, 21, 22].

We will illustrate the ideas on a variable speed drive application consisting of
a three-level neutral point clamped voltage source inverter driving an induction ma-
chine. The methods proposed and results obtained are directly applicable to both the
machine-side inverter in an ac drive setting and to grid-side converters. The ideas
can also be used for other converter topologies and are particularly promising for
topologies with a high number of voltage levels.

5.1 Modified Sphere Decoding Algorithm

Using algebraic manipulations akin to those mentioned in Section 4, it is easy to
show that the minimization of (48) amounts to finding

uopt(k) = argmin
u

(z−Hu)T (z−Hu), subject to (49), (50)

where H is an invertible lower-triangular matrix. In (50), we use

z = Huuc,
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where uuc is the sequence obtained from optimizing (48) without constraints, i.e.,
with U = R

3. Thus, we have rewritten the MPC optimization problem as a (trun-
cated) integer least-squares problem. Interestingly, various efficient solution algo-
rithms for (50) subject to finite-set constraints have been developed in recent years;
see, e.g.,[1] and the references therein. We will next show how to adapt the sphere
decoding algorithm [16, 28] to find the optimal switching sequence uopt(k).

The basic idea of the algorithm is to iteratively consider candidate sequences, say
u ∈ U

N , which belong to a sphere of radius ρ(k)> 0 centred in z,

(z−Hu)T (z−Hu)≤ ρ(k). (51)

Especially in the case of multilevel converters (where U has many elements; see,
e.g., [37]), the set of candidate sequences satisfying the above conditions is much
smaller than the original constraint set UN . Not surprisingly, computation times can
be drastically reduced compared to exhaustive search.

A key property used in sphere decoding is that, since H is triangular, for a given
radius, identifying candidate sequences which satisfy (51) is very simple. In partic-
ular, for the present case, H is lower triangular, thus (51) can be rewritten as

ρ2(k)≥ (z1 −H(1,1)u1)
2 +(z2 −H(2,1)u1 −H(2,2)u2)

2 + . . . (52)

where zi denotes the i-th element of z, ui is the i-th element of u, and H(i, j) refers to
the (i, j)-th entry of H. Therefore, the solution set of (51) can be found by proceed-
ing in a sequential manner akin to Gaussian elimination, in the sense that at each
step only a one-dimension problem needs to be solved; for details, see [28].

The algorithm requires an initial value for the radius used at time k to determine
u. On the one hand, the radius ρ(k) should be as small as possible, enabling us to
remove as many candidate solutions a priori as possible. On the other hand, ρ(k)
must not be too small, to ensure that the solution set is non-empty. As shown in [21],
it is convenient to choose the initial radius by using the following educated guess
for the optimal solution:

usub(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0

0 0 I
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 I
0 . . . . . . 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

uopt(k−1), (53)

which is obtained by shifting the previous solution by one time-step and repeating
the last switch position. This is in accordance with the moving horizon optimiza-
tion paradigm. Since the optimal solution at the previous time-step satisfies the con-
straint, usub(k) is a feasible solution candidate of (48). Given (53), the initial value
of ρ(k) is then set to:

ρ(k) = (z−H usub(k))T (z−H usub(k)). (54)
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Algorithm 1: Modified sphere decoding algorithm

function uopt(k) = MSphDec u, d2, i, ρ2, z
for each u ∈ {−1,0,1} do

ui ← u
d′2 ← (zi −H(i,1:i)u1:i)

T (zi −H(i,1:i)u1:i)+d2

if d′2 ≤ ρ2 then
if i < 3N then

MSPHDEC(u,d′2, i+1,ρ2,z)
else

if u meets (49) then
uopt ← u
ρ2 ← d′2

end if
end if

end if
end for

end function

At each time-step k, the controller first uses the current system state x(k), the
future reference values, the previous switch position u(k−1) and the previous opti-
mizer uopt(k−1) to calculate usub(k), ρ(k) and z. The optimal switching sequence
uopt(k) is then obtained by invoking Algorithm 1 (see [21]):

uopt(k) = MSPHDEC( /0,0,1,ρ2(k),z), (55)

where /0 is the empty set2.
As can be seen in Algorithm 1, this modification to sphere decoding operates

in a recursive manner. Starting with the first component, the switching sequence
u is built component by component, by considering the admissible single-phase
switch positions in the constraint set {−1,0,1}. If the associated squared distance
is smaller than the current value of ρ2, then one proceeds to the next component. If
the last component,i.e., u3N , has been reached, meaning that u is of full dimension
3N, then u is a candidate solution. If u meets the switching constraint (49) and if
the distance is smaller than the current optimum, then one updates the incumbent
optimal solution uopt and also the radius ρ .

The computational advantages of this algorithm stem from adopting the notion
of branch and bound [34, 44]. Branching is done over the set of single-phase switch
positions {−1,0,1}; bounding is achieved by considering solutions only within the
sphere of current radius. If the distance d′ exceeds the radius, a certificate has been
found that the branch (and all its associated switching sequences) provides only

2 The notation H(i,1:i) refers to the first i entries of the i-th row of H; similarly, u1:i are the first
i elements of the vector u. Note that the matrix H is time-invariant and does not change when
running the algorithm. Therefore, H can be computed once offline before the execution of the
algorithm.
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Fig. 11: Three-level three-phase neutral point clamped voltage source inverter driv-
ing an induction motor with a fixed neutral point potential.

solutions worse than the incumbent optimum. Therefore, this branch can be pruned,
i.e., removed from further consideration without exploring it. During the optimiza-
tion procedure, whenever a better incumbent solution is found, the radius is reduced
and the sphere thus tightened, so that the set of candidate sequences is as small as
possible, but non-empty. The majority of the computational burden relates to the
computation of d′ via evaluating the terms H(i,1:i)u1:i. Thanks to (52), d′ can be
computed sequentially, by computing only the squared addition due to the ith com-
ponent of u. In particular, the sum of squares in d, accumulated over the layers 1 to
i−1, does not need to be recomputed.

5.2 Simulation Study of FCS-MPC

As an illustrative example of a power electronics system, we consider a medium-
voltage variable speed drive system consisting of a neutral point clamped (NPC)
voltage source inverter (VSI) and a squirrel-cage induction machine (IM). This setup
is shown in Figure 11. The inverter can synthesize three output voltage levels at each
of its three phase terminals. The total dc-link voltage Vdc is assumed constant and
the neutral point potential N is fixed.

System Model

Let the integer variables ua, ub, uc ∈ {−1,0,1} denote the switch positions in the
three phase legs. The voltage vector applied to the machine terminals in the station-
ary orthogonal αβ coordinate system is

vs,αβ =

[
vsα
vsβ

]
=

1
2

VdcP u (56)
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with

P � 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, u �

⎡
⎣ua

ub

ub

⎤
⎦ ∈ U and U� {−1,0,1}3. (57)

For the state-space model of an induction machine in the stationary coordinate
system, we choose the stator currents isα and isβ and the rotor flux linkages ψrα and
ψrβ as state vector

x �
[
isα isβ ψrα ψrβ

]T
.

The model input are the stator voltages vsα and vsβ as defined in (56). The model
parameters are the stator and rotor resistances Rs and Rr, and the stator, rotor and
mutual reactances Xls, Xlr and Xm, respectively. Assuming operation at a constant
speed, the angular velocity of the rotor, ωr, is also a parameter. The continuous-time
state-space equations of the squirrel-cage induction machine are then (see [32])

dis,αβ
dt

=− 1
τs

is,αβ +

(
1
τr

−ωr

[
0 −1
1 0

])
Xm

D
ψr,αβ +

Xr

D
vs,αβ (58a)

dψr,αβ

dt
=

Xm

τr
is,αβ −

1
τr
ψr,αβ +ωr

[
0 −1
1 0

]
ψr,αβ , (58b)

where we have used

Xs � Xls +Xm , Xr � Xlr +Xm , D � XsXr −X2
m , τs �

XrD
RsX2

r +RrX2
m

and τr �
Xr

Rr
.

The objective of the current controller is to manipulate the three-phase switch
position u such that the stator current vector is,αβ closely tracks its reference. To
this end, we define the system output vector y � is,αβ and its reference y∗ � i∗s,αβ .
The second control objective is to minimize the switching effort, i.e., the switching
frequency or the switching losses.

Performance Evaluation

As an example of a typical medium-voltage induction machine, consider a 3.3 kV
and 50 Hz squirrel-cage induction machine rated at 2 MVA with a total leakage in-
ductance of 0.25 pu. The dc-link voltage is Vdc = 5.2kV and assumed to be constant.
The parameters of the drive system are provided in [22]. We consider operation at
the fundamental frequency 50 Hz and full torque. The controller uses the sampling
interval h = 25μs.

During steady-state operation, the key control performance criteria are the de-
vice switching frequency fsw and the total harmonic distortions (THD) of the cur-
rent ITHD. We will also investigate the empirical closed-loop cost, Vcl, which—in
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Fig. 12: Simulated waveforms for MPC with horizon N = 10 and weight λu = 0.103.
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Fig. 13: The closed-loop cost is shown as a function of the tuning parameter λu for
different prediction horizons. The individual simulations are indicated using dots,
their overall trend is approximated using dash-dotted polynomials.

accordance with (48)—captures the squared RMS current error plus the weighted
averaged and squared switching effort.

We start by investigating the steady-state performance of MPC with prediction
horizon N = 10 and weighting factor λu = 0.103. An average device switching fre-
quency of fsw = 300 Hz results, which is typical for medium-voltage applications,
and a current THD of ITHD = 5.03%. Figure 12(a) illustrates three-phase stator cur-
rent waveforms along with their (dash-dotted) references over one fundamental pe-
riod. The three-phase switch positions are shown in Figure 12(b).

The influence of λu on the empirical closed-loop is investigated next. Steady-
state simulations were run for each of the horizons N = 1, 3, 5 and 10 and for more
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Table 1: Average and maximal number of switching sequences that need to be con-
sidered by the sphere decoding and exhaustive search algorithms to obtain the opti-
mal result, depending on the length of the prediction horizon

Prediction Sphere decoding Exhaustive search
Horizon N Avg. Max. Avg. Max.

1 1.18 5 11.8 18
2 1.39 8 171 343
3 1.72 14 2350 4910
5 2.54 35 467,000 970,000
10 8.10 220

than 1000 different values of λu, ranging between 0 and 0.5. Focusing on switching
frequencies between 100 Hz and 1 kHz, and current THDs below 20%, the results
are shown in Figure 13, using a double logarithmic scale. The cost is significantly
reduced as the prediction horizon is increased, suggesting the use of N > 1.

Computational Burden

Last, we investigate the computational burden of the modified sphere decoder for
different prediction horizons. The switching frequency is held constant at 300 Hz
for all prediction horizons by tuning the weight λu accordingly. We use the num-
ber of switching sequences that are investigated by the algorithm at each time-step
as a measure of the computational burden. The average and the maximal number
of switching sequences is monitored over multiple fundamental periods. Table 1
shows that the computational burden of the algorithm grows modestly as the predic-
tion horizon is increased, despite being exponential in the worst case. In contrast to
that, exhaustive search becomes computationally intractable for prediction horizons
exceeding three.

6 Conclusions

In this chapter, basic aspects and methods underlying model predictive control for
power electronics applications have been presented. Algorithms and system theo-
retic properties depend on whether the discrete switch positions are directly manip-
ulated, or a modulator is used. Special attention has been paid on (practical) stability
and computational issues.

Our presentation has been kept at a basic system-theoretic level and was illus-
trated on simple converter topologies, which can be described via LTI dynamics.
Some configurations like active front end converters [48] and modular multilevel
converters [55] require a more careful consideration of both control theoretic tools
and also physical system knowledge for the design of high-performance model pre-
dictive controllers.
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Learning-Based Fast Nonlinear Model
Predictive Control for Custom-Made 3D
Printed Ground and Aerial Robots

Mohit Mehndiratta, Erkan Kayacan, Siddharth Patel, Erdal Kayacan,
and Girish Chowdhary

1 Introduction

In almost all robotic applications, there are always time-varying system dynamics
and/or environmental variations throughout the operation. For instance, off-road
agricultural robots, including fruit picking robots, driverless tractors, and sheep
shearing robots, must be operated on varying soil conditions. Furthermore, there
are always topological challenges, such as bumps and hollows in a field. All these
challenges bring additional uncertainties to the system which can be modeled as
longitudinal and lateral slip variations [17]. Since the performance of a model-
based controller is guaranteed for an accurate mathematical model of the system,
any plant-model mismatch results in suboptimal performance. Therefore, for a guar-
anteed performance from a model-based controller, the aforementioned variations
must be learnt over time, and the controller must adapt itself to the changing condi-
tions autonomously. Another example is mass variations in package delivery prob-
lems of aerial robots. When the total mass of a multi-rotor unmanned aerial vehicle
(UAV) is considered, the payload changes may result in massive variations in its
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dynamic model which will also result in suboptimal performance for a model-based
controller. Motivated by the challenges listed above, our goal is to use an online
learning-based nonlinear model predictive control (NMPC) for systems with uncer-
tain and/or time-varying dynamic models.

As a solution to modeling mismatch problem between the plant to be controlled
and its corresponding mathematical model, adaptation of either controller param-
eters or deployed mathematical model parameters is not a novel idea. In adaptive
control, controller adapts itself systematically to compensate lack of modeling due
to uncertain and/or time-varying parameters. This feature, apparently, exterminates
the effect of parameter uncertainties on the closed-loop system’s performance [7]. A
well-utilized strategy in this area is the adaptive-optimal control, which comprises of
the use of an adaptive controller for stability during the learning phase, followed by
the switch to the main model-based optimal controller that eventually optimizes the
performance. An online switching metric is developed that initiates the switching to
model predictive control (MPC) after gaining enough confidence in the parameter
estimates, as realized in [5, 6]. On the other hand, an alternative learning approach
could be to combine the control with some optimization-based estimation scheme
including predictive filtering and moving horizon estimation (MHE) [1], which is
also the case in this work. These estimators are model-based estimators, which can
incorporate parameter variations along with the state estimation, to learn the un-
certain system parameters online. This learning-based NMPC has been utilized for
numerous robotic applications including constrained path tracking of a mobile robot
in [26], control of a 3 degree of freedom helicopter in [23], control of lateral dynam-
ics of a fixed-wing UAV in [30], control of a quadrotor in [4], teleoperation of an
underwater vehicle in [11], and robust obstacle avoidance in [9, 21].

In addition to MHE, extended Kalman filter (EKF) can also be utilized for online
learning. However, EKF is based on the linearization of the nonlinear system at the
current estimate and is only suitable for unconstrained problems. In other words,
EKF might give irrational estimation results, e.g. less than zero or larger than one
for slip parameters [13, 15, 16, 18]. On the contrary, MHE strategy exploits the
past measurements available over a window and solves an optimization problem to
estimate the system’s states and unknown parameters [22]. Additionally, MHE is a
powerful nonlinear estimator that is not only suitable for non-Gaussian disturbance
but is also competent in handling constraints explicitly [28]. This implies, MHE will
never give irrational estimation results for the aforementioned slip parameters [29].

In this work, the efficacy of the learning-based NMPC is elaborated for the tra-
jectory tracking of two custom-made 3D printed robotic platforms: an off-road agri-
cultural ground vehicle and an aerial robot for package delivery problem. In the
first application, NMPC is utilized for controlling a field robot in an off-road terrain.
Since the ground conditions, including surface quality (loose soil, grass) and ter-
rain topography (uphill and downhill), may change over the time, modeling errors
are induced [14]. As an artifice, nonlinear MHE (NMHE) is employed to learn the
changing operational conditions, so that a better performing NMPC can be realized.
Secondly, an in-flight payload dropping application of a tilt-rotor tricopter UAV is
addressed. With each drop of payload, the total UAV mass varies and this results in
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a plant-model mismatch. Therefore, in order to eliminate this mismatch and hence,
achieve a superior tracking accuracy from NMPC, NMHE is utilized to learn the
UAV mass online. For both the applications, fast NMPC and NMHE solution meth-
ods are incorporated and the test-results are obtained from real-time experiments.

The remaining part of this study is organized as follows: Section 2 illustrates the
receding horizon control and estimation methods in terms of NMPC and NMHE
problem formulations. In Section 3, the leaning-based NMPC-NMHE framework is
demonstrated for the tracking problems of two robotic systems. Finally, the drawn
conclusions are presented in Section 4.

2 Receding Horizon Control and Estimation Methods

In this section, we briefly discuss the optimal control problems (OCPs) of NMPC
and NMHE. For both the OCPs, the considered nonlinear system is modelled as:

ẋ(t) = f
(
x(t),u(t),p

)
, (1)

where x(t) ∈ R
nx , u(t) ∈ R

nu and p(t) ∈ R
np are the state, input, and system param-

eter vectors, respectively, at time t; f(·, ·, ·) : Rnx+nu+np −→ R
nx is the continuously

differentiable state update function and f(0,0,p) = 0 ∀t. The derivative of x with
respect to t is denoted by ẋ ∈ R

nx .
Similarly, a nonlinear measurement model denoted as y(t) can be described with

the following equation:
y(t) = h

(
x(t),u(t),p

)
, (2)

where h(·, ·, ·) : Rnx+nu+np −→R
nx is the measurement function which describes the

relation between the variables of the system model and the measured outputs of the
real-time system.

2.1 Nonlinear Model Predictive Control

NMPC is an advanced, dynamic optimization-based strategy for feedback control
that solely relies on the accuracy of the mathematical model for its optimum perfor-
mance. In NMPC strategy, a parametric OCP is formulated in the form of a least
square function, in order to penalize deviations of predicted system’s trajectory (in-
cluding states and control inputs) from the specified reference. The parametric na-
ture of the OCP is due to its dependence on the current state (measured or estimated).
In addition, to keep the computational burden realizable for a real-time application
(especially for fast robotic systems), the optimization problem is solved over a finite
window, commonly known as prediction horizon (Nc). It may be worth noting that
NMPC typically leads to non-convex optimization problems, in contrast to linear
MPC in which nearly all formulations use convex cost and constraint functions [24].
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In NMPC, the dynamic optimization problem is recursively solved for the opti-
mal control inputs, over the given prediction horizon (t j ≤ t ≤ t j+Nc) at each sam-
pling instant. We formulate the following least-square type cost function in discrete
time, which is commonly utilized for tracking applications:

min
xk,uk

1
2

{ j+Nc−1

∑
k= j

(∥∥∥xk −xref
k

∥∥∥2

Wx

+
∥∥∥uk −uref

k

∥∥∥2

Wu

)
+

∥∥∥xNc −xref
Nc

∥∥∥2

WNc

}
(3a)

s.t. x j = x̂ j, (3b)

xk+1 = fd(xk,uk,p), k = j, · · · , j+Nc −1, (3c)

xk,min ≤ xk ≤ xk,max, k = j, · · · , j+Nc, (3d)

uk,min ≤ uk ≤ uk,max, k = j, · · · , j+Nc −1, (3e)

where xk ∈R
nx is the differential state, uk ∈R

nu is the control input and x̂ j ∈R
nx is

the current state estimate; time-varying state and control references are denoted by
xref

k and uref
k , respectively; the terminal state reference is denoted by xref

Nc
; the discrete

time dynamical model is represented by fd(·, ·, ·); Wx ∈ R
nx×nx , Wu ∈ R

nu×nu and
WNc ∈ R

nx×nx are the corresponding weight matrices, which are assumed constant
for simplicity, however, their time-varying formulation can also be included in a
similar manner. Furthermore, xk,min ≤ xk,max ∈R

nx and uk,min ≤ uk,max ∈R
nu specify

the lower and upper bounds on the states and control inputs, respectively.
Once the solution to the OCP (3) at t j is available, the first computed control input

(u j) is applied to the system for a short time period, that typically coincides with the
sampling time [19]. This sampling time has to be kept short enough with respect to
the system’s dynamics, while sufficiently long at the same time to facilitate timely
computation of the optimized solution. Subsequently, a new optimization problem
is solved for the prediction window [t j+1, t j+Nc+1], which itself is moving forward
with time. Due to this shifting property of the prediction window, the NMPC is also
known as receding horizon control technique.

The last expression in (3a) represents the final cost incurred due to the finite
prediction horizon and is generally referred to as the terminal penalty term. This
term is often included in the problem formulation for stability reasons [19]. In ad-
dition, some other stability results include a problem formulation with sufficiently
long horizon [10], an additional prediction horizon and a locally stabilizing control
law [25].

2.2 Nonlinear Moving Horizon Estimation

Typically, MHE is considered as a dual problem of MPC as they exploit the similar
optimization problem structure; despite the fact that MPC predicts the future of
the system, while MHE utilizes the past measurements over an estimation horizon
for state estimation [20, 31]. Moreover, the two main differences of optimization
problem formulation of MHE from MPC are: (i) there is no initial state constraint
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like in (3b), and (ii) the optimization variables are the states and unknown system
parameters, excluding the control inputs as they are already given to the system in
the past.

In a similar manner to NMPC, the NMHE scheme is also formulated using a
least square function to penalize the deviation of estimated outputs

(
h(·, ·, ·)

)
from

measurements (z). The performance of NMHE also relies on the availability of an
accurate system model, while a mismatch in the form of process noise between
the system model and the real plant may deteriorate the optimal estimation solu-
tion, which eventually may lead to an unstable closed-loop. To address this issue,
a suitable component (arrival cost) is included in the final optimization problem
formulation of NMHE, as done in [20]. The NMHE formulation includes an esti-
mation horizon containing M measurements (zS, · · · ,z j,) taken at time tS < · · ·< t j,

where the length of the horizon is given by TE = t j − tS, and j−M+1
def
= S is taken

for notational convenience. Finally, the discrete time dynamic optimization prob-
lem to estimate the constrained states (x̂) as well as the unknown parameter (p̂) at
time t j using the process model f(·, ·, ·), measurement model h(·, ·, ·) and available
measurements within the horizon, is of the form [20]:

min
x̂k,p̂

{∥∥∥∥ x̂S− x̄S
p̂− p̄L

∥∥∥∥
2

PS

+
j

∑
k=S

‖zk −h(x̂k,uk,p)‖2
V +

j−1

∑
k=S

‖wk‖2
W

}
(4a)

s.t. x̂k+1 = fd(x̂k,uk,p)+wk, k = S, · · · , j−1, (4b)

x̂k,min ≤ x̂k ≤ x̂k,max, k = S, · · · , j, (4c)

p̂min ≤ p̂≤ p̂max, (4d)

where wk represents the added process noise; x̂k,min ≤ x̂k,max and p̂min ≤ p̂max spec-
ify the lower and upper bounds on the estimated state and parameter vectors, respec-
tively; x̄S and p̄S denote the estimated state and parameter values (arrival cost data)
at the start of estimation horizon, i.e., at tS. The weight matrices PS, V , and W are
interpreted as the inverse of the covariance matrices and are evaluated as:

PS = Q
− 1

2
0 =

[
Qx

0 0
0 Qp

0

]− 1
2

, V = R− 1
2 , W = Q− 1

2 =

[
Qx 0
0 Qp

]− 1
2

, (5)

where Q0 is the initial covariance matrix (incorporating state and parameter, both),
R is the measurement noise covariance matrix and Q is the process noise co-
variance matrix. With the above choice of weight matrices, it is assured that the
NMHE scheme results in a maximum-likelihood estimate for the very likely trajec-
tories [31].

The first term in (4a) is generally referred to as the arrival cost. It is incorporated
into the objective function in order to accommodate the effect of past measurements
(before the beginning of estimation horizon), in the current state and parameter es-
timates. This can be interpreted as analogous to terminal penalty term of NMPC
which summarizes the response of the system after the prediction horizon. EKF is
often utilized to update the arrival cost for practical implementation, as also done
in [20].
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Another parameter that affects the performance of NMHE is the choice of estima-
tion window length M, which in general is problem-specific. It basically represents
a trade-off between computational liability and estimation accuracy that simultane-
ously grow with M. In the case of small but fast robotic systems, like ground robots
and UAVs, we cannot indefinitely increase M as limited computation power is avail-
able on-board. Moreover, it is not necessarily true that the estimation accuracy al-
ways increases with M, as the plant-model mismatch degrades the significance of
model prediction which adversely affects the estimation performance [19]. That is,
the selection of a too high value of M for the system in which the unknown param-
eter (to be estimated) is radically changing, plant-model anomalies may arise that
eventually may result in deteriorated overall estimation quality.

3 Real-Time Applications

In this section, two real-time robotic applications will be presented to show how we
have addressed the two main problems encountered in NMPC application, which are
lack of modeling and online solution of the nonlinear optimization problem. The ap-
plications include the trajectory tracking problems of the ground and aerial robotic
systems with time-varying dynamic model parameters which are estimated using
NMHE. Owing to the similarities between the optimization problems of NMPC and
NMHE defined in (3) and (4), respectively, we solve them utilizing the direct mul-
tiple shooting method and real-time iteration approach, which is incorporated in
ACADO toolkit [2]. In ACADO toolkit, firstly the optimization problem, in terms
of system equations and constraints, is defined in a C++ environment and then, the
self-contained C codes are obtained using its code generation package [2]. Finally,
these generated C codes can be utilized to run on C/C++ or MATLAB/Simulink
based software platforms.

3.1 Ultra-Compact Field Robot

Firstly, we illustrate NMPC for the trajectory tracking problem of a 3D printed field
robot, operating in an off-road terrain. Since the soil conditions and terrain topog-
raphy may vary over the operation, modeling uncertainties would arise. In order
to tackle these operational uncertainties and hence, achieve optimum control per-
formance, NMHE is utilized to estimate two slip (or traction) parameters, namely,
(α,κ), in addition to performing the state estimation task.

3.1.1 System Description

The 3D printed field robot as shown in Figure 1 has been built utilizing practi-
cal, hands-on experience with various sensors and actuators. A real-time kinematic
(RTK) differential global navigation satellite system (GNSS), i.e., a Septentrio Altus
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Fig. 1: Ulta-compact 3D printed field robot.

APS-NR2 GNNS receiver (Septentrio Satellite Navigation NV, Belgium), is used to
obtain highly accurate positional information, which has a specified position accu-
racy of 0.03 m at a 5-Hz measurements rate. The Trimble network supplies real-time
kinematic correction signals via 4G internet. A gyroscope (PmodGYRO with an ST
L3G4200D, Digilent Inc., USA) is mounted on the body of the robot to measure the
yaw rate of the 3D printed field robot at a rate of 5-Hz with a resolution of 1◦. Four
powerful 12V brushed DC motors with 131 : 1 metal gearboxes (Pololu Corporation,
USA) are used as actuators, and four integrated quadrature encoders for brushed DC
motors (Pololu Corporation, USA) are used to measure the speed of the wheels of
the field robot with an accuracy of 0.05 m/s.

The real-time NMHE and NMPC are implemented and executed on an on-board
computer, i.e., Raspberry Pi 3, which is equipped with Quad Core 1.2 GHz Broad-
com BCM2837 64bit CPU and 1 GB of RAM. The inputs of NMHE are the position,
speed and yaw rate, while the outputs are full state and parameter vectors that are
fed to the NMPC. In addition to the full state and parameter information, NMPC re-
ceives the reference trajectory throughout the prediction horizon and then generates
a control signal, i.e., the desired yaw rate, and sends it to the low-level controller,
i.e., Kangaroo x2 motion controller (Dimension Engineering, USA). Apart from
the desired yaw rate, the low-level controller receives the measured speed informa-
tion from encoders and generates voltage values which are sent to the motor driver
(Sabertooth dual 12A motor driver, Dimension Engineering, USA) to control the
speeds of the DC motors. The low-level controller is executed at a rate of 50-Hz,
which is 10 times more than the high-level controller.

3.1.2 System Model

In this section, we represent the nonlinear system and measurement models of the
field robot according to (1) and (2), respectively. Instead of using the traditional
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kinematic model of a mobile robot, an adaptive nonlinear kinematic model, which
is an extension of the traditional model, is derived as the system model of the field
robot in this study. Two traction parameters (α,κ) are added to minimize deviations
between the real-time system and system model. These parameters, i.e., α and κ ,
represent the effective speed and steering of the field robot, respectively. It is noted
that they must be between zero and one, and it is inherently arduous to measure
them. The field robot’s model can be formulated with the following equations:

ẋ = αvcosψ, (6a)

ẏ = αvsinψ, (6b)

ψ̇ = κr, (6c)

where x and y denote the position of the field robot, ψ denotes the yaw angle, v
denotes the speed and r denotes the yaw rate. The state, parameter, input and mea-
surement vectors are, respectively, denoted as follows:

x =
[

x y ψ
]T

, (7)

p =
[

v α κ
]T

, (8)

u = r , (9)

z =
[

x y v r
]T

. (10)

3.1.3 Control Scheme

The control objective is to design NMPC in order to track a predefined trajectory.
The optimized solution as the desired set point is forwarded to the low-level con-
troller, which is a proportional-integral-derivative (PID) controller. The response of
this low-level PID controller is finally given to the motors of the field robot.

3.1.4 Implementation of NMHE

The inputs of NMHE are the position, speed and yaw rate of the field robot as
defined in (10). The outputs of NMHE, the position, yaw angle, speed and traction
parameters, are the full state and parameter vectors (7)-(8). The NMPC requires full
state and parameter as input to generate the desired yaw rate applied to the field
robot; therefore, the full estimated state and parameter values by NMHE are fed to
NMPC.

The NMHE formulation is solved at each sampling instant with the following
constraints on the traction parameters:

0 ≤α ≤ 1, (11a)

0 ≤κ ≤ 1. (11b)
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The standard deviations of the measurements are set to σx = σy = 0.03 m,
σv = 0.05 m/s, σr = 0.0175 rad/s, based on the experimental analysis. Therefore,
the following weighting matrices V , PS and W are used in NMHE design:

V = diag(σ2
x ,σ2

y ,σ2
v ,σ2

r )
−1/2,

= diag(0.032,0.032,0.52,0.01752)−1/2, (12a)

PS =W = diag(x2,y2,ψ2,v2,α2,κ2)−1/2,

= diag(10.02,10.02,0.12,1.02,0.252/2,0.252)−1/2. (12b)

3.1.5 Implementation of NMPC

The NMPC formulation is solved at every sampling instant with the following con-
straints on the input:

−0.1(rad/s)≤ r ≤ 0.1(rad/s). (13)

The state and input references for the field robot are changed online and defined as
follows:

xr = [xr,yr,ψr]
T and ur = rr, (14)

where xr and yr are the position references, rr is the yaw rate reference, and the yaw
angle reference is calculated from the position references as:

ψr = atan2(ẏr, ẋr)+λπ, (15)

where λ describes the desired direction of the field robot (λ = 0 for forward and λ =
1 for backward). If the yaw rate reference, calculated from the reference trajectory,
is used as the input reference, steady state error might occur in case of a mismatch
between the system model and the real system. Therefore, the measured yaw rate is
used as the input reference to penalize the input rate in the objective function.

The weighting matrices Wx, Wu and WNc are selected as follows:

Wx = diag(1,1,1), Wu = 10 and WNc = 10×Wx. (16)

The weighting matrix for the input Wu is set larger than the weighting matrix for
the states Wx, in order to ensure a well-damped closed-loop system behaviour. In
addition, the weighting matrix for the terminal penalty WNc is set 10 times larger than
the weighting matrix for the states Wx. This implies that the last deviations between
the predicted states and their references in the prediction horizon are minimized
in the objective function 10 times more than the previous points in the prediction
horizon. The reason for doing that is the error at the end of the prediction horizon
plays a critical role in terms of the stability of the control algorithm.

If the prediction horizon is large, the computation burden for NMPC increases
unreasonably, such that solving a non-convex optimization problem online will be
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infeasible. Moreover, if the prediction horizon is selected to be too small, NMPC
cannot stabilize the system. Therefore, the prediction horizon of the NMPC has to
be large enough in reference to the velocity of the vehicle, in order to obtain a stable
control performance. Since the field robot is a quite slow system, it is not required
to select a very large value for the prediction horizon. Thus, it is set to 3 seconds.

3.1.6 Results

Throughout the real-time experiments, a reference trajectory consisting of straight
and curved lines is tracked by the 3D printed robot, which is controlled employing
the NMPC-NMHE framework. Thus, the performance of the framework can be in-
vestigated for different path geometries. The system has a constant speed, and yaw
rate is the input to the system. The closest point on the reference trajectory to the
3D printed robot is calculated and then, the next 15 points are fed to the NMPC as
reference trajectory due to the fact that the length of the prediction horizon (Nc) is
set to 15.

The control performance of the 3D printed robot is shown in Figure 2. As can be
seen in Figure 2a, the robot is capable of staying on-track throughout the experiment
and tracking the target trajectory accurately. The variation of Euclidean error with
time is shown in Figure 2b and its mean value is approximately 0.0459 m, which is
within the tolerance for an agricultural application.
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Fig. 2: Trajectory tracking control performance.

The performance of NMHE in estimating the yaw angle and traction parame-
ters is shown in Figure 3. NMPC needs full state information to generate a control
signal. The position in x- and y-axes is measured; however, the yaw angle cannot
be measured in practice. Therefore, NMHE estimates the yaw angle, which plays a
very important role in the trajectory tracking performance. As seen in Figure 3a, the
yaw angle has been controlled very accurately. Moreover, the traction parameters
are immeasurable and the constraints on these parameters are defined in (11). It is
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Fig. 3: Estimation performance of NMHE.

important to estimate the traction parameters, because soil conditions can change
over the time. Therefore, the online estimation of the parameters is required to learn
soil conditions and thus, adapt NMPC to the changing working conditions. As can
be seen in Figure 3b, the estimated values are within the bounds. Moreover, it is
observed that the traction parameter estimates stabilize at certain values, so that a
stable trajectory tracking performance is ensured.

The measured and estimated speed of the 3D printed robot is shown in Figure 4a.
NMHE is capable of filtering noisy measurements. Additionally, the control signal,
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Fig. 4: Speed and yaw rate.

i.e., yaw rate reference, generated by the NMPC is shown in Figure 4b. It is observed
that the NMPC is capable of dealing with the input constraints and the low-level
controller shows a good control performance.

It is necessary to check the optimality of the NMPC-NMHE framework, because
a single quadratic programming iteration at each sampling time instant may result
in a suboptimal solution. Therefore, the Karush-Kuhn-Tucker (KKT) tolerances for
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NMHE and NMPC are shown in Figure 5a. The KKT tolerances are very small, but
they are not equal to zero. The reason is that a quadratic program is solved precisely
only for the linear systems, such that the KKT tolerance becomes zero. Moreover,
the low and non-drifting KKT tolerances emphasize that the optimization problems
in the NMHE and NMPC are well defined and properly scaled. The execution times
for the NMHE and NMPC are shown in Figure 5b. Their mean values are 0.2101 ms
and 0.3813 ms, respectively, which implies that the overall computation time for the
NMPC-NMHE framework is around 0.5914 ms.
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Fig. 5: KKT tolerances and execution times of NMHE and NMPC.

3.2 Tilt-Rotor Tricopter UAV

In this application, we tackle a real-life package delivery problem, where a UAV
takes off with the full payload, tracks a predefined trajectory in 3D, drops each
package to the time-based designated location, and finally, returns to its starting
location with no payload. In this application, the UAV mass is 1.608 kg without any
payload. The dropping mechanism is designed to drop four payloads in the sequence
55 g, 75 g, 77 g, and 86 g, respectively, which makes the total takeoff mass to be
1.901 kg. Considering the total payload of 293 g, it is almost 18% of the total mass
of the UAV. This means a massive change in the model parameters which has to be
handled during the control of the system. In this application, we learn the variations
in the mass online and feed the estimated mass value to the model which is used by
the NMPC.
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3.2.1 System Description

The aerial robot used in this application is a 3D printed tilt-rotor tricopter, as shown
in Figure 6a. It is a custom-made system, which is developed based on the other
Talon tricopter frames available in the market. The frame is customized, such that
it provides flexibility to accommodate all the electronics as needed. The Pixhawk
flight controller is used as the low-level stabilization controller. In addition, the tri-
copter also houses the on-board computer, i.e., Raspberry Pi 3, which serves two
vital functions. One is wireless communication with the ground-station computer,
and the other is controlling the servomotor for the payload drop mechanism.

(a) Actual setup

1

2

3

1

2

3

Ω1

Ω2

Ω3

(b) Coordinate frame and sign conventions

Fig. 6: 3D printed tilt-rotor tricopter UAV.

The mechanism used to hold and drop the payload throughout the flight has two
plates, which are supported at the base of the UAV. Amongst them, one houses the
servomotor, while the other holds the payload blocks to be dropped. A circular gear
mounted on the servomotor drives a linear gear, shown in Figure 7a, that results in
a linear motion. This linear motion pulls the rod attached to the linear gear and thus,

Fig. 7: Payload drop mechanism.
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drops the blocks one-by-one in the process. The dropping mechanism is shown in
Figure 7b with an inverted view.

3.2.2 System Model

The tilt-rotor tricopter is considered as a rigid-body having two stationary rotors
and one non-stationary (or tilting) rotor, as shown in Figure 6b. In our configuration,
the two stationary rotors – RR (right rotor) rotating clockwise and LR (left rotor)
rotating counter-clockwise – are placed in the front of the body (CG - centre of
gravity), while the tilting rotor – BR (back rotor) rotating counter-clockwise – is
mounted at the rear part of the body.

3.2.3 Kinematic Equations

The translational and rotational motion, describing position and orientation of the
UAV, are obtained using the transformation from body-fixed frame (FB) to Earth-
fixed frame (FE ). They are written as:

⎡
⎣ẋ

ẏ
ż

⎤
⎦= REB

⎡
⎣u

v
w

⎤
⎦ ,

⎡
⎣φ̇θ̇
ψ̇

⎤
⎦= TEB

⎡
⎣p

q
r

⎤
⎦ (17)

where x, y, z and φ , θ , ψ are the translational position and rotational attitude, re-
spectively, which are defined in FE ; u, v, w and p, q, r are the translational and
rotational velocities that are defined in FB; REB is the translation transformation ma-
trix between frames FE and FB, while TEB maps the rotational velocity component
from FB to FE . The matrices REB and TEB are given as (c : cos, s : sin, t : tan):

REB =

⎡
⎣ cθcψ sφsθcψ− sψcφ cφsθcψ+ sφsψ

cθsψ sφsθsψ+ cψcφ cφsθsψ− sφcψ
−sθ sφcθ cφcθ

⎤
⎦ , (18a)

TEB =

⎡
⎣ 1 sφ tθ cφ tθ

0 cφ −sφ
0 sφ

cθ
cφ
cθ

⎤
⎦ . (18b)

3.2.4 Rigid-Body Equations

The rigid-body dynamic equations of the tilt-rotor tricopter are derived based on
the Newton-Euler formulation in the body coordinate system, similar to [3]. Within
these equations, the tricopter is assumed to be a point mass, wherein all the forces
and moments act at the CG. The corresponding force and moment equations can be
written as:
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Force Equations

u̇ = rv−qw+gsin(θ)+
1
m

Fx, (19a)

v̇ = pw− ru−gsin(φ)cos(θ)+
1
m

Fy, (19b)

ẇ = qu− pv−gcos(φ)cos(θ)+
1
m

Fz, (19c)

Moment Equations

ṗ =
( 1

IxxIzz − I2
xz

)[
{−pq(Ixz)+qr(Iyy − Izz)}Izz−

{qr(Ixz)+ pq(Ixx − Iyy)}Ixz + τx(Izz)− τz(Ixz)
]
, (20a)

q̇ = pr
( Izz − Ixx

Iyy

)
− (r2 − p2)

( Ixz

Iyy

)
+ τy

( 1
Iyy

)
, (20b)

ṙ =
( 1

IxxIzz − I2
xz

)[
{qr(Ixz)+ pq(Ixx − Iyy)}Ixx−

{−pq(Ixz)+qr(Iyy − Izz)}Ixx + τz(Ixx)− τx(Ixz)
]
, (20c)

where Fx, Fy, Fz, are the total external forces and τx, τy, τz, are the total external
moments acting on the tricopter body in frame FB. In addition, Ixx, Iyy, Izz and Ixz

represent the moments of inertia of the whole tricopter along axes FBx , FBy , FBz and
FBxz , respectively. One may note that unlike a quadrotor UAV, the tilt-rotor tricopter
only has a single plane of symmetry, i.e., along FBxz plane. Therefore, the effect of
asymmetric moment Ixz is explicitly considered in (20), in contrast to what is done
in [3].

3.2.5 External Forces and Moments

The external forces and moments generated by the rotors rotating at a certain angular
velocity Ω are modelled as:

Fi = KFΩ 2
i and τi = KτΩ 2

i , (21)

where Fi and τi are the external force and drag-moment generated, respectively. Also,
KF and Kτ are positive intrinsic parameters of the rotor and are commonly known
as the force and drag-moment coefficients, respectively. According to the tilt-rotor
tricopter configuration shown in Figure 6b, the expression for total external force
acting on the tricopter body in FB frame is written as:

Fext =

⎡
⎣Fx

Fy

Fz

⎤
⎦=

⎡
⎣ 0

−F3 sin(μ)
F1 +F2 +F3 cos(μ)

⎤
⎦ , (22)
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where μ is the tilting angle of the back rotor. On the other hand, the total external
moment acting on the tricopter platform is the summation of moment due to pro-
peller’s rotation τprop, and the moment due to change in orientation of propeller’s
rotation plane τgyro. The latter is commonly known as gyroscopic moment and can
be written as:

τgyro =
3

∑
n=1

JP(xrate × rn)Ωn, (23)

where JP is propeller’s moment of inertia and rn is the unit reaction vector along
the rotational axis of nth rotor and xrate is the angular velocity vector. Finally, the
expression for total external moment is:

τext = τprop + τgyro, (24)

where

τprop =

⎡
⎣ (F2 −F1)l2
(F3cos(μ))l1 − (F1 +F2)l3 + τ3sin(μ)
τ1 − τ2 − τ3cos(μ)+(F3sin(μ))l1

⎤
⎦ , (25)

τgyro =

⎡
⎣ JP {q(Ω1 −Ω2)−Ω3(cos(μ)q+ sin(μ)r)}

JP {p(Ω2 −Ω1)+ cos(μ)Ω3}
JP {−psin(μ)Ω3}

⎤
⎦ . (26)

Furthermore, the constant intrinsic parameters for the considered tilt-rotor tri-
copter UAV are listed in Table 1. These parameters are either obtained by experi-
ments or by any of the system identification method. In this application, we physi-
cally measured the mass (m) of the UAV (without the payload mass) and the moment
arm lengths (l1, l2, l3). However, for the evaluation of the moment of inertias (I(··))
and thrust (Kf ) as well as drag-moment (Kτ ) coefficients, simple experiments are
performed; details of which can be referred from [8, 12].

Table 1: Tilt-rotor tricopter intrinsic parameters

Parameter Description Value

m Mass of tricopter UAV 1.608 kg
l1 Moment arm 0.284 m
l2 Moment arm 0.212 m
l3 Moment arm 0.092 m
Ixx Moment of Inertia about FBx 0.016053 kg-m2

Iyy Moment of Inertia about FBy 0.028158 kg-m2

Izz Moment of Inertia about FBz 0.032752 kg-m2

Ixz Moment of Inertia about FBxz 0.029763 kg-m2

Kf Aerodynamic force coefficient 3.76 × 10−5 N-s2

Kτ Aerodynamic drag-moment coefficient 2.56 × 10−6 Nm-s2
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3.2.6 Control Scheme

In contrast to what is done in [27], NMPC in this implementation is designed to
be responsible for tracking a given position trajectory. Based upon the current feed-
back of the other states, optimized solutions for the control inputs in terms of the
total thrust and attitude angles are computed. These optimized solutions are then
passed to the low-level controller as their desired setpoints. Moreover, the low-level
attitude controller is selected as a PID controller (implemented in Pixhawk), which
is designed individually for each axis.

3.2.7 Implementation of NMPC

The state, parameter, control and measurement vectors for the high-level NMPC are
considered to be composed of:

xNMPC = [x,y,z,u,v,w]T , (27)

pNMPC = m, (28)

uNMPC = [Fz,φ ,θ ,ψ]T , (29)

zNMPC = [x,y,z,u,v,w]T . (30)

Additionally, the final nonlinear programming (NLP) formulation for high-level
NMPC also requires the parametrization of the nonlinear model (in translation) with
respect to the three rotational rates namely, p, q and r. Therefore, to obtain the so-
lution of the formulated NLP, the three rotational rates are fed to the NMPC along
with the other states at each sampling instant. Furthermore, the following state and
control nominal values are selected for the parametrization of the state and control
trajectories:

xref = xref
Nc

= [xr,yr,zr,0,0,0]
T , and uref = [mg,−0.0414,0,0]T , (31)

where m and g are the UAV mass and gravitational constant, respectively.
Some constraints are introduced in the definition of NMPC due to the restrictions

put up by the real setup. Typically, these are the input constraints that are imposed
in order to achieve a stable behaviour from the low-level controller:

0.5mg (N) ≤Fz ≤ 1.5mg (N), (32a)

−15 (◦)≤φ ≤ 15 (◦), (32b)

−15 (◦)≤θ ≤ 15 (◦). (32c)

Also, the following weight matrices are selected by trial-and-error:

Wx = diag(25,26,32,1.0,1.0,1.1), (33a)

Wu = diag(0.024,22,25,80), (33b)

WNc = diag(40,40,40,1,1,1). (33c)
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Furthermore, the prediction window Nc = 30 is selected to facilitate the real-time ap-
plicability of the control framework. One may note that for defining the constraints
and obtaining NMPC weights, the UAV mass is selected to be the maximum takeoff
mass, i.e., m = 1.901 kg.

3.2.8 Implementation of NMHE

In this application, the main task of NMHE is to estimate the UAV mass (m) online,
which is made time-varying by a sequential drops of payload. The overall state,
parameter, control and measurement vectors for NMHE design are considered to be
composed of:

xNMHE = [u,v,w]T , (34)

pNMHE = m, (35)

uNMHE = [Fz,φ ,θ ]T , (36)

zNMHE = [u,v,w,Fz,φ ,θ ]T . (37)

One may note that the state vector for NMHE in (34) is different than the state
vector for NMPC in (27). This is because m only appears in the force equations
of (19). Moreover, the three rotational rates are included in the measurements along
with states and inputs in order to solve the underlying NLP, as also done in NMPC.

For the selected tricopter model, the weight matrices PS, V and W are chosen
to be:

PS = diag(5.47722,5.47722,5.47722,8.94432)−1/2, (38a)

V = diag(0.04472,0.04472,0.04472,0.22362,0.12,0.12)−1/2, (38b)

W = diag(0.012,0.03162,0.03162,0.03162)−1/2. (38c)

The above values of the weight matrices are decided based upon experience, incor-
porating the definitions in (5). Additionally, in order to achieve a constrained esti-
mation of the UAV mass, the initial knowledge about the maximum takeoff mass
and the minimum assembly mass is exploited and hence, the following constraints
are imposed:

1.5 (kg) ≤ m ≤ 2.0 (kg). (39)

Furthermore, the estimation window length M is selected to be equal to 70, which
is more than the prediction horizon length of 30 for NMPC. This is purposely kept
in order to realize a slower learning from NMHE.
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3.2.9 Results

In this section, we present the results of the implementation of NMPC for the high-
level position tracking of a tilt-rotor tricopter UAV. In addition to tracking, we also
analyse its robustness for the time-varying dynamics of the system by conducting
experiments for two scenarios: NMPC without learning, and NMPC with learning
(also referred to as NMPC-NMHE framework).

The real-time implementation of the entire process is summarized in Figure 8.
The NMPC and NMHE, which are running at 50-Hz and 30-Hz, respectively, are de-
signed using ‘s-functions’ in Simulink, which are generated via the ACADO toolkit.
The OptiTrack motion capture system, consisting of eight cameras running at 240
frames/sec, is used to get the feedback during experiments. The controller com-
mands along with the feedback (position and orientation) are sent to the UAV via
Raspberry Pi over a wireless network. The low-level controller is running on the
Pixhawk module, which takes the NMPC commands from Raspberry Pi 3 and fur-
ther computes the actuator commands that are finally given to the tricopter motors.
The communication between the UAV and ground-station is achieved through ROS
running on a hardware consisting of Intel R© CoreTMi7-4710MQ CPU@2.50GHz
processor with 15.6 GB of memory on a 64-bit Ubuntu Linux system.

The initial state of the UAV is x(0) = [0,0,1.5,0,0,0]T . In addition to the dis-
cretization of the nonlinear tricopter model utilizing multiple shooting method (im-
plemented in ACADO toolkit), a fixed integration process consisting of 2Nc steps
is also performed based on Runge-Kutta 4th order method. Moreover, a time-based
circular reference trajectory ([xr,yr,1.5]) of radius 1 m is selected for these exper-
iments. In both the scenarios, first a complete circle is performed with full takeoff
mass of the UAV and then, the payload in terms of four blocks are sequentially
dropped (55g → 75g → 77g → 86g) at fixed time-intervals during the trajectory.

Remark I: In the two scenarios – NMPC without learning and NMPC with learn-
ing – analysed here, NMHE in the latter case is only utilized to perform the param-
eter estimation, i.e., only the estimation of mass (m) is fed to NMPC, not the state
values. This is done in order to achieve a consistent comparison between the two
cases.

3.2.10 Circular Reference Tracking

The overall position tracking performance of the UAV for both scenarios can be seen
in Figure 9a and b, where the vertical magenta lines represent the instants of payload
drop. In Figure 9b, one may notice a negative offset along z since the beginning for
the case of NMPC without leaning. The reason for this is the slight mismatch that
exists between the model and the system. Nevertheless, the offset is around 5 cm,
which is reasonable compared to the size of the UAV. Moreover, it is illustrated
from Figure 9a and b that the position tracking of the NMPC-NMHE framework is
better than the NMPC without learning case. The controller’s performance is stable
and especially, the tracking along z is more accurate. This is because NMHE is able
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Fig. 8: Schematic diagram for real-time implementation.

to learn the change in UAV mass and thus, the offset created due to mass change
diminishes with time. Also, the Euclidean errors for position tracking in the two
cases are shown in Figure 9c, where their mean value over the entire run time for
NMPC without and with learning are 0.2064 m and 0.1618 m, respectively.

The performance of NMPC can be appreciated by observing its Fz command
throughout the trajectory for both without and with learning cases, as shown in Fig-
ure 10a, where the vertical magenta lines again represent the instants of payload
drop. It is implied that for both the scenarios, the Fz command of NMPC never
crosses the bounds specified in (32a), but gets adjusted at every instant of a payload
drop. Additionally, the attitude angles commanded by NMPC for without and with
learning are given in Figure 10b and c, respectively. It can be seen that φ and θ
angles of the UAV are well within the specified bounds defined in (32b) and (32c),
respectively, while ψ response has some irregularities following the heading com-
mand of NMPC. This behaviour is due to the PID tuning of the Pixhawk’s low-level
controller, but the system is stable enough to maintain the heading.

The performance of NMHE in estimating the mass is shown in Figure 10d, along
with its true value, wherein the estimation is observed to stay within the specified
bounds defined in (39). As NMPC is a model-based controller, a good estimate of
the time-varying model parameters is crucial for its optimum performance. More-
over, in package delivery applications of the UAV that we are considering, the total
mass changes with time. Therefore, it is important to estimate it, so that NMPC can
adapt itself to the changing working conditions. It is worth noting that although m
is a physical parameter in the system model, when it is estimated by NMHE, it also
accommodates the effects of modeling uncertainties that are injected during opera-
tion. Overall, it can be interpreted as an adaptive parameter that facilitates NMPC
to achieve an offset free tracking along z.
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Fig. 9: Trajectory tracking performance.

In order to check the optimality of NMPC and NMPC-NMHE framework, their
KKT tolerances are obtained and plotted in Figure 11a and b, respectively. As men-
tioned in the previous application, it is necessary to check the optimality of the
solution because a single quadratic programming iteration at each sampling time
instant (performed in ACADO) may result in a suboptimal solution. As visualized
in Figure 11a and b, the KKT tolerances for NMPC and NMHE are small, but not
zero. This is happening due to the nonlinearities in the system dynamics. It is to
be noted that the tilt-rotor tricopter UAV is far more nonlinear and inherently unsta-
ble in comparison to other multirotor UAVs including quadrotors and hexacopters.
This is mainly due to the odd number of rotors, which results in an unbalanced yaw
moment. In addition, one may point out the difference in KKT values for NMPC
and NMHE, and the reason lies in the selection of their prediction and estimation
horizons, respectively. Nonetheless, their low and non-drifting magnitudes still rep-
resent the well-defined and properly scaled optimization problems of both NMPC
without learning and the NMPC-NMHE framework.

Finally, the execution times for each entity in NMPC without learning and
NMPC-NMHE framework are displayed in Figure 12a and b, respectively. In ad-
dition, the combined mean execution times for both without and with learning cases
are 0.7763 ms and 3.7 ms, respectively. These values are less compared to the se-
lected sampling time of 20 ms (position controller) and hence, support the imple-
mentation of both on a cheaper embedded hardware including Raspberry Pi 3.
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Remark II: The tuning of NMPC weights is a problem that is generally encoun-
tered while performing the experiments. Any minor change in the system including
discharging of the battery leads to a change in the controller weights mainly along
Fz. Moreover, the best way to tune the combined NMPC-NMHE framework is to
first tune the NMPC separately, and then utilize those weights as a reference for the
combined framework.
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Fig. 12: Execution time.

Remark III: Selecting an appropriate estimation horizon for NMHE is problem
specific as it directly affects the rate of learning. That is, for a shorter horizon, the
mass learning is fast which eventually makes NMPC to be aggressive towards the
change. On the other hand, for longer horizon, the NMHE gradually learns the mass
parameter and hence, a smooth response is obtained from NMPC.

4 Conclusion

We have incorporated NMPC-NMHE framework for the system with uncertainties
including slip variations in the off-road ground robotic vehicle due to the change
in soil conditions and mass variations for the considered package delivery problem
of the aerial robot. Thanks to its learning capability, the accuracy of the NMPC is
enhanced by the estimation of parameters by NMHE in both the applications. The
outcome of the first application, in which we have estimated the soil condition vari-
ations, is that the Euclidean error for the NMPC is about 0.0459 m, which is satis-
factory for any agricultural application. In the presented second application, where
we have estimated the mass of the UAV for a package delivery task, the learning-
based NMPC gives better tracking performance than that of the NMPC without
learning. The average Euclidean error for the learning-based NMPC (0.1618 m) is
less than that of NMPC without learning (0.2064 m). Since the true values of the
mass are known throughout the trajectory, we have also presented the estimation
results versus their true values. Overall, the obtained results from both the applica-
tions imply that the online leaning-based NMPC substantially improves the tracking
performance for the presented robotic applications.

Acknowledgements This research is supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its Medium-Sized Centre funding scheme. The information, data,
or work presented herein was funded in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000598.



604 M. Mehndiratta et al.

References
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Applications of MPC to Building HVAC
Systems

Nishith R. Patel and James B. Rawlings

1 Introduction to Building HVAC Systems

Heating, ventilation, and air conditioning (HVAC) systems are an integral part of
most buildings. They are responsible for temperature regulation by heating or cool-
ing as needed to keep occupants in the building comfortable, as shown in Figure 1.
Heating and cooling against temperature gradients requires a large amount of en-
ergy: cooling consumes electricity and heating consumes fuel. In fact, commercial
buildings are responsible for 20% of the total U.S. energy consumption, and total
expenditures exceed $200 billion every year [7]. Even small percentage savings in
this industry can have a significant impact due to the magnitude of these numbers.

A key motivation for improving control of HVAC systems stems from the pric-
ing structures utilized by power companies. These pricing structures are motivated
by the nature of loads. Figure 2 shows a typical week-long profile for the ambient
temperature of the southern U.S. in the summer. The temperature is highest in early
afternoon and lowest overnight into the early morning hours, which also roughly
represents the cooling load placed on the HVAC system. This load on the HVAC
system results in a similar power load placed on power companies. Since a constant
load profile allows power plants to operate more efficiently, power companies en-
force pricing structures to incentivize customers to purchase less electricity during
busier hours and more during other hours so they have a flatter load profile.

Power companies charge customers according to time-varying electricity prices
as well as a peak demand charge on the peak power usage over a given month. An
example of one time-varying electricity price profile is given in Figure 3. The key
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Fig. 1: Heat transfer during the summer. The HVAC system uses electricity to cool
the building by rejecting all loads due to radiation, convection, occupancy, and in-
ternal heat generation back to the ambient.

0 1 2 3 4 5 6 7
Time (days)

22

24

26

28

30

32

34

A
m
bi
en

t
T
em

p
er
at
ur

e
(
C
)

Fig. 2: Representative ambient temperature data over a 7-day period in the summer
[26]. In this plot, zero corresponds to midnight.

feature to note is that typically the cost is higher during afternoon hours (referred to
as peak hours) and lower overnight (off-peak hours). As a result, HVAC customers
pay more for using electricity during the peak hours than off-peak hours. If they are
able to do more cooling at night and less cooling during the day, operating costs
will significantly decrease. Thermal energy storage (TES) is required to store this
“cooling” energy from overproduction. Two forms of TES include passive TES (e.g.,
mass of the buildings) and active TES (e.g., chilled water and ice tanks). The shifting
of the power load from peak to off-peak hours using TES can provide significant cost
savings.
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Fig. 3: Representative electricity pricing data over a 7-day period in the summer.
In this plot, zero corresponds to midnight. Data provided by Johnson Controls,
Inc. [26].

The prospect of achieving such cost savings has made commercial HVAC sys-
tems an attractive area for academic research, particularly in the area of control.
Most buildings currently use on/off, logic-based, and PID controllers [1]. These ex-
isting control systems are not well-suited for load shifting and, thus, cannot provide
significant cost savings. In this paper, we explore model predictive control as a con-
trol architecture to achieve load shifting and realize these benefits. In Section 2, the
HVAC control problem is defined. In Section 3, several challenges and opportunities
are discussed. In Section 4, a hierarchical decomposition control architecture is pre-
sented. In Section 5, the decomposition is performed and solved for an illustrative
example system. In Section 6, a real-world implementation of some of these ideas
at Stanford University is outlined. In Section 7, a few potential next steps for this
technology in the HVAC industry are listed.

2 Problem Statement

The main parts of a large-scale commercial HVAC system are depicted in Figure 4.
The commercial HVAC system is typically divided into two subsystems: airside and
waterside. As shown in Figure 4, the airside subsystem consists of the buildings and
air handling units (AHUs) that are responsible for temperature regulation. Typically,
independent regulatory controllers exist in each of the zones to track a given temper-
ature setpoint. The waterside subsystem consists of all equipment, such as chillers,
heat recovery chillers, boilers, and cooling towers as well as storage tanks, that is
used to meet the load from the airside subsystem.
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Fig. 4: Diagram of a typical large-scale commercial application with the airside
system (buildings) on the left and waterside system (central plant) on the right [20].

The supervisory control system must make the following decisions:

• What are the zone temperature setpoints?
• What is the total load generated by the airside system?
• What is the equipment operation schedule required to meet that total load?
• When is storage charging or discharging and at what rate?

When making these decisions, the goal is to minimize the energy costs while
respecting comfort bounds to keep occupants satisfied and capacity constraints on
equipment. For simplicity, only cooling in the summer is discussed in this paper due
to the pricing structures associated with electricity markets, but heating in the winter
can be treated in a similar manner.

2.1 MPC

Model predictive control (MPC) is well-suited for this application due to its abil-
ity to treat large-scale multivariable interactive processes, to make predictions, to
respect constraints, and to optimize performance. An optimization problem can be
solved at each timestep to determine the schedule for waterside equipment operation
and the setpoints that are sent to the airside regulatory controllers through the build-
ing automation system (BAS), as shown in Figure 5. Models of the buildings can be
used to determine what the loads are, models of the waterside system can be used
to determine the corresponding power consumption, and models of the regulatory
controllers can be used to incorporate the relevant setpoint dynamics.
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Fig. 5: Supervisory control system (MPC) sends setpoints to the waterside system
and the airside building automation system (BAS) which consist of regulatory PID
controllers.

Since the objective is to minimize energy costs in the buildings application, an
economic cost function is used in the MPC optimization, hence it is an economic
MPC framework. Many academic researchers have proposed using economic MPC
for control of HVAC systems. See [11, 14, 16, 19, 31, 32] as a few examples. These
and many other works show the significant savings that are made possible by load
shifting, which occurs naturally as a result of the MPC optimization. Although these
works have shown that significant benefits that can be realized with MPC, wide-
scale implementation of MPC-based systems has not yet taken place.

3 Challenges and Opportunities

There are many challenges and opportunities when applying MPC to HVAC sys-
tems. In this section, we outline a few of them, including modeling, forecasting
loads, making discrete decisions, scaling formulation to handle large system, and
addressing demand charges. Many of these topics remain active areas of academic
research. There are many other areas (e.g., MPC performance monitoring) that are
equally important, but not covered here due to space limitations.

3.1 Modeling

Since MPC relies on making predictions, a dynamic model of the system is nec-
essary to relate control actions to measured outputs. For HVAC systems, the MPC
decisions are usually zone temperature setpoints and equipment operation, while
the measured outputs are zone temperatures and energy consumption. Hence, the
relevant models include power consumptions curves for the various waterside equip-
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ment, temperature dynamics for each zone, and control laws for the regulatory tem-
perature controllers receiving the setpoints.

Modeling buildings can be challenging due to their highly nonlinear nature and
presence of large disturbances [12, 30]. Equipment curves for waterside are rarely
linear. In energy balances, heat transfer coefficients are functions of temperature;
bilinear terms arise from the product of temperatures and flow rates [15]. Regulatory
control laws in buildings are often logic- or rule-based. Additionally, PID controllers
may include features such as adaptive tuning, saturation, and anti-windup, which
further increase the nonlinearities. All of these nonlinearities may be difficult to
capture accurately, and if modeled too accurately, the resulting model may not be
suitable for real-time optimization. The resulting nonlinear optimization problem
may have multiple local solutions. Hence, a tradeoff exists between accuracy and
simplicity for optimization.

Since a large engineering effort may be required to model each building from
first principles, models can be instead identified from operating data. However, slow
time-varying disturbances and poor sensors (single thermostat measurements may
not represent the entire “zone” mass well) can complicate system identification. To
reduce data requirements, structure can be added to the identification procedure and
grey-box models can be used in place of black-box models [20].

Since modeling buildings can be difficult, the MPC architecture relies on feed-
back to correct for these inevitable model errors. Dynamic linear models of lower
order can be used for optimization as long as the mismatch is addressed appropri-
ately.

3.2 Load Forecasting

In order to make predictions with the model, forecasts of future loads are neces-
sary. Weather data can be used to estimate radiation and convection loads. Histori-
cal data can be used to estimate typical loads due to occupancy. Regression-based
techniques, including artificial neural networks, may be used for this purpose [22].
Alternatively, stochastic techniques can be used to generate the full distribution of
load profiles to characterize uncertainty [15]. Typically, the farther the forecast is
into the future, the greater the uncertainty is in the prediction.

As in the case before, prediction errors can be corrected through feedback. How-
ever, performance loss may occur if there are significant differences between pre-
dictions and actual loads since suboptimal use of TES may take place. One key
challenge in this area is how to use current measurements of loads to update the en-
tire future forecast for MPC. While several viable choices may exist, it is not clear
which results in the best control performance (i.e., minimal cost).
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3.3 Discrete Decisions

Since the supervisory control system must decide when to turn equipment on and
off in order to dispatch the equipment operation schedule, discrete decisions must
be made during the optimization. Traditionally, these discrete decisions have been
made using heuristics or manually by human operators, leaving considerable sav-
ings behind. Additionally, some heuristic-based control strategies may actually lead
to increased operating costs when an active TES tank is included [3]. However, with
advances in hardware and algorithms for mixed-integer optimization, modern com-
puters are able to solve such problems in reasonable times. Since the use of mixed-
integer optimization for online control is in its infancy, there may be challenges
associated with implementation. However, there are also opportunities for using
state-of-the-art tools since MPC is new in the HVAC industry; there are fewer re-
strictions on what systems can be implemented compared to other industries where
MPC has been widely used for several decades and preexisting MPC systems would
have to be displaced.

Such applications have also motivated efforts to understand the theory of MPC
with discrete actuators. Conventional MPC theory treats continuous decision vari-
ables. However, if appropriate assumptions are made about the constraint sets, the
stability theory naturally extends to handle the discrete actuator case without ad-
ditional restrictions [24]. This emerging field opens up a wide array of other rich
applications of MPC using discrete actuators. Lessons from these applications can
be applied to HVAC systems.

3.4 Large-Scale Applications

In many MPC applications, a single optimization problem is typically formulated
and solved. However, a key obstacle in implementing a single monolithic MPC for-
mulation for HVAC is that many large-scale applications (e.g., university campuses)
can have hundreds of buildings and thousands of zones. Solving a single optimiza-
tion with both continuous and discrete decisions for such applications is not practical
in real-time, and such control systems are more difficult to maintain. Decomposing
the centralized problem into smaller subproblems alleviates these issues.

Distributed MPC solves smaller optimization problems, as discussed in [23,
Chapter 6] and [5, 25]. Iterative methods have been proposed for the buildings prob-
lem [4, 10, 13, 28]. Due to the limitations placed on information exchanges by exist-
ing communication protocols in HVAC systems [18], the drawback is that they may
involve many exchanges and iterations before converging to the solution. Address-
ing the full complexity of HVAC applications including both airside and waterside
systems for these large systems using a decomposition is still an open research ques-
tion. Several viable decompositions have been proposed, but a consensus on which
may become the gold standard has not been reached.
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3.5 Demand Charges

In addition to the time-varying electricity prices shown in Figure 3, power compa-
nies also levy a peak demand charge based on the peak power usage over a fixed time
period (e.g., a month) [6, 14]. This peak demand charge couples all of the buildings
across the campus. Since it comprises a significant portion of the total energy cost,
it cannot be neglected. Completely decentralized MPC for each building is insuffi-
cient since all buildings may precool simultaneously incurring a large peak. Hence,
a system-wide optimization must take place to manage when the various regions
consume power. This feature motivates the need for a coordination layer to manage
the total load. However, there is no consensus of handling the demand charge in a
truly distributed setting without iteration.

4 Decomposition

To solve the MPC optimization problem with discrete variables online for large-
scale applications, a decomposition of the centralized problem is necessary. There
are several viable ways to decompose the problem. In this section, a hierarchical
control system is presented and some of its advantages are discussed.

The hierarchical decomposition is shown in Figure 6. The MPC problem is di-
vided into two layers: high-level and low-level layers. The low-level is further bro-
ken up into airside and waterside subsystems and these low-level problems can be
solved in parallel to reduce computation time.

4.1 High-Level

In this decomposition, the high-level problem serves as a coordinator to manage
energy usage across the entire campus. It performs an economic optimization, con-
sidering both time-varying electricity prices and demand charges, to compute the
loads for each subsystem. The inclusion of demand charges in the high-level prob-
lem serves to manage the total peak usage across the entire campus. For computa-
tional reasons, the full detailed models of the airside and waterside subsystems are
not used by the high-level problem. Instead, lower order aggregate models are uti-
lized. The high-level models the aggregate performance of the central plant as well
as any active TES tanks for the waterside model and uses average subsystem (e.g.,
building) temperature models for the airside. The decision variable for the high-level
problem is the load profile for each airside subsystem as well as the central plant pro-
duction and storage schedule. These computed profiles are then passed down to the
low-level airside and waterside problems.
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Fig. 6: Hierarchical Decomposition. At each timestep, the high-level optimization
is solved first, followed by the low-level airside and waterside problems (solved in
parallel). Feedback occurs on both at fast time-scale with disturbance estimates and
on a slow time-scale with model adjustments.

4.2 Low-Level Airside

To reduce computational complexity, the entire airside system is divided into various
subsystems. One way to decompose into subsystem is by building, so that the subsys-
tems are noninteracting as zones in different buildings do not interact. This choice
eliminates the need for iterations between the distributed controllers. Each low-level
airside subsystem is allocated a certain load from the solution of the high-level prob-
lem. The objective is to minimize energy usage while not exceeding the allocation
from the high-level problem. Each subsystem computes the temperature setpoints
for all zones in that particular subsystem while satisfying comfort constraints. For
details about the mathematical formulation of the high-level and low-level airside
subproblems, see [21].

4.3 Low-Level Waterside

The total campus load computed from the high-level optimization is sent to the low-
level waterside problem. The waterside problem computes the equipment on/off
schedule as well as their loads to minimize cost while meeting the load from high-
level layer. Detailed equipment models are used as well as storage models, hence the
production schedule from the high-level problem can be refined. Discrete decisions
are handled via mixed-integer optimization. The computed solution is dispatched
to the central plant. For more details about the mathematical formulation of the
waterside subproblem, see [27].
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4.4 Feedback

Measurements are fed back to the low-level MPC controllers from the regulatory
layer. These measurements can be used to estimate unmeasured disturbances and
update any disturbance forecasts for the next time step. Additionally, as the central
plant operation changes, the aggregate models in the high-level problem can be
updated on a slower time scale to account for these changes. To demonstrate this
architecture, an illustrative example is presented in the next section for a modest-
sized campus. However, the architecture is scalable and can be easily extended to
handle large campuses with hundreds of buildings and zones.

5 Example

In this example, we consider a campus that has four buildings each with five zones
and a large central cooling plant. Dynamic linear models are used to represent the
heat transfer and regulatory temperature controller in each of the 20 zones. The com-
fort zone for each zone is between 20.5 ◦C and 22.5 ◦C. The ambient temperature
and electricity pricing data used are shown in Figures 2 and 3. The horizon for the
MPC problems can range from 24 h to 1 week and timesteps can range from 15 min
to 1 h.

The central cooling plant contains eight conventional chillers, six pumps, ten
cooling towers, and a small active TES tank. The minimum and maximum capaci-
ties of each chiller are 2.5 MW and 12.5 MW, respectively. The maximum cooling
capacity of the storage tank is 100 MWh. Piecewise-linear power consumption mod-
els are used for the chillers. The chilled water supply temperature is held at 5.5 ◦C.

With the system now defined, the hierarchical decomposition from the previous
section can be executed. The results of the high-level optimization are shown in Fig-
ure 7. The top plot shows the production schedule generated using the aggregate
models of the airside and waterside systems. For brevity, only the total loads are
shown in the plot, but each building’s load is computed in the optimization. During
periods of low prices, storage is charged and during periods of high prices, direct
production from chillers is reduced. Note that the overall production profile is flat
due to the peak demand charge on the maximum rate of power usage. The bottom
plot shows the average building temperatures. A similar trend is also observed there.
The buildings are precooled during morning hours when prices are low and allowed
to naturally heat back up the upper comfort zone limit in the early afternoon hours
when prices are high. The corresponding loads are sent to the two low-level prob-
lems.



5 Example 617

0 1 2 3 4 5 6 7
50

25

0

25

50

C
oo

lin
g
L
oa

d
(M

W
)

Demand Production Storage Unmet

0 1 2 3 4 5 6 7
Time (days)

20

21

22

23

A
vg

.
T
em

p.
(
C
)

Fig. 7: High-Level Results. Optimal production schedule and average building tem-
peratures computed from solving the high-level problem. In upper plot, negative
values of storage denote charging of tank, while positive values indicate discharg-
ing of tank. In lower plot, red line highlights one particular building, with all others
shown in black.

Each of the four buildings has its own low-level airside MPC controller. They
receive an allocation from the high-level problem and determine the setpoints for
the zones in that building. Figure 8 shows the temperature and setpoint trajectories
for all 20 zones computed from these problems. The individual zones follow a sim-
ilar profile as the building average. Note that the setpoints drop sharply in advance
of precooling period. This phenomenon is due to the fact that since the regulatory
controller dynamics are modeled in the MPC problem, the setpoints are adjusted
accordingly to counteract sluggish responses which are common in buildings.

The initial production schedule estimated by the high-level problem is sent to the
low-level waterside problem for refinement using more accurate equipment models.
The resulting production schedule and associated Gantt chart detailing the equip-
ment operation schedule from the waterside problem is presented in Figure 9. The
production profiles are similar, but the one in Figure 9 shows significant jumps,
which are due to the discrete nature of turning pieces of equipment on and off.

In this example, the high-level and low-level airside problems are formulated as
linear programming problems. The low-level waterside problem is formulated as a
mixed-integer linear program. Hence, widely available commercial or open-source
solvers can be used to solve these problems efficiently, in a matter of seconds.

To evaluate the benefits of this approach, comparisons are made to a baseline
strategy. One baseline is to avoid optimization and precooling altogether by employ-
ing the minimum energy usage control strategy: stay at the upper bound of the com-
fort region at all times. While this baseline minimizes energy usage, the economic
MPC framework presented can achieve significant cost savings. Typical energy cost
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Fig. 8: Low-Level Airside Results. Optimal zone temperatures and setpoints com-
puted from solving the low-level airside problems. Red line denotes one particular
zone as an example, with all others shown in black.

savings can vary from 15% to 40% depending on the amount of the TES available
and incentives for load shifting, namely the difference in peak and off-peak electric-
ity prices.

While the decomposition presented provides significant cost savings, detailed
analysis of the loss in performance due to decomposing when compared to the cen-
tralized problem has not yet been conducted. Small-scale systems for which the
centralized problem can be solved must be used for this comparison, which is the
subject of future work along with benchmarks against other decomposition methods.
The concepts illustrated by the simulation can be applied in practice as exemplified
in the next section.

6 Stanford University Campus

6.1 SESI Project

Stanford University recently overhauled their campus-wide HVAC system. They
embarked on the $485-million Stanford Energy System Innovations (SESI) project
to replace an existing 50-MW natural-gas-fired cogeneration plant with a central
chiller plant to service the cooling and heating needs of the campus. The central
plant includes conventional chillers, boilers, and thermal energy storage tanks. In
addition, there are three 3.5-MW heat-recovery chillers that reject waste heat from
the return chilled water stream to the supply hot water stream rather than rejecting
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Fig. 9: Low-Level Waterside Results. Optimal production plot and Gantt chart for
central plant equipment computed from solving the low-level waterside problem. In
lower plot, boxes show on/off state of the equipment with dark line inside showing
the loading.

that heat back to the ambient via cooling towers [2]. These heat-recovery chillers im-
prove the efficiency of the overall plant. Without cogeneration, a new 80-megavolt-
ampere electrical substation is used to bring electricity from the grid to power the
equipment. As part of this project, they also converted 155 campus buildings from
steam to hot-water utility, including the installation of a 22-mile network of new
hot-water piping.

6.2 Control System

Johnson Controls, Inc. designed and deployed a control system for this new HVAC
system. The implemented control architecture resembles one half of the decompo-
sition in Figure 6, namely the high-level and low-level waterside problems. The
operation of waterside equipment is optimized to minimize energy costs. Airside
optimization was outside of the scope of this project.
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In order to minimize operating costs, an economic optimization is performed
using aggregate representation of central plant equipment to determine the storage
tank usage and loads per period for the waterside equipment [32]. This economic
(high-level) problem is solved as a linear program using convex aggregate model of
the central plant. The airside demand is estimated using a combination of historical
data and weather forecasts. The regression-based procedure used for forecasting
heating and cooling loads is discussed in [9]. The predictions can be overridden by
human operators to handle unexpected events [33]. Hence, optimization can still
occur using this operator knowledge without requiring the entire system to be in
manual mode. The central plant loads computed from this high-level problem are
sent to a lower-level equipment selection problem, where a single-period mixed-
integer nonlinear program is solved.

6.3 Performance

The system can be run in either autonomous mode with the optimization-based algo-
rithm making operational decisions or manual mode with human operators making
these decisions. After a year of operation, the central plant was run in autonomous
mode 90% of the time, which includes maintenance periods when it was taken off-
line. The optimization-based system achieved about 10–15% additional cost savings
compared to the performance of the best team of trained humans [29]. This large-
scale implementation of MPC in the HVAC industry clearly demonstrates that sig-
nificant benefits are attainable. Additional opportunities still exist to drive cost down
even further and improve energy efficiency of current operations.

Since the airside load is not a control decision in this particular application, ad-
ditional savings can be achieved by modeling and optimizing the airside system
alongside the waterside system to utilize passive TES in load shifting. Optimization
can also reduce unnecessary overproduction of resources. Several commercial offer-
ings for airside optimization technology have already been deployed on commercial
buildings, including qCoefficient and BuildingIQ. Early projects have shown the sig-
nificant savings are also achievable via airside optimization. Given these promising
results, industrial projects involving simultaneous optimization of both airside and
waterside systems are already underway.

7 Outlook

While significant progress has been made in this field to identify opportunities for
cost savings, wide-scale implementation of these ideas has not yet taken place. Early
projects, such as SESI, have demonstrated that such benefits are attainable. Some
obstacles for implementation of this technology include the formulation and identi-
fication of models that are both accurate and suitable for optimization, forecasting
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of future loads based on historical data and weather predictions, choice of decom-
position for large-scale applications, and software for solving mixed-integer opti-
mization quickly and robustly enough for online use. The biggest obstacle may be
the natural opposition for replacing the existing control technology that has been
around for decades. However, with the HVAC industry being willing to innovate
and the absence of a pre-existing MPC technology in the field, tremendous opportu-
nities exist for capitalizing on ideas from recent areas such as economic MPC and
MPC with discrete actuators. MPC certainly seems to be a promising part of the
future of HVAC control.

Buildings
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Central Plant
(Waterside)

Electrical
Substation

Market
(Grid)

Water Tank
(TES) Batteries

Chilled Water

Return Water

Power
Purchase

Sell

Charge Discharge Charge Discharge

Fig. 10: Flow of resources in network with both thermal energy and electricity stor-
age units.

The potential benefits do not end with load shifting using only thermal energy
storage. Batteries are emerging as an economically viable option for efficient storage
of electricity. Large-scale batteries may be used for central plant equipment or the
batteries may be embedded directly into any piece of equipment that draws powers,
such as fans, pumps, air-handler units, root-top units, and variable refrigerant flow
units. As shown in Figure 10, not only do batteries provide an alternative path for
load shifting, but they permit buildings to participate in real-time electricity markets
for revenue generation [8]. Grid-scale integration of such large consumers of energy
moves power plants to more efficient operation since they can operate closer to
design specifications with constant loads. Hence, both the supplier and the consumer
can benefit in this arrangement.

To manage these integrated resources operating on multiple time-scales, an
optimization-based system such as MPC is necessary. Hence, additional opportu-
nities exist for designing MPC architecture for these applications. As the electricity
market is uncertain and highly volatile at times, ideas from stochastic MPC can be
used to treat the random variables directly [17]. HVAC systems in buildings is a rich
application that involves many disciplines: traditional process control (airside sys-
tem), planning and scheduling (waterside system), and stochastic variables (pricing
and forecasting). A multidisciplinary approach is required to fully optimize such
systems.
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28. Scherer, H., Pasamontes, M., Guzmán, J., Álvarez, J., Camponogara, E., Normey-Rico, J.:
Efficient building energy management using distributed model predictive control. J. Process
Control 24(6), 740–749 (2014)

29. Stagner, J.: Enterprise optimization solution (EOS) cost savings vs. manual plant dispatching.
Report on Central Energy Facility, Stanford Energy System Innovations (2016)

30. Sturzenegger, D., Gyalistras, D., Morari, M., Smith, R.S.: Model predictive climate control
of a Swiss office building: implementation, results, and cost-benefit analysis. IEEE Trans.
Control Syst. Technol. 24(1), 1–12 (2016)

31. Touretzky, C.R., Baldea, M.: A hierarchical scheduling and control strategy for thermal energy
storage systems. Energ. Build. 110, 94–107 (2016)

32. Wenzel, M.J., Turney, R.D., Drees, K.H.: Model predictive control for central plant optimiza-
tion with thermal energy storage. In: 3rd International High Performance Buildings Confer-
ence at Purdue, West Lafayette (2014)

33. Wenzel, M.J., Turney, R.D., Drees, K.H.: Autonomous optimization and control for central
plants with energy storage. In: 4th International High Performance Buildings Conference at
Purdue, West Lafayette (2016)



Toward Multi-Layered MPC for Complex
Electric Energy Systems

Marija Ilic, Rupamathi Jaddivada, Xia Miao, and Nipun Popli

1 Introduction

Model predictive control (MPC) is a well-established control technique and has been
successfully implemented, mainly in chemical plants and oil refineries [15]. Central-
ized and distributed MPC have been widely studied for industrial applications, as
summarized in [39, 42]. In addition, theoretical conditions regarding MPC stability,
robustness and convergence have been studied [7, 15, 35]. This chapter is primarily
dedicated to the domain applications in electric power systems. We start this chapter
by first briefly summarizing in Section 2 the main sources of temporal uncertainties
introduced by intermittent resources and electricity industry restructuring.

The complexity of temporal and spatial uncertainties brought about by fundamen-
tal changes in electric load characteristics are discussed in Section 3. Load modeling
needs more detailed representation because of customers’ participation in electric-
ity markets. In Section 4, we briefly review today’s organization of electric power
systems. We emphasize that these systems can be modeled in the time domain using
dynamical systems theory. Somewhat specific to the MPC formulation is the need to
characterize temporal uncertainties in the context of an on-line control implementa-
tion. To understand this and its implications on the MPC problem formulations and
solutions described in this chapter, we conceptualize the classification of system
disturbances and other exogenous inputs into their predictable and hard-to-predict
components. It is explained in Section 4 how this classification is implicitly used in
today’s hierarchical control of electric power systems. The concepts throughout this
chapter are discussed w.l.o.g using a two-area small electric energy system.

The objective often entails decomposition of an otherwise computationally un-
solvable problem into several layers of control design, in particular, feed-forward
scheduling for predictable exogenous inputs/disturbances and feedback control for
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compensating hard-to-predict disturbances and model uncertainties. This is dis-
cussed in Section 5.

In order to decompose the algorithms for controlling complexity described in
Section 3, a novel formulation of multi-layered MPC algorithms is introduced. In-
stead of having fully separable decision-making, it is essential to have interactive
MPC formulations for multi-temporal and multi-spatial management so that the
benefits of these interactions are accounted for. In Sections 6 and 7, we propose
a novel formulation for nested temporal and nested spatial MPC in complex multi-
temporal and multi-spatial dynamical network systems, such as electric energy sys-
tems. While the lifting idea for MPC has its deep roots in numerical methods for
real-time optimal control [5], these ideas have only recently begun to penetrate into
the type of applications as described in this chapter [44]. Based on these nested
temporal and spatial multi-layered MPC formulations, we propose a novel MPC
formulation for the changing electric energy systems.

In Section 8, the discrete time formulation of the multi-layered MPC is summa-
rized. In Section 9, we claim that our earlier proposed DyMonDS concept, which
promotes the idea of abstraction and a minimal information exchange framework, is
analogous to the nested MPC formulations. Notably, depending on which variables
are exchanged between the layers (physical or Lagrange multipliers), economic and
technical signals may be aligned, or not. Finally, in Section 10, we return to the two-
area example used throughout in this chapter to identify open questions for MPC al-
gorithms in future electric energy systems. The use of DyMonDS tools is illustrated
for efficient integration of temporally diverse generation and demand response. It
is shown that this can be done while ensuring stable operation with minimal fast
expensive storage.

2 Temporal and Spatial Complexities in the Changing Electric
Power Industry

The fundamental objective of power system operation is uninterrupted service to the
customers. This necessitates balancing supply and demand in real time. Currently,
numerous changes have occurred in the field, such as the development of sensing
and communication infrastructure, large-scale integration of renewable energy re-
sources, smart buildings, electric vehicles, and numerous others. These technolog-
ical innovations are expected to enhance the sustainability, flexibility, and reliabil-
ity of future electric energy systems, but there is a limited operating experience
and understanding of these new technologies. In particular, the industry lacks well-
established modeling, analysis and/or decision-making paradigms to support the de-
ployment of these new technologies. Furthermore, it is imperative to facilitate new
functionalities for power system operations to accommodate multi-temporal uncer-
tainties introduced by the renewable energy resources and smart dynamic loads as
an enabler of demand response [18, 24]. For instance, Figure 1 depicts the renewable
electricity production in the grid operated by California Independent System Oper-
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ator (CAISO). The electricity production from the wind farms, depicted by the blue
curve, drops by 700 MW which is about 4% of the net electricity demand during
the early morning hours when the actual load is increasing. The utilities frequently
experience difficulty in scheduling the resources owing to such uncertainties [37]
over multiple hours. In addition, Figure 2 depicts the disturbances created by a large
photovoltaic installation evolving at the time scale of few minutes.

Such temporal uncertainties are even more pronounced in the electric power in-
dustry under restructuring. Instead of having single system-level smooth input, it
is often necessary to have more granular spatial information about market partici-
pants and their characteristics. This calls for spatial lifting in order to account for
costs/benefits incurred by different industry participants.

To summarize, multi-temporal complexity is the unique feature rooted in power
systems, which is in sharp contrast to many problems in other domains such as
chemical processes. The problem of real-time supply-demand balancing introduced
above can be posed as a set of MPC problems over multiple time horizons driven by
multi-temporal disturbances. Nevertheless, objectives at different time scales may
have conflicting performance metrics or cost functions. In addition, the multi-spatial
complexity of typical market-managed electric power systems requires further for-

Fig. 1: CAISO renewable generation profile [6].

malization of MPC through nested spatial lifting. Therefore, application of MPC
in electric power systems poses theoretical challenges because of the necessity to
ensure system stability, despite temporally composite disturbances.

Next, multi-spatial complexity typical of market-managed dynamical network
systems requires formalization of MPC through nested spatial lifting. A vast amount
of literature seeking solutions to this problem exists. A very general formulation that
can accommodate most of these approaches is presented first to familiarize readers
non-conversant with the area of power systems. Specifically, the content is presented
in the language of systems theory. Hence, people with any level of expertise in
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Fig. 2: High frequency disturbance [41].

the application area of power systems can appreciate the problem and its ingrained
complexity, particularly due to the unique multi-temporal features that serve as road-
blocks to system level analysis. However, this complexity can be taken advantage of
by suitably designing the control. We propose a multilayer nested framework based
on the functionalities of electric power systems.

3 Load Characterization: The Main Cause of Inter-Temporal
Dependencies and Spatial Interdependencies

The networked electric power systems are driven by disturbances varying over vastly
different time scales. Most importantly, the power consumptions and injections of
the unpredictable devices are referred to as a major component of the disturbance. In
addition, disturbance may also be experienced due to imperfect control action, mal-
functioning of controllers (as well as loss of equipment). Apart from that, there is
always noise in the system, which is often modeled as white noise with a probability
distribution of zero mean. The variance of such noise gets lower over coarser time
scales and spatial scales. Shown in Figure 3 is the disturbance resulting from het-
erogeneous electricity consumers (end-devices) over a time scale of an hour. It can
be seen that there is a large variability exhibited by these end devices and are often
unpredictable. However, a group of these heterogeneous end-devices when aggre-
gated can be seen to be much smoother and predictable as shown in Figure 4a. This
aggregated demand further when zoomed-in shows larger variance over a smaller
time window. The zoomed-in profile of the first time interval is shown in Figure 4b.
To summarize, these figures emphasize spatial and temporal variability in the load
or the disturbance profile. Such features are to be accounted for the design of model
predictive controllers for networked electric power systems. Towards this goal, we
categorize the temporally composite load profiles or the multi-rate disturbances as:
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• Slow and predictable component m[kTt ]
• Fast and hard-to-predict m[nTs]
• Fast and unpredictable m[pTp]

where Tt , Ts, and Tp also denote the sampling time for tertiary, secondary, and pri-
mary control of the system, respectively, as will be explained in Section 4.

Note that even for the slow and predictable component, the accumulated error in
prediction may grow as time progresses. For instance, consider Figure 5 from [38],
depicting the actual or the real-time wind farm output, as well as predicted and
observed average values of the wind power output over time intervals of constant
length Tt . The predictions tend to be less accurate farther in time. In the context
of MPC on the other hand, as time progresses, the predictions are made iteratively.
Consequently, the predictions keep getting better for use in control design and its
implementation at that instant of time.

In order to balance the predictable load, over time Tt , feed-forward scheduling
(MPC) needs to be designed. However, the feedback controllers at each compo-
nent are expected to stabilize any fast hard-to-predict deviations from the feed-
forward schedule. Correspondingly, these problems necessitate multi-rate dispatch
algorithms and robust nonlinear controllers at the component level. Primarily, we
focus on the feed-forward control. It should also be noted that an alternative to fast
nonlinear feedback controllers is fast MPC at the component. Furthermore, one of
the objectives of emerging power grid operations is to allow integration of control-
lable demand at value. This makes feed-forward design more complicated due to the
consumer behavior, policy and market constraints involved. The temporal decompo-
sition of loads and modeling of the load thus plays a crucial role in feed-forward
scheduling of the resources. In this section, we introduce the categorization of the
loads into controllable and uncontrollable ones and further explain one method that

Fig. 3: Consumption patterns.
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Fig. 4: Aggregate load demand.

is utilized by industry to model the inflexible demand. The model is utilized to fore-
cast electricity consumption that will be used in determining the feed-forward sched-
ule. However, the accuracy of such model defines the accuracy of the feed-forward
schedule found by the MPC.

Fig. 5: Decreasing accuracy of wind power predictions over time [38].
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3.1 Multi-Temporal Load Decomposition

Consumer devices can be broadly classified as being controllable (flexible demand)
or uncontrollable (inflexible demand). Figure 6 shows a typical load profile at any
arbitrary bus j (dark line in the top) which is split into controllable (dash-dotted line
in the bottom) and uncontrollable (dashed line in the middle) components. The un-
controllable load at bus j can further be decomposed into two components: Firstly,
a predictable component Pj evolving slowly over Tt timescale, secondly, a fast fluc-
tuating unpredictable component ΔPj evolving at Ts time scale, modeled as the de-
viation from the predictable component over the slow time horizon Tt . In Figure 6,
Tt = 10 minutes and Ts = 2 minutes.

Pj[nTs] = Pj[kTt ]+ΔPj[nTs];

|ΔPj[nTs]| ≤ ΔPmax
j [kTt ] Ts << Tt

(1)

In (1), k and n denote the sampling numbers for the aforementioned coarser and
finer granularity time scales, respectively. Accordingly, the controllable resources
can be decomposed into a slowly varying component PD j[kTt ] and a fast varying
component ΔPD j[nTs], the bounds of which are given by BD j[kTt ] as shown in (2).

PD j[nTs] = PD j[kTt ]+ΔPD j[nTs];

|ΔPD j[nTs]| ≤ BD j[kTt ] Ts << Tt
(2)

3.2 Inflexible Load Modeling

The modeling of inflexible load Pj plays a significant role in market operations.
The electric utilities, operating the networked power systems, use stochastic models.
These models are generated by processing historical data to determine the uncer-
tainty in load or electricity demand. Here, we briefly outline a simple technique
based on a statistical time-series approach. The model thus obtained can be used
to forecast the load over a future time horizon, which is specifically useful for de-
signing control in a model predictive way. The historical data can be used to fit the
model parameters for predicting the hourly total seasonal system mean [14]. The
hourly seasonal mean values are interpolated to find the values within an hour given
by L[kTt ]. The load at each bus j is then modeled using the sum of scaled mean and
a stochastic process of correlated noise w j[t]. This is modeled using a Seasonal Auto
Regressive Moving Average model (SARMA) in order to correlate the noise at the
previous time instant and the innovation 24 hours prior. The predicted load at each
location j is then given by
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Fig. 6: Aggregate load profile and its decomposition into controllable and bounds
on uncontrollable parts.

Pj[kTt ] = s jL[kTt ]+ x j[nTt ],

x j[nTt ] = φx j[nTt −1]+Φ(w j[nTt −D]−w j[nTt −D−1])+ ε j.
(3)

In (3), D is the number of time steps of length Tt in a day and s j represents the frac-
tion of total system load incident on bus j. Historic data is then used to fit the model
to find the parameters used for this model. The noise at each bus ε j is modeled as
a multivariate Gaussian distribution with zero mean and a time-invariant covariance
matrix relating the deviations at each bus. The choice of the covariance matrix sig-
nificantly affects the market decision algorithm. For example, the high correlation
between the loads at different buses may have high standby reserve requirements to
account for uncertainties.

More accurately, the above description of load should, however, be appended
with the fast unpredictable components PD j[pTp] and Pj[pTp] for controllable and
inflexible loads, respectively. However, in the state-of-the-art operations of the grid,
zero mean value of load at Tp timescale is assumed. Hence the feed-forward schedul-
ing is done only for the time scales of Tt and to some extent at Ts. The rationale be-
hind doing so is explained in detail in the next section to simultaneously understand
the missing signals for efficient and reliable operation for power grids.
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4 Hierarchical Control in Today’s Electric Power Systems

To start with, consider a small electric power system as shown in Figure 7. An
electrically interconnected system is horizontally organized into two control areas
which are in today’s industry responsible for balancing their own supply and de-
mand during normal operations. Each area first schedules its own generation at the
Tt time scale in anticipation of its area loads. For example, the schedule of Area
I is LI = L1 + L2 +FI,II , where FI,II denotes the pre-agreed power exchange with
Area II. Then, at the rate Ts, hard-to-predict slow deviations are managed by each
area using so-called automatic generation control (AGC) by balancing other area
power imbalances and cancelling out the effects of unpredictable disturbance in
FI,II . Finally, controllable components, generators, in particular, have very fast pri-
mary controllers which respond to the set points computed by scheduling and AGC.
Current state-of-the-art of these controllers is embedded PID control gains, typically
without using an advanced control such as MPC.

These areas have been historically interconnected to share resources during large
contingencies. If, for example, in area I, suppose generator G1 goes out of service.
The remaining generator G3 may not have enough generation to supply its total load
which is the sum of power consumed by loads L1 and L2. During such extreme condi-
tions, area II has a typical memorandum of understanding (MOU) to start generating
as much as it can beyond its need to supply its own loads L4 and L5. Roughly speak-
ing, generators G4 and G5 are expected to increase their production to the capacity
of the generator G1 lost in Area I. Throughout this process, it is assumed that loads
remain the same (no load shedding) and must be balanced up to 30 minutes during
these extreme events. In other words, planning as well as operations do not rely on
proactive demand adjustments, i.e., the system load is assumed to be inflexible. In
the following section, we first introduce the general mathematical formulation of
the main objectives of hierarchical control in today’s electric power systems. Then,
a unified modeling framework for electric power systems is proposed which forms
the basis for control design and is used throughout the chapter. We close the section
with brief discussions of the assumptions and limitations of existing hierarchical
control.

4.1 Main Objectives of Hierarchical Control

Hierarchical power system control can be interpreted as a composite control
comprising a primary stabilizing control u[pTp], a secondary regulation con-
trol u[nTs] and a tertiary feed-forward control u[kTt ] in response to disturbances
m(t) = m[pTp] + m[nTs] + m[kTt ], the decomposition of which was described in
Section 3. A general form of such control is given as follows:

u∗(t) = u[pTp]+u[nTs]+u[kTt ] (4)
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Fig. 7: BPS control hierarchy of today.

Here, Tp, Ts, and Tt denote the sampling time with respective sample numbers p,
n and k used to solve the primary (u[pTp]), secondary (u[nTs]), and tertiary (u[kTt ])
control problems, respectively.

The industry practice mainly focuses on scheduling resources u(t), with an ob-
jective of optimizing the cost of power production z(t) subject to the balancing of
disturbances m(t). This is the major objective of the tertiary level feed-forward con-
trol, which is conducted by the independent system operators (ISOs) at system level.
The scheduling is often done at several different time horizons so that supply and
demand imbalance is managed as accurately as possible. In large systems, several
of these time horizons are in turn managed by hierarchically organized entities at
different spatial granularity. These entities are called area coordinators, which fur-
ther manage the supply demand imbalance more accurately in response to area level
disturbances. It should be noted that the component level disturbances are unobserv-
able at the system level and hence ISO rather schedules resources for an aggregate
of several of these devices. Such aggregation results in smoothening of disturbance,
thus requiring another intermediate entity closer to end devices, to further coordi-
nate the unscheduled disturbances at area level.

In the context of MPC for hierarchical control, the control signal can be decom-
posed into three components. The slowest component u[kTt ] is obtained at the sys-
tem level by assuming that the load (disturbance m[kTt ]) is inflexible and predictable
with high accuracy. This layer further assumes that the unpredictable component
has zero mean deviations of disturbance within the scheduling interval. The actual
deviation of the disturbances from the predictable component m[nTs], which are
hard-to-predict, is instead scheduled at area level at finer time granularity by the
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control component u[nTs]. This component essentially adjusts the output set points
of controllable components within the area as y[nTs] = y[kTt ] +Δy[nTs] to offset
the hard-to-predict disturbances m[nTs]. Here, y[kTt ] represents the outputs over
slower Tt time scale corresponding to the distrubance m[kTt ] and control u[kTt ] un-
der steady-state assumption. Δy[nTs] is the output set-point adjustment over a faster
Ts timescale. Finally, fast primary layer control is embedded within components
u[pTp], ensure instantaneous output y(t) reaches the desired output y[nTs] (so-called
Quality of Service).

4.2 General Formulation of Main Objectives

A general electric power system can be regarded as a networked system with N
nodes or junctions, and E edges denoting the set of nodes on which components
are incident and the lines connecting these nodes, respectively. The components
are heterogeneous in nature with different rates of evolution defined by their states
xi(t) i ∈ N vectorized as x(t) varying as a function f of control input u(t) and
disturbance m(t).

With the above definitions, basic functional objectives of a general electric energy
system can be formulated as a flat complex nonlinear dynamic optimization problem
[19]. The objective is to optimize the cost subject to system dynamics and control
constraints [36]. The general performance objective is expressed in terms of output
variables and control cost as shown in (5):

min J
u(t)

= min
u(t)

∫ ∞

t=0
c(z(t),u(t))dt (5a)

subject to

dx(t)
dt

= f(x(t),u(t),m(t)); x(0) = x0 (5b)

y(t) = g(x(t),u(t)) (5c)

z(t) = h(x(t),y(t)) (5d)

ymin ) y(t)) ymax (5e)

mmin(t)) m(t)) mmax(t) (5f)

umin(t)) u(t)) umax(t) (5g)

Here z(t),u(t),m(t) are the vectors of interactions with the grid, the control input
and disturbances, respectively. These variables affect the cost function c for efficient
grid operations and are in general assumed to be smooth and continuous. It should
be noted that Equations (5b) to (5g) are invoked for all times t in [0,∞).

The functions g and h, respectively, denote the mapping of states to output vari-
ables y(t) and interaction variables z(t) which define the cost function of the system.
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Notice that the control u(t) affects the interaction variable z(t) indirectly through
the mapping of y(t). Most power system operations are based on controller per-
formance assumptions leading to a simplification of the above problem subject
to the constraints in (5f), (5g) alone and establishing limits on z through quasi-
stationary or empirical relations obtained by utilizing the steady state assumptions
on (5b), (5c), (5d), and (5e).

The above optimization problem needs to be solved for all time t to get the op-
timal control input u(t) = u∗(t). However, in reality, it is numerically difficult to
directly solve this nonlinear problem in a single level centralized way. Firstly, the dis-
turbances for a long period are not known exactly over a fine time granularity. These
are generally learned as the time progresses. Secondly, the controllable sources are
heterogeneous with vastly different response times, making each of the technolo-
gies suitable for balancing power at different time scales. Furthermore, the fact that
power grids are spread over a large geographical area makes it impossible to have
observability of all the end-devices due to the limited installment of sensors. Even
with more sensors, it becomes difficult to coordinate all the end-devices due to their
often contradicting sub-objectives, leading to a failure in optimum decision making.
Hence, we introduce the notion of spatial lifting to handle the problem at different
levels of hierarchy in Section 7. Combination of the lifting techniques based on the
physical system and cyber design can then be used for partitioning that facilitates
control design of a large-scale power system.

It should be noted that consistent information exchange can be made possible
only through a unified modeling framework that is comprehensible by an agent ir-
respective of the spatial and temporal granularity that it belongs to. We thus briefly
introduce the proposed unified modeling framework and the resulting optimal con-
trol formulation. Details of the importance and derivation of such models are further
highlighted in [19].

4.3 Unified Modeling Framework

In [19, 21, 26, 36], a transformed state space is introduced to unify the modeling of
heterogeneous components by defining the internal and interaction dynamics. In the
proposed unified modeling framework, the state variables of a general component n
are defined as:

xn = [xn
int ,z

n
out ]

T

where xn
int and zn

out denote the internal and interaction state variables, respectively.
Then, the component dynamics can be written in the following form:

dxn
int(t)
dt

= fx(xn
int(t),z

n
out(t),u

n(t),mn(t)); xn
int(0) = xn

0 (6a)

dzn
out(t)
dt

= fz(xn
int(t),z

n
out(t),z

m
out(t), ż

m
out(t),m

n(t),ṁn(t)); zn
out(0) = zn

0 (6b)

∀n ∈N ∀m ∈ Cn
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where N denotes the number of nodes in the system. Cn denotes the indexes of
neighboring components connected directly to component n.

Applying the relations above and vectorizing the variables of all components, the
problem in (5) can be re-written as

minJ
u(t)

= min
u(t)

∫ ∞

t=0
c(zout(t),u(t))dt (7a)

subject to

dx(t)
dt

= f(x(t),u(t),m(t)); x(0) = x0 (7b)

y(t) = g(x(t),u(t)) (7c)

ymin ) y(t)) ymax (7d)

mmin(t))m(t)) mmax(t) (7e)

umin )u(t)) umax (7f)

Note that the vector zout used in the cost function is an element of the vector x.
Furthermore, the objective function and constraints formulated above are invoked
for all time t in [0,∞).

4.4 Assumptions and Limitations Rooted in Today’s Hierarchical
Control

4.4.1 Tertiary Level Control

Tertiary level control is to feed-forward schedule controllable resources at the slow-
est time Tt . This includes power flow, energy management, unit commitment, and
economic dispatch.

The key assumption made at the tertiary level is that the system frequency is
nominal and there are no instabilities, which is equivalent to saying that dx(t)

dt = 0.
Note that this assumption requires that the secondary and primary control meet their
objectives as will be discussed later. Therefore, one consequence of the assumption
is that both the system model and the objective function given in Equations (7b) and
(7a) can be simplified accordingly. The obtained static model or the linearized small
signal model (often decoupled) is widely used [4, 10, 17]. Recently, [45] introduced
a dynamic dispatch model based control to capture inter-temporal dependencies for
ramp rate limited dispatch.

However, all these models used by existing control methods are approximations
themselves. No provable performance can be ensured due to the uncertainties in the
secondary and primary level control. Validation of the above assumption becomes
even more critical when a large portion of hard-to-predict heterogeneous compo-
nents are integrated.
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4.4.2 Secondary Level Control

Secondary level control is designed to compensate frequency (voltage) deviation
caused by area-level total power mismatch. In operation, the secondary level con-
trol provides the set points to the primary controllers embedded in the components
participating in frequency (voltage) regulation.

One assumption made here is that the primary level control has stabilized the
system. Thus, most of the existing secondary level controls are designed based on
quasi-static models [11, 29, 40]. To relax these assumptions and consider the effects
of time-varying disturbances, some progress has been made in [32, 33] by utilizing
the interaction variable concept [20].

4.4.3 Primary Level Control

Primary level control is designed to stabilize the fast local deviations in both fre-
quency and voltage caused by the fluctuations in supply-demand imbalances and
external disturbances. Primary controllers normally are physical control hardware,
such as governors and exciters on generators, switches in power electronics devices,
etc. The most common design approach is first to simplify the model by linearizing
Equation (7b) around the operating point. Then, the control logic is designed based
on the obtained linearized model. It should be noted that such a linearized model
is only valid for a small region around the operating point. In [2, 9, 13, 34], some
nonlinear controllers are proposed to avoid linearization. However, one critical is-
sue of nonlinear control methods is that high gain may be required when a large
disturbance occurs, which may cause additional problems due to saturation.

To summarize, it should be emphasized that the assumptions stated for hierarchi-
cal control mostly rely on stationary disturbances. Hence, these assumptions may
not be valid for the emerging electric energy systems which are driven by distur-
bances evolving at multiple rates as explained in Section 2. It becomes important to
thus pose the control design problem of such a hierarchically organized grid driven
by multi-rate disturbances as an interactive MPC problem.

5 Need for Interactive Multi-Layered MPC in Changing
Industry

The changing electric energy system has varying needs for energy over different
spatial, temporal, and functional granularities. Fundamentally, this is only achiev-
able by a cyber implementation that has just-in-time (JIT) and just-in-place (JIP)
functionalities needed to manage all of these misalignments. We treat this problem
as two interrelated problems and separate it by entities that have an objective and
by time horizons. In the first part, we recognize the time-varying uncertainty over
different horizons and introduce the need for interactive MPC. Next, we emphasize
the need for coordinating the distributed control of multiple agents for efficient op-
eration through the interactive spatial MPC.
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5.1 Temporal Aspect

The unpredictability of loads as discussed in Section 3 calls for control design at
different time scales as the disturbance predictions get better and finally the unpre-
dictable component is supposed to be taken care of by a robust feedback controller.
There has been a lot of work promoting the decentralized control of components
by reacting to the disturbance sensed locally, however, this may not be realizable
owing to limitations on the control such as rate of change of control and its satu-
ration. Hence, control design at different time scales is critical and one needs to
have a planning horizon chosen based on the respective physical model to ensure
deliverability of the required control. Also, end-user preferences are not known to
the user itself a-priori, in addition to other uncertainties due to renewable energy
sources. This information used for decision making in shorter time intervals needs
to be discovered incrementally as the uncertainty gradually decreases. At the same
time, it must be noted that the time available to make such decisions also diminishes.
For example, in real-time markets, decisions may have to be taken within 5 minutes
and furthermore, decisions for frequency regulation may have to be taken within a
minute.

In the past, the load was predictable to a very good accuracy. Hence, the intra-
prediction time scale deviations from the predictable component were assumed to
be of zero mean and were further assumed to be bounded. Hence, composite control
composed of the feed-forward component u[kTt ] found at each prediction time step
Tt and the primary stabilizing feedback control u[pTp] was sufficient for proper grid
functioning. However, in changing electric energy systems, consider, for instance,
the fast disturbances due to solar radiation as shown in Figure 2. Managing such
fast disturbances requires MPC problem formulation using small time steps. On
the other hand, managing rather slowly evolving disturbances caused by inflexible
demand as shown in Figure 4 can’t be accommodated in the same MPC problem.
This is because of rate of response limits on slow controllable resources, that results
in scheduling of fast expensive resources. This leads to sub-optimal operation of
the grid. Thus, there arises a need to consider interactive sub-problems formulated
using different discretization time steps to handle such multi-rate disturbances.

5.2 Spatial Aspect

Power systems are composed of different types of entities some of which are physi-
cal while others are cyber. Traditional operations of power systems do not explicitly
consider the model of the demand and as a result, fail to take into account its eco-
nomic preferences. Historical data is often used to model the load at different time
periods by scheduling the generation sources and at times by curtailing the demand
when there is a shortage of supply and/or when the curtailment of the demand is
seen to be more efficient compared to the increase in generation. However, this is
being taken into consideration at an aggregate level through non-utility owned cy-
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ber entities called Load Serving Entities. In doing so, the end-user preferences are
ignored. Presently, it is not clear how to design the cyber layer to coordinate mil-
lions of end-user devices. In addition, the short-term scheduling operations cannot
be done with numerous end-devices within a short period of time owing to the com-
plication of resolving numerous constraints with often contradicting sub-objectives.
Furthermore, the internal dynamics of each end-user may not be communicated to
the system coordinator due to privacy concerns. Thus, there arises a need to coordi-
nate these devices through nested spatial hierarchies of control to align temporal and
economic signals. In Section 10.2, this is described and illustrated in more detail.

In order to resolve the issues emphasized here in a systematic manner, we pose
the time lifted and spatially lifted problems of the centralized problem formulation
in (5) to better understand the structure of the resulting MPC formulations at differ-
ent granularities and the significance of interactive information exchange between
these sub-problems.

6 Temporal Lifting for Decision Making with Multi-Rate
Disturbances

As outlined in Section 5, one of the major problems causing the complexity in power
grid analysis is the unpredictability in the disturbances seen by the components. This
calls for the need to first formulate the problem as a time-lifted model predictive
control problem to find the optimum control policy as the disturbances are learned.
Hence, we lift the long-horizon problem by partitioning into multiple stages. In
the context of model predictive control, we can apply it as shown in (8). These
set of equations defining the objective functions and the constraints are referred to
as a problem PN1,T1(t) which is solved using time windows of length T1 for N1

prediction horizons starting at time t ′.

PN1,T1(t
′) : min

uk(τ)

N1

∑
k=1

[∫ T1

τ=0
c(zk,T1(τ),uk,T1(τ))dτ

]
+Qterm

N1,T1
(t ′) (8a)

subject to

dxk,T1(τ)

dτ
= f(xk,T1(τ),uk,T1(τ),mk,T1(τ)) (8b)

xk,T1(0) = xk−1,T1(T1) (Γk,T 1(t
′)) (8c)

yk,T1(τ) = g(xk,T1(τ),uk,T1(τ)) (8d)

ymin ) yk,T1(τ)) ymax (8e)

mmin ) mk,T1(τ)) mmax (8f)

umin ) uk,T1(τ)) umax (8g)
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∀τ ∈ [0,T1) ∀k = 1,2, ..N1

In the above set of equations, all the variables are appended with a subscript
‘k,T1’ to denote the trajectory evolution in the kth time window, where the windows
are created using a time step T1. Precisely, the notation for a state variable x used in
the problem PN1,T1(t

′) is given by (9)

xk,T1(τ) = x(T1(k−1)+ τ+ t ′) (9)

(8c) is the time coupling constraint that binds the otherwise decoupled problem in
different time windows. This has an associated Lagrange multiplier given by Γk,T 1

for the kth time window initial condition, where the time windows are created every
T1 time. Note that the infinite horizon problem in (5) has been terminated after a time
of N1T1 and hence the cost function is appended with the terminal cost Qterm

N1,T1
(t ′).

This term captures the cost incurred due to the intervals beyond the planning horizon
used, i.e. after time t ′+N1T1. For a given MPC problem where the planning horizon
starts from t ′, this quantity is a function of terminal variable values zm,T1(τ)∀m ≥
N1. As the planning horizon start time moves from t ′ to t ′ + T1, the terminal cost
accordingly changes as being a function of zm,T1(τ)∀m ≥ (N1 +1).

In this formulation, it is assumed that the system has knowledge of disturbance
evolution every T1 time step starting at t ′ until t ′+N1T1. However, it is not always
possible to have the knowledge of disturbance evolution at the finest possible gran-
ularity. Since the disturbance can be predicted only as time progresses, there arises
a need to also consider a nested temporally lifted problem and further analyze how
the longer time optimal control policy affects the shorter term optimal control policy
found in a receding horizon manner.

6.1 Nested Temporal Lifting

We have seen in Section 3 that there are hard-to-predict non-zero-mean deviations
injected into the grid at vastly different time scales. For instance, wind energy inte-
gration may cause deviations on a sub-hourly basis while solar may result in fluctu-
ations over a time scale of minutes. In addition, the demand response programs that
are being encouraged by grid operators are leading to consumption patterns with
high variability. To analyze the implications of factors like these on the system level
problem, the time lifting needs to be done at multiple time scales and the effect of
decision making at one timescale over the others needs to be explicitly considered
in quantifiable terms. In the following section, the mathematical formulation and the
information exchange framework facilitating such analysis is proposed.

First, we will establish a recurrence relation on the terminal costs by follow-
ing the derivation in [44]. Throughout this derivation, we consider only the time
coupling constraint which is of importance here and the rest of the constraints are
ignored. It should however be noted that similar relations can be derived by con-
sidering the other constraints as well. The recurrence relation will then be used to
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establish relation between the terminal costs of time lifted problems PN1,T1(t
′) and

PN1,T2(t
′) evolving at time scales T1 and T2, respectively.

Expanding the problems PN1,T1(t
′) and PN1+1,T1(t

′) with respective terminal
costs lets us write the following equation.

Qterm
N1,T1

(t ′) = min
uN1+1,T1

(τ)

∫ T1

0
c(zN1+1,T1(τ),uN1+1,T1(τ))dτ+Qterm

N1+1,T1
(t ′) (10)

This is subject to the additional time coupling constraint with an associated lagrange
multiplier ΓN1+1,T1(t

′).

xN1+1,T1(0) = xN1,T1(T1) (ΓN1+1,T1(t
′)) (11)

The Lagrangian can then be written as

Qterm
N1,T1

(t ′) = min
uN1+1,T1

(τ)

∫ T1

0
c(zN1+1,T1(τ),uN1+1,T1)dt + (12)

Qterm
N1+1,T1

+ΓN1+1,T1(t
′)
(

xN1,T1(T1)−xN1+1,T1(0)
)

Since the integral above is not directly sensitive to the decision variables in
PN1,T1(t

′), the terminal cost sensitivity with respect to variables in problem (8)
can be written as

∂Qterm
N1,T1

(t ′) = ΓN1+1,T1(t
′)
(

xN1,T1(T1)−xN1+1,T1(0)
)
+∂Qterm

N1+1,T1
(13)

In the above equation, the last two terms are constant for the problem within the
time window of N1T1. Hence, the problem in (8a) can now be rewritten as

PN1,T1(t
′) : min

uk(τ)

N1

∑
k=1

[∫ T1

t=0
c(zk,T1(τ),uk,T1(τ))dτ

]
+ΓN1+1,T1(t

′)xN1,T1(T1) (14)

The problem in (8) can be re-formulated for a time scale of T2 by breaking down
the time space into intervals of T2 length. Suppose the timescale T2 ≤ T1 is such that
N2T2 = T1, we can then obtain the terminal cost function for T2 time scale problem as
a function of the lagrange multiple of T1 time scale problem. The objective function
can then be written as

PN2,T2(t
′) : min

uk(τ)

N2

∑
k=1

[∫ T2

t=0
c(zk,T2(τ),uk,T2(τ))dτ

]
+ΓN2+1,T2(t

′)xN2,T2(T2) (15)

The intuition behind the last term is to account for the cost incurred if one considers
the time horizon beyond N2T2. However, if the disturbances for finer time granularity
of T2 time scale are available only till the time of N2T2, the terminal cost is better
approximated using the adjoint variable ΓN1+1,T1(t

′) for the time coupling constraint
found in the problem PN1,T1(t ′) when it finds the optimal control policy in the first
time window at T1 time scale. This exchange of information is shown in Figure 8.
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As an example, the problem in (15) after problem PN1,T 1(t ′) communicates the
value of Γ1,T1(t

′) can be written as

PN2,T2(t
′) : min

uk(τ)

N2

∑
k=1

[∫ T2

t=0
c(zk,T2 ,uk,T2)dτ

]
+Γ1,T1(t

′)xN2,T2(T2) (16)

This information exchange between the different MPC problems is shown schemat-
ically in Figure 8. In this figure, the upper window (in dashed lines) shows the pre-
diction horizon over which the T1 time scale problem is being solved. The optimal
control is found for each T1 given the disturbance m[kT1] for all k in the prediction
horizon. However, only the control in the first window is applied. Further, the hard-
to-predict disturbances observed at T2 time scale granularity are available only till
the time T1 starting at t = 0. This information is used to further adjust the control
input found at T1 time scale at faster rates with the ones found at T2 time scale u[pT2]
every pth sampling time in a receding horizon manner. Here, the smaller time scale
problems PN2,T2(t

′) are shown in bottom windows in dotted lines, and the optimal
control adjustments are shown in dark lines evolving over T2 timescale.

Fig. 8: Information exchange between temporally lifted problems.

Once the problem PN2,T2(t
′) has been completely solved for an interval of

t ′ + T2 = t ′ +N1T1, the present value of the state gets communicated back to the
problem PN2,T2(t

′) which uses the communicated value to find the optimal strategy
by moving the prediction horizon by one time window as shown in Figure 8.

Since these smaller time scale problems are also solved in a receding horizon
manner, the terminal cost information to be sent to the problem PN2,T2 is not obvi-
ous and a choice has to be made between sending the previous prediction horizon
time coupling Lagrange multiplier or the next one or a combination of both. In the
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figure in the first time window, we show this information to be constant until the
faster time scale problem reaches the time T1. However, to maintain consistency of
terminal cost consideration for the time windows, the problem PN2,T2(t

′) may also
be solved using decreasing window length as shown in the third time window. The
problems at T2 time scale can thus be solved repeatedly as the information of the
finer granularity disturbances gets available. This can further be formulated as mul-
tiple layers of problems defined with different granularities. The Ti for each layer i
is chosen based on the decomposition of time scales of the disturbances that enter
into the grid, thus giving rise to nested time lifting of the problem. The case for two
layers is shown in Figure 8.

7 Spatial Lifting for Multi-Agent Decision Making

The future power system operations would rely on the participation of numerous
heterogeneous end devices with vastly different time scales. Mathematically, this
means that the cardinality of vectors considered above may become so large that
they cannot be solved by one single operator. In order to better show the complexity
involved, the spatially lifted problem is shown below and is denoted as Pc for
partitioning the problem in (7) component-wise.

Pc : min
un(t)

∫ ∞

t=0
∑

n∈N
cn(zn

out(t),u
n(t))dt (17a)

subject to system dynamics, disturbance, and control constraints:

dxn(t)
dt

= fn(xn(t),un(t),mn(t),zn
in(t)); xn(0) = xn

0 (17b)

yn(t) = gn(xn(t),un(t)) (17c)

zn
in(t) = ∑

m∈Cn

zm
out(t)+mn(t) = 0 (17d)

− ∑
n∈N

zn
out(t)+mS(t) = 0 (17e)

yn,min ) yn(t)) yn,max (17f)

mn,min(t)) mn(t)) mn,max(t) (17g)

un,min(t)) un(t)) un,max(t) (17h)

In the equations above, all the symbols are appended with superscript n to denote
the vectors and functions corresponding to the nth component in the index set of
components in the system N . The constraints (17b) - (17d) and (17f) - (17h) are
written for all components in the system identified by the index n and all the con-
straints are invoked for (almost) all time t ∈ [0,∞). Note that (17e) has been changed
for component level analysis, where the output interaction variables of component
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in steady-state sum up to zero if there is no external disturbance mS injected into the
system. This has a physical interpretation of conservations of energy, the details of
which can be referred to in [17]. This equality constraint has an associated system
level Lagrange multiplier denoted as λ S(t), commonly referred to as market clear-
ing price. Furthermore, the coupling term at the component level is given by (17d)
which also takes into account disturbance mn seen at the component level. Note that
the output interaction variable zn

out is one of the entities of the vector xn.
The purpose of such spatial lifting is to create partitions in space dimension that

make the system level problem computationally scalable in addition to satisfying pri-
vacy requirements of components. However, the coupling constraint in (17e) hinders
such partitioning. This is thus dealt with by most present-day utilities, by applying a
dual decomposition algorithm, where the coupling constraint is relaxed in individual
problems. The coordination of solutions found by individual sub-problems is then
done by the system level coordinating entity ensuring that the coupling constraint
is satisfied. Furthermore, at each component n, the constraint in (17d) requires just
the local measurements of the output interaction variables of component m directly
connected. It should also be noted that if the privacy is not much of a concern, the
coupling constraint relaxation can also be done in conventional state space by ap-
plying primal decomposition techniques, where the physical variables xm of neigh-
boring components are duplicated instead [1]. This methodology is adopted in the
partitioning of most electromagnetic transient programs today for analysis at faster
time scales [43]. However, this approach requires fast communication between the
cores to ensure time synchronization, and is thus often done on one central computer
with many high-performance GPUs (Graphics Processing Units).

7.1 Nested Spatial Lifting

The problem has now been decomposed into different parts from a spatial perspec-
tive. In a large power system, the number of these end devices cannot be kept track
of by a single system operator. There thus arises a need to group together some of
them into groups which are coordinated by an entity. A group of such entities are
further coordinated by a system operator, thus forming layers of hierarchical control.
These coordinating entities are then better defined by interaction variable dynamics
z alone. The Nth area interaction variable can be defined as the sum of all its con-
stituents’ interaction variables. Similarly, the disturbance mN seen by the area and
control capability of an area uN is the sum of disturbances seen and the sum of the
control inputs, respectively, of constituent members. If the set of areas coordinated
by the system is grouped in the set Na, the problem can now be posed as

Pa : min
uN (t)

∫ ∞

t=0
∑

N∈Na

cN(zN
out(t),u

N(t))dt (18a)
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subject to system dynamics, disturbance, and control constraints:

dzN
out(t)
dt

= fN(zN(t),uN(t),mN(t),zN
in(t), ż

N
in); zN(0) = zN

0 (18b)

zN
in(t) = ∑

M∈CN

zM
out(t)+mN(t) (18c)

− ∑
N∈Na

zN
out(t)+mN(t) = 0 (λ S(t)) (18d)

yN,min ) yN(t)) yN,max (18e)

mN,min(t)) mN(t)) mN,max(t) (18f)

uN,min ) uN(t)) uN,max (18g)

All the symbols are marked with superscript N to denote the variables and functions
corresponding to the Nth aggregate component. Constraints (18b) and (18e) - (18g)
are invoked for all N ∈Na and all the constraints are written for (almost) all time t ∈
[0,∞). Equation (18c) establishes the coupling relation for the Nth area while (18d)
models the fact that the total interaction variables of all the areas sum up to zero in
the absence of disturbance seen by the system, which is again associated with an
associated system level lagrange multiplier λ S(t).

Each area-level problem can further be solved to obtain component level decision
variables. The problem written for coordinating all the components at once in (17)
can instead be split into several hierarchies, where system-level communicates La-
grange multiplier λ S(t) to respective areas. Relaxation of (18d) can then let us write
formulation PN of the Nth area coordinating its entities as

PN : min
un(t)

∫ ∞

t=0
∑

n∈N
cn(zn

out(t),u
n(t))dt −λ S(t)zN

out(t) (19a)

subject to system dynamics, disturbance, and control constraints:

dzn
out(t)
dt

= fn(xn(t),un(t),mn(t),zn
in(t), ż

n
in); zn(0) = zn

0 (19b)

zn
in(t) = ∑

m∈Cn

zm
out(t)+mn(t) (19c)

−∑
n∈N

zn
out(t)+ zN(t) = 0 (λN(t)) (19d)

yn,min ) yn(t)) yn,max (19e)

mn,min ) mn(t)) mn,max (19f)

un,min ) un(t)) un,max (19g)

In the above, the constraints (19b) - (19c) and (19e) - (19g) are written for every
component n in area N and all the constraints are invoked for (almost) all time
t ∈ [0,∞). The area level coordinator thus solves the problem at area level to give
the control signal un to the components belonging to the cluster N by just utilizing
the interaction variable dynamics of its constituent components. The interaction of
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this area with the neighboring areas is considered through the coupling constraint
in (19c). Next, the system level problem communicates the cleared value of area
level interaction variable zN as shown in (19d), resulting in an associated Lagrange
multiplier λN for denoting the sensitivity factor for imbalance in area N.

This kind of partitioning finally thus enables the component i to do its own de-
cision making with the internal dynamics involved to perform fast MPC or it can
otherwise react using feedback control. The formulation for the former is shown
in the following lines, which utilizes corresponding area level Lagrange multiplier
λN(t) such that i ∈ N, as follows:

P i : min
ui(t)

∫ ∞

t=0
ci(zi

out(t),u
i(t))dt −λN(zi

out) (20a)

subject to system dynamics, disturbance, and control constraints:

dxi(t)
dt

= fi(xi(t),ui(t),mi(t),zi
in(t)); xi(0) = xi

0 (20b)

zi
in(t) = ∑

j∈Cn

z j
out(t)+mi(t) = 0 (20c)

zi
out(t) = zi,high(t) (20d)

yi,min ) yi(t)) yi,max (20e)

mi,min(t)) mi(t)) mi,max(t) (20f)

ui,min(t)) ui(t)) ui,max(t) (20g)

The above constraints are invoked for (almost) all time t ∈ [0,∞). Equation (20c)
represents the coupling with the neighboring components while (20d) requires the
component i to track the set point zi,high

out sent by its coordinating entity, which was
found by solving (19). It should further be noted that the control objective here at
the component level is thus to ensure tracking these set points while also ensuring
the control inputs and the outputs of interest are within pre-specified limits.

7.1.1 Functional Bids

It may seem from the above formulations that the coordinating entity at any layer
needs to know the inner details of the components. However, abstraction of inner
details is possible if there is a bottom-up communication from lower layer to higher
layer as well through functional bids instead of point-wise bids, which are more
prevalent in the literature [16, 20, 30]. The methodology for creating functional
bids is to solve the optimization problem of the agents in response to the Lagrange
multiplier sent by the higher layer for small perturbations. The sensitivity is thus
captured by interpolating the points created through this methodology, which is
also illustrated in Figure 9. The slope and the intercept in the resulting marginal
cost/benefit curve along with the minimum and maximum limits are communicated
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to the coordinating entity, which then solves its own problem. It further adopts a
similar approach to simultaneously create bid functions capturing the sensitivity of
aggregate interaction variable: for perturbation in the Lagrange multiplier sent by
its coordinating entity.

The problems in power systems most generally are designed using quadratic cost
functions for ease of finding a solution, and the coupling constraint in most problems
of interest is the power balance equation, which is linear. Hence, the sensitivity of
the interaction variable with respect to the Lagrangian multiplier corresponding to
the power balance equation captures the descent direction of the entire problem. Uti-
lizing this sensitivity, each sub-problem can thus reach the global optimum of the
system with enough accuracy. In other words, functional bids provides a mechanism
to communicate the slope which dictates the adjustment around the present operat-
ing point in response to price. This approach leads to faster convergence as opposed
to point-wise bids that need to be cleared iteratively.

Fig. 9: Creation of bids.

8 Digital Implementation

From the formulations of spatial and temporal lifting, non-causality of information
flow can clearly be seen. In the case of sequential decision making by agents, the
first agent assumes a value of the Lagrange multipliers and other information from
neighboring modules and passes on the needed information to neighboring agents.
This proceeds in a sequential way until the pre-specified stopping criterion is met
[44]. This can also be done concurrently through Jacobi methods [12]. In real-time
applications where time is a critical factor, trade-off analysis is done between the
optimality in control and time available for computation. Accordingly, control inputs
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which may not necessarily be optimal are applied [44]. This can be supported by the
claim that the error obtained by stopping after one Gauss Siedel/ Jacobi iteration is
negligible compared to the one obtained due to inaccuracies in measurements and
parameter uncertainties.

Furthermore, the continuous time integral in each of the problems and the cou-
pled ODEs need to be discretized for digital implementation, which is done through
a method called transcription by choosing right time grid points. The differential
equations can be discretized using one of the many existing schemes [8] shown here
is the basic technique called forward Euler method for the differential equations of
the time-lifted problem in (8).

PN1,T1 [n
′] : min

uk, j,T 1

[ N1

∑
k=1

M1

∑
j=1

c(zk, j,T1 ,uk, j,T1)
]
+Qterm

N1,T1
[n′] (21a)

subject to

xk, j+1,T1 = xk, j,T1 +(T1/(M1 −1))f(xk, j,T1 ,uk, j,T1 ,mk, j,T1) (21b)

xk,1,T1 = xk−1,M1,T1 (Γk,T 1[n
′]) (21c)

yk, j,T1 = g(xk, j,T1 ,uk, j,T1) (21d)

ymin ≤ yk, j,T1 ≤ ymax (21e)

mmin ≤ mk, j,T1 ≤ mmax (21f)

umin ≤ uk, j,T1 ≤ umax (21g)

∀ j ∈ 1,2, . . .M1 ∀k = 1,2, ..N1

In the above formulation, the problem PN1,T1 [n
′] and the terminal cost Qterm

N1,T1
[n′]

need to be considered at discrete steps rather than continuous time t ′ which results
in the Lagrangian multiplier corresponding to the time coupling in (21c) evolving
in discrete time given by the notation Γk,T 1[n′] as well. Furthermore, the continuous
time variables within the T1 time window are being described using M1 points, each
of which is indexed by j. The notation of xk, j,T1 refers to the jth discrete point
within the kth time window, where these windows are created using the T1 time
step. Several other methods, such as collocation methods [3] and multiple shooting
methods [5], have been introduced for model predictive control in process plants,
but have not been applied to power grids yet. These techniques coupled with spatial
and temporal lifting seem to be promising given the computational advancements
that the world has seen recently.

These mathematical formulations of the system partitions seem to be promising
for handling the spatial and temporal complexities. However, implementation of
such techniques needs a framework for exchanging the right set of information at
the right time steps for provable performance.
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9 Framework for Implementing Interactive Multi-Spatial
Multi-Temporal MPC: DyMonDS

It has been discussed briefly in Sections 6 and 7 how the complexity of the problem
formulated in (5) can be reduced by handling objectives of different entities and
time scales in a distributed way through a minimum exchange of information for
coordination. In order to facilitate such multi-temporal and multi-layer interactive
information exchange simultaneously, we need to have an information exchange
protocol that enables seamless integration of end devices in a scalable way while
also ensuring efficient operation of power grids with provable performance. Dy-
namic Monitoring and Decision Systems (DyMonDS) [18], introduced some time
ago is one such framework that facilitates intertwining of the physical power net-
work in support of JIT, JIP, and JIC functionalities. This architecture is completely in
alignment with the partitions created by spatial and temporally lifted sub-problems.
Based on nested temporal and nested spatial lifting, one can define interactive ex-
change as shown in Figure 10.

Fig. 10: DyMonDS interactive information exchange.

This framework supports next-generation SCADA, by having local sensors and
control embedded into diverse components (DyMonDS). We call them local Dy-
MonDS. The main research question has been new multi-layered modular modeling,
which requires only minimal information exchange between local DyMonDS. Next
generation SCADA effectively becomes a Cyber Physical System (CPS) with well-
defined communication signals. The distinction to note here is that the red lines in
the figure go all the way to end-users, which are absent in the present electric energy
systems.
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The unified modeling framework introduced in Section 4.3 supports consistent
information exchange with any other partition or module. Each local DyMonDS has
the same internal structure as shown in Figure 10 and is called an actor. Each of these
actors can be embedded with the respective partition of the spatially and temporally
nested MPC problem. The combination of DyMonDS framework coupled with the
unified modeling framework and the software shell that facilitates such interactions
can be used to make large-scale power system design and analysis scalable [25].

Shown in Figure 11a is the proposed DyMonDS information exchange frame-
work within a single geographical area of the power grid. Each box in orange rep-
resents the end-device controllers which can be interacting with a power producer,
power consumer, or a power transmission device. These components communicate
with the area-level coordinator at the required timescale which is dictated by the
internal logic embedded. Similarly, a bunch of these area level modules interact-
ing with the system coordinator compose the entire power grid which is shown in
Figure 11b. The intra-layer communication is done at vastly different time scales
simultaneously. For example, the Power Producer module in a single area communi-
cates the bids to the system operator at Tt time scale while it may also communicate
the deviations in power generation and local output variable to the area-level con-
troller at Ts timescale for frequency regulation. Similarly, the information exchange
using economic signals is shown in Figure 12.

Notice in this figure that each DyMonDS module, with the embedded partition of
the spatially nested MPC, exchanges only the economic signals λ ,μ with its coor-
dinating DyMonDS modules and its neighbors. Only the bottom up information ex-
change is either in term of physical variables or the functional bids reacting to price
signals as explained in Section 7.1.1. In these figures, we have shown only the in-
formation exchange between several spatially nested MPC formulations. However,
it must be noted that each spatial entity has temporally nested MPC formulations
embedded as well. The MPC problem relevant to the particular disturbance time
scale gets activated as and when the entity senses relative changes in the operating

Fig. 11: DyMonDS information exchange based on physical signals between spa-
tially nested layers.
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Fig. 12: DyMonDS information exchange based on economic signals between spa-
tially nested layers.

point, relevant for analysis at respective time scales. For instance, the disturbance at
aggregate level generally evolves slower relative to its constituent components, i.e.
ΔmN [k1T1] << Δmi[k1T1] ∀i ∈ N. Area N solves the problem PN

N2,T2
(t ′) resulting

in area level cleared price of λN [kT2]. As discussed in Section 7.1, all its constituent
members i ∈ N utilize this signal for solving the problem P i

N1,T1
(t ′). Note that the

discretization used by area level and component level problems are generally differ-
ent. This is because component may be exposed to fast varying disturbances requir-
ing a smaller time step T1 < T2. Note also the fact that the cleared price computed
over coarser time granularity by the area level problem serves as a better estimate of
terminal cost from temporal perspective as described in Section 6.1.

Relations obtained by such nesting of temporal and spatial hierarchies have ex-
isted in power systems operations for a long time. These are the basis on which the
hierarchical operation exists today, although not in a provable manner. Rethinking of
this notion in the context of spatially and temporally nested MPC problems begins
to quantify several missing signals in today’s industry, while also letting us design
control for provable and efficient operation of present and future power grids.

10 Application of the DyMonDS Framework: One Day
in a Lifetime of Two Bus Power System

10.1 Example 1: MPC for Utilizing Heterogeneous Generation
Resources

Now, we begin with one of the most fundamental example to illustrate the effects of
temporal lifting-based MPC. In this example, we consider the two-area 5-bus bulk
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power system depicted in Figure 7. Here, the net system load is forecasted over a pre-
diction time horizon of T = 30 minutes. Now, fundamental to efficient scheduling
of generator power is the fact that the static optimization, performed over predic-
tion time horizon T , is significantly less effective than the optimal solution obtained
by performing MPC at each time T1 = 5 minutes. As an illustrative representation,
shown in Figure 13a are progressive predictions of system load at each discrete-time
interval of constant length T = 5 minutes. It can be seen that, closer to the real-time,
the system load predictions are more accurate. If the receding-horizon approach is
implemented based on temporal lifting at each T1 = 5 minutes, then the generation
schedule tracks the system load than when just static optimization is performed over
T = 30 minutes. Consider the three plots in Figure 13b: 1) The first plot, with legend
“System Load,” represents the observed 5-minutes average for the net disturbance.
2) The second plot with legend “Schedule with MPC” represents the feedforward
output, or electrical power, scheduled in response to the forward-shifting predictions
in Figure 13a. It is based on temporal lifting each T1 = 5 minutes. 3) The third plot
with legend “Schedule without MPC” represents a static or a single snapshot opti-
mization over the horizon T = 5. It can be observed that the MPC-based feedforward
schedule (“Schedule with MPC”) is much closer to the net system load (“System
Load”) than the static approach (“Schedule without MPC”). Now, the larger the
difference between the system load and the feedforward schedule, the higher will be
the operating cost in terms of feedback control for after-the-fact regulation. Specifi-
cally, a static optimization approach to the feedforward schedule will entail an exces-
sive overall cost of feedback action. It must be noted that in this example, only the
improved knowledge of disturbance temporal lifting is updated. Our ongoing work
concerns nested temporal lifting for scheduling of balancing resources. The nested
approach is critical to compute multi-rate feedforward schedules, particularly in an-
ticipation of disturbances forecasted over temporally composite rates.

10.2 Example 2: MPC Spatial and Temporal Lifting in Microgrids
to Support Efficient Participation of Flexible Demand

This example is to illustrate the benefits obtained by letting controllable consumer
end devices participate in the decision making. We consider the microgrid connected
to bus 3 in Figure 7. The fleets of Electric Vehicles (EVs), marked in triangles,
are the controllable loads. Each of the electric vehicle has its own requirement for
battery charging. In addition, the objective of two generators of capacities 1 MVA
and 4 MVA is to minimize their respective generation costs. The goal is to coordinate
fast reacting EVs and slow reacting generators to offset the disturbances caused
by the inflexible load. The multi-temporal disturbances that the microgrid sees are
shown in Figure 4.

We formulate the problem for coordinating these devices every Tt for meeting
their sub-objectives while ensuring the supply-demand balance. Furthermore, we
assume that the bounds on the load deviations from the predictable components can
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Fig. 13: MPC for feed-forward scheduling of generation resources.

be predicted every Tt . We thus pose it as a co-optimization problem to ensure supply-
demand balance and to ensure regulation reserves capacity is scheduled to meet the
maximum deviation of the inflexible load. We assume that we have the knowledge
on the bounds of deviations every Tt Δ P̂[kTt ] as shown in Figure 4a.

In relation to the problem formulation in (17), the time T1 considered is equal to
Tt and since we assume the disturbance evolution to be slow in the interval Tt , this
lets us derive quasi-stationary input–output relations. The device constraints need
to be satisfied by 500 electric vehicles. Efficient coordination of these, by a single
entity, is not realizable for real-time operations. Hence, nested spatial lifting needs
to be applied to form different layers of coordination. We introduce two Electric Ve-
hicle Load Serving Entities (EVLSEs) as coordinating entities to monitor 200 and
300 electric vehicles respectively, which are further coordinated by a system opera-
tor along with the generators. The DyMonDS information exchange framework for
solving such nested spatially lifted MPC problem is shown in Figure 14. Detailed
formulations of the spatially lifted problems can be found in [27].
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Fig. 14: Information exchange framework for embedding nested spatial lifted MPC
[20].

The spatially nested MPC problem relieves the system level coordinator of the
need to keep track of 500 communication channels. These algorithms coupled with
the DyMonDS information exchange framework would reduce the system operator
communication requirement to just 4 channels (2 each for the generators and the
EVLSEs). The microgrid system under study has been simulated with the above
information exchange framework for two hours when the responsive demand partic-
ipates in both energy and reserve markets and when it does not participate. The total
EV dispatch for each of these cases is shown in Figure 15a and the system energy
price variation over the time is shown in Figure 15b

The effect of participation of EVs in both energy and reserve markets is seen to
be advantageous since the system prices remain smaller compared to the other two
cases for most time intervals.

10.3 Example 3: The Role of MPC in Reducing the Need for Fast
Storage While Enabling Stable Feedback Response

Currently, ensuring system stability at the fastest time scale relies on the primary
control. Although many control methods, including nonlinear control, have been
proposed, their performance remains questionable, due to some issues such as model
validation, control saturation, insufficiency of measurements, etc. An alternative so-
lution proposed by researchers is to install fast storage. However, even with storage
installed, there is no guarantee that the interconnected system will be always stable.
Thus, from both economic and performance perspectives, one fundamental question
should be asked first: have we fully utilized the existing devices? If the answer is no,
the next question to ask is what would be the minimum storage capacity required to
ensure the stability. The existing challenges and the aforementioned two questions
indeed make MPC an appealing solution.
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Fig. 15: Participation of flexible demand in a microgrid.

At the fastest time scale, a singular perturbation argument can be made. That
is, one can think of the stabilization problem as though the slow components are
stationary. Therefore, without loss of generality, the 5 bus system can be simplified
as a two-area system with two synchronous machines, a solar PV, and a load. Sup-
pose that two synchronous machines are the only controllable components. Then
the primary control design can be posed as an MPC problem with the objective to
minimize the deviation of state variables from their reference set-points within the
prediction horizon (Ts).
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This example is given to illustrate the potential benefits of MPC at the fastest time
scale, where the disturbance is not predictable but the performance metrics must be
met at the Ts time scale. This is an extremely difficult problem because of model
uncertainties and nonlinearities. Here, we consider two scenarios that can arise in
the two-area system:

• There are unpredictable fluctuations in PV profile, as shown in Figure 2
• A sudden contingency in which we lose one synchronous machine (Two areas

are disconnected)

In the simulation setup, PV fluctuations are modeled as perturbations of the PV
state variables while the disconnection is modeled as a 10% deviation from the
nominal grid frequency. The performance of the proposed MPC is compared with
FBLC [9].

It should be noted that the prediction model used in the proposed MPC is derived
using the unified modeling framework proposed in Section 6. The detailed deriva-
tion is omitted. Interested readers are referred to [36]. The objective is to track x(Ts)
by predicting the evolution of x[pTp] within Ts interval.

Simulation results of scenario 1 are shown in Figure 16. Both FBLC and MPC
can stabilize the system. However, a significant reduction in voltage overshoot is
achieved by the proposed MPC. This comparison supports the claim that MPC can
be used to reduce the need for fast storage.

For scenario 2, voltage responses of FBLC and MPC are shown in Figure 17. As
shown in Figure 17a, the terminal voltage collapses. The singularity issue of FBLC
is the main cause of this instability. Due to the large frequency perturbation, phase
angle changes dramatically, which leads the system to a singularity point, where
feedback linearization is no longer valid. In contrast, under the same disturbance,
the proposed MPC is able to stabilize the system. Furthermore, the terminal voltage,

Fig. 16: Scenario 1: Voltage Response.
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Fig. 17: Scenario 2: Voltage Response.

as shown in Figure 17b, is limited within the feasible region in the steady state. Since
no voltage collapse occurs, expensive storage is not required. Thus, we can conclude
that the proposed MPC greatly improves the system performance. By solving real-
time optimization, the need for expensive storage will also be minimized.

10.4 Example 4: The Role of MPC Spatial Lifting in Normal
Operation Automatic Generation Control (AGC)

Control of the small-signal dynamics (SSD) is one of the major tasks in electric
power system operation. Recently, as renewable energy resources (RESs) are in-
creasingly integrated and the size of electric power systems is growing, this task
becomes even more challenging than in the past. First, the RESs create persistent
disturbances around the forecast, which could cause system frequency variation and
further lead to poor Quality of Response (QoR). Moreover, today’s primary speed
controllers and voltage controllers are tuned locally without considering the rest of
the system. It is assumed that generators under control remain stable when they are
interconnected.

However, as the system size and complexity increases, the interactions between
different machines and controllers could deteriorate or even destabilize the system
dynamics. In addition, the classic secondary control is based on area control error
(ACE), which represents the conserved net power imbalance. But this concept is
defined at the control-area level with the steady state assumption. Due to the integra-
tion of hard-to-predict renewable resources, it may be hard for future power systems
to reach the steady state. More precisely, the steady-state assumption will no longer
be valid in the future. Therefore, an enhanced secondary layer control is needed to
solve above problems. In the following, the same 5-bus system shown in Figure 7 is
used to illustrate the proposed MPC-based secondary control.
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In [21, 26, 28, 31], the authors proposed a new approach which generalizes the
conventionally used steady-state concepts such as the ACE and the inadvertent en-
ergy exchange (IEE). For instance, the interaction variable (IntV) used in the pro-
posed secondary control represents the accumulated net energy imbalance which
can be interpreted as the dynamic IEE. In this example, we further relax the small
signal assumption and extend the Enhanced-AGC by using the proposed framework,
which leads to the multi-layered MPC with unified communication (via IntVs).

The problem formulation exactly follows the procedure discussed in Section 7.
So we skip the derivation but explain the intuition behind the proposed E-AGC in-
stead. The frequency dynamics is assessed by investigating the variations of IntVs.
At the control area level, constant IntV implies the non-existence of inadvertent
power exchange with other areas. Furthermore, at the lower component level, con-
stant IntV implies a zero net power imbalance of the component, which gives rise to
a satisfactory frequency quality. Higher level MPC will coordinate resources in the
system which ensures economic performance.

It should be noted that only IntVs and control signals are exchanged between
different layers. Not all information is exposed to every module, thus, improving
the cyber security of the given electrical power system. From an implementation
point of view, this is also critical because less complicated communication channels
are needed as only two types of information are exchanged.

The simulation results for change in reference set points for two snapshots with
and without E-AGC are shown in Figure 18.

Fig. 18: Simulation Result of Area I.

Without E-AGC, the system gradually becomes unstable as set points are chang-
ing. In comparison, the proposed multi-layered E-AGC is able to regulate the fre-
quency back to the nominal value. The same conclusion can be drawn from the
interaction variable response as well.
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11 Conclusions

In this chapter, we put forward the hypothesis that multi-layered modeling and de-
cision making will play a fundamental role in the changing electric energy industry.
Today’s industry is based on the assumptions that: (1) the system load is highly pre-
dictable and inflexible; and (2) the generation is fully controllable at pre-specified
rates of producing required power. Also, most of the software tools used in indus-
trial control centers and those embedded into system equipment are designed under
the assumptions of spatial and temporal decoupling. It is described in this paper
that emerging uncertainties in the changing industry create a highly uncertain en-
vironment. To plan and operate complex electric power systems, it is essential to
rely on predictions over multiple time horizons so that long-term performance is
achieved. We make the case that this can be done by formalizing decision making in
the changing industry as a multi-temporal and multi-spatial MPC network problem.
Temporal and spatial lifting is used to decompose a long-term decision-making prob-
lem under complex uncertainties into a family of interdependent MPC sub-problems.
The information exchange required to relate these sub-problems is defined and it is
claimed and illustrated that such information protocols are critical to both efficient
and physically near-optimal operation. An earlier proposed DyMonDS framework
for enhanced operation and planning in the changing industry was used as a motiva-
tion for the methods proposed. As future work, we are formalizing the use of MPC
multi-layered approach and its DyMonDS implementation for enhanced planning
and operation methods. In particular, we are working on formalizing multi-temporal
market designs in support of interdependent capacity, energy and regulation markets.
Capturing the interdependencies under large uncertainties is the key to efficient and
sustainable utilization of energy services. In parallel work in progress is underway
towards standardizing technical performance requirements for industry participants
so that system-level technical objectives such as stability, frequency, and voltage
regulation are achieved. Further work is needed for formalizing these requirements
using unified modeling.
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Applications of MPC to Finance

James A. Primbs

1 Introduction

In recent years, a new research direction in MPC has been its application to stochas-
tic control problems that arise in the field of finance. The most prominent of these
are the portfolio optimization and dynamic option hedging problems, where MPC is
providing improved solutions that are able to successfully incorporate realistic price
dynamics, market constraints, transaction costs, and other features. The purpose of
this chapter is to introduce the key problems of portfolio optimization and dynamic
option hedging from a control perspective, and provide an overview of the MPC
formulations and methods that are being successfully used to address them.

1.1 Portfolio Optimization

The portfolio optimization problem is a central problem in modern finance theory,
and, at its most basic level, involves the question of how to best trade a portfolio
of stocks1 in order to maximize some measure of one’s future wealth. This basic
question is faced by many market participants, from an individual self-managing a
retirement account, to a multi-billion dollar university endowment seeking to ensure
long-term financial stability for an academic institution.
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1 In this chapter we will limit our discussion to the trading of stocks, but the formulations presented
directly translate to the trading of other securities as well.
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The quantitative approach to portfolio optimization began with the pioneering
work of Markowitz [17] in the 1950s, who mathematically modeled the random
returns of stocks and showed that a quadratic program could be solved to determine
the portfolio with the best trade-off of risk (as measured by the portfolio’s variance)
and return (as measured by the portfolio’s expected return) in a single period setting.

The single period formulation of Markowitz soon gave way to dynamic formu-
lations of the portfolio optimization problem in which stock price movement was
modeled in a stochastic process framework, and traders were allowed to dynamically
adjust their portfolio holdings over time. Such a dynamic formulation is naturally
cast as a stochastic control problem, where the control variables that the trader can
affect are the number of shares held of each stock, and the objective is to maximize
some measure of the future value of the trader’s wealth.

Some of the most prominent early stochastic control approaches to the dynamic
portfolio optimization problem date back to the work of Samuelson [30] in the late
1960s and more notably Merton [21] in the early 1970s. In their work, the portfolio
optimization problem is explicitly formulated and solved using stochastic control
methods and dynamic programming. In particular, in Merton’s seminal paper on
dynamic portfolio optimization [21], closed form solutions are obtained for an eco-
nomically important class of objective functions under the assumption that trading
takes place in an idealized frictionless market. The key features of such a market
are that trading is unconstrained, can take place in continuous time and does not
influence prices, there are no transaction costs or broker’s fees, and there are no
collateral or so-called margin requirements associated with borrowing.

In the ensuing years from Merton’s seminal paper to the present, much of the
work in dynamic portfolio optimization has focused on solving the problem with-
out many of the idealized market assumptions. For example, actual trading may be
subject to a number of constraints, such as no short selling, or margin requirements.
Moreover, when a trader purchases or sells a share of stock, the so-called bid-ask
spread comes into play and a commission fee is charged by the broker. These are
examples of so-called transaction costs.

It is in addressing such issues that MPC is now finding great application to fi-
nance problems. This chapter will provide an introduction to some of the basic
Stochastic MPC formulations for portfolio optimization, and highlight how they
are being used to incorporate such realistic and important market features.

1.2 Dynamic Option Hedging

The second class of problems that will be covered in this chapter, and where Stochas-
tic MPC has also found application, is dynamic option hedging, otherwise known
as option replication. This problem is intimately related to the pricing of options,
and more generally, so-called derivative securities. The basics of options in the con-
text of the hedging problem will be covered later in the chapter, but readers seeking
more in-depth coverage are referred to the books of Luenberger [16], Hull [14], and
Primbs [28].
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To provide a brief example that will be used to illustrate the dynamic hedging
problem later, a European call option is a contract between a buyer and seller that
gives the buyer the right (but not the obligation) to purchase from the seller a share
of a specified stock (called the underlying stock) at a specified price (called the strike
price) and specified time (called the expiration date). Market participants who sell
options are exposed to the liability that the buyer may want to “exercise” the option
at the expiration time and purchase shares from them at the specified strike price.
However, if the seller can in turn trade a portfolio whose value replicates the liability
of the sold option, then that traded portfolio serves to “hedge” the seller’s liability.
For this reason, option replication is commonly referred to as dynamic hedging.
Selling of options is performed by many financial market participants, especially
investment banks and market makers, and thus the ability to offset their risks by
option replication is of great value.

The dynamic option hedging problem can be cast as a stochastic control problem,
but with the objective of having the trader’s account value match the payoff value
of an option at its expiration time. In the context of control, this is the problem of
matching a target random variable as closely as possible at a specified future time.
Under specific stock price dynamics and idealized frictionless markets, the seminal
work of Black and Scholes [4] and Merton [22] provided a strategy to exactly match
the target payoff of a European call option.

Once again, Stochastic MPC formulations are of value when realistic market
environments are considered, and features such as transaction costs are encountered.
The world of derivative securities, of which European call options are the classical
example, has also greatly expanded since the original work of Black and Scholes,
and now many derivative securities exist where exact replication, even in idealized
frictionless markets, is not possible.

While sharing much in common with the dynamic portfolio optimization prob-
lem, the unique characteristics of the dynamic option hedging problem have led to
distinct Stochastic MPC formulations. The basic approaches to this problem from
an MPC perspective will be covered in Section 4.

1.3 Organization of Chapter

The rest of this chapter is devoted to explaining how MPC is being used to address
the problems of portfolio optimization and dynamic option hedging. In the following
section, we begin by modeling the account value dynamics of a trader in a control
context. This provides the basic system dynamics for both of the finance problems
that we consider. In Section 3, we address the portfolio optimization problem. We
first develop a simple control formulation of the problem, and then highlight the
ways in which MPC has been used to provide improved solutions by incorporating
relevant market features and constraints. We then turn our attention to the dynamic
option hedging problem in Section 4, where again we begin with a basic control
formulation of the problem. We then tackle the issues involved with applying MPC
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to such a problem, and highlight some approaches that have been taken. Finally,
Section 5 concludes with a brief discussion of the value MPC is bringing to the field
of finance, and opportunities for the future.

2 Modeling of Account Value Dynamics

Central to both classes of problems that we will consider is a trader who is buying
and selling stocks dynamically over time. Thus, our first order of business is to
model such a trader, and in particular, the dynamic evolution of the trader’s account
value.

To this end, we consider a market containing n stocks evolving in discrete time
that are available to buy and sell at the times k = 0,1, . . . . The price per share at
time k of each stock is denoted by Si(k) for i = 1, . . . ,n. For example, these could
represent the daily closing prices of the stocks in the S&P 500, where we would
then have n = 500.

Our goal is to model a trader with initial account value V (0) = V0, who uses
this wealth to buy and sell shares of the stocks at each time instant. Specifically,
let ui(k) denote the number of shares of stock Si(k) held by the trader at time k.
This collection of shares held, i.e., ui(k) for i = 1, . . . ,n, is referred to as the trader’s
portfolio. If ui(k)> 0, then this means that the trader owns shares of stock i at time
k, and is commonly referred to as being “long.” For example, u1(k) = 10 means
that the trader’s account holds 10 shares of stock 1 at time k. On the other hand, if
ui(k) < 0, this means that the trader has borrowed shares and sold them, and they
represent a liability. This is known as being “short,” and is commonly allowed in
financial markets.

In a control context, the shares of each stock held by the trader ui(k) for i =
1, . . . ,n represent the control variables. That is, the trader is able to choose values
for ui(k) (subject to possible constraints) at each time instant k. It is also possible
that the trader holds some funds purely in cash. This cash balance is assumed to
earn a guaranteed interest rate of r f per period, which is termed the risk-free rate of
return. Let u0(k) denote this amount held in cash at time k. With this notation, the

Fig. 1: Timing of stock movement and transactions in trading.

total account value of the trader at time k is given by the sum of the values of the
positions in stocks, plus the amount held in cash,
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V (k) = u0(k)+
n

∑
i=1

ui(k)Si(k). (1)

To obtain dynamics for the evolution of the account value V (k) over time, we
consider the timing of events, as shown in Figure 1, as we move from time k to
k+1. First, the value of each stock changes from Si(k) to Si(k+1), and the risk-free
rate r f is earned on the cash balance u0(k). Thus, at time k+ 1 prior to any trades
being made, the account value is

V (k+1) = u0(k)(1+ r f )+
n

∑
i=1

ui(k)Si(k+1). (2)

Next, at time k+ 1 we are allowed to trade and change our holdings in the stocks
from ui(k) to ui(k+1). We will assume that this is done in a so-called self-financing
manner, which means that no “outside” money is allowed to be added to or removed
from the account. In this case, our account value immediately preceding the trades
at time k+1, as given in (2), must be exactly equal to our account value following
the trades. That is, we must also have

V (k+1) = u0(k+1)+
n

∑
i=1

ui(k+1)Si(k+1), (3)

which is the k+1 counterpart of Equation (1).
These steps can be combined into a single difference equation for the account

value by solving for u0(k) in Equation (1) and substituting into Equation (2). This
leads to

V (k+1) =V (k)(1+ r f )+
n

∑
i=1

ui(k)(Si(k+1)− (1+ r f )Si(k)). (4)

One way to view this difference equation is that each input ui(k) is multiplied by
a random disturbance term generated by the movement of the corresponding stock
price Si. These are then summed and contribute to the new account value at the end
of the period, V (k+1). This input/output block structure is shown in Figure 2.

Fig. 2: Account value dynamics block with inputs and outputs.
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2.1 Stock Price Dynamics

As depicted in Figure 2, the stock prices enter the account value dynamics as an
exogenous disturbance.2 An important aspect of any market model is an accurate
description of the movement of these stock prices.

A common starting point is to model the return of each stock as

Si(k+1)−Si(k)
Si(k)

= ri(k)

where ri(k) is a random variable. When ri(k) is assumed to be Gaussian, with mean
μΔ t and variance σ2Δ t, where Δ t represents the discrete time increment measured
in years, the model of the stock can be written as

Si(k+1)−Si(k)
Si(k)

= μiΔ t +σizi(k) (5)

where zi(k) ∼ N(0,1) is a standard normal random variable. Moreover, returns are
often assumed to be independent over each time period; i.e., E[zi(k)z j(l)] = 0 for
all i, j = 1 . . .n and k �= l. The continuous time limit of this model is the so-called
Geometric Brownian Motion (GBM) stock model

dSi

Si
= μidt +σidZ (6)

where Z(t) is a standard Brownian motion [23]. This model pervades much of the
classical financial literature; see, for example, [4, 21].

In a similar manner, when dealing with n stocks, their returns are often repre-
sented as a Gaussian random vector

Fig. 3: Block diagram structure of simple trading strategy.

2 We assume that the trader’s actions do not affect stock prices, which is referred to as being a
price taker, otherwise we would require a model for stock prices that depends on the buying and
selling of the trader.
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r(k) =

⎡
⎢⎢⎢⎣

r1(k)
r2(k)

...
rn(k)

⎤
⎥⎥⎥⎦

with corresponding mean and covariance structure given by

E[r(k)] = μΔ t, E
[
(r(k)−E[r(k)])(r(k)−E[r(k)])T

]
= ΣΔ t.

This vector GBM model is frequently used as a starting point for stock price
movement, but numerous other models exist. In fact, the range of possible models
for stock price movement is so large that no attempt will be made to survey the
possibilities here. Moreover, for many problems in finance, it is important to be able
to allow significant flexibility in the modeling of stock prices, given that the range of
phenomena possible in finance markets is vast. For example, one may want to allow
prices generated via an algorithm or drawn from historical data rather than from
an analytical model. Practically speaking, this means that in some cases the system
dynamics will have structure that can be taken advantage of in MPC formulations,
but in many others it won’t.

2.2 Control Structure of Trading Algorithms

To provide a more complete diagram of the information flow in trading, we note
that in its simplest form, a trading strategy is a mapping from stock prices S(k) and
account value V (k) to the number of shares held of each stock, u(k). This trading
strategy, along with the stock price dynamics, then drives the account value dynam-
ics. These interconnections are shown in block diagram form in Figure 3.

More generally, a trading algorithm may use additional information about the
past and present state of stock prices in the market, and perhaps outside exogenous
information (such as news sources, financial statements, economic conditions, etc.)
to determine the control variables u(k).

With this basic control description of the dynamics involved in trading as back-
ground, in the following sections we turn our attention to the problems of portfolio
optimization and dynamic option hedging.

3 Portfolio Optimization Problems

As stated previously, the goal of portfolio optimization is to trade a portfolio of
stocks in order to maximize some measure of wealth (or account value) at a future
time. That measure of future wealth defines the objective function for the portfolio
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optimization problem, and typically involves a tradeoff between achieving a high
expected value of wealth, but at the same time attempting to minimize risk. That is,
ideally one would like to make a lot of money in the least risky manner possible.

With these considerations in mind, there are a number of objective functions that
one can use in a portfolio optimization problem. For the purpose of illustration, in
this chapter we will consider one of the most standard and widely used objective
functions that simply trades off the expected value of future wealth with its variance.
That is, consider maximizing an objective function of the form

J0(V (T )) = E0[V (T )]− γ
2
V0[V (T )] (7)

where T is some future time of interest, and E0[·] and V0[·] denote the expectation
and variance, respectively, conditioned upon the information at time 0. The parame-
ter γ , specified by the trader, is a risk aversion coefficient that influences the trade-off
between expected return and risk. The higher the value of γ , the more risk averse
the trader. For example, traders with a longer horizon for generating wealth, such as
a university endowment, will likely have a lower value of γ , whereas an individual
who is nearing retirement and more risk averse will tend to choose a higher value.

Given such an objective function, the basic portfolio optimization problem is
given as

max
u(·)

J0(V (T )) (8)

s.t. V (0) =V0, (9)

V (k+1) =V (k)(1+ r f )+
n

∑
i=1

ui(k)(Si(k+1)− (1+ r f )Si(k)), (10)

k = 0, . . . ,T −1 (11)

where the control actions u(·) are taken over some non-anticipating admissible set
of functions. Note that we have omitted a model for the stock price dynamics, which
must also be included and will depend on the details of the problem.

There are various instances in which this basic portfolio optimization problem
can be solved in closed form. For example, when stock price movement in (5) is
combined with the mean-variance objective of (7), the problem dynamics can be
transformed to a linear system with multiplicative noise, which is then amenable to
dynamic programming methods [32]. Moreover, the continuous time version of this
problem with the GBM stock price dynamics of (6) and the hyperbolic absolute risk
aversion class of utility functions as the objective was solved explicitly by Merton
[21].

However, when realistic market features are added to the problem, such as con-
straints and transaction costs, closed form solutions often fail to exist. This is where
MPC methods, as described next, have been used with great success.
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3.1 MPC Formulations

The standard MPC implementation repeatedly solves an on-line, open-loop version
of the portfolio optimization problem at each time step k, and implements only the
first step of the optimal control sequence in typical receding horizon fashion.

That is, consider the open-loop optimization problem conditioned on the infor-
mation at time k with MPC horizon N,

max
u(·|k)

J
(N)
k (V (N|k))

s.t. V (0|k) =V (k),

V ( j+1|k) =V ( j|k)(1+ r f )+
n

∑
i=1

ui( j|k)(Si( j+1|k+1)− (1+ r f )Si( j|k)),

j = 0, . . . ,N −1,

where, based on some specified stock price model Si( j|k) for j = 0, . . . ,N, this prob-
lem predicts N steps into the future from the current time k to obtain V (N|k). The

objective function J
(N)
k (·) is used to capture the risk-return characteristics of the

trader over the horizon N, and the problem is solved open-loop to obtain the op-
timal control actions u∗( j|k), for j = 0, . . . ,N − 1. The MPC control strategy then
uses u∗(0|k) at time k, resolving this optimization problem at each new time step.
Figure 4 provides a pictorial representation of this implementation.

The advantage of the MPC approach is that many of the features encountered
in real financial markets can be incorporated into the MPC on-line optimization,
ultimately leading to greatly improved trading strategies. To provide a feel for the
range of features that have already been addressed in this manner, next we provide
an overview of some of the literature on MPC for portfolio optimization. This is fol-
lowed by a detailed treatment of the issue of transaction costs, and the specification
of some commonly encountered portfolio optimization constraints.

3.1.1 Overview of MPC Literature

The exact form of the on-line optimization is highly dependent on the assumed
model for stock price dynamics and the objective function. Here, we briefly mention
some of the models that have been used in the context of MPC formulations.

When the basic stock price model of Equation (5) is used, and a mean-variance
objective function is considered, the on-line optimization can often be solved as
a convex quadratic program. Tractable on-line optimizations are also possible for
more advanced models of stock price movement and objectives. For example, in
Herzog et al. [12, 13], a linear factor model is used to drive stock returns, and an
approximation to the log-wealth of the account value is considered. Dombrovskii
and coauthors have worked extensively on random parameter systems with multi-
plicative noise [8, 10, 11] and have included features such as Markovian jumps [7].
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Fig. 4: Standard MPC implementation applied to the portfolio optimization prob-
lem.

In Sridharan et al. [31], a mini-max objective is used in a wealth tracking context,
whereas in Yamada and Primbs [33], MPC is applied to the trading of pairs of stocks,
where the relative value between stocks is modeled as mean-reverting.

Additional formulations appearing in the literature include Lee [15], who uses
MPC to solve a portfolio optimization problem involving the dynamics of illiquid
asset classes, Meindl [18] who develops an MPC approach in the context of bond
portfolios, and Piccoli and Marigo [24] and Primbs and Sung [29] who consider
portfolio tracking related problems.

While most of the MPC formulations given above use an open-loop on-line opti-
mization, others have used some form of feedback control, such as Calafiore [5, 6],
Primbs and Sung [29], and Primbs [25].

As evidenced from this literature, the range of possible formulations is extremely
varied and often depends on the exact market and trading objective under consider-
ation. For example, here we have not mentioned the stock price models that appear
in dynamic option hedging that will be considered in Section 4. An important take-
away is that the stock price model, objective function, and constraints can greatly
affect the MPC formulation and its corresponding on-line solution methodologies,
providing a nearly endless supply of challenges and opportunities for the MPC com-
munity.

The rest of this section is used to provide specific examples of commonly en-
countered market features and how they are addressed in MPC formulations. We
begin with the issue of transaction costs, followed by various forms of portfolio
constraints.
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3.1.2 Transaction Costs

One of the most successful applications of MPC has been in its ability to incorporate
the effects of transaction costs. They have been explicitly considered in [6, 9] in a
portfolio optimization context, and in [2, 20, 26, 27] in the dynamic option hedging
context of Section 4.

Transaction costs are the costs that are incurred when trades are made (buying or
selling). They come from two main sources. The first is a commission that is paid
to the broker, and is often a fixed amount per trade. These days, the commission per
trade ranges from $15 or so down, and is generally not a significant cost for large
traders.

The second cost associated with buying and selling is related to the so-called
bid-ask spread. The bid is the price that one can sell a stock for immediately, while
the ask is the price that one can buy for immediately. When a trader uses so-called
market orders to buy and sell, they buy at the ask and sell at the bid, in effect losing
the difference between the bid and ask (the so-called bid-ask spread) on each round
trip transaction.3 This can be considered a cost of transacting. Note that this cost
scales in proportion to the number of shares transacted, and is often modeled as a
fixed percentage of the dollar amount of each transaction.

The bid-ask spread ranges from a penny on up, depending on the liquidity of
the stock. While it may appear to be a very small amount, and often represents a
fraction of a percent of the dollar amount transacted (for example, $0.01 on a $10
stock is just 0.1% of the dollar amount transacted) it can have a significant effect on
the profitability of high-turnover strategies.

MPC has been extremely successful at taking into account the effects of transac-
tion costs. Next, we illustrate how transaction costs may be incorporated into MPC
formulations via altering the account value dynamics.

Modeling of Transaction Costs in Account Value Dynamics

Assume that at time k, a transaction takes place in which the shares held in stock
i change from ui(k − 1) to ui(k). The total dollar amount of this transaction is the
price of stock i at time k, Si(k), multiplied by the number of shares bought or sold
ui(k)−ui(k−1), which totals Si(k)(ui(k)−ui(k−1)).

If we model the transaction cost associated with this trade as a fixed percentage χi

of the dollar amount, then the cost of this single transaction will be χiSi(k)|ui(k)−
ui(k−1)|. Therefore, the cost of all transactions corresponding to the n stocks is just
the sum of the individual costs,

T (k) =
n

∑
i=1
χiSi(k)|ui(k)−ui(k−1)|. (12)

3 Due to a lack of liquidity, large market orders will sometimes transact at prices that are worse
than the existing bid or ask. This represents a further cost.
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Now, if the account value immediately prior to the transactions at time k was
V (k−), then the account value immediately after the transactions (assuming the self-
financing constraint is in effect) is simply the previous account value minus the
transaction cost,

V (k+) =V (k−)−T (k). (13)

The account value dynamics over the next time step is given by

V (k+1−) =V (k+)(1+ r f )+
n

∑
i=1

ui(k)(Si(k+1)− (1+ r f )Si(k)). (14)

If desired, one can combine the above two equations to obtain

V (k+1−) = (V (k−)−T (k))(1+ r f )+
n

∑
i=1

ui(k)(Si(k+1)− (1+ r f )Si(k)). (15)

To incorporate this into the on-line MPC optimization, one simply replaces the ac-
count value dynamics over the horizon with Equations (12) and (15). Moreover,
such simple proportional transaction costs are often quite tractable when added to
the on-line optimizations.

If a different form for the transaction cost is desired, one replaces the definition
of T (k) in (12) by the appropriate model. For example, for combined fixed and
proportional costs, see the model used by Bemporad et al. [2] in the context of
dynamic option hedging.

3.1.3 Constraints in Portfolio Optimization

To complete this section, we outline a number of constraints that are frequently
encountered in financial markets and trading. Some arise out of practical consider-
ations, while others are imposed via regulation. Most of these constraints can be
directly incorporated into open-loop versions of the on-line MPC optimization; e.g.,
see [7, 9, 29].

No Short Selling

Short selling is when a trader borrows shares of a stock and sells them in the mar-
ket. In our model, this corresponds to holding a negative number of shares u(k)< 0.
Short selling is extremely common in financial markets, but in some cases is re-
stricted.4 In the context of our portfolio optimization formulation, short selling cor-
responds to the constraint that the decision variables must be non-negative, u(k)≥ 0.

4 For example, short selling is not possible in Individual Retirement Accounts (IRAs) in the US.
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Limits on Percent Invested

When trading, it may be desirable to hold a portfolio that is diversified and not overly
concentrated in a single stock or industry. In the case of a single stock, a constraint
of the form

|ui(k)Si(k)| ≤ βV (k)

with β some fraction, such as 5%, will ensure that stock i cannot comprise more
than β of the portfolio. A similar constraint can be imposed over all stocks in a
specific industry I as

∑
i∈I

|ui(k)Si(k)| ≤ βV (k).

Turnover Constraints

In order to avoid excessive trading, one may seek to impose a so-called turnover
constraint. This is a constraint that limits that dollar value of the trading that takes
place, and can be imposed as

n

∑
i=1

|ui(k)−ui(k−1)|Si(k)≤ βV (k)

where β specifies the maximum turnover allowed, expressed as a percent of the total
portfolio value.

The above considered constraints are some of the most commonly encountered in
portfolio optimization, however others may appear depending on problem specifics.
In such cases, a great advantage of MPC is its ability to incorporate such constraints
into the on-line optimizations. Next, we turn our attention to the dynamic option
hedging problem.

4 MPC in Dynamic Option Hedging

The second main class of problems we consider in this chapter is dynamic option
hedging. As mentioned in the introduction, the dynamic option hedging problem
involves trading to replicate, as closely as possible, the payoff of an option. The
classical dynamic hedging problem is that of replicating the payoff of a European
call option on a single stock. We will use this problem to illustrate the application
of MPC methods. Thus, we begin this section with a brief description of a European
call option and its associated hedging problem.
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4.1 European Call Option Hedging

A European call option is a contract that gives the owner the right, but not the obli-
gation, to purchase a share of a specified stock, S, called the underlying stock, at a
fixed price K, called the strike price, at a fixed time T , called the expiration time.

For example, a European call option on AAPL with strike price $100 and ex-
piration in 2 months gives the holder of the option the right to purchase AAPL
in 2 months for a price of $100. If, in 2 months, AAPL is selling for $120, the
holder of the option will “exercise” it and purchase AAPL for $100, thus saving
S(T )− K = $120 − $100 = $20. The seller of the option will have to deliver the
option holder the share of AAPL in exchange for the $100, and thus will lose $20.
On the other hand, if AAPL is selling for $90 in 2 months, the holder of the option
will not “exercise” it, thus letting it expire worthless. In this case, the seller of the
option has no remaining obligation to the option holder.

Using this reasoning, a European Call Option on a stock S can be thought of as
a security with a payoff value of c(T ) = max{S(T )−K,0} at the expiration time T .
That is, if the stock price at expiration T is greater than the strike price K, the holder
of the option will exercise it and purchase the stock for K. This represents a savings
of S(T )−K over the market price of the stock. On the other hand, if the stock price
at expiration T is below the strike price, the option will not be exercised and will
instead expire worthless. Combining these two scenarios indicates that the value of
an option at expiration is given by the function c(T ) = max{S(T )−K,0}. A plot of
this payoff function is provided in Figure 5.

The option replication problem involves trading the underlying stock over time
so that the value of the trader’s account at expiration time T matches the payoff
value of the option c(T ) = max{S(T )−K,0}. The ability to create such a trading
strategy serves two purposes. First, if provides a notion of a “fair” price for the
option.5 The reasoning is simple. Since the portfolio replicates the payoff of the
option, a trader should be indifferent between holding the option or the replicating
portfolio. Thus, the cost of creating the replicating portfolio should be equal to the
price of the option since they provide equivalent payoffs.

Second, if one sells an option, then they are responsible for the payoff c(T ) =
max{S(T )− K,0}. With a replicating strategy, the seller can take the proceeds
of the option sale and use it to “hedge” their liability by replicating the required
max{S(T )−K,0} payoff. For this reason, option replication is often called dynamic
hedging. This hedging is particularly important for investment banks and option
market makers that routinely sell options.

5 More specifically, it leads to the concept of the absence of arbitrage price for the option. See [16]
or [28].
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Fig. 5: The payoff function of a European call option with strike price K = $100.

4.2 Option Replication as a Control Problem

As explained previously, the option replication problem involves trading the underly-
ing stock in order to replicate the payoff of the option c(T ) as closely as possible. As
a control problem, this may be formulated as follows. Let ρ(V (T ),c(T )) represent
some measure of the error between the option payoff c(T ) = max{S(T )−K,0} and
the trader’s account value V (T ). For example, a common choice is the mean-squared
error ρ(V (T ),c(T )) = E0[(V (T )− c(T ))2], but many other objectives have been
used as well. Then, the dynamic option hedging control problem can be stated as

min
u(·)

ρ(V (T ),c(T ))

s.t. V (k+1) =V (k)(1+ r f )+u(k)(S(k+1)− (1+ r f )S(k)),

V (0) =V0,

where again the optimization is taken over admissible non-anticipative trading strate-
gies u(·). A pictorial representation of this control problem is given in Figure 6.

In some cases, the trader’s initial wealth V0 may also be a decision variable. That
is, the trader is able to choose the best initial value of the account in order to replicate
the payoff. This best initial account value serves as a notion of the “fair” price for
the option, since it represents the initial capital needed to best replicate the option.
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Fig. 6: The figure on the left shows two paths of the stock. The right plot shows the
desired replication of the payoff function c(T ) = max{S(T )−K,0} by the account
value V (T ) at expiration time T .

In idealized frictionless markets when the underlying stock S follows the GBM
price dynamics of Equation (6), the problem has a closed form solution that was
first given by Black and Scholes [4]. On the other hand, when markets are not ideal,
such as when transaction costs exist, no closed form solution is possible. This has
led to the development of MPC methods, as discussed next.

4.3 MPC Option Hedging Formulations

The basic MPC approach to option replication involves using a model of the stock
price movement to predict the account value N steps into the future from the current
time, V (N|k), so as to minimize the hedging replication error. That is, the basic
structure of the on-line optimization is typically of the form,

min
u(·|k)

ρ(N)
k (V (N|k))

s.t. V ( j+1|k) =V ( j|k)(1+ r f )+u( j|k)(S( j+1|k)− (1+ r f )S( j|k))
V (0|k) =V (k),

where ρ(N)
k (·) captures the desired replication objective, but suitably transformed to

the end of the horizon k+N.
There are two important ways in which this on-line optimization tends to differ

from those used in the portfolio optimization problem. The first is that the optimiza-
tion is often not solved open-loop. That is, rather than assuming that the control vari-
ables u(·|k) depend only on time, stochastic programming formulations that allow
stock price dependence are used. For example, in the work of Meindl and Primbs
[19, 20] and Bemporad et al. [1–3] scenario-based stochastic programming formula-
tions that allow dependence on the stock price value are developed. In a similar vein,
in Primbs [26], u(·|k) is taken to be a linear combination of basis functions that also
depend on the stock price.
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Fig. 7: An option pricing formula is used to translate the objective of replicating
the option payoff at expiration T to an objective of replicating the option pricing
formula used at the end of the MPC horizon k+N.

Second, different approaches have been taken over how to assign a reasonable

objective function ρ(N)
k (·) to reflect the goal of achieving replication at the expiration

time T . The issue arises because typically the horizon used in MPC does not come
close to reaching the expiration time T of the option. For example, the expiration of
the option may occur in 2 months, but the MPC horizon may only extend 1 week
into the future. We explain two different approaches to this objective function issue
next.

4.3.1 Using an Option Pricing Model

One approach to assigning the objective for the on-line MPC optimization is to
use an existing option pricing formula as the replication target at the end of the
MPC horizon, k +N. That is, while the payoff of the option c(T ) is only known
at expiration T , a pre-existing and often simplified option pricing formula, call it
ĉ(k+N), is used to compute a theoretical value for the option at the end of the MPC

horizon k+N. The on-line objective function in the MPC problem, ρ(N)
k (V (N|k)),

then becomes to replicate the option pricing formula ĉ(k+N). Moreover, the market
features that were ignored in order to compute ĉ(k +N) are then included in the
MPC optimization. This approach is depicted in Figure 7, and has been successfully
employed in [1–3].

4.3.2 Predicting to Expiration

A second approach is to predict from the end of the MPC control horizon k+N all
the way to expiration T using a predefined hedging strategy. The objective is then
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Fig. 8: A predefined strategy is used to continue to expiration where the objective is
to replicate the payoff value of the option.

the replication error at expiration, and the MPC implementation takes on a shrinking
horizon approach. This is depicted in Figure 8. The hedging strategy used to predict
to expiration is usually quite simple and makes little attempt to incorporate detailed
market features that are included over the MPC control horizon. Variations of this
approach were employed in [18–20, 27].

4.4 Additional Considerations in Option Hedging

Because option replication involves dynamically trading a stock, some of the con-
siderations that appear in the portfolio optimization problem are also relevant in
this case. For example, since option replication strategies involve frequent trading,
transaction costs are a highly significant issue, and were key motivations behind the
MPC formulations in [2, 18–20, 27]. On the other hand, most participants in options
markets, especially those that seek to hedge option sales, will not be restricted from
short selling. Thus, such constraints are often not relevant to the hedging problem.
Moreover, option pricing and hedging strategies are highly dependent on the volatil-
ity of the underlying stock. Therefore, using models that accurately capture market
features that are relevant to dynamic hedging is important.

Another issue is the choice of a measure of replication. That is, many reason-
able choices can be made for the replication objective function ρ(·). For example,
as mentioned previously, a popular choice is the mean-squared error between the
account value V (T ) and the option payoff c(T ); i.e., E[(V (T )− c(T ))2]. This can
lead to simplified calculations for the on-line optimization; see, for example, [27].
On the other hand, in the context of a seller hedging an option, the seller will lose
money if V (T ) < c(T ), but is actually rewarded when V (T ) > c(T ). This has mo-
tivated other replication or outperformance criteria, including mean-variance [27],
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expected absolute error [20], and conditional Value-at-Risk and mini-max [2, 3].
Thus, there are many different objective functions that can be reasonably used for
the dynamic hedging problem, each leading to various trade-offs in computation and
performance characteristics.

Overall, dynamic option hedging is an important application area in the field of
finance, and MPC approaches are able to effectively and elegantly address many of
the critical features of this problem.

5 Conclusions

This chapter provided an overview of the application of MPC to the field of finance.
The two classical finance problems of portfolio optimization and dynamic option
hedging were considered. Both of these are naturally formulated as stochastic con-
trol problems and thus are amenable to Stochastic MPC techniques.

MPC is particularly relevant to problems involving trading because financial mar-
kets are naturally a dynamic and constrained environment where the inclusion of
realistic features, such as transaction costs, has a significant effect on the quality of
solutions. Moreover, the modeling of stock price movement, which plays a key role
in determining the stochastic dynamics, and trading objectives are extremely varied.
Some formulations lend themselves to problem structure that facilitates efficient
on-line optimization, while others are better addressed via more general stochastic
programming methods. All of these facts play to the strengths of MPC, which is
flexible enough to locally incorporate important features in its on-line optimization,
while globally provide solutions that outperform existing methods.

Overall, finance is an exciting application area where MPC is being used with
great success. As new Stochastic MPC methods are developed, they will continue to
find fertile ground for application in financial markets and their associated stochastic
control problems.
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