
Chapter 5
Enacting Functions from Geometry
to Algebra

Scott Steketee and Daniel Scher

Abstract This paper describes an innovative technology-based approach that
enables students to learn function concepts by constructing and manipulating
functions in the form of geometric transformations on the plane. Students’ direct
sensorimotor experiences with variables, function rules, domain and range help
them make sense of linear functions, Cartesian graphs, derivatives, multiplication of
complex numbers, and Euler’s formula. Treating geometric transformations as
functions is not a new idea in secondary mathematics, but few curricula take full
advantage of the approach to develop students’ concept of function. Web
Sketchpad, the technology described in this paper, supports a constructionist
approach to students’ activities of creating, manipulating, and investigating math-
ematical objects, thus linking their sensorimotor activity to their conceptual
understanding. The software provides a simple interface with no menus, based on
dragging and on using a small set of tools designed by the activity author. These
limited options help create a field of promoted action, encouraging productive
student behaviour in accomplishing a specific task.
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5.1 Introduction

How does it feel to move like a dependent variable?
Most students would regard this question as nonsense; they view variables as

abstract ideas that are unconnected to their sensorimotor systems. Though devel-
oping students’ understanding of function concepts is a critical goal of secondary
mathematics, few students graduate from secondary school with a robust concep-
tualization of function (Carlson & Oehrtman, 2005). Students have little sense of
covariation, and their concept image of function is often at odds with the formal
definition (Vinner & Dreyfus, 1989). They graph functions without understanding
the link between the behaviour of the variables and the shape of the graph.

Mathematics educators have long stressed the importance of learning by doing,
and cognitive scientists have researched ways in which “cognitive structures
emerge from the recurrent sensorimotor patterns that enable action to be percep-
tually guided” (Varela, Thompson, & Rosch, 1991, p. 173). Yet curricula often fail
to provide students with the sensorimotor grounding for function concepts. The
primary visual representation that students encounter is the Cartesian graph, which
lacks any explicit representation of variables; the other main representation is the
equation, such as f(x) = 2x − 3, that lacks any sense of dynamism or opportunity
for students to put variables into motion.

Not surprisingly, students’ difficulties with functions often begin with the con-
cept of variable, which has so many meanings and serves so many purposes that
students have difficulty formulating a coherent sense of the term (Schoenfeld &
Arcavi, 1988). Freudenthal (1986, p. 494) argues that mathematical variables “are
[an] indispensable link with the physical, social, and mental variables” and observes
with approval that “originally ‘variable’ meant something that really varies”
(p. 491). But students seldom experience variables in motion despite evidence
suggesting that “if students are allowed to control the movement of an object, for
example, or the changing of a variable, their scores and other measures of under-
standing are much higher than from passive animations or static diagrams alone”
(Holton, 2010, p. 5).

If the learning of function begins not with static graphs and equations but rather
with variables in motion, with the dance in which independent and dependent
variables engage, we argue that students will develop a more detailed and robust
concept image of function, and that ideas like the relative rate of change, domain,
range, composition, and inverse will be better grounded in their sensorimotor
experiences. We believe that with such a concept image as a foundation, students
can more easily learn to look at a Cartesian graph and visualize the implicit motion
of the variables, mentally seeing x move along the horizontal axis while f(x) moves
in synchrony along the vertical axis, and that students can even learn to look at a
graph of f(x) = sin x, visualize x in motion, track the rate at which the dependent
variable changes, and sketch the graph of the derivative of sin x.
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5.2 Geometric Functions

Though geometric transformations are functions that have as their variables points
in the plane, transformations have seldom been used to introduce function concepts.
Coxford and Usiskin’s ground-breaking treatment of transformations—first intro-
duced in Geometry: A Transformation Approach (1971), and continued in UCSMP
Geometry (1991)—does the converse, introducing transformations as functions,
which is not quite the same. Freudenthal (1973) has observed that “[geometry] is
one of the best opportunities that exists to learn how to mathematize reality…. [N]
umbers are also a realm open to investigation…but discoveries made by one’s own
eyes and hands are more convincing and surprising” (p. 407). The advent of
dynamic mathematics software such as Cabri and Sketchpad enabled students to
experience functions by constructing and manipulating geometric objects that
depend on each other. As Hazzan and Goldenberg (1997) note, “[the] geometric
context may provide enough contrast with algebraic contexts to allow essential
aspects of the important ideas [of function] to be distinguished from features of the
representation” (p. 287).

One way that researchers and curriculum developers connect geometry to
functions is in activities in which students begin with a geometric construction,
change one of the construction’s elements (commonly by dragging a point), and
describe how the dragged point affects other constructed objects or the measure-
ments of those objects. Examples appear in Hazzan and Goldenberg (1997) and
Wanko, Edwards, and Phelps (2012). The independent variable may be the dragged
point or a measured value derived from the dragged point. Similarly, the dependent
variable may be a constructed point that varies when the first point is dragged or a
measured value derived from such a point.

A second way for students to experience function concepts in a geometric
context is applying geometric transformations to polygons and other constructed
geometric figures (Flores & Yanik, 2016; Hollebrands, 2003, 2007). Many text-
books use a variation of this approach by incorporating tasks in which students
transform polygons constructed on a coordinate plane as in Fig. 5.1. In some
activities, the independent and dependent variables are pictures or other shapes. In
these activities, the independent and dependent variables are not atomic but have
structure of their own.

For the purpose of introducing students to function concepts, both of the above
approaches risk creating confusion and misunderstanding due to the presence of
extraneous structural elements: Either the function rule is geometrically constructed
or the variables themselves have structure. We suspect it is preferable for students
to begin with unitary variables and simple, well-defined function rules.

A third way, used here, is based on functions structured similarly to those in
Geometry: A Transformation Approach. The prototypical function is a similarity
transformation (a reflection, rotation, transformation, or glide reflection, possibly
composed with a dilation) using geometric points as both independent and
dependent variables. The variables are atomic, with no structure of their own, and
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function rules are limited to the five families listed above with simple parameters
(such as a mirror line or a center and angle of rotation) distinguishing one family
member from another. We refer to such functions as geometric functions.

Despite a long history of discussion in mathematics education circles about the
role transformations should play in the study of geometry, and despite the obser-
vations by Freudenthal and others that suggest the potential value of introducing
function concepts in this way, the authors are not aware of any published cur-
riculum that uses geometric transformations for this purpose.

5.3 Geometric Functions and Dynamic Mathematics
Software

Geometric functions are particularly suited for introducing students to function
concepts because their two-dimensional nature (ℝ2 ! ℝ2 transformations in the
plane) is well modelled by the two-dimensional input and output interfaces (mouse/
finger and screen) that students employ. Similar activities based on one-dimensional
dragging using ℝ ! ℝ functions are likely to be less effective: motor actions are
less expressive, and visual effects are less compelling in one dimension than in two.

Using dynamic mathematics software, we can leverage this correspondence
between the mathematical domain and the computer’s affordances to reduce the
cognitive distance between the student’s concrete sensorimotor system and the
abstract mathematical concepts of function. The result is that the Coxford/Usiskin
innovation (of treating geometric transformations as functions) is even more per-
suasive and effective today than when it was introduced in 1971.

When today’s student constructs a reflection function as in Fig. 5.2 and drags the
independent variable (point x), she can directly observe the motion of the dependent
variable rj(x). (The notation rj(x) is an abbreviation for “the reflection in mirror j of
x”.) By comparing the motion of the two variables and observing the traces they leave

Fig. 5.1 A coordinate-system transformation problem
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behind, she might describe the relative rate of change of x and rj(x) this way: “When I
drag along the mirror, rj(x) moves the same way as x, but when I drag toward or away
from the mirror, rj(x) moves the opposite way from x.” Once she verifies that this
description is common to all members of the reflection function family, she can
identify any other member of this family even if its mirror is hidden, and she can use
her understanding of the relative rate of change to locate the hidden mirror.

5.4 Innovative Tools in Support of Tasks

Figure 5.2 shows the work of a student using a Web Sketchpad (2016) activity to
construct and investigate a reflection function. (This activity, and the other activities
illustrated in this chapter, are available online at https://geometricfunctions.org/
icme13.) Web Sketchpad (WSP) is dynamic mathematics software that runs on all
modern browsers that support HTML5 and JavaScript. WSP can open nearly any
document created by The Geometer’s Sketchpad (Jackiw, 2009), and provides an
innovative self-documenting tool interface allowing tools to be customized for each
activity.

When a typical student begins the Reflect Family activity in Fig. 5.2, she sees a
screen with a Tracing button at the upper right and six tool icons on the left. She
uses the first three tools to construct and drag independent variable x, to construct a
mirror, and to reflect x across the mirror to create the dependent variable rj(x).

Fig. 5.2 Varying x to make a design and compare rates
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Dragging x while observing rj(x) allows the student to investigate the relative
movement of the two variables. She can turn on tracing, drag once more, observe
the covariation that characterizes this geometric function, and answer questions like
these: “How can you make x and rj(x) move in the same direction? How can you
make them move in opposite directions?”

In this activity students use three different tools to construct the three elements of
a function: a tool for the independent variable x, a tool for the mirror that corresponds
to the function rule for reflection, and a tool for the dependent variable rj(x). These
three tools represent a design choice by the activity developer to emphasize the three
elements of a function: the independent variable, the rule, and the dependent variable
that results from applying the rule to the independent variable. The combination of
the software itself, the carefully crafted tools, and the student task creates a “field of
promoted action” (Abrahamson & Trninic, 2015) in which students’ actions are
gently constrained to help them accomplish the task presented to them.

In later activities students use a single tool for the same purpose: designating or
constructing the independent variable, designating or constructing the mirror, and
constructing the dependent variable. The transition from three tools to one
encourages students to transition from an action understanding toward an object
understanding of the reflect function. These are steps in the APOS
(action-process-object-schema) sequence that describes students’ increasingly
sophisticated understanding of functions (Dubinsky & Harel, 1992).

This activity provides students with several additional tools. A student might use
the Segment tool to construct a restricted domain for the independent variable x, to
connect x to rj(x), or for some other purpose entirely. Alternatively, she might use
the Polygon tool to construct a restricted domain, and then use the Animate tool to
animate x around this restricted domain.

The tool interface is innovative, minimizing reliance on language. When the
student taps a tool icon, the entire object to be constructed appears on the screen
with the tool’s given objects highlighted and pre-existing sketch objects back-
grounded. This effect provides immediate feedback regarding the entire construc-
tion being created; there is no need for the student to be instructed as to what
objects to click, in what order, to use the tool successfully. This overview of the
entire tool gives the student an opportunity to see what objects the tool will con-
struct and to consider how to integrate these new objects into the existing sketch.
A highlighted given object can be attached to an existing sketch object (by dragging
the given object onto the sketch object) or located in empty space (by dragging it to
the desired location) with no restriction on the order in which given objects are
attached. As soon as the last given object is attached or located, the tool’s action is
complete; the backgrounding of pre-existing objects terminates, and the sketch is
again fully interactive.

The tool interface also provides two shortcuts for the users’ convenience.
Pressing the green check mark above the toolbox instantly completes the tool’s
action by locating any unmatched given objects in their current locations, and
pressing the red instantly cancels the tool’s action. Another shortcut eliminates
the need to drag each given object to attach or locate it: At any time during tool use,

64 S. Steketee and D. Scher



one given object is glowing to indicate that it can be attached or located by using
the finger or mouse to tap an existing object (to attach the given object to the tapped
object), to tap in empty space (to locate the given object at the tapped location), or
to press and drag (to make the given object jump to the pressed location and follow
the drag until finger or mouse is released). A video is here: http://geometric
functions.org/icme13/using-wsp-tools.html.

The Web Sketchpad tool interface was designed to help activity developers
create fields of promoted action. By providing only tools needed for the task at hand
(optionally arranged in the order of expected use), there is less need to provide
students with prescriptive directions and thus better support for open-ended tasks.
And by immediately showing the user detailed visual information about the effect
of the chosen tool, there is less need to explain how to use tools with which the user
is not already familiar. These innovations enable less prescriptive and more
open-ended student tasks, and encourage students’ self-reliance and productivity.
Students can concentrate on the mathematics of the task rather than following
directions from a worksheet or from the teacher.

5.5 Design-Based Research

We use a design-based research methodology to iteratively develop, test, and refine
the activities described here (Barab & Squire, 2004; Fishman, Marx, Blumenfeld,
Krajcik, & Soloway, 2004; The Design-Based Research Collective, 2003).
Although earlier versions of some of these activities were developed with the
support of the Dynamic Number project funded by the National Science Foundation
(Steketee & Scher, 2011), development of the current activities began in earnest in
late 2014, when customizable tools became available in Web Sketchpad. We first
developed 14 activities organized into two units: Introducing Geometric
Transformations as Functions (Unit 1) and Connecting Algebra and Geometry
Through Functions (Unit 2) (Steketee & Scher 2012, 2016). Pilot tests occurred
with four classes, two in 8th grade while the remaining two in 10th grade, located in
inner-city Philadelphia schools. Though designed as an introduction to linear
functions, these units appear to be helpful also for students who have already
studied linear functions. The pilot tests resulted in substantial changes to the
original websketches and student worksheets. They also informed the creation of
performance-based assessment instruments both as stand-alone websketches and as
pages incorporated into the main activity websketches. We subsequently developed
several activities addressing calculus, vectors, and complex functions.

The activities are freely available at https://geometricfunctions.org/icme13 under
a Creative Commons CC-BY-NC-SA 4.0 license and can be used with any web
browser. Activities from the first two units include online websketches and student
worksheets and are available online and as PDF’s. We hope to provide detailed
teacher support materials soon. Due to ongoing revisions, online activities may
differ from the figures and descriptions in this paper.
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The remainder of this document describes various activities that emphasize how
technology-enabled guided inquiry can enable students to construct and enact
mathematical objects and concepts related to function. We also note several
instances in which our activities’ pilot testing revealed weaknesses in our original
instructional design, prompting rethinking and revision of that design.

5.6 Enacting Variables and Rate of Change

The act of dragging geometric function variables can help students develop the
sense that variables vary. In Fig. 5.2, the student constructs and drags independent
variable point x, thus enacting the independent variable by moving it directly with
her finger or mouse. In Fig. 5.3 (part of the Rotate Family activity), she makes a Hit
the Target game. After constructing independent variable x and a rotate function to
produce dependent variable RC,h(x) (again, meaningful function notation:
RC,h(x) represents the “rotation, about C by angle h, of x”), she then uses the Target
tool to make a target and create a challenge: drag x to make that dependent variable
RC,h(x) hit the target. Once she hits the target, she generates a new problem by
pressing the New Challenge button, which changes both the rotation angle h and the
location of the target.

When playing this game, students usually begin either by dragging x toward the
target (as in the top part of the red trace) or by adopting a somewhat random

Fig. 5.3 Varying x so RC,h(x) hits the target
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guess-and-refine strategy. As they try to improve their play, students are encour-
aged to reason backward, using the target location and angle h to estimate the
direction in which to drag x.

Figure 5.4 challenges the student to enact the dependent variable of a dilate
function. Her task is to drag y according to the function rule, while independent
variable x follows the polygon border. Even with hints of the dashed segment and
cross-hairs showing how close she is and a traced image of y that changes from red
when she is far away to green when she is close, this is a real challenge. The player
must drag y both in the correct direction and at the correct speed to match the
motion of x. In other words, her dragging action must get the rate of change of
y relative to x just right.

In these activities, students’ enactment of point variables creates a semantic link
between physical movement and mathematical variation. The student drags vari-
ables and observes how easy it is to enact an independent variable, free to move
within in its domain, and how hard it is to enact a dependent variable, constrained to
follow the independent variable based on the function rule.

5.7 Enacting Domain and Range

In Figs. 5.2 and 5.3, the domain of the function is the entire plane, and the student
experiences it as the ability to drag x anywhere within the window on the computer
screen. This is not in the least remarkable to the student, rendering futile any
attempt to introduce the terms domain and range at this stage. To develop con-
ceptual understanding, students must first have a meaningful reason to restrict a
function’s domain and observe its corresponding range.

Fig. 5.4 Dragging y, trying to co-vary with x
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In the Dilate Function activity in Fig. 5.5, the student uses the Polygon tool to
create a polygon and the Point tool to create independent variable x attached to the
border of the polygon. She drags x to explore what happens, and how it feels, when
x is restricted to this polygonal domain. After using the Dilate tool to dilate x about
center point C by scale factor s, the student turns tracing on and drags x again to
observe the corresponding range traced out by the dependent variable DC,s(x).

The ability to drag x on its restricted domain while attending to both the path and
the relative rate of change of DC,s(x) is an important sensorimotor experience that
provides students with grounding for their conceptual understanding of the domain,
range, and relative rate of change while also spurring them to consider what it
means to apply a function all at once to an entire set of points (a polygon).

By the end of Unit 1 (Introducing Geometric Transformations as Functions),
students in the pilot test were using the tools effectively and identifying the roles of
the various objects. Most students were already quite comfortable describing
function behaviour in terms of the relative rate of change (both speed and direction),
as illustrated in Fig. 5.6.

5.8 Connecting Geometric Transformations to Algebra

Unit 2 (Connecting Algebra and Geometry Through Functions) explicitly connects
the geometric functions of Unit 1 to algebra. It begins by asking students to restrict
the domain of these geometric transformations to a number line and to determine
which of the Flatland (two-dimensional) function families can most easily fit into

Fig. 5.5 A restricted domain and its range
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the Lineland (one-dimensional) environment of a number line (Abbott, 1884). Once
students determine that the dilate and translate families are particularly suitable
because their independent and dependent variables always move in the same (or
opposite) direction, they engage in construction activities that connect the geo-
metric behaviour of dilation and translation to the observed numeric values of their
variables on the number line.

In Fig. 5.7, a student uses the Number Line, Point, and Dilate tools to create a
point restricted to the number line and dilate it about the origin. She measures the
coordinates of x and D0,s(x) and drags x to compare the values. When asked to
describe what happens when she changes x by 1, she might respond, “When I
increase x by 1, D0,s(x) increases by twice as much, which is the same as the scale
factor s.” By experimenting with different scale factors, the student concludes the
coordinates produced by this dilation satisfy D0,s(x) = x � s. She then experiments
with the translation restricted to the number line and concludes that translation by a
vector of directed length v satisfies the equation Tv(x) = x + v. Thus, she concludes
that dilation on the number line corresponds to multiplication and translation cor-
responds to addition.

Fig. 5.6 Sample student work (dilate family)
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5.9 Enacting Composition, Dynagraphs, and Cartesian
Graphs

Having moved from Flatland to Lineland and discovered the algebraic meanings of
dilation and translation on the number line, students are now ready for a new task:
What happens when you dilate x and then translate the dilated image; in other
words, how does Tv(D0,s(x)) behave? Students’ first attempts at this task becomes
visually confusing with three variables and a vector stumbling over each other on
the same number line. To alleviate the confusion, the next activity incorporates a
Transfer tool that moves the dependent variable to a different number line, separate
from but aligned with the first. In Fig. 5.8, students use this tool to construct a
second number line parallel to the original, creating a dynagraph (Goldenberg,
Lewis, & O’Keefe, 1992). By varying x and observing the connecting line between
the variables, students describe and explain how changing each parameter (scale
factor s and vector v) affects the relative rate of change of the variables and their
relative locations.

In the final activity of Unit 2, students create the Cartesian graph of a linear
function using geometric transformations. As Fig. 5.9 illustrates, students start with
the same initial tools that they used to create a dynagraph, but this activity’s
Transfer tool rotates a variable by 90°, transferring it to a vertical number line
perpendicular to the original, horizontal number line. After using this tool to rotate
D0,s(x)) to a vertical axis and translating by vector v, students use the x-value and y-
value tools to construct lines that keep track of the horizontal location of x and the
vertical location of Tv(D0,s(x)). They then construct a traced point at the intersection

Fig. 5.7 Dilating on the number line
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of these horizontal and vertical lines and drags x to see how the traced point’s
motion corresponds to the behaviour of the two variables.

After performing the construction, students try different values for the scale
factor s and the translation vector v, and they observe how changing the scale factor
affects not only the speed of Tv(D0,s(x)) relative to x but also the shape of the traced

Fig. 5.8 Constructing Tv(D0,s(x)) on a dynagraph

Fig. 5.9 Dilate, rotate by 90°, and translate
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line. For instance, one of our pilot test students looked at the lower traces shown in
Fig. 5.10 and explained that this trace indicated that the variables were moving in
opposite directions because the value of the dependent variable moved down as the
independent variable moved right. She went on to say that Tv(D0,s(x)) was
decreasing more slowly than x was increasing because the traces went down more
slowly than they went to the right, and concluded that the scale factor was
approximately �1=2. Such observations suggest that students can use their expe-
riences in geometrically enacting variables and functions to visualize the motion
implicit in static Cartesian graphs. (And if this is students’ first experience with
such functions, they may invent the term linear function, and write the formula for
linear functions as y = s � x + v: dilate x by s and then translate by v.)

5.10 Performance-Based Assessment

Our pilot tests have also helped us generate ideas for performance-based assess-
ments. For instance, we created the Dilate-Family Game shown in Fig. 5.11 as we
discussed assessment issues with one of our pilot-test teachers. The game has
multiple levels that require greater precision and provide less diagrammatic scaf-
folding as a student moves up through the levels. We intentionally did not set a
specific number of problems per round, so that a teacher has the flexibility to say,
for instance, “To be a dilation apprentice, you must score 8 of 10 at Level 2; to be a
dilation master, you must score 7 of 10 at Level 5; and to be a dilation superhero
you must score 16 of 20 at Level 9.”

Fig. 5.10 Inferring motion from a graph
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We are not yet satisfied with students’ results on this dilation-family assessment.
Some students who constructed and investigated Dilate functions successfully still
had difficulty understanding how the game worked even at Level 1. This activity
has already been refined to support students’ transition in the game, but we remain
concerned about possible gaps in students’ visualization of the dilation function. In
an upcoming pilot test, we will explore this further by interviewing small groups of
students and make additional revisions based on what we learn. Our plan also
includes modifying the game to enable direct reporting of students’ results to the
teacher. (The initial version relies on either visual inspection by the teacher or
screen captures submitted by students.)

Figure 5.12 illustrates the Dynagraph Game, a performance-based assessment
for the dynagraph activity described above. In this game, independent variable x is
always in motion from left to right, and students adjust s and v to control the
dynagraph whose dependent variable is T(D(x)). There is also a mystery function
whose moving dependent variable ??(x) is shown below the lower axis. The stu-
dent’s challenge is to adjust s and v to match the mystery function, so that T(D(x)) is
always exactly aligned with ??(x). Higher levels of the game require greater pre-
cision in adjusting s and v.

We conjecture that performance-based assessments such as these can help stu-
dents solidify their understanding of function concepts while also promoting
mathematical fluency, and we are eager to test this conjecture as we continue our
effort to refine the activities based on classroom testing.

Fig. 5.11 Dilate family game
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5.11 Enacting the Slope of the Sine Graph

Students are often presented with the definition of derivative instead of inventing
their own definition based on creating and experiencing the mathematics them-
selves. In this activity, we present students with five tasks designed to encourage
them to connect slope to the relative rate of change of variables and to invent their
own definition of derivative.

In Fig. 5.13, a student has just begun the first task. She varies x while she
observes the connection between the green arrow and the behaviour of the
dependent variable sin x. The student notes that sin x has already come to a stop at
its maximum value and is about to begin to move down just as the arrow has
changed its previous upward direction to horizontal and is now beginning to point
down.

Figure 5.14 depicts the second task, the Slope Game, in which students control
the arrow’s slope by dragging point m up or down. Their objective is to keep the
arrow lined up with the graph. After practicing by dragging x and readjusting
m several times, the student presses Go. After a 2-s delay, x begins moving along its

Fig. 5.12 Dynagraph game

Fig. 5.13 Following the slope
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axis. The student’s job is to drag m so the arrow stays aligned with the graph. In
other words, the goal is to drag m so that its value is the derivative of the sine
function. As the student drags m, the point (x, m) is plotted and traced with the
colour of the trace ranging from green, when m is very close to the function’s
current rate of change, to yellow to red, when the value of m is far from the rate of
change. The arrow itself changes colour to match, thus providing the student with
immediate feedback as she attends to the relationship between the arrow and the
graph. In Fig. 5.14, the student lagged a bit behind adjusting m as x passed x ¼ �3p

2 ,
and the slope of the graph became negative. This lag is visible as a reddish-yellow
bump in the trace, which is otherwise almost all green. The gap in the trace shortly
after x ¼ �p

2 indicates that the student again fell slightly behind but caught up by
moving m so quickly that she left a gap in the trace.

Two pedagogical elements of this activity are particularly worthy of note: its
enactivist nature and its incorporation of performance-based assessment into the
learning process. While playing the game, the student enacts the derivative of the
sine function by dragging m up and down in concert with the rate of change of
sin x with respect to x. The activity connects the student’s physical motion (drag-
ging) to the direction and speed of the plotted point’s vertical movement as
mediated by the arrow. Though the mediation of the arrow might help the student
connect the geometric property of tangency to the function’s instantaneous rate of
change, it seems more likely that she will attend to the slope of the arrow rather than
to the speed of vertical movement of the graphed point.

Our long-term goal for the student is that she directly observe and interpret the
motion of the dependent variable, relating her physical actions more closely to the
mathematical concept we intend for her to develop. We address that goal in our
Rate of Change Game, described below and presented in Fig. 5.15. It is preferable
for students to begin with the Slope Game because the task of attending to the
relative orientation of the arrow and the graph, both of which are visually evident, is
more concrete and easier for students to master than the task of attending to the

Fig. 5.14 The slope game
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speed and direction of the dependent variable. The move from a relatively concrete
task to a related task that is more abstract in nature, variously described as con-
creteness fading and progressive abstraction, has been found effective in devel-
oping students’ conceptual understanding (McNeil & Fyfe, 2012; Mitchelmore &
White, 2000).

A second important element of these games is that they serve student learning
and assessment at the same time. The feedback from the Slope Game is immediate.
Students see both the colour of the arrow and its relative orientation to the graph,
and these behaviours are under their immediate control as they drag m. There is no
time to dwell on mistakes; as x keeps moving, students are encouraged to continue
adjusting m to keep the arrow tangent to the graph. Nor are mistakes recorded
permanently; starting a new game erases the traces from the previous game. Thus,
the games provide support for immediate student self-assessment.

As students improve their skills, the teacher can ask students to submit their
work: “Please email me a screen capture that shows all green except for at most one
relatively short brownish or red area. The higher you set the level, the better, but
avoid making it too hard on yourself by skipping levels. Make sure you master
Level 1 before moving to Level 2, and so forth.” Each game has five levels. As
students move to higher levels, they must be more and more accurate in matching
the correct slope or rate of change in order to keep their traces green.

The Rate of Change Game is a performance-based learning task related to the
Slope Game, but instead of a tangent arrow, it provides a short traced segment, of
length proportional to the value of m, attached to the moving point. The length of
this short segment provides the student with dragging feedback, which allows her to
regulate her up-and-down adjustment of m while keeping her attention on the
moving points. In the meantime, the colour of the point, the segment, and the trace
indicate how close the dragged m is to the actual rate of change of the dependent
variable sin x. In Fig. 5.15, as the graph passed the maximum at x ¼ �3p

2 , the

Fig. 5.15 The rate of change game
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student did fairly well at reducing the value of m to 0 at the maximum and making it
negative thereafter, but as she approached the minimum at �p

2 she failed to react
quickly enough, leaving her value of m negative as she passed the minimum. At the
moment, she is still recovering, dragging m upward towards a positive value that
will reflect the current positive rate of change of sin x.

We conjecture that this second game will encourage and reward students’ direct
attention to the rate of change of the function—not just the slope of the graph—and
that students who play both games, with a variety of functions, will come to
naturally associate the dependent variable’s instantaneous rate of change with the
slope of the tangent to the graph.

5.11.1 Constructing the Slope and Rate of Change

After completing the initial warm-up task and playing the two games, students are
ready to examine the instantaneous rate of change of a function more systematically
by means of two more tasks. In both tasks, students begin with an empty screen and
use the tools to construct the graph, a secant line, and other objects to approximate
the instantaneous rate of change of sin x with respect to x.

In the first construction task, Construct the Slope, students construct the graph
and a secant line, measure and plot the slope of the secant line, and animate the
secant line along the graph to track and graph the secant’s slope as a function of the
position of its defining points (see Fig. 5.16). Based on their Slope Game experi-
ence and class discussions, students recognize the difference between a secant and a
tangent, realizing that the secant will more closely approximate the tangent if the
defining points are closer to each other and adjusting the construction accordingly.
Students conclude this task by experimenting to find out what happens if they use a
button to move one defining point to the other.

Fig. 5.16 Construct slope
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The second construction task, Construct the Rate of Change, takes a more
systematic approach. Like the Rate of Change Game, it fades some of the con-
creteness of the slope construction task. Students create a parameter h that they use
to precisely control the interval between the x-values at which the function is
evaluated. Instead of finding the slope, students calculate the relative rate of change

of sin x with respect to x by calculating the expression sin xþ hð Þ�sin x
h . Though

mathematically equivalent to the slope formula, this calculation is expressed in
more abstract language, without any mention of slope or gradient. By using h to
control the interval, students can observe the effect of reducing the value of h from
1.0 to 0.4 and eventually to 0.00001, as shown in Fig. 5.17.

By using a number of different values of h, the first few show two distinct points.
Therefore, the student will become aware that even when h = 0.00001, the points
are still distinct. She is likely to be surprised at the end of the activity when she
changes h to 0.00000, the line disappears, and the calculation becomes undefined
instantly.

This surprising action that renders the calculation undefined demands explana-
tion and motivates discussion with other individual students and with the entire
class. The desired outcome is that students themselves formulate what happened to
the calculation and what they can do about it, as a result of making observations
such as these:

• As h gets smaller, the points get closer and closer together.
• As h gets smaller, the line is more closely lined up with the graph.
• As we make h smaller, the calculation doesn’t change very much.
• When we make h tiny, like h = 0.00001, we can’t even see that there are two

points.
• When h = 0 the line goes away, because you can’t draw a line with only one

point.
• Also, when h = 0 the calculation is undefined, because you can’t divide by zero.
• The calculation gets closer to the real slope the smaller we make h—but we

can’t make it 0.

Fig. 5.17 Construct the rate of change
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The pedagogical goal is that students’ experiences and observations lead to a
productive class discussion during which students agree on the essential elements of
the definition of the derivative. This discussion also presents an opportunity for the
teacher to suggest vocabulary useful for naming the phenomena under discussion,
including instantaneous rate of change and derivative.

5.12 Enacting Vector Multiplication of Complex Numbers

More than two centuries ago Wessel (1799) and Argand (1874, originally
self-published in 1813) independently proposed the two-dimensional complex
plane as a geometric way to represent and operate on complex numbers. Complex
numbers can be considered either as points in the complex plane or as
two-dimensional vectors, and vector addition is essentially identical to complex
addition.

However, vector multiplication differs significantly from complex multiplication
(described later in this chapter). The former takes two forms: the dot (scalar)
product and the cross (vector) product. The dot product is a real number and is
readily represented on the real axis of the complex plane, but the cross product is
defined as a vector orthogonal to the plane of the vectors being multiplied, thus
requiring a third dimension. If the plane containing two vectors a and b is the
x-y plane, the cross product a � b lies along the z-axis, with magnitude ra rb
sin (hb − ha) using polar coordinates.

In Visual Complex Analysis, Needham (1998) describes a different definition of
the cross product a � b that uses only the two dimensions of the complex plane
while maintaining several important features of the standard definition. In this
redefinition the z-axis containing the cross product is rotated into the complex plane to
coincide with the imaginary axis, so that a � b retains the magnitude and sign of the
standard definition, though it now lies on the imaginary axis, so that its representation
in polar coordinates is a � b = i rarb sin (hb − ha). The dot product a � b is always
a real number: a � b = rarb cos (hb − ha) in polar coordinates. As a real, it can be
thought of as a vector that lies on the real axis.

In Fig. 5.18, a student has begun the Vector Multiplication activity by con-
structing two vectors, a and b, and projecting b onto a in the upper triangle. The
length of the projection in polar coordinates is rb cos (hb − ha). To transform this
projection into the dot product on the real axis, she must multiply (dilate) the upper
triangle by ra and rotate it by −ha, which is equivalent to complex multiplication by
a′, the complex conjugate of a. To accomplish this task, she multiplies the two
vertices of the upper triangle by a’ to construct the lower triangle, with hypotenuse
b � a′. As the lower triangle shows, the projection of b � a′ on the real axis is a � b
—the dot product—and its projection on the imaginary axis is a � b—the cross
product. The student can now drag the vectors at will to explore the behaviour of
the two vector products she produced.
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5.13 Enacting Multiplication of Complex Numbers

Though complex numbers can be multiplied algebraically, a geometric method is
more elegant and often more useful. In the Complex Multiplication activity, stu-
dents use the algebraic method to discover the geometric one. They begin with two
complex numbers v and w, both considered as vectors in the complex plane. To
multiply them, students represent w in Cartesian form (w = xw + iyw), write the
product v � w in the form v � xw + v � iyw, and use transformations of vectors to
represent each of the two terms and add them together (Cuoco, 2005, pp. 113–115).

The activity takes place in five parts. The first three parts review some prereq-
uisites: (1) dilation of a vector is equivalent to multiplication by the (real) scale
factor, (2) rotation of a vector by 90° is equivalent to multiplication by i, and
(3) translation of one vector by another is equivalent to adding them. These parts
can be omitted if students already have a firm command of the prerequisites.

Part 4, shown in Fig. 5.19, is the activity’s heart. Here a student has rewritten
v � w as v � xw + v � iyw and used transformations to construct each term of this
product. She dilates v by the real number xw to construct v � xw, and then rotates
v by 90° and dilates it by yw to construct v � iyw. The student translates the first
result (v � x) by the second (v � iyw) to add them together, labeling the complex
product v � w. She measures the polar coordinates of v, w, and v � w, calculates
rv � rw and hv + hw, and makes the remarkable discoveries that rv�w = rv � rw and
that hv�w = hv + hw. Expressed in terms of arithmetic operations, to multiply two
vectors, you add their angles and multiply their magnitudes. In transformational
terms, to find v � w you dilate v by rw and rotate by hw. As we shall soon see, both
formulations are obvious consequences of Euler’s formula.

Part 5 solidifies and deepens students’ understanding as they investigate
properties of complex multiplication described in transformational terms by

Fig. 5.18 Vector multiplication
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investigating two questions: Is complex multiplication commutative? Do the two
transformations dilation and rotation commute?

This visual approach to complex multiplication encourages students not just to
manipulate algebraic symbols but also to visualize the operation geometrically.
Importantly, this ability to view complex multiplication as dilation composed with
rotation helps provide a window into what is often regarded as the most famous,
and most elegant, result in all of mathematics: Euler’s Formula.

5.14 Enacting Euler’s Formula

This activity is based on Euler’s extension to complex numbers of his formula for ex

as the limit, as n ! ∞, of the quantity (1 + x
n)
n. The activity begins by having

students review the origin of Euler’s Formula and then consider how they might use
an imaginary value of x by substituting ih for x, constructing (1 + ih

n) on the
complex plane, and then repeatedly multiplying this quantity by itself n times
(Conway & Guy, 2012).

In Fig. 5.20, a student has constructed angle slider h, dragged it to an angle of p
3

radians, and calculated the value of h
n. (Note that placing the angle slider on the

complex plane is a convenience; the value of h is real.) The student constructed two
vectors to represent 1 on the real axis and ih

n on the imaginary axis, added the two
vectors, and labelled the vector sum 1 + ih

n .
In Fig. 5.21, the student has multiplied four more times by the vector 1þ ih

n in

order to construct ð1þ ih
5Þ5. Measuring this point in rectangular form, she finds that

Fig. 5.19 Complex multiplication
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Fig. 5.20 Constructing 1þ ih
n

� �

Fig. 5.21 Iterating to construct ð1þ ih
nÞn

its value is 0.57 + 0.96i. Though this measurement itself does not yet suggest any
obvious conjectures, the student may be intrigued to see by how little the vectors
increase with each multiplication.

The student changes n to 10, constructing five more multiplications. Finding the
terminal vector at 0.53 + 0.91i, she may begin to suspect that the real part of this
value is approaching 0.50. To avoid the labor of continuing to larger and larger
values of n, the student goes to the next page of the sketch to use a pre-constructed
iteration, allowing her to change n and see the result immediately. She experiments
with different values of n to verify that for n = 100 and h ¼ p

3, the constructed value

of 1þ ih
100

� �100
approximates cos h + i sin h to two decimal places (Fig. 5.22).

82 S. Steketee and D. Scher



Fig. 5.23 Using n = 1000 to find that eip ¼ �1

Fig. 5.22 Iterating to construct ð1þ ih
100Þ100
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By setting h = p and using a large value of n in Fig. 5.23, the student concludes
that Euler’s famous identity eip = −1 is true. By changing the h slider, she realizes
that this result for h = p is only a special case of Euler’s formula itself:
eih = cos h + i sin h.

Thus any complex number expressed in polar coordinates as (r, h) can be
written, and operated upon, as r � eih. Using this result, the product, v � w can be
expressed as rve

ihv � rweihw and can be easily simplified by applying the laws of
exponents: v � w = rve

ihv � rweihw = rv � rw � e
i(hv+hw). This result confirms both the

algebraic multiplication rule to “multiply the moduli and add the arguments” and
the transformational multiplication rule to “dilate v by rw and rotate by hw.”

5.15 Conclusion

By using web-based dynamic mathematics software and tools tailored to carefully
structured tasks, students can enact geometric transformations as functions, creating
them, manipulating them, and experimenting with them. Students can perform the
mathematics themselves by varying the variables, by describing their relative rate of
change, by constructing and using restricted domains, and by composing trans-
formations. In the course of their explorations they can develop a solid under-
standing of geometric transformations, explore deep connections between geometry
and algebra, construct and shed light on the Cartesian graph of a linear function,
and make fascinating mathematical discoveries on the complex plane. These results
are facilitated by the software’s simple interface which, combined with a small
number of carefully designed tools, can create a field of promoted action that
scaffolds students’ work and helps guide them toward meaningful discoveries and
understandings.

Pedagogically, the constructive nature of activities such as these has the potential
to engage students, to provide opportunities to assess their own work, to encourage
meaningful mathematical discussions, and to help students bridge the gap between
the concrete, physical world and the profound elegance of abstract mathematical
insights.

Early testing suggests that this approach enables students to connect geometry
and algebra as they ground function and transformation concepts in sensorimotor
experiences, and as they develop their appreciation for the visual beauty of dynamic
mathematics. The authors look forward to further refining and extending these
activities, and to verifying their effectiveness with a wide variety of students.

[All activities described above are available at https://geometricfunctions.org/
icme13/.]
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