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Chapter 1
International Perspectives on Secondary
Geometry Education: An Introduction

Patricio Herbst, Ui Hock Cheah, Keith Jones and Philippe R. Richard

Abstract This chapter introduces the book by providing an orientation to the field
of research and practice in the teaching and learning of secondary geometry. The
editors describe the chapters in the book in terms of how they contribute to address
questions asked in the field, outlining different reasons why prospective readers
might want to look into specific chapters.

Keywords Curriculum � Thinking � Learning � Teaching � Teacher knowledge

This book is one of the outcomes of Topic Study Group 13 at the 13th International
Congress on Mathematical Education, which took place in Hamburg, Germany, in
the summer of 2016. Our Topic Study Group (TSG-13) concerned the teaching and
learning of secondary geometry and the chapters in this volume include revised
versions of most of the papers presented at the main meetings of the group. Also
included are a handful of the shorter papers associated with TSG-13 in the context
of short oral communications. In this brief introduction we orient the reader to these
papers by first providing an organizer of the focus of our study group.

The International Congress in Mathematics Education gathers researchers and
practitioners in mathematics education and pursues a goal of inclusiveness across
all sorts of boundaries. In particular, the boundaries between research and practice
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are often blurred in ICME and this surely applied to our Topic Study Group 13 in
ICME-13. Therefore, to orient the reader to the chapters in the book, it might be
useful to describe the territory or field of practice associated with the teaching and
learning of secondary geometry.

As we engage in such a description, we might benefit from using the metaphor of
map-making as a guiding principle. Borges’s short story On exactitude in science
uncovers the futility of expecting that a map be produced on a scale 1:1. Yet the
value of maps as containers of geographic knowledge and as resources for travelers
cannot be overemphasized, even if the existence of different kinds of projection
techniques reminds us that any map has limitations in what it affords its readers.
Different maps afford us different kinds of insight on the territory.

There is a constellation of practices that might be spotted as we look toward the
teaching and learning of geometry in secondary schools. At the center of this con-
stellation is the classroom practice of students and teacher transacting geometric
meanings. Near that center one can find the practice of textbook writing and materials
development for secondary geometry; one can also find the practice of preparing
teachers to teach secondary school geometry; and the individual practice of thinking
and problem solving that youngsters of secondary school age may engage in even
outside of school. But as we look closer, finer, relevant distinctions can be made.

The practice of teaching and learning geometry in classrooms admits of one set of
distinctions regarding the institutional location of those classrooms: American
secondary schools locate that practice in a single high school geometry course, while
geometry is integrated with other content areas in most other countries, and also
occurs outside of compulsory education, in other organized settings such as summer
camps. None of our papers inquires specifically on the institutional situatedness of
geometry instruction, though Kuzniak’s chapter recommends investigating whether
there is a place for the study of geometry in all educational systems, and uses a
contrast between work observed in Chile and in France as a way into his approach to
questioning the nature of geometric work. Other chapters present inquiries that seem
to rely on such situatedness. The chapter by Berendonk and Sauerwein, for example,
describes geometry experiences with novel content in the context of a summer
course for mathematically-inclined students, and the chapter by Herbst, Boileau, and
Gürsel examines how the instructional situations that are customary in the US high
school geometry course serve to frame a novel geometry task. Steeped into the
institutional location of the teaching and learning of geometry in high school in the
United States, Senk, Thompson, Chen, and Voogt examine outcomes of geometry
courses taught using the Geometry text from the University of Chicago School
Mathematics Program. Likewise Hunte’s chapter examines curricular variations
situated in the context of textbooks of different eras in Trinidad and Tobago.

Specific geometry content at stake in classroom instruction, as well as in teacher
development, textbook writing, and thinking and problem solving is discussed
implicitly or explicitly in all chapters. Several chapters focus on specific geometric
concepts: area of trapezoids (Manizade and Martinovic’s chapter), area of triangles
(Cheah’s chapter), properties of quadrilaterals (Herbst, Boileau, and Gürsel’s
chapter), polytopes (Berendonk and Sauerwein’s chapter), rotations (Battista and
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Frazee’s chapter), and connections to functions (Steketee and Scher’s chapter).
Specific geometric processes are also present as Hunte’s chapter deals with the
work of calculating, the chapter by Chinnappan, White and Trenholm includes
descriptions of the work of constructing, Luz and Soldano’s paper addresses the
work of conjecturing, and Cirillo’s paper deals with the work of proving.

The nature of and difficulties in students’ thinking, learning, achievement, and
problem solving in geometry are under consideration in several chapters. Across
these chapters there is attention to spatial thinking and to aspects of deductive rea-
soning from conjecturing to proving. Maresch’s chapter is focused on students’
spatial capabilities, Arai’s chapter deals with how students answer spatial orientation
tasks, and Battista and Frazee provide detailed descriptions of how students reason in
the context of rotation tasks. The chapter by Cirillo describes successful and
unsuccessful students’ thinking and collaboration in proof tasks. Similarly, Webre,
Smith, and Cuevas address the time and quality of students’ conjecturing in con-
nection with their engagement in discussions. And the chapter by Luz and Soldano
demonstrates how computer-based games engage students in conjecturing and fal-
sifying.Many of those processes are involved in the explorations proposed byVillella
and his collaborators. Senk and her colleagues map the variability in students’
achievement in a geometry test and look for ways to account for such variability.

The role of tools and resources in geometry instruction, thinking, materials
development, and teacher development is also quite apparent. The technological
mediation of materials development in geometry is eloquently illustrated by
Steketee and Scher in their chapter showing how dynamic geometry provides a
different access to the connections between functions and geometry. Technological
mediation of students’ thinking and learning is present in the chapter by Battista and
Frazee who illustrate the use of iDGi in eliciting students reasoning. Also dis-
cussing the mediation of students’ thinking, Luz and Soldano demonstrate how
games can be developed through dynamic geometry, internet communication, and
turn-taking. The role of Dynamic Geometry Software in teacher development is
discussed in the chapter by Villella and associates, while Webre and her colleagues
make comparable points in the case of classroom instruction. Richard, Gagnon, and
Fortuny add intelligent tutoring to dynamic geometry. This chapter’s focus is on
students’ blockage during geometric problem solving and how an intelligent tutor
can support students’ thinking. Along with Orozco’s chapter on the role of writing,
these last two help the book connect issues of mediation to metacognition.

Instruments for geometry instruction, thinking, materials development, or tea-
cher development need not be technological though. The chapter by Cheah
describes the use of the professional development practice called lesson study in the
design and planning of a lesson on area by a group of teachers. The chapter by
Herbst and his colleagues examines how a teacher made use of instructional situ-
ations of exploration, construction, and proof, which were available in her class, to
frame a novel geometry task on quadrilaterals as it was implemented in a geometry
course. The chapter by Chinnappan, White, and Trenholm describes the work of
teaching geometry in terms of its use of specialized and pedagogical content
knowledge. As regards the development of ways of assessing teacher knowledge
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Manizade and Martinovic demonstrate how they use student work to elicit teachers’
responses that allow them to assess what they know about specific geometric topics.
In contrast, Smith uses the MKT-G test (Herbst & Kosko, 2014) to measure the
amount of mathematical knowledge for teaching geometry of practicing and pre-
service teachers across the domains hypothesized by Ball, Thames, and Phelps
(2008). Additionally, Smith uses a questionnaire to access self-reported pedagogical
practices of her participants. Also, the chapter by Villella and his colleagues from
Grupo CEDE describes how teachers’ knowledge of geometry can be developed
through experiences framed using ideas from the theory of geometric working
spaces introduced earlier in Kuzniak’s chapter.

As the chapters address those practices, they do so from multiple perspectives
that cover the range between practitioner and researcher. The chapters by
Berendonk and Sauerwein and by Steketee and Scher illustrate the work of
developing curriculum materials for the teaching of geometry. The development of
assessments for teachers is showcased in the paper by Manizade and Martinovic,
while the development of games for students is showcased in the paper by Luz and
Soldano. The chapter by Cheah illustrates the work of engaging teachers in pro-
fessional development using lesson study, while the chapter by Villella et al.
describes activities used in other professional development activities. The chapters
by Maresch, by Senk et al., and by Smith are based, at least in part, on the use of
tests. The observation of actual classroom interaction is present in a number of
papers including, in particular, Chinnappan et al.’s chapter and Herbst et al.’s
chapter. We come back in the conclusion to some methodological aspects of the
work presented.

The various ways in which we map the practices of teaching and learning ge-
ometry in secondary school highlight many connections and distinctions among the
chapters in the book. Surely more can be found through reading and with such
purpose we invite the reader to dig in. The book represents a collaborative effort
among editors in four different countries (Canada, Malaysia, the United Kingdom,
and the United States) working alongside 40 authors, affiliated with 25 different
institutions from 14 different countries. These authors put together 21 chapters. In
such representation of diversity, this book not only represents diverse perspectives on
the practice of teaching and learning geometry in secondary schools, but also rep-
resents the diversity among the individuals who attended ICME-13. May this diverse
offering of ideas inspire the reader to become a contributor to ICME in the future.

References

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it
special? Journal of Teacher Education, 59(5), 389–407.

Herbst, P., & Kosko, K. W. (2014). Mathematical knowledge for teaching and its specificity to
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Chapter 2
Thinking About the Teaching
of Geometry Through the Lens
of the Theory of Geometric Working
Spaces

Alain Kuzniak

Abstract In this communication, I argue that shared theoretical frameworks and
specific topics need to be developed in international research in geometry education
to move forward. My purpose is supported both by my experience as chair and
participant in different international conferences (CERME, ICME), and also by a
research program on Geometric Working Spaces and geometric paradigms. I show
how this framework allows thinking about the nature of geometric work in various
educational contexts.

Keywords Construction � Discursive dimension � Geometric work
Geometric paradigms � Geometric working space � Instrumental dimension
Proof � Register of representation � Reasoning � Semiotic dimension
Visualization

2.1 Introduction

The purpose of this essay is not to give a general and critical overview of research
done in the domain of geometry education. First, this type of survey already exists
(e.g., the recent and very interesting ICME-13 survey team report, Sinclair et al.,
2016), and secondly, because given the extension of this field, such surveys are
generally partial and, sometimes, even biased. Indeed, geometry is taught from
kindergarten to university in many countries, and students engage with it in
very different ways, eventually depending on their professional orientation
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(e.g., architects, craft-persons, engineers, mathematics researchers). Geometry is
also a main topic in the preparation of primary and secondary school teachers.
Rather, what I want to do in this contribution is to formulate some ideas based on
my experience as researcher involved both in the CERME geometry working
group, which I was lucky to participate in or chair several times, and in the
development of an original model designed for the analysis of issues related to the
teaching of geometry, but also for comparative studies of this teaching in various
countries.

In one of his rare articles on the teaching of geometry, Brousseau (1987) insists
on the need of finding a substitute for the “natural” epistemological vigilance one
would expect from mathematicians but which is missing on account of the
extinction of any mathematical research on elementary geometry: This substitute
would enable the field to avoid the uncontrolled didactification of geometry that
Brousseau finds in teachers’ practices. Brousseau stresses the essential relationship
between epistemology and didactics in the teaching of geometry. In my view, this
search for a source of vigilance should pass through well-identified research
themes, and be based on development of shared theoretical frameworks in geometry
education even if they can be diverse to be adapted in a variety of contexts.

During the symposium honoring Artigue in Paris in 2012, Boero (2016) drew
the audience’s attention to the fact that the role of researchers in mathematics
education depends on strong cultural and institutional components that vary from
one country to another. In his country, Italy, researchers in the domain have to be
active in two opposite directions: In developing innovation and textbooks with an
immediate impact on the country’s school life, and at the same time, in developing a
research field which can be independent of immediate applications. In all countries,
in some form, researchers should be involved to influence education in the country
in which they live. But at the same time and independently of any political pressure,
they should also evaluate and compare existing teaching activities by researching
their effects on the actual mathematical development of students faced with such set
of tasks. In addition, research must, as far as possible, highlight and explore
invariant parameters that may exist in different contexts. Furthermore,
well-accepted findings in didactics of geometry should be known and taken into
account by researchers to ensure progress in the domain. Even when this is far from
easy, the field of research on geometry education would benefit from being struc-
tured around theoretical frameworks and specific research themes to stop being
always an emergent scientific domain. Supported by the model of Geometric
Working Spaces (GWS) and the related notion of geometric paradigms, I develop a
possible approach in this direction. Naturally, the GWS model is only used as an
example to show the possible interest of theoretical approaches in the domain.
Indeed, a diversity of theoretical approaches is needed to address the wide variety of
issues in such an extended field as geometry education.

6 A. Kuzniak



2.2 Travel in a Changing Territory Constantly
in Reconstruction

The difficulty of developing research and a common theoretical framework in
geometry education comes first from its chaotic evolution over the last decades. In
the early sixties, the French mathematician Dieudonné became widely known in the
education field by his famous cry “Euclid must go!” At the time, he wanted to
denounce a mathematical education ossified around notions that he considered
outdated and, in particular, what was called the geometry of the triangle. He did not
wish to destroy the teaching of geometry but rather to promote a consistent teaching
of this domain, based on more recent mathematical research and, particularly,
focusing on algebraic structures. According to Dieudonné, students should enter
directly into the most powerful mathematics without any long detours through
concepts and techniques that he considered obsolete. This questioning of traditional
geometry education initiated a series of reforms and counter-reforms. While some
of those reforms sought to bring school geometry closer to the geometry of
mathematicians, others have been sought to avoid learning difficulties that students
had faced. The teaching of geometry has become more and more utilitarian over
time, as exemplified and guided by the PISA expectations.

Furthermore, the teaching of geometry is marked by a great variability among
curricula across countries, which makes difficult the consistent networking of
researchers on specific topics. This variability can be illustrated by the place that
geometric transformations have had since the early seventies to the present in the
French curriculum.1 In the 1970s, heavily influenced by the mathématiques mod-
ernes (i.e., the new Math), geometric transformations such as translations and
similarities were used to separate affine and Euclidean properties. Then in the
1980s, transformations were studied in close relation with linear algebra and ana-
lytic work in two and three dimensions. There was then also important work on
how symmetries generate isometric transformations. In the 1990s, the work became
more geometric and transformations were limited to the plane and to explore
configurations like regular polygons, as transformations were implicitly associated
with the dihedral groups of polygons and the group of similarities associated with
complex numbers was the culmination of that mathematical journey. In the 2000s,
the importance of transformations decreased again with the disappearance of
dilations and similarities. As of 2008, translations and symmetries were the only
transformations that remained, as even rotations had disappeared. But in 2016,
plans were made to reintroduce geometric transformations from the beginning of
secondary school.

That erratic evolution is not without consequence on teachers’ mathematical
culture. Indeed, new teachers face the challenge of having to teach subjects they do

1The French curriculum is set by the central government and official instructions are published in
the Journal Officiel. Our short summary on the evolution of the teaching of geometric transfor-
mations is based on this material.
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not really know well and from which they do not master even elementary tech-
niques. Surprising situations occur when, as in CERME in 2011, researchers from
countries where geometric transformations were just re-introduced in elementary
school were wondering whether it is possible to teach them to young students.
French researchers could only report that it was possible, but that transformations
were just removed from their curriculum.

2.3 Taking into Account the Diversity of the Teaching
of Geometry

2.3.1 What Geometry Is Being Taught?

Before dealing with this question, we need to ask ourselves if there is a place for
geometry, as a discipline clearly identified, in all education systems. Indeed, one of
the main issues of the report on geometry done by the Royal British Society (2001)
was to foster the reappearance of the term geometry in the British curriculum. Prior
to this, the study of geometry had been hidden under the heading “shape, space and
measure.” Similar disappearance is apparent in the PISA assessment, in which
geometry topics are covered up by the designation “space and shape”.

These changes of vocabulary are not harmless as they are not only changes in
vocabulary; rather, they reveal different choices about the nature of the geometry
taught in school. The choices imply either a focus on objects close to reality or on
objects already idealized. The decisions on the type of intended geometry relate to
different conceptions of its role in the education of students, and also, more gen-
erally, on the citizen’s position in society. In the French National Assembly, during
the middle of the nineteenth century, a strong controversy about the nature of the
geometry taught in school pitted the supporters of a geometry oriented towards
immediate applications to the world of work against the defenders of a more
abstract geometry oriented to the training of reasoning (Houdement & Kuzniak,
1999). During the second half of the twentieth century, a third more formal and
modernist approach, based on linear algebra, was briefly, but with great force,
added to the previous two (Gispert, 2002). Thus, over the long term and in a single
country,2 the nature of geometry taught fluctuated widely and issues and goals have
changed dramatically depending on decisions often more ideological and political
than scientific. Observations of the choices made nowadays in various countries
reveal irreconcilable approaches that seem to resurrect the debate mentioned above.

2This conflicting approach on the teaching of geometry is not typically French. In the US, similar
tensions albeit among four different conceptions exist too (Gonzalez & Herbst, 2006) based on
formal, utilitarian, mathematical or intuitive arguments.
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2.3.2 Questions of Style

Anybody that has had the opportunity to observe classroom instruction in a country
other than his or her own must have noticed differences in style that can hardly be
accounted to individual differences. The researchers affiliated with the TIMSS
sub-study on teaching practices in six countries noticed such differences in style,
and they used the notion of “characteristic pedagogical flow” to account for
recurrent and typical styles they observed (Cogan & Schmidt, 1999).

To me, this variety of styles appears when reading Herbst’s historical study
(2002) on two-column proofs in the USA. This way of writing proofs is similar to
nothing existing now in France though it is reminiscent of an old fashioned way
used to write solutions of problems in primary school where operations have to be
separated from explanations of reasoning. Another case of cultural shock appears
too when reading Clanché’s and Sarrazy’s (2002) observation of a first-grade
mathematics lesson in a Kanaka primary school (New Caledonia). This time, the
teacher cannot easily assess the degree of understanding of his students for whom
customary respect for the elders forbids their expression of doubts and reservations
in public and thus they never ask some complementary explanation to the teacher.
The analysis of the classroom session allows the authors to claim that the rela-
tionship between mathematics teaching and students’ everyday life should be
analyzed as rupture or obstacle more than as continuity or facilitation.

Let us consider some different styles through an observation made during a
comparative study on the teaching of geometry in Chile and France (Guzman &
Kuzniak, 2006). Various exercises were given to high school pre-service teachers in
Strasbourg, France and in Valparaiso, Chile. As an illustration, we show two stu-
dents’ work using exactly the same solution method but presenting it in radically
different ways. Both are characteristic of what is expected by their teachers.

In Chile, results are given on a coded drawing and the reasoning used is not
explicitly given in writing. By contrast, in France, a very long and detailed text is
written and no assertion, not even the most trivial, is omitted. This point is clearly
apparent in Fig. 2.1 even if Spanish and French texts are not translated.

Observations of Chilean classrooms show that what is written on the blackboard
during a session is often similar to the student’s written production and only oral
justifications are provided, while in France all arguments have to be written
(Guzman & Kuzniak, 2006). Knipping (2008) also shows differences in the use of
the blackboard and in articulation between the written and the oral in France and
Germany. More generally, Knipping (2008) shows that argumentation and proof3

are not equivalent in both countries; rather they give birth to different ways of
developing geometric work in the same grade.

How can we account for these differences in “style” avoiding, if possible, any
hierarchical comparison based on the idea that one approach is fundamentally better

3In this essay, I mean proof more generally than mathematical or formal proof and different ways
of arguing or validating are considered.
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than the other? In the following, I will propose a way to explore these differences
based on the use of geometric paradigms and the theoretical and methodological
model of Geometric Working Spaces (GWS).

2.4 Various Geometries and Geometric Work

2.4.1 Three Elementary Geometries

Houdement and Kuzniak (1999) introduced the notion of geometric paradigms into
the field of didactics of geometry to account for the differences in styles in geometry
education. To bring out geometric paradigms, three perspectives are used: episte-
mological, historical, and didactical. The assemblage of those perspectives led to
the identification of three paradigms usually named Geometry I (or Natural
Geometry), Geometry II (or Natural Axiomatic Geometry), and Geometry III (or
Formal Axiomatic Geometry). These paradigms—and this is an original feature of
the approach—are not organized in a hierarchy, making one more advanced than
another. Rather, their scopes of work are different and the choice of a path for
solving a problem depends on the purpose of the problem and the solver’s
paradigm.

The paradigm called Geometry I is concerned by the world of practice with
technology. In this geometry, valid assertions are generated using arguments based
upon perception, experiment, and deduction. There is high resemblance between
model and reality and any argument is allowed to justify an assertion and to
convince the audience. Indeed, dynamic and experimental proofs are acceptable in
Geometry I. It appears in line with a conception of mathematics as a toolkit to foster
business and economic activities in which geometry provides tools to solve prob-
lems in everyday life.

Chilean student’s solution French student’s solution

Fig. 2.1 Comparison of two writing solutions in Chile and France
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The paradigm called Geometry II, whose archetype is classic Euclidean geom-
etry, is built on a model that approaches reality without being fused with it. Once
the axioms are set up, proofs have to be developed within the system of axioms to
be valid. The system of axioms may be left incomplete as the axiomatic process is
dynamic and has modeling at its core.

Both geometries, I and II, have close links to the real world, albeit in varying
ways. In particular, they differ with regard to the type of validation, the nature of
figure (unique and specific in Geometry I, general and definition-based in Geometry
II) and by their work guidelines. To these two Geometries, it is necessary to add
Geometry III, which is usually not present in compulsory schooling, but which is
the implicit reference of mathematics teachers who are trained in advanced math-
ematics. In Geometry III, the system of axioms itself is disconnected from reality,
but central. The system is complete and unconcerned with any possible applications
to the real world. The connection with space is broken and this geometry is more
concerned with logical problems (Kuzniak & Rauscher, 2011).

2.4.2 Geometric Working Spaces

The model of GWS4 was introduced in order to describe and understand the
complexity of geometric work in which students and teachers are effectively
engaged during class sessions. The abstract space thus conceived refers to a
structure organized in a way that allows the analysis of the geometric activity of
individuals who are solving geometric problems. In the case of school mathematics,
these individuals are generally not experts but students, some experienced and
others beginners. The model articulates the epistemological and cognitive aspects of
geometric work in two metaphoric planes, the one of epistemological nature, in
close relationship with mathematical content of the studied area, and the other of
cognitive nature, related to the thinking of individuals solving mathematical tasks.
This complex organization is generally summarized using the two diagrams shown
in Figs. 2.1 and 2.2 (for details, see Kuzniak & Richard, 2014; Kuzniak, Tanguay,
& Elia, 2016):

Three components in interaction are characterized for the purpose of describing
the work in its epistemological dimension, organized according to purely mathe-
matical criteria: a set of concrete and tangible objects, the term representamen is
used to summarize this component; a set of artifacts such as drawing instruments or
software; a theoretical system of reference based on definitions, properties and
theorems.

The cognitive plane of the GWS model is centered on the subject, considered as
a cognitive subject. In close relation to the components of the epistemological level,

4An extension of this model to the whole of mathematical work has been developed under the
name of Mathematical Working Space (MWS).
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three cognitive components are introduced as follows: visualization related to
deciphering and interpreting signs; construction depending on the used artifacts and
the associated techniques; proving conveyed through validation processes, and
based on a theoretical frame of reference.

The process of bridging the epistemological plane and the cognitive plane is part
of geometric work according our perspective and can be identified through the lens
of GWSs as three geneses related to each specific dimension in the model: semiotic,
instrumental, and discursive geneses. This set of relationships can be described
proceeding from the elements of the first diagram (Fig. 2.2) which, in addition,
shows the interactions between the two planes with three different dimensions or
geneses: semiotic, instrumental, and discursive. The epistemological and cognitive
planes structure the GWS into two levels and help us understand the circulation of
knowledge within mathematical work. How then, proceeding from here, can stu-
dents articulate the epistemological and cognitive levels in order to do the expected
geometric work? In order to understand this complex process of interrelationships,
the three vertical planes of the diagram are useful and can be identified by the
geneses that they implement: [Sem-Ins], [Ins-Dis], and [Sem-Dis] (Fig. 2.3). The

Fig. 2.2 The geometric
working space diagram

Fig. 2.3 The three vertical
planes in the GWS
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precise study and definition of the nature and dynamics of these planes during the
solving of mathematical problems remains a central concern for a deeper under-
standing of the GWS model (Kuzniak, Tanguay, & Elia, 2016).

A GWS exists only through its users, current or potential. Its constitution
depends on the way users combine the cognitive and epistemological planes and
their components for solving geometric problems. It also depends on the cognitive
abilities of a particular user, expert or beginner in geometry. The make-up of a
GWS will vary with the education system (the reference GWS), the school cir-
cumstances (the suitable GWS) and the practitioners (personal GWS).

The framework makes it possible to question in a didactic and scientific—non
ideological—way the teaching and learning of geometry.

What is the geometry aimed at by education systems? What is the selected
paradigm? Does this paradigm get selected or does it emerge from practice in
schooling conditions? How do the different paradigms relate to each other?
Moreover, the nature and composition of the suitable GWS is to be questioned:
What artifacts are used? On which theoretical reference is the implemented geo-
metric work really grounded? Which problems are used as exemplars to lead stu-
dents in geometric work?

2.5 Two Examples Showing the Use of the Framework

In the following, I develop two examples showing the possibilities offered by the
framework to deal with the above questions. I refer the interested reader to various
papers using the framework and its extensions, and, specially, the ZDM
Mathematics Education special issue on Mathematical Working Spaces in
schooling (Kuzniak, Tanguay, & Elia, 2016).

2.5.1 An Example of a Coherent GWS Supported
by Geometry I

To show what a suitable GWS guided by Geometry I is, I use the findings from a
comparative study on the teaching of geometry in France and Chile quoted above
(Guzman & Kuzniak, 2006). Education in Chile is divided into elementary school
(Básica) till Grade 8 and secondary school (Media) till Grade 12. From 1998 on, the
teaching of mathematics has abandoned the focus on abstract ideas which was in
place before and turned into a more concrete and empirical approach. As of today,
the reference GWS is guided by Geometry I. To illustrate this and point out some
differences between France and Chile, let us consider the following exercise taken
from a Grade 10 textbook (Mare Nostrum, 2003).
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Students starting the chapter on similarity have to solve the following problem,
whose solution is given later in the same chapter:

Alfonso is just coming from a journey in the precordillera where he saw a field with a
quadrilateral shape which interested his family. He wants to estimate its area. For that,
during his journey, he measured, successively, the four sides of the field and he found them
to measure approximately: 300 m, 900 m, 610 m, 440 m. Yet, he does not know how to
find the area.

Working with your classmates, could you help Alfonso and determine the area of the field?
(Mare Nostrum, 2003, p. 92)

As four dimensions are not sufficient to ensure the uniqueness of the quadri-
lateral, the exercise is then completed by the following hint:

We can tell you that, when you were working, Alfonso explained the problem to his friend
Rayen and she asked him to take another measure of the field: the length of a diagonal.
Alfonso has come back with the datum: 630 m.

Has it been done right? Could we help him now, though we could not do it before? (ibid.)

The proof suggested in the book begins with a classical decomposition of the
figure in triangles based on the indications given by the authors. But the more
surprising for a French reader is yet to come: The authors ask students to measure
the missing height directly on the drawing. This way of doing geometry is strictly
forbidden at the comparable level of education in France.

How can we compute the area now? Well, we determine the scale of the drawing, we
measure the indicated height and we obtain the area of each triangle (by multiplying each
length of a base by half of the corresponding height). (ibid.)

In this example, geometric work is done on a sheet of paper and with the scaling
procedures, instruments for drawing and measuring, and a formula for calculating
the area of a triangle. In this first GWS, which I call the measuring GWS, splitting a
drawing of the field into two triangles and measuring altitudes makes it possible to
answer the question in a practical way. In that case, geometric work is clearly
supported by Geometry I and goes back and forth between the real world and a
drawing, which is a schematic depiction of the actual field. Measurement on the
drawing affords the missing data. The activity is logically ended by a calculation
with approximation, which relates to the possibility of measuring accepted in
Geometry I but not Geometry II.

A second GWS, the calculation GWS, supported by Geometry II is possible and
exists in France where the so-called Heron’s formula makes it possible to calculate
the area of a triangle knowing the length of its sides without drawing or mea-
surement. The two GWS share a common general strategy: splitting into two tri-
angles. But they do not share the other means of action, the justifications of these
actions, and the resulting geometric work.

In the example, the first two modeling spaces do not necessarily organize
themselves in a hierarchy where the mathematical model would have preeminence.
The GWS supported by Geometry I allows the problem to be satisfactorily solved
with a limited theoretical apparatus. The GWS supported on Geometry II avoids
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drawing and measuring and therefore its accuracy is not limited by the measure-
ment on a reduced scale or the imprecisions of the drawing. The procedure in this
GWS allows automation, for example by way of a program on a calculator. The
measuring GWS favors the use of instruments and therefore their associated
geneses, while the calculation GWS fosters the use of symbolic signs (semiotic
genesis). In both spaces, discursive genesis may be called upon to justify the
procedure used but in a different way, which changes the epistemological nature of
proof.5

2.5.2 Intercept Theorem Current Use or Incompleteness
of the Geometric Work

To illustrate the interest of the GWS model and develop the question of the
completeness of geometric work, we will refer to a classroom session (Nechache,
2014) dedicated to the use of the intercept theorem6 (in French, le théorème de
Thalès, or in German Strahlensatz) in France at Grade 9 where the Geometry II
paradigm is favored by the curriculum. In this session, a restricted use of the
mathematical tool, the theorem, leads to a mathematical work that can be often
deemed incomplete. Nechache’s study (2014) helps to clarify some discrepancies
that often arise between the mathematical work produced by the students and the
work expected by the teachers. Our analysis is supported by the GWS model, which
enables highlighting the dynamic of geometric work through the various planes
determined by the model (Fig. 2.3).

In French education, from the 1980s, the use of the intercept theorem has been
gradually restricted to two typical Thales’ configurations: one named “triangle” and
the other “butterfly” (Figs. 2.4 and 2.5).

During the session observed by Nechache (2014), the teacher asks the students
to solve an exercise, taken from the textbook (Brault et al., 2012, p. 311), with nine
multiple choice questions having three alternative answers. Two figures corre-
sponding to Thales’ “butterfly” configuration are associated with the statement of
the problem.

The nine tasks can be characterized as simple, requiring a few abilities: deter-
mine reduction ratios, check equal ratios, and calculate the lengths of triangle sides.
The last four questions relate to the converse and contrapositive form of the
intercept theorem by referring this time to the second figure (Fig. 2.6b) to identify
the correct parallelism properties. In the textbook, the exercise is designed to train
students to identify key figures associated with the intercept theorem and master
routinized techniques. The cognitive activity is essentially based on visual and

5See Footnote 3.
6Also known in English as “basic proportionality theorem;” see https://en.wikipedia.org/wiki/
Intercept_theorem.
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semiotic exploitation of data taken from the diagram: no discursive justification is
expected. The mathematical work is fully located in the [Sem-Ins] plane with use of
Thales’ diagram as a technological tool for calculation.

In the classroom session observed by Nechache (2014), the teacher first asks the
students to investigate the questions for four minutes. Then, he only answers two of
the questions he gave and starts with the first question:

In Fig. 2.6a, the triangle AOM is a reduction of the triangle IOE by ratio: 3/9 or
9/6 or 2/3.

The question is simple, because it can be answered in a very elementary way by
using visual recognition using only the semiotic dimension, as the text specifies that
one triangle is a reduction of the other. Different ways to solve it can be used, all of

Fig. 2.4 The “triangle” form
of the intercept theorem

Fig. 2.5 The “butterfly”
form of the intercept theorem
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which involve solely the semiotic dimension. The mathematical work is confined to
the [Sem-Ins] plane by using the butterfly diagram associated with Thales’ theorem
as a semiotic tool. The analysis of the entire session allows us to check that
students’ mathematical work is also confined and closed on the semiotic axis.

The teacher draws the first figure freehand on the blackboard. Before giving the
solution to the first question, he urges students to remember methods related to the
intercept theorem, which had been studied in an earlier lesson when the theorem
was introduced. The solution of the exercise is temporarily postponed in favor of a
work exclusively concerned with the theoretical referential in the suitable GWS
based on Geometry II that the teacher wants to implement. Later, a student reads the
question and gives the correct answer. The teacher agrees and asks him to justify
the answer. This demand of justification is new and is not part of the initial
problem: The student and all classmates remain silent. The teacher reads the
question again and addresses the students:

Teacher: When we tell you that a triangle is a reduction of another one, does
this not remind you of any property? No theorem? Well that’s a pity, we just
saw it 5 minutes ago. So, which theorem has to be applied when we have
such a configuration?

Faced with the remarkable silence of these students who, at this level of
schooling, only know two theorems (the Pythagorean and intercept theorems), and
given that the intercept theorem has just been the subject of an insistent reminder,
the teacher comes back again to the figure drawn on the blackboard by commenting
on it, then he proceeds to checking each of the conditions required to apply the
intercept theorem. He favors the discursive axis in the GWS model by changing the
nature of the task: a justification of the result is requested and needs to be based on a
theoretical tool. The mathematical work has changed and is now in the [Sem-Dis]
plane. The teacher starts by checking the trivial alignment of the points and the fact
that straight lines are transversals (secants in French).

Teacher: Are you sure? Do you have what is needed? How are the points
supposed to be?
Students: Aligned.

Fig. 2.6 a, b The diagrams included with the exercise
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Teacher: So, the straight lines must be sec…
Students: Secants
Teacher: Which one?
Student: (ME) and (AI).
Teacher: (ME) and (AI) are secants in O. We have the five points which
intervene.

To move forward toward the solution, the teacher resorts to the Topaze effect
that Brousseau (1986) identified when a teacher endeavors to get the expected
answer from his student through purely linguistic cues, independent of the target
mathematical knowledge. In this instance, the mere utterance of the beginning of
the word “secant” with the phoneme “sec” is sufficient to obtain the right answer
from the student.

The teacher then guides the student to check the parallelism of the straight lines
by using the same effect but with less success because students propose straight
lines different from those that are expected by the teacher. These inappropriate
answers show that students no longer perceive the goal of the exercise: They persist
in carrying out a visual work that is not guided by the theoretical referential. But the
teacher remains in his role: He is in charge of developing the theoretical referential
and he finishes by applying the theorem to show equal ratios.

The teacher concludes the session by clarifying briefly what he expects from a
mathematical work.

Teacher: The trick is to be able to explain what we have done.

So the teacher has chosen to adapt the task by changing the nature of the
geometric work: The results should be justified by using the theoretical referential
(the intercept theorem).

In the suitable GWS implemented by the teacher, the mathematical work is
placed in the [Sem-Dis] plane oriented towards the discursive genesis. The expected
validation favors the use of the intercept theorem as a theoretical tool confined in
the discursive dimension of the GWS (Fig. 2.7).

Fig. 2.7 Work done by students versus work expected by the teacher
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The observation of this geometry session shows that students’ work is exclu-
sively located in the semiotic dimension favored by the textbook’s suitable GWS
and not expected in the suitable GWS implemented by the teacher. Hence, a
misunderstanding emerges between the work the students do and the work the
teacher expects: The misunderstanding relates to the change of validation in what
counts as proof. Indeed, no discourse of proof is expected in the textbook, but the
teacher does expect proof to be connected to the discourse in the suitable GWS.
Both students and teacher carry out their work diligently, but they do not do the
same geometric work and this work is incomplete because it is confined to only one
or two dimensions instead of all three dimensions of the GWS model.

2.6 Understanding and Developing Geometric Work
Through Its Dynamics

The geometric work perspective that I suggest requires coordination between
cognitive and epistemological approaches, and the entire work is structured by three
complementary dimensions: semiotic, instrumental, and discursive. The research
challenge is to identify and understand the dynamics of geometric work by
observing, in particular, the role of each of the three previous dimensions, and the
interactions among them as suggested by each of the planes used to represent the
model (Figs. 2.2 and 2.3). The successful achievement of this program passes
through a better understanding of each dimension of the GWS model.

Geometry is traditionally viewed as work on geometric configurations that are
both tangible signs and abstract mathematical objects. Parzysz (1988) has clearly
identified this difference under the opposition drawing versus figure, which high-
lights the strong interactions existing between semiotic and discursive dimensions.
In the GWS framework, the semiotic genesis is clearly associated to interpreting
and developing a system of signs (semiotic system) and it could be analyzed using
the contributions of Duval (2006), who developed very powerful tools (in partic-
ular, the notion of registers of semiotic representation) to explore the question. In
his view, a real understanding of mathematical objects requires the student to be
able to play between different registers, which are the sole tangible and visible
representations of the mathematical objects.

Geometry could not exist without drawing tools and study of their different uses
makes it possible to identify two types of geometry, which are well described by the
Geometry I and Geometry II paradigms. From precise but wrong constructions (like
Dürer’s pentagon) to exact but imprecise constructions (like Euclid’s pentagon), it
is possible to see all the epistemic conflicts that distinguish constructions based on
approximation from constructions based on purely deductive arguments. This
fundamental difference continues to nourish misunderstandings and polemics in the
classroom as the “flattened triangle” task shows: Does there exist a triangle with
sides 4, 5, and 9 cm? Some students affirm its existence based on a triangle they
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have constructed with their compass, and others negate its existence by using the
triangle inequality and calculation.

The tension between precise and exact constructions has been renewed with the
appearance of dynamic geometry software (DGS). As Straesser (2002) suggested,
we need to think more about the nature of the geometry embedded in tools, and
reconsider the traditional opposition between practical and theoretical aspects of
geometry. Software stretches boundaries of graphic precision, and finally, ends by
convincing users of the validity of their results. Proof work does not remain simply
formal, and forms of argumentation are enriched by experiments, which give new
meaning to the classic epistemological distinction between iconic and non-iconic
reasoning. The first closely depends on diagram and its construction and relates to
the [Sem-Ins] plane and the second tends to be based on a discursive dimension
slightly guided by some semiotic aspects [Dis-Sem].

How do the semiotic, instrumental, and discursive geneses relate to each other,
and specifically how does the use of new instruments interact with semiotic and
discursive geneses in transforming discovery and validation methods? And how can
students’ geometric work be structured in a rich and powerful way? This is one of
the issues that the GWS model seeks to describe through the notion of complete
geometric work Kuzniak, Nechache, and Drouhard (2016a) which supposes a
genuine relationship between the epistemological and cognitive planes and artic-
ulation of a rich diversity between the different geneses and vertical planes of the
GWS model. The aim is not only to observe and describe existing activities but also
to develop some tasks and implement them in classroom for integrating the three
dimensions of the model into a complete understanding of geometric work
according to the perspective expected by teachers and that geometric paradigms
help to precise.
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Chapter 3
Epistemological Features
of a Constructional Approach
to Regular 4-Polytopes

Stephan Berendonk and Marc Sauerwein

Abstract The limitations of empirical methods in 4-dimensional geometry
demand, but also provide more scope for, alternative ways of understanding, such
as analogy. The introduction of students to 4-dimensional objects should thus be
considered as an opportunity to enhance students’ belief system about mathematics.
We will describe and reflect on the characteristics of a constructive approach to
regular 4-polytopes and share our experiences with teaching this approach.

Keywords 4-Polytopes � Analogy � Beliefs � Constructional � Empiricism
Four-dimensional � Geometry � Hypercube � Induction � Mental object
Platonic solids � Reasoning by analogy � Subject matter didactics
Workshop

3.1 A Didactical Challenge: The Pure Empiricist

Consider the following task: Show that the graph of a quadratic function is a curve
whose points are at equal distance from a fixed point and a fixed line.

“How to accomplish this task? I know. I open my dynamic geometry software
program and let it plot the graph of some quadratic function. Fortunately, there is
also a button that creates, by specifying a point and a line, the curve whose points
are at equal distance from them. So, I have a second curve on my screen; and, by
dragging the specified point and line, I can manage to put that new curve right on
top of the old one. Thus, indeed, both curves are exactly the same. QED.”

If someone actually solved the above task in the described way, he or she would
be convinced that both constructions yield the same curve. Thus, it would be
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needless to tell them that they don’t know the result for sure. In terms of mathe-
matical awareness (Kaenders, Kvasz, & Weiss-Pidstrygach, 2011), the person
acquired experimental awareness of the result—no more, no less.

But what is the ontological status of the curves in this solution? Once the curves
have been created, they are treated like physical objects that can be dragged around
and put on top of each other. In particular, they are compared visually, not mentally.
Therefore, this solution serves as a typical example of what has been called naïve
empiricism (Schoenfeld, 1985). The pure empiricist discovers his results mostly by
induction that is by pattern recognition. If asked for the measure, for instance of an
angle, he would go and measure it, for instance with a protractor, and come back
with an approximate answer. Several studies (i.e., Balacheff, 1988; Chazan, 1993;
Schoenfeld, 1985) have shown that empiricism is a common mathematical beha-
viour among high school students.

Of course, induction is not something that one should unlearn. The mature
mathematician still uses it as a common strategy in his search for new results. De
Villiers (2010), for instance, describes geometrical results he found by using
empirical strategies and facilitated by employing dynamic geometry software. Pölya
(1954) also gathered a whole collection of elementary, but not only geometrical,
examples that show the power of inductive reasoning. Leuders and Phillip (2014)
highlight inductive reasoning very strongly in order to advocate its dominant role in
high school mathematics. De Villiers (2010) holds a similar view, but unlike
Leuders and Phillip (2014), he does not abandon the deductive methods from the
context of mathematical discovery. Indeed, Pölya’s (1954) examples show that
inductive reasoning is especially strong when combined with deductive reasoning
and also with reasoning by analogy. In order to display and develop these other
modes of reasoning in their own right, we looked for a context where inductive
reasoning is less effective. An initiation to four-dimensional objects appears to be a
good choice in this regard.

3.2 A Theoretical Solution

3.2.1 Identifying a Cognitive Conflict

When introducing regular 4-polytopes on three different occasions to high school
students, the students greeted the fourth dimension subject with a curiosity not seen
with other mathematical subjects. Thinking of the students, somewhat simplisti-
cally, as pure empiricists can lead to the following explanation of this observation:
What is the fourth dimension? For the pure empiricist, space has only three
dimensions. The fourth dimension, therefore, must be of a different nature than the
other three. Typically, the pure empiricist would say that the fourth dimension is the
dimension of time. If the pure empiricist was informed the conversation was going
to be about a space that has four (identical) spatial dimensions and also about
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4-dimensional geometrical objects living within that space, he would, consciously
or not, have the following cognitive conflict which raises his interest about the
topic:

A 4-dimensional object, whatever it may be, cannot be treated as a physical object, or can
it? I cannot see it and I cannot measure it with straightedge and protractor, or can I?
Therefore, my usual (empirical) strategies seem to be quite useless, when it comes to the
fourth dimension. But then, how is it possible to determine the properties of a
4-dimensional object?

3.2.2 Resolving the Conflict—Analogy Takes Over

In contrast to the 2- and 3-dimensional setting where every student can effortlessly
generate many different object types, the 4-dimensional world seems unoccupied to
the beginner. Therefore, conflict starts at the creation of 4-dimensional objects.
A plane or solid mathematical object may be the result of an abstraction from some
physical reference object. However, 4-dimensional objects cannot be abstracted due
to the lack of a reference object. They require construction. Naturally, the beginner
does not know how to construct a 4-dimensional object since there seems to be no
suitable paradigm at hand. That moment is when the beginner is introduced to the
paradigm of the transition from plane to solid objects. Having identified a general
construction scheme that turns plane figures into solids, the beginner can try to
apply this scheme (at least verbally) to a solid object in order to get an inhabitant of
the 4-dimensional world.

A prism, for instance, can be constructed from a plane figure’s trace moving in a
direction perpendicular to itself. If the plane figure is a square and if the square is
moved through a distance equal to the length of its sides, the construction yields a
cube (Fig. 3.1). However, if the moving figure is a cube instead of a square, a
totally new object is obtained. Since it is a 4-dimensional analogue of the cube,
hypercube1 will be the working definition for this concept. The pure empiricist will
object that it is not possible to move a cube perpendicular to itself. This con-
struction, therefore, results not in a physical, but just a linguistic object. It is an
object created by means of language. Nevertheless, the linguistic construction in
combination with analogy enables the opportunity to identify the properties of this
linguistic object. For instance, while a moving square traces a cube, the four edges
of the moving square trace four of the square faces of the resulting cube. Together
with the starting position and the end position of the moving square those four

1From now on, we refer by the prefix hyper always to the fourth dimension.
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squares form the boundary of the resulting cube. Analogously, while a moving cube
traces a hypercube, the six faces of the moving cube trace six cubical boundaries of
the resulting hypercube. Together with the starting position and the end position of
the moving cube, those six cubes form the boundary of the resulting hypercube.
Thus, apparently, eight cubes bound a hypercube. The given argument, which is
typical for our constructive approach to regular 4-polytopes, is an example of a type
of reasoning which is in the literature also referred to as operative proof (Wittmann,
2014) or transformational reasoning (Chazan, 1993).

On the one hand, a cube can be created mentally by a moving square; yet on the
other hand, it can be created physically out of six congruent squares. Starting with a
single square, four more squares are placed around the first one’s edges. When
folding these four outer squares into the third dimension, the result is an open cube
which can be closed by the sixth square (Fig. 3.1). Analogously, it can start with a
cube and put six other cubes on the faces of the first cube. Reflection on this
alternative construction of a cube results in a new 4-dimensional analogue of the
cube. Like the hypercube, it is built from eight cubes. Would it be possible that the
new object is actually nothing but the hypercube? Contrary to the situation sketched
in the beginning that compared two different ways of generating a parabola, the
objects cannot be viewed from outside to determine if they are the same. Instead,
the basis of their properties will be the deciding factor. At some point, the con-
nections between the two constructions are realized and are seen in the same
picture. This achievement indicates that the hypercube conception has developed.
The mere linguistic construction has turned into a mental object (Freudenthal, 1991)
or figural concept (Fischbein, 1993).

Summarizing the information so far, there is a cognitive conflict about the fourth
dimension that stems from the view of the dominant role of empirical methods in
plane and solid high school geometry. They are useless in higher-dimensional
geometry. The conflict is resolved by displaying the strength of two alternative
epistemological tools, analogy and operative proving (Wittmann, 2014). Of course,
students might be acquainted with non-inductive methods; but usually, students are
accustomed to use these methods to explain results. Here, they need them to find the
results. Thus, exploring 4-dimensional objects is epistemologically quite a different
activity than exploring plane or solid objects. An accessible and moderate intro-
duction to the fourth dimension might contribute to challenge students’ empirical
belief systems about mathematics (Schoenfeld, 1985). In view of the long and rich

Fig. 3.1 Two different
constructions of a cube
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history of the Platonic solids, the Platonic hypersolids are an obvious choice for
such an introduction. One way to define these objects is by means of coordinates.
There are two challenges when using coordinates to define the Platonic hypersolids.
First, this approach demands great familiarity from the learners in working with
linear equations. Secondly, neglecting the geometric character of the subject is a
risk. Therefore, this study utilizes an approach that establishes the polytopes by
means of mental constructions.

3.3 The Implementation (Part I): Overcoming Empiricism

Below is a sketch of the beginning of a workshop on the Platonic hypersolids held
at the International Mathematical Kangaroo Camp at Werbellinsee, Germany, in
August of 2015.2 The sketch will include reflections on the choices made, obser-
vations of the difficulties students encountered, and potential ways to improve the
workshop.

3.3.1 Episode 1: Starting Predicatively3

Edwin Abbott’s satirical novella, Flatland: A romance of many dimensions, is
probably still the most popular early introduction to higher dimensional space.
Abbott sketches a society of polygons which live inside a plane. At some point one
of the Flatlanders is visited by a three-dimensional being, a sphere. The Flatlander,
however, can only see the intersection of the sphere with the plane and thus per-
ceives the sphere as a circle (Fig. 3.2). While the sphere moves upwards and
downwards, the Flatlander sees a circle that is growing and shrinking. Thus, the
Flatlanders conceive a sphere as a family of circles of different size.

2The International Mathematical Kangaroo Camp is an annual event that takes place at the
European Youth and Recreation Meeting place (EJB) at the Werbellinsee in Brandenburg,
Germany. It is the prize for the best participants of the Kangaroo Competition (grade 9/10) from
Austria, Czech Republic, Germany, Hungary, Netherlands, Poland, Slovakia, and Switzerland.
Each country sends about 10 students to the camp. The program includes various sports com-
petitions, chess and game evenings, a problem-solving competition, and a trip to Berlin. However,
different mathematical workshops, which take place every morning, form the camp’s core activity.
The workshops usually cover a broad spectrum of topics and try to offer a glimpse into the vast
world of elementary mathematics that lies beyond the school mathematics curricula. The focus is
more on sharing with the students one’s enjoyment in the doing and talking about mathematics
than on producing any specific output. The workshop presented here was given to four different
groups of 15 students each.
3Schwank (1993) distinguishes two cognitive structures of thinking: “Predicative thinking
emphasizes the preference for thinking in terms of relations and judgments; functional thinking
emphasizes the preference for thinking in terms of courses and modes of actions” (p. 249).
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Transferring this situation from Flatland to Spaceland leads to the following
claim: “As the Sphere, superior to all Flatland forms, combines many Circles in
One, so doubtless there is One above us who combines many Spheres in One
Supreme Existence, surpassing even the Solids of our Spaceland,” (Abbott, 1994,
p. 102). Letting our students try to define this One Supreme Existence, alias
hypersphere, after recapitulating the definitions of circle and sphere seemed to us a
suitable first exercise to become acquainted with analogy:

• What is a circle? Give a definition.
• What is a sphere? Give a definition.
• What is a hypersphere? Guess a definition.

The idea behind the three-part nature of this exercise is to strongly suggest that
copy and paste will yield a correct definition of the hypersphere. However, two
slightly different answers occurred to the first question (and similarly to the second
one): A circle is the set of points…

• …having equal distance to one particular point.
• …satisfying the equation x2 þ y2 ¼ r2.

Of course, both conditions express the same property of the circle, but while the
coordinate-free formulation can be used for the sphere and the hypersphere without
alteration, one slightly has to adapt the equation in the Cartesian version. As a result
of the exercise, the students created a four-dimensional object as a linguistic object,
but they needed to check that its intersection with ordinary space is a sphere. To
prevent the students from getting stuck by the lack of basic knowledge about
analytical geometry, we decided to go with the coordinate-free definition. Again,
the two-part nature of the exercise intended to suggest that copy and paste would
also yield a proof of the definition’s correctness.

Fig. 3.2 Intersection of a
sphere with a plane
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• Prove that the intersection of a sphere and a plane is indeed a circle.
• Prove that the intersection of your four-dimensional object and a space (or

hyperplane) is indeed a sphere.

In the first part of the exercise, one has to find a candidate for the center of the
resulting circle: The intersection of the plane and the perpendicular to the plane
which goes through the center of the sphere is such a candidate. The Pythagorean
theorem then concludes the argument (Fig. 3.3).

Note that we introduced the hypersphere by means of a definition, not a con-
struction. Obviously, the symmetry of all points with respect to the center was
crucial in our proof, but in retrospect, this predicative start breaches the strictly
constructive approach of the remaining workshop.

3.3.2 Episode 2: Introducing Trace Constructions

The workshop proceeded with the following question: “You have learned that, if a
hypersphere visits us in Spaceland, we will only see an ordinary sphere. How about
the other direction? If we encounter a four-dimensional visitor and perceive him as
an ordinary sphere, must he necessarily be a hypersphere?”

We intended and hoped for the following answer: The analogous question in a
dimension lower has to be denied. The sphere is not the only three-dimensional
object that has a circle as a plane intersection. Cylinders (and cones) have circles as
plane intersections, too. This is because a cylinder can be generated as the trace of a
circle moving perpendicular to itself. Therefore, if we move a sphere perpendicular
to itself, this will produce as a trace a four-dimensional object, which consists of
spheres, although it is a different object than the hypersphere. Let us call it a
hypercylinder.

Were the students in a good position to give this answer? Not at all. Due to the
predicative start of the workshop, the students naturally looked for a definition,

Fig. 3.3 The intersection is a
circle
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not a construction, of the cylinder, which they could lift to the fourth dimension.
For instance: A cylinder is the set of points in space having the same distance to a
given line. The students might have come up with the intended answer but only if
they have been introduced to trace constructions before. The workshop could have
provided them with the following construction of the hypersphere in addition to the
definition:

• A circle is the trace of a point rotating in a plane around another point.
• A sphere is the trace of a semicircle rotating in space around its diameter.
• A hypersphere is the trace of hemisphere rotating in four-dimensional space

around its equatorial plane.

In any case, having seen the trace construction of the hypercylinder, the students
were well-prepared to do the next exercise: Construct a four-dimensional object
that, when intersected with a suitable hyperplane, will yield an ordinary cube.
Applying the trace construction to a cube instead of a sphere, that is moving a cube
perpendicular to itself, will produce such an object. Note that the predicative
approach to this exercise would ask for a cube’s definition, which could be lifted to
the fourth dimension. Finding a suitable definition for the cube, however, appears to
be more difficult than the sphere or the cylinder. The constructional approach, on
the other hand, produces a suitable object rather easily.

Having solved this exercise, the students then saw Fig. 3.4, which shows the
beginning of an infinite sequence of objects. Each object is generated as its pre-
decessor’s trace moves perpendicular to itself through a distance equal to the line
segment’s length, the starting object of the sequence. The sequence’s second object
is a square, and the third object is a cube. The fourth object, the cube’s successor, is
called hypercube. More generally, the nth object of the sequence is called n-cube.
Therefore, the sequence’s objects are higher-dimensional analogues of the cube.

How about the other Platonic solids? Do they have higher dimensional ana-
logues, too? Consider the tetrahedron. We are looking for a construction, which
yields a plane figure, when applied to a line segment and, which, when applied to
the plane figure, gives the tetrahedron. Modifying the previous trace construction
does the job: Move the object perpendicular to itself, but shrink it at a suitable pace
(to a point) simultaneously. Figure 3.5 shows the sequence’s beginning that

Fig. 3.4 Genesis of the hypercube
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belongs to this construction. The second object of the sequence is an equilateral
triangle; the fourth object is called pentachoron. The nth object of this sequence is
called n-simplex.

Another modification of the previous trace construction leads to the higher
dimensional analogues of the octahedron: Move the object in a direction perpen-
dicular to itself, while shrinking it at the same time, but move it also in the opposite
direction, shrinking it simultaneously. Figure 3.6 shows the beginning of the cor-
responding sequence of objects. The two-dimensional analogue of the octahedron is
a square. The four-dimensional analogue is called hexadecachoron. The
n-dimensional analogue is called n-orthoplex.

At this point, the students should have recognized trace constructions as an
effective means to create higher-dimensional objects.4

3.3.3 Reviewing This Introduction: Definitions
and Constructions

In the following paragraph we integrate the previous introduction into a theoretical
framework, which this study refers to as the epistemological scheme (Fig. 3.7).

The predicative approach, depicted on the left-hand side of Fig. 3.7, focused
primarily on the definitions of the circle and sphere and the relationships between

Fig. 3.5 Genesis of the pentachoron

Fig. 3.6 Genesis of the hexadecachoron

4In (algebraic) topology, these three well-known basic operations on spaces are called cylinder,
cone and suspension of a given topological space (Hatcher, 2001).
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these definitions. It enables the students to guess and subsequently define higher
analogues of the circle in an easy and uniform way. Although this way of action can
be seen as dull, mindless, or even misleading, the workshop chose it intentionally to
let the students come to play with 4-polytopes. The method of copy and paste can
be seen as a door opener to engage the students quickly in their own mathematical
activity. It should be mentioned that despite the transition to higher dimensions is
performed, it can be doubted that geometric ideas and intuitions have been fostered
since they are both not needed. Furthermore, from such a condensed definition it is
rather tedious for the students to unravel the definition in order to deduce properties
of the given geometric object, and, thereby, to create a mental object eventually.

The second episode focuses on the constructive aspect. This approach can be
found on the right-hand side of Fig. 3.7. The idea is that the transition from the
plane to the space can serve as a prototype in the construction of higher dimensional
analogues of well-known geometric objects. Careful examination of the construc-
tion of spatial objects out of planar objects can hint to certain analogy pairs that are
crucial for a successful reasoning via analogy. An important point to remember is
that readily accessible objects, such as the line, the triangle, and the square are used
as building blocks for the construction of new objects. Hence, the geometric notions
are more strongly interconnected, and the transition to a higher dimension is per-
ceived as an extension of existing notions. Therefore, the new objects are not
produced all alone, but instead they come along with their own individual genesis
highlighting certain properties; and thus, constituting much more profound mental
objects. These properties can subsequently be ordered locally by the learner in order
to learn which properties are defining and can make for a definition eventually.

3.3.4 Episode 3: Beating the Empiricist

The students next realize that these trace constructions also provide the opportunity
to investigate the resulting objects they created. To this end, the workshop asked
students to calculate the number of k-faces, i.e. the number of vertices, edges,

Fig. 3.7 Epistemological
scheme
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faces…, of the n-cube, the n-simplex and the n-orthoplex. This section shares the
experiences in this exercise.

Consider Table 3.1. The students spotted easily two distinct number sequences
occurring in the table, namely the following:

• The column Vertices: 2, 4, 8, 16, …
• The diagonal under the 1’s: 2, 4, 6, 8, …

In Table 3.2, it is just the other way around. The column Vertices consists of the
even numbers, and the diagonal under the 1’s appears to consist of the powers of
two. In Table 3.3, both the column Vertices and the diagonal under the 1’s
apparently show the sequence of the natural numbers, starting with two (2, 3, 4, 5,
…).

When students filled in the numbers of the last rows of Tables 3.1, 3.2, and 3.3,
to determine the number of k-faces of the 5-cube, the 5-orthoplex and the
5-simplex, some students were only able to determine the number of vertices and
the number of 4-cells of each object, while the others found all the numbers.

Obviously, the first group noticed and used the prominent patterns described
above. However, their pattern recognition abilities were not strong enough to guess
the other numbers. Thus, their inductive approach failed. The second group, on the
other hand, stuck to the construction and was thereby able to deduce the numbers
of the five-dimensional objects from the numbers of their four-dimensional
analogues: Let Bk be the number of k-dimensional faces of the five-dimensional
object under consideration and let bk be the number of k-dimensional faces of its
four-dimensional analogue. Then, the trace constructions entail the following
recurrence relations:

Table 3.1 Combinatorial data of n-cubes

Dimension Object Vertices Edges Faces 3-faces 4-faces

1 Segment 2 1 – – –

2 Square 4 4 1 – –

3 Cube 8 12 6 1 –

4 Hypercube 16 32 24 8 1

5 “5-Cube” ? ? ? ? ?

Table 3.2 Combinatorial data of n-orthoplices

Dimension Object Vertices Edges Faces 3-faces 4-faces

1 Segment 2 1 – – –

2 Square 4 4 1 – –

3 Octahedron 6 12 8 1 –

4 Hexadecachoron 8 24 32 16 1

5 “5-Orthoplex” ? ? ? ? ?
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� 5-Cube: B0 ¼ 2 � b0; Bkþ 1 ¼ 2 � bkþ 1 þ bk for k from 0 to 3:
� 5-Orthoplex: B0 ¼ b0 þ 2; Bkþ 1 ¼ bkþ 1 þ 2 � bk for k from 0 to 2; B4 ¼ 2 � b3:
� 5-Simplex : B0 = b0, Bkþ 1 ¼ bkþ 1 þ bk for k from 0 to 3:

As mentioned previously, the inductive approach should not be discarded.
Gathering the combinatorial data and displaying them together properly in a table
can be a fruitful activity. The tables may call attention to a phenomenon that would
otherwise stay unnoticed. In this case one may, for instance, observe a curious
connection between the data of the n-cubes and the data of the n-orthoplices. Apart
from the last 1 in each row, the numbers appear in reverse order in each row. This
symmetry, which is rather prominently displayed by the tables, can also be dis-
covered by looking at the recurrence relations of the n-cubes and n-orthoplices, but
there it might have been overlooked.

3.4 The Implementation (Part II): Enriching the Students’
Views of Mathematics

The following sections are three different episodes experienced in the different
workshops, and reflection is done on each of them individually.5 These episodes
will show that our subject offers good opportunities to challenge some of the typical
students’ beliefs about mathematics, beyond the empiricism already discussed.

3.4.1 Episode 4: Choosing the Wrong Candidate

Back to the first exercise: A sphere is the set of all points in space having equal
distance to a particular point. What is a hypersphere? Is it the set of points in
four-dimensional space having equal distance to a particular point or to a particular

Table 3.3 Combinatorial data of n-simplices

Dimension Object Vertices Edges Faces 3-faces 4-faces

1 Segment 2 1 – – –

2 Triangle 3 3 1 – –

3 Tetrahedron 4 6 4 1 –

4 Pentachoron 5 10 10 5 1

5 “5-Simplex” ? ? ? ? ?

5Episodes 4 (partially) and 6 were observed by both authors, whereas episode 5 was only observed
by the first author. However, the reflection is the result of the discussion between both authors.
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line? The exercise, taking the circle into account, suggests that one should choose
the first alternative: since circle and sphere both have a center, the hypersphere
should have a center, too. The trichotomy of the exercise, therefore, was important
in order to avoid ambiguity. However, at some point, the learner should definitely
get the chance to experience this kind of ambiguity, so that he may improve his
intuition in choosing the suitable analogue. We decided that lifting Euclid’s proof
(Heath, 1908) for the fact that there are only five Platonic solids to the next
dimension would be a good first exercise which offers this experience.

The construction of the Platonic solids’ is uniquely determined by two combi-
natorial aspects: the type of regular 2-polygon used, and how many of them are
adjacent to one vertex. Thus, the question about the number of Platonic solids boils
down to the number of vertex configurations with a positive angular defect. For
instance, at most five equilateral triangles may fit around a vertex (angular defect:
360� � 5 � 60 ¼ 60�). By asking the students for a strategy to lift Euclid’s argu-
ment, it appeared natural to stick to the vertices: “We have to find out how many
tetrahedra may fit around a vertex,” the students said. However, this strategy failed
since “we do not know how to determine the measure of a solid angle.” Comparing
the cube’s second construction (Fig. 3.1) with the corresponding construction of the
hypercube suggests an alternative strategy. In the construction of the cube, three
squares met at each vertex of the first square.6 In the analogous construction of the
hypercube, three cubes met at each edge of the first cube. Apparently, there needs to
be a consideration of the angular defect at one edge than at one vertex. Indeed, this
strategy succeeds if one knows how to determine the dihedral angles of the Platonic
solids (Table 3.4), which is a nice exercise in solid geometry. It can be concluded
that only three, four, or five tetrahedra, three cubes, three octahedra, and three
dodecahedra may fit around an edge. Thus, there should be at most six (combi-
natorically) different Platonic hypersolids.

3.4.2 Episode 5: Struggling with Duality

Can all six edge configurations be realized by a Platonic hypersolid? The hypercube
(8-cell) realizes the configuration with three cubes around each edge. How about

Table 3.4 Dihedral angles of
the platonic solids

Solid Dihedral angle (°)

Tetrahedron 70.53

Cube 90

Octahedron 109.47

Dodecahedron 116.57

Icosahedron 138.19

6If Euclid’s proof is the analysis, this construction can be seen as the corresponding synthesis.
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three tetrahedra around each edge? That is easy: Start with one tetrahedron and put
another tetrahedron on each face of the first one. Glue the neighboring faces
together, and the result is a pentachoron. In a similar way, one can construct the
other four Platonic hypersolids (Banchoff, 1990). However, the construction of the
polytope with 4 tetrahedra at each edge is much harder to imagine than the con-
struction of the pentachoron since more layers of tetrahedra are needed (Fig. 3.8).

We thought that asking the students to carry out the construction mentally would
be an excessive demand, but showing a visualization of the construction process
would not be appropriate either, since it would appear like a deus ex machina. So,
we decided to introduce7 this polytope in a different way, namely as the dual of the
hypercube (hexadecachoron). That way, it is also generated naturally, since dual-
izing is a general method, not just a trick. Moreover, since dualizing interchanges
the roles of the vertices and 3-faces and the roles of the edges and faces, the
combinatorial properties of the cross polytope can easily be derived from those of
the hypercube, by means of a word replacement game:

The hypercube has four vertices at each face and four edges at each vertex.

Thus: The hexadecachoron has four 3-faces at each edge and four faces at each
3-faces.

Although they were able to play this game, the students were suspicious about
the resulting insights. They did not trust the method. A potential explanation: The
students were required to use duality in the fourth dimension as a tool for gaining
new insights. In the third dimension, duality was merely presented as an observable
phenomenon to them. The situation might be improved by inserting some additional
exercises, like “Dualize the soccer ball,” which show duality already in the third
dimension as a constructive method to generate new objects and a means to derive
their properties.

Fig. 3.8 Second genesis of the hexadecachoron

7Note that we did not consider the trace constructions of the n-orthoplices in the workshop in
which this episode took place.
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3.4.3 Episode 6: Seeking for Uniformity

“Does Euler’s polyhedron formula also hold in dimension four?” asked a student
after the hypercube and some other platonic hypersolids had been constructed.
Another student (who already calculated 16� 32þ 24� 8 ¼ 0) answered quickly
with a definite “No, it is zero!” This short response led to more confusion since
many other students calculated 8. It should be noted that the second student adapted
Euler’s formula to dimension four by taking the eight cubes belonging to a
hypercube into account whereas the other students did not feel the urge to adjust the
formula and thus obtained 8. After some discussion, the students agreed on the
extended formula, but there were still doubts about the result being 0. Shouldn’t
the correct answer be 2? At that point, the group divided itself into two parts: One
group extended the formula to dimension five and announced happily that the result
would be 2 again (at least for the 5-cube). The other group checked the formula for
triangles and squares, where the result was 0 again. One student summarised the
results as follows: Euler’s formula yields 2 in odd dimensions and 0 in even
dimensions. But there was still an unspoken urge among the students for one
unified formula without a case distinction. One student proposed that one could
simply add 1, when the result is 2 and subtract 1, when the result is 0. He argued
completely on an arithmetic level. Moreover, the student was not able to translate
this adjustment geometrically. Another student (rather quick in the construction of
hypersolids via analogy) argued that in each dimension the object itself is missing,
and thus giving the former reasoning a geometric meaning.

3.5 Reviewing the Episodes

The first two episodes present and contrast two different ways to generate
4-polytopes, a predicative and a constructive one. In both approaches analogy is the
prominent mode of reasoning. In the third episode we meet a situation where
inductive reasoning is possible, but clearly much less effective than reasoning by
analogy. The fourth episode broaches ambiguity in mathematics and demonstrates
that analogizing is not a mechanical activity. It requires intuition and experience
instead of recipes and algorithms. The fifth episode illustrates that symmetry or
more precisely duality can be used not only for structuring and classification. It is
also a useful problem-solving tool when it is used constructively. The final episode
deals with the activity of extending mathematical theories and emphasising unifi-
cation as a motive and driving force of a mathematical investigation.

Taking the episodes together, they offer a broad and rich perspective on the
activity of doing mathematics. They address fundamental aspects of mathematics
that seem rather neglected in teaching. However, the students might think of these
aspects as special features of the fourth dimension or the world of polytopes. They
might connect these general phenomena to the mathematical context in which they
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experienced them. In order to challenge this belief, workshops on other mathe-
matical context on the above aspects and similar aspects are needed.

Finally, it should be noted that this workshop, though it clearly focused on the
way mathematics is created, consisted mostly of closed tasks, guided discussions,
and guided discoveries. There was not much room for creativity. It could be fruitful
and challenging to design a more open version of this workshop without changing
its aims and spirit altogether.
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Chapter 4
Opportunities for Reasoning
and Proving in Geometry in Secondary
School Textbooks from Trinidad
and Tobago

Andrew A. Hunte

Abstract This study examines the quantity and quality of opportunities for rea-
soning and proving within the geometry content of three secondary school
Mathematics textbooks in Trinidad and Tobago. I use an instrument from Otten
et al. (Math Thinking Learn 16:51–79, 2014) to code and analyze the opportunities
for students to reflect on or engage in reasoning and proof. My analysis suggests
that the three textbooks contain opportunities for students to identify patterns, make
conjectures, and construct proofs. At least 30% of the student exercises in two of
the textbooks promoted Geometric Calculations with Number and Explanation
(GCNE), which provide opportunities for students to develop non-proof arguments
or rationales. The findings of this examination can potentially help in guiding
curriculum developers, policy makers, and textbook authors with the future design
of textbooks, curriculum materials, and other instructional resources that foster the
intellectual need of reasoning and proof in students’ mathematical experiences.

Keywords Conjectures � Deductive arguments � Empirical justifications
Geometric arguments � Geometric calculations � Mathematics textbooks
Non-proof arguments � Pattern identification � Proof � Proof construction
Reasoning � Secondary school geometry � Secondary school

4.1 Introduction

In Trinidad and Tobago, there have been substantive reform efforts of the mathe-
matics curriculum and policy documents that concern the role of reasoning
and proof. However, little is known about how the textbooks from Trinidad and
Tobago promote reasoning and proof. According to policy documents, secondary
school students should be given opportunities to engage in pattern identification,
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conjecturing, and formulating proof and non-proof arguments throughout their
mathematical experiences (Republic of Trinidad and Tobago, 2009). Additionally,
the most recent Caribbean Secondary Education Certificate (CSEC)1 mathematics
syllabus states that students should engage in the practice of constructing reason-
able arguments and critiquing the reasoning of others. Underlying these recom-
mendations in the reformers’ vision is the assumption that when students engage in
reasoning and proving, they have the opportunity to develop a deeper conceptual
understanding of mathematical content and appreciate the purpose of reasoning and
proof in mathematics. However, despite the policies favoring reasoning and proof,
students in Trinidad and Tobago have shown difficulty with items involving rea-
soning and proof in terminal assessments. The examiners claim that students have
difficulty with questions requiring an explanation of why a solution or argument
holds or have difficulty constructing proof arguments (CXC Subject Award
Committee, 2014).

Several researchers claim that textbooks are an important influence on students’
educational experiences in secondary school mathematics (e.g., Moyer, Cai, Wang,
& Nie, 2011; Stein, Remillard, & Smith, 2007). Several studies also show that
mathematics textbooks have a significant influence on students’ opportunities to
learn reasoning and proof in secondary school (e.g., Fujita & Jones, 2014; Otten,
Gilbertson, Males, & Clark, 2014; Stylianides, 2009; Thompson & Senk, 2014).
Textbooks influence what students learn, when they learn it, and how well they
learn it. On a global perspective, researchers report that efforts to change the content
of the secondary school curriculum, in particular textbooks, has been viewed and
used as an effective way to influence instructional practices, student learning, and
meet the recommendations of curriculum reform (Cai & Cirillo, 2014; Senk &
Thompson, 2003). Several studies, including the Third International Mathematics
and Science Study (TIMSS), have shown that textbooks continue to play an
important role in classrooms around the world (e.g., Fujita & Jones, 2014;
Stylianides, 2009; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002).
Therefore, textbooks have been called a vehicle of change for educational reform
(Ball & Cohen, 1996). Mathematics textbooks can play a vital role in students’
opportunities to engage in reasoning and proof; and convey the many decisions that
teachers make about the construction and execution of mathematical opportunities
offered to their students (Stylianides, 2007, 2009). Despite the efforts to make
reasoning and proof central to school mathematics in Trinidad and Tobago, there
are no existing studies that investigate how secondary school mathematics text-
books promote reasoning and proof. Furthermore, the recent reform recommen-
dations coupled with students’ low performance in reasoning and proof items in
terminal examinations suggest the need to examine the quantity and quality of
opportunities embedded in the secondary school textbooks in Trinidad and Tobago.

1The Caribbean Examination Council (CXC) administers the CSEC examinations and develops
the syllabi for 31 academic and vocational subjects written by students throughout the Caribbean
region. A successful completion of the CSEC examinations gives entry into post-secondary
institutions in the Caribbean, UK, USA and Canada.
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As a result, my inquiry is driven by the research question: What is the nature of
opportunities for reasoning and proof in secondary school textbooks in Trinidad
and Tobago?

4.2 Theoretical Framework

In this study, I focus on the opportunities for reasoning and proof in geometry
sections of the secondary school textbooks used in Trinidad and Tobago. My reason
for focusing on Geometry is that traditionally, Geometry has been one of the areas
in the CSEC examination2 wherein students are asked to prove results or engage in
pattern identification or conjecturing (CXC Subject Award Committee, 2014). I use
the conceptualization of reasoning and proof in Stylianides (2009) to guide my
inquiry. By reasoning and proof, I refer to the mathematical activities of (a) pattern
identification, (b) conjecturing, (c) providing non-proof arguments, and (d) con-
structing proofs. Following Stylianides (2009), I refer to pattern identification as the
task of identifying a “general mathematical relation that fits a given set of data”
(p. 263). For example, within this mathematical activity, students in Geometry can
firstly examine several cases of geometrical objects. Secondly, students can create a
data set and then find a general geometrical relation that aptly describes the data set.
At the end, students identify a geometrical pattern as the first activity within rea-
soning and proof.

In the second activity of conjecturing, I refer to the mathematical endeavor of
constructing and testing conjectures. Stylianides (2009) defined a conjecture as “a
logical hypothesis about a general mathematical relation, which is based on
incomplete evidence” (p. 264). The construction of conjectures refers to the actual
development of hypotheses about a generalized mathematical relation with some
measure of uncertainty about the validity of the hypothesis. The testing of con-
jectures entails empirical explorations, where a few examples are used to investigate
the validity of the hypotheses. In Geometry, students may observe a generalized
pattern after exploring several geometrical objects. As a result, students may make a
hypothesis (conjecture) describing the generalized observed pattern. At this stage,
students may begin to test whether their conjectures hold by testing several sets of
geometrical objects.

In the third activity, the development of non-proof arguments pertains to the use
of empirical examples and rationales to support one’s judgments about the validity
of a conjecture. Sentences, diagrams, and examples can be used to construct
non-proof arguments. The non-proof arguments could also include and not limited

2Candidates for the CSEC examination include in-school and private students seeking full certi-
fication for their completion of secondary school in the Caribbean. A full certificate consists of
passes in at least five subject areas inclusive of Mathematics and English. All students within the
Caribbean must gain full certification in order to pursue higher learning at post-secondary or
tertiary institutions.
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to the use of non-mathematical language, which explains one’s reasoning about
how and why a conjecture or mathematical claim may be valid. Overall, a
non-proof argument is an argument missing some logical deductions in its structure
(Stylianides, 2009). A non-proof argument may lack some of the logical deductive
arguments that connect the hypotheses to the conclusion.

The final activity is the construction of a proof. A mathematical proof is “a
formal way of expressing one’s reasoning and justification” (NCTM, 2000, p. 56).
Proof as defined by Stylianides (2007) “is a valid argument based on accepted
truths for or against a mathematical claim” (p. 195). By an argument, Stylianides
referred to a connected sequence of claims. The validity of the argument is deter-
mined by accepted canons of mathematical inferences such as modus tollens and
modus ponens. The accepted truths that govern the construction of the proof include
axioms, theorems, definitions, and modes of reasoning shared by a community such
as a group of mathematicians or a classroom of students. The construction of a
proof is considered an individual activity framed by the shared understanding of the
accepted truths, and criteria for validity defined by a mathematical community.
Proof is considered the final product of reasoning activities such as pattern iden-
tification and conjecturing (Hanna & de Bruyn, 1999; Stylianides, 2009;
Thompson, Senk, & Johnson, 2012). During reasoning activities, students make
sense of patterns or conjectures, which eventually lead to developing non-proof
arguments or proofs that support their sense making. I use the aforementioned
descriptions of the activities relative to the conceptualization of reasoning and proof
to guide my analysis and descriptions of the Geometry opportunities for reasoning
and proof in the secondary school textbooks in Trinidad and Tobago. The main goal
of my inquiry is not to compare the textbooks used but to provide descriptions of
the characteristics of the textbooks in their offerings of reasoning and proof
opportunities.

4.3 Methodology

4.3.1 Data Sources

This study involves three contemporary textbooks designed for the preparation of
students for CSEC mathematics examination (Table 4.1). While the schools have
the agency to choose their own textbooks, the selections for this study were limited
to the recommendations made by the Caribbean Examination Council (CXC) and
those offered by the Ministry of Education (MOE) textbook rental program.
The MOE governs the centralized education system of Trinidad and Tobago;
therefore, all schools receive the same recommended textbooks in the textbook
rental program. The first two selections corresponded to the MOE’s classification of
a traditional textbook Certificate Mathematics (CM), and a reform-oriented text-
book Mathematics a Complete Course (MCC) (Trinidad and Tobago, Ministry of
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Education, 2005). Secondary Schools have used CM as one of the primary
resources for secondary school mathematics in Trinidad and Tobago for the past
thirty-three years. MCC replaced CM as the only recommended textbook in the
MOE textbook rental system (Trinidad and Tobago, Ministry of Education, 2006,
2007). The final book, Mathematics for CSEC (MSCEC), is a supplementary
textbook, only recommended by CXC because it reflects the recent changes in the
CSEC mathematics syllabus. This textbook is one of the recent ones suggested by
CXC for the textbook rental program in Trinidad and Tobago.

4.3.2 Framework for Coding and Analysis

To code and analyze the various opportunities for reasoning and proof, I utilized the
coding instrument developed by Otten et al. (2014), which was based on
Stylianides’s (2009) conceptualization of reasoning and proof. Otten et al. (2014)
used this instrument to analyze six geometry textbooks used in the United States
(US). In Trinidad and Tobago, there is no separate geometry course; instead, all
mathematics topics are integrated in the secondary school curriculum. Therefore, I
examine six common selected geometry topics in three textbooks for instruction in
Forms 4 and 5 (US Grades 9 and 10). I find the use of this instrument useful in
comparing textbooks in Trinidad and Tobago with other textbooks in the US for
which this instrument has been previously used. This comparison could provide
material for an interesting discussion about how the nature of reasoning and proof
opportunities in an integrated curriculum textbook compares with those offered in a
non-integrated or purely geometry textbook.

The coding instrument I adopted, contains two dimensions indicated by the rows
and columns (see Fig. 4.1). The first dimension in the columns consists of the units
of analysis, namely the textbook expositions and student exercises. The student
exercises are further sub-divided to reflect the nature of the expected student
activities: (1) activities related to mathematical claims and (2) activities related to
mathematical arguments. The former promotes opportunities for students to engage
in identifying patterns, making conjectures, and providing non-proof explanations to
support claims whereas the latter promotes opportunities for constructing non-proof
and proof arguments. The second dimension indicated in the rows, consists of the

Table 4.1 Textbook selections for data analysis

Title Authors Year

Certificate Mathematics (CM) Greer, A. & Layne. C. 1994

Mathematics a Complete Course (MCC) Toolsie, R. 2009

Mathematics for CSEC (MCSEC) Chandler, S., Smith, E., Ali, F.W.,
& Layne, C., & Mothersill, A.a

2008

aR. Toolsie is a mathematics teacher in Trinidad and Tobago. A. Greer, A. Mothersill, C. Layne, E.
Smith, F. Ali, and S. Chandler are mathematics teachers based in the United Kingdom
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three components of my analysis. These include: (a) the mathematical statement
type, (b) the justification type, and (c) the expected student activity.

4.3.3 Classifying Types of Mathematical Statements

In their instrument, Otten et al. (2014) classified the types of mathematical state-
ments in the textbook expositions and student exercises. By mathematical state-
ments, I refer to a proposition about a single class or all classes of mathematical
objects or situations, that may be either true or false. For example, a statement about
all triangles or a single class of triangles such as equilateral triangles. Otten and
colleagues used the necessity principle (Harel & Tall, 1991) and the field of logic to
provide a rationale for distinguishing between types of mathematical statements.
The necessity principle highlights the importance of students not only engaging in
deductive reasoning but also appreciating the intellectual need for deduction in their
mathematical experiences. This principle promotes reasoning and proving as an
opportunity for students to understand underlying conceptual relationships, rather
than as an arbitrary exercise imposed by an outside authority such as their teacher or
the textbook. Otten et al. (2014) posited that deductive reasoning plays a pivotal
role in justifying claims about all possible objects or situations under consideration.
They captured this role of deductive reasoning by developing a set of codes relating
to the mathematical statement or situation of reasoning and proving opportunities.
The codes for mathematical statements are general, particular, and general with
particular instantiation provided. In Fig. 4.2, I present examples of each code taken

Exposition Student Exercises

Properties, Theorems, or Claims Related to Mathematical 
Claims 

Related to Mathematical 
Arguments 

Mathematical 
Statement or 
Situation 

General 

Particular 

General  
Particular 
General with particular 
instantiation provided

General  
Particular 
General with particular 
instantiation provided

Justification 

(Or 
environment 
for 
exploration) 

Deductive 
Empirical 

Deductive  
Empirical  
Implicit 

Deductive  
Empirical  
Implicit 

Expected 
Student 
Activity 

Make a conjecture, 
refine a statement, or 
draw a conclusion
Fill in the blanks of a 
conjecture 
Investigate a conjecture 
of statement
Perform a geometrical 
calculation with number 
and explanation 
(GCNE) 

Construct a proof 
Develop a rationale or other 
non-proof argument
Outline a proof or construct 
a proof given an outline
Fill in the blanks of an 
argument or proof
Find a counterexample 

Fig. 4.1 Coding instrument for reasoning and proof opportunities from Otten et al. (2014)
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from the textbooks I analyzed in this study. I used these codes to classify the
quantity and quality of mathematical statements promoting reasoning and proving.

In my analysis, I define general mathematical statements as those statements that
concern an entire class of mathematical objects or situations without exceptions.
Particular statements refer to a statement that concerns a specific mathematical
object or situation. A general statement with particular instantiation concerns an
entire class of mathematical objects but for which a specific member of the class has
been selected for students’ use in reasoning (Otten et al., 2014). This type of
statement can be considered an exemplar or a generic example (Balacheff, 1988) of

Code Description Textbook Exposition 
Examples 

Student Exercise Examples

General A statement that 
concerns an entire 
class of objects or 
situations.

When two parallel 
lines are cut by a 
traversal, the 
corresponding 
angles are equal 
(Greer & Layne, 
1994, p. 203).

Prove that all isosceles triangles 
have congruent base angles 
(Chandler, Smith, Ali, Layne, & 
Mothersill, 2008, p. 143).

Particular A statement that 
concerns a specific 
mathematical object or 
situation.

In Fig. 29.40 prove 
that ∆s PTS and 
PQR are similar and 
calculate the length 
of TS

(Greer & Layne, 
1994, p. 215).

In Fig. 29.57 below AB = AC

BCF is a straight line. ∠BAC =
70º , ∠CED = 68º  and ∠ ECF =
81º . Prove that two of the sides 
of triangle CDE are equal 
(Greer & Layne, 1994, p. 219). 

General 
with 
particular 
instantiation 
provided 

A statement that 
describes an entire 
class of objects but for 
which a specific 
member of the class 
has been indicated for 
students’ use in 
reasoning. 

NA Consider an isosceles triangle 
PQR with a perpendicular 
bisector OQ. Prove that the 
bisector drawn from the apex 
angle of any isosceles triangle is 
perpendicular to the base 
(Toolsie, 2009, p. 457). 

Fig. 4.2 Coding of mathematical statements in the textbook expositions
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a class of objects or situation. The main purpose of this type of statement is to
elucidate general characteristics of the entire class or situations under consideration.
The focus in this case is not on the specific example but its use as a representative of
a general class of objects. Therefore, a student can use this exemplar or generic
example to help them understand the general characteristics of an entire class of
objects.

Within the coding instrument, statement types and justification types are inde-
pendent dimensions. This separation is due to the fact that general and particular
statements can both be justified by empirical or deductive arguments. To highlight
this difference, Otten and colleagues used the terms “general” and “particular” to
refer only to statements and the terms “deductive” and “empirical” to refer only to
justifications. In the same manner, I use these terms as codes for statement and
justification types respectively.

4.3.4 Classifying Justification Types in Textbook
Expositions

The codes inherited for the justification types in the textbook expositions are:
(a) deductive, (b) empirical, and (c) no justification. Deductive justification refers to
a logical argument, which uses definitions, postulates, or previously established
results to support or prove a mathematical claim. In an empirical justification, the
textbook provides a confirming example to a mathematical claim. Additionally, an
empirical justification may consist of a mathematical claim with accompanying
diagrams. The sole purpose of the diagrams is for demonstrating examples of cases
where the mathematical claim holds. In this case, the narrative text explicitly ref-
erences the diagrams and highlights the purpose of the examples demonstrated by
the diagram. The final code, no justification refers to the case where the textbook
does not provide any justification for a given mathematical claim.

4.3.5 Classifying Justification Types in the Student
Exercises

In this coding instrument, the following codes were used for the type of justification
that a student exercise required. In Fig. 4.3, I present examples of the codes
inherited from Otten et al. (2014) for analyzing the justification types in the text-
book exercises. In deductive justifications, the student exercises explicitly request
that students provide a “deductive argument” or a “logical chain” of justifications.
This is indicated by the author’s use of the words “prove,” “justify,” or “show” to
prompt the requirement for a deductive justification. An empirical justification
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requests that students provide measurements or confirming examples to solve a
given task. In the final category, implicit justification, the student exercise requests
that students engage in reasoning and proving (e.g., “Show…” or “Explain
why…”) but does not explicitly specify the nature of the argument to be produced.
Otten and colleagues acknowledged that, with their definition of justification types,
the majority of student exercises might fall in the implicit category. The inclusion of
this code is built on the assumption that students may not necessarily interpret
instructions to “prove,” “justify,” or “show” in the same manner that mathemati-
cians or mathematics educators may interpret them. As a result, the code helps
capture all of the possible actions students may produce when given these

Code Description Student Exercise Examples

Deductive The student exercise explicitly 
requests a ‘deductive argument’ or a 
‘logical chain of justifications’.

In triangle is the midpoint 
of  and is the mid-point of 

. The lines  and meet at 
. Prove that: 

(a) Triangles  and 
are similar;

(b) Triangles  and 
are equal in area (Greer & 
Layne, 1994, p. 220). 

Empirical The student exercise requests 
measurements or confirming 
examples.

Using your pencil and ruler,
construct any quadrilateral. Show 
by measuring with your 
protractor, that the sum of the 
interior angles is  (Toolsie, 
2009, p. 468). 

Implicit The student exercise requests that 
students engage in reasoning and 
proof (e.g., “Show…” or “Explain 
why…”) but does not explicitly 
specify the nature of the argument to 
be produced. 

In the cyclic quadrilateral ,
angle . Evaluate 
angle , giving reasons for 
your answer (Toolsie, 2009, 
p.494). 

Fig. 4.3 Coding for justification types in the student exercises
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instructions. Furthermore, the inclusion of this code helps distinguish their instru-
ment as one focusing on opportunities for reasoning and proving in textbooks rather
than students’ reasoning.

4.3.6 Expected Student Activity

In their coding instrument, Otten and colleagues classified the expected student
actions with respect to mathematical claims and constructing mathematical argu-
ments in the student exercises. Using the work of Stylianides (2009), which defined
the various activities involved in reasoning and proving, they created the codes
shown in row 3 of Fig. 4.1, to ascertain the extent and nature of the opportunities
for reasoning and proof offered to students. As a result of a preliminary analysis I
conducted, I added a new code to the expected student activity related to mathe-
matical claims. In the following section I introduce the new code.

4.3.7 Geometric Calculation with Number and Explanation

The new code I added to the coding instrument is called “geometric calculation with
number and explanation” (GCNE). This code is an extension of what previous
scholars defined as a “geometric calculation with number” GCN (Ayres & Sweller,
1990; Hsu & Silver, 2014; Küchemann & Hoyles, 2009). A GCN is a mathematical
activity involving numerical calculations done on the basis of geometrical concepts,
formulas or theorems. In a GCN, the request for an explanation of the steps in one’s
reasoning is not explicit but is implied as one may use geometrical concepts to
obtain the solution. For example, a typical GCN task will request that students
calculate the measure of a missing interior angle in a triangle given the measures of
two other interior angles, say 30° and 50° respectively. In this activity, a student is
expected to use the interior angle sum theorem for a triangle to calculate the missing
angle. The student is not expected to explicitly state how the interior angle sum
theorem supports their answer. The reasons supporting their calculations are not
mandatory in their solution.

In a GCN, a diagram usually accompanies the given computational task (Hsu &
Silver, 2014). The purpose of the diagram is to help students visualize and
understand the geometrical situation or object that will guide their reasoning. Based
on my preliminary analysis, I define a geometric calculation with number and
explanation (GCNE) as a student activity for reasoning and proof, which explicitly
requires a geometrical computation and an accompanying reason, or explanation for
the resulting calculation. As a result, students are expected to provide a non-proof
argument justifying why their result is correct. The main difference between a GCN
and a GCNE is that the GCN allows students to reason about a geometric situation
using a diagram while performing a computational task, whereas a GCNE goes
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even further to explicitly afford students the opportunity to provide a justification of
the result of their calculation. The justification requests that the student provides a
non-proof argument to support their reasoning and computation. Figure 4.4 shows
an example of a GCNE task in the Geometry textbooks I analyzed in this study.

As Fig. 4.4 shows, the textbook’s author requests that students find the measure
of an angle at the circumference standing on the arc AB, given the measure of the
angle at the center AOB, which stands on the same arc AB. In addition to calculating
the measure of the angle, students are expected to provide a reason for the result of
their calculations. Therefore, students will be expected to use geometric theorems
about the angle properties of a circle as possible reasons or explanations for the
result of their calculation. A possible theorem they may use will be that the measure
of the central angle of a circle is twice the measure of the angle at the circumference
subtending the same arc. As shown in Fig. 4.4, the given angle AOB should be
twice the measure of the requested angle ACB. Therefore, students will use this
geometric result to help them explain why ACB is equal to half of the measure of
AOB (i.e., 96�=2 ¼ 48�). Thus, the above task illustrates an example of an expected
student activity I coded with the new category GCNE.

The expected student activities related to mathematical claims addresses the
authors’ intent for students to engage in pattern identification, conjecturing, or
developing a rationale during reasoning and proving. These activities help students
move from inductive reasoning to deductive reasoning as they make generalizations
of observed patterns and begin justifying their generalized claims. The aim of these
activities is to refine students’ abilities in constructing, testing, and critiquing

If obtuse , determine , giving a reason for your 
answer. 

º

Fig. 4.4 An example of a GCNE task. Adapted from “Mathematics a Complete Course” by R.
Toolsie, p. 492
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conjectures. The expected student activities related to constructing mathematical
arguments help students justify why a mathematical claim holds. These activities
help students develop deductive reasoning skills as they write proof and non-proof
arguments that explain their reasoning. With regard to the example presented in
Fig. 4.4, the expected student activity with respect to the mathematical claim would
be to perform a GCNE task. This is indicated by the students’ use of the geometrical
claim on properties of angles intercepting on the same arc in a circle to calculate the
missing angle ACB. The expected student activity related to arguments would be
developing a rationale or non-proof argument. This is evident by the phrase “give a
reason for your answer.” This phrase suggests that students are expected to use the
geometrical claims about angles in a circle to explain why they would perform a
calculation a certain way to obtain how the requested measure of angle, ACB.

4.3.8 Units of Analysis

In a manner, similar to Otten et al. (2014), I included both textbook expositions and
student exercises as my units of analysis. In each of the selected textbooks, I
identified and examined all sections dealing with the following six geometry topics:
(1) Triangles, (2) Congruent Triangles, (3) Similar Triangles, (4) Pythagoras’
Theorem, (5) Quadrilaterals, and (6) Circles. Within each of the topics, I coded the
textbook expositions and student exercises for the mathematical statement type,
justification type, expected student activity, and type of opportunities about the
practice of reasoning and proof. Within the expository sections of each topic, I
analyzed sentences or paragraphs of text, which either (1) defined geometrical terms
or concepts, (2) explained geometrical properties and accompanying diagrams,
(3) demonstrated mathematical claims and properties in worked examples or
activities, and (4) justified mathematical claims. In two of the textbooks, I included
class activities and investigations about geometry theorems and properties in my
analysis since they were part of the authors’ justification or explanation of a the-
orem. I also analyzed and coded exercises that explicitly presented an opportunity
for students to engage in reasoning and proof. By such opportunities, I included
exercises, which directly asked students to prove a mathematical claim, identify a
pattern, investigate or make a conjecture, perform a geometrical calculation with
number and explanation (GCNE) or justify a mathematical claim by developing a
rationale or providing a non-proof argument. I did not include in my analysis
exercises, which did not fall into one of the aforementioned categories of reasoning
and proof activity.
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4.4 Results

4.4.1 Mathematical Statement Types

Table 4.2 shows the types of mathematical statements that appeared related to
reasoning and proof in the textbook expositions and student exercises. Overall,
general statements were prevalent in the expositions sections of all three textbooks
with over 75% of the statements in each textbook being about a general geometrical
object or situation. In contrast, the mathematical statements within the student
exercises focused on particular geometrical objects.

Overall, the student exercises offered particular mathematical statements rather
than general. Of the general statements, a greater proportion had particular
instantiations provided for student’s reasoning. For example, in MCSEC, which had
the greatest proportion of such statement type (22%), the student exercises required
that students prove a mathematical claim by focusing on a selected particular case
representative of a general class of objects. Figure 4.5 presents an example of this
case.

As shown in the example given in Fig. 4.5, the student exercise asked students
to prove the general result about the type of quadrilateral formed by the alternating
vertices of a regular octagon. The question then, further specified by selecting a
particular case of a regular octagon with vertices ABCDEFGH to prove the result.
The author’s use of this example demonstrates that students are expected to reason

Table 4.2 Mathematical statement types in the textbook expositions and student exercises

Textbook Textbook expositions Student exercises

No. of
mathematical
statements

No. of
general
statements
(%)

No. of
particular
statements
(%)

No. of
mathematical
statements

No. of
general
statements
(%)

No. of
particular
statements
(%)

No. of
general with
particular
instantiation

CM 56 43 (77) 13 (23) 39 10 (26) 21 (54) 8 (20)

MCC 121 96 (79) 25 (21) 185 5 (3) 157 (85) 23 (12)

MCSEC 61 53 (87) 8 (13) 54 2 (4) 40 (74) 12 (22)

Note CM Certificate Mathematics; MCC Mathematics a Complete Course; MCSEC Mathematics for CSEC

Fig. 4.5 An example of a general with particular instantiation exercise. Adapted from
“Mathematics for CSEC” by Chandler, Smith, Ali, Layne, and Mothersill (2008), p. 150
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about the general result and construct a proof based on congruency theorems as
indicated in the hint.

4.4.2 Justification Types in the Textbook Expositions
and Student Exercises

In Table 4.3, I summarize the type of justifications the authors used in the textbook
exposition and student exercises. In each textbook, the authors predominantly used
empirical arguments to justify the mathematical statements. In Fig. 4.6, I show an
example of an empirical justification in one of the textbooks.

In this example, the author presented a theorem about the sum of interior angles
of a quadrilateral. To prove this result, the author suggested that students construct
any quadrilateral. When the author stated, “take your protractor and measure each
angle,” he suggested that students use empirical measurements to obtain the interior
angles. The author also suggested that students find the sum of the four interior
angles they obtained through measuring. When the author asked, “What do you
observe?” he seemed to prompt students to observe that the claim in the given
theorem holds for the quadrilateral students constructed. This example demonstrates
a case where the author used measurements and student-generated examples to
justify a mathematical result. This was the only justification of the given theorem

Table 4.3 Justification types in the textbook expositions and student exercises

Textbook No. of justification types (%)

Textbook expositions Student exercises

No. of
justifications

Deductive
(%)

Empirical
(%)

No. of
justifications

Deductive
(%)

Implicit
(%)

Empirical

CM 35 12 (21) 23 (41) 39 19 (49) 20 (51) 0 (0)

MCC 96 33 (27) 63 (52) 185 50 (27) 135 (73) 0 (0)

MCSEC 39 18 (30) 21 (34) 54 22 (41) 32 (59) 0 (0)

Note CM Certificate Mathematics; MCC Mathematics a Complete Course; MCSEC Mathematics for CSEC

Fig. 4.6 An empirical justification of a theorem. Adapted from “Mathematics a Complete
Course” by Toolsie (2009), p. 468
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the authors provided in this textbook. The aforementioned example represents a
case of an empirical justification.

However, the student exercises required more deductive justifications as shown
in Table 4.3. In all three textbooks, the implicit justifications were the most
frequently occurring exercise type. Implicit justification exercises accounted for
51–73% of the exercises I analyzed in the textbooks. In MCC, about three-quarters
of the exercises required implicit justifications. This means that the student exer-
cises requested that students engage in reasoning and proof (e.g., “Explain with
reasons why” or “Give reasons for your statements”) but did not explicitly specify
the nature of the argument to be produced. The open-endedness of the type of
argument expected in the aforementioned phrases indicates that such exercises gave
students the agency to choose the type of argument needed for understanding the
mathematical claim. Thus, in my analysis, all exercises, which expected students to
calculate and explain were considered as exercises that would be justified implic-
itly. In MSCEC and CM, implicit justifications were expected for 59 and 51% of
the exercises respectively. The remaining student exercises in each text expected
deductive justifications.

4.4.3 Expected Student Activity Related to Reasoning
and Proof

Table 4.4 presents the number of student exercises providing opportunities for
reasoning and proof in each textbook. Overall, I analyzed 519 student exercises
combined from the three textbooks. Of all the student exercises within the three
textbooks, approximately 54% offered opportunities for reasoning and proof.
However, two of the textbooks, CM and MCSEC had less than 40% of their
respective exercises offering reasoning and proof-related opportunities. Both of
these texts had over 60% of their student exercises having no opportunity for
reasoning and proof (see Table 4.4).

In CM and MCSEC, 35 and 32% of their respective student exercises offered
opportunities for reasoning and proof. However, MCC, the textbook with the

Table 4.4 Types of reasoning and proof exercises

Textbook No. of
exercises

No. of
reasoning
and proof
exercises (%)

No. of
non-reasoning
and proof
exercises (%)

Expected student activity

No. of pattern
identification
exercises

No. of
make a
conjecture
exercises

No. of
GCNE
exercises

No. of proof
construction
exercises

CM 110 39 (35) 71 (65) 5 0 0 34

MCC 241 185 (77) 56 (23) 5 7 135 38

MCSEC 168 54 (32) 114 (68) 10 4 17 23

TOTAL 519 278 (54) 241 (46) 20 11 152 95

Note CM Certificate Mathematics; MCC Mathematics a Complete Course; MCSEC Mathematics for CSEC
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highest number of student exercises, had highest percentage of opportunities for
reasoning and proof among all three textbooks (approximately 77%).

Among the three textbooks, CM offered the most opportunities for construction
of proofs, approximately 85% of the student exercises. However, unlike the more
recently published textbooks, MCC and MCSEC, CM did not offer opportunities
for conjecturing, or developing non-proof arguments. With regard to the expected
student activities related to reasoning and proof, the development of non-proof
arguments accounted for the type of exercises I labeled as GCNE. As I explained
above, due to the nature of the required informal explanation of these exercises, I
coded all GCNE exercises as developing a non-proof argument.

4.4.4 Geometric Calculation with Number and Explanation

As shown in Fig. 4.7, MCC and MCSEC contained a unique type of exercise
requiring the development of non-proof argument. These exercises accounted to
approximately 73 and 33% respectively of the geometry exercises I analyzed in
these textbooks. CM did not contain any of these exercises. I labeled these exercises
as Geometric Calculation with Number and Explanation (GCNE). This new
labeling is an extension of a type of geometrical exercise, which scholars previously
defined as “geometric calculation with number” GCN (Ayres & Sweller, 1990; Hsu
& Silver, 2014; Küchemann & Hoyles, 2009). Overall All GCNE-type exercises
offered opportunities for students to engage in or reflect on the practice of devel-
oping non-proof arguments, which is one of the processes of reasoning and proof as
defined by Stylianides (2009).

With regard to the other practices of reasoning and proof, all three textbooks
offered opportunities for students to identify patterns and construct proofs. CM
predominantly offered the construction of proof arguments in its student exercises.
Whereas MCC and MCSEC offered student activities which asked students to
identify patterns by empirical investigations with a few geometric objects. In some
of these activities, students were motivated to go further and make a conjecture.

Textbooks 

Fig. 4.7 GCNE exercises in textbooks
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4.5 Conclusion

The analysis of the three textbooks suggests that there exist opportunities for stu-
dents to engage in or reflect on the processes of reasoning and proof. However, the
type of opportunities varied across the three textbooks. For example, the older
textbook, CM specifically offers opportunities for the construction of proof, with
limited offerings for conjecturing and writing non-proof arguments. The prevalence
of proof construction is important because this aspect of reasoning and proof allows
students to use formally introduced theorems and concepts to construct logical
deductive arguments that explain why a result may be true (Stylianides, 2009).
Proof construction also provides opportunities for students to use their mathemat-
ical knowledge to practice deductive reasoning. The emphasis on the construction
of proof also aligns with the policy documents in Trinidad and Tobago, which claim
“students must be given opportunities to develop logical deductive arguments”
(Republic of Trinidad and Tobago, Ministry of Education, 2009, § 2: 1). Therefore,
the authors of CM seem to promote the reformers’ vision of increased opportunities
for students to engage in the construction of proof arguments.

The more recently published textbooks (i.e., MCC and MCSEC) seem to
exemplify more opportunities for all the processes of reasoning and proof. These
included the authors’ offering activities that allow students to engage in pattern
identification, conjecturing, and developing non-proof arguments. This character-
istic is important because it suggests that these textbooks’ authors seem to afford the
types of opportunities that allow students to engage in all the processes of reasoning
and proof. However, this does not necessarily imply that students will gain the type
of scaffolding that leads from pattern identification to proof construction. None of
the textbooks allowed students to go through the entire process within one exercise.
It would be worthwhile for students to engage in, finding patterns, then make and
test new conjectures from the patterns observed. This will possibly lead to the
revision or validation of these conjectures. The validation process may initially
include the developing of non-proof arguments that could develop into the con-
struction of a proof. Several researchers advocate that these activities are important
for building the foundations for students’ development of writing proofs (e.g.,
Bieda, 2010; Chazan, 1993; Cirillo & Herbst, 2012; Stylianides, 2009). Thus, the
inclusion of all the activities of reasoning and proof within a single student exercise
has the potential to help students understand and value the necessity of proof as a
culmination of earlier reasoning processes.

The prevalence of GCNE type of exercise in these two textbooks suggests that
students may have extensive opportunities to see understand the explanatory role of
proof in mathematics. Several researchers argue that the status of proof will be
elevated in school mathematics if most and foremost its explanatory role is pro-
moted in curriculum materials (e.g., Bell, 1976; Hanna, 1990; Hersh, 1993).
Therefore, the exemplification of explanatory role of proof in the GCNE exercises
may be important for helping students understand why a result is valid and pro-
motes insight into the relevance and usefulness of geometrical concepts or theorems
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when solving problems. However, this depends on how teachers use these exercises
during instruction. A future study could investigate students’ conceptions of these
type of GCNE exercises with regard to developing non-proof arguments.
Furthermore, students may not consider these informal explanations as opportuni-
ties to further develop a proof.

A major characteristic of the GCNE tasks found in the textbooks was an
accompanying diagram, which can initiate mental and physical processes that lead
to deductive reasoning about geometrical properties. The inclusion of diagrams in
GCNE tasks promotes an important dimension of cognitive complexity3 that
requires high-level thought and reasoning of students (Hsu & Silver, 2014;
Magone, Cai, Silver, & Wang, 1994). Therefore, the opportunities afforded by
solving GCNE tasks have the potential for students to reason with and about
relationships between the given and the unknown characteristics in a geometrical
diagram. Moreover, the characteristic problem-solving process of GCNE tasks
provides students with the opportunity to use algebraic operations with connections
to geometric theorems and concept. This latter characteristic seems similar to
Geometric Calculation in Algebra (GCA) type exercises found in US Geometry
textbooks (Boileau & Herbst, 2015). GCA and GCNE exercises allow students to
use multiple-step reasoning in their justification of the steps taken in their algebraic
computations derived from creating algebraic expressions for missing components
of a geometric diagram. However, my analysis suggested that all GCNE exercises
contained the phrase “Give reasons for your answer” thus explicitly requesting that
students provide explanations for their algebraic calculations in Geometry, whereas
the GCA type questions do not explicitly request students’ explanation of their
reasoning. There exists the need to examine the possible occurrences of the GCA
exercises in the textbooks in Trinidad and Tobago. The aforementioned would
provide a useful discussion about comparisons between the type of calculate and
explain type of geometry questions in Trinidad and Tobago and US textbooks.

Researchers claim that these aforementioned properties of solving GCNE tasks
are characteristics of tasks with highly complex cognitive demand (Henningsen &
Stein, 1997; Hsu & Silver, 2014). Therefore, the prevalence of GCNE tasks has the
potential for students to develop arguments that could eventually be considered a
proof and affords students’ opportunity for engagement with highly complex
cognitive activity. However, these characteristics lead to the question of whether
students realize that these GCNE tasks could foster their development of proof
writing skills although they do not formally ask students to do a proof.
Additionally, it is worth investigating in future studies, whether teachers see the
potential of these GCNE tasks in helping their students’ development of reasoning
and proof skills. Despite the potential of the GCNE tasks for engaging students in
constructing proofs, we are yet to fully understand why students continue to

3Cognitive complexity refers to the features of a mathematical task that promote students’
engagement in cognitive process such as making connections among geometrical concepts and
mathematical reasoning (Magone et al., 1994).
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perform poorly on CSEC examination proof items. Therefore, there exists the need
for further evaluation of the affordance of GCNE tasks in helping students with
constructing proofs.

Although my analysis of the textbooks demonstrates that there exist opportu-
nities which, allow students to engage in pattern identification to conjecturing; there
is a need to have more opportunities that guide students even further to constructing
proofs. This may allow students to transition from inductive to deductive reasoning.
Furthermore, the prevalence of empirical justifications in the textbook demonstra-
tions could possibly indicate to students that the use of a few confirming examples
is an acceptable proof of a mathematical claim. Overall the three textbooks to some
extent allow students to see the need for explaining why a mathematical statement
is true however students should be given a uniform distribution of all four processes
of reasoning and proof in geometry. These findings suggest possible guidelines for
future evaluations of the quantity and quality of Geometry opportunities for rea-
soning and proof in secondary school textbooks in Trinidad and Tobago.
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Chapter 5
Enacting Functions from Geometry
to Algebra

Scott Steketee and Daniel Scher

Abstract This paper describes an innovative technology-based approach that
enables students to learn function concepts by constructing and manipulating
functions in the form of geometric transformations on the plane. Students’ direct
sensorimotor experiences with variables, function rules, domain and range help
them make sense of linear functions, Cartesian graphs, derivatives, multiplication of
complex numbers, and Euler’s formula. Treating geometric transformations as
functions is not a new idea in secondary mathematics, but few curricula take full
advantage of the approach to develop students’ concept of function. Web
Sketchpad, the technology described in this paper, supports a constructionist
approach to students’ activities of creating, manipulating, and investigating math-
ematical objects, thus linking their sensorimotor activity to their conceptual
understanding. The software provides a simple interface with no menus, based on
dragging and on using a small set of tools designed by the activity author. These
limited options help create a field of promoted action, encouraging productive
student behaviour in accomplishing a specific task.

Keywords Concept image � Dynagraph � Embodied cognition
Enacting � Field of promoted action � Function � Geometric transformation
Progressive abstraction � Representation � Websketch

S. Steketee (&)
21st Century Partnership for STEM Education, Conshohocken, PA, USA
e-mail: stek@geometricfunctions.org

D. Scher
McGraw-Hill Education, New York, NY, USA
e-mail: dscher@kcptech.com

© Springer International Publishing AG, part of Springer Nature 2018
P. Herbst et al. (eds.), International Perspectives on the Teaching and Learning
of Geometry in Secondary Schools, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-77476-3_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_5&amp;domain=pdf


5.1 Introduction

How does it feel to move like a dependent variable?
Most students would regard this question as nonsense; they view variables as

abstract ideas that are unconnected to their sensorimotor systems. Though devel-
oping students’ understanding of function concepts is a critical goal of secondary
mathematics, few students graduate from secondary school with a robust concep-
tualization of function (Carlson & Oehrtman, 2005). Students have little sense of
covariation, and their concept image of function is often at odds with the formal
definition (Vinner & Dreyfus, 1989). They graph functions without understanding
the link between the behaviour of the variables and the shape of the graph.

Mathematics educators have long stressed the importance of learning by doing,
and cognitive scientists have researched ways in which “cognitive structures
emerge from the recurrent sensorimotor patterns that enable action to be percep-
tually guided” (Varela, Thompson, & Rosch, 1991, p. 173). Yet curricula often fail
to provide students with the sensorimotor grounding for function concepts. The
primary visual representation that students encounter is the Cartesian graph, which
lacks any explicit representation of variables; the other main representation is the
equation, such as f(x) = 2x − 3, that lacks any sense of dynamism or opportunity
for students to put variables into motion.

Not surprisingly, students’ difficulties with functions often begin with the con-
cept of variable, which has so many meanings and serves so many purposes that
students have difficulty formulating a coherent sense of the term (Schoenfeld &
Arcavi, 1988). Freudenthal (1986, p. 494) argues that mathematical variables “are
[an] indispensable link with the physical, social, and mental variables” and observes
with approval that “originally ‘variable’ meant something that really varies”
(p. 491). But students seldom experience variables in motion despite evidence
suggesting that “if students are allowed to control the movement of an object, for
example, or the changing of a variable, their scores and other measures of under-
standing are much higher than from passive animations or static diagrams alone”
(Holton, 2010, p. 5).

If the learning of function begins not with static graphs and equations but rather
with variables in motion, with the dance in which independent and dependent
variables engage, we argue that students will develop a more detailed and robust
concept image of function, and that ideas like the relative rate of change, domain,
range, composition, and inverse will be better grounded in their sensorimotor
experiences. We believe that with such a concept image as a foundation, students
can more easily learn to look at a Cartesian graph and visualize the implicit motion
of the variables, mentally seeing x move along the horizontal axis while f(x) moves
in synchrony along the vertical axis, and that students can even learn to look at a
graph of f(x) = sin x, visualize x in motion, track the rate at which the dependent
variable changes, and sketch the graph of the derivative of sin x.
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5.2 Geometric Functions

Though geometric transformations are functions that have as their variables points
in the plane, transformations have seldom been used to introduce function concepts.
Coxford and Usiskin’s ground-breaking treatment of transformations—first intro-
duced in Geometry: A Transformation Approach (1971), and continued in UCSMP
Geometry (1991)—does the converse, introducing transformations as functions,
which is not quite the same. Freudenthal (1973) has observed that “[geometry] is
one of the best opportunities that exists to learn how to mathematize reality…. [N]
umbers are also a realm open to investigation…but discoveries made by one’s own
eyes and hands are more convincing and surprising” (p. 407). The advent of
dynamic mathematics software such as Cabri and Sketchpad enabled students to
experience functions by constructing and manipulating geometric objects that
depend on each other. As Hazzan and Goldenberg (1997) note, “[the] geometric
context may provide enough contrast with algebraic contexts to allow essential
aspects of the important ideas [of function] to be distinguished from features of the
representation” (p. 287).

One way that researchers and curriculum developers connect geometry to
functions is in activities in which students begin with a geometric construction,
change one of the construction’s elements (commonly by dragging a point), and
describe how the dragged point affects other constructed objects or the measure-
ments of those objects. Examples appear in Hazzan and Goldenberg (1997) and
Wanko, Edwards, and Phelps (2012). The independent variable may be the dragged
point or a measured value derived from the dragged point. Similarly, the dependent
variable may be a constructed point that varies when the first point is dragged or a
measured value derived from such a point.

A second way for students to experience function concepts in a geometric
context is applying geometric transformations to polygons and other constructed
geometric figures (Flores & Yanik, 2016; Hollebrands, 2003, 2007). Many text-
books use a variation of this approach by incorporating tasks in which students
transform polygons constructed on a coordinate plane as in Fig. 5.1. In some
activities, the independent and dependent variables are pictures or other shapes. In
these activities, the independent and dependent variables are not atomic but have
structure of their own.

For the purpose of introducing students to function concepts, both of the above
approaches risk creating confusion and misunderstanding due to the presence of
extraneous structural elements: Either the function rule is geometrically constructed
or the variables themselves have structure. We suspect it is preferable for students
to begin with unitary variables and simple, well-defined function rules.

A third way, used here, is based on functions structured similarly to those in
Geometry: A Transformation Approach. The prototypical function is a similarity
transformation (a reflection, rotation, transformation, or glide reflection, possibly
composed with a dilation) using geometric points as both independent and
dependent variables. The variables are atomic, with no structure of their own, and
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function rules are limited to the five families listed above with simple parameters
(such as a mirror line or a center and angle of rotation) distinguishing one family
member from another. We refer to such functions as geometric functions.

Despite a long history of discussion in mathematics education circles about the
role transformations should play in the study of geometry, and despite the obser-
vations by Freudenthal and others that suggest the potential value of introducing
function concepts in this way, the authors are not aware of any published cur-
riculum that uses geometric transformations for this purpose.

5.3 Geometric Functions and Dynamic Mathematics
Software

Geometric functions are particularly suited for introducing students to function
concepts because their two-dimensional nature (ℝ2 ! ℝ2 transformations in the
plane) is well modelled by the two-dimensional input and output interfaces (mouse/
finger and screen) that students employ. Similar activities based on one-dimensional
dragging using ℝ ! ℝ functions are likely to be less effective: motor actions are
less expressive, and visual effects are less compelling in one dimension than in two.

Using dynamic mathematics software, we can leverage this correspondence
between the mathematical domain and the computer’s affordances to reduce the
cognitive distance between the student’s concrete sensorimotor system and the
abstract mathematical concepts of function. The result is that the Coxford/Usiskin
innovation (of treating geometric transformations as functions) is even more per-
suasive and effective today than when it was introduced in 1971.

When today’s student constructs a reflection function as in Fig. 5.2 and drags the
independent variable (point x), she can directly observe the motion of the dependent
variable rj(x). (The notation rj(x) is an abbreviation for “the reflection in mirror j of
x”.) By comparing the motion of the two variables and observing the traces they leave

Fig. 5.1 A coordinate-system transformation problem
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behind, she might describe the relative rate of change of x and rj(x) this way: “When I
drag along the mirror, rj(x) moves the same way as x, but when I drag toward or away
from the mirror, rj(x) moves the opposite way from x.” Once she verifies that this
description is common to all members of the reflection function family, she can
identify any other member of this family even if its mirror is hidden, and she can use
her understanding of the relative rate of change to locate the hidden mirror.

5.4 Innovative Tools in Support of Tasks

Figure 5.2 shows the work of a student using a Web Sketchpad (2016) activity to
construct and investigate a reflection function. (This activity, and the other activities
illustrated in this chapter, are available online at https://geometricfunctions.org/
icme13.) Web Sketchpad (WSP) is dynamic mathematics software that runs on all
modern browsers that support HTML5 and JavaScript. WSP can open nearly any
document created by The Geometer’s Sketchpad (Jackiw, 2009), and provides an
innovative self-documenting tool interface allowing tools to be customized for each
activity.

When a typical student begins the Reflect Family activity in Fig. 5.2, she sees a
screen with a Tracing button at the upper right and six tool icons on the left. She
uses the first three tools to construct and drag independent variable x, to construct a
mirror, and to reflect x across the mirror to create the dependent variable rj(x).

Fig. 5.2 Varying x to make a design and compare rates
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Dragging x while observing rj(x) allows the student to investigate the relative
movement of the two variables. She can turn on tracing, drag once more, observe
the covariation that characterizes this geometric function, and answer questions like
these: “How can you make x and rj(x) move in the same direction? How can you
make them move in opposite directions?”

In this activity students use three different tools to construct the three elements of
a function: a tool for the independent variable x, a tool for the mirror that corresponds
to the function rule for reflection, and a tool for the dependent variable rj(x). These
three tools represent a design choice by the activity developer to emphasize the three
elements of a function: the independent variable, the rule, and the dependent variable
that results from applying the rule to the independent variable. The combination of
the software itself, the carefully crafted tools, and the student task creates a “field of
promoted action” (Abrahamson & Trninic, 2015) in which students’ actions are
gently constrained to help them accomplish the task presented to them.

In later activities students use a single tool for the same purpose: designating or
constructing the independent variable, designating or constructing the mirror, and
constructing the dependent variable. The transition from three tools to one
encourages students to transition from an action understanding toward an object
understanding of the reflect function. These are steps in the APOS
(action-process-object-schema) sequence that describes students’ increasingly
sophisticated understanding of functions (Dubinsky & Harel, 1992).

This activity provides students with several additional tools. A student might use
the Segment tool to construct a restricted domain for the independent variable x, to
connect x to rj(x), or for some other purpose entirely. Alternatively, she might use
the Polygon tool to construct a restricted domain, and then use the Animate tool to
animate x around this restricted domain.

The tool interface is innovative, minimizing reliance on language. When the
student taps a tool icon, the entire object to be constructed appears on the screen
with the tool’s given objects highlighted and pre-existing sketch objects back-
grounded. This effect provides immediate feedback regarding the entire construc-
tion being created; there is no need for the student to be instructed as to what
objects to click, in what order, to use the tool successfully. This overview of the
entire tool gives the student an opportunity to see what objects the tool will con-
struct and to consider how to integrate these new objects into the existing sketch.
A highlighted given object can be attached to an existing sketch object (by dragging
the given object onto the sketch object) or located in empty space (by dragging it to
the desired location) with no restriction on the order in which given objects are
attached. As soon as the last given object is attached or located, the tool’s action is
complete; the backgrounding of pre-existing objects terminates, and the sketch is
again fully interactive.

The tool interface also provides two shortcuts for the users’ convenience.
Pressing the green check mark above the toolbox instantly completes the tool’s
action by locating any unmatched given objects in their current locations, and
pressing the red instantly cancels the tool’s action. Another shortcut eliminates
the need to drag each given object to attach or locate it: At any time during tool use,
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one given object is glowing to indicate that it can be attached or located by using
the finger or mouse to tap an existing object (to attach the given object to the tapped
object), to tap in empty space (to locate the given object at the tapped location), or
to press and drag (to make the given object jump to the pressed location and follow
the drag until finger or mouse is released). A video is here: http://geometric
functions.org/icme13/using-wsp-tools.html.

The Web Sketchpad tool interface was designed to help activity developers
create fields of promoted action. By providing only tools needed for the task at hand
(optionally arranged in the order of expected use), there is less need to provide
students with prescriptive directions and thus better support for open-ended tasks.
And by immediately showing the user detailed visual information about the effect
of the chosen tool, there is less need to explain how to use tools with which the user
is not already familiar. These innovations enable less prescriptive and more
open-ended student tasks, and encourage students’ self-reliance and productivity.
Students can concentrate on the mathematics of the task rather than following
directions from a worksheet or from the teacher.

5.5 Design-Based Research

We use a design-based research methodology to iteratively develop, test, and refine
the activities described here (Barab & Squire, 2004; Fishman, Marx, Blumenfeld,
Krajcik, & Soloway, 2004; The Design-Based Research Collective, 2003).
Although earlier versions of some of these activities were developed with the
support of the Dynamic Number project funded by the National Science Foundation
(Steketee & Scher, 2011), development of the current activities began in earnest in
late 2014, when customizable tools became available in Web Sketchpad. We first
developed 14 activities organized into two units: Introducing Geometric
Transformations as Functions (Unit 1) and Connecting Algebra and Geometry
Through Functions (Unit 2) (Steketee & Scher 2012, 2016). Pilot tests occurred
with four classes, two in 8th grade while the remaining two in 10th grade, located in
inner-city Philadelphia schools. Though designed as an introduction to linear
functions, these units appear to be helpful also for students who have already
studied linear functions. The pilot tests resulted in substantial changes to the
original websketches and student worksheets. They also informed the creation of
performance-based assessment instruments both as stand-alone websketches and as
pages incorporated into the main activity websketches. We subsequently developed
several activities addressing calculus, vectors, and complex functions.

The activities are freely available at https://geometricfunctions.org/icme13 under
a Creative Commons CC-BY-NC-SA 4.0 license and can be used with any web
browser. Activities from the first two units include online websketches and student
worksheets and are available online and as PDF’s. We hope to provide detailed
teacher support materials soon. Due to ongoing revisions, online activities may
differ from the figures and descriptions in this paper.
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The remainder of this document describes various activities that emphasize how
technology-enabled guided inquiry can enable students to construct and enact
mathematical objects and concepts related to function. We also note several
instances in which our activities’ pilot testing revealed weaknesses in our original
instructional design, prompting rethinking and revision of that design.

5.6 Enacting Variables and Rate of Change

The act of dragging geometric function variables can help students develop the
sense that variables vary. In Fig. 5.2, the student constructs and drags independent
variable point x, thus enacting the independent variable by moving it directly with
her finger or mouse. In Fig. 5.3 (part of the Rotate Family activity), she makes a Hit
the Target game. After constructing independent variable x and a rotate function to
produce dependent variable RC,h(x) (again, meaningful function notation:
RC,h(x) represents the “rotation, about C by angle h, of x”), she then uses the Target
tool to make a target and create a challenge: drag x to make that dependent variable
RC,h(x) hit the target. Once she hits the target, she generates a new problem by
pressing the New Challenge button, which changes both the rotation angle h and the
location of the target.

When playing this game, students usually begin either by dragging x toward the
target (as in the top part of the red trace) or by adopting a somewhat random

Fig. 5.3 Varying x so RC,h(x) hits the target
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guess-and-refine strategy. As they try to improve their play, students are encour-
aged to reason backward, using the target location and angle h to estimate the
direction in which to drag x.

Figure 5.4 challenges the student to enact the dependent variable of a dilate
function. Her task is to drag y according to the function rule, while independent
variable x follows the polygon border. Even with hints of the dashed segment and
cross-hairs showing how close she is and a traced image of y that changes from red
when she is far away to green when she is close, this is a real challenge. The player
must drag y both in the correct direction and at the correct speed to match the
motion of x. In other words, her dragging action must get the rate of change of
y relative to x just right.

In these activities, students’ enactment of point variables creates a semantic link
between physical movement and mathematical variation. The student drags vari-
ables and observes how easy it is to enact an independent variable, free to move
within in its domain, and how hard it is to enact a dependent variable, constrained to
follow the independent variable based on the function rule.

5.7 Enacting Domain and Range

In Figs. 5.2 and 5.3, the domain of the function is the entire plane, and the student
experiences it as the ability to drag x anywhere within the window on the computer
screen. This is not in the least remarkable to the student, rendering futile any
attempt to introduce the terms domain and range at this stage. To develop con-
ceptual understanding, students must first have a meaningful reason to restrict a
function’s domain and observe its corresponding range.

Fig. 5.4 Dragging y, trying to co-vary with x
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In the Dilate Function activity in Fig. 5.5, the student uses the Polygon tool to
create a polygon and the Point tool to create independent variable x attached to the
border of the polygon. She drags x to explore what happens, and how it feels, when
x is restricted to this polygonal domain. After using the Dilate tool to dilate x about
center point C by scale factor s, the student turns tracing on and drags x again to
observe the corresponding range traced out by the dependent variable DC,s(x).

The ability to drag x on its restricted domain while attending to both the path and
the relative rate of change of DC,s(x) is an important sensorimotor experience that
provides students with grounding for their conceptual understanding of the domain,
range, and relative rate of change while also spurring them to consider what it
means to apply a function all at once to an entire set of points (a polygon).

By the end of Unit 1 (Introducing Geometric Transformations as Functions),
students in the pilot test were using the tools effectively and identifying the roles of
the various objects. Most students were already quite comfortable describing
function behaviour in terms of the relative rate of change (both speed and direction),
as illustrated in Fig. 5.6.

5.8 Connecting Geometric Transformations to Algebra

Unit 2 (Connecting Algebra and Geometry Through Functions) explicitly connects
the geometric functions of Unit 1 to algebra. It begins by asking students to restrict
the domain of these geometric transformations to a number line and to determine
which of the Flatland (two-dimensional) function families can most easily fit into

Fig. 5.5 A restricted domain and its range
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the Lineland (one-dimensional) environment of a number line (Abbott, 1884). Once
students determine that the dilate and translate families are particularly suitable
because their independent and dependent variables always move in the same (or
opposite) direction, they engage in construction activities that connect the geo-
metric behaviour of dilation and translation to the observed numeric values of their
variables on the number line.

In Fig. 5.7, a student uses the Number Line, Point, and Dilate tools to create a
point restricted to the number line and dilate it about the origin. She measures the
coordinates of x and D0,s(x) and drags x to compare the values. When asked to
describe what happens when she changes x by 1, she might respond, “When I
increase x by 1, D0,s(x) increases by twice as much, which is the same as the scale
factor s.” By experimenting with different scale factors, the student concludes the
coordinates produced by this dilation satisfy D0,s(x) = x � s. She then experiments
with the translation restricted to the number line and concludes that translation by a
vector of directed length v satisfies the equation Tv(x) = x + v. Thus, she concludes
that dilation on the number line corresponds to multiplication and translation cor-
responds to addition.

Fig. 5.6 Sample student work (dilate family)
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5.9 Enacting Composition, Dynagraphs, and Cartesian
Graphs

Having moved from Flatland to Lineland and discovered the algebraic meanings of
dilation and translation on the number line, students are now ready for a new task:
What happens when you dilate x and then translate the dilated image; in other
words, how does Tv(D0,s(x)) behave? Students’ first attempts at this task becomes
visually confusing with three variables and a vector stumbling over each other on
the same number line. To alleviate the confusion, the next activity incorporates a
Transfer tool that moves the dependent variable to a different number line, separate
from but aligned with the first. In Fig. 5.8, students use this tool to construct a
second number line parallel to the original, creating a dynagraph (Goldenberg,
Lewis, & O’Keefe, 1992). By varying x and observing the connecting line between
the variables, students describe and explain how changing each parameter (scale
factor s and vector v) affects the relative rate of change of the variables and their
relative locations.

In the final activity of Unit 2, students create the Cartesian graph of a linear
function using geometric transformations. As Fig. 5.9 illustrates, students start with
the same initial tools that they used to create a dynagraph, but this activity’s
Transfer tool rotates a variable by 90°, transferring it to a vertical number line
perpendicular to the original, horizontal number line. After using this tool to rotate
D0,s(x)) to a vertical axis and translating by vector v, students use the x-value and y-
value tools to construct lines that keep track of the horizontal location of x and the
vertical location of Tv(D0,s(x)). They then construct a traced point at the intersection

Fig. 5.7 Dilating on the number line
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of these horizontal and vertical lines and drags x to see how the traced point’s
motion corresponds to the behaviour of the two variables.

After performing the construction, students try different values for the scale
factor s and the translation vector v, and they observe how changing the scale factor
affects not only the speed of Tv(D0,s(x)) relative to x but also the shape of the traced

Fig. 5.8 Constructing Tv(D0,s(x)) on a dynagraph

Fig. 5.9 Dilate, rotate by 90°, and translate
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line. For instance, one of our pilot test students looked at the lower traces shown in
Fig. 5.10 and explained that this trace indicated that the variables were moving in
opposite directions because the value of the dependent variable moved down as the
independent variable moved right. She went on to say that Tv(D0,s(x)) was
decreasing more slowly than x was increasing because the traces went down more
slowly than they went to the right, and concluded that the scale factor was
approximately �1=2. Such observations suggest that students can use their expe-
riences in geometrically enacting variables and functions to visualize the motion
implicit in static Cartesian graphs. (And if this is students’ first experience with
such functions, they may invent the term linear function, and write the formula for
linear functions as y = s � x + v: dilate x by s and then translate by v.)

5.10 Performance-Based Assessment

Our pilot tests have also helped us generate ideas for performance-based assess-
ments. For instance, we created the Dilate-Family Game shown in Fig. 5.11 as we
discussed assessment issues with one of our pilot-test teachers. The game has
multiple levels that require greater precision and provide less diagrammatic scaf-
folding as a student moves up through the levels. We intentionally did not set a
specific number of problems per round, so that a teacher has the flexibility to say,
for instance, “To be a dilation apprentice, you must score 8 of 10 at Level 2; to be a
dilation master, you must score 7 of 10 at Level 5; and to be a dilation superhero
you must score 16 of 20 at Level 9.”

Fig. 5.10 Inferring motion from a graph

72 S. Steketee and D. Scher



We are not yet satisfied with students’ results on this dilation-family assessment.
Some students who constructed and investigated Dilate functions successfully still
had difficulty understanding how the game worked even at Level 1. This activity
has already been refined to support students’ transition in the game, but we remain
concerned about possible gaps in students’ visualization of the dilation function. In
an upcoming pilot test, we will explore this further by interviewing small groups of
students and make additional revisions based on what we learn. Our plan also
includes modifying the game to enable direct reporting of students’ results to the
teacher. (The initial version relies on either visual inspection by the teacher or
screen captures submitted by students.)

Figure 5.12 illustrates the Dynagraph Game, a performance-based assessment
for the dynagraph activity described above. In this game, independent variable x is
always in motion from left to right, and students adjust s and v to control the
dynagraph whose dependent variable is T(D(x)). There is also a mystery function
whose moving dependent variable ??(x) is shown below the lower axis. The stu-
dent’s challenge is to adjust s and v to match the mystery function, so that T(D(x)) is
always exactly aligned with ??(x). Higher levels of the game require greater pre-
cision in adjusting s and v.

We conjecture that performance-based assessments such as these can help stu-
dents solidify their understanding of function concepts while also promoting
mathematical fluency, and we are eager to test this conjecture as we continue our
effort to refine the activities based on classroom testing.

Fig. 5.11 Dilate family game
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5.11 Enacting the Slope of the Sine Graph

Students are often presented with the definition of derivative instead of inventing
their own definition based on creating and experiencing the mathematics them-
selves. In this activity, we present students with five tasks designed to encourage
them to connect slope to the relative rate of change of variables and to invent their
own definition of derivative.

In Fig. 5.13, a student has just begun the first task. She varies x while she
observes the connection between the green arrow and the behaviour of the
dependent variable sin x. The student notes that sin x has already come to a stop at
its maximum value and is about to begin to move down just as the arrow has
changed its previous upward direction to horizontal and is now beginning to point
down.

Figure 5.14 depicts the second task, the Slope Game, in which students control
the arrow’s slope by dragging point m up or down. Their objective is to keep the
arrow lined up with the graph. After practicing by dragging x and readjusting
m several times, the student presses Go. After a 2-s delay, x begins moving along its

Fig. 5.12 Dynagraph game

Fig. 5.13 Following the slope
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axis. The student’s job is to drag m so the arrow stays aligned with the graph. In
other words, the goal is to drag m so that its value is the derivative of the sine
function. As the student drags m, the point (x, m) is plotted and traced with the
colour of the trace ranging from green, when m is very close to the function’s
current rate of change, to yellow to red, when the value of m is far from the rate of
change. The arrow itself changes colour to match, thus providing the student with
immediate feedback as she attends to the relationship between the arrow and the
graph. In Fig. 5.14, the student lagged a bit behind adjusting m as x passed x ¼ �3p

2 ,
and the slope of the graph became negative. This lag is visible as a reddish-yellow
bump in the trace, which is otherwise almost all green. The gap in the trace shortly
after x ¼ �p

2 indicates that the student again fell slightly behind but caught up by
moving m so quickly that she left a gap in the trace.

Two pedagogical elements of this activity are particularly worthy of note: its
enactivist nature and its incorporation of performance-based assessment into the
learning process. While playing the game, the student enacts the derivative of the
sine function by dragging m up and down in concert with the rate of change of
sin x with respect to x. The activity connects the student’s physical motion (drag-
ging) to the direction and speed of the plotted point’s vertical movement as
mediated by the arrow. Though the mediation of the arrow might help the student
connect the geometric property of tangency to the function’s instantaneous rate of
change, it seems more likely that she will attend to the slope of the arrow rather than
to the speed of vertical movement of the graphed point.

Our long-term goal for the student is that she directly observe and interpret the
motion of the dependent variable, relating her physical actions more closely to the
mathematical concept we intend for her to develop. We address that goal in our
Rate of Change Game, described below and presented in Fig. 5.15. It is preferable
for students to begin with the Slope Game because the task of attending to the
relative orientation of the arrow and the graph, both of which are visually evident, is
more concrete and easier for students to master than the task of attending to the

Fig. 5.14 The slope game
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speed and direction of the dependent variable. The move from a relatively concrete
task to a related task that is more abstract in nature, variously described as con-
creteness fading and progressive abstraction, has been found effective in devel-
oping students’ conceptual understanding (McNeil & Fyfe, 2012; Mitchelmore &
White, 2000).

A second important element of these games is that they serve student learning
and assessment at the same time. The feedback from the Slope Game is immediate.
Students see both the colour of the arrow and its relative orientation to the graph,
and these behaviours are under their immediate control as they drag m. There is no
time to dwell on mistakes; as x keeps moving, students are encouraged to continue
adjusting m to keep the arrow tangent to the graph. Nor are mistakes recorded
permanently; starting a new game erases the traces from the previous game. Thus,
the games provide support for immediate student self-assessment.

As students improve their skills, the teacher can ask students to submit their
work: “Please email me a screen capture that shows all green except for at most one
relatively short brownish or red area. The higher you set the level, the better, but
avoid making it too hard on yourself by skipping levels. Make sure you master
Level 1 before moving to Level 2, and so forth.” Each game has five levels. As
students move to higher levels, they must be more and more accurate in matching
the correct slope or rate of change in order to keep their traces green.

The Rate of Change Game is a performance-based learning task related to the
Slope Game, but instead of a tangent arrow, it provides a short traced segment, of
length proportional to the value of m, attached to the moving point. The length of
this short segment provides the student with dragging feedback, which allows her to
regulate her up-and-down adjustment of m while keeping her attention on the
moving points. In the meantime, the colour of the point, the segment, and the trace
indicate how close the dragged m is to the actual rate of change of the dependent
variable sin x. In Fig. 5.15, as the graph passed the maximum at x ¼ �3p

2 , the

Fig. 5.15 The rate of change game
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student did fairly well at reducing the value of m to 0 at the maximum and making it
negative thereafter, but as she approached the minimum at �p

2 she failed to react
quickly enough, leaving her value of m negative as she passed the minimum. At the
moment, she is still recovering, dragging m upward towards a positive value that
will reflect the current positive rate of change of sin x.

We conjecture that this second game will encourage and reward students’ direct
attention to the rate of change of the function—not just the slope of the graph—and
that students who play both games, with a variety of functions, will come to
naturally associate the dependent variable’s instantaneous rate of change with the
slope of the tangent to the graph.

5.11.1 Constructing the Slope and Rate of Change

After completing the initial warm-up task and playing the two games, students are
ready to examine the instantaneous rate of change of a function more systematically
by means of two more tasks. In both tasks, students begin with an empty screen and
use the tools to construct the graph, a secant line, and other objects to approximate
the instantaneous rate of change of sin x with respect to x.

In the first construction task, Construct the Slope, students construct the graph
and a secant line, measure and plot the slope of the secant line, and animate the
secant line along the graph to track and graph the secant’s slope as a function of the
position of its defining points (see Fig. 5.16). Based on their Slope Game experi-
ence and class discussions, students recognize the difference between a secant and a
tangent, realizing that the secant will more closely approximate the tangent if the
defining points are closer to each other and adjusting the construction accordingly.
Students conclude this task by experimenting to find out what happens if they use a
button to move one defining point to the other.

Fig. 5.16 Construct slope
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The second construction task, Construct the Rate of Change, takes a more
systematic approach. Like the Rate of Change Game, it fades some of the con-
creteness of the slope construction task. Students create a parameter h that they use
to precisely control the interval between the x-values at which the function is
evaluated. Instead of finding the slope, students calculate the relative rate of change

of sin x with respect to x by calculating the expression sin xþ hð Þ�sin x
h . Though

mathematically equivalent to the slope formula, this calculation is expressed in
more abstract language, without any mention of slope or gradient. By using h to
control the interval, students can observe the effect of reducing the value of h from
1.0 to 0.4 and eventually to 0.00001, as shown in Fig. 5.17.

By using a number of different values of h, the first few show two distinct points.
Therefore, the student will become aware that even when h = 0.00001, the points
are still distinct. She is likely to be surprised at the end of the activity when she
changes h to 0.00000, the line disappears, and the calculation becomes undefined
instantly.

This surprising action that renders the calculation undefined demands explana-
tion and motivates discussion with other individual students and with the entire
class. The desired outcome is that students themselves formulate what happened to
the calculation and what they can do about it, as a result of making observations
such as these:

• As h gets smaller, the points get closer and closer together.
• As h gets smaller, the line is more closely lined up with the graph.
• As we make h smaller, the calculation doesn’t change very much.
• When we make h tiny, like h = 0.00001, we can’t even see that there are two

points.
• When h = 0 the line goes away, because you can’t draw a line with only one

point.
• Also, when h = 0 the calculation is undefined, because you can’t divide by zero.
• The calculation gets closer to the real slope the smaller we make h—but we

can’t make it 0.

Fig. 5.17 Construct the rate of change
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The pedagogical goal is that students’ experiences and observations lead to a
productive class discussion during which students agree on the essential elements of
the definition of the derivative. This discussion also presents an opportunity for the
teacher to suggest vocabulary useful for naming the phenomena under discussion,
including instantaneous rate of change and derivative.

5.12 Enacting Vector Multiplication of Complex Numbers

More than two centuries ago Wessel (1799) and Argand (1874, originally
self-published in 1813) independently proposed the two-dimensional complex
plane as a geometric way to represent and operate on complex numbers. Complex
numbers can be considered either as points in the complex plane or as
two-dimensional vectors, and vector addition is essentially identical to complex
addition.

However, vector multiplication differs significantly from complex multiplication
(described later in this chapter). The former takes two forms: the dot (scalar)
product and the cross (vector) product. The dot product is a real number and is
readily represented on the real axis of the complex plane, but the cross product is
defined as a vector orthogonal to the plane of the vectors being multiplied, thus
requiring a third dimension. If the plane containing two vectors a and b is the
x-y plane, the cross product a � b lies along the z-axis, with magnitude ra rb
sin (hb − ha) using polar coordinates.

In Visual Complex Analysis, Needham (1998) describes a different definition of
the cross product a � b that uses only the two dimensions of the complex plane
while maintaining several important features of the standard definition. In this
redefinition the z-axis containing the cross product is rotated into the complex plane to
coincide with the imaginary axis, so that a � b retains the magnitude and sign of the
standard definition, though it now lies on the imaginary axis, so that its representation
in polar coordinates is a � b = i rarb sin (hb − ha). The dot product a � b is always
a real number: a � b = rarb cos (hb − ha) in polar coordinates. As a real, it can be
thought of as a vector that lies on the real axis.

In Fig. 5.18, a student has begun the Vector Multiplication activity by con-
structing two vectors, a and b, and projecting b onto a in the upper triangle. The
length of the projection in polar coordinates is rb cos (hb − ha). To transform this
projection into the dot product on the real axis, she must multiply (dilate) the upper
triangle by ra and rotate it by −ha, which is equivalent to complex multiplication by
a′, the complex conjugate of a. To accomplish this task, she multiplies the two
vertices of the upper triangle by a’ to construct the lower triangle, with hypotenuse
b � a′. As the lower triangle shows, the projection of b � a′ on the real axis is a � b
—the dot product—and its projection on the imaginary axis is a � b—the cross
product. The student can now drag the vectors at will to explore the behaviour of
the two vector products she produced.
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5.13 Enacting Multiplication of Complex Numbers

Though complex numbers can be multiplied algebraically, a geometric method is
more elegant and often more useful. In the Complex Multiplication activity, stu-
dents use the algebraic method to discover the geometric one. They begin with two
complex numbers v and w, both considered as vectors in the complex plane. To
multiply them, students represent w in Cartesian form (w = xw + iyw), write the
product v � w in the form v � xw + v � iyw, and use transformations of vectors to
represent each of the two terms and add them together (Cuoco, 2005, pp. 113–115).

The activity takes place in five parts. The first three parts review some prereq-
uisites: (1) dilation of a vector is equivalent to multiplication by the (real) scale
factor, (2) rotation of a vector by 90° is equivalent to multiplication by i, and
(3) translation of one vector by another is equivalent to adding them. These parts
can be omitted if students already have a firm command of the prerequisites.

Part 4, shown in Fig. 5.19, is the activity’s heart. Here a student has rewritten
v � w as v � xw + v � iyw and used transformations to construct each term of this
product. She dilates v by the real number xw to construct v � xw, and then rotates
v by 90° and dilates it by yw to construct v � iyw. The student translates the first
result (v � x) by the second (v � iyw) to add them together, labeling the complex
product v � w. She measures the polar coordinates of v, w, and v � w, calculates
rv � rw and hv + hw, and makes the remarkable discoveries that rv�w = rv � rw and
that hv�w = hv + hw. Expressed in terms of arithmetic operations, to multiply two
vectors, you add their angles and multiply their magnitudes. In transformational
terms, to find v � w you dilate v by rw and rotate by hw. As we shall soon see, both
formulations are obvious consequences of Euler’s formula.

Part 5 solidifies and deepens students’ understanding as they investigate
properties of complex multiplication described in transformational terms by

Fig. 5.18 Vector multiplication
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investigating two questions: Is complex multiplication commutative? Do the two
transformations dilation and rotation commute?

This visual approach to complex multiplication encourages students not just to
manipulate algebraic symbols but also to visualize the operation geometrically.
Importantly, this ability to view complex multiplication as dilation composed with
rotation helps provide a window into what is often regarded as the most famous,
and most elegant, result in all of mathematics: Euler’s Formula.

5.14 Enacting Euler’s Formula

This activity is based on Euler’s extension to complex numbers of his formula for ex

as the limit, as n ! ∞, of the quantity (1 + x
n)
n. The activity begins by having

students review the origin of Euler’s Formula and then consider how they might use
an imaginary value of x by substituting ih for x, constructing (1 + ih

n) on the
complex plane, and then repeatedly multiplying this quantity by itself n times
(Conway & Guy, 2012).

In Fig. 5.20, a student has constructed angle slider h, dragged it to an angle of p
3

radians, and calculated the value of h
n. (Note that placing the angle slider on the

complex plane is a convenience; the value of h is real.) The student constructed two
vectors to represent 1 on the real axis and ih

n on the imaginary axis, added the two
vectors, and labelled the vector sum 1 + ih

n .
In Fig. 5.21, the student has multiplied four more times by the vector 1þ ih

n in

order to construct ð1þ ih
5Þ5. Measuring this point in rectangular form, she finds that

Fig. 5.19 Complex multiplication
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Fig. 5.20 Constructing 1þ ih
n

� �

Fig. 5.21 Iterating to construct ð1þ ih
nÞn

its value is 0.57 + 0.96i. Though this measurement itself does not yet suggest any
obvious conjectures, the student may be intrigued to see by how little the vectors
increase with each multiplication.

The student changes n to 10, constructing five more multiplications. Finding the
terminal vector at 0.53 + 0.91i, she may begin to suspect that the real part of this
value is approaching 0.50. To avoid the labor of continuing to larger and larger
values of n, the student goes to the next page of the sketch to use a pre-constructed
iteration, allowing her to change n and see the result immediately. She experiments
with different values of n to verify that for n = 100 and h ¼ p

3, the constructed value

of 1þ ih
100

� �100
approximates cos h + i sin h to two decimal places (Fig. 5.22).
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Fig. 5.23 Using n = 1000 to find that eip ¼ �1

Fig. 5.22 Iterating to construct ð1þ ih
100Þ100
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By setting h = p and using a large value of n in Fig. 5.23, the student concludes
that Euler’s famous identity eip = −1 is true. By changing the h slider, she realizes
that this result for h = p is only a special case of Euler’s formula itself:
eih = cos h + i sin h.

Thus any complex number expressed in polar coordinates as (r, h) can be
written, and operated upon, as r � eih. Using this result, the product, v � w can be
expressed as rve

ihv � rweihw and can be easily simplified by applying the laws of
exponents: v � w = rve

ihv � rweihw = rv � rw � e
i(hv+hw). This result confirms both the

algebraic multiplication rule to “multiply the moduli and add the arguments” and
the transformational multiplication rule to “dilate v by rw and rotate by hw.”

5.15 Conclusion

By using web-based dynamic mathematics software and tools tailored to carefully
structured tasks, students can enact geometric transformations as functions, creating
them, manipulating them, and experimenting with them. Students can perform the
mathematics themselves by varying the variables, by describing their relative rate of
change, by constructing and using restricted domains, and by composing trans-
formations. In the course of their explorations they can develop a solid under-
standing of geometric transformations, explore deep connections between geometry
and algebra, construct and shed light on the Cartesian graph of a linear function,
and make fascinating mathematical discoveries on the complex plane. These results
are facilitated by the software’s simple interface which, combined with a small
number of carefully designed tools, can create a field of promoted action that
scaffolds students’ work and helps guide them toward meaningful discoveries and
understandings.

Pedagogically, the constructive nature of activities such as these has the potential
to engage students, to provide opportunities to assess their own work, to encourage
meaningful mathematical discussions, and to help students bridge the gap between
the concrete, physical world and the profound elegance of abstract mathematical
insights.

Early testing suggests that this approach enables students to connect geometry
and algebra as they ground function and transformation concepts in sensorimotor
experiences, and as they develop their appreciation for the visual beauty of dynamic
mathematics. The authors look forward to further refining and extending these
activities, and to verifying their effectiveness with a wide variety of students.

[All activities described above are available at https://geometricfunctions.org/
icme13/.]
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Chapter 6
Examining the Work of Teaching
Geometry as a Subject-Specific
Phenomenon

Patricio Herbst, Nicolas Boileau and Umut Gürsel

Abstract This paper describes how the notion of instructional situation can serve
as a cornerstone for a subject-specific theory of mathematics teaching. The high
school geometry course in the U.S. (and some of its instructional situations—
constructing a figure, exploring a figure, and doing proofs) is used to identify
elements of a subject-specific language of description of the work of teaching. We
use these examples to analyze records of a geometry lesson and demonstrate that, if
one describes the actions of a teacher using descriptors that are independent of the
specific knowledge being transacted, one might miss important elements of the
instruction being described. However, if the notion of instructional situations is
used to frame how one observes mathematics teaching, then one can not only track
how teacher and students transact mathematical meanings but also identify alter-
native instructional moves that might better support those transactions.

Keywords Conjecture � Construction � Contract � Description
Expectations � Doing proofs � Exploration � Instructional situation
Midpoint quadrilateral � Norm � Tasks of teaching

This paper contributes to the field of mathematics education’s theoretical resources
for understanding the work of mathematics teaching. Its presence in a volume on
secondary school geometry is warranted by our use of examples of secondary
school geometry instruction as empirical grounds for our argument that descriptions
of the work of teaching mathematics can benefit from subject-specific language if
they are going to provide insights into how else that work could be done. As a
contribution to a subject-specific theory of mathematics teaching, we show how the
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notion of instructional situation (as instantiated in three instructional situations that
have currency in US high school geometry classes—constructing a figure,
exploring a figure, and doing proofs) can serve to construct a first approximation to
a subject-specific language of description with which to analyze geometry lessons.

6.1 The Teaching of Mathematics as a Subject-Specific
Phenomenon

Much research on mathematics thinking and learning pays careful attention to the
specifics of the mathematics being learned—using the specificity of schemes or
conceptions to describe what students do (e.g., Steffe & Olive, 2010). Yet, when it
comes to mathematics teaching, the field of mathematics education is relatively at
ease describing the work of teaching without referring to the mathematics at stake—
hence the literature sometimes talks of generic (rather than subject-specific) tasks of
teaching, such as launching tasks, responding to students, orchestrating a discussion
(e.g., Stein & Smith, 2011), and sometimes of generic kinds of teaching, such as
direct instruction or inquiry-based learning (e.g., Kogan & Laursen, 2014). Clearly,
the field can learn from such general ways of describing mathematics teaching and
there is abundant literature that provides examples of what can be learned. For
example, the video surveys of teaching produced as part of the TIMSS Video Study
illustrate that such general ways of coding classroom segments can provide insights
about national differences in teaching patterns (Givvin, Hiebert, Jacobs,
Hollingsworth, & Gallimore, 2005; Hiebert et al., 2005). But Hill and Grossman
(2013) have also recommended the development of ways of describing teaching
that attend to the nature of the content being taught; noting that while teachers of
different subjects have to “[develop] classroom routines to maximize learning time,
[represent] content to a range of learners, [and establish] productive relationships
with students [,] how they actually navigate these tasks depends, in large part, on
the specific content they are teaching” (p. 374). In this paper, we explore the
possibility of describing mathematics teaching in a way that is subject-specific. In
this way, the paper can be read as a response to the following question: What might
a subject-specific theory of teaching look like and what could descriptions of the
work of teaching that draw on it afford mathematics educators? We ground our
work in the teaching of secondary school geometry in the United States, in par-
ticular, asking what it takes to attend to the specific geometry being taught in this
course and how such attention could help us understand the possibilities for
improving secondary school geometry instruction.

By a subject-specific theory of teaching we mean a set of concepts and rela-
tionships that include a language of description for classroom instruction and that
can help scholars account for how a teacher and their students interact about and
work on the specific mathematics at stake. Such a theory should, at the minimum,
provide the means to reduce records of actual classroom interaction to accounts that
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describe the mathematical aspects of the instruction observed; further, such a theory
could provide the means to see what actually happened against the background of
whatever else could have happened. That is, a theory of mathematics teaching could
present the work of teaching as a system of choices that a teacher could make as he
or she manages students’ mathematical work and learning. If all the work of
teaching could be accounted for with generic kinds of teaching (e.g., inquiry-based
learning) and generic tasks of teaching (e.g., reviewing homework), that would be
tantamount to saying that the work of teaching mathematics is basically the same
across mathematics domains, mathematical courses of study, or types of mathe-
matical work, or that mathematics teachers are faced with the same choices for
instructional actions regardless of the specific mathematics that they are teaching.
We argue that this is not the case: We argue that what appears sensible to do for a
teacher depends on mathematical features of the teaching milieu1 (Brousseau,
1997). We elaborate this point below, but Fig. 6.1a, b provide a quick initial
example. The two images illustrate that the question why do you say that might be
described generically as a teacher’s press for explanation; however, the choice to
press for an explanation by asking the question “why do you say that?” may be a
prompt for different kinds of mathematical work and afford different meaning
potential in response to student moves in those different teaching milieux. Those
different meaning potentials could be quite consequential for the interaction that
ensues, hence entail different cost for the teacher. The request for explanation in
Fig. 6.1a addresses a statement the student made in the context of producing a
two-column proof (a form of written proofs common in the United States; see
Herbst, 2002a), while the request for explanation in Fig. 6.1b addresses a student’s
statement of an approximation of p when doing a calculation. Our experience in
geometry classrooms in the United States suggests that the request for explanation
in Fig. 6.1a might be a natural way for the teacher to help a student produce a proof
—the question could be interpreted as equivalent to “and what is the reason,” which
is an expected prompt for what the student would know they have to do. But the
request for explanation in Fig. 6.1b might be interpreted as questioning the stu-
dent’s statement of the value of p, which would arguably be a costlier disruption of
the work at hand. Our point with this example is that the context in which the
teacher presses for explanation matters in deciding the meaning (the potential
payoff, the potential cost) of the move; and that some aspects of the mathematics at
stake are essential to consider when trying to understand which elements of the

1Brousseau (1997) defines the milieu as the system counterpart to the learner in a learning task; the
milieu is the recipient of the learner’s actions and a source of feedback to the learner. In saying
teaching milieu, we are using milieu analogously and in reference to the teacher’s work. The
teaching milieu would therefore be the system counterpart to the teacher that contains the teacher’s
actions and provides feedback to the teacher. Crucially, this teaching milieu contains the students’
actions, which, inasmuch as they concern mathematical work, are subject-specific. Margolinas’
(1995) studies of the work of the teacher have given a basis for this use of milieu in describing the
teacher’s role.
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context are salient to interpreting the meaning of the choice to make such a move,
and hence how probable it would be for a teacher to act in that way.

We argue that the work of teaching geometry is subject specific beyond the
obvious specificity of the topics a teacher teaches. The examples shown in
Fig. 6.1a, b suggest that, to the extent that different types of mathematical practices
(e.g., making a statement as part of a proof, stating the value of a constant) can be
questioned in classroom interaction, the meaning of a given question can differ,
depending on the context in which it is asked, even if its wording is the same. This
makes sense from an epistemological perspective: To the extent that propositions
and concepts are different types of mathematical entities, they are amenable to
different kinds of justification. But the specificity we allude to goes beyond the
topical and the epistemological; it concerns the work of instruction. Our contention
is that the meaning potential of the actions of a teacher, when he or she is managing
students’ engagement with specific mathematical ideas at stake in a given course of
studies, is specific to those work contexts in which those ideas are being handled.
Our use of the term meaning potential is inspired by Halliday’s (1978) social
semiotics and considers action as semiotic: Actions, inasmuch as they are behaviors
in context (including speech and writing, gesture, body position, etc.), are tokens of
meaning, and the meaning potential of such behaviors is what those tokens can
mean in that context. Our claim that teaching is subject-specific therefore suggests
that the meaning of a teacher’s action depends on the subject of studies, specifi-
cally, as this subject is represented in the students’ mathematical work, which the
teacher manages through those behaviors. We unpack this statement below and
illustrate it with discussion of data from a U.S. secondary school geometry lesson.

Fig. 6.1 a Pressing for explanation while doing a proof. b Pressing for explanation while doing a
calculation. Graphics are © 2017, The Regents of the University of Michigan, used with
permission
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6.2 An Example: Drawing Diagrams to Enable Student
Work

The actions of a teacher could be described with a specificity that addresses how
those actions shape the mathematical nature of the work students are expected to
do. Geometry teachers often draw diagrams on the board or on worksheets when
posing problems for their students. Such work might be described generically as
providing a representation and perhaps a bit less generically as drawing a diagram;
but such descriptions are still generic in the sense that neither the drawing action
nor the eventual diagram would then be described in relation to the mathematics
being transacted. Two things could be meant by the expectation that the description
of the action relate to the mathematics being transacted. On the one hand, the object
of knowledge to be acquired or assessed could feature in that description: If the
diagram was of a rectangle and its diagonals (as in Fig. 6.2a, b), one could say
the teacher draws a rectangle and its diagonals, which is clearly more specific than
the teacher provides a representation, and relates to the knowledge at stake, for
example, if the goal is for students to learn the property that diagonals in a rectangle
are congruent. Note that such description benefits from mathematically specific
language of the same kind that is used to name the concepts taught in a given course
of studies (rectangle, diagonal). On the other hand, the description could use even
more specific language, language that relates to the task at hand, by noting how the
characteristics of the drawing achieved might be resources for the task that students
will do, hence elements of the milieu. For example, the description could note that
the teacher uses different stroke weights that make two overlapping triangles visible
in the rectangle and that the teacher labels some points but not others, as shown in
Fig. 6.2a (see Dimmel & Herbst, 2015, for an analysis of semiotic resources
available to describe diagrams). Note that a drawing such as Fig. 6.2a features the
use of semiotic resources such as line weight and labels, whose meaning potential
includes stressing that there are two (or three, but unlikely four) triangles of interest,
which would be a useful resource if the students were given the task to prove that
the diagonals of a rectangle are congruent.

Fig. 6.2 a A diagram of a rectangle and its diagonals, with stroke weights. b A diagram of a
rectangle and its diagonals, with their point of intersection labeled
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The example attempts to support the claim that a description of how the teacher
provides the representation should include how the actions of the teacher shape the
task that students will do. This could be done by reporting how task resources are
made available, as exemplified above: The semiotic resources in the diagram afford
a different representation in Fig. 6.2a than in Fig. 6.2b, which is another choice
available to the teacher for providing a representation. The same could be said about
how the goal of the task is devolved to students: They could be asked to prove that
diagonals of a rectangle are congruent or to determine which triangle (ACD or
BDC) has the smaller perimeter, among many other statements; the students could
also be given that ABCD is a rectangle and asked to prove that AC ffi BD.
Additionally, the operations that students have to do, those that they may do, and/or
those that they may not do in engaging with the task may or may not be addressed
by the teacher, before or during students’ engagement with the task (Doyle, 1988).
For example, Fig. 6.1a shows how a teacher communicates the need to provide a
reason after a statement. Thus, a description of the work of teaching could be
subject-specific not only inasmuch as it names the mathematical knowledge at stake
but also inasmuch as it helps identify the elements of the mathematical work—that
is, the specifics of the task students will do—that provide evidence of the student’s
understanding of the knowledge at stake. If the knowledge at stake is the propo-
sition that diagonals of a rectangle are congruent, the description of how the teacher
engages students in work that installs that proposition as the stake of classroom
work may, or may fail to, give us an idea of how students encounter that knowl-
edge. We elaborate on this point below and generalize the notion that a
subject-specific theory of teaching would provide the means to describe teaching
actions in a way that accounts for their potential impact on the specific mathe-
matical work at hand and/or the knowledge at stake.

6.3 Classroom Norms and the Description of Teaching

The notions of didactical contract (Brousseau, 1997) and instructional situation
(Herbst, 2006) are building blocks of a theory that supports the argument that the
work of teaching geometry is subject specific, beyond the obvious fact that the
object of studies is a domain of mathematics. Brousseau’s (1997) notion of
didactical contract alludes to a set of relationships among a teacher, their students,
and the content being studied that regulate in general and implicitly what it means
for the teacher to teach and for the students to study that content: We refer to those
implicit regulations as instructional norms. Note that by norm we mean an
expectation that teachers have of their own work and of the students’ work in the
context of an instructional exchange, though norms are neither ineluctable nor
necessarily explicit. This last point is of particular importance when we think of
norms as useful for the observation and description of actual teaching and we come
back to it after describing a couple of norms of doing proofs in high school
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geometry. These norms can vary in their specificity, with some being akin to usual
social norms (e.g., that the teacher is expected to respond to students’ work; see
Wood, Cobb, & Yackel, 1991, p. 599), some more specific to a course of mathe-
matical studies (e.g., what counts as a different solution in a class; see Yackel &
Cobb, 1996), and some even more specific to particular types of work that students
are asked to do in a given mathematics course (e.g., that students are expected to
gather only some information from the diagram when they are doing a proof;
Herbst, Chen, Weiss, & González, 2009). Some norms of the didactical contract
attest to subject specificity by characterizing the work of doing mathematics in
classrooms. For example, in mathematics classes, it is sensible for the teacher to ask
a student to justify their responses (e.g., a rectangle) to some questions (e.g., what
quadrilateral is formed by the intersection of the angle bisectors of a parallelo-
gram?), but not so much to justify their responses (e.g., a diagonal) to other
questions (e.g., what’s the name of the segment connecting two nonconsecutive
vertices in a polygon?). Or, even if asking for a reason was sensible in the second
case, the kind of reason that would be sought would be different: While in the first
case, the teacher’s question might aim at the student’s production of a proof that
bisectors of consecutive angles of a parallelogram are perpendicular to each other,
in the second case, the request to give the reason for a name might pursue extra
information on etymology or history (i.e., what diagonal means when one analyzes
its root in Greek).

The matter is exacerbated if one contrasts a press for justification made by a
mathematics teacher and a press for justification made by a teacher of another
subject. The epistemology of the subject of studies matters, indeed, but it matters
not only in the sense that justification is different across mathematical objects or
between mathematics and other subjects. It matters also in terms of the work that
students do: What epistemology, in the sense of what relation to knowledge, do the
students have the opportunity to construct by way of their interaction with the
subject of studies? Furthermore this epistemology concerns the school subject of
studies, not only the domain of mathematical knowledge: Norms, such as that
teachers rather than students are the ones that choose and assign problems, that
tasks are supposed to contain the resources and tools that students will need to
complete the tasks and nothing unnecessary, that problems are supposed to take
only a few minutes to complete, or that students are supposed to show their work
(e.g., see Schoenfeld, 1988), are examples of regulations rather common in math-
ematics classrooms and that are not issued from the epistemology of the discipline.
They also are rather general, applying to a range of mathematical work in a given
course of studies, perhaps across mathematical courses of studies. We refer to these
as contractual norms (Herbst & Chazan, 2012). But we argue that a more specific
type of norms, the norms of instructional situations (Herbst, 2006), which we
describe in the next section, is particularly useful when describing how teachers
shape the mathematical work of students.
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6.3.1 Describing How Teachers Organize and Manage
Students’ Work

Students learn geometric ideas through working on particular tasks.2 Insofar as the
teacher needs to manage specific work that mediates students’ learning of specific
ideas, the actions a teacher takes to enable such mathematical work use elements of
a semiotics of professional work that includes language, gesture, physical position
and movements, inscription, and material objects (e.g., furniture) and are permeated
by similar specificity. This specificity has to do, as we suggest above, not only with
the knowledge at stake, but also with the characteristics of the work that students
and teachers are expected to do. Doyle (1988) modeled that work by characterizing
academic tasks as composed of a goal or product that students are expected to seek,
resources that students have available to use as they work towards that goal, and the
operations that they do to achieve that goal.3 This characterization is compatible
with Brousseau’s (1997) characterization of the learning situation as one in which
the learner acts on, and processes reactions from, a milieu. But, if describing how
teachers organize and manage this work is what is expected, is it sensible to expect
that a theory will exist, thus providing some reusable constructs for the description
and explanation of mathematics teaching? Or, must we surrender instead to the need
for idiosyncratic descriptions of specific tasks? In the rest of the paper, we argue
that the construct of instructional situation actually provides a way to mediate this
paradox of needing a language of description that goes to such specifics as being
able to describe tasks, yet is sufficiently general to provide theoretical support for
the description of different tasks. In order to enter this terrain, we start with an
actual classroom example.

Some years ago, we worked with a high school geometry teacher in designing
and using some novel tasks to teach about the properties of special quadrilaterals4

(see also González & Herbst, 2013). The unit started immediately after the class had
studied parallelograms and their properties. At the beginning of the unit, the tea-
cher, Ms. Keating (a pseudonym), defined an M-Quad5 as the “quadrilateral that is

2The word task is used as a general concept here, and the emphasis is on a task as a particular
chunk of work (task as a proper subset of work). The task might be to do a problem, to discuss a
solution to a problem, or to compare solutions to a problem, but the point is that students’
engagement is through the particular work called forth by a task (see Brousseau, 1997, p. 22).
3Doyle also included a fourth component, the accountability of a task, or the relative importance of
the task when compared to the other work (e.g., other tasks) that the class might do (Doyle, 1988,
p. 169). We incorporate this notion of the role the task plays in the class’s accountability system in
our conception of instructional situation and prefer to describe tasks using the three components of
goal, resources, and operations.
4By special quadrilaterals we mean parallelograms, rhombi, rectangles, squares, etc.
5While the instructional goal was to learn about special quadrilaterals, the work assignment was
often stated in ways that kept those quadrilaterals hidden. The definition of M-Quad and questions
about M-Quad were mere instruments to organize students’ work, not what was at stake in the unit
(as, obviously, M-Quad is a made-up concept with no status in the curriculum or in the discipline).
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constructed by connecting the midpoints of the consecutive sides of a [given]
quadrilateral.” She did not provide a diagram with this definition (which is note-
worthy, for reasons that become clear below). Ms. Keating then asked the students,
“Why would it say consecutive sides?” This question elicited a student’s consid-
eration of segments between midpoints that “jump around” the sides of the
quadrilateral, which Ms. Keating used to note that those figures would not be
desirable for the task at hand. She then showed the statement of the task on the
overhead projector—“what quadrilateral would you need to start with in order to
get an interesting M-Quad?”—again, without drawing a diagram. Shortly after, Ms.
Keating restated the task in a way that suggested a synergy between the statement of
the task (which is about starting from a quadrilateral and obtaining an interesting
M-Quad) and the definition of M-Quad (which is about connecting the midpoints of
a given figure): “So, start drawing some quadrilaterals, find the midpoints, connect
them.”

How should one interpret Ms. Keating’s choice to ask her students about the
word consecutive, in the definition? Her question could be described generically as
asking a comprehension question, or a bit less generically as questioning students’
understanding of the definition of M-Quad, but it makes more sense to see it as an
attempt to help her students realize that it is they who will be drawing the M-Quads
and that the definition should constrain their drawings. Her comments after dis-
cussing the meaning of consecutive (sides) suggest that her attention to the defi-
nition mitigated the possibility that students could just draw any diagram in
response to the task. Other elements of the definition (e.g., midpoint) could have
been questioned as well, but they were not. This is interesting inasmuch as it limited
Ms. Keating’s prescription of the operations that students could use: Students might
have some liberty in terms of how they would find midpoints. To question students
about midpoints might have explicitly brought into the discussion control properties
such as the equidistance of a midpoint to the endpoints of a segment; these might
have further constrained how students undertook the task of drawing.

It appears that Ms. Keating’s choice to ask her students about why the definition
of M-Quad contained the word consecutive had the potential to constrain how the
students engaged in the construction task, while her lack of allusion to the meaning
of midpoint avoided possibly constraining that work too much. The task was scoped
to possibly instantiate a situation of constructing a figure (Herbst, 2010) with some
constraints, yet one where not all steps had been proceduralized. We suggest that
Ms. Keating’s description of the task and definition of M-Quad might have cued
students to this situation because the definition included the word construct,
because the description of the task included the word draw, or because she provided
students with tools typically used, in high school geometry, to construct figures. All
of this may sound idiosyncratic to that task, but it is remarkable for us because we
see the work of the teacher assigning a construction task against the background of,
or in contrast to, typical construction tasks in U.S. high school geometry class-
rooms, in which students usually have a specified procedure to produce a figure
identified in advance (Herbst, 2010). Indeed, the particulars we brought in to make
our observations of Ms. Keating’s introduction of the M-Quad task were afforded
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by our knowledge of the instructional situation of constructing a figure and its
norms (see Herbst, 2010).

With this, we illustrate the more general point that existing instructional situa-
tions such as constructing a figure (hereafter, the situation of construction) can
provide language to describe the work of the teacher in organizing and managing
students’ work on mathematical tasks (be those novel or familiar) and to anticipate
what students’ opportunities to learn might be. This supports the value of attending
to familiar instructional situations in US high school geometry, when studying the
instruction of that course (e.g., Ms. Keating’s lesson).

6.3.2 Didactical Contract and Instructional Situations

Building on the works of Brousseau (1997), Bourdieu (1998), Herbst and Chazan
(2012) describe the didactical contract for a course, such as high school geometry in
the US, as enabling symbolic exchanges of student work for teacher claims on the
content at stake (which they refer to as instructional exchanges): Students’
engagement in a mathematical task allows the teacher to claim that the students
have had the opportunity to learn particular mathematical ideas (i.e., accomplish
particular instructional goals). These exchanges sometimes require an explicit
negotiation of the didactical contract (i.e., negotiations of what students need to do
to undertake the task and how doing that attests to their having learned the content;
see Herbst, 2003), while in other cases those exchanges are framed under customary
instructional situations, whose norms waive the need for such negotiation (Herbst,
2006). Instructional situations are therefore available frames for organizing class-
room mathematical work and its exchange for claims over instructional goals; we
define instructional situations, operationally, below, after introducing a couple of
examples. Herbst (2010) describes various cases of instructional situations in the
U.S. high school geometry course, including those of constructing a figure, doing a
proof, and exploring a figure.

Instructional situations call for U.S. teachers of high school geometry (hereafter,
geometry teachers) to act in particular ways to manage student work, ways in which
other mathematics teachers or teachers of other subjects may not need to act. But,
do we need to make such observations? Clearly we could consider those actions as
cases of the same work being done in two very different manifestations; hence it
would be possible to describe the work of teaching in such abstract terms that the
differences across the teaching of different mathematical domains might get elided:
For example, one could attach the label posing a problem both to the actions of a
geometry teacher asking her students to construct a figure and to the actions of an
algebra teacher asking his students to explore the behavior of a given function.
However, the notion that the teaching of mathematics involves specific knowledge
that aides teachers in doing their work in specific instructional situations, knowl-
edge that is either available to individual teachers (e.g., mathematical knowledge
for teaching; see Ball, Thames, & Phelps, 2008) or recognized by teachers as being
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required for specific work (e.g., the norms of a situation; see Herbst, Chen, Weiss,
& González, 2009), helps us discourage the use of such abstractions to describe the
work of teaching (Herbst & Chazan, 2012; Herbst, 2010). In the following section,
we compare two different examples.

6.3.3 Exploration and Proof Call for Different Work
in Drawing Diagrams

Consider two instructional situations in geometry—exploring a figure and doing a
proof—and the different demands they pose regarding the teacher’s drawing of
diagrams. To explore a figure, it is normative for students to be given an artifact
(e.g., a diagram, a physical object) and means of proximal contact with it (e.g.,
measuring tools) and to be asked to state properties of the figure (Herbst, 2010).
Herbst (2010) explains that the mathematical work done in the situation of
exploring a figure may also include the examination of several diagrams for the
purpose of conjecturing their common properties and stating them in conceptual
language. To facilitate this work the teacher is expected to create one or more
representations of the figure for students to use. Inasmuch as students interact
proximally with the representations and use those interactions to make assertions
that instantiate target properties, we surmise that, in order to enable students’
mathematical work, the teacher would have to carefully create accurate geometric
diagrams. This might mean drawing the diagram with precise tools and thin strokes,
as well as doing as much as possible to have measurements that are whole numbers
or that involve simple, common fractions (because, for example, students are more
likely to conjecture that the opposite sides of a rectangle are congruent if two sides
measure 6 cm and the other two 4.5 cm than if two sides measure 6.05 cm and the
other two 5.95 cm). These actions on the part of the teacher might be interpreted by
an observer as extreme attention to detail, but they might also be interpreted as the
teacher doing what they need to do to enable students to use their interactions with
the diagram to read an instance of the target property of the figure being explored. If
the diagram is very accurate, the students will not only be able to abduct the target
property (e.g., that opposite sides of a rectangle are congruent) as a possibility but
also to confirm empirically their perception when they interact proximally with the
diagram, by measuring or folding.6 We contend that such attention to detail in
creating a diagram for an exploration is an example of how the teaching of
geometry is subject specific: The mathematical work that students need to do with

6Note, however, that our description of the situation of exploration, in which the teacher and
students reify concrete artifacts as mathematical objects, does not entail our personal endorsement
of such relationship to geometric knowledge. Our descriptive attention to them owes to the fact
that such practices exist in intact teaching.
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the diagram makes subject-specific demands on what the teacher needs to do to set
up such work. This is clearer when we consider another instructional situation.

In the situation of doing proofs (see Herbst et al., 2009) the teacher is expected to
provide a diagram as well. But this diagram does not need to be very accurate. The
diagram needs to be accurate enough to enable students to visualize the statements
they want to include as part of the proof, but not so accurate to support verification
by measurement, as the students are not expected to measure the diagram. Yet,
unlike in the situation of exploration, in the situation of doing proofs the teacher is
expected to do more than draw a diagram, the teacher is also expected to label the
points of the diagram that will be used in the proof (Boileau, Dimmel, & Herbst,
2016; Herbst, Kosko, & Dimmel, 2013). Labels help keep students’ interactions
with the figure distal as well as guide attention to relevant geometric objects
(Herbst, 2004). This labeling, however, is not necessarily expected when setting up
an exploration of a figure, where students can interact proximally with the diagram.

6.3.4 What Can Be Learned from the Examples of These
Instructional Situations?

Clearly, one could say that these examples of the work of teaching (in the situations
of exploring a figure and of doing proofs) are just examples of the teacher creating
the givens of a problem, and, even more generically, that those cases are just
examples of the teacher creating the resources that students will need to complete a
task. Yet, such generic descriptions would not allow one to distinguish those
actions from theoretically-possible, non-normative alternatives, such as drawing a
diagram inaccurately yet still asking students to explore it, or asking a student to
prove a proposition about a diagram in which points that are not needed are
nonetheless labeled. And, if one’s language of description did not allow them to
notice such things, one could not compare their relative costs and benefits. For
example, when exploring a figure with an inaccurately drawn diagram, students
might rely on more than empirical reasoning, yet might also fail to come up with
any conjecture. Likewise, while they might produce a proof that makes reference to
all sorts of unnecessary objects, they might also consider the extent to which those
statements are needed. That is, the teacher’s actions could be described, generically,
as creating the givens of a problem, but they could be executed in different ways, in
particular, by complying with or breaching the norms of the instructional situations
that these norms sustain. These breaches could impact the mathematical work
students eventually engage in—in some cases, those breaches could be interesting
to track on, as they might improve the quality of students’ opportunities to learn
(Cirillo & Herbst, 2012)—suggesting why it would be important for the field to
adopt a subject-specific language of description, such as the situation-based lan-
guage that we propose in this chapter. To be clear, if we adopted a generic language
of description and described those two events as cases of the teacher creating
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resources for an assignment, we would need to accommodate within that descrip-
tion (1) the actions of a teacher who does so complying with the norms of the
situation and (2) the actions of a teacher who does so by breaching a norm (e.g.,
provides a diagram for an exploration but the diagram is inaccurate). The work of
students in response to such variable ways of providing resources for a task would
likely offer variability that we would predict is caused by subject-specific differ-
ences that a generic language of description would have otherwise ignored.

The observation above suggests that if a language for the description of math-
ematics teaching will let us understand the mathematical qualities of instruction, it
needs to preserve a sense of how the actions of the teacher relate to the mathe-
matical work that the students do. We contend that the actions of the teacher need to
be described in subject-specific ways, and that this could be achieved by using
categories of subject specificity derived from the norms of the instructional situa-
tions that frame the work students are doing. To practitioners, the norms of
instructional situations appear as tacit expectations that go without saying when
complied with and that are repaired when breached (Herbst, Nachlieli, & Chazan,
2011). For an observer to use those norms in the observation of teaching, it is worth
noting that instructional situations relate to actual practice not in the sense that their
norms provide criteria of objective correctness, but in the sense that norms provide
a point of reference, where the word norm functions here in the probabilistic sense:
The norm is a central tendency around which most of the actual performances
cluster. Thus, rather than reduce observation of teaching to rating the work of the
teacher in terms of their mathematical correctness in a general, observer-centered
way (as is the case with subject-specific rating instruments, such as the MQI pro-
tocol; see Learning Mathematics for Teaching Project, 2011), the use of norms of
instructional situations for observation requires the observer to subordinate any
sense of judgment to the specific expectations practitioners would have of teaching
actions in the instructional situation that might most likely frame the work they
have organized.

6.4 Towards a Subject-Specific Description of Teaching

We contend that the norms of instructional situations provide subject-specific
language to describe teaching in ways that can help one understand the qualities of
classroom mathematical work. As noted above, we define instructional situations as
frames that organize classroom mathematical work—clusters of expectations
(norms) of who has to do what and when—that regulate what kind of work the
teacher will accept as evidence that a student has acquired a particular item of
knowledge. A mathematics teacher has to relate to classroom mathematics in at
least two fundamental ways: As knowledge for students to learn and as work
students need to do in order to accomplish and demonstrate that learning. Further,
the teacher needs to manage many (instructional) exchanges of one or another form
of mathematics: In class work, in homework, and in examinations, students propose
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solutions to a variety of particular mathematical problems that the teacher needs to
evaluate insofar as they represent (i.e., stand for, though they are never identical to)
the knowledge at stake. In this sense, instructional situations are sets of similar
instructional exchanges—exchanges of similar objects of knowledge for similar
kinds of work done. The system of norms that regulate instructional exchanges in a
given instructional situation can then be considered a specialization of the didactical
contract—instructional situations collect exchanges that are regulated by the same
situational norms (which are specialized versions of the norms that make up the
didactical contract). For example, while the didactical contract may generally
authorize the teacher to assign tasks to students, the exchange of specific items of
knowledge requires the teacher to issue specific tasks. It is for that reason that the
norms of an instructional situation can help an observer frame a particular
instructional exchange. In the situation of doing proofs, the contractual norm that it
is the teacher who assigns problems to students is specialized in the form of various
norms that describe what problems the teacher may assign.

6.4.1 The Situation of Doing Proofs

The high school geometry course, which students in U.S. high schools take in 9th or
10th grade (when they are 14–16 years old), developed historically as a stable place
for the notion of mathematical proof and students’ engagement in proving (Herbst,
2002a) through the development of an instructional situation that Herbst and Brach
(2006) called doing proofs: Throughout the 20th century, students in high school
geometry have been expected to learn mathematical proof through engagement in
proof exercises. Herbst et al. (2009) have characterized the situation of “doing
proofs” by spelling out a set of norms that regulate the exchanges between students’
work on a proof task and the teacher’s claim that they are learning how to do
proofs.

As noted above, the didactical contract, in the majority of classrooms, entitles
the teacher to assign tasks to students. In the situation of doing proofs, each of those
problems is expected to spur students’ work that the teacher can exchange for a
claim on students’ knowledge of how to do proofs—how to logically connect
known definitions and theorems to what is known and what is to be verified (a
proposition) about a geometric configuration. Yet not every problem does that job.
For example, a question such as “what can you say about the angle bisectors of
adjacent angles?” (Herbst, 2002b, 2015) would not do, even though a
mathematically-educated person would likely see that question as an interesting
opportunity for a proof, because one norm of this situation, the given-prove norm
(Herbst, Aaron, Dimmel, & Erickson, 2013), is for the teacher to state proof
problems by parsing the proposition to be proved into ‘given’ and ‘prove’ state-
ments. In fact, the teacher is expected to provide students with all of the givens that
they will need, and the exact conclusion they will prove. That said, to our earlier
point that norms are not ineluctable, note that teachers could breach this
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given-prove norm by involving students in proposing the givens needed to prove a
given conclusion and/or in proposing the conclusion that they will try to prove on
the basis of a particular set of givens (Cirillo, this volume; Cirillo & Herbst, 2012;
Herbst, 2015). As Herbst, Aaron, et al. (2013) showed through their analysis of
teachers’ responses to scenarios that depict the assignment of proof problems that
deviate from the given-prove norm in these ways, teachers do notice those depar-
tures, which suggests that they expect teachers to comply with this norm.

Another norm of doing proofs is what we have called the diagrammatic-register
norm—that proof problems are stated using a diagrammatic register (i.e., that the
statement of the proposition to be proved refers to the characteristics of a provided
diagram). Five sub-norms are part of the diagrammatic-register norm: (DRN1)
co-exact properties (Manders, 2008) such as collinearity, incidence, and separation
are not stated explicitly as givens, but rather given implicitly through a diagram,
while exact properties such as parallelism, perpendicularity, and congruence are
stated explicitly; (DRN2) the proof problem is accompanied by a diagram; (DRN3)
all points to be used in the proof, and no other points, are labeled in the diagram;
(DRN4) the given and prove statement are stated in terms of the objects represented
in the diagram as opposed to in terms of the geometric concepts that characterize
the classes of objects represented; and (DRN5) the diagram accurately represents
the figure addressed in the problem. Herbst, Kosko, and Dimmel (2013) showed
that teachers recognize those norms when they have to respond to scenarios of
teaching (see also Boileau et al., 2016; Herbst, Dimmel, & Erickson, 2016). Based
on observations of geometry classrooms, Herbst et al. (2009) have conjectured
several other norms for doing proofs that help characterize doing proofs as an
instructional situation. Using multimedia questionnaires (Herbst & Chazan, 2015),
we have been able to gather evidence that those conjectured norms are indeed what
teachers expect to happen even if they might also conceive the possibility to teach
in different ways. It is clear that norms of instructional situations are subject specific
in the sense that they are specific to the work that students will do on account of the
learning of specific content: If a teacher posed a question (e.g., what can you say
about the bisectors of adjacent angles?) rather than state a proposition decomposed
into a given and a prove statements, it is quite possible that students might draw and
measure and that some extra maneuvers would be needed for the teacher to get the
students to answer the question by formulating and proving a conjecture. But how
does this relate to the observation and description of teaching practice?

We went into this discussion of instructional situations and their norms on
account of the more general claim that the observation and description of the work
of teaching can benefit from being subject-specific. The question that arises is how
can instructional situations and norms be used to observe and describe teaching
practice. Assuming that the observer has access to a video record of a lesson, can
peruse the textbook that the class was using, and collect images of students’ work,
the observation would proceed at two levels: At a first level of description, the goal
of the observer would be to identify one or more instructional situations that could
be framing the work that the teacher and students are doing. This can be done first
by identifying the items of content at stake by triangulating information from a
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variety of sources, including the sections in the textbook being referenced, the
nouns being used in the teacher’s explanations, the teacher’s own identification of
what the learning goals are, and the observer’s recognition of the mathematical
concepts conventionally associated with the various symbols and icons used.
Simultaneously, the observer could look for self-contained segments of work on
problems, either done by students on their own, or by the teacher guiding the
students through examples or exercises. Segments that include the work done from
the statement of the problem to the sanctioning of an answer can then be associated
with one or more instructional situations from a catalogue of available instructional
situations. Clearly, classroom work might or might not be an exact instantiation of
an instructional situation, but the observer’s hypothesis that one instructional sit-
uation is framing the work being done, either for the teacher, or for one or more
students, can help the observer produce observation questions that elicit a de-
scription of the work of teaching. The hypothesis that a known instructional situ-
ation can be playing some role in framing a specific exchange authorizes the
observer to use the norms of that situation as specific resources for description.
Thus, a self-contained segment of work on a problem is a candidate for inspection
at a deeper level, with the assistance of hypotheses that a given instructional sit-
uation (e.g., doing proofs) is framing the segment. This means, in particular, that the
norms of the situation would be used to craft observational questions within the
segment of work. The hypothesis that a given situation frames the segment of
instruction is provisional and serves to identify norms to be used in asking those
observational questions. Confirmation of the hypothesis is less important as a goal
than implementing the specific observation grid derived from the norms of a sit-
uation as a means; this is what leads to a subject-specific description of instruction
and the work of teaching. In other words, an instructional situation provides a
language of description that can function like a local theory: The observer’s
hypothesis that a given situation is framing the instruction being observed warrants
using the norms of that situation to look at such instruction and produce
descriptions.

Norms of a given situation, such as the given-prove norm and the diagrammatic
register norm of the situation of doing proofs, can serve to pose observation
questions like the following. Has the teacher indicated that students are expected to
do a proof, for example, by drawing a two-column table or writing a proposition,
parsed into givens and a prove statement? Has a diagram been provided? How
accurate is that diagram in its representation of the givens? Does the statement make
reference to exact properties only? Does the diagram have all, some, or none of its
points labeled? In what register (conceptual or diagrammatic) are geometric objects
described in the statement of the proposition? Note that these questions not only
help the observer notice how the problem is initially stated, but they also suggest
what the observer could notice when observing the temporal unfolding of the
segment of instruction. For example, it is possible that the problem be assigned
initially with some of those qualities but not with others and that, during students’
work on the problem, the teacher would revise the problem or make special mention
of the features of the problem, as that might alter how students work on it. To the
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extent that practitioners notice (or repair) breaches of norms like these, one can say
that, at least for teachers, the grounds for the distinction we have made are not just
different examples of the same abstract category, but actual information in
Bateson’s (1972) sense, “a difference that makes a difference” (p. 315). Other
questions, responding to interactive aspects of the work of teaching, would also be
posed likewise, originated by other norms of the situation. In the next section, we
discuss how this could be done using, as an example, the Midpoint Quadrilateral
task introduced earlier as an example.

6.5 Return to the Example: The Midpoint Quadrilateral
Task

The midpoint quadrilateral task—what quadrilateral would you need to start from to
get an interesting M-Quad (midpoint quadrilateral)?—seems to be a novel task,
depending only on the definition, given in the classroom a few moments before
posing the task, that a midpoint quadrilateral is a quadrilateral that is constructed by
connecting the midpoints of the consecutive sides of a quadrilateral. Doyle (1988)
had noted that students resist novel tasks. Herbst (2003) later showed how novel
tasks may also create tensions for the teacher. At the same time, those scholars and
many others have argued for the value of tasks that engage students in doing
authentic mathematical work (Stein, Grover, & Henningsen, 1996). As researchers
interested in both improving the quality of the mathematical experiences students
have in geometry classes and supporting the complexity of the work that teachers
need to do, we consider it important to understand both the opportunities the
M-Quad task afforded for students and the challenges that it might present for the
teacher and her students. The instructional situations of construction, exploration,
and doing proofs (introduced above) help us understand those opportunities and
challenges, first of all by helping us ask observational questions of the video records
of the lesson.

In an earlier section, we discussed the hypothesis that the M-Quad task could be
seen from the perspective of a situation of construction, which is warranted by Ms.
Keating’s definition of M-Quad. Yet, our use of that lens led us to observe how Ms.
Keating’s discussion of the task highlighted some (e.g., consecutive) but not all
(viz., not midpoint) of the meanings involved, which appeared to help maintain the
task as less procedural than usual construction tasks. We observe that groups of
students in the class were indeed given construction tools—each group of 4 stu-
dents was given paper and pencil as well as tools such as a compass, protractor,
ruler, and straightedge. Ms. Keating supported the framing of this task as a con-
struction task when she told students to “start drawing some quadrilaterals, find
their midpoints, and connect them.” That said, certain norms of this situation were
also breached. For example, in addition to using the tools provided, students used
the edge of their textbooks to draw line segments, which we expect is what led them
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to use non-normative methods for constructing parallel and perpendicular lines,
congruent segments, and midpoints (i.e., some students were heard guessing where
midpoints would be). Indeed, it was faster for them not to use construction pro-
cedures, and faster work was encouraged by the task, as it placed a premium on
conjecturing which figure would produce an interesting M-Quad, which we expect
could have been interpreted by students as a request that they draw several
quadrilaterals and compare the M-Quads they led to. As a resource for developing
observation questions, the situation of construction suggests that we ask to what
extent students’ actual constructions were affected by their prior knowledge of
straightedge and compass constructions and to what extent their usage of alternative
drawing procedures might have blemished the diagrams they drew. The same
questions could be asked of the eventual work of the teacher and students sharing
their constructions at the board, which we describe below. This is important
because the situation of construction is not the only one that is useful as a frame for
observing this lesson.

The description of the lesson can also benefit from seeing it from the perspective
of a situation of exploration. In fact, Ms. Keating ushered students into exploration
and construction at the same time, by asking them to “start drawing some
quadrilaterals, find their midpoints, and connect them. Start making some conjec-
tures.” As suggested above, it is typical of the situation of exploration that the
teacher will ask students to examine several models, then formulate conjectures
based on the trends that they observe. She supported them in formulating a con-
jecture by suggesting that students argue with each other and make statements like,
“I started with this and I got this” and “If I start with this, then I always get this.”
One of the groups came up with two conjectures they stated following deductive
rules such as “if 2 sides of the outer quadrilateral are equal, then 2 sides of the
M-Quad are equal” (probably referring to two pairs of opposite sides). One of the
students wondered if this would be a “great theory.”

While it is fair to frame the launch of the task as well as the conjecturing that
ensued after students had their quadrilaterals and midpoint quadrilaterals drawn as a
situation of exploring a figure, it is equally noteworthy that framing that portion of
the lesson in this way allows us to see that several of the norms of the situation of
exploration were also breached. For one, Ms. Keating did not provide a diagram,
which would be expected of the teacher in the situation of exploring a figure
(Herbst, 2010). Consequently, the quality of the initial diagrams varied. Therefore,
whether students were able to create interesting M-Quads and formulate conjectures
depended on the quality of their drawings and/or the tools they used to check
whether the midpoint quadrilaterals had some perceived properties. In that sense,
the M-Quad task breached a norm of usual situations of exploration—it did not
ensure the students’ access to diagrams from which the conjectures they were to
make could be lifted using empirical means. This was apparent in the interactions
students had when looking at the shapes to decide whether they were interesting
enough. For example, some groups had individuals who conjectured that the
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M-Quad is always a parallelogram,7 but those groups also contained individuals
who did not believe the M-Quads were parallelograms because they did not look
like parallelograms. In this sense, the task clearly breached expectations of the usual
situations of exploration, in which the characteristics of the diagram would be
expected to support the students’ conjectures, both perceptually and empirically.

The observations above were enabled by what we know about the instructional
situations of construction and of exploration, and support understanding the
opportunities to learn afforded by the M-Quad task. The task installed some
essential uncertainty as to what students could claim was “an interesting M-Quad.”
While the task provided some means for empirical control of the uncertainty (be-
cause construction tools were given), it also discouraged very careful use of tools,
as mentioned earlier, because students likely expected that the teacher wanted them
to use time efficiently to construct and explore several figures in order to come up
with one that produced an interesting M-Quad. If they could activate other means of
knowing about the M-Quads (given what they knew about the quadrilaterals with
which they started), then that might accelerate their work. Clearly, that was the
reason why the task had been designed in that way—to inspect to what extent it
would engage students in generative interactions with diagrams that might result in
the production of reasoned conjectures (Herbst, 2004). But, was there any reason
why students might choose to undertake the task by reasoning their way through
from the properties of the quadrilaterals that they started with to the properties of
their midpoint quadrilaterals? As they had also been socialized into the situation of
doing proofs, one might expect they could use what they knew about doing proofs,
even if metaphorically (Herbst & Balacheff, 2009), to help them solve the M-Quad
problem.

Therefore, a third way of examining the students’ work is to use the instructional
situation of doing proofs to look at the M-Quad task. Could the norms of doing
proofs provide resources for the teacher and students to interact around the task? As
was the case with the situations of construction and exploration, several norms of
the situation of doing proofs had been breached by the teacher: Ms. Keating did not
provide a diagram, nor did she provide given and prove statements. At the time that
the task had been stated, no special parallelogram (square, kite, rectangle) had been
defined in the class; if students knew them it was because they recalled them from
earlier courses. But they did know all the properties that would be put together to
define the special parallelograms, so they could use properties to describe both the
original quadrilateral and their M-Quads, and to flesh out what they might mean by
“interesting.” At the same time, by suggesting that students make statements like,
“I started with this and I got this” and “If I start with this, then I always get this,”
Ms. Keating brought the task closer to the realm of proof.

It is noteworthy that, when we framed the situation as one of exploration, these
same actions took on different meaning—we interpreted them as a request for

7This is, of course, true, and known in mathematics as Varignon’s Theorem (see Coxeter &
Greitzer, 1967, p. 51; also http://mathworld.wolfram.com/VarignonsTheorem.html).
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students to formulate conjectures, rather than as potential cues that students could
engage in the reasoning typical of the situation of doing proofs. We see this as
noteworthy as it evidences the type of insights that might be gained by considering
that a given instructional exchange could be looked at using different instructional
situations as lenses (particularly when the assigned task is novel and the situation
cued by the task is therefore less clear). The possibility that the teacher’s request for
if-then statements may have had some students frame the situation as one of doing
proofs is supported by the work and discussions that developed when students
started to work in their groups. As mentioned above, one of the groups discussed
two conjectures that they stated following deductive rules: “If 2 sides of the outer
quadrilateral are equal, then two sides of the M-Quad are equal” (probably referring
to two pairs of opposite sides). In another group, where some students had con-
jectured that the M-Quad was always a parallelogram, another student, who had
originally objected that in some cases the M-Quad was not a parallelogram, then
reasoned her way out of discounting squares and rhombi, saying that those also had
properties of parallelograms. Reasoning about the commonalities of figures in terms
of properties they had was an affordance that could be traced back to the situation of
doing proofs and how definitions are used to support statements about figures.

When the students shared their small group discussions with the class, the need
to negotiate what situation they were in became more apparent. For example, when
two students went up to the board, they started writing down the group’s conjecture
in an “if…, then…” format but Ms. Keating intervened: “You don’t have to write it
all out, I really just want to see your picture.” In response to the teacher’s comment,
one of the students erased the writing, and started drawing a picture as directed, but
the other student continued completing the sentence and then drew the picture that
went along with the conjecture then written on the board. From our perspective, as
the situation unfolded, it distanced itself more and more from one of doing proofs.
For instance, points were hardly ever labeled and properties such as parallelism
were not explicitly stated. The class ended putting forward the conjecture that the
M-Quad is always a parallelogram, though its proof would only be developed
several days after, as planned.

6.6 Returning to the Problem of Describing the Work
of Teaching

Our argument is that a subject-specific account of the work of teaching provides
better leverage than generic accounts for understanding how teachers create
opportunities to learn and how they manage tensions that appear in that context.
The M-Quad lesson could have been described generically: The teacher defined a
concept, then introduced to her students a novel problem about that concept, giving
them resources to engage with the problem in a hands-on way and organizing them
in groups to interact with each other. She also let the students know that the lesson
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would conclude with a whole class discussion of what each group found, so asked
them to write their conclusions on a piece of paper which could be shared. The
lesson proceeded as requested by the teacher. Students worked individually and
spoke openly with group members when they thought some of their findings were
worth sharing in the whole class discussion. The students were not boisterous, yet
they were clearly engaged. After about fifteen minutes, the teacher reminded the
students to write down what they had observed and how they came to their con-
clusion. Among the conclusions shared was the statement of a theorem, which
summarizes the properties of the concept that had been introduced at the beginning
of the lesson. While this generic description is factually true, its lack of attention to
subject-specific elements of instruction eludes both the ways in which the given
task created conditions for learning and how it created challenges for teaching. This
would not be improved if we merely spelled out the concept defined at the
beginning (i.e., midpoint quadrilateral) and the theorem conjectured at the end (i.e.,
Varignon’s theorem).

We contend that our subject-specific descriptions of the segment of instruction
(framing it as situation of construction, then exploration, then doing proofs), shared
in the prior sections, permits us to see how the task could in fact promote learning.
It might seem unrealistic to expect that the task as posed would lead to a complete
proof of Varignon’s theorem. In fact, as mentioned above, the design of the unit
was such that the proof would actually be done a few days later. The task had been
designed so that it could create three important dispositions that seemed founda-
tional for appreciating the role of proof in coming to know. One of them is the
disposition to think of figures in terms of properties, which was supported by the
request to get an “interesting” M-Quad. Varignon’s theorem, even as an unproven
conjecture (which was the case by the end of this lesson) is quite a surprising
general result that encourages a bit of skepticism toward organizing quadrilaterals
taxonomically. The second one was the disposition to interact with diagrams in a
generative way (Herbst, 2004), adding to the diagrams as one goes about reasoning
with them, a disposition that would eventually come to fruition a few days later,
when a diagonal for the original quadrilateral would be drawn in order to facilitate
proving that two opposite sides of an M-Quad are parallel. The third one is the
disposition to rectify perception with reasoning, which was encouraged by incor-
porating the expectation to make interesting conjectures (such as that the M-Quad is
always a parallelogram) into an activity whose diagrams purposefully lacked
accuracy.

These opportunities to learn were created by making use of existing instructional
situations, which brought with them affordances as well as constraints. At each
moment when the norms of a situation (of construction, exploration, or doing proof)
were breached, there was the possibility that the decision to accept or repair these
breaches placed tensions on the teacher, notably around what kind of diagram is
needed and who needs to produce it. Observation practices based on attending to
the instructional situations that are customary in the U.S. high school geometry
class supported our capacity to attend to the events (e.g., the instructional decisions)
that might help explain how the creation of that opportunity to learn took place.
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6.7 Conclusion

The prior sections illustrate the elements of an argument for the claim that the work
of teaching geometry is subject-specific and that certain insights into that work can
therefore only be afforded by subject-specific language of description. The criteria
used to detect differences, whether these are summative measures of achievement
and success or analyses of the qualities of the mathematical work, matters in
deciding whether these are “difference[s] that make a difference.” (Bateson, 1972,
p. 315). Additionally, some of the subject-specific differences that the notion of
instructional situation permits us to detect are nested in general approaches to
teaching (e.g., problem based instruction, direct instruction) that contribute by
themselves to making or not making a difference. Having said that, when one views
the work of teaching as involving transactions of student work on tasks for claims
by the teacher on their mathematical knowledge, some broad tasks of teaching
emerge (e.g., creating work assignments, interpreting the students’ work) that are
intrinsically connected to the subject-specific work that students do. The way in
which a specific teacher carries out these tasks of teaching could be idiosyncratic
(e.g., he or she might always be careless in the assignments he or she provides), but
as mathematics educators, we would not expect to describe the majority of pro-
fessionals’ actions as idiosyncratic. We could, however expect that the qualities of
how teachers engage in generic tasks of teaching such as providing a diagram
would vary depending on the instructional situations used to frame the work.
Furthermore, we would, in general, expect that teachers’ recognition of the norms
of the instructional situation that frames the work and their knowledge of the
mathematics needed to enact such instructional situations would help account for
part of the variation in the ways teachers enact these tasks of teaching.
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Chapter 7
Differences in Self-reported
Instructional Strategies Using
a Dynamic Geometry Approach
that Impact Students’ Conjecturing

Brittany Webre, Shawnda Smith and Gilbert Cuevas

Abstract This study inspected the relationships between self-reported implemen-
tation of instructional strategies using a dynamic geometry approach and the
students’ engagement in making, testing, and proving conjectures Data collected
includes a self-reported questionnaire given to all of the project’s participating high
school geometry teachers, collecting both quantitative and qualitative data. The
results of the linear model, with proving conjectures as a response variable, indicate
that students spent less time proving or disproving their conjectures when working
alone regardless of whether they were in a regular or advanced level geometry class.
Time spent making conjectures and testing conjectures were positively and signifi-
cantly correlated with the frequency of teachers’ implementation of class discussions.
Furthermore, giving instruction that prompted group work had a significant and
positive correlation with students proving conjectures in Regular geometry classes.

Keywords Dynamic geometry � Instructional methods � Making conjectures
Proofs � Testing conjectures

7.1 Introduction

Geometry is a high school graduation requirement in the United States. It is
important that students possess the ability to reason geometrically and spatially in
and outside the classroom. The issue of learning and teaching geometry continues
to be a major problem nationally, as U.S. students’ geometry achievement level is
low, at most 50% of geometry students were able to complete an item that involved
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proofs (Battista, 2007). To investigate this issue, we conducted a four-year research
study, Dynamic Geometry (DG) in Classrooms, funded by a National Science
Foundation grant. This project developed a curriculum that uses the Dynamic
Geometry software The Geometer’s Sketchpad (GSP) to engage students in
developing mathematical ideas through experimentation observation and formula-
tion testing and proving of conjectures in the geometry classroom. This project
assessed student learning in 64 classrooms randomly assigned to experimental
(DG) and control groups (no technology). The teachers of both groups were
required to complete a DG Teacher Implementation Questionnaire (DGTQ) mul-
tiple times throughout the year. This questionnaire asked teachers to report on
instructional strategies and the frequency of students’ time spent making, testing,
and proving conjectures. For this current study, we only analyzed the data from the
treatment group due to the large effect size of the Dynamic Geometry curriculum on
the Regular class level students’ achievement on the standardized state Geometry
test. The Regular level DG students scored almost 8% higher on the state stan-
dardized test than the Regular control group students. This chapter reports on the
following research question: What is the relationship between the teachers’
instructional strategies and the time students spend making conjectures, testing
conjectures, and proving conjectures?

7.2 Literature Review

7.2.1 Dynamic Geometry

In this study, the project team randomly assigned teachers into two groups, the
Dynamic Geometry (DG) group and the control group. The DG group taught their
geometry course using GSP software. Educational software, such as GSP, can assist
in developing students’ understanding of mathematical concepts and increase their
reasoning skills (CBMS, 2001). Students’ ability to take advantage of dynamic
features such as dragging, measuring, and observing what changes and what stays
the same, leads to understanding of “the universality of theorems in a way that goes
far beyond typical paper and pencil explorations” (CBMS, 2001, p. 132). After
several years of research into the use of technology in the classroom, it has become
apparent that beyond solely the technology, teachers are an essential element in
overseeing the complexity of the learning situations (Laborde, Kynigos,
Hollebrands, & Strässer, 2006). Vincent (2005) found that the DG’s motivating
context and the dynamic visualization fostered conjecturing and intense argumen-
tation; the teacher’s intervention was an important feature of the students’ aug-
mentations, prompting the students to provide explanations for their statements and
check their reasoning’s validity. Herbst and Brach (2006) argue that classroom
tasks that demand high levels of cognitive activity from the students require
teachers to ensure the learner’s engagement.
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7.2.2 Teacher Self-reports of Implementation
of Instructional Practices

In this study, teachers were asked to describe the ways they had implemented
instructional strategies to address student explorations of geometric concepts, the
facilitation of conjecturing, and the approaches to geometric proof. Although tea-
cher self-reports are frequently employed when researching the implementation of
instructional strategies, a question often surfaces: How accurate are self-reported
data collected through surveys? Cook and Campbell (1979) raise three threats to the
validity of self-reports: (a) subjects tend to report what the experimenters expect to
see; (b) the reports may reflect the subjects’ own abilities, or opinions; (c) the
subjects inaccurately recall past behaviors. Some researchers have argued that
self-report data is of questionable validity, while others (e.g., Chan, 2009) point to
studies of self-reported psychological constructs, which have obtained construct
validity. According to Koziol and Burns (1986), teachers’ self-reported data are
accurate and definitive when the reports are regularly repeated, are retrospective up
to six weeks, and concentrated on well-defined instructional practices or activities.
Reddy, Dudek, Fabiano, and Peters (2015) report internal consistency and relia-
bility between measures of teacher self-reports of different general instructional
strategies and behavioral management strategies used in the classroom when
compared to classroom observations.

7.3 Framework

This study uses an adapted version of Van Hiele’s Model of Geometry Learning for
the foundation of its theoretical framework. Van Hiele’s five Geometry learning
phases are (1) Inquiry/Information, (2) Directed Orientation, (3) Explication,
(4) Free Orientation, and (5) Integration (Crowley, 1987). We modified Van Hiele’s
framework to align better with classroom instruction using dynamic geometry
software and curriculum. Our model has five stages which do not directly
correspond to Van Hiele’s phases yet maintains the model’s essence: Stage 1—
Geometry teacher introduces an open-ended problem with proof as an objective and
then chooses an instructional strategy that facilitates students’ reasoning and
problem-solving skills. This stage is similar to Van Hiele’s learning Phase One of
Inquiry and gathering information for exploration. Stage 2—During this instruc-
tional method, the student is prompted to utilize the dynamic geometry technology
and investigate the present problem’s situation to generate a conjecture. This stage
involves both of Van Hiele’s phases of directed orientation and explication where
students are given an activity of guided questions to explore. Stage 3—Students are
prompted to state or make a conjecture. (Stage 4) Students are encouraged to test
their conjecture. And (Stage 5) Students are directed to prove or disprove that
conjecture. The last three stages combine the remaining two Van Hiele’s learning
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phases of free orientation and integration since students may need to retrace steps
between the three conjecture tasks. As an example of this study’s modified Van
Hiele’s framework.

The researchers observed students progressing through these five stages during a
classroom observation where the teacher facilitated an investigation on the sum of
the interior angles of polygons. The first stage took place at the beginning of the
class, where the teacher introduced the interior angles of a polygon investigation
and explained the directions of the activity on the corresponding worksheet. After
explaining all the instructions for the activity, the teacher informed the class that
they could work in groups of two or three on this activity. The worksheet prompted
students by asking them to find the sum of the interior angles of a quadrilateral, then
a pentagon, and record their answers in a table. Stage two occurred when students
were prompted if they could predict the sum of the interior angles for a hexagon,
and then construct a hexagon, find the sum of its interior angles, and verify if their
prediction was correct. The third stage prompted students to make a conjecture or
devise a formula for an n-sided polygon. Then, the fourth stage prompted students
to test their conjecture or formula. The DG software made it quick and easy for
students to check to see if their formula was satisfied for as many polygons of size
n as they chose. Finally, the fifth stage asked students to prove or disprove their
conjecture.

7.3.1 Purpose of Study

The study’s goal was to compare the teacher’s self-reported instructional strategies
along with the approximate percentage of class time students spent making, testing,
and proving their conjectures. Because this study was only one part of the larger
four-year Dynamic Geometry Research Project, the broader context from the
overall project may be illuminating. The teacher’s choice of instructional strategy
was a variable that was not controlled for in the Hierarchical Linear Modeling done
for the study. This model showed that students’ geometry achievement scores in the
classes taught by the DG teachers (the experimental group) were significantly
higher than the achievement of students whose teachers were in the control group,
with a large effect size for the students in the Regular1 Geometry classes. Therefore,
this study analyzes the differences in the Dynamic Geometry teacher’s choice of
instructional strategy for the Regular level geometry classrooms versus the honors
(PreAP) geometry classrooms. Again, this study focuses on answering the fol-
lowing question: What is the variance in the dynamic geometry teachers’
self-reported implementation questionnaire of instructional strategies promoting
students making conjectures, testing conjectures, and proving or disproving their
conjectures?

1Regular geometry class in this context means not advanced level geometry class.
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7.3.2 Significance of Study

The overall research project’s study confirmed the hypothesis that the use of DG
technology to engage students in constructing mathematical ideas through experi-
mentation, exploration, observation, making/testing conjecturing, and proof results
in better geometry learning for urban high school students. This study analyzes only
the questionnaires to determine whether there exists a relationship between the
teacher’s choice of instructional strategy and time that students spent on making
conjectures, testing their own conjectures, and proving their conjectures. Many high
school students, particularly those in Regular level geometry class, are not accus-
tomed to doing mathematical proofs, as it is a time-consuming process, especially
when seeing it and learning it for the first time. The goal is to find which
instructional strategies are ideal to use and help promote students’ developing and
proving their own conjectures.

7.4 Methodology

7.4.1 Population and Sampling

The study took place in the Southwestern United States and involved a State
university in partnership with three school districts from an urban area. The target
population was that of practicing geometry teachers; the sample included geometry
teachers in those districts and who volunteered to participate in the research project.
There were two different levels of geometry courses in this study, Pre-Advanced
Placement (PreAP) and Regular level. The PreAP level is an advanced course that
primarily consists of 9th-grade students, and the Regular level course mainly
consists of 10th-grade students. The research study followed a mixed method,
randomized cluster design, with the teacher or the teacher’s classroom of students
as the unit of randomization. The project team members randomly assigned the 64
high school geometry teachers into two equally sized groups: the experimental
treatment group (the DG group) and the control group (commonly referred to as the
‘business as usual’ or non-DG group). This chapter focuses on the teachers who
were assigned to implement the DG curriculum into their geometry classrooms and
to self-report their implementation of this curriculum over a full school year, both
fall and spring semesters.

7.4.2 Instrumentation

The DG Teacher Self-Report Implementation Questionnaire (DGTQ) contained six
multiple-choice (quantitative) items and ten open-response (qualitative) items.
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The objective of the DGTQ was to measure the teachers’ fidelity to DG approach.
This study focused on the DGTQ two of the quantitative questions, the first that
asked teachers how often they used the following instructional strategies: class
discussions, individual work, group work, teacher demonstrations, student
demonstrations, and teacher-student interaction. The researchers also analyzed the
DGTQ quantitative questions that prompted teachers to approximate the percentage
of class time that students spent making conjectures, testing their conjectures, and
proving their conjectures. Jiang (2015), the project’s principal investigator, pub-
lished the results on the reliability and validity of this self-reported implementation
of the DG curriculum. He analyzed the data using each time point of the study, 5–
6 week intervals, and found that the level of fidelity in teaching with the DG
approach, 29% of teachers had a high level of fidelity, 61% of the teachers were in
the mid-range, and the remaining 10% of the teachers were categorized in low
fidelity range (Jiang, 2015).

The DGTQ included an instructional method question that asked, “When
reflecting on your teaching, how often did you use the following formats during the
past 5–6 weeks: class discussion, individual work, small group work, teacher
demonstration, student interaction with you (as the teacher), and student demon-
stration?” The response items were coded using a Likert scale shown in Table 7.1.
The research team made the decision to use this coding scheme where zero rep-
resented the expected response in a classroom so that negative numbers represent
the teachers who are doing less than expected and positive values represent a higher
level of implementation than expected. The next item on the questionnaire asked
the participating DG teachers, ‘What percent of your students did the following
(form conjectures, test conjectures, prove or disprove their conjectures) during the
past 5–6 weeks?’ These responses were coded in Table 7.1.

7.5 Results

This study’s data collection began with the original 64 questionnaire responses
from teachers who participated in the DG project over this two-year period, but
preliminary data analysis revealed six teacher’s classroom data points as outliers

Table 7.1 Coding of
questionnaire’s response
choices

Instructional strategies response
scale

Percentage of class time
that students did
conjecture tasks

Response choices Codes Response choices Codes

I have not used this −2 None 0

Rarely −1 1–25% 12.5%

Every few sessions 0 26–50% 37.5%

Most class sessions 1 51–75% 62.5%

Nearly all class sessions 2 76–100% 87.5%
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after utilizing the Cook’s distance outlier test. Four of these six classrooms were an
outlier on the one of the conjecture tasks. The remaining two classrooms were
outliers two or more of the instructional methods. Project Year 2 represented the
first year of project’s data collection and implementation of DG curriculum. Thus
Year 3 accounts for the second year of project’s data collection. Table 7.2 describes
the grouping of the remaining teacher data points.

After removing outliers, the researchers explored the potential relationships
between the six different instructional methods and the three different conjecture
activities by calculating the Pearson r correlation coefficient among the 18 different
interactions on aggregate data, followed by class level and then the year of the
project. Class discussion was the only instructional strategy with a statistically
significant correlation to the conjectures tasks when analyzing all class levels
together as a whole. This method of discourse was positively correlated with both
making conjectures (r = 0.36) and testing conjectures (r = 0.38).

There was a significant correlation between the frequency of teacher-student
interaction and students’ involving in testing conjectures (r = 0.28). However,
when controlling for the level of geometry class, there was a statistically significant
correlation between teachers having students work more individually and less time
spent on proving/disproving conjectures (r = −0.41). Furthermore, class discussion
correlated with making conjectures (r = 0.27) and testing conjectures (r = 0.30)
when controlling for the level of the geometry class. Teacher demonstrations and
testing conjectures had a statistically significant correlation of (r = 0.28) when
controlling for both class level and project year.

The Regular level geometry classes revealed 14 out of 18 positive associations
between instructional methods and conjecture activities when controlling for the
project year. There was a statistically significant positive correlation between
Regular teachers’ practice of class discussion and students testing their conjectures
(r = 0.41). Additionally, there was a positive association between students proving
their conjectures with teachers of Regular geometry classes who spent class time
allowing students to work in groups (r = 0.38) and student demonstrations
(r = 0.37). However, there was a negative correlation between the frequency with
which teachers assigned students to work individually more often and students
spending less time on proving or disproving their conjectures (r = −0.42).

Furthermore, when taking the project year into account, more statistically sig-
nificant correlations are revealed as seen in Table 7.3. Even though the project year
was not statistically significant on its own in the aggregated data set, it did have an

Table 7.2 DG (treatment) geometry teachers separated by class level

Project
year

Number of PreAP
classrooms

Number of regular
classrooms

Total number of
classrooms

Year 2 10 14 24

Year 3 15 19 34

Total 25 33 58
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interaction effect on the Regular level geometry class. In Table 7.3, the Regular
classes in Year 2 reported 10 out of 18 negative correlations between methods and
conjecture tasks. Then, in Year 3 of the project, the Regular level classes dra-
matically increased the percentage of time that students spent on making, testing,
and proving/disproving their conjectures which in turn revealed 17 out of 18
positive interactions with three of the correlations being statistically significant.
Figures 7.1 and 7.2 show how these negative correlations in Year 2 become positive
in Year 3 as teachers gradually became more familiar with the new dynamic
geometry curriculum and technology (Table 7.4).

Table 7.3 Regular level geometry class correlations of instructional methods and conjecture task

Make conjectures Test conjectures Prove conjectures

Alla Year 2 Year 3 Alla Year 2 Year 3 Alla Year 2 Year 3

N = 33 N = 14 N = 19 N = 33 N = 14 N = 19 N = 33 N = 14 N = 19

Class discussion 0.25 −0.13 0.43 0.41* −0.01 0.58** −0.01 −0.01 0.02

Individual work 0.05 0.01 0.07 0.07 −0.22 0.20 −0.42* −0.35 −0.46*

Group work −0.03 −0.27 0.11 0.24 0.20 0.26 0.38* 0.05 0.58**

Teacher demo 0.17 0.165 0.18 0.23 −0.13 0.35 0.07 −0.50 0.33

Student demo 0.23 0.16 0.26 0.21 0.21 0.21 0.37* 0.05 0.52*

1-on-1 w/teacher −0.14 −0.39 0.09 0.09 −0.17 0.31 0.17 0.11 0.26

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)
aControlling for project years

Fig. 7.1 Correlation scatterplots for making and testing conjectures
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For the PreAP classes, the relationship between each of the six different
instructional strategies and three conjecture tasks were predominately negative
correlated with one another on 14 of the 18 interactions when controlling for the
project year. For example, the method of assigning individual work was

Fig. 7.2 Correlation scatterplots for proving/disproving conjectures

Table 7.4 PreAP level geometry class correlations of instructional methods and conjecture task

Make conjectures Test conjectures Prove conjectures

Alla Year 2 Year 3 Alla Year 2 Year 3 Alla Year 2 Year 3

N = 25 N = 10 N = 15 N = 25 N = 10 N = 15 N = 25 N = 10 N = 15

Class
discussion

0.06 0.49 −0.25 −0.11 0.10 −0.24 −0.22 −0.01 −0.34

−0.50* −0.27 −0.66** −0.52* −0.22 −0.70** −0.47* −0.63 −0.38

Group work −0.14 −0.32 0.01 −0.03 0.01 −0.06 −0.03 0.16 −0.17

Teacher demo −0.37 0.15 −0.59* −0.19 0.08 −0.29 −0.63** −0.26 −0.77**

Student demo −0.01 0.19 −0.12 0.12 0.22 0.08 −0.12 0.46 −0.36

1-on-1 w/
teacher

0.08 0.63 −0.61* 0.04 0.46 −0.44 −0.27 0.28 −0.87**

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)
aControlling for project years
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consistently negatively correlated with all three tasks: making conjectures
(r = −0.50), testing conjectures (r = −0.52), and proving conjectures (r = −0.47).
Figures 7.1 and 7.2 illustrate this repeated negative relationship between the time
students spent completing the three various conjecture activities and the frequency
their classes were assigned to do individual work.

When controlling for project years, the time students spent proving conjectures
was strongly and negatively correlated with the frequency with which teachers
employed teacher demonstrations (r = −0.63). This relationship is plausible since
students cannot gain experience doing proofs themselves if they are only watching
the teacher demonstrates proofs. Additionally, PreAP students interacting
one-on-one with their teacher in Year 3 and proving conjectures had a statistically
significant correlation of (r = −0.87) as shown above in the bottom right of
Fig. 7.2. In Year 3, teachers who reported using this instructional method the most,
also had students spend less time on proofs. All the data points in the graph of
PreAP use of interacting one-one one with teacher are above 0.50 indicating that
this was a popular instructional strategy. In general, there was a decrease in the use
of teacher demonstrations in both PreAP and Regular geometry classrooms, and an
increase in the instructional methods that involved the more student participation.
For example, notice in Fig. 7.2 that the Year 3 data points are further to the left on
the teacher demonstrations and interacts one-one with teacher for the PreAP
classrooms; But the Year 3 data points are further to the right on the method of
individual work which requires more student involvement.

Next, ANOVA results were examined to explore the difference in means across
the PreAP and Regular level classes. There was a significant effect of the inde-
pendent variable, the class level, on the following dependent variables: individual
work [F(1,56) = 4.20, p = 0.045], class discussion F 1;56ð Þ ¼ 4:00; p ¼ 0:050½ �,
making conjectures [F(1,56) = 51.48), p = 0.000], testing conjectures
F 1;56ð Þ ¼ 81:87; p ¼ 0:000�, and proving conjectures F 1;56ð Þ ¼ 40:15;
p ¼ 0:000�. There was not a significant effect on the remaining variables: group
work F 1;56ð Þ ¼ 0:43; p ¼ 0:517½ �, teacher demo F 1;56ð Þ ¼ 2:93; p ¼ 0:092½ �,
student demo F 1;56ð Þ ¼ 0:83; p ¼ 0:366½ �, and 1-on-1 interaction with teacher
F 1;56ð Þ ¼ 3:11; p ¼ 0:083½ �: In other words, the PreAP teachers employed the
instruction methods of class discussions and assigned individual work significantly
more than Regular teachers. The more frequent use of these two methods by PreAP
classrooms aligns with the classroom observation data collected by the project’s
researchers. As hypothesized and observed in the classrooms, the Regular geometry
students spent statistically significant less time on making, testing, and proving their
conjectures than the PreAP students. This result agrees with the Regular geometry
teachers’ statements on qualitative portion of the implementation questionnaire
where several teachers reported the administration discouraging class time spent on
proofs and more time on Algebra topics that would be on upcoming the state
standardized end of course exam.

The ANOVA analysis with making conjectures as a dependent variable revealed
that geometry class level F 1;52ð Þ ¼ 34:14; p ¼ 0:000½ �, and the interaction between
regular geometry class level with individual work F 1;52ð Þ ¼ 4:47; p ¼ 0:039½ �
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were the only significant independent variables. Then, the following independent
variables were not significant: year F 1;52ð Þ ¼ 3:29; p ¼ 0:075½ �, class discussion
F 1;52ð Þ ¼ 3:48; p ¼ 0:068½ �; and individual work F 1;52ð Þ ¼ 3:30; p ¼ 0:075½ �.
This model’s results (see Table 7.5) indicated that these three predictors explained
58.6% of the variance with an adjusted R-squared of 0.546. The researchers then
used linear regression to determine which would be the best predictors of students
making, testing, and proving their conjectures at the a = 0.05 level.

For the linear model with making conjectures as the response variables, statis-
tically significant model intercept coefficient of b0 = 83.8 represents the predicted
percentage of time that the Regular class level students spend making conjectures.
Then, the next coefficient, b1 = −40.21, represents the predicted additional time
that PreAP students spend on making their own conjectures. There, this model
predicts that PreAP Geometry students are predicted to spend 83.8% of class time to
making their own geometric conjectures versus the Regular students who spend
about 43.6% of their class time on forming conjectures. Furthermore, students in the
Regular level Geometry class only spent 44.5% of class time making conjectures
when assigned individual work.

The ANOVA results for testing conjectures as a dependent variable revealed that
geometry class level [F(1,52) = 56.18, p = 0.000], individual work [F(1,52) = 5.14,
p = 0.028], the interaction of level with individual work [F(1,52) = 6.60, p = 0.013]
and the interaction of the project year with class discussion [F(1,52) = 5.48,
p = 0.023] were all significant predictors. Class discussion [F(1,52) = 3.32,
p = 0.074] was not significant. This model’s results (see Table 7.6) indicated that

Table 7.5 Regression model 1—predictors of making conjectures

Parameter B Std. error t Sig. 95% CI

Constant: b0 83.76 6.41 12.13 0.000 [69.90, 97.62]

Class level

Regular b1 −40.21 6.86 −5.86 0.000 [−53.98, −26.45]

PreAP 0 – – –

Project year

Year 2 −7.39 4.07 −1.82 0.075 [−15.56, 0.78]

Year 3 0 – – –

Instructional methods

Class discussion 5.74 3.08 1.86 0.068 [−0.44, 11.92]

Individual work (IW) b2 −13.98 5.55 −2.52 0.015 [−25.11, −2.85]

Interactions

Regular * Individual
Work (IW) b3

14.94 7.06 2.12 0.039 [0.77, 29.11]

R2 0.59

y ¼ 83:76� 40:21Regular � 13:98 IW þ 14:94 ðRegular � IWÞ
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these five predictors explained 70.0% of the variance with an adjusted R-squared of
0.671.

The testing conjectures linear model included the same predictors as making
conjectures. However, this model’s predictors included more significant coeffi-
cients: b0 = 78.0, regular level had b1 = −44.9, class discussion obtained a
b2 = 8.9, individual work produced a b3 = −15.0, the interaction of the project year
with class discussion revealed a b4 = −7.9, and the interaction of individual work
with Regular class level was b5 = 15.7. This model predicts that PreAP students
will spend 78.0% of class time on testing their own geometric conjectures, but it
decreases to 63.0% if this task is assigned as individual work. Furthermore, the
PreAP students utilizing class discussion spent 79% of class time on testing con-
jectures during Year 2, but it increases to 87.0% during Year 3. Students in Regular
classrooms spent about 33.0% on testing conjectures. Additionally, Regular level
students spend 33.9% of class time on testing conjectures during Year 2, and this
increases to 41.9% in Year 3.

The ANOVA results for proving or disproving conjectures as a dependent
variable revealed that geometry class level [F(1,52) = 53.62, p = 0.000], individual
work [F(1,52) = 8.91, p = 0.004], teacher demo [F(1,52) = 7.23, p = 0.01], and the
interaction of level with the teacher’s demonstration [F(1,52) = 11.43, p = 0.001]
were the significant independent variables. Project year [F(1,52) = 0.96, p = 0.333]
was not a significant predictor. This model’s results (see Table 7.7) indicated that
these predictors explained 61.6% of the variance with an adjusted R-squared of
0.579.

The regression model with the response variable as proving conjectures similarly
revealed that the predictor of individual work as an instructional strategy was
negatively associated with the percentage of time that students were engaged in

Table 7.6 Regression model 2—predictors of testing conjectures

Parameter B Std. error t Sig. 95% CI

Constant b0 78.05 5.41 14.42 0.000 [67.19, 88.91]

Class level

Regular b1 −44.96 6.00 −7.50 0.000 [−57.00, −32.92]

PreAP 0 – – – –

Instructional methods

Class discussion (CD) b2 8.94 2.55 3.50 0.001 [3.82, 14.07]

Individual work (IW) b3 −15.0 4.89 −3.07 0.003 [−24.81, −5.20]

Interactions

Class Discussion *
Year 2 (Y2) b4

−7.99 3.42 −2.34 0.023 [−14.85, −1.14]

Individual Work * Regular b5 15.73 6.12 2.57 0.013 [3.44, 28.02]

R2 0.70

y ¼ 78:05� 44:96Regularþ 8:94CD� 15:0 IW � 7:99 CD � Y2ð Þþ 15:73 IW � Regularð Þ
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proving/disproving their conjectures. This model had a statistically significant
intercept coefficient of b0 = 86.37, b1 = −54.66 (Regular class level), b2 = −10.92
(individual work), b3 = −20.43 (teacher demo), and b4 = 22.50 (teacher
demo*Regular). It predicts that PreAP students will spend about 86.8% of class
time on the task of proving/disproving conjectures, 75.5% of time on this task when
assigned as individual work, and 65.9% of time on this task when teacher
demonstration was employed. The Regular classrooms spend about 31.7% of class
time on proving/disproving tasks, 20.8% of time on this task when assigned as
individual work, and 33.8% on this task when facilitated by a teacher’s
demonstration.

7.6 Discussion

This study’s objective was to investigate which instructional strategies are helpful
and optimal to further students’ developing and proving their own conjectures. The
instructional method of individual work was consistently a statistically significant
predictor in all three models, as well as a significant predictor when it interacted
with class level for both making and testing conjectures. What is particularly
interesting about this interaction is when PreAP students are assigned individual
work, their time spent making or testing conjectures decrease on average 14.5%.
Conversely, when teachers assigned individual work to Regular students who are
participating in making or testing conjecture tasks, their time spent on these tasks
increases by 0.85%. However, both PreAP and Regular class level students
revealed a statistically significant decrease of 11% of class time spent proving/
disproving conjectures when assigned individual work.

Table 7.7 Regression model 3—predictors of proving/disproving conjectures

Parameter B Std. error t Sig. 95% CI

Constant b0 86.37 7.10 12.16 0.000 [72.12, 100.62]

Class level

Regular b1 −54.66 7.47 −7.32 0.000 [−69.64, −39.68]

PreAP 0 – – –

Project year

Year 2 −3.93 4.03 −0.98 0.333 [−12.01, 4.14]

Year 3 0 – – –

Instructional method

Individual Work (IW) b2 −10.92 3.66 −2.99 0.004 [−18.26, −3.58]

Teacher Demo (TD) b3 −20.43 5.98 −3.42 0.001 [−32.43, −8.44]

Interactions

Teacher Demo * Regular b4 22.50 6.65 3.38 0.001 [9.14, 35.85]

R2 0.62

y ¼ 86:37� 54:66Regular � 10:92 IW � 20:43TDþ 22:5 TD � Regularð Þ
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The Regular Geometry students had a statistically significant increase of 13.6%
of time spent making conjectures (p = 0.028) and 12% increase of time spent
testing conjectures (p = 0.025) between Year 2 and Year 3 of the project. The
PreAP teachers’ marginal increase of students’ time spent on all three conjecture-
related activities was not significant. For the explanation of these increases, the
project’s researchers used the qualitative data collected from the teacher’s feedback
reports gathered at the monthly professional development sessions over the school
year as well as a sample of the teachers’ interviews. Obara (2016) found that
teachers frequently struggled with learning how to utilize the software and often
experienced technical difficulties with the computer labs. Teachers also reported,
“[Students] even had a hard time figuring out what the term conjecturing means and
how to use the DG tools to come up with conjectures” (Obara, 2016, p. 81).

Both PreAP and Regular teachers reported a marginal increase in time spent
proving conjectures, but it was not statistically significant. The PreAP teachers
reported an average of 53.7% (SD = 19.34) and the Regular teachers reported an
average of 24.5% (SD = 15.61) of students’ class time spent on proving conjectures
over both years of project’s implementation. Again, looking at the project’s qual-
itative data for an explanation on the lack of time dedicated towards proofs, the
researchers noted that many reasons mentioned the state’s standardized exams (i.e.
end of course exam, or E.O.C.). For example, teachers commented that the Regular
(lower-level) students already struggle with making connections thus only tested
their conjectures since proofs are not on the E.O.C. Additionally, teachers reported
being told by their principals that the E.O.C. only tests students on Algebra and not
on Geometry. Therefore, there was avowedly no need to cover proofs, and it was
avowedly better to use this time to prepare students for the E.O.C. than on proofs.
In an interview, one of the teachers commented that her post-secondary institution
secondary mathematics methods course did not cover proofs. She also said that she
did not have the knowledge or experience to dedicate more time to proofs.
Furthermore, this state’s high school mathematics certification test to become a
teacher does not require proofs.

These teachers’ comments from the qualitative data help account for this study’s
quantitative findings of teachers reporting that the Regular Geometry students spent
at least 17% more time on making and testing conjectures than on proving con-
jectures. The PreAP teachers similarly reported spending at least 19% more on
making and testing conjectures than on proofs. Drawbacks of the DG technology
also support the significant difference of time spent making and testing, in relation
to proving tasks. For example, De Villiers (2006) reported that DG software is
largely empirical and best at helping students make and test conjectures but doesn’t
provide any features, tools, or links to help students prove those conjectures.

This study’s findings of a substantial drop in class time between making and
testing, on one hand, and proving conjectures, on the other hand, support Herbst
and Brach’s (2006) statements about how proof tasks require high levels of cog-
nitive activity. Furthermore, they explain how this time-consuming process of
developing and proving or disproving a geometric conjecture requires an increased
level of critical thinking and problem-solving. For many American high school
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Geometry students, this is their first encounter with the challenging cognitive proof
process. Therefore, if a Geometry teacher assigns these conjecture tasks to their
students as individual work, then a majority of students will experience difficulty
with making/testing their conjectures and are even less likely to reach the proof
stage regardless of their class level.

Although one group of teachers used DG software and the other did not, the one
using technology had only been doing so for one year. The project intended for the
DG teachers to utilize teaching strategies that incorporated technology, which differ
from their prior teaching methods. However, observation and self-report data
suggest that both groups were operating under similar didactical contracts defined
by Brousseau (1997), ones traditionally embedded in American schools where
teachers take significant responsibility for presenting content and where students
mostly listen unless specifically prompted to reply or ask questions. The control
group’s teachers did not differ in as much as our data could infer from this typical
didactical contract. Even though the DG teachers presented lessons with the intent
to have students take on larger responsibilities for making ideas public and so forth,
their students were not always aware of this change and seemed to be operating
under didactical contracts that had been operational in classes they had in earlier
years. There were frequent comments by teachers in self-reports as well as obser-
vations during visits where they directly stated frustration with students. One
example were the students waiting for explicit instructions and step by step pro-
cedures, implying the students were not yet operating under a different set of
expectations. As the year continued, this seemed to change somewhat but not very
dramatically. Therefore, we would say there were beginnings of changes in the
didactical contract between the two groups of teachers that spread farther apart
throughout the year, but many of the students’ previous years’ expectations of
classroom norms were resistant to change. Nevertheless, DG teachers struggled not
to fall back into more typical responsibilities for content presentation themselves as
a result.

For this current study, we analyzed the data only from the treatment group due to
the positive effect on the DG Regular class level students’ achievement on the
standardized state Geometry test. The researchers wanted to explore what teaching
methods were implemented that contributed to the control group students’
achievement gains.

Even though the results did not have an instructional practice that positively and
significantly predicted students being able to make and test their conjectures, the
statistically significant negative predictors revealed which methods were related to
lack of success. Future research should focus on generating lesson plans and
materials that provide a better link between students making and testing conjectures
and proving them.
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Chapter 8
Creating Profiles of Geometry Teachers’
Pedagogical Content Knowledge

Agida G. Manizade and Dragana Martinovic

Abstract In this paper the researchers propose a content-specific, short, interactive,
online instrument as a way to measure and describe secondary mathematics
teachers’ pedagogical content knowledge (PCK) related to the area of a trapezoid.
The specific components of the PCK are defined with respect to the mathematical
content and the process of deriving measures of this construct is described. In this
study, 39 inservice teachers were prompted to analyze and report on students’
thinking based on interactive samples of students’ work provided. Teachers were
also asked to propose ways to address students’ difficulties and provide suggestions
to extend student learning. Their responses were used to develop and modify
rubrics for measuring each of the components of PCK and create visual represen-
tations of teacher profiles reflecting different levels of teachers’ development of
PCK. This paper is a result of a mixed methods study where the topic of teaching
and learning of geometry at the secondary level is addressed.

Keywords Area � Classroom observations � Development of rubrics
In-service teachers � Mathematical knowledge for teaching � Measures of teacher’s
knowledge � Teacher PCK profile � Trapezoid � van Hiele levels
Visual representation of teacher’s PCK

8.1 Measuring Teachers’ Mathematical Knowledge

Among the distinct and often opposing ideas of what content knowledge for
teaching mathematics is and how to measure it, it appears that “a unifying theme is
the view that teachers’ mathematical knowledge is complex, and it has distinctive
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features that deserve research attention” (Zazkis & Zazkis, 2011, p. 250). Concerns
about the adequacy of teacher knowledge of mathematics span across K–12 levels.
In their research of elementary preservice teachers’ knowledge of mathematics,
Goulding, Rowland, and Barber (2002) started by finding out what the teacher
brings to the class, including his or her attitudes and beliefs. The authors empha-
sized that they “cannot subscribe to a commonplace view that good [subject matter
knowledge] in mathematics is somehow a barrier to teaching the subject to younger
pupils and low achievers” (p. 691). As mathematicians and mathematics educators,
we consider that knowing mathematics is a precursor for knowing how to teach it,
and embark on a discussion about what constitutes mathematics knowledge for
teaching.

There are different conceptual frameworks for describing mathematical knowl-
edge needed for teaching (Carpenter, Fennema, Peterson, & Carey, 1988; Hill, Ball
& Schilling, 2008; Kaiser, Blömeke, Busse, Döhrmann, & König, 2014; Manizade
& Mason, 2011; Shulman, 1987; Silverman & Thompson, 2008; Tirosh, 2000).
Researchers generally agree that pedagogical content knowledge (PCK), as origi-
nally introduced by Shulman, connects knowledge of mathematical content and
pedagogy but do not agree on its components (Depaepe, Verschaffel, &
Kelchtermans, 2013). In this study, we integrated cognitive and situative perspec-
tives on PCK, considering subject matter knowledge as a prerequisite to PCK. After
examining the research literature on mathematical knowledge for teaching and
related constructs of teacher knowledge, we created a working definition of PCK
and identified four key components of PCK: (1) knowledge of connections among
big mathematical ideas; (2) knowledge of learning theories describing students’
developmental capabilities; (3) knowledge of students’ common challenges and
subject-specific difficulties; and (4) knowledge of useful representations and
appropriate instructional techniques for teaching the content. This definition
changed as a result of data analysis during the study, as discussed in the Data
Collection and Analysis section of this paper.

Mathematics education researchers have developed several methods and
instruments for measuring mathematical knowledge needed for teaching and related
constructs (e.g., Hill et al., 2008; MSU, 2006). A critical review of several PCK
instruments is provided in detail in Manizade and Mason (2011). Since it was not
possible to develop an instrument to measure different components of PCK for
every school mathematics idea, Manizade and Mason (2011) proposed developing
short, online, interactive, student response-based instruments that targeted com-
monly taught content topics.

8.2 Positioning PCK Within Teacher Actions

Herbst and Chazan (2003, 2011) hypothesized that teachers’ practical rationality
shapes their actions in an instructional situation; this practical rationality consists
of: (1) portrayal of views of teacher-practitioners about most noticeable people,
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actions, objects, and instances; (2) notions of what is fair and reasonable and what is
unacceptable or unconventional; and (3) values and principles practitioners rely on
to rationalize their actions or inactions in professional situations.

In their study, Herbst and Chazan (2003) specifically considered instructional
situations which were noted in secondary school geometry classes. They then
created animations suitable for teacher professional discussions and attended to
what teachers discussed about those animations (Herbst, Nachlieli, & Chazan,
2011). Similar to Herbst and Chazan’s work, our research team approached PCK by
describing possible student responses in instructional situations that included a
geometry task, finding a formula for area of trapezoid, and the elements of the
curriculum within which the task was completed. The teachers-participants were
then asked to pedagogically react on the student work and elaborate on their
actions.

8.3 Teachers’ Understanding of Geometry

In our deliberations about how to determine levels of teachers’ understanding of
geometry, this research team utilized the literature related to applications of van
Hiele’s theory in studies with preservice (i.e., teachers-in-training) and in-service
(active teaching professionals) teachers. Van Hiele’s theory “suggests that all stu-
dents progress through a five-level sequence in a particular order and that if one
level is not mastered before instruction proceeds to the next level, a student may
perform only algorithmically on the higher level” (Mayberry, 1983, p. 58).
According to Schoenfeld (1986), the important take-away from this theory is that
there exist relatively stable stages in learning geometry and that “empirical
grounding is necessary for apprehending and then manipulating abstract geomet-
rical objects” (p. 261). However, these goals are rarely achieved in schools.
Teachers as well as students may have inadequate understanding of geometry.
Contrary to this scenario, geometry “is a fascinating mathematical microcosm…
when it is taught properly, students have the opportunity to do real mathematics in
precisely the same way that research mathematicians do” (p. 262).

For example, the study by Gutiérrez, Jaime, and Fortuny (1991) with primary
school preservice teachers showed that most participants were at the van Hiele level
I (recognition) and van Hiele level II (analysis), but none were at the van Hiele level
IV (deduction) or reasoning stage. In Knight’s (2006) study, where participants
included both elementary and secondary preservice teachers, it was found that
elementary school teachers were below van Hiele level III (informal deduction)
while secondary school teachers were below van Hiele level IV (deduction).

Mayberry (1983) implemented the van Hiele levels of geometric thought in an
instrument designed to study undergraduate preservice teachers and that consisted
of a series of tasks ordered to typify geometric thought at the basic and I-IV levels.
Her participants were all elementary education majors enrolled in a required science
course. Although her results seemingly confirmed van Hiele’s theory, Mayberry
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concluded that further investigation of the hierarchal nature of van Hiele’s levels
was needed because her study was limited by a small sample size. Erdogan and
Durmus (2009) also conducted a study with future elementary school teachers in
Turkey and established that the participants’ van Hiele levels of geometric thought
were low. Also, after their van Hiele-based instructional intervention was proven
effective, the authors recommended that preservice teachers should receive
instruction based on these levels. Graeber (1999) suggested that preservice teachers’
knowledge of students’ understanding of mathematics is necessary to make
instructional decisions. Pusey (2003) concurred with Graeber’s (1999) notion that
teachers-in-training need to go through the same kinds of experiences as learners of
mathematics to appreciate the benefit of such contexts for their students.

Guided by the notion that practicing teachers and their students usually have
similar misconceptions, Swafford, Jones, and Thornton (1997) designed an inter-
vention for middle school (Grades 6–8) in-service teachers. The intervention con-
sisted of a geometry content course based on a problem-solving model and a
research seminar, which introduced the van Hiele levels of geometric thought. The
authors confirmed that increasing teachers’ knowledge about a subject matter and
the way students learn it improves the teachers’ ability to increase students’
mathematical understanding. Regarding the applicability of the van Hiele theory to
adult learners, the study suggested that adult learners can progress to higher van
Hiele levels rapidly if given proper instruction. However, van Hiele tests have low
reliability for adults who have been away from learning geometry for years, and
whose performance is sensitive to knowledge recall.

8.4 Developing a PCK Instrument

In this study, the researchers developed an instrument to measure and describe
geometry teachers’ PCK related to the area of a trapezoid. Most of the secondary
school teachers were comfortable with this concept, and an assumption was made
that they were likely competent to engage in a pedagogical analysis of samples of
students’ work. In addition, the goal was to develop an instrument that would not
discriminate against different teaching styles. This longitudinal study took place
over three years during a state-wide, completely online professional development
program for secondary mathematics teachers. In the first year, 39 teachers from 12
school divisions across the state volunteered to participate in the study. The study
design followed a concurrent mixed-methods approach, in which quantitative and
qualitative phases of data collection intermingled to modify the instrument and to
develop rubrics as well as profiles of the teachers’ PCK. While the work continued
with additional cohorts of teachers, this paper presents results based on the data
collected from the first 39 teachers; some of whom were later observed in their
classrooms. Quantitative results helped to select a subset of participants as

130 A. G. Manizade and D. Martinovic



representative cases of different levels of content knowledge from 1 to 4, deter-
mined by the participants’ trapezoid questionnaire results and supported by their
results on the van Hiele test (Usiskin, 1982). The observation sample comprised of
seven participants from this subset who taught geometry during the school year.

8.5 Data Collection and Analysis

Existing standardized measures such as the van Hiele test (Usiskin, 1982) or the
Instructional Quality Assessment (Junker et al., 2006), did not focus on the ge-
ometry content ideas targeted in this study. However, they were used to gather
additional information about teachers’ knowledge and backgrounds and to find
correlations between the data collected through the newly developed and existing
instruments. The instruments that were implemented in this study, their sequencing,
and details of data collection methods as well as the materials are shown in Fig. 8.1.
Both qualitative (e.g., Trapezoid Questionnaire, Teacher reflections) and quantita-
tive (e.g., van Hiele pre-test, PCK Trapezoid instrument) data for this study were
collected in 2014–15. The validity and reliability of these instruments have been
established and reported in the literature (Manizade & Martinovic, 2016; Manizade
& Mason, 2011; Mayberry, 1983; Usiskin, 1982).

8.6 Teachers’ Levels of Geometric Thinking

To summarize the van Hiele pre-test results, our research team followed Usiskin’s
(University of Chicago, 1982) method of identifying the van Hiele levels. The
weighted scores were assigned in the following fashion: 1 point for items 1–5
(Level 1), 2 points for items 6–10 (Level 2), 4 points for items 11–15 (Level 3), 8
points for items 16–20 (Level 4), and 16 points for items 21–25 (Level 5). To
calculate the basic score for each level, a strict criterion of 4 out of 5 correct

Fig. 8.1 Five main steps in data collection for this study
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answers (i.e., modified van Hiele levels) was used, given that the participants were
practicing secondary school teachers. The results of the van Hiele test are shown in
Fig. 8.2. Since the existing van Hiele test measures the teacher’s level of geometric
development related to a limited number of topics in geometry, as part of the PCK
instrument, the researchers included questions to measure the teachers’ geometry
knowledge of the area of a trapezoid.

8.7 Teachers’ Pedagogical Content Knowledge
(PCK) Related to the Area of a Trapezoid

When developing the PCK Trapezoid instrument, the use of multiple choice
responses was reduced because of their known deficiencies (e.g., failure to fully
capture the complexities of teachers’ knowledge and reasoning skills; see Hill,
Sleep, Lewis, & Ball, 2007), and participants were encouraged to elaborate and
provide detailed reflections of their responses. The original PCK instrument
(Manizade & Mason, 2011) was developed using the Delphi methodology (Brown,
1968), and its questions were adapted to accommodate for the mathematical content
of this study using outlines of students’ strategies for finding the area of a trapezoid
(Manizade & Mason, 2014). The final version of the instrument included six
exemplars (one of which is presented in Fig. 8.3). Similar to Herbst and Chazan
(2015), who used storyboards and animations of nondescript cartoon characters to
explore professional knowledge variables—a cross between a survey and a media
enhanced interview, we used an instrument that can be considered a multimedia
online questionnaire or virtual manipulative (Manizade & Martinovic, 2016)
intended to canvass professional knowledge.

Six exemplars with the follow-up questions outline students’ strategies
(Manizade & Mason, 2014) for finding the area of a trapezoid. Three of these
strategies are generalizable, and three are not generalizable. Figure 8.3 shows an

Fig. 8.2 Frequency of teachers’ modified van Hiele levels on the scale 0–5 (N = 39)
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example of a non-generalizable strategy of “turning” a trapezoid into a rectangle
that only applies when the trapezoid is isosceles. In a non-generalizable case, the
proposed student’s strategy is only applicable for special cases of trapezoids,
including but not limited to isosceles or right trapezoids. Generalizable strategies
are those that would result in the general formula for the area of trapezoid.

The last item of the PCK Trapezoid instrument consisted of questions designed
to gather teachers’ ratings (on a 4-point scale, from “1 = not at all” to “4 = very
much”) of each student’s strategies in terms of their mathematical appropriateness,
clarity, sophistication, and limitations.

The quantitative data were analyzed using descriptive and inferential statistics to
determine characteristic values and differentiate between teachers’ levels of geo-
metric development. Other data were coded using an open coding system and
analysed for emerging themes related to teachers’ PCK, according to the afore-
mentioned theoretical framework.

Based on the teachers’ responses to the instrument, the following dimensions of
PCK related to the area of trapezoid emerged (see Fig. 8.4): (1) Geometric content
knowledge; (2) Knowledge of student challenges and understandings; (3) The
ability to ask appropriate diagnostic questions; (4) Pedagogical knowledge of
appropriate instructional strategies, and proper use of manipulatives and technol-
ogy; and (5) Knowledge of geometric extensions designed to deepen students’
understanding of the problem.

ITEM A: Kelly’s Approach  

When presented with the task of developing a formula for the area of any trapezoid in her high school 
geometry class, Kelly developed the diagrams as a strategy for deriving the formula for the area of a 
trapezoid described by the sketches below. She sketched the height  in the trapezoid and constructed a 
right triangle AED. Then she moved this triangle to the opposite side of the trapezoid, constructing a 
rectangle AFCE. Then she calculated the area of rectangle AFCE.

a. Based on the diagram above, describe Kelly’s thinking. If she were to complete the formal derivation 
of the area formula in her diagrams, would her method work for any trapezoid? Why, or why not?  

b. If Kelly’s approach presents a mathematical limitation, what kind of thinking might lead her to the 
limitation presented in this item?  

c. If Kelly’s approach presents misconception or misunderstanding, how might she have developed the 
misconception(s)? 

d. What further question(s) might you ask Kelly to understand her thinking? 
e. What instructional strategies and/or tasks would you use during the next instructional period to 

address Kelly’s misconception(s) (if any presented)? Why? 
f. If applicable, how would you use technology or manipulatives to address Kelly’s misconception or 

misunderstanding?  
g. How would you extend this problem to help Kelly further develop her understanding of the area of a 

trapezoid? 

Fig. 8.3 One of the six PCK Trapezoid Instrument exemplars. Adapted from Manizade and
Mason (2011)
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8.8 Development of Rubrics

The Grounded Theory (Charmaz, 2014) approach was used to develop rubrics
intended to evaluate and discriminate between the five levels of teachers’ PCK in
each of the aforementioned five dimensions. The initial versions of the rubrics were
created using the literature and the team’s professional experiences. The initial
coding led us to find new ideas and strategies for further data collection. Next, the
qualitative data and the teachers’ responses for the instrument described in
Table 8.1 were coded to look for additional emerging themes.

The new themes were identified and included in the corresponding PCK sub-
components of the developed rubrics. These modified rubrics were then checked
against the qualitative data collected through the PCK Trapezoid instrument to look
for any additional categories and themes. This inspection pulled the researchers into
an interactive space where they critically inspected and challenged their precon-
ceived ideas. They conducted coding with gerunds, and grasped directions for
exploration and comparison of data. Such methodology asked for an iterative
engagement in a cycle of data collection and analysis. The rubrics were then
modified three to four times and refined to differentiate between levels of teacher
competencies through a reflexive process of linking rubrics to the collected sets of
raw data from 39 teachers (related to steps 1–3 in Table 8.1). Details of the
methodological steps for this study are available in Martinovic and Manizade
(2017).

Due to the space limitations, only one of the PCK Trapezoid rubrics at levels 4,
3, 2, 1, and 0 is shown (see Table 8.1), with 4 indicating mastery of knowledge and
0 indicating lack of knowledge. For this dimension of pedagogical content
knowledge, 14 sub-components (i.e., A-K) were identified. Based on their presence
or absence in data, the teacher’s level of knowledge of student challenges and
understandings was identified. Details of each of the sub-components are presented
in Table 8.1.

Fig. 8.4 John’s PCK profile in five PCK dimensions
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Upon the completion of the analysis of the PCK Trapezoid instrument-related
data, teacher profiles were developed. The individual teachers’ profiles were pre-
sented by diagrams along the five axes (see Fig. 8.4).

Table 8.1 Rubric for evaluating teacher’s knowledge of student challenges and conceptions

Level Characteristics

4 Teacher is able to identify A and (B or C) and (D or E) and F:
A. A student’s limited conception of a trapezoid (e.g., isosceles, right),
B. A student’s limited strategy/method (e.g., using only decomposition; composition

is basic; strategy that may not always work—decomposing trapezoid into a
rectangle and two triangles, transformation may not always work, while enclosing
and subtracting excess will always work) OR

C. A special case potentially resulting in a limited or wrong formula.
D. A student’s developmental level in geometry using the van Hiele theory of a

trapezoid concept OR
E. A student’s developmental level in geometry using the van Hiele theory with

respect to area concept (0—not understanding area; 1—basic understanding of
adding units; 2—if the shapes match then their areas are equal; 3—if you
re-arrange them they will still be the same; 4-using transformational geometry or
simple Euclidian proof to claim equal areas).

F. A student potentially developing these challenges due to the limited experiences
with different types of trapezoids or tools used or lack of motivation.

3 Teacher is able to identify A and (B or C) and F:
A. A student’s conception of a trapezoid as being limited (e.g., to isosceles trapezoid,

to right trapezoid).
B. A student’s limited strategy (e.g., using only decomposition; composition is basic;

strategy that may not always work—decomposing a trapezoid into a rectangle and
two triangles, transformation may not always work, while enclosing and
subtracting excess will always work) OR

C. Special case potentially resulting in a limited or wrong formula.
F. A student potentially developing these challenges due to the limited experiences

with different types of trapezoids or tools used or lack of motivation.

2 Teacher is able to identify A and F:
A. A student’s conception of a trapezoid as being limited. However teacher does not

specify how is it limited, nor proposes any counter-examples in their explanation.
F. A student potentially developing these challenges due to the limited experiences

with different types of trapezoids or tools used or lack of motivation.

1 Teacher’s response covers G and (H or I):
G. Teacher recognizes that there is a misconception (if any) in student thinking but

does not provide sufficient explanation of the actual misconception or his/her
explanation is mathematically incorrect.

H. The main focus is on the formula, algebra, and counting the area units OR
I. The mathematical terminology is incorrect/poor.

0 Teacher’s response is classified as J or K or L or M or N:
J. Did not understand the question OR
K. Did not provide an answer OR
L. Claims that correct approach is wrong (when it is correct) and correct (when it is

not) OR
M. The explanation presents a mathematical error OR
N. Does not address geometrical aspect, but focuses only on algebra.
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8.9 Classroom Observations

To triangulate findings based on the described instruments with information from
the real mathematics classroom, observations of each of the seven participating
teachers teaching geometry took place twice during the 2015–16 school year fol-
lowing completion of all other data collection. The focus of the observations was on
the teachers’ instructional quality and the kinds of choices they make in the ge-
ometry classroom setting. The seven teachers were observed because at the time
when the class observations were scheduled, they were the only teachers who
taught geometry. A set of rubrics from the Instructional Quality Assessment (IQA;
Junker et al., 2006) instrument served as an indicator of instructional quality
focusing on four major aspects to promote students’ learning: (1) Accountable talk
in the classroom that includes rubrics for the participation rate, teacher’s linking
ideas, students’ linking ideas; (2) Accountability to knowledge and rigorous
thinking, including rubrics on asking for knowledge and providing knowledge;
(3) Academic rigor of the lesson, including rubrics on the potential of the task (rigor
of the text), implementation of the task (active use of knowledge: analyzing and
interpreting the text during the whole-group discussion), student discussion fol-
lowing task (active use of knowledge during the small group or individual tasks);
and (4) Clear expectations, and the students’ self-management of learning,
including rubrics on clarity and detail of expectations, academic rigor in the tea-
cher’s expectations, access to expectations (Junker et al., 2006). These rubrics used
a 4-point scale, with 1 being poor and 4 being excellent. Table 8.2 presents the
summary of observation results for all seven teachers whose geometry classes were
each visited twice. The numbers in the table present levels of accountability to
knowledge and rigorous thinking, as well as academic rigor of the lesson, according
to the IQA rubrics.

The following sub-sections focus on three of the observed teachers—John (J, in
Table 8.2), Susan (S, in Table 8.2), and Anna (A, in Table 8.2). They were chosen
because they exhibit very different cases of the PCK that was targeted.

John. John had four years of experience teaching geometry at the high school
level with a high level (4) of geometric knowledge as measured by the PCK
instrument. During the first observation, he taught a lesson on the circumference
and area of the circle. His second observed lesson was on the midpoint formula.
The average scores during the observations were 3 out of 4 for John’s account-
ability to knowledge and rigorous thinking and academic rigor of the lesson. John
understood the mathematics that he taught and could solve the problems he pre-
sented to the students. During the lesson when teaching the area of the circle, John
presented the formula to the students and expected them to memorize it and use it.
When the students asked questions, he referred them to the formula sheet. When the
students challenged John to explain how the formulas make sense or why the
formulas worked, he was unwilling or unable to provide an explanation. On the
other hand, John engaged the students in his second lesson by explaining the proof
of the midpoint formula even though the focus and derivation were procedural in
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nature. In the follow-up interviews after the lessons, when asked about his per-
spective about providing extensions to deepen students’ learning or answering
questions that emerged in a discussion, John indicated that he did recognize these
opportunities for learning but did not have the time to plan for them. He explained,
“I wish when we start [with a school year] someone would hand us a curriculum
that is well developed and already has all of this built in, instead of me doing it a
piece at a time over many years. I would be happy with even a curriculum that is
80% done, and then would adjust to better fit my teaching but it would be still
helpful.” When asked about using applicable instructional strategies and tech-
nologies, John responded, “If someone handed me a package with interactive
applications I would use it, but I do not have time to do it myself. I am not paid to
do it…” In the case of John, although his geometric knowledge was high, his
personal characteristics, which include his attitudes and beliefs, affected the quality
of his teaching. These elements were not measured by the PCK instrument directly
but could be inferred from the interviews and observations. John’s PCK profile in
Fig. 8.4 shows that the scores in four out of five categories are between 2 and 3,
which is supported by data gathered during the observations and interviews.

Susan. Susan had taught high school geometry for six years. Her level of
geometric knowledge as measured by the PCK instrument was 1 out of 4. During
the first observation, Susan presented an application problem where students were
given three points on a grid and asked to find a location for a fire station which was
equidistant to the given points. She liked this problem, which she learned at a recent
professional development workshop. Her students generated six mathematically
valid approaches for solving this problem, including one approach that was based
on non-Euclidian taxicab geometry. Susan was only able to recognize the validity
of two of the six approaches. When faced with unfamiliar approaches, Susan
acknowledged them by saying, “That sounds nice.” She did not make an effort to
understand the student’s solutions or compare them to the solutions presented by
others. Her second observed lesson was on similar solids and their properties, and
Susan presented the work as a worksheet where students had to answer a series of
questions related to properties of similar solids. The activity was very procedural,
and the students were told that they could generalize their findings in the next
lesson. Susan had used activities with great mathematical potential; however, she
did not recognize the opportunities presented by the students during the whole class
discussion. She also posed open-ended questions but was not able to address stu-
dent answers mathematically. Her average score for academic rigor was three across
both observations. Her average score for accountability to knowledge and rigorous
thinking was two. Figure 8.5 shows Susan’s PCK profile created using the PCK
Trapezoid instrument (see an exemplar from this instrument shown in Fig. 8.3), to
compare to the observational data in Table 8.2.

Anna. Anna, a novice teacher, was teaching her first year of High School
Geometry at a middle school (Grade 8). Her geometric knowledge was rated at level
3, based on the PCK Trapezoid instrument, which can be seen in Fig. 8.6. Anna
chose to invite the observer for the class where she taught the area of the trapezoid.
During the first lesson, Anna taught the area of the trapezoid lesson. She had
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previously taught the students the areas of triangles, rectangles, and parallelograms,
and Anna expected the students to derive the area of trapezoid based on their
previous knowledge on areas of geometric figures. In the lesson, she presented the
whole class with one generalizable outline of the proof. Then, Anna asked the
students to come up with their own approaches in small groups. The lesson
included an in-depth conceptual discussion of the mathematical content where
Anna used technology and manipulatives to discuss the proofs presented by the
students and challenged them to understand the other students’ methods. The
second lesson focused on the properties of similar two-dimensional geometric
shapes. Anna presented this lesson as a small group activity where the students
were asked to create a quilt. Each group needed to select an image of a square for
the quilt and scale it to the real quilt’s size. Anna’s observed scores were 4 in every
category for both lessons.

Fig. 8.5 Susan’s PCK profile in five PCK dimensions

Fig. 8.6 Anna’s PCK profile in five PCK dimensions
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Based on the profiles developed in this study, it was found that expertise
(measured by the PCK and IQA instruments) did not correlate with length of
teaching experience. Some novice teachers performed significantly better in two to
three measures when compared to more experienced teachers. It was also noted that
if a teacher was lacking geometric knowledge, then he/she was not able to use his/
her strengths in other areas in order to synthesize student ideas and summarize the
lesson objectives as seen in the example of Susan. This observation confirmed that
geometric content knowledge is a prerequisite for the development of other types of
teacher knowledge.

Teachers’ personal characteristics, including attitudes and beliefs, affected both
their PCK profiles and lesson observation results. The PCK instrument was not
designed to measure teachers’ individual characteristics, which may impact their
scores and their teaching quality. An individual teacher’s profile with a high level of
geometric knowledge and lower levels of knowledge in other areas could indicate a
lack of investment of time and effort into pre-active (planning, assessment, and
other activities done outside of the classroom in preparation for it) teacher
behaviors. For example, John’s attitude about his professional responsibilities was a
demotivating influence, deterring him from offering appropriate intervention to
extend student learning in geometry, using multiple instructional strategies and
tools, and asking questions to promote student discussion. Anna’s attitude, in
contrast, reflected in the time and effort she put towards lesson preparation,
addressing her own gaps in subject-matter knowledge, focusing on multiple
approaches for solving the problem, and intentionally extending the problem. She
also asked diagnostic questions and understood student challenges and conceptions.
These differences in attitude might have been reflected in other aspects of their
teaching.

8.10 Discussion

The purpose of developing teachers’ profiles of the PCK was to gain an insight into
their strengths and limitations in order to design differentiated professional devel-
opment experiences that are best suited for a particular teacher or group of teachers.
The researchers’ intent was not to use these profiles for teacher evaluations
(Fig. 8.7).

8.11 Additional Questions and Limitations

The teachers’ profiles of their PCK in geometry raised the following questions for
further discussion: (1) What is the importance of years of experience when con-
sidering teachers’ PCK? (2) In what ways do attitudes and motivations present
themselves in teachers’ profiles? (3) In what ways, if any, is geometric knowledge a
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predictor of the other components of PCK? (4) What are the implications of the
study when planning and delivering professional development for geometry
teachers?

The limitations of the study include: (1) the small sample size affecting gener-
alizability of the quantitative aspects of the study, (2) the sample of teachers chosen
for the observations was a convenience sample, (3) the researchers’ perspective as
social constructivists that might have affected the study design, and (4) known
limitations associated with the research method.

8.12 Implications

This study presents an approach that can be expanded into other areas of mathe-
matics content. Profiles can serve as predictors of quality of instruction in teachers’
classrooms. As a follow-up from this study, the next task would be to create a
theory of geometry teacher development based on the rubrics that were created to
differentiate between teachers’ PCK. The intention is to use additional data related
to the area of trapezoid, including the lesson plans, classroom observations, PCK
results, van Hiele test results, proofs, interviews, videos, and more teachers, in order
to articulate this new framework in future work.

Rather than spending millions of dollars to create long, multiple-choice tests, the
research team proposes selecting a small number of carefully chosen commonly
taught mathematics domains and developing instruments that will identify a tea-
cher’s developmental level in those areas. The PCK instruments could be used in
combination with classroom observations or classroom video analysis (if obser-
vations are not possible), along with other types of data such as lesson plans,

Fig. 8.7 Representation of the seven teachers’ PCK mapped on the five dimensions (levels from 0
to 4)
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mathematical proofs/reasoning, etc., to supplement information of teachers’ PCK of
mathematics. Data presentation and grouping could be done by using methods
presented in this paper. Particular teacher’s needs could be identified through the
profile and the professional development programs could be designed to better
address the needs of the individual teachers.

An emergent question is whether the timing of the ongoing long-term PD makes
a difference in impacting teachers’ PCK. In other words, how is the impact of
professional development that takes place immediately after entering the teaching
field different from the impact of professional development later in the teaching
career? More research is needed to address the aforementioned ideas.

In this paper, a new instrument was presented to measure mathematics teachers’
PCK related to the area of a trapezoid. Further, a definition of specific components
of PCK, a description of the process of developing evaluation rubrics, and the
creation of a visual representation of teachers’ PCK using radar diagrams was
discussed. The results from this study show the possibility that the development of
the instrument, rubrics, and the teacher profiles can be implemented to other topics
in Geometry and other branches of mathematics.
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Chapter 9
Symbiosis Between Subject Matter
and Pedagogical Knowledge
in Geometry

Mohan Chinnappan, Bruce White and Sven Trenholm

Abstract Teacher knowledge that supports effective mathematics teaching has
come under scrutiny alongside associated theoretical developments in the education
field. Amongst these developments, the Mathematics Knowledge for Teaching
(MKT) framework by Ball et al. (J Teacher Educ 59(5):389–407, 2008) has been
one of the most influential. While MKT has been useful in helping us identify the
knowledge strands teachers need for effective practice, the interplay among MKT’s
knowledge strands during the course of teaching has received less attention. In this
study, we address this issue by exploring interaction between Subject Matter
Knowledge (SMK) and Pedagogical Content Knowledge (PCK) in the domain of
secondary geometry. We provide results of a preliminary study of SMK and PCK in
the context of a teacher teaching students how to construct and bisect an acute angle
with the aid of compass and ruler only. Our analysis suggests future research needs
to consider (a) the particular characteristics of the discipline of geometry and (b) the
developmental knowledge trajectories of teachers of geometry in order to better
understand how teachers’ SMK influences and influenced by PCK.
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9.1 Introduction

The instruction’s quality students receive in their mathematics classroom is an
important, emerging theme in the current debates about enhancing students’
learning outcomes. A teacher’s knowledge base has a profound effect on the design
and delivery of instruction. Thus, it is a productive exercise to develop a nuanced
understanding of the knowledge that helps teachers make the content of mathe-
matics more accessible to learners. Mathematics teachers need knowledge that
enables them to construct powerful representations to help students visualize con-
cepts, generate explanations that student can relate to and analyze students’
responses. This body of knowledge requires a deep understanding not only of
content but also of the pedagogy that is built around that content. However, the
relationships between, and the changing character of, those two strands of
knowledge is a matter of contention among researchers, particularly in relation to
actual teaching practice.

9.1.1 Teacher Knowledge and Teaching Mathematics

The knowledge a teacher brings to the teaching-learning context is fundamental to
the quality of student learning as it underpins the decisions they make during the
course of their teaching (Borko & Putnam, 1996; Fennema & Franke, 1992;
Thwaites, Jared, & Rowland, 2011). Mathematics teachers have also identified
“teaching for understanding” as an important area of their professional learning
(Beswick, 2014). But what knowledge underpins teaching for understanding and
student performance?

Research interest in the knowledge that teachers bring to support student
learning has gained momentum through recent empirical studies that suggest
teachers’ mathematics content knowledge contributes significantly to student
achievement (Bobis, Higgins, Cavanagh, & Roche, 2012). In broad terms, math-
ematics content knowledge refers to knowledge of concepts, principles, procedures,
and conventions of mathematics. Pedagogical content knowledge involves teachers’
understanding of students’ mathematical thinking (including conceptions and
misconceptions) and representing mathematics content knowledge in a
learner-friendly manner.

In his seminal work on analyzing teacher knowledge, Shulman (1987) developed
the notion of Pedagogical Content Knowledge. This pioneering work led Ball and
her associates to zero in on the nature of content knowledge and its relationship to
teaching mathematics (Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008).
The outcome of this work was the conceptualization of teachers’ knowledge in
terms of the influential framework represented in Fig. 9.1.

Within MKT, there are two main categories of knowledge: Subject-Matter
Knowledge (SMK) and Pedagogical Content Knowledge (PCK). The Subject
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Matter Knowledge component is further decomposed into Common Content
Knowledge (CCK), Specialized Content Knowledge (SCK) and Knowledge at the
Mathematics Horizon.

According to Ball et al. (2008), Common Content Knowledge or CCK refers to
the body of knowledge that mathematically educated adults are expected to possess.
CCK provides individuals with an ability to apply their knowledge to solve
mathematical problems. In contrast, Specialized Content Knowledge is considered
as “mathematical knowledge beyond that expected of any well-educated adult but
not yet requiring knowledge of students or knowledge of teaching” (p. 402). Both
strands of knowledge are about the content of mathematics, but SCK examines the
mathematical demands unique to teaching. SCK is inherently mathematical in
nature, is unique to the everyday tasks of teaching, and it demands unique math-
ematical understanding and reasoning. SCK is topic-specific and includes knowl-
edge about alternative ways to think about a concept, identifying mathematics
present in instruction and looking for patterns in students’ errors. As CCK and SCK
were developed in elementary school contexts, the differentiability between CCK
and SCK particularly in secondary mathematics has come under question in recent
times. This reason prompts our focus on SMK in the secondary mathematics
context.

For a lesson to be effective, however, SMK has to be translated such that learners
could develop an understanding of the content of mathematics that underpins that
lesson. This translation of SMK while teacher attempt to enact the lesson calls for
use of their Pedagogical Content Knowledge (PCK). PCK is concerned with
teachers’ understanding of how students will learn the content, anticipating stu-
dents’ difficulties with the content (e.g. knowledge of misconceptions) and how to
teach that content. Other examples of teachers’ Pedagogical Content Knowledge
include how to sequence learning experiences, how to present difficult concepts, as
well as what tasks to use in teaching. The latter decisions are, in turn, informed by
the knowledge of students’ strengths and weaknesses. Pedagogical Content
Knowledge (PCK) is also further decomposed into Knowledge of Content and
Teaching (KCT) and Knowledge of Content and Students (KCS). In our attempts to

Fig. 9.1 Mathematics
knowledge for teaching. From
Ball et al. (2008, p. 403); ©
2008, SAGE Publications,
used with permission
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better understand teacher knowledge needed for supporting the learning of high
school mathematics, the framework proposed by Ball and colleagues presents a
powerful means to understand the nature of teacher knowledge that anchors stu-
dents’ mathematical thinking and leads to deeper engagement with the content of
mathematics.

Ball et al.’s (2008) conceptualization of MKT led researchers to develop tasks to
measure the various knowledge components. However, most of this effort has been
invested in measuring MKT in the context of primary mathematics. Ball (personal
communication, 2015) has suggested the need to analyze the character of MKT in
the context of secondary mathematics. We have been working in this area by
focusing on the SMK and PCK of prospective secondary and primary mathematics
teachers (Butterfield & Chinnappan, 2010; Chinnappan & Forrester, 2014;
Chinnappan & White, 2015). SMK and PCK are important strands for two reasons.
Firstly, SCK (a component of SMK) has been shown to correlate with high levels of
student learning, particularly at the primary levels (Ball & Hill, 2008). Secondly,
Hill, Rowan and Ball (2005) showed that SCK tends to be underdeveloped in most
teachers.

We regard MKT as a model for understanding and describing the different
strands of teacher knowledge critical to understanding effective practice. While
identifying SMK and PCK is significant to extend the field, questions remain about
their relationship. Specifically, how does this relationship impact on and play out
during the course of teaching mathematics? Knowledge, by its very nature, is
interconnected, developmental, and dynamic, but the investigation of this inter-
connectedness between SMK and PCK, and their growth has not featured promi-
nently in the field. We argue that such an investigation, particularly in the context of
in situ teaching, is needed. The results will throw light on and extend current
understandings of the relationship between the two key strands of MKT. Indeed, as
Ball et al. (2008) suggest, these domains of teacher knowledge are left unexplored
and “need refinement and revision” (p. 403).

Moreover, two issues emerge from the work of Ball and colleagues’ work:
Firstly, while dimensions of MKT have been conceptualized for practice, empirical
support for these dimensions have been gathered via test items that refer to tasks
involved in teaching. For example, Herbst and colleagues have been actively
pursuing CCK, SCK, KCS, and KCT in secondary school geometry (Herbst &
Kosko, 2014). Their work has been valuable in generating geometry problems and
analyses of teaching scenarios to measure MKT in geometry (see also Smith, this
volume). Although these tasks are rooted in and have been informed by the work of
teaching geometry, they do not inform us about the changing nature and rationale
for the use of these knowledge components during lesson delivery. Lesson delivery
occurs in a fluid environment and temporality is an important element affecting
knowledge use and change. Despite teachers’ best efforts at planning, the unfolding
events during a lesson are unpredictable. In such a dynamic teaching and learning
context, teachers can be expected to adapt their actions and modify their instruction
to respond to emerging challenges. The questions are: How do teachers access and
exploit their SMK and PCK during lesson delivery, and how does this knowledge
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contrast with what was measured outside their lesson delivery? Answers to these
questions are important to validate MKT, which is conceptualized as a
practice-based model of mathematical knowledge used in teaching. Our contentions
are that (a) there is a relationship between SMK and PCK and (b) this relationship
should also be examined via events that occur during real-time instruction.

Through a series of investigations, Chinnappan (1998) and Lawson and
Chinnappan (2000) showed that, at least within geometry, high school students’
conceptual understanding and procedural fluency can be built on a knowledge base
that is structured and that teaching ought to find strategies for supporting such
structuring of geometric knowledge. This research stream led them to question the
nature of teachers’ knowledge buttressing students’ well connected and usable
knowledge. Attempting to answer this question, Chinnappan and Lawson (2005)
developed four schemas for categorizing teachers’ knowledge about squares.
Results of this study showed that even experienced teachers of geometry tend to
have limited knowledge about translating geometric content to more
learner-friendly representations. Our proposed study results at the end of this
analysis is expected to bring insight about why strong content knowledge may
remain dormant in the teaching-learning context and how to assist teachers mobilize
that knowledge.

Indeed, in highlighting the critical link between content and pedagogical
knowledge, Sullivan (2011) directed attention to the importance of ongoing
research into experiences that assist teachers in building knowledge of mathematics
and how to teach mathematics. Also in recent years, in the area of geometry, Herbst
and colleagues have been making inroads into understanding this knowledge. In the
next section, we attempt to analyze the SMK-PCK connection in general and apply
that analysis to the domain of geometry.

In summary, there is consensus that knowledge of mathematics teachers is an
important research area if we are to tackle the question of the quality of teaching. In
this regard, the framework of Mathematical Knowledge for Teaching has been an
important development in identifying two knowledge dimensions: Subject Matter
Knowledge and Pedagogical Content Knowledge. However, the relationship among
these strands is not clear particularly in the context of in situ teaching of high school
geometry.

9.1.2 Relations Between SMK and PCK

According to Ball et al. (2008, p. 400), the following routine tasks of teaching
mathematics place demands on teachers’ SCK:

• recognize what is involved in using a particular representation
• link representations to underlying ideas and to other representations
• select representations for particular purposes
• modify tasks to be either easier or harder
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• evaluate the plausibility of students’ claims
• give or evaluate mathematical explanations
• choose and develop useable definitions
• use mathematical notation and language and critiquing its use
• ask productive mathematical questions

While there is agreement that SCK undergirds the above tasks, what constitutes
SCK in implementing these tasks is less clear (Carreño, Rojas, Montes, & Flores,
2013). Definitions of SCK allude to SCK as content knowledge that is put to use by
teachers in performing the above tasks. We suggest that a useful strategy in iden-
tifying SCK, and thus SMK, is to capture and analyze the representations teachers
use to perform the above tasks (Mitchel et al., 2014). We now turn to discussing our
interpretation of the role and importance of the representation construct.

Representations of the content of mathematics seem central to inform teachers
about developing, implementing, and evaluating tasks that teacher use with her
students. Tessellations, for instance, is an interesting concept in primary and high
school geometry. This concept could be represented as a definition—for instance, it
could be defined by saying that a tessellation is a shape which is repeated over and
over again covering a plane without any gaps or overlaps (R1). A second repre-
sentation could utilize tiles on a bathroom floor to demonstrate that shapes such as
squares tessellate (R2). Likewise, mosaics from buildings such as churches or
mosques could be used to portray tessellation and properties of shapes that tes-
sellate (R3). While R2 assists students in visualizing R1, there are properties unique
to shapes in R2 that play a critical role in ‘covering’ a plane or flat surface without
gaps. One such property is that the sum of angles at the corner where the shapes
meet in a tessellation is 360°. For example, squares tessellate because the corner at
which four squares meet comprises of four equal angles of 90° each. R3 reveals this
property. It can be argued that R3 is geometrically more dense and sophisticated
than R1 and R2. Thus, we have three representations of tessellations a teacher could
utilize in order to (a) elicit a question from students, (b) explain a definition of the
term tessellation, or (c) evaluate an explanation provided by students about tes-
sellation. We argue that the above three representations require deep and
well-connected content knowledge of tessellation, and that teachers have to acquire
knowledge of tessellation in ways that would allow them to construct the above
representations. We regard that knowledge as an example of SMK in this context.

Representations, we contend, can also be used as tools to access PCK and
demonstrate interactivity between PCK and SMK. Let us consider two sub-strands
that encompass PCK as identified by Ball et al. (2008): Knowledge of Content and
Students (KCS) and Knowledge of Content and Teaching (KCT). KCS is expected
to assist teachers to anticipate what students are likely to think, predict what stu-
dents will find interesting and motivating when choosing an example. This strand of
knowledge also helps teachers anticipate what a student will find difficult and easy
when completing a task, interpret students’ emerging and incomplete ideas, and
recognize and articulate misconceptions students carry about particular mathematics
content. KCT, on the other hand, allows teachers to sequence mathematical content,

150 M. Chinnappan et al.



select examples to take students deeper into mathematical content, and create
appropriate representations to illustrate the content.

As an example of a representation where SMK-PCK relations can be observed,
we return to the three representations of tessellation provided above. During the
course of teaching about tessellations, a teacher could have used combinations of
R1, R2, and R3. Why would a teacher use R1 only, or use R2 followed by R1? A
teacher using R1 only may have knowledge of his or her students that suggests they
can grasp abstract ideas easily (KCS). In contrast, a teacher adopting R2 followed
by R1 might do so based on the understanding that contextualizing an abstract
concept before defining it is a better sequence for supporting the learning of his or
her students (KCT). Thus, while representations provide windows into SMK, the
actions and reasons for using a particular representation are sources of data about
KCS and KCT.

9.1.3 SMK of Geometry

In discussions about SMK in geometry, we are concerned with knowledge of
geometry used in tasks of teaching geometry. This knowledge base includes basic
geometric concepts, explanations about the key attributes of these concepts and
connections between them. Further, different ways of representing these concepts
and how they may be contextualized in human activities, and applications of
geometric concepts in the solution of routine and non-routine problems are also part
of teachers’ repertoire of SMK. One example of SMK is the concept of symmetry in
2-D objects. In teaching this concept, teachers could invoke a range of knowledge
fragments including an informal definition of symmetry, a formal definition of
symmetry, conditions needing satisfaction in order for an object to be judged as
symmetric, symmetry of a number of 2-D shapes, reasons as to why some objects
have a symmetric property while other do not, extensions of symmetry to coordi-
nate geometry and algebra, relationship between symmetry and tessellations,
symmetry in arts, and so on. Throughout these instances, there is a common
knowledge strand about symmetry relevant to teaching its multiple meanings and
associations. In their analysis of teacher knowledge for teaching, Chinnappan and
Lawson (2005) provided evidence of SMK and PCK that teachers have built around
the concept of square. Results showed that early career teachers tended to build
strong content knowledge, but that this knowledge was not in a form that would
assist students. These results imply their content knowledge of 2-D geometry was
not sufficiently specialized. There was also evidence that experienced teachers’
PCK and SMK was not developed as expected. Our assumption is that the greater
the range and depth of such knowledge, the greater the teachers’ ability to flexibly
extend this knowledge to their PCK.
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9.1.4 PCK of Geometry

Pedagogical Content Knowledge of geometry includes components such as
understanding the central geometric topics as generally taught to students at a
particular grade levels and knowing the core concepts, processes, and skills to be
conveyed to students in geometry. Additionally, this knowledge strand involves
knowing what aspects of geometry are most difficult for students to learn, and
representations (e.g. analogies, metaphors, exemplars, demonstrations, simulations,
and manipulations) that are most effective in communicating the appropriate
understandings or attitudes of a geometry topic to students of particular back-
grounds. Finally, knowing related misconceptions that are likely to get in the way
of student learning forms part of PCK of teachers. For example, teachers’ knowl-
edge about how to teach the concept of tessellations and an understanding of why
students experience difficulty with problems that demand an understanding as to
why some 2-D shapes tessellate while others do not. The latter constitute KCS and
KCT—subcomponents of PCK.

9.1.5 Interactivity Between SMK and PCK for Geometry

While the question of studying SMK and PCK is important for primary mathe-
matics, the issue assumes greater significance for teaching high school mathematics,
as the demand for this knowledge are expected to be higher. This is so because in
secondary mathematics curriculum, teachers need to assist students examine
properties of 2-D and 3-D shapes when they undergo transformations such as
translation and rotation, and analyzing the transformations in a coordinate system.
Moreover, even though greater emphasis is placed on concept development in the
areas of geometry and measurement, Australian school students have been under-
performing in this key area of the national mathematics curriculum (Thomson,
Hillman, Wernert, Schmid, Buckley, & Munen, 2012). We suggest that one strategy
for addressing the problem of underperformance is to examine relational under-
standings (1978) that students develop or fail to develop with geometry concepts
(Skemp, 1978). Relational understandings are constructed on the basis of connec-
tions among items of geometric information and organization of that information,
the latter constituting structure of geometric knowledge.

Chinnappan (1998) demonstrated within the domain of geometry, high school
students’ understandings could be supported by knowledge that is structured so that
it is accessible for future use. And teaching ought to find strategies for supporting
the development of organized geometric knowledge. This stream of research led to
a study of teacher knowledge for geometry in which Chinnappan and Lawson
(2005) made the distinction between geometric knowledge and geometric content
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knowledge for teaching. Their work was deemed to have significance for future
inquiries of teacher knowledge, practice, and student learning (Lawson &
Chinnappan, 2015).

In the above review, we attempted to theorize and generate empirical evidence of
teacher knowledge for teaching geometry. It emerges that future research needs to
consider (a) the particular characteristics of the discipline of geometry, (b) the
developmental trajectories of teachers’ SMK and PCK and (c) how these interre-
lationships are played out during the course of teaching. In summary, what is the
overall premise of our discussion? In its totality, we contend that knowledge, by its
very nature, is organized into strands that are, in turn, interconnected. The challenge
for researchers is to unpack the interconnectedness between strands of SMK and
PCK. In order to elucidate the relations between SMK and PCK, we suggest that the
construct of representations could be employed as a useful analytic lens to generate
and analyze data about and interactions between strands of MKT.

9.1.6 Representation

Studies in the field of cognitive science suggest that information is processed and
stored in long-term memory. The processing of incoming information involves
assimilation of new information with existing information, and reorganization of
that information into meaningful entities called schemas. Organized knowledge
schemas or entities stand for, reflect, or symbolize a reality. When schemas are
activated for later use, humans convey that reality externally via models such as
texts and real-life contexts (Lesh, Post, & Behr, 1987). In this way, representations
have a dual character: internal and external. Mayer (1975) suggested that knowl-
edge presented in the form of representations is better understood and accessed by
students. Our earlier example about tessellation is a case in point. The construct of
representation has proven to be effective in analyzing teacher knowledge and tasks
teachers select to implement their lessons. For example, Mitchell, Charalambous,
and Hill (2014) commented that the “ability to teach with representations is critical
to teaching well” (p. 43), and that MKT knowledge components can be examined
via this construct.

For the purpose of analyzing teacher knowledge, we focus on external repre-
sentations of that knowledge. Representations, as used in the present analysis, refers
to vehicles teachers use to model, exemplify, or investigate a concept.
Representational fluency refers to the ability to move within and between repre-
sentations. Ball et al. (2008) refer to the notion of representations in their discussion
about tasks of teaching and associated SCK demands. This includes knowledge of
what a particular representation is able to illustrate and explain. In their analysis of
teacher knowledge, Ball et al. (2008), argued that “teachers must hold unpacked
mathematical knowledge because teaching involves making features of particular
content visible to and learnable by students” (p. 400). We suggest that represen-
tations provide a powerful window into not only the unpacked mathematical
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knowledge but also teachers’ PCK. A teacher could represent a concept in geometry
in the following modes: iconic (pictorial), symbolic, verbal, graphical, as well as
real-world examples. Teachers who have developed representations that are wide,
rich, and deep can be expected to support more complex understandings.

The study of geometry involves reasoning with diagrams, generating new
information from understanding relations between the diagrams’ parts and invoking
relevant axioms. For example, the concept of angle of inclination can be given a
diagrammatic and verbal representation. The diagram itself could contain symbols
for denoting angle and measure of the angle in degrees (symbolic representation).
Further, the concept could be given in meaningful context (real world representa-
tion) where the teacher poses a question asking students to use angles of inclination
to predict how long it will take for the Leaning Tower of Pisa to fall over.

9.2 Emerging Questions

Our review of research suggests that future studies need to explicate the relationship
between SMK and PCK as it is activated and mobilized by teachers before and
during geometry lessons in order to better understand and support the dimensions of
MKT. What do we mean by relationship between SMK and PCK? We interpret
relationship in terms of translation of knowledge from one to the other represen-
tation during the course of teaching. By teaching, we mean engagement with
students in real-time for the purpose of gaining new knowledge and understandings.
We concur that data generated about teachers’ SMK and PCK in contexts outside
regular lessons are important and indeed necessary. However, the use of that
knowledge during lesson delivery may necessitate modification or alteration of that
knowledge in subtle ways. Equally, we suggest that the researcher is able to
operationalize translation of knowledge in terms of representations. Teachers’
representations could be used as an important analytical lens to gain access into
both their SMK and PCK and the marshalling of the two bodies of knowledge in
teaching. The above line of reasoning leads us to propose that future research
should aim to respond to the following three questions:

1. What are the representations of geometry concepts generated by teachers in
teaching contexts that provide access to their SMK and PCK?

2. What is the nature of the interaction between SMK and PCK from 1?
3. How does teaching experience impact on the above interaction?
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9.3 MKT Involved in Construction and Conjecture—
Evidence from Preliminary Research

We are pursuing the above questions in a long-term study that examines the access
and use of SMK and PCK in different areas of geometry. In this preliminary study,
our aim was to generate data that is relevant to a modified version of Research
Question 1: What are representations used by teachers to support students to
conjecture in geometry?

Participants: The study was conducted in two junior high schools in Australia
with teachers (n = 3) of Grade 10 (15-year-olds) students (n = 25 per classroom).
The students had completed topics in Euclidean geometry during the previous three
years of their high school mathematics. In this report, we provide data from one of
three schools.

Tasks and procedure: The teacher prepared and taught a lesson involving con-
jecturing with constructions. The lesson was video-taped, and the teacher was
interviewed before and after the lesson. The videos were individually examined by
the three researchers without any input from the teacher. This was followed by a
group discussion.

We use the teacher’s actions in the course of their teaching to make conjectures
about their implicated SMK and PCK. In so doing, we adopt a functional view of
SMK and PCK as knowledge enabling teachers to carry out tasks during the course
of their teaching. In order to make SMK and PCK visible from an identical context,
all teachers were provided with a Geometry Construction Task (GCT, Fig. 9.2). The
first lesson goal was (a) to assist students to bisect angle FOE with the aid of a
compass and ruler only, (b) conjecture why angles FOG and EOG are equal and
(c) prove their conjectures.

The lesson’s second goal was to scaffold students to transfer the knowledge
gained from the GCT to solve other construction problems. A problem of
Transfer GCT (TGCT) is: Construct an angle that is 30° in size by using a ruler
and compass only. The solution of TGCT involves students having and using
knowledge to construct a 60° angle and then bisecting that angle. Construction of a
60° angle without the aid of protractors and other tools for measuring angles can be

Fig. 9.2 Geometry
construction task

9 Symbiosis Between Subject Matter and Pedagogical … 155



achieved by drawing an equilateral triangle and bisecting one of the three angles of
the triangle. We consider that the solution of TGCT requires transferring knowledge
and skills the students have on bisecting a given acute angle (covered in the lesson)
in a new context with the new, additional knowledge about the equilateral triangles’
properties.

9.3.1 SMK Involved in Implementing GCT

Our analysis of GCT produced the following concepts that we suggest constitute
SMK:

Arc, bisect, ray, intersect, parallelogram, radius, centre of a circle, labelling the
constructed figure with appropriate symbols (e.g., notations for marking/labelling
angles and showing two sides are equal), and representations of equality of angles.

9.3.2 PCK Involved in Implementing GCT

In the context of our GCT, we conceptualize KCS as involving but not limited to
teacher’s comments that support students to make correct use of the compass and
ruler to construct and bisect the resulting angle. Teachers could ask questions that
help students to reflect and justify what they are doing during the construction
process.

The KCT sub-strand is likely to address comments about how to represent and
sequence the learning experiences that assist students in completing the construc-
tion and then extending their understanding to other construction problems such as
Transfer CGT.

9.3.3 Data and Analysis

As argued before, our aim was to generate data about SMK and PCK by analyzing
(a) representation of geometry concepts, (b) actions, and (c) rationale for using the
relevant representations during the course of teaching. Table 9.1 shows a list of
actions from Mary (pseudonym), the teacher from our participating school. These
actions were observed during Mary’s explanation to assist students in solving
Transfer CGT. She accompanies her explanation by constructing an angle and
bisecting the angle. Mary’s actions below reflect a combination of using repre-
sentations, raising questions and providing assistance to students to complete the
task. The three investigators independently coded Mary’s actions as reflecting
SMK, PCK (KCS and KCT), though no KCT was detected in this excerpt.
Following the coding, we met and resolved our differences.
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The series of comments from Mary shows instances where strands of PCK and
SMK are activated independently and where the two work in tandem. Initially
(Lines 2–3), Mary focused on reminding students about how they went about
creating and bisecting an acute angle. Comments on Lines (4–10) are directed at
supporting students to activate their knowledge of properties of equilateral triangles
and using that knowledge to construct such a triangle. She invites the students to
guess the size of each of the angles in the equilateral triangle (Lines 11–12) and
proceeds to show how ideas about bisecting an angle could be utilized in con-
structing an angle that is half the measure of an angle in an equilateral triangle (Line
13). In Line 14, the teacher attempted to draw the attention of all students. As may
be seen in the third column of Table 9.1, with the exception of one instance, the
teacher’s activation of PCK was reliant on their SMK about properties of geometric
figures that included angles, triangles, measurement of angles, arc, ray, concept of
bisection, radius and circle.

9.3.4 SMK and PCK for TGCT

Figure 9.3 shows a student’s response when Mary asked them to construct an angle
that is exactly 30° in size by using a ruler and a compass only.

Table 9.1 Excerpt of Mary’s explanation for transfer CGT

Line Mary’s comments Knowledge used

SMK PCK

1 Bisecting into half by drawing a line. Δ –

2 So everyone got Question 1. – □KCS

3 How can use that knowledge to answer question 2
(Transfer CGT)?

– □KCS

4 Start with a line at the bottom (drawing). – □KCS

5 Did the same with the other line? – □KCS

6 What do you have to do? – □KCS

7 What does the ‘cross’ represent? Δ □KCS

8 There is 180 degrees (180°) in it. Δ

9 How can we use that triangle to find 30 degree angle? □KCS

10 Put in a triangle and then the same length. Δ

11 What do we know about equilateral triangle? Δ □KCS

12 What can you do to both that bisect the 60 degree angle? Δ □KCS

13 Cut the sixty degree angle into half so each
one is 30 degrees.

Δ –

14 Does that make sense to everybody? – □KCS

Note Δ represents actions related to SMK; □KCS represents actions related to PCK-KCS; □KCT

represents actions related to PCK-KCT, though none was detected in this excerpt
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We can examine Mary’s knowledge from the perspective of (a) why a teacher
would pose such a problem and (b) how she would make judgements about the
students’ response and explore future learning opportunities as suggested by
Sullivan (2011). Let us consider the first perspective. By limiting the students to
using a ruler and a compass, the teacher would like students to access knowledge of
properties of equilateral triangles and the conceptual basis for bisecting angles. The
latter involved drawing arcs, one segment that originates from a vertex, then using
the cut-off points on the segment to draw another set of arcs, and finally joining the
vertex to the point at which the arcs cross each other. Here, one notes evidence of
multiple facets of teacher’s SMK. If we approach the analysis from the second
perspective, she could be expected to arrive at the conclusion that this student had
used the knowledge that all sides of an equilateral triangle are equal in length and
bisecting an angle of 60° will yield the desired outcome (30°). Again, there is
evidence of SMK (Table 9.1) that is relevant to, and played out during, the course
construction.

But what are potential actions of the teachers that could constitute PCK? We are
currently generating data to answer this question. We anticipate strands of PCK in
this context would emerge from the kind of questions, models, and other scaffolds
the teacher could provide in assisting struggling students and extending the
knowledge base of successful students such as the student whose work is shown in
Fig. 9.3.

Fig. 9.3 Sample student
drawing
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9.4 Discussion and Conclusion

Teachers and teaching are critical factors that affect students’ engagement with and
achievement in mathematics. According to the National Council of Teachers of
Mathematics (2000) “effective teaching requires knowing and understanding
mathematics, students as learners, and pedagogical strategies” (p. 17). In the current
era of globalization and information, teachers’ knowledge for teaching mathematics
is becoming more complex and dynamic. Unpacking this knowledge to support
effective learning has been the aim of a number of studies (Beswick, 2014; Sullivan,
2011). Since the conceptualization of PCK by Shulman (1987), the field has been
active in developing other constructs to capture content and pedagogy relevant to
mathematics. The question of the relative nature and roles of content and pedagogy
in teaching mathematics is an issue of major concern to mathematics teachers and
educators.

This is a preliminary study where we attempted to gather, code and represent
data relevant in untangling relationship between the content and pedagogical
knowledge in relation to teaching geometry in situ. In identifying, tracking, map-
ping and interpreting teachers’ knowledge in the course of their teaching, we
encountered three major challenges. Firstly, the coding of teacher talk as evidence
of accessing SMK or PCK was not straightforward. Secondly, as one might expect
with geometry, teacher’s explanations were almost always accompanied by
working with or constructing diagrams. A significant part of teacher knowledge and
interactions between the strands of that knowledge occurs during these
diagram-intensive activities. Thus, we have to develop a data analysis procedure to
capture knowledge transactions in a complex and fluid context.

Thirdly, interpreting the geometry construction tasks within the framework of
representations proved to be more difficult than representations of concepts of
symmetry and tessellations. Mitchell et al. (2014) alluded to the constraints and
affordances in representational use and that each representation has its own con-
ventions. The notion of conventions of representations could provide a useful
vehicle to better depict teacher’s knowledge of SMK and PCK in the contexts of
teaching geometric constructions. Our long-term aim is to fine-tune these
methodological issues and interpret the data in terms of the representations
construct.

While our results are preliminary, we view them as a prelude to a journey to
address two important problems: (a) develop the notion of knowledge connected-
ness (Lawson & Chinnappan, 2015) that is relevant to the teaching of geometry,
which will (b) ultimately help improve the quality of geometric knowledge that
high school geometry teachers need in order to lift the achievement and partici-
pation of young Australians.
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Chapter 10
Minding the Gap: A Comparison
Between Pre-service and Practicing High
School Teachers’ Geometry Teaching
Knowledge

Shawnda Smith

Abstract This study compares the Geometry Teaching Knowledge of pre-service
teachers with that of current high school geometry teachers. Data was collected
using items from the Mathematical Knowledge for Teaching Geometry (MKT-G)
assessment described by Herbst and Kosko (Mathematical knowledge for teaching
and its specificity to high school geometry instruction. Research trends in mathe-
matics teacher education. Springer, New York, pp. 23–45, 2014), and a
post-assessment survey. The study focuses on the differences found in responses to
items belonging to four domains: Common Content Knowledge-Geometry
(CCK-G), Specialized Content Knowledge-Geometry (SCK-G), Knowledge of
Content and Students-Geometry (KCS-G), and Knowledge of Content and
Teaching-Geometry (KCT-G). Data was analyzed using t-tests for independent
groups. Practicing high school geometry teachers outperformed the pre-service
teachers on the MKT-G assessment in all four domains. Awareness of geometry
instructional techniques and methods used in the current high school geometry
classrooms was investigated as well. Practicing high school geometry teachers
reported using and learning different instructional techniques and methods in their
classrooms and professional development when compared to pre-service teachers’
techniques and methods used or learned in their education and mathematics
courses.

Keywords Future teachers � Geometry teaching knowledge � Geometry teaching
methods � Geometry teaching techniques � High school geometry
Mathematical knowledge for teaching-geometry (MKT-G) � Practicing geometry
teachers � Pre-service teachers � Professional development � Teacher education
Teacher knowledge

S. Smith (&)
California State University, Bakersfield, USA
e-mail: ssmith127@csub.edu

© Springer International Publishing AG, part of Springer Nature 2018
P. Herbst et al. (eds.), International Perspectives on the Teaching and Learning
of Geometry in Secondary Schools, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-77476-3_10

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77476-3_10&amp;domain=pdf


10.1 Introduction

Geometry is a field in mathematics that every student in the United States is
required to study in order to fulfill high school graduation requirements. According
to the Center for Public Education (2013), all states require that students have two
or more mathematics credits of Algebra 1 or higher to graduate. Geometry is listed
as the course to immediately follow Algebra 1. The Common Core State Standards
Initiative (2010) stresses that geometry is a vital course when preparing students to
enter a science, technology, mathematics, or engineering field. According to the
National Center for Education Statistics (2012), American students’ performance is
consistently behind other countries involved in the PISA assessment organized by
the Organization for Economic Cooperation and Development (OECD) in two
content areas in mathematics: Geometry and Measurement. In 2007, U.S. 8th grade
students average score in geometry on the Trends in International Mathematics
Science Study (TIMSS) was 20 points lower than the TIMSS scale average, while
these students scored at or above the TIMSS scale average on all other content
domains (Aud et al., 2010). The literature shows that three possible reasons for poor
performance in geometry and measurement are: not enough exposure and emphasis
in K-12 curriculum implemented by the teacher, challenges associated with the
teaching of geometry and measurement in the classroom, and limited knowledge of
the teachers (Steele, 2013).

Teachers that have completed a bachelor’s degree in mathematics and a tradi-
tional teacher preparation program are considered qualified teaching candidates.
According to No Child Left Behind (2002), a highly qualified teacher holds a
bachelor’s degree in mathematics and has passed a state academic subject test.
Teachers with a secondary teaching degree are expected to be able to successfully
teach all courses of mathematics study taught in high school, including geometry.
According to the topics addressed in teacher certification exams, a pre-service
teacher should be prepared to teach geometry when entering the secondary class-
room; however, Mitchell and Barth (1999) point out that individuals can pass state
certification tests without having to pass all the domains assessed on the test. If a
pre-service teacher does not pass the Geometry and Measurement section of the
exam, they could still pass the exam, but that pre-service teacher might not have
enough content knowledge in Geometry to be a successful Geometry teacher. There
is a need to make sure all teachers teaching in secondary schools have enough
knowledge of Geometry. Even though teachers follow a traditional teacher prepa-
ration program, they may not be prepared to teach the mathematics required of them
when they leave the university and enter the secondary classroom.
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10.1.1 Geometry Teaching Knowledge: Background

Deborah Ball and her colleagues developed the concept of Mathematical
Knowledge for Teaching, also known as MKT. Using Shulman’s major categories
of teacher knowledge, they developed a theoretical framework for content knowl-
edge for teaching mathematics. Throughout their research, they began to see that
“pedagogical content knowledge begins to look as though it includes almost
everything a teacher might know in teaching a particular topic” (Ball, Thames, &
Phelps, 2008, p. 394). Ball began to focus on how, throughout history, the pre-
vailing assumption that the mathematical knowledge a teacher requires consists of
the mathematics that will be covered in the course they are teaching along with
some additional study of mathematics at the college level. Deborah Ball and her
colleagues decided to develop Shulman’s model in the field of mathematics. The
primary data used for the analysis was a National Science Foundation funded
longitudinal study that documented an entire year of mathematics teaching in a
third-grade public school classroom. Many studies have investigated the MKT
domains.

The Teacher Education Development Study in Mathematics (TEDS-M) identi-
fies two components to teachers’ mathematical knowledge: mathematical content
knowledge (MCK) and mathematical pedagogical content knowledge (MPCK)
(Tatto et al., 2012). This study developed a framework to measure pre-service
teachers’ MCK and MPCK in different domains. The domains for MCK included
number, geometry, algebra, and data, and in tasks that required knowing, applying,
and reasoning. The domains for MPCK included mathematics curricular knowl-
edge, knowledge of planning, and knowledge of enacting mathematics (Tatto et al.,
2012). This study found that future teachers in America showed strength in number
items but weakness in geometry and algebra items.

The German project COACTIV conducted a study of the connections between
content knowledge and pedagogical content knowledge in secondary mathematics
among secondary teachers (Krauss et al., 2008). They found that content knowledge
and pedagogical content knowledge were distinct factors and highly correlated in
the entire sample of teachers; however, teachers considered mathematical experts
held knowledge that combined the content knowledge and the pedagogical content
knowledge, while those that were not experts kept the factors separate. They
concluded that pedagogical content knowledge may be supported by higher levels
of content knowledge in ways that lower levels of content knowledge may not
(Krauss et al., 2008).

Deborah Ball’s model has been cited over 1800 times since it was published.
Many studies have been conducted to try to solidify this model, and other studies
have focused on specific domains of mathematical knowledge for teaching. For
example, Hill, Ball, and Schilling (2008) focused on the domain called knowledge
of content and students. They point out that there has been little research in con-
ceptualizing, developing, and measuring teachers’ knowledge in each of the
domains (Ball et al., 2008). Even though there have been many studies referring to
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Deborah Ball’s MKT model, there is very little research on teachers MKT at the
secondary level. Primarily, research has been conducted on teachers MKT of ele-
mentary algebra and number sense topics, but very few studies in elementary
geometry. Another study of teachers’ knowledge of Algebra points out that [while]
“the University of Michigan’s work marks considerable progress in defining and
assessing teachers’ mathematical knowledge for elementary and, more recently,
middle-grades teaching, there is little systematic evidence about whether, or how
different types of mathematical knowledge matter for effective teaching of algebra
in grades 6–12” (McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012,
p. 584).

In describing an MKT test designed to measure the knowledge needed to teach
high school geometry, Herbst and Kosko (2014) pointed out that there had been
little research into Ball’s MKT model for high school specific subjects. At the time
of the study reported here, there had not been any quantitative research on MKT-G
of pre-service teachers, let alone a comparison between pre-service teachers and
in-service teachers MKT of geometry. The literature calls for more research in
pre-service and in-service teachers’MKT-G along with an investigation as to where
these teachers gain this knowledge. Herbst and Kosko (2014) point out that there is
more work to be done to refine the domains of Ball’s MKT model with respect to
Geometry and by doing so this “could inform the development of coursework in
mathematics or mathematics education for future teachers” (Herbst & Kosko, 2014,
p. 33).

10.2 Theoretical Framework

The theoretical framework used in this study follows the Domains of Mathematical
Knowledge for Teaching-Geometry used by Herbst and Kosko (2014) to develop
the MKT-G assessment. This assessment was founded on the framework by
Deborah Ball and associates (2008). The original framework consisted of Common
Content Knowledge, Specialized Content Knowledge, Knowledge of Content and
Students, Knowledge of Content and Teaching, Knowledge of Content and
Curriculum, and Horizon Content Knowledge. Herbst and Kosko’s Mathematical
Knowledge for Teaching-Geometry (MKT-G) assessment focuses on four of the six
domains: Common Content Knowledge, Specialized Content Knowledge,
Knowledge of Content and Students, and Knowledge of Content and Teaching.

Common Content Knowledge-Geometry (CCK-G) is defined as the geometry
knowledge and skill also used in settings other than teaching. In particular, CCK-G
is the mathematical knowledge needed to simply calculate the solution or correctly
solve geometric problems such as those that students do. Specialized Content
Knowledge-Geometry (SCK-G) is geometry knowledge and skill unique to
teaching, not necessarily used in any other field. For example, the knowledge
needed to see what a student’s mistake was when solving a geometry problem
incorrectly. Knowledge of Content and Students-Geometry (KCS-G) is knowledge
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that combines knowledge about students and knowing about geometry. KCS-G is
the knowledge teachers need to predict how students may react to a new geometry
topic, or what misconceptions and confusion students may have going into a ge-
ometry lesson. Knowledge of Content and Teaching-Geometry (KCT-G) is a
domain that combines knowing about teaching and knowing about geometry.
KCT-G primarily focuses on the planning of the teacher, the sequencing of ge-
ometry topics so that students are successful, or what geometry examples the tea-
cher decides to show the students.

10.2.1 Purpose of Study

The purpose of this study was to compare what I call the Geometry Teaching
Knowledge (GTK) of pre-service and practicing high school teachers; GTK
includes MKT-G and awareness of geometric techniques and methods used in the
geometry classroom. This study examined the differences in knowledge among
different groups of teachers and where this knowledge is developed.

This study focused on the knowledge of high school pre-service teachers at a
four-year university in the State of Texas (in the United States) and that of prac-
ticing high school geometry teachers from multiple school districts in north and
central Texas.

10.3 Research Questions and Design

The research questions for this study are:

1. What do high school pre-service teachers and high school geometry teachers
know about Geometry Teaching Knowledge? Geometry Teaching Knowledge
consists of the following: Mathematical Knowledge for Teaching-Geometry
(MKT-G) and awareness of geometry techniques and methods used in the high
school geometry classroom.

2. How do pre-service and current high school teachers’ Geometry Teaching
Knowledge compare?

3. Where is awareness of geometry techniques and methods used in the classroom
developed?

10.3.1 Sample

The study was conducted at a central Texas university and at school districts
throughout the state of Texas. The sample was composed of 53 pre-service high

10 Minding the Gap: A Comparison Between Pre-service … 167



school mathematics teachers at the university and 36 practicing high school
geometry teachers in multiple school districts in north and central Texas. The
pre-service teachers were chosen based off their completion of their coursework in
the program. The pre-service teachers were in their Junior or Senior years of their
degree program and had completed the required geometry content course. The
geometry content course taught at this central Texas university is called Modern
Geometry. This course focuses on Euclidian Geometry and historical aspects of
Geometry. This course is a mathematics content course that is required of the
secondary pre-service teachers, but there is little pedagogical content covered.
Pre-service teachers at this point in their degree plan have at least taken two
education courses: Curriculum and Technology and Adolescent Growth and
Development. By choosing pre-service teachers at this point in their degree, there is
a guarantee that the pre-service teachers have completed the majority of their
required coursework for their specific graduation plan, and are about to enter their
student teaching experiences.

The high school geometry teachers were current teachers in multiple school
districts in central Texas. Their degrees were obtained from a variety of different
universities, and their teaching experience ranged from one to twenty years of
experience teaching geometry. Only high school teachers who were currently
teaching or had taught geometry within the previous two years were selected to
participate in the study.

The pre-service teachers were a convenience sample; however, this sample
arguably represents the knowledge base of pre-service teachers about to enter their
student teaching experiences. The university uses The Mathematics Education for
Teachers II Report (2010), which gives requirements and suggestions for teacher
preparation programs in the United States. These requirements are based off the
Common Core Standards (National Governors Association Center for Best
Practices and Council of Chief State School Officers, 2010).

10.3.2 Instrumentation

To investigate pre-service and practicing high school teachers’ Geometry Teaching
Knowledge, data was gathered by means of an online Mathematical Knowledge for
Teaching-Geometry (MKT-G) assessment developed by Herbst and Kosko (2014)
and a post-assessment survey. The MKT-G assessment consists of multiple choice
questions administered through the online platform Lesson Sketch. The
post-assessment survey consists of demographic questions and questions regarding
the experiences of the pre-service and high school teachers with different methods
of instruction. The following is a sample item from the post-assessment survey
asked to both pre-service and high school teachers (Fig. 10.1).
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Read the following techniques and consider which ones you would use in your own
Geometry Classroom. You are given a total of 10 points to distribute among 5 techniques
however you would like based on what you would think would be best for your students
(assign a value between 0 and 10 to all items), with the number of points assigned to the
topic reflecting the importance of these techniques in your classroom. You must use all 10
points. Please make sure the points add up to 10 by including a total count at the end.

Pre-service teachers and practicing high school teachers were asked different
questions regarding their awareness of instructional techniques and methods.
Pre-service teachers were asked: what types of instructional techniques or methods
have they seen in their geometry courses, what types of instructional techniques or
methods have they seen in their education courses, and what types of instructional
techniques or methods would they use in their ideal classroom. An ideal classroom
was described as one for which they would have an unlimited budget and unlimited
resources. Due to the selection of pre-service teachers, most of the participants had
not been in a current high school geometry classroom as an observer or an
instructor, which is why the first two questions addressed what they had seen as
students in their geometry course and education courses. Practicing high school
teachers were asked what types of instructional techniques or methods do they use
in their current geometry classes, what types of instructional techniques or methods
have they seen in their professional development, and what types of instructional
techniques or methods would they use in their ideal classroom. All participants took
the online Mathematical Knowledge for Teaching-Geometry assessment and all but
one high school teacher completed the post-assessment survey.

10.4 Data Analysis

10.4.1 MKT-G Assessment Results

The MKT-G assessment was given to pre-service teachers and practicing high
school Geometry teachers to assess their Mathematical Knowledge for Teaching

Fig. 10.1 Example methods/technique problem
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Geometry. The assessment includes items that address four of the domains of
mathematical knowledge for teaching; Common Content Knowledge-Geometry
(CCK-G), Specialized Content Knowledge-Geometry (SCK-G), Knowledge of
Content and Students-Geometry (KCS-G), and Knowledge of Content and
Teaching-Geometry (KCT-G). Because I was interested in comparing scores for
each domain, I scored the responses by looking at how many items of each domain
participants responded correctly.1 Because there were different numbers of ques-
tions addressing each domain, I calculated the proportion of correct responses for
each domain. All 87 participants were combined to form the following descriptive
statistics of the proportion correct over each of the domains and the total score.
A lower score indicates lower knowledge of a domain and the higher score indicates
higher knowledge of a domain. The results are presented in Table 10.1. When
comparing the means of each of the domains, all the participants preformed the best
in the Common Content Knowledge-Geometry domain, and performed the worst in
the Knowledge of Content and Teaching-Geometry.

In order to better understand the differences between pre-service teachers and
high school geometry teachers, a comparison using the raw test scores in each
domain was performed. The box plots in Fig. 10.2 show the difference between the
two groups in each of the four domains and the total raw scores.

A t-test for independent groups was performed in each of the domains as well as
with the total scores. The descriptive statistics for each domain and Cohen’s d are
presented in Table 10.2. A t-test for independent groups was performed in each of
the domains as well as with the total scores. Pre-Service teachers had lower CCK-G
scores on the MKT-G assessment than current high school Geometry teachers, t
(76.61) = −3.642, p < .001, d = −.832. Cohen’s effect size (d = −.832) suggests a
moderate practical significance. Pre-service teachers had lower SCK-G scores on
the MKT-G assessment than current high school Geometry teachers, t
(71.899) = −5.882, p < .001, d = −1.3873, which suggests a large practical sig-
nificance. Pre-Service teachers had lower KCS-G scores on the MKT-G assessment
than did those that were current high school Geometry teachers, t(72.16) = −3.285,
p = .002, d = −.773. Cohen’s effect size (d = −.773) suggests a moderate to large
practical significance. Pre-service teachers had lower KCT-G scores on the MKT-G
assessment than current high school Geometry teachers, t(80.76) = −6.516,

Table 10.1 Descriptive
statistics of percentage correct
by MKT-G domain and total
score

Domain Mean (%) Standard deviation N

CCK-G 64.80 21.94 87

SCK-G 60.00 14.49 87

KCS-G 39.24 19.87 87

KCT-G 36.95 23.52 87

Total 53.67 13.58 87

1Because the samples were small, the scores could not be scaled using the Rasch model; hence this
analysis does not consider the difficulty level of each of the questions.
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Fig. 10.2 a Boxplot comparing CCK-G scores of pre-service and in-service teachers. b Boxplot
comparing SCK-G scores of pre-service and in-service teachers. c Boxplot comparing KCS-G
scores of pre-service and in-service teachers. d Boxplot comparing KCT-G scores of pre-service
and in-service teachers. e Boxplot comparing total scores of pre-service and in-service teachers
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p < .001. Cohen’s effect size (d = −1.45) suggests a large practical significance.
Pre-service teachers had lower total scores on the MKT-G assessment than current
high school Geometry teachers, t(70.13) = −7.542, p < .001. Cohen’s effect size
(d = −1.80) suggests a large practical significance.

Based on the t-tests performed, pre-service teachers had lower scores in all
domains and in total scores. There is also large practical significance to all the
comparisons.

Correlations between the domain scores are presented in Table 10.3, and suggest
a moderate relationship between the different variables. These correlations were
examined to make sure the results from this study were similar to the correlations
reported by Herbst and Kosko (2014). These results show similar trends, which
suggests that the four domains are interrelated, to a degree.

I calculated the correlations between each of the domains, total score, and the
participants’ years of teaching mathematics and years of teaching Geometry. The
correlation between the number of years teaching mathematics and Common
Content Knowledge-Geometry (CCK-G) and Knowledge of Content and
Students-Geometry (KCS-G) were statistically significant, but weak. The correla-
tion between Specialized Content Knowledge-Geometry (SCK-G), Knowledge of
Content and Teaching-Geometry (KCT-G), and total score were statistically sig-
nificant and moderate. The correlation between the number of years teaching
Geometry and KCS-G was statistically significant, but weak. The correlation
between CCK-G, SCK-G, KCT-G, and total score were statistically significant and
moderate (Table 10.4).

Table 10.2 Means, standard deviation, and Cohen’s d by MKT-G domain and total score of
pre-service and high school teachers

Domain Pre-service High school teachers Cohen’s d

Mean
(%)

Standard
deviation

Mean
(%)

Standard
deviation

CCK-G 58.09 20.74 78.30 20.25 −.832

SCK-G 53.43 11.85 69.31 12.77 −1.387

KCS-G 33.61 18.26 47.22 19.56 −.773

KCT-G 25.77 20.41 52.78 18.01 −1.45

Total 46.40 9.99 63.96 11.16 −1.80

Table 10.3 Correlations
between MKT-G domains

CCK-G SCK-G KCS-G KCT-G

CCK-G –

SCK-G .343** –

KCS-G .391** .389** –

KCT-G .361** .456** .304** –

**p < .01
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10.4.2 Post-assessment Survey Results

As part of the Post-assessment Survey, participants were asked questions regarding
their experiences with different Instructional Techniques and Methods that are
frequently used in the geometry classroom. Pre-service teachers and current high
school teachers were asked different questions regarding their knowledge.
Pre-service teachers were asked what types of instructional techniques or methods
have they seen in their geometry courses, what types of instructional techniques or
methods have they seen in their education courses, and what types of instructional
techniques or methods would they use in their ideal classroom. An ideal classroom
was described as a situation in which they would have an unlimited budget and
unlimited resources. High school teachers were asked what types of instructional
techniques or methods they used in their current geometry classes, what types of
instructional techniques or methods they had seen in their professional develop-
ment, and what types of instructional techniques or methods they would use in their
ideal classroom. Figure 10.3 shows the pre-service teacher survey results, specifi-
cally the distribution of experience with what types of instructional techniques or
methods they had seen in their geometry courses, what types of instructional
techniques or methods they had seen in their education courses, and what types of
instructional techniques or methods they would use in their ideal classroom.

Table 10.4 Correlations
between Years experience and
scores

Years teaching math Years teaching geometry

CCK-G .239** .323**

SCK-G .361** .352**

KCS-G .265* .286**

KCT-G .448** .397**

Total .465** .471**

*p < .05, **p < .01

Fig. 10.3 Pre-service teacher survey results
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For pre-service teachers’ geometry courses, participants reported experiencing
compass and protractor activities (33.3%) and manipulatives and models (30.1%)
the most, and computer software (14.1%) the least. In their education courses,
pre-service teachers reported seeing investigations (31.2%) the most and computer
software (12.3%) the least. Pre-service teachers would use manipulatives and
models (29.7%) the most and computer software (21%) the least in their ideal
classrooms.

Figure 10.4 shows the practicing high school teachers’ survey results, specifi-
cally what types of instructional techniques or methods they used in their current
geometry classes, what types of instructional techniques or methods they had seen
in their professional development, and what types of instructional techniques or
methods they would use in their ideal classroom.

Practicing high school geometry teachers reported the use of other (35%) as
most common in their classrooms. Other was defined as Lecture by 80% of the
participants. They reported that computer software (11.6%) was used the least in
their current geometry classes. High school teachers reported seeing investigations
(27.3%) the most and compass and protractor activities (4.7%) the least in their
professional development. When teachers were asked about their ideal classroom,
high school teachers would use investigations (31.3%) the most and compass and
protractor activities (15.7%) the least.

Pre-service teachers were asked which instructional techniques and methods
they had used or seen in their geometry and education courses and practicing
teachers were asked which instructional techniques and methods they had used or
seen in their professional development. Attention was given to this comparison to
investigate the methods taught at the university for pre-service teachers and the
methods taught in the professional development opportunities given to practicing
teachers. A chi-square test for independence was performed to examine the asso-
ciation between pre-service teachers’ experience in their geometry and education
courses to the practicing high school teachers’ professional development. This test
was found to be significant, v2 4;N ¼ 86ð Þ ¼ 123:84; p\:01. This suggests that the
pre-service teachers’ distribution of what they see in their geometry and education

Fig. 10.4 Practicing high school teacher survey results
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courses and what high school teachers have seen in their professional development
are not independent. In Fig. 10.5, the strip diagrams show the distribution among
the instructional techniques and methods of the pre-service teacher’s Geometry
Courses and what they would use in their ideal classroom.

Pre-Service teachers have seen more compass and protractor activities (27.5% of
the time), and more manipulatives and models (29.3%) in their geometry and
education courses when compared to high school teacher’s professional develop-
ment (4.7 and 25.9% respectively). High school teachers reported more investi-
gations (27.3%), computer software (24.8%), and other (17.2%) in their
professional development than pre-service teachers have seen in their geometry and
education courses (24.7, 13.3, and 5.1% respectively). The responses for other in
professional development included teaching strategies, classroom management,
project based instruction, and direct teach/lecture, and the responses for other in
their geometry and education courses included lesson plans, PowerPoints, projects,
and lecture.

Pre-service teachers were asked which instructional techniques and methods
they had used or seen used in their geometry and education courses, and practicing
teachers were asked which instructional techniques and methods they used in their
current classroom. This comparison was chosen because pre-service teachers would
expect to see the instructional techniques and methods used in current high school
classrooms during their courses at the university. A chi-square test of independence
was performed to examine the relation between pre-service teachers’ experience in
their geometry and education courses to the current high school teachers’ geometry
classes. This test was found to be significant, v2 4;N ¼ 86ð Þ ¼ 196:19; p\:01. This
suggests that what pre-service teachers see in their geometry and education courses,
and what high school teachers are using in their current geometry classes are not
independent. In Fig. 10.6, the strip diagrams show the distribution among the
instructional techniques and methods of the pre-service teacher’s current geometry
courses and what they would use in their ideal classroom.

Pre-service teachers reported more experience with compass and protractor
activities (27.5%), and manipulatives and models (29.3%) than high school teachers
reported using in their current classrooms (14.9 and 15.6% respectively). High
school teachers reported more time spent on other (35%) than pre-service teachers

Fig. 10.5 Pre-service courses versus high school professional development
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claim in their geometry and education courses (5.1%). Lecture and Direct
instruction is what 49% of the high school teachers described as other. Pre-service
and high school teachers distributed points similarly to the investigations (24.7 and
22.9% respectively) and computer software (13.3 and 11.6% respectively).

Both groups were asked how they would spend time if they had an ideal class-
room. An ideal classroom would consist of having unlimited resources and time.
A chi-square test of independence was performed to examine the relation between
Pre-Service teachers’ ideal classroom and current high school teachers’ ideal
classroom. This test was found to be significant, v2 4;N ¼ 86ð Þ ¼ 59:93; p\:01.
This shows that what high school teachers think would be best for their ideal
classroom and what the pre-service teachers think would be best for their ideal
classroom are not independent. In Fig. 10.7, the strip diagrams show the distribution
among the instructional techniques and methods of the pre-service and high school
teachers’ ideal classrooms.

Pre-service teachers thought that more compass and protractor activities (24% of
the time) and manipulatives and models (29.7% of the time) were important to their
ideal classes when compared to the high school teachers (15.7 and 18.4% respec-
tively). The high school teachers thought more investigations (31.2%) and com-
puter software (23.9%) would be important to their ideal classrooms, as well as a
larger portion dedicated to other (10.7%) when compared to pre-service teachers’
distribution of classroom time (23.8, 20.9, and 1.6% respectively). Lecture and
Direct teach is what 49% of the high school teachers described as other.

Fig. 10.6 Pre-service courses versus high school current class

Fig. 10.7 High shool versus pre-service teachers’ ideal classroom
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10.5 Discussion

It could have been expected that the pre-service teachers would not do as well on
the MKT-G as the practicing high school teachers because the high school teachers
have been actively working with students and refining their geometry knowledge
through practice, but this study sheds light on how the groups of teachers compare
with one another. The primary domains where pre-service and high school teachers
had the largest difference were Specialized Content Knowledge-Geometry (SCK-G)
and Knowledge of Content and Teaching-Geometry (KCT-G). Specialized Content
Knowledge-Geometry is “mathematical knowledge and skill unique to teaching”
(Ball et al., 2008, p. 400). SCK-G is the knowledge of mathematics that is not
necessarily used in any other field. Knowledge of Content and Teaching-Geometry
is the category that “combines knowing about teaching and knowing about math-
ematics” (Ball et al., 2008, p. 401). KCT-G primarily focuses on the planning of the
teacher, the sequencing of topics so that students are the most successful, or what
examples the teacher decides to show the students. These results are not surprising
when SCK-G is knowledge of geometry that would not be used in any other activity
besides teaching high school geometry and KCT-G would require the pre-service
teachers to have some idea of how to present material to students. The pre-service
teachers were stronger in Common Content Knowledge-Geometry and Knowledge
of Content and Students-Geometry, though they still score lower than the practicing
teacher. Common Content Knowledge-Geometry is what they would get from their
geometry courses at the university and the Knowledge of Content and
Students-Geometry could come from them interacting with students through
tutoring or remembering being a student themselves.

There were statistical differences between pre-service teachers and high school
teachers in the knowledge of the different instructional techniques. This was
unexpected, but this is a problem that needs to be addressed. One can understand
teachers not being able to teach their ideal geometry class because of budgetary
restrictions and time, and it seems that professional development would introduce
current teachers to other instructional techniques that they might not be using in
their current classroom, but the techniques presented in professional development
would seem to transfer over to the teacher’s ideal geometry class. It seems strange
that pre-service teachers are being taught geometry and are in education courses,
but their methods of teaching their ideal geometry class do not relate. Where are
these pre-service teachers getting these ideas? It seems that there would be differ-
ences between the pre-service ideal classroom and the high school teachers’
classroom because the pre-service teachers do not have as much classroom expe-
rience, and current high school teachers are drawing from their experiences being a
geometry teacher. This also could relate to the MKT-G results showing that
pre-service teachers have a lower score on the Knowledge of Content and
Teaching-Geometry. One surprising result from these comparisons is the difference
between the pre-service geometry and education courses and the professional
development opportunities for high school teachers. It would seem that both of
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these types of teacher education would correspond in some way, but statistically
they are different. The comparison between the pre-service teachers’ geometry and
education courses and the current high school geometry classroom is also inter-
esting. If pre-service teachers are not being introduced to what the current high
school teachers do in the geometry classroom, is this setting them up for failure?

10.5.1 Significance of the Study

This study sheds light on the Geometry Teaching Knowledge that high school
pre-service and high school geometry in-service teachers. This study helps fill in the
gap in research regarding Mathematical Knowledge for Teaching Geometry and
awareness of geometric techniques and methods used in the geometry classroom
that pre-service and high school geometry teachers possess and use. The instru-
ments used to address these questions could be used in other pre-service mathe-
matics teacher training programs and in professional development of high school
teachers to address any gaps that may exist in their knowledge of geometry and of
teaching geometry. This may impact future student performance in Geometry and
Measurement since the three main reasons for a lag in performance are weak
attention in K-12 curriculum, challenges associated with implementation of ge-
ometry and measurement in the classroom, and limited knowledge of the teacher
(Steele, 2013).

10.5.2 Limitations of the Study

This study focused on a group of pre-service teachers from a single university in
central Texas. The structure of this university’s pre-service teacher training program
could be different than other universities in Texas and in other states or countries.
This study also focuses on currently practicing high school mathematics teachers in
Texas. The knowledge level of geometry may be different depending on the state in
which the teachers work. The professional development opportunities given to high
school teachers varies depending on the district. In general, teachers are given a
couple of days of professional development one week prior to the start of the school
year and a day of professional development after the Christmas break. While some
of the results may be extended beyond the scope of this university and state, any
generalizing must be done cautiously.

The MKT-G assessment results were analyzed using the number correct in each
of the domains and the total. Difficulty of each individual question was not con-
sidered because the sample was too small to estimate item difficulty parameters.

I developed the survey given to all the participants. The intention for the survey
was to gather information about the knowledge of instructional methods and
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strategies of the participants. There is no guarantee that the survey accurately
gathered all the knowledge of the participants.

10.5.3 Future Research

This study brought up issues of the differences in Geometry Teaching Knowledge
between pre-service and currently practicing high school teachers. Pre-service
teachers were weaker in all domains, but primarily in Specialized Content
Knowledge-Geometry (SCK-G) and Knowledge of Content and Teaching-
Geometry (KCT-G). There is a need for future research that focuses on these
domains, specifically to target what can be done to increase scores in these domains
for pre-service and high school teachers.

This study has shown there are differences in pre-service and high school
teachers’ experiences with instructional techniques and methods. Further research is
needed to investigate the different instructional techniques and methods used in
pre-service courses and professional development courses. These two forms of
teacher education courses would correspond, and that knowledge would be trans-
ferred to the teachers’ ideal geometry class. There is also a need for more research
into ways they can implement what they learn in their teacher education courses
into their current or future classroom.

Further research is needed to elaborate on the origin of Geometry Teaching
Knowledge in pre-service and practicing high school teachers. If we can pinpoint
where the majority of this knowledge is obtained, then we can make sure
pre-service teachers have those experiences in their training programs to better
prepare them for entering the high school classroom.

While this study is focused on Geometry Teaching Knowledge, there is a need to
extend this type of research into other secondary mathematics courses (e.g., Algebra
2, Pre-Calculus, and Calculus), and even into post-secondary education. These
results provide some insight into how this could be extended to other subjects, but
specialized assessments will need to be developed.
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Chapter 11
Designing Instruction in Geometry:
Using Lesson Study to Improve
Classroom Teaching

Ui Hock Cheah

Abstract The Malaysian Educational Blueprint of 2013 advocated a need to
improve mathematics instruction with regards to students’ construction and appli-
cation of mathematical ideas when solving real-world problems. This paper pre-
sents a school-based effort to design classroom instruction in geometry that
encourages students to mathematize and use mathematical processes towards this
purpose. The study used a methodology based on design research and Lesson
Study. Qualitative data were collected as the study progressed and were interpre-
tively analyzed. The findings of the study indicate that the teachers were receptive
of the approach and made useful contributions in the design of the instruction. The
effectiveness of the instruction was gauged by the teachers’ active participation in
the research cycle as well as the students’ thoughtful engagement in solving the
tasks and the ability to arrive at solutions through mathematical thinking. The
teachers in the study were able to identify three specific key pedagogical points that
enabled student learning: (a) Using the area of triangle formula to help students
make connections to previous knowledge; (b) Sequencing the tasks to facilitate the
students’ progression in learning; (c) Realizing the need to further expand and
enhance discourse so as to allow more student-student and teacher-student
interaction.

Keywords Area of triangles � Design research � Lesson study
Parallel lines � Problem solving � Procedures and concepts

11.1 Introduction

The Malaysian Educational Blueprint (MEB) (Ministry of Education, 2013) was
documented as a national strategy towards improving education in Malaysia from
2013 to 2025. Much reference in the MEB was given to the country’s performance
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in two international assessments: (a) The Program in International Student
Assessment (PISA); and (b) The Trends in Mathematics and Science Study
(TIMSS). Using these two assessments as benchmarks, it was inferred that there has
been a decline in students’ performance in science and mathematics over the years.
Due to these concerns, the authors of the MEB highlighted the need to achieve
several aspirations by providing students with a holistic education, emphasizing the
necessity to instill in students a love for inquiry and lifelong learning. The authors
of the MEB further advocate the inculcation of skills such as critical thinking,
reasoning, creative thinking, innovation and the enhancement of students’ ability to
apply knowledge and think critically outside familiar academic context. These
recommendations may seem timely and appropriate for most of the disciplines in
the curriculum. Ostensibly, the recommendations may seem superfluous for the
mathematics teacher as mathematical processes and problem solving have long
been suggested in the curriculum prior to the launching of the MEB. However, the
implementation and use of mathematical processes and problem solving in the
classroom have continued to pose challenges for the teacher. Malaysian teachers
often cite the lack of time, the compact curriculum and examinations as the main
constraints that discourage them from including mathematical processes and
activities that involve mathematizing in the classroom (Cheah, 2012). These con-
straints would certainly influence teachers to rely on the more traditional practices
in the classroom. There is therefore a continuing need to assist teachers to review
and apply pedagogical practices towards realizing the aspirations of the MEB.

11.2 The Study

This paper documents a school-based effort to design classroom instruction in
geometry which uses a student-centered approach to encourage students to math-
ematize and use mathematical processes. In the study, a teaching sequence in
geometry was designed for the purpose of “developing, testing, implementing and
diffusing innovative practices to move the socially constructed forms of teaching
and learning… to(wards) excellence” (Kelly, Baek, Lesh, & Banaan-Ritland, 2008;
p. 3). The aim of the study was to investigate the usefulness of the approach. The
three main research questions were:

(1) How did the teachers respond in designing and using the classroom tasks?
(2) How did the students respond to the tasks?
(3) How can the teacher and student responses be used to inform teacher practi-

tioners towards improving classroom instruction and the learning of geometry?
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11.3 Theoretical Framework

Investigating the usefulness and design of classroom instruction would necessarily
involve examining ways to carefully and purposefully design tasks and the sub-
sequent implementation of the tasks in the classroom to gauge their effectiveness
and ways of improving the tasks. This involves two main components: (a) A quality
assurance component to manage the process of designing, implementing and
evaluating for purposes of improvement; (b) A didactical component that examines
the quality of teaching and learning mathematics.

The design and implementation of instruction naturally involves teachers who
play major roles in the cognitive and formative dimensions of teaching (Mesa,
Gomez, & Cheah, 2013). Because of the integral role of teachers in the instructional
process, it is imperative that the ideas that are used in the design and implemen-
tation of classroom tasks take into account the teachers’ views. This applies to
classroom-based studies too, where the constant collaboration of teachers and
researchers leads to and enriches the learning process of the research team and
enhances the synergy among the team members. It is with this purpose in mind that
elements of design research and Lesson Study (Baba, 2007; Doig, Groves, & Fujii,
2011; Zawojewski, Chamberlin, Hjalmarson, & Lewis, 2008) were chosen to be
included in the design of the study.

The use of Lesson Study as a professional developmental approach is not new.
Widely used in Japan, Lesson Study has often been cited as a powerful approach to
empower teachers towards better classroom practice (Stigler & Hiebert, 1999). The
main characteristic of Lesson Study is the collaborative study of research lessons by
teachers and consists of three main phases: (a) Planning the lesson; (b) Observing
the implementation of the planned lesson; (c) Reflecting on the lesson to find ways
to improve the lesson. While these three main phases may look simple and
superficial, Lesson Study has been used to study more deeply various aspects of the
lesson including exploring and examining the instructional materials, the role of the
lesson tasks, ways to effectively present mathematical tasks as well as mathematical
discourse in the classroom (Doig, Groves, & Fujii, 2011). By including the col-
laborative elements of Lesson Study in this research, teachers become active
members of the study team and contribute significantly throughout the different
stages of the study as opposed to more traditional design methods where teachers
often take more passive roles.

Ensuring a good quality assurance process alone, however, does not guarantee
quality didactics. In a sense, the Lesson Study cycle is simply a generic approach to
manage lesson improvement, one which can be used in any discipline. It is therefore
necessary also to give due consideration and attention to the didactical component
that could then serve as a benchmark by which the elements that contribute to, or
hinder, the teaching and learning of mathematics can be gauged. Mathematical
tasks need to be designed, or selected, carefully so as to engage students in
meaningful learning. The design and selection of tasks in this study are guided by
the following principles:
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1. Children mathematize by organizing and using mathematical means through
spontaneous activities (Freudenthal, 1973).

2. Solving the tasks requires that the students use some form of mathematical
concept, formula, or method (Brousseau, 1997).

3. The tasks focus on a specific mathematical idea that can be built on and used to
solve a related task of higher difficulty.

Since this study relates to the teaching and learning of geometry, the classroom
tasks must provide the geometrical working space (GWS) (Kuzniak, 2015; Kuzniak
& Richard, 2014) for the students to construct the necessary mathematical ideas and
concepts and use them to solve problems. GWS, as proposed by Kuzniak and
Richard (2014), exists in two planes: (a) The cognitive plane; (b) The epistemo-
logical plane. The cognitive plane consists of three activity components: visual-
ization, construction, and proof. The epistemological plane consists of three kinds
of corresponding content components: representation, artefacts, and referential.
The cognitive plane describes the kinds of geometric activities that are derived from
the corresponding mathematical objects in the epistemological plane through pro-
cesses referred to as genesis. Thus visualization is derived from representation
through figural genesis, construction from artefacts through instrumental genesis,
and proofs from referential through discursive genesis. For a further discussion on
GWS please refer to Kuzniak and Richard (2014). This study focused on the
students’ capacity to conceptualize and apply a specific geometrical idea. Therefore
the students’ work in this study covers mainly the visualization-representation
components of their respective GWS.

11.4 Methodology

The methodology in this study, which was implemented in a naturalistic classroom
setting, involved a research cycle consisting of three phases: (a) The collaborative
planning and design of a teaching sequence; (b) Teaching and observation of the
research lesson; (c) Reflecting on the lesson and the teaching sequence in order to
improve the design of the classroom instruction (Fig. 11.1).

The study was carried out in a fully residential co-educational secondary school.
The research group consisted of four teachers (two males and two females) and the
researcher. The teachers have varying teaching experiences ranging from five to
thirty years.

Qualitative data for this study were collected from written artefacts, interviews
with the teachers and students, still photos and video recordings. The written
artefacts include the lesson plans that were drafted by the teachers, students’ work,
and student responses about the classroom environment which were collected
through a post-lesson survey. Informal interviews were also conducted with the
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teachers and students. The lesson and the post lesson discussions were video
recorded. The findings were then triangulated from the data, which were interpre-
tatively analyzed.

11.5 Findings

Stage 1 of the Study Cycle (Planning)

This stage covered the initial planning of the teaching sequence and the research
lesson. The topic chosen was on geometry; specifically, the area of triangles. This
topic is popular amongst teachers and emphasized in the curriculum. During the
planning stage, the research team discussed the design and sequencing of tasks to
help students develop the idea that the area of triangles between parallel lines with
the same base is constant. The students were also required to apply this concept in a
variety of problem solving situations. The research team conducted the afore-
mentioned discussions in four two-hour meetings over a two-month period. As a
result of the discussions five main tasks were chosen to be used in the lesson. An
important consideration during the design stage was to select tasks that would fit
into the actual classroom settings. Tasks were chosen and designed so that they
would take up minimal classroom time without sacrificing time for students to
construct the main mathematical ideas and without the teacher directly telling the
answers. The tasks would be able to intentionally foster the creation of a milieu,
which could promote students’ construction of their own ideas through meaningful

Collaborative 
planning of 

teaching 
sequence and 

research 
lesson

Teaching and 
observations 

of the research 
lessons

Re lecting on 
the lessons, 

and discussion 
to improve 

teaching 
sequence

Stage 1

Stage 2 Stage 3 

Fig. 11.1 The stages of the study cycle
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student-student and student-teacher interactions (Brousseau, 1997). During the
planning stage the team members agreed that the tasks in the lesson would involve
the use of dynamic geometry software (DGS) because the dynamic nature of the
software, through the click-and-drag feature, hide/show, and measure buttons,
allows for a more flexible in-depth discussion. Furthermore, the use of DGS affords
more flexibility for teachers to manage the instructional time in the classroom.

The tasks are listed here in sequential order in which they were to appear during
the lesson. During the discussion, however, the main anchor tasks, Tasks 4 and 5,
were discussed first. As the team members discussed the solutions to Tasks 4 and 5,
key mathematical ideas essential for solving the tasks emerged which led to the
subsequent design of the other tasks. Tasks 1, 2, and 3 were designed in order to
facilitate the students’ progression in constructing the geometrical ideas and use
them to solve Tasks 4 and 5.

Task 1 (shown in Fig. 11.2) was designed by the team member who taught the
lesson. The task, on inferring that the area of any triangle constructed on a common
base is dependent on its height, was designed as an enabler to lead the students to
Task 2.

Task 2 (shown in Fig. 11.3) was aimed at guiding the students to construct and
verify the idea that the area of any triangle between parallel lines is a constant. The
measure tools, the click-and-drag feature and the hide/show buttons in the software
in the DGS were used to allow the students to arrive independently at the con-
clusion through investigation. Point A can also be merged or unmerged to the
hidden line parallel to BC. Clicking and dragging point A shows how the area

Which triangles have the
same area?

E
DC

B

A

Fig. 11.2 Area of triangles
with a common base (Task 1)

m AC = 6.96 cm

m BA = 7.64 cm
Area ABC = 11.51 cm2 Hide Lines

B C

A

Fig. 11.3 Change in area as point A moves (Task 2)
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changes as point A moves. The students were asked to infer how the area changes as
point A moves.

Task 3 (shown in Fig. 11.4) shows an application of the idea that the area of the
triangle with a common base between parallel lines remains constant. The students
were required to use the idea to construct a quadrilateral from the pentagon without
changing the area.

Task 4 (shown in Fig. 11.5) shows an application in a real-life situation. Both
Tasks 3 and 4 were adapted from the TIMMS video study (TIMSS video, n.d.).
Some conditions were intentionally left out in Task 4 so that the conditions could be
used as points for classroom discussion. The teacher could initiate this discourse by
asking whether it would be fair if any straight boundary is drawn and what con-
ditions need to be considered to ensure fairness.

Fig. 11.4 Application of the area concept (Task 3)

 Ali's
Land

Ali and Ahmad are neighbours. They each own a
piece of land next to each other. The figure shows the
land they own. Ali's land is coloured yellow and
Ahmad's land is coloured blue. The boundary
between the two pieces of land is however zig -
zagged . Can you help make the boundary straight?

Ahmad's
Land

Show Objects

Show Segment

Animate Point

Move Point

Fig. 11.5 Problem solving task based on real-life situation (Task 4)
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Task 5 (shown in Fig. 11.6) is a problem solving task adapted from the Poh Leung
Kuk Primary World Mathematics Contest 2002 (c.f. http://www.poleungkuk.org.hk/
en/joint-schools-districts-world-competition/primary-mathematics-world-contest.html).
One key point in the discussion during the planning stage was that Fig. 11.6 should
be drawn so that the location of the point G should distinctly show that it is not the
midpoint of CD. Otherwise, the students would assume that G is the midpoint of
DC; which would lower the complexity of the task.

Stage 2 of the Study Cycle (Teaching and Observation of the Research Lesson)

One teacher from the research team taught the lesson to a Grade 10 class of nine
students while the other team members observed the lesson. All the tasks designed
in Stage 1 were included in the lesson. However, the teacher who taught the lesson
made some modifications to the teaching sequence. He began the lesson by
introducing the problem in Task 4. He reasoned that it would help set the tone of a
problem solving environment (5 min). This was quickly followed by Task 1 and
Task 2 (20 min) before reverting back to Task 4 to allow time for the students to
complete the problem in Task 4 through group work (20 min). For all the tasks the
students were provided with squared paper. Task 3 and Task 5 were then given to
the students to solve (20 min). The final five minutes was used for discussion and
to wrap up the lesson.

Student responses. The teacher who taught the lesson as well as the teacher
observers noted that Task 4 and Task 5 were challenging for the students. The
students were observed to be engaged while working on the tasks. This observation
was further corroborated by the remarks of three of the students after the lesson.
They voiced their wish to have more thinking tasks during lessons. For Task 4, the
students’ solutions were all similar to the one shown in Fig. 11.7. It was observed
that in order to apply the idea that the area of triangles between parallel lines is
constant, the students used the procedure of drawing parallel lines on the figures to
solve the problem. This procedure was not taught by the teacher during the lesson.
The students later clarified that they had learnt drawing parallel lines before.

In the Figure, ABCD and CEFG
are squares. If EF = 12 cm, find
the area of AEG. 

F

E

A D

B C

G

Fig. 11.6 Problem solving task (Task 5)
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The proceduralizing of the concept by drawing parallel lines was observed to be a
key moment that helped the students visualize the locations of the base and the
vertex of the triangle and thus identify the triangles with the same area. Task 5
appeared more challenging than Task 4 as the students were observed to initially
struggle when solving the problem. All the students, except one, arrived at similar
geometrical solutions (see Fig. 11.8a). Just as the students did in Task 4, once they
correctly identified and drew the parallel lines in the diagram they were able to
identify the triangles with the same area and subsequently found a solution to the
problem.

One exceptional case was observed where a student used mathematical calcu-
lation to arrive at the solution (see Fig. 11.8b). The student wrote the following
solution:

Area MADG ¼ 1
2

40ð Þ 28ð Þ ¼ 560 unit2

Area MGEF ¼ 1
2

12ð Þ 12ð Þ ¼ 72 unit2

Area MABE ¼ 1
2

52ð Þ 40ð Þ ¼ 1040 unit2

Area quadrilateral ABCD ¼ 40ð Þ 40ð Þ ¼ 1600 unit2

Area of shaded region ¼ 144þ 1600ð Þ � 1040þ 72þ 560ð Þ
¼ 1744� 1672

¼ 72 unit2

Fig. 11.7 Students’ solution for Task 4
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In the solution the student drew the diagram on squared paper. From his
drawing, he assumed that the length of BC was 40 units although it was not given in
the task and proceeded to calculate the area of triangles ADG, GEF, and ABE and
the area of the quadrilaterals ABCD and CEFG. The area of AEG (the shaded

(a) Geometrical solution

(b) Solution using calculation 

Fig. 11.8 Students’ solution
for Task 5
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region) was calculated as the difference of the sum of the two quadrilaterals and the
three triangles. When asked later, the student could not explain why he assumed
the length of BC to be 40 units although he acknowledged that it is possible that the
length of BC was not necessarily 40 units. It is inferred that he made this
assumption from his drawing on graph paper.

At the end of the lesson, the students were asked to complete a 16-item 4-point
Likert-scale survey, which had been designed to investigate the students’ perception
of the classroom environment related to classroom interactions and student learn-
ing. The post lesson student survey consisted of 16 items that were scored on a
four-point Likert scale (with 1 indicating total disagreement with the statement and
4 total agreement). Items 1 to 3 describe the student’s interaction with their peers, 4
to 6 describe whether the teacher, the students or their peers were asking questions,
7 to 9 describe the students interaction with their peers, item 10 describes whether
the student felt the teacher was fair, 11 to 13 describe whether the student found the
mathematics learnt was useful and interesting, and 14 to 16 describe whether the
student liked the lesson (see Table 11.1).

Stage 3 of the Study Cycle (Reflection and Discussion of Lesson)

Stage 3 of the study cycle was a post-lesson discussion, which was held immedi-
ately after the lesson. The discussion lasted for an hour. The teacher who taught the
lesson gave his reflection on the lesson first, followed by each of the other members
of the team. All the team members agreed that the tasks posed were challenging and

Table 11.1 Student post-lesson survey questions and mean responses

Mean S.D

1. I shared with my classmates what I knew in the lesson 3.30 0.5

2. I got help from my classmates 3.40 0.7

3. I helped students who have trouble understanding the lesson 2.63 1.06

4. The teacher asked questions 3.50 0.5

5. I asked the teacher some questions 3.00 1.10

6. I asked my classmates some questions 3.00 0.80

7. My classmates talked with me about how to do the activities and
problems

3.13 0.35

8. I showed and explained how I solved a problem to my classmates 3.10 1.00

9. I learned from my classmates in the lesson 3.00 0.76

10. The teacher was fair to me and my classmates 3.75 0.46

11. The Math I learned in the lesson can be used at home/the
supermarket/store/everywhere

3.63 0.52

12. I learned new and interesting things about Math in the lesson 3.80 0.50

13. What I learned is useful at places outside school 3.25 0.46

14. I like the activities in the lesson 3.88 0.35

15. I understood the lesson 3.88 0.35

16. The lesson was fun 3.88 0.35
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suitable as it was observed that the students were actively engaged in solving the
tasks. The team also concurred with the observation that the students initially had
difficulty when solving the problem in Task 4 until the teacher suggested the use of
the formula for the area of the triangle (Area = 1

2 � base � height). The teacher
who taught the lesson further suggested that it would be better to start with Task 1
and 2 instead of Task 4 for lower achievers in future lessons. Another suggestion by
the research team was to allot more time for discussion within groups, and with the
entire class. Allowing sufficient time would enable the students to articulate and
communicate their ideas. This observation was affirmed by the results of the survey
conducted at the end of the lesson (see Table 11.1). Items 3, 4 and 6 show lower
mean scores compared to the other items, indicating that the students felt that there
were few opportunities for them to interact during the lesson.

11.6 Discussion

The aim of this study was to explore the feasibility of employing a design research/
Lesson Study approach to enable students to think mathematically and solve tasks
in geometry. The active participation of the teachers in this study showed that the
design research cycle was effective in empowering the teachers as well as in
developing the teachers’ professional knowledge, particularly in specific learning
situations in the classroom. Through the discussions, teaching, lesson observation,
and the subsequent reflection, the teachers’ practitioner knowledge about teaching
and learning geometry was further enhanced. All the teachers in the team provided
useful inputs in the process of designing the tasks, in teaching the lesson as well as
providing constructive feedback to improve the lesson. This study showed that,
through the research cycle, the team members were able to identify three specific
key pedagogical points that enabled student learning: (a) Using the area of triangle
formula to help students make connections from previous knowledge;
(b) Sequencing the tasks to facilitate the students’ progression in learning and,
(c) Realizing the need to expand and enhance discourse through student-student and
teacher-student interaction.

The students’ solutions showed that they were able to apply the idea that the area
of triangles between parallel lines with the same base length remains constant to
solve Task 4 and Task 5. Their ability to solve the tasks was facilitated by two key
moments in the lesson. The first was the teacher’s prompting that led the students to
conceptualize their new idea by examining the area of triangle formula. This led the
students to conceptualize that the area of triangles between parallel lines with a
common base is constant. The second was the procedure of drawing parallel lines
onto the figures in the tasks. By drawing parallel lines the students were able to
identify the triangles with the same area. This proceduralization of the constant area
concept which the students had constructed earlier helped the students to extend
their understanding of the concept and solve Tasks 4 and 5. One possible
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explanation for this is that the students’ flexibility and expertise to solve the tasks
increased as they make more connections between the procedure and the theorem of
constant area of triangles between parallel lines. As Baroody, Feil, and Johnson
(2007) argue, making more links between procedures and concepts can lead to a
deeper conceptual understanding of mathematical objects which in turn could assist
students in problem solving. This is because procedures are not disconnected but
rather are linked and intertwined with concepts (Baroody, Feil, & Johnson, 2007;
Gray & Tall, 2001; Star, 2005; Tall, 2013). This raises the issue of the importance
and necessity of intentionally including appropriate procedures while designing
tasks for instruction so as to enrich and deepen the students’ understanding of
mathematical concepts.

The design and sequencing of the tasks also played an important role in facil-
itating student learning. The main aim in the sequencing of the tasks was to assist
the students to progressively mathematize new geometrical ideas. They first con-
ceptualized that if the height of triangles is fixed then the area of the triangle with
the same base is constant. This led them to conceptualize that the area of triangles
between parallel lines is constant and, subsequently, to build on this concept to
elicit the procedure of drawing parallel lines and apply the procedure to solve more
complex tasks. One pertinent issue in the sequencing of the tasks was raised by the
teacher who taught the lesson, whether it would be more appropriate to introduce
Task 4 first which would set the tone of the lesson at a higher cognitive demand.
The other alternative would be to begin with Task 1 and introduce the other tasks
progressively before introducing the main anchor problems of the lesson in Tasks 4
and 5. While this may make the anchor tasks easier to solve, as the students would
already know which geometrical idea to apply, it would also make the problem less
challenging and take some fun away from problem solving.

While most students gave a geometrical solution to Task 5, one student however
gave a solution using only mathematical calculation (Fig. 11.8b). This showed that
students at this level were capable of offering different approaches to the solution.
An emergent issue here is that this scenario provides teachers with an opportunity to
make connections between the geometrical solution and the solution using calcu-
lation. In the solution provided by the student using calculation, he assumed that
AB = AC = 40 units. Using this special case, he was not able to make any algebraic
generalization. This raises the question of whether teachers should extend student
learning at this point to create discourse to help students further extend their
understanding. Would the method used in the solution still apply if AB is equal to a
length other than 40 units? This could lead to more problem posing with possi-
bilities of linking geometric and algebraic solutions and a further blending of
mathematical knowledge structures leading to even more mathematizing
possibilities.

The teachers and students in the study noticed that there was a lack of oppor-
tunities for student-teacher discourse during the lesson. More opportunities could be
further incorporated into the instruction so as to encourage a richer discourse in the
classroom. Examining the lesson tasks also led to the conclusion that the tasks were
able to elicit student work that was centered on the drawing and visualization of
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geometrical figures and diagrams. Seen from the perspective of the GWS frame-
work proposed by Kuzniak and Richard (2014), the GWS of the students in this
study covered mainly the visualization activity and representation content com-
ponent in the framework. The students’ work was centered on the use of figures and
diagrams. Very little working space was covered in the construction-artefact and
proof-referential components in the GWS framework. This indicates that the GWS
of the students can be appropriately expanded to include tasks that involve geo-
metrical activities of construction and proofs.

11.7 Conclusion

The Malaysian curriculum advocates and emphasizes learning mathematics through
fostering mathematical thinking and problem solving. To actualize this vision, it is
necessary to carefully design classroom tasks that enable students to mathematize
and to progressively learn mathematics by conceptualizing and organizing mathe-
matical structures and subsequently extending and applying them to solve problems
(Freudenthal, 1971; Skemp, 1993).

The design research approach used in this study involved a collaborative effort
by the research team consisting of teachers and the researcher in designing the
instruction, teaching and observing the lesson and reflecting and discussing the
lesson. In particular, the design research and lesson study approach was able to
facilitate and empower the teacher towards enriching the teachers’ practitioner
knowledge. In this study, attention and focus were also given to the didactical
aspects of learning geometry. By considering and examining these didactical
aspects, the teaching and learning of mathematics and in this case, the study of
geometry, could be examined and improved. The episodes of student problem
solving provided some insights into the distinct ways they used to solve problems.

The feedback from the teachers and students also indicated the effectiveness of
the lesson in geometry that was able to foster thinking and problem solving among
the students. It is significant that, through the design research/Lesson Study
approach, the teachers were able collectively to identify areas of instruction that can
be continually improved to encourage students to mathematize. Mathematical
discourse, which was given minimal emphasis in the lesson, was identified as one
aspect that can be given more emphasis in future research cycles. Through cycles of
continual improvement, teacher knowledge in both mathematical content as well as
pedagogical content can thus be expanded towards crafting and actualizing
instruction that fosters thinking, discourse and problem solving and making it in the
classroom.
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Chapter 12
A Professional Development Experience
in Geometry for High School Teachers:
Introducing Teachers to Geometry
Workspaces

José Villella, Gema Fioriti, Rosa Ferragina, Leonardo Lupinacci,
Fernando Bifano, Susana Amman and Alejandra Almirón

Abstract This chapter deals with material designed within the framework of a
teacher development project coordinated by the authors and aimed at providing
support for in-service secondary school teachers who use or consider using
Dynamic Geometry Software (DGS) to develop instructional sequences in mathe-
matics classrooms. The project contains worksheets prepared as text support by
authors and included in the Teacher’s Guide (Fioriti et al. in Matemática 1/2.
Ediciones SM, Buenos Aires, 2014a; Matemática 2/3. Ediciones SM, Buenos Aires,
2014b; Matemática 7/1. Ediciones SM, Buenos Aires, 2014c), which was provided
to students in the context of a teacher development course. A premise of the course
is that problem solving is a vehicle for students to learn mathematics meaningfully.
To enable this kind of learning, the classroom should be organized as a learning
community, and technology should be incorporated as a tool for expanding
mathematical knowledge.

Keywords Dynamic geometry software � Geometry � Secondary level
Teacher education � Teaching

12.1 Introduction

The importance for teachers to study the tasks that secondary school students will
be asked to do, cannot be overemphasized. In this contribution, we present a work
plan with a sequence of tasks to be carried out in the professional development of
in-service, secondary mathematics teachers. The course introduces the teachers to a
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theoretical framework, includes tasks teachers should carry out during course
sessions, and the didactic analysis of such tasks. The course provides opportunities
for teachers to reflect on secondary school students’ behavior while learning
mathematics and when interacting with other students, teachers, and tasks. The
course also provides opportunities for teachers to analyze the characteristics of tasks
and activities to ensure that they can enable mathematical thinking by students.

With those aims in mind, we presented teachers with different problems relating
to real-life and mathematical contexts. The underlying assumption was that the
analysis and resolution of these problems in the teacher education classroom may
usher the participants into a geometric working space (Kuzniak & Richard, 2014).
This working space consists of interactions among:

1. A real space, as support material, with tangible and concrete objects;
2. A set of artifacts such as drawing instruments or construction software

(GeoGebra, in this case);
3. A theoretical reference system based on definitions and properties (here, geo-

metric space and area of 2D figures organized in such a way that teachers can
ponder on how secondary students using technology to solve problems might be
engaged in creating and validating their knowledge on geometry).

12.2 Theoretical Framework

Kuzniak and Richard (2014) point out that the teaching that favors the development
of students’ mathematical work at school requires a certain organization that the
teacher is responsible to generate. Thus, in their professional education, it is
important to provide teachers with the following:

• Opportunities for those who teach to be involved in formulating conceptual
networks or mental schemes whereby teachers can ratify their beliefs and
conceptions, and which can be used in class to allow students to produce their
own schemes,

• Support materials with related content to encourage teachers to search for
mathematical connections throughout the curriculum design,

• Teacher guides that allow teachers to write comments on the software they
select and use in the classroom.

We designed a professional development course based on our own experience
teaching with this framework (CEDE, 2015) and included work material in the
Teacher’s Guide to be used as support for school texts in secondary school teaching
(Fioriti et al., 2014a, 2014b, 2014c). The following principles were used to guide
the design of the training course:
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• The classroom is regarded as a community for the study of mathematics,
• Problems take place in mathematical contexts or occur in extra mathematical

context as a learning engine,
• Conjectures and proofs are constitutive tasks of mathematical activity,
• Construction of models of a situation to be studied is the key in mathematics as

it entails abstraction that reduces problems of complex nature to their essential
characteristics. Students should identify a set of variables, relate them accord-
ingly and transform those relations using any theoretical-mathematical system to
produce new knowledge on the problems under analysis.

These guidelines form the framework of the teachers’ professional development
and how the sequence of activities and their management have been designed.
Students decide how to solve the problems, search for the most relevant relation-
ships between variables, and discuss the strategies used with other classmates. The
teacher plays the role of a coordinator who chooses problems, encourages
student-student as well as student-teacher interactions, and finally organizes stu-
dents’ ideas into a collective production. A teacher, as a real professional, believes
that knowledge is produced as a result of the interaction between the problem and
the student’s peers (Fioriti, 2017).

The problems and activities proposed for didactic analysis are meant for teachers
to debate how to manage the class in order to encourage students to try and produce
different solutions, then discuss them, all the while dealing with the conceptual
networks that involve the passage from arithmetic to algebra, the use of deductive
reasoning as a way of justifying in geometry, and the use of different but equivalent
representation systems as some of the activities that students beginning secondary
school should do. At the same time, these problems and activities aim to encourage
teachers to focus on ways of organizing class interaction and think about the
validity, accuracy, clarity, and generalizations of students’ mathematical statements.

The incorporation of computers into society has brought about such a cultural
change that the way in which we see the world and live in it has changed. In the
same way, the incorporation of computers in the classroom requires a cultural
change in the way we study and acquire knowledge. This change affects mathe-
matical knowledge in how it is studied as well as the organization and management
of classroom instruction. Consequently, the teacher should have the skills to deal
with this change (Richard et al., 2013). The inclusion of technology in teaching is
inevitable; it provides the opportunity to rethink activities and problems that make
knowledge comprehensible, and it makes us aware of the powerful tools that we
have at hand.

Given this scenario, the incorporation of technology in different ways (to do
mathematics, to expand mathematical culture and, consequently, to expand
knowledge) should be analyzed as part of the specialized training teachers acquire
during their professional development.
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12.3 A Management Model for Geometry Instruction

The proposal we have described includes topics of Geometry, which are charac-
terized as the branch of mathematics that according to Villella (2008):

– can be seen. Geometric figures can be drawn or constructed using the properties
that characterize them. This involves being aware of the difference between a
diagram and a figure (Laborde,1998), a situation that requires a didactic
examination (Charles-Pézard, Butlen, & Masselot, 2012),

– allows for play. The development of concepts at the core of the content networks
to be studied through the manipulation of concrete objects gives learning an
active, playful quality,

– best connects to reality. The 3-dimensional and 2-dimensional models it ana-
lyzes can be seen in material objects,

– applies algebra concepts. The same language and symbols in algebra are used to
name and characterize geometric content,

– helps to reason. Its axiomatic structure develops thinking and helps generate the
use of deductive reasoning in students (González & Herbst, 2006).

The proposed activities center around the connection between geometry and real
life situations, which allows working with models and mathematical problems that
require the use of geometric properties to justify the solution found. These activities
enable teachers to think about the properties of geometric objects that are studied in
secondary school. In this reflective process, a model (a mathematical representation
for a non-mathematical object) is built, with theoretical developments whose
properties become meaningful in terms of how they relate to the situation that
originated them, and properties are studied and geometric objects are characterized
according to reasoning and procedures of geometry itself.

The development of geometric concepts is presented in activities with the
generic name study (Chevallard, 2009). We chose this way of identifying them as
we believe the classroom will have the same qualities as a learning community
when they are solved. This community is made up of a group of students coordi-
nated by a teacher whose main task is to search for a solution to the problem given.
In order to do this, the known data is used together with properties studied before or
appearing for the first time, which makes the corpus of the answer discussed in
groups. This classroom organization, as well as the use of the study content made in
it, creates a particular environment that brings about different kinds of methods,
qualities of the models used, and justifications of the steps followed as showed in
this example (Fig. 12.1).

When content is set in this way, problem solvers need to apply the necessary
conceptual networks to highlight the underlying geometric property in the problem
and explain the resulting family of figures (Ferragina & Lupinacci, 2012).
Therefore, the classroom becomes a place where debate, argumentation, and the use
of properties to explain decision making are more relevant than using a figure as
proof, which is common in secondary school classrooms. In addition, ideas about
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what steps students need to take and what elements they need to use flow freely. It
generates communicative competence in the mathematics classroom since students
have to justify elements chosen and steps taken (Iranzo & Fortuny, 2009).

12.4 Technology as a Tool for Teaching Geometry:
Incorporating DGS

The most basic concepts of geometry taught at school can be described as the
combination of their properties with the use of relevant and irrelevant attributes
(Vinner, 1982) that characterize them. In this identification or construction of a
geometric concept, we can distinguish at least four elements:

1. The image of the concept: It refers to the concept as it appears in the mind of the
subject who is studying it. It includes everything related to the concept that
comes to mind, everything evoked when the word that names it is heard or when
a picture or representation is seen.

2. The definition of the concept: It refers to the verbal form with which a certain
notion is expressed (when it exists; it does not always include everything the
learner knows about the geometric object in question). This definition is not
necessarily mathematical.

3. A group of mental or physical operations, such as certain logical operations, that
make a comparison with the mental picture easier.

4. Technology: in a broad sense, it refers to a socio cultural product that is useful as
a physical and symbolic tool to relate to and understand the world around us.

The construction of the image of a geometric concept results from a mix of visual
and analytical processes that are realized in two directions. On the one hand, there is
the interpretation and comprehension of visual models. On the other hand, there is
the ability to translate symbolic information into a visual image by using certain
technology. The interpretation of the image is the product of visual processes where
the irrelevant attributes of the visual component are obtained first and act as a
distraction between our internal constructions and what is perceived by the senses

Fig. 12.1 An example of a problem
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(Villella, 2008). We believe that from its own conception, there is a certain tech-
nology in geometry that contributes to the definition of the geometric concept.

What aspects are to be considered when the translation to a visual image is made
through DGS? In the same way that writing has restructured consciousness and the
human mind has generated cognitive operations that had not been developed before
it, new technologies transform subjectivity, capacity, and practices (Evans &
Levinson, 2009; Rogoff & Lave, 1984; Smolensky & Legendre, 2006).

Some teachers believe that with the incorporation of Information and
Communication Technology (ICT) at school, there is a risk of limiting teaching. In
this specific case, the risk exists if the teaching is limited to what can be seen on the
screen: the geometric pictures, the graphic representations of functions, the result of
calculations, and so on. In traditional mathematics instruction, where many teachers
were and still are trained, it is common to focus on techniques, which usually
appear before the problems that make them meaningful or needed. Mathematical
software and calculators are tools that solve algorithms effortlessly and in the case
of graphs and figures, DGS allows for some properties to be seen. Thus, it is
necessary to modify classroom work and start solving problems that will enable
students develop three cognitive processes of geometric activity:

1. Visualization, related to the representation of space and support material;
2. Construction, determined by the instruments used (GeoGebra) and geometric

configurations;
3. Discursive, aimed at producing arguments and proofs (Kuzniak & Richard,

2014).

To overcome these processes, our teacher development course first provides
meaningful concepts and then assigns work on the mathematical techniques.

Just as in oral language it was impossible to manage concepts associated with
geometric figures, in written language it is impossible to think of dynamic geometry
objects. In a teacher development classroom, this makes a good starting point for a
discussion:

• A technology for dynamic geometry constitutes a new system of representation
of geometric objects when using new ostensive objects: computerized pictures.
These pictures differ from the ones made on paper precisely because of their
dynamic nature. They can be moved and deformed on the screen while keeping
the geometric properties that have been assigned by the construction procedure;

• A production means that uses a device (the computer) as a fundamental
requirement for its use;

• A particular language that integrates not only the language of geometry but its
articulation with computer language,

• A semiotic tool with particular characteristics that combines different models,
particularly the geometry model in the software embedded in the computer
language.

202 J. Villella et al.



Using DGS allows for a new means of producing knowledge, with a specific
language that must be known. Learning processes built in this way are encouraged
through the design of teaching processes. Listed below are some of the goals
students are expected to achieve:

1. Interpret the problem posed.
2. Understand the given information and establish relationships with the com-

mands in the program.
3. Formulate and test conjectures about the concepts being taught.
4. Design strategies to confirm or refute conjectures.
5. Summarize information given.
6. Communicate the result of findings while trying to define what they managed to

build.

12.5 Teachers’ Professional Development

In this section, two activities are provided to exemplify what was described. The
first one serves as an example of a model construction, and the second one
exemplifies the study of the geometric object from the discipline itself. These
activities will be used to describe the management of classroom work as well as the
meaning that content is given through the use of technology.

We propose a collaborative task where it is important to consider what a teacher
needs to know to develop a successful teaching process in which students gain more
understanding about the nature of mathematical knowledge. With the analysis and
resolution of this kind of teaching situation developed in the project, teachers are
given the opportunity to discuss the different variables they should deal with in
order to give students the possibility of reasoning, arguing, making conjectures,
refuting, and modeling in order to provide meaning to the mathematical knowledge
students are learning. In furtherance of this aim, we selected mathematical content
in the specific context in which it would be used. Then, we analyzed the processes
involved in teaching it, and made conjectures about how learning would be
achieved. The whole procedure makes this mathematical content specialized and
limited to teaching professionals. It is included in a sample about mathematics
teachers’ specialized knowledge MTSK (Muñoz-Catalán, 2015).

12 A Professional Development Experience in Geometry … 203



12.6 Applying Mathematics to Situations Originating
Outside of Mathematics

The following paragraph sets out a situation described as fiction from reality:

A farmer wants to install a water tank to provide water to the main house, the
housekeepers’ house and a work shed. The tank should be as close to the
main house as possible. However, due to the leafy trees surrounding the
house which cannot be moved, the tank can only be installed 500 meters from
the house. The idea is to place the tank at the same distance from the
housekeepers’ house and the work shed. Where should the tank be erected?

In this example, the first decision to take leading to the solution of the problem
above is to construct on the screen representations that model the two conditions set
out in the problem:

(a) The distance from the tank to the main house must be 500 m,
(b) The tank must be placed at the same distance from the housekeepers’ house and

the work shed.

For that purpose, scales must be used and the points representing each element
must be named (Fig. 12.2).

Now, it is possible to establish the construction steps to be followed, what
software tools are available, and what hidden conditions are being taken for granted
by understanding the logic of the software.

Fig. 12.2 Possible answer attempt
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Some teachers’ (Tn) responses when they worked on this task:

T1 We need to draw a circumference. The problem says the tank must be
placed at the same distance from the housekeepers’ house and the work
shed. But, where do we draw the center of the circumference?

T2 Anywhere. The only important information is the radius’ length.
T3 But we need to see them on the screen. So…point it near the center of

the screen, please.
T1 Ok. Can you remember me the radius’ length?
T2 I think it’s 500 m.
T1 So, We will need to use a scale.
T3 1 cm = 20 m. Do you agree?
T1 Yes.
T2 Yes, it can be a good one.
T3 Use the command that shows circumferences to draw it…
T1 We need to use the second condition too!
T2 Uhh… You’re right. I’d forgotten it.
T3 Draw this figure near the other one. We’ll be able to compare the two

figures all at once.
T1 It’s necessary but we need to use them at the same time in order to find

the answer
T3 Uhm…let me see.…

All these activities need to be justified: the circumference has a given center and
radius, the segment can have any length, however, the required line can only be its
bisector, although the axes system cannot be visualized, the software assumes its
orthogonal reference system, etc. The cognitive problem to be solved requires that
both conditions be fulfilled simultaneously. The original screen (Fig. 12.2) must be
changed, so both conditions can lead to a model upon which conclusions can be
drawn. The screen may show several pictures to be analyzed in terms of the
dynamic nature of some points or figures. For example, if segment CaG is moved, a
possible figure of analysis is:

Some teachers’ responses:

T1 This is a good answer (showing Fig. 12.3).
T2 Um…it’s an answer, but not the answer!
T3 What do you mean?
T2 If I move G to the right, CaG changes its length, then the bisectors line

change too
T1 Yes… and if we move Ca we obtain another line, so…
T3 Move them all around the screen, and let me see what happens…
T3 There are many answers…
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T1 But…what happens if we choose a bisectors line by C?
T2 It’s a particular case.
T3 No, I think it’s the best answer, isn’t it?

Discussions, debates, and arguments based on certain properties arise by ana-
lyzing some possible answers to these questions: Does the result reflect the target
model? What if the moving figure is another one and the screen obtained is the one
below (Fig. 12.4)?

Answers may vary depending on the problem solver’s perception. The dynamic
nature of the point moving throughout the screen and the presence of other many
infinite figures may change the answer. However, the logical reasoning leading to
such an answer is still valid and so are the conclusions: The circumference of center
C and radius 5cmrepresents the geometric locus of the points modeling the first
condition of the problem, and the CaG segment bisector is the geometric locus of
the points modeling the second condition.

Fig. 12.3 Dynamic study of
the figure (case 1)

Fig. 12.4 Dynamic study of
the figure (case 2)
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The figure of analysis becomes a knowledge object. This picture is no longer
enough to solve the problem since the screen becomes the justification. Thus, the
answer can only be found in the properties defining the geometric properties.

Some teachers’ responses:

T1 There are two conditions and two geometric properties: The circumfer-
ence and the CaG segment bisector.

T2 But, we need to use both of them to find the answer.
T3 If this is true, draw the only figure that uses both geometric properties.…
T1 Umm… Another problem. There are two points of intersection that

satisfy both geometric properties.
T2 We need to study which of them is the appropriate one.
T3 I think both of them.
T1 Why?
T3 I can see it in the screen.
T2 No, it’s not enough.
T1 We need to justify… properties!, properties!…

The study of the teachers’ answers led to the construction of a model fulfilling
both conditions. Such model being the one showing the intersection of both geo-
metric loci requires another decision to be made: Which of the intersection points
P1 or P2 will be considered point T (tank location)? Is it necessary to make this
decision? Is it required by the formulation of the situation that gave rise to this study
(Fig. 12.5)?

Fig. 12.5 Dynamic study of
the figure (case 3)
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With these new questions, other questions arise which support the didactical
analysis and make up the specific knowledge teachers must acquire as part of their
training.

12.7 A Situation Within Mathematics: Study
of the Geometric Figure

In order to study a property of the isosceles trapezoid, we introduced the following
activity:

In the GeoGebra screen below there is a trapezoid, which, by construction, is
isosceles.

a) Determine the ratio between the areas

of triangles DAB and ACB. Justify your 

answer.

b) If the trapezoid ABCD were not 

isosceles, would the answer to the question

above still be valid? Explain why.

The first decision to make when solving the problem is to reproduce the figure
on the screen, so both triangles can be seen (Fig. 12.6):

Some teachers’ responses:

T1 We need to reproduce the screen figure. This is an isosceles trapezoid, so
we need the length of segment DA to be the same length of segment CB.

T2 Use circumferences!!
T1 Perhaps another tool is available. Let’s explore the tool bar.
T2 Yes…
T1 This is an isosceles trapezoid (showing Fig. 12.6 without the triangles).
T2 The problem says: “triangle DAB and ACD.” Draw them, please.
T1 Here they are (showing Fig. 12.6).
T2 We need to determine the ratio between their areas. We need to calculate

each one. So, base multiplies height and then we divide …
T1 Yes…but we don’t know the measurement and, if we move the baselines

of the trapezium they will change. So, it’s not easy…
T2 Let me think…
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The above dialogue leads to establishing the steps that must be followed in the
construction and their pertinent justification: base lines are parallel; sides DA and
CB have the same measurement. The cognitive problem lies in the lengths of DA
and CB and in the area of ABD and ABC: They that are not measured directly and
are visually considered equal. The solution entails designing a task that involves
conceptual networks already studied: triangle height, bases, and similarities. In this
case, both triangles have a common side (AB), and they both have the same height.
The ratio between the areas is 1 as the areas are equal. Once question (b) is
answered, the screen shows different pictures to be analyzed in terms of the
dynamic nature of some of its vertices. For example, if vertex A is moved, possible
figures of analysis (height is marked in dotted lines) are shown in Fig. 12.7.

Some teachers’ responses:

T1 The areas are equal. The ratio between them is one.
C (Coach) Why?
T2 We used properties!
C Which ones?…
C It’s OK. But, what happens if you move vertex A?
T2 Nothing!! The trapezoid is always isosceles.
C Move it.
T2 I see it on the screen!
T1 Stop! You are changing the baseline length.
T2 But not the height.
C So…
T2 Nothing happens.

Fig. 12.6 Reproduction of the trapezoid with the triangles drawn

Fig. 12.7 Dynamic modification of the figure
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C The ratio between the areas doesn’t change, does it?
T1 Let me think, please.
C OK.
T1 And if I move vertex C…
T2 It’ll be the same.
C Try.
T1 It’s not the same.
T2 I agree…I need more properties!!

The questions arising from the analysis of these figures are: Does the ratio
between the areas change because the shape also changes? If the moving point is a
different one, could another figure be obtained? Once more, the presence of many
other infinite figures may change the answer. However, the logical reasoning
leading to such an answer is still valid and so is the conclusion: The triangles have
the same area. The figure to be analyzed is not enough to solve the problem since
the screen becomes the justification; thus the answer can only be found in the
properties defining the area and the triangle similarities.

If we compare the areas of triangles AOD and COB, with O the point of
intersection of the diagonals, can we reach the same conclusion? Upon exploring
the figures obtained when O is located in different places on the screen, the shape of
the figure changes but the ratio of the areas is the same. AOB is part of the two
triangles compared in the original problem, by subtracting it from the new triangles
to be compared, “the same area” is subtracted; thus such areas are equal. Now, we
may wonder: What properties are brought into play if we compare triangles with
similar areas but with different bases and height?

When considering the problem, teachers may raise doubts about the mathe-
matical knowledge they think they possess after analyzing the ratio between areas
not measured directly and studying the ratio reaction after obtaining different fig-
ures of analysis. Furthermore, the need to use properties that go beyond what is
seen on the screen challenges the knowledge teachers have on geometric structure,
and sets in motion a more active way of solving mathematical problems.

An analysis of specialized content knowledge for teaching (Muñoz-Catalán,
2015) prompts the assumptions teachers make about the way geometry is taught
and learned. In our case, we add the use of DGS, which besides adding dynamism
to answers leads to a series of assumptions regarding the geometric object of study
that need to be confirmed. The problem described above is meant to analyze the
specific knowledge about geometry each teacher has, considering what each teacher
knows about Geometry, and the specialized content knowledge for teaching (SCK;
Ball & Bass, 2009) each teacher has acquired. This allows teachers to interrelate
content, to weigh student reasoning and mathematical solutions, and to recognize
the validity of the arguments that may arise.
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12.8 Conclusions

In our proposal, the mathematical content to be learned includes problems from two
different work contexts: the modeling of a real situation that requires the con-
struction, study and analysis of a model so that the conclusions drawn may be
applied to solving the situation from which it originated, and the study of figures
within mathematics where the use of properties and the construction using valid
reasoning lead to the targeted solution.

The presentation of these two different types of problems in the teacher training
classroom is relevant for teachers as it allows them to study the underlying structure
of geometric working spaces: An epistemological level, linked to mathematical
content, and a cognitive level, linked to visualization, construction, and proof. In
order to articulate these two levels and obtain sound mathematical work, we pro-
pose discussing with teachers the development of figural genesis, relating space and
figures (epistemological level) with visualization (cognitive level), instrumental
genesis, relating artifacts (DGS, paper and pencil, etc.) from the epistemological
level with construction (cognitive level), and discursive genesis, relating the ref-
erence framework (epistemological level) with proof (cognitive level; see Kuzniak
& Richard, 2014).

For teachers, this articulation into two levels includes a wide range of teaching
situations that lead to the development of a mathematical work space inside the
classroom and the use of a learning community. Our interest in the use of DGS lies
in its capacity to support the discussion with teachers about the acquisition and
construction of geometric knowledge in the secondary school classroom.

In addition to the specific knowledge of teachers, the work proposed supports
reflection about the mathematical performance of secondary school students at the
moment of studying and how they solve specific geometric situations. Some of the
points discussed with teachers include how students design models, use metaphors
to communicate findings, and organize explanations and reports to communicate
discoveries and verifications. Other times, the points discussed were how students
design strategies to find solutions justifying the procedure used, select material,
spend time, appreciate both their own and their classmates’ performance, accept
mistakes, and correct the models used. It is important to analyze how students
transfer the knowledge acquired to other learning contexts analyzing the wrong
ideas acquired from the physical representation of objects, realize the double status
of geometric objects, since the drawing of an object is sometimes considered the
object itself, and the need of a description characterizing the object with the purpose
of removing any ambiguity related to its representation.

The management of instruction—the design, performance, assessment, and
generalization of teaching strategies performed by the teacher—leads to a process
of negotiating the interests of students and teachers, where teachers act as stewards
of a learning environment. The interests of students are based on meaningful
content to be developed and on the naturalization of the use of DGS in the world of
mathematics instruction. The interests of the teachers are based on the epistemology
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of the given content. In this negotiation, teachers act as natural mediators between
the content and students; while teachers design and pose problems to be solved,
students develop strategies to solve such problems where both teachers and students
are part of a classroom project.

Regarding mathematics in secondary school, the use of DGS generates several
ways to introduce tests as an unavoidable element of conceptual networks that are
essential to the learning process. Teachers can suggest situations for graphic and
dynamic research for students to analyze the behavior of geometric objects and the
relations among them and thus, understand mathematical concepts and procedures,
to justify and to do some more formal tests. DGS helps teachers lead a learning
process by dealing with contradictions and causing students to learn about the
formal demonstration process, explain why a result is mathematically true, com-
municate mathematical relations and properties used and discover by manipulating
dynamic objects develop logical and abstract thinking, systematize by organizing
results into a deductive system of axioms and theorems and to discover and con-
struct mathematical knowledge.

In our proposal, the technological tool is used as a means to explore different
types of graphic representations interactively. Thus, geometric objects can be
constructed out of a variety of primitive objects (points, segments, lines, etc.) in this
creative environment thought by the mathematics teacher as a professional.
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Chapter 13
Development of Spatial Ability: Results
from the Research Project GeodiKon

Guenter Maresch

Abstract This chapter discusses results from GeodiKon, a research project that
analyzed the spatial ability of 903 students with the aim to find out whether or not
training in each factor of spatial ability and its repertoire of strategies to solve
spatial tasks would lead to an improvement in an individual’s spatial ability. The
chapter focuses on the findings regarding the use of the different strategies, the
promising strategies for solving spatial tasks, gender-specific results, the results of
the Spatial Orientation Test (SOT), and the connection between the individual’s
sport/leisurely time activities and spatial ability. Finally, the chapter offers sug-
gestions for mathematics and geometry education based on its findings.

Keywords Factors of spatial ability � Gender � Mental rotation
Spatial ability � Spatial ability tests � Spatial orientation � Spatial relations
Strategies � Visualization

13.1 The Research Question and the Aims of the Project

The research project GeodiKon was funded by the Austrian Ministry for Education
and the Salzburg University of Education. The Austrian project team includes
members from eight Universities and Universities of Education. The project
investigates supports for and development of the factors of spatial ability, and the
deliberate training of different strategies for solving spatial tasks. The underlying
hypothesis of the project is that training (making aware, categorizing, internalizing)
each factor of spatial ability and training in a repertoire of strategies for solving
spatial tasks will lead to an improvement of spatial ability.

The major aims of the project are:
To develop specific learning material for the training of the four factors

of spatial ability: visualization, spatial relations, mental rotation, and spatial
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orientation (Linn & Petersen, 1985; Maier, 1994; Maresch, 2014b; Thurstone,
1950) so as to create balanced and extensive developmental materials for learners.

To produce a user-friendly book with all the learning material from the project
(Maresch & Scheiber, 2017; Maresch, Mueller, & Scheiber, 2016) to train teachers
and lecturers on how to use the material in classes as well as disseminating the
project’s results in conference presentations and papers (further details in regards to
tasks, materials, papers, and talks: www.geometriedidaktik.at).

To build a contemporary model of the factors of spatial ability. Which of the
large number of existing psychological models for spatial ability should be taken as
the scientific basis for this project? During the factorial phase of spatial ability
research (Maresch, 2014b) between 1950 and 1994 many psychometric factor
based models of spatial ability were described (e.g., from Carroll, 1993; French,
1951; Guilford, 1956; Linn & Petersen, 1985; Lohman, 1979, 1988; Maier, 1994;
McGee, 1979; Rost, 1977; Thurstone, 1950). Maier’s (1994) approach was for-
mulated as an aggregation of the models existing at that time. Maier (1994) took
Thurstone’s (1950) model with the three factors of visualization, spatial relations,
and spatial orientation as the basis of his approach. Linn and Petersen’s (1985)
model of the three factors of visualization, spatial perception, and mental rotation
turned out to be “an outstanding supplement” (Maier, 1994) to the first model.
Maier (1994) combined these two models and formulated his approach which
finally consisted of the five factors of visualization, spatial perception, spatial
relation, mental rotation, and spatial orientation. Detailed analyses of Maier’s
approach showed that the four factors of visualization, spatial relation, mental
rotation, and spatial orientation had also been formulated in other researchers’
models (Maresch, 2014b). The factor of spatial perception was only included in
Linn and Petersen’s (1985) model. The description of this factor according to Linn
and Petersen (1985) defines the factor of spatial perception as the ability to identify
the horizontal and the vertical. This very specific ability is considered to be an
integrative part of the spatial orientation factor of Thurstone (1950). Thus we no
longer consider the factor of spatial perception as a discrete factor. So Maier’s
(1994) approach—but without the factor spatial perception—was taken as the
scientific basis for the development of the learning materials and the test battery in
the project GeodiKon. The factor-based model of spatial ability for the project
GeodiKon contains the four factors (Maresch, 2015):

• Visualization
• Spatial Relation
• Mental Rotation
• Spatial Orientation

Development of a structured model of strategies. One of the challenges with
classical spatial ability tests is: “The classical factor-analytical-psychometric
research perspective requires implicitly that all tasks on spatial ability can be
solved by individuals or subjects using the same solving strategy” (Gruessing,
2002). The assumption that there is a consistent and homogeneous strategy for
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finding solutions of tasks had to be abandoned because of inter-individual varying
solving strategies and intra-individual change of strategies (Souvignier, 2000).
Because of the diverse strategies used by the individuals, there are highly reciprocal
effects and dependencies between the diverse factors of spatial ability (Maier,
1994). Such findings indicate that in some cases, intended solution strategies are
hardly used at all (Maier, 1994). To quote Lohmann (1979): “One of the major
problems is that tests are solved in different ways by different subjects. Subjects
change their solution strategies with practice or when item difficulty increases”
(p. 174). Because of such findings, the analysis of factors became of decreasing
importance. Souvignier (2000) pointedly stated that the interpretation of factors was
based solely on the description of test requirements with great emphasis on the
factors, and that therefore their corresponding definitions represent only an abstract
list of test procedures in the respective analyses.

Emphasis of spatial ability research is now increasingly placed on the identifi-
cation and description of the solution strategies used. It is asserted that conventional
alternative solution strategies […] should be regarded with due attention (Maier,
1994), or that especially the strategies used should be the focus of interest
(Gruessing, 2002), and it is also stated that the flexible use of strategies or the use of
one adequate strategy—depending on the task—forms an important aspect in
gaining optimal test results (Glueck, Kaufmann, Duenser, & Steinbuegl, 2005).

The analysis of current studies on strategies showed that four pairs of solution
strategies (Fig. 13.1) could be identified. The four pairs of strategies, formulated
and explained below, are not claimed to be a complete set. The majority of pub-
lications, however, acknowledge these four pairs of strategies or parts thereof as the
relevant strategies. Examples of spatial ability solution strategies are found in
publications. Key features strategies move-object, and move-self strategies are
featured in Barrat’s (1953) work. Just and Carpenter (1985) found mental rotation
around the global coordinate system, mental rotation around a user coordinate
system, comparing the characteristics of objects with another, and change of per-
spective strategies. Duenser (2005) wrote about moving oneself or moving the
object, concentration on details or the whole, and reflection and visualization. And
Schultz (1991) documented mental rotation, perspective-change, and analytic
strategies. In addition to the four pairs of strategies which are described below in
Fig. 13.1, there are further terms frequently formulated: avoidance strategies,
complementary strategies, mixed strategies, verbal-analytical strategies, and logical
consequential thinking (Maier, 1994; Gruessing, 2002; Souvignier, 2000). After
close analysis, these strategies can be regarded as parts of one of the pairs of
strategies.

The individual pairs of spatial ability solution strategies form dialectical pairs. In
tests, geometrical objects are generally comprehended either holistically or ana-
lytically. Individuals either construct a mental spatial model of the objects depicted
(spatial strategy) or they just see a planar image of the object (planar thinking).
When solving spatial ability tasks, individuals often position themselves outside the
scene. Conversely, some individuals—particularly in tasks of spatial orientation—
put themselves into the proposed setting and mentally move around the objects.
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Individuals, in general, prefer verifying and falsifying solutions in solving the given
tasks. If there are several acceptable solutions, they either try to find the right
solution straight away or exclude false solutions one by one until only one solution
is left as the correct one.

The four pairs of strategies are not independent of one another. Numerous
studies in the literature identify crosslinks between the diverse eight strategies
mentioned. Individuals using the holistic approach tend to think spatially
(Kaufmann, 2008). Females tend more frequently to use analytical solution pro-
cesses, whereas males prefer to use holistic processes (Glueck et al., 2005). The
strategies individuals use for solving spatial ability tasks depend on intrapersonal
preference, size of the individual strategy repertoire, type of task, level of difficulty
and complexity of the task, and individual experience in solving similar and related
tasks (Souvignier, 2000; Gruessing, 2002; Kaufmann, 2008).

With tasks of high complexity, strategies are used to reduce task difficulty. With
challenging tasks, complementary and avoiding strategies are used, requiring a less
challenging spatial-visual cognitive demand and thereby enabling a more successful
handling of the task (Maier, 1994, p. 69). Complementary and avoiding strategies
can be the following: logical thinking, verbal-analytical strategies, the use of several
strategies in solving a task, change of strategies within parts of the task, concen-
trating on parts instead of the whole setting, or also the reduction from three to two
dimensions. Several strategies are often used within one task. Therefore, it seems to
be of particular importance that students have a wide range of strategies in order to
be able to choose the optimal strategy suiting the situation. Lohmann (1988) states
that individuals use all the strategies at their disposal in spatial ability tasks. Glueck
and Vitouch (2008) found that the range of strategies and the flexibility in adapting
them to the requirements of the task is more relevant than basic cognitive processes.
The phenomenon of strategy changes within a task occurs more often in complex
than in simple tasks.

Fig. 13.1 The model of the four pairs of strategies for the solution of spatial ability tasks
(Maresch, 2014a)
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Thinking about one or more changes of strategy within a task on the one hand
requires the individuals to have command of a broad spectrum of strategies, but it
also compels the test person to adopt meta cognitive processes. The choice of the
best possible strategy to solve a task in a specific situation requires reflection,
calculation and decision-making at a higher level (cf. Kaufmann, 2008). For these
reasons, identifying a model of strategies is important to this study’s findings.

13.2 The Tests and Questions

In the pre-tests and the post-tests, we used four spatial ability tests (Three
Dimensional Cube Test (3DW; Gittler, 1984), Differential Aptitude Test (DAT;
Bennett, Seashore, & Wesman, 1973), Mental Rotation Test (MRT; Peters, Laeng,
Latham, Jackson, Zaiyouna, & Richardson, 1995) and Spatial Orientation Test
(SOT; Hegarty & Waller, 2004). We asked additional questions such as which
strategies students used to solve spatial tasks, age, gender, computer usage, leisure
activities, school marks in Mathematics, German, and English, and learning style.
The allocated time for the pre-tests was 85 min and for the post-tests 77 min.

We wanted to know which strategies individuals used to solve the tasks on the
four spatial ability tests. So after each of the four tests the students once again got
one of the tasks, which was arbitrarily chosen. When the students solved the task,
they were asked to observe themselves accurately with which spatial strategy they
solved the task. Then, students answered questions concerning the different
strategies they used from the model of the four pairs of strategies—each in an
eight-part scale (Fig. 13.2). The 13-year-old students appeared to have no problems
self-reporting with which strategy they solved the different tasks.

To support better understanding and traceability of the results of the project, the
four spatial ability tests we used are explained as follows. Each of the test addresses
specific factors of spatial ability. The Three-Dimensional Cube Test (3DW)
addresses visualization factor; the Differential Aptitude Test (DAT) the visualiza-
tion and spatial relations factors. The Mental Rotation Test (MRT) focuses on the
mental rotation factor, and finally, the Spatial Orientation Test (SOT) addresses the
spatial orientation factor. These classifications had been specified in the best pos-
sible way. They do not raise the claim to be fully selective and accurate. Being fully
selective and accurate is not the main point because the analysis will not go into
detail of the varying improvements of the four factors. In the following sections is a
fuller explanation of the selected tests.

13.2.1 Three-Dimensional Cube Test (3DW)

This test investigates whether any one of the six cubes A, B, C, D, E or F is exactly
the same as the given cube X or whether the right answer is G (no cube matches;
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German: kein Würfel richtig). If individuals did not know the solution, they had to
choose H (I do not know the answer; German: ich weiß nicht). Each pattern at the
side faces of the cube occurs only at one side face. Thus, each side face has a
different pattern. The test author, Gittler (1984) provided a special version of the
3DW-test for this project with 13 tasks. The first one is a hidden warm-up task and
is not being counted. The test lasts for 15 min. You can find an example of the test
online at Gittler and Glueck (1998).

13.2.2 Differential Aptitude Test (DAT)

The tasks of this test, created by Bennet, Seashore, and Wesman (1973), consist of
handling folding nets with shades and patterns. The templates can be folded to three
dimensional objects. Each task shows one folding template and four three dimen-
sional objects. Individuals have to choose which of these three-dimensional
objects A, B, C, or D can be made by folding the template provided. The test
consists of 15 tasks and lasts for 8 min. For each task, exactly one answer is correct.

Looked at the object in its entirety 
(whole approach holistic strategy):
You looked at the whole object. You did not 
concentrate on parts of the object only. You 
visualised the whole object and found the 
solution right away.

Looked at parts of the object
(part approach analytic strategy):

You concentrated on parts of the 
object only. You did not have to use 

the whole object for the solving process.

1.)     holistic analytic

Spatial thinking:
You created a mental, three-dimensional 
model of the object and solved the task 
by working on this mental model.

Planar thinking:
You saw a planar (two-dimensional) 

image and solved the task by 
working with this planar image.

2.)     spatial planar

Move self:
You placed yourself inside the setting 
and moved around mentally and 
changed your perspective.

Move object:
You positioned yourself mentally as an 
observer outside the setting and moved 

(rotated, translated, ) the individual objects.

3.)     move self move object

Falsifying strategy:
You identified all the incorrect solutions 
first and excluded them step by step.

Verifying strategy:
You had the correct answer

in mind and worked on it directly.

4.)     falsifying verifying

Fig. 13.2 The questions for students concerning the four pairs of solving strategies for spatial
tasks
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You can find an example of the test online at https://www.researchgate.net/figure/
268982370_fig2_Figure-2-Differential-Aptitude-Test-Space-Relations-DATSR-
example-problem-Bennett.

13.2.3 Mental Rotation Test (MRT)

In the test created by Peters et al. (1995), an object is presented on the left. The
individuals have to determine which two of the four sample stimuli A, B, C, and D
on the right are rotated versions of the target stimulus (Peters et al., 1995). A task is
solved correctly if both correct answers are marked. Only then the individual gets
one point. The test consists of 24 tasks and lasts for 6 min. You can find an example
of the test online at Titze, Heil, and Jansen (2008).

13.2.4 Spatial Orientation Test (SOT)

Hegarty and Waller’s (2004) test is on one’s ability to imagine different perspectives
or orientations in space. In each task, one can see a picture of an array of objects. For
each task, there is what could be called an arrow circle along with a question about
the direction between some of the objects. For each task, one needs to imagine
oneself standing next to one object in the array (which is placed in the center of the
circle) and facing another object, placed at the top of the circle. The task is to draw an
arrow from the center object showing the direction to a third object from this facing
orientation (Kozhevnikov & Hegarty, 2004). In this test, no points are awarded for
each answer; instead, in each task, the deviation angle from the correct answer is
measured. The angle is measured without regard for orientation, so therefore, all the
deviation angles are in the range between 0° and 180°. The score on the SOT for
each individual is the arithmetic mean of deviation angles. The SOT consists of 12
tasks and lasts for 8 min. You can download the test at http://spatiallearning.org/
resource-info/Spatial_Ability_Tests/PTSOT.pdf.

13.3 Description of the Study

The project was carried out in a pre-test/post-test-design. During the project’s first
phase, from January until September 2013, the project team compiled learning
material for 12 weeks of lessons in geometry and mathematics. In Austria most
students have both subjects: geometry and mathematics. The learning material
contains specific spatial ability tasks to train students in the four factors of spatial
ability and the different strategies for solving spatial tasks. The structured model of
the four pairs of strategies for the solution of spatial tasks was developed and the
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tests and questionnaires were set up. Pre-tests were given in September and October
of 2013. Immediately after the pre-tests, the twelve-week long learning phase began
for the treatment groups. Post-tests took place in all the school classrooms in
January and February of 2014. From March until November 2014, the research
team digitized, prepared, and analysed the collected data, and compiled the
user-friendly book with all the special learning material (Maresch et al., 2016) as
described earlier. The team trained teachers and lecturers on how to use the material
in classes, and disseminated results of the project in conference presentations and
papers.

The participants of this study came from 46 classes from the Austrian provinces of
Salzburg, Styria, and Lower Austria, totalling 903 students in ages ranging between
12 and 14 years old from various types of secondary schools: Hauptschule (HS),
Neue Mittelschule (NMS), Bundesrealgymnasium (BRG), and Bundesgymnasium
(BG). A digital newsletter served as the invitation to participate in the study, which
was sent out to 2260 teachers (606 at BG/BRG and 1,654 at HS/NMS). This
newsletter periodically addresses geometry teachers in the German speaking area
(mainly Austria). Originally, the project was designed for 10 classes. Because of the
great interest (96 teachers and their classes), we accepted 46 classes to take part in the
project. The project focused on selecting its participants from the three provinces’
residents and aimed for a balanced distribution of individuals across sex, age, school
type, and rural and city schools. Province coordinators supervised all the pre-tests
and posts-test, working with the same time schedule for the test. Two coordinators
oversaw the 12 project classes of Styria; one coordinator oversaw the 12 project
classes in Salzburg, and two coordinators oversaw the 22 project classes in Lower
Austria. We had 39 classes, were students worked with the specific learning material
and got information about strategies for solving geometry tasks, and we had 9 control
classes, were students had no additional material or information about strategies.
They had “just” their usual lessons.

All the teachers in project classes participated in training sessions where they
learned to work with the learning materials (Fig. 13.3) and provide information
about the different strategies to solve spatial tasks to the students. The sessions were
organised to make sure that all the classes would work in (nearly) the same way
during the 12 weeks of the treatment.

Students’ usual schedule for “Geometrisches Zeichnen” (Descriptive Geometry
for Lower Secondary Schools) allocates 1 h a week for this class. For half of each
treatment lesson the project classes worked with the special learning materials.
During the second half, of each lesson, the teachers worked with their classes on
materials unrelated to the project. In the treatment part of the lessons, students had
to solve about four to six tasks in the given time (25 min). The learning material’s
tasks were set to train students on all of the four factors of spatial ability in a
well-balanced way. Every week, students had to solve one to two tasks for every
factor.

Before the treatment period, all students took the pre-tests. Students then took
the post-test after the treatment. After the post-tests, all the data were aggregated
and differences in the performances of the students were analysed. According to the
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classification of spatial training studies by Newcombe et al. (2002), GeodiKon was
set as a general training study as well as a long duration study because it lasted for
at least a semester.

13.4 Results

This section describes gender-specific results, findings regarding the use of different
strategies for solving spatial tasks, promising strategies for solving spatial tasks,
results of the SOT, and connections between sport/leisure time activities and spatial
ability.

13.4.1 Gender Differences

The analysis of the project data of the groups who worked with the learning
material showed clearly that female and male students have different basic strengths
regarding the factors of spatial ability.

The pre-test results show that male students have greater basic strengths in the
factors visualization, mental rotation and spatial orientation. The factor spatial
relation is gender neutral (Fig. 13.4).

Fig. 13.3 Some images of the learning material

13 Development of Spatial Ability … 223



The difference between the pre-test and post-test results show that female and
male students have different growth potential regarding the factors of spatial ability.
Female students have a greater growth potential in the three factors of visualization,
spatial relations and mental rotation. Male students have a greater growth potential
in the factor of spatial orientation (Fig. 13.5).

13.4.2 Change of Strategies from the Pre-tests
to the Post-tests

The focus of these analyses was to determine how students changed their strategies
from the pre-tests to the post-tests.

A highly significant change in strategies used in the 3DW-Test was evidenced
(F4;694 = 12.026; p < 0.001). In the post-tests, the students used the holistic strat-
egy and the move-object strategy much more. Also, there was a highly significant
change in strategies students used on the DAT (F4;682 = 13.491; p < 0.001). We
can see that the individuals more often used the holistic strategy and the
move-object strategy in the post-tests. As in both tests above, we found in the MRT
a highly significant change in strategies (F4;706 = 11.497; p < 0.001). Here, the
students changed from the move self strategy in the pre-tests to the move object
strategy in the post-tests. Finally, in the SOT, we found a highly significant change
in strategies (F4;673 = 3.518; p = 0.007). Individuals more often used the analytic
strategy and the planar strategy in the post-tests (Svecnik, 2014).

Fig. 13.4 Different basic
strength of female and male
students in regard to spatial
ability

Fig. 13.5 Different growth
potential of female and male
students in regards to spatial
ability
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13.4.3 Do Promising Strategies for Solving Spatial Tasks
Exist?

To investigate the influence of the types of strategies used by students in solving the
test questions, we used regression models where gender, school type, school level
and all the items of the strategy questions were included. We found that analytical
strategy and spatial strategy were used in the 3DW-Test and in the DAT. In con-
trast, in the MRT we found that other strategies seemed to be more promising
(holistic strategy, spatial strategy, and move object strategy).

13.4.4 Results of the Spatial Orientation Test (SOT)

In the SOT, we see that the performance of the 12-year old and 14-year old students
is lower (average error angle of 59.04°) than the performance of 17 years old
students (average error angle of 30°) (Duenser, 2005).

We analyzed the hypothesis that the absolute angular error increases with the
angular deviation of one’s imagined heading (perspective) from the orientation of
the array (Fig. 13.6). Figure 13.6 shows that the absolute angular error increases
with the angular deviation of one’s imagined heading from the original orientation
of the array. This result confirms that of Kozhevnikov and Hegarty’s (2001).

Because of the challenge in analyzing the SOT’s data and the wish to provide
meaningful feedback on its results, we developed a new method to analyze the SOT
(Maresch, 2016). The new method is called the “differentiated presentation and

Fig. 13.6 Absolute angular error increase with the angular deviation of one’s imagined heading
(horizontal axis) from the orientation of the array (vertical axis)
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feedback method” (DIAM). This method’s core is the fact that students solve the
SOT in two different steps. Step one is to locate the solution angle in the correct
quadrant/semicircle, and step two is to place the best possible solution angle. DIAM
provides two kinds of results. The first result is information if individuals draw their
solution in the correct quadrant or had a left/right error or had a front/back error or
both errors. Its second result is if the individual drew the solution in the correct
quadrant and gave the information about the error angle. Thus, DIAM provides
enough information for researchers to make a more detailed analysis of the SOT’s
results, and it offers a differentiated and therefore helpful feedback for individuals
(Maresch, 2016).

13.4.5 Leisure Time Activities and Spatial Ability

During the pre-tests and post-tests, we asked the students about leisure time
activities. All students got a list of 25 sport activities (soccer, tennis, swim, dance,
…) and other leisure time activities (handcraft work, pottery, sewing, …). The
question asked if the students participated in any of the activities of the given list. If
the answer was “yes,” then the question asked how often she/he participated in the
activity. The data analyses provide a clear indication of significant gender difference
(Table 13.1). If boys participated in technical drawing, or model making or/and

Table 13.1 Sport and leisure time activities which showed significant results in regard to spatial
abilities
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Male Students

 Technical Drawing * * * * * * *  

 Model Making * * *  

 Construction Toys  * * * * * * 

Female Students 

 Construction Toys *  * *  

 Puzzles * * * * *  
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construction toys (like Lego or Geomag) they had significant higher spatial abilities
then other boys. Girls had significantly higher spatial abilities than other same-aged
girls if they worked with construction toys (like Lego or Geomag) and puzzles.

13.5 Discussion and Prospects

It is remarkable that even during the very short treatment phase of 12 weeks stu-
dents in all four groups (test group and control group) showed highly significant
and substantial increase of performance in all four spatial ability tests. Many factors
might be responsible for this trend: learning effects due to test repetition, maturation
process effects, development process effects, treatment effects, and combinations of
these effects. The highly significant and substantial increase of performance could
be a verification of Thurstone’s (1955) research. He had argued that children
between 5 and 14 years of age show a very high potential for the development of
their spatial ability (Fig. 13.7). This project and Thurstone’s (1955) work imply we
should put in more effort to train, support, and encourage spatial ability in school
from the very beginning (age of 5 or 6 years) up to 14 years.

It can be noted that those groups who have spatial treatment performed much
better than the control group on each of the four spatial ability tests used in the
project. In two tests (3DW-Test and MRT), the students in the spatial treatment had
a significantly higher performance than the students of the control group.

It should be noted that the four spatial ability tests that were used in the project
are “classical” paper-pencil-tests. These tests are apt to show the students’ abilities
in the four “classical” factors of spatial ability. Other spatial abilities (e.g. dynamic
spatial ability, small scale/large scale spatial ability, and working memory), that
have been identified in the past 20 years were not in the project’s focus. This leads
to follow up questions such as: Which kind of spatial abilities do we train in school?
Is it mainly the “classical” spatial abilities, or also the “new” spatial abilities as
mentioned above? Should we include more training of “new” spatial abilities?
Further projects will pay attention to these questions.

Fig. 13.7 Development of
spatial ability. The vertical
axis shows the percentage of
the development and the
horizontal axis shows the age
of individuals (see also
Thurstone, 1955)
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The gender differences in the project showed that female students had a sig-
nificant treatment effect in the 3DW-Test. It is remarkable that in all three treatment
groups the increase of performance in the 3DW-Test is much higher for girls than
for boys, and that it is exactly the other way round in the control group. Here the
male students have a higher improvement than the female students. The MRT was
the only speeded-power test in the test battery of the project. Male students worked
with more tasks, and they also had more items correctly solved than female stu-
dents. In the SOT, male students had a better performance in the pre-tests and in the
post-tests. The gender sensitive analyses point out that male and female individuals
have different basic strengths in regards to spatial ability and different growth
potential in regards to the factors of spatial ability.

Individuals use a large variety of different strategies for solving spatial ability
tasks and can combine them in many different ways. This finding suggests that
students should be familiar with a large repertoire of different solution strategies for
spatial ability tasks and be able to use them in many different ways and combi-
nations. Students must develop a kind of meta-knowledge to be able to handle this
wide repertoire consciously. Students very often change their strategies between the
pre-test to the post-test for the same tasks. This is an indication that with growing
routine individuals may get to work with tasks in a different way. Individuals use
more new and efficient strategies only when they have sufficient routine in a topic.
This leads to the following didactical guiding idea: Teachers should discuss special
and selected topics long enough that students can develop a sufficient routine in
these fields. Only then students will get to know new and efficient solution
strategies even in school and learn how to use them in a meaningful way.
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Chapter 14
Middle School Students’ Use of Property
Knowledge and Spatial Visualization
in Reasoning About 2D Rotations

Michael T. Battista and Leah M. Frazee

Abstract In recent years, there has been increased attention on teaching trans-
formational geometry. There is also increased recognition of the importance of
spatial reasoning in mathematics and science. As a way of integrating research on
these interconnected topics, we investigated middle school students’ developing
understanding of geometric rotations in the plane as they were working in a special
dynamic geometry environment.

Keywords Geometry � Imagery � Properties � Reasoning � Rotations
Spatial � Transformations � Visualization

Investigating students’ understanding of 2D rotations—an important topic in
transformational geometry—provides a fertile environment for integrating two of
the major strands in research in geometric reasoning: analyzing students’ use of
spatial visualization in geometry and analyzing students’ understanding of prop-
erties of geometric objects. On the one hand, almost all geometric reasoning, sense
making, and problem solving are intimately connected to spatial reasoning. Even
more, the National Research Council claims that, “Underpinning success in
mathematics and science is the capacity to think spatially” (NRC, 2006, p. 6), a
statement backed by research (Newcombe, 2010; Wai, Lubinski, & Benbow, 2009).
On the other hand, an essential element of geometric reasoning is the use of a
property-based conceptual system to analyze shapes (Battista, 2007). This system
uses concepts such as angle measure, length measure, congruence, parallelism, and
isometries to describe spatial relationships and movement. As part of our research
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and development of a special computer dynamic geometry environment—
Individualized Dynamic Geometry Instruction (iDGi)—one topic we are investi-
gating is the relationship between middle school students’ knowledge and use of
properties of rotations and their visualization of rotations. This research is not only
important for extending and refining research on students’ understanding of geo-
metric transformations, but it is also relevant to the important general question of
how spatial visualization and analytic-measurement-based property knowledge
interact in geometric reasoning (Clements & Battista, 2001).

14.1 Theoretical Frameworks

Subscribing to a psychological constructivist theory of mathematics learning, we
posit that students construct new mathematical understandings out of their current
relevant mental structures. Consistent with this view of learning, maximally
effective teaching is based on detailed knowledge of students’ current mathematical
ideas and ways of reasoning. An abundance of research has shown that mathematics
instruction that is guided by knowledge of student thinking and supports students’
personal sense making produces powerful mathematical thinking, conceptions, and
problem-solving skills in students (Hiebert, 1999).

14.1.1 Differentiating Geometric Properties

An essential component in developing conceptual understanding of geometric
objects is to understand the properties of those objects (Battista, 2007; Gorgorió,
1998; van Hiele, 1986). A critical issue in this development is specifying which
properties of isometries are most important for students to learn. Based on previous
research (Battista, 2007), we contend that, initially, the properties most critical to
students’ learning about geometric objects are properties that express prototypical,
defining characteristics of those objects, which we call “prototypical defining
properties.” As an example, the prototypical defining properties of parallelograms
are: opposite sides congruent and parallel. These are the properties that express
mathematically the most visually salient spatial characteristics that students use in
identifying parallelograms. Of course, there are other, less visually salient proper-
ties of parallelograms. For instance, in parallelograms, opposite angles are con-
gruent, and all pairs of adjacent angles are supplementary. Certainly, the property
that all pairs of adjacent angles are supplementary could be used to define paral-
lelograms, as could the property “the diagonals bisect each other.” However, pro-
totypical defining properties are the properties that students derive from visual
examples of parallelograms, and ones that students use to determine if a shape is a
parallelogram through visually-based, conceptual analysis.
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Similarly, and analogous to the properties of shapes described in Battista (2007),
we take the prototypical defining properties of an isometry to be properties that
express mathematically the visually salient spatial relationships among the preim-
age, image, and determiners of the motion defined by the isometry—that is, its
parameters (e.g., see Coxford, 1973). The parameters for rotations are the position
of the turn center and the amount of rotation, both of which have to be specified by
the students in the iDGi tasks we discuss (see Table 14.1). Thus, we agree with
Hollebrands (2003) that understanding transformations requires understanding their
parameters as well as the effects of parameter changes on the transformations.

We assert that although isometries are distance- and angle-measure-preserving,
and one-to-one mappings of the plane onto itself, these characteristics are not
prototypical defining properties. This aspect of our perspective contrasts with
Hollebrands’ (2003) who focused on how well high school students understand
transformations as 1-1, onto functions of the plane. Although a function perspective
is valuable for older, more experienced students, beginning instruction for middle
school or beginning secondary students seems more appropriately focused on
prototypical defining properties and transforming single figures instead of the whole
plane. Indeed, mathematicians Wallace and West (1992) argued that isometries
provide a mathematically precise way to reformulate Euclid’s “common notion”
idea of shape congruence by superposition, which involves transformations of
specific objects in the plane.

14.1.2 Previous Research: Can Middle School Students
Learn Isometries?

Previous research on middle school students’ ability to learn transformations
yielded inconclusive results. While some research found middle school students
have difficulty mentally performing transformations (Kidder, 1976) and as few as
50% of 10–11 year olds are able to master transformations (Shah, 1969), more
recent studies show that students are able to make sense of transformation

Table 14.1 Prototypical
defining properties of
rotations

Prototypical defining properties of rotations
P1. Rotations are determined by a turn center and an amount of
turn specified as a signed amount of degrees.

P2. Preimage and image polygons have corresponding points
(preimage and image point pairs).

P3. The angle between the turn center and any pair of
corresponding points equals the rotation angle.

P4. Pairs of corresponding points are the same distance from the
turn center.
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properties and parameters (Edwards, 1991; Olson, Kieren, & Ludwig, 1987;
Panorkou, Maloney, Confrey, & Platt, 2014). Our iDGi results reaffirm that middle
school students can develop substantial understanding of the properties of isome-
tries, which may be especially true in dynamic geometry environments (Battista,
Frazee, & Winer, 2017). In fact, Dixon (1997) and Johnson-Gentile, Clements, and
Battista (1994) reported that students learning about isometries in a computer
environment outperformed students using a paper and pencil approach.

14.1.3 Components of Spatial Reasoning

Many cognitive psychologists (e.g. Hegarty, 2010) have discussed two types of
spatial reasoning: (a) mental imagery/simulation and (b) spatial analytic thinking.
For instance, on the Vandenberg Mental 3D Rotation Test, many students use a
mental imagery strategy of either imagining objects rotating or imagining them-
selves moving around the objects. Many students also use spatial analytic strategies
including counting the number of cubes in the different arms and decomposing cube
configurations into parts easier to rotate mentally (Hegarty, 2010). In Table 14.2,
we hypothesized adaptations to these strategy definitions to describe students’

Table 14.2 Adaptation of
Hegarty’s (2010) strategies
for polygon rotations tasks

Mental imagery strategies
1.1. I imagined the polygon turning in my mind.

1.2. I looked at the turn center and imagined the polygon
turning about it in my mind.

1.3. I visualized the preimage and image, each connected by
line segments to the turn center.

1.4. I visualized a vertical-horizontal “L” connected to the turn
center and a polygon vertex turning in my mind.

Spatial analytic strategies
2.1. I noted the directions of corresponding sides of the
polygons and decided if that was the correct angle measure.

2.2. I looked at the two polygons to decide what the angle of
rotation was. Then I counted the number of units up/down/right/
left between the turn center and corresponding vertices.

2.3. I visualized a vertical-horizontal “L” connected to the turn
center and polygon, and counted units in each leg of the L.

2.4. I visualized rotating a polygon side, then counted how long
its preimage was to know how long the image is.

2.5. I found images of the two perpendicular triangle sides one
at a time. I knew that one side must make a right angle with the
other side, so I could tell by visualizing where the side images
should be located. I counted units to know how long to make
the images of each side.
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reasoning about rotating polygons ±90° or 180° in the plane. The hypothesized
strategies were constructed to be consistent with our observations of student work
in iDGi rotation modules.

14.1.4 Previous Research on Properties and Visualization

In his extension of the van Hiele levels to 3D shapes, Gutiérrez (1992) integrated
descriptions of students’ property knowledge and spatial visualization. At Level 1,
students compare solids globally with no attention given to properties such as angle
size, side length, or parallelism. Students cannot visualize solids, their positions, or
motions if they cannot see them; they manipulate solids using guess-and-check
strategies. At Level 2, students move to visual analysis of solids’ components and
properties and are able to visualize simple movements. At Level 3, students
compare solids by mathematically analyzing their components; they can visualize
movements involving positions that are not visible, and in reasoning about
movements, students match corresponding parts of images and preimages. At Level
4, students mathematically analyze and formally deduce properties of solids; vi-
sualization is strong and linked to property knowledge.

However, extending the theoretical integration of property knowledge and vi-
sualization is a difficult task because visualization may be connected to property
knowledge in complex ways (Battista, 2007). On the one hand, some students who
are not high visualizers develop analytic (property-based) strategies to help them
compensate for a lack of pure visualization skills (Battista, 1990; Hegarty, 2010).
On the other hand, some students possess very high visualization skills well before
they develop property-based reasoning. Indeed, some high visualizers can mentally
imagine movements of solids so well that, for many problems, they have no need to
analytically examine the solids’ components (Battista, 1990). The present study
continues and deepens these extension efforts.

14.2 Methods

In the context of creating and field-testing a learning-progression-based, dynamic
geometry environment and curriculum for elementary and middle school (ages 9–
14 years), we conducted one-on-one teaching experiments with 8 middle school
students on iDGi’s isometry modules (2–3, 1-hour sessions). Because the target
audience was middle school students, the iDGi isometry modules’ goals were for
students (a) to begin understanding the prototypical defining properties of the three
basic isometries, and (b) to help develop their spatial visualization ability in 2D
geometry. To promote these goals in iDGi, for each type of isometry, students first
made predictions for problem answers, then checked their predictions using motion
animations. To make both visual and analytic strategies accessible to students,
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rotation problems were presented on a square grid, the snap-to-grid feature was
activated, and parameters were restricted: rotation turn centers were at grid points
and rotation angles were limited to ±90°, 180°. The iDGi modules presented a
variety of problem types in which students had to choose or create the correct
parameters for a given isometry. In the iDGi rotations module, students first
explored rotations of single points then rotations of right triangles. In the first right
triangle task, students had to choose the amount of turn for a given preimage,
image, and turn center; in the second, they had to create the rotation image of a right
triangle given the turn center and amount of turn. Then, and the focus of this
chapter, students were given two additional types of iDGi rotation tasks. The first
type required students to find the amount of turn to rotate the preimage triangle onto
the image and to determine which of several given points on the grid was the turn
center (Fig. 14.1). In the second type, students had to determine the amount of turn
and the turn center to rotate a preimage onto its image, but they were not shown
possible turn centers, which made finding the turn center much more difficult.

In the iDGi environment, students made predictions for locations of rotation
images and turn centers, and amounts of turn—which required them to come to
know and utilize the prototypical defining properties of rotations—then, when
students specified an angle of rotation and turn center, the computer performed the
associated motion. By focusing on motion and properties in this linked way, the
iDGi environment helped students transition from a strictly motion conception of
rotations to a more abstract, property-based mathematical conceptualization of ro-
tations (Clements & Battista, 2001).

To collect data, we had students work on rotation modules individually while
sitting with an iDGi researcher who asked them to think aloud while working.
Often, we asked questions: What are you thinking? Why did you do that? All work
was video and audio recorded, both with a screen capture program and an external
camera focused on the screen (to record student screen-related gestures).

Fig. 14.1 iDGi rotation task. ©2017, Michael Battista, all rights reserved, used with permission
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14.3 Comparison of Case Study Students

To illustrate the nature of students’ reasoning, we compare the work of three
students: MR, a 7th grader, and two 8th graders, PG and YJ. Each student devel-
oped a spatial reasoning strategy with both visualization and analytic components:
MR’s strategy was predominantly analytic, PG’s strategy favored visualization, and
YJ integrated analytic and visualization. All three students experienced success
with their strategy in solving some rotation problems. However, MR and PG
experienced difficulties when solving complex problems due to the lack of coor-
dination between visualization and analytic reasoning as well as to visualization
errors. Though YJ experienced some difficulty with visualization, she combined her
visual and analytic reasoning to accurately complete most of the problems.

14.3.1 Student MR

First, we examine problems where MR chose the turn amount and one of five
possible turn centers when given preimage triangle A and image triangle
B (Fig. 14.2; only Point C is labeled in the actual iDGi module; points A, B, C, D,
and E are possible turn centers).

MR That one doesn’t form a right angle [traces path RAS], that doesn’t form a
right angle either [traces RBS]. That might form a right angle [traces XCY].
Yeah, that might form a right angle. Oh, wait…this one I think…that does not
form a right angle [traces XDY].

I When you say it doesn’t form a right angle…what were you talking about?
MR If you connect the two similar points like this [X] and that [Y], they have to

make either a 180° or 90° angle, and they do neither… you can see this one
[D] is like way like out there.… [Motioning X to W to C] 1 to 6 that way. So I
think it’s this one [C] because, this might seem silly, but there is like one
space distance between this point [motioning X to W] and there is one space
distance between that point [motioning Y to Z, then to C], so they’re off by the
same degree…. If that’s [the rotation] going that way, that’s counterclock-
wise, which is positive.

In this problem, MR used Properties 1-3. In other problems, she also used
Property 4: “they [corresponding points] have to be the same distance away [from
the turn center].” She used the properties to develop an analytic strategy for testing
possible turn centers, which, like in the next example, she successfully applied in a
number of problems.

MR [Fig. 14.3] This one [turn center C]… This is 1-2-3-4-5 and this is 1-2-3-4-5.
And this one [XCY] is a right angle because they [X and Y] are both the same
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degree off [referring to the 1 unit horizontal distance between X and the point
marked 5 and the 1 vertical unit between Y and the point marked 5].

As these two examples illustrate, MR had a well developed property-based,
counting strategy for locating the correct turn center when a small set of possible
turn centers was provided. As MR moved to solving problems in which no possible
turn centers were shown, she adapted her counting strategy to include a “one and
one” strategy for adjusting “failed” turn center counts.

MR [Fig. 14.4] I’m guessing this is another 90° problem so if I match these two
[X and Y]. This is 1-2-3-4-5-6-7-8-9-10-11-12, so 1-2-3-4-5-6-7-8-9-10…. So
if I move it [turn center C] down 1 and across 1. Cause if I want to move it
[C] across 1 to reduce this [distance from C to triangle A], I have to move this
[C] down 1 so that it doesn’t match up with this [triangle A] but not that
[triangle B]. Because when it does that [not ‘match up’], it forms an angle like
this [gesturing off-screen], which doesn’t work, cause that’s definitely not
going to be 90°. So I’m going to move it down 1 and [across 1]… again [to C;

Fig. 14.2 Student MR
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.3 Student MR
problem 2. ©2017, Michael
Battista, all rights reserved,
used with permission
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Fig. 14.5], so 2 again 2 again [indicating segments XP, YQ; Fig. 14.5]. So
that’s 1-2-3-4-5-6-7-8-9-10-11-12 and that’s 1-2-3-4-5-6-7-8-9-10
[Fig. 14.5]. Ok, so up 1, across 1 [Fig. 14.6]; so that should work [which
she verifies by clicking on the appropriate angle rotation button].

Note that MR did not recognize that her first move (right 1, down 1) after her
first count (Fig. 14.4) was correct. Perhaps at first she was trying to match corre-
sponding vertices via vertical and horizontal segments. Her final move matched
midpoints of corresponding sides XP and YQ.

Fig. 14.4 Student MR
problem 3. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.5 Student MR
problem 3. ©2017, Michael
Battista, all rights reserved,
used with permission
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However, despite her successes, MR’s reasoning often seemed hampered by
visualization difficulties on more spatially demanding problems. For instance, she
sometimes failed to recognize correct rotation angles, as shown below.

MR This is going to be 90° so it’s going to be here or there [indicates circular
regions in Fig. 14.7]…. You know I think I’m going to actually put it [turn
center C] up here [in the upper left circular region in Fig. 14.7]. So that’s
1-2-3-4-5-6-7 and 2 across [counts up from Triangle B and left from C;
Fig. 14.7]. So that has to be 1-2-3-4-5-6-7 and 2 up [counts left and up from
Triangle A; Fig. 14.7]. Which doesn’t work…. [Moves turn center C as in
Fig. 14.8] So then this is 1-2-3-4-5-6-7-8 across and 1-2-3-4-5-6-7 up
[counting from Triangle B]….Ok, so then this is 1-2-3-4-5-6-7-8 ac—
[counting from Triangle A]. Wait 8 across and 7 up [from Triangle B], so this
would be 7 across and 8 up [from Triangle A—moves cursor along segments
indicated in Fig. 14.8], right?

In this problem, MR did not use her “one and one” strategy as she did in
Fig. 14.4. Instead, she understood that for 90° rotations, the across moves from the
preimage triangle to the turn center turned into up/down moves for the image
triangle. She repeatedly tried to use this up-down/across strategy, failing to rec-
ognize that this was not a 90° rotation until later when her interviewer asked her
about the rotation angle (she also sometimes confused positive and negative 90°
rotations).

On other problems, MR seemed to get disoriented in her “one and one” strategy,
again, possibly because of spatial disorientation.

MR [Fig. 14.9] So this is 1-2-3-4-5-6-7 down, and 1-2-3-4-5 across [Fig. 14.9].
So when you move it that way [left], you also have to move it down. So
1-2-3-4-5-6-7-8, 1-2-3-4-5-6 [Fig. 14.10], [moves the turn center 2 left,

Fig. 14.6 Student MR
problem 3. ©2017, Michael
Battista, all rights reserved,
used with permission
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Fig. 14.11] so that’s 3 across now and you have to move it [turn center] 1 up
[Fig. 14.12]. [Sighs and moves the turn center to the location in Fig. 14.13].
So that’s 2 and then 2 [segments indicated in Fig. 14.13].

Note that initially MR moved in a way that increased both distances (Figures
14.9 and 14.10). However, something in what she observed caused MR to stop
following her one-and-one adjustment strategy (Fig. 14.13). Moreover, in her
reasoning about the possible turn center location in Fig. 14.13, MR made a spatial
error. That is, if she was trying to visualize the −90° rotation of the configuration
“up from C then right 2,” then the configuration’s correct image would be “right

Fig. 14.7 StudentMRproblem4.©2017,Michael Battista, all rights reserved, usedwith permission

Fig. 14.8 StudentMRproblem4.©2017,Michael Battista, all rights reserved, usedwith permission
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then down 2” as shown in Fig. 14.14, not “right then up” as she motioned in
Fig. 14.13.

MR So these form a right angle [corresponding points in Fig. 14.15], but they
don’t match up [not equidistant from C]. This is like 2-4-6-7 and this 2-4-5
[Fig. 14.15]. If you want this to become 7 [horizontal distance between C and
Triangle B], or no, you want them both to become 6, and then 1 across. So,
[Fig. 14.16] that’s 1-2-3-4-5-6, then 3-6, yeah, and that forms a right angle
and this would be this way, which is negative. [Enters correct rotation.]

When MR decided to restart her thinking, she returned to a strategy of starting at
the intersection of vertical and horizontal lines that contain corresponding points.

Fig. 14.9 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.10 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

242 M. T. Battista and L. M. Frazee



By moving in a way that increased the smaller distance and decreased the larger
distance to corresponding points, MR successfully solved the problem.

MR always attempted to make the up-down/right-left distance from the turn
center to corresponding points on Triangles A and B equal by using her “one and
one” strategy to adjust the turn center location, moving 1 unit up-down and 1 unit
right-left. Because the interviewer thought that this two-step process was too dif-
ficult for MR to fully understand, he asked MR about moving just one space at a
time.

Fig. 14.11 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.12 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission
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I Suppose you just move it 1 at a time. Would that help? If you just move the
point like instead of this way and this way [up 1, left 1 from C in Fig. 14.17],
just 1 unit at a time.

MR [Moves turn center up 1 from C in Fig. 14.17 to the location of C in
Fig. 14.18] But then what happens is this has a distance up of 3 [segment
above Triangle A in Fig. 14.18], but this has a distance across of 2 [segment
left of Triangle B in Fig. 14.18]. So then it definitely won’t work if I do that.
So I need to like move it both ways.

Fig. 14.13 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.14 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission
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Fig. 14.15 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.16 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.17 Student MR
problem 6. ©2017, Michael
Battista, all rights reserved,
used with permission
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In her last explanation, MR did not count to corresponding points. She again
made a mistake in visualizing rotations of her up/down-right/left movements.

In summary, MR developed a property-based analytic strategy to test whether
corresponding points were the same distance from possible turn centers. She did not
use the hypotenuse of the right triangle to find the straight-line distance between the
turn center and corresponding points, but instead used the lengths of the horizontal
and vertical legs of the right triangle (Fig. 14.19). In 8 of 12 problems, MR used her
strategy to find the correct turn center before she checked her answer with the iDGi
rotation command. But, seemingly due to the complexity and resulting cognitive
load of the visualizing and counting she did with these right triangle L’s, and
especially when her turn center predictions were incorrect, she sometimes made
spatial errors as in Figs. 14.13 and 14.18.

Fig. 14.18 Student MR
problem 6. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.19 Student MR
problem 5. ©2017, Michael
Battista, all rights reserved,
used with permission
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14.3.2 Student PG

In contrast with MR, PG developed a predominantly visual strategy. In problems
for which PG was given a preimage, an image, and turn center, he was able to
reliably visualize the amount of turn. For instance, in Fig. 14.20, PG immediately
stated the answer should be +90°.

I How did you know?
PG Because negative 90° would be this way [moves cursor left-to-right as

indicated by the line segment in Fig. 14.21].
I How did you know it was 90° in the first place?
PG [pause] I’m not quite sure.
I That’s ok! So you can tell by looking?
PG Yeah.

PG’s responses to the interviewer’s questions, along with the fact that he
immediately and correctly found turn centers and determined the amount of turn for
many problems given the preimage and image, support our contention about the
visual nature of his reasoning (see also Fig. 14.25).

However, PG’s visual strategy was not supplemented by a sophisticated
understanding of the properties of rotations. Rather than identifying corresponding
points as stated in Property 2, PG focused on corresponding parts of the preimage
and image. For instance, as shown in the next two examples, PG often spoke of the
angle of rotation between the two triangles as whole shapes, not between corre-
sponding points on the triangles.

I [After PG chose turn center C in Fig. 14.22] So before you click anything, can
you explain to me how you are getting this?

Fig. 14.20 Student PG
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission
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PG If I put it here [turn center C in Fig. 14.22], there is an equal amount of
distance between this side of B [vertical side] and [puts cursor on the vertical
side of A]…

I I think all those points are equidistant, so how do you know which one of
those equidistant points to choose?

PG I don’t [moving the C from gray dot to gray dot]…
I So what made you move [from C in Fig. 14.22 to C in Fig. 14.23]?…

Fig. 14.21 Student PG
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.22 Student PG problem 2. ©2017, Michael Battista, all rights reserved, used with
permission

Fig. 14.23 Student PG problem 2. ©2017, Michael Battista, all rights reserved, used with
permission
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PG Because then it’s [C in Fig. 14.22] on this, it’s on the top part of A but the
bottom part of B. So I decided to do the middle [gestures to the middles of the
vertical legs of the right triangles and places C as shown in Fig. 14.23]….

PG’s lack of attention to corresponding points continued as he added an analytic
counting component to his strategy for problems that were harder for him to
visualize. But he often seemed to count to determine the distance between the turn
center and whole triangles, not between the turn center and corresponding points.
For instance, as indicated in Fig. 14.24, PG counted from turn center C to near the
triangles. But then, as he also often did, PG switched from an analytic strategy to a
visual strategy.

PG [After counting] I’ll just give this [turn center C in Fig. 14.24] one a try.
Actually, I think I’ll give this one [turn center C in Fig. 14.25] a try.

As PG explains in the next example, he used a counting strategy to locate a point
in the middle of the two triangles, but he used visualization to approximate where
the turn center was located.

I How about I drive [control the mouse] and you tell me what to do?
PG OK. Um, first count the distance of squares between both of them…. Start

from here [points to X; Fig. 14.26] and go down to here [points to Y]….
I [Counts 18 as in Fig. 14.26]…and then over, [moves left 1] 19?
PG No just like…
I Here? [motions along segment indicated in Fig. 14.27]

Fig. 14.24 Student PG problem 3. ©2017, Michael Battista, all rights reserved, used with
permission
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PG It’s [the turn center] somewhere on this line [Fig. 14.27], the middle line
between A and…. [Thinks a while] So then there is 18 so move it [turn center]
to the 9th line…the… center C to the 9th line.

I 1-2-3-4-5-6-7-8-9 [as indicated in Fig. 14.28].
PG Yeah, now rotate…no, actually, and then you’ve gotta move it back [points at

screen toward the left] so it can make a big rotation….
I Left? OK [moves point C to location in Fig. 14.29].
PG No, that’s too much.
I How would I know? [Interviewer moves C right a little] You’re going to have

to help me.
PG I’m trying to draw an imaginary line from [triangle] B…to both angles. It’s

hitting B right here [points to Z in Fig. 14.29] and A right here [points to X and
makes a 90° angle shape with points X, C, and Z]. That looks like it might be it
[Fig. 14.30].

I So I should do?
PG Negative 90. [checks and sees result Fig. 14.31]
I So how could we adjust?
PG If you move the turn center point one square over…
I This way? [right]
PG No, no, no, left.
I Left? Ok. What will that do?
PG This triangle [A] will come over here [one unit left] then if you move it 3

squares up, then it will—I’m pretty sure it will match this [B; checks answer
and sees it is still incorrect].

Fig. 14.25 Student PG problem 3. ©2017, Michael Battista, all rights reserved, used with
permission
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PG used a similar kind of visualization supplemented with analytic-counting
reasoning on other problems of this type. However, PG never developed an
effective analysis-dominated strategy like MR, figuring out only 1 of 8 problems
before he checked his answer with the iDGi rotation command. PG used some
analytic reasoning, but visualization always dominated. The last example also
illustrates the effectiveness of PG’s visualization to approximate the location of the
turn center when no turn-center options were given. Like MR, PG evidenced some
understanding of Properties 1–4. However, unlike MR’s explicit and completely
correct statements about the properties, PG’s knowledge seemed embedded in his
visual strategies or focused on corresponding triangle parts, not points. Finally, PG,
like MR, never figured out a reliable method for adjusting the placement of the turn
center after seeing where the chosen turn center placed the image triangle. Neither
student saw any patterns that determined how the image moved for specific moves
of the turn center. Given the complexity that existed for turn-center movements (see

Fig. 14.26 Student PG
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission
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Table 14.3),1 it is no wonder MR and PG could not detect them. For example, to
interpret the cell in the first column second row, suppose we rotate a point P +90°
about a given turn center C to get P′. Now suppose we move C to the left 1 unit and
rotate P +90° about the new position of the turn center, getting point P″. Then P″ is
up 1 unit and 1 unit to the left of point P′. We believe that without appropriate
instructional support, it is unlikely that students at this age level would be able to
sort out the complex patterns depicted in Table 14.3 and implement this knowledge

Fig. 14.27 Student PG
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission

1One way to prove these movements is to think carefully about how a vertical/horizontal L-shape
connected to the preimage moves when the turn center moves. Another way is to use coordinates
and matrix concepts in transformation geometry. For example, to compare the image of a point
rotated about the origin to the image of the point when rotated about (0, 1), we first translate the
plane down 1 unit, do the rotation about the origin, then translate the plane up 1 unit. For us, this is
where Hollebrands’ focus on transforming the whole plane can become practically useful for
students.
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in a reliable analytic strategy. Thus, to be successful on these tasks, students had to
use visualization to guide their analytic strategies.

14.3.3 Student YJ

Student YJ integrated visual and analytic strategies more than MR and PG. When
solving problems for which turn center options were shown, YJ often successfully
employed a purely visual strategy making use of Property 3 for one pair of cor-
responding points.

YJ [As shown in Fig. 14.32, places turn center C, then moves the cursor in L’s
from corresponding points to C] Rotate, and it would go that way [motions
clockwise as indicated, chooses −90°].

Fig. 14.28 Student PG
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission
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Fig. 14.29 Student YJ
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.30 Student YJ
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission
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On a later problem (Fig. 14.33), YJ first visually estimated a turn center and an
amount of turn but then used an analytic strategy, employing Properties 1–4, to test
her estimates.

YJ [Moves turn center C to the location indicated in Fig. 14.33] So this takes 8
[motions from C as indicated in Fig. 14.33; no counting aloud] and then 1
[motions down as indicated in Fig. 14.34]. [Moves cursor as indicated in

Fig. 14.31 Student YJ
problem 1. ©2017, Michael
Battista, all rights reserved,
used with permission

Table 14.3 Movements of image in relation to movements of turn center

Move turn center
left 1

Move turn center
right 1

Move turn center
up 1

Move turn center
down 1

Moves 90° image
Left 1, up 1

Moves 90° image
Right 1, down 1

Moves 90° image
Up 1, right 1

Moves 90° image
Down 1, left 1

Moves −90° image
left 1, down 1

Moves −90° image
Right 1, up 1

Moves −90° Image
Up 1, left 1

Moves −90° image
Down 1, right 1

Moves 180° image
Left 2

Moves 180° image
Right 2

Moves 180° image
Up 2

Moves 180° image
Down 2
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Fig. 14.35; no counting aloud] And it’s [the image triangle] not there. Yeah
it’s not there.

I What do you mean it’s not there?
YJ I just counted 4 units and 4 units and that’s 8 [indicates how she counted in

Fig. 14.33] And then 4 units and 4 units [indicates how she counts in
Fig. 14.35] and not there… Maybe it’s this one [C in Fig. 14.36], and it’s a

Fig. 14.33 Student YJ problem 3. ©2017, Michael Battista, all rights reserved, used with
permission

Fig. 14.32 Student YJ problem 2. ©2017, Michael Battista, all rights reserved, used with
permission
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rotate 90 [motions as indicated Fig. 14.36]. Well—I believe so [checks and
sees answer is correct]. [Originally] I kind of thought it would be…like right
here [C in Fig. 14.37], and would rotate 180.

So, in this example, YJ’s application of an analytic strategy, implicitly based on
Properties 1–4, helped her see that her initial angle estimate was incorrect. She
quickly switched to a visual strategy that led her to the correct answer. In the next
example, she uses all four rotation properties.

Fig. 14.34 Student YJ problem 3. ©2017, Michael Battista, all rights reserved, used with
permission

Fig. 14.35 Student YJ problem 3. ©2017, Michael Battista, all rights reserved, used with
permission
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YJ [Fig. 14.38] So it obviously has to be 2 here or 2 here [as indicated in
Fig. 14.38], I think. Ah [moves C to location in Fig. 14.39]. So 1-2 [counts as
in Fig. 14.39], 5 [motions up 5; Fig. 14.39]. 2-5 [motions Fig. 14.40]. So that
would be—go this way. Oh, not really.

I Not really what?

Fig. 14.36 Student YJ problem 3. ©2017, Michael Battista, all rights reserved, used with
permission

Fig. 14.37 Student YJ problem 3. ©2017, Michael Battista, all rights reserved, used with
permission
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YJ Like, um, this point [P in Fig. 14.41], I don’t think it would make a right angle
because then it would have to be like somewhere here [motions cursor in 90°
angle as indicated Fig. 14.41]. So it would be right there or something
[motions to area where C is in Fig. 14.42].

I To actually make the 90° rotation?
YJ Yeah. 1-2-3-4-5-6-7 [Fig. 14.43]. And 7 [Fig. 14.44]. So I think this is the

right one, it’s clockwi—counterclockwise, [checks] yay!

Fig. 14.38 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.39 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission
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In summary, YJ coordinated spatial and analytic reasoning in a way that enabled
her to make adjustments when her initial predictions were incorrect. However,
similar to MR, the analytic strategy that YJ used in Figs. 14.39 and 14.40 erred in
visualizing the wrong angle. Nevertheless, YJ overcame this error by accurately
visualizing the approximate location of the turn center, enabling her to use her
analytic strategy to locate the correct turn center.

Fig. 14.40 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.41 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission
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14.4 Conclusion

Our research focuses on the important general question of how spatial visualization,
analytic-measurement-based strategies, and property knowledge interact in stu-
dents’ geometric reasoning. Much of the cognitive psychology research in spatial
visualization has investigated the spatial-analytic relationship by analyzing indi-
viduals’ performance on assessments of spatial ability such as the Vandenberg
Mental 3D Rotation Test. Only Hegarty and colleagues (e.g., Hegarty, 2010; Stieff,
Hegarty, & Dixon, 2010) seem to be descriptively investigating the nature of spatial

Fig. 14.42 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission

Fig. 14.43 Student YJ
problem 4. ©2017, Michael
Battista, all rights reserved,
used with permission
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strategies, doing so for tasks in science and engineering. What we do not have
enough of in mathematics education are detailed descriptive studies that explicitly
and deeply investigate the nature of spatial analytic reasoning in geometric con-
texts. The present study, along with that of Ramful, Ho, and Lowrie (2015), are first
steps in this direction. These studies describe in detail the specific visual and
analytic strategies, and property knowledge, that students use in one particular
geometric context and the difficulties that students face in implementing these
strategies. In particular, the present study found that each student used knowledge
of all four prototypical-defining properties of rotations either explicitly expressed in
analytic strategies or implicitly embedded in visual strategies. But this study also
showed how these analytic strategies often failed because of students’ difficulties
with spatial visualization. Such descriptions are critical to genuinely understanding
the role of spatial visualization in geometric reasoning.
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Chapter 15
Exploring Models of Secondary
Geometry Achievement

Sharon L. Senk, Denisse R. Thompson, Yi-Hsin Chen
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Abstract Thompson and Senk (ZDM Math Educ 46:781–795, 2014) described
variations in the curriculum enactment of 12 secondary school teachers using the
same geometry textbook. In this paper, the researchers investigated factors that
might account for the achievement of the 544 students enrolled in the 25 geometry
classes these teachers taught. Multilevel regression analyses showed that the stu-
dents’ prior achievement, teachers’ reports on their use of questions applying the
mathematics studied, and students’ opportunity to learn the content of the posttest
have significant positive effects on the geometry posttest achievement. The percent
of lessons taught, writing emphasis, and frequency of use of activities with concrete
materials had negative effects on the posttest achievement. The researchers’ final
model accounted for about 95% of the variance. School size or type, instructional
time, teacher’s certification and experience, and other aspects of curriculum
enactment were not significant. Other factors and more reliable ways to measure
and combine those factors in determining curriculum enactment may lead to
developing more precise models of students’ achievement.
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15.1 Introduction and Research Questions

Over the years, various models of school learning have been proposed to explain
variations in students’ achievement in school subjects. For instance, Carroll (1963)
and Bloom (1976) postulated variables such as aptitude, opportunity to learn, and
quality of instruction to account for variations in school learning. In a 25-year
retrospective and prospective view on effects of his 1963 model, Carroll (1989)
noted that virtually all the variables in his proposed model had been substantiated
by research, but many studies had neglected “the basic issue of how the content of
instruction is to be organized and presented” (p. 29).

In recent decades, researchers (e.g. Li & Lappan, 2014; Valverde, Bianchi,
Wolfe, Schmidt, & Houang, 2002) have begun to look more closely at issues
related to the mathematics curriculum, instruction, and their effects on learning.
Remillard and Heck (2014) proposed a conceptual model where both the instruc-
tional materials used and the curriculum enacted by the teacher influence students’
learning. As an example of that model in use, Thompson and Senk (2014) docu-
ment how 12 teachers from different schools implemented lessons on congruence
from the same geometry textbook. In particular, they report considerable variation
in the number of lessons taught or skipped as well as variation in instructional
approaches, including the use of reading and writing mathematics and the use of
technology.

Due to the hierarchical nature of schooling, namely that students are taught in
classrooms, which are within schools, scholars have also begun using multilevel
modeling to analyze school and classroom effectiveness variables (Hill & Rowe,
1996). For instance, researchers working on the COSMIC project in Missouri
(Chávez, Tarr, Grouws, & Soria, 2015; Grouws et al., 2013; Tarr, Grouws, Chávez,
& Soria, 2013) have engaged in a large-scale investigation about achievement when
students study from curriculum-specific textbooks (Algebra I, Geometry, Algebra
II) or a textbook series that addresses the content in a more integrated manner. As
part of their study, they investigated various factors that might influence achieve-
ment, including both student and classroom instructional variables. As in previous
studies (Bloom, 1976; Carroll, 1963; De Jong, Westerhof, & Kruiter, 2004), they
found prior student knowledge to be a main predictor of student achievement. They
also found gender and ethnicity to be important predictors of performance although
the predictive level depended on the test-type (standardized test or
curriculum-specific test). However, results were mixed relative to classroom
instructional factors. In two studies, increases in Opportunity to Learn [OTL], or the
level of curriculum implementation defined as the percent of lessons taught,
resulted in increases in student performance (Grouws et al., 2013; Tarr et al., 2013).
However, in a third study, OTL was not a statistically significant predictor of
achievement (Chávez et al., 2015). In addition, teacher experience mattered as
students of teachers with three or more years of experience performed better on
assessments than students taught by less experienced teachers. In all three COSMIC
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studies, teachers greatly varied in how they used curriculum materials, but cur-
riculum fidelity was not a significant predictor of mathematics achievement.

In this chapter, we follow up on Thompson and Senk (2014) by investigating the
extent to which variations in classroom enactment predict students’ geometry
achievement. Based on our review of related literature, we hypothesized that stu-
dents’ achievement on a posttest would be predicted by student factors, school
factors, teacher factors, and curriculum enactment factors. Specifically, we inves-
tigate the question: Which characteristics of students, schools, teachers, and
classroom enactment by geometry teachers contribute to students’ end-of-course
achievement?

15.2 Design and Methods

The data set used to explore models of students’ achievement is a subset of data
collected by the University of Chicago School Mathematics Project [UCSMP]
during the 2007–08 school year as part of a curriculum evaluation study.1 Founded
in 1983, UCSMP aimed to upgrade and update mathematics education in ele-
mentary and secondary schools throughout the United States (Usiskin, 2003). The
instructional materials emphasize reading, problem-solving, everyday applications,
and the use of calculators, computers, and other technologies. Unnecessary repe-
tition of concepts studied in earlier courses was eliminated, so that by the end of
high school, the diligent average student could learn mathematics once reserved
only for honors students. Since its inception, UCSMP has been the largest
university-based mathematics curriculum project in the United States. In 2017,
estimates indicate that UCSMP materials were being used by about 4.5 million
elementary and secondary students in schools in every state in the United States.2

The UCSMP Geometry textbook (Benson et al., 2007) is the fourth in a sequence of
seven textbooks developed for students in Grades 6–12. In this section, we describe
the textbook, the sample and instruments, and procedures which were used for this
investigation.

15.2.1 UCSMP Geometry Textbook

The main goal of UCSMP Geometry is to provide students with a clear under-
standing of two-dimensional and three-dimensional figures and the relationships
among them (see http://ucsmp.uchicago.edu/secondary/curriculum/geometry/).

1While the data set is 10 years old as of the publication of this book, there is no reason to believe
the phenomena they document has changed substantially.
2Data retrieved from http://ucsmp.uchicago.edu/about/overview/ on February 14, 2017.
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Transformations are used to introduce general definitions of congruence, similarity,
and symmetry that enable students to connect the abstract notions of geometry with
figures on a page and the real world. Transformations also provide an opportunity to
integrate geometry with concepts in algebra that students have previously learned
and provide practice with function notation and composites of functions. Special
lessons are devoted to aspects of geometry in art, architecture, sports, and music;
activities using concrete materials or geometry drawing software appear throughout
the textbook. By starting from the assumed properties of points, lines, and angles,
as well as selected definitions, UCSMP Geometry aims to develop a coherent
mathematical system in which students learn to make deductions from definitions
and then write direct and indirect proofs in various formats.

During the evaluation study of UCSMP Geometry (Third Edition, Field-Trial
Version), at the beginning of the school year, teachers received a Table of Contents
and the first four chapters with the rest of the textbook provided in groups of 2–4
chapters. The version used in the Field Trial contained 114 lessons organized into
14 chapters as denoted in Table 15.1.

Each lesson ends with four types of questions: Covering the Ideas, Applying the
Mathematics, Review, and Exploration. The Covering questions in UCSMP focus
on the basic ideas of the lesson. The Applying questions extend the concepts to new
types of problems or require students to relate concepts to each other. Review
questions provide an opportunity for students to develop mastery of the mathe-
matics by continuing to work on new mathematics ideas throughout the chapter and
into subsequent chapters. Exploration questions provide an extension for interested
teachers and students. The curriculum developers recommend that teachers assign
all of the Covering, Applying, and Review questions in each lesson. Samples of
these question types are shown in Fig. 15.1.

Several textbook activities and examples from UCSMP Geometry (Third
Edition, Field-Trial Version) are described in Thompson and Senk (2014).
Examples from an earlier edition of the textbook appear in Hirschhorn, Thompson,
Usiskin, and Senk (1995), which includes examples that illustrate how concepts are
addressed from a multi-dimensional approach to understanding that focuses on
skills, properties, uses, and representations. Additional interactive demos are
available at http://ucsmp.uchicago.edu/secondary/curriculum/geometry/demos/.

Table 15.1 Chapter titles for UCSMP Geometry (Third Edition, Field-Trial Version)

Ch Title Ch Title

1 Points and Lines 8 Lengths and Areas

2 The Language and Logic of Geometry 9 Three-Dimensional Figures

3 Angles and Lines 10 Formulas for Volume

4 Transformations and Congruence 11 Indirect Proofs and Coordinate Proofs

5 Proofs Using Congruence 12 Similarity

6 Polygons and Symmetry 13 Consequences of Similarity

7 Congruent Triangles 14 Further Work with Circles
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15.2.2 Sample

The sample was drawn from eight public and four private schools in nine states
from the Midwest and South of the United States of America (USA). Size of the
schools ranged from 300 to 2200 pupils. Time allotted for mathematics instruction
ranged from 215 to 300 min per week.3

One teacher in each school taught from the UCSMP Geometry textbook (Benson
et al., 2007) with each teacher teaching one, two, or three classes of geometry for a
total of 544 students in 25 classes. One teacher taught advanced Grade 8 students in
a middle school, and one teacher taught students in Grades 8–10 in a K–12 school.
The other ten teachers taught in high schools with most students in Grades 9 or 10.
The class sizes, determined by the number of students who completed all instru-
ments, ranged from 6 to 31 students.

Covering the 
Ideas 

How many symmetry lines does each type of triangle have? 

a. equilateral            b.  isosceles                  c.  Scalene 

Applying the 
Mathematics 

In nonconvex quadrilateral 
RPWT, PW = RW = WT = 18 in. 
m PRW = 40° and m WRT = 
30°. Determine m PWT.  

Review (from 
previous lesson) 

If F and G are figures and rm(F) = G, then rm(G) = _____. 

30°40°

R

T

W

P

Fig. 15.1 Sample covering, applying, and review questions from Lesson 6-2 on isosceles
triangles. (From Benson et al. (2006/2007), pp. 344–346. © 2006 by the University of Chicago
School Mathematics Project. Reprinted with permission.)

3At School L, Geometry was taught on a 4 � 4 block schedule during the Spring semester only,
and students had 490 min of instruction per week. For purposes of comparison with schools at
which Geometry was taught during the entire year, we divided the weekly instructional time at
School L by 2.
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15.2.3 Instruments

In this paper, students’ achievement is reported on two multiple-choice instruments:
(a) a 35-item Geometry Readiness Pretest on geometry and algebra which were
considered prerequisite knowledge for the course, and (b) a 35-item Geometry
Posttest assessing the intended content of the course. Thirteen items were common
to both the pretest and posttest. These common items test mathematics concepts that
are considered part of the U.S. Common Core State Standards for Grades 6–8
(Council of Chief State School Officers, 2011), including determining angle mea-
sures, lengths or areas of triangles, quadrilaterals, and circles, and using vocabulary
about lines and angles. Rasch model equating with the 13 common items was
conducted using BILOG-MG software (du Toit, 2003) to obtain item difficulties as
well as estimates of students’ pretest and posttest knowledge on the same logit
scale. The Rasch logit scale is a z-score with mean of 0 and standard deviation of 1.

Both pretest and posttest had similar test quality. The test reliability (Cronbach’s
alpha) was 0.80 for both tests; the 95% confidence intervals for pretest and posttest
were 0.78–0.82. The posttest (Rasch test difficulty = 0.375) was more difficult than
the pretest (Rasch test difficulty = −0.50). Because the two tests have different
difficulty levels, statistical equating is needed to compare students’ performance on
pretest and posttest.

Stems of seven sample items from the posttest illustrating a selection of ge-
ometry concepts from the posttest and their item difficulties are shown in
Table 15.2. An increase in item difficulty shows that the item is more difficult.
Thus, the easiest item shown in Table 15.2 is an item common to the pretest and
posttest about the image of a vertex of a triangle after a translation. The most
difficult item appeared only on the posttest. It concerns the effects on the volume
when tripling the dimensions of a toy truck.

Data about teachers’ backgrounds, their use of the UCSMP Geometry textbook,
and their instructional practices come from five additional sources:

• A Beginning-of-the Year Questionnaire about the teachers’ backgrounds;
• Chapter Evaluation Forms that teachers completed at the end of each chapter

taught, indicating which lessons had been taught, which questions had been
assigned, and the instructional practices specific to that chapter that the teachers
had used;

• An Opportunity-to-Learn Form for each posttest, on which the teachers reported
if they had taught or reviewed the mathematics needed for their students to
answer each item on that posttest;

• An End-of-Year Questionnaire about instructional practices, including questions
about the teacher’s emphasis on reading and writing mathematics and students’
engagement in mathematical activities using concrete materials;

• A Structured Interview with each teacher after observing his or her geometry
classes.
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Table 15.2 Stems of sample items from the posttest and Rasch item difficulties

Pretest
item
number

Posttest
item
number

Rasch
item
difficulty

Item stem

4 2 −1.287 Triangle TRY is translated 3 units to the right and 4
units up. What will be the coordinates of the image
of point Y?

na 3 −0.206 M, N, P, and Q are collinear, as shown below.
What is the distance between the midpoint of MN
and the midpoint of PQ?

6 10 0.342 In a quadrilateral, each of two angles has a measure
of 115°. If the measure of a third angle is 70°, what
is the measure of the remaining angle?

na 27 1.636 The midpoints of the sides of DABC are connected,
forming DXYZ. Which is NOT always true?
(Choices were statements about similarity/
congruence, sides, angles, or area)

35 19 2.111 Due to a chemical spill, the authorities had to
evacuate all people within 5 km of the spill. To the
nearest square kilometer, how much area had to be
evacuated?

na 13 2.446 Which picture shows a counterexample to the
statement If a figure is a parallelogram, then it has
a diagonal that bisects two of its angles? (Choices
were pictures)

na 34 3.490 Two toy dump trucks are similar. The dimensions
of one truck are 3 times the dimensions of the
other. If the smaller truck can carry 2 cubic inches
of dirt, how much can the larger truck carry?

From Geometry Readiness Test and/or Geometry Test developed by the University of Chicago
School Mathematics Project (UCSMP). Posttest items 2, 27, 19, 13, and 34 were developed by
UCSMP personnel, © 2006/2007 and reprinted with permission of UCSMP. Item 3 on the posttest
was a released item from the National Assessment of Educational Progress and used in accordance
with its policies, U.S. Department of Education, Institute of Education Sciences, National Center
for Education Statistics, National Assessment of Educational Progress (NAEP), 1990 Mathematics
Assessment (Grade 12). Item 10 was a released item from the TIMSS 1999 Assessment (Grade 8)
and used in accordance with its policies. © 2001 International Association for the Evaluation of
Educational Achievement (IEA). Publisher: TIMSS & PIRLS International Study Center, Lynch
School of Education, Boston College, Chestnut Hill, MA and International Association for
Evaluation of Educational Achievement (IEA), IEA Secretariat, Amsterdam, the Netherlands
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Data about school enrollment, school type, teachers’ certification and experi-
ence, as well as additional sample questions and activities appear in Thompson and
Senk (2014). The complete set of instruments for the evaluation study is described
in Thompson and Senk (in preparation).

15.2.4 Procedures

Rasch models produce an estimate of knowledge of geometry, called a theta esti-
mate, for each student. These theta estimates have a distribution with mean of 0 and
standard deviation of 1. These estimates on the same scale allow pretest and posttest
performance to be compared directly. Because negative Rasch theta estimates are
sometimes difficult to understand, each theta estimate was converted to a T-score
with mean of 50 and standard deviation of 10 (i.e., T-score = 50 + Rasch theta *
10). Descriptive statistics for measures of geometry achievement by school, gen-
der, and grade level were then calculated.

Teachers reported the overall lesson coverage and instructional strategies rather
than by individual geometry class. Therefore, the data about curriculum enactment

Table 15.3 Independent variables used as predictors in multilevel analyses

Level: category Predictor variables

1: Student Gender (0 for female, 1 for male)

Grade (7–12)

Pretest score (Rasch T-score)

2: School Type (public or private)

School enrollment (rounded to the nearest hundred)

Instructional time (mins/week)

2: Teacher Secondary certified? (no = 0, yes = 1)

Number of years teaching mathematics

Number of years teaching UCSMP Geometry

2: Curriculum
enactment

Percent of lessons taught from Geometry textbook

Percent of Covering questions assigned from lessons taught

Percent of Applying questions assigned from lessons taught

Percent of Review questions assigned from lessons taught

Posttest Opportunity-to-Learn (OTL) as a percent

Reading emphasis (index is sum of values for 3 separate questions)

Writing emphasis (index is sum of values for 3 separate questions)

Percent of class time reported spent on whole class instruction

Percent of class time reported spent introducing new content

Time expected for students to spend on homework (in intervals)

Percent of class time reported spent reviewing homework

Reported frequency of use of activities with concrete materials
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by teacher were aggregated when exploring the models of geometry achievement.
We ran a series of multilevel analyses using SAS 9.4 (SAS Institute, 2013) with the
PROC GLIMMIX procedure to examine effects of various factors on students’
achievement. The dependent variable for all regressions was the posttest T-score.
Level 1 predictors were variables about each student (n = 544). Level 2 predictors
were variables about the schools, individual teachers, or features about the teachers’
reported enactment of the geometry curriculum (n = 12). Because each school had
only one teacher in this study, the teachers’ relevant variables were included as
school level (Level 2) predictors. The 21 variables used as predictors are given in
Table 15.3.

15.3 Results

First, we present descriptive statistics for scores on the pretest and posttest with the
factors we hypothesized that may affect students’ achievement. Second, we present
the models we built for predicting posttest scores. Finally, to illustrate how the
specific significant factors found in our final model may affect achievement, we
describe specific characteristics and actions of four of the 12 teachers in our sample.

15.3.1 Descriptive Statistics

Table 15.4 presents the mean percent correct for pretest and posttest by school
before equating as well as the Rasch theta estimates and T-scores after equating.
Because the two tests have different difficulty levels, the mean percent correct for
pretest and posttest before equating are not appropriate for comparison purposes. In
contrast, the Rasch theta estimates and T-scores for pretest and posttest are placed
on the same scale, so they can be used for comparisons.

Table 15.4 also shows the change in T-score from pretest to posttest, denoted as
DT-score, as well as the output from paired t-tests of the statistical significance of
those changes for each school. As seen in Table 15.4, all schools showed signifi-
cant increases in T-scores for the posttest compared to T-scores for the pretest. The
average T-scores were 47.46 and 55.60 for pretest and posttest, respectively, an
increase of 8.14 or almost one standard deviation of T-score (p < 0.001).

Students in School 31, a public suburban school where the geometry students
were gifted 8th Graders, had the highest performance on the pretest and posttest, but
their increase was the second lowest, perhaps reflecting a ceiling effect for these
students. Students in School 27, a public school in a small town, increased their
T-score by more than one standard deviation, the highest increase of any school.
Their pretest scores were slightly higher than average, but their posttest perfor-
mance was significantly higher than average. Other schools with gains in T-score of
more than one standard deviation were School 9, a private suburban religious
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school, and School 28, a public rural school. Students in School 26, a private
religious urban high school for boys, had the lowest performance on the pretest and
posttest, and their increase was about three-fourths of a standard deviation. The
pretest performance of students in School 30, another suburban public school, was
higher than the average, but their posttest performance was lower than average.
They also showed the lowest gain from the beginning to the end of the year.

Table 15.5 shows descriptive statistics of the means and standard deviations for
the pretest and posttest by grade level and gender. The mean scores of all grades
and both genders showed an increase from pretest to posttest of around 8 points

Table 15.4 Mean geometry scores by school, as percent, Rasch theta, and T-score, and output of
paired t-test

School n Pretest Posttest Paired t test

Percent
correct

Rasch
theta

T-score Percent
correct

Rasch
theta

T-score DT-score t(df)

09 19 51.88 −0.34 46.63 57.29 0.75 57.47 10.84 8.69 (18)*

25 67 52.11 −0.35 46.49 54.29 0.59 55.95 9.46 14.97 (66)*

26 61 35.69 −1.09 39.11 35.27 −0.31 46.87 7.76 9.90 (60)*

27 79 55.33 −0.19 48.13 62.03 0.99 59.89 11.76 20.85 (78)*

28 50 47.94 −0.53 44.71 51.43 0.47 54.74 10.03 13.88 (49)*

29 37 55.83 −0.18 48.19 51.58 0.47 54.74 6.55 8.44 (36)*

30 47 60.61 0.06 50.61 51.85 0.46 54.64 4.03 5.47 (46)*

31 51 77.37 0.86 58.63 69.52 1.35 63.46 4.83 5.88 (50)*

32 56 50.61 −0.41 45.88 46.53 0.24 52.39 6.51 7.99 (55)*

33 12 55.24 −0.22 47.82 56.43 0.72 57.23 9.41 6.35 (11)*

34 11 63.38 0.19 51.86 65.46 1.12 61.24 9.38 5.91 (10)*

35 54 53.02 −0.31 46.87 51.53 0.48 54.77 7.90 11.36 (53)*

Total 544 53.93 −0.25 47.46 53.36 0.56 55.60 8.14 32.45 (543)*

*Indicates the p-value for a paired t-test is less than 0.001

Table 15.5 Mean and standard deviation of geometry scores by gender and grade level

n Pretest T-score Posttest T-score DT-score

Mean SD Mean SD Mean SD

Grade

8 58 57.87 6.55 63.51 6.63 5.65 6.25

9 144 50.54 5.72 59.00 6.30 8.46 6.05

10 302 44.50 6.60 52.96 7.10 8.46 5.73

11 40 43.69 4.80 51.91 4.95 8.22 4.66

Gender

Male 290 47.30 8.33 55.65 8.47 8.35 6.14

Female 254 47.65 6.86 55.55 6.75 7.90 5.50

Note There was only one student in grade 7 and one in grade 12, so they were grouped with grade
8 and grade 11, respectively
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except for Grade 8 (an increase of 5.65). However, Grade 8 students had the highest
average T-scores for pretest and posttest compared to other grades. Apparently, as
grade level increases, the T-score decreases. The performance of male and female
students on pretest and posttest was similar.

Table 15.6 reports data on selected aspects of teachers’ curriculum enactment.
The number of lessons taught by each teacher is given as a percent of the 114
lessons in the textbook. Percentage of homework questions assigned is based on the
number of questions in the lessons taught, which varied by teacher. The emphasis
given to reading and writing is quantified as an index created based on teachers’
reported responses to three questions about the frequency of their practices related
to reading/writing in geometry class. The maximum value of each index is 10. The
questions about reading and writing have been reported in Thompson and Senk
(2014). The value for the third instructional strategy in Table 15.6, Use of Concrete
Materials, was based on a single item which asked the teachers to state the fre-
quency of opportunities for students to engage in activities using concrete materials
with almost never = 1, sometimes = 2, often = 3, and almost all = 4. Posttest OTL
is the percent of questions on the posttest for which the teacher indicated that he or
she had taught or reviewed the material needed for the student to answer the item.

Teacher G (School 31) taught the highest percentage of lessons in the textbook
(92%). Teachers A (School 25), B (School 26), F (School 30), and K (School 35)
taught the least with each reporting having taught less than 60% of the textbook’s
lessons. Teacher E (School 29) assigned almost all questions in the lessons that he
taught. In contrast, Teacher F (School 30) assigned only 24% of the questions in the
lessons he taught. Large variations were also observed in the percent of questions
assigned from each of the Covering, Applying, and Review sections in the lessons
and in the three instructional practices noted in Table 15.6. All but two teachers
reported that they had taught or reviewed the material needed by their students to
answer at least 80% of the posttest questions. The exceptions were Teachers B and
K, two of the four teachers who taught the least number of lessons.

15.3.2 Models of Posttest Achievement

A series of two-level regression analyses with different sets of predictors were
conducted to explore the best-fit model of posttest achievement. Using the Rasch
T-scores on the posttest as the dependent variable, we first ran a two-level re-
gression analysis without any predictor (referred to as an unconditional means
model, also known as a one-way ANOVA with random effects) as a baseline model
to obtain between-school and within-school variances. Variances between-school
and within-school can be used to calculate the interclass correlation (ICC) and
proportion of the dependent variance explained by the predictors in the following
models. The ICC in this study was 0.30, a moderate to large level, supporting use of
multilevel regression analysis. We then added the three Level 1 variables as pre-
dictors (see Table 15.3). Pretest T-score and grade were significant at p < 0.001
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and gender at p < 0.05. This model with three variables related to students
accounted for approximately 73% of the school-level variance.

We kept all three Level 1 variables and further added different sets of Level 2
variables (i.e., school characteristics, teacher characteristics, and curriculum enact-
ment; see Table 15.3) in the models to explore which other variables affect students’
performance on the geometry posttest. No school characteristic or teacher charac-
teristic variables were found to be significant. However, in each model, student-level
factors continued to be strong predictors of end-of-year achievement. Several aspects
of curriculum enactment were also found to be significant. Table 15.7 shows all
factors in our final model together with their regression coefficients.

All predictors except for gender significantly influenced posttest performance at
the p < 0.05 level. The proportion of the between-school variance of the dependent
variable explained by these predictors was 95%. Our final model shows that prior
knowledge is the strongest positive predictor of future achievement. For every
increase of one point in T-score on the pretest, the posttest T-score increased by
approximately 0.6 points after controlling for other variables. Posttest OTL and
percent of Applying the Mathematics questions assigned also contributed to
increased posttest scores, whereas increases in the grade level, percent of lessons
taught, emphasis on writing mathematics, and use of activities with concrete
materials resulted in lower total posttest scores.

15.3.3 A Closer Look at Four Cases

In order to examine more closely how the statistically significant factors identified
in our multilevel models affect achievement, we identified several teachers whose
students started the school year with comparable scores on the Geometry Readiness
Test, but whose posttest scores are quite different.

Table 15.7 Unstandardized coefficients and significance for a multilevel linear regression model
for posttest T-score

Effect Solutions for fixed effects

Estimate Standard error df t p

Intercept 27.26 7.41 7 3.68 0.008

Pretest (T-scores) 0.60 0.04 528 16.49 <0.001

Gender 0.88 0.45 528 1.94 0.053

Grade −1.45 0.39 528 −3.70 <0.001

Posttest OTL 0.40 0.12 528 3.43 <0.001

Percent of lessons taught −0.30 0.07 528 −4.26 <0.001

Percent of Applying questions assigned 0.17 0.04 528 4.60 <0.001

Writing emphasis −1.42 0.49 528 −2.93 0.004

Use of activities with concrete materials −1.14 0.47 528 −2.43 0.015
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Teacher B (School 26) and Teacher D (School 28) were identified because their
students had the two lowest mean scores on the pretests. However, by the year’s
end, the scores of students in School 28 had increased considerably more than those
of students in School 26. Specifically, as shown in Table 15.4, at the end of the
school year, the students in School 26 still had the lowest mean score on the
Geometry Posttest, and their T-score had increased by less than the average gain
(DT-score = 7.76 vs. 8.14). In contrast, at the school year’s end, T-scores of stu-
dents in School 28 had improved by 10.03 points, which is more than the average
gain. Teachers C (School 27) and F (School 30) were also identified as potentially
interesting because their students started the school year at or above the sample
average. However, at the end of the school year, the gains made by their students
differed dramatically. During the year, the improvement in T-scores of students in
School 30 was less than those in any other school (DT-score = 4.03). These stu-
dents scored below average on the posttest, in fact, lower than the students of
Teacher D. In contrast, students of Teacher C in School 27 showed the largest gain
in geometry achievement (DT-score = 11.76). By examining practices of teachers
whose students’ scores improved more than their colleagues who taught students
with similar scores in the Geometry Readiness Test, we had hoped to uncover
factors beyond those we had examined quantitatively.

Teachers C and F had more instructional time (55 and 60 min/day, respectively)
than either Teacher B (48 min/day) or Teacher D (45 min/day). Teacher B had
more experience teaching mathematics (25 years) than either Teachers C (1 year),
D (3 years), or F (4 years). Teacher B was certified to teach mathematics only in
Grades K–9, whereas the others were certified to teach in middle and high school.
But neither teachers’ backgrounds nor school characteristics were significant pre-
dictors in our final model.

Our final model indicates that on average, for every one percent increase in the
Applying the Mathematics questions assigned, the posttest T-scores increased by
about 0.17 points. As shown in Table 15.6, Teachers C and D assigned more than
80% of the Applying the Mathematics questions in the lessons they taught. In
contrast, Teachers B and F assigned less than half of the Applying the Mathematics
questions. Thus, Teachers C and D tended to assign tasks encouraging higher
cognitive demand more frequently than Teachers B and F. The percent of Review
questions assigned was not significant. This may be due to the fact that Review
questions might have been similar to either Covering the Ideas (basic knowledge)
or Applying the Mathematics (higher cognitive demand), and the percent of Review
assigned does not indicate which type of review the teacher provided. However,
Teachers C and D adhered more closely to the recommendations of the curriculum
developers about assigning questions for homework than Teachers B or F.

Posttest OTL also has a significant positive effect on posttest scores, with each
increase of one percentage point of OTL resulting in an increase of about 0.4 on
posttest T-score. The posttest OTL reported by Teacher B (66%) was the lowest
among the 12 teachers in our sample.

Grade level had a negative impact on posttest performance. Each increase of one
grade resulted in a decrease of about 1.45 in the posttest T-score. In School B, all
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students were in grade 10. In the other schools, the geometry students were in
mixed grades: School C: grades 9–12, School D: grades 9–11, and School F: grades
10–12. So, how grade levels related to posttest scores in these schools is not evident
without disaggregating the data.

Percent of lessons taught has a small (b = 0.3) but significant (p < 0.001)
negative effect on performance. This result means that, on average, for each
increase of 1% in lessons taught, the posttest T-score decreases by 0.3. However,
classes of these four teachers did not follow this general pattern. Students of
Teacher D (66%) did better than those of Teacher B (54%), and students of
Teacher C (68%) did better than those of Teacher F (57%). Thus, the use of this
predictor seems to lead to inconsistent results. This could be due to some interaction
between percent of lessons taught and the number or type of questions assigned that
the model was not able to capture.

15.4 Summary and Conclusions

In this research, we investigated factors that contribute to achievement at the end of
a course in secondary school geometry in the USA. Using multilevel regression
analysis, it was found that students’ prerequisite knowledge had a significant
positive effect on posttest achievement, a result consistent with research reported by
Carroll (1963), Bloom (1976), and De Jong et al. (2004). Gender was not signifi-
cant. Grade level had a negative effect on posttest achievement while none of the
school variables (type, enrollment, or instructional time) or teacher variables (cer-
tification or teaching experience) were significant. Of the 12 factors related to
curriculum enactment, five had statistically significant effects on posttest achieve-
ment. Percent of Applying the Mathematics questions assigned and Posttest OTL
had positive effects on posttest T-scores, whereas percent of lessons taught, writing
emphasis, and use of activities with concrete materials each had negative effects. In
all, the seven significant predictors (two student factors and five curriculum
enactment factors) account for about 95% of the variance when posttest T-score is
the dependent variable.

These results have practical as well as statistical significance. The finding about
prerequisite knowledge underscores the importance of building a strong foundation
in geometry concepts in lower grades in order to maximize success in secondary
school. Curriculum enactment factors, unlike student and school characteristics, are
variables within the control of the geometry teacher. The significance of the percent
of Applying the Mathematics questions assigned illustrates the importance of reg-
ularly assigning multi-step tasks or tasks that require students to apply their
knowledge in new settings. The use of cognitively demanding tasks, especially in
ways that encourage multiple solution strategies, multiple representations, and
explanations, has been shown to result in learning gains by Stein and Lane (1996).
Senk, Thompson, and Wernet (2014) found that posttest OTL was a positive pre-
dictor of achievement on functions in an advanced algebra course. In this study,
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posttest OTL was a strong and consistent predictor of posttest achievement because
teachers were answering questions about very specific test items and linking them
to what they have taught.

The negative effect of grade level on achievement likely reflects a practice in the
USA in which students of high ability are often encouraged to study geometry at
earlier grades than students of average or low ability. Our finding of negative effects
of percent of lessons taught is puzzling. As noted earlier, researchers in Missouri
reported that the percent of textbook lessons taught had significant positive effects
on achievement in two studies (Grouws et al., 2013; Tarr et al., 2013), but was not
significant in a third (Chávez et al., 2015). We found that percent of lessons taught
had a negative effect. Clearly researchers should continue to study this variable and
how it is related to other opportunity-to-learn variables. As Burstein, McDonnell,
Van Winkle, Ormseth, Mirocha, and Guiton (1995) reported, teachers tend to
answer questions about whether they had taught the mathematics needed to answer
a specific item more reliably than whether they had taught more general topics (e.g.,
congruence or linear functions). This suggests that Posttest OTL is a more reliable
measure of learning opportunities than lesson coverage, and that percent of lessons
taught is not as meaningful as a predictor. As Thompson and Senk (2017) have
advocated, teachers’ reported posttest opportunity-to-learn measure is an important
variable in considering the content validity of an achievement assessment, and as
shown here, is especially important when building predictive models.

In retrospect, the negative effects of writing emphasis and engagement with
concrete materials may be related to how these variables were measured. Each score
was determined by only a few questions about the teacher’s frequency of use of a
particular instructional practice. Hence, they may not be sufficiently sensitive in
reflecting the constructs that they were intended to measure. For instance, on the
End-of-Year Questionnaire, we did not ask what concrete materials were used (e.g.,
geometric solids or patty paper) or how the students used the materials. Future
research should investigate how to measure such constructs reliably and how to
weight such variables in analyses. Perhaps in future research, factor analyses could
be administered using a larger number of questionnaire items that utilize Likert
scales to help identify key constructs for building more precise models of students’
achievement.

The statistical power of the models resulting from our regression models is
limited because only 12 teachers were studied. Although we visited each of the 12
teachers for two days, we would not have been able to visit 100 or 1000 teachers.
Using electronic surveys, it is now possible to scale up data collection for some
variables that were found to be significant, such as Posttest OTL, percent of lessons
studied, and percent of questions assigned. Additional work is needed to determine
how researchers can measure other aspects of classroom enactment such as ex-
pectations in order to model achievement for a large school district, state, or
country. Researchers working on the COACTIV Project in Germany (Kunter et al.,
2013a, 2013b) and the COSMIC Project in the USA (Chávez et al., 2015; Grouws
et al., 2013; Tarr et al., 2013) have also worked on building models of secondary
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students’ mathematics achievement. More sharing of research methods would be
helpful, particularly those engaging in such investigations at scale.

Some of the variance not accounted for by the regression models in this study
may be due to other factors directly related to the students. For instance, the time
students devote to homework, their use of technology, or their persistence when
studying geometry. Some student self-reported data on these issues were aggregated
at the class level, and originally, the researchers had hoped to include such factors
for further analyses. However, because of the type of permission that was granted
by the Institutional Review Board, we were not able to link data to individual
student’s test scores to use in the predictive models.

As other researchers (e.g., Hill, Rowan, & Ball, 2005; Kunter et al., 2013a,
2013b) have found, teachers’ knowledge may also be a factor in students’
achievement. In particular, it is not clear how the mathematical background of
Teacher B, who was not certified to teach high school mathematics, affected her
ability to enact the geometry curriculum or set high expectations for her students.
However, we do not have any direct measures of teachers’ knowledge, so we were
not able to investigate this issue in the present study but recognize the need for
researchers to examine teachers’ knowledge as a factor in future studies.
Researchers and developers may also need to consider what professional devel-
opment is needed to help teachers implement geometry curriculum materials to
promote the instructional practices that we found resulted in higher achievement.
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Chapter 16
Engaging Students with Non-routine
Geometry Proof Tasks

Michelle Cirillo

Abstract Students who earned high marks during the proof semester of a geometry
course were interviewed to understand what high-achieving students actually took
away from the treatment of proof in geometry. The findings suggest that students
had turned proving into a rote task, whereby they expected to mark a diagram and
prove two triangles congruent.

Keywords Conjecturing � Diagrams � Doing proofs � Drawing conclusions
Figures � Focus group interviews � Proof � Student thinking � Tasks
Theorems � Triangle congruence � Two-column proof

16.1 Introduction

Although there have been ongoing calls to improve the treatment of reasoning and
proof in school mathematics, success in teaching proof has remained elusive. For
example, in the introduction to their chapter on the teaching and learning of proof,
Harel and Sowder (2007) noted: “Overall, the performance of students at the sec-
ondary and undergraduate level is weak….it is clear that the status quo needs and
has needed improvement” (p. 806). There is evidence that this need for improve-
ment exists in many parts of the world (Hershkowitz et al. 2002; Reiss, Heinze,
Renkl, & Gross 2008). This study’s focus is on proof in the context of high school
geometry. The research question for this study is as follows: How do students who
earned high marks (i.e., earned As and Bs) in a high school geometry course
respond when asked to engage in non-routine geometry proof tasks? This work falls
under a larger study aimed at understanding the challenges of teaching proof in the
high school geometry course (see Cirillo, 2014; Cirillo, McCall, Murtha, & Walters,
2017, for more detail).
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16.2 Theoretical Perspective

Past research has suggested that most students do not enter high school geometry
prepared to learn proof. For example, at the end of the school year, after a full
course in geometry, Senk (1985) found that only 30% of U.S. students reached a
75% mastery level. This low percentage might be explained by the statistic that
more than 70% of students begin the course at van Hiele Levels 1 or 2, and only
those students who enter high school geometry at Level 3 (or higher) have a good
chance of becoming competent with proof by the end of the course (Shaughnessy &
Burger, 1985). Nearly two decades after Senk (1985) published her work, McCrone
and Martin (2004) modified some assessment items from Senk (1985) and TIMSS
(IAEEA, 1995), only to find results similar to those of Senk (1985), Healy and
Hoyles (1998), and Chazan (1993). That is, geometry students continue to have
great difficulty constructing original, deductive proofs.

Unfortunately, geometry teachers do not fare much better when it comes to
feeling confident in their ability to teach proof. Researchers have found that
teachers view the teaching of proof in geometry to be a difficult endeavor (Knuth,
2002). In fact, Farrell (1987) indicated that the high school geometry course is a
feared teaching assignment for beginning teachers. Cirillo (2011) conducted a case
study on secondary teacher, Matt, who claimed that one cannot teach someone to
write a proof. Matt believed that when students look at proof problems, they either
see how to do them or not; he also said, “seeing it is nothing that I can teach you”
(Cirillo, 2011, p. 246). While conducting classroom observations, Cirillo also
observed two different teachers telling their students that a “shallow end” to
teaching proof did not exist. Rather, teachers simply needed to throw students into
the “deep end” of a metaphorical proof pool (Cai & Cirillo, 2014). Clements (2003)
cited impoverished curriculum materials as one potential explanation for these
kinds of findings.

16.2.1 Proof in U.S. Geometry Textbooks

Analyses of U.S. textbooks verify that a compartmentalization of proof in the high
school geometry course still exists (see Thompson, 2014). Yet, even within the six
most popular U.S. geometry textbooks analyzed by Otten, Gilbertson, Males, and
Clark (2014), a 30% sample from each textbook only yielded 5% of textbook
exercises that asked students to construct a proof on their own. In addition, the
majority of expository mathematical statements were general, while the student
proof exercises tended to involve particular statements. This means that students
rarely had the opportunity to prove actual theorems. Instead, they received the
“Given” and the “Prove” statements as well as a diagram to go with them. Even in
instances where a student exercise did involve a general statement, more often than
not, the textbook then provided a particular diagram labeled for students to use.
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Sears and Chávez (2014) reported on the interaction between students’ oppor-
tunities to engage in proof through two geometry textbooks and its influence on
enacted lessons. They found that even though the geometry textbooks had proof
tasks of higher level cognitive demand, there was no guarantee that those tasks
would be assigned, or that the levels of cognitive demand would be maintained
from the written to the enacted curriculum. The three teachers in the study all
admitted that they tended to pose lower-level tasks to students because they had not
had much experience with proof before the geometry course. For example, one
teacher described the proofs taught as “very basic, very obvious proofs” consisting
of no more than 10 steps that were “never anything that’s complicated” (Sears &
Chávez, 2014, p. 776). Overall, these results indicate that current textbooks and
classroom experiences may not provide students with many opportunities to
appreciate the generality of proof or develop proving competencies. After observing
this situation themselves, Cirillo and Herbst (2012) suggested a set of alternative
problems that could allow students to play a greater role in proving by, for example,
having students make reasoned conjectures, using conjectures to set up a proof, and
evaluating mathematical proofs by looking for errors or determining what was
proved.

16.2.2 “Doing Proofs” in Secondary Geometry

Over the past three decades, several researchers have provided classroom accounts
of what proving in geometry looks like. For example, Schoenfeld (1988) claimed
that in most tenth-grade geometry classes there is a strict protocol, wherein one lists
what is given and what is to be proved; one then draws a T, which divides the space
below the problem statement into two columns, labeled “Statements” and
“Reasons.” These statements are numbered with one statement per line—the
right-hand column contains justifications which are numbered to correspond to
statements; and the last entry in the statements column is the result to be proved.
Schoenfeld also observed that, particularly when proof is being introduced, a great
deal of time is spent on the form over the content of proofs.

In her study, Teachers’ Thinking about Students’ Thinking in Geometry: The
Effects of New Teaching Tools, Lampert (1993) outlined what doing a proof in high
school geometry typically entails. According to Lampert, students are first asked to
memorize definitions and learn the labeling conventions before they can progress to
the reasoning process. They are also taught how to generate a geometric argument
in the two-column form where the theorem to be proved is written as an ‘if-then’
statement. After students write down the “givens” and determine what it is that they
are to prove, they write the lists of statements and reasons to make up the body of
the proof. In this context, there is never any doubt that what needs to be proved can
be proved, and because teachers rarely ask students to write a proof on a test that
they have not seen before, students are not expected to do much in the way of
reasoning.
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More recently, Herbst and colleagues (Herbst & Brach, 2006; Herbst et al.,
2009) described a traditional sequence of what doing proofs looks like in
modern-day geometry classrooms. For example, Herbst et al. (2009) described
instances of student engagement with proof in various geometry courses in a high
school. Through this work, they unearthed a system of norms that appear to regulate
the activity of “doing proofs” in geometry class. The authors contended that a
collection of actions related to filling in the two-column form are regulated by
norms that express how labor is divided between teacher and students and how time
is organized as far as sequence and duration of events. For example, the first 5 of 25
norms reported by Herbst et al. (2009) are listed below:

Producing a proof, consists of (1) writing a sequence of steps (each of which consists of a
“statement” and “reason”), where (2) the first statement is the assertion of one or more
“given” properties of a geometric figure, (3) each other statement asserts a fact about a
specific figure using a diagrammatic register and (4) the last step is the assertion of a
property identified earlier as the “prove”; during which (5) each of those asserted statements
are tracked on a diagram by way of standard marks. (pp. 254–255)

The authors argued that despite the superficially different episodes in which
doing proofs were observed, there were deep similarities among those events. This
model of the instructional situation of doing proofs as a system of norms is helpful
to those who wish to investigate what it might mean to create a different place for
proof in geometry classrooms (Herbst et al., 2009). The authors concluded that in
the classrooms that they observed, the students’ main responsibilities continue to be
the production of statements and reasons in sequence. Students were rarely, if ever,
responsible for fashioning an appropriate diagram or making connections to con-
cepts that have not been activated by the problem or the diagram. The absence of
these types of tasks may add to students’ difficulties with proof.

16.3 Sub-goals of Proof

Many researchers have generated ideas and findings about what makes the teaching
and learning of proof in geometry a challenging task (Cirillo, 2014; Cirillo et al.,
2017; Gal & Linchevski, 2010; Laborde, 2005; Smith, 1940). These findings
support the work of decomposing the practice of proving so that the teaching of
proof can be built in progressive steps towards a larger goal. Cirillo et al. (2017), for
example, identified several sub-goals of proof in geometry. Here, four of those
sub-goals are discussed with respect to the research literature.
Coordinating Geometric Modalities. The mathematics register draws on a range
of modalities. What is important to this paper is the idea of working with diagrams.
Although working with diagrams is central to geometric thinking (Sinclair, Pimm,
& Skelin, 2012), doing so has proved to be a challenge for students (Laborde, 2005;
Smith, 1940). Textbooks tend to define a term, perform a construction, or prove a
theorem using the simplest possible figure and then expect students to apply what
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they have learned to more complex figures (Smith, 1940). For example, a figure
such as a right triangle can be made complicated by turning it so that it rests on its
hypotenuse rather than being oriented on one of its legs as students might expect to
see it. Although Smith made these claims over 75 years ago, they remain true
today. More recently, Gal and Linchevski (2010) identified several difficulties in
geometry from the perspective of visual perception. These difficulties include:
identifying a right angle, using the perpendicular symbol, naming angles, and
naming polygons. For example, students might label a rectangle according to its
verbal representation (reading letters from left to right) rather than using the con-
vention that we name polygons in a clockwise direction. Finally, Laborde (2005)
wrote about the diagram’s hidden role in students’ construction of meaning in
geometry. Relevant to this paper, she highlighted the ways in which some infor-
mation used in proofs is actually taken from diagrams such as the notion of
betweenness of points. As another example, the intersection of two lines is often
taken for granted from the diagram. Yet notions related to parallelism and per-
pendicularity cannot be directly assumed (Laborde, 2005).
Conjecturing. Stating the importance of conjectures, Lampert (1992) wrote:
“Conjecturing about…relationships is at the heart of mathematical practice”
(p. 308). Similarly, related to the importance of determining statements to prove,
Meserve and Sobel (1962) wrote:

Many people think of geometry in terms of proofs, without stopping to consider the source
of the statements that are to be proved….Insight can be developed most effectively by
making such conjectures very freely and then testing them in reference to the postulates and
previously proved theorems. (p. 230)

If we are to engage students in meaningful mathematics, then we must allow
them to discover and conjecture (Cirillo, 2009). This practice can start early, where
students of all ages are capable of engaging in conjecturing.
Drawing Conclusions. The drawing conclusions sub-goal is about the ability to
draw valid conclusions based on the information provided. One makes a deduction
through the use of definitions, postulates, and previously proved theorems, or by
discerning that something valid is true from a diagram (Cirillo et al., 2017).
However, it is not uncommon for students to erroneously assume things about
diagrams such as equality of angles from the appearance of a figure and their lack of
understanding about how to draw valid conclusions (Smith, 1940). This is com-
plicated by the notion discussed above related to how some textbook tasks require
that students use information from a diagram even though teachers typically warn
against it and may not be explicit about when it is okay or not.
Understanding Theorems. One important aspect of understanding theorems is
choosing the hypothesis and the conclusion from a verbal statement. In Smith’s
(1940) study, half of the students assessed did not have an understanding of the
if-then relationship that would allow them to correctly write the hypothesis and
conclusion in terms of a figure. In her study published about 45 years later, Senk
(1985) similarly found that only 32% of students assessed were successful in
proving a theorem about congruent diagonals in a rectangle. To prove the theorem,
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students needed to identify the “Given” and the “Prove” statements from the the-
orem stated as: “The diagonals of a rectangle are congruent” (Senk, 1985, p. 451).
Smith had also noted that students are likely to have trouble discerning a difference
between a conditional statement and its converse such as those below, because the
diagram for both will have a pair of sides and a pair of angles marked congruent:

• If two sides of a triangle are equal, the angles opposite those sides are equal.
• If two angles of a triangle are equal, the sides opposite those angles are equal.

Additionally, there is much to understand about theorems beyond identifying
hypotheses and conclusions, such as understanding that a theorem is not a theorem
until it has been proved and that theorems are only sometimes biconditionals (see
Cirillo et al., 2017, for more on this sub-goal).

16.4 Methods

This study was part of a larger three-year project aimed at understanding the
challenges of teaching proof in high school geometry. The data for this paper was
collected during the baseline data collection year in the second term of a year-long
high school geometry course, after the students had completed a semester-long
study of proof in geometry. These students came from two different teachers’
classes in an all-boys private school where conventional geometry textbooks were
used, and the norms documented by Herbst et al. (2009) were frequently observed
in the classroom lessons. In the first semester of the geometry course, students
studied logic, geometric objects, triangle congruence proofs, and quadrilateral
proofs.

16.4.1 Participants

The data set includes interviews of 15 students from Mr. Mack’s and Mr. Walden’s
classes. The students attended a private boys school in the mid-Atlantic region of
the U.S.A. Students were interviewed during a free period in groups of 3, 3, 3, 4,
and 2 based on when they were available to meet with the interviewer (the author).
Prior to conducting these interviews, the author had already observed two
non-consecutive weeks of one section of Mr. Mack’s and Mr. Walden’s geometry
classes. The observations were conducted while the teachers were introducing
proof, in this case, using triangle congruence conditions, and again when they were
working with students on quadrilateral proofs.
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16.4.2 Interview Protocol

Students worked on tasks that appeared in or were inspired by Cirillo and Herbst’s
(2012) article: Moving Toward More Authentic Proof Practices in Geometry. Each
student received a packet with the assigned tasks to complete. The goal of those
tasks was to expand the role of the student in ways that differ from how they might
engage with typical geometry textbook tasks (e.g., as described in Otten et al.,
2014) or classroom tasks (as described by Herbst et al., 2009; Herbst, Aaron,
Dimmel, & Erickson, 2013a) where (a) the “Given” and the “Prove” statements are
provided to the students, and (b) students are expected to write two-column proofs.

Students who earned high marks (grades of A or B) in the first semester of the
geometry course were interviewed in focus groups. The rationale for interviewing
students with high marks was to understand what high-performing students were
taking away from the course with respect to proof. The rationale for using focus
groups was that students would engage in the tasks together, in groups, and the
researcher would be able to capture students’ thinking as they worked through the
task aloud. The researcher interjected with questions when students seemed to be
straying from the task’s goal in order to maximize the time spent with the students
during the interview. The focus group interviews were video-recorded. In addition,
each student’s written work was collected at the end of the interview. Interviews
lasted about 40 min each.

16.4.3 Data and Analysis

Using Transana (Fassnacht & Woods, 2005), software that allows qualitative
researchers to transcribe and analyze video or audio data, collection reports were
developed. In particular, each interview was segmented by tasks attempted so that
the researcher could conduct an item analysis, which looked across how each group
approached each individual task. The researcher analyzed one task at a time, going
back and forth between the student work, the video, and the transcript, looking for
patterns across how the groups approached each task. Four tasks that were com-
pleted by all five groups were analyzed.

16.5 Findings and Discussion

In the sections that follow, the findings from the analysis of the student work and
interview videos are presented. Descriptions that illuminate how the students
thought about and solved each task are provided.
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16.5.1 Task One: The Conjecturing Task

In the Conjecturing Task (see Fig. 16.1), students were provided with a conjecture
(the diagonals of a rectangle are congruent) and a diagram of a rectangle. They were
then asked to write the “Given” and the “Prove” statements that could be used to
prove the conjecture. Despite the fact that students were not asked to write a proof
for this task, all five groups of students started to work on a proof at some point in
the discussion of the task to prove that the two triangles were congruent. Most
students began by calling out statements that they thought they should write in a
proof before discussing what it was that they were trying to prove. The following
transcript excerpt typified the discussions across the groups:

Mark: So, AB and CD are congruent.
Larry: Yeah, it’s a rectangle.
Jamal: The diagonals are congruent, so AC and BD are congruent.
Mark: So, AD and BC are congruent….
Mark: And then we can have the triangles DBC and DBA, so all angles are

congruent as well, so if all the angles are congruent you can break out the
triangles ABC and A, or yeah, you can get ABC and ADC.

Larry: Oh, I see what you’re doing now….

In most cases, students began working on the task without discussing what a
conjecture was and by calling out things that they believed to be true. Figure 16.2
contains every “Given” and every “Prove” statement written on students’ sheets.
For each group, any unique statement appears only once. None of the groups were
able to correctly solve the task, and three of the groups assumed the conclusion (i.e.,
that the diagonals of the rectangle were congruent).

After calling out statements that they believed to be true, eventually, two groups
did ask the interviewer what a conjecture was. Another group asked what they were
trying to prove. Compared to the other groups who never discussed this explicitly
before calling out statements, Group 5 asked the question pretty quickly, where the
conversation went as follows:

Fig. 16.1 The Conjecturing Task: students are asked to write the Given and Prove statements.
(Reproduced from Cirillo & Herbst, 2012, p. 17; used with permission under a CC license.)
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John: So, the diagonals are congruent. So AC would be congruent to BD.
Lin: That means angles – angle DAC and angle BCA are congruent? What

do we need to prove? (to the interviewer)
Interviewer: That’s what I’m asking you, actually, to figure out what you could

assume as given and what you would want – what you’re wanting to
prove, based on that conjecture.

Lin: Okay, ABCD is a square you would need to be given, or a, not a
square, a rectangle. Um…

John: Yeah so the only given we have is uh, AC is congruent to BD.

Here, this group ultimately reversed the “Given” and “Prove” statements as shown
in Fig. 16.2.

16.5.2 Task Two: The Diagramming Task

In the Diagramming Task, students were provided with the “Given” and the
“Prove” statements but were asked to draw a diagram that could be used to prove
that two segments drawn within a parallelogram were congruent (see Fig. 16.3).
Three of the five groups of students had at least one student who incorrectly drew
parallelogram PQRS as parallelogram PQSR (see Fig. 16.4). Most of the students
also had trouble drawing ST and QV wanting instead to draw the diagonals.
Students commented that this setup was unusual: “We never did one like this
before” and “We’re trying to prove something about the diagonal.” One student
said he drew the diagonals in the parallelogram because it was “just a habit.” Below
is an example of a typical group discussion:

Group Statements Written on the
"Given" Line 

Statements Written on the "Prove" 
Line 

1 ≅ ABD ≅ CDB 
2 ABCD is a rectangle 

Diagonals ≅/‖
,
,

3 ,
,  

4 , ABDC is a rectangle, 
All ∠'s are congruent 

5 ABCD is a rectangle 
Correct Answer ABCD is a rectangle 

Fig. 16.2 All “Given” and “Prove” statements written on students’ papers in each group
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Ben: I think PQ and SR are diagonals. I mean like, we -.
John: They’re not diagonals, but they’re parallel. (Pause) You mean T and

V are diagonals?
Ben: Like, I, no, yeah. I think it’s like this it’s um like [draws PSRQ].

PSRQ and P and Q are diagonals and R and S are diagonals.
Jeff: Where would you put this midpoint? Just in the middle of the thing?

But it says -
Ben: Um, do like, when it says parallelogram PQRS, does it, is there any

specific order that it has to be in, that the points have to be in?
John: Um, did you make those diagonals?
Ben: I think they are.
Interviewer: Why do you think that they’re diagonals?
Ben: Um, I don’t know. I just, I don’t know. Cause like, I’ve never seen a

problem where –

John: Yeah, I’ve never seen like a variable in the middle of a line before.
Ben: They’re usually drawn –

John: And I don’t know how to, like, it’s asking can we prove that ST is
congruent to QV. So I mean does it, parallel lines by looking at them,
but I need a way to prove that.

So here, the students seemed quite thrown off by the fact that the line segments
drawn in the parallelogram are not the diagonals. It seemed that they were even
trying to reorder the parallelogram‘s vertices, so they could somehow force the
diagonals to be the line segments in the figure.

Students from two different groups very quickly moved from drawing a diagram
to drawing a “T” to write their two-column proofs (see, for example, Fig. 16.5). In
one case, the students attempted this after they quickly drew an accurate diagram,
saying, “Wow! ST and QV – it’s a cool problem.” In another case, however, the
students seemed to believe that writing a proof was their main goal. After being
unsure of what to do about the diagram, they decided to try to write a proof, saying
“Make a chart” with another following, “Yeah, let’s make a chart.” When asked
why they said that, they explained that “chart” meant a two-column proof “because
this is how we did proofs.” A similar discussion occurred with another group as
shown below:

Fig. 16.3 The Diagramming Task: students are asked to draw a diagram for the proof.
(Reproduced from Cirillo & Herbst, 2012, p. 17; used with permission under a CC license.)
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Mark: You make a chart.
Jamal: Yeah, we should make a chart.
Interviewer: Okay, what’s that you just said?
Mark: Oh yeah, I said that you should, uh, since we’re trying to prove that

ST is congruent to QV you’re going to want to make a chart, at least
this is how we did, uh proofs, so..

Interviewer: You mean a two column…[overlapping talk]
Mark: Two-column chart, yeah, like that. The statements and reasons….

So even though the task did not ask students to write a proof, Mark explained that
this is how they did proof in their class, by making a “chart.” The fifth group began
discussing a plan for writing a proof, but it was unclear whether or not they realized
that they completed the task after drawing the correct diagram.

Fig. 16.4 Parallelogram PQRS drawn as PQSR by two different students © 2017, Michelle
Cirillo, all rights reserved

Fig. 16.5 A student starts to write a proof after another group member suggests doing so © 2017,
Michelle Cirillo, all rights reserved
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16.5.3 Task Three: The Drawing a Conclusion Task

In the Drawing Conclusions Task (see Fig. 16.6), students were asked to draw a
conclusion when provided with a particular “Given” condition and a diagram. In
this case, students were not asked to write a proof of anything in particular, but
rather to use the “Given” statement and the diagram to draw a valid conclusion. As
they began this task, students in each group typically started by marking their
diagrams (see Fig. 16.7). Most noted that two triangles were formed and started
making hash marks. Each group eventually drew a valid conclusion, but all groups
were distracted by the diagram and put forth invalid assertions. For example, stu-
dents from three of the five groups asserted that the angle bisector at W formed two
right angles. Students from three groups also asserted that W was the midpoint of
XZ. Two groups debated these ideas and suggested alternate diagrams that would
serve as counter-examples to these claims (see, e.g., Fig. 16.8). All five groups
thought that it was important to note that YW was congruent to YW by the reflexive
postulate. When asked whether or not YX was congruent to YX, students said no.

When the interviewer asked students “if you can go by the picture or just go by
what is given,” one student said, “You have to go by what you’re given.” A second
student said, “You have to go by what you’re given, but you can also assess from
the picture.”

Fig. 16.6 The Drawing Conclusions Task © 2017, Michelle Cirillo, all rights reserved

Fig. 16.7 Student work samples where students marked up their diagrams © 2017, Michelle
Cirillo, all rights reserved
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16.5.4 Task Four: The Determining a Theorem Task

In the Determining a Theorem Task, students had the opportunity to analyze a
completed proof. More specifically, students were provided with a proof of the Base
Angles Theorem and asked to determine what theorem was proved (see Fig. 16.9).

Because most groups seemed to have trouble getting started on this question, the
interviewer typically said something like this to each group: “So, sometimes you’re
given a theorem, and you’re asked to prove it. So this time I gave you the proof.
What are you proving?” After still seeming confused by the question, the inter-
viewer reminded students that theorems were typically statements written in the
“If…, then…” form.

Fig. 16.8 Student diagram
for Task 3 © 2017, Michelle
Cirillo, all rights reserved

Fig. 16.9 The determining a Theorem Task: Base Angles Theorem. (Reproduced from Cirillo &
Herbst, 2012, p. 23; used with permission under a CC license.)
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Students struggled quite a bit with this task. Initially, they struggled to try to
understand what the task was asking them to do. Then, they were unsure about how
to do it. Many of the groups started by saying that what we were proving was either
that the triangles were congruent or that angles A and B were congruent. Below is a
typical discussion of this task:

Liam: Wait, what? I’m confused. What was proved in the first place?
Kyle: Everything.
Liam: Is it just trying to prove all the angles or is it trying to say angle, uh,

triangle C, CBD is congruent to angle, or uh triangle CAD?
Interviewer: That’s actually the question I’m asking you. What’s proved in the

theorem? What’s the theorem?
Kyle: Angle A is congruent to angle B, okay.
Jeremy: No, gotta write a theorem.
Liam: I think it’s triangle CAD is congruent to CBD. I think that’s what it’s

asking.
Kyle: If you look at the end, angle A is congruent to angle B. So, that’s

what was trying to be proved.
Jeremy: But what theorem is that?

Most of the groups ultimately got to a point where they were on the right track for
stating the theorem, but then it took quite a while for them to articulate their
thinking. For example, students would say things like, “If you have the two that are
congruent in a triangle, then the opposite angles are congruent” or “If two sides of a
triangle are congruent, then the corresponding angles are congruent” before either
stating the Base Angles Theorem correctly or never getting there at all. One group
wrote the theorem symbolically, first writing the converse of the Base Angles
Theorem, and then the Base Angles Theorem, using notation that their teacher
allowed them to use in their proofs (see Fig. 16.10). Perhaps because they had so
much trouble getting from the diagram to the verbal statement, students commented
that maybe they should not have been allowed to write the theorem this way since
they could not actually say what it meant. For example, when the interviewer
commented about them having trouble putting it into words, one student remarked:
“Yeah, cuz when we proved it, Mr. Mack just told us that it was alright if, in the

Fig. 16.10 Student representations of the Base Angles Theorem (a) and its converse (b) © 2017,
Michelle Cirillo, all rights reserved

296 M. Cirillo



reasons, if we just drew the picture.” When asked if they thought this was a good
idea, that same student responded, “I mean I liked it, but I guess that this just kind
of proves that we know how to draw it, but we don’t actually know the theorem.”

16.5.5 Students’ Reactions to the Alternative Proof Tasks

After solving the tasks, students were asked to comment on the work that they did
with the interviewer. They seemed to recognize that the tasks were different from
the ones that they typically worked on in class, for example, noting, “They’re
different because we usually just have to write a proof.” Students were generally
positive about the tasks even though they were clearly challenged by them. They
noted benefits of doing tasks such as the ones described here, saying, for example:
“I think they make you think more about what you’re actually proving…maybe
think about what you’re trying to prove and that helps to think about how you get
there and how you prove it.” Other students commented that they liked drawing the
diagrams themselves: “I think having them draw the picture kind of gives you a
better understanding of it…[since] I’m a visual learner.” Some students seemed to
prefer the “normal stuff” with one student commenting:

Yeah actually I think we should like stick with the normal stuff we do for homework like
proving the regular stuff, but then um, I guess also, once we’ve learned how to prove the
regular stuff, we can have some fun with it I guess, because, so just like kind of change it up
a bit, and try new things with it.

Responding to this comment, another student said that the tasks presented to
them in the session were more challenging, and he guessed that “they help you
learn proof better.”

16.6 Summary

Students who earned high marks during the proof semester of the geometry course
were interviewed to understand what they had taken away from the treatment of
proof in geometry. It was observed that students struggled with similar things as in
past studies. During the Conjecturing Task, students struggled greatly with
determining what the conjecture’s hypothesis and its conclusion were, exchanging
the two in most cases. In the Diagramming Task, all students struggled to draw the
diagram; some even struggled to properly draw and label parallelogram PQRS. The
Drawing Conclusions Task elicited multiple assertions that should not have been
claimed. These assertions resulted from what the diagram looked like rather than
what students were told was “Given.” Finally, in the Determining a Theorem Task,
students thought that what was being proved was particular to the diagram, and they
struggled to generalize the theorem. Even when they finally moved close to doing
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so, they tended to begin with the converse of the Bases Angles Theorem, seemingly
not realizing that the Base Angles Theorem and its converse are different
propositions.

Across the evidence, one can conclude that the students were accustomed to
engaging in particular types of tasks where they were asked to write a two-column
proof that somehow involved congruent triangles. The findings suggest that stu-
dents had turned proving into a rote task, whereby they would identify two triangles
in the diagram provided, mark the diagram, and then brainstorm as many conclu-
sions as possible based on some of the written text in the task and the diagrams
themselves. Students were challenged to complete tasks that did not follow their
prototype of what “doing proofs” looks like. For example, Herbst et al. (2013a) and
Herbst, Kosko, and Dimmel (2013b) documented normative classroom practices
such as: students are typically provided with “Given” and “Prove” statements and
they are not typically asked to sketch diagrams that could be used to write their
proofs. The results of this study are reminiscent of the “bad results” of “good
teaching” demonstrated by Schoenfeld (1988). More work is needed to understand
how we can teach students to better understand the reasoning behind the proving.
Future studies should also incorporate more typical types of proof problems to see
how students think through those in contrast to atypical tasks. Finally, technologies
such as smart pens could be used to better coordinate the discussions with the
student work.
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Chapter 17
Aspects of Spatial Thinking in Problem
Solving: Focusing on Viewpoints
in Constructing Internal
Representations

Mitsue Arai

Abstract What difficulties do seventh grade students have in constructing internal
representations and in their mathematizing processes while considering external
representations from various viewpoints? Students received a photograph and were
asked to mark where on a map they think the photograph was taken. The results
reveal seven types of places where students mark a point and six specific per-
spective cues they use. Different kinds of difficulty students had in each category
are found by examining the relational terms, such as in front of, or right side, used
by the students. The study suggests that a possible cause of difficulty in constructing
internal representations is a lack of connection between the objects in terms of their
position and direction from several perspectives. Finally our data indicates that
crating positional relation with information of real world is a significant ability in
mathematizing process.

Keywords Internal representation � Mathematizing process � Spatial thinking
Viewpoints

17.1 Introduction

Various situations occur in daily life where spatial thinking serves a purpose. Such
examples include working with virtual reality like 3D maps on web sites and
reading an instruction manual for assembling furniture. Due to the development of
information and communication technology, more types of 3D representations like
automobile’s navigation systems are more prevalent than ever before. This increase
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indicates the importance of spatial thinking. According to the comprehensive report,
“Learning to Think Spatially” published by the National Research Council
Committee on Geography (2006), spatial thinking is a powerful tool, and it is
fundamental to problem solving in a variety of contexts in living space, physical
space, and intellectual space. In addition to recognition from educational
researchers, spatial thinking has been getting attention in school curricula in Japan
(Murakoshi, 2012). For example, map reading in geography, understanding solar
trajectories in science, and reasoning geometrically in mathematics require students
to think spatially. Compared to other subjects, mathematics plays a specific role in
fostering students’ ability to transform real-world phenomena into
mathematical-world problem then solving problems in the mathematical-world.

In the Japanese geometry curriculum, learning goals related to spatial thinking
are mainly related to sketching diagrams that include nets and projection views.
There has been much research and ideas for practice in this area (e.g., Yamamoto,
2013). However, the majority of such research and ideas for practice deal with
abstract objects such as prisms and pyramids. Moreover, results of the national
achievement test in Japan report the difficulties students have with mathematizing
real world problems (National Institute for Educational Policy Research [NIER],
2014).

Figure 17.1 provides an example of a real world problem. The question is: “there
is a cultural festival. A hanging sign needs to be installed on our school building.
Decide the lowest position possible for the display so that it is not eclipsed by the
tree when someone looks at it from the sidewalk, and explain how to find the
position of the sign using words or figures.” (ibid., p. 981) The 61.3% of students
answered this item correctly but this percentage is lower than achievement on other
problems formulated with abstract objects. Therefore, NIER raised the issue that
secondary school students have difficulties to simplify phenomena in order to
interpret the results mathematically (ibid., p. 102). These mathematical processes
are very difficult for students to do in Japan. Therefore, research is needed to
understand how students think spatially in real world situations and what difficulties
they encounter in their mathematization processes.

In order to examine the role that spatial thinking about real world objects plays
in students’ ability to mathematize those real world objects, this study explores
students’ spatial thinking process while they solve problems with planar repre-
sentations including photographs and maps. A photograph is an “in-between”
representation of the actual object and its geometric diagram while a map represents
the space with some information from real world. Bishop (1986) considers both
photographs and maps as promising avenues in mathematizing space.

1Author’s translation from the original in Japanese.
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17.2 Theoretical Background

Research has shown some spatial abilities are present at birth but are slowly realized
over years of development (Sarama & Clements, 2009). From a psychological
perspective, according to (Krutetskii, 1969), Thurston clarified the structure of
human intelligence using factor analysis and showed that the primary mental
abilities include a spatial factor. Thurston’s notion of primary mental abilities offers
a provocative idea that if there is an appropriate combination of primary abilities
which constitute mathematical ability, it is possible that mathematical ability could
be developed by suitably stimulating those primary abilities besides teaching
mathematics (Bishop, 2008). Therefore, spatial ability could be developed through
stimulating spatial factor in mathematics education.

From a review of studies on factor analysis regarding spatial abilities, McGee
(1979) distinguished two spatial factors, spatial visualization and spatial orientation.
Mathematics education also fosters them as competencies. Spatial visualization is
the comprehension and performance of imagined movement of objects in 2D and
3D space; spatial orientation is the understanding and operation on the relationship
between the objects’ positions in space with respect to one’s own position
(Clements & Battista, 1992). For this paper’s focus, spatial thinking is the

Fig. 17.1 A test item in the Japanese National Assessment of Academic Ability © NIER, used
with permission
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intellectual exercise of mental operations to create mental spatial images that is
supported by intuitive ideas in problem solving situations related to the real or
abstract spatial world (Hazama, 2004). From this standpoint, spatial thinking is the
activity supported by the competences of spatial visualization and spatial
orientation.

The results presented in this paper focus on how students change their view-
points, which is one of the important intellectual activities related to both spatial
visualization and spatial orientation. Saeki (1978) mentioned that changing view-
points contributes to the reconstruction of internal representations to solve a
problem. Also considering an image as a coherent, integrated representation of a
scene or object from a particular viewpoint (Eliot, 1987), we believe that looking at
viewpoints offers the key to understanding how students create internal
representation.

In cognitive psychology, perspective-taking has been discussed since Piaget’s
“Three Mountain Task.” Voluminous literature on the development of
perspective-taking provides evidence to support modifying Piaget’s theory that
young children are spatially egocentric until the age of nine or ten years. Recently,
Watanabe and Takamatsu (2014) pointed out that there are processes used to solve a
perspective-taking task, one of them being the imagination of body movement from
another vantage point in 3D space. Therefore this study takes two types of view-
point which are considering the part of the object the viewer sees from his or her
position (Level 1) and considering the relationship the observer sees among objects
as indicated by the cues he or she takes from viewing the objects while solving
problems (Level 2) (Flavell, 1974).

With viewpoints thus defined, it is important to refine how spatial descriptions
are formed. Spatial descriptions contain statements that locate objects from a ref-
erence frame, which includes an origin, a coordinate system, a point of view, terms
of reference, and reference objects (Taylor & Tversky, 1996). In order to describe
how students construct internal representation, the study focuses on the reference
frame. The study’s goal is to identify the difficulties students have in solving real
world problems by analyzing the terms they use to relate the location of a landmark
to a certain origin (i.e. the viewer’s position).

17.3 Methodology

The participant sample included 60 seventh graders (33 males and 27 females) in a
public school in July 2015. They had not learned how to create nets, map reading,
or the topic of similarity. Each student received a questionnaire, which had two
components. The first component asked the students if they had seen the objects in
a photograph (Fig. 17.2). The second component included two tasks: Task X and
Task Y. These tasks were designed based on representational correspondence
methods (Liben, 1997). Figure 17.2 shows that the given tasks required students to
make a connection between two external representations for one particular place.
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The closed oval line with arrows at the center of Fig. 17.2 represents making a
connection in the process of solving the tasks.

In Task X, representation 1 is a photograph, that is a 2D representation, of an
elevation view. Representation 2 is a map, that is a 2D representation, representing
a view from the top. Students were asked to place a point on the map (Fig. 17.4) to
indicate from where the photograph (Fig. 17.3) had been taken and describe the
reason for their choice. Both representations show three landmarks: TOKYO
SKYTREESM, East Tower, and a river.

The relational terms back and front are shown on the photograph. Task X’s
purpose was to discover what kinds of difficulties seventh graders have in con-
structing internal representations through focusing on their viewpoints at level 1
and level 2.

In Task Y, Representation 1 included two photographs: One photograph had
been taken from an airplane with information about the height and the distance
between landmarks; the second photograph gives the appearance of the heights of
the two landmarks looking the same from the front (Figs. 17.5 and 17.6).
Representation 2 was a map, a 2D representation with view from the top. The two
landmarks, TOKYO SKYTREESM and Mt. Fuji, are well known in Japan. So,
every student could have some images of them easily. Task Y asked students to
estimate the location in which the photograph was taken (Fig. 17.5) and put a point
on the map (Fig. 17.6) or explain it in words. Then, they needed to describe the
reason for their location choice with figures and sentences. This task’s purpose was
to clarify how seventh graders mathematize the given problem and what difficulties
exist in their mathematization processes when students analyze the external
representations.

Fig. 17.2 Representational correspondence methods (Task X)
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The analysis of the two tasks is as follows. In the case of Task X, the cues
students described are grouped, and the points students marked are positioned
accordingly. Then, specific cues are categorized. The next step is identifying the
relationships between the positions and cues using correspondence analysis in order
to find strong relations between them. Following the correspondence analysis, the
groups are compared based on their descriptions. Finally, our attention shifts to
focus on the reference frame expressed in spatial terms. In the case of Task Y, the
stages are set based on students’ description. Then, cues are selected to solve
the problem in each stage. The final part of the analysis of Task Y is examining the
relationship between the selected cues in Task Y and Groups A–F in Task X.

17.4 Results and Discussion

All students have had experience seeing TOKYO SKYTREESM on TV (93%),
magazines (60%), from the window (95%), from a distance (55%), from nearby
(53%), from the inside of TOKYO SKYTREESM (35%). All students have seen it
in some ways it. Their familiarity with TOKYO SKYTREESM differs only slightly.

Task X: In this task, there are seven groups of points marked by students,
Group A (n = 5), Group B (n = 7), Group C (n = 26), Group D (n = 7), Group E
(n = 6), Group F (n = 5), and Group G (n = 4), in the answers (Fig. 17.7). Also
identified in the task are six perspective cues: positional relation, distance, direction
of stream, curved point, drawing lines, and photograph information (Table 17.1).

Fig. 17.3 The photograph in
Task X
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Through correspondence analysis based on the data (Table 17.2), there are three
strong relationships between the answers and perspective cues: Groups A & E and
Curved Point & Direction of Stream, Group B and Drawing Lines, Groups C & F
and Positional Relation (Fig. 17.8). For example in the case of strong relation
between Group A and curved Point, the student in Group A describes that “There
are three conditions, on the river (bridge), TOKYO SKYTREESM should be back
and East Tower should be front, the river curved to the right”.

Fig. 17.4 The map in Task X

Fig. 17.5 The photograph with information in Task Y © TOKYO-SKYTREE, used with
permission
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Based on the strong relation mentioned above, some groups are compared with
the focus on the relational terms, which means terms relating the location of
landmark. Comparing Group A and Group E, we observe that students in group A
wrote “The river curves towards East Tower”, “The river curves to the right”, in
contrast students in group E wrote “The river curves to the side”. Thus, Group A is
different from Group E in that using specific terms related to direction. Comparing

Fig. 17.6 The photograph in Task Y Courtesy of Shiroi City Hall, used with permission

Fig. 17.7 Students’ answers (points) in Task Y
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Group B, C, and Group F, we observed that students in group B drew straight lines
connecting buildings and certain point on the river. Thus Group B exploited a
mathematical way of drawing lines. On the other hand, 22 students out of 26 in
Group C described the river as “The river is curved” and “The photo must have
been taken from the bridge.” Group C shows lack of connection between direction
of river and position of buildings. Two students out of five in group F described the
river’s existence, “The river is there.” Group C and F have strong relationship with
positional relation yet they only focus on two buildings such as “East Tower is
right.” The students in group G wrote some words relating to their experience
instead of relational terms.

Keeping these conditions of spatial thinking in each group in mind, the study
shifts to look at the difficulties in constructing internal representation. Table 17.3
shows the viewpoints in each group. Building, River, and Curve in columns are
landmarks students use as viewpoints, showing what they see on the photograph
and the map. Positional Relation (Buildings), Positional Relation (River and
Buildings), Direction of River, and Direction of Curve are selected as viewpoints,
showing how students see or use viewpoints on the photograph and the map. To
explain the process, here is an examination of Group C. The viewpoints students in

Table 17.1 Perspective cues

View point
(perspective cues)

Concrete examples

Positional relation East Tower is in front of TOKYO SKYTREESM. TOKYO
SKYTREESM is to the left of East Tower

Distance It looks close

Direction of stream The river goes to TOKYO SKYTREESM

Curved point The river is curved to the right

Drawing line Drawing the line connecting landmarks on the paper

Photograph
information

It might be taken on a bridge

Table 17.2 Ratio of cues in each group

Positional
relation

Distance Direction of
stream

Curved
point

Drawing
line

Photograph
informations

A (n = 5) 80.0 (4)a 20.0 (1) 40.0 (2) 80.0 (4) 20.0 (1) 20.0 (1)

B (n = 7) 71.4 (5) 0.0 (0) 14.3 (1) 14.3 (1) 42.9 (3) 0.0 (0)

C (n = 26) 73.1 (19) 7.7 (2) 3.8 (1) 23.1 (6) 15.4 (4) 11.5 (3)

D (n = 7) 14.3 (1) 14.3 (1) 0.0 (0) 0.0 (0) 0.0 (0) 14.3 (1)

E (n = 6) 33.3 (2) 16.7 (1) 33.3 (2) 16.7 (1) 16.7 (1) 0.0 (0)

F (n = 5) 60.0 (3) 20.0 (1) 20.0 (1) 0.0 (0) 20.0 (1) 0.0 (0)

G (n = 4) 50.0 (2) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
aThe figure in parentheses is the number of the students
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Group C are buildings and the river in the photograph and the map except the curve.
When they construct internal representation, the students use these viewpoints and
make relationships among them. Some of these relationships are the positional
relation of the buildings, right and left, and the front and back from the position on
the river, but students do not include the river’s direction. These results indicated
that students have difficulty in paying attention to the relationships among objects
even if they have the information about them. In short, level 2 viewpoints are not
sufficient to construct an internal representation under the condition of isolated
information.

Task Y: This task does not require to find the place the photograph was taken
exactly because seventh graders have not learned homothetic ratios. Task Y’s
purpose is to understand how students construct internal representation in the
process of mathematizing through analyzing their descriptions. In order to solve
Task Y, students needed to draw figures from the side like Fig. 17.9.
Mathematizing process involves making a transformation from the photograph
information to the mathematical figures in this task.

Figure 17.10 shows the position of answers on the map. The places students
mark are classified in five groups: (1) mark near TOKYO SKYTREESM (41%),
(2) mark far from TOKYO SKYTREESM (27%), (3) mark vaguely or write “around
here” (17%), (4) use words in the answers (12%), (5) wrong answer (3%).
Table 17.4 shows ten perspective cues found in the description. The students
drawing the line or pictures were divided into three types according to from where

Fig. 17.8 Strong relations
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they look at, landmarks are standing on a line from the front of TOKYO
SKYTREESM (Straight line (front), Figure (front)), from the sky (Straight line
(above), from the side (Figure (side)). They have other cues such as Size,
Photograph information, Height of camera. The average of number of cues in each
group are that Near (2.0), Far (2.2), Vague (1.2), Words (1.2), Wrong answer (0). It
is clear that lack of cues make a decision vaguely (Fig. 17.11).

As previously mentioned, knowledge of homothetic ratio is needed to solve
Task Y (Fig. 17.9). Before reaching this stage, students must construct internal and
external representations according to the following steps: Step 1 is to recognize that
the objects stand on a straight line and estimate the position of the camera should be
to the right side of TOKYO SKYTREESM and close to it. Step 2 is to think that the
height of the camera should be on the line of sight connecting the top of Mt. Fuji
and the top of TOKYO SKYTREESM. Step 3 is to construct internal representations
and external representations like figures from the side. Step 4 is to estimate the
height of Mt. Fuji as six times as TOKYO SKYTREESM in order to draw a figure

Fig. 17.9 Solution of Task Y

Fig. 17.10 Students’ answer
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like Fig. 17.9. In these steps drawing the line of sight is the key point in the
mathematical process.

First of all, we would like to describe what kinds of difficulties seventh graders
have in these procedures, from Step 1 to Step 4. After that, connecting with the
results of Task X, it is shown that the difficulties in each group in Task X are related
to the difficulties in the mathematization process in Task Y. Here is Table 17.5,
which shows that 87% of seventh graders pass Step 1, however, in Step 2, there is
only 22% of seventh graders paid attention to the height of camera with the line of
sight. The implication is that realizing the line of sight is the most difficult in the
key point of the mathematical process. In Step 3, it clearly appears that drawing a
figure from the side is difficult, but the students who understand the positional
relations between buildings and river could construct internal and external repre-
sentation between Mt. Fuji and TOKYO SKYTREESM from above and from the
side (see Fig. 17.12). Ten out of thirteen students who described the line of sight
belong to Group A, B, and C in Task X. To find the reason why students had
difficulties in drawing figures, the focus shifts to the students who tried some cues.
The students belonging to Group E had difficulties in drawing figure from the side
(Fig. 17.13). They might have been bound to the photograph taken from the front.
A student in Group A could build an internal representation among landmarks
judging from the description, “the angle of camera is a little bit oblique,” however
she did not try to draw a figure included a line of sight (Fig. 17.14). Her case
indicated that expressing external representations is difficult even if she has an
internal representation.

Fig. 17.11 Example of student’s description

Table 17.5 Number of students in each step

A (n = 5) B (n = 7) C (n = 26) D (n = 7) E (n = 6) F (n = 5) G (n = 4) Total (n = 60)

Step 1 4 7 24 4 5 5 3 52

Step 2 2 3 5 1 0 1 1 13

Step 3 2 1 4 2 1 0 1 11

Step 4 0 0 0 0 0 0 0 0
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In summary, although it is important to draw the figure with the line of sight
from a side in the mathematization process, the results of this analysis indicate some
obstacles to the next step. The students in Groups D, E, F, and G who could not use
the viewpoint of level 2 could not mathematize Task Y. Furthermore, even if the
students have the internal representations using the viewpoint of level 2, they have
the difficulty to express external representations. Additionally, persistence of the
picture may have led to create obstacles in the mathematization process.

Fig. 17.12 Example of the height of camera (Group C)

Fig. 17.13 Example of the height of camera (Group E)

Fig. 17.14 Example of awareness of line of sight (Group A)
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17.5 Conclusion

These results lead to the conclusion that there are different types of difficulties. In
the case of Task X, the difficulties include the lack of information from the pho-
tograph (Group B), making a connection between the direction of the river and the
position of buildings (Group C), making a connection among three objects (Groups
D, E, F), and few specific cues (Group G). Besides considering the reference frame
in the case of Groups D, E and F, there are other difficulties. These difficulties
include the lack of relation back and front (Group D), the lack of distance to the
buildings (Group E), and the lack of position on the river (Group F). In the actual
problem solving situation, the difficulties are to find specific cues, to decide a
standing point, and to make a connection among objects relating to their position
and direction in the process of structuring the internal representation. Considering
these difficulties in each group, it is significant to foster not only the viewpoints of
relational position but also utilizing the information about the objects. In the case of
Task Y, the difficulties are being aware of line of sight, constructing internal rep-
resentation that is a figure from the side to include the line of sight, and drawing
external representations. However, some of the students in Groups A, B, and C in
Task X could recognize the line of sight and draw the figure from a side, enhancing
the viewpoint of level 2, which is how objects are seen using cues in real world, the
implication is that it is critically important to mathematize real world problems. To
foster spatial thinking in mathematics education, two types of viewpoints of level 1
and level 2 need development. In relation to solving real world problems, level 2
viewpoints with utilizing information of real world and expressing internal repre-
sentation in mathematical way such as drawing line of sight are the key ability in
spatial thinking.
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Chapter 18
Playing with Geometry: An Educational
Inquiry Game Activity

Yael Luz and Carlotta Soldano

Abstract In this study, we present a new approach to teaching based on the Logic
of Inquiry (Hintikka in The principles of mathematics revisited. Cambridge
University Press, Cambridge, UK, 1998), which develops students’ investigative
and reasoning skills and may promote a deeper understanding of the meaning and
the validity of mathematical theorems. Starting from a game played in a Dynamic
Geometry Environment (DGE) and guided by a questionnaire, students discover
and become aware of the universal validity of the geometric property on which the
game is based. In this paper, we present two game-activities. The first is an activity
in which students play the game against a schoolmate and use a worksheet ques-
tionnaire to reflect on their findings. The second is an online game-activity in which
the students play the game against the computer and reflect their findings in an
online questionnaire. Using the theory of didactical situations (Brousseau in Theory
of didactical situations in mathematics. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1997) we describe and analyse the work, diagrams, dialogue, and
question responses, showing the importance of the strategic thinking activated by
the game-activity for students’ mathematical inquiry and reasoning development.
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18.1 Introduction

At the start of high school, the teaching and learning of geometry requires students
to explore geometric properties and encounter the associated theorems and proofs.
Activities such as exploring properties and constructing proofs are not procedural or
algorithmic by nature, requiring students to develop their own solutions using their
conceptual understanding and strategic thinking. More precisely, in order to solve
inquiry activities, students often need to behave as detectives: they have to observe
facts, link them through cause-effect relationships, and formulate probable expla-
nations of what they noticed. Aspects of inquiry strategies are not frequently dis-
cussed in standard classroom teaching; they are often left to the students’ personal
learning. Teachers often skip the inquiry phase and present mathematics as an
already systematized discipline.

The goal of this paper is to present the design of teaching activities meant to
develop an inquiry approach to the learning of mathematics. These activities, which
we call game-activities, are inspired by the studies developed by the Finnish
philosopher and logician Jaako Hintikka (1998) in the field of pure mathematics.
Differently from classical logic, the logic Hintikka created, called the logic of
inquiry, is not only a logic of justification but also a logic of discovery. Within this
logic, the basic rules of inferences are described through semantic games, which are
two-player games between a Verifier and a Falsifier who argue on the truth of a
statement.

Our game-activities adapt Hintikka’s logical constructs for educational purposes.
Through the activities, students inquire about the geometric situations inside
Dynamic Geometry Environments (DGE) and discover new geometric theorems
within a game-theoretical approach developed on the use of existential and uni-
versal quantifiers. The focus of learning shifts from knowledge to higher-order and
deeper understanding, which include some of the following strategic aspects:
exploring new situations, making conjectures from empirical evidence, investigat-
ing conjectures, and reasoning about their validity. All these aspects are framed and
described within Brousseau’s (1997) theory of a-didactical situations. Our research
focuses on the ways in which such games can promote students’ strategic thinking
and on how students’ learning can benefit from it.

18.2 Theoretical Framework

As underlined by Hintikka (1999), the central idea of the Logic of Inquiry consists
in assuming the scientific inquiry and the knowledge acquisition as question-answer
processes. The eminent logician described it using an extract from “Silver Blaze,” a
Sherlock Holmes episode:
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The background is this: the famous racing-horse Silver Blaze has been stolen from the
stables in the middle of the night, and in the morning its trainer, the stablemaster, is found
dead out in the heath, killed by a mighty blow. All sorts of suspects crop up, but everybody
is very much in the dark as to what really happened during the fateful night until the good
inspector asks Holmes:

“Is there any point to which you would wish to draw my attention?”

“To the curious incident of the dog in the night-time.”

“The dog did nothing in the night-time.”

“That was the curious incident,” remarked Sherlock Holmes.

Even Dr. Watson can see that Holmes is in effect asking three questions. Was there a
watchdog in the stables when the horse disappeared? Yes, we have been told that there was.
Did the dog bark when the horse was stolen? No, it did not even wake the stable-boys in the
loft. (“That was the curious incident.”) Now who is it that a trained watchdog does not bark
at in the middle of the night? His owner, the stable-master, of course. Hence it was the
stable-master himself who stole the horse… Elementary, my dear Watson.

(Hintikka, 1999, p. 31)

Through the dialogue, Sherlock Holmes obtains the answers to three implicit
questions, which are the inquiry transposition of the following non-mathematical
argument: if there was a watchdog in the stables and the dog did not bark when the
horse was stolen then, probably, the thief was the owner, since generally a trained
watchdog does not bark only at its owner.

The same interrogative process accomplishes inquiry and justification. This logic
of inquiry involves deductive, abductive, and inductive inferences. Abductions are
logical operations fundamental in inquiry processes; they allow the subject to
introduce new elements for explaining the facts observed. Peirce characterized them
as follows:

abduction looks at facts and looks for a theory to explain them, but it can only say a “might
be”, because it has a probabilistic nature. The general form of an abduction is:

– a fact A is observed;
– if C was true, then A would certainly be true;
– so, it is reasonable to assume C is true

(Peirce, 1960, p. 372)

If we consider the previous Sherlock Holmes’s episode, we can notice that an
abduction allows Sherlock to discover the murderer. The observation that the dog
did not bark at the time when the horse was stolen requires an explanation. The best
explanation for this fact is that the thief is the horse’s owner. Once the abduction is
formulated, it is possible to rewrite Sherlock’s reasoning in a deductive way. The
abduction marks the transition from an inquiry to a deductive approach.

Hintikka (1999) characterized the Logic of Inquiry with two types of rules/
principles that govern it: definitory rules, which tell the subject what is possible to
do, and strategic principles, which tell the subject what is more convenient to do.
These rules are typical of strategic games, such as the chess game:
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The definitory rules of chess tell you how chessmen may be moved on the board, what
counts as checking and checkmating, etc. The strategic rules (or principles) of chess tell you
how to make the moves, in the sense of telling which of the numerous admissible moves in
a given situation it is advisable to make.

(Hintikka, 1999, p. 2)

Hintikka (1999) modeled the inquiry processes through the so-called interrog-
ative games, which are two-player games between an Inquirer, who asks questions,
and an Oracle, also called Nature, who answers him. The answers given by the
Oracle furnish the Inquirer with the hypotheses from which the conclusion is
derived. The strategic principles guide the inquirer in the formulation of the best
question to ask.

Using games, Hintikka, also modelled the processes for establishing the truth of
a mathematical statement. He defined semantic games, which are two-player games
between a Falsifier who tries to refute the statement and a Verifier who tries to
verify it. For example, consider the formula 8x Ǝy | S[x, y], it is possible to verify
the formula through a semantic game between a Falsifier who controls the variable
x and a Verifier who controls the variable y. The Falsifier’s aim is to find a value x0
of x for which there is no value y0 of y, such that S[x0, y0] is true. The Verifier’s aim
is to find a value y0 such that S[x0, y0] is true, for each x0 presented by the Falsifier.
If the Verifier has a winning strategy that allows him to win for each value x0
proposed by the Falsifier, then the formula is true. The truth of the statement is
defined by Hintikka employing the concept of strategy developed by von Neumann
and Morgenstern (1945) inside Game Theory:

It is a rule that tells a player what to do in any conceivable situation that might come up in
the course of a game. Then the entire game can be reduced to the choice of a strategy by
each player. These choices determine completely the course of the play and hence deter-
mine the payoffs. And these payoffs specify the value of the strategies chosen. Strategic
rules hence concern in principle the choice of such complete strategies.

(Hintikka, 1999, p. 3)

By designing the inquiry of geometric theorems as a Hintikka’s (1999) semantic
game we create a learning environment that engages the student in producing
winning strategies, not being fully aware with the didactical intentions of the
underlying knowledge. This learning environment enables the student to establish a
relationship with the knowledge, regardless of the teacher, and creates an
a-didactical situation (Brousseau, 1997). The milieu, which is the game’s rules,
constraints and available resources, allows and directs students’ a-didactical actions.
The feedback produced by the milieu allows students to check the effectiveness of
their strategy and may lead them to accept or reject it. The interactions between the
student and the milieu constitutes what Brousseau calls the situation of action.
Continuing in the game the students pass through what is called the situation of
formulation that consists in “progressively establishing a language that everybody
could understand… makes possible the explanation of actions and models of
action.” (Brousseau, 1997, p. 12). Situation of validation occurs when spontaneous
discussions about the validity of strategies or efficacy take place and include
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explanations and elements of a proof. Brousseau suggests that while all three
situations are expected from students, it is through situations of validations that
genuine mathematical activities take place in the classroom. We show that the
design of the activities presented in this paper lead to situations of validation.

18.3 Methodology

Taking inspiration from Hintikka’s (1999) notion of semantic game, we developed
game-activities based on a geometric property or theorem. The property is unknown
to the students. They are expected to discover it by playing the game and answering
a questionnaire. In order to develop a winning strategy, the players should gener-
alize the different winning shapes generated and understand their common prop-
erties. The game serves as a guided inquiry, which calls students to integrate
empirical work with conceptual work and take an active role in the learning process
(Yerushalmy & Chazan, 1992). By playing the game, the students generate a wide
range of examples that constitute the example space of the solution (Sinclair,
Watson, Zazkis, & Mason, 2011). For developing a winning strategy, the Verifier
should discover their common properties. The different modes of the game raise
uncertainty, which drives students to test the validity of their conjectures and to
reason about them (Buchbinder & Zaslavsky, 2011).

In this paper, we present two games: the first is based on the geometric state-
ment, “If the diagonals of a quadrilateral mutually bisect each other, then the
quadrilateral is a parallelogram;” the second is based on the geometric statement, “If
all the intersection points of the perpendicular bisectors of a quadrilateral coincide,
then the quadrilateral is inscribable in a circle.” We tested the first in the form of a
game played between two students in the 9th grade of a scientifically oriented high
school in Italy and the second in the form of an online game in three 10th grade
classes from three different schools in Israel.

The collected data consist of videotapes of the group activities and transcripts of
the conversations. In the analysis of the students’ dialogues and example spaces, we
identify Brousseau’s (1997) three a-didactical situations: action, formulation, and
validation. These situations focus on the activated strategic thinking in the transition
from a situation of actions, in which students do not reason the actions and
strategies they take; to the situation of formulation in which students are conscious
of the strategies they would use; and to the discussion about the validity of the
strategy can involve intellectual, semantic and pragmatic reasons (Brousseau,
1997). A pragmatic reason occurs when students declare to test what he/she says by
really playing the game, a semantic reason when students validate their claim using
the results of the matches, an intellectual reason when students detached from the
concrete situation and gives theoretic reason of what they claim. By identifying the
three types of situations and reasons in students’ dialogues we wish to describe the
process of knowledge acquisition in students’ inquiry.
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18.4 A Game Between Two Students

18.4.1 Game Description

The activity involves two students playing a non-cooperative game in a DGE and
then reflecting on it using a worksheet with guiding questions. The object of inquiry
is a dynamic diagram (Fig. 18.1) that each player controls through one of its con-
structed elements. ABCD is a quadrilateral whose vertices A and B are fixed, while
C and D are free to move. The points E, F, and G are respectively the midpoints of
diagonals BD and AC and their intersection point. By moving C and D, the screen
position of these points change, but they still conserve their constructed properties.

Player C controls the point C and his goal is to make points G, E, and F coincide.
Player D controls the point D, and his goal is to prevent player C to make the three
points coincide. The students do not know either the geometric nature of points G,
E, and F nor the property that characterizes the diagonals of a parallelogram. It is
expected they will discover it through the game-activity.

The game is played in turns. We ask students to play four matches. Each match
has a given number of moves and a given player who makes the first move. In the
first match, for example, the player who moves point C is the first to play, and the
number of moves is six.

Student D plays the role of Falsifier of the statement “for any position of point D,
there exists a position of point C such that G, E and F coincide.” Thus, his or her
goal is to find a position of D in which student C cannot reach his goal. Student C
plays the role of Verifier of the statement, because he or she should show the truth
of the statement for any position of D proposed by the Falsifier.

18.5 Questionnaire Description

The questions in the worksheet guide students to investigate the geometric prop-
erties of the game and the importance of having the last move. These questions
include:

Fig. 18.1 Dynamic diagram
on which the game is played
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1. What is the geometric nature of points E, F and G?
2. How do you suggest the player who moves C should modify the quadrilateral?
3. Suppose that the given number of moves is odd and that you are the player who

controls C. If you could choose whether to be first or second, what choice allow
you to win the game?

4. Which true statement is it possible to discover through the game? The state-
ments should be of the following types:

If A then B; A ! B

A if and only if B; A $ B

If B then A; B ! A

A and B must be replaced with one of the following propositions:

The first question intends to draw students’ attention to what varies and what is
invariant. Its aim is to guide students to discover the geometric nature of the points
E, F, and G. These points are robustly constructed as midpoints and intersection of
the diagonals; hence, they conserve their nature under both Verifier and Falsifier‘s
moves. The second question focuses the students’ attention on the invariant con-
figuration that characterizes the Verifier’s moves, namely the parallelogram con-
figuration. The third question aims at triggering a reflection on the fact that the
winning strategy of the player who makes the last move in a single match depends
on the parity of the number of moves in the game and the identity of the player who
plays the first move. Finally, the fourth question intends to create cause-effect links
between the geometric invariants discovered through the first three questions,
guiding students in the construction of the following if and only if statement:

The diagonals of ABCD bisect each other if and only if ABCD is a parallelogram.
Once the nature of E, F and G and the invariants of the Verifier’s moves have

been discovered, the semantic game triggered by the game can be reinterpreted in
the following equivalent forms:

• For all positions of point D, there exists a position of point C, such that the
midpoints of the diagonals and the diagonals’ intersection point coincide.
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• For all positions of point D, there exists a position of point C, such that the
diagonals AD and BC bisect each other.

• For all positions of point D, there exists a position of point C, such that ABCD is
a parallelogram.

18.6 Analysis of the Game-Activity

One of the videotaped student pairs includes Marco, as the Verifier, and Vittoria, as
the Falsifier. Vittoria, after making her first move, reflects loudly over it

Vittoria: How can I do? Before points G, E, and F were wider… Then if I tighten
this (making the gesture of moving D toward the centre of the screen)
became wider theoretically…(Vittoria makes the move) Done!!!1

The students are in the situation of action: while playing, Vittoria is describing
the effects of the previous moves on the position of the points E, F, and G in order
to plan how to act in the next move. She is looking for a winning strategy and to
this end she activates her strategic thinking: by reasoning backward, she is selecting
the best move to make according the fact observed in the previous moves. Vittoria’s
reasoning focuses on properties which are not relevant for the game: the possibility
to win does not depend on the size (extension) of the diagram.

Figure 18.2 demonstrates the example space generated in the first match where
the number of moves is six, and the starting player is the Verifier. As it is possible
to observe in Fig. 18.2g, the Falsifier won the match because within the last move
he reached his goal, since the game ended in a configuration in which the three
points do not coincide.

Analyzing the dialogue, it is noticeable that Vittoria and Marco’s attention focus
on the number of moves and the rules of the game, rather than the type of diagrams
produced:

Vittoria: You have to move C (looking at Fig. 18.2a).
Marco: Only C? (making Fig. 18.2b).
Vittoria: Yes.
Marco: Go! I caught you!
Vittoria: We did 2 moves (making Fig. 18.2c).
Marco: Write it!
Vittoria: We did move three (making Fig. 18.2d).
Marco: Yes
Vittoria: Four. I did move four (making Fig. 18.2e).

1English translation from Italian sentence: “Come faccio? Prima erano più larghi no I punti?
Quindi se io stringo (gesto di portare il punto D verso il centro dello schermo) si allargano
teoricamente… (Vittoria fa la mossa) Ecco!!”
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Marco: Five (making Fig. 18.2f).
Vittoria: And now? (Making Fig. 18.2g) “Player X makes the first move and the

moves are 6” (reading the task). We did case A, because you started, we
made six moves, and I won because I didn’t make them coincide.

Except for Vittoria’s first sentence, while playing, the students do not discuss the
winning shapes or the strategies they use implicitly in their moves. The students are
opponents and do not want to reveal their strategies for not advantaging each other.
The example space shows us the diagrams implicitly explored within this match.
Just at the end, Marco claims: “At the end, I won if I created a parallelogram.” With
this claim, Marco is shifting into the situation of formulation to respond to the need
of communicating the action accomplished in his moves. His words demonstrate
that he discovered the advantage of making the moves guided by the parallelogram
configuration instead of the screen position of the points E, F, and G. Marco
develops a geometric strategy, namely reasons for moving point C in a given
direction based on observed geometric property or configuration The evidence for
its use is given by the time spent to make the move and the way he moves the point
C in the DGE. Marco drags C in the position in which the for vertex of the
parallelogram is supposed to be in few second. This way of moving would not be
possible without noticing that the parallelogram configuration causes the coinci-
dence of the three points.

After playing, the students proceed to the questionnaire, moving from the sit-
uation of action to the situation of formulation. The following dialogue reports the
discussion that was triggered by the third question, in which they are required to
understand whether it is better to play first or second when the number of moves is
odd.

Marco: First, first, first! Don’t even think about it! First!
Vittoria: I’d go second!
Marco: First.
Vittoria: No, take a look: here you went first, and then you lost, here… (looking at

the matches’ results)
Marco: No, that (referring to the matches’ results) doesn’t count, I am a bad

player!
Vittoria: Yes, you are right, here the Falsifier goes first and 5 is odd.
Marco: That doesn’t count! If I had played bad, I would have lost.

a) Starting 
configuration

b) Verifier 
move

c) Falsifier 
move

d) Verifier 
move

e) Falsifier 
move

f) Verifier 
move

g) Falsifier 
move

Fig. 18.2 Example space of the first match
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Vittoria: When the number of moves was odd, the first player has always won.
Marco: No, because here (pointing the third match) I would have won as well.
Vittoria: Indeed, here there were 4 moves.
Marco: If I go first, I have the possibility to put them in parallel, create the

parallelogram. Anyway, if you are the last to play, you can ruin it, so I
lose. I can win only if I am lucky and I go first.

The students are in the formulation/validation phases. The dialogue’s first
exchange shows that Vittoria’s sentences refer to what has happened in the game
while Marco’s sentences are formulated according to what could have happened in
the game. Vittoria uses the results of the four matches as pure truth (an Oracle);
from them she formulates conjectures and checks Marco’s conjectures. Using
Brousseau (1997, p. 17) terminology, Vittoria’s reason is a semantic reason derived
from the game experience. Since the matches’ results do not coincide with perfect
players’ results, this way of reasoning leads Vittoria to false conclusions. Marco,
instead, does not activate just a semantic control but also an intellectual one, as
demonstrated by his last sentence: “If I go first, I have the possibility to put them in
parallel, create the parallelogram. Anyway, if you are the last to play, you can ruin
it, so I lose. I can win only if I am lucky and I go first.” His intellectual control
allows him to look at the matches’ results critically, and considers what would have
happened if they were perfect players. Using Brousseau’s (ibid.) terminology
Marco’s reason is an intellectual reason.

Marco tries to explain his point of view by employing the result of the third
match in which he lost even if he could have won. In this way, he can explain to
Vittoria that the matches could end in a different way, and her semantic way of
reasoning based on the matches’ results is fallible. Marco is trying to establish a
dialogue, between his intellectual reason and Vittoria’s semantic reason. His desire
to make Vittoria understand causes Marco to improve the logical structure of his
argument as demonstrated by his last sentence.

In this moment of the dialogue, the students are in the validation phase.
However, since they did not develop a shared strategy in the transition from the
situation of action to the situation of formulation, they have some difficulties
understanding each other’s point of views. Figure 18.3 displays the example space
generated while students are trying to answer question two: “How do you suggest to
modify the quadrilateral [to the player who moves C]?”

a) Vittoria’s move b) Vittoria’s move c) Marco’s move d) Marco’s move

Fig. 18.3 Example space generated during the discussion over the game
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The example space includes quadrilaterals that grow thinner and thinner. The
students move to the exploration of degenerate quadrilaterals in order to check if
Marco’s winning strategy is always true. The search for a counterexample triggers
the transition from the a-didactical situation of formulation to that of validation. The
following is the dialogue between them, while constructing the example space
shown in Fig. 18.3.

Vittoria: In the first move, you always tighten the extension [of ABCD], right?
Marco: I could also widen it! The important thing is that it is a parallelogram!
Vittoria: If you widen it, you win. Look! (Making Fig. 18.3a, b)
Marco: Even though you make it smaller, I do it! (Making Fig. 18.3c). As you

lessen.
Vittoria: But it is more convenient widen it.
Marco: Yes because it is easier! But for how small it is… (Making 3-d)
Vittoria: Marco now you are moving player D, not C!
Marco: If it is larger, it is easier to find, but you can find it even if it is smaller.

You must always keep in mind that we are humans, we are not machines!

In this extract, students are rethinking the a-didactic situation of action and are
repeating the strategies that shift them to the a-didactic situation of formulation.
Vittoria’s strategy relies on visual/empirical properties of the diagrams, “to tighten
the extension; If you widen it, you win” Marco’s strategy relies on the geometrical
properties of the diagrams, “to make a parallelogram.” In order to validate this
strategy, Marco uses pragmatic reasons, “Even though you make it smaller, I do
it!”, proving counterexamples to Vittoria’ claims, namely diagrams that shows he
can win even if the extension is not widen The type of logic that guides Marco’s
claims is the ‘logic of not‘ (Arzarello & Sabena, 2011), since he provides coun-
terexample to Vittoria’s strategy and at the same time tries to convince the
schoolmate that there is not a counterexample that can falsify his strategy; in fact,
Marco is showing Vittoria that even in the worst conditions, the parallelogram‘s
strategy is not fallible while the strategy proposed by Vittoria is fallible.

18.7 The Activity as an Online Game: Students Versus
Computer

18.7.1 Game Description

The online activity includes a game played by one or two students against the
computer in a DGE. The game and the questionnaire operate in an online assess-
ment system (Luz & Yerushalmy, 2015) and are followed by an online question-
naire that guides the students in their reflection on the game. The system provides
an immediate automatic feedback on each move and displays counters of winning
versus losing moves. The system stores the submitted diagrams and answers, which
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provides the means for the student or the teacher to later review the course of games
for feedback or class discussion purposes.

The game is based on the theorem: A convex quadrilateral is cyclic if and only if
the four perpendicular bisectors to the sides are concurrent. We used the dynamic
construction shown in Fig. 18.4.

The basic elements of the construction are the point C and the lines and .
Points B and D are the reflections of the point C across the lines and . This
construction also includes the circle that passes through the points B, C, and D, the
point A, and the quadrilateral ABCD.

The students start the game as a Verifier, who controls the line . Their goal is to
drag the line to a location where the four perpendicular bisectors are concurrent. In
this game, the computer plays the Falsifier‘s role and controls the point A. As such,
the computer chooses a random position on the board for the point A. There is a
winning solution for the Verifier as long as ABCD is a convex quadrilateral or
ABCD is a degenerated quadrilateral in the form of a triangle. Later, the players
switch their roles. As Verifier, the computer automatically moves the line to the
locations of the concurrent perpendicular bisectors. The students, who now play the
Falsifier‘s role, are challenged to find a location of A that will prevent the computer
from winning. Such a location exists in creating a non-convex quadrilateral or a
non-polygon shape.

18.7.2 The Case of Itay and Harel

Itay and Harel play together against the computer. Harel controls the mouse. They
start playing as Verifiers.

Harel: Wait; first let’s see what they (dashed lines ) are. They are
perpendicular…. The thick line ( ) is perpendicular to BC.

Itay: So, we need to make AB and BC the same line, like this (Fig. 18.5a).

Fig. 18.4 The online game
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Harel: No (drags line back and forth. He ignores Itay’s strategy). We need to
have a way…

Itay: To make AB and BC on the same line (Harel intuitively finds the right
position and stops Fig. 18.5b). Here, now they intersect.
(Harel submits the diagram and they receive a winning feedback and a new
diagram).

Itay: We need a strategy, now it’s a new shape.
Harel: But, you can only move the thick line ( )? Well, the strategy is very

simple. You can only move the thick line ( ), so just move it until you see
it all meet.
(Intuitively drags to the intersection Fig. 18.5c) Here. You see.

Itay: You need to make AB and BC the same size. That is a strategy.
Harel: Yes, but this is a different strategy.

Harel and Itay are in the situation of actions. Their first step involves under-
standing how the objects in the game work. They start with identifying the
invariants of the diagram. Before they played one move, they notice that the lines
are perpendicular to the polygon sides. The pair does not cooperate; Itay suggests
an intuitive action, and Harel performs a different, intuitive action. They suggest
intuitive actions, check and reject them if they don’t see that they work. Their
strategies are visual, pragmatic based, strategies (“move until they meet”).

After playing these matches, Itay and Harel start answering the questionnaire:

Itay: The dashed lines ( ) are perpendicular to the sides.
Harel: So does the thick ( ). It is perpendicular to BC. What happens when they

meet? (drags the thick line ( ) and generates Fig. 18.6a)
Itay: We already said, it’s AB = BC. (Re-examines the figure). No, it’s AD = BC

it’s an isosceles trapezoid.
Harel: Why?
Itay: Is it isosceles? We can’t be sure it is isosceles.

(Harel drags point A along the circle. The lines keep intersecting in a
single point, but it is no longer an isosceles trapezoid, Fig. 18.6b).
It’s a quadrilateral inscribed in a circle.

Fig. 18.5 Diagrams generated by Itay and Harel while playing the online game
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Harel: Why?
Itay: (talks slowly, as if he thinks while talking)…They are all perpendicular

bisectors, which means this equal to this (points to the bisected chords)…
Ah… there is something with perpendicular bisectors… because there is a
theorem that a perpendicular bisector to a chord always passes through the
center of the circle.

Answering the questionnaire guides Harel and Itay to the formulation situation.
They gathered some information and they cooperate to understand it. They establish
a common language and use geometrical terms (e.g. isosceles trapezoid, perpen-
dicular bisector). They suggest strategies (AB = BC, AD = BC, and isosceles
trapezoid) based on empirical results. They seek possible explanations of actions.
Harel, who suggested a pragmatic reason, now stresses for an intellectual reason by
asking “why.” The questions posed by Harel motivate Itay into rejecting the
insufficient explanations. By posing them, Harel encourages his partner to come up
with a better explanation. Finally, Itay provides an intellectual reason based on his
mathematical knowledge and validates that a single intersection of all bisectors
yields an inscribed quadrilateral.

Continuing with the questionnaire, Harel and Itay try to validate their conjecture
that a parallelogram cannot be inscribed in a circle.

Harel: You see, if it was a parallelogram then it would just not be possible…
(drags A to generate a parallelogram)

Itay: I get it, but what is the theorem behind it?
Harel: Look. I guess you can say that it will not intersect.
Itay: Yes, but why will they not intersect?
Harel: Because it won’t. If you do it, it just won’t intersect.

Itay: Why?
Harel: Because they are not at the same place, and they are in the same size (points

to the parallel perpendicular bisectors of the parallelogram opposite
sides). Look, you can say that if it’s a rectangle or a square…

Itay: But how do you explain?
Harel: Look, if it’s not a square or a rectangle, the lines are the same size, so

unless they are in the same exact position… if there isn’t a 90° angle
between… I don’t know…

Fig. 18.6 Harel and Itay’s
diagrams when answering the
questionnaire
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Itay: No, no, no! Think about geometry, not just logic.
Itay: (Talks slowly) Let’s say you have something with four sides, and these are

chords, then these angles (points to A and B) are equal, because they lay on
the same chord, but it can’t be the same if it’s a parallelogram that is not a
rectangle or a square.

Harel and Itay are in validation phases. Itay starts with a conviction, but Harel
challenges his statement, seeking for an intellectual explanation. They reject some
explanations. They search their previous geometrical knowledge about quadrilat-
erals and perpendicular bisectors, finally coming up with the explanation.

18.7.3 The Case of Hila and Gaya

When playing as Falsifiers, the students take the investigator’s role, and the com-
puter functions as an Oracle, one who knows everything. Students have no previous
knowledge on how to approach the task. There is no information about the dia-
gram’s properties or about its construction. The students must discover the con-
struction in order to come up with a winning strategy. The following dialogue
demonstrates the investigation of Hila and Gaya while playing as Falsifier. As
Verifiers, Gaya and Hila concluded the statement: “when the dashed lines intersect
in a single point the quadrilateral ABCD is inscribed in the circle”. They were not
able to validate their statement, since they were not aware of the dashed lines
property as perpendicular bisectors.

Hila: It should be parallel, because then they will not intersect…
Gaya: Now, it is parallel ðl k kÞ, maybe he (the computer) will not make it. Let’s

try (Fig. 18.7a).
Hila: He did it.
Gaya No, he didn’t. One line is missing… (she drags A and finds out k and m

coincide (Fig. 18.7b). Maybe not this one (k) should be parallel, but the
other one.

Hila and Gaya are in the situation of actions. They make the line parallel. They
base their selected action on a rational reason: “We want to prevent the intersection

Fig. 18.7 Drawings from Gaya and Hila game
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of the lines, parallel lines do not intersect, hence drag the lines to parallel positions.”
The game feedback shows that the lines do intersect, yet there is a need to clarify
the situation since the feedback shows only three lines. Hila and Gaya accept the
solution silently, after checking that two of the lines coincide. They start looking for
a new action, which shows that they rejected their initial strategy. Their actions
show that they are in the phase of dialectic of action.

Gaya: Should we make a specific shape in the circle? Maybe we can place the red
point (A) on one of the other points. (She drags point A and places it on B,
and submits the diagram. She then drags A onto C and A onto D, but the
computer successes at each of these moves.)

Gaya selects a set of actions, intuitive this time. She tests the different actions
and rejects them as she fails to win.

Hila: Let’s think. How does the thick line ( ) move? (She switches roles).
Whenever this line ( ) moves, another line ( ) moves with it.

Gaya: And the other two ( ) already intersect.
Hila: So maybe we should make the other two not intersect. (They try to drag A

to make and parallel, and fail.)
Gaya: Moving the line ( ), another line ( ) moves. Moving the point (A), two lines

move ( and ).
Hila: Let’s say this is a worst case scenario because the lines ( and ) don’t

meet (Fig. 18.7c).
Gaya: One line is static.
Hila: Yes. This one ( ). Therefore, we need to move the other one.
Gaya: We need this ( ) will not intersect this ( ).

(They spend almost five minutes trying to make and parallel and fail,
and discuss other strategies.)

Gaya and Hila focus their efforts on finding the variants and invariants of the
diagram. They use similar words to describe situations (moving, static, intersect)
and progressively establishing a shared language, making possible the explanation
of actions and modes of actions. They shift to the dialectic of formulation.

Hila: Oops. We moved the wrong lines! Which line moves with the thick line ( )?
Gaya: This ( ). Therefore, we need to make sure about the other one. The left one

( ).
(They drag A to generate Fig. 18.6d with parallel to , computer fails!
They move to fill the online questionnaire).

Gaya and Hila shift to a dialectic of validation. They produce intellectual rea-
sons, validate them, and find a winning strategy. However, they do not transition to
the mathematical language. Since they did not identify the perpendicular bisectors
property, they did not conclude the mathematical theorem on which the game is
based. At this moment the teacher steps in and draws their attention to the per-
pendicular bisectors property. With this additional knowledge Gaya and Hila can
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repharse their statement to: when the perpendicular bisectors of a quadrilateral meet
in a single point then the quadrilateral is inscribed in a circle. Examining previous
knowledge about perpendicular bisectors they can justify their statement.

18.8 Discussion

Bowden and Marton (1998, p. 7) define discernment saying that “To discern an
aspect is to differentiate among the various aspects and focus on the one most
relevant to the situation.” From our analysis of the students’ games, we see that
even though each student has reached a different level of discernment, all students
have shown some progress in discernment. In the first game, Vittoria discerns the
aspect of the parity of the number of moves, and Marco discerns the winning shape
of a parallelogram. In the second game, Harel discerns the perpendicular lines, and
Itay discerns the winning shape as a quadrilateral inscribed in a circle. Gaya and
Hila both discern the variants and invariants of the diagram’s constructions. The
desire to discover the winning strategy of the game prompt students in the dis-
cernment of the aspect of the game.

When the Verifier discerns the geometric invariants produced by his or her
moves, he or she can use it as a winning strategy and, by playing the game and
discussing it with his or her classmate, he or she can validate the strategy in
different ways, using pragmatic, semantic or intellectual reason. By experiencing
different geometric interpretations of the game, the students can comprehend the
universal validity of the property. For example, Marco discerns the universal aspect
of the game, when he says, “If I go first, I have (always) the possibility to … create
the parallelogram.”

Playing the role of the Falsifier students can investigate non-prototypical situ-
ations. Students are naturally engaged in the search for a “counterexample of the
game,” namely a configuration in which the Verifier cannot reach his aim. When
students are in the validation phase, this attitude can trigger a pragmatic way of
validation guided by the logic of not (Arzarello & Sabena, 2011). The students
validate the strategy by showing and discussing the non-existence of counterex-
amples (see the case of Marco). In order to validate the strategy, the students
produce large and varied example spaces, which include not only standard exam-
ples, but also extreme and degenerate examples that are not frequently demon-
strated in mathematics teaching. The search for a winning strategy widens the
boundaries of the exploration of geometric properties.

Working in pairs motivates reasoning. The game encourages students to explain
their different points of view and helps them to improve their arguing abilities. By
posing an incorrect conclusion, Vittoria motivates Marco to provide a more com-
prehensive explanation of his strategy. By posing why-questions, Harel motivates
Itay to come up with a geometrical proof. On the way to reasoning, we are able to
see the three types of reasoning (Brousseau, 1997): pragmatic (Marco: “Even
though you make it smaller, I do it!”); Semantic (Vittoria: “When the number of
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moves is odd, the first player has always won”); and intellectual (Itay: “Because
perpendicular bisectors to a chord always passes through the centre of the circle”).

When students answer the questions, in the worksheet or in the online ques-
tionnaire, they shift from playing the game in order to defeat the opponent, to a
“reflective game” (Soldano & Arzarello, 2016), where the students play the game in
order to investigate and answer the questions. The game, along with the students’
knowledge, takes the role of Oracle, or the milieu. The guiding questions are not
sufficient to all students. Vittoria, for example, did not discern the geometric aspects
of the game, despite Marco’s explanations. Hila and Gaya partially interpreted the
game using mathematical theory (parallel lines), but did not discern all invariants of
the game (perpendicular bisectors). Their validation remained in the context of the
variants they were able to discern. A teacher-guided class discussion, where stu-
dents share and discuss their strategies, can highly benefit from the game-activity.
The teacher can use the language developed by the students to present and clarify
the approach with game. The teacher’s guidance can help to close the gap and
complete missing knowledge.

The use of a game as a mathematical inquiry requires careful design. The
invariant properties of the dynamic diagrams that are given or hidden from the
players require adjustments based on the students’ level of knowledge and their
inquiry experience. Different design aspects can shift students from mathematical
inquiry to pure game playing such as the limitation on the number of moves in the
game between two students. In the online version, the computer is taken as an
Oracle or the milieu. It is important that the computer’s feedback be accurate,
though a small amount of inaccuracy could be neglected. The accuracy level
depends on the instruments used as there is a difference between dragging in tablets
and mouse dragging. Understanding how different students approach inquiry can
assist teachers in guiding their students through the curve of learning to inquire.
Being able to retrieve students’ submissions in the game enables a visual way in
which a teacher reconstructs with students the course of the game and point out
possible obstacles in the inquiry process. The display of the example space gen-
erated in the game can be used as a visual aid to class discussion. We find that the
challenge of taking interesting teaching activities and design them as a game can
open up many opportunities for further research.
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Chapter 19
The Use of Writing as a Metacognitive
Tool in Geometry Learning

Luz Graciela Orozco Vaca

Abstract This work reports on a teaching intervention that explored the use of
writing as a metacognitive tool in high school geometry problem solving.
Specifically, this qualitative research study investigated how explicit writing
directives can help students understand, organize, and monitor the steps involved in
the different phases of activities for geometry problem solving in the third year of
secondary school. Possible gains of the intervention are assessed by comparing the
performance of students who participated of the intervention with that of students
who did not.

Keywords Geometry � Learning � Metacognition � Metacognitive tool
Writing

19.1 Background and Research Problem

Secondary school students often experience systematic difficulties during problem
solving. One difficulty is interpreting the problem statement from the provided
information. For example, Fig. 19.1 shows an incorrect interpretation of the
information. While the drawing fulfills the condition to divide the trapezoid into
four parts, the edited figure fails to satisfy any of the conditions stated in the
problem.

Another difficulty observed is that the student only solves part of the problem by
using only some of the information, and fails to utilize the information required by
the problem, as shown on the left side of Fig. 19.2. Another difficulty arises from an
unclear presentation of student operations and answers, which complicates the
matter of understanding their reasoning when attempting to find the solution (as
shown in Fig. 19.2b).
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This study’s research questions, which emerged from the examination of the
previously mentioned difficulties, are as follows: How should a cycle of activities
for working through problem solving be designed? How can writing help students
understand the information provided in the problem, reflect on their work, clarify
their ideas, and organize their thoughts? We designed an intervention to study the
answers to these questions. The study’s objective was to carry out a cycle of
activities with students in the last year of basic schooling (9th Grade) to facilitate
the problem-solving process and to develop metacognitive skills by combining
writing with the solving of geometry problems.

The purpose of this project was to improve student’s problem-solving skills
through reflective activities directed by open-ended questions. The students
received explicit writing directives to guide them through the process of expressing
their understanding of geometry problems, thereby helping them to organize,
monitor, and justify the steps for their solutions.

19.2 Theoretical Framework

In a meta-analysis of research literature to understand the role of metacognition in
scientific education, Veenman et al. (2006) examined the differences of how each
author described the concept and the current lack of congruence between the

In the trapezoid below, a = b = c. Draw straight-line segments to divide the figure 
into 4 trapezoids which are identical to each other and similar to the original.

Draw 2 lines 
and you will obtain 4 
equal parts

(a) (b)

Fig. 19.1 a Student’s original answer. b Translation of student’s original answer

“I added the 3 perimeters”

Translation: The perimeter of the biggest equilateral 
triangle is 48 cm. The perimeter of the second triangle is 
half of the first and the perimeter of the third is half of 
the second. What is the perimeter of the shaded figure?

Translation: A rectangle ABCD is divided into four 
rectangles as shown in the figure. The areas of three 
rectangles are written inside them (the area of the fourth 
rectangle is unknown). Find the area of the rectangle ABCD. 

(a) (b)

Fig. 19.2 a Worksheet with student’s answer. b Worksheet with student’s answer
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components of metacognition and their relationship. Veenman et al. (2006) further
found that there is a useful distinction between metacognitive knowledge and
metacognitive abilities.

According to Flavell (1979), metacognitive knowledge refers to one’s declarative
knowledge about the interplay between the individual, the task, and the strategy
characteristics. Veenman (2012) also theorized that both metacognitive experiences
and metacognitive knowledge originate from a monitoring process. However,
metacognitive knowledge is retrieved from memory whereas metacognitive expe-
riences concern the on-line feelings, judgments, estimates, and thoughts that indi-
viduals become aware of during a task performance.

Veenman (2012) details how metacognitive skills are refined primarily through
four types of learning processes: text reading, problem solving, discovery and
writing learning. Veenman states that in the field of exact science teaching, reading,
problem solving, inquiry, and writing activities are always connected. Orientation,
goal setting, planning, monitoring and evaluation are essential for all learning
processes in science education. Although it clarifies that the reflection is not always
mentioned in the investigations, perhaps because it appears after ending the tasks.

Metacognitive skills are mechanisms that take place inside the head and remain
concealed (Veenman, 2006) as a consequence cannot be directly evaluated, but
have to be deduced from their behavioral results (Veenman, 2007). The way to
assess metacognitive skills is through two methods: online and offline (Veenman,
2005). Online methods are evaluations during the completion of the task, such as:
observation, thinking aloud, recording in a computer of the learning process. The
off-line methods are questionnaires or interviews that can be applied before or after
the execution of the tasks, which suffer from the same problems of validity as the
evaluation of metacognitive knowledge.

Veenman (2012) describes metacognitive abilities as those that enable regulation
of cognitive processes. These include the capacity for oversight, orientation,
direction, and control of proper behavior in learning and problem-solving.
Metacognitive abilities are learning activities per se and are critical for determining
the results of learning. Veenman (2012) makes a distinction among the activities
that he considers representative of metacognitive abilities, dividing them into three
categories as shown in Table 19.1.

Table 19.1 Metacognitive abilities

Learning activities

At the beginning of task
execution

In the process of task
execution

After task execution

– Reading
– Analysis of the tasks
– Activation of prior
knowledge

– Setting goals
– Planning

– Following a plan
– Changing the plan
– Follow up
– Control
– Note taking
– Time and resource
management

– Performance assessment
– Recapitulating
– Reflecting on the learning
process
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Veenman (2011) suggests that metacognition might adopt the perspective of a
self-instructional model for the regulation of task execution. This process can be
activated as a program acquired through a list of self-instructions that are applied
each time the student is faced with performing activities. For Veenman (2011) it is
important to recognize that both cognitive processes and metacognitive
self-instructions that are involved in the execution of instructions are part of the
same cognitive system. Cognitive activities are always necessary for the execution
of any process related to a task at the object level, while metacognitive activity
represents the directive as a function of meta-level for the regulation of cognitive
activity.

In order to explain more clearly the situation of cognitive and metacognitive
activities involved in a task, Veenman (2012) likened cognitive activities to soldiers
and metacognitive self-instructions to the general. He explained that a general
cannot win a war without soldiers, but a large unorganized army will not be
successful either. Metacognitive instructions always manage cognitive processes,
and without the instructions overseeing the processes, accomplishing the proposed
task is more challenging. Many school subjects require metacognitive skills, but
according to Veenman (2012), they are honed mainly through four kinds of
activities: reading texts, problem-solving, discovery learning, and writing.

Skillful reading and writing has a great impact on problem-solving activities
(Hyde & Hyde, 1991). Hyde (2006) emphasized the importance of students in basic
education to be involved in mathematical problem-solving. More explicitly, stu-
dents need to try to describe and represent mathematical concepts, questions,
assumptions, and solutions. In this way, students can identify and clarify previous
knowledge in the problem-solving processes, which can better prepare students to
organize, monitor, and reflect on their work, strengthening their thought processes.
The philosophy is that language, mathematics, and thought that uses both cognitive
and metacognitive dimensions are better together as a braiding model (Hyde, 2006).

Hyde (2006) is guided by the principles of cognitive psychology and uses the
term braiding to indicate that language, thought and mathematics can be intertwined
into a single entity, making it possible to make connections between these three
important processes result is stronger, more durable and more powerful than if you
work individually. With the term braiding it suggests that the three components are
inseparable from mutual and necessary support. It states as much stronger the
connections between the related ideas are, deeper and richer is the understanding of
the concept.

Hyde (2006) emphasizes that the context of braiding benefits children to
imagine, visualize and connect mathematics with context. He states that this Model
has been used effectively in the instruction of a class with small groups and with
teacher support. The questions are effective in order to discuss the problem in small
groups as well as strategies of representation in oral language, in this way students
begin to internalize these questions to use them for themselves during subsequent
tasks.
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19.3 Methodology

The intervention design was based on the list of self-instructions suggested by
Veenman for regulating tasks and on Hyde’s Braiding Model (2006) described in
the theoretical framework. Hyde (2006) designed the braiding method directly for
teachers in the classroom where the teachers could elicit which parts of the model to
employ that would be appropriate for the topic and situation, thus using only those
items that were necessary in guiding the students through the problem-solving
process.

This research seeks to explore implementation of a less detailed procedure for
teaching metacognition skills, one that students may apply by themselves without
needing total support from the teacher. Students are provided with very simple
directives that are nonetheless useful for them to find the problem’s solution.
Therefore, our intervention aimed at supporting students with solving geometry
problems. To accomplish this aim, we established a five-phase plan that focuses on
the use of representations and writing as metacognitive tools (see Fig. 19.3).

We guided students with simple prompts, given in the form of questions to guide
them through each phase that leads up to the solution. Veenman (2012) originally
proposed this list of self-instructions for regulating the problem-solving process. In
response to that prompting, students gradually incorporated writing as a support
tool during the activities. They were encouraged to use this tool repeatedly on their
worksheets. Even though the students may have considered writing to be merely a
means of communication, it provided them all the support necessary to control and
regulate the process of problem-solving.

The intervention’s five phases of the problem-solving cycle were based on the
strategies identified by Hyde & Hyde, (1991) which focuses on student

Fig. 19.3 Phases of the problem-solving cycle of activities
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representations. However, unlike Hyde, we placed special emphasis on writing,
highlighting it as a means of recording, and exteriorizing, and communicating one’s
thoughts to others. We also noted the function of writing as a metacognitive tool;
as an instrument for amplifying and exploring one’s own knowledge.

The designated prompts or self-instructions as suggested by Veenman (2012) in
this intervention first focused on writing down the information given in the prob-
lem. Writing down the information clarifies what we know and understand from the
problem. The writing next focused on what was still vague such as the parts that
required further clarification and was followed by the writing of what needs to be
determined and where that will lead.

The entire problem-solving process used the writing of representations, which
helped traverse the path towards attain the solution. The worksheet then captured
the student’s comprehension and initial reflections about the given information,
what was asked and the process to be followed in order to solve the problem.
Finally, the students needed to write their justification of the results they obtained
and demonstrate why they consider it as the correct solution. Following this path in
writing-based problem-solving, students were able to monitor, encode, and estab-
lish processes in a reflective manner, which strengthened their learning. The five
phases activate a metacognitive process of self-regulation.

Prompts in the form of simple questions or self-instructions guided the students
through the learning activities to develop their metacognitive abilities during the
problem-solving process. Each question focused on a learning activity as described
in Table 19.2. The analysis of the answers followed the scope suggested by
Veenman (2012).

Table 19.2 Link between self-instructions and Veenman’s metacognitive abilities

Self-instructions for applying writing as a
metacognitive tool in problem resolution

Task Learning activities
representative of
Veenman’s metacognitive
abilities

1 What information am I given in the problem? Start Reading

2 What do I need to find? Analysis of the task

3 What knowledge do I have about the topic? Activation of prior
knowledge

4 How am I going to solve it? Planning

5 What steps will I follow? During Follow or change the plan

6 Do you thing, the notes you take inside the
drawings could help you to solve the problem?

Note taking

7 How do I justify the answer I found? After Performance assessment

8 Is this the only way of arriving at the answer? Recapitulate

9 What other forms can apply? Reflection on the process
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19.3.1 Description and Selection of the Problems

Problems for the intervention were chosen so as to have particular characteristics.
The main characteristic was that the solution did not merely require sentences to be
translated into mathematical equations, but rather the answer required a process of
inquiry, not merely the application of routine procedures. We also consider it
necessary to work on problems that give the students the opportunity to increase
their knowledge, develop their skills and abilities and also allow indications of the
functioning of the guiding questions when they are answered in writing.

I chose problems that could be solved in multiple ways, as suggested by the
Ministry of Education of Jalisco (Mexico). The questions chosen had served as
practice questions to prepare students for the Primary and Secondary School State
Mathematics Olympics (whose acronym in Spanish is OEMEPS). These problems
required students to reason creatively, justify, and explain their solutions. In
addition to having the above features, these problems were in Spanish and com-
patible with the Mexican mathematics curriculum. I selected twelve secondary
school level geometry problems from the 2010, 2011, 2012, and 2013 OEMEPS
(Secretaría de Educación Pública, 2013a, 2013b) for participants to work through
during the teaching intervention.

19.3.2 Characteristics and Implementation
of the Intervention

This research was primarily qualitative in nature and used the line method-does not
mean by internet- for assessing metacognitive abilities (Veenman, 2005, 2012)
where the written compilation of the students’ entire problem-solving process was
examined. All notes made by the students on the worksheets were used to facilitate
our analysis of the students’ written expressions. In addition, through the use of
these notes we were able to consider the influence of the context in the development
of the solution to each problem. Another source of information used in the analysis
was the record of observations logged by the researcher in the work sessions.

Ten 9th graders students served as the participants in this intervention. Was
proposed to the Daytime Secondary School principal, to accept the intervention, a
problem-solving workshop, where students were encouraged to participate and
prepare for their tertiary school admission examinations. This study focuses on the
interpretation of writing according to Henning, Gravett and van Resburg (2002), as
part of the procedures that can be used to think clearly and build a knowledge, in
and of itself, writing is a thought in action. This is in the interest of using writing as
a metacognitive tool in problem-solving. Hoping that the intervention generates a
clear and orderly thought during the whole process of the activities.

For the teaching intervention, students worked in the classroom during their
mathematics class time (45 min). There were 20 work sessions, conducted three
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times per week (Monday, Wednesday and Friday). The first three sessions were
dedicated to construct a glossary of fundamental geometry concepts that the stu-
dents should have acquired by the third year of secondary school: point, segment,
line, triangle, and quadrilateral, among others. The researcher guided the partici-
pants to describe the basic concepts and properties of geometric figures based on
their prior knowledge. These sessions’ main purpose was to activate the students’
prior knowledge and to help the participants gain some confidence in their work.

The fourth and fifth sessions involved students solving problems taken from the
sixth grade OEMEPS (Primary and Secondary School State Mathematics
Olympics); worksheets were provided containing the prompts in the task. It was
inspected each worksheet after the students finished solving the problem. It was
agreed that there were several paths leading to the solution and each option was
discussed. The only condition was that the questions in the prompts had to be
followed. For this purpose, a poster with all the prompts was put up on the board for
the next session. These questions would guide the students through solving the 12
problems. During the remaining 15 sessions, students worked on solving the
problems individually and at their own pace for the duration of the session.

19.4 Results

All students got the correct answers for all the problems, most of them after
reviewing failed attempts. Some students directly applied the initial directions by
writing what information was given and what information they needed to find in a
complete, clear, and orderly fashion. Figure 19.4 shows a student’s correct answer,
who gave a detailed reconstruction of his or her train of thought by writing a
detailed description of each relationship used and operation performed. This student
also tried to write an orderly narrative sequence, providing clear visual description
of mathematical expressions, and was one of the few students to use punctuation
marks.

The student began his or her writing with a correct description and interpretation
of the information given in the problem. Then, he or she provided some useful
representations to exteriorize the information, which clearly indicates the sum of the
interior angles of each polygon and the measure of each of the angles. These
assertions imply the activation of prior knowledge. Figure 19.4 also shows that the
student’s knowledge and assertions combines with symbolic writing (the sum of the
interior angles of an equilateral triangle is 180°, and each of them measures 60°).

The student then planned the next steps to solve the task, indicating the pro-
cedure: “Mark triangle RNO as an isosceles triangle since two of its sides are the
same… and I don’t know the measure of [angle] RNO.” This narrative demonstrates
a correct identification of the information. He or she then followed the proposed
plan and showed step-by-step the results with accompanying explanation why each
operation was performed, as can be inferred from the last comment “… and then
I divide the answer by two and get 39°, (the triangle is isosceles),” thus justifying
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the operation of dividing by two and confirming that the answer is correct
(Fig. 19.4).

Figure 19.5 shows the worksheet of a student who solved another problem
following the prompts and numbering the steps to taken. The student first worked
with the starting prompts upon identifying the characteristics of the equilateral
triangle and the square, which were represented in the drawings and then wrote
down the measures of the corresponding angles.

The student’s worksheet shows how the numbered steps were followed in the
solution of the problem, specifying first how the triangle and square were joined to
produce the main figure of the problem and then indicating that the measure of
angle ACE must be found. In the third step, the student wrote, “I know how to
measure the angles,” and that the shapes were “a square and an equilateral triangle,”
confirming the characteristics of each.

Problem. The pentagon ROTES is regular, PON is an equilateral triangle and PATO is a square. Find the angle 
measure of RNO.  

Translation: 
• The pentagon ROTES is 

regular, PON is an equilateral 
triangle and PATO is a square.

• Find the measure of angle RNO. 
• I know the measurements of 

every internal angle of the 
triangle, square and pentagon, 
all the sides are the same 
length. 

Note taking

Reading and 
analysis of the 
task

Activation of 
prior 
knowledge

• Mark triangle RNO, which is an 
isosceles triangle because two 
of its sides are equal. Then I 
add the measures of the angles 
that I know meet at that point 
PATO, ROTES, PON, and RNO
(RNO I do not know the 
measure). I added the angle 
POT = 90° TOR = 180° 
PON = 60° the result is 258° 
and after I subtract 360 -258 = 
102. 102° is the RON angle 
measure, then as I already know 
that the interior angles of a 
triangle add 180°, I subtract 
102° from it and then the result 
it’s divided by two to get 39° 
(the triangle is isosceles).

• The measure of the angles in an 
equilateral triangle is 60°, the 
angles of a square are 90° each 
and the angles of a regular 
pentagon are 108°.

• Another way to solve the 
problem is to simply measure 
the angle with a protractor and 
get the result 39°∠RNO = 39°.

Note taking

Following the 
plan

Performance 
assessment 

Recapitulation 
and reflection 
on 
performance

Fig. 19.4 Sample worksheet with student’s answer
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In the fifth step, the student stated, “I know the measures of the angles of a
square… I know each internal angle of an equilateral triangle measures 60°,” then
further continued the narrative with “I will measure each angle in the figure.” From
that moment, even though all the information written down was correct, the student
decided to change plans and indicated that the above description “[didn’t] count”.
Upon changing plans, the student used the representations of the figures separately,
constructing each of the three triangles by joining the square and the equilateral
triangle together. Then, the student used these representations to measure each
angle and arrive at the answer. The student then described the answer, starting with
the representation of the original figure together with the measures of each angle,
followed by the answer, and lastly included an explanation of the path to the
answer.

The most important observation from the worksheet is how even though the
initial assertions were correct, the student decided to change course and modified

Problem: A square and an equilateral triangle are joined to form a figure shown: what is the measure of angle 
ACE? 

Translation:
Equilateral has all equal sides and 
equal angles.
1° A square and triangle are joined 
to form the figure. 
2° The measure of angle ACE. 
3° I know how to measure the 
angles. 
4° A square and an equilateral 
triangle. 
Does not count (5° I know that the 
measures of the angles of a square 
are 90° and that each internal angle 
of an equilateral triangle measures 
60°. 5° I will measure each of the 
angles in the figure). 

5° One of the angles of the square 
and one from the triangle are joined 
in the figure, the angle of the square 
is 90° and the angle of the triangle 
is 60° so we add those measures, I 
can see that line CE cuts the square 
in half, so that angle is 45° and then 
I must divide the other half in 2 
separate parts, which must add to 
45° and one of them is 15°, so the 
other must be 30°, therefore angle 
ACE measures 30°.

6° That the angle of the square 
measures 90° and is divided into 3 
parts.  
7° Whether it is the only path to the 
solution.

Reading and analysis 
of the task

Activation of prior 
knowledge

Planning
Following the plan

Changing the plan

Note taking

Performance 

assessment 

Recapitulation and 
reflection of 
performance

Fig. 19.5 Sample worksheet with student’s answer
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the work plan. This change led to establish a relation between the isosceles triangles
in figures ABC and CED. The student then founded the measures of all other angles,
in particular the measure of angle ACE, which is the problem’s solution by using
the measures of some of the angles given and the characteristics of the square and
the equilateral triangle.

The participant then narrated the steps taken to obtain the answer. Most notable
is the statement that “The angle of the square (in the figure) measures 90° and is
divided into three different parts,” a description which confirms the student narra-
tive and provides certainty in the answer (Fig. 19.5).

In the case of both Figs. 19.4 and 19.5, we note the development of students’
metacognitive abilities during the intervention, reached gradually using the ques-
tions described in Table 19.2. The students acquired orientation and planning
abilities during each problem’s resolution, which we can see when they noted the
steps taken in their problem-solving, described the procedure, provided reasons, and
justified their entire process.

Due to the favorable results obtained from the students participating in the
intervention, the investigation expanded to include other students in the third year
of secondary school (9th Grade). Something to note is that the application of this
worksheet was not intended to show the contrast between using and not using
suggested prompts to facilitate the problem-solving process. To adjust for the space
constraints as well as to limit distractions or communication between students, we
used four different worksheets.

This expanded group included 50 students: 10 students who had participated in
the intervention and 40 other students who had not. Non-participants of the
problem-solving workshop (NP-PSW) only received the instructions to solve the
problem and write down the procedure they used to obtain the answer, and justify
their answer within one class period (50 min). The difference between the two
groups was that non-participants had no prior knowledge of the prompts.

Table 19.3 presents the results obtained in the application of these worksheets.
The second column shows the number of student participants of the
problem-solving workshop who obtained correct and incorrect answers while the
third column shows the corresponding results of the students who did not partici-
pate in the workshop. We observe in Table 19.3 that only 12 students obtained the
correct answer, 10 belong to the workshop participants’ group and only two to the

Table 19.3 Results of the participants and non-participants of the workshop

Participant of problem-solving
workshop (P-PSW)

Non-participant of problem-solving
workshop (NP-PSW)

Correct answers Incorrect answers Correct answers Incorrect answers

Problem 1 2 0 2 10

Problem 2 2 0 0 8

Problem 3 3 0 0 10

Problem 4 3 0 0 10
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non-participants’ group. The 38 students who were not able to solve the problems
were all in the group of non-participants.

A closer look at the answers shows that 76% were incorrect answers, and they
belong to the group of the students who were non-participants at the workshop. Of
the 24% who obtained correct answers, 4% were students who did not attend the
workshop, while the remaining 20% were participant students.

The type of answers we obtained suggest that the use of writing through
questions produces favorable results. Due to space constraints, this paper only
shows the analysis of four types of answers to the problem shown in Fig. 19.5,
given by 12 of the non-participating students (Problem 1 in Table 19.3). Four of the
students who did not participate in the problem-solving workshop used the pro-
tractor immediately to measure the angle, using no prior knowledge. Given what we
could examine from the answers, they did not have a clear idea on how to use the
protractor to measure the angles (Fig. 19.6).

In the first answer shown in Fig. 19.6, the student asserted, “I first took the
protractor and placed it correctly to find angle ACE” and wrote at the end of the
question “R = 33°”. Another student stated, “Well I took the protractor and placed
it over angle C, measured the angle and got 150° as my answer” (second answer).
Both narratives show that the students only considered the simplest procedure,
which is to measure the angles by using the protractor, although some had issues
using the protractor.

The first student correctly placed the protractor and then properly measured the
angle, although the response was three degrees greater than the correct measure.
The second student, from the researcher’s point of view, placed the protractor
correctly but read off the incorrect value of 150° from the protractor. This error was
made because protractors, which students have been using at a very basic level,
have the measures of angles in both directions (from left to right and from right to
left). When the concept of angle measurement is unclear, the students misread the
measure on the protractor.

Problem: A square and an equilateral triangle are joined to form a figure as shown: what is the measure of
angle ACE?

I use the protactor in order to measure the angle  
ACE

I grab the protractor and I put it in the angle C, then 
I measured the angle and I got the result for angle 
ACE, that is 150°

Fig. 19.6 Answer to problem by four students from the NP-PSW group
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Two other students who did not participate in the problem-solving workshop
mentioned using trigonometry to obtain the measure of the angle even though the
second student started by using the protractor to measure the angle. Another student
reached an incorrect answer of 70°, without leaving any trace of his or her rea-
soning, then stated that trigonometric functions would be appropriate for this
problem but had no idea how to use them (see figure on the right in Fig. 19.7).

Another student (see the left-hand side in Fig. 19.7) used trigonometric func-
tions, starting with a description written down on the left hand side, related to the
area of one of the triangles, which would be correct if it referred to triangle EDC
“1�1

2 ¼ 0:5”, although it is unclear why they obtained the area. Other operations
were then performed, and trigonometric functions were used with incorrect data
because the hypotenuse of EDC equals

ffiffiffi

2
p

and not 2 as written by the student. The
hypotenuse of triangle ACE, which is not a right triangle but was considered to be
one by the student, would have a measure of

ffiffiffi

3
p

if it were right angled, not 3 as the
student stated.

The student explained, “First, I get the area of everything, so I can know the
value of the sides of the triangle, then I use trigonometry to get the angle. I used the
cosine because it gives me an angle with the values I am asked for.” This assertion
confirms that the student assumed that both triangles were right-angled, in the
student’s view, even though two of them were not, as angle AEC measures 105°, a
value that appears to be obtained from the information given in the problem, joining
a square and an equilateral triangle.

Problem: A square and an equilateral triangle are joined to form a figure as shown: what is the measure of

angle ACE?

Explanation: First, I obtained the whole area in
order to know the value of the sides of the triangle 
that is formed. Then, I used trigonometric functions 
to get the angle requested and I used cosine because 
I get the angle with the requested values

To have my answer, first I draw a line that guided me 
an angle that is 90°, then with a protractor I searched 
the line of the triangle and it showed me that the angle 
ACE is 70°. But, I also believe that it is possible to do 
it with trigonometrical functions but I do not have an 
idea about who to start solving it

Fig. 19.7 Answers to Problem from two students NP-PSW
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Next, we examine the answers of two other students (A and B) who did not
participate in the workshop, who used the formula for the area of a triangle to solve
the problem, as shown in Fig. 19.8. It remains unclear how the area could help the
students find the measure of angle ACE and how they could even find the triangle’s
height in order to use the area formula.

They both used the same procedure but with different data. Neither of them
arrived at the correct answer nor provided much description or justification for any
of their work. As the second student stated, “I used the area,” highlighting it with an
arrow. They did not explain their responses. Although the problem asks, “What is
the measure of angle ACE?” both their answers were for the area of a triangle, not
the measure of an angle. We believe neither of the students attempted to justify nor
analyze their answer. If they tried to justify their results, then they might have
realized what the problem really asked.

Both answers reflect poor reading comprehension, which in turn failed to acti-
vate necessary prior knowledge for solving the problem. They also did not attempt
to analyze the task in order to decide if they were providing the information
requested in the worksheet, what is the measure of angle ACE?

The last four students who did not participate in the workshop solved problem 1
using the representations given in the problem, but the representation confused
them, and this led to an erroneous interpretation of some information, just like the
student who had used trigonometric functions (Fig. 19.7). The above contradicts
the situation of the representations given in the problem.

For instance, the answer given by the student in Fig. 19.9 is in relation to the
measure of the angles and stated, “it is evident that from E to A and C creates a ∠
90° and I added the remaining measure to the angle from point A and C… so 90°
divided by 2…”, therefore obtaining the other two 45° angles. The student failed to
notice the importance of the given information “a square and equilateral triangle are
joined,” which does not give an angle of 90° at point E. In addition, only the sides
of the pentagon are equal, and therefore, triangle ACE is not isosceles, which would
be necessary to establish that the other two angles measure 45°; this condition is
only satisfied by triangle ABC and triangle CED.

Problem: A square and an equilateral triangle are joined to form a figure as shown: what is the measure of
angle ACE?

Triangle A = Use the area.    Area =

Fig. 19.8 Worksheet of two student NP-PSW, student A left and B right
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We have observed how students found obstacles at different points in the
problem-solving activities. Some had issues during the reading and analysis phases
of the task. As seen in Fig. 19.8, some had trouble understanding what the problem
asked them to do. Both students obtained the area of different triangles, which was
not what the problem asked them to find. Other students were unable to activate
prior knowledge, which is seen in Figs. 19.6 and 19.7, such as measuring angles,
using the protractor, though the measures of the angles could be deduced from what
they knew about squares and equilateral triangles. The lack of prior knowledge
prevented students from reaching the answer. The remaining students managed to
establish a plan, but the imprecision of their notes or the lack of required prior
knowledge led them to incorrect answers (Fig. 19.9).

The use of the problem with non-participants allowed us to realize that the
prompts used with the participants had indeed been like a plan of action, which
guided the student through the steps of the problem-solving process. The use of the
problem also allowed us to realize that the participants carefully reviewed the steps
that they had followed when writing down the justifications to their answers. Not
only did they check whether they found the right answer, but they also discerned
whether the steps were successful in solving the problem. The act of writing under
the guidance of the prompts given at the start of the intervention helped them
understand the solution process.

From our point of view, identifying what is given what is looked for in the
problem formulation, and beginning to work explicitly writing these elements,

Problem: A square and an equilateral triangle are joined to form a figure as shown: what is the measure of angle 
ACE?

From what I understood, in 
AEC a triangle  is created, 
its total from all the angles 
must be 180°. The 90° angle 
is very evident from E to A 
and to C creating an angle 
the 90°(represented by the 
symbol of angle ˂).
And the angle from point 
"A" and point "C", I gave 
them the remaining by 
subtracting 90° to 180. 
which are 90 and then I 
divided it into 2, so that it 
was fulfilling 180°. 

Fig. 19.9 Answer to problem taken from one student in the NP-PSW group
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makes a big difference for the students. Write the data given provides an initial
orientation, which remains on sight, and functions as a control elemental that helps
to correct mistakes and take into account relevant relationships and conditions.

19.5 Conclusions

With this intervention we realize, firstly that the self-instructions are in themselves a
plan of action, which guide the student step by step during the whole process of
problem-solving and secondly, that when they wrote the justification of their
responses carefully reviewed the steps that followed. That is, they not only analyzed
if they achieved to the correct answer, but recognized that steps were successful in
the resolution, that is, writing helped them to understand the solution process,
guided by the questions given at the beginning of the experiment.

In this study, I have shown that the decision to coordinate different elements of
mathematical thinking through prompts was associated with stronger performance
and increased sophistication of students’ problem-solving behaviors. The inter-
vention relied on purposefully selected problems that provided opportunities to
develop concepts while also allowing the students to be free to pursue other paths to
the answer based on their prior knowledge.

The chosen problems met the intended conditions and together with the use of
prompts, served to reinforce certain habits among the students that participated of
the intervention workshop, such as having steps to follow in a certain order, as well
as gaining the confidence to communicate their thoughts through the worksheets
thus expanding their points of view. Additionally, the worksheets provided evi-
dence in the analysis of two participants’ answers that by writing, all ten students in
the workshop activated their prior knowledge, organized ideas, established a plan to
follow, supervised the entire process, evaluated, and used feedback about their
answer, implying a metacognitive process.

As Schoenfeld (1985) described, the metacognitive process is exteriorized when
students reflect on the thoughts they had while performing a mathematical task.
Therefore, we may assert that at the problem-solving workshop, metacognition
occurred when students, while following the prompts as self-instructions for solving
the geometry problems:

• Reflected about how to proceed in the problem and on the processes that were
generated in the solution.

• Developed the justifications that backed their problem-solving procedure in each
problem.

• Evaluated their results and reflected upon whether there are other ways of
finding the correct answer.

We therefore consider that the objective of our intervention was achieved, which
was to facilitate the problem-solving process and develop metacognitive abilities,
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combining writing with solving geometry problems. On the other hand, the stu-
dents’ disposition and confidence in their own knowledge increased throughout the
problem-solving workshop.
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Chapter 20
Connectedness of Problems
and Impasse Resolution
in the Solving Process in Geometry:
A Major Educational Challenge

Philippe R. Richard, Michel Gagnon and Josep Maria Fortuny

Abstract Our contribution shows the anticipated effect of what we call connected
problems in developing the competencies of students and their acquisition of
mathematical knowledge. Whilst our theoretical approach focuses on didactic and
cognitive interactions, we give special attention to a model to reason about learners’
conceptions, and the ideas of mathematical working space and zone of proximal
development, in order to explore how connected problems can help to resolve
moments of impasse of a student when solving a proof problem in geometry. In
particular, we discuss how the notion of interaction moves our theoretical frame-
work closer to the methodological challenges raised in the QED-Tutrix research
project jointly being realized in didactics of mathematics and computer engineering.
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20.1 Introduction

We begin with a brief story. Once upon a time in their mathematics class, two
14/15-year olds were attempting to solve a geometry proof problem using an
intelligent tutorial system. The problem involved a comparison of the area of two
triangles with that of a parallelogram and a demonstration of the selected conjec-
ture. After reading the statement and constructing, or moving, elements of the figure
in the dynamic geometry module (Fig. 20.1), the students quickly agreed that the
areas were equal. They began to write their first sentences using the interface of the
tutorial system and, from the outset, they were delighted to see Prof. Turing, a
virtual tutor, telling them with a smile (emoticon) that their first answer was correct.
As good students, they were aware that they could sometimes become blocked in
their work. Thankfully, through the messages, Prof. Turing always managed to
restart their solution process. It must be said that whilst not claiming to be a
substitute for a human teacher, this virtual tutor had access to a memory of 69,000
possible solutions and could quickly target the solution envisaged by the students.
In its personal support facility, Prof. Turing also recognized any persistent diffi-
culties students had, and when appropriate, could suggest that the student re-contact
their teacher.

It was then that something happened that we did not expect. Upon the students
reaching an impasse during the next stage of their solution, and the teacher having
seen the appropriateness of the messages that students had been receiving from
Prof. Turing, we thought that the teacher’s intervention would have placed greater
emphasis on the meaning of the messages in the context of the problem. Instead,

Fig. 20.1 An analysis of the interactions between students and GGBT system, which inspired the
implementation of QEDX
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after a brief analysis of the situation, the teacher asked the pupils to solve a new
problem, explaining: “Looking at [the statement of the problem on paper], it makes
me think of this [pointing to another problem on the sheet]. If you can solve that,
you will see what you are currently missing.” The students, accustomed to this type
of intervention in their usual classes, began to solve on paper the new problem.
Then one of them said to the other: “look I know it… look, that’s why it works!”
The solution to the original problem at the interface was thereby restarted. This
prompted us to wonder whether, like the teacher, we could give Prof. Turing a set of
problems to generate help messages of a new kind.

This brief story shows how the first version of our system GeoGebraTUTOR
(GGBT) (created to study, amongst other things, real teacher interventions) worked
and what is the basic idea that inspired the implementation of our second version,
QED-Tutrix (QEDX), emphasizing problem solving as a fundamental mathematical
competence (see Research context section). These systems, and the passage of
GGBT to QEDX, are described and analyzed by Tessier-Baillargeon (2016), from
the perspective of the didactics of mathematics, and Leduc (2016), from computer
engineering.1 In the following, we situate the context of the research around the
problem solving before introducing our theoretical framework centred on the notion
of interactions. We first introduce key concepts and axes of references (in italics).
We then propose two approaches that show how the connected problems can
intervene to resolve moments of impasse and we conclude briefly with some
expected results.

20.2 Research Context: Problem Solving at the Heart
of the Teaching and Learning of Mathematics

According to the Theory of Didactical Situations (TDS; Brousseau, 1997, p. 31):

We know that the only way to ‘do’ mathematics is to investigate and solve certain specific
problems and, on this occasion, to raise new questions. The teacher must therefore arrange
not the communication of knowledge, but the devolution of a good problem. If this
devolution takes place, the students enter into the game and if they win learning occurs.

But what if a student refuses or avoids the problem or doesn’t solve it? The teacher then has
the social obligation to help her and sometimes has to justify herself for having given a
question that is too difficult.

In the spirit of the TDS, we illustrate the challenges of a research project based
on three key ideas: The need to find and solve specific problems in the learning of
mathematics in secondary school, the help that constitutes the devolution of “right
problems” (see § 4 in the next section) for the development of competencies and the
geometric thinking of the student, and the voluntary, but surprising, action of the

1For a comparative study and a complete update on related tutorial systems, see
Tessier-Baillargeon, Leduc, Richard, and Gagnon (2017).
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teacher who chooses to pose a new problem to jumpstart an initial solving process
that has been halted (Richard, Gagnon, & Fortuny, 2015). The original solving
process focuses on a root problem and a new problem put forward, such as a
message returned by a problem-management system, is called a connected problem
(Richard, Gagnon, & Fortuny, 2013).

Our research proposes two questions as overall aims (1) in the management of
connected problems, which conditions allow for the restarting of a halted solving
process with a student? (2) What information brings us root problems and con-
nected problems, posed by a tutor, in the teaching and learning of mathematics?
There are theoretical and methodological issues at the origin of these questions, but
before addressing those we first turn to why the interactive management of prob-
lems is so important. In learning, if the right problem is characteristic of mathe-
matical work, it is also a component of the construction of mathematical concepts in
the course of cognitive interactions with the milieu, complementary to didactical
interactions with the tutor. This joins with the notions of the mathematical working
space (Kuzniak & Richard, 2014) and conception as knowledge that is actually
built by the student (Balacheff & Margolinas, 2005). The concepts of conception
and working space offer two insights into the same subject-milieu system
(Fig. 20.2). We return to this in our theoretical framework section below.

In terms of teaching, when a problem choice occurs through of a moment of
impasse, or the success of the root problem, we create a learning scheme tailored to
the student’s competencies. This view pushes, in an innovative way, the boundaries
of traditional teaching, which involves posing problems in series without regard to
the proximity of problems already solved or the knowledge acquired during the
learning process. If we reflect on the mutual commitment between the student and
the teacher with regard to mathematical knowledge, the management of connected
problems respects the specificity of the didactical contract and offers a response to
the paradox of devolution.

Fig. 20.2 Two insights into the subject-milieu system: from the point of view of conception and
that of the workspaces, the first looking at the pupil in the foreground and the second, the milieu
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20.3 Theoretical Framework: An Approach Centered
on Didactic and Cognitive Interactions

The general framework follows five conceptual reference axes that have been
published in journals of the social sciences (Richard et al., 2011) and computational
mathematics (Richard et al., 2013). These axes are epistemological [in reference to
the dialectical proofs and refutations of Lakatos (1984), the heuristics for problem
solving of Pölya (2007) and the breaking points in the mathematical discovery of
Mason (2005)], semiotics [the theory of the functions of language of Duval (1995),
the functional-structural approach of Richard and Sierpinska (2004) and the register
of dynamic figures of Coutat, Laborde, and Richard (2016)], situational [the theory
of didactical situations of Brousseau (1997) and the model to reason on learners’
conceptions of Balacheff and Margolinas model (2005)], instrumental [the theory of
the instrumentation of Rabardel (1995), the geometric working space of Kuzniak
(2006) and the instrumented reasoning of Richard, Oller, and Meavilla (2016)] and
decisional [the didactic paradoxes of Brousseau (2004) and the theory of
decision-making of Schoenfeld (2011)].

In the TDS (Brousseau, 1997), the milieu appears as the system antagonist to the
student. Given the fact that the milieu is a vehicle for knowledge, the latter can only
be revealed when the student questions it. It is therefore not an opposite response,
but rather a partner in the creation of meaning. The first system that interests us is
therefore the subject-milieu system (Margolinas, 2004, pp. 13–14):

Brousseau goes on to consider the subject-milieu interaction as the smallest unit of cog-
nitive interaction. An equilibrium state of this interaction defines a state of knowledge,
where the subject-milieu imbalance is producing new knowledge (search for a new
balance).

This contribution of the TDS is well documented in the literature. We highlight
the first two results (see below) when the observables in our project are then
grouped according to didactical and a-didactical intentions.

§ 1. If the TDS determines all knowledge by specific situations, the model to
reason on learners’ conceptions of Balacheff and Margolinas (2005)—known in
literature as the cK¢ model (conception, knowing, concept)—places conceptions in
the subject-milieu interaction, while initially characterising a conception created by
the problems in which it is involved. Specifically, this model characterizes con-
ceptions C as a set of defining problems (P) for which they provide tools (R) by
relying on representation systems (L) and a control structure (R) that allows for
judgments and decision-making. The result is a strong relationship between a
moment of impasse and the arrival of a connected problem. The a-didactical
observables are modelled by problems (P), operators (R), languages (L), and
controls (R) of the conceptions.

§ 2. A didactical intention cannot simply develop mathematical competencies,
since it must also seek knowledge recognized by the institution and allow the
student to carry out their work as a mathematician. Thus, in the exercise of
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geometric meaning, it is still necessary that the competencies at stake adhere to a
theoretical reference: geometry. With its plans (epistemological and cognitive),
genesis (instrumental, discursive, and semiotic) and cognitive math competencies
(reasoning, communication, and discovery), the model of Mathematical Working
Space (MWS) allows for the design and organization of the environmental thought
process and enables the work of individuals solving mathematical problems
(Fig. 20.3; from Kuzniak & Richard, 2014). In geometry, when the focus is on the
learning process of students in a didactic situation, the epistemological plan can also
be seen as an epistemological milieu and the cognitive plan, as an epistemic subject
(Coutat et al., 2016; Coutat & Richard, 2011). It follows that the specific interac-
tions within the geometric approach are part and parcel of the working space, and a
characterization of these interactions, from a set of tasks (problems to solve chosen
by the teacher), reveals issues with the mathematical competencies of the subject
during their geometric work. The didactical interactions are manifested in the
choice of problems to solve and their meaning can be interpreted from the com-
ponents of the working space. The links between the didactical interactions and
cognitive interactions are possible because the MWS incorporates both
subject-milieu interactions and the intention to amend the system with new prob-
lems. Moreover, the model of the MWS joins in particular the model to reason on
learners’ conceptions with the notion of fibration. The set of defining problems
(P) belongs to the epistemological plane (pose a problem/problem at issue) or to the
cognitive plane (solve a problem/solving at hand), the operators (R), languages
(L) and controls (R) of the conceptions can be associated respectively with the
fibrations of the type: semiotic, material, and notional tools; semiotic, material, and
discursive-graphic representations; semiotic, material, and discursive-graphic con-
trols (Richard et al., 2016; Kuzniak, Richard, & Michael-Chrysanthou, in press).

§ 3. As a central concept in the work of Vygotsky (2013), the Zone of Proximal
Development (ZPD) represents the distance between what a child can learn if they
are alone and what they can learn if they receive the assistance of a competent
person. Since the ZPD represents primarily what the learner is not able to do
without help, it appears that the level of potential development is greater when the
learner is accompanied by a human teacher or an expert system. With regard to the
theory of Vygotsky, if the arrival of a connected problem adapted to a moment of
impasse already contributes to the normal development of the student, the recon-
ciliation between impasse ! connected problem has considerable potential to
facilitate and accelerate learning.2 In other words, the impasse ! connected
problem consequence allows for focus on a possible evaluation of the zone of
proximal development for the purposes of facilitation, based on both current and
potential gains. In some ways, the idea of a zone of proximal development is similar

2For example, if we know that a student cannot solve a problem because he or she does not
confront the hypotheses, then we ask him or her a new problem in which the main issue is the
discovery of incompatibility between hypotheses.
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to the notion of conception within the cK¢ model in the sense that the knowledge
acquired by the learner is focused locally and demonstrated in terms of validity and
efficiency in the context of the root problem.

§ 4. In light of our approach, the right problem is a concept whose choice and
intervention are placed in didactical and cognitive interactions. In everyday lan-
guage, the adjective right means that the problem has met or has the useful qualities
we expect. The utility area that interests us here is based on our research questions,
i.e. a problem is right if it allows the exercise of a new conception, which means
that there will be learning after a first root problem, or if it is used to restart a
blocked solving process to facilitate and accelerate learning. This is a relative
definition that assumes some knowledge of the issues of mathematical work by
posed problem solving—whether in the process of discovery and exploration,
justification and reasoning and presentation and communication (see the mathe-
matical cognitive competencies in vertical plans as in Fig. 20.3).

The notion of connected problems is innovative in the didactic literature but we
have included, specifically, Iranzo and Fortuny’s (2009) structure of learning routes
where the transition from one problem to the other at a time of impasse or inter-
action responds with a tutorial system. This results in a tree structure that recon-
figures at each point of impasse (Fig. 20.4). A learning route can be seen as a tree
branch and the configurations for root problems create a problem forest.

Communication
(sem-dis)

Cognitive plane

Epistemological plane

Semiotic genesis

Instrumental genesis

Discursive genesis

Visualization

Construction

Proof

Representamen

Artefacts

Referential

Fig. 20.3 The vertical planes in the MWS join the three math competencies of the educational
programme of the Quebec school (MÉLS, 2016), from primary to secondary, as training vectors
(Coutat et al., 2016)

20 Connectedness of Problems and Impasse Resolution … 363



20.4 Choice of Problems: Complexity of Connectedness
and Decision-Making

The question of connectivity arises in characterising each problem in a number of
variables and comparing the values of variables. Two connected problems are
similar when variable values are shared. In this paper, we propose two possible
avenues to translate mathematical problems into computable variables, therefore
allowing us to easily assess the similarity of two problems.

20.4.1 C-H-S-M Variables

In the first approach, we suppose that a problem can be uniquely defined by
answering four questions, related to the statement and possible solutions of the
problem. The answer to each question represents a variable. Therefore, the problem
can be visualized as a point in a 4-dimensional state, the 4 variables each repre-
senting an axis. The questions are the following:

Fig. 20.4 Tree diagram of connected problems for the same root problem (stated at the top)
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– What is the curriculum content (concepts, processes) that is involved in the
solving of the problem and what mathematical competencies are involved
(content variable)?

– How is a solution viewed in the process of solving (heuristic variable)?
– By what means (signs, tools) are ideas expressed, developed and communicated

(semiotic-instrumental variable)?
– Under what conditions is the treatment of the problem controlled (metamathe-

matical variable)?

Indicatively, these variables can take the values:

– Content (C): triangle, height, base, length, measure, area, scale, isometric, de-
scription, construction, analysis, transformation, etc.

– Heuristic (H): breakdown, compare, equate, customize, limits, singularity, for-
mulas, auxiliary, apprehension, exemplification, generalisation, iteration, etc.

– Semiotic-instrumental (S): interpret, represent, translate, model, accentuate,
instrument, exploit, decode, communicate, de-contextualize, coordinate, move,
etc.

– Metamathematics (M): identify, describe, conclude, hypothesise, figure, define,
demonstrate, speculate, validate, assume, argue, induce, etc.

While sensitivities may vary between regions or from one author to another, the
values of the C-H-S-M variables in terms of content and heuristic values are fairly
standard in the didactical tradition. The difficulty of assigning these values to a
problem is due mainly to an anticipation of possible solutions, which presupposes
knowledge of the solving context such as the status of mathematical cognitive
competencies or habits cultivated by didactic contracts. However, the assignment of
the two other variables requires a bit more creativity and reflection on the variation
of the statements. To illustrate the links between a statement and a possible value
for semiotic-instrumental (Table 20.1a) and metamathematical (Table 20.1b)
variables, we outline several archetypal attributions. However, the proposed
examples do not exhaust the set of possible values, i.e. normally, the same state-
ment may take several values of the same variable, and all statements may be given
at least one value per variable.

20.4.1.1 Articulation of the Problems

To show how an approximation problem mechanism can be established, we use
again the problems shown, N1.2 and N1.3 in Fig. 20.4, which are all conducted in a
pencil-paper environment. We assume here that these problems are intended for 14/
15-year olds in Quebec, and the variable content resumes the concepts and pro-
cesses related to geometric figures and the spatial meaning of the educational
programme of the Quebec schools (MÉLS, 2016). In this programme, the mathe-
matical content is tiered, so the possible values for the previous problems are equal
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Table 20.1 a, b. Archetypal attributions for semiotic-instrumental (bottom) and metamathemat-
ical variables (top)

Metamathematical

Statement Example of value type

In the following problem:
“Divide the equilateral triangle ABC into three equal
triangles from two straight lines passing through point C.”

What kind of result will we get in from equilateral triangle
ABC?

Conclusion (identify,
describe the conclusion)

In the following problem:
“Divide the equilateral triangle ABC into three equal
triangles from two straight lines passing through point C.”

What do we know before dividing the equilateral triangle
ABC?

Hypothesis (identify,
describe the hypotheses)

What geometric object is missing from the figure for it to
represent the following problem:

“Divide the equilateral triangle ABC in three equal
triangles from two straight lines passing through point C”?

We are not asking for the construction, you only need to say
what is or what objects are missing

Figure (identify, describe the
figure)

Semiotic-instrumental

Statement Example of value type

In the situation opposite, what can be said about the
areas of the triangles ACH, AHI, and AIB?

Interpret (a drawing)

Draw three triangles of same area that together form an
equilateral triangle

Represent (a figure)

(continued)
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(below). For economy and to facilitate the indexing of problems, we characterize
them using the following numeration:

1 Plane figures > Triangles, uquadrilaterals, and convex regular polygons > Segments and
remarkable lines: angle bisector, perpendicular bisector, median, altitude

2 Plane figures > Triangles, quadrilaterals, and convex regular polygons > Base, height

3 Plane figures > measurement > Length

4 Plane figures > measurement > area, lateral area, total area

5 Geometric transformations > Dilation of positive ratio

6 Finding unknown measurements > lengths > Segments resulting from an isometry or a
similarity

7 Finding unknown measurements > lengths > Missing measurement in a segment of a
plane figure

8 Finding unknown measurements > Areas > Area of polygons broken down into triangles
and quadrilaterals

9 Analysis of situations using the properties of figures > Description and construction of
objects

(continued)

Table 20.1 (continued)

Semiotic-instrumental

Statement Example of value type

IfM is a point on the base [AB] of an equilateral triangle
ABC, where should M be located so that the area of
triangle MBC is double that of triangle AMC?

Translate (from the figural register
to the analytical register)

Explain the equation on the right hand side using a
geometric drawing:

Model (geometrically)
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(continued)

10 Analysis of situations using the properties of figures > Finding unknown
measures > lengths > sides of a triangle (Pythagorean theorem)

11 Analysis of situations using the properties of figures > Finding unknown
measures > Lengths > Segments resulting from an isometry, a similarity, a plane figure,
or a solid

12 Analysis of situations using the properties of figures > Finding unknown
measures > Areas > Figures resulting from a similarity

where the symbol “>” separates the hierarchical levels from the classification of
the concepts or processes of the curriculum—for example in 3: “Plane figures” is
the class, “measurement” is the subclass, “Length” is the sub-subclass defining the
concept at stake.

Again, for economy, we limit the complexity of the values of other variables to
those we have listed above, and we keep in reserve all possible hierarchies of these
values. Under these conditions, a possible characterisation of the problems N2.1,
N1.2 and N1.3 is shown in Fig. 20.5.

From Fig. 20.5, it can be immediately seen that problem N2.1 is essentially
richer than N1.2 and N1.3, in the sense that its characterization involves more
values for almost every variable. However, this feature does not make N2.1 very
different from the others. Indeed, in the transition N2.1 ! N1.2 and N1.3, it is
noticeable that there are many common values, meaning that problems N1.2 and
N1.3 are close to N2.1, as in Fig. 20.6.

CN2.1 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}
HN2.1 = {breakdown, compare, amount, ancillary, apprehension}
SN2.1 = {interpret, translate, communicate, coordinate}
MN2.1 = {identify, describe, figure, define, conjecture}

CN1.2 = {3, 4, 6, 7, 8, 10, 11, 12}
HN1.2 = {break down, compare, equate, apprehension}
SN1.2 = {interpret, communicate}
MN1.2 = {identify, describe, validate}

CN1.3 = {1, 2, 3, 4, 6, 7, 8, 9}
HN1.3 = {break down, compare, equate}
SN1.3 = {interpret, decode, communicate}
MN1.3 = {identify, describe, figure, define, conjecture}

Prob. N2.1 C3H2S3M2-PC
Soit un rectangle ABCD où AB = 8 et AD = 6.
E est un point sur la diagonale [AC] tel que AE = 2.
On considère les parallèles aux côtés du rectangle passant par E.
Quelle relation y a-t-il entre les aires des rectangles MEPD et NBOE?

Prob. N1.2 C3H2S4M1-PC
Déterminer la 
longueur MN et l’aire 
de la région ombragée.

Prob. N1.3 C1H3S3M2-PC
Quelle est la relation entre 
les aires des triangles 
intérieurs et celle d’ABC?

Fig. 20.5 Possible characterisation of the problems N2.1, N1.2 and N1.3

N2.1 N1.2
C = {1, 2, 5, 9}
H = {auxiliaire}

S = {traduire,
        coordonner}
M = {figure, définir,
         conjecturer}

C = {3, 4, 7, 8, 10, 11, 12}
H = {décomposer,
         comparer,
         équivaloir,
         appréhension}
S = {interpréter,
        communiquer}
M = {identifier, décrire}

C = {6}
H = { }

S = { }

M = {valider}

N2.1 N1.3
C = {5, 10, 11, 12}
H = {auxiliaire,
         appréhension}

S = {traduire,
        coordonner}
M = { }

C = {1, 2, 3, 4, 7, 8, 9}
H = {décomposer,
         comparer,
         équivaloir}
S = {interpréter,
        communiquer}
M = {identifier, décrire,
          figure, définir,
          conjecturer}

C = {6}
H = { }

S = {décoder}

M = { }

Fig. 20.6 Problems N1.2 and N1.3 are close to N2.1
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In other words, even if the statements are independent, solving a problem similar
to another risks influencing the solving based on common values. Let us look more
closely at the relationship between connectivity and moments of impasse to form a
decision-making process associated with it.

20.4.1.2 Impasse and Decision

In our theoretical framework, we have associated a moment of impasse with an
imbalance within the subject-milieu system, impasse bringing with it a potential
opportunity for learning. In principle, overcoming an impasse creates a dynamic
transition from one conception to another. Thus, with regard to the model cK¢,
considering p1 the root problem and C1 = (P1; R1; L1;

P
1) the conception of

subject-milieu system before solving p1, when C1 solves p1, then p1 belongs to P1.
This means that learning does not occur. Nevertheless, when C1 is insufficient, then
the solving of p1 requires learning C1 ! C2, where C2 = (P2; R2; L2;

P
2) and

p1 2 P2. Following an impasse, the arrival of a connected problem p2 should also
belong to P2. However, as learning is not yet achieved, p2 is likely to throw off
balance the conceptual consistency of P1 [ {p2}, for P1 that rightly excludes p1. It
follows that the set difference p2 – p1 represents a potential conception imbalance.
For two similar problems, the decision process should be established on this dif-
ference and correspond, as far as possible, with the cause of the impasse. Therefore,
variables of a connected space act as interpretation variables for impasses. In the
previous example, the choice between N1.2 and N1.3 depends on where the
impasse is situated. If we manage to identify that the student is blocked on
H = {apprehension}, which is present in the description of N1.2 but not N1.3, we
present the former to unblock the student.

In other terms, we can visualize each problem as a point in a 4-dimensional
space, with the variables C-H-S-M as the four dimensions. The identification of the
impasse in terms of these variables gives us a direction to look into. Finally, the
choice of the next problem is simply to choose the closest problem in that direction.

20.4.2 HPDIC Graphs

Another promising avenue to compare problems is to rely on HPDIC graphs (from
French Hypothèses, Propriétés, Définitions, résultats Intermédiaires and
Conclusion). These graphs introduced in the researches of Leduc (2016) and
Tessier-Baillargeon (2016), display all the possible deductive paths from the
hypothesis to the conclusion of the problem.
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To demonstrate the utility of the HPDIC graphs, here is an example of a simple
geometry problem:

Given three lines, AB, BC, and CD all in the same plane, with AB perpendicular to BC and
BC perpendicular to CD, what can be said about the lines AB and CD?

A HPDIC graph is composed from the hypothesis to the conclusion, through the
intermediate results, each of which is justified by a mathematical property or
definition, in an inferential process (figural and discursive; Richard, 2004a, 2004b).
First, we extract the hypothesis and the conclusion (Fig. 20.7).

In this trivial problem, the answer is immediately given by the property: “If two
lines are perpendicular to a third, they are parallel”. By combining the two
hypotheses with this property, we obtain the conclusion. This process is called an
inference. The resulting graph is the following (Fig. 20.8).

By combining such inferences on a more complex problem, a graph can be
obtained that represents all the possible proofs for the problem. The meaning of all
here is conditioned by the properties (which serve as justification for inferences)
that are authorized at the level of the class and the habits of the didactical contracts
as the tolerance in the inferential shortcuts, the effects of the counter-examples in

Fig. 20.7 The start of an HPDIC graph

Fig. 20.8 A simple example of an HPDIC graph
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the proof, etc., that is to say, the logic of the players who reason (Paillé &
Mucchielli, 2016). For instance, there are without a doubt other ways to answer this
very simple problem by using complex geometry or orthonormal coordinates, but it
is not what we expect here.

On a more realistic problem, the interests of such a graph are more visible. Let us
study the following problem (Richard & Fortuny, 2007) (Fig. 20.9).

There are various possibilities to solve this problem: with the sum of the angles
in a (convex) quadrilateral, or by combining properties on lines such as the one we
used in the previous example to prove that AB is perpendicular to BC for instance.
The full HPDIC graph presents all the possible paths for this problem (Fig. 20.10).

Such a graph allows for interesting processes. In the QEDX Tutor, we are able to
identify what path (i.e., what specific proof) the student is working on, and use this
knowledge to provide a series of targeted advice to help or unblock. One of our
objectives for the future is to exploit these graphs to find a connected problem as a
way to help a blocked student. For instance, instead of giving the student some
advice, and avoiding the connected problem being, in fact, a more directive
sub-problem, if we discover a student well-engaged on a proof for the rectangle
problem using properties on parallel/perpendicular lines, but is blocked on the step
“‘AD perpendicular to CD and AB perpendicular to AD’ + ‘two lines perpendicular
to a third are parallel’ ) ‘AB and CD are parallel’”, then the student could be
presented with a slight variation of the first problem (Richard et al., 2016). This
example is deliberately very simple and not really applicable in a real situation, but
the idea of using the similarity of the graphs to find similar problems seems to us
like a promising avenue. Besides, as opposed to the C-H-S-M method, we are
already know, with a good deal of certainty, where in the graph the student is
blocked, and what properties/results are needed to finish the proof.

Another possible use is more global. After a student has solved a problem, all the
information obtained during the solving process (properties used, time spent on
each step, number of possible paths explored outside of the final path he pre-
sented…) is stored. This allows the proposing of problems that are adapted to the
current knowledge of the student. For instance, if a student never uses angle

Fig. 20.9 A quadrilateral
with three right angles
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properties for any problem, we can exploit this information to present a problem
that exclusively uses angle properties to ensure that the student is acquainted with
all the elements seen in class. Ideally, we would be able to utilise a detailed profile
of the student. This could allow, first, the program to choose intelligently the
problems given to students when they are stuck or have solved the previous one,
and second, the teacher to know exactly what are the students’ strengths and
weaknesses.

This presents difficulties. We currently only have a small number of problems
that have been translated into HPDIC graphs. This work has to be done manually in
order to respect the customs of the didactical contracts, particularly those that
involve working in a natural geometry paradigm (Kuzniak, 2006). In the rectangle
problem, the graph is very simple, but for one of our five problems, that is not much
more complicated than the rectangle problem, the graph contains hundreds of nodes
and more than five million possible paths. This represents a considerable amount of
processing time. One of our goals is to be able to generate automatically, or at least
mostly automatically, the HPDIC graph of a problem through a better under-
standing of logic of the deductive isles3 in class.

20.5 Working Conclusion: An Important Expected Result

The idea of responding to a student impasse by offering timely opportunities to
solve problems is an effective solution to one of the major difficulties of teaching:
To avoid giving answers at the same time as questions when the student is expe-
riencing difficulties. In this sense, our project theoretically relieves a paradox of
Brousseau (1997), the so-called paradox of devolution: Everything that the teacher
does to produce in students the behavior that is expected tends to reduce the
uncertainty of the student and thereby deprive the last of the conditions necessary
for the understanding and learning of the concept in question. If the teacher says or
means what is wanted from the student, then this can only be obtained as the
execution of an order and not through the exercise of knowledge and judgment. The
concept of devolution, as a didactic lever for the teacher and prerequisite for the
development of student autonomy, gains strength and reinforces the idea that a
connected problem belongs to the working space of a root problem and that the
teacher seeks to relinquish that working space so that the student is left in charge of
the solution process. The development of independent learning remains the major
issue.

Acknowledgements This research has been made possible by a grant from the Conseil de
Recherches en Sciences Humaines (CRSH 435-2015-0763), Gouvernement du Canada.

3Deductive isles is our translation from the French îlot déductif that considers the network of
mathematical properties and definitions accepted or actually used in a given class, which includes
the implicit hypothesis and the inferential shortcuts tolerated in the didactic contract.
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Chapter 21
Conclusion: Prospects for Developments
and Research in Secondary Geometry
Education

Patricio Herbst, Ui Hock Cheah, Keith Jones and Philippe R. Richard

Abstract This chapter concludes the collection of reports that expanded on the
papers presented at ICME 13, in the context of the Topic Study Group on the
teaching and learning of secondary geometry. In an effort to articulate a vision for
where the field could go in the near future, the editors take this opportunity to revisit
issues of methodologies for data collection and data analysis. They propose how
new technologies could be integrated into research and practice in secondary
geometry and ask questions that the field might expect to address with the aid of
such technologies.

Keywords Methodology � Technology � Geometry

The chapters in this book provide a snapshot of where the international community
is in regard to its scholarship on the teaching and learning of geometry in secondary
schools. The contents of the book also reveal the absence of some themes that
readers might have expected to encounter. In this final essay, we elaborate on such
themes as a way of suggesting possible next steps in development and research on
secondary geometry education.

Inasmuch as the chapters in the book address the practices of thinking, learning,
and teaching geometry, they discuss those practices as mediated by a range of tools
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and signs. Among those tools and signs are traditional ones such as diagrams
constructed on paper with straightedge, compass, ruler, protractor, etc., or more
contemporary ones such as dynamic geometry software and Internet communica-
tion. All this has come along with increased focus on theories of cognition and
learning that attend not only to mental activity but also to embodiment, discourse,
social expectations, and instrumentation, with concomitant research emphases on
visuospatial reasoning, on the use of gestures and diagrams, and on digital artifacts
(Sinclair et al., 2016). Some of that progress in the field has been visible in this
book and a lot more of it can be expected in the future.

Yet the range of available tools and signs to engage geometric thinking, learning,
and teaching is larger than listed above. Traditional instruments for the construction
of objects in the mesospace,1 such as the tools of carpenters and mechanics, and
signs of mesospace objects such as photographs or assembly blueprints, and the
software used in engineering design, game design, robotics (Moore-Russo & Jones,
2012), and 3D modeling for animation (Jones & Moore-Russo, 2012), provide
additional ways of thinking about practices that might make their way into our field.
The literature on ethnomathematics has documented the use of geometry at work,
for example by carpet layers (Masingila, 1994), carpenters (Millroy, 1991), or
tool-and-die makers (Smith, 2005), while the use of historical artifacts, such as
instruments to draw parabolas (e.g., Bartolini Bussi, 2010), by secondary school
students also provides a context for geometrical exploration.

The popularization of design software and 3D printers, the emergence of engi-
neering programs for high school (e.g., Project Lead the Way; www.pltw.org), the
development of a Maker culture (e.g., at Maker Faires, the MIT Hobby Shop, and
so on), and the increased emphasis on modeling in mathematics education suggest
that some interesting new geometric work could be on our radar screen.
Specifically, real world activities in which it might have seemed expensive or
unsafe to engage students in the past may now be done in school or at home at low
cost and increased safety. And they may afford opportunities to investigate geo-
metric conceptions used to solve problems at the mesospace scale, to design
activities in which those conceptions may be challenged and developed, and to
investigate the work a teacher does managing students’ work in such activities.

Herbst, Fujita, Halverscheid, and Weiss (2017) argue for the value of activities
that engage microspace conceptions of figure (such as those addressed in traditional
school geometry work) to model geometric work in the mesospace. The same
software used to design immersive 3D games involving running and shooting could
be used to design immersive 3D games where avatars build or move large objects:
Imagine, for example, a virtual carpentry shop where students control avatars who
cut wood pieces, then assemble them to make artifacts such as a dog kennel; or,

1The mesospace is the space of objects of size commensurate with that of the human body
(Berthelot & Salin, 1998). Likewise, Berthelot and Salin (1998) also talk of the macrospace and
the microspace. The former can be defined as the space of objects whose size is one or more orders
of magnitude larger than the human body, and the latter as the space of objects whose size can be
handled by the human hands (see Laborde, 2000).
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imagine a virtual household moving game environment, where users are challenged
to direct avatars to move variously sized and shaped household objects through more
or less constrained spaces such as staircases. Tasks could be designed to initially
elicit embodied conceptions when students merely control their avatars, then to
make such conceptions more explicit, for example using what Brousseau (1997)
calls situations of communication. Likewise, motion sensors such as those used in
the animation industry to capture human movement could be used in designing
activities where students can bring their embodied cognition into the screen, for
example to combine the use of the body in mesospace problem solving with alter-
native ways of visualizing such interactions, as in screen displays of such move-
ments from different perspectives. For example, the improvement of bodily form in
activities such as lifting weights, running, or yoga could be the apparent purpose in
connecting students to computers using motion sensors, eliciting embodied geo-
metric conceptions (e.g., of angle; see Fyhn, 2008) in their interaction with their
bodily image on the screen (which might be seen from different perspectives). Again,
making those conceptions explicit might require the design of communication tasks
thus bringing the geometry of the mesospace into the space of classroom
discussions.

The macrospace (or large scale space; see Battista, 2007) of buildings, land-
scapes, and seascapes also presents opportunities for various forms of geometric
thinking aided by new tools and signs. New software and devices could help bring
such thinking closer to what secondary school students can do. The chapter by Arai
in this volume anticipates some of these possibilities. Devices such as drones,
geographic information systems (GIS), and virtual reality glasses can be used to
either visualize or experience the macrospace. Goodchild (2014), for example,
illustrates the potential of spatial technologies for exploring caves, one of the most
challenging navigational problems because cave systems are geometrically and
topologically complex. Another application of spatial technologies is the
MathCityMap project (https://mathcitymap.eu).

Finally, technologies like video recording have made it possible to represent and
study transformations of space over time and explore the geometry of movement, as
shown for example in Vi Hart’s videos (http://vihart.com/). We wonder whether in
the near future, perhaps at ICME-14 in China, the contributions to practice in our
field might include more frequent uses of these technologies by teachers and their
students to engage in geometric problem solving. The use of video could serve, for
example to study the geometry of mechanical transformations such as those one
makes when one uses exercising equipment (e.g., ellipticals, rowing machines,
weight lifting) or to analyze form in dance or martial arts. The emergence of
applications that can annotate and draw over images in video may facilitate such
study of form and movement. Such possible practices would create new opportu-
nities for scholars to ask questions of student reasoning and teacher decision-making
about the nature of the tasks and student work (Richard, Oller, & Meavilla, 2016).

All this takes us to an important research connection. When mathematics edu-
cation researchers started using video recording in their studies of cognition and
classrooms, it became possible to conduct studies of the microgenesis of
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inscriptions such as diagrams or equations (e.g., Chen & Herbst, 2013). Earlier
research technologies, such as audio recording or collecting students’ written work,
might not have allowed researchers to account fully for how students were inter-
acting with figures or in what way a figure had been constructed. Likewise, the
development of dynamic geometry software has not only provided tools for stu-
dents to develop or express their understanding; such software has also brought in,
at least potentially, the capacity to record users’ work through the keystrokes that
might be stored in the scripts that could be made for a construction or more simply
through the possibility to record a screen (for an example of using a dynamic
geometry software to generate an image map of student work with the tool; see
Leung & Lee, 2013).

The field of data science has been growing quickly as researchers and businesses
have realized the value of click data and Internet footprints. We wonder whether the
mathematics education research community can take advantage of related analytic
possibilities. Motion sensor data, for example, can be used not only by the computer
to render screen representations for the user to see on the screen, but also to analyze
the mediating data structures collected to facilitate such visualizations. The tools of
data science can be used to make sense of those data structures. Researchers
studying embodied geometric cognition may be able to make use of those data
structures to distinguish, for example, between different embodied conceptions of
geometric ideas.

For every device that supports the creation of computer-mediated experiences
with shape and space that has been listed above, there are data structures generated
in computers where researchers can find geometric conceptions and their man-
agement by people over time. It seems that while our traditional data collection
tools (the field note, the survey instrument, the video and audio record) are likely to
continue to be useful, we also face the opportunity for exploiting new forms of data
collection, new data structures, and new methods for data analysis. While some of
that analysis may require us to collaborate with computer scientists or statisticians,
there is clearly a role for mathematics educators in identifying the meanings of
those data representations. May we see some of that in the years to come.
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