
Algorithms and Bounds for Very Strong
Rainbow Coloring

L. Sunil Chandran1, Anita Das2, Davis Issac3(B) , and Erik Jan van Leeuwen4

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

sunil@csa.iisc.ernet.in
2 Infosys Ltd., Bangalore, India

anita das01@infosys.com
3 MPI für Informatik, Saarland Informatics Campus,

Saarbrücken, Germany
dissac@mpi-inf.mpg.de

4 Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

e.j.vanleeuwen@uu.nl

Abstract. A well-studied coloring problem is to assign colors to the
edges of a graph G so that, for every pair of vertices, all edges of at least
one shortest path between them receive different colors. The minimum
number of colors necessary in such a coloring is the strong rainbow con-
nection number (src(G)) of the graph. When proving upper bounds on
src(G), it is natural to prove that a coloring exists where, for every short-
est path between every pair of vertices in the graph, all edges of the path
receive different colors. Therefore, we introduce and formally define this
more restricted edge coloring number, which we call very strong rainbow
connection number (vsrc(G)).

In this paper, we give upper bounds on vsrc(G) for several graph
classes, some of which are tight. These immediately imply new upper
bounds on src(G) for these classes, showing that the study of vsrc(G)
enables meaningful progress on bounding src(G). Then we study the
complexity of the problem to compute vsrc(G), particularly for graphs
of bounded treewidth, and show this is an interesting problem in its own
right. We prove that vsrc(G) can be computed in polynomial time on
cactus graphs; in contrast, this question is still open for src(G). We also
observe that deciding whether vsrc(G) = k is fixed-parameter tractable
in k and the treewidth of G. Finally, on general graphs, we prove that
there is no polynomial-time algorithm to decide whether vsrc(G) ≤ 3
nor to approximate vsrc(G) within a factor n1−ε, unless P = NP.

1 Introduction

The chromatic number is one of the most widely studied properties in graph
theory. It has inspired a wealth of combinatorial and algorithmic results, as well
as a host of variants. A variant that has recently attracted much interest is
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 625–639, 2018.
https://doi.org/10.1007/978-3-319-77404-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_46&domain=pdf
http://orcid.org/0000-0001-5559-7471

626 L. S. Chandran et al.

the rainbow connection number of a graph, which is an edge coloring property
introduced by Chartrand et al. [8] in 2008. Formally, the rainbow connection
number rc(G) of a graph G is the smallest number of colors needed such that
there exists a coloring of E(G) with these colors such that, for every pair of
vertices, there exists at least one path P between them, such that all edges
of P receive different colors. We also say that this path P is rainbow colored.
The rainbow connection number has attracted much attention, and the exact
number is known for a variety of simple graph classes [5,6,8] and the complexity
of computing this number was broadly investigated [1,2,4,6,7]. See also the
surveys by Li et al. [17–19]. Most recently, in ESA 2016, it was shown that for
any k ≥ 2, deciding whether rc(G) ≤ k (k-Rc) cannot be solved in 2o(n3/2) or
2o(m/ log m) time, where n = |V (G)| and m = |E(G)|, unless ETH fails [15].

To prove an upper bound on rc(G), the choice of the path P that is rainbow
colored is crucial. The analysis would seem simpler when we are able to choose
P as a shortest path between its two endpoints. This leads to the definition of
the strong rainbow connection number of a graph. Formally, the strong rainbow
connection number src(G) of a graph G is the smallest number of colors needed
such that there exists a coloring of E(G) with these colors such that, for every pair
of vertices, there exists at least one shortest path P between them, such that all
edges of P receive different colors. Clearly, src(G) ≥ rc(G), and both parameters
are at least the diameter of G. Moreover, rc(G) = 2 if and only if src(G) = 2 [4].
Nontrivial upper bounds on src(G) are known for several simple graph classes
such as cycles, wheels, and complete bipartite graphs [8] and block graphs [16].
It is also known that deciding whether src(G) ≤ k (k-Src) is NP-hard even for
k = 2 [4]. The problem of deciding whether src(G) ≤ k remains NP-complete
even for bipartite graphs and split graphs [1,14]. In fact, src(G) cannot be approx-
imated in polynomial time within a factor n1/2−ε for any ε > 0, unless P = NP,
even for split and bipartite graphs [1,14].1

The lack of combinatorial bounds on src(G) for specific graph classes G
(the recent survey by Li and Sun [19] cites only three papers) is somewhat
surprising compared to the vast literature for rc(G) (see the surveys [17–19]).
Li and Sun [19] explain this by the fact that src(G) is not a monotone graph
property, and thus investigating src(G) is much harder than investigating rc(G).
Hence, it is a major open question to prove upper bounds on src(G).

In this paper, we make significant progress on this question. We observe that
to prove upper bounds on src(G), it suffices to prove the existence of a coloring
where all edges of not just one, but of all shortest paths between two vertices
receive different colors. Therefore, we define the very strong rainbow connection
number vsrc(G) of a graph G, which is the smallest number of colors for which
there exists a coloring of E(G) such that, for every pair of vertices and every
shortest path P between them, all edges of P receive different colors. We call a
coloring that achieves this property a very strong rainbow coloring of the graph.
We also call the problem of deciding whether vsrc(G) ≤ k the k-Vsrc problem.

1 [1,14] mention NP �= ZPP as the complexity assumption but one can use P �= NP
because of [23].

Algorithms and Bounds for Very Strong Rainbow Coloring 627

Our Results. We prove the first combinatorial upper bounds on vsrc(G) for
several graph classes. These immediately imply upper bounds on src(G) for the
same graph classes. In particular, we show upper bounds that are linear in |V (G)|
(improving from the trivial bound of |E(G)|) if G is a chordal graph, a circular
arc graph, or a disk graph. We also make progress on the following conjecture:

Conjecture 1.1 ([16]). For any connected graph G, src(G) ≤ |V (G)| − χ(G) + 1
where χ(G) denotes the chromatic number of G.

We show that the conjecture holds for the class of chordal graphs in
Corollary 2.4.

Conversely, we prove that a bound on vsrc(G) implies that G should be
highly structured: the neighborhood of every vertex can be partitioned into
vsrc(G) cliques. For further details, we refer to Sect. 2.

In the second part of the paper, we address the computational complexity of
k-Vsrc. To start our investigation, we prove hardness results on general graphs.

Theorem 1.2. 3-V src is NP-complete. Moreover, there is no polynomial-time
algorithm that approximates vsrc(G) within a factor |V (G)|1−ε for any ε > 0,
unless P=NP.

This result implies that k-Vsrc is not fixed-parameter tractable when parame-
terized by k, unless P = NP. In order to prove the theorem, we show a nontrivial
connection to the clique partition number of a graph.

We remark that, in contrast to the NP-complete 2-Rc and 2-Src problems,
2-Vsrc can be solved in polynomial time (see Sect. 5 for the proof). Together
with Theorem 1.2, this gives a dichotomy result for the complexity of k-Vsrc.

Proposition 1.3. Let G be any graph. Then 2-Vsrc can be decided in polyno-
mial time.

We then study the complexity of determining vsrc(G) for graphs of bounded
treewidth. This is a major open question also for src(G) and rc(G) [16], which
are only known to be solvable in polynomial time on graphs of treewidth 1.
We mention that no results for graphs of higher treewidth are known, even
for outerplanar or cactus graphs. However, for the slightly different problem of
deciding whether an already given coloring forms a (strong) rainbow coloring
of a given graph, a polynomial-time algorithm for cactus graphs and an NP-
hardness result for outerplanar graphs are known [22]. With this in mind, we
focus on cactus graphs and make the first progress towards understanding the
complexity of rainbow coloring problems, in particular of computing vsrc(G),
on graphs of treewidth 2 with the following result.

Theorem 1.4. Let G be any cactus graph. Then vsrc(G) can be computed in
polynomial time.

Our algorithm relies on an extensive characterization result for the behavior of
very strong rainbow colorings on cactus graphs. Since a cactus graph consists of

628 L. S. Chandran et al.

bridges, even cycles, and odd cycles, we analyze the behavior of any very strong
rainbow coloring of the graph with respect to these structures. We show that
color repetition can mostly occur only within an odd cycle or even cycle. Odd
cycles can repeat some colors from outside but we characterize how they can
be repeated. However, our arguments are not sufficient to derive a completely
combinatorial bound. Instead, we must find a maximum matching in a well-
chosen auxiliary graph to compute the very strong rainbow connection number.

We also observe that vsrc(G) can be computed efficiently for graphs having
bounded treewidth, when vsrc(G) itself is small. In contrast to known results
for the (strong) rainbow connection number [9], we present an algorithm that
does not rely on Courcelle’s theorem. (See Sect. 5 for details.)

Theorem 1.5. k-Vsrc is fixed-parameter tractable when parameterized by k+t,
where t − 1 is the treewidth of the input graph.

Preliminaries. We consider simple, undirected graphs and use standard nota-
tion for graphs. Given a universe U = {x1, x2, . . . , xn} and a family F = {S1,
S2, . . . , St} of subsets of U , the intersection graph G(F) of F has vertex set
{v1, . . . , vt}, and there is an edge between two vertices vi, vj if and only if
Si ∩ Sj �= ∅. We call F a representation of G(F). An interval graph is an inter-
section graph of intervals on the real line. The interval graph is proper if it has
a representation by intervals where no interval is properly contained in another.
A circular arc graph is an intersection graph of arcs of a circle. A chordal graph
is an intersection graph of subtrees of a tree. A block of a graph is a maximal
2-connected component. In a cactus graph, each block of the graph is a cycle or
an edge; equivalently, every edge belongs to at most one cycle.

For a graph G, let Ĝ denote the graph obtained by adding a new vertex û to
G such that û is adjacent to all vertices of G, i.e., û is a universal vertex in Ĝ.

Finally, we use ω(G) to denote the maximum size of any clique in graph G.
We use d(u, v) to denote the length of a shortest path between vertices u and v.

2 Combinatorial Results

We show several upper and lower bounds on vsrc(G), both for general graphs
and for graphs G that belong to a specific graph class. Crucial in our analysis
are connections between very strong rainbow colorings and decompositions of the
input graph into cliques. We use cp(G) to denote the clique partition number
(or clique cover number) of G, the smallest number of subsets of V (G) that each
induce a clique in G and whose union is V (G). Ĝ used in the following lemma
(defined in the preliminaries) is important for our hardness reductions.

Lemma 2.1. Let G be any graph. Then

1. src(G) ≤ vsrc(G) ≤ cp(G)(cp(G) + 1)/2.
2. src(Ĝ) ≤ vsrc(Ĝ) ≤ cp(G)(cp(G) + 1)/2.

Algorithms and Bounds for Very Strong Rainbow Coloring 629

Proof. Let C = C1, . . . , Cr be the set of cliques in an optimal clique partition of
G; that is, r = cp(G). For a vertex v, let c(v) denote the clique in C that contains
v. We define the set of colors as P≤2(C)\{∅}, the set of subsets of C of size 1 or 2.
We then color any edge uv ∈ E(G) by {c(u), c(v)}. For sake of contradiction,
suppose that this does not constitute a very strong rainbow coloring of G. Then
there exist two vertices s, t ∈ V (G), a shortest path P between s and t, and
two edges uv,wx ∈ E(P) that received the same color. If c(u) = c(v), then
c(w) = c(x), meaning that P uses two edges of the same clique. Then P can
be shortcut, contradicting that P is a shortest path between s and t. Hence,
c(u) �= c(v) and thus c(w) �= c(x). Without loss of generality, c(u) = c(w) and
thus c(v) = c(x). Then either the edge uw or the edge vx will shortcut P , a
contradiction. Hence, vsrc(G) ≤ cp(G)(cp(G) + 1)/2 by the set of colors used.
To see the second part of the lemma, color edges ûv incident on the universal
vertex û in Ĝ by c(v) in addition to the above coloring. Suppose this was not a
very strong rainbow coloring of Ĝ. Then there exists vertices u, v such that uûv
is a shortest path and uû and vû are colored the same. But then u and v are in
the same clique Ci in C. But then uv can shortcut uûv, a contradiction. �	
The following lemma is more consequential for our upper bounds. We use is(G) to
denote the smallest size of the universe in any intersection graph representation
of G, and ecc(G) to denote the smallest number of cliques needed to cover all
edges of G. It is known that is(G) = ecc(G) [20].

Lemma 2.2. Let G be any graph. Then vsrc(G) ≤ is(G) = ecc(G).

Proof. Let U = {x1, x2, . . . , xn} be a universe and let F = {S1, S2, . . . , Sm} be a
family of subsets of U , such that G is the intersection graph of F and |U| = is(G).
Let vi be the vertex of G corresponding to the set Si. We consider x1, x2, . . . , xn

as colors, and color an edge between vertices vi and vj with any x ∈ Si ∩Sj (note
that this intersection is nonempty by the presence of the edge). Suppose for sake
of contradiction that this is not a very strong rainbow coloring of G. Then there
exist two vertices s, t ∈ V (G), a shortest path P between s and t, and two edges
vivj and vavb in P that received the same color x. By the construction of the
coloring, this implies that x ∈ Si ∩ Sj ∩ Sa ∩ Sb. Hence, vi, vj , va, vb induce a
clique in G. But then the path P can be shortcut, a contradiction. �	
A similar lemma for src(G) was proved independently by Lauri [16, Proposi-
tion 5.3].

Corollary 2.3. Let G be any graph. Then vsrc(G) ≤ min{
|V (G)|2/4�, |E(G)|}.
Proof. Directly from ecc(G) ≤ min{
|V (G)|2/4�, |E(G)|} for any graph [10]. �	
Corollary 2.4. Let G be any graph.

1. If G is chordal, then src(G) ≤ vsrc(G) ≤ |V (G)| − ω(G) + 1.
2. If G is circular-arc, then src(G) ≤ vsrc(G) ≤ |V (G)|.
3. src(L(G)) ≤ vsrc(L(G)) ≤ |V (G)|, where L(G) is the line graph of G.

630 L. S. Chandran et al.

These bounds are (almost) tight in general.

Proof. In each of the three cases, we express the graph as an intersection graph
over a suitable universe, and then by Lemma2.2, we get that the size of the
universe is an upper bound on vsrc of the graph.

Every chordal graph is the intersection graph of subtrees of a tree [12]. It
is also known that the number of vertices of this tree only needs to be at most
|V (G)| − ω(G) + 1. (For completeness, we provide a proof of this in the full
version.)

For a circular arc graph G, consider any set of arcs whose intersection graph
is G. We now construct a different intersection representation. Take the set of
second (considering a clockwise ordering of points) endpoints of all arcs as the
universe U . Take Si ⊆ U as the set of clockwise endpoints contained in the i-th
arc. It is easy to see that G is the intersection graph of F = {S1, S2, . . . , Sn}.

Finally, consider L(G). We construct an intersection representation with uni-
verse V (G). For each uv ∈ E(G), let Suv = {u, v}. Then L(G) is the intersection
graph of F = {Se : e ∈ E(G)}.

The (almost) tightness follows from vsrc(G) = |V (G)|−1 and vsrc(L(G)) =
|V (G)| − 2 for any path G. Paths are both chordal and circular-arc. �	

In the remainder, we consider a natural generalization of line graphs. A graph
is k-perfectly groupable if the neighborhood of each vertex can be partitioned into
k or fewer cliques. It is well known that line graphs are 2-perfectly groupable. A
graph is k-perfectly orientable if there exists an orientation of its edges such that
the outgoing neighbors of each vertex can be partitioned into k or fewer cliques.
Clearly, any k-perfectly groupable graph is also k-perfectly orientable. Many
geometric intersection graphs, such as disk graphs, are known to be k-perfectly
orientable for small k [13].

Corollary 2.5. Let G be any k-perfectly orientable graph. Then, src(G) ≤
vsrc(G) ≤ k|V (G)|.
Proof. Consider any orientation of the edges of G such that the outgoing neigh-
bors of each vertex can be partitioned into k or fewer cliques. For a given vertex
v, let C(v) denote the set of cliques induced by its outgoing neighbors, where v
is added to each of those cliques. Observe that

⋃
v∈V (G) C(v) is an edge clique

cover of G, because every edge is outgoing from some vertex v and will thus be
covered by a clique in C(v). Hence, vsrc(G) ≤ ecc(G) ≤ k|V (G)|. �	

Since any k-perfectly groupable graph is also k-perfectly orientable, the above
bound also applies to k-perfectly groupable graphs. In this context, we prove an
interesting converse of the above bound.

Lemma 2.6. Let G be any graph. If vsrc(G) ≤ k, then G is k-perfectly
groupable.

Algorithms and Bounds for Very Strong Rainbow Coloring 631

Proof. Consider an optimal very strong rainbow coloring μ of G. Consider an
arbitrary vertex v of G and let c be any color used in μ. Define the set Q(c) =
{u ∈ N(v) : μ(vu) = c}. Suppose there exist two non-adjacent vertices u,w in
Q(c). Then uvw is a shortest path between u and w, and thus uv and vw cannot
have the same color, a contradiction. Hence, for each color c used in μ, Q(c) is
a clique. Since the number of colors is at most k, the edges incident on v can be
covered with at most k cliques. Hence, G is k-perfectly groupable. �	

3 Hardness Results

The hardness results lean heavily on the combinatorial bounds of the previ-
ous section. In this section, we use Ĝ (see the preliminaries for the definition)
extensively. We need the following bound, which strengthens Lemma2.1.

Lemma 3.1. Let G be any graph. If cp(G) ≤ 3, then vsrc(Ĝ) ≤ 3.

Proof. Let C1, C2, and C3 be three cliques into which V (G) is partitioned. We
will color Ĝ with three colors, say c1, c2, and c3, as follows. For each edge with
both endpoints in Ci for 1 ≤ i ≤ 3, color it with ci. For each edge vw with v ∈ Ci,
w ∈ Cj such that 1 ≤ i < j ≤ 3, color it with ck, where k ∈ {1, 2, 3} \ {i, j}.
Finally, for each edge ûv with v ∈ Ci for 1 ≤ i ≤ 3, color it with ci.

Suppose this is not a very strong rainbow coloring of Ĝ. Since the diameter
of Ĝ is at most 2, there exists a shortest path xyz with xy and yz having the
same color. However, if xy and yz have the same color, at least two of x, y and
z are in the same Ci for 1 ≤ i ≤ 3 and the third one is either û or in Ci itself.
Then, we can shortcut xyz by xz, a contradiction. Hence vsrc(Ĝ) ≤ 3. �	
Proof (of Theorem 1.2). We first prove that 3-Vsrc is NP-complete. We reduce
from the NP-hard 3-Coloring problem [11]. Let G be an instance of 3-
Coloring. Let H be the complement of G. We claim that vsrc(Ĥ) = 3 if and
only if G is 3-colorable. Indeed, if vsrc(Ĥ) ≤ 3, then Ĥ is 3-perfectly groupable
by Lemma 2.6. In particular, the neighborhood of û (the universal vertex in Ĥ)
can be partitioned into at most 3 cliques. These cliques induce disjoint inde-
pendent sets in G that cover V (G), and thus G is 3-colorable. For the other
direction, note that if G is 3-colorable, then cp(H) ≤ 3, and by Lemma 3.1,
vsrc(Ĥ) ≤ 3.

To prove the hardness of approximation, we recall that there exists a
polynomial-time algorithm that takes a Sat formula ψ as input and produces
a graph G as output such that if ψ is not satisfiable, then cp(G) ≥ |V (G)|1−ε,
and if ψ is satisfiable, then cp(G) ≤ |V (G)|ε [23, Proof of Theorem 2]. Consider
the graph Ĝ and let n denote the number of its vertices. Then

ψ not satisfiable ⇒ cp(G) ≥ (n − 1)1−ε ⇒ vsrc(Ĝ) ≥ (n − 1)1−ε

ψ satisfiable ⇒ cp(G) ≤ (n − 1)ε ⇒ vsrc(Ĝ) ≤ (n − 1)2ε

because Lemma 2.6 implies that vsrc(Ĝ) ≥ cp(G), and by Lemma 2.1. The
result follows by rescaling ε. �	

632 L. S. Chandran et al.

4 Algorithm for Cactus Graphs

Let G be the input cactus graph. We first prove several structural properties of
cactus graphs, before presenting the actual algorithm.

4.1 Definitions and Structural Properties of Cactus Graphs

We make several structural observations related to cycles. For a vertex v and a
cycle C containing v, we define S (v, C) as the vertices of G that are reachable
from v without using any edge of C.

Observation 4.1. For any cycle C in G, {S(v, C) : v ∈ V (C)} is a partition of
V (G).

From Observation 4.1, we have that for any fixed u ∈ V (G) and any fixed cycle
C of G, there exists a unique vertex v ∈ V (C) such that u ∈ S(v, C). We denote
that unique vertex v by g(u,C).

Observation 4.2. Let u ∈ V (G) and let C be a cycle in G. Let w ∈ V (C) and
let x1x2 . . . xr be a path from u to w where x1 = u and xr = w. Let i∗ be the
smallest i such that xi ∈ V (C). Then, xi∗ = g(u,C). In simpler words, any path
from u to any vertex in C enters C through g(u,C).

Observation 4.3. For any cycle C in G and for any uv ∈ E(G) \ E(C),
g(u,C) = g(v, C).

We now consider even cycles. For an edge uv in an even cycle C, we define its
opposite edge, denoted by eopp(uv), as the unique edge xy ∈ E(C) such that
d(u, x) = d(v, y). Note that eopp(eopp(e)) = e. Call the pair of edges e and
eopp(e) an opposite pair. Each even cycle C has exactly |C|

2 opposite pairs.

Lemma 4.4. Let C be an even cycle. For any vertex x ∈ V (G) and edge uv ∈
E(C), either there is a shortest path between x and u that contains uv or there
is a shortest path between x and v that contains uv.

Proof. Let w = g(x,C). Then, w cannot be equidistant from u and v, because
otherwise C is an odd cycle. Suppose that d(w, u) < d(w, v). Then a shortest
path from w to u appended with the edge uv gives a shortest path between w
and v. Now, due to Observation 4.2, if we append a shortest path between x
and w with a shortest path between w and v, we get a shortest path between
x and v. Thus there is a shortest path between x and v that contains uv. If
d(w, u) > d(w, v), then we get the other conclusion of the lemma. �	
We then consider odd cycles in more detail. For any edge e in an odd cycle C,
there is a unique vertex in C, which is equidistant from both endpoints of e.
We call this vertex the opposite vertex of e and denote it as vopp(e). We call
OS(e) = G[S(vopp(e), C)] the opposite subgraph of e. See Fig. 1.

Algorithms and Bounds for Very Strong Rainbow Coloring 633

Lemma 4.5. Let C be an odd cycle and uv ∈ E(C). For any vertex x ∈ V (G) \
V (OS(uv)), either there is a shortest path between x and u that contains uv or
there is a shortest path between x and v that contains uv.

Proof. Let w = g(x,C). Since x /∈ V (OS(uv)), w �= vopp(uv). Hence, w cannot
be equidistant from u and v. So, the same arguments as in Lemma 4.4 complete
the proof. �	
Lemma 4.6. Let e be any edge in an odd cycle of G for which vopp(e) has degree
more than 2. Then OS(e) contains a bridge, or an even cycle, or an edge e′ in an
odd cycle for which vopp(e′) has degree 2.

Proof. Suppose this is not the case. We define a sequence e1, e2, . . . of edges
by the following procedure. Let e1 = e. Given ei, we define ei+1 as follows.
By assumption and the definition of cactus graphs, ei is contained in an odd
cycle, which we denote by Ci, and vopp(ei) has degree more than 2. Choose
ei+1 as any edge incident on vopp(ei) that is not in Ci. However, observe that
OS(ei+1) ⊂ OS(ei) by the choice of ei+1. Hence, this is an infinite sequence,
which contradicts the finiteness of E(G). �	

4.2 Properties of Very Strong Rainbow Colorings of Cactus Graphs

We initially partition the edges of G into three sets: Ebridge, Eeven, and Eodd. The
set Ebridge consists of those edges that are not in any cycle. In other words, Ebridge

is the set of bridges in G. By definition, each of the remaining edges is part of
exactly one cycle. We define Eeven as the set of all edges that belong to an even
cycle, and Eodd as the set of all edges that belong to an odd cycle. Note that
Ebridge, Eeven, and Eodd indeed induce a partition of E(G). We then partition
Eodd into two sets: Eopp and Erem. An edge e ∈ Eodd is in Eopp if vopp(e) is not a
degree-2 vertex and in Erem otherwise. See Fig. 1. We analyze each of these sets
in turn, and argue how an optimal VSRC might color them.

Fig. 1. An example of a cactus graph and related definitions.

634 L. S. Chandran et al.

Two edges e1 and e2 are called conflicting if there is a shortest path in the
graph which contains both e1 and e2. Two conflicting edges must have different
colors in any VSRC. We now exhibit several classes of conflicting pairs of edges.

Lemma 4.7. 2Any VSRC of G colors the edges of Ebridge with distinct colors.

Proof. Consider uv, xy ∈ Ebridge. We prove that uv and xy are conflicting, i.e.
there is a shortest path in G which contains both uv and xy. Since uv is a bridge,
we can assume without loss of generality that any path between u and y uses the
edge uv. Similarly, since xy is a bridge, we can assume without loss of generality
that any path between y and u uses the edge xy. Hence, the shortest path from
u to y uses both uv and xy. Hence, uv and xy are conflicting. �	
Lemma 4.8. Let e1 ∈ Ebridge and e2 ∈ Eeven. Then any VSRC of G colors e1
and e2 with different colors.

Proof. Let C be the cycle containing e2. Let e1 = xy and e2 = uv. Since xy is a
bridge, we can assume w.l.o.g. that any path from x to any vertex in C contains
xy. Due to Lemma 4.4, we can assume w.l.o.g. that there is a shortest path from
x to v that contains uv. Thus we have a shortest path which contains both uv
and xy, which means that uv and xy are conflicting. �	
Observation 4.9. Let e1 and e2 be edges in an even cycle C of G such that
e1 �= eopp(e2). Then any VSRC of G colors e1 and e2 with different colors.

Lemma 4.10. Let e1 and e2 be edges in two different even cycles C1 and C2 of
G. Then any VSRC of G colors uv and xy with different colors.

Proof. Let e1 = uv and e2 = xy. Let z = g(u,C2) and w = g(x,C1). By
Observation 4.3, g(v, C2) = z and g(y, C1) = w. Due to Lemma 4.4, we can
assume w.l.o.g. that there is a shortest path P1 between z and x containing xy
and that there is a shortest path P2 between w and u containing uv. Let P3 be a
shortest path between w and z. Then P1 ∪P3 ∪P2 gives a shortest path between
u and x that contains both uv and xy. Hence, e1 and e2 are conflicting. �	
Lemma 4.11. Let e1 ∈ Ebridge ∪ Eeven and e2 ∈ Erem. Then any VSRC of G
colors e1 and e2 with different colors.

Proof. Let e1 = xy and e2 = uv, let C be the odd cycle containing e2, and let
w = g(x,C). By Observation 4.3, w = g(y, C). In other words, x, y ∈ S(w,C).
Note that w is not a degree-2 vertex, because there are at least two vertices in
S(w,C). Hence, w �= vopp(uv) by the definition of Erem. Hence, by Lemma 4.5,
w.l.o.g. there is a shortest path P1 from w to u that contains uv.

We now consider two cases, depending on whether e1 ∈ Ebridge or e1 ∈ Eeven.
First, suppose that e1 ∈ Ebridge. Since xy is a bridge, we can assume w.l.o.g. that
any shortest path from x to w contains xy. Let P2 be such a shortest path. By
Observation 4.2, if we append a shortest path from x to w with a shortest path
2 This lemma holds for any graph, not necessarily cactus.

Algorithms and Bounds for Very Strong Rainbow Coloring 635

from w to u, we get a shortest path from x to u. Thus, P1 ∪P2 is a shortest path
from x to u containing xy and uv. Hence, e1 and e2 are conflicting.

Suppose that e1 ∈ Eeven. Let C ′ be the even cycle containing e1. Let z =
g(v, C ′). From Lemma 4.4, we can assume w.l.o.g. that there is a shortest path
from z to x that contains xy. Let this shortest path be P3. Let P4 be a shortest
path between w and z. By Observation 4.2, P3∪P4∪P1 is a shortest path between
x and u that contains xy and uv. Hence, e1 and e2 are conflicting. �	
Lemma 4.12. Let C1 and C2 be two distinct odd cycles and let e1 ∈ E(C1) ∩
Erem and e2 ∈ E(C2)∩Erem. Then any VSRC of G colors e1 and e2 with different
colors.

Proof. Let e1 = xy and e2 = uv, and let w = g(x,C2). By Observation 4.3,
w = g(y, C2). Let z = g(u,C1). By Observation 4.3, z = g(v, C1). That is, x, y ∈
S(w,C2) and u, v ∈ S(z, C1). Note that w and z are not degree-2 vertices, because
there are at least two vertices in S(w,C2) and S(z, C1). Hence, w �= vopp(uv)
and z �= vopp(xy) by the definition of Erem. Hence, by Lemma 4.5, we can assume
w.l.o.g. that there is a shortest path P1 from u to w that contains uv and there
is a shortest path P2 from z to x that contains xy. Let P3 be a shortest path
from w to z. By Observation 4.2, P1 ∪ P2 ∪ P3 is a shortest path from x to u
containing xy and uv. Hence, e1 and e2 are conflicting. �	

Finally, we prove the existence of some non-conflicting pairs of edges.

Lemma 4.13. For any e1 ∈ Eopp and e2 ∈ OS (e1), e1 and e2 are not conflicting.

Proof. Let e1 = uv, e2 = xy, and let C be the odd cycle containing e1. For
sake of contradiction, suppose that uv and xy are conflicting. Assume w.l.o.g.
that there is a shortest path P from x to v which contains uv and xy. From
Observation 4.2, P contains a subpath P ′ from g(x,C) to v. Clearly, P ′ contains
uv. Also, g(x,C) = vopp(uv), because x ∈ OS(uv). However, recall that vopp(uv)
is equidistant from u and v. Hence, any shortest path from vopp(uv) to v does
not contain uv, which contradicts the existence of P ′. �	

4.3 Algorithm

Based on the results of the previous two subsections, we now describe the algo-
rithm for cactus graphs. First, we color the edges of Ebridge with unique colors.
By Lemma 4.7, no VSRC can use less colors to color Ebridge.

Next, we color the edges in Eeven using colors that are distinct from those
we used before. This will not harm the optimality of the constructed coloring,
because of Lemma 4.8. Moreover, we use different colors for different even cycles,
which does not harm optimality by Lemma 4.10. We then introduce a set of |C|

2
new colors for each even cycle C. For an opposite pair, we use the same color,
and we color each opposite pair with a different color. Thus we use |C|

2 colors for
each even cycle C. By Observation 4.9, no VSRC can use less colors to color C.

636 L. S. Chandran et al.

Next, we will color the edges in Erem using colors that are distinct from those
we used before. This will not harm the optimality of the constructed coloring,
because of Lemma 4.11. For each odd cycle, we use a different set of colors. This
will not harm the optimality of the constructed coloring, because of Lemma4.12.

For each odd cycle C, we construct an auxiliary graph HC for Erem ∩ C
as follows. Let V (HC) = Erem ∩ C and let E(HC) = {e1e2 : e1, e2 ∈
V (HC); e1 and e2 are not conflicting in G}.

Lemma 4.14. Δ(HC) ≤ 2.

Proof. It is easy to observe that in any odd cycle C, for any e ∈ E(C), there are
only two other edges in C that are not conflicting with e. �	

Let MC be a maximum matching of HC . We can compute MC in linear time,
since Δ(HC) ≤ 2. For an e1e2 ∈ MC , color e1 and e2 with the same, new color.
Then color each e ∈ Erem ∩ C that is unmatched in MC , each using a new color.

Lemma 4.15. The procedure for coloring Erem ∩C gives a coloring of the edges
in Erem ∩ C such that no conflicting edges are colored the same. Moreover, no
VSRC of G can use less colors to color Erem∩C than used by the above procedure.

Proof. Suppose two conflicting edges e1, e2 ∈ Erem ∩ C were colored the same.
Then the corresponding vertices e1 and e2 were matched to each other in MC .
Hence, e1 and e2 are adjacent in HC , meaning that e1 and e2 did not conflict each
other in G, which is a contradiction. Hence, we have proved that no conflicting
edges were given the same color by the procedure.

Now, consider any VSRC μ of G which colored Erem ∩ C with fewer colors
than by our procedure. Observe that for any edge e in an odd cycle, there are
only two other edges (say ea and eb) that are not conflicting with e. Moreover,
ea and eb are conflicting with each other. This means that μ can use each color
for at most two edges of Erem ∩ C. Suppose there are k1 colors that are assigned
to two edges in Erem ∩ C by μ. Each pair of edges colored the same should be
non-conflicting and hence have an edge between them in HC . So, taking all pairs
colored the same induces a matching of size k1 of HC . Then k1 ≤ |MC |, because
MC is a maximum matching of HC . But then the number of colors used by μ is
equal to k1 +(|Erem ∩C| − 2k1) = |Erem ∩C| − k1. The number of colors used by
our procedure is |MC |+ |Erem∩C|−2|MC | = |Erem∩C|−|MC | ≤ |Erem∩C|−k1.
Hence, we use at most the number of colors used by μ. �	

Finally, we color the edges of Eopp without introducing new colors. Indeed,
for every e ∈ Eopp, it follows from Lemma 4.6 that there exists an edge e′ ∈
E(OS(e))∩(Ebridge ∪ Eeven ∪ Erem), which does not conflict with e by Lemma 4.13.
Since e′ is already colored, say by color c, then we can simply re-use that color
c for e. Indeed, suppose for sake of contradiction that there is a shortest path P
between two vertices x, y that contains e and that contains another edge e′′ using
the color c. By Lemma 4.13, e′′ �∈ OS(e). This implies that e′′ �∈ Ebridge ∪ Eeven ∪
Erem by the choice of c and the construction of the coloring. Hence, e′′ ∈ Eopp.
However, by a similar argument, e′′ can only receive color c if e′ ∈ OS(e′′).

Algorithms and Bounds for Very Strong Rainbow Coloring 637

But then OS(e) ⊆ OS(e′′) or OS(e′′) ⊆ OS(e), and thus e and e′′ are not con-
flicting by Lemma 4.13, a contradiction to the existence of P .

Proof (of Theorem 1.4). It follows from the above discussion that the constructed
coloring is a very strong rainbow coloring of G. Moreover, it uses vsrc(G) colors.
Clearly, the coloring can be computed in polynomial time. �	

5 Other Algorithmic Results

In this section, we first show that 2-Vsrc can be solved in polynomial time.
Then we show that for k-Vsrc is fixed parameter tractable when parameterized
by k + tw(G), where tw(G) denotes the treewidth of G.

For proving both the results, we use an auxiliary graph G′ defined as follows:
add a vertex ve to G′ for each edge e in G; add an edge between vertices ve1 and
ve2 in G′ if and only if edges e1 and e2 appear together in some shortest path of
G. The latter condition can be easily checked in polynomial time. Observe that
vsrc(G) ≤ k if and only if G′ admits a proper k-coloring. Since 2-Coloring is
solvable in polynomial time, this implies that 2-Vsrc is polynomial time solvable
and hence we have proved Proposition 1.3.

It is worth noting that the chromatic number of the auxiliary graph G′ con-
structed in the above proof always corresponds to the very strong rainbow con-
nection number of G. However, in the transformation from G to G′, we lose a
significant amount of structural information. For example, if G is a path or a
star (tw(G) = 1), then G′ is a clique (tw(G′) = |V (G′|−1 = |V (G)|−2), where
we use tw(G) to denote the treewidth of G. However, if vsrc(G) ≤ k, then we
can prove that |V (G′)| ≤ k(k+1) · (tw(G) + 1)(k+1) as shown below.

Lemma 5.1. Let G be any connected graph and let vsrc(G) ≤ k and tw(G) ≤
t − 1. Then Δ(G) ≤ kt and |V (G)| ≤ (kt)k.

Proof. By Lemma 2.6, the fact vsrc(G) ≤ k implies that G is k-perfectly
groupable. Hence, the neighborhood of each vertex can be partitioned into k
or fewer cliques. Since tw(G) ≤ t − 1, each clique of G has size at most t [21].
Hence, Δ(G) ≤ kt. Now observe that vsrc(G) ≤ k implies that the diameter of
G is at most k. Combined, these two facts imply that |V (G)| ≤ (kt)k. �	
Proof (of Theorem 1.5). Again, let vsrc(G) ≤ k and tw(G) ≤ t − 1. We now
construct the auxiliary graph G′ as above. Now, we only need to compute the
chromatic number of G′. We aim to use the algorithm by Björklund et al. [3]
which computes the chromatic number of a graph on n vertices in 2nnO(1) time.
To bound |V (G′)|, we observe that by Lemma 5.1, |V (G)| ≤ (kt)k and Δ(G) ≤
kt. Hence, |V (G′)| = |E(G)| ≤ (kt)(k+1). Therefore, the chromatic number of
G′, and thereby vsrc(G), can be determined in O(2(kt)(k+1)

(kt)O(k+1)) time. �	

638 L. S. Chandran et al.

References

1. Ananth, P., Nasre, M., Sarpatwar, K.K.: Rainbow connectivity: Hardness and
tractability. In: Chakraborty, S., Kumar, A. (eds.) Proceedings of FSTTCS 2011.
LIPIcs, vol. 13, pp. 241–251. Schloss Dagstuhl (2011)

2. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow
connection number and radius. Graphs Comb. 30(2), 275–285 (2014)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39, 546–563 (2009)

4. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms
for rainbow connection. J. Comb. Optim. 21(3), 330–347 (2011)

5. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection
number and connected dominating sets. J. Graph Theory 71(2), 206–218 (2012)

6. Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold
graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS,
vol. 7434, pp. 181–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32241-9 16

7. Chandran, L.S., Rajendraprasad, D.: Inapproximability of rainbow colouring. In:
Seth, A., Vishnoi, N.K. (eds.) Proceedings of FSTTCS 2013. LIPIcs, vol. 24, pp.
153–162. Schloss Dagstuhl (2013)

8. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Math. Bohem. 133(1), 85–98 (2008)

9. Eiben, E., Ganian, R., Lauri, J.: On the complexity of rainbow coloring problems.
Discret. Appl. Math. (2016, in press). https://doi.org/10.1016/j.dam.2016.10.021

10. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Canad. J. Math 18(106–112), 86 (1966)

11. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. JCTB 16(1), 47–56 (1974)

13. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algo-
rithmica 68(2), 312–336 (2014)

14. Keranen, M., Lauri, J.: Computing minimum rainbow and strong rainbow colorings
of block graphs. arXiv preprint arXiv:1405.6893 (2014)

15. Kowalik, �L., Lauri, J., Socala, A.: On the fine-grained complexity of rainbow col-
oring. In: Sankowski, P., Zaroliagis, C.D. (eds.) Proceedings of ESA 2016. LIPIcs,
vol. 57, pp. 58:1–58:16. Schloss Dagstuhl (2016)

16. Lauri, J.: Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds,
vol. 1428. Tampere University of Technology Publication, Tampere (2016)

17. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb.
29(1), 1–38 (2013)

18. Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer Science & Business
Media, Boston (2012). https://doi.org/10.1007/978-1-4614-3119-0

19. Li, X., Sun, Y.: An updated survey on rainbow connections of graphs - a dynamic
survey. Theory Appl. Graphs 0, 3 (2017)

20. Roberts, F.S.: Applications of edge coverings by cliques. Discret. Appl. Math.
10(1), 93–109 (1985)

21. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
JCTB 7, 309–322 (1986)

https://doi.org/10.1007/978-3-642-32241-9_16
https://doi.org/10.1007/978-3-642-32241-9_16
https://doi.org/10.1016/j.dam.2016.10.021
http://arxiv.org/abs/1405.6893
https://doi.org/10.1007/978-1-4614-3119-0

Algorithms and Bounds for Very Strong Rainbow Coloring 639

22. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connectivity
of graphs: complexity and FPT algorithms. Algorithmica 67(2), 161–179 (2013)

23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of STOC 2006, pp. 681–690. ACM (2006)

	Algorithms and Bounds for Very Strong Rainbow Coloring
	1 Introduction
	2 Combinatorial Results
	3 Hardness Results
	4 Algorithm for Cactus Graphs
	4.1 Definitions and Structural Properties of Cactus Graphs
	4.2 Properties of Very Strong Rainbow Colorings of Cactus Graphs
	4.3 Algorithm

	5 Other Algorithmic Results
	References

