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Abstract. In a seminal work, Williams [22] showed that NEXP (non-
deterministic exponential time) does not have polynomial-size ACC0 cir-
cuits. Williams’ technique inherently gives a worst-case lower bound, and
until now, no average-case version of his result was known. We show that
there is a language L in NEXP and a function ε(n) = 1/ log(n)ω(1) such
that no sequence of polynomial size ACC0 circuits solves L on more than
a 1/2+ε(n) fraction of inputs of length n for all large enough n. Comple-
menting this result, we give a nontrivial pseudo-random generator against
polynomial-size AC0[6] circuits. We also show that learning algorithms
for quasi-polynomial size ACC0 circuits running in time 2n/nω(1) imply
lower bounds for the randomised exponential time classes RE (random-
ized time 2O(n) with one-sided error) and ZPE/1 (zero-error randomized
time 2O(n) with 1 bit of advice) against polynomial size ACC0 circuits.
This strengthens results of Oliveira and Santhanam [15].
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1 Motivation and Background

Significant advances in unconditional lower bounds are few and far between, spe-
cially in non-monotone boolean circuit models. In the 80s, there was substantial
progress in proving circuit lower bounds for AC0 (constant-depth circuits with
unbounded fan-in AND and OR gates) [2,8,11,24] and AC0[p] (AC0 circuits
extended with MODp gates) for p prime [16,19]. But even the case of AC0[m]
with m composite has remained little understood after decades of investigation,
despite our expectation that MODm gates do not have much computational
power.

In a seminal paper from a few years ago, Williams [22] proved a super-
polynomial lower bound against ACC0 (constant-depth circuits with unbounded
fan-in AND, OR and MODm gates, for a fixed but arbitrary m) using a new
lower bound technique: the algorithmic method. This result represents exciting
progress on circuit lower bounds after a long gap. However, it has a couple of
drawbacks when compared to previous lower bounds.
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First, while previous lower bounds were for explicit functions, i.e., functions
in P (deterministic polynomial time), Williams’ lower bound is only known to
hold for functions in NEXP [22], or in closely related classes [23]. (We note that
even proving a lower bound for these much larger classes had been a longstanding
open problem.) Unfortunately, the algorithmic method of Williams does not seem
to be easily adaptable to give lower bounds for explicit functions.

Second, previous lower bounds and their subsequent extensions worked also
in the average case setting, i.e., they showed that there were explicit functions
which cannot be computed by polynomial-size circuits on significantly more than
half the inputs of any input length. In other words, even computing the function
correctly on a random input is hard. Williams’ lower bound, on the other hand,
only seems to give a worst-case lower bound, meaning that any polynomial-size
family of ACC0 circuits is only guaranteed to fail to compute the hard function
in NEXP on a negligible fraction of inputs of length n, for infinitely many n.
The question of strengthening the existing worst-case ACC0 lower bound to the
average case has been recently posed and discussed in [1].

2 Results and Techniques

Our main result addresses this second drawback of Williams’ lower bound, and
strengthen the main result from [22] to an average-case lower bound.

Theorem 1 (An average-case lower bound against ACC0). There is a
function ε(n) = 1/ log(n)ω(1) such that the following holds. There is a language
L in NEXP such that for any polynomial-size family {Cn} of ACC0 circuits, there
are infinitely many n such that Cn computes L correctly on at most a 1/2+ε(n)
fraction of inputs of length n.

Our proof of Theorem1 in fact gives a much smaller upper bound on ε(n), but
stating this bound is a bit technical, so we defer it to Sect. 3.

Before sketching the main ideas behind the proof of Theorem1, we attempt
to explain why the original proof based on the algorithmic method fails to give an
average-case lower bound. Williams’ proof [22] employs an indirect diagonaliza-
tion technique. The technique exploits Williams’ algorithm solving satisfiability
of poly-size ACC0 circuits in time 2n−ω(log(n)). Assume, for the sake of contra-
diction, that NTIME(2n) does have ACC0 circuits of polynomial-size. It can be
shown from this assumption that languages in NTIME(2n) have succinct wit-
nesses, i.e., YES instances have witnesses which can be represented succinctly
by ACC0 circuits of size poly(n). Now we can use the following guess-and-check
procedure to compute any L ∈ NTIME(2n) in non-deterministic time 2n/nω(1),
contradicting the non-deterministic time hierarchy theorem. We guess a poly-
size ACC0 circuit encoding a witness for the instance, and then check that this
circuit indeed encodes a witness by using the satisfiability algorithm for ACC0

circuits. From the fact that the satisfiability algorithm runs in time 2n/nω(1),
it follows that this guess-and-check procedure runs in time 2n/nω(1), giving the
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desired contradiction to the non-deterministic time hierarchy theorem. (This is
just a high-level description – we refer to [22] for more details.)

A crucial step in the above proof is to use the assumption that NEXP is in
poly-size ACC0 to get succinct witnesses for NEXP languages. This step simply
does not work if our assumption is that NEXP is in poly-size ACC0 on average
rather than in the worst case, and the proof fails completely.

It seems difficult to adapt the algorithmic method to get an average-case
lower bound, so we try a different approach. A popular paradigm in complexity-
theoretic pseudorandomness is hardness amplification: transforming a function
that is worst-case hard for some class of circuits to a function that is average-case
hard for the same class of circuits. Williams’ result gives us a worst-case lower
bound against polynomial-size ACC0 circuits. Can we use hardness amplification
to derive an average-case lower bound from this?

There are a couple of obstacles we need to overcome to make this app-
roach work. First, hardness amplification typically requires that the class of
circuits against which we are performing amplification can compute the Major-
ity function [18]. We are trying to show an average-case lower bound against
ACC0 circuits, and we do not believe that poly-size ACC0 circuits can compute
Majority. However, while this does preclude us from amplifying to hardness
1/2−1/poly(n) (i.e., showing that any circuits computing the function must fail
on a 1/2− 1/poly(n) fraction of inputs) in a black-box way, we can still hope for
weaker hardness amplification results which get us hardness 1/2 − o(1). Indeed,
using the connection between hardness amplification and list-decodable error-
correcting codes due to Sudan et al. [21], hardness amplification procedures are
known [9,10] which are applicable in our setting.

Second, and more problematically, the hard function we begin with is in
NEXP, and we would like our new function resulting from hardness amplification
also to be in NEXP. If we were to do hardness amplification in a black-box way
starting from a NEXP function, the amplification needs to be monotone, and it
is not hard to see that black-box monotone hardness amplification cannot even
amplify worst-case hardness to hardness 0.99.1

To overcome this obstacle, we use instead a later result of Williams [23], where
he shows that his lower bound [22] also holds for a function in (NE ∩ coNE)/1,
i.e., both in NE = NTIME[2O(n)] and coNE = coNTIME[2O(n)], but with 1 bit of
advice depending only on the input length. The advantage of starting from this
later result of Williams is that when standard hardness amplification is applied,
the resulting function stays in (NE ∩ coNE)/1.

This still leaves the problem of eliminating the 1 bit of advice in the upper
bound. Doing this in a naive way would stop us from achieving hardness less
than 3/4, but we show how to eliminate the advice with a negligible loss in our
hardness parameter. This concludes our high-level description of the proof of
Theorem 1.

1 This corresponds to monotone error-correcting codes, which cannot have good dis-
tance. We refer to [4] for more details.
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A natural question that arises when we have an average-case lower bound
against a circuit class is whether we can construct pseudo-random generators
(PRG) against the circuit class. An influential paradigm of [13], motivated by a
similar paradigm in the cryptographic setting, shows how to transform average-
case hardness into pseudorandomness, and conversely. However, this is only
applicable when we have a hardness parameter ε(n) � 1/nΩ(1), which Theorem 1
fails to achieve.

More recent work of [7] studies how to derive pseudorandomness from
average-case hardness in cases where the hardness is not strong enough to apply
[13]. It is shown in [7] that when the hard function has a property known as
resamplability (a certain form of random self-reducibility), it is possible to get
low-stretch pseudorandom generators with error o(1) even under the weaker
assumption that ε(n) = o(1). We cannot directly apply their result in our set-
ting because it is unclear if our hard function in NEXP satisfies the resamplability
property.

However, by a win-win analysis and a result from [7], we are able to get a
low-stretch pseudo-random generator against AC0[6].2 Ideally, we would like this
generator to be computable in deterministic exponential time, but because our
hard function for ACC0 is in (NE∩coNE)/1, we are only able to get computability
in strong non-deterministic linear exponential time with 1 bit of advice.3

Theorem 2 (A pseudo-random generator against AC0[6]). For every
depth d � 1 and δ > 0, there is a sequence of functions {Gn} computable in
(NE∩coNE)/1, where each Gn : {0, 1}� → {0, 1}n has seed length �(n) = n−n1−δ,
for which the following holds. Let {Cn} be a sequence of AC0[6] circuits, where
each Cn has depth �d and size �nd. Then, for infinitely many values of n,

∣
∣
∣Pry∈{0,1}� [Cn(Gn(y)) = 1] − Prx∈{0,1}n [Cn(x) = 1]

∣
∣
∣ � o(1).

We observe that, using the pseudo-random generator in Theorem 2, we can
get an alternative proof of a variant of Theorem1. Since this is obtained in a
somewhat more indirect way, we do not discuss it further.

There are a couple of directions in which we could aspire to strengthen these
results. First, in Theorem1, we might hope to get a hardness parameter ε(n) =
1/nΩ(1), or even ε(n) = 1/nω(1). Indeed, we are able to obtain an analogous
result with ε(n) = 1/nΩ(1), but for a hard function in ENP instead of NEXP (see
Theorem 9 in Sect. 3.4). Nevertheless, getting even stronger results seems to be
a difficult task using existing techniques, for the following reason. Even for the
substantially simpler case of AC0[p] circuits, when p is prime, we do not know

2 We stick to modulo 6 gates mostly for simplicity. Theorem 2 can be extended to any
modulus m for which the results from [7] hold.

3 In other words, the non-deterministic algorithm, when given the correct advice bit
(that only depends on the input length parameter), outputs either “abort” of the
correct string, and outputs the correct string in at least one computation path. We
refer to Sect. 3.1 for more details.
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how to get ε(n) = o(1/
√

n) for an explicit function, and showing a stronger
hardness result is a long-standing open problem (cf. [20]).

Second, we could hope to get a PRG computable in deterministic linear
exponential time in Theorem 2. But this would imply that EXP is hard on average
for poly-size AC0[6] circuits, and so far we have been unable to show even worst-
case hardness against poly-size AC0[6] for EXP. This brings us back to the first
drawback in Williams’ algorithm technique, discussed in Sect. 1, and which we
further explore now.

While substantially improving the explicitness in Williams’ lower bounds
[22,23] and in Theorem 1 remains a major challenge, [14] recently introduced
another approach that could lead to further progress in this direction. They
considered a learning-theoretic analogue of Williams’ approach. While Williams
derives circuit lower bounds from circuit satisfiability algorithms that are “non-
trivial” in that they beat the naive brute force search algorithm, [14] show impli-
cations for circuit lower bounds from learning algorithms that are similarly non-
trivial in that they beat a brute force search approach.

We say that a randomized learning algorithm is a non-trivial learner for a
circuit class C if it runs in time bounded by 2n/nω(1). For concreteness and
simplicity, we consider learning algorithms that make membership queries, and
that learn under the uniform distribution with error at most 1/n and with failure
probability at most 1/n.

For convenience, we use ACC0
d,m(s(n)) to denote the class of boolean functions

computable by depth-d ACC0 circuits over a fixed modulo m and of size �s(n).
The following connection between learning algorithms and non-uniform lower
bounds was established in [14].

Proposition 1 (REXP lower bounds from learning sub-exponential size
ACC0 circuits [14]). If for every depth d � 1 and modulo m � 1 there is ε > 0
such that ACC0

d,m(2nε

) can be learned in non-trivial time, then REXP � ACC0.

Recall that REXP ⊆ NEXP is the class of languages decided by one-sided ran-
domized exponential time algorithms, and that under standard derandomization
hypotheses, REXP = EXP.4 Consequently, Proposition 1 offers a potential path
to more explicit (worst-case) ACC0 lower bounds via the design of non-trivial
learning algorithms, and it can be seen as another instantiation of the algorith-
mic method.5

However, note that the learnability of sub-exponential size circuits is a strong
assumption. Indeed, by the Speedup Lemma of [14], it implies that polynomial
size ACC0 circuits can be learned in quasi-polynomial time, a result that is only
known to hold for AC0 and AC0[p] circuits [5]. Ideally, we would like to get
stronger and more explicit lower bounds from much weaker assumptions.

4 For a concrete example of the benefits of improving an NEXP lower bound to ran-
domized exponential time classes such as REXP, we refer the reader to [15].

5 The design of concrete non-trivial learning algorithms for some circuit classes and in
some alternative but related learning models has been recently investigated in [17].
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The proof of Proposition 1 relies on a variety of techniques from complexity
theory. An important element in the argument is the use of Williams’ uncondi-
tional proof that NEXP � ACC0. This lower bound is employed as a black-box in
the argument from [14], and in Sect. 8 of the same work, the authors speculate
about the possibility of establishing stronger connections between non-trivial
algorithms and lower bounds by combining ideas from different frameworks.

We present a new application of the interaction between the learning frame-
work of [14], and the satisfiability framework of Williams [22,23]. We combine the
proofs of existing connections between non-trivial algorithms and non-uniform
lower bounds, and establish the following result.

Theorem 3 (Stronger connection between ACC0-learnability and lower
bounds). Assume that for every fixed choice of parameters d,m, c � 1, the class
ACC0

d,m(n(log n)c

) can be non-trivially learned. Then,

RTIME[2O(n)] � ACC0(nlog n) and ZPTIME[2O(n)]/1 � ACC0(nlog n).

We note that the worst-case lower bound for ZPTIME[2O(n)]/1 in Theorem 3
can be strengthened to an average-case lower bound using the same technique
as in the proof of Theorem 1.

Observe that this result strengthens Proposition 1 in a few ways. The assump-
tion is considerably weaker, and the lower bound is quantitatively stronger. In
addition, it provides a lower bound for zero-error randomized computations with
one bit of advice, while in Proposition 1 the randomized algorithm computing the
hard function makes mistakes. Interestingly, Theorem3 is not known to hold for
larger circuit classes, and its proof explores specific results about ACC0 circuits
in a crucial way.

We note that there is a connection between non-trivial algorithms and non-
uniform lower bounds for ZPEXP, but it assumes the existence of P-natural
properties useful against sub-exponential size circuits (see Theorem 44 from [14],
and also [12]). Although in Theorem3 the uniformity over the hard language is
not as strong (i.e., REXP and ZPEXP/1 versus ZPEXP), it almost matches the
uniformity condition, while its assumption is considerably weaker.

We sketch in the next section the proof of Theorem1. Due to space limita-
tions, we refer to the full version of the paper [6] for more details about our
results.

3 Proof of Theorem 1

3.1 Notation for Complexity Classes and Circuit Classes

Let TIME[t(n)] be the classes of languages decided by deterministic Turing
machines (TM) running in time O(t(n)), and let NTIME[t(n)] be the class of
languages decided by non-deterministic Turing machines (NTM) running in
time O(t(n)). We use standard notions of complexity classes, such as P, NP,
EXP, NEXP, etc. In particular, E = TIME[2O(n)], NE = NTIME[2O(n)], and
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L is the class of languages computable in (uniform) logarithmic space. A func-
tion t : N → N is time-constructible if there is a TM M , which on input 1n

outputs t(n) in time O(t(n)). We sometimes informally use the term algorithm
instead of Turing machines. We refer to a textbook such as [3] for more back-
ground in complexity theory.

A strong non-deterministic Turing machine (SNTM) is a NTM where each
branch of the computation has one of three possible outputs: 0, 1, and ‘?’. We say
that a SNTM M decides a language L if the following promise holds: if x ∈ L,
each branch ends with 1 or ‘?’, and at least one branch ends with 1; if x /∈ L,
each branch ends with 0 or ‘?’, and at least one branch ends with 0. It is easy
to see that a language L ∈ NE ∩ coNE if and only if L is decided by a SNTM
in time 2O(n). When we say that a sequence of functions Gn : {0, 1}� → {0, 1}n

is computed by a SNTM M , we formally mean that the language LG ⊆ {0, 1}�

that encodes {Gn} is computed by M , where LG is defined in a natural way. For
concreteness, we let LG be the set of strings encoding tuples 〈1n, y, i, b〉, where
b ∈ {0, 1}, y ∈ {0, 1}�(n), i ∈ [n], and Gn(y)i = b. We assume that the tuples
obtained from each choice of the parameter n have all the same length as strings
in {0, 1}� (this is relevant when defining computation with advice below).

We define advice classes as follows. For a deterministic or non-deterministic
uniform complexity class C and a function α(n), the class C/α(n) is the set of
languages L such that there is a language L′ ∈ C and a sequence of strings {an}
with |an| = α(n) which satisfy that L(x) = L′(x, a|x|) for all strings x ∈ {0, 1}�.

For semantic classes C (such as BPP, NE ∩ coNE, etc.) with advice, we only
require the promise condition for the class C to hold when the correct advice is
given. For example, a language L is in (NE∩ coNE)/α(n) if there is a SNTM M
running in time 2O(n) and a sequence of advice strings {an} with |an| = α(n) such
that, on each input x, the computation paths of M(x, a|x|) satisfy the promise
condition in the definition of SNTMs. Note that M running with incorrect advice
may not satisfy the promise on its branches.

We also define infinitely often classes. For a (syntactic) deterministic or non-
deterministic class C, the class i.o.C is the set of languages L for which there is
a language L′ ∈ C such that, for infinitely many values of n, L ∩ {0, 1}n = L′ ∩
{0, 1}n. For a semantic class C, we relax the definition, and let i.o.C be the class of
languages L decided by a Turing machine M such that, for infinitely many input
lengths n, M is of type C on inputs of length n (i.e., it satisfies the corresponding
promise). Note that M might not be of type C on other input lengths.

We use standard notation for circuit classes. In particular, AC0 is the class
of circuit families of constant depth and polynomial size, with AND, OR,
and NOT gates, where AND and OR gates have unbounded fan-in. AC0[m]
extends AC0 by allowing unbounded fan-in MODm gates, where m is fixed, and
ACC0 def=

⋃

m AC0[m] (we often write AC0[m] and ACC0[m] interchangeably).
For convenience, we use Cd(s) to restrict a circuit class to circuits of depth �d
and size �s. We often deliberately conflate a class of circuit families with the
class of languages computed by the circuit families. These circuit families are all
non-uniform, unless otherwise stated.
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We say that a language L is γ(n)-hard for a circuit class C if for each L′ ∈ C
and for infinitely many values of n, Prx∈{0,1}n [L(x) = L′(x)] � 1−γ(n). Finally,
a class Γ is γ(n)-hard for C if there is a language in Γ that is γ(n)-hard for C.

3.2 Background on ACC0 Lower Bounds

We recall the following ACC0 circuit lower bounds.

Theorem 4 ([22]). For every d � 1 and m � 1, there is a δ > 0 and a language
in ENP that is not computable by a sequence of ACC0[m] circuits of depth d and
size O(2nδ

).

Theorem 5 ([23]). There is a language in (NE ∩ coNE)/1 that does not admit
ACC0 circuits of size O(nlog n).

In order to prove Theorem 1 and its extensions, we need a strengthening of The-
orem 5. We use the following technical definitions. A function f : N → N is sub-
half-exponential if for every fixed k � 1, f(f(nk)k) � 2no(1)

. Similarly, a function
g : N → N is sub-third-exponential if for every fixed k � 1, g(g(g(nk)k)k) � 2no(1)

.
For instance, for a fixed integer a � 1, g(n) def= 2(log n)a

is sub-third-exponential.
By a more careful application of William’s techniques, the following result

can be established. We refer to the full version of the paper [6] for details.

Theorem 6 (Sub-third-exponential lower bounds against ACC0). (NE∩
coNE)/1 does not have ACC0 circuits of sub-third-exponential size.

3.3 Tools: Error Correcting Codes and Hardness Amplification

We follow part of the terminology from [10]. The proof of Theorem 1 requires
certain correcting codes that admit a uniform encoding procedure, but whose
decoding can be non-uniform.

Definition 1 (Local-list-decoding in error correcting codes). A family
{CM}M of functions CM : {0, 1}M → {0, 1}N is a (d, L)-locally-list-decodable
code if there is an oracle Turing machine D that takes an index i ∈ [M ], advice
a ∈ [L], and a random string r, and for which the following holds. For every
input x ∈ {0, 1}M and y ∈ {0, 1}N for which Δ(CM (x), y) � d, there exists
a ∈ [L] such that, for all i ∈ [M ],

Prr[Dy(i, a, r) = xi] > 9/10.

Here Δ(w1, w2) ∈ [0, 1] is the relative hamming distance between strings w1

and w2, and one should think of N = N(M), d = d(M), etc. as a sequence of
parameters indexed by M . We say that a code of this form is explicit if it can
be computed in time poly(N(M)).
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We will need results on hardness amplification and constructions of efficient
error correcting codes.

Definition 2 (Black-box hardness amplification). A (1/2− ε, δ)-black-box
hardness amplification from input length k to input length n is a pair (Amp,Dec)
where Amp is an oracle Turing machine that computes a (sequence of) boolean
function on n bits, Dec is a randomized oracle Turing machine on k bits which
also takes an advice string of length a, and for which the following holds. For
every pair of functions f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that

Prx∼{0,1}n [h(x) = Ampf (x)] > 1/2 + ε,

there is an advice string α ∈ {0, 1}a such that

Prx∼{0,1}k,Dec[Dec
h(x, α) = f(x)] > 1 − δ.

(We will also view Dech as a non-uniform oracle boolean circuit. Observe that if
δ = 2−k then there is a way to fix the randomness and the advice string of Dech

so that it correctly computes f on every input x ∈ {0, 1}k.6)

The following is a well-known connection [21] between fully black-box hard-
ness amplification and binary locally-list-decodable codes.

Theorem 7 (Connection between hardness amplification and local-
list-decodable codes). If there is a (1/2 − ε, L)-locally list decodable error-
correcting code C : {0, 1}K → {0, 1}N with a corresponding decoder D then
there is a (1/2 − ε, 2−k)-black-box hardness amplification procedure from length
k = log K to length n = log N , where Amp is defined by the encoder of C, and
Dec is defined by the decoder D with advice length a = log L.

We need the following construction of list-decodable codes (and correspond-
ing hardness amplification procedure).

Theorem 8 (Efficient construction of locally-list-decodable codes
[9,10]). For every exp(−Θ(

√
log M)) � ε < 1/2, there is an explicit (1/2 −

ε, poly(1/ε))-locally-list-decodable code CM : {0, 1}M → {0, 1}poly(M) with a local
decoder that can be implemented by a family of constant-depth circuits of size
poly(log M, 1/ε) using majority gates of fan-in Θ(1/ε) and AND/OR gates of
unbounded fan-in.

Observe that it is possible to get an AC0 decoder by a standard simulation
of majority gates via large AC0 circuits.

6 Note that the process of amplifying the success probability of randomized algorithms
and fixing the randomness can be done with only an AC0 overhead on the overall
complexity, since approximate majority functions can be computed in this circuit
class.
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Corollary 1 (Limited hardness amplification via constant-depth cir-
cuits of bounded size). For every parameter exp(−Θ(

√
log M)) � ε < 1/2

and each large enough constant d, there is an explicit (1/2− ε, poly(1/ε))-locally-
list-decodable code CM : {0, 1}M → {0, 1}poly(M) with a local decoder that can be
implemented by AC0 circuits of size poly(log M, exp((1/ε)O(1/d))) and depth at
most d.

Corollary 1 and the connection to hardness amplification are crucial results
needed in the proof of Theorem1 and its extensions. We will implicitly use
these locally-list-decodable codes in order to amplify from worst-case hardness
to average-case hardness.

3.4 The Proof of Theorem 1 and Its Extensions

We start off by showing a (1/2 − 1/nΩ(1))-hardness result for ENP.

Theorem 9 (An average-case lower bound for ENP). For every d � 1 and
m � 1, there is a γ > 0 and a language in ENP that is (1/2 − 1/nγ)-hard for
nonuniform AC0[m] circuits of depth d and size 2nγ

.

Proof. Given a sufficiently large d � 1 and a fixed modulo m, let Ld ∈ ENP

be the language guaranteed to exist by Theorem4, and δ = δ(d,m) > 0 be the
corresponding constant. In other words, Ld is not computed by AC0[m] circuits of
depth d and size 2nδ

for infinitely many values of n. For a function ε′ = ε′(M ′) �
exp(−Θ(

√
log M ′)) to be fixed later in the proof, and d′ sufficiently large (but

smaller than d), let {CM ′} be the sequence of explicit error-correcting codes
provided by Corollary 1, where each CM ′ : {0, 1}M ′ → {0, 1}N , and N(M ′) =
M ′c for a fixed positive integer c � 1. Consider a new language L� that depends
on Ld and on {CM ′}, defined as follows. Given x ∈ {0, 1}n, if n is not of the form
cm′ for some m′ ∈ N, then x is not in L�. Otherwise, let T ∈ {0, 1}2m′

be the
truth-table of Ld on m′-bit inputs, and consider the codeword CM ′(T ) ∈ {0, 1}N ,
where M ′ = 2m′

and N = M ′c = 2cm′
= 2n. Then x ∈ L� if and only if the

entry of CM ′(T ) indexed by x is 1. This completes the description of L�.
Given that Ld ∈ ENP and CM ′ can be computed in deterministic time

poly(M ′), we can compute L� in ENP as follows. Let x be an input of length
N , on which we wish to solve L�. First, check if N = M ′c for some integer M ′.
If not, output 0. Otherwise, compute the truth table T of Ld on input length M ′

by running the ENP machine for Ld on every possible input of length M ′. Then
compute CM ′(T ) and output the x’th bit of that string. The computation of T
can be done in ENP as it involves at most 2N runs of an ENP machine on inputs
of length �N , and the computation of CM ′(T ) can be done in time 2O(N) just
using the efficiency guarantee for CM ′ . Hence the procedure described above can
be implemented in ENP.

Now we show that L� has the claimed average-case hardness. For n = cm′ and
M ′ = 2m′

as above, we set ε′(M ′) def= 1/n2γ 	 exp(−Θ(
√

log M ′)), where 0 <
γ < δ/2 is a sufficiently small constant. We claim that L� cannot be computed
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with advantage larger than 1/nγ on infinitely many input lengths by AC0[m]
circuits of depth �d and size �2nγ

. This follows by the properties of the code
CM ′ and the connection to hardness amplification. Indeed, if for all large n of the
form cm′ the boolean function computed by L�

n could be approximated by such
circuits, by hardcoding their descriptions into the AC0 local decoders provided
by Corollary 1 it would follow that for all large n the language Ld is (worst-case)
computable by AC0[m] circuits of depth �d and size �2nδ

, a contradiction.
(This last step crucially uses that γ is sufficiently small compared to the other
parameters, and the size bound in Corollary 1.)

Next, we address the more difficult problem of showing an average-case lower
bound for NEXP. We first establish a lower bound for (NE ∩ coNE)/1, and then
show how to remove the advice.

Lemma 1. (NE∩ coNE)/1 is (1/2 − 1/ log(t(n)))-hard for ACC0 circuits of size
t(n), for any (time-constructible) sub-third-exponential function t(n).

Proof. The argument follows the same high-level approach of Theorem 9, so we
use the same notation and only describe the relevant differences. By Theorem 6,
there is a language L ∈ (NE ∩ coNE)/1 that is not computable by ACC0 circuits
of sub-third-exponential size t(n). Similarly, we define a language L� obtained
from L and the locally-list-decodable codes provided by Corollary 1. We need to
make sure the new language is still computable in (NE ∩ coNE)/1, and explain
the choice of parameters in the construction.

Since L ∈ (NE∩coNE)/1, there is a strong non-deterministic Turing machine
(SNTM) S with one bit of advice computing L. Let the advice sequence for M
be α(·), where |α(n)| = 1 for all n ∈ N. We define an SNTM S′ with one bit
of advice computing L�. S′ acts as follows on input x of length N . It checks
if N = M ′c for some integer M ′. If not, it rejects. If yes, it simulates S with
advice α(M ′) on each input of length M ′. The advice α(M ′) is the advice bit
for S′ - note that N completely determines M ′ and hence α(M ′). If any of these
simulations outputs ‘?’, it outputs ‘?’ and halts. If all of these simulations output
non-‘?’ values, S′ uses the results of its simulations of S to compute the truth
table T of L on input length M ′, and applies the mapping CM ′ to this string. It
then outputs the bit with index x of the resulting string.

We need to show that S′ is an SNTM with one bit of advice deciding L�

correctly in time 2O(N). By definition of S′, and using the fact that S is an SNTM
with one bit of advice, we have that whenever S′ computes a string T , this is the
correct truth table of L on inputs of length M ′, if S′ uses advice β(N) = α(M ′).
Moreover, this happens on at least one computation path of S, using the fact
that S′ is an SNTM with one bit of advice. On any such computation path, the
correct value L�(x) is output, as S′ is completely deterministic after computing
T , and using the definition of L�. The time taken by S′ is 2O(n), as it simulates
S on inputs of length �N at most 2N times, and using the efficiency guarantee
on CM ′ .

Finally, we sketch the choice of parameters in the hardness amplifica-
tion, which correspond to the parameters in the construction of L� via the
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error-correcting code provided by Corollary 1. Following the notation in the proof
of Theorem 9, we let ε(M ′) be of order 1/ log(t(βn)β), where β > 0 is sufficiently
small. Under this definition, observe that the circuit complexity overhead coming
from the decoder in the analysis of the average-case hardness of L� is at most
poly(n, exp(1/ε′)) � poly(n, exp(log t(βn)β)) � t(n)γ , for a fixed but arbitrarily
small γ > 0 that depends on β. This implies that L� is 1/ log t(Ω(n))Ω(1)-hard
against circuits of size t(n)Ω(1). Since our original sub-third-exponential function
t(n) was arbitrary and after composition with polynomials a function remains
in this class, the proof is complete.

We give a generic way to eliminate advice from the upper bound for average-
case hardness results.

Lemma 2. If NE/1 is (1/2 − ε(n))-hard for C circuits of size s(n), then NE is
(1/2 − ε(
n/2�))-hard for C circuits of size s(
n/2�).
Proof. Let L be a language in NE/1 which is (1/2 − ε)-hard for C circuits of size
s(n). Suppose L is decided by a NTM M running in nondeterministic time 2O(n)

and taking advice bits {bn}, where |bn| = 1. In other words, for every string x,
we have L(x) = M(x, b|x|).

Define a new language L′ as follows. We divide the input string z in the
middle, and denote it by xy, where either |y| = |x| (when |z| is even) or |y| =
|x|+1 (when |z| is odd). Then we decide by running M on the first half x, using
an advice bit which depends only on the length of y. More precisely, we let

L′(xy) def=

{

M(x, 0), if |y| = |x|;
M(x, 1), if |y| = |x| + 1.

Obviously, L′ is in NE by simulating M .
We show that if Ln is hard to approximate, then either L′

2n or L′
2n+1 is also

hard to approximate. For contradiction, suppose that both L′
2n and L′

2n+1 can
be computed correctly on more than a 1/2+ε fraction of inputs by circuits of size
s. If the advice bit bn = 0, let C0 be a circuit of size s such that Prxy[L′

2n(xy) =
C0(xy)] > 1/2 + ε, where x and y are both chosen independently and uniformly
at random from {0, 1}n. By an averaging argument, there is a specific y� such
that by fixing y = y�, Prx[L′

2n(xy�) = C0(xy�)] > 1/2 + ε. Note also that, since
bn = 0, we have that for all x of length n, L′

2n(xy�) = M(x, 0) = Ln(x). Thus
Prx[Ln(x) = C0(xy�)] > 1/2 + ε. That is, we can use C0 to approximate Ln by
fixing the second half of the inputs to y�. In the other case where the advice bit
bn = 1, we can use the approximate circuit for L′

2n+1 to approximate Ln in the
same way. As a consequence, if Ln is (1/2 − ε(n))-hard for C circuits of size s,
then either L′

2n or L′
2n+1 is also (1/2 − ε(n))-hard for C circuits of size s.

Finally, since there are infinitely many input lengths n such that Ln is (1/2−
ε(n))-hard for C circuits of size s(n), there are also infinitely many input lengths
n such that L′

n is (1/2 − ε(
n/2�))-hard for C circuits of size s(
n/2�). This
completes the proof.
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Finally, by combining the previous two lemmas, we get the following strength-
ened version of Theorem 1.

Theorem 10 (An average-case lower bound for NE against sub-third-
exponential size ACC0). NE is (1/2 − 1/ log t(n))-hard for ACC0 circuits of
size t(n) when t(n) is time-constructible and sub-third-exponential.
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