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Abstract. The suffix array is one of the most prevalent data structures
for string indexing; it stores the lexicographically sorted list of suffixes
of a given string. Its practical advantage compared to the suffix tree is
space efficiency. In Property Indexing, we are given a string x of length
n and a property Π, i.e. a set of Π-valid intervals over x. A suffix-
tree-like index over these valid prefixes of suffixes of x can be built in
time and space O(n). We show here how to directly build a suffix-array-
like index, the Property Suffix Array (PSA), in time and space O(n).
We mainly draw our motivation from weighted (probabilistic) sequences:
sequences of probability distributions over a given alphabet. Given a
probability threshold 1

z
, we say that a string p of length m matches a

weighted sequence X of length n at starting position i if the product of
probabilities of the letters of p at positions i, . . . , i+m−1 in X is at least
1
z
. Our algorithm for building the PSA can be directly applied to build

an O(nz)-sized suffix-array-like index over X in time and space O(nz).

1 Introduction

Property matching, introduced in [4], comprises of matching a pattern to a text
of which only certain intervals are valid. The on-line version of this problem is
trivial and thus the indexing version has received much more attention. In the
Property Indexing problem, we are given a text x of length n over an alphabet
of size σ and a property Π; Π is a set of subintervals of [0, n − 1] with integer
endpoints. The goal is to then preprocess the text so that given a pattern p we
can return its occurrences in the Π-valid intervals of x, i.e. we want to report
x[i . . j] if and only if it is equal to p and [i, j] is a subinterval of some [a, b] ∈ Π.

Most of the prevalent text indexing data structures are built over the suffixes
of the text [22]. However, by introducing the property Π only some prefixes of
each suffix are now valid. The authors in [4] presented an algorithm for build-
ing the Property Suffix Tree (PST) in O(n log σ + n log log n) time for integer
alphabets, implicitly sorting the prefixes of the suffixes that are valid. Recently,
the authors in [5,6] have presented an O(n)-time algorithm for the construction
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of the PST that also works for integer alphabets. This is based on a technique
by Kociumaka, Radoszewski, Rytter and Waleń for answering off-line weighted
ancestor queries in suffix trees (see the Appendix of [5]). A dynamic instance of
Property Indexing has also been studied in [19], where the author also makes
use of the suffix tree.

An O(n)-time algorithm for building an index over the suffix tree of x for
integer alphabets that allows for property matching queries was proposed by the
authors of [14,15]. This solution, however, does not sort the prefixes of suffixes
that are valid (which is an interesting problem per se); it offloads the difficulty
of the computation from the construction to the queries.

The suffix array (SA) of a text x of length n is an integer array of size
n that stores the lexicographically sorted list of suffixes of x [20]. In order to
construct the Property Suffix Array, which we denote by PSA, we essentially need
to lexicographically sort a multiset consisting of substrings of x; this multiset
contains at most one prefix of each suffix of x. This can be achieved in linear
time by traversing the PST, however our aim here is to do it directly—we do not
want to construct or store the PST. It is well-known from the setting of standard
strings that the SA is more space efficient than the suffix tree [1].

Note that for clarity of presentation we represent Π—and assume the input
is given in this form—by an integer array L of size n, such that

L[i] = max{j|(k, j) ∈ Π, k ≤ i} − i + 1

is the length of the longest prefix of x[i . . n − 1] that is valid. It should be clear
that L can be obtained from Π in O(n+ |Π|) time. We also assume that L[i] > 0
for all i; the case that L[i] = 0 can be handled easily as the resulting substring
would just be the empty string.

Example 1 (Running example). Consider the string x = acababaab and property
Π = {(0, 3), (4, 6), (6, 8)}:

i 0 1 2 3 4 5 6 7 8
x[i] a c a b a b a a b
L[i] 4 3 2 1 3 2 3 2 1
SA[i] 6 7 4 2 0 8 5 3 1
PSA[i] 6 2 7 4 0 3 8 5 1

Our main result is an O(n)-time and O(n)-space direct construction of the
PSA for integer alphabets. The problem can be formally defined as follows.

Property Suffix Array
Input: A string x of length n and an integer array L of size n, satisfying
0 < L[i] ≤ n − i and L[i] ≥ L[i − 1] − 1.
Output: An array PSA that stores a permutation of 0, . . . , n − 1 and for all
1 ≤ r < n, letting PSA[r−1] = j and PSA[r] = k, we have x[j . . j+L[j]−1] ≤
x[k . . k + L[k] − 1].
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Application. We apply our solution to this problem in the setting of weighted
sequences. In a weighted sequence every position contains a subset of the alpha-
bet and every letter of this subset is associated with a probability of occurrence
such that the sum of probabilities at each position equals 1. This data repre-
sentation is common in a wide range of applications: (i) imprecise sensor data
measurements; (ii) flexible sequence modeling, such as binding profiles of DNA
sequences; (iii) observations that are private and thus sequences of observations
may have artificial uncertainty introduced deliberately (see [2] for a survey).
Pattern matching (or substring matching) is a core operation in a wide variety
of applications including bioinformatics, information retrieval, text mining, and
pattern recognition. Many pattern matching applications generalize naturally
to the weighted case as much of this data is more commonly uncertain (e.g.
genomes with incorporated SNPs from a population) than certain.

In the weighted pattern matching (WPM) problem we are given a string p
of length m called a pattern, a weighted sequence X of length n called a text,
both over an alphabet Σ of size σ, and a threshold probability 1

z . The task is to
find all positions i in X where the product of probabilities of the letters of p at
positions i, . . . , i+m−1 in X is at least 1

z [8,17]. Each such position is called an
occurrence of the pattern; we also say that the fragment and the pattern match.

Here we consider the problem of indexing a weighted sequence. We are given
a weighted sequence X of length n and a probability threshold 1

z , and we are
asked to construct an index which will allow us to efficiently answer queries
with respect to the contents of X. This problem was considered in [4], where a
reduction to Property Indexing of a text of size O(nz2 log z) was proposed. The
authors in [6] reduced this to a text of size nz, thus presenting an O(nz)-time and
O(nz)-space construction of an O(nz)-sized index that answers pattern matching
queries on X in optimal time. The same index as the one in [6] was first presented
in [7] but with a different O(nz)-time and O(nz)-space construction algorithm.
Approximate variants of these indexes have also been considered in [6,10].

All these indexes [4,6,7] are based on constructing and traversing the suf-
fix tree. Here, using our solution to problem Property Suffix Array and
the main idea of [6], we show how to construct directly an array data structure
within the same complexities. Moreover, we present experiments that show the
advantage of our new data structure: as expected, it requires much less space
than the one of [6,7]. Our index, apart from being simple and small in practice,
is asymptotically smaller than the input weighted sequence when z = o(σ).

Structure of the paper. In Sect. 3, we provide three O(n)-space algorithms
for computing the PSA directly, with time complexities O(n log2 n), O(n log n)
and O(n). In Sect. 4, we apply our solution to this general problem in the setting
of weighted sequences to obtain an O(nz)-time and O(nz)-space algorithm for
constructing a new O(nz)-sized array index for weighted sequences. Finally, in
Sect. 5, we present an experimental evaluation of the proposed algorithms.
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2 Preliminaries

Let x = x[0]x[1] . . . x[n − 1] be a string of length |x| = n over a finite ordered
alphabet Σ of size σ, i.e. σ = |Σ|. In particular, we consider the case of an integer
alphabet ; in this case each letter is replaced by its rank such that the resulting
string consists of integers in the range {1, . . . , n}.

For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the factor
(sometimes called substring) of x that starts at position i and ends at position
j. We recall that a prefix of x is a factor that starts at position 0 (x[0 . . j]) and
a suffix of x is a factor that ends at position n − 1 (x[i . . n − 1]). We denote a
string x that is lexicographically smaller than (resp. smaller than or equal to) a
string y by x < y (x ≤ y).

2.1 Suffix Array

We denote by SA the suffix array of a non-empty string x of length n. SA is
an integer array of size n storing the starting positions of all (lexicographically)
sorted non-empty suffixes of x, i.e. for all 1 ≤ r < n we have x[SA[r−1] . . n−1] <
x[SA[r] . . n−1] [20]. Let lcp(r, s) denote the length of the longest common prefix
between x[SA[r] . . n − 1] and x[SA[s] . . n − 1] for all positions r, s on x, and 0
otherwise. We denote by LCP the longest common prefix array of y defined by
LCP[r] = lcp(r − 1, r) for all 1 ≤ r < n, and LCP[0] = 0. The inverse iSA of
the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. It is known that
SA [21], iSA, and LCP [16] of a string of length n, over an integer alphabet, can
be computed in time and space O(n). It is then known that a range minimum
query (RMQ) data structure over the LCP array, that can be constructed in
O(n) time and O(n) space [9], can answer lcp queries in O(1) time per query by
returning the index of a minimal value in the respective range of the SA.

3 O(n)-Space Algorithms for Computing PSA

3.1 Sparse Table-Based O(n log2 n)-Time Algorithm

The algorithm presented in this subsection applies a combination of the Sparse
Table idea for answering RMQs [9] and the doubling technique [20] to the context
of sorting prefixes of suffixes (factors) of x. Using this combination, one may
easily obtain an O(n log n)-time and O(n log n)-space algorithm for constructing
the PSA [12]. We tweak this solution to require only O(n) space, suffering an
additional multiplicative log n factor in the time complexity. There are O(log n)
levels: at the kth level, we sort prefixes of suffixes up to length 2k+1; at each level,
O(n log n) time is required to sort these factors using any optimal comparison-
based sorting algorithm [11].

The aforementioned scheme assumes that we can compare two factors in con-
stant time. To this end, we borrow the Sparse Table algorithm idea for answering
RMQs: the minimum value in a given range r is the minimum between the mini-
mums of any two, potentially overlapping, subranges whose union is r. The same
idea can be applied in a completely different context:
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Fact 2. Given two strings x and y, with |x| ≤ |y|, and k = �log |x|�, x ≤ y if
and only if (x[0 . . 2k], x[|x| − 2k . . |x| − 1]) ≤ (y[0 . . 2k], y[|x| − 2k . . |x| − 1]).

We thus compute the ranks of prefixes of suffixes whose lengths are multiples of
two using the doubling technique [20] and then use these ranks to sort prefixes
whose lengths may not be multiples of two by applying Fact 2. Note that this
computation can be done level by level in a total of O(log n) levels, and therefore
the working space is O(n). We formalize this algorithm, denoted by ST-PSA, in
the pseudocode below. We start by initializing the elements in the PSA by sorting
and ranking the letters of x (Lines 2–8). We store these ranks in an array (Line
9). Then, at level k (Line 10), we compute the ranks of prefixes whose lengths
are multiples of two using the previous level information and radix sort in O(n)
time (Lines 11–12). Next, we sort and rank all prefixes up to length 2k+1 using a
comparison-based sorting algorithm and Fact 2 in O(n log n) time (Lines 13–14).
We store these ranks in an array (Line 15) and proceed to the next level. Thus
the total time required is O(n log2 n) and the space is O(n). The value of this
algorithm is its practicality: (a) it requires very little space; (b) the number of
levels required is in fact �log ��, where � is the maximum value in L; and (c) at
level k it suffices to sort groups of elements having the same rank at level k − 1.

1 Algorithm ST-PSA(x, n, L)
2 for i ← 0 to n − 1 do

3 PSA[i] ← i;

4 Sort PSA using the following comparison rule for PSA[i] and PSA[j]:

5 if x[i] < x[j] then PSA[i] < PSA[j];

6 else if x[i] > x[j] then PSA[i] > PSA[j];

7 else PSA[i] = PSA[j];

8 Rank the elements of PSA and store their ranks in RankPSA;

9 RankPREF ← RankPSA;

10 for k ← 1 to �logn� do

11 Construct an array A of pairs: A[i] = (RankPREF[i],RankPREF[i + 2k−1]);

12 Sort the pairs in A using radix sort and store their ranks in RankCURR;

13 Sort PSA using L, RankPSA, RankCURR, and Fact 2 for the comparison;

14 Rank the elements of PSA and store their new ranks in RankPSA;

15 RankPREF ← RankCURR;

16 return PSA;

3.2 LCP-Based O(n logn)-Time Algorithm

The algorithm presented in this subsection is based on the following fact.

Fact 3. Given two factors of x, x[i1 . . j1] and x[i2 . . j2], with iSA[i1] < iSA[i2],
we have that x[i2 . . j2] ≤ x[i1 . . j1] if and only if j2 − i2 ≤ lcp(iSA[i1], iSA[i2])
and j2 − i2 ≤ j1 − i1.
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Recall that lcp queries for two arbitrary suffixes of x can be answered in time
O(1) per query after an O(n)-time preprocessing of the LCP array of x [9,20]. We
can then perform any optimal comparison-based sorting algorithm (use Fact 3 for
the comparison) on the set of prefixes of suffixes. Thus the total time required is
O(n log n) and the working space is O(n). We formalize this algorithm, denoted
by LCP-PSA, in the pseudocode below.

1 Algorithm LCP-PSA(x, n, L)
2 Compute SA, iSA, LCP,RMQLCP of x;

3 for i ← 0 to n − 1 do

4 PSA[i] ← SA[i];

5 Sort PSA using the following comparison rule for PSA[i] and PSA[j]:

6 if i < j then k ← RMQLCP(i + 1, j);

7 else k ← RMQLCP(j + 1, i);

8 if LCP[k] < min{L[SA[i]], L[SA[j]]} then

9 PSA[i] < PSA[j];

10 else

11 if L[SA[i]] < L[SA[j]] then
12 PSA[i] < PSA[j];

13 else

14 PSA[i] > PSA[j];

15 return PSA;

3.3 Union-Find-Based O(n)-Time Algorithm

In this section we assume the precomputation of SA, iSA and LCP of x. Given
the iSA, the LCP array and L, let fi = max

0≤r≤iSA[i]
{r|LCP[r] < L[i]}. Informally,

fi tells us how many suffixes are lexicographically smaller than x[i . . i+L[i]− 1]
(see also Example 5 in this regard). It follows from the following lemma that in
order to construct the PSA it is enough to sort the ordered pairs (fi,L[i]).

Lemma 4. Given two factors of x, x[i1 . . j1] and x[i2 . . j2], we have that if
(fi1 , j1 − i1) ≤ (fi2 , j2 − i2) then x[i1 . . j1] ≤ x[i2 . . j2].

Proof. Note that x[i . . j] is a prefix of x[SA[fi] . . n − 1]. Thus if

– either fi1 < fi2
– or fi1 = fi2 and j1 − i1 ≤ j2 − i2

then we have that x[i1 . . j1] ≤ x[i2 . . j2]. ��
Example 5 (Running example).
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i 0 1 2 3 4 5 6 7 8
L[i] 4 3 2 1 3 2 3 2 1
SA[i] 6 7 4 2 0 8 5 3 1
LCP[i] 0 1 2 3 1 0 1 2 0
L[SA[i]] 3 2 3 2 4 1 2 1 3
fSA[i] 0 1 2 1 4 5 6 5 8
PSA[i] 6 2 7 4 0 3 8 5 1

For i = 3, we have that iSA[3] = 7, and hence we obtain the pair (f3,L[3]) =
(5, 1).

The computational problem is to compute fi efficiently for all i; for this we
rely on the Union-Find data structure [11] in a similar manner as the authors
in [18]. Our technique also resembles the technique by Kociumaka, Radoszewski,
Rytter and Waleń for answering off-line weighted ancestor queries in trees;
it can be found in the Appendix of [5]. Union-Find maintains a partition of
{0, 1, . . . , n − 1}, where each set has a representative element, and supports
three basic operations:
– MakeSet(n) creates n new sets {0}, {1}, . . . , {n−1}, where the representative

index of set {i} is i.
– Find(i) returns the representative of the set containing i.
– Union(i, j) first finds the set Si containing i and the set Sj containing j. If

Si 	= Sj , then they are replaced by the set Si ∪ Sj .

In the algorithm described below, we only encounter linear Union-Find instances,
in which the sets of the partition consist of consecutive integers and the repre-
sentative of each set is its smallest element. We rely on the following result.

Theorem 6 ([13]). A sequence of q given linear Union and Find operations over
a partition of {0, 1, . . . , n − 1} can be performed in time O(n + q).

We perform the following initialization steps in O(n) time:

1. Initialize an array A of linked lists of size n;
2. Initialize the Union-Find data structure by calling MakeSet(n);
3. Sort indices {0, 1, . . . , n − 1} based on L[i] (store them in an array ML);
4. Sort indices {0, 1, . . . , n− 1} based on LCP[i] (store them in an array MLCP).

Then, for all j from k = max{maxi{LCP[i]},maxi{L[i]}} down to 1 we do the
following:
1. Union(i − 1, i) for each i such that LCP[i] = j using MLCP;
2. We find all i for which L[i] = j using ML and conclude that fi = Find(iSA[i]);

we store i at the head of the linked list A[fi].

Note that after performing the Union operations for some j, the representa-
tive element of the set containing α, Find(α), is the greatest β ≤ α, for which
LCP[β] ≤ j − 1. Thus, in the end of the computation, A[j] stores the indices i,
for which fi = j. In addition, the elements of each list A[j] are in the order of
non-decreasing L[i]. We can thus just read the elements of the linked lists in A
from the left to the right and from the head to the tail to obtain the PSA. We
formalize this algorithm, denoted by UF-PSA, in the pseudocode below.
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1 Algorithm UF-PSA(x, n, L)
2 Compute SA, iSA and LCP of x;

3 Construct a map MLCP such that MLCP[i] = {j|LCP[j] = i};
4 Construct a map ML such that ML[i] = {j|L[j] = i};
5 Initialize an array of lists A of size n;

6 Initialize a Union-Find data structure UF ;

7 UF .MakeSet(n);

8 lcpmax ← max{LCP[0], LCP[1], . . . , LCP[n − 1]};
9 �max ← max{L[0], L[1], . . . , L[n − 1]};

10 for j ← k = max{lcpmax, �max} to 1 do

11 foreach i ∈ MLCP[j] do

12 UF .Union(i − 1, i);

13 foreach i ∈ ML[j] do

14 f ← UF .Find(iSA[i]);

15 Insert i at the head of A[f ];

16 for j ← 0 to n − 1 do

17 foreach i ∈ A[j] do

18 Insert(i,PSA);

19 return PSA;

Example 7 (Running example). The following two tables show the partition of
{0, 1, . . . , n−1} before (top) and after (bottom) the Union operations performed
for j = 1. Each monochromatic block represents a set in the partition.

i 0 1 2 3 4 5 6 7 8
LCP[i] 0 1 2 3 1 0 1 2 0

i 0 1 2 3 4 5 6 7 8
LCP[i] 0 1 2 3 1 0 1 2 0
L[i] 4 3 2 1 3 2 3 2 1

Find operations are then performed for those i for which L[i] = 1. For example
for i = 3 we have that Find(iSA[3]) = Find(7) = 5, since 5 is the smallest element
in the set where 7 belongs. Hence 3 is added in the head of the linked list A[5].

Putting together Lemma 4, Theorem 6 and the above description we obtain
the following.

Theorem 8. Problem Property Suffix Array can be solved in time and
space O(n).

In the standard setting, the SA is usually coupled with the LCP array to allow
for efficient on-line pattern searches (see [20] for the details).
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Definition 9. The property Longest Common Prefix array (pLCP) for x and L
is an integer array of size n such that, for all 1 ≤ r < n, pLCP[r] is the length
of the longest common prefix of x[i . . i + L[i] − 1] and x[j . . j + L[j] − 1], where
i = PSA[r] and j = PSA[r − 1].

Lemma 10. We can compute the pLCP array in time O(n).

Proof. We compute the pLCP array while constructing the PSA as follows. If we
read both PSA[r−1] and PSA[r] from A[j], we set pLCP[r] = L[PSA[r−1]] since
x[i . . i+L[i]−1]] is a prefix of x[i′ . . i′ +L[i′]−1]]. Otherwise, we read PSA[r−1]
from A[j] and PSA[r] = i′ from A[j′] and proceed as follows:

1. If iSA[i′] < iSA[i] then x[i . . i + L[i] − 1] is a prefix of x[i′ . . i′ + L[i′] − 1] and
hence we set pLCP[r] = L[i];

2. Else iSA[i] < iSA[i′], and since L[i] ≤ lcp(j, iSA[i]) and L[i′] ≤ lcp(j′, iSA[i′])
we set pLCP[r] = min{lcp(j, j′),L[i],L[i′]}.

We can compute lcp(j, j′) for all consecutive non-empty lists A[j], A[j′] in a
simple scan of the LCP array in time O(n). ��
Remark 11. Alternatively, we can compute the pLCP array using lcp queries,
since pLCP[r] = min{lcp(PSA[r − 1],PSA[r]),L[PSA[r − 1]],L[PSA[r]]}.

Finally, it is worth noting that the algorithms presented in this section for con-
structing the PSA depend neither on the fact that L[i] ≥ L[i − 1] − 1 nor on the
fact that we have (at most) one substring starting at each position. As a byprod-
uct we thus obtain the following result without the aid of suffix tree, which is
interesting in its own right.

Theorem 12. Given q substrings of a string x of length n, encoded as intervals
over x, we can sort them lexicographically in time O(n + q).

4 Weighted Suffix Array

A weighted sequence X of length |X| = n over an alphabet Σ is an n × σ
matrix that specifies, for each position i ∈ {0, . . . , n − 1} and letter c ∈ Σ,
a probability π

(X)
i (c) of c occurring at position i. If the considered weighted

sequence is unambiguous, we write πi instead of π
(X)
i . These values are non-

negative and sum up to 1 for any given i.
The probability of matching of a string p with a weighted sequence X (|p| =

|X|) equals

P(p,X) =
|p|−1∏

i=0

π
(X)
i (p[i]).

We say that a string p matches a weighted sequence X with probability at least
1
z if P(p,X) ≥ 1

z . By X[i. .j] we denote a weighted sequence called a factor of X
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and equal to X[i] . . . X[j]. We then say that a string p occurs in X at position i
if p matches the factor X[i . . i + |p| − 1].

A weighted sequence is called special if, at each position, it contains at most
one letter with positive probability. In this special case the assumption that the
probabilities sum up to 1 for a given position is waived.

In this section, we present an algorithm for constructing a new index for
a weighted sequence X of length n and a probability threshold 1

z . We com-
bine the ideas presented above with the following powerful combinatorial result
(Theorem 13) presented in [5]. Informally, Theorem 13 tells us that one can
construct in O(nz) time a family of �z� special weighted sequences, each of
length n, that carry all the information about all the strings occurring in X.
More specifically, a string occurs with probability β ≥ 1

z at position i in one of
these �z� special weighted sequences if and only if it occurs at position i of X
with probability β. The authors of [5] used this result to design an O(nz)-time
and O(nz)-space algorithm for constructing the Weighted Index: an O(nz)-sized
suffix-tree-like index for X. The Weighted Index is essentially the PST built over
this family of strings after some appropriate property shifting.

Theorem 13 ([5]). For a weighted sequence X of length n over an integer
alphabet of size σ and a threshold 1

z , one can construct in O(nσ + nz) time
an equivalent collection of �z� special weighted sequences.

Definition 14. The Weighted Suffix Array (WSA) for X and 1
z is an integer

array (of size at most n�z�) storing the path-labels of the terminal nodes of
the Weighted Index for X and 1

z in the order in which they are visited in a
(lexicographic) depth first traversal.

The idea is to create a new special weighted sequence Y by concatenating
these �z� special weighted sequences. At this point we view Y as the standard
string y of length n�z� (at most one letter per position has a positive probability).
The probabilities at each position of Y and the ends of the original �z� special
weighted sequences give array L for y. We then construct the PSA for y and L.

We are not done yet since a string of length m occurring at a position i of
X may occur at several positions j0, j1, . . . , jk−1 in y, with jp = i(mod n) and
L[jp] = m for all 0 ≤ p < k. We naturally want to keep one of these occurrences.
We do that as follows: we identify maximal intervals [r, s] in the PSA satisfying
L[PSA[q]] = pLCP[t] = m for all r − 1 ≤ q ≤ s and r ≤ t ≤ s; for each such
interval, we consider all of the indices in {PSA[q]|r − 1 ≤ q ≤ s} modulo n, we
bucket sort the residuals, and finally keep one representative for each of them.
Doing this for the PSA of y and L from left to right, we end up with an array of
size at most n�z� that is the WSA for X and 1

z .

Theorem 15. The WSA for a weighted sequence X of length n over an integer
alphabet of size σ and a threshold 1

z can be constructed in O(nσ + nz) time.

The WSA for X and 1
z , coupled with the naturally defined weighted Longest

Common Prefix array (wLCP), which can be inferred directly from the pLCP
array of y and L, is an index with comparable capabilities as the ones of the SA
coupled with the LCP array in the standard setting [20].
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Example 16. Let X = [(a, 0.5), (b, 0.5)]bab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)] and
1
z = 1/4. The family of z strings and the corresponding index are as follows:

i 0 1 2 3 4 5
a b a b b b
a b a b a b
b b a b b a
b b a b a a

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
y[i] a b a b b b a b a b a b b b a b b a b b a b a a
WSA[i] 17 22 10 20 8 6 0 14 2 5 16 21 9 19 7 13 1 4 15 18 12 3
L[WSA[i]] 1 2 2 4 4 5 5 4 4 1 2 3 3 5 5 5 5 2 3 5 5 3
wLCP[i] 0 1 1 2 3 4 4 2 3 0 1 2 2 3 4 3 4 1 2 3 4 2

5 Experimental Results

We have implemented algorithms ST-PSA and UF-PSA to compute the PSA. The
programs have been implemented in the C++ programming language and devel-
oped under the GNU/Linux operating system. The input parameters for both
programs are a string of length n and an integer array of size n for the corre-
sponding Π-valid intervals. The output of both programs is the PSA. The source
code is distributed at https://github.com/YagaoLiu/WSA under the GNU Gen-
eral Public License. For comparison purposes, we used the implementation of the
PST from [6] which has a similar interface (https://bitbucket.org/kociumaka/
weighted index). All experiments have been conducted on a Desktop PC using
one core of Intel Xeon CPU E5-2640 at 2.60 GHz. All programs have been com-
piled with g++ version 6.2.0 at optimization level 3 (-O3).

It is well-known, among practitioners and elsewhere, that optimal RMQ data
structures for on-line O(1)-time querying carry high constants in their prepro-
cessing and querying time [3]. One would not thus expect that algorithm LCP-
PSA performs well in practice. Indeed, we have implemented LCP-PSA but we
omit its presentation here since it was too slow for the same inputs.

To evaluate the time and space performance of our implementations, we used
synthetic weighted DNA sequences (σ = 4). We used the weighted sequences to
create a new standard string y and compute the integer array L as described in
Sect. 4. Thus given a weighted sequence of length n and a probability threshold
1
z , we obtained a new string of length nz. In our experiments, we used weighted
sequences of length ranging from 125,000 to 4,000,000; the probability threshold
was set to 1/8. The strings obtained from weighted sequences are thus of length
ranging from 1,000,000 to 32,000,000. The results are plotted in Figs. 1 and 2.
In Fig. 1 we see that: (i) UF-PSA and PST run in linear time; (ii) ST-PSA runs
in (slightly) super-linear time; and (iii) UF-PSA is the fastest of the three imple-
mentations. In Fig. 2 we see that: (i) all three implementations run in linear
space; (ii) PST is by far the most space inefficient of the three implementations;
and (iii) ST-PSA is the most space efficient of the three implementations. The
presented experimental results confirm fully our theoretical findings and justify
the motivation for the contributions of this paper.

https://github.com/YagaoLiu/WSA
https://bitbucket.org/kociumaka/weighted_index
https://bitbucket.org/kociumaka/weighted_index
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Fig. 1. Elapsed time of ST-PSA, UF-PSA, and PST using synthetic texts of length
ranging from 1 MB to 32 MB over the DNA alphabet.
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Fig. 2. Peak memory usage of ST-PSA, UF-PSA, and PST using synthetic texts of
length ranging from 1 MB to 32 MB over the DNA alphabet.
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