
 123

13th Latin American Symposium
Buenos Aires, Argentina, April 16–19, 2018
Proceedings

LATIN 2018:
Theoretical InformaticsLN

CS
 1

08
07

AR
Co

SS
Michael A. Bender
Martín Farach-Colton
Miguel A. Mosteiro (Eds.)

Lecture Notes in Computer Science 10807

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Michael A. Bender • Martín Farach-Colton
Miguel A. Mosteiro (Eds.)

LATIN 2018:
Theoretical Informatics
13th Latin American Symposium
Buenos Aires, Argentina, April 16–19, 2018
Proceedings

123

Editors
Michael A. Bender
Stony Brook University
Stony Brook, NY
USA

Martín Farach-Colton
Rutgers University
New Brunswick, NJ
USA

Miguel A. Mosteiro
Pace University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-77403-9 ISBN 978-3-319-77404-6 (eBook)
https://doi.org/10.1007/978-3-319-77404-6

Library of Congress Control Number: 2018937360

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-3616-7788
http://orcid.org/0000-0001-5842-6256

Preface

This volume contains the papers presented at the 13th Latin American Theoretical
Informatics Symposium (LATIN 2018) held during April 16–19, 2018, in Buenos Aires,
Argentina. Previous editions of LATIN took place in São Paulo, Brazil (1992),
Valparaíso, Chile (1995), Campinas, Brazil (1998), Punta del Este, Uruguay (2000),
Cancún, México (2002), Buenos Aires, Argentina (2004), Valdivia, Chile (2006), Buzios,
Brazil (2008), Oaxaca, México (2010), Arequipa, Perú (2012), Montevideo, Uruguay
(2014), and Ensenada, México (2016).

The conference received 161 submissions from around the world. Each submission
was reviewed by four Program Committee members, often with the help of additional
external referees. After an electronic discussion, the committee selected 63 submissions
for presentation.

The LATIN symposium featured keynote talks by Flavia Bonomo (Universidad de
Buenos Aires), Leslie Goldberg (University of Oxford), Andrea Richa (Arizona State
University), and Santosh Vempala (Georgia Institute of Technology).

The Program Committee was delighted to present the Alejandro Lopez-Ortiz Best
Paper Award jointly to the following papers: “An Average-Case Lower Bound against
ACC^0” by Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam, and
“Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees” by
Bahareh Banyassady, Luis Barba, and Wolfgang Mulzer.

The Imre Simon Test-of-Time Award, which was started in 2012, is given to the
authors of the LATIN paper deemed to be most influential among all those published at
least ten years prior to the current edition of the conference. Papers published in the
LATIN proceedings up to and including 2008 were eligible for the 2018 award. This
year the winner was Marie-France Sagot for her paper “Spelling Approximate Repeated
or Common Motifs Using a Suffix Tree,” which appeared at LATIN 1998.

Many people helped to make LATIN 2018 possible. First, we would like to rec-
ognize the outstanding work of the members of the Program Committee. Their com-
mitment contributed to a detailed discussion on each of the submitted papers. We also
want to thank the Organizing Committee for their thorough job running LATIN 2018.
Finally, we want to thank the Steering Committee for their advice and feedback.

We are grateful for the facilities provided by EasyChair for paper evaluation and the
preparation of this volume.

April 2018 Michael A. Bender
Martín Farach-Colton
Miguel A. Mosteiro

The Imre Simon Test-of-Time Award

The LATIN 2018 winner of the Imre Simon Test-of-Time Paper Award considering
papers up to the 2008 edition of the conference is:

Spelling Approximate Repeated or Common Motifs Using a Suffix Tree, by
Marie-France Sagot, LATIN 1998, LNCS 1380, 374–390, 1998.

Sequence motifs are recurring patterns (arrangement of characters) that may have
some biological significance for example in DNA studies. When the sequence of
characters of the motif is known, search methods can take advantage of such infor-
mation to find the motif in the sequence. Classical algorithms for this task include
Boyer-Moore, Rabin-Karp, suffix trees, and so on. Central problems are then the dis-
covery of motifs, that is to find the order in which their characters appear, and the study
of repetitions of motifs from a sequence.

In her LATIN’98 paper, Sagot gives algorithmic solutions to the latter problem
when up to a certain number of mismatches are allowed and the motif appears a given
minimum number of times. The algorithms consider that the motif may not be exactly
present in the sequence. These motifs are called models. Waterman introduced this type
of studies in the 1980’s. Improved algorithms were given by several authors including
Baeza-Yates and Myers, among others. The algorithms in Sagot’s LATIN’98 article are
not only elegant but also efficient by avoiding costly traversals of the suffix tree.
Moreover, by pruning branches in that tree when constraints conditions are not satis-
fied, the complexity is further reduced. Sagot’s article is seminal in the sense that it is
the first systematic use of suffix trees for the purpose of motif extraction.

In considering Sagot’s paper for the award, the selection committee was impressed
by the relevance of the problem addressed, originality of the technique used to solve it,
clarity of presentation, widespread recognition, and number of citations in the
literature.

Marcos Kiwi
Daniel Panario

Jacques Sakarovitch

Organization

Program Committee

Eric Allender Rutgers University, USA
Gabriela Araujo-Pardo Universidad Nacional Autónoma de México, Mexico
Esther Arkin Stony Brook University, USA
Jérémy Barbay Universidad de Chile, Chile
Michael A. Bender Stony Brook University, USA
Vladimir Braverman Johns Hopkins University, USA
Luciana Buriol Universidade Federal do Rio Grande do Sul, Brazil
Armando Castañeda Universidad Nacional Autónoma de México, Mexico
Keren Censor-Hillel Technion Israel Institute of Technology, Israel
Witold Charatonik University of Wroclaw, Poland
Jing Chen Stony Brook University, USA
Giorgos Christodoulou University of Liverpool, UK
Guy Even Tel Aviv University, Israel
Cristina G. Fernandes University of São Paulo, Brazil
Antonio Fernández Anta IMDEA Networks Institute, Spain
Paolo Ferragina University of Pisa, Italy
Celina De Figueiredo Universidade Federal do Rio de Janeiro, Brazil
Jeremy Fineman Georgetown University, USA
Johannes Fischer Technische Universität Dortmund, Germany
Paola Flocchini University of Ottawa, Canada
Lance Fortnow Georgia Institute of Technology, USA
Pierre Fraigniaud CNRS and University of Paris Diderot, France
Juan Garay Texas A&M University, USA
Leszek Gasieniec University of Liverpool, UK
Seth Gilbert National University of Singapore
Julián Gutierrez University of Oxford, UK
Inge Li Gørtz Technical University of Denmark
John Iacono New York University, USA
Taisuke Izumi Nagoya Institute of Technology, Japan
Jesper Jansson The Hong Kong Polytechnic University, SAR China
Gabriela Jerónimo Universidad de Buenos Aires, Argentina
Artur Jeisż University of Wroclaw, Poland
Rob Johnson VMware Research
Tomasz Jurdzinski University of Wroclaw, Poland
Shuji Kijima Kyushu University, Japan
Michal Koucky Charles University, Czech Republic
Yiannis Koutis University of Puerto Rico
Sławomir Lasota University of Warsaw, Poland
Reut Levi Max-Planck-Institut für Informatik, Germany

Min Chih Lin Universidad de Buenos Aires, Argentina
Claudia Linhares Sales Universidade Federal do Ceara, Brazil
Javier Marenco Universidad Nacional de General Sarmiento

and Universidad de Buenos Aires, Argentina
Conrado Martínez Universitat Politècnica de Catalunya, Spain
Moti Medina Max-Planck-Institut für Informatik, Germany
Joseph S. B. Mitchell Stony Brook University, USA
Marco Molinaro Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Miguel A. Mosteiro Pace University, USA
Marcelo Mydlarz Universidad Nacional de General Sarmiento

and CONICET, Argentina
Calvin Newport Georgetown University, USA
Igor Potapov University of Liverpool, UK
Jared Saia University of New Mexico, USA
Rodrigo Silveira Universitat Politècnica de Catalunya, Spain
José A. Soto Universidad de Chile, Chile
Paul Spirakis University of Liverpool and University of Patras,

UK/Greece
Grzegorz Stachowiak University of Wroclaw, Poland
Maya Stein Universidad de Chile, Chile
Frank Stephan National University of Singapore
Christopher Thraves Universidad de Concepción, Chile
Denis Trystram Grenoble Alpes University, France
José Verschae Pontificia Universidad Católica de Chile, Chile
Mark Daniel Ward Purdue University, USA
Andreas Wiese Universidad de Chile, Chile
Prudence Wong University of Liverpool, UK
Yukiko Yamauchi Kyushu University, Japan
Maxwell Young Mississippi State University, USA

Additional Reviewers

Abrahamsen, Mikkel
Afshani, Peyman
Aggarwal, Abhinav
Akrida, Eleni C.
Alcantara, Manuel
Almeida, Sheila
Amir, Amihood
Andoni, Alexandr
Araujo, Julio
Arias, Jaime
Azar, Yossi
Bahamondes, Bastián
Balko, Martin

Barmak, Jonathan
Bartal, Yair
Baste, Julien
Bell, Paul
Benevides, Fabricio S.
Berenbrink, Petra
Berndt, Sebastian
Bille, Philip
Blaum, Manuela
Bodlaender, Hans L.
Boettcher, Stefan
Bornstein, Claudson
Bougeret, Marin

Bourhis, Pierre
Bournez, Olivier
Braga, Mónica
Braga, Rodrigo
Bringmann, Karl
Buchin, Maike
Byrka, Jaroslaw
Béal, Marie-Pierre
Böhm, Martin
Ceccarello, Matteo
Chabchoub, Yousra
Chalermsook, Parinya
Cheong, Otfried

X Organization

Chitnis, Rajesh
Chiu, Hua-Sheng
Chiu, Kenny
Coelho de Pina, Jose
Coelho, Rafael
Courcelle, Bruno
Cournier, Alain
Cseh, Ágnes
Cung, Van Dat
Cunha, Luis
Czyzowicz, Jurek
Da Fonseca,
Guilherme Dias
Dabrowski, Konrad
Dabrowski, Konrad

Kazimierz
Daescu, Ovidiu
Das, Bireswar
Datta, Ajoy K.
de Lima, Paloma
De Loera, Jesús
de Oliveira Oliveira,

Mateus
de Rezende, Pedro J.
Debiasio, Louis
Deligkas, Argyrios
Delle Donne, Diego
Dominik, Köppl
Dory, Michal
Driemel, Anne
Dudek, Bartek
Dudycz, Szymon
Durocher, Stephane
Dvorak, Pavel
Dvorak, Zdenek
Dybdahl Ahle, Thomas
Dürr, Christoph
Edwards, Katherine
Epstein, Leah
Escalante, Mariana
Escoffier, Bruno
Eto, Hiroshi
Ettienne, Mikko Berggren
Fabila-Monroy, Ruy
Fagerberg, Rolf
Faure, Adrien

Fernau, Henning
Feuerstein, Esteban
Fichtenberger, Hendrik
Fijalkow, Nathanaël
Fluschnik, Till
Freire, Alexandre
Frieze, Alan
Fulek, Radoslav
García Pardo, Eduardo
Garncarek, Pawel
Gaspers, Serge
Gawrychowski, Pawel
Gańczorz, Michał
Ghosh, Shamik
Giannopoulos, Panos
Gliesch, Alex
Goddard, Wayne
Gonze, François
Gonçalves, Daniel
Goranci, Gramoz
Gorecki, Pawel
Guedes, André L. P.
Gupta, Diksha
Gusev, Vladimir
Hagerup, Torben
Har-Peled, Sariel
Herrero, María Isabel
Heydrich, Sandy
Hirvensalo, Mika
Horiyama, Takashi
Huemer, Clemens
Ibarra, Louis
Ibsen-Jensen, Rasmus
Italiano, Giuseppe F.
Jeż, Łukasz
Jiménez, Andrea
Kanté, Mamadou

Moustapha
Keil, Mark
Kesselheim, Thomas
Khoury, Seri
Kiwi, Marcos
Kiyomi, Masashi
Kleiman, Elena
Klein, Rolf
Klimm, Max

Knauer, Kolja
Knop, Dušan
Ko, Sang-Ki
Koch, Ivo
Koivisto, Mikko
Korman, Matias
Kortsarz, Guy
Kostitsyna, Irina
Kowalik, Lukasz
Kraska, Artur
Kratsch, Stefan
Krumpe, Filip
Krysta, Piotr
Kunysz, Adam
Kurpicz, Florian
Kynčl, Jan
Kézdy, André
Łacki, Jakub
Lampis, Michael
Lamprou, Ioannis
Lang, Harry
Laurent, Monique
Lenzen, Christoph
Levcopoulos, Christos
Levin, Keith
Li, Bo
Liu, Hsiang-Hsuan
Lopes, Fabio
Lucarelli, Giorgio
Madduri, Kamesh
Maia, Ana Karolinna
Mallmann-Trenn, Frederik
Marcinkowski, Jan
Marino, Andrea
Martin, Russell
Matera, Guillermo
Mayer, Tyler
Mazzoleni, María Pía
McCauley, Samuel
Melissourgos,
Themistoklis
Menezes, Alfred
Mertzios, George
Mezzini, Mauro
Mikulski, Lukasz
Mizrahi, Michel J.

Organization XI

Molloy, Michael
Montealegre, Pedro
Mouawad, Amer
Moura, Phablo
Mozes, Shay
Mulzer, Wolfgang
Musial, Jedrzej
Mydlarz, Marcelo
Najib, Muhammad
Nederlof, Jesper
Nenadov, Rajko
Nichterlein, André
Niklitschek, Sebastian
Niskanen, Reino
Nogueira, Loana
Nowicki, Krzysztof
Obdrzalek, Jan
Oh, Eunjin
Olarte, Carlos
Oliveira, Fabiano
Oliveros, Deborah
Ooshita, Fukuhito
Otop, Jan
Pagh, Rasmus
Paixao, Joao
Palfrader, Peter
Paluch, Katarzyna
Panagopoulou, Panagiota
Panolan, Fahad
Parys, Paweł
Paz, Ami
Pedrosa, Lehilton L. C.
Pelayo, Ignacio M.
Pemmaraju, Sriram
Penso, Lucia Draque
Pereira, André Grahl
Perifel, Sylvain
Perrucci, Daniel
Phillips, Cindy
Posner, Daniel
Possani, Edgar
Préa, Pascal
Psarros, Ioannis
Pérez-Lantero, Pablo

Quesada, Luis
Rabinovich, Yuri
Rajasekaran, Senthil
Raptopoulos, Christoforos
Rau, Malin
Ravi, R.
Razenshteyn, Ilya
Rojas, Javiel
Rosone, Giovanna
Rotenberg, Eva
Roy, Bodhayan
Rubio-Montiel, Christian
Rué, Juanjo
Sabia, Juan
Safe, Martín Darío
Salamon, Andras
Samal, Robert
Sampaio, Rudini
San Felice, Mário César
Sankowski, Piotr
Satti, Srinivasa Rao
Schewior, Kevin
Schlachter, Uli
Schmidt, Melanie
Schouery, Rafael
Schwiegelshohn, Chris
Seara, Carlos
Seco, Diego
Semikhin, Pavel
Serna, Maria
Servedio, Rocco
Shallit, Jeffrey
Shalom, Mordo
Sheehy, Don
Shi, Yangguang
Shiraga, Takeharu
Shrestha, Yash Raj
Shun, Julian
Silva, Ana
Sinclair, Alistair
Singh, Shikha
Soares, Ronan
Soulignac, Francisco
Souza, Críston

Souza, Ueverton
Srivastav, Abhinav
Sucupira, Rubens
Sudo, Yuichi
Szegedy, Mario
Szykuła, Marek
Telha, Claudio
Thaler, Justin
Totzke, Patrick
Trehan, Amitabh
Ueckerdt, Torsten
Uitto, Jara
Uno, Yushi
Upadhyay, Jalaj
Vahrenhold, Jan
Valencia-Pabon, Mario
van Stee, Rob
Vassiliev, Saveli
Verdugo, Victor
Viglietta, Giovanni
Vigneron, Antoine
Viola, Emanuele
Wagner, Frederic
Walczak, Bartosz
Wang, Haitao
Ward, Justin
Wasa, Kunihiro
Wei, Fan
Wilfong, Gordon
Winkler, Peter
Winslow, Andrew
Witkowski, Piotr
Woodall, William
Wright, John
Wulff-Nilsen, Christian
Yang, Lin
Zamora, José
Zehavi, Meirav
Zhang, Peng
Zhou, Samson
Zito, Michele
Zokaei Ashtiani, Hassan

XII Organization

Contents

The Graph Tessellation Cover Number: Extremal Bounds, Efficient
Algorithms and Hardness . 1

Alexandre Abreu, Luís Cunha, Tharso Fernandes, Celina de Figueiredo,
Luis Kowada, Franklin Marquezino, Daniel Posner,
and Renato Portugal

Approximate Correlation Clustering Using Same-Cluster Queries 14
Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal

Finding Tight Hamilton Cycles in Random Hypergraphs Faster 28
Peter Allen, Christoph Koch, Olaf Parczyk, and Yury Person

Walking Through Waypoints . 37
Saeed Akhoondian Amiri, Klaus-Tycho Foerster,
and Stefan Schmid

A Collection of Lower Bounds for Online Matching on the Line 52
Antonios Antoniadis, Carsten Fischer, and Andreas Tönnis

On the Complexity of Finding Internally Vertex-Disjoint Long
Directed Paths . 66

Júlio Araújo, Victor A. Campos, Ana Karolinna Maia, Ignasi Sau,
and Ana Silva

Algorithms and Hardness Results for Nearest Neighbor Problems
in Bicolored Point Sets . 80

Sandip Banerjee, Sujoy Bhore, and Rajesh Chitnis

A Polynomial Sized Kernel for Tracking Paths Problem 94
Aritra Banik, Pratibha Choudhary, Daniel Lokshtanov,
Venkatesh Raman, and Saket Saurabh

Time-Space Trade-Offs for Computing Euclidean Minimum
Spanning Trees . 108

Bahareh Banyassady, Luis Barba, and Wolfgang Mulzer

Approximate Nearest Neighbor Search for ‘p-Spaces
ð2\p\1Þ via Embeddings. 120

Yair Bartal and Lee-Ad Gottlieb

The Impact of Locality on the Detection of Cycles in the Broadcast
Congested Clique Model . 134

Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca

Partitioning Orthogonal Histograms into Rectangular Boxes 146
Therese Biedl, Martin Derka, Veronika Irvine, Anna Lubiw,
Debajyoti Mondal, and Alexi Turcotte

Compact Self-Stabilizing Leader Election for General Networks 161
Lélia Blin and Sébastien Tixeuil

Random Walks with Multiple Step Lengths . 174
Lucas Boczkowski, Brieuc Guinard, Amos Korman, Zvi Lotker,
and Marc Renault

Tight Kernels for Covering and Hitting: POINT HYPERPLANE COVER

and POLYNOMIAL POINT HITTING SET . 187
Jean-Daniel Boissonnat, Kunal Dutta, Arijit Ghosh,
and Sudeshna Kolay

A Tight Bound for Shortest Augmenting Paths on Trees 201
Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski,
and Anna Zych-Pawlewicz

Approximation Algorithms for Replenishment Problems
with Fixed Turnover Times . 217

Thomas Bosman, Martijn van Ee, Yang Jiao,
Alberto Marchetti-Spaccamela, R. Ravi, and Leen Stougie

Maximum Box Problem on Stochastic Points . 231
Luis Evaristo Caraballo, Pablo Pérez-Lantero, Carlos Seara,
and Inmaculada Ventura

The Online Set Aggregation Problem. 245
Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae

Agglomerative Clustering of Growing Squares . 260
Thom Castermans, Bettina Speckmann, Frank Staals, and Kevin Verbeek

Fourier Entropy-Influence Conjecture for Random Linear
Threshold Functions . 275

Sourav Chakraborty, Sushrut Karmalkar, Srijita Kundu,
Satyanarayana V. Lokam, and Nitin Saurabh

Property Suffix Array with Applications . 290
Panagiotis Charalampopoulos, Costas S. Iliopoulos, Chang Liu,
and Solon P. Pissis

Competitive Algorithms for Demand Response Management
in Smart Grid . 303

Vincent Chau, Shengzhong Feng, and Nguyen Kim Thang

XIV Contents

An Average-Case Lower Bound Against ACC . 317
Ruiwen Chen, Igor C. Oliveira, and Rahul Santhanam

Compressed Indexing with Signature Grammars . 331
Anders Roy Christiansen and Mikko Berggren Ettienne

Combinatorics of Beacon-Based Routing in Three Dimensions 346
Jonas Cleve and Wolfgang Mulzer

On Split B1-EPG Graphs . 361
Zakir Deniz, Simon Nivelle, Bernard Ries, and David Schindl

Efficient Algorithms for Computing a Minimal Homology Basis. 376
Tamal K. Dey, Tianqi Li, and Yusu Wang

Shifting the Phase Transition Threshold for Random Graphs Using Degree
Set Constraints . 399

Sergey Dovgal and Vlady Ravelomanana

On the Biased Partial Word Collector Problem . 413
Philippe Duchon and Cyril Nicaud

Constructive Ramsey Numbers for Loose Hyperpaths 427
Andrzej Dudek and Andrzej Ruciński

Cache Oblivious Sparse Matrix Multiplication . 437
Matteo Dusefante and Riko Jacob

Don’t Rock the Boat: Algorithms for Balanced Dynamic Loading
and Unloading . 448

Sándor P. Fekete, Sven von Höveling, Joseph S. B. Mitchell,
Christian Rieck, Christian Scheffer, Arne Schmidt, and James R. Zuber

Probabilistic Analysis of Online (Class-Constrained) Bin Packing
and Bin Covering . 461

Carsten Fischer and Heiko Röglin

Locating the Eigenvalues for Graphs of Small Clique-Width 475
Martin Fürer, Carlos Hoppen, David P. Jacobs, and Vilmar Trevisan

On the Approximation Ratio of Lempel-Ziv Parsing 490
Travis Gagie, Gonzalo Navarro, and Nicola Prezza

Kernelization for Maximum Happy Vertices Problem 504
Hang Gao and Wenyu Gao

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 515
Serge Gaspers, Joachim Gudmundsson, Michael Horton,
and Stefan Rümmele

Contents XV

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 529
Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 544
Roberto Grossi, Andrea Marino, and Luca Versari

Transversals of Longest Cycles in Chordal and Bounded
Tree-Width Graphs . 558

Juan Gutiérrez

Majority Model on Random Regular Graphs . 572
Bernd Gärtner and Ahad N. Zehmakan

Property Testing for Point Sets on the Plane. 584
Jie Han, Yoshiharu Kohayakawa, Marcelo Tadeu Sales,
and Henrique Stagni

Maximal and Convex Layers of Random Point Sets 597
Meng He, Cuong P. Nguyen, and Norbert Zeh

Plane Gossip: Approximating Rumor Spread in Planar Graphs 611
Jennifer Iglesias, Rajmohan Rajaraman, R. Ravi, and Ravi Sundaram

Algorithms and Bounds for Very Strong Rainbow Coloring 625
L. Sunil Chandran, Anita Das, Davis Issac, and Erik Jan van Leeuwen

New Integer Linear Programming Models for the Vertex
Coloring Problem . 640

Adalat Jabrayilov and Petra Mutzel

Submodular Maximization with Uncertain Knapsack Capacity 653
Yasushi Kawase, Hanna Sumita, and Takuro Fukunaga

Select and Permute: An Improved Online Framework for Scheduling
to Minimize Weighted Completion Time . 669

Samir Khuller, Jingling Li, Pascal Sturmfels, Kevin Sun,
and Prayaag Venkat

Recognizing Generalized Transmission Graphs of Line Segments
and Circular Sectors . 683

Katharina Klost and Wolfgang Mulzer

A Tight Lower Bound for an Online Hypercube Packing Problem
and Bounds for Prices of Anarchy of a Related Game 697

Yoshiharu Kohayakawa, Flávio Keidi Miyazawa,
and Yoshiko Wakabayashi

XVI Contents

The Parameterized Complexity of Cycle Packing: Indifference
is Not an Issue . 712

R. Krithika, Abhishek Sahu, Saket Saurabh, and Meirav Zehavi

Satisfying Neighbor Preferences on a Circle . 727
Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny,
and Sunil Shende

Two-Dimensional Knapsack for Circles . 741
Carla Negri Lintzmayer, Flávio Keidi Miyazawa,
and Eduardo Candido Xavier

Scheduling Parallelizable Jobs Online to Maximize Throughput 755
Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley

Reactive Proximity Data Structures for Graphs . 777
David Eppstein, Michael T. Goodrich, and Nil Mamano

Mutants and Residents with Different Connection Graphs
in the Moran Process . 790

Themistoklis Melissourgos, Sotiris Nikoletseas,
Christoforos Raptopoulos, and Paul Spirakis

A Framework for Algorithm Stability and Its Application to Kinetic
Euclidean MSTs . 805

Wouter Meulemans, Bettina Speckmann, Kevin Verbeek,
and Jules Wulms

Rapid Mixing of k-Class Biased Permutations. 820
Sarah Miracle and Amanda Pascoe Streib

Transition Operations over Plane Trees . 835
Torrie L. Nichols, Alexander Pilz, Csaba D. Tóth,
and Ahad N. Zehmakan

Analysis of the Continued Logarithm Algorithm . 849
Pablo Rotondo, Brigitte Vallée, and Alfredo Viola

Quadratic Simulations of Merlin–Arthur Games . 864
Thomas Watson

On Counting Perfect Matchings in General Graphs 873
Daniel Štefankovič, Eric Vigoda, and John Wilmes

Author Index . 887

Contents XVII

The Graph Tessellation Cover Number:
Extremal Bounds, Efficient Algorithms

and Hardness

Alexandre Abreu1, Lúıs Cunha2, Tharso Fernandes3,4,
Celina de Figueiredo1(B), Luis Kowada2, Franklin Marquezino1,

Daniel Posner1, and Renato Portugal4

1 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
{santiago,celina,franklin,posner}@cos.ufrj.br
2 Universidade Federal Fluminense, Niterói, Brazil

{lfignacio,luis}@ic.uff.br
3 Universidade Federal do Esṕırito Santo, Vitória, Brazil

4 Laboratório Nacional de Computação Cient́ıfica, Petrópolis, Brazil
{tharsodf,portugal}@lncc.br

Abstract. A tessellation of a graph is a partition of its vertices into
vertex disjoint cliques. A tessellation cover of a graph is a set of tessel-
lations that covers all of its edges. The t-tessellability problem aims
to decide whether there is a tessellation cover of the graph with t tessel-
lations. This problem is motivated by its applications to quantum walk
models, in especial, the evolution operator of the staggered model is
obtained from a graph tessellation cover. We establish upper bounds on
the tessellation cover number given by the minimum between the chro-
matic index of the graph and the chromatic number of its clique graph
and we show graph classes for which these bounds are tight. We prove
NP-completeness for t-tessellability if the instance is restricted to
planar graphs, chordal (2, 1)-graphs, (1, 2)-graphs, diamond-free graphs
with diameter five, or for any fixed t at least 3. On the other hand, we
improve the complexity for 2-tessellability to a linear-time algorithm.

Keywords: Staggered quantum walk · Clique graph · Tessellation

1 Introduction

Random walks play an important role in Computer Science mainly in the area
of algorithms and it is expected that quantum walks, which is the quantum
counterpart of random walks, will play at least a similar role in Quantum Com-
putation. In fact, the interest in quantum walks has grown considerably in the
last decades, especially because they can be used to build quantum algorithms
that outperform their classical counterparts [1].

This work was partially supported by the Brazilian agencies CAPES, CNPq and
FAPERJ.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-319-77404-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_1&domain=pdf

2 A. Abreu et al.

Recently, the staggered quantum walk model [2] was proposed. This model
is defined by an evolution operator, which is described by a product of local
unitary matrices obtained from a graph tessellation cover. A tessellation is a
partition of the vertices of a graph into vertex disjoint cliques, and a tessellation
cover is a set of tessellations so that the union covers the edge set. In order to
fully understand the possibilities of the staggered model, it is fundamental to
introduce the t-tessellability problem. This problem aims to decide whether
a given graph can be covered by t tessellations.

The simplest evolution operators are the product of few local unitary matri-
ces, and at least two matrices (corresponding to 2-tessellable graphs) are
required. There is a recipe to build a local unitary matrix based on a tessel-
lation [2]. Each clique of the partition establishes a neighborhood around which
the walker can move under the action of the local unitary matrix. To define
the evolution operator of the quantum walk, one has to include extra tessella-
tions until the tessellation union covers the edge set. Figure 1 depicts an example
of how a quantum walker could spread across the vertices of a graph, given a
particular tessellation cover. Bold vertices represent non-zero amplitudes, mean-
ing that a measurement of the position can reveal the walker at one of those
vertices. Note that after each step the walker spreads across the cliques in the
corresponding tessellation.

Fig. 1. The spreading of a walker subject to locality across a 2-tessellable graph. At
each step, the walker may be observed at bold vertices.

The study of tessellations in the context of Quantum Computing was pro-
posed by Portugal et al. [2] with the goal of obtaining the dynamics of quantum
walks. Portugal analyzed the 2-tessellable case in [3] and we described examples
for the t-tessellable case in [4]. The present work is the first systematic attempt
to study the tessellation problem as a branch of Graph Theory. Our aim is the
study of graph classes with extremal tessellation cover numbers, efficient algo-
rithms, and hardness.

We describe upper bounds in Sect. 2. We establish graph classes for which
these bounds are tight in Sect. 3. We use these graphs with extremal tessellation
covers to establish hardness results for several graph classes in Sect. 4. We obtain
proofs of t-tessellability NP-completeness for planar graphs, chordal (2, 1)-
graphs, (1, 2)-graphs, diamond-free graphs with diameter five, or if t is fixed for
t ≥ 3. Moreover, we describe a linear-time algorithm for 2-tessellability.

2 Preliminaries on the Tessellation Cover Number

A clique is a subset of vertices of a graph such that its induced subgraph is
complete. The size of a maximum clique of a graph G is denoted by ω(G).

The Graph Tessellation Cover Number 3

The clique graph K(G) is the intersection graph of the maximal cliques of G. A
partition of the vertices of a graph into cliques is a collection of vertex disjoint
cliques, where the union of these cliques is the vertex set. Clique graphs play
a central role in tessellation covers. (See [5] for an extensive survey on clique
graphs and [6] for omitted graph theory terminologies).

Definition 1. A tessellation T is a partition of the vertices of a graph into
cliques. An edge belongs to the tessellation T if and only if its endpoints belong
to the same clique in T . The set of edges belonging to T is denoted by E(T).

Definition 2. Given a graph G with edge set E(G), a tessellation cover of
size t of G is a set of t tessellations T1, . . . , Tt, whose union ∪t

i=1 E(Ti) = E(G). A
graph G is called t-tessellable if there is a tessellation cover of size at most t. The
t-tessellability problem aims to decide whether a graph G is t-tessellable.
The tessellation cover number T (G) is the size of a smallest tessellation
cover of G.

A coloring (resp. an edge-coloring) of a graph is a labeling of the vertices
(resp. edges) with colors such that no two adjacent vertices (resp. incident edges)
have the same color. A k-colorable (resp. k-edge-colorable) graph is the one which
admits a coloring (resp. an edge-coloring) with at most k colors. The chromatic
number χ(G) (resp. chromatic index χ′(G)) of a graph G is the smallest number
of colors needed to color the vertices (resp. edges) of G.

Note that an edge-coloring of a graph G induces a tessellation cover of G.
Each color class induces a partition of the vertex set into disjoint cliques of size
two (vertices incident to edges of that color) and cliques of size one (vertices not
incident to edges of that color), which forms a tessellation. Moreover, a coloring
of K(G) induces a tessellation cover of G. As presented in [4], two vertices of
the same color in K(G) correspond to disjoint maximal cliques of G and every
edge of G is in at least one maximal clique. So, each color in K(G) defines a
tessellation in G by possibly adding cliques of size one (vertices that do not
belong to maximal cliques of G, which are related to vertices of K(G) with that
color), such that the union of these tessellations is the edge set of G. Hence, we
have the following upper bounds.

Theorem 1. If G is a graph, then T (G) ≤ min {χ′(G), χ(K(G))}.

Portugal [3] characterized the 2-tessellable graphs as those whose clique graphs
are bipartite graphs. In order to characterize t-tessellable graphs, for t ≥ 3, we
were able to find graph classes such that T (G) = 3, with χ′(G) and χ(K(G))
arbitrarily large, and additionally graph classes with extremal values of Theo-
rem 1, i.e. T (G) = χ′(G) but χ(K(G)) arbitrarily large; and T (G) = χ(K(G))
but χ′(G) arbitrarily large, some of those examples were described in [4].

An interesting case occurs for a triangle-free graph. Note that any of its
tessellations can only be formed by cliques of size two or one. Hence, we have
an extremal result that if G is a triangle-free graph, then T (G) = χ′(G).

4 A. Abreu et al.

A graph is (k, �) if its vertex set can be partitioned into k stable sets and
� cliques. Particularly, (2, 0)-graphs are bipartite graphs. It is known how to
Δ-edge-color bipartite graphs [7] and to Δ-edge-color {triangle,proper major}-
free graphs [8] in polynomial time. Therefore, not only t-tessellability is
polynomial time solvable for bipartite graphs and for {triangle,proper major}-
free graphs, but there are also polynomial time procedures to obtain a mini-
mum tessellation cover for these graph classes. Besides that, it is known that
3-edge colorability of triangle-free graphs is NP-complete [9]. Therefore,
3-tessellability of triangle-free graphs is also NP-complete.

3 Extremal Tessellation Covers

Throughout the paper, an extremal tessellation cover of a graph is one of its
tessellation covers whose size reaches an upper bound of Theorem 1. We are par-
ticularly interested in constructing graphs for which these extremal tessellation
covers correspond (or are close) to an optimal edge coloring or an optimal vertex
coloring of the clique graph of the original graph. For the sake of convenience,
we may omit one-vertex cliques inside tessellations in our proofs.

Construction 1. Let H be obtained from a graph G by adding a star with
χ′(G) leaves and identifying one of these leaves with a minimum degree vertex
of G.

The tessellation cover number of H, obtained from Construction 1 on a non-
regular graph G, is equal to its original chromatic index, i.e., T (H) = χ′(H) =
χ′(G). For regular graphs, if χ′(G) = Δ + 1, then T (H) = χ′(H) = χ′(G).
Otherwise, T (H) = χ′(H) = χ′(G) + 1. Construction 1 also implies that every
non-regular graph G is subgraph of a graph H with T (H) = χ′(H) = χ′(G).

Similarly, there exists a construction in diamond-free graphs, which are the
{K4\{e}}-free graphs, to force the tessellation cover number to be equal to the
original chromatic number of the clique graph. First, we define a property of the
cliques on a tessellation called exposed maximal clique. Such a property helps
us with particular cases of diamond-free graphs.

Definition 3. A maximal clique K of a graph G is said exposed by a tessellation
cover C if E(K) �⊆ E(T) for all T ∈ C, that is, the edges of K are covered by no
tessellation of C.

Lemma 1. A graph G admits a minimum tessellation cover with no exposed
maximal cliques if and only if T (G) = χ(K(G)).

In the remaining part of this section we consider diamond-free graphs, which
have the following properties [10]: (1) their clique-graphs are diamond-free, and
(2) any two maximal cliques intersect in at most one vertex.

Theorem 2. If G is a diamond-free graph with χ(K(G)) = ω(K(G)), then
T (G) = χ(K(G)).

The Graph Tessellation Cover Number 5

A graph is K-perfect if its clique graph is perfect [11]. Since a diamond-free K-
perfect graph G satisfies the premises of Theorem 2, we have T (G) = χ(K(G)).
Note that the size of the clique graph of a diamond-free graph is polynomially
bounded by the size of the original graph. Moreover, there is a polynomial-time
algorithm to obtain an optimal coloring of K(G) with ω(K(G)) colors [12] and,
by Theorem 1, a coloring of K(G) with t colors yields that G is t-tessellable.
Thus, both the tessellation cover number and a minimum tessellation cover of
diamond-free K-perfect graphs are obtained in polynomial time.

Interestingly, there are diamond-free graphs whose clique graphs have chro-
matic number greater than the tessellation cover number. Figure 2 illustrates an
example of a 3-tessellable diamond-free graph whose clique graph has chromatic
number 4 (the clique graph K(G) is the Grötzsch graph, i.e. Mycielskian of a
5-cycle graph). Note that any minimum tessellation cover of this graph necessar-
ily has an exposed maximal clique. Moreover, this graph shows that the upper
bound of Theorem3 is tight.

Fig. 2. Example of a 3-tessellable graph G whose clique graph is the Mycielskian of a
C5, with χ(K(G)) = 4 but T (G) = 3. Each tessellation is depicted separately.

Lemma 2. Let G be a 3-tessellable diamond-free graph. If C1 and C2 are two
maximal cliques of G with a common vertex, then C1 and C2 cannot be both
exposed by a minimum tessellation cover.

Theorem 3. If G is a 3-tessellable diamond-free graph, then 3 ≤ χ(K(G)) ≤ 4.

We finish this section with a construction which forces the tessellation cover
number of a graph H, obtained from Construction 2 on a diamond-free graph
G, to be T (H) = χ(K(H)) = χ(K(G)). If G has T (G) < χ(K(G)), then there
is no vertex that belongs to χ(K(G)) maximal cliques. The graph H obtained
from G by Construction 2 satisfies χ(K(H)) = χ(K(G)) and contains a vertex
that belongs to χ(K(G)) maximal cliques, which implies T (H) = χ(K(G)).

Construction 2. Let H be obtained from a graph G by iteratively adding
pendant vertices to a vertex of G until it belongs to χ(K(G)) maximal cliques.

Construction 2 implies that every diamond-free graph G is a subgraph of a
graph H with T (H) = χ(K(H)) = χ(K(G)). Note that this construction is
not restricted to diamond-free graphs and it can also be applied several times to
vertices that only belong to one maximal clique. The hardness proofs of Theo-
rems 5 and 6 rely on this result.

6 A. Abreu et al.

4 Computational Complexity

Now, we focus on the computational complexity of t-tessellability, by firstly
proving that the problem is in NP. In Sect. 4.1, we use extremal tessellation
covers obtained in the previous section to show NP-completeness for any fixed
t ≥ 3 and when the problem instance is restricted to some graph classes. In
Sect. 4.2, we efficiently solve 2-tessellability in linear time.

Lemma 3. t-tessellability is in NP.

Proof. Consider a certificate for an instance of t-tessellability, which consists
of at most t tessellations of a given graph G. Note that each tessellation has at
most m edges. Moreover, by Theorem 1 and the well-known Vizing’s theorem on
edge-colorability, if t ≥ Δ+1, then the answer is automatically YES. Otherwise,
one can easily verify in polynomial time if the at most m edges in each of the
at most t ≤ Δ + 1 tessellations form disjoint cliques in G and if the at most
m(Δ + 1) edges in these tessellations cover all edges of G. �	

4.1 NP-completeness

A graph is planar if it can be embedded in the plane such that no two edges
cross each other. We show a polynomial transformation from the NP-complete 3-
colorability of planar graphs with maximum degree four [7] to 3-tessellabi-
lity of planar graphs with maximum degree six.

Fig. 3. The 3-tessellable graph-gadget of Lemma 4. Each tessellation is depicted sepa-
rately. The external vertices are a, b, c, e, j, l, n, o, and the internal vertices are the
remaining ones.

Lemma 4. Any tessellation cover of size 3 of the graph-gadget depicted in
Fig. 3 contains a tessellation that has the middle and the external triangles.

Construction 3. Let graph H be obtained from a graph G by local replace-
ments of the vertices of G such that each vertex u of G represents a graph-gadget
of Fig. 3 denoted by u-gadget and each edge uv of G represents the intersection
of the u-gadget with the v-gadget by identifying two external vertices of external
triangles of those graph-gadgets.

The Graph Tessellation Cover Number 7

Theorem 4. 3-tessellability of planar graphs with Δ ≤ 6 is NP-complete.

Proof. Let G be an instance graph of 3-colorability of planar graphs with
Δ ≤ 4 and H be obtained by Construction 3 on G. Notice that applying
Construction 3 on a planar graphs with Δ ≤ 4 results on a planar graph
with Δ ≤ 6.

Suppose that G is 3-colorable. Then, H is 3-tessellable because the middle
and the external triangles of a v-gadget can be covered by the tessellation related
to the color of v and the remaining triangles of the v-gadget can be covered by
the other two tessellations.

Suppose that H is 3-tessellable. Then, G is 3-colorable because the color
of v in G can be related to the tessellation that covers the middle triangle of
the v-gadget. This assignment is a 3-coloring because by Lemma 4 all external
triangles of the v-gadget belong to the same tessellation of the middle triangle.
The external triangles of the v-gadget are connected to the external triangles of
the graph-gadgets of the neighborhood of v. Then, the tessellations of the latter
external triangles must differ from the external triangles of the v-gadget. This
implies that the neighborhood of vertex v receives different colors from the color
of v. �	

The next construction allows us to show a hardness proof of t-
tessellability for any fixed t ≥ 4.

Construction 4. Let H be a graph obtained from a graph G and a subset
F ⊆ V (G) as follows. Initially H is equal to G. Let F = {v1, . . . , v|F |} be a
subset of vertices of V (H). Add to H a complete graph U = {u1, . . . , u|F |}. Add
three vertices c1, c2 and c3 adjacent to all vertices of U . Consider an integer
t ≥ 4. For each ci (1 ≤ i ≤ 3), add t−1 pendant vertices incident to ci. For each
1 ≤ j ≤ |F |, add an edge vjuj and vertices wj,l for 1 ≤ l ≤ t − 3 adjacent to
both vj and uj . For each vertex wj,l, add t − 1 pendant vertices incident to wj,l.

Theorem 5. t-tessellability for any fixed t ≥ 4 is NP-complete.

Sketch of the proof. Let G be an instance graph of 3-colorability of planar
graphs with Δ ≤ 4. Let H ′ be the graph obtained from Construction 3 on G.
Let H be the graph obtained from Construction 4 on H ′ with F being the set of
all internal vertices of all graph-gadgets of H ′.

Let H[H ′] be the induced subgraph of H by the vertices of H ′. H is t-
tessellable (for t ≥ 4) if and only H[H ′] is 3-tessellable and the NP-completeness
follows immediately from Theorem4. �	

Next, we show a polynomial transformation from the NP-complete 3-colo-
rability [7] to 4-tessellability of chordal (2, 1)-graphs. This proof is based
on a result of Bodlaender et al. [13] for 3-L(0, 1)-coloring of split graphs.

Construction 5. Let H be a graph obtained from a non-bipartite graph G as
follows. Initially V (H) = V (G) ∪ E(G) and E(H) = ∅. Add edges to H so that
the E(G) vertices induce a clique. For each e = vw ∈ E(G), add to H edges ve
and we. For each vertex v ∈ V (H) ∩ V (G), add three pendant vertices incident

8 A. Abreu et al.

to v. Add a vertex u adjacent to all E(G) vertices. Add three pendant vertices
incident to u. Denote all pendant vertices by V2.

Theorem 6. 4-tessellability of chordal (2, 1)-graphs is NP-complete.

Sketch of the proof. Consider the graph H obtained by Construction 5 on a non-
bipartite instance graph G of 3-colorability. We have V (H) = V (G) ∪ E(G) ∪
V2 ∪ {u}. Clearly, H is chordal and (2, 1) with E(G) as a clique, V (G) ∪ {u} as
a stable set, and V2 as another stable set.

The key idea of the proof is that the pendant vertices V2 force the maximal
cliques incident to the vertices in V (G)∪{u} to be non-exposed. Notice that the
tessellation used to cover the clique E(G)∪{u} cannot cover any other maximal
clique with size greater than one incident to V (G) vertices and E(G) vertices in
H. Therefore, there are only three remaining tessellations to cover those maximal
cliques. This implies that G is 3-colorable if and only if H is 4-tessellable because
if uv ∈ E(G), then they receive different colors in a 3-coloring of G. The maximal
clique containing vertices E(G)∪{u} and the maximal clique containing vertices
E(G) ∪ {v} share a same neighborhood uv and must be covered by different
tessellations. �	

Construction 6. Let H ′ be a graph obtained from the graph of Construction 5
by transforming the stable set of V (G) into a clique, removing one pendant vertex
of each vertex of V (G), and adding a vertex u′ adjacent to all vertices of V (G)
with three new pendant vertices incident to it.

Clearly, H ′ from Construction 6 is a (1, 2)-graph. Observe that H ′ is 4-tessellable
if and only if H (from Theorem 6) is 4-tessellable. Therefore, 4-tessellability
is NP-complete for (1, 2)-graphs.

Next, we show a polynomial transformation from the NP-complete problem
NAE 3-SAT [7] to 3-tessellability of diamond-free graphs with diameter
five. This proof is given in two phases: given an instance I of NAE 3-SAT
we construct a clique graph K(G) for which we show that there is a 3-coloring
of K(G) if and only if I is satisfiable; subsequently, we show that there is a
construction of a graph with diameter five G for which G is 3-tessellable if and
only if K(G) is 3-colorable.

Construction 7. Let K(G) be a graph obtained from an instance of NAE 3-
SAT as follows. For each variable v of I, include a P2 with vertices v and v
in K(G). Moreover, add a vertex u adjacent to all P2’s vertices. And, for each
clause {a ∨ b ∨ c} of I, add a triangle with vertices Ta, Tb, Tc in K(G) and three
edges aTa, bTb, and cTc.

Lemma 5. Let K(G) be obtained from Construction 7 on a NAE 3-SAT
instance I. Then K(G) is 3-colorable if and only if I is satisfiable.

Proof. Note that, w.l.o.g., the color 1 given to the vertex u in a 3-coloring cannot
be used in any vertex of a P2. Moreover, each of the literal vertices v and v of
a P2 receives either the color 2 or 3. Assume w.l.o.g that a literal is true if its
color is 2, and false otherwise.

The Graph Tessellation Cover Number 9

If K(G) is 3-colorable, then there are no three vertices connected to a clause’s
triangle with the same color. Otherwise, this color would not be used in the
triangle vertices and K(G) would not be 3-colorable, a contradiction. Therefore,
the above assignment of values to literals would give a satisfiable solution to the
instance.

Conversely, if I is satisfiable, then one may assign color 2 to each literal vertex
which is true and color 3 to its negation. Moreover, vertex u receives color 1.
Since there are no three literal vertices with the same color adjacent to the clause
triangles, one may assign colors to the vertices of the triangles in a 3-coloring
where a vertex of the triangle adjacent to a vertex with color 2 receives color 3,
and a vertex adjacent to a vertex with color 3 receives color 2. The other vertex
receives color 1. �	

Next, we construct a graph G for which its clique graph is the K(G) obtained
from Construction 7.

Construction 8. Let G be obtained from its clique graph K(G) (of Construc-
tion 7) as follows. For each clause’s triangle in K(G), add a star with three leaves
in G, where each of those leaves represents a literal of this clause. Next, all P2’s
triangles in K(G) are represented in G by a clique C of size the number of P2’s.
Each vertex of this clique C represents a variable of K(G). For each vertex v of
C include the edges of two other cliques (one for each literal of the variable v)
composed by the leaves of the stars which represent the literals v and v and the
vertex v of C, as depicted in Fig. 4.

Fig. 4. Example of Construction 8.

Lemma 6. Let K(G) be obtained by Construction 7 on a NAE 3-SAT
instance I and G be obtained by Construction 8 on K(G). Then G is 3-tessellable
if and only if K(G) is 3-colorable.

Proof. If G is 3-tessellable, we need one tessellation to cover the maximum clique
whose size is the number of variables. Therefore, the other two tessellations are
used by the other two maximal cliques (which represent the literals of each

10 A. Abreu et al.

variable). Moreover, the star of three leaves of each clause also needs to be
covered by 3 tessellations. Note that these maximal cliques represent vertices in
K(G) and the tessellations represent their colors. Therefore, K(G) is 3-colorable.

If K(G) is 3-colorable, then use these three colors as a guide to obtain a 3-
tessellation of G, where each color class of K(G) represents that these maximal
cliques of G are covered by the tessellation which represents this color. �	

Clearly, the graph G obtained from Construction 8 is diamond-free with diam-
eter five. Therefore, by Lemmas 5 and 6, the next theorem follows.

Theorem 7. 3-tessellability of diamond-free graphs with diameter five is
NP-complete.

4.2 2-Tessellability

Portugal [3] showed that a graph G is 2-tessellable if and only if K(G) is a
bipartite graph. Moreover, Peterson [10] showed that K(G) is bipartite if and
only if G is the line graph of a bipartite multigraph. Hence, determine if G
is 2-tessellable is equivalent to verifying if G is the line graph of a bipartite
multigraph.

Protti and Szwarcfiter [14] showed an O(n2m) time algorithm to decide if
the clique graph of a given graph is bipartite. Moreover, Peterson [10] showed an
O(n3) time algorithm to decide if G is the line graph of a bipartite multigraph.

The key idea of Peterson’s algorithm is to group true twin vertices of a same
clique of G, which represent multiedges in the bipartite multigraph H, where
G = L(H). Then, it removes all those true twin vertices in each group but one,
and the resulting graph is a line graph of a bipartite simple graph if and only
if K(G) is a bipartite graph. To verify if a graph is a line graph of a bipartite
graph, the Roussopoulos’ linear-time algorithm is used [15].

We improve Peterson’s algorithm [10], by showing a faster way to remove true
twin vertices belonging to a clique of a graph using its modular decomposition.
Throughout this section, we use notations of modules of a graph given in [16].

Let F be the family of bipartite multigraphs obtained by adding multiple
edges to C4, Sn or P4. In order to make a modular decomposition of a graph G,
we only consider graphs G which are not a line graph of a graph in F . If G is a
line graph of a graph in F , we can consider this case separately, and easily achieve
linear time. Note that there are bipartite multigraphs with a same line graph.
Therefore, we only consider the ones which maximize the number of multiple
edges. Moreover, we only consider connected graphs, since the tessellation cover
number of a disconnected graph is the maximum among the parameter on its
connected components.

Lemma 7. Let H be a bipartite multigraph not in F and L(H) be its line graph.
Two edges e1 and e2 with same extremes in H represent vertices in a same
maximal strong module of L(H) with size less than |V (L(H))|.

The Graph Tessellation Cover Number 11

Lemma 8. Let H be a bipartite multigraph not in F and L(H) be its line graph.
Any maximal strong module in a modular decomposition of L(H) with size less
than |V (L(H))| induces a clique in L(H).

Theorem 8. 2-tessellability can be solved in linear time.

Proof. First, we use McConnell and Spinrad’s linear-time algorithm to obtain
a modular decomposition of G. By Lemmas 7 and 8, we know that the strong
modules in any modular decomposition of a line graph of a bipartite multigraph
H /∈ F induce cliques. Moreover, the vertices of these cliques in L(H) are related
to edges of H with same extremes.

Then, we check if each of at most O(|V (G)|) strong modules induces cliques
in G, which can be done in O(|V (G)| + |E(G)|). Otherwise, we know that G
is not a line graph of a bipartite multigraph. Next, we remove all true twins
vertices in each strong modules but one, obtaining the graph G′. This step is
related to remove all multiedges of H which share same extremes. Therefore, the
graph G is a line graph of a bipartite multigraph H if the resulting graph G′ is
a line graph of a bipartite simple graph H ′.

Finally, we use Roussopoulos’ linear-time algorithm to determine if G′ is a
line graph, and if so, obtain its root graph H ′ for which G′ is the line graph. Note
that verifying to if H ′ is a bipartite graph can be done in linear time by using a
breadth-first search (because the size of the root graph of G′ is asymptotically
bounded by the size of G′). �	

5 Concluding Remarks and Discussion

We investigate extremal results on graph tessellation covers, which are funda-
mental for the development of quantum walks in the staggered model. These
results help to understand the complexity of the unitary operators neces-
sary to express the evolution of staggered quantum walks. We establish tight
upper bounds for the tessellation cover number of a graph G related to χ′(G)
and χ(K(G)) and we determine graph classes which reach these extremal
bounds. This study provides tools to distinguish several classes for which the
t-tessellability problem is efficiently tractable (bipartite, diamond-free K-
perfect and {triangle, proper major}-free graphs) from others the problem
is NP-complete (planar, triangle-free, chordal (2, 1)-graphs, (1, 2)-graphs, and
diamond-free graphs with diameter five). We also establish the t-tessellability
NP-completeness for any fixed t ≥ 3. Moreover, we improve to linear time the
known algorithms to recognize 2-tessellable graphs [3], line graphs of bipar-
tite multigraphs [14], and graphs G such that K(G) is bipartite [10]. As a
consequence, we establish an interesting complexity dichotomy between edge-

colorability and t-tessellability: edge-colorability of planar graphs
with Δ ≥ 8 is in P [17], while t-tessellability is NP-complete (Theorem 4
replacing each of the four non external triangles that shares two vertices of exter-
nal triangles by K4’s) and; edge-colorability of line graph of bipartite graphs
is NP-complete [18], while t-tessellability is in P (Theorem 8). We have not

12 A. Abreu et al.

managed yet to establish the same dichotomy to k-colorability of clique

graph and t-tessellability. We are currently trying to establish the hard-
ness of the problem for (1, 1)-graphs (split graphs). However, the computational
complexity for (0, 2)-graphs (complement of bipartite graph) is still widely open.

A question that naturally arises is whether every graph has a minimum tes-
sellation cover such that every tessellation contains a maximal clique. Although
we believe in most cases the answer is true, we have computationally found a
surprising example of a graph, which is depicted in Fig. 5, with all minimum
tessellation covers requiring a tessellation without maximal cliques. We are cur-
rently trying to establish an infinite family of graphs for which this property does
not hold and to establish other graph classes where it holds. The computational
verification was performed through a reduction from t-tessellability problem
to set-covering problem (the description of set-covering is available at [7]),
where the finite set is the edge set of the input graph, and the family of sub-
sets consists of the edge subsets corresponding to all possible tessellations of the
input graph. Another interesting issue is that two minimum tessellation covers
may present different quantum walk dynamics. Therefore, we intend to study
the different tessellation covers using the same number of tessellations, which
may result in simpler quantum walks and more efficient quantum algorithms.
More recently, a general partition-based framework for quantum walks has been
proposed [19].

Fig. 5. 3-tessellable graph. Rightmost tessellation does not contain a maximal clique.

References

1. Venegas-Andraca, S.: Quantum walks: a comprehensive review. Quantum Inf. Pro-
cess. 11(5), 1015–1106 (2012)

2. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered
quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)

3. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)
4. Abreu, A., Cunha, L., Fernandes, T., de Figueiredo, C., Kowada, L., Marquezino,

F., Posner, D., Portugal, R.: Bounds and complexity for the tessellation problem.
Mat. Contemp. (2017, accepted)

5. Szwarcfiter, J.L.: A survey on clique graphs. In: Reed, B.A., Sales, C.L. (eds.)
Recent Advances in Algorithms and Combinatorics. CBMOS, pp. 109–136.
Springer, New York (2003)

6. West, D.: Introduction to Graph Theory. Pearson, London (2000)

The Graph Tessellation Cover Number 13

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman Co., San Francisco (1979)

8. Zatesko, L.M., Carmo, R., Guedes, A.L.P.: Edge-colouring of triangle-free graphs
with no proper majors. In: II Encontro de Teoria da Computação, pp. 71–74 (2017)

9. Koreas, D.P.: The NP-completeness of chromatic index in triangle free graphs with
maximum vertex of degree 3. Appl. Math. Comput. 83(1), 13–17 (1997)

10. Peterson, D.: Gridline graphs: a review in two dimensions and an extension to
higher dimensions. Discrete Appl. Math. 126(2–3), 223–239 (2003)

11. Bonomo, F., Durán, G., Groshaus, M., Szwarcfiter, J.: On clique-perfect and K-
perfect graphs. Ars Comb. 80, 97–112 (2006)

12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

13. Bodlaender, H., Kloks, T., Richard, B., van Leeuwen, J.: Approximation for
lambda-colorings of graphs. Comput. J. 47, 1–12 (2004)

14. Protti, F., Szwarcfiter, J.L.: Clique-inverse graphs of bipartite graphs. J. Comb.
Math. Comb. Comput. 40, 193–203 (2002)

15. Roussopoulos, N.D.: A max {m, n} algorithm for determining the graph H from its
line graph G. Inf. Process. Lett. 2, 108–112 (1973)

16. McConnell, R., Spinrad, J.: Linear-time modular decomposition and efficient tran-
sitive orientation of comparability graphs. In: Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, vol. 2, pp. 536–545 (1994)

17. Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class I. J.
Comb. Theory B 83(2), 201–212 (2001)

18. Cai, L., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs.
Discrete Appl. Math. 30(1), 15–27 (1991)

19. Konno, N., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quan-
tum walks

Approximate Correlation Clustering
Using Same-Cluster Queries

Nir Ailon1, Anup Bhattacharya2(B), and Ragesh Jaiswal2

1 Technion, Haifa, Israel
nailon@cs.technion.ac.il

2 Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, New Delhi, India

{anupb,rjaiswal}@cse.iitd.ac.in

Abstract. Ashtiani et al. (NIPS 2016) introduced a semi-supervised
framework for clustering (SSAC) where a learner is allowed to make
same-cluster queries. More specifically, in their model, there is a query
oracle that answers queries of the form “given any two vertices, do they
belong to the same optimal cluster?”. In many clustering contexts, this
kind of oracle queries are feasible. Ashtiani et al. showed the usefulness
of such a query framework by giving a polynomial time algorithm for
the k-means clustering problem where the input dataset satisfies some
separation condition. Ailon et al. extended the above work to the approx-
imation setting by giving an efficient (1 + ε)-approximation algorithm
for k-means for any small ε > 0 and any dataset within the SSAC
framework. In this work, we extend this line of study to the correla-
tion clustering problem. Correlation clustering is a graph clustering prob-
lem where pairwise similarity (or dissimilarity) information is given for
every pair of vertices and the objective is to partition the vertices into
clusters that minimise the disagreement (or maximises agreement) with
the pairwise information given as input. These problems are popularly
known as MinDisAgree and MaxAgree problems, and MinDisAgree[k] and
MaxAgree[k] are versions of these problems where the number of opti-
mal clusters is at most k. There exist Polynomial Time Approximation
Schemes (PTAS) for MinDisAgree[k] and MaxAgree[k] where the approx-
imation guarantee is (1 + ε) for any small ε and the running time is
polynomial in the input parameters but exponential in k and 1/ε. We
get a significant running time improvement within the SSAC framework
at the cost of making a small number of same-cluster queries. We obtain
an (1 + ε)-approximation algorithm for any small ε with running time
that is polynomial in the input parameters and also in k and 1/ε. We
also give non-trivial upper and lower bounds on the number of same-
cluster queries, the lower bound being based on the Exponential Time
Hypothesis (ETH). Note that the existence of an efficient algorithm for
MinDisAgree[k] in the SSAC setting exhibits the power of same-cluster

Nir Ailon acknowledges the generous support of ISF grant number 2021408.
Anup Bhattacharya acknowledges the support of TCS fellowship at IIT Delhi.
Ragesh Jaiswal acknowledges the support of ISF-UGC India-Israel Grant 2014.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 14–27, 2018.
https://doi.org/10.1007/978-3-319-77404-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_2&domain=pdf

Approximate Correlation Clustering Using Same-Cluster Queries 15

queries since such polynomial time algorithm (polynomial even in k and
1/ε) is not possible in the classical (non-query) setting due to our con-
ditional lower bounds. Our conditional lower bound is particularly inter-
esting as it not only establishes a lower bound on the number of same
cluster queries in the SSAC framework but also establishes a conditional
lower bound on the running time of any (1+ε)-approximation algorithm
for MinDisAgree[k].

1 Introduction

Correlation clustering is a graph clustering problem where we are given similarity
or dissimilarity information for pairs of vertices. The input is a graph G on n
vertices. Edges of G are labeled as similar (positive) or dissimilar (negative).
The clustering objective is to partition the vertices into clusters such that edges
labeled ‘positive’ remain within clusters and ‘negative’ edges go across clusters.
However, this similarity/dissimilarity information may be inconsistent with this
objective. For example, there may exist vertices u, v, w such that edges (u, v) and
(u,w) are labeled ‘positive’ whereas edge (v, w) is labeled ‘negative’. In this case,
it is not possible to come up with a clustering of these 3 vertices that would agree
with all the edge labels. The objective of correlation clustering is to come up
with a clustering that minimises disagreement or maximises agreement with the
edge labels given as input. The minimisation version of the problem, known as
MinDisAgree, minimises the sum of the number of negative edges present inside
clusters and the number of positive edges going across clusters. Similarly, the
maximisation version is known as MaxAgree where the objective is to maximise
the sum of the number of positive edges present inside clusters and the number
of negative edges going across clusters. Unlike k-means or k-median clustering,
in correlation clustering, there is no restriction on the number of clusters formed
by the optimal clustering. When the number of optimal clusters is given to
be at most k, these problems are known as MinDisAgree[k] and MaxAgree[k]
respectively.

Bansal et al. [8] gave a constant factor approximation algorithm for
MinDisAgree and a PTAS for MaxAgree. Subsequently, Charikar et al. [9]
improved the approximation guarantee for MinDisAgree to 4, and showed that
MinDisAgree is APX-hard. These results are for correlation clustering on complete
graphs as it is known for general graphs, it is at least as hard as minimum multi-
cut problem [9]. Since MinDisAgree is APX-hard [9], additional assumptions were
introduced for better results. For example [15,17] studied MinDisAgree where the
input is noisy and comes from a semi-random model. When k is given as part of
the input, Giotis and Guruswami [12] gave a PTAS for MinDisAgree[k].

Recently there have been some works [2,7] with a beyond-worst case flavour
where polynomial time algorithms for NP-hard problems have been designed
under some stability assumptions. Ashtiani et al. [3] considered one such stability
assumption called γ-margin. They introduced a semi-supervised active learning
(SSAC) framework and within this framework, gave a probabilistic polynomial
time algorithm for k-means on datasets that satisfy the γ-margin property. More

16 N. Ailon et al.

specifically, their SSAC framework involves a query oracle that answers queries
of the form “given any two vertices, do they belong to the same optimal clus-
ter?”. The query oracle responds with a Yes/No answer where these answers are
assumed to be consistent with some fixed optimal solution. In this framework,
they studied the query complexity for polynomial time algorithms for k-means
on datasets satisfying the γ-margin property. Ailon et al. [1] extended this work
to study query complexity bounds for (1+ε)-approximation for k-means in SSAC
framework for any small ε > 0 without any stability assumption on the dataset.
They gave almost matching upper and lower bounds on the number of queries
for (1 + ε)-approximation of k-means problem in SSAC framework.

In this work, we study MinDisAgree[k] in the SSAC framework, where the
optimal clustering has at most k clusters and give upper and lower bounds on
the number of same-cluster queries for (1+ε)-approximation for correlation clus-
tering for any ε > 0. We also give upper bounds for MaxAgree[k]. Our algorithm
is based on the PTAS by Giotis and Guruswami [12] for MinDisAgree[k]. The algo-
rithm by Giotis and Guruswami involves random sampling a subset S of vertices
and considers all possible ways of partitioning S into k clusters S = {S1, . . . , Sk},
and for every such k-partitioning, clusters the rest of the vertices greedily. Every
vertex v ∈ V \ S is assigned a cluster Sj that maximizes its agreement with the
edge labels. Their main result was the following.

Theorem 1 (Giotis and Guruswami [12]). For every k ≥ 2, there is a PTAS
for MinDisAgree[k] with running time nO(9k/ε2) log n.

Since Giotis and Guruswami considered all possible ways of partitioning sub-
set S into k clusters, their running time has exponential dependence on k. Here,
we make the simple observation that within the SSAC framework we can over-
come this exponential dependence on k by making same-cluster queries to the
oracle. The basic idea is to randomly sample a subset S of vertices as before
and partition it optimally into k clusters by making same-cluster queries to the
oracle. Note that by making at most k|S| same-cluster queries, one can partition
S optimally into k clusters. Once we have subset S partitioned as in the optimal
clustering (a key step needed in the analysis of Giotis and Guruswami) we follow
their algorithm and analysis for (1 + ε)-approximation for MinDisAgree[k]. Here
is our main result for MinDisAgree[k] in the SSAC framework. We obtain similar
results for MaxAgree[k].

Theorem 2 (Main result: Upper bound). Let ε > 0 and k ≥ 2. There is
a (randomized) algorithm in the SSAC framework for MinDisAgree[k] that uses
O

(
k14 log k log n

ε6

)
same-cluster queries, runs in time O(nk14 log k log n

ε6) and outputs
a (1 + ε)-approximate solution with high probability.

We complement our upper bound result by providing a lower bound on the
number of queries in the SSAC framework for any efficient (1+ε)-approximation
algorithm for MinDisAgree for any ε > 0. Our lower bound result is conditioned
on the Exponential Time Hypothesis (ETH hypothesis) [13,14]. Our lower bound

Approximate Correlation Clustering Using Same-Cluster Queries 17

result implies that the number of queries is depended on the number of optimal
clusters k. Our main result with respect to query lower bound is given as follows.

Theorem 3 (Main result: Lower bound). Given that Exponential Time
Hypothesis (ETH) holds, there exists a constant δ > 0 such that any (1 + δ)-
approximation algorithm for MinDisAgree[k] in the SSAC framework that runs
in polynomial time makes Ω(k

poly log k) same-cluster queries.

Exponential Time Hypothesis is the following statement regarding the hard-
ness of the 3-SAT problem.

Exponential Time Hypothesis (ETH) [13,14]: There does not exist an algo-
rithm that can decide whether any 3-SAT formula with m clauses is satis-
fiable with running time 2o(m).

Note that our query lower bound result is a simple corollary of the following
theorem that we prove.

Theorem 4. If the Exponential Time Hypothesis (ETH) holds, then there
exists a constant δ > 0 such that any (1 + δ)-approximation algorithm for
MinDisAgree[k] requires 2Ω(k

poly log k) time.

The above lower bound statement may be of independent interest. It was
already known that MinDisAgree is APX-hard. Our result is a non-trivial addition
to the understanding of the hardness of the correlation clustering problem. Given
that our query upper bound result is through making simple observations in the
algorithms of Giotis and Guruswami, our lower bound results may be regarded
as the primary contribution of this work. So, we first give our lower bound results
in the next section and the upper bound results in Sect. 3. However, before we
start discussing our results, here is a brief discussion on the related works.

Related Works. There have been numerous works on clustering problems in semi-
supervised settings. Balcan and Blum [5] proposed an interactive framework for
clustering which use ‘split/merge’ queries. In this framework, given any arbitrary
clustering C = {C1, C2, . . . , } as query, oracle specifies some cluster Cl should be
split or clusters Ci and Cj should be merged. Awasthi et al. [4] developed a local
clustering algorithm which uses these split/merge queries. One versus all queries
for clustering were studied by Voevodski et al. [19]. The oracle, on a query s ∈ X,
returns distances from s to all points in X. The authors provided a clustering,
close to optimal k-median clustering, with only O(k) such queries on instances
satisfying (c, ε)-approximation stability property [6]. Fomin et al. [11] gave a
conditional lower bound for the cluster editing problem which can also be stated
as a decision version of the correlation clustering problem. In the p-cluster editing
problem, given a graph G and a budget B, and an integer p, the objective is to
decide whether G can be transformed into a union of p clusters (disjoint cliques)
using at most B edge additions and deletions. Assuming ETH, they showed that
there exists p = Θ(kω) for some 0 ≤ ω ≤ 1 such that there is no algorithm

18 N. Ailon et al.

that decides in time 2o(
√

pB) · nO(1) whether G can be transformed into a union
of p cliques using at most B adjustments (edge additions and deletions). It is
not clear whether their exact reduction can be modified into an approximation
preserving reduction to obtain results similar to what we have here. Mazumdar
and Saha [18] studied correlation clustering problem in a similar setting where
edge similarity and dissimilarity information are assumed to be coming from two
distributions. Given such an input, they studied the cluster recovery problem in
SSAC framework, and gave upper and lower bounds on the query complexity.
Their lower bound results are information theoretic in nature. We are, however,
interested in the approximate solutions for the correlation clustering problem.

2 Query Lower Bounds

In this section, we obtain a lower bound on the number of same-cluster queries
that any FPTAS within the SSAC framework needs to make for the problem
MinDisAgree[k]. We derive a conditional lower bound for the minimum number
of queries under the Exponential Time Hypothesis (ETH) assumption. Some
such conditional lower bound results based on ETH can be found in [16]. We
prove the following main theorem in this section.

Theorem 5. If the Exponential Time Hypothesis (ETH) holds, then there
exists a constant δ > 0 such that any (1 + δ)-approximation algorithm for
MinDisAgree[k] requires 2Ω(k

poly log k) time.

The above theorem gives a Proof of Theorem 3.

Proof (Proof of Theorem 3). Let us assume that there exists a query-FPTAS that
makes only o(k

poly log k) same-cluster queries. Then, by considering all possible
answers for these queries and picking the best solution, one can solve the problem
in 2o(k

poly log k) time which contradicts Theorem 5.

In the remaining section, we give the Proof of Theorem5. First, we state the
ETH hypothesis. Our lower bound results are derived assuming this hypothesis.

Hypothesis 1 (Exponential Time Hypothesis (ETH) [13,14]): There does
not exist an algorithm that decides whether any 3-SAT formula with m
clauses is satisfiable with running time 2o(m).

Since we would like to obtain lower bounds in the approximation domain, we
will need a gap version of the above ETH hypothesis. The following version of
the PCP theorem would be very useful in obtaining a gap version of ETH.

Theorem 6 (Dinur’s PCP Theorem [10]). For some constants ε, d > 0,
there exists a polynomial-time reduction that takes a 3-SAT formula ψ with m
clauses as input and produces one E3-SAT1 formula φ with m′ = O(mpoly log m)
clauses such that
1 Every clause in an E3-SAT formula has exactly 3 literals.

Approximate Correlation Clustering Using Same-Cluster Queries 19

– if ψ is satisfiable, then φ is satisfiable, and
– if ψ is unsatisfiable, then val(φ) ≤ 1 − ε, and
– each variable in φ appears in at most d clauses.

where val(φ) is the maximum fraction of clauses of φ which are satisfiable by
any assignment.

The hypothesis below follows from ETH and the above Theorem6, and will
be useful for our analysis.

Hypothesis 2: There exists constants ε, d > 0 such that the following
holds: There does not exist an algorithm that, given a E3-SAT formula ψ
with m clauses and each variable appearing in at most d clauses, distin-
guishes whether ψ is satisfiable or val(ψ) ≤ (1−ε), and runs in time better
than 2Ω(m

poly log m).

The lemma given below trivially follows from Dinur’s PCP Theorem6.

Lemma 1. If Hypothesis 1 holds, then so does Hypothesis 2.

We now give a reduction from the gap version of the E3-SAT problem to the
gap version of the NAE3-SAT problem. A problem instance of NAE3-SAT consists
of a set of clauses (each containing exactly 3 literals) and a clause is said to be
satisfied by an assignment iff at least one and at most two literals in the clause
is true (NAE stands for “Not All Equal”). For any instance φ, we define val′(φ)
to be the maximum fraction of clauses that can be satisfied in the “not all equal”
sense by an assignment. Note that this is different from val(φ) which is equal to
the maximum fraction of clauses that can be satisfied (in the usual sense). First,
we reduce E3-SAT to NAE6-SAT and then NAE6-SAT to NAE3-SAT.

Lemma 2. Let 0 < ε < 1 and d > 1. There is a polynomial time reduction that
given an instance ψ of E3-SAT with m clauses with each variable appearing in at
most d clauses, produces an instance φ of NAE6-SAT with 4m clauses such that

1. If val(ψ) = 1, then val′(φ) = 1, and
2. If val(ψ) ≤ (1 − ε), then val′(φ) ≤ (1 − ε/4), and
3. Each variable in φ appears in at most 4d clauses.

Proof. We construct φ in the following manner: for every variable xi in ψ, we
introduce two variables yi and zi. We will use xi = 1 iff yi �= zi for every i in our
reduction. For every clause (li, lj , lk) (with li, lj , lk being literals), we introduce
the following four NAE clauses in φ:

(pi, qi, pj , qj , pk, qk), (pi, qi, pj , qj , p̄k, q̄k), (pi, qi, p̄j , q̄j , pk, qk), (pi, qi, p̄j , q̄j , p̄k, q̄k)

For any index (say i), if li = xi (that is, the variable is in the positive form), then
pi = yi and qi = zi. On the other hand, if li = x̄i, then pi = yi and qi = z̄i. So
for example, for the clause (x2, x̄7, x9) in ψ, we have the following four clauses:

(y2, z2, y7, z̄7, y9, z9), (y2, z2, y7, z̄7, ȳ9, z̄9), (y2, z2, ȳ7, z7, y9, z9), (y2, z2, ȳ7, z7, ȳ9, z̄9)

20 N. Ailon et al.

Note that property (3) of the lemma holds due to our construction. For property
(1), we argue that for any satisfying assignment for ψ, the assignment of variables
in φ as per the rule xi = 1 iff yi �= zi is a satisfying assignment of ψ (in the NAE
sense). This is because for every literal l that makes a clause in ψ true, the two
corresponding copies p and q satisfies all the four clauses (in the NAE sense). For
property (2), we prove the contrapositive. Suppose there is an assignment to the
y, z variables in φ that satisfies at least (1 − ε/4) fraction of the clauses. We will
argue that the assignment to the variables of ψ as per the rule xi = 1 iff yi �= zi

satisfies at least (1 − ε) fraction of clauses of ψ. First, note that for every set of
4 clauses in φ created from a single clause of ψ, either 3 of them are satisfied or
all four are satisfied (whatever the assignment of the variable be). Let m1 be the
number of these 4-sets where all 4 clauses are satisfied and let m2 be the number
of these 4-sets where 3 clauses are satisfied, where m = m1 + m2. Then we have
4m1 + 3m2 ≥ (1 − ε/4) · (4m) which implies that m1 ≥ (1 − ε)m. Note that for
any of the 4-sets where all 4 clauses are satisfied, the corresponding clause in ψ
is satisfied with respect to the assignment as per rule xi = 1 iff yi �= zi (since at
least one the p, q pairs will have opposite values). So, the fraction of the clauses
satisfied in ψ is at least m1

m ≥ (1 − ε).

Lemma 3. Let 0 < ε < 1 and d > 1. There is a polynomial time reduction
that given an instance ψ of NAE6-SAT with m clauses and with each variable
appearing in at most d clauses, produces an instance φ of NAE3-SAT with 4m
clauses such that:

1. If val′(ψ) = 1, then val′(φ) = 1, and
2. If val′(ψ) ≤ (1 − ε), then val′(φ) ≤ (1 − ε/4).
3. Each variable in φ appears in at most max (d, 2) clauses.

Proof. For every clause Ci = (ai, bi, ci, di, ei, fi) in ψ, we construct the following
four clauses in φ (let us call it a 4-set): (ai, bi, xi), (x̄i, ci, yi), (ȳi, di, zi), (z̄i, ei, fi),
introducing new variables xi, yi, zi. Property (3) trivially holds for this construc-
tion. For every satisfying assignment for ψ, there is a way to set the clause vari-
ables xi, yi, zi for every i such that all four clauses in the 4-set corresponding to
clause Ci are satisfied. So, property (1) holds. We show property (2) using contra-
position. Consider any assignment of φ that satisfies at least (1−ε/4) fraction of
the clauses. Let mj denote the number of 4-sets such that as per this assignment
j out of 4 clauses are satisfied. Then, we have

∑4
j=0 j · mj ≥ (1 − ε/4) · (4m).

This implies that: 3 · ∑3
j=0 mj + 4m4 ≥ (1 − ε/4) · (4m) which implies that

m4 ≥ (1 − ε)m. Now, note that for any 4-set such that all four clauses are sat-
isfied, the corresponding clause in ψ is satisfied by the same assignment to the
variables. This implies that there is an assignment that makes at least (1 − ε)
fraction of clauses true in ψ.

We come up with the following hypothesis which holds given that Hypothesis
2 holds, and is crucial for our analysis.

Hypothesis 3: There exists constants ε, d > 0 such that the following
holds: There does not exist an algorithm that, given a NAE3-SAT formula

Approximate Correlation Clustering Using Same-Cluster Queries 21

ψ with m clauses with each variable appearing in at most d clauses, distin-
guishes whether val′(ψ) = 1 or val′(ψ) ≤ (1 − ε), and runs in time better
than 2Ω(m

poly log m).

The lemma given below follows easily from the Lemmas 2 and 3 above.

Lemma 4. If Hypothesis 2 holds, then so does Hypothesis 3.

We now give a reduction from the gap version of NAE3-SAT to the gap version
of monotone NAE3-SAT that has no negative variables. Note that because of the
NAE (not all equal) property, setting all variables to 1 does not necessarily
satisfy the formula.

Lemma 5. Let 0 < ε < 1 and d > 1. There is a polynomial time reduction
that given an instance ψ of NAE3-SAT with m clauses and with each variable
appearing in at most d clauses, produces an instance φ of monotone NAE3-SAT
with O(m) clauses such that:

1. If val′(ψ) = 1, then val′(φ) = 1, and
2. If val′(ψ) ≤ (1 − ε), then val′(φ) ≤ (1 − ε

1+12d).
3. Each variable in φ appears in at most 4d clauses.

Proof. We construct φ in the following manner: Substitute all positive literals
of the variable xi with yi and all negative literals with zi for new variables yi, zi.
Also, for every variable xi, add the following 4d clauses:

{(yi, zi, t
j
i), (yi, zi, u

j
i), (yi, zi, v

j
i), (t

j
i , u

j
i , v

j
i)}d

j=1

where tji , u
j
i , v

j
i for 1 ≤ j ≤ d are new variables. Note that the only way to

satisfy all the above clauses is to have yi �= zi. Let m′ denote the total number
of clauses in φ. So, m′ = m + 4dn. Also, from the construction, each variable in
φ appears in at most 4d clauses. This proves property (3). Property (1) follows
from the fact that for any satisfying assignment for ψ, there is a way to extend
this assignment to variables in φ such that all clauses are satisfied. For all i,
yi = xi and zi = x̄i. All the new variables t, u, v can be set so as to make all the
new clauses satisfied.

We argue property (2) using contraposition. Suppose there is an assignment
to variables in φ that makes at least (1−ε/(1+12d)) fraction of clauses satisfied.
First, note that there is also an assignment that makes at least (1− ε/(1+12d))
fraction of the clauses satisfied and in which for all i, yi �= zi. This is because 3d
out of 4d of the following clauses can be satisfied when yi = zi:

{(yi, zi, t
j
i), (yi, zi, u

j
i), (yi, zi, v

j
i), (t

j
i , u

j
i , v

j
i)}d

j=1

However, if we flip one of yi, zi, then the number of above clauses satisfied can
be 4d and we might lose out on at most d clauses since a variable appears in
at most d clauses in ψ. Let m′ be the number of clauses corresponding to the

22 N. Ailon et al.

original clauses that are satisfied with this assignment. So, we have m′ + 4nd >
(1 − ε

(1+12d))(m + 4nd) which gives:

m′ > (1 − ε)m +
12mdε

1 + 12d
− 4ndε

1 + 12d
≥ (1 − ε)m (since 3m ≥ n)

This completes the proof of the lemma.

Next we propose a hypothesis which holds given that Hypothesis 3 holds.

Hypothesis 4: There exists constants ε, d > 0 such that the following
holds: There does not exist an algorithm that, given a monotone NAE3-
SAT formula ψ with m clauses with each variable appearing in at most d
clauses, distinguishes whether val′(ψ) = 1 or val′(ψ) ≤ (1 − ε), and runs
in time better than 2Ω(m

poly log m).

The lemma below follows easily from Lemma 5 mentioned in above.

Lemma 6. If Hypothesis 3 holds, then so does Hypothesis 4.

We provide a reduction from the gap version of monotone NAE3-SAT to a
gap version of 2-colorability of 3-uniform bounded degree hypergraph.

Lemma 7. Let 0 < ε < 1 and d > 1. There exists a polynomial time reduction
that given a monotone NAE3-SAT instance ψ with m clauses and with every
variable appearing in at most d clauses, outputs an instance H of 3-uniform
hypergraph with O(m) vertices and hyperedges and with bounded degree d such
that if ψ is satisfiable, then H is 2-colorable, and if at most (1 − ε)-fraction
of clauses of ψ are satisfiable, then any 2-coloring of H would have at most
(1 − ε)-fraction of edges that are bichromatic.

Proof. The reduction constructs a hypergraph H(V,E) as follows. The set of
vertices V correspond to the set of variables (all of them positive literals) of the
monotone NAE3-SAT instance ψ. The set of edges E correspond to the set of
clauses all of which have 3 literals, and therefore every hyperedge is of size 3.
The resulting hypergraph is 3-uniform, and since every variable appears in at
most d clauses, the hypergraph H is of bounded degree d, and |V | = O(m) and
|E| = O(m). If there exists a satisfying assignment for ψ, then every edge in H
is bichromatic and the hypergraph would be 2-colorable, and if at most (1 − ε)-
fraction of clauses are satisfiable by any assignment, then at most (1−ε)-fraction
of edges of H are bichromatic.

Next, we devise a hypothesis which holds given that Hypothesis 4 holds.

Hypothesis 5: There exists constants ε, d > 0 such that the following
holds: There does not exist an algorithm that, given a 3-uniform hyper-
graph H with m vertices and where every vertex has degree at most d,
distinguishes whether H is bichromatic or at most (1−ε)-fraction of edges
are bichromatic, and runs in time better than 2Ω(m

poly log m).

Approximate Correlation Clustering Using Same-Cluster Queries 23

The lemma below follows easily from Lemma 7 above.

Lemma 8. If Hypothesis 4 holds, then so does Hypothesis 5.

We now give a reduction from 2-colorability in 3-uniform hypergraph H with
constant bounded degree to a correlation clustering instance on a complete graph
G. We use the reduction as given in [9] for our purposes.

Lemma 9 ([9]). Let ε, d > 0. There is a polynomial-time reduction that given a
3-uniform hypergraph H(V,E) with m vertices and where each vertex appears in
at most d hyperedges, outputs an instance of the correlation clustering problem
where the graph G(V ′, E′) has N = O(m) vertices and M = 2N edges with edges
in E′ are labeled as ‘positive’ and all the other edges in the complete graph on
V ′ vertices are labeled as ‘negative’ such that the following holds:

1. If H is 2-colorable, then the cost of the optimal correlation clustering is M−N ,
and

2. If at most (1 − ε)-fraction of hyperedges of H are bi-chromatic, then the
optimal cost of correlation clustering is at least M − (1 − δ)N , where δ is
some constant.

Next, we propose a hypothesis which holds given that Hypothesis 5 holds.

Hypothesis 6: There exists constants ε > 0 such that the following holds:
There does not exist a (1 + ε)-factor approximation algorithm for the
MinDisAgree[k] problem that runs in time better than poly(n) ·2Ω(k

poly log k).

The lemma below follows easily from Lemma 9 given above.

Lemma 10. If Hypothesis 5 holds, then so does Hypothesis 6.

Finally, the Proof of Theorem5 follows from chaining together Lemmas 1, 4,
6, 8, and 10.

3 Algorithms for MaxAgree[k] and MinDisAgree[k]
in SSAC Framework

In this section, we give (1 + ε)-approximation algorithms for the MaxAgree[k]
and MinDisAgree[k] problems within the SSAC framework for any ε > 0.

3.1 MaxAgree[k]

In this section, we will discuss a query algorithm that gives (1+ε)-approximation
to the MaxAgree[k] problem. The algorithm that we will discuss is closely related
to the non-query algorithm for MaxAgree[k] by Giotis and Guruswami. See Algo-
rithm MaxAg(k, ε) in [12]. In fact, except for a few changes, this section will
look extremely similar to Sect. 3 in [12]. Given this, it will help if we mention
the high-level idea of the Giotis-Guruswami algorithm and point out the changes

24 N. Ailon et al.

that can be made within the SSAC framework to obtain the desired result. The
algorithm of Giotis and Guruswami proceeds in m iterations, where m = O(1/ε).
The given dataset V is partitioned into m equal parts V 1, . . . , V m, and in the ith

iteration, points in V i are assigned to one of the k clusters. In order to cluster
V i in the ith iteration, the algorithm samples a set of data points Si, and for
all possible k-partitions of Si, it checks the agreement of a point v ∈ V i with
the k clusters of Si. Suppose for a particular clustering Si

1, . . . , S
i
k of Si, the

agreement of vertices in V i is maximised. Then the vertices in V i are clustered
by placing them into the cluster that maximises their agreement with respect to
Si
1, . . . , S

i
k. Trying out all possible k-partitions of Si is an expensive operation

in the Giotis-Guruswami algorithm (since the running time becomes Ω(k|Si|)).
This is where the same-cluster queries help. Instead of trying out all possible
k-partitions of Si, we can make use of the same-cluster queries to find a sin-
gle appropriate k-partition of Si in the ith iteration. This is the clustering that
matches the “hybrid” clustering of Giotis and Guruswami. So, the running time
of the ith iteration improves from O(k|Si|) to O(k · |Si|). Moreover, the number
of same-cluster queries made in the ith iteration is k · |Si|, thus making the total
number of same-cluster queries to be O(k

ε · |Si|). The theorem is given below.
The details of the proof of this theorem is not given since it trivially follows from
Giotis and Guruswami (see Theorem 3.2 in [12]).

Theorem 7. There is a query algorithm QueryMaxAg that behaves as follows:
On input ε, δ and a labelling L of the edges of a complete graph G with n vertices,
with probability at least (1− δ), algorithm QueryMaxAg outputs a k clustering of
the graph such that the number of agreements induced by this k-clustering is at
least OPT − εn2/2, where OPT is the optimal number of agreements induced by
any k-clustering of G. The running time of the algorithm is O

(
nk
ε3 log k

ε2δ

)
. More-

over, the number of same-cluster queries made by QueryMaxAg is O
(

k
ε3 log k

ε2δ

)
.

Using the simple observation that OPT ≥ n2/16 (see Proof of Theorem 3.1
in [12]), we get that the above query algorithm gives (1 + ε)-approximation
guarantee in the SSAC framework.

3.2 MinDisAgree[k]

In this section, we provide a (1 + ε)-approximation algorithm for the
MinDisAgree[k] for any small ε > 0. Giotis and Guruswami [12] provided a
(1+ε)-approximation algorithm for MinDisAgree[k]. In this work, we extend their
algorithm to make it work in the SSAC framework with the aid of same-cluster
queries, and thereby improve the running time of the algorithm considerably.
Our query algorithm will be closely based on the non-query algorithm of Giotis
and Guruswami. In fact, except for a small (but crucial) change, the algorithms
are the same. So, we begin by discussing the main ideas and the result by Giotis
and Guruswami.

Lemma 11 (Theorem 4.7 in [12]). For every k ≥ 2 and ε > 0, there is a (1+ε)-
approximation algorithm for MinDisAgree[k] with running time nO(9k/ε2) log n.

Approximate Correlation Clustering Using Same-Cluster Queries 25

The algorithm by Giotis and Guruswami builds on the following ideas. First,
from the discussion in the previous section, we know that there is a FPTAS
within SSAC framework for MaxAgree[k]. Therefore, unless OPT , the optimal
value for MinDisAgree[k] is small (OPT= γn2, for some small γ > 0), the comple-
ment solution for MaxAgree[k] would give a valid (1 + ε)-approximate solution
for MinDisAgree[k]. Since OPT is small, this implies that the optimal value
for MaxAgree[k] is large which means that for any random vertex v in graph
G = (V,E), a lot of edges incident on v agree to the optimal clustering. Suppose
we are given a random subset S ⊆ V of vertices that are optimally clustered
S = {S1, . . . , Sk}, and let us assume that S is sufficiently large. Since most of
the edges in E are in agreement with the optimal clustering, we would be able
to assign vertices in V \ S to their respective clusters greedily. For any arbitrary
v ∈ V \S, assign v to Si for which the number of edges that agree is maximized.
Giotis and Guruswami observed that clustering vertices in V \ S in this manner
would work with high probability when these vertices belong to large clusters.
For vertices in small clusters, we may not be able to decide assignments with
high probability. They carry out this greedy assignment of vertices in V \ S
into clusters S1, . . . , Sk, and filter out clusters that are sufficiently large and
recursively run the same procedure on the union of small clusters.

For any randomly sampled subset S ⊆ V of vertices, Giotis and Guruswami
try out all possible ways of partitioning S into k clusters in order to partition S
optimally into k clusters S1, . . . , Sk. This ensures that at least one of the parti-
tions matches the optimal partition. However, this exhaustive way of partitioning
imposes huge burden on the running time of the algorithm. In fact, their algo-
rithm runs in nO(9k/ε2) log n time. Using access to the same-cluster query oracle,
we can obtain a significant reduction in the running time of the algorithm. We
query the oracle with pairs of vertices in S and since query answers are assumed
to be consistent with some unique optimal solution, optimal k clustering of ver-
tices in S is accomplished using at most k|S| same-cluster queries. Once we have
a k-partitioning of sample S that is consistent with the optimal k-clusters, we
follow the remaining steps of [12]. The same approximation analysis as in [12]
follows for the query algorithm. For completeness we give the modified algorithm
in Fig. 3.1. Let oracle A take any two vertices u and v as input and return ‘Yes’
if they belong to the same cluster in optimal clustering, and ‘No’ otherwise.

Here is the main theorem giving approximation guarantee of the above algo-
rithm. As stated earlier, the proof follows from the proof of a similar theorem
(Theorem 4.7 in [12]) by Giotis and Guruswami.

Theorem 8. Let 0 < ε ≤ 1/2. For any input labelling, QueryMinDisAgree(k, ε/4)
returns a k-clustering with the number of disagreements within a factor of (1+ε)
of the optimal.2

2 Readers familiar with [12] will realise that the statement of the theorem is slightly
different from statement of the similar theorem (Theorem 13) in [12]. More specifi-
cally, the claim is about the function call with ε/4 as a parameter rather than ε. This
is done to allow the recursive call in step (9) to be made with same value of precision
parameter as the initial call. This does not change the approximation analysis but
is crucial for our running time analysis.

26 N. Ailon et al.

QueryMinDisAgree(k, α)
Input: Labeling L :

(
n
2

) → {+, −} of edges of graph G(V, E), Oracle
A :

(
n
2

) → {Yes,No}.
Output: A k-clustering of G
Constants: c1 = 1

20

(1) If k = 1, return 1-clustering.

(2) Run QueryMaxAg on input L with accuracy
α2c21
32k4 to obtain k-clustering ClusMax.

(3) Set β = c1α
16k2 . Pick sample S ⊆ V of size 5 log n

β2 independently and uniformly at
random with replacement from V .
(4) Optimally cluster S = {S1, . . . , Sk} by making same-cluster queries to oracle A.
(5) Let Cj = Sj for 1 ≤ j ≤ k.
(6) For each u ∈ V \ S

(6.1) ∀i = 1, . . . , k: Let lui be the number of edges which agree between u and
nodes in Si.

(6.2) Let ju = arg maxi lui be the index of the cluster which maximizes the above
quantity.

(6.3) Cju = Cju ∪ {u}.
(7) Let the set of large and small clusters be Large = {j : 1 ≤ j ≤ k, |Sj | ≥ n

2k
} and

Small = [k] \ Large.
(8) Let l = |Large|, and s = k − l.
(9) Cluster W = ∪j∈SmallSj into s clusters {W1, . . . , Ws} using recursive calls to
QueryMinDisAgree(s, α).
(10) Let ClusMin be clustering obtained by k clusters {Sj}j∈Large and {Wt}{1≤t≤s}.
(11) Return the better of ClusMin and ClusMax

Algorithm 3.1. Query version of the algorithm by Giotis and Guruswami.

Even though the approximation analysis of the query algorithm remains the
same as the non-query algorithm of Giotis and Guruswami, the running time
analysis changes significantly. Let us write a recurrence relation for the running
time of our recursive algorithm. Let T (k) denote the running time of the algo-
rithm when n node graph is supposed to be clustered into k clusters with a given
precision parameter α. Using the results of the previous subsection, the running
time of step (2) is O(nk13 log k

α6). The running time for partitioning the set S is
given by k|S| which is O(k5 log n

α2). Steps (6–8) would cost O(nk|S|) time which
is O(nk5 log n

α2). So, the recurrence relation for the running time may be written
as T (k) = T (k − 1) + O(nk13 log k log n

α6). This simplifies to O(nk14 log k log n
α6). As

far as the same-cluster queries are concerned, we can write a similar recurrence
relation. Q(k) = Q(k − 1) + O(k13 log k log n

α6) which simplifies to O(k14 log k log n
α6).

This completes the Proof of Theorem 2.

4 Conclusion and Open Problems

We study upper and lower bounds on the query complexity of an efficient (1+ε)-
approximation for correlation clustering in the SSAC framework of Ashtiani et al.

Approximate Correlation Clustering Using Same-Cluster Queries 27

An interesting open problem is to design algorithms given faulty oracles, where
the query oracle gives wrong answers to queries with some probability. This set-
ting is more practical because in some contexts it may not be known whether any
two vertices belong to the same optimal cluster with high confidence. Designing
an efficient (1+ε)-approximation algorithm for MinDisAgree[k] with faulty oracle
is an interesting open problem.

References

1. Ailon, N., Bhattacharya, A., Jaiswal, R., Kumar, A.: Approximate clustering with
same-cluster queries (2017). CoRR, abs/1704.01862. To Appear in ITCS 2018

2. Angelidakis, H., Makarychev, K., Makarychev, Y.: Algorithms for stable and
perturbation-resilient problems. In: STOC, pp. 438–451 (2017)

3. Ashtiani, H., Kushagra, S., Ben-David, S.: Clustering with same-cluster queries.
In: NIPS, pp. 3216–3224 (2016)

4. Awasthi, P., Balcan, M.-F, Voevodski, K.: Local algorithms for interactive cluster-
ing. In: ICML, pp. 550–558 (2014)

5. Balcan, M.-F., Blum, A.: Clustering with interactive feedback. In: Freund, Y.,
Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp.
316–328. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87987-
9 27

6. Balcan, M.-F., Blum, A., Gupta, A.: Clustering under approximation stability. J.
ACM (JACM) 60(2), 8 (2013)

7. Balcan, M.F., Liang, Y.: Clustering under perturbation resilience. SIAM J. Com-
put. 45(1), 102–155 (2016)

8. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

9. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005)

10. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
11. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds

for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci. 80(7), 1430–1447 (2014)

12. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters.
In: SODA, pp. 1167–1176 (2006)

13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

15. Makarychev, K., Makarychev, Y., Vijayaraghavan, A.: Correlation clustering with
noisy partial information. In: COLT, pp. 1321–1342 (2015)

16. Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest
k-subgraph. CoRR, abs/1611.05991 (2016)

17. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: ACM-SIAM
Symposium on Discrete Algorithms, pp. 712–728 (2010)

18. Mazumdar, A., Saha, B.: Query complexity of clustering with side information.
arXiv preprint arXiv:1706.07719 (2017)

19. Voevodski, K., Balcan, M.-F., Röglin, H., Teng, S.-H., Xia, Y.: Efficient cluster-
ing with limited distance information. In: Conference on Uncertainty in Artificial
Intelligence, pp. 632–640 (2010)

https://doi.org/10.1007/978-3-540-87987-9_27
https://doi.org/10.1007/978-3-540-87987-9_27
http://arxiv.org/abs/1706.07719

Finding Tight Hamilton Cycles
in Random Hypergraphs Faster

Peter Allen1, Christoph Koch2, Olaf Parczyk3, and Yury Person3(B)

1 Department of Mathematics, London School of Economics,
Houghton Street, London WC2A 2AE, UK

p.d.allen@lse.ac.uk
2 Mathematics Institute, University of Warwick,

Zeeman Building, Coventry CV4 7AL, UK
c.koch@warwick.ac.uk

3 Institut für Mathematik, Goethe Universität,
Robert-Mayer-Str. 6-10, 60325 Frankfurt am Main, Germany

{parczyk,person}@math.uni-frankfurt.de

Abstract. In an r-uniform hypergraph on n vertices a tight Hamilton
cycle consists of n edges such that there exists a cyclic ordering of the
vertices where the edges correspond to consecutive segments of r vertices.
We provide a first deterministic polynomial time algorithm, which finds
a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge
probability at least C log3 n/n.

Our result partially answers a question of Dudek and Frieze (Random
Struct Algorithms 42:374–385, 2013) who proved that tight Hamilton
cycles exists already for p = ω(1/n) for r = 3 and p = (e + o(1))/n
for r ≥ 4 using a second moment argument. Moreover our algorithm is
superior to previous results of Allen et al. (Random Struct Algorithms
46:446–465, 2015) and Nenadov and Škorić (arXiv:1601.04034) in various
ways: the algorithm of Allen et al. is a randomised polynomial time
algorithm working for edge probabilities p ≥ n−1+ε, while the algorithm
of Nenadov and Škorić is a randomised quasipolynomial time algorithm
working for edge probabilities p ≥ C log8 n/n.

1 Introduction

The Hamilton Cycle Problem, i.e., deciding whether a given graph contains a
Hamilton cycle, is one of the 21 classical NP-complete problems due to Karp [13].
The best currently known algorithm is due to Björklund [3]: a Monte-Carlo
algorithm with worst case running time O∗(1.657n),1 without false positives and
false negatives occurring only with exponentially small probability. But what
about “typical” instances? In other words, when the input is a random graph

The second author was supported by Austrian Science Fund (FWF): P26826, and
European Research Council (ERC): No. 639046.
The third and fourth authors were supported by DFG grant PE 2299/1-1.

1 Writing O∗ means we ignore polylogarithmic factors.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 28–36, 2018.
https://doi.org/10.1007/978-3-319-77404-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_3&domain=pdf
http://arxiv.org/abs/1601.04034

Finding Tight Hamilton Cycles in Random Hypergraphs Faster 29

sampled from some specific distribution, is there an algorithm which finds a
Hamilton cycle in polynomial time with small error probabilities?

For example, let us examine the classical binomial random graph G(n, p):
Pósa [22] and Korshunov [15,16] proved that the hamiltonicity threshold is at
p = Θ(log n/n). Their result was improved by Komlós and Szemerédi [14] who
showed that the hamiltonicity threshold coincides with the threshold for min-
imum degree 2, and Bollobás [4] demonstrated that this is even true for the
hitting times of these two properties in the corresponding random graph pro-
cess. But these results do not allow one to actually find any Hamilton cycle in
polynomial time. The first polynomial time randomised algorithms for finding
Hamilton cycles in G(n, p) are due to Angluin and Valiant [2] and Shamir [25].
Subsequently, Bollobás et al. [5] developed a deterministic algorithm, whose suc-
cess probability (for input sampled from G(n, p)) matches the probability of
G(n, p) being hamiltonian in the limit as n → ∞.

Turning to hypergraphs, there exist various notions of Hamilton cycles: weak
Hamilton cycle, Berge Hamilton cycle, �-overlapping Hamilton cycles (for � ∈
[r − 1]). In each situation, one seeks to cyclically order the vertex set such that:

– any two consecutive vertices lie in a hyperedge (a weak Hamilton cycle),
– any two consecutive vertices lie in some chosen hyperedge and no hyperedge

is chosen twice (a Berge Hamilton cycle),
– the edges are consecutive segments so that two consecutive edges intersect in

exactly � vertices (an �-overlapping Hamilton cycle).

The (binomial) random r-uniform hypergraph G(r)(n, p) defined on the vertex
set [n] := {1, . . . , n}, includes each r-set x ∈ (

[n]
r

)
as a (hyper)edge independently

with probability p = p(n). The study of Hamilton cycles in random hypergraphs
was initiated more recently by Frieze in [10], who considered so-called loose
Hamilton cycles in 3-uniform hypergraphs (these are 1-overlapping cycles in our
terminology). Dudek and Frieze [7,8] determined, for all � and r, the threshold
for the appearance of an �-overlapping Hamilton cycle in a random r-uniform
hypergraph (most thresholds being determined exactly, some only asymptoti-
cally). However, these results were highly nonconstructive, relying either on a
result of Johansson et al. [12] or the second moment method.

The case of weak Hamilton cycles was studied by Poole in [21], while Berge
Hamilton cycles in random hypergraphs were studied by Clemens et al. in [6],
the latter one being algorithmic.

In the case � = r − 1 it is customary to refer to an �-overlapping cycle as a
tight cycle. Thus, the tight r-uniform cycle on vertex set [n], n ≥ r, has edges
{i + 1, . . . , i + r} for all i, where we identify vertex n + i with i. A general
result of Friedgut [9] readily shows that the threshold for the appearance of an
�-overlapping cycle in G(r)(n, p) is sharp; that is, there is some threshold function
p0 = p0(n) such that for any constant ε > 0 the following holds. If p ≤ (1 − ε)p0
then G(r)(n, p) a.a.s. does not contain the desired cycle, whereas if p ≥ (1 + ε)p0
then it a.a.s. does contain the desired cycle. Dudek and Frieze [8] proved that
for r ≥ 4 the function p0(n) = e/n is a threshold function for containment of

30 P. Allen et al.

a tight cycle, while for r = 3 they showed that a.a.s. G(3)(n, p) contains a tight
Hamilton cycle for any p = p(n) = ω(1/n). An easy first moment calculation
shows that if p = p(n) ≤ (1−ε)e/n then a.a.s. G(r)(n, p) does not contain a tight
Hamilton cycle.

1.1 Main Result

At the end of [8], Dudek and Frieze posed the question of finding algorithmically
various �-overlapping Hamilton cycles at the respective thresholds. In this paper
we study tight Hamilton cycles and provide a first deterministic polynomial time
algorithm, which works for p only slightly above the threshold.

Theorem 1. For each integer r ≥ 3 there exists C > 0 and a deterministic
polynomial time algorithm with runtime O(nr) which for any p ≥ C(log n)3n−1

a.a.s. finds a tight Hamilton cycle in the random r-uniform hypergraph G(r)(n, p).

Prior to our work there were two algorithms known that dealt with finding
tight cycles. The first algorithmic proof was given by Allen et al. in [1], where
they presented a randomised polynomial time algorithm which could find tight
cycles a.a.s. at the edge probability p ≥ n−1+ε for any fixed ε ∈ (0, 1/6r) and
running time n20/ε2

. The second result is a randomised quasipolynomial time
algorithm of Nenadov and Škorić [20], which works for p ≥ C(log n)8/n.

Our result builds on the adaptation of the absorbing technique of Rödl
et al. [24] to sparse random (hyper-)graphs. This technique was actually used
earlier by Krivelevich in [17] in the context of random graphs. However, the first
results that provided essentially optimal thresholds (for other problems) are
proved in [1] mentioned above in the context of random hypergraphs and inde-
pendently by Kühn and Osthus in [18], who studied the threshold for the appear-
ance of powers of Hamilton cycles in random graphs. The probability of p ≥
C(log n)3n−1 results in the use of so-called reservoir structures of polylogarithmic
size, as first used by Montgomery to find spanning trees in random graphs [19],
and later in [20]. Our improvements result in the combination of the two algorith-
mic approaches [1,20] and in the analysis of a simpler algorithm that we provide.

Organisation. In Sect. 2 we provide an informal overview of our algorithm. In
Sect. 3 we then present two key lemmas and in Sect. 4 we give more details on
the proof.

2 An Informal Algorithm Overview

2.1 Notation and Inequalities

An s-tuple (u1, . . . , us) of vertices is an ordered set of distinct vertices. We often
denote tuples by bold symbols, and occasionally also omit the brackets and
write u = u1, . . . , us. Additionally, we may also use a tuple as a set and write
for example, if S is a set, S ∪ u := S ∪ {ui : i ∈ [s]}. The reverse of the s-tuple
u is the s-tuple ←−s := (us, . . . , u1).

Finding Tight Hamilton Cycles in Random Hypergraphs Faster 31

In an r-uniform hypergraph G the tuple P = (u1, . . . , u�) forms a tight path
if the set {ui+1, . . . , ui+r} is an edge for every 0 ≤ i ≤ � − r. For any s ∈ [�] we
say that P starts with the s-tuple (u1, . . . , us) =: v and ends with the s-tuple
(u�−(s−1), . . . , u�) =: w. We also call v the starts-tuple of P , w the end s-tuple
of P , and P a v − w path. The interior of P is formed by all its vertices but
its start and end (r − 1)-tuples. Note that the interior of P is not empty if and
only if � > 2(r − 1).

For a binomially distributed random variable X and a constant 0 < γ < 1
we will apply the following Chernoff-type bound (see, e.g., [11, Corollary 2.3])

P [|X − E(X)| ≤ γE(X)] ≤ 2 exp
(

−γ2
E(X)
3

)
. (1)

In addition we will make use of the following consequence of Janson’s inequal-
ity (see for example [11], Theorem 2.18): Let Ω be a finite set and P be a family
of non-empty subsets of Ω. Now consider the random experiment where each
e ∈ Ω is chosen independently with probability p and define for each P ∈ P the
indicator variable IP that each element of P gets chosen. Set X =

∑
P∈P IP and

Δ =
∑

P �=P ′,P∩P ′ �=∅ E(IP IP ′). Then

P[X = 0] ≤ exp
(

− E(X)2

E(X) + Δ

)
. (2)

2.2 Overview of the Algorithm

We start with the given sample of the random hypergraph G(r)(n, p) and we
will reveal the edges as we proceed. First, using the Reservoir Lemma (Lemma 1
below), we construct a tight path Pres which covers a small but bounded away
from zero fraction of [n], which has the reservoir property, namely that there is
a set R ⊆ V (Pres) of size 2Cp−1 log n ≤ 2n/ log2 n such that for any R′ ⊆ R,
there is a tight path covering exactly the vertices V (Pres)\R′ whose ends are the
same as those of Pres, and this tight path can be found given Pres and R′ in time
polynomial in n a.a.s.

We now greedily extend Pres, choosing new vertices when possible and other-
wise vertices in R. We claim that a.a.s. this strategy produces a structure Palmost

which is almost a tight path extending Pres and covering [n]. The reason it is only
‘almost’ a tight path is that some vertices in R may be used twice. We denote
the set of vertices used twice by R′

1. But we will succeed in covering [n] with
high probability. Recall that, due to the reservoir property, we can dispense with
the vertices from R′

1 in the part Pres of the almost tight Hamilton path Palmost.
Finally, we apply the Connecting Lemma (Lemma 2 below) to find a tight

path in R\R′
1 joining the ends of Palmost, and using the reservoir property this

gives the desired tight Hamilton cycle.
This approach is similar to that in [1]. The main difference is the way we prove

the Reservoir Lemma (Lemma 1). In both [1] and this paper, we first construct
many small, identical, vertex-disjoint reservoir structures (in some part of the

32 P. Allen et al.

literature, mostly in the dense case, this structure is called an absorber). A
reservoir structure contains a spanning tight path, and a second tight path with
the same ends which omits one reservoir vertex. We then use Lemma 2 to join
the ends of all these reservoir structures together into the desired Pres. In [1],
reservoir structures are of constant size (depending on the ε) and they are found
by using brute-force search. This is slow, and is also the cause of the algorithm
in [1] being randomised: there it is necessary to simulate exposure in rounds of
the random hypergraph since the brute-force search reveals all edges. In this
paper, by contrast, we construct reservoir structures by a local search procedure
which is both much faster and reveals much less of the random hypergraph.

We will perform all the constructions in this paper by using local search
procedures. At each step we reveal all the edges of G(r)(n, p) which include a
specified (r − 1)-set, the search base. The number of such edges will always
be in expectation of the order of pn, so that by Chernoff’s inequality and the
union bound, with high probability at every step in the algorithm the number of
revealed edges is close to the expected number. Of course, what we may not do
is attempt to reveal a given edge twice: we therefore keep track of an exposure
hypergraph E , which is the (r−1)-uniform hypergraph consisting of all the (r−1)-
sets which have been used as search bases up to a given time in the algorithm.
We will show that E remains quite sparse, which means that at each step we
have almost as much freedom as at the start when no edges are exposed.

For concreteness, we use a doubly-linked list of vertices as the data structure
representing a tight (almost-)path. However this choice of data structure is not
critical to the paper and we will not further comment on it. The reader can
easily verify that the various operations we describe can be implemented in the
claimed time using this data structure. To simplify readability, we will omit in
the calculations floor and ceiling signs whenever they are not crucial for the
arguments.

3 Two Key Lemmas

Recall the definition of the reservoir path Pres. It is an r-uniform hypergraph
with a special subset R � V (Pres) and some start and end (r − 1)-tuples v and
w respectively, such that:

1. Pres contains a tight path with the vertex set V (Pres) and the ‘end tuples’ v
and w, and

2. for any R′ ⊆ R, Pres contains a tight path with the vertex set V (Pres)\R′

and the ‘end tuples’ v and w.

We first give the lemma which constructs Pres. In addition to with high
probability returning Pres, we also need to describe the likely resulting exposure
hypergraph.

Lemma 1 (Reservoir Lemma). For each r ≥ 3 and p ∈ (0, 1] there exists
C > 0 and a deterministic O(nr)-time algorithm whose input is an n-vertex r-
uniform hypergraph G and whose output is either ‘Fail’ or a reservoir path Pres

Finding Tight Hamilton Cycles in Random Hypergraphs Faster 33

with ends u and v and an (r − 1)-uniform exposure hypergraph E on vertex set
V (G) with the following properties.

(i) All vertices of Pres and edges of E are contained in a set S of size at most n
4 .

(ii) The reservoir R ⊆ V (Pres) has size 2Cp−1 log n.
(iii) There are no edges of E contained in R ∪ u ∪ v.
(iv) All r-sets in V (G) which have been exposed contain at least one edge of E.

When G is drawn from the distribution G(r)(n, p) and p ≥ Cn−1 log3 n, the
algorithm returns ‘Fail’ with probability at most n−2.

Furthermore we need a lemma which allows us to connect two given tuples
with a not too long path. This lemma is the engine behind the proof and behind
the Reservoir Lemma.

Lemma 2 (Connecting Lemma). For each r ≥ 3 there exist c, C > 0 and
a deterministic O(nr−1)-time algorithm whose input is an n-vertex r-uniform
hypergraph G, a pair of distinct (r − 1)-tuples u and v, a set S ⊆ V (G) and an
(r − 1)-uniform exposure hypergraph E on the same vertex set V (G). The output
of the algorithm is either ‘Fail’ or a tight path of length o(log n) in G whose ends
are u and v and whose interior vertices are in S, and an exposure hypergraph
E ′ ⊃ E. We have that all the edges E(E ′)\E(E) are contained in S ∪ u ∪ v.

Suppose that G is drawn from the distribution G(r)(n, p) with p ≥
C(log n)3/n, that E does not contain any edges intersecting both S and u ∪ v.
If furthermore |S| = Cp−1 log n and |e(E [S])| ≤ c|S|r−1 then e(E ′) ≤ e(E) +
O(|S|r−2) and the algorithm returns ‘Fail’ with probability at most n−5.

4 Overview Continued: More Details

We now describe the algorithm claimed by Theorem1, which we state in a
high-level overview as Algorithm 1 and explain somewhat informally some of the
arguments.

Algorithm 1. Find a tight Hamilton cycle in G(r)(n, p)
1 use subroutine from Lemma 1 to either construct Pres (with ends u, v and

exposure hypergraph E on S) or halt with failure;
L := V (G)\S;
U := S\V (Pres);

2 extend Pres greedily from v to cover all vertices of U and using up to n/2
vertices of L, otherwise halt with failure;

3 extend Pres further greedily to Palmost by covering all vertices of L and using up
to |R|/2 vertices of R, otherwise halt with failure;

4 use subroutine of Lemma 2 to connect the ends of Palmost using the unused at
least |R|/2 vertices of R, otherwise halt with failure;

34 P. Allen et al.

Step 1. Given G drawn from the distribution G(r)(n, p), we begin by applying
Lemma 1 to a.a.s. find a reservoir path Pres with ends u and v contained in a set
S of size n

4 . Let L = V (G)\S, and U = S\V (Pres). Recall that by Lemma 1 (i)
and (iii), all edges of E are contained in S; and R ∪ u ∪ v contains no edges of
E . By (iv) all exposed r-sets contain an edge of E ; by choosing a little carefully
where to expose edges (see Step 2 below), we will not need to worry about what
exactly the edges of E are beyond the above information.

Step 2. We extend Pres := P0 greedily, one vertex at a time, from its end u = u0,
to cover all of U . At each step i, we simply expose the edges of G which contain
the end ui−1 of Pi−1 and whose other vertex is not in V (Pi−1), choose one of
these edges e and add the vertex from e\ui−1 to Pi−1 to form Pi. The rule we
use for choosing e is the following: if i is congruent to 1 or 2 modulo 3, we choose
e such that e\ui−1 is in L, and if i is congruent to 0 modulo 3 we choose e such
that e\ui−1 is in U if it is possible; if not we choose e such that xi := e\ui−1 is
in L. The point of this rule is that at each step we want to choose an edge which
contains at least two vertices of L, because no such r-set can contain an edge
of E since all the edges of E are contained in S (Property (i)). We will see that
while U\V (Pi−1) is large, we always succeed in choosing a vertex in U when i
is congruent to 0 modulo 3. When it becomes small we do not, but a.a.s. we
succeed often enough to cover all of U while using not more than 5n

8 vertices
of L.

Step 3. Next, we continue the greedy extension, this time choosing a vertex in
L when possible and in R when not, until we cover all of L. It follows from the
first two steps and Properties (i) and (iii) that no edge of E is in L ∪ R. Thus,
at each step we choose from newly exposed edges and again we a.a.s. succeed in
covering L using only a few vertices of R. Let the final almost-path (which uses
some vertices R′

1 ⊆ R twice) be Palmost, and R1 the subset of R consisting of
vertices we did not use in the greedy extension, i.e. R1 = R\R′

1.

Step 4. At last, Palmost covers V (G) = L ∪ U ∪ V (Pres). Its ends, together with
the vertices of R1, satisfy the conditions of Lemma2, which we apply to a.a.s.
complete Palmost to an almost-tight cycle H ′ in which some vertices of R1 are
used twice. The reservoir property of R now gives a tight Hamilton cycle H.

Runtime. Our applications of Lemmas 1 and 2 take time polynomial in n by the
statements of those lemmas; the greedy extension procedure is trivially possible
in O(n2) time (since at each extension step we just need to look at the neigh-
bourhood of an (r−1)-tuple, and there are O(n) steps). Finally the construction
of Pres allows us to obtain H from H ′ in time O(n2): we scan through Pres, for
each vertex r of R we scan the remainder of H ′ to see if it appears a second
time, and if so locally reorder V (Pres) to remove r from Pres.

To prove Theorem 1, what remains is to justify our claims that various pro-
cedures above a.a.s. succeed.

Finding Tight Hamilton Cycles in Random Hypergraphs Faster 35

5 Conclusion

In this paper we have improved upon the best known algorithms for finding a
tight Hamilton cycle in G(r)(n, p): we provide a deterministic algorithm with
runtime O(nr) which for any edge probability p ≥ C(log n)3n−1 succeeds a.a.s.
While we give an affirmative answer to a question of Dudek and Frieze [8] in this
regime, the question remains open for e/n ≤ p < C(log n)3n−1 for r ≥ 4, and
1/n � p < C(log n)3n−1 for r = 3.

Let us now turn our attention to the closely related problem of finding the
r-th power of a Hamilton cycle in the binomial random graph G(n, p), where
r ≥ 2. While a general result of Riordan [23] already shows that the threshold
for r ≥ 3 is given by p = Θ(n−1/r) (as observed in [18]), the threshold for r = 2
is still open, where the best known upper bound is a polylog-factor away from
the first-moment lower bound n−1/2 [20].

Since the result by Riordan is based on the second moment method it is
inherently non-constructive. By contrast, the proof in [20] (for r ≥ 2) is based
on a quasi-polynomial time algorithm which for p ≥ C(log n)8/rn−1/r finds the
r-th power of an Hamilton a.a.s. in G(n, p), and which is very similar to their
algorithm for finding tight Hamilton cycles in G(r)(n, p). We think that our ideas
are also applicable in this context and would provide an improved algorithm for
finding r-th powers of Hamilton cycles in G(n, p), though we did not check any
details.

Finally, it would be interesting to know the average case complexity of deter-
mining whether an n-vertex r-uniform hypergraph with m edges contains a tight
Hamilton cycle. Our results (together with a standard link between the hyperge-
ometric and binomial random hypergraphs) show that if m � nr−1 log3 n then a
typical such hypergraph will contain a Hamilton cycle, but the failure probability
of our algorithm is not good enough to show that the average case complexity
is polynomial time. For this one would need a more robust algorithm which
can tolerate some ‘errors’ at the cost of doing extra computation to determine
whether the ‘error’ causes hamiltonicity to fail or not.

References

1. Allen, P., Böttcher, J., Kohayakawa, Y., Person, Y.: Tight Hamilton cycles in
random hypergraphs. Random Struct. Algorithms 46(3), 446–465 (2015)

2. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)

3. Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput.
43(1), 280–299 (2014)

4. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combina-
torics (Cambridge, 1983), pp. 35–57. Academic Press, London (1984). MR 777163
(86i:05119)

5. Bollobás, B., Fenner, T.I., Frieze, A.: An algorithm for finding Hamilton paths
and cycles in random graphs. Combinatorica 7(4), 327–341 (1987). MR 931191
(89h:05049)

36 P. Allen et al.

6. Clemens, D., Ehrenmüller, J., Person, Y.: A Dirac-type theorem for Hamilton Berge
cycles in random hypergraphs. Discrete Mathematical Days. Extended Abstracts
of the 10th “Jornadas de matemática discreta y algoŕıtmica” (JMDA), Barcelona,
Spain, 6–8 July 2016, pp. 181–186. Elsevier, Amsterdam (2016)

7. Dudek, A., Frieze, A.: Loose Hamilton cycles in random uniform hypergraphs.
Electron. J. Combin. 18(1), Paper 48, 14 (2011). MR 2776824 (2012c:05275)

8. Dudek, A., Frieze, A.: Tight Hamilton cycles in random uniform hypergraphs.
Random Struct. Algorithms 42(3), 374–385 (2013)

9. Friedgut, E.: Sharp thresholds of graph properties, and the k-sat problem. J. Am.
Math. Soc. 12(4), 1017–1054 (1999). With an appendix by Jean Bourgain

10. Frieze, A.: Loose Hamilton cycles in random 3-uniform hypergraphs. Electron. J.
Combin. 17(1), Note 28, 4 (2010). MR 2651737 (2011g:05268)

11. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience, New
York (2000)

12. Johansson, A., Kahn, J., Vu, V.: Factors in random graphs. Random Struct. Algo-
rithms 33(1), 1–28 (2008). 2428975 (2009f:05243)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

14. Komlós, J., Szemerédi, E.: Limit distribution for the existence of Hamiltonian
cycles in a random graph. Discrete Math. 43(1), 55–63 (1983). MR 680304
(85g:05124)

15. Korshunov, A.D.: Solution of a problem of Erdős and Renyi on Hamiltonian cycles
in non-oriented graphs. Sov. Math. Dokl. 17, 760–764 (1976)

16. Korshunov, A.D.: Solution of a problem of P. Erdős and A. Renyi on Hamiltonian
cycles in undirected graphs. Metody Diskretn. Anal. 31, 17–56 (1977)

17. Krivelevich, M.: Triangle factors in random graphs. Comb. Probab. Comput. 6(3),
337–347 (1997)

18. Kühn, D., Osthus, D.: On Pósa’s conjecture for random graphs. SIAM J. Discrete
Math. 26(3), 1440–1457 (2012)

19. Montgomery, R.: Embedding bounded degree spanning trees in random graphs.
arXiv:1405.6559v2 (2014)

20. Nenadov, R., Škorić, N.: Powers of Hamilton cycles in random graphs and tight
Hamilton cycles in random hypergraphs. arXiv preprint arXiv:1601.04034 (2017)

21. Poole, D.: On weak Hamiltonicity of a random hypergraph. arXiv:1410.7446 (2014)
22. Pósa, L.: Hamiltonian circuits in random graphs. Discrete Math. 14(4), 359–364

(1976). MR 0389666 (52 #10497)
23. Riordan, O.: Spanning subgraphs of random graphs. Comb. Probab. Comput. 9(2),

125–148 (2000)
24. Rödl, V., Ruciński, A., Szemerédi, E.: A Dirac-type theorem for 3-uniform hyper-

graphs. Combin. Probab. Comput. 15(1–2), 229–251 (2006)
25. Shamir, E.: How many random edges make a graph Hamiltonian? Combinatorica

3(1), 123–131 (1983)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1405.6559v2
http://arxiv.org/abs/1601.04034
http://arxiv.org/abs/1410.7446

Walking Through Waypoints

Saeed Akhoondian Amiri1 , Klaus-Tycho Foerster2(B) ,
and Stefan Schmid2

1 TU Berlin and Max Planck Institute for Informatics (Saarland),
Saarbrücken, Germany

saeed.amiri@tu-berlin.de
2 University of Vienna, Vienna, Austria

{klaus-tycho.foerster,Stefan schmid}@univie.ac.at

Abstract. We initiate the study of a fundamental combinatorial prob-
lem: Given a capacitated graph G = (V,E), find a shortest walk (“route”)
from a source s ∈ V to a destination t ∈ V that includes all vertices speci-
fied by a set W ⊆ V : the waypoints. This waypoint routing problem finds
immediate applications in the context of modern networked distributed
systems. Our main contribution is an exact polynomial-time algorithm
for graphs of bounded treewidth. We also show that if the number of
waypoints is logarithmically bounded, exact polynomial-time algorithms
exist even for general graphs. Our two algorithms provide an almost com-
plete characterization of what can be solved exactly in polynomial-time:
we show that more general problems (e.g., on grid graphs of maximum
degree 3, with slightly more waypoints) are computationally intractable.

1 Introduction

How fast can we find a shortest route, i.e., walk, from a source s to a destination
t which visits a given set of waypoints in a graph, but also respects edge capaci-
ties, limiting the number of traversals? This fundamental combinatorial problem
finds immediate applications, e.g., in modern networked systems connecting dis-
tributed network functions. However, surprisingly little is known today about
the fundamental algorithmic problems underlying walks through waypoints.

The problem features interesting connections to the disjoint paths problem,
however, in contrast to disjoint paths, we (1) consider walks (of unit resource
demand each time an edge is traversed) on capacitated graphs rather than paths
on uncapaciatated graphs, and we (2) require that a set of specified vertices are
visited. We refer to Fig. 1 for two examples.

Model. The inputs to the Waypoint Routing Problem (WRP) are: (1) a con-
nected, undirected, capacitated and weighted graph G = (V,E, c, ω) consisting of
n = |V | > 1 vertices, where c : E → N represents edge capacities and ω : E → N

represents the edge costs. (2) A source-destination vertex pair s, t ⊆ V (G). (3)
A set of k waypoints W = (w1, . . . , wk) ∈ V (G)k.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 37–51, 2018.
https://doi.org/10.1007/978-3-319-77404-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_4&domain=pdf
http://orcid.org/0000-0002-7402-2662
http://orcid.org/0000-0003-4635-4480
http://orcid.org/0000-0002-7798-1711

38 S. Akhoondian Amiri et al.

Fig. 1. Two shortest walks and their decompositions into three paths each: In both
graphs, we walk through all waypoints from s to t by first taking the red, then the blue,
and lastly the brown path. The existence of a solution in the left graph (e.g., a walk
of length 7 in this case) relies on one edge incident to a waypoint having a capacity of
at least two. In the right graph, it is sufficient that all edges have unit capacity. Note
that no s − t path through all waypoints exists, for either graph. (Color figure online)

We observe that the route (describing a walk) can be decomposed into simple
paths between terminals and waypoints, and we ask: Is there a route R, which
w.l.o.g. can be decomposed into k+1 path segments R = P1⊕ . . .⊕Pk+1, where:

1. Capacities are respected: We assume unit demands and require |{i | e ∈ Pi ∈
R, i ∈ [1, k + 1]}| ≤ c(e) for every edge e ∈ E.

2. Waypoints are visited: Every element in W appears as an endpoint of exactly
two distinct paths in route R and s is an endpoint of P1 and t is an endpoint
of Pk+1. We note that the k waypoints can be visited in any order.

3. Walks are short: The length � = |P1| + . . . + |Pk+1| of route R w.r.t. edge
traversal cost ω is minimal.

Remark I: Reduction to Edge-Disjoint Problems. Without loss of gener-
ality, it suffices to consider capacities c : E → {1, 2}, as shown in [38, Fig. 1]: a
walk R which traverses an edge e more than twice, cannot be a shortest one.

This also gives us a simple reduction of the capacitated problem to an unca-
pacitated (i.e., unit capacity), edge-disjoint problem variant, by using at most
two parallel edges per original edge. Depending on the requirements, we will
further subdivide these parallel edges into paths (while preserving distances and
graph properties such as treewidth, at least approximately).

Remark II: Reduction to Cycles. Without loss of generality and to simplify
presentation, we focus on the special case s = t. We show that we can modify
instances with s �= t to instances with s = t in a distance-preserving manner
and by increasing the treewidth by at most one. Our NP-hardness results hold
for s = t as well. The proof is deferred to the full version of this paper.

1.1 Our Contributions

We initiate the study of a fundamental waypoint routing problem. We present
polynomial-time algorithms to compute shortest routes (walks) through arbi-
trary waypoints on graphs of bounded treewidth and to compute shortest routes
on general graphs through a bounded (but not necessarily constant) number of
waypoints. We show that it is hard to significantly generalize these results both

Walking Through Waypoints 39

in terms of the family of graphs as well as in terms of the number of waypoints,
by deriving NP-hardness results: Our exact algorithms cover a good fraction of
the problem space for which polynomial-time solutions exist. More precisely, we
present the following results:

1. Shortest Walks on Arbitrary Waypoints: While many vertex disjoint
problem variants like Hamiltonian path, TSP, vertex disjoint paths, etc. are
often polynomial-time solvable in graphs of bounded treewidth, their edge-
disjoint counterparts (like the edge-disjoint problem), are sometimes NP-hard
already on series-parallel graphs. As the Waypoint Routing Problem is an
edge-based problem, one might expect that the problem is NP-hard already
on bounded treewidth graphs, similarly to the edge-disjoint paths problem.
Yet, and perhaps surprisingly, we prove that a shortest walk through an arbi-
trary number of waypoints can be computed in polynomial time on graphs
of bounded treewidth. By employing a simple trick, we transform the capaci-
tated problem variant to an uncapacitated edge-disjoint problem: the result-
ing uncapacitated graph has almost the same treewidth. We then employ a
well-known dynamic programming technique on a nice tree decomposition of
the graph. However, since the walk is allowed to visit a vertex multiple times,
we cannot rely on techniques which are known for vertex-disjoint paths. More-
over, we cannot simply use the line graph of the original graph: the resulting
graph does not preserve the bounded treewidth property. Accordingly, we
develop new methods and tools to deal with these issues.

2. Shortest Walks on Arbitrary Graphs: We show that a shortest route
through a logarithmic number of waypoints can be computed in randomized
time on general graphs, by reduction to the vertex-disjoint cycle problem
in [7]. Similarly, we show that a route through a loglog number of way-
points can be computed in deterministic polynomial time on general graphs
via [35]. Again, we show that that this is almost tight, in the sense that the
problem becomes NP-hard for any polynomial number of waypoints. This
reduction shows that the edge-disjoint paths problem is not harder than the
vertex-disjoint problem on general graphs, and the hardness result also implies
that [7] is nearly asymptotically tight in the number of waypoints.

1.2 A Practical Motivation

The problem of finding routes through waypoints or specified vertices is a natural
and fundamental one. We sketch just one motivating application, arising in the
context of modern networked systems. Whereas traditional computer networks
were designed with an “end-to-end principle” [50] philosophy in mind, mod-
ern networks host an increasing number of “middleboxes” or network functions,
distributed across the network, in order to improve performance (e.g., traffic
optimizers, caches, etc.), security (e.g., firewalls, intrusion detection systems),
or scalability (e.g., network address translation). Moreover, middleboxes are
increasingly virtualized (a trend known as network function virtualization [23])
and can be deployed flexibly at arbitrary locations in the network (not only

40 S. Akhoondian Amiri et al.

at the edge) and at low costs. Accordingly, also more flexible routing schemes
have been developed, enabled in particular by the software-defined networking
paradigm [27], to route the traffic through these (virtualized) middleboxes to
compose more complex network services (also known as service chains [24]).
Thus, the resulting traffic routes can be modeled as walks, and the problem of
finding shortest routes through such middleboxes (the waypoints) is an instance
of WRP.

1.3 Related Work

The Waypoint Routing Problem is closely related to disjoint paths problems
arising in many applications [41,44,56]. Indeed, assuming unit edge capacities
and a single waypoint w, the problem of finding a shortest walk (s, w, t) can be
seen as a problem of finding two shortest (edge-)disjoint paths (s, w) and (w, t)
with a common vertex w. More generally, a shortest walk (s, w1, . . . , wk, t) in
a unit-capacity graph can be seen as a sequence of k + 1 disjoint paths. The
edge-disjoint and vertex-disjoint paths problem (sometimes called min-sum dis-
joint paths) is a deep and intensively studied combinatorial problem, also in
the context of parallel algorithms [36,37]. Today, we have a fairly good under-
standing of the feasibility of k-disjoint paths: for constant k, polynomial-time
algorithms for general graphs have been found by Ohtsuki [45], Seymour [54],
Shiloah [55], and Thomassen [57] in the 1980s, and for general k it is NP-
hard [34], already on series-parallel graphs [43], i.e., graphs of treewidth at most
two. However, the optimization problem (i.e., finding shortest paths) contin-
ues to puzzle researchers, even for k = 2. Until recently, despite the progress
on polynomial-time algoritms for special graph families like variants of pla-
nar graphs [4,19,40] or graphs of bounded treewidth [51], no subexponential
time algorithm was known even for the 2-disjoint paths problem on general
graphs [21,29,40]. A recent breakthrough result shows that optimal solutions
can at least be computed in randomized polynomial time [8]; however, we still
have no deterministic polynomial-time algorithm. Both existing feasible and
optimal algorithms are often impractical [8,18,52,54], and come with high time
complexity. We also note that there are results on the min-max version of the
disjoint paths problem, which asks to minimize the length of the longest path.
The min-max problem is believed to be harder than min-sum [33,40].

The problem of finding shortest (edge- and vertex-disjoint) paths and cycles
through k waypoints has been studied in different contexts already. The cycle
problem variant is also known as the k-Cycle Problem and has been a cen-
tral topic of graph theory since the 1960s [47]. A cycle from s through k = 1
waypoints back to t = s can be found efficiently by breadth first search, for
k = 2 the problem corresponds to finding a integer flow of size 2 between
two vertices, and for k = 3, it can still be solved in linear time [30,32]; a
polynomial-time solution for any constant k follows from the work on the disjoint
paths problem [48]. The best known deterministic algorithm to compute feasible
(but not necessarily shortest) paths is by Kawarabayashi [35]: it finds a cycle
for up to k = O((log log n)1/10) waypoints in deterministic polynomial time.

Walking Through Waypoints 41

Björklund et al. [7] presented a randomized algorithm based on algebraic tech-
niques which finds a shortest simple cycle through a given set of k vertices or
edges in an n-vertex undirected graph in time 2knO(1). In contrast, we assume
capacitated networks and do not enforce routes to be edge or vertex disjoint,
but rather consider (shortest) walks.

Regarding capacitated graphs, researchers have explored the admission con-
trol problem variant: the problem of admitting a maximal number of routing
requests such that capacity constraints are met. For example, Chekuri et al. [16]
and Ene et al. [22] presented approximation algorithms for maximizing the ben-
efit of admitting disjoint paths in bounded treewidth graphs with both edge and
vertex capacities. Even et al. [25,26] and Rost and Schmid [49] initiated the
study of approximation algorithms for admitting a maximal number of routing
walks through waypoints. In contrast, we focus on the optimal routing of a single
walk.

In the context of capacitated graphs and single walks, the applicability of
edge-disjoint paths algorithms to the so-called ordered Waypoint Routing prob-
lem was studied in [2,31], where the task is to find k+1 capacity-respecting paths
(s, w1,), (w1, w2), . . . , (wk, t). An extension of their methods to the unordered
Waypoint Routing problem via testing all possible k! orderings falls short of
our results: For general graphs, only O(1) waypoints can be considered, and for
graphs of bounded treewidth, only O(log n) waypoints can be routed in polyno-
mial time [2]; both results concern feasibility only, but not shortest routes. We
provide algorithms for O(log n) waypoints on general graphs and O(n) waypoints
in graphs of bounded treewidth, in both cases for shortest routes.

Lastly, for the case that all edges have a capacity of at least two and s = t, a
direct connection of WRP to the subset traveling salesman problem (TSP) can
be made [31]. In the subset TSP, the task is to find a shortest closed walk that
visits a given subset of the vertices [38]. As optimal routes for WRP and subset
TSP traverse every edge at most twice, optimal solutions for both are identical
when ∀e ∈ E : c(e) ≥ 2. Hence, we can make use of the subset TSP results
of Klein and Marx, with time of (2O(

√
k log k) + max∀e∈E ω(e)) · nO(1) on planar

graphs. Klein and Marx also point out applicability of the dynamic programming
techniques of Bellman and of Held and Karp, allowing subset TSP to be solved
in time of 2k · nO(1). For a PTAS on bounded genus graphs, we refer to [14]. We
would like to note at this point that the technique for s �= t of Remark II does
not apply if all edges must have a capacity of at least two. Similarly, it is in
general not clear how to directly transfer s = t TSP results to the case of s �= t,
cf. [53]. Notwithstanding, as WRP also allows for unit capacity edges (to which
subset TSP is oblivious), WRP is a generalization of subset TSP.

Paper Organization. In Sect. 2 we present our results for bounded treewidth
graphs and Sect. 3 considers general graphs. We derive distinct NP-hardness
results in Sect. 4 and conclude in Sect. 5. Due to space constraints, some technical
contents are deferred to the full version of this paper.1

1 A preliminary full version is provided at [3].

42 S. Akhoondian Amiri et al.

2 Walking Through Waypoints on Bounded Treewidth

The complexity of the Waypoint Routing Problem on bounded treewidth graphs
is of particular interest: while vertex-disjoint paths and cycles problems are
often polynomial-time solvable on bounded treewidth graphs (e.g., vertex dis-
joint paths [48], vertex coloring, Hamiltonian cycles [6], Traveling Salesman [13],
see also [11,28]) many edge-disjoint problem variants are NP-hard (e.g., edge-
disjoint paths [43], edge coloring [42]). Moreover, the usual line graph construc-
tion approaches to transform vertex-disjoint to edge-disjoint problems are not
applicable as bounded treewidth is not preserved under such transformations.

Against this backdrop, we show that indeed shortest routes through arbitrary
waypoints can be computed in polynomial-time for bounded treewidth graphs.

Theorem 1. The Waypoint Routing Problem can be solved in time of nO(tw2),
where tw denotes the treewidth of the network.

In other words, the Waypoint Routing Problem is in the complexity class
XP [17,20] w.r.t. treewidth. We obtain:

Corollary 1. The Waypoint Routing Problem can be solved in polynomial time
for graphs of bounded treewidth tw ∈ O(1).

Overview. We describe our algorithm in terms of a nice tree decomposition [39,
Definition 13.1.4] (Sect. 2.1). We first transform the edge-capacitated problem
into an edge-disjoint problem (on unit edge capacity graphs Sect. 2.2), lever-
aging a simple observation on the structure of waypoint walks and preserving
distances. We show that this transformation changes the treewidth by at most
an additive constant. We then define the separator signatures (Sect. 2.3) and
describe how to inductively generate valid signatures in a bottom up manner
on the nice tree decomposition, applying the forget, join and introduce opera-
tions [39, Definition 13.1.5] (Sect. 2.4).

The correctness of our approach relies on a crucial observation on the underly-
ing Eulerian properties of the Waypoint Routing Problem in Lemma 2, allowing
us to bound the number of partial walks we need to consider at the separator,
see Fig. 2 for an example. Finally in Sect. 2.5, we bring together the different bits
and pieces, and sketch how to dynamically program [10] the shortest waypoint
walk on the rooted separator tree.

2.1 Treewidth Preliminaries

A tree decomposition T = (T,X) of a graph G consists of a bijection between
a tree T and a collection X, where every element of X is a set of vertices of G
such that: (1) each graph vertex is contained in at least one tree node (the bag
or separator), (2) the tree nodes containing a vertex v form a connected subtree
of T , and (3) vertices are adjacent in the graph only when the corresponding
subtrees have a node in common.

Walking Through Waypoints 43

Fig. 2. Two different methods to choose an Eulerian walk, where the numbers from 1
to 11 describe the order of the traversal. In the left walk, the separator s is crossed 4
times, but only 2 times in the right walk. Furthermore, in the left walk, there are 2
walks each in G[A] (green and blue) and G[B] (brown and red), respectively. In the
right walk, there is only 1 walk for G[A] (blue) and 1 walk for G[B] (red). (Color figure
online)

The width of T = (T,X) is the size of the largest set in X minus 1, with
the treewidth of G being the minimum width of all possible tree decompositions
of G.

A nice tree decomposition is a tree decomposition such that: (1) it is rooted
at some vertex r, (2) leaf nodes are mapped to bags of size 1, and (3) inner nodes
are of one of three types: forget (a vertex leaves the bag in the parent node), join
(two bags defined over the same vertices are merged) and introduce (a vertex is
added to the bag in the parent node). The tree can be iteratively constructed
by applying simple forget, join and introduce types.

Let b ∈ X be a bag of the decomposition corresponding to a vertex b ∈ V (T).
We denote by Tb the maximal subtree of T which is rooted at bag b. By G[b] we
denote the subgraph of G induced on the vertices in the bag b and by G[Tb] we
denote the subgraph of G which is induced on vertices in all bags in V (Tb). We
will henceforth assume that a nice tree decomposition T = (T,X) of a graph G
is given, covering its computation in the final steps of the proof of Theorem 1.

2.2 Unified Graphs

We begin by transforming our graphs into graphs of unit edge capacity, preserv-
ing distances and approximately preserving treewidth.

Definition 1 (Unification). Let G be an arbitrary, edge capacitated graph.
The unified graph Gu of G is obtained from G by the following operations on
each edge e ∈ E(G): We replace e by c(e) parallel edges e1, . . . , ec(e), subdivide
each resulting parallel edge by creating vertices ve

i , i ∈ [c(e)]), and set the weight
of each subdivided edge to w(e)/2 (i.e., the total weight is preserved). We set all
edge capacities in the unified graph to 1. Similarly, given the original problem

44 S. Akhoondian Amiri et al.

instance I of the Waypoint Routing Problem, the unified instance Iu is obtained
by replacing the graph G in I with the graph Gu in Iu, without changing the
waypoints, the source and the destination.

It follows directly from the construction that I and Iu are equivalent with
regards to the contained walks. Moreover, as we will see, the unification process
approximately preserves the treewidth. Thus, in the following, we will focus on
Gu and Iu only, and implictly assume that G and I are unified. Before we pro-
ceed further, however, let us introduce some more definitions. Using Remark I,
w.l.o.g., we can focus on graphs where for all e ∈ E, c(e) ≤ 2. The treewidth of
G and Gu are preserved up to an additive constant.

Lemma 1. Let G be an edge capacitated graph such that each edge has capacity
at most 2 and let tw be the treewidth of G. Then Gu has treewidth at most tw+1.

Leveraging Eulerian Properties. A key insight is that we can leverage the
Eulerian properties implied by a waypoint route. In particular, we show that the
traversal of a single Eulerian walk (e.g., along an optimal solution of WRP) can
be arranged s.t. it does not traverse a specified separator too often, for which
we will later choose the root of the nice tree decomposition.

Lemma 2 (Eulerian Separation). Let G be an Eulerian graph. Let s be an
(A,B) separator of order |s| in G. Then there is a set of � ≤ 2|s| pairwise edge-
disjoint walks W = {W1, . . . ,W�} of G such that

1. For every W ∈ W, W has both of its endpoints in A ∩ B.
2. Every walk W ∈ W is entirely either in G[A] (as WA) or in G[B] (as WB).
3. Let βA be the size of the set of vertices used by WA as an endpoint in s. Then,

WA contains at most βA walks. Analogously, for βB and WB.
4. There is an Eulerian walk W of G such that: W := W1 ⊕ . . . ⊕ W�.

2.3 Signature Generation and Properties

We next introduce the signatures we use to represent previously computed solu-
tions to subproblems implied by the separators in the (nice) tree decomposition.
For every possible signature, we will determine whether it represents a proper/
valid solution for the subproblem, and if so, store it along with an exemplary
sub-solution of optimal weight.

In a nutshell, the signature describes endpoints of (partial) walks on each
side of the separator. These partial walks hence need to be iteratively merged,
forming signatures of longer walks through the waypoints.

Definition 2 (Signature). Let b ∈ X. A signature σ of b (σb) is a pair, either
containing

1. (1) an unordered tuple of pairs of vertices si, ri ∈ b and (2) a subset Eb ⊆
E(G[b]) with σb = (((s1, r1) , (s2, r2) , . . . , (s�, r�)) , Eb) s.t. � ≤ |b|, or

2. (1) ∅ and (2) ∅, with σb = (∅, ∅), also called an empty signature σb,∅.

Walking Through Waypoints 45

Note that in the above definition we may have si = ri for some i. We can
now define a valid signature and a sub-solution, where we consider the vertex
s = t to be a waypoint.

Definition 3 (Valid Signature and Sub-Solution). Let b ∈ X and let either
σb = ({(s1, r1) , (s2, r2) , . . . , (s�, r�)} , Eb) or σb = σb,∅ be a signature of b. σb �=
σb,∅ is called a valid signature if there is a set of pairwise edge-disjoint walks
Wσb

= {W1, . . . ,W�} such that:

1. If Wi is an open walk then it has both of its endpoints on (si, ri), otherwise,
si = ri and si ∈ V (Wi).

2. Let β be the size of the set of endpoints used by σb. Then, it holds that β ≥ �.
3. For every waypoint w ∈ V (Tb) it holds that w is contained in some walk

Wj , 1 ≤ j ≤ �.
4. Every (pairwise edge-disjoint) walk Wj ∈ Wσb

only uses vertices from V (Tb)
and only edges from E(Tb) \ Eb, with Eb = E(b) \ Eb.

5. Every edge e ∈ Eb is used by a walk in Wσb
.

6. Among all such sets of � walks, Wσb
has minimum total weight.

Additionally, if for a signature σb �= σb,∅ there is such a set Wσb
(possibly abbre-

viated by Wb if clear in the context), we say W is a valid sub-solution in G[Tb].
For some waypoint contained in G[Tb], we call a signature σb,∅ valid, if there is
one walk W associated with it, s.t. W traverses all waypoints in G[Tb], does not
traverse any vertex in V (b), and among all such walks in G[Tb] has minimum
weight. If G[Tb] does not contain any waypoint, we call a signature σb,∅ valid, if
there is no walk associated with it.

Lemma 3 (Number of different signatures). There are 2O(|b|2) different
signatures for b ∈ X.

2.4 Programming the Nice Tree Decomposition

The nice tree decomposition directly gives us a constructive way to dynamically
program WRP in a bottom-up manner. We first cover leaf nodes in Lemma 4,
and then work our way up via forget (Lemma 5), introduce (Lemma 6), and join
(Lemma 7) nodes, until eventually the root node is reached. Along the way, we
inductively generate all valid signatures at every node.

Lemma 4 (Leaf nodes). Let b be a leaf node in the nice tree decomposition
T = (T,X). Then, in time O(1) we can find all the valid signatures of b.

Proof. We simply enumerate all possible valid signatures. As a leaf node only
contains one vertex v from the graph, all possible edge sets in the signatures are
empty, and we have two options for the pairs: First, none, second, ((v, v)). The
second option is always valid, but the first (empty) one is only valid when v is
not a waypoint. �

46 S. Akhoondian Amiri et al.

Due to space constraints, we cannot provide the longer proofs of the other
three nodes types, especially for the introduce and join nodes. Nonetheless, we
at least sketch the proof idea for the join nodes, as a reduction in their time
complexity would be interesting for future work, see also our remarks in Sect. 5.

Lemma 5 (Forget nodes). Let b be a forget node in the nice tree decomposition
T = (T,X), with one child q = child(b), where we have all valid signatures for q.
Then, in time 2O(|b|2) we can find all the valid signatures of b.

Lemma 6 (Introduce nodes). Let b be an introduce node in the nice tree
decomposition T = (T,X), with one child q = child(b), where we have all valid
signatures for q. Then, in time |b|O(|b|2) we can find all the valid signatures of b.

Lemma 7 (Join nodes). Let b be a join node in the nice tree decomposition
T = (T,X), with the two children q1 = child(b) and q2 = child(b), where we have
all valid signatures for q1 and q2. Then, in time nO(|b|) · 2O(|b|2) we can find all
the valid signatures of b.

Our proof for join nodes consists of two parts, making use of the following fact:
For a given valid signature of b, two valid sub-solutions with different path
traversals have the same total length, if the set of traversed edges is identical.
As thus, when trying to re-create a signature of b with a valid sub-solution, we
do not need to create this specific sub-solution, but just any sub-solution using
the same set of endpoints and edges. We show:

1. We can partition the edges of a valid sub-solution into two parts along a
separator, resulting in a valid signature for each of the two parts, where each
sub-solution uses exactly the edges in its part.

2. Given a sub-solution for each of the two parts separated, we can merge
their edge sets, and create all possible signatures and sub-solutions using
this merged edge set.

2.5 Putting It All Together

We now have all the necessary tools to prove Theorem 1:

Proof (Theorem 1). Dynamically programming a nice tree decomposition.
Translating an instance of the Waypoint Routing Problem to an equivalent one
with s = t and unit edge capacities only increases the treewidth by a constant
amount, see Remark II and Lemma 1. Although it is NP-complete to determine
the treewidth of a graph and compute an according tree decomposition, there are
efficient algorithms for constant treewidth [12,47]. Furthermore, Bodlaender et
al. [9] presented a constant-factor approximation in a time of O(ctwn) for some
c ∈ N, also beyond constant treewidth: Using their algorithm O(log tw) times (via
binary search over the unknown treewidth size), we obtain a tree decomposition
of width O(tw). Following [39], we generate a nice tree decomposition of treewidth

Walking Through Waypoints 47

O(tw) with O(twn) ∈ O(n2) nodes in an additional time of O(tw2n) ∈ O(n3). The
total time so far is O(ctwn log tw) + O(tw2n) for some c ∈ N.

We can now dynamically program the Waypoint Routing Problem on the
nice tree decomposition in a bottom-up manner, using Lemma 4 (leaf nodes),
Lemma 5 (forget nodes), Lemma 6 (introduce nodes), and Lemma 7 (join nodes).
The time for each programming of a node is at most O(tw)O(tw2) or nO(tw)·2O(tw2),
meaning that we obtain all valid signatures with valid sub-solutions at the root
node r, in a combined time of nO(tw2), specifically:

(O(tw)O(tw2) + nO(tw) · 2O(tw2)) · O(tw · n) + O(ctwn log tw) + O(tw2n).

Obtaining an optimal solution. If an optimal solution I to the Waypoint
Routing Problem exists (on the unified graph with s = t), then the traversed
edges E∗ and vertices V ∗ in I yield an Eulerian graph G∗ = (V ∗, E∗). With each
bag in the nice tree decomposition having O(tw) vertices, we can now apply (the
Eulerian separation) Lemma 2: There must be a valid signature of the root r
whose sub-solution uses exactly the edges E∗. As thus, from all the valid sub-
solutions at r, we pick any solution to WRP with minimum weight, obtaining
an optimal solution to the Waypoint Routing Problem.

3 Walking Through Logarithmically Many Waypoints

While the Waypoint Routing Problem is generally NP-hard (as we will see
below), we show that a shortest walk through a bounded (not necessarily con-
stant) number of waypoints can be computed in polynomial time. We make use
of reductions to shortest vertex-disjoint [7,35] cycles problems, where the cycle
has to pass through specified vertices.

Theorem 2. For a general graph G with polynomial edge weights, a shortest
walk through k ∈ O(log n) waypoints can be computed in randomized polyno-
mial time, namely 2knO(1). Furthermore, a walk through k ∈ O

(
(log log n)1/10

)

waypoints in G can be computed in deterministic polynomial time.

4 NP-Hardness

Given our polynomial-time algorithms to compute shortest walks through arbi-
trary waypoints on bounded treewidth graphs as well as to compute shortest
walks on arbitrary graphs through a bounded number of waypoints, one may
wonder whether exact polynomial time solutions also exist for more general set-
tings. In the following, we show that this is not the case: in both dimensions
(number of waypoints and more general graph families), we inherently hit com-
putational complexity bounds. Our hardness results follow by reduction from a
special subclass of NP-hard Hamiltonian cycle problems [1,15]:

48 S. Akhoondian Amiri et al.

Theorem 3. WRP is NP-hard for any graph family of degree at most 3, for
which the Hamiltonian Cycle problem is NP-hard.

We have the following implication for grid graphs [5,15,46] of maximum
degree 3, and can use similar ideas for the class of 3-regular bipartite planar
graphs.

Corollary 2. For any fixed constant r ≥ 1 it holds that WRP is NP-hard on
(1) 3-regular bipartite planar graphs and (2) grid graphs of maximum degree 3,
respectively, already for k ∈ O(n1/r).

Our proof techniques also apply to the k-Cycle problem studied by Björklund
et al. [7], whose solution is polynomial for logarithmic k. All possible edge-disjoint
solutions are also vertex-disjoint, due to the restriction of maximum degree 3.

Corollary 3. For any fixed constant r ≥ 1 it holds that the k-Cycle problem is
NP-hard on (1) 3-regular bipartite planar graphs and (2) grid graphs of maximum
degree 3, respectively, already for k ∈ O(n1/r).

5 Conclusion

Motivated by the more general routing models introduced in modern software-
defined and function virtualized distributed systems, we initiated the algorithmic
study of computing shortest walks through waypoints on capacitated networks.
We have shown, perhaps surprisingly, that polynomial-time algorithms exist for a
wide range of problem variants, and in particular for bounded treewidth graphs.

In our dynamic programming approach to the Waypoint Routing Problem,
parametrized by treewidth, we provided fixed-parameter tractable (FPT) algo-
rithms for leaf, forget, and introduce nodes, but an XP algorithm for join nodes.
In fact, while we do not know whether our problem can be expressed in monadic
second-order logic MSO2, we can show that simply concatenating child-walks
for join nodes does not result in all valid parent signatures.

We believe that our paper opens an interesting area for future research.
In particular, it will be interesting to further chart the complexity landscape
of the Waypoint Routing Problem, narrowing the gap between problems for
which exact polynomial-time solutions do and do not exist. Moreover, it would
be interesting to derive a lower bound on the runtime of (deterministic and
randomized) algorithms on bounded treewidth graphs.

Acknowledgments. The authors would like to thank Riko Jacob for helpful discus-
sions and feedback. Klaus-Tycho Foerster’s and Stefan Schmid’s research was partly
supported by the Villum project ReNet and by Aalborg University’s PreLytics project.
Saeed Amiri’s research was partly supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 648527).

Walking Through Waypoints 49

References

1. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle
problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

2. Amiri, S.A., Foerster, K.-T., Jacob, R., Schmid, S.: Charting the complexity land-
scape of waypoint routing. arXiv preprint arXiv:1705.00055 (2017)

3. Amiri, S.A., Foerster, K.-T., Schmid, S.: Walking through waypoints. arXiv
preprint arXiv:1708.09827 (2017)

4. Akhoondian Amiri, S., Golshani, A., Kreutzer, S., Siebertz, S.: Vertex disjoint
paths in upward planar graphs. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É.,
Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 52–64. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06686-8 5

5. Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodŕıguez, Y.N.,
Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super) thin or solid is hard:
a study of grid hamiltonicity. Comput. Geom. 42(6–7), 582–605 (2009)

6. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

7. Björklund, A., Husfeld, T., Taslaman, N.: Shortest cycle through specified ele-
ments. In: Proceedings of SODA (2012)

8. Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. In:
Proceedings of ICALP (2014)

9. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An approximation algorithm for treewidth. In: Proceedings of FOCS
(2013)

10. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:
Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6 110

11. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21
(1993)

12. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

13. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015)

14. Borradaile, G., Demaine, E.D., Tazari, S.: Polynomial-time approximation schemes
for subset-connectivity problems in bounded-genus graphs. Algorithmica 68(2),
287–311 (2014)

15. Buro, M.: Simple Amazons endgames and their connection to Hamilton circuits in
cubic subgrid graphs. In: Marsland, T., Frank, I. (eds.) CG 2000. LNCS, vol. 2063,
pp. 250–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45579-
5 17

16. Chekuri, C., Khanna, S., Shepherd, F.B.: A note on multiflows and treewidth.
Algorithmica 54(3), 400–412 (2009)

17. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

18. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: The planar directed k-vertex-
disjoint paths problem is fixed-parameter tractable. In: Proceedings of FOCS
(2013)

http://arxiv.org/abs/1705.00055
http://arxiv.org/abs/1708.09827
https://doi.org/10.1007/978-3-319-06686-8_5
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1007/3-540-45579-5_17
https://doi.org/10.1007/3-540-45579-5_17
https://doi.org/10.1007/978-3-319-21275-3

50 S. Akhoondian Amiri et al.

19. de Verdière, E.C., Schrijver, A.: Shortest vertex-disjoint two-face paths in planar
graphs. ACM Trans. Algorithms (TALG) 7(2), 19 (2011)

20. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

21. Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math.
85(2), 113–138 (1998)

22. Ene, A., Mnich, M., Pilipczuk, M., Risteski, A.: On routing disjoint paths in
bounded treewidth graphs. In: Proceedings of SWAT (2016)

23. ETSI: Network functions virtualisation. White Paper, October 2013
24. ETSI: Network functions virtualisation (NFV); use cases. http://www.etsi.org/

deliver/etsi gs/NFV/001 099/001/01.01.01 60/gs NFV001v010101p.pdf (2014)
25. Even, G., Medina, M., Patt-Shamir, B.: On-line path computation and function

placement in SDNs. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol.
10083, pp. 131–147. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49259-9 11

26. Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation
and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 24

27. Feamster, N., Rexford, J., Zegura, E.: The road to SDN. Queue 11(12), 1–21 (2013)
28. Fellows, M., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider,

S., Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp.
366–377. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-
4 38

29. Fenner, T., Lachish, O., Popa, A.: Min-sum 2-paths problems. Theor. Comp. Sys.
58(1), 94–110 (2016)

30. Fleischner, H., Woeginger, G.J.: Detecting cycles through three fixed vertices in a
graph. Inf. Process. Lett. 42(1), 29–33 (1992)

31. Foerster, K.-T., Parham, M., Schmid, S.: A walk in the clouds: routing through
VNFs on bidirected networks. In: Proceedings of ALGOCLOUD (2017)

32. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism
problem. Theor. Comput. Sci. 10, 111–121 (1980)

33. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths
with length constraints. Networks 12(3), 277–286 (1982)

34. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

35. Kawarabayashi, K.: An improved algorithm for finding cycles through elements.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
374–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-
4 26

36. Khuller, S., Mitchell, S.G., Vazirani, V.V.: Processor efficient parallel algorithms
for the two disjoint paths problem and for finding a kuratowski homeomorph. SIAM
J. Comput. 21(3), 486–506 (1992)

37. Khuller, S., Schieber, B.: Efficient parallel algorithms for testing k-connectivity
and finding disjoint s-t paths in graphs. SIAM J. Comput. 20(2), 352–375 (1991)

38. Klein, P.N., Marx, D.: A subexponential parameterized algorithm for subset TSP
on planar graphs. In: Proceedings of SODA (2014)

39. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

https://doi.org/10.1007/978-1-4612-0515-9
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://doi.org/10.1007/978-3-319-49259-9_11
https://doi.org/10.1007/978-3-319-49259-9_11
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-540-73556-4_38
https://doi.org/10.1007/978-3-540-73556-4_38
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1007/BFb0045375

Walking Through Waypoints 51

40. Kobayashi, Y., Sommer, C.: On shortest disjoint paths in planar graphs. In: Dong,
Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 293–302.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 31

41. Schrijver, A., Lovasz, L.: Paths, Flows, and VLSI-Layout. Springer-Verlag New
York, Inc., Secaucus (1990). Korte, B., Promel, H.J., Graham, R.L. (eds.). ISBN
0387526854

42. Marx, D.: List edge multicoloring in graphs with few cycles. Inf. Process. Lett.
89(2), 85–90 (2004)

43. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete
for series-parallel graphs. Discrete Appl. Math. 115, 177–186 (2001)

44. Ogier, R.G., Rutenburg, V., Shacham, N.: Distributed algorithms for computing
shortest pairs of disjoint paths. IEEE Trans. Inf. Theory 39(2), 443–455 (1993)

45. Ohtsuki, T.: The two disjoint path problem and wire routing design. In: Saito, N.,
Nishizeki, T. (eds.) Graph Theory and Algorithms. LNCS, vol. 108, pp. 207–216.
Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10704-5 18

46. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
traveling salesman problem. J. Algorithms 5(2), 231–246 (1984)

47. Perković, L., Reed, B.A.: An improved algorithm for finding tree decompositions
of small width. Int. J. Found. Comput. Sci. 11(3), 365–371 (2000)

48. Robertson, N., Seymour, P.D.: Graph minors .XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

49. Rost, M., Schmid, S.: Service chain and virtual network embeddings: approxima-
tions using randomized rounding. arXiv preprint arXiv:1604.02180 (2016)

50. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design.
ACM Trans. Comput. Syst. 2(4), 277–288 (1984)

51. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Technical report, TU Berlin (1994)

52. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput.
23(4), 780–788 (1994)

53. Sebö, A., van Zuylen, A.: The salesman’s improved paths: A 3/2+1/34 approxi-
mation. In: Proceedings of FOCS (2016)

54. Seymour, D.P.: Disjoint paths in graphs. Discrete Math. 29(3), 293–309 (1980)
55. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. ACM

27(3), 445–456 (1980)
56. Srinivas, A., Modiano, E.: Finding minimum energy disjoint paths in wireless ad-

hoc networks. Wireless Netw. 11(4), 401–417 (2005)
57. Thomassen, C.: 2-linked graphs. Europ. J. Comb. 1(4), 371–378 (1980)

https://doi.org/10.1007/978-3-642-10631-6_31
https://doi.org/10.1007/3-540-10704-5_18
http://arxiv.org/abs/1604.02180

A Collection of Lower Bounds for Online
Matching on the Line

Antonios Antoniadis2, Carsten Fischer1, and Andreas Tönnis3(B)

1 Department of Computer Science, University of Bonn, Bonn, Germany
carsten.fischer@uni-bonn.de

2 Universität des Saarlandes and Max Plank Institut für Informatik,
Saarland Campus, Saarbrücken, Germany

aantonia@mpi-inf.mpg.de
3 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile

atoennis@uni-bonn.de, atoennis@dim.uchile.cl

Abstract. In the online matching on the line problem, the task is to
match a set of requests R online to a given set of servers S. The distance
metric between any two points in R ∪ S is a line metric and the objec-
tive for the online algorithm is to minimize the sum of distances between
matched server-request pairs. This problem is well-studied and – despite
recent improvements – there is still a large gap between the best known
lower and upper bounds: The best known deterministic algorithm for
the problem is O(log2 n)-competitive, while the best known determinis-
tic lower bound is 9.001. The lower and upper bounds for randomized
algorithms are 4.5 and O(log n) respectively.

We prove that any deterministic online algorithm which in each round:
(i) bases the matching decision only on information local to the current
request, and (ii) is symmetric (in the sense that the decision correspond-
ing to the mirror image of some instance I is the mirror image of the
decision corresponding to instance I), must be Ω(log n)-competitive. We
then extend the result by showing that it also holds when relaxing the
symmetry property so that the algorithm might prefer one side over the
other, but only up to some degree. This proves a barrier of Ω(log n) on
the competitive ratio for a large class of “natural” algorithms. This class
includes all deterministic online algorithms found in the literature so far.

Furthermore, we show that our result can be extended to randomized
algorithms that locally induce a symmetric distribution over the chosen
servers. The Ω(log n)-barrier on the competitive ratio holds for this class
of algorithms as well.

A. Antoniadis—Supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under AN 1262/1-1.
C. Fischer—Supported by ERC Starting Grant 306465 (BeyondWorstCase).
A. Tönnis—Supported by Conicyt PCI PII 20150140. Work was done while the
author was employed at the University of Bonn. Supported by ERC Starting Grant
306465 (BeyondWorstCase).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 52–65, 2018.
https://doi.org/10.1007/978-3-319-77404-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_5&domain=pdf

A Collection of Lower Bounds for Online Matching on the Line 53

1 Introduction

The online matching on the line problem (OML) is a notorious special case of
the online metric matching problem (OMM). In both problems a set of servers
{s1, s2, . . . , sn} =: S is initially given to the algorithm, then requests from a set
R := {r1, r2, . . . , rn} arrive online one-by-one. In OMM all servers and requests
are points in an arbitrary metric, while in OML all points, ri ∈ R and sj ∈ S,
correspond to numbers in R and the distance between two such points is given
by the line metric, that is the 1-dimensional Euclidian metric, i.e., d(ri, sj) =
|ri − sj |. Whenever a request r arrives it has to be matched immediately and
irrevocably to an unmatched server s, and the edge e = 〈r, s〉 gets added to the
matching M . The objective for the online algorithm is to minimize the sum of
distances between matched server-request pairs min

∑
e∈M d(e).

The original motivation for OML is a scenario where items of different size
have to be matched in an online fashion. For example, in a ski rental shop,
skis have to be matched online to customers of approximately the same size. In
this setting, customers arrive online one-by-one and have to be served immedi-
ately. In this scenario, a set of skis/customers of size x can be represented by
a server/request at point x on the real line, and the length of an edge in the
matching would represent the “amount of mismatch” between the corresponding
pair of skis and the customer.

Since the concepts of local and local symmetric algorithms will be important
for the discussion below as well as our results, we start by introducing the nec-
essary definitions. When matching a request r to a server, one can restrict the
server choice to the nearest free servers sL and sR, placed on the left and right
of r respectively. We call these two servers the surrounding servers for request
r. It can be easily shown by an exchange argument (see [14]), that any online
algorithm can be converted to one that chooses among the surrounding servers
for each request – without increasing the competitive ratio (Fig. 1).

Fig. 1. We use red circles to represent requests and blue squares to represent servers.
Lines show to which server each request is matched to. For a clearer representation we
will often arrange servers and requests on different lines. It is without loss of generality
to consider algorithms that match a request r to one of its surrounding servers sL
or sR.

Koutsoupias and Nanavati introduced the concept of local algorithms which
will play a central role in our results:

54 A. Antoniadis et al.

Definition 1 ([10]). Let sL and sR be the surrounding free servers for request
r. An online algorithm is called local if it serves r with one of sL and sR and
furthermore the choice is based only upon the history of servers and requests in
the local-interval Ir = [sL, sR] of r.

Note that this also implies that local algorithms are invariant with respect
to parallel translation of server and request locations. Since the algorithm is
only allowed to use local information, it can only use relative positions within
an interval and not absolute positions of servers or requests.

One can restrict the class of local algorithms by introducing the concept
of local symmetric algorithms. The main idea is that a local algorithm is also
symmetric, if mirroring the whole interval [sL, sR], also causes the algorithm to
“mirror” its server choice.

Definition 2. Let A be a local algorithm, and consider the arrival of a request
r with a local interval Ir = [sL, sR]. Let m = (sL + sR)/2 be the point in the
middle of interval Ir, and let I ′

r be the reflection of Ir across point m. We say
that A is local symmetric, if for any interval Ir when it chooses to match r to a
server s ∈ {sL, sR} then it chooses to match the mirror image of r to the mirror
image of s in I ′

r.

See Fig. 2 for an example of a symmetric algorithm.

Fig. 2. The dashed line represents the choice of the algorithm. If we reflect the local-
interval [sL, sR], a local symmetric algorithm will “reflect” its decision.

A careful reader might have noticed that Definition 2 does not specify how a
local symmetric algorithm behaves in the case where intervals Ir and I ′

r happen
to be indistinguishable1. However this is not important in the scope of this
paper, since all of our constructions only use intervals Ir and I ′

r that are clearly
distinguishable from each other.

As we will see in the next subsection, a generalization of the class of local
symmetric algorithms contains all studied algorithms in the literature for the
problem.

1.1 Related Work

The Story so Far. For the more general OMM problem, where the underlying
metric is not restricted to the line, the best possible competitive ratio is 2n −
1 This could be resolved by for example letting the algorithm choose the server arbi-

trarily or allow the adversary to force the server selection in this specific border
case.

A Collection of Lower Bounds for Online Matching on the Line 55

1, and algorithms that attain this ratio were analyzed in [6,8,13]. In essence
all three results employ a variant of the same online t-net-cost algorithm. The
t-net cost algorithm, for each round i, calculates a specific offline matching Mi−1

among the server set and the i − 1 first requests and then finds the minimum
t-net cost of an augmenting path on Mi−1 and the current request. The t-net-cost
augmenting path is given by weighting the forward edges in the augmenting path
by parameter t before subtracting the backward edges. This identifies a new free
server to which the current request is matched. Khuller, Mitchell and Vazirani,
as well as Kalyanasundaram and Pruhs [6,8] independently studied the variant
of this algorithm for t = 1 and with Mi−1 being the optimal offline matching
on the first i − 1 requests. They therefore augment with the classical Hungarian
method, while Raghvendra [13] employs t = n2 + 1 and a more complex offline
matching Mi−1. One can easily show that all variants of the t-net cost algorithm
are local symmetric when applied on the line metric.

However, in the more special case of line metrics, the linear lower bound
does not hold. For a long time, the best known lower bound on the competitive
ratio of the problem was 9 and it was conjectured to be tight. But in 2003,
it was shown, that no deterministic algorithm for OML could be better than
9.001-competitive [4] and this remains the best known lower bound to date.

Regarding upper bounds in the line metric, Koutsoupias and Nanavati [10]
studied the work function algorithm (WFA), and showed that this is also O(n)-
competitive, along with a lower bound of Ω(log n) on its competitive ratio. Intu-
itively, WFA tries to balance out the 1-net-cost algorithm with the greedy algo-
rithm that matches each request to the closest available server upon arrival.
Koutsoupias and Nanavati, conjectured that WFA is Θ(log n)-competitive, but
whether that is the case or not remains an open question. Although it is not
straightforward that the work function algorithm is local, this was proven in [10],
and symmetry easily follows by the definition of the algorithm, placing WFA in
the class of local symmetric algorithms.

The first deterministic algorithm to break the linear competitive ratio was
the k-lost cows algorithm (k-LCA) by Antoniadis et al. [1]. Their algorithm uses
a connection of the matching problem to a generalization of the classical lost
cow search problem from one to a larger number of cows. They give a tight
analysis and prove that their algorithm is Θ(n0.58)-competitive. It is easy to
verify that the k-lost cow algorithm is local. However by design, k-LCA has a
very slight “bias” towards one direction and is therefore not symmetric. A slight
generalization of our construction for local symmetric algorithms is enough to
capture this algorithm as well.

Very recently, Nayyar and Raghvendra [12] studied the t-net cost algorithm
for a constant t > 1 on the line metric (actually the considered setting is slightly
more general). Through a technically involved analysis they showed that for
such values of t the t-net-cost algorithm is O(log2 n)-competitive. As already
discussed, this algorithm is also local symmetric.

Finally, it is worth noting, and can be easily verified, that the greedy algorithm
which matches each request to the closest free server is Ω(2n)-competitive.

56 A. Antoniadis et al.

Regarding randomized algorithms for the more general online metric
matching problem, there are several known sub-linear algorithms. Meyerson
et al. achieved a competitive ratio of O(log3(n)) for a randomized greedy algo-
rithm on a tree embedding of the metric space [11]. Bansal et al. refined this app-
roach and gave a O(log2(n))-competitive algorithm [2]. More recently, Gupta and
Lewi gave two greedy algorithms based on tree embeddings that are O(log(n))-
competitive for doubling metrics – and therefore also the line metric. Addition-
ally, they analyzed the randomized harmonic algorithm and showed that it is
O(log(n))-competitive for line metrics [5]. All these algorithms locally induce a
symmetric distribution over the chosen servers.

An extensive survey of the OML problem can be found under [14] and [15].

Other Related Problems. A closely related problem is the transportation
problem, which is a variant of online metric matching with resource augmenta-
tion. Kalyanasundaram and Pruhs [7] showed that there is a O(1)-competitive
algorithm for this problem if the algorithm can use every server twice, whereas
the offline benchmark solution only uses each server once. Subsequently, Chung
et al. [3] gave a polylogarithmic algorithm for the variant where the algorithm
has one additional server at every point in the metric where there is at least one
server.

Another problem which resembles online matching is the k-server problem
(see [9] for a survey). The main difference between the two problems is that in
the k-server problem a server can be used to serve subsequent requests, while in
the online matching problem a server has to be irrevocably matched to a request.

1.2 Our Contribution

Our first result is showing that any deterministic algorithm, that is local sym-
metric, has to be Ω(log n)-competitive.

As already mentioned the class of local symmetric algorithms includes all
known algorithms except for the k-LC algorithm. However we are able to gen-
eralize the construction of our lower bound instance so that it contains an even
wider class of algorithms – including k-LC. The main implication of our work
is that new algorithmic insights are necessary if one hopes to obtain a o(log n)-
competitive algorithm for the problem.

Our lower bound instance can be seen as a full binary tree with carefully
chosen distances on the edges. We describe the construction of this tree recur-
sively. The instance is designed in such a way, that every request arrives between
two subtrees, and the algorithm always has to match it to one of the two fur-
thest leafs of these subtrees. This incurs a cost of Ω(n) at each of the log(n)
levels of the tree. In contrast, the optimal solution always matches a request to
neighboring server for a total cost of O(n).

We complement these results with propositions that showcase the power and
limitations of our construction. First, we show that any algorithm that, for every
level of the lower bound instance, has a bias bounded by a factor of two with
respect to the largest bias on the previous levels fulfills the conditions of our

A Collection of Lower Bounds for Online Matching on the Line 57

main theorem. To beat our lower bound instance an algorithm would require
an asymmetric bias in its local decision routine and furthermore this bias would
have to grow exponentially by more than a factor of two as the depth of the
instance increases. To the best of our knowledge, the only known algorithm that
features a local bias is the k-LC algorithm by Antoniadis et al. [1] and its bias
is only (1 + ε).

We denote that it seems hard to conceptualize a “reasonable” local algo-
rithm for the problem that has a bias greater than two and we therefore
believe/conjecture that Ω(log(n)) is likely a lower bound for the even broader
class of local algorithms.

Furthermore, we show that the lower bound also applies to a wide class of
randomized algorithms. If the instance can be tailored to the algorithm in such
a way, that the algorithm induces a symmetric distribution over the free servers
on each local subinstance, then an analogous lower bound of Ω(log n) holds true.
For this result, we have the same conditions on the bias of the algorithm as in the
deterministic setting. We show that these conditions are fulfilled by the Har-
monic-algorithm introduced by Gupta and Lewi [5]. This simple randomized
algorithm is known to be Θ(log n)-competitive.

Due to space constraints several proofs will appear in the full version of the
paper.

2 Lower Bounds for Deterministic Algorithms

This section is devoted to our main results for deterministic algorithms. First,
we show that any local symmetric algorithm must be Ω(log n)-competitive. We
already saw that this class of algorithms is broad and captures all known deter-
ministic algorithms except the k-LCA. Then we extend the construction of our
lower bound towards local algorithms that have a limited asymmetric bias in
their decision routine.

The construction for both proofs resembles a full binary tree. It is defined
recursively such that the behavior of the online algorithm on any subtree exactly
mirrors its behavior on the sibling subtree. In order to achieve this, we will define
for each level of the tree, intervals which consist of a new request located between
two subtrees of one level lower so that the only two free servers in the interval
are the ones furthest from the current request. We start at level one with simple
intervals that consist of two servers and one request roughly in the center between
the servers. The algorithm, by locality, will have to match the current request
to one of the free servers. If, in one subtree, the algorithm matches to the right,
we can create a similar subtree where the algorithm matches to the left (and
vice versa) by only marginally changing the distances. We recursively repeat
this construction while ensuring that, for any two sibling subtrees, the one on
the left has the leftmost server free and the one on the right the rightmost one.

We start with the special case of local symmetric algorithms and give the
formal construction of the lower bound instance.

At the base level, we have trees T0 and T 0 that contain a single server each.
On level i ∈ {1, . . . , k}, we combine two trees: Ti−1 which has its leftmost server

58 A. Antoniadis et al.

free, and T i−1 which has its rightmost server free, into an interval. We create
an interval with Ti−1 followed by request ri at a distance 1, which is in turn
followed by T i−1 at a distance 1 + ε to the right of ri. If the algorithm matches
ri to the free server on the right (resp. left) in this interval then this creates tree
Ti (resp. T i), and by symmetry of the algorithm if we swap the distances 1 and
1 + ε around it will match ri to the left (resp. right) thus creating tree T i (resp.
Ti). We will see that, up to the highest tree level, Ti and T i are always a mirror
image of each other.

It is helpful to define the interval of a tree T as I(T). I(T) is the interval
from the leftmost to the rightmost server in T just before the request of T was
matched, i.e., I(T) contains exactly two free servers located at its endpoints,
and exactly one unmatched request contained between the two subtrees of the
root of T .

Theorem 3. Let A be a local symmetric algorithm. Then, there exists an
instance with n servers such that the competitive ratio of A is in Ω(log(n)).

Proof. We will show by induction that the interval I(Tk) is always a mirror
image to interval I(Tk) Therefore, local symmetric online algorithms will match
in one of them (w.l.o.g. in I(Tk)) to the right and in the other interval to the
left. In this way, for each request ri on the i-th level of the recursion, only the
leftmost and rightmost servers in the respective interval are available.

Since the trees T0 and T 0 are identical, it immediately follows that intervals
I(T1) and I(T 1) are mirror images of each other. Again, due to symmetry of
the online algorithm, we may assume that T1 leaves the left server open and T 1

leaves its right server open.
Now, for the inductive step, intervals I(Ti) and I(T i) both take the same

subtrees Ti−1 and T i−1 as building blocks and those subtrees are already mirror
images of each other by the inductive hypothesis. Furthermore the distances
between the subtrees and request ri are also a mirror image of one another
(recall that in one tree these distances are 1 and 1+ ε and in the other one 1+ ε
and 1). So, Ti and T i must also be mirror images of each other. In addition,
since in Ti−1 the leftmost server is free and in T i−1 the rightmost server is free,
we may adapt the construction so that Ti also leaves the leftmost server free and
T i also leaves the rightmost server free.

We have established that, when request ri arrives, the only free servers are
the left and rightmost servers sL and sR of I(Ti) (similarly also for I(T i)). By
construction, the distances are d(ri, sL) ≥ 2i − 1 and d(ri, sR) ≥ 2i − 1 because
there are 2i−1 servers in the subtrees Ti−1 and T i−1, each at a distance of 2 + ε
from each other, and all of them, except the outermost are already matched. In
addition, there are 2k−i requests on level i in a tree of depth k. Meanwhile, the
minimum distance between a request and a server is 1, so the competitive ratio is

c(ALG)
c(OPT)

=
∑k

i=1 2k−i(2i − 1)
∑k

i=1 2k−i1
≥ k2k − 1

2k − 1
≥ k − 1

2k
∈ Ω(k).

��

A Collection of Lower Bounds for Online Matching on the Line 59

2.1 Local and Non-Symmetric Algorithms

We generalize the lower bound for local and symmetric algorithms that was
used to prove Theorem 3. Towards this end, we define a choice function C :
I → {sL, sR} that takes as input an interval I along with an unmatched request
r ∈ [sL, sR]. The interval I is such that the only free servers it contains are
sL and sR at the left and right end of the interval respectively. In addition, I
includes information about all other matched servers and requests in between
sL and sR. The choice function returns sR if the algorithm decides to match r
to the right and sL otherwise. By definition, every local algorithm can be fully
characterized by such a choice function.

Our construction follows a similar recursive structure starting with trees T0

and T 0 that only contain a single server. Then from level to level, we again
combine two trees Ti−1 and T i−1 with a request ri in between to create a tree
Ti or T i. The difference to the previous construction lies in the distances from
ri to the nearest server in the neighboring subtrees. For both trees Ti and T i let
ai be the distance to the rightmost (and therefore closest) server of the subtree
Ti−1. Furthermore let bi (resp. bi + ε) be the distance to the left-most server
of subtree Ti−1 (resp. T i−1). Here, ai and bi are carefully chosen in such a way
that C(I(Ti)) = sR and C(I(T i)) = sL. We may assume that such ai and bi

do always exist. If this were not the case, we could set one of them to 1, the
other one to ∞, which in turn would result in an unbounded competitive ratio.
Intuitively, as the distance to one of the two candidate servers grows to infinity,
there must be a point at which any algorithm with a bounded competitive ratio
switches to the other candidate server (Fig. 3).

Our final interval consists of two trees Tk and T k. To simplify the presen-
tation, we skip the last request in between them. In other words, we end the
process while still having two free servers. However this is without loss of gen-
erality since the adversary can present two requests, each collocated with one
of the free servers, thus essentially “removing” these servers from the instance.

Fig. 3. The construction for the lower bound in Theorem 4.

60 A. Antoniadis et al.

A crucial difference to the previous proof is that although we cannot leverage
symmetry of the algorithm in order to show that ri gets matched to opposite
servers in I(Ti) and I(T i), we now get this property directly by our choice of
ai’s and bi’s. The analysis then follows that in the proof of Theorem 3 but is
significantly more involved since the distances can now vary from level to level.

The main result of this section is the following theorem. After proving it, we
discuss its implications to specific classes of algorithms.

Theorem 4. Fix a local online algorithm A and let xi = ai + bi, where ai and
bi are defined for A as described above. If

k −
∑k

i=1(xi2−ii)
∑k

i=1(xi2−i)
∈ Ω(k),

then algorithm A is Ω(log(n))-competitive.

Proof. It can be easily shown through an exchange argument (see also [14]) that
there is always an optimal solution that matches (si, ri) when the servers and
requests are sorted by their position. Therefore, there is an optimal solution for
the instance described above that matches every request on recursion level i to
the next server in the neighboring block Ti−1 or T i−1. So every request on level
i pays either ai or bi. Thus the cost of the optimal solution in the instance is the
sum of the optimal solutions on Tk and T k, which differ by at most an ε.

c(OPT) = 2 · min

{
k∑

i=1

2k−iai,
ε

2
+

k∑

i=1

2k−i
(
bi +

ε

2

)
}

≤
k∑

i=1

2k−i(ai + bi + ε).

With ε arbitrarily small, its contribution to the cost is negligible. For simplicity
of notation, we omit all occurrence of ε in the rest of the proof.

In contrast to the optimal solution, the online algorithm always matches the
request ri to the right in Ti and to the left in T i. By construction, the free server
after request ri arrived in subtree Ti is the left most server and respectively in
T i the right most server.

Thus on level i the distance to the matched server is d(ri, sR) = bi +
∑i−1

j=1 2i−1−j(aj + bj) and d(sL, ri) = ai +
∑i−1

j=1 2i−1−j(aj + bj). The instance
consists of two trees Tk and T k, so the cost of the algorithms solution is

c(ALG) =
k∑

i=1

2k−i (d(sL, ri) + d(ri, sR)) =
k∑

i=1

2k−i
i∑

j=1

2i−j(aj + bj)

=
k∑

i=1

i∑

j=1

2k−j(aj + bj) =
k∑

i=1

(ai + bi)(2k+1−i − 1)(k + 1 − i).

A Collection of Lower Bounds for Online Matching on the Line 61

We relabel ai + bi = xi, this gives us

c(ALG)
c(OPT)

≥
∑k

i=1(ai + bi)(2k+1−i − 1)(k + 1 − i)
∑k

i=1(xi2k−i)

≥
∑k

i=1(xi2−i) · (k − i)
∑k

i=1(xi2−i)
= k −

∑k
i=1(xi2−i) · i

∑k
i=1(xi2−i)

.

��
We give a sufficient condition for Theorem 4 that is easier to work with. If, for

every level of the recursive construction, the bias of an online algorithm grows
by at most a factor of two with respect to the maximal previous bias, then the
online algorithm is Ω(log n)-competitive.

Proposition 5. A sufficient condition for Theorem 4 is xi ≤ 2maxj∈[1:i−1] xj.

In order to show the proposition we first need the following technical lemma.

Lemma 6. Let (xi)i∈[1:k] be a sequence that satisfies the conditions (1) x1 > 0;
(2) xi ≥ 0 for i ∈ [1 : k]; and (3) xi ≤ 2maxj∈[1:i−1] xj. Then, we have for each
m ∈ [1 : k]

∑m
i=1 2−ixi

∑k
i=1 2−ixi

≥ m

k
.

Proof. We will show for m ∈ [1 : k − 1] that we have

1
m

m∑

i=1

xi2−i ≥ 1
m + 1

m+1∑

i=1

xi2−i .

The statement then follows by repeated application of this identity.
Using basic calculations we can rewrite this as follows

m∑

i=1

2m−ixi ≥ m

2
· xm+1 .

Since we allow xm+1 to be as large as 2max1≤i≤m xi, it satisfies to show

m∑

i=1

2m−ixi ≥ m · max
1≤i≤m

xi .

Let i1 < i2 < . . . < i� denote the longest subsequence such that xi1 < xi2 <
. . . < xi�

. Note, that xi�
= maxi∈[m] xi. Furthermore, we set i�+1 := m + 1.

We make the following observation: Let j < � − 1. Then we have

2m−ij xij

ij+1 − ij
≥ 2m−ij+1xij+1

ij+2 − ij+1
. (1)

62 A. Antoniadis et al.

We can see this as follows: Rewriting the expression and using that xij+1 ≤ 2xij

we obtain

2ij+1−ij ≥ ij+1 − ij
ij+2 − ij+1

.

We see that the right hand side is maximized if the denominator is equal to 1.
Therefore, we obtain the estimate 2ij+1−ij ≥ ij+1 − ij . But this is clear, since
ij+1 − ij is a natural number.

Then, a repeated application of (1) yields
m∑

i=1

2m−ixi ≥
�∑

u=1

2m−iuxiu

= 2m−i1xi1 +
�∑

u=2

2m−iuxiu

≥ i2 − i1
i3 − i2

2m−i2xi2 +
�∑

u=2

2m−iuxiu

=
(

i2 − i1
i3 − i2

+ 1
)

2m−i2xi2 +
�∑

u=3

2m−iuxiu

=
i3 − i1
i3 − i2

2m−i2xi2 +
�∑

u=3

2m−iuxiu

≥ . . . ≥ i�+1 − i1
i�+1 − i�

2m−i�xi�
.

At first consider the case that i� = m. Then, the sum is lower bounded by
(m+1)−1
(m+1)−m2m−mxm = mxm. Now assume that i� < m. Then we want to show
that

m + 1 − 1
m + 1 − i�

2m−i� max
i∈[m]

xi ≥ m max
i∈[m]

xi .

But this is true if 2m−i� ≥ 1 + m − i�. Since m > i� due to our assumption, this
holds true. Therefore, the statement follows. ��

We are now ready to prove Proposition 5.

Proof (of Proposition 5). Now we can upper bound the expression
∑k

i=1(2
−ixi)i

∑k
i=1 2−ixi

.

It follows from the previous lemma that at least half of the mass of the
probability distribution is located on the set {1, . . . , �k/2�}. Therefore, we have

∑k
i=1(2

−ixi)i
∑k

i=1 2−ixi

≤ �k/2�/2 + k/2 ≤ 3k/4 + 1/2 .

��

A Collection of Lower Bounds for Online Matching on the Line 63

Furthermore, we also show that this sufficient condition is nearly tight. If
the choice function has a bias that is increasing by a factor of at least 2 + ε for
some ε > 0 with each new recursive level of the instance, then we can only give
a constant lower bound on the competitive ratio. In other words, the following
proposition identifies the limitations of our lower-bound instance.

Proposition 7. If, for an online algorithm A, the corresponding instance takes
the form xi ≥ (2 + ε)xi−1 with x0 = 0 for ε > 0 and for all i ∈ [1 : log(n)], then
the instance only proves a constant competitive ratio.

3 Lower Bounds for Randomized Algorithms

Our deterministic lower bound in Sect. 2.1 also extends to randomized local algo-
rithms. The main difference is that, in the randomized case, we cannot deduce
the right distances between requests and servers ai and bi from a deterministic
choice function. Instead, we construct the instance in such a way that the posi-
tion of the free server in every subtree Ti is symmetrically distributed. Then it
is easy to see that the algorithm is bound to lose at least a constant fraction in
the competitive ratio over the algorithm in the deterministic case.

Again, the instance is constructed analogously to the previous section. The
main difference is that now Ti consists of two subtrees Ti−1 with an additional
request r in between. Similarly to the previous subsection we set the distances
between the subtrees and the new request as d(Ti−1, ri) = ai and d(ri, Ti−1) = bi

with the exception of the top level request rk. On level k, let ak = bk = 0. By
construction, and as before, every tree Ti contains exactly one free server s ∈ Ti.
For convenience of notation, s ∈ [2i] also denotes the position of s within Ti.

Theorem 8. Consider any randomized online algorithm A, for which (i) ai and
bi can be chosen in such a way that the distribution pi(s) over the position of the
free server s(Ti) ∼pi [2i] is symmetric, and (ii) the distances xi = ai + bi fulfill

k −
∑k−1

i=1 xi2−ii
∑k−1

i=1 xi2−i
∈ Ω(k) ,

for every i ∈ [k − 1]. Algorithm A is Ω(log n)-competitive on the instance Tlog n.

Proof. If the distribution pi over the position of the free server s in Ti is sym-
metric, then with probability 1

2 the server is in the first half of Ti. In this case
s ≤ 2i−1. Analogously, with probability 1

2 , we also have s ≥ 2i−1 + 1. If both
events occur at the same time, then in Ti+1 the distance between matched server
and request is at least min{d(sL, ri), d(ri, sR)} ≥ ∑i−1

j=1(aj + bj)2i−1−j . Here, we
omit the cost of ai or bi because the algorithm will not pay both.

64 A. Antoniadis et al.

Therefore, the expected cost of the online algorithm is at least

E [c(ALG)] ≥
k∑

i=1

1
4
2k−i

i−1∑

j=1

(aj + bj)2i−1−j

=
1
4

k−1∑

i=1

(ai + bi)(2k−i−1 − 1)(k − i) .

Similar to the previous section, the cost of the optimal solution are

c(OPT) = min

{
k∑

i=1

2k−iai,
k∑

i=1

2k−ibi

}

≤
k∑

i=1

2k−i−1(ai + bi) .

Again we substitute xi = (ai + bi), then the lower bound instance guarantees
a competitive ratio of at least

E [c(ALG)]
c(OPT)

≥
1
4

∑k−1
i=1 xi(2k−i−1 − 1)(k − i)

∑k
i=1 2k−i−1xi

≥
1
8

∑k−1
i=1 xi2−i(k − i)
∑k−1

i=1 xi2−i
.

In the last step, we use that xk = ak +bk = 0. Now we have an expression similar
to the previous proof, the same steps give the desired result. ��

An example for a randomized online algorithm for OML is the Harmonic
algorithm by Gupta and Lewi [5]. They have shown that this algorithm is
O(log n)-competitive in expectation. We show that Harmonic fulfills the con-
dition in Theorem 8, and therefore provide an alternative that Harmonic is
Ω(log n)-competitive.

Proposition 9. For the algorithm Harmonic, ai = bi = 1 yields a symmetric
distribution pi(s) for all i ∈ [k].

4 Discussion

This paper rules out an o(log(n))-competitive ratio for a wide class of both
deterministic and randomized algorithms for OML. This means that new algo-
rithmic insights are necessary if one hopes to obtain such a o(log(n))-competive
algorithm for the problem. It is natural to try and conceptualize a “reasonable”
deterministic/randomized algorithm that beats our instance. As already men-
tioned, we find it particularly hard to conceptualize such a local algorithm and
we therefore conjecture that the lower bound of Ω(log n) holds for all local algo-
rithms, even though a different construction would be required to handle algo-
rithms with alternating and exponentially growing bias. However, it would be
interesting to try to design and analyze a non-local algorithm, that also employs
information from outside of the local-interval in order to match a request.

The best deterministic algorithm known so far is O(log2(n))-competitive, and
for many known algorithms the best known lower bound on their competitive

A Collection of Lower Bounds for Online Matching on the Line 65

ratio is Ω(log(n)), it would be reasonable to work on a tighter analysis for an
existing algorithm in order to (hopefully) prove it Θ(log(n))-competitive. The
WFA algorithm has been conjectured to be Θ(log n)-competitive before and our
work does not change anything on that front. Another promising candidate is
the t-net-cost algorithm for some t > 1 because this is the currently best known
algorithm and it is not obvious that the analysis is tight for the line metric.

References

1. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-
competitive deterministic algorithm for online matching on a line. In: Proceedings
of 12th International Workshop Approximations and Online Algorithms (WAOA),
pp. 11–22 (2014)

2. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized o(log2 k)-
competitive algorithm for metric bipartite matching. Algorithmica 68(2), 390–403
(2014)

3. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: on the
exponential boost of one extra server. In: Laber, E.S., Bornstein, C., Nogueira,
L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 228–239. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78773-0 20

4. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theo. Comput.
Sci. 332(1–3), 251–264 (2005)

5. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS,
vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31594-7 36

6. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

7. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J.
Discrete Math. 13(3), 370–383 (2000)

8. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theo. Comput. Sci. 127(2), 255–267 (1994)

9. Koutsoupias, E.: The k-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)
10. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-

Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6 14

11. Meyerson, A., Nanavati, A., Poplawski, L.J.: Randomized online algorithms for
minimum metric bipartite matching. In: Proceedings of 17th Symposium Discrete
Algorithms (SODA), pp. 954–959 (2006)

12. Nayyar, K., Raghvendra, S.: An input sensintive online algorithm for the met-
ric bipartite matching problem. In: FOCS (2017, to appear). http://ieee-focs.org/
FOCS-2017-Papers/3464a505.pdf

13. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: Approximation, Randomization, and Combinatorial Optimiza-
tion, APPROX/RANDOM, pp. 18:1–18:16 (2016)

14. van Stee, R.: SIGACT news online algorithms column 27: online matching on the
line, part 1. SIGACT News 47(1), 99–110 (2016)

15. van Stee, R.: SIGACT news online algorithms column 28: online matching on the
line, part 2. SIGACT News 47(2), 40–51 (2016)

https://doi.org/10.1007/978-3-540-78773-0_20
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-540-24592-6_14
http://ieee-focs.org/FOCS-2017-Papers/3464a505.pdf
http://ieee-focs.org/FOCS-2017-Papers/3464a505.pdf

On the Complexity of Finding Internally
Vertex-Disjoint Long Directed Paths

Júlio Araújo1, Victor A. Campos2, Ana Karolinna Maia2,
Ignasi Sau1,3(B), and Ana Silva1

1 ParGO Research Group, Departamento de Matemática,
Universidade Federal do Ceará, Fortaleza, Brazil

{julio,anasilva}@mat.ufc.br
2 ParGO Research Group, Departamento de Computação,

Universidade Federal do Ceará, Fortaleza, Brazil
{campos,karolmaia}@lia.ufc.br

3 CNRS, Université de Montpellier, LIRMM, Montpellier, France
ignasi.sau@lirmm.fr

Abstract. For two positive integers k and �, a (k×�)-spindle is the union
of k pairwise internally vertex-disjoint directed paths with � arcs each
between two vertices u and v. We are interested in the (parameterized)
complexity of several problems consisting in deciding whether a given
digraph contains a subdivision of a spindle, which generalize both the
Maximum Flow and Longest Path problems. We obtain the following
complexity dichotomy: for a fixed � ≥ 1, finding the largest k such that an
input digraph G contains a subdivision of a (k×�)-spindle is polynomial-
time solvable if � ≤ 3, and NP-hard otherwise. We place special emphasis
on finding spindles with exactly two paths and present FPT algorithms
that are asymptotically optimal under the ETH. These algorithms are
based on the technique of representative families in matroids, and use also
color-coding as a subroutine. Finally, we study the case where the input
graph is acyclic, and present several algorithmic and hardness results.

Keywords: Digraph subdivision · Spindle · Parameterized complexity
FPT algorithm · Representative family · Complexity dichotomy

1 Introduction

A subdivision of a digraph F is a digraph obtained from F by replacing each arc
(u, v) of F by a directed (u, v)-path. We are interested in the (parameterized)
complexity of several problems consisting in deciding whether a given digraph
contains as a subdigraph a subdivision of a spindle, defined as follows. For k
positive integers �1, . . . , �k, an (�1, . . . , �k)-spindle is the digraph containing k
paths P1, . . . , Pk from a vertex u to a vertex v, such that |E(Pi)| = �i for

Work supported by DE-MO-GRAPH grant ANR-16-CE40-0028 and CNPq grant
306262/2014-2.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 66–79, 2018.
https://doi.org/10.1007/978-3-319-77404-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_6&domain=pdf

Finding Internally Vertex-Disjoint Long Directed Paths 67

Fig. 1. A (4, 3, 2)-spindle. This digraph contains a subdivision of a (3× 2)-spindle, but
not of a (3 × 3)-spindle.

1 ≤ i ≤ k and V (Pi) ∩ V (Pj) = {u, v} for 1 ≤ i �= j ≤ k. If �i = � for 1 ≤ i ≤ k,
an (�1, . . . , �k)-spindle is also called a (k × �)-spindle. See Fig. 1 for an example.

Note that a digraph G contains a subdivision of a (k × 1)-spindle if and only
if there exist two vertices u and v and k internally vertex-disjoint paths from
u to v. On the other hand, G contains a subdivision of a (1 × �)-spindle if and
only if G contains a path of length at least �. Hence, finding a subdivision of a
spindle generalizes both the Maximum Flow and Longest Path problems.

Subdivisions of spindles were considered by Bang-Jensen et al. [4], who intro-
duced the general problem of finding a subdivision of a fixed digraph F and pre-
sented NP-hardness results and polynomial-time algorithms for several choices
of F (see also [13]). In particular, they proved that when F is a spindle, the
problem can be solved in time nO(|V (F)|) by a combination of brute force and
a flow algorithm. Using terminology from parameterized complexity, this means
that the problem is in XP parameterized by the size of F , and they left open
whether it is FPT. Note that on undirected graphs the notion of subdivision
coincides with that of topological minor, hence by Grohe et al. [12] the prob-
lem is FPT parameterized by the size of F , for a general graph F . We refer to
the introduction of [4] for a more detailed discussion about problems related to
containment relations on graphs and digraphs.

We first consider the following two optimization problems about finding sub-
divisions of spindles: (1) for a fixed positive integer k, given an input digraph G,
find the largest integer � such that G contains a subdivision of a (k × �)-spindle,
and (2) for a fixed positive integer �, given an input digraph G, find the largest
integer k such that G contains a subdivision of a (k × �)-spindle. We call these
problems Max (k×•)-Spindle Subdivision and Max (•× �)-Spindle Subdi-

vision, respectively. We prove that the first problem is NP-hard for any integer
k ≥ 1, by a simple reduction from Longest Path. The second problem turns
out to be much more interesting, and we achieve the following dichotomy.

Theorem 1. Let � ≥ 1 be a fixed integer. Max (• × �)-Spindle Subdivision

is polynomial-time solvable if � ≤ 3, and NP-hard otherwise, even restricted to
acyclic digraphs.

The reduction for the NP-hard cases is inspired by a result of Brewster et
al. [6] to prove the NP-hardness of packing vertex-disjoint paths on digraphs.
Concerning the polynomial algorithms, to solve the case � = 3, which is the
only nontrivial one, we use a vertex splitting procedure that builds on ideas of

68 J. Araújo et al.

Schrijver [19] on undirected graphs and by Kriesell [16] on directed graphs (see
also [3, Sect. 5.9]).

It worth mentioning that both the positive and negative results of Theorem 1
hold as well for the case where the endvertices of the desired spindle are fixed. Itai
et al. [14] considered the problems of, given a digraph G and two distinct vertices
s and t, finding the maximum number of internally vertex-disjoint (s, t)-paths
whose lengths are at most or exactly equal to a fixed constant �, and achieved
dichotomies for both cases. Note that the problem we consider corresponds to a
constraint of type ‘at least’ on the lengths of the desired paths. Hence, Theorem 1
together with the results of Itai et al. [14] provide a full picture of the complexity
of finding a maximum number of length-constrained internally vertex-disjoint
directed (s, t)-paths.

We place special emphasis on finding subdivisions of spindles with exactly
two paths, which we call 2-spindles. The existence of subdivisions of 2-spindles
has attracted some interest in the literature. Indeed, Benhocine and Wojda [5]
showed that a tournament on n ≥ 7 vertices always contains a subdivision of
an (�1, �2)-spindle such that �1 + �2 = n. More recently, Cohen et al. [7] showed
that a strongly connected digraph with chromatic number Ω((�1+�2)4) contains
a subdivision of an (�1, �2)-spindle, and this bound was subsequently improved
to Ω((�1 + �2)2) by Kim et al. [15], who also provided improved bounds for
Hamiltonian digraphs.

We consider two problems concerning the existence of subdivisions of 2-
spindles. The first one is, given an input digraph G, find the largest integer
� such that G contains a subdivision of an (�1, �2)-spindle with min{�1, �2} ≥ 1
and �1 + �2 = �. We call this problem Max (•, •)-Spindle Subdivision, and we
show the following results.

Theorem 2. Given a digraph G and a positive integer �, the problem of deciding
whether there exist two strictly positive integers �1, �2 with �1+�2 = � such that G
contains a subdivision of an (�1, �2)-spindle is NP-hard and FPT parameterized
by �. The running time of the FPT algorithm is 2O(�) · nO(1), and the function
2O(�) is asymptotically optimal unless the ETH fails. Moreover, the problem does
not admit polynomial kernels unless NP ⊆ coNP/poly.

The second problem is, for a fixed strictly positive integer �1, given an input
digraph G, find the largest integer �2 such that G contains a subdivision of an
(�1, �2)-spindle. We call this problem Max (�1, •)-Spindle Subdivision, and we
show the following results.

Theorem 3. Given a digraph G and two integers �1, �2 with �2 ≥ �1 ≥ 1, the
problem of deciding whether G contains a subdivision of an (�1, �2)-spindle can be
solved in time 2O(�2) ·nO(�1). When �1 is a constant, the problem remains NP-hard
and the running time of the FPT algorithm parameterized by �2 is asymptotically
optimal unless the ETH fails. Moreover, the problem does not admit polynomial
kernels unless NP ⊆ coNP/poly.

The hardness results of Theorems 2 and 3 are based on a simple reduction
from Directed Hamiltonian Cycle. Both FPT algorithms, which are our

Finding Internally Vertex-Disjoint Long Directed Paths 69

main technical contribution, are based on the technique of representative families
in matroids introduced by Monien [18], and in particular its improved version
recently presented by Fomin et al. [10]. The FPT algorithm of Theorem 3 also
uses the color-coding technique of Alon et al. [1] as a subroutine.

Finally, we consider the case where the input digraph G is acyclic. We prove
the following result by using a standard dynamic programming algorithm.

Theorem 4. Given an acyclic digraph G and two positive integers k, �, the prob-
lem of deciding whether G contains a subdivision of a (k×�)-spindle can be solved
in time O(�k · n2k+1).

The above theorem implies, in particular, that when k is a constant the
problem is polynomial-time solvable on acyclic digraphs, which generalizes the
fact that Longest Path, which corresponds to the case k = 1, is polynomial-
time solvable on acyclic digraphs (cf. [20]).

As observed by Bang-Jensen et al. [4], from the fact that the k-Linkage
problem is in XP on acyclic digraphs [17], it easily follows that finding a sub-
division of a general digraph F is in XP on DAGs parameterized by |V (F)|.
Motivated by this, we prove two further hardness results about finding subdivi-
sions of spindles on DAGs. Namely, we prove that if F is the disjoint union of
(2×1)-spindles, then finding a subdivision of F is NP-complete on planar DAGs,
and that if F is the disjoint union of a (k1 × 1)-spindle and a (k2 × 1)-spindle,
then finding a subdivision of F is W[1]-hard on DAGs parameterized by k1 +k2.
These two results should be compared to the fact that finding a subdivision of
a single (k × 1)-spindle can be solved in polynomial time on general digraphs by
a flow algorithm.

Organization of the paper. In Sect. 2 we prove Theorem 1, and in Sect. 3
we prove Theorems 2 and 3. Our results about acyclic digraphs are deferred to
the full version of this article [2]. In Sect. 4 we present some open problems for
further research. Due to space limitations, the proofs of the results marked with
‘(�)’ are deferred to the full version.

We use standard notation concerning (di)graphs, parameterized complexity,
and matroids. For completeness, some basic preliminaries can be found in the
full version. For a positive integer k, we denote by [k] the set of all integers i such
that 1 ≤ i ≤ k. Throughout the article, unless stated otherwise, we let n denote
the number of vertices of the input digraph of the problem under consideration.

2 Complexity Dichotomy in Terms of the Path Lengths

In this section we focus on the two natural optimization versions of finding
subdivisions of spindles mentioned in the introduction, namely Max (k × •)-
Spindle Subdivision and Max (• × �)-Spindle Subdivision.

It is easy to prove that the first problem is NP-hard for any integer k ≥ 1,
by a simple reduction from Longest Path.

70 J. Araújo et al.

Theorem 5. Let k ≥ 1 be a fixed integer. The Max (k × •)-Spindle Subdivi-

sion problem is NP-hard.

Proof. We provide a polynomial reduction from the Longest Path problem
on general digraphs, which is NP-hard as it generalizes Hamiltonian Path [11].
For k = 1, Max (k × •)-Spindle Subdivision is exactly the Longest Path

problem, and the result follows. For k > 1, let G be an instance of Longest

Path with n vertices, and we build an instance G′ of Max (k × •)-Spindle
Subdivision as follows. We start with G and we add to it 2k − 2 new vertices
s1, . . . , sk−1, t1, . . . , tk−1. For i ∈ [k − 1], we add an arc from every vertex of G
to si, and arc from ti to every vertex of G, and a path from si to ti with n edges
through n − 1 new vertices. This completes the construction of G′. It is clear
that the length of a longest path in G equals the largest integer k such that G′

contains a subdivision of a (k × �)-spindle, concluding the proof. �

We now present the complexity dichotomy for the second problem, in order
to prove Theorem 1. We start with the hardness result.

Theorem 6. Let � ≥ 4 be a fixed integer. The Max (• × �)-Spindle Subdivi-

sion problem is NP-hard, even when restricted to DAGs.

Proof. We provide a polynomial reduction from 3-Dimensional Matching,
which is NP-hard [11]. In the 3-Dimensional Matching problem, we are given
three sets A,B,C of the same size and a set of triples T ⊆ A × B × C. The
objective is to decide whether there exists a set T ′ ⊆ T of pairwise disjoint triples
with |T ′| = |A|. Given an instance (A,B,C, T) of 3-Dimensional Matching,
with |A| = n and T = m, we construct an instance G of Max (• × �)-Spindle
Subdivision as follows. We first present the reduction for � = 4, and then we
explain how to modify it for a general � > 4.

For every i ∈ [n], we add to G three vertices ai, bi, ci, corresponding to
the elements in the sets A,B,C, respectively. Let H the digraph with ver-
tices x0, x1, y0, y1, z0, z1, a, b, c and arcs (x0, x1), (x1, a), (x1, y0), (y0, y1), (y1, b),
(x0, z0), (z0, z1), (z1, c) (see Fig. 2(a)). For every triple T ∈ T , with T =
(ai, bj , cp), we add to G a copy of H and we identify vertex a with ai, ver-
tex b with bj , and vertex c with cp. Finally, we add a new vertex s that we
connect to all other vertices introduced so far, and another vertex t to which we
connect all other vertices introduced so far except s.

The constructed digraph G is easily seen to be a DAG. Indeed, we can define
a topological ordering of V (G) so that all arcs go from left to right as follows.
We select s (resp. t) as the leftmost (resp. rightmost) vertex. We divide the
remaining vertices of G into two blocks. On the right, we place all the vertices
{ai, bi, ci : i ∈ [n]}, and we order them arbitrarily. On the left, we place the
remaining vertices of G, which we also order arbitrarily, except that for every
triple T ∈ T , we order the vertices in its copy of H, distinct from a, b, c, such
that x0 < x1 < y0 < y1 < z0 < z1 holds. One can check that, with respect to
this ordering, all the arcs of G go from left to right.

Finding Internally Vertex-Disjoint Long Directed Paths 71

Fig. 2. (a) Digraph H. (b) Selected paths when T ∈ T ′. (c) Selected paths when
T ∈ T \ T ′.

Note that |V (G)| = 3n + 6m + 2, and therefore the largest integer k for
which G contains a subdivision of a (k × 4)-spindle is k∗ := n + 2m, as each
path involved in such a spindle contains at least three vertices distinct from its
endpoints. The following claim concludes the proof for � = 4.

Claim 1. (A,B,C, T) is a Yes-instance of 3-Dimensional Matching if and
only if G contains a subdivision of a (k∗ × 4)-spindle.

Proof of the claim. Suppose first that (A,B,C, T) is a Yes-instance, and let
T ′ ⊆ T be a solution. We proceed to define a set P of n + 2m vertex-disjoint
2-paths in G \ {s, t}, which together with s and t yield the desired spindle. For
every T ∈ T ′, with T = (ai, bj , cp), we add to P the three paths (x0, x1, ai),
(y0, y1, bj), and (z0, z1, cp) (see the thick arcs in Fig. 2(b)). On the other hand,
for every T ∈ T \T ′, with T = (ai, bj , cp), we add to P the two paths (x1, y0, y1)
and (x0, z0, z1) (see the thick arcs in Fig. 2(c)). Since T ′ is a solution of 3-

Dimensional Matching, it holds that |T ′| = n, and thus P = 3n+2(m−n) =
n + 2m, as required.

Conversely, suppose that G contains a subdivision of a (k∗ × 4)-spindle S.
Since s and t are the only vertices in G with in-degree and out-degree at least k∗,
respectively, necessarily they are the endpoints of S. Since |V (G) \ {s, t}| = 3k∗,
it follows that S\{s, t} consists of a collection P of k∗ vertex-disjoint 2-paths that
covers all the vertices in V (G) \ {s, t}. Let H be the subdigraph in G associated
with an arbitrary triple T ∈ T , and consider P ∩ H. By construction of H, it
follows that if P ∩ H is not equal to one of the configurations corresponding to
the thick arcs of Fig. 2(b) or Fig. 2(c), necessarily at least one vertex in V (H)
would not be covered by P, a contradiction. Let T ′ be the set of triples in T
such that the corresponding gadget H intersects P as in Fig. 2(b). It follows that
3|T ′| + 2(m − |T ′|) = |P| = k∗ = n + 2m, and therefore |T ′| = n. Since all the
2-paths in P associated with the triples in T ′ are vertex-disjoint, we have that T ′

is a collection of n pairwise disjoint triples, hence a solution of 3-Dimensional

Matching. �

For a general � > 4, we define the digraph G in the same way, except that
we subdivide the arcs outgoing from s exactly � − 4 times. The rest of the proof
is essentially the same, and the result follows. �

72 J. Araújo et al.

Fig. 3. (a) Digraph G with X = {u1, u2, u3} and Y = {u3, u4}. (b) Graph G′ associated
with G. (c) The thick edges define a matching of size five in G′, corresponding to the
two vertex-disjoint directed nontrivial paths (u1, v1, u3) and (u2, v3, u4) from X to Y
in G.

We now turn to the cases that can be solved in polynomial time. We first
need some ingredients to deal with the case � = 3, which is the most interesting
one. Let G be a digraph and let X and Y be two subsets of V (G). We say that a
(simple) path P is directed from X to Y if P is a directed path with first vertex
x and last vertex y such that x ∈ X and y ∈ Y . The path P is nontrivial if its
endpoints are distinct.

The following proposition will be the key ingredient in the proof of Theorem 7.
Its proof is inspired by similar constructions given by Schrijver [19] on undirected
graphs and by Kriesell [16] on directed graphs, usually called vertex splitting
procedure (see [3, Sect. 5.9]). In fact, the conclusion of Proposition 1 can be also
derived as a corollary of the main result in [16], noting that a polynomial-time
algorithm can be extracted from that proof. We present a simpler proof here for
completeness.

Proposition 1. Let G be a digraph and let X,Y ⊆ V (G). The maximum num-
ber of vertex-disjoint directed nontrivial paths from X to Y can be computed in
polynomial time.

Proof. Let P be any collection of vertex-disjoint directed nontrivial paths from
X to Y in G. We can rebuild each path in P so that it has no internal vertices
in X ∪ Y . Therefore, we can assume G has no arcs to a vertex in X \ Y or from
a vertex in Y \ X.

Let G′ be the undirected graph built from G as follows. The vertex set of
G′ is obtained from V (G) by adding a copy v′ of each vertex v not in X ∪ Y .
We build the edge set of G′ starting from the empty set as follows. For every
vertex v not in X ∪Y , add the edge {v, v′}. For each arc (u, v) in G, we add the
edge {u, v} if v ∈ X ∪ Y and the edge {u, v′} otherwise. See Fig. 3(a)–(b) for an
example.

Claim 2 (�). The digraph G contains a family of k vertex-disjoint directed
nontrivial paths from X to Y if and only if G′ has a matching of size k +
|V (G) \ (X ∪ Y)|.

Finding Internally Vertex-Disjoint Long Directed Paths 73

Claim 2 tells us that we can obtain a maximum number of vertex-disjoint
nontrivial paths from X to Y in G by finding a maximum matching in the graph
G′, which can be done in polynomial time [9]. The proposition follows. �

The main algorithmic result of this section follows easily from Proposition 1.

Theorem 7 (�). Let � ≤ 3 be a fixed integer. The Max (• × �)-Spindle
Subdivision problem can be solved in polynomial time.

Using similar techniques, we can prove a generalization of Theorem 7.

Theorem 8 (�). Given a digraph G and non-negative integers k1, k2, k2, decid-
ing whether G contains a subdivision of an (�11, . . . , �

1
k1

, �21, . . . , �
2
k2

, �31, . . . , �
3
k3

)-
spindle such that, for j ∈ [3] and i ∈ [kj], �j

i = j, can be solved in polynomial
time.

3 Finding Subdivisions of 2-Spindles

In this section we focus on finding subdivisions of 2-spindles, and we prove
Theorems 2 and 3. We focus here on the FPT algorithms, and the hardness results
can be found in the full version. Our FPT algorithms for finding subdivisions of
(�1, �2)-spindles are based on the technique of representative families introduced
by Monien [18]. We use the improved version of this technique recently presented
by Fomin et al. [10] and, more precisely, our algorithms and notation are inspired
by the ones for Long Directed Cycle given in [10]. We start with some
definitions introduced in [10] that can also be found in [8].

Two independent sets A,B of a matroid M fit if A ∩ B = ∅ and A ∪ B is
independent.

Definition 1. Let M be a matroid and A be a family of sets of size p in M.
A subfamily A′ ⊆ A is said to q-represent A if for every set B of size q such
that there is an A ∈ A that fits B, there is an A′ ∈ A′ that also fits B. If A′

q-represents A, we write A′ ⊆q
rep A.

3.1 Finding 2-Spindles with Large Total Size

We start with the algorithm to solve the problem of, given a digraph G and
a positive integer �, deciding whether there exist two strictly positive integers
�1, �2 with �1 + �2 = � such that G contains a subdivision of an (�1, �2)-spindle,
running in time 2O(�) · nO(1).

If a subdigraph S of G is a subdivision of an (�1, �2)-spindle, with
min{�1, �2} ≥ 1 and �1 + �2 = �, we say that S is a good spindle. We may
assume that max{�1, �2} ≥ 2, as otherwise the desired spindle is just an arc with
multiplicity two, which can be detected in polynomial time by using a maximum
flow algorithm.

The following simple observation, whose proof can be easily verified, will be
crucially used by the algorithm that we propose in the sequel. See Fig. 4 for an
illustration.

74 J. Araújo et al.

Lemma 1. A digraph G has a good spindle if and only if there exist vertices
u, u1, u2, v, integers �1, �2 with min{�1, �2} ≥ 1 and �1+�2 = �, a (u, u1)-path Pu

1

on �1 vertices, a (u, u2)-path Pu
2 on �2 vertices, a (u1, v)-path P v

1 , and a (u2, v)-
path P v

2 such that V (Pu
1) ∩ V (Pu

2) = {u}, V (P v
1) ∩ V (P v

2) = {v}, V (Pu
1) ∩

V (P v
1) = {u1}, V (Pu

2) ∩ V (P v
2) = {u2}, and, if min{�1, �2} ≥ 2, V (Pu

1) ∩
V (P v

2) = V (Pu
2) ∩ V (P v

1) = ∅.

In the above lemma, note that if min{�1, �2} = 1 then one of the paths Pu
1

and Pu
2 , say Pu

1 , may be degenerate to vertex u, and in that case we have that
u1 = u.

Fig. 4. Illustration of the vertices and paths described in Lemma 1.

Motivated by Lemma 3, for every triple of vertices u, u1, u2 ∈ V (G) and
positive integers �1, �2, we define

S�1,�2
u,u1,u2

=
{

X :S ⊆ V (G), |X| = �1 + �2 − 1, and G[X] contains a

(u, u1)-path Pu
1 on �1 vertices and a (u, u2)-path Pu

2

on �2 vertices such that V (Pu
1) ∩ V (Pu

2) = {u}
}

.

The key idea is to compute efficiently a small family of subsets of V (G) that
represents the above sets, which are too large for our purposes. More precisely,
for every triple of vertices u, u1, u2 ∈ V (G) and positive integers �1, �2, q with
�1, �2 ≤ � and q ≤ 2� − (�1 + �2), we will compute in time 2O(�) · nO(1) a q-
representative family Ŝ�1,�2,q

u,u1,u2
⊆q

rep S�1,�2
u,u1,u2

.
As in [10], the matroid with respect to which we will define the above q-

representative family Ŝ�1,�2,q
u,u1,u2

is the uniform matroid with ground set V (G) and
rank � + q.

We defer the computation of the above q-representative families in time 2O(�) ·
nO(1) to the full version, and assume now that we already have these families at
hand. The following lemma states that they are enough to find the desired good
spindle.

Lemma 2. If G contains a good spindle, then there exist vertices u, u1, u2, v,
integers �1, �2 with min{�1, �2} ≥ 1 and �1 + �2 = �, a set Ŝu ∈ Ŝ�1,�2,q

u,u1,u2
with

q ≤ �−1, a (u1, v)-path P v
1 , and a (u2, v)-path P v

2 such that V (P v
1)∩V (P v

2) = {v}
and Ŝu ∩ (V (P v

1) ∪ V (P v
2)) = {u1, u2}.

Finding Internally Vertex-Disjoint Long Directed Paths 75

Proof. Let S be a good spindle in G with minimum number of vertices, which
exists by hypothesis, and let u and v be the tail and the head of S, respectively.
Let Pu

1 = (u, . . . , u1) and Pu
2 = (u, . . . , u2) be two subdipaths in S outgoing from

u, on �1 and �2 vertices, respectively, with �1 + �2 = �. Let also P v
1 = (u1, . . . , v)

and P v
2 = (u2, . . . , v) be the two subdipaths in S from u1 and u2 to v, respectively

(see Fig. 4). Let Su = V (Pu
1) ∪ V (Pu

2), and note that Su ∈ S�1,�2
u,u1,u2

.
In order to apply the properties of q-representative families, we define a vertex

set B ⊆ V (S) as follows. If |V (S)\Su| ≤ �−2, let B = V (S)\Su. Otherwise, let
B be the union of two subdipaths PB

1 = (v1, . . . , v) and PB
2 = (v2, . . . , v) in S

with V (PB
1)∩V (PB

2) = {v} and |V (PB
1)∪V (PB

2)| = �−1. Note that there may
be several choices for the lengths of PB

1 and PB
2 , as far as their joint number

of vertices is equal to � − 1. Note also that PB
1 (resp. PB

2) is a subdipath of P v
1

(resp. P v
2).

Let q = |B| ≤ � − 1. Since Su ∈ S�1,�2
u,u1,u2

and Su ∩ B = ∅, by definition of
q-representative family there exists Ŝu ∈ Ŝ�1,�2,q

u,u1,u2
such that Ŝu∩B = ∅. We claim

that Ŝu ∩ (V (P v
1) ∪ V (P v

2)) = {u1, u2}, which concludes the proof of the lemma.
If |B| ≤ � − 2, the claim follows easily as Ŝu ∩ B = ∅ and B contains all the
vertices in V (S) \ Su. Suppose henceforth that |B| ≥ � − 1, and let P̂u

1 and P̂u
2

be the two paths in G[Ŝu] with V (P̂u
1)∩V (P̂u

1) = {u}. Assume for contradiction
that (Ŝu ∩ (V (P v

1) ∪ V (P v
2))) \ {u1, u2} �= ∅, and we distinguish two cases.

Suppose first that each of the paths P̂u
1 and P̂u

2 intersects exactly one of
the paths P v

1 and P v
2 . By hypothesis, there exists a vertex w ∈ (Ŝu ∩ (V (P v

1) ∪
V (P v

2))) \ {u1, u2}, and suppose without loss of generality that w ∈ V (P̂u
1) ∩

V (P v
1); see Fig. 5(a) for an illustration. We define a good spindle Ŝ in G as

follows. The tail and head of Ŝ are vertices u and v, respectively. The first path
of Ŝ starts at u, follows P̂u

1 until its first intersection with P v
1 (vertex w in

Fig. 5(a)), which is distinct from u1 by hypothesis, and then follows P v
1 until v.

The second path of Ŝ starts at u, follows P̂u
2 until its first intersection with P v

2 ,
which may be vertex u2, and then follows P v

2 until v. Since |B| ≥ �− 1 and each
of P̂u

1 and P̂u
2 intersects exactly one of P v

1 and P v
2 , it follows that Ŝ is indeed

a good spindle. On the other hand, since |V (P̂u
1) ∪ V (P̂u

2)| = |V ((Pu
1) ∪ V (Pu

2)|
and vertex w comes strictly after u1 in P v

1 , it follows that the first path of Ŝ is
strictly shorter than the corresponding path of S, while the second one is not
longer. Therefore, |V (Ŝ)| < |V (S)|, a contradiction to the choice of S.

Suppose now that one of the paths P̂u
1 and P̂u

2 , say P̂u
1 , intersects both P v

1

and P v
2 . Without loss of generality, suppose that, starting from u, P̂u

1 meets
P v
1 before than P v

2 . Let w1 and w2 be vertices of P̂u
1 such that w1 ∈ V (P v

1),
w2 ∈ V (P v

2), and there is no vertex of P̂u
1 between w1 and w2 that belongs to

V (P v
1) ∪ V (P v

2); see Fig. 5(b) for an illustration. We define a good spindle Ŝ in
G as follows. The tail and head of Ŝ are vertices w1 and v, respectively. The first
path of Ŝ starts at w1 and follows P v

1 until v. The second path of Ŝ starts at
w1, follows P̂u

1 until w2, and then follows P v
2 until v. By the choice of w1 and w2

76 J. Araújo et al.

Fig. 5. Illustration of the two cases in the proof of Lemma 2.

and since |B| ≥ � − 1, it follows that Ŝ is indeed a good spindle. On the other
hand, by construction |V (Ŝ)| ≤ |V (S)| − |V (P̂u

2)| < |V (S)|, contradicting again
the choice of S. �

Wrapping up the algorithm. We finally have all the ingredients to describe
our algorithm, which proceeds as follows. First, for every triple of vertices
u, u1, u2 ∈ V (G) and positive integers �1, �2, q with �1, �2 ≤ � and q ≤
2� − (�1 + �2), we compute, as explained in the full version, a q-representative
family Ŝ�1,�2,q

u,u1,u2
⊆q

rep S�1,�2
u,u1,u2

of size 2O(�) in time 2O(�) · nO(1). Then the algo-
rithm checks, for each u, u1, u2, v ∈ V (G), integers �1, �2, q with min{�1, �2} ≥ 1,
�1 + �2 = �, and q ≤ � − 1, and set S ∈ Ŝ�1,�2,q

u,u1,u2
, whether G contains a

(u1, v)-path P v
1 and a (u2, v)-path P v

2 such that V (P v
1) ∩ V (P v

2) = {v} and
S ∩ (V (P v

1) ∪ V (P v
2)) = {u1, u2}. Note that the latter check can be easily per-

formed in polynomial time by a flow algorithm [3]. The correctness of the algo-
rithm follows directly from Lemmas 1 and 2, and its running time is 2O(�) ·nO(1),
as claimed. In order to keep the exposition as simple as possible, we did not
focus on optimizing either the constants involved in the algorithm or the degree
of the polynomial factor. Explicit small constants can be derived by following
the details in [10], or alternatively in [21].

3.2 Finding 2-Spindles with Two Specified Lengths

We now turn to the problem of finding 2-spindles with two specified lengths.
Namely, given a digraph G and two integers �1, �2 with �2 ≥ �1 ≥ 1, our objec-
tive is to decide whether G contains a subdivision of an (�1, �2)-spindle in time
2O(�2) ·nO(�1). Note that this problem differs from the one considered in Sect. 3.1,
as now we specify both lengths of the desired spindle, instead of just its total
size. Our approach is similar to the one presented in Sect. 3.1, although some
more technical ingredients are needed, and we need to look at the problem from
a slightly different point of view.

In this section, we say that a subdigraph S of G is a good spindle if it is a
subdivision of an (�1, �2)-spindle. We may again assume that max{�1, �2} ≥ 2.

Finding Internally Vertex-Disjoint Long Directed Paths 77

The following lemma plays a similar role as Lemma 1, but now we will exploit
the fact that our algorithm can afford to guess the first �1 vertices in the “short”
path. Its proof is also easy to verify. See Fig. 6 for an illustration.

Lemma 3. A digraph G has a good spindle if and only if there exist vertices
u, u′, v, a (u, v)-path P1 of length at least �1, a (u, u′)-path Pu

2 on �2 vertices,
and a (u′, v)-path P v

2 such that V (P1) ∩ V (Pu
2) = {u}, V (P1) ∩ V (P v

2) = {v},
and V (Pu

2) ∩ V (P v
2) = {u′}.

Fig. 6. Illustration of the vertices and paths described in Lemma 3.

The main difference with respect to Sect. 3.1 is that now we will only represent
the candidates for the first �2 vertices of the “long” path, denoted by V (Pu

2) in
Lemma 3. To this end, we define, similarly to [10], the following set for every
pair of vertices u, u′ ∈ V (G) and positive integer �2:

P�2
u,u′ =

{
X : S ⊆ V (G), |X| = �2, and G[X] contains a (u, u′)-path on �2 vertices

}
.

The above sets are exactly the same as those defined by Fomin et al. [10] to
solve the Long Directed Cycle problem. Therefore, we can just apply [10,
Lemma 5.2] and compute, for every pair of vertices u, u′ ∈ V (G) and positive
integers �2, q with q ≤ �1 + �2 ≤ 2�2, a q-representative family P̂�2,q

u,u′ ⊆q
rep P�2

u,u′

of size 2O(�2) in time 2O(�2) · nO(1).
Now we would like to state the equivalent of Lemma 2 adapted to the new

representative families. However, it turns out that the families P̂�2,q
u,u′ do not yet

suffice in order to find the desired spindle. To circumvent this cul-de-sac, we use
the following trick: we first try to find “short” spindles using the color-coding
technique of Alon et al. [1], and if we do not succeed, we can guarantee that all
good spindles have at least one “long” path. In this situation, we can prove that
the families P̂�2,q

u,u′ are indeed enough to find a good spindle. More precisely, a
good spindle S is said to be short if both its paths have at most 2�2 vertices,
and it is said to be long otherwise. Note that the following lemma only applies
to digraphs without good short spindles.

Lemma 4 (�). Let G be a digraph containing no good short spindles. If G con-
tains a good long spindle, then there exist vertices u, u′, v, a (u, v)-path P1 of
length at least �1, a (u, u′)-path P̂u

2 on �2 vertices such that V (P̂u
2) ∈ P̂�2,q

u,u′

with q = �1 + �2 − 1, and a (u′, v)-path P v
2 such that V (P1) ∩ V (P̂u

2) = {u},
V (P1) ∩ V (P v

2) = {v}, and V (P̂u
2) ∩ V (P v

2) = {u′}.

78 J. Araújo et al.

Wrapping up the algorithm. We start by trying to find good small spindles.
Namely, for every pair of integers �′

1, �
′
2 with �1 ≤ �′

1 ≤ 2�2 and �2 ≤ �′
2 ≤ 2�2,

we test whether G contains an (�′
1, �

′
2)-spindle as a subgraph, by using the color-

coding technique of Alon et al. [1]. Since the treewidth of an undirected spindle
is two, this procedure takes time 2O(�2) · nO(1).

If we succeed, the algorithm stops. Otherwise, we can guarantee that G does
not contain any good short spindle, and therefore we are in position to apply
Lemma 4. Before this, we first compute, for every pair of vertices u, u′ ∈ V (G)
and positive integers �2, q with q ≤ �1 + �2 ≤ 2�2, a q-representative family
P̂�2,q

u,u′ ⊆q
rep P�2

u,u′ of size 2O(�2) in time 2O(�2) · nO(1), using [10, Lemma 5.2].
Now, for each path P̂u

2 such that V (P̂u
2) ∈ P̂�2,q

u,u′ , with q = �1 + �2 − 1, we
proceed as follows. By Lemmas 3 and 4, it is enough to guess a vertex v ∈ V (G)
and check whether G contains a (u, v)-path P1 of length at least �1, and a
(u′, v)-path P v

2 such that V (P1) ∩ V (P̂u
2) = {u}, V (P1) ∩ V (P v

2) = {v}, and
V (P̂u

2) ∩ V (P v
2) = {u′}. In order to do so, we apply brute force and we guess

the first �1 vertices of P1 in time nO(�1). Let these vertices be u, u2, . . . , u�1 . All
that remains is to test whether the graph G \ {u2, . . . , u�1−1} \ (V (P̂u

2) \ {u′})
contains two internally vertex-disjoint paths from u�1 and u′ to u, which can be
done in polynomial time by using a flow algorithm [3]. The correctness of the
algorithm follows by the above discussion, and its running time is 2O(�2) ·nO(�1),
as claimed. Again, we did not focus on optimizing the constants involved in the
algorithm.

4 Conclusions

We studied the complexity of several problems consisting in finding subdivisions
of spindles on digraphs. For a general spindle F , we do not know if finding a
subdivision of F is FPT on general digraphs parameterized by |V (F)|, although
we believe that it is indeed the case. As a partial result, one could try to prove
that, for a fixed value of � ≥ 4, finding a subdivision of a (k × �)-spindle is FPT
parameterized by k (the problem is NP-hard by Theorem 1).

The above question is open even if the input digraph is acyclic (note that
Theorem 4 does not answer this question), or even if F is a 2-spindle. Concerning
2-spindles, one may try use the technique we used to prove Theorems 2 and 3,
based on representative families in matroids. However, the technique does not
seem to be easily applicable when the parameter is the total size of a prescribed
2-spindle. Namely, using the terminology from Sect. 3.2, the bottleneck is to
find spindles that have one “short” and one “long” path. On the other hand,
generalizing this technique to spindles with more than two paths seems pretty
complicated.

Finally, it may be possible that the trick used by Zehavi [22] to avoid the use
of representative families to solve Long Directed Cycle can be adapted to
our setting as well.

Finding Internally Vertex-Disjoint Long Directed Paths 79

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Araújo, J., Campos, V.A., Maia, A.K., Sau, I., Silva, A.: On the complexity of

finding internally vertex-disjoint long directed paths. CoRR, abs/1706.09066 (2017)
3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd

edn. Springer, London (2008). https://doi.org/10.1007/978-1-84800-998-1
4. Bang-Jensen, J., Havet, F., Maia, A.K.: Finding a subdivision of a digraph. The-

oret. Comput. Sci. 562, 283–303 (2015)
5. Benhocine, A., Wojda, A.P.: On the existence of specified cycles in a tournament.

J. Graph Theory 7(4), 469–473 (1983)
6. Brewster, R.C., Hell, P., Pantel, S.H., Rizzi, R., Yeo, A.: Packing paths in digraphs.

J. Graph Theory 44(2), 81–94 (2003)
7. Cohen, N., Havet, F., Lochet, W., Nisse, N.: Subdivisions of oriented cycles in

digraphs with large chromatic number. CoRR, abs/1605.07762 (2016)
8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,

Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3

10. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of
representative families with applications in parameterized and exact algorithms. J.
ACM 63(4), 29:1–29:60 (2016)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York (1979)

12. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium
on Theory of Computing (STOC), pp. 479–488 (2011)

13. Havet, F., Maia, A.K., Mohar, B.: Finding a subdivision of a prescribed digraph
of order 4. J. Graph Theory (to appear). https://doi.org/10.1002/jgt.22174

14. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths
with length constraints. Networks 12(3), 277–286 (1982)

15. Kim, R., Kim, S.-J., Ma, J., Park, B.: Cycles with two blocks in k-chromatic
digraphs. CoRR, abs/1610.05839 (2016)

16. Kriesell, M.: Disjoint A-paths in digraphs. J. Comb. Theory Ser. B 95(1), 168–172
(2005)

17. Metzlar, A.: Disjoint paths in acyclic digraphs. J. Comb. Theory Ser. B 57(2),
228–238 (1993)

18. Monien, B.: How to find long paths efficiently. Ann. Discret. Math. 25, 239–254
(1985)

19. Schrijver, A.: A short proof of Mader’s S-paths theorem. J. Comb. Theory Ser. B
82(2), 319–321 (2001)

20. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
21. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based app-

roach. J. Comput. Syst. Sci. 82(3), 488–502 (2016)
22. Zehavi, M.: A randomized algorithm for long directed cycle. Inf. Process. Lett.

116(6), 419–422 (2016)

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1002/jgt.22174

Algorithms and Hardness Results
for Nearest Neighbor Problems

in Bicolored Point Sets

Sandip Banerjee1, Sujoy Bhore2(B), and Rajesh Chitnis3

1 Indian Statistical Institute, Kolkata, India
sandip.ndp@gmail.com

2 Ben-Gurion University of the Negev, Beersheba, Israel
sujoy.bhore@gmail.com

3 Department of Computer Science, University of Warwick, Coventry, UK
rajeshchitnis@gmail.com

Abstract. In the context of computational supervised learning, the pri-
mary objective is the classification of data. Especially, the goal is to pro-
vide the system with “training” data and design a method which uses
the training data to classify new objects with the correct label. A stan-
dard scenario is that the examples are points from a metric space, and
“nearby” points should have “similar” labels. In practice, it is desirable
to reduce the size of the training set without compromising too much on
the ability to correctly label new objects. Such subsets of the training
data are called as edited sets. Wilfong [SOCG ’91] defined two types of
edited subsets: consistent subsets (those which correctly label all objects
from the training data) and selective subsets (those which correctly label
all new objects the same way as the original training data). This leads
to the following two optimization problems:

– k-MCS-(X): Given k sets of points P1, P2, . . . , Pk in a metric space

X , the goal is to choose subsets of points P ′
i ⊆ Pi for i = 1, 2, . . . , k

such that ∀ p ∈ Pi its nearest neighbor among
⋃k

j=1 P ′
j lies in P ′

i

for each i ∈ [k] while minimizing (Note that we also enforce the
condition |P ′

i | ≥ 1 ∀ i ∈ [k].) the quantity
∑k

i=1 |P ′
i |.

– k-MSS-(X): Given k sets of points P1, P2, . . . , Pk in a metric space

X , the goal is to choose subsets of points P ′
i ⊆ Pi for i = 1, 2, . . . , k

such that ∀ p ∈ Pi its nearest neighbor among
(⋃k

j=1,j �=i Pj

)
∪ P ′

i

lies in P ′
i for each i ∈ [k] while minimizing (Note that we again

enforce the condition |P ′
i | ≥ 1 ∀ i ∈ [k].) the quantity

∑k
i=1 |P ′

i |.
While there have been several heuristics proposed for these two prob-
lems in the computer vision and machine learning community, the only
theoretical results for these problems (to the best of our knowledge)
are due to Wilfong [SOCG ’91] who showed that both 3-MCS-(R2) and

S. Bhore—Supported by the Lynn and William Frankel Center for Computer Science.
R. Chitnis—Supported by ERC grant CoG 647557 “Small Summaries for Big Data”.
Part of this work was done when the author was at the Weizmann Institute of Science
and supported by Israel Science Foundation grant #897/13.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 80–93, 2018.
https://doi.org/10.1007/978-3-319-77404-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_7&domain=pdf

Algorithms and Hardness Results for Nearest Neighbor Problems 81

2-MSS-(R2) are NP-complete. We initiate the study of these two prob-
lems from a theoretical perspective, and obtain several algorithmic and
hardness results.

On the algorithmic side, we first design an O(n2) time exact algo-
rithm and O(n log n) time 2-approximation for the 2-MCS-(R) problem,
i.e., the points are located on the real line. Moreover, we show that the
exact algorithm also extends to the case when the points are located
on the circumference of a circle. Next, we design an O(r2) time online
algorithm for the 2-MCS-(R) problem such that r < n, where n is the
set of points and r is an integer. Finally, we give a PTAS for the k-MSS-
(R2) problem. On the hardness side, we show that both the 2-MCS and
2-MSS problems are NP-complete on graphs. Additionally, the problems
are W[2]-hard parameterized by the size k of the solution. For points on
the Euclidean plane, we show that the 2-MSS problem is contained in
W[1]. Finally, we show a lower bound of Ω(

√
n) bits for the storage of any

(randomized) algorithm which solves both 2-MCS-(R) and 2-MSS-(R).

1 Introduction

Pattern recognition is the science of making inferences from perceptual data,
using tools from statistics, probability, computational geometry, machine learn-
ing, signal processing and algorithm design. Pattern recognition has many
applications in speech, handwriting, object and character recognition in vision
research [4,6]. Classifying a new object according to the nearest neighbor rule is
one of the important problems in pattern recognition. There are two classifica-
tion methods in pattern recognition: supervised and unsupervised classification.
The idea behind supervised learning is to present the system with sufficient
training data, i.e., examples of objects with the correct labels. More specifically,
a training set is a set of colored points called examples and the goal is to cor-
rectly color the query point using the training set. The principal aim then is to
design a classifying method for the system to use this training to determine the
label of new objects presented to it. This has many applications in speech, hand-
writing, object and character recognition in vision research [4,6]. There are two
main issues in formalizing a classifying method which decides the labels for new
examples are choice of representation of the examples, and more importantly
the rule for deciding the likely label of a given example. A standard choice for
representation of an example is by a point in k-dimensional Euclidean space
(or more generally, any metric space). Another reasonable assumption is that
objects which are “near” to each other should have same labels. This led to the
Nearest Neighbor Decision Rule (NN): simply assign each new object the same
label as the object in the training data that is nearest to it. The issue with the
NN rule is that one needs to have a large number of samples in the training data
to keep the error probability low. Not only does this lead to storage issues, but
also the time required to find the nearest neighbor in the training data also turns
out to be expensive. Hence, it is a natural goal to try to reduce the size of the
training set, but at the same time try to not compromise too much on the ability

82 S. Banerjee et al.

to correctly label new objects. These subsets of the training sets are called as
edited sets by Wilfong [3]. A first step in this direction is to compute a small
edited set which correctly labels all the examples from the original training set!
Formally, this leads to the following problem:

k-MCS(X)
Input : k sets of points P1, P2, . . . , Pk in a metric space X
Output : Choose subsets of points P ′

i ⊆ Pi for i = 1, 2, . . . , k such that

– For any point p ∈ Pi its nearest neighbor among
⋃k

j=1 P ′
j lies in P ′

i for
each i ∈ [k].

–
∑k

i=1 |P ′
i | is minimized.

– |P ′
i | > 0 for each i ∈ [k].

The set
⋃k

i=1 P ′
i is called as a minimum consistent subset (mcs). One way to

view this problem is to imagine Pi \ P ′
i as the clients, and the points in P ′

i as
the facility stations of type i, for all i = 1, 2, . . . , k. A client always gets service
from its nearest facility station. The objective is to choose facility stations such
that a client of type i gets service from a facility station of type i. When the
domain X is a graph (and distances are shortest paths in the graph) then we
call the problem simply as k-MCS. The first heuristic for computing a mcs was
designed by Hart [5] in 1968 and was called as Condensed Nearest Neighbor
Rule (CNN). Although CNN had a worst case running time of O(n3) where n
is the total number of objects, there was no guarantee on the optimality of the
size of the consistent subset found. After this, there were several attempts at
developing heuristics, but they either did not guarantee optimality [7] or had
exponential running time [12]. Finally Wilfong [3] showed that the 3-MCS(R2)
is NP-complete. The proof is based on the NP completeness proof of the DISC-
COVER problem [8]. A stronger1 requirement is when we want a small edited
subset which labels all new objects the same way as the original training set.
Formally, this leads to the following problem:

k-MSS(X)
Input : k sets of points P1, P2, . . . , Pk in X
Output : Choose subsets of points P ′

i ⊆ Pi for i = 1, 2, . . . , k such that

– For any point p ∈ Pi its nearest neighbor among (
⋃k

j=1,j �=i Pj) ∪ P ′
i lies

in P ′
i for each i ∈ [k].

–
∑k

i=1 |P ′
i | is minimized.

– |P ′
i | > 0 for each i ∈ [k].

Wilfong [3] showed that 2-MSS(R2) is NP-complete. To the best of our knowl-
edge, this is the only known theoretical result about this problem. The 2-colored
(bichromatic) input has appeared in many geometric problems [13,14].

1 Note that for MCS we only want to be correct on the training set.

Algorithms and Hardness Results for Nearest Neighbor Problems 83

Results and Organization: In this paper, we reinitiate the study of the
k-MCS-(X)and k-MSS-(X) problems from a theoretical perspective. Our goal
is to study the tractability landscape of these problems with respect to vari-
ous paradigms such as polynomial time algorithms, NP-hardness, parameter-
ized complexity and streaming algorithms. We were able to find tractable spe-
cial cases of these problems, and also determine in some scenarios in which
these problems provably intractable. Mostly, we focus on the case when the
points only have two labels/colors, i.e., k = 2. We now state our results below
formally.

On the algorithmic side, in Sect. 2.1, we design an O(n2) exact algorithm
for the 2-MCS-(R), i.e., the points are located on the real line. Next we show
that this algorithm also extends to the case when the points are located on the
circumference of a circle. Further, we construct a O(r2) time online algorithm
for the MCS problem for points on a real line such that r < n, where n is the set
of points and r is an integer. Finally, in Sect. 2.2, we give a PTAS for the MSS
problem by adopting the hitting set algorithm from [10].

On the hardness side, we prove in Sect. 3.1 that both the MCS and MSS
problems are NP-complete on graphs. Additionally, the problems are W[2]-hard
parameterized by the size k of the solution, and under the ETH the brute force
nO(k) algorithm is optimal since there is no f(k) · no(k) algorithm for any func-
tion f . Moreover, we show that for points on the Euclidean plane 2-MSS problem
(namely 2-MSS-(R2)) is contained in W[1]. Finally, we show a lower bound of
Ω(

√
n) bits for the storage of any (randomized) algorithm which solves both

2-MCS-(R) and 2-MSS-(R).

2 Algorithmic Results

2.1 Polynomial Time Algorithms for MCS Problem on the Real
Line

Let P = R ∪ B be a set of points on a real line L, where the points in the set
R (resp. B) are colored red (resp. blue). A point α ∈ P is called dominating on
a point β ∈ P if α is the nearest neighbor of β. The objective is to compute a
consistent subset {R′ ∪ B′} ⊆ {R ∪ B}, where R′ ⊆ R and B′ ⊆ B, such that
each point in R (resp. B) is dominated by a point from R′ (resp. B′). Here we
address the minimum consistent subset (shortly mcs) problem where the goal is
to minimize the cardinality of such consistent set.

We denote a consecutive sequence of monochromatic points as blocks. Hence
a set of bichromatic points on a real line induces to a sequence of blocks of
alternating colors. Let D1, . . . , Dm are the blocks listed by visiting the points of
P = R ∪ B from left to right. Let S = R′ ∪ B′ be a feasible mcs. A block Di

is called self-dominating with respect to a point set Pi ⊆ S if the point set Pi

belongs to th block Di and for any point qi ∈ Di \Pi is dominated by one of the
points in the set Pi.

84 S. Banerjee et al.

Lemma 1. Given a set P = R ∪ B of bi-colored points on a real line, in any
feasible mcs of S, every monochromatic block is self-dominating.

Proof. For the sake of contradiction, suppose there exists a monochromatic block
Di that does not contain any point p which is part of the feasible solution
that dominates every other point of Di. This implies that the points in Di

are dominated by a point in Di−1 ∪ Di+1 whereas the color of the points in
Di−1 ∪ Di+1 are different from the color of the points in Di implying S is not a
feasible MCS of P = R ∪ B. Thereby we conclude the proof. ��
Lemma 2. In any feasible mcs, for each block Di at most 2 dominators suffice
and specifically for the left-most and right-most block only 1 dominator suffices.

Proof. The first part follows from the fact that if we choose only the left-most
and right-most element in each block, then all other elements in that block will
be dominated by those two elements.

The second part is also obvious since only the rightmost element in the first
block suffices irrespective of the position of the left-dominator in the second
block. Similar argument is also applicable for the last block. ��

From Lemmas 1 and 2, we have the following theorem.

Theorem 1. There exists O(n log n) time, 2-approximation algorithm for the
mcs problem for a set of bi-colored points on a real line.

Proof. Sort the input point set P to form the blocks. By Lemma 1, the lower
bound on the size of the MCS is χ, where χ is the number of blocks created with
the points in P . Our algorithm chooses the elements in S as follows: For a block
Di, (i) if |Di| = 1, then include the only point of Di in S, and (ii) if |Di| > 1,
then include the left-most and the right-most points of Di on the line L in S.
Thus, we have |S| ≤ 2χ. ��

ExactO(n2) time algorithm using dynamic programming: Let us assume
that the points in P are given in an array A = {p1, p2, . . . , pn} in sorted order.
Let D1, . . . , Dm are the blocks listed by visiting the points from left to right.
Consider any two consecutive blocks Di and Di+1 and a pair of points a ∈ Di

and b ∈ Di+1 of different colors. We denote (a, b) as a valid pair if no point
in Di+1 is dominated by a, and no point in Di is dominated by b. Formally,
Vi = {(a, b) | a ∈ Di, b ∈ Di+1, (a, b) is a valid pair}. Recall that, every block has
at most two dominators, we shall refer them as the left and the right dominators.
If a block has a single dominator, we shall refer it as right dominator of the block.
We solve the problem using a dynamic programming (DP) technique. The idea
is we fix a dominator in the rightmost block Dm (Ref. Lemma 2), and solve the
subproblem involving blocks D1, ...,Dm−1.

Let A[a, k] be the optimum solution for the consecutive blocks D1, . . . , Da

provided pk ∈ Da is the right dominator of Da. Given the blocks D1, . . . , Dm,

Algorithms and Hardness Results for Nearest Neighbor Problems 85

the optimum solution is OPT = min
k|(k,l)∈Vm−1

A[m − 1, k] + 1, since Dm has only

one dominator (Ref. Lemma 2).
While computing A[m − 1, k] (where pk ∈ Dm−1), we distinguish between

the following cases based on the fact that Dm−1 either has 1 or 2 dominators.

– If Dm−1 has only 1 dominator, then A[m − 1, k] = U ,
where U = min

i∈Dm−1
{(A[m − 2, i] + 1)|(i, k) ∈ Vm−2}.

– If Dm−1 has 2 dominators then A[m − 1, k] = V ,
where V = min

i∈Dm−2, j∈Dm−1
{(A[m − 2, i] + 2)|j < k & (i, j) ∈ Vm−2}.

– Hence A[m − 1, k] = min(U, V).

In general, we can write A[α, k] = 1 if α = 1; else, A[α, k] = min(U, V), where

– U = min
i∈Dα−1

{(A[α − 1, i] + 1)|(i, k) ∈ Vα−1}, if Dα has only one dominator

– V = min
i∈Dα−1,j∈Dα

{(A[α − 1, i] + 2)| j < k & (i, j) ∈ Vα−1}, if Dα has two

dominators.

We maintain a DP table of size O(n). Each entry DP [k] of this table corresponds
to a point pk that lies in the block Dα, and it indicates A[α, k]. During the
execution while using A[a, k], we first check D[k] for a non-zero entry. If it is
not available, the recursive procedure for computing A[α, k] is invoked, and on
return the computed value of A[α, k] is stored in D[k]. Disregarding the recursive
call, computation of each A[α, k] involves computing mini∈Dα−1 A[α − 1, i] such
that there exists at least one j ∈ Dα where (i, j) ∈ Vα−1. This needs inspecting
A[α − 1, i] for at most O(Dα−1) entries in the table DP . If we consider all
possible {(i, j)|i ∈ Dα−1, j ∈ Dα}, we may require to spend O(|Dα| × |Dα−1|)
time. In order to avoid that, we use the two pointers L and H (see Fig. 1) to
mark the relevant entries in Dα−1 that require to be considered for computing
A[α, k], and then in a sequential scan among the entries in Dα−1 we consider
the A[α − 1, i] values for the marked elements to compute their minimum.

– Fix L at the right-most element of Dα−1. Let � be the left-most element of
Dα and r be the right-most element of Dα−1.

– We start by setting j = � (as the left dominator in Dα). We set (i) L = r
and (ii) H by the left-most element in Dα−1 such that d(r, j) ≥ d(r,H). All
the elements in Dα−1 lying between L and H are marked as the possible
dominators when pj is a dominator in Dα.

– In each subsequent step, we set j = j + 1. Let β be the leftmost element in
Dα−1 such that d(r, j) ≥ d(r, β) (β is observed by inspecting every element
of Dα starting from L). If β < H, then L is set to H; otherwise L is set to
β. Next, H is updated as the leftmost element in Dα−1 such that d(r, j) ≥
d(r,H) (H is also observed by inspecting every element of Dα starting from
the value of H before its updating).

– Process continues until J = k is reached.

86 S. Banerjee et al.

Fig. 1. Illustrating the pointers L and R used in the DP table.

From the above discussion, we have the following theorem:

Theorem 2. Given a set P = R ∪ B of bi-colored points on a real line, the mcs

of the point set P can be computed in O(n2)-time using O(n) space.

Proof. Follows from the fact that, (i) each element of DP table is filled only once,
(ii) while using A[α, k], if it is observed to be zero, it can be set by observing
A[α−1, i] for at most |Dα−1| marked elements of DP table, and (ii) for marking
the necessary elements for all possible elements j of Dα, both L and R visits
at most |Dα−1| elements of the array A. The space complexity follows from the
fact that the size of the DP table is O(n). ��

Recall that, earlier in Lemma 1 we have proved that each monochromatic
block is self-dominating in any feasible solution. Hence for k-colored points
on a real line, we conclude that the exact and the appoximation algorithm is
extendable.

Corollary 1. Given k colored points on a real line

– There exists and O(n log n)-time 2-factor approximation algorithm for k-
MCS-R.

– There exists an O(n2)-time using O(n)-space algorithm for k-MCS-R.

2-MCS Problem on a Circle: We begin with the following observation.

Observation 1. Let P = R ∪ B be a set of points on the circumference of a
circle C, where the points in the set R (resp. B) are colored red (resp. blue).
In the nearest neighbor Voronoi diagram of P , the Voronoi edges merge at the
center of C.

Based on Observation 1, we know that for any three consecutive monochro-
matic blocks (Di−1,Di,Di+1), in the nearest neighbor Voronoi diagram of P ,
no point from Di shares boundary with the points from other blocks except
Di−1/Di+1. This gives us an ordering (clockwise/counterclockwise) of the blocks.
Thereby by using the algorithm of Sect. 2.1, we conclude the following theorem.

Theorem 3. Let P = R ∪ B be a set of points on the circumference of a circle
C, where the points in the set R (resp. B) are colored red (resp. blue). The mcs

of P can be computed in O(n2)-time using O(n)-space.

Online algorithm for 2-MCS-(R): Here, we consider the online version of
the 2-mcs problem where the points are inserted in sequential order on a real
line L. Let us consider P = R ∪ B be the initial set of bicolored points on L.

Algorithms and Hardness Results for Nearest Neighbor Problems 87

Note that, initially P can be empty. However, in that case for the first point we
are not required to compute anything as the point itself is the solution. Now let
Q be set of bicolored points that are going to be introduced sequentially. We
denote Q� ⊆ Q as the set of points that are already inserted until level � (i.e.,
�-th iteration). Let P ′ be the mcs of P that is computed optimally by using the
algorithm in Sect. 2.1. Clearly, at the level � the optimal mcs can be computed
in (|P ∪ Q�|)2 time. Moreover, we show that at any level, it is unnecessary
to consider all points. Let D1, . . . , Dm are the monochromatic blocks listed by
visiting the points of (P ∪ Q�) from left to right. At level � + 1, when a new
point is introduced it can affect at most three blocks. For detailed description;
see Fig. 2. Thereby we conclude the following theorem.

Fig. 2. Illustration of the Cases while a point p is inserted. (Color figure online)

Theorem 4. [�]2 Given a set P of bi-colored points on a real line L with its
mcs P ′ ⊆ P , and let Q be the set of new bi-colored points that are introduced
sequentially. In each level, our algorithm recomputes the mcs in O(r2) time,
where r is the max of sum of lengths of any three consecutive blocks.

2.2 PTAS for k-MSS(R2):

Here, we give a PTAS for the k-MSS(R2) by adopting the PTAS for the Minimum
Hitting Set (MHS) problem for a set of disks given by Mustafa et al. [10].

Minimum Hitting Set in R
2 (MHS-R2)

Input : A set P of n points and a set C of m circular disks in R
2

Task : Compute the smallest subset Y ⊆ P such that each C ∈ C contains
some point from P .

Theorem 5. [10] MHS-R2 has a PTAS which runs in time m · nO(ε−2)

2 We omit the proofs of results marked with [�] here due to space considerations. The
proofs will be included in the longer version.

88 S. Banerjee et al.

Consider any two points p, q, let Cp(q) denote the disk centered at p and
whose radius is the distance d(p, q) between p and q. The next lemma shows
that for any mss the set P ′

i is a hitting set for a particular set of disks.

Lemma 3. Let H be a mss for the point set P1 ∪P2 ∪ . . .∪Pk. Let Hi = H ∩Pi.
Then Hi is a hitting set for the instance of MHS-R2 whose point set is Pi and
set of disks is given by {Cp(q) : p ∈ Pi, q /∈ Pi}.
Proof. For the sake of contradiction, assume there is some p ∈ Pi and q /∈ Pi

such that Cp(q) contains no point of Hi that implies the nearest neighbor

of p in
(⋃k

j=1,j �=i Pj

)
∪ Hi is not from Hi. This contradicts the definition

of a mss. ��

Algorithm 1. PTAS for k-MSS(R2)
Input : k sets P1, P2, . . . , Pk of points in R

2

for each 1 ≤ i ≤ k do
Use Theorem 5 to obtain an (1 + ε)-approximation, say H ′

i, for the instance
of MHS-R2 where the point set is Pi and the set of disks is given by
Ci = {Cp(q) : p ∈ Pi, q /∈ Pi}

Output:
⋃k

i=1 H ′
i

Now by using Lemma 3 we give the PTAS for k-MSS(R2) and conclude this
section with the following theorem.

Theorem 6. Algorithm1 runs in time nO(ε−2) and gives a (1+ε)-approximation
for k-MSS(R2).

Proof. First we analyze the running time. For each i ∈ [k], we run the PTAS
of Mustafa and Ray [10] on an instance with |Pi| ≤ n points and the number
of disks is |Ci| = |Pi| · |⋃k

j=1,j �=i | ≤ n2. Hence, the total running time is k ·
|Ci| · |Pi|O(ε−2) ≤ n · n2 · nO(ε−2) = nO(ε−2). Let H be an optimal mss for the k-
MSS(R2) instance. By Lemma 3, for each i ∈ [k] we know that H ∩Pi is a hitting
set for the instance of MHS-R2 whose point set is Pi and set of disks is given
by {Cp(q) : p ∈ Pi, q /∈ Pi}. By Theorem 5, for each i ∈ [k], the set H ′

i gives a
(1+ε)-approximation for H ∩Pi, i.e., |H ′

i| ≤ (1+ε) · |H ∩Pi|. Therefore, we have
that |⋃k

i=1 H ′
i| =

∑k
i=1 |H ′

i| ≤ ∑k
i=1(1 + ε) · |H ∩ Pi| = (1 + ε) · ∑k

i=1 |H ∩ Pi| =
(1 + ε) · |H|.

3 Hardness Results

3.1 NP-Hardness for MCS and MSS in Graphs

Consider a graph G = (V,E) where V = VR ∪ VB . The vertices vi ∈ VR are
colored red and vj ∈ VB are colored blue. The edge length between two adjacent

Algorithms and Hardness Results for Nearest Neighbor Problems 89

vertices (vi, vj) = 1 for all vi, vj ∈ V . The distance is measured across the edges
of the graph; precisely the distance between two vertices vi and vj in the graph
G is the length of the shortest path from vi to vj in the graph. Our task is
to find a subset of vertices V ′

R ⊆ VR and V ′
B ⊆ VB (where V ′

R and V ′
B acts as

the facility sets of red and blue vertices respectively) such that for any vertex
vr ∈ VR \ V ′

R, the nearest neighbor of vr among the point set V ′
R ∪ V ′

B is a point
v′

r ∈ V ′
R i.e. N(vr, V

′
R ∪ V ′

B) = v′
r ∈ V ′

R. Similarly for any point vb ∈ VB \ V ′
B,

N(vb, V
′
R ∪V ′

B) = v′
b, v′

b ∈ V ′
B. Our objective is to minimize |V ′

R ∪V ′
B |. As defined

earlier when the domain X is a graph then we call the problems simply as k-MCS
and k-MSS.

We will show here that k-MCS and k-MSS are NP-hard.
Our reduction is from dominating set problem on a graph G = (V,E). From

G, we construct another graph G′ = G1 ∪ G2 ∪ vsp where G1 and G2 are the
copies of G and vsp is a singleton node; see Fig. 3. Each edge of G1 and G2

has weight 1. Every vertices of G1 are directly connected by edges with all the
vertices of G2 with weights of edge 2 − 3ε. Additionally, all vertices of G2 are
directly connected by edges of weight ε to vsp. All the vertices of G1 are colored
red and all the vertices of G2 are colored blue and vsp is also colored blue. This
completes the construction.

Fig. 3. The edges of graph G are not shown to keep it clear. Proof of Theorem 7 (Color
figure online)

We now have the following lemma.

Lemma 4. [�] G has a dominating set of size k if and only if G′ has a consistent
subset of size k + 1.

Further note that 2-MCS is W[2]-hard parameterized by the size k of the
MCS we are looking for since Dominating Set is W[2]-hard parameterized by
the size of the solution, and the parameter blowup in the reduction above is
linear. Hence, the f(k) · no(k) lower-bound for Dominating Set under ETH [1,
Theorem 5.3] also translates to 2-MCS. This shows that the brute force algorithm
which runs in time

(
n
k

) · nO(1) = nO(k) is essentially optimal. From the above
discussion, we conclude the following theorem.

90 S. Banerjee et al.

Theorem 7. 2-MCS on graph is NP-hard. Moreover, 2-MCS on graph is W[2]-
hard parameterized by the size k of the MCS we are looking for, and under ETH
there is no f(k) ·no(k) algorithm for checking if the given instance of 2-MCS has
the solution size ≤ k.

In fact, the same proof shows that 2-MSS is also NP-hard. If we pick a
dominating set from the red vertices, then each red vertex is at a distance of ≤1
from a red facility. Two blue vertices are at a distance of at most 2ε from each
other, while the distance between any blue vertex and any red vertex is at least
2− 3ε. Hence, the consistent subsets chosen above are actually selective subsets.
This implies the following result:

Corollary 2. 2-MSS is NP-hard.

3.2 2-MSS-R2 is Contained in W[1]

In this section, we consider the mss problem when the points are on R
2. We

show that 2-MSS-R2 is contained in W[1]. The proof is by providing a non-
deterministic algorithm that has an FPT time with deterministic preprocessing,
then a nondeterministic phase where the number of steps is only dependent on
the parameter. We will use the following result.

Theorem 8. [11] A parameterized problem is in W[1] if and only if it can be
computed by a nondeterministic RAM program accepting the input that

1. performs at most f(k)p(n) deterministic steps;
2. uses at most f(k)p(n) registers;
3. contains numbers smaller than f(k)p(n) in any register at any time;
4. for any run on any input, the nondeterministic steps are among the last g(k)

steps.

Here n is the size of the input, k is the parameter, p is a polynomial and f , g are
computable functions. The non-deterministic instruction is defined as guessing
a natural number between 0 and the value stored in the first register, and storing
it in the first register. Acceptance of an input is defined as having a computation
path that accepts.

Theorem 9. 2-MSS-R2 is contained in W [1].

Proof. Let P = R ∪ B be the set of points. For each blue point bi ∈ B, we
compute all possible distances to each red point ri ∈ R and store in an array
ARB . Similarly, we do for each red point. We will discuss for one color class here,
the other follows similarly. Note that |ARB | ≤ n2. For each value di ∈ ARB , let
Cdi

(B) be the set of disks of radius di centered at the points of B. For each Cdi
(B),

we construct an arrangement of the disks known as vertical decomposition by
projecting (ray shooting) a vertical ray up and down from each of the O(k2)
intersection points between the disks, and also from the left-most and right-
most point of each circle. Each ray is continued until it hits a disk or infinity

Algorithms and Hardness Results for Nearest Neighbor Problems 91

Fig. 4. Arrangement of the disks. Illustrating Theorem 9. (Color figure online)

(See Fig. 4). Note that each face is defined by at most 4 disks. The total number
of vertices, edges and faces is of O(k2) [9].

For each di ∈ ARB , first we compute all possible faces of a vertical decomposi-
tion of any subset B′ ⊆ B of size at most k by looking at all possible combinations
of disks taking 4 at a time from Cdi

(B) (disks of radius di centered at the points
of B). We maintain a look up table in O(n4) time that contains the total number
of input points covered by each faces, The rest of the algorithm deterministically
checks if B′ is 2-MSS. In order to do that, for each di ∈ ARB , we first compute a
vertical decomposition of Cdi

(B′) in O(k2) time. One can retrieve the number of
input points from each of the O(k2) resulting faces of

⋃ Cdi
(B′) from the look up

table in constant time. Finally, we accept if these k points satisfy the conditions
of the 2-MSS which can be deterministically checked from the intersection graph
of the disks centered at the blue points. By Theorem 8 we conclude that 2-MSS
of the input point set P is in W [1]. ��

3.3 Streaming Lower Bounds

In this section, we consider the streaming model: the points arrive in some order,
and we need to either store a point or forget about it. Our goal is to show a lower
bound on the storage of any streaming algorithm that solves the 2-MCS-(R) and
the 2-MSS-(R) problem. We reduce from the Disjointness problem, for which
there is a known lower bound of Ω(n) bits for one-way communication:

Disjointness
Input : Alice has a binary string X ∈ {0, 1}N , and Bob has a binary string
Y ∈ {0, 1}N

Question: Bob wants to check if there exists an index i ∈ [N] such that
Xi = 1 = Yi?

We conclude this section with the following theorem.

Theorem 10. Any (randomized)3 streaming algorithm for either the 2-MCS-
(R) problem or the 2-MSS-(R) problem needs to store at least Ω(

√
n) bits.

3 Succeeding with probability at least 2/3.

92 S. Banerjee et al.

Proof. Alice performs the following action given her string X = X1X2 . . .
Xi . . . XN : for each 1 ≤ i ≤ N

– If Xi = 0 then Alice does not add any points
– If Xi = 1 then Alice adds N + 1 blue points, one at each of the co-ordinates

i + 2�+1
4(N+1) for each 0 ≤ � ≤ N

Bob performs the following action given his string Y = Y1Y2 . . . Yj . . . YN : for
each 1 ≤ j ≤ N

– If Yj = 0 then Bob does not add any points
– If Yj = 1 then Bob adds N + 1 red points, one at each of the co-ordinates

j + 2�
4(N+1) for each 1 ≤ � ≤ N + 1

We now show that Disjointness answers YES if and only if size of the mcs
for the 2-MCS(R) instance is at least N + 1. Fix i ∈ [N]. We have four cases:

– If Xi = 0 = Yi = 0 then we do not add any points
– If Xi = 0 and Yi = 1 then we add a block of N +1 red points. From these set

of red points, it is enough to include at most one of these red points in any
consistent subset

– If Xi = 1 and Yi = 0 then we add a block of N + 1 blue points. From these
set of blue points it is enough to include at most one of these blue facilities
in any consistent subset.

– If Xi = 1 = Yi then we add N +1 blue points and N +1 red points. Moreover,
these points are interleaved. It is easy to see that if there is a blue vertex
interleaved between two red vertices, then this blue vertex has to be part of
every consistent subset. Hence, we need to pick at least N + 1 vertices from
this set of 2N + 2 points.

Hence if Disjointness answers YES then the size of the mcs is ≥ N + 1, and
otherwise the size of the mcs is at most N . There is a lower bound of Ω(n) bits
of communication between Alice and Bob to solve the Disjointness problem,
even allowing randomization4 [2]. Since the number of points we introduced can
be as large as n = O(N2), the lower bound of Ω(N) translates to Ω(

√
n). It is

easy to see that exactly the same reduction also works for 2-MSS(R). ��

4 Conclusions and Open Problems

In 1992, Wilfong [3] introduced the k-MCS-(X) and the k-MSS-(X) problems,
and proved the NP-completeness of 3-MCS-(R2) and 2-MSS-(R2). Since then
several heuristics have been proposed for these problems, as they have several
applications in computer vision and machine learning. In this paper we renewed
the theoretical study of these two problems and obtained several algorithmic and
hardness results through various paradigms such as polytime algorithms, NP-
hardness, parameterized complexity, streaming algorithms, etc. We hope that
4 We require the algorithm to be correct with probability 2/3.

Algorithms and Hardness Results for Nearest Neighbor Problems 93

this work leads to more theoretical analysis of the two problems of k-MCS-(X)
and the k-MSS-(X) in practically relevant scenarios. There are several interesting
questions such as designing approximation or FPT algorithms for k-MCS-(X)
and k-MSS-(X) on graphs or special geometric settings. Finally, we restate the
question of Wilfong [3] about the complexity of 2-MCS-(R2): is it solvable in
polynomial time, or NP-complete?

References

1. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bull. EATCS 105, 41–72 (2011)

2. Kushilevitz, E., Nisan, N.: Communication Compelxity. Cambridge University
Press, Cambridge (1997)

3. Wilfong, G.T.: Nearest neighbor problems. Int. J. Comput. Geom. Appl. 2(4),
383–416 (1992)

4. Levinson, S.E.: Structural methods in automated speech recognition. Proc. IEEE
73(11), 1625–1650 (1985)

5. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3),
515–516 (1968)

6. Tappert, C.C., Suen, C.Y., Wakahara, T.: The state of the art in online handwriting
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12(8), 787–808 (1990)

7. Gates, G.W.: The reduced nearest neighbour rule. IEEE Trans. Inf. Theory 18(3),
431–433 (1972)

8. Masuyama, S., Ibaraki, T., Hasegawa, T.: The computational complexity of the
m-center problems in the plane. IEEE Trans. IECE Jpn. 64(2), 57–64 (1981)

9. Agarwal, P., Pach, J., Sharir, M.: State of the union-of geometric objects. In:
Godman, J., Pach, J., Pollack, R. (eds.) Surveys in Discrete and Computational
Geometry Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 9–48
(2008)

10. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problem. In: Proceedings
of the 27th(ACM) Symposium on Computational Geometry, pp. 17–22 (2009)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory, Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

12. Hitter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a
selective nearest neighbor rule. IEEE Trans. Inf. Theory 21, 665–669 (1975)

13. Agarwal, P.K., Sharir, M.: Red-blue intersection detection algorithms, with appli-
cations to motion planning and collision detection. SIAM J. Comput. 19(2), 297–
321 (1990)

14. Arkin, E.M., Daz-Bez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B.,
Prez-Lantero, P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points.
Comput. Geom. 48(2), 94–107 (2015)

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X

A Polynomial Sized Kernel for Tracking
Paths Problem

Aritra Banik1 , Pratibha Choudhary1(B), Daniel Lokshtanov2,
Venkatesh Raman3,4, and Saket Saurabh2,3,4

1 Indian Institute of Technology Jodhpur, Jodhpur, India
aritrabanik@gmail.com, pratibhac247@gmail.com

2 University of Bergen, Bergen, Norway
{daniello,saket.saurabh}@ii.uib.no

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
{vraman,saket}@imsc.res.in
4 UMI ReLaX, Chennai, India

Abstract. Consider a secure environment (say an airport) that has a
unique entry and exit point with multiple inter-crossing paths between
them. We want to place (minimum number of) trackers (or check points)
at some specific intersections so that based on the sequence of trackers a
person has encountered, we can identify the exact path traversed by the
person. Motivated by such applications, we study the Tracking Paths

problem in this paper. Given an undirected graph with a source s, a
destination t and a non-negative integer k, the goal is to find a set of at
most k vertices, a tracking set, that intersects each s-t path in a unique
sequence. Such a set enables a central controller to track all the paths
from s to t. We first show that the problem is NP-complete. Then we show
that finding a tracking set of size at most k is fixed-parameter tractable
(FPT) when parameterized by the solution size. More specifically, given
an undirected graph on n vertices and an integer k, we give a polynomial
time algorithm that either determines that the graph cannot be tracked
by k trackers or produces an equivalent instance of size O(k7).

1 Introduction

Tracking moving objects in a secure environment is an active area of research.
Typically a secure environment is modeled as a network with fixed entry and
exit point(s). Monitoring is achieved by placing sensor nodes which monitor the
movements of the objects in the network. For a detailed study of field surveillance
for the purpose of habitat monitoring, securing buildings, and intruder tracking
please refer to [3,6]. While tracking traces of illegal activities over Internet, the
biggest challenge is to track moving data packets [13,15]. One may want to place
trackers at an appropriate subset of routers in the network in order to track such
activities.

Motivated by these applications, in a recent paper, Banik et al. [2] considered
the problem of target tracking theoretically and modeled it as the following graph
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 94–107, 2018.
https://doi.org/10.1007/978-3-319-77404-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_8&domain=pdf
http://orcid.org/0000-0002-7544-6125

A Polynomial Sized Kernel for Tracking Paths Problem 95

theoretic problem. Let G = (V,E) be an undirected graph without any self loop
or parallel edges and suppose G has a unique entry vertex s and a unique exit
vertex t. A simple path from s to t is called an s-t path. Let P be an s-t path in
G and A ⊆ V be a set of vertices. We denote by T A

P the sequence of vertices of A
obtained from P by deleting the vertices that do not belong to A. A set of vertices
A is a tracking set for G, if and only if for any two distinct s-t paths P1 and
P2, T A

P1
�= T A

P2
. The vertices in set A are called trackers. Banik et al. [2] proved

that the problem of finding a minimum-cardinality tracking set with respect
to shortest s-t paths (Tracking Shortest Paths problem) is NP-hard and
APX-hard. In this paper we consider the problem of tracking all simple paths
and not just the shortest paths. In particular, we study the following.

Tracking Paths (G, s, t, k) Parameter: k
Input: An undirected graph G = (V,E) with two distinguished vertices s
and t, and a non-negative integer k.
Question: Is there a tracking set T of size at most k for G?

Our Results and Methods. In this paper we study Tracking Paths from the
perspective of parameterized complexity. Our first contribution is the following.

Theorem 1. Tracking Paths is NP-complete.

As is the case for any proof of NP-completeness, the proof of Theorem 1 requires
two steps: hardness and containment inside NP. While hardness follows from the
result of Banik et al. [2] (Shown in full version of paper), it is not clear why the
problem is in NP. To check whether a given set S is a tracking set for G, we need
to go over all pairs of paths between s and t and check whether the sequence of
trackers used on them are distinct. However, the number of paths between s and
t could be exponential and thus it does not seem possible to exploit definition
of the problem to show it inside NP. Thus, in order to show that the problem
belongs to NP, we first give an alternate characterization for a tracking set.
Then, to give a polynomial time algorithm to check whether a given set T is a
tracking set, we first show that T is a feedback vertex set (FVS). That is, G\T is
a forest. Using this property and our alternate characterization of tracking set we
give a polynomial time algorithm to test whether a given set T is a tracking set.

Once we have shown that Tracking Paths is NP-complete, we study the
problem from the viewpoint of parameterized complexity. In particular we design
an FPT algorithm for Tracking Paths. That is, we design an algorithm for
Tracking Paths with running time 2O(k log k)nO(1), where k is size of the track-
ing set we seek. In fact, we prove a stronger result than just designing an FPT
algorithm; we give a polynomial kernel for the problem. In particular, given an
instance (G, s, t, k), we give a polynomial time algorithm that either determines
that (G, s, t, k) is a NO instance or produces an equivalent instance with O(k6)
vertices and O(k7) edges. This polynomial time algorithm is called a kerneliza-
tion algorithm and the reduced instance is called a kernel. For more details about

96 A. Banik et al.

parameterized complexity and kernelization we refer to monographs [4,5]. Our
second contribution is the following result.

Theorem 2. Tracking Paths admits a polynomial kernel of size O(k7).

The kernelization algorithm (proof of Theorem 2) works along following lines.
Let (G, s, t, k) be an input instance to Tracking Paths. We first apply a simple
reduction rule to ensure that each edge and vertex in G belongs to some path
from s to t. Then we prove two structural claims: (a) every tracking set S is an
FVS; and (b) if G has a pair of vertices x and y such that x and y have at least
k+4 vertex disjoint paths between them, then (G, s, t, k) is a NO instance. Next,
using the known factor 2 approximation algorithm for the Feedback Vertex

set problem, we compute a set S such that G \S is a forest. If |S| > 2k then we
immediately return that (G, s, t, k) is a NO instance. Thus, assume that S is of
size at most 2k. Now using the second structural claim regarding tracking set,
we show that the number of connected components of G \ S and the number of
vertices in V (G\S) that have at least two neighbors in S are upper bounded by
kO(1). Next, we bound the number of vertices in V (G \ S) that have exactly one
neighbor in S. To do this, we fix a tree R in G\S and a vertex v ∈ S and bound
the size of the set of neighbors of v, NR(v), in R. Towards this, we consider the
minimal subtree T in R that contains all the neighbors of v, and show that if
|NR(v)| > kO(1), then we can partition the tree T into k +1 parts in such a way
that each part must contain a tracker. This bounds the degree of each vertex in
S into V (G \ S) by kO(1). This together with well-known counting methods on
trees gives us the desired polynomial kernel for Tracking Paths.

Related Work. Different structural properties of a graph have been studied
previously to analyze navigational models in network setting. In a seminal paper,
Slater [14] introduced the concept of metric dimension of a graph. In graph
theory, the metric dimension of a graph G is the minimum cardinality of a
subset S of vertices such that all other vertices are uniquely determined by
their distances to the vertices in S [7]. One application of metric dimension is
the problem of determining the location of an object in a network depending
on its distance from different landmarks in the network [11]. For a survey of
metric dimension in graphs see [8]. Furthermore, as mentioned before Tracking

Paths is also closely related to Feedback Vertex set in a graph. Feedback
Vertex set is NP-hard [9], has a 2 approximation algorithm [1], a quadratic
sized kernel [16] and an FPT algorithm running in time O((3.619)knO(1)) [12].

Notations. A kernelization algorithm is obtained using what are called reduc-
tion rules. These rules transform the given parameterized instance in polynomial
time to another equivalent instance, and a rule is said to be safe if the resulting
graph has a tracking set of size at most k if and only if the original instance has
one. For a path P , V (P) denotes the vertex set of path P , and for a subgraph
G′, V (G′) denotes the vertex set of G′. Let P1 be a path between vertices a and
b, and P2 be a path between vertices b and c, such that V (P1) ∩ V (P2) = {b}.
By P1 · P2, we denote the path from a to c created by concatenating P1 and P2.

A Polynomial Sized Kernel for Tracking Paths Problem 97

2 NP-Completeness

In this section we show that Tracking Paths is NP-complete. We first show
that the problem is NP-hard. Towards that we will use the result of Banik
et al. [2] which showed that Tracking Shortest Paths in a graph is NP hard
by giving a reduction from Vertex Cover. We show that the same reduction
also proves that the problem is NP hard when we want to track all s-t paths. In
particular we prove the following hardness result in the full version of the paper.

Lemma 1. �1 For any graph G = (V,E) we can construct a graph G′ on
|V | + |E| + 5 vertices such that, there exists a vertex cover of size k for G if and
only if there exists a tracking set of size k + |E| + 1 for G′.

In what follows, we show that the problem is NP-complete. Towards that
we first give an alternate characterization for a tracking set. Then using a pre-
processing rule, we show that for a graph, every tracking set is also a feedback
vertex set (FVS). Finally using these two properties we devise a polynomial time
algorithm to check whether a given set of vertices is a tracking set for graph G.

2.1 Characterization of Tracking Set

Towards characterization of tracking set, we first define tracking set condition.
For a graph G = (V,E) a set of vertices V ′ ⊆ V is said to satisfy tracking set
condition if there does not exist a pair of vertices u, v ∈ V , such that there exists
two distinct paths, say P1, P2, between u and v in G \ {V ′ ∪ {s, t}} ∪ {u, v},
and, there exists a path from s to u, say Psu, and a path from v to t, say Pvt in
G \ {V (P1) ∪ V (P2)} ∪ {u, v}, such that V (Psu) ∩ V (Pvt) = ∅. See Fig. 1.

Fig. 1. Graph satisfying tracking set condition

Thus we have the following lemma.

Lemma 2. For a graph G = (V,E), a set of vertices T ⊆ V is a tracking set if
and only if T satisfies the tracking set condition.

Proof. Let us assume that T ⊆ V is a tracking set for G. We claim that T satisfies
the tracking set condition. Suppose not. Then there exists a pair of vertices a, b ∈
V , such that there exists two distinct paths, say P ′, P ′′, between a and b in
G\{T ∪{s, t}}∪{a, b}, and, there exists a path from s to a, say Psa, and a path
1 Proofs for lemmas/corollaries marked with � will appear in full version of the paper.

98 A. Banik et al.

from b to t, say Pbt in G\{V (P ′)∪V (P ′′)}∪{a, b}, such that V (Psa)∩V (Pbt) = ∅.
Notice that there might be trackers in V (Psa) ∪ V (Pbt), however there are no
trackers in V (P ′) ∪ V (P ′′) \ {a, b}. Observe now there exists two s-t paths in G,
P1 = Psa ·P ′ ·Pbt and P2 = Psa ·P ′′ ·Pbt that have the same sequence of trackers.
This contradicts the assumption that T is a tracking set for G.

Fig. 2. Graph not satisfying tracking set condition

Conversely, let us assume that T ⊆ V satisfies the tracking set condition. We
claim that T is a tracking set for G. Suppose not. Then there exists at least two
s-t paths in G, say P1 and P2 that contain the same sequence of trackers. Hence,
V (P1)\V (P2)∪V (P2)\V (P1) must not contain any tracker. Notice that s is the
first vertex that appears in both P1 and P2. Starting from s, keep scanning the
vertices in P1 and P2 as long as the vertices in these paths are the same. Let a be
the first vertex that appears in both P1 and P2, such that after a the next vertex
appearing in P1 is not the same as that appearing in P2. Continue scanning the
vertices in both paths, until a vertex b is found such that b appears in both P1

and P2. See Fig. 2. Note that there exists two distinct paths between a and b
in G \ {T ∪ {s, t}} ∪ {a, b}. Let us call these paths P ′ and P ′′. Observe that
there must exist such a vertex a and a vertex b in V (P1)∪V (P2) such that there
exist distinct paths between them, else P1 and P2 would not be two different s-t
paths. Notice that V (P ′)∪V (P ′′)\{a, b} cannot contain any tracker, else P1 and
P2 would not contain the same sequence of trackers. There exists a path from s
to a, say Psa, and a path from b to t, say Pbt in G \ {V (P ′) ∪ V (P ′′)} ∪ {a, b},
such that V (Psa) ∩ V (Pbt) = ∅, and both Psa and Pbt may or may not contain
any trackers. This contradicts the assumption that T satisfies the tracking set
condition. �	

Although we have a nice characterization for what qualifies to be a tracking
set, we still cannot use it for verification purpose because there can be expo-
nentially many paths between s and t. However, we show in the next subsection
that in our case we can assume that between any two vertices we have only
polynomially many relevant paths in the graph once we remove all the trackers
along with s and t.

2.2 Tracking Set as Feedback Vertex Set

Let (G, s, t, k) be an input instance to Tracking Paths. After applying a reduc-
tion rule that ensures that each edge and vertex in G belongs to some s-t path,

A Polynomial Sized Kernel for Tracking Paths Problem 99

we can show that every tracking set is also an FVS for the reduced graph. For a
graph G = (V,E), an FVS is a set of vertices S ⊆ V such that G \ S is a forest.

Reduction Rule 1. If there exists a vertex or an edge that does not participate
in any s-t path then delete it.

Lemma 3. � Reduction Rule 1 is safe and can be implemented in polynomial
time.

In rest of the paper we assume that each vertex and each edge participates
in at least one s-t path. Next we have a lemma which establishes the connection
between a tracking set and an FVS.

Fig. 3. Cycle without tracker

Lemma 4. If T is a tracking set for G then T is a feedback vertex set for G as
well.

Proof. Consider any cycle C in G. We show that T contains at least one vertex
from C. Consider an edge e in cycle C. Since every edge in the graph participates
in at least one s-t path, let P be an s-t path that contains the edge e. Path P
may contain some more vertices and edges from the cycle C. Let x be the first
vertex of C that appears in P while traversing from s to t. Similarly let y be
the last vertex of C that appears in path P (see Fig. 3). Observe that there are
two paths between x and y in cycle C, one of them containing edge e, and the
other one not containing edge e. Denote the path containing the edge e by P2,
and the other path by P3. Let P1 be the subpath (which would be empty if s is
in the cycle) of P from s to x, and P4 be the subpath (which would be empty if
t is in the cycle) of P from y to t. Consider the following two paths:

P ′ = P1 · P2 · P4

P ′′ = P1 · P3 · P4

Observe that if C does not contain any tracker, then P ′ and P ′′ contain
exactly the same sequence of trackers contradicting the fact that T is a tracking
set. �	

Thus we have the following corollary.

Corollary 1. The size of a minimum tracking set T for G is at least the size
of a minimum FVS for G.

100 A. Banik et al.

2.3 Verification of Tracking Set

In Lemma 4, we have shown that if T is a tracking set for G, then T is also an
FVS for G. So we first check if T is an FVS for G. Using a breadth first search,
in O(n+m) time we can check whether G \T is a forest or not. If not, we reject
T . Henceforth, we assume that T is an FVS for G.

Lemma 5. For a set of vertices T ⊆ V , we can verify in polynomial time if T
satisfies the tracking set condition.

Proof. Observe that in order to show that T ⊆ V is a tracking set it is sufficient
to consider the subgraph G′ of G, which only has those edges and vertices that
are part of some s-t path (s). That is, we first apply Reduction Rule 1 and
reduce given the instance. For the clarity of presentation we denote the reduced
instance also by G.

Let G′ = G \ {T ∪{s, t}}. In order to verify if the tracking set condition holds
for a set of vertices T ⊆ V , we first need to check if there exists a pair of vertices
u, v ∈ V , such there exists two distinct paths between u and v in G′ ∪ {u, v}.
We consider each pair of vertices u, v ∈ V and check in G′ ∪{u, v} if there exists
two or more distinct paths between u and v. Observe that since a tracking set
is also an FVS, G′ is a forest. Hence there exists a unique path between each
pair of vertices in G′. If both u and v belong to G′, then there exists a unique
path between them, and in such a case we can skip verification of second part
of tracking set condition. If either u or v, or both of them do not belong to G′,
then they can have at most n neighbors each in G′. Hence, the number of paths
between u and v in G′ ∪ {u, v} is O(n2). We consider each neighbor of u and v
in G′ ∪ {u, v}, and find the unique path between these neighbors in G′, in O(n)
time using depth first search. Thus finding all paths between u and v can be
done in O(n3) time. For each pair of paths, say P1 and P2, among the O(n2)
paths in G′ ∪{u, v}, we verify second part of tracking set condition, i.e., we check
if there exists a path from s to u, say Psu, and a path from v to t, say Pvt in
G \ {V (P1) ∪ V (P2)} ∪ {u, v}, such that V (Psu) ∩ V (Pvt) = ∅. This step can be
performed in O(n2) time using the algorithm for disjoint paths [10]. Hence the
overall time taken for verification is O(n2(n3 + n4n2)). �	

Lemmas 1 and 5 together prove Theorem 1.

3 Polynomial Kernel for TRACKING PATHS

In this section, with the help of some reduction rules we give a polynomial time
algorithm that checks whether the given instance is a NO instance (for a solution
of size at most k) or produces an equivalent instance with O(k6) vertices. We
assume that the given graph has been preprocessed using Reduction Rule 1.

Recall that from Corollary 1, we know that the size of a minimum tracking set
T for G is at least the size of a minimum FVS for G. First we find a 2-approximate
solution S in G for Feedback Vertex set using [1]. From Corollary 1, we have
the following reduction rule.

A Polynomial Sized Kernel for Tracking Paths Problem 101

Reduction Rule 2. Apply the algorithm of [1] to find a 2-approximate solution,
S for Feedback Vertex set. If |S| > 2k, then return that the given instance
is a NO instance.

Observe that F = G \ S is a forest. Now we try to bound the number of
vertices in graph F given that k trackers are sufficient to track all the s-t path
in G. Towards this we first prove a monotonicity lemma and a corollary which
says that if a subgraph of G cannot be tracked with k trackers, then G cannot
be tracked with k trackers either.

Lemma 6. Let G = (V,E) be a graph and G′ = (V ′, E′) be a subgraph of G
such that {s, t} ∈ V ′. If T is a tracking set for G and T ′ is a minimum tracking
set for G′, then |T ′| ≤ |T |.

Proof. We show that T is a tracking set for G′ as well. For otherwise, there
must exist two s-t paths, say P1 and P2 in G′ that contain the same sequence of
trackers. Observe that P1 and P2 also belong to G. Hence, in this case P1 and
P2 cannot be distinguished by T in G as well. This contradicts the assumption
that T is a tracking set for G. Hence the lemma holds. �	

Corollary 2. If a subgraph of G that contains both s and t cannot be tracked
by k trackers, then G cannot be tracked by k trackers either.

Henceforth, we limit ourselves to analyzing the cases when a subgraph cannot
be tracked by k trackers. In upcoming sections, we bound the number of vertices
in F by a function of k. First we bound the number of vertices in F that have
at least two neighbors in S.

3.1 Bounding the Number of Vertices in F with at Least Two
Neighbors in S

Lemma 7. � If there are two vertices u, v ∈ V such that there exists more than
k + 3 vertex disjoint paths between u and v, then G cannot be tracked with k
trackers.

From Lemma 7 we have the following.

Reduction Rule 3. If there exists two vertices in S that have (k + 4) common
neighbors in F then we return that the given instance is a NO instance.

Lemma 8. � If there exists two vertices in S that have (k +4) common neigh-
bors in F then G cannot be tracked with k trackers.

Corollary 3. � If Reduction Rule 3 is not applicable, then the number of ver-
tices in F that have at least two neighbors in S is at most

(
2k
2

)
(k+4) ≤ 2k2(k+4).

102 A. Banik et al.

3.2 Bounding the Number of Trees in F
The argument given in the proof of Lemma 8 can be also used to bound the
number of trees in F that are adjacent to at least two vertices in S.

Reduction Rule 4. If there exists two vertices in S that are common neighbors
to (k + 4) trees in F , we return that the given instance is a NO instance.

Lemma 9. � If there are (k + 4) trees that are adjacent to two vertices u and
v in S, then G cannot be tracked with k trackers.

Corollary 4. If Reduction Rule 4 is not applicable, then the number of trees in
F that have at least two neighbors in S is at most

(
2k
2

)
(k + 4).

Next we bound the number of trees with exactly one neighbor in S. Towards
this we first show the following.

Lemma 10. Any induced subgraph G′ of G containing at least one edge will
contain a pair of vertices u, v such that there exists a path in G from s to u and
another path from v to t, and these paths are mutually vertex disjoint and also
they do not contain any other vertices from G′ except u and v.

Proof. Consider the induced subgraph G′. Pick any edge e = (x, y) of G′. We
know that e participates in at least one s-t path, say P . Denote the subpath of
P from s to x and from y to t by Ps and Pt respectively. Observe that Ps and
Pt are vertex disjoint. Let u ∈ G′ be the first vertex in Ps while traversing from
s to x and v ∈ G′ be the last vertex while traversing Pt from t to y. Observe
that the subpath of Ps from s to u and the subpath of Pt from v to t are vertex
disjoint and intersect with G′ only at u and v. Therefore the claim holds. �	

We show (in full version of the paper) that the only possible trees having
exactly one neighbor in S are ones that contain s or t.

Lemma 11. The number of trees in F that have a single neighbor in S is at
most two.

Proof. Let R be a tree in F that does not contain s or t. If R contains only one
vertex, then it will have at least two neighbors in S, as due to Reduction Rule 1,
G has no vertex with degree at most one or multiple edges. Hence R contains
at least two vertices and hence an edge. By Lemma 10, there exists a pair of
vertices u, v in R such that there is a path in G from s to u and a path from
v to t that are mutually disjoint and contain no other vertex of R. This means
that R has at least two neighbors outside R (the neighbors of u and v in those
paths) and hence in S. So the only possible trees having a single neighbor in S
are those that contain s or t, and hence the lemma follows. �	

From the above two lemmas we know that every tree has at least one neighbor
in S. Hence we have the following corollary.

Corollary 5. If the Reduction Rules 1 to 4 are not applicable, then the number
of trees in F is at most

(
2k
2

)
(k + 4) + 2 ≤ 2k2(k + 4).

A Polynomial Sized Kernel for Tracking Paths Problem 103

3.3 Bounding the Number of Vertices in F with Exactly One
Neighbor in S

Here we bound the number of vertices in F that have a single neighbor in S and
we do that by bounding the number of vertices from a single tree in F that are
adjacent to a particular vertex of S.

Fig. 4. Illustration of Lemma 12

Consider any tree R ∈ F . Let Vf be the set of vertices of R that is adjacent to
a particular vertex f ∈ S. In this section we prove a bound on the cardinality of
Vf . We denote the smallest connected subtree of R which contains all of Vf by R′.
Note that the leaf nodes of R′ are in Vf . Consider three vertices {a, b, c} ⊂ Vf .
Let R′′ be a minimum subtree of R′ that contains a, b and c.

Lemma 12. Any tracking set T must contain at least one vertex of R′′.

Proof. Let T be a tracking set which does not contain any vertex from R′′.
Observe that all the leaf nodes of R′′ are either a, b or c. Furthermore, at least
two of a, b or c must be the leaves of R′′. Without loss of generality assume that
a and c are leaves of R′′. Consider the path Pac from a to c in R′′. Without
loss of generality assume that b is connected to Pac via the path Pxb (see Fig. 4)
joining Pac at vertex x. We denote the paths from x to a and c by Pxa and Pxc

respectively. Note that Pxb could be a single vertex, i.e., b = x.
Let G′ be the graph induced by {f}∪V (R′′). From Lemma 10 we know that

there exists a pair of vertices u, v ∈ V (G′), such that there are two vertex disjoint
paths in G from s to u and from v to t and both these paths do not contain any
vertex from G′ except u and v. We use Ps to denote the path from s to u, and
Pt to denote the path from v to t (see Fig. 5(a)). Observe that depending on the
locations of u and v there can be three cases.

Case 1 (u and v are in different chains among Pxa, Pxb and Pxc): Without loss of
generality assume u ∈ Pxa, v ∈ Pxc, other cases can be proved similarly. Denote
the paths Pua ⊂ Pxa, Pxv ⊂ Pxc and Pcv ⊂ Pxc by λ1, λ2 and λ3 respectively
(see Fig. 5(a)). Observe that Ps ·λ1 · f ·Pxb ·λ2 ·Pt and Ps ·λ1 · f ·λ3 ·Pt contain

104 A. Banik et al.

the same sequence of trackers (note that f may or may not contain a tracker).
Hence these two paths are indistinguishable which contradicts the fact that T is
a tracking set.
Case 2 (u and v are in same chain among Pxa, Pxb and Pxc): Without loss of
generality assume u, v ∈ Pxa. Denote the paths Pua ⊂ Pxa, Pcv ⊂ Pac and Pxv ⊂
Pxc by λ1, λ2 and λ3 respectively (see Fig. 5(b)). Observe that Ps · λ1 · f · λ2 · Pt

and Ps ·λ1 ·f ·Pxb ·λ3 ·Pt contain the same sequence of trackers. This contradicts
that T is a tracking set.
Case 3 (u = f or v = f): Without loss of generality assume u = f . Proof follows
from the fact that from f there exists two paths to any other vertex in R′′. In
particular, PsPavPt and PsPbvPt are two paths that cannot be distinguished.

This completes the proof. �	

Fig. 5. Illustration of Lemma 12

Next we show the following.

Lemma 13. The degree of each vertex in R′ is at most k + 4.

Proof. Observe that if there exists a vertex v of degree k + 4 in R′, then there
are at least k + 4 disjoint paths between v and k + 4 leaves of R′. As every leaf
node is connected with f , there will be more than k + 4 disjoint paths between
v and f . In that case from Lemma 7 we know that G cannot be tracked with k
trackers. Therefore we have a contradiction, and hence the result holds. �	

Let the vertices in R′ that are adjacent to f be colored red and the others
be colored blue. Since R′ is a minimum tree containing Vf , we have that all the
leaf nodes of R′ are red. Next we have following lemma.

Lemma 14. If the number of red vertices in R′ is at least (2k +8)(k +1) then
we can partition R′ into at least k + 1 disjoint subtrees each containing at least
three red vertices.

A Polynomial Sized Kernel for Tracking Paths Problem 105

Proof. In R′, let w be the closest node to a leaf such that the subtree rooted
at w has at least three red vertices. Since w is the closest node we have that
for any of its children the subtree rooted at them has at most two red children.
Using Lemma 13, we can say this implies that the subtree rooted at w has at
most 2(k + 4) red vertices. Now remove the subtree rooted at w, and continue.
This implies that if |V (R′)| ≥ (2k + 8)(k + 1), we can partition R′ into at least
k + 1 disjoint subtrees each containing at least three red vertices. �	

From Lemma 12 we know that each such partition needs a tracker. Thus we
have the following.

Lemma 15. If there exists (2k + 8)(k + 1) vertices of a tree in F adjacent to a
single vertex in S, then G cannot be tracked with k trackers.

Reduction Rule 5. If there is a vertex in S adjacent to (2k+8)(k+1) vertices
of a tree in F , we return that the given instance is a NO instance.

Corollary 6. � If the Reduction Rule 5 is not applicable, then the total number
of vertices from each tree in F that are adjacent to a vertex in S is at most
2k(2k + 8)(k + 1).

3.4 Wrapping Up – Polynomial Kernel and FPT Algorithm

From Corollaries 4 and 6, we have following corollary.

Corollary 7. The number of vertices in a tree of F that have at least one neigh-
bor in S is at most 2k2(k + 4) + 2k(2k + 8)(k + 1) = 2k(3k2 + 14k + 8).

Next we give a reduction rule that helps bound the number of internal vertices
in a tree in subsequent lemma.

Reduction Rule 6. If there are three vertices a, b and c each of degree two,
such that (a, b) and (b, c) both are edges, do the following. Delete b and introduce
edge (a, c) in G.

Lemma 16. � Reduction Rule 6 is safe and can be implemented in polynomial
time.

Lemma 17. The number of vertices in a tree in F that do not have any neighbor
in S is at most 10k(3k2 + 14k + 8).

Proof. In a tree, we denote the set of leaf nodes by V1, the set of vertices of
degree two by V2, and the set of vertices of degree three or more by V3. Since G
is preprocessed, there cannot be any degree one vertex in G except s and t. Thus
each leaf of the tree in F necessarily has a neighbor in S. Hence by Corollary 7,
number of vertices in V1 is bounded by 2k(3k2 + 14k + 8). Observe that both
V2 and V3 can belong to the set of internal nodes in a tree. By standard graph
theoretic properties of a tree, we know that |V3| ≤ |V1|−1. Hence the number of
vertices in V3 is bounded by 2k(3k2 +14k +8)− 1. Due to Reduction Rule 6, we

106 A. Banik et al.

know that at most two vertices of degree two can exist in series. Observe that
each vertex in V1 and V3 can have at most two vertices from V2 as its immediate
ancestors. Hence the number of vertices in V2 is bound by 2(|V1| + |V3|), i.e.
|V2| ≤ 8k(3k2 +14k+8)−2. Hence |V2|+ |V3| ≤ 2k(3k2 +14k+8)−3. We ignore
this reduction in count by 3 from our bound. Thus the overall bound on number
of vertices in F which do not have any neighbor in S is 10k(3k2 + 14k + 8). �	

From Corollary 7 and Lemma 17, we have the following corollary.

Corollary 8. The number of vertices in a tree in F is at most 12k(3k2+14k+8)
if none of the reduction rules are applicable.

Proof of Theorem 2. From Corollaries 5 and 8 we can say that if none of the
reduction rules are applicable, then the total number of vertices in F is at most
12k(3k2 + 14k + 8)2k2(k + 4) and hence the total number of vertices in G is at
most 12k(3k2 + 14k + 8)2k2(k + 4) + 2k. Thus the total number of vertices is at
most 72k6 + 624k5 + 1536k4 + 768k3 + 2k in G.

Since F is a forest, total number of edges in F is at most 12k(3k2 + 14k +
8)2k2(k + 4) − 1. From Reduction Rule 5 we know that the total number of
vertices from each tree in F that are adjacent to a single vertex in S is at most
2k(2k + 8)(k + 1). From Corollary 5 we know that the number of trees in F
is at most 2k2(k + 4). Thus the total number of edges between F and S is
2k(2k + 8)(k + 1)2k2(k + 4)2k. The total number of edges among the vertices
in S is at most 4k2. Thus the total number of edges in G is at most 12k(3k2 +
14k + 8)2k2(k + 4) − 1 + 2k(2k + 8)(k + 1)2k2(k + 4)2k + 4k2 = O(k7). �	

Theorem 3. Tracking Paths is FPT when parameterized by the solution
size, and the running time of the FPT algorithm is 2O(k log k)nO(1).

Proof. We can run through all subsets of size k of the kernel and use the ver-
ification algorithm mentioned in Lemma 5 to check if a particular subset is a
tracking set for G. Using the proof of Theorem 2, we can find all subsets of size
k in O(k6k) time. From Lemma 5, we can verify if a subset of k vertices is a
tracking set for G in polynomial time. Thus we have a 2O(k log k)nO(1) time FPT
algorithm for Tracking Paths. �	

4 Conclusions

In this paper we have shown that the Tracking Paths problem is NP-complete.
We also show the problem to be fixed-parameter tractable by proving the exis-
tence of a polynomial sized kernel. This is achieved via exploiting the connection
between a feedback vertex set and tracking set. An open problem is to improve
the size of the kernel and using it or otherwise to improve the running time
of the FPT algorithm for the problem. Other directions to explore are to find
approximation algorithms and studying the problem for directed graphs.

A Polynomial Sized Kernel for Tracking Paths Problem 107

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discret. Math. 12(3), 289–297 (1999)

2. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D.,
Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 7

3. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network.
In: 2009 Fifth International Conference on Wireless and Mobile Communications,
pp. 110–115 (2009)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, 1st edn. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21275-3

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9

6. Gupta, R., Das, S.R.: Tracking moving targets in a smart sensor network. In: IEEE
58th Vehicular Technology Conference, vol. 5, pp. 3035–3039 (2003)

7. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin 2(191–
195), 1 (1976)

8. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph
theory for metric dimension and diameter. Electron. J. Comb. 17(1), R30 (2010)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

10. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012)

11. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl.
Math. 70(3), 217–229 (1996)

12. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556 (2014)

13. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mecha-
nisms countering the DoS and DDoS problems. ACM Comput. Surv. 39(1), Article
No. 3 (2007)

14. Slater, P.J.: Leaves of trees. Congr. Numer 14(549–559), 37 (1975)
15. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent,

S.T., Strayer, W.T.: Hash-based IP traceback. SIGCOMMComput. Commun. Rev.
31(4), 3–14 (2001)

16. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms
(TALG) 6(2), 32 (2010)

https://doi.org/10.1007/978-3-319-57586-5_7
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Time-Space Trade-Offs for Computing
Euclidean Minimum Spanning Trees

Bahareh Banyassady1(B) , Luis Barba2, and Wolfgang Mulzer1

1 Freie Universität Berlin, Berlin, Germany
{bahareh,mulzer}@inf.fu-berlin.de

2 ETH Zurich, Zurich, Switzerland
luis.barba@inf.ethz.ch

Abstract. In the limited-workspace model, we assume that the input
of size n lies in a random access read-only memory. The output has to be
reported sequentially, and it cannot be accessed or modified. In addition,
there is a read-write workspace of O(s) words, where s ∈ {1, . . . , n} is a
given parameter. In a time-space trade-off, we are interested in how the
running time of an algorithm improves as s varies from 1 to n.

We present a time-space trade-off for computing the Euclidean mini-
mum spanning tree (EMST) of a set V of n sites in the plane. We present
an algorithm that computes EMST(V) using O(n3 log s/s2) time and
O(s) words of workspace. Our algorithm uses the fact that EMST(V)
is a subgraph of the bounded-degree relative neighborhood graph of V ,
and applies Kruskal’s MST algorithm on it. To achieve this with lim-
ited workspace, we introduce a compact representation of planar graphs,
called an s-net which allows us to manipulate its component structure
during the execution of the algorithm.

Keywords: Euclidean minimum spanning tree
Relative neighborhood graph · Time-space trade-off
Limited workspace model · Kruskal’s algorithm

1 Introduction

Given n sites in the plane, their Euclidean minimum spanning tree (EMST), is
the minimum spanning tree with the sites as vertices, where the weight of the
edge between two sites is their Euclidean distance. This problem is at the core of
computational geometry and has been a classical problem taught in almost every
first year lecture on the subject. Several classical algorithms are known that can
compute EMST(V) in O(n log n) time using O(n) words of workspace [11].

In this work, we revisit this problem, and design algorithms to compute
the EMST in a memory-constrained model, where only few extra variables are
allowed to be used during the execution of the algorithm. This kind of algorithms

B. Banyassady and W. Mulzer were supported in part by DFG project MU/3501/2.
L. Barba was supported by the ETH Postdoctoral Fellowship.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 108–119, 2018.
https://doi.org/10.1007/978-3-319-77404-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_9&domain=pdf
http://orcid.org/0000-0002-3422-9028
http://orcid.org/0000-0002-1948-5840

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 109

not only provides an interesting trade-off between running time and memory
needed, but also is very useful in portable devices where important hardware
constraints are present.

A significant amount of research was focused on the design of algorithms
using few variables. Many of them dating from the 1970s, when memory used
to be an expensive commodity. While in recent days the cost has substantially
been reduced, the amount of data has increased, and the size of some devices
has been dramatically reduced. Sensors and small devices where larger memories
are neither possible nor desirable have proliferated in recent years. In addition,
when working on inputs that do not fit in the local memory of our computer, it is
often the case that data is simultaneously accessed by several devices. Moreover,
even if a device is procured with a large memory, it might still be preferable
to limit the number of write operations. Writing to flash memory is slow and
costly, and may also reduce the lifetime of the memory. Additionally, if the input
is stored on removable devices, write-access may not be allowed due to technical
or security reasons. Therefore, while many memory-constrained models exist, the
general scheme is the following: The input resides in a read-only memory where
data cannot be modified by the algorithm. The algorithms are allowed to store
a few variables that reside in a local memory and can be modified as needed to
solve the problem (usually called workspace). Since the output may also not fit
in our local memory, the model provides us with a write-only memory where the
desired output is sequentially reported by the algorithm.

In general, one might consider algorithms that are allowed to use a workspace
of O(s) words for some parameter s, where a word is a collection of bits and
is large enough to contain either an input item (such as a point coordinate)
or a pointer into the input structure (of logarithmic size on the length of the
input). The goal is then to design algorithms whose running time decreases as s
increases, and that provide a nice trade-off between workspace size and running
time.

Our results. For the case of EMST, Asano et al. [6] proposed an algorithm to
compute the EMST of a set of n given sites in O(n3) time using a workspace
of O(1) words. In this paper, we revisit this problem and provide a time-space
trade-off. Our algorithm computes the EMST in O(n3 log s/s2) time using O(s)
additional words of workspace. This algorithm provides a smooth transition
between the O(n3) time algorithm [6] with constant words of workspace and
the O(n log n) time algorithm [11] using a workspace of O(n) words.

As the main tool to achieve this running time, we introduce a compact repre-
sentation of planar graphs, called an s-net. The main idea is to carefully choose a
“dense” set of s edges of the graph for which we remember their face incidences.
That is, we store whether or not any of these edges are incident to the same face
of the graph. Moreover, the density property of this s-net guarantees that no
path can walk along a face of the graph for long without reaching an edge of the
s-net. This allows us to “quickly” find the face of the graph that any given edge
lies on. More specifically, we use this structure to speed up the implementation

110 B. Banyassady et al.

of Kruskal’s EMST algorithm on planar graphs using limited workspace. Recall
that in this algorithm, edges are added in increasing order to an auxiliary graph.
Moreover, for each of them we need to find out whether or not its endpoints lie
on the same component of this auxiliary graph when the edge is inserted. If the
original graph is planar, then this amounts to testing whether or not these end-
points are incident to the same face of the graph—a task for which the compact
representation of the s-net allows us to obtain time-space trade-offs to compute
the EMST of planar graphs. While the s-net is designed to speed up Kruskal’s
algorithm, this structure is of independent interest as it provides a compact way
to represent planar graphs that can be exploited by other algorithms.

Related work. The study of constant-workspace algorithm started with the
introduction of the complexity class LOGSPACE [3]. After that, many classic
problems were studied in this setting. Selection and sorting were among the
first such problems [13,20–22]. In graph theory, Reingold [23] solved a long
standing problem, and showed that connectivity in an undirected graph can
be tested using constant workspace. The model was made popular in computa-
tional geometry by Asano et al. [6] who presented several algorithms to compute
classic geometric data structures in the constant-workspace model. Algorithms
with time-space trade-off for many of these problems were presented in subse-
quent years [1,2,4,5,7–10,15,16,18], with the notable exception of the problem
of computing the EMST which is finally addressed in this paper.

2 Preliminaries and Definitions

Let V be a set of n points (sites) in the plane. The Euclidean minimum spanning
tree of V , EMST(V), is the minimum spanning tree of the complete graph G
on V , where the edges are weighted by the Euclidean distance between their
endpoints. We assume that V is in general position, i.e., the edge lengths in
G are pairwise distinct, thus EMST(V) is unique. Given V , we can compute
EMST(V) in O(n log n) time using O(n) words of workspace [11].

The relative neighborhood graph of V , RNG(V), is the undirected graph with
vertex set V obtained by connecting two sites u, v ∈ V with an edge if and
only if there is no site w ∈ V \{u, v} such that both |uw| and |vw| is less than
|uv|, where |uv| denotes the Euclidean distance between u and v [24]. This is
also known as the empty lens property, where the lens between u and v is the
intersection of the disks of radius |uv| centered at both u and v; see Fig. 1. One
can show that a plane embedding of RNG(V) is obtained by drawing the edges
as straight line segments between the corresponding sites in V . Furthermore,
each vertex in RNG(V) has at most six neighbors, so that RNG(V) has O(n)
edges. We will denote the number of those edges by m. It is well-known that
EMST(V) is a subgraph of RNG(V). In particular, this implies that RNG(V)
is connected. Given V , we can compute RNG(V) in O(n log n) time using O(n)
words of workspace [17,19,24].

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 111

Fig. 1. The RNG for a set of sites V . The disks Du and Dv have radius |uv| and are
centered at u and v, respectively. The edge uv is in RNG(V), since there is no site in
V that lies in the lens Du ∩ Dv.

Recall the classic algorithm by Kruskal to find EMST(V) [14]: we start with
an empty forest T , and we consider the edges of RNG(V) one by one, by increas-
ing weight. In each step, we insert the current edge e = vw into T if and only
if there is no path between v and w in T . In the end, T will be EMST(V).
Since EMST(V) is a subgraph of RNG(V), it suffices to consider only the edges
of RNG(V). Thus, Kruskal’s algorithm needs to consider m = O(n) edges and
runs in O(n log n) time, using O(n) words of workspace.

Let s ∈ {1, . . . , n} be a parameter, and assume that we are given a set V
of n sites in general position (as defined above) in a read-only array. The goal
is to find EMST(V), with O(s) words of workspace. We use RNG(V) in order
to compute EMST(V). By general position, the edge lengths in RNG(V) are
pairwise distinct. Thus, we define ER = e1, . . . , em to be the sorted sequence
of the edges in RNG(V), in increasing order of length. For i ∈ {1, . . . , m}, we
define RNGi to be the subgraph of RNG(V) with vertex set V and edge set
{e1, . . . , ei−1}.

In the limited workspace model, we cannot store RNGi explicitly. Instead,
we resort to the computing instead of storing paradigm [6]. That is, we com-
pletely compute the next batch of edges in ER whenever we need new edges of
RNG(V) in Kruskal’s algorithm. To check whether a new edge ei ∈ ER belongs
to EMST(V), we need to check if ei connects two distinct components of RNGi.
To do this with O(s) words of workspace, we will use a succinct representation
of its component structure; see below. In our algorithm, we represent each edge
ei ∈ ER by two directed half-edges. The two half-edges are oriented in opposite
directions such that the face incident a half-edge lies to the left of it. We call the
endpoints of a half-edge the head and the tail such that the half-edge is directed
from the tail endpoint to the head endpoint. Obviously, each half-edge in RNGi

has an opposing partner. However, in our succinct representation, we will rely on
individual half-edges. Throughout the paper, directed half-edges will be denoted
as −→e , and undirected edges as e. For a half-edge −→e = −→uv with u, v ∈ V , we call
v the head of −→e , and u the tail of −→e .

112 B. Banyassady et al.

3 The Algorithm

Before we discuss our algorithm, we explain how to compute batches of edges
in RNG(V) using O(s) words of workspace. A similar technique has been used
previously in the context of Voronoi diagrams [8].

Lemma 3.1. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. Given a set Q ⊆ V of s sites, we can compute for
each u ∈ Q the at most six neighbors of u in RNG(V) in total time O(n log s),
using O(s) words of workspace.

Proof. The algorithm uses �n/s� steps. In each step, we process a batch of s sites
of V = V1 ∪ . . .∪V�n/s�, and produce at most six candidates for each site of Q to
be in RNG(V). In the first step, we take the first batch V1 ⊆ V of s sites, and we
compute RNG(Q ∪ V1). Because both Q and V1 have at most s sites, we can do
this in O(s log s) time using O(s) words of workspace using standard algorithms.
For each u ∈ Q, we remember the at most six neighbors of u in RNG(Q ∪ V1).
Notice that for each pair u ∈ Q, v ∈ V1, if the edge uv is not in RNG(Q ∪ V1),
then the lens of u and v is non-empty. That is, there is a witness among the
points of Q ∪ V1 that certifies that uv is not an edge of RNG(V). Let N1 be the
set containing all neighbors in RNG(Q ∪ V1) of all sites in Q. Storing N1, the
set of candidate neighbors requires O(s) words of workspace.

Then, in each step j = 2, . . . , O(n/s), we take next batch Vj ⊆ V of s sites,
and compute RNG(Q ∪ Vj ∪ Nj−1) in O(s log s) time using O(s) words of space.
For each u ∈ Q, we store the set of at most six neighbors in this computed graph.
Additionally, we let Nj be the set containing all neighbors in RNG(Q∪Vj∪Nj−1)
of all sites in Q. Note that Nj , the set of candidate neighbors, consists of O(s)
sites as each site in Q has degree at most six in the computed graph.

Therefore, after �n/s� steps, we are left with at most six candidate neighbors
for each site in Q. As mentioned above, for a pair u ∈ Q, v ∈ V , if v is not
among the candidate neighbors of u, then at some point in the construction
there was a site witnessing that the lens of u and v is non-empty. Therefore,
only the sites which are in the set of candidate neighbors can define edges of
RNG(V). However, all the candidate neighbors are not necessarily the neighbors
in RNG(V) of sites in Q.

To obtain the edges of RNG(V) incident to the sites of Q, we take each
site in Q and its corresponding neighbors in N�n/s�. Then, we go again through
the entire set V = V1 ∪ . . . ∪ V�n/s� in batches of size s: for each u ∈ Q, we
test the at most six candidate neighbors in N�n/s� against all elements of the
current batch to test the empty-lens property. After going through all sites, the
candidates that maintained the empty-lens property throughout define the edges
of RNG(V) incident to the sites of Q. Since we use O(s log s) time per step, and
since there are �n/s� steps, the total running time is O(n log s) using O(s) words
of workspace. �	

Through repeated application of Lemma 3.1, we can enumerate the edges of
RNG(V) by increasing lengths.

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 113

Lemma 3.2. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. Let ER = e1, e2, . . . , em be the sequence of edges in
RNG(V), by increasing length. Let i ≥ 1. Given ei−1 (or ⊥, if i = 1), we can find
the edges ei, . . . , ei+s−1 in O(n2 log s/s) time using O(s) words of workspace.1

Proof. By applying Lemma 3.1 O(n/s) times, we can generate all the edges
of RNG(V). Because we obtain the edges in batches of size O(s), each taking
O(n log s) time, the total time to compute all the edges amounts to O(n2 log s/s).
During this process, we find the edges ei, . . . , ei+s−1 of ER. This can be done
with a trick by Chan and Chen [12], similar to the procedure in the second
algorithm in [7]. More precisely, whenever we produce new edges of RNG(V),
we store the edges that are longer than ei−1 in an array A of size O(s). Whenever
A contains more than 2s elements, we use a linear time selection procedure to
remove all edges of rank larger than s [14]. This needs O(s) operations per step.
We repeat this procedure for O(n/s) steps, giving total time O(n) for selecting
the edges. In the end, we have ei, . . . , ei+s−1 in A, albeit not in sorted order.
Thus, we sort the final A in O(s log s) time. The running time is dominated by
the time needed to compute the edges of RNG(V), so the claim follows. �	

Lemma 3.2, together with the techniques from the original constant
workspace EMST-algorithm by Asano et al. [6], already leads to a simple time-
space trade-off for computing EMST(V). Recall that we represent the edges of
RNG(V) as pairs of opposing half-edges, such that the face incident to a half-
edge lies to its left. For i ∈ {1, . . . , m}, a face-cycle in RNGi is the circular
sequence of half-edges that bounds a face in RNGi. All half-edges in a face-cycle
are oriented in the same direction, and RNGi can be represented as a collection
of face-cycles; see Fig. 2. Asano et al. [6] observe that to run Kruskal’s algorithm
on RNG(V), it suffices to know the structure of the face-cycles.

Fig. 2. A schematic drawing of RNGi is shown in black. The face-cycles of this graph
are shown in gray. All the half-edges of a face-cycle are directed according to the arrows.

1 Naturally, if i + s − 1 > m, we report the edges ei, . . . , em.

114 B. Banyassady et al.

Observation 3.3. Let i ∈ {1, . . . , m}. The edge ei ∈ ER belongs to EMST(V)
if and only if there is no face-cycle C in RNGi such that both endpoints of ei lie
on C.

Proof. Let u and v be the endpoints of ei. If there is a face-cycle C in RNGi that
contains both u and v, then ei clearly does not belong to EMST(V). Conversely,
suppose there is no face-cycle in RNGi containing both u and v. Thus, any two
face-cycles Cu and Cv such that u lies on Cu and v lies on Cv must be distinct.
Since RNG(V) is plane, Cu and Cv must belong to two different connected
components of RNGi, and ei is an edge of EMST(V). �	

Observation 3.3 tells us that we can identify the edges of EMST(V) if we
can determine, for each i ∈ {1, . . . , m}, the face-cycles of RNGi that contain the
endpoints of ei. To accomplish this task, we use the next lemma to traverse the
face-cycles.

Lemma 3.4. Let i ∈ {1, . . . , m}. Suppose we are given ei ∈ ER and a half-
edge

−→
f ∈ RNGi, as well as the at most six edges incident to the head of

−→
f in

RNG(V). Let C be the face-cycle of RNGi that
−→
f lies on. We can find the half-

edge
−→
f ′ that comes after

−→
f on C, in O(1) time using O(1) words of workspace.

Proof. Let w be the head of
−→
f . By comparing the edges incident to w with ei, we

identify the incident half-edges of w in RNGi, in O(1) time. Then, among them
we pick the half-edge

−→
f ′ which has the smallest clockwise angle with

−→
f around

w and has w as its tail. This takes O(1) time using O(1) words of workspace. �	
For j ≥ i ≥ 1, we define predecessor and successor of ej in RNGi regarding

each endpoint w of ej as follows: the predecessor −→pw of ej is the half-edge in
RNGi which has w as its head and is the first half-edge encountered in a coun-
terclockwise sweep from ej around w. The successor −→sw of ej is the half-edge in
RNGi which has w as its tail and is the first half-edge encountered in a clockwise
sweep from ej around w; see Fig. 3. If there is no edge incident to w in RNGi,
we set pw, sw =⊥.

From our observations so far, we can already derive a simple time-space
trade-off for computing EMST(V).

Theorem 3.5. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. We can output all the edges of EMST(V), in
sorted order, in O(n3 log s/s) time using O(s) words of workspace.

Proof. We simulate Kruskal’s algorithm on RNG(V). For this, we take batches
of s edges, sorted by increasing length, and we report the edges of EMST(V) in
each batch. Let ER = e1, . . . , em be the edges of RNG(V), sorted by length. To
determine whether an edge ei ∈ ER is in EMST(V), we apply Observation 3.3,
i.e., we determine whether the endpoints of ei are on two distinct face-cycles of
the corresponding RNGi. To do this, we process ER in batches of s edges, and
for each edge, we perform a walk along the face-cycle that contains one endpoint

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 115

Fig. 3. A schematic drawing of RNGi is shown in black. The endpoint w = u, v of ej
identifies the half-edges pw and sw as the predecessor and the successor of ej . They are
shown in green and blue, respectively. (Color figure online)

of ei until we either encounter the other endpoint of ei or until we are back at
the starting point of our walk.

More precisely, we proceed as follows: first, we use Lemma 3.2 to find the next
batch ei, . . . , ei+s−1 of s edges in ER, in O(n2 log s/s) time. For each such edge
ej , we pick an endpoint uj ∈ V . Using Lemma 3.1, we find for each uj first the
incident edges in RNG(V), and then the incident edges in RNGj (by comparing
the edges from RNG(V) with ej). Then, we identify the successor of each ej in
RNGj (if it exists), and we perform s parallel walks, where walk j takes place in
RNGj . In each step, we have s current half-edges, and we use Lemmas 3.1 and 3.4
to advance each half-edge along its face-cycle. This takes O(n log s) operations.
A walk j continues until we either encounter the other endpoint of ej or until we
arrive at the predecessor of ej in RNGj . In the latter case, ej is in EMST(V),
and we report it. In the former case, ej is not in EMST(V). Since there are O(n)
half-edges in RNG(V), it takes O(n) steps to conclude all the walks. If follows
that we can process a single batch of edges in O(n2 log s) time. We have O(n/s)
many batches, so the total running time of the algorithm is O(n3 log s/s), using
O(s) words of workspace. �	

Theorem 3.5 is clearly not optimal: for the case of linear space s = n, we get
a running time of O(n2 log n), although we know that it should take O(n log n)
time to find EMST(V). Can we do better? The bottleneck in Theorem 3.5 is the
time needed to perform the walks in the partial relative neighborhood graphs
RNGj . In particular, such a walk might take up to Ω(n) steps, leading to a
running time of Ω(n2 log s) for processing a single batch. To avoid this, we will
maintain a compressed representation of the partial relative neighborhood graphs
that allow us to reduce the number of steps in each walk to O(n/s).

Let i ∈ {1, . . . , m}. An s-net N for RNGi is a collection of half-edges, called
net-edges, in RNGi that has the following two properties: (i) each face-cycle in
RNGi with at least �n/s + 1 half-edges contains at least one net-edge; and (ii)
for any net-edge −→e ∈ N , let C be the face-cycle of RNGi with −→e . Then, between

116 B. Banyassady et al.

the head of −→e and the tail of the next net-edge on C, there are at least �n/s and
at most 2�n/s other half-edges on C. Note that the next net-edge on C after−→e could be possibly −→e itself. In particular, this implies that face-cycles with
less than �n/s edges contain no net-edge. The following observation records two
important properties of s-nets.

Observation 3.6. Let i ∈ {1, . . . , m}, and let N be an s-net for RNGi. Then,
(N1) N has O(s) half-edges; and (N2) let

−→
f be a half-edge of RNGi, and let C

be the face-cycle that contains it. Then, it takes at most 2�n/s steps along C

from the head of
−→
f until we either reach a net-edge or the tail of

−→
f .

Proof. Property (ii) implies that only face-cycle of RNGi with at least �n/s+1
half-edges contain net-edges. Furthermore, on these face-cycles, we can uniquely
charge Θ(n/s) half-edges to each net-edge, again by (ii). Thus, since there are
O(n) half-edges in total, we have the first statement |N | = O(s).

For the second statement, we first note that if C contains less than 2�n/s
half-edges, the claim holds trivially. Otherwise, C contains at least one net-edge,
by property (i). Now, property (ii) shows that we reach a net-edge in at most
2�n/s steps from

−→
f . �	

By Observation 3.6, we can store an s-net in O(s) words of workspace. This
makes the concept of s-net useful in our time-space trade-off. Now, we can use
the s-net in order to speed up the processing of a single batch. The next lemma
shows how this is done:

Lemma 3.7. Let i ∈ {1, . . . , m}, and let Ei,s = ei, . . . , ei+s−1 be a batch of s
edges from ER. Suppose we have an s-net N for RNGi in our workspace. Then,
we can determine which edges from Ei,s belong to EMST(V), using O(n2 log s/s)
time and O(s) words of workspace.

Proof. Let F be the set of half-edges that contains all net-edges from N , as well
as, for each batch-edge ej ∈ Ei,s, the two successors of ej in RNGi, one for each
endpoint of ej . By definition, we have |F | = O(s), and it takes O(n log s) time
to compute F , using Lemma 3.1. Now, we perform parallel walks through the
face-cycles of RNGi, using Lemmas 3.1 and 3.4. We have one walk for each half-
edge in F , and each walk proceeds until it encounters the tail of a half-edge from
F (including the starting half-edge itself). By Lemma 3.4, in each step of these
parallel walks we need O(n log s) time to find the next edge on the face-cycle
and then we need O(s log s) time to check whether these new edges are in F .
Because F contains the net-edges of N , by property (N2), each walk finishes
after O(n/s) steps, and thus the total time for this procedure is O(n2 log s/s).

Next, we build an auxiliary undirected graph H, as follows: the vertices of
H are the endpoints of the half-edges in F . Furthermore, H contains undirected
edges for all the half-edges in F and additional compressed edges, that represent
the outcomes of the walks: if a walk started from the head u of a half-edge in F
and ended at the tail v of a half-edge in F , we add an edge from u to v in H,
and we label it with the number of steps that were needed for the walk. Thus, H

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 117

contains F -edges, and compressed edges; see Fig. 4. Clearly, after all the walks
have been performed, we can construct H in O(s) time, using O(s) words of
workspace.

Fig. 4. (a) A schematic drawing of RNGi is shown in gray. The half-edges of N are
in black and the edges of the next batch Ei,s are dashed red segments. (b) The auxil-
iary graph H including the batch-edges (in red). The graph H contains the net-edges
(in black), and the successors of batch-edges and the compressed edges (which are
combined in green paths in this picture). (Color figure online)

Next, we use Kruskal’s algorithm to insert the batch-edges of Ei,s into H.
This is done as follows: we determine the connected components of H, in O(s)
time using depth-first search. Then, we insert the batch-edges into H, one after
another, in sorted order. As we do this, we keep track of how the connected
components of H change, using a union-find data structure [14]. Whenever a new
batch-edge connects two different connected components, we output it as an edge
of EMST(V). Otherwise, we do nothing. Note that even though H may have a lot
more components than RNGi, the algorithm is still correct, by Observation 3.3.
This execution of Kruskal’s algorithm, and updating the structure of connected
components of H takes O(s log s) time, which is dominated by the running time
of O(n2 log s/s) from the first phase of the algorithm. �	

Finally, we need to explain how to maintain the s-net during the algorithm.
The following lemma shows how we can compute an s-net for RNGi+s, provided
that we have an s-net for RNGi and the graph H described in the proof of
Lemma 3.7, for each i ∈ {1, . . . , m}.

Lemma 3.8. Let i ∈ {1, . . . , m}, and suppose we have the graph H derived from
RNGi as above, such that all batch-edges have been inserted into H. Then, we
can compute an s-net N for RNGi+s in time O(n2 log s/s), using O(s) words of
workspace.

Proof. By construction, all big face-cycles of RNGi+s, which are the faces with
at least �n/s + 1 half-edges appear as faces in H. Thus, by walking along all
faces in H, and taking into account the labels of the compressed edges, we can

118 B. Banyassady et al.

determine these big face-cycles in O(s) time. The big face-cycles are represented
through sequences of F -edges, compressed edges, and batch-edges. For each such
sequence, we determine the positions of the half-edges for the new s-net N , by
spreading the half-edges equally at distance �n/s along the sequence, again
taking the labels of the compressed edges into account. Since the compressed
edges have length O(n/s), for each of them, we create at most O(1) new net-
edges. Now that we have determined the positions of the new net-edges on the
face-cycles of RNGi+s, we perform O(s) parallel walks in RNGi+s to actually
find them. Using Lemma 3.4, this takes O(n2 log s/s) time. �	

We now have all the ingredients for our main result which provides a smooth
trade-off between the cubic time algorithm in constant workspace and the clas-
sical O(n log n) time algorithm with O(n) words of workspaces.

Theorem 3.9. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. We can output all the edges of EMST(V), in
sorted order, in O(n3 log s/s2) time using O(s) words of workspace.

Proof. This follows immediately from Lemmas 3.7 and 3.8, because we need to
process O(n/s) batches of edges from ER. �	

For our algorithm, it suffices to update the s-net every time that a new batch
is considered. It is however possible to maintain the s-net and the auxiliary graph
H through insertions of single edges. This allows us to handle graphs constructed
incrementally and maintain their compact representation using O(s) workspace
words. We believe this is of independent interest and can be used by other
algorithms for planar graphs in the limited-workspace model.

Acknowledgments. This work was initiated at the Fields Workshop on Discrete and
Computational Geometry, held July 31–August 04, 2017, at Carleton university. The
authors would like to thank them and all the participants of the workshop for inspiring
discussions and for providing a great research atmosphere.

References

1. Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangu-
lations of points in the plane. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS,
vol. 10392, pp. 3–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62389-4 1

2. Aronov, B., Korman, M., Pratt, S., van Renssen, A., Roeloffzen, M.: Time-space
trade-offs for triangulating a simple polygon. In: Proceedings of the 15th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT), pp. 30:1–30:12
(2016)

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

4. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz,
A.: Memory-constrained algorithms for simple polygons. Comput. Geom. 46(8),
959–969 (2013)

https://doi.org/10.1007/978-3-319-62389-4_1
https://doi.org/10.1007/978-3-319-62389-4_1

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees 119

5. Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors
problems. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol.
8037, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40104-6 6

6. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. J. Comput. Geom. 2(1), 46–68 (2011)

7. Bahoo, Y., Banyassady, B., Bose, P., Durocher, S., Mulzer, W.: Time-space trade-
off for finding the k -visibility region of a point in a polygon. In: Poon, S.-H.,
Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 308–319.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6 24

8. Banyassady, B., Korman, M., Mulzer, W., van Renssen, A., Roeloffzen, M.,
Seiferth, P., Stein, Y.: Improved time-space trade-offs for computing Voronoi dia-
grams. In: Proceedings of the 34th Symposium on Theoretical Aspects of Computer
Science (STACS), pp. 9:1–9:14 (2017)

9. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time
trade-offs for stack-based algorithms. Algorithmica 72(4), 1097–1129 (2015)

10. Barba, L., Korman, M., Langerman, S., Silveira, R.I.: Computing a visibility poly-
gon using few variables. Comput. Geom. 47(9), 918–926 (2014)

11. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.H.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

12. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discrete Comput.
Geom. 37(1), 79–102 (2007)

13. Chan, T.M., Munro, J.I., Raman, V.: Selection and sorting in the “restore” model.
In: Proceedings of the 25th Annual ACM-SIAM symposium Discrete Algorithms
(SODA), pp. 995–1004 (2014)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

15. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull prob-
lem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284–295.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 24

16. Har-Peled, S.: Shortest path in a polygon using sublinear space. J. Comput. Geom.
7(2), 19–45 (2016)

17. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. Proc. IEEE 80, 1502–1517 (1992)

18. Korman, M., Mulzer, W., van Renssen, A., Roeloffzen, M., Seiferth, P., Stein, Y.:
Time-space trade-offs for triangulations and Voronoi diagrams. Comput. Geom.
(2017, to appear)

19. Mitchell, J.S.B., Mulzer, W.: Proximity algorithms. In: Goodman, J.E., O’Rourke,
J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn,
pp. 849–874. CRC Press, Boca Raton (2017)

20. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoret.
Comput. Sci. 12(3), 315–323 (1980)

21. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theoret. Comput. Sci. 165(2), 311–323 (1996)

22. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proceedings of
the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 264–268 (1998)

23. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)
24. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern

Recogn. 12(4), 261–268 (1980)

https://doi.org/10.1007/978-3-642-40104-6_6
https://doi.org/10.1007/978-3-642-40104-6_6
https://doi.org/10.1007/978-3-319-53925-6_24
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-662-44777-2_24

Approximate Nearest Neighbor Search for
�p-Spaces (2 < p < ∞) via Embeddings

Yair Bartal1 and Lee-Ad Gottlieb2(B)

1 Hebrew University, Jerusalem, Israel
yair@cs.huji.ac.il

2 Ariel University, Ariel, Israel
leead@ariel.ac.il

Abstract. While the problem of approximate nearest neighbor search
has been well-studied for Euclidean space and �1, few non-trivial algo-
rithms are known for �p when 2 < p < ∞. In this paper, we revisit this
fundamental problem and present approximate nearest-neighbor search
algorithms which give the best known approximation factor guarantees
in this setting.

1 Introduction

Nearest neighbor search (NNS) is one of the basic operations computed on data
sets comprising numeric vectors, i.e. points. The problem asks to preprocess a d-
dimensional set V of n = |V | vectors residing in a certain space M , so that given
a new query point q ∈ M , a point nearest to q in V can be located efficiently. This
problem has applications in data mining, database queries and related fields.

When the ambient space M is a high-dimensional �p-space,1 NNS may require
significant computation time, and this is due to the inherent complexity of the
metric. For example, for Euclidean vectors (�2-space), Clarkson [12] gave an
O(n�d/2�(1+δ)) size data structure that answers exact NNS queries in O(log n)
time (with constant factors in the query time depending on constant δ > 0), and
claimed that the exponential dependence on d is a manifestation of Bellman’s [7]
“curse of dimensionality.” This has led researchers to consider the c-approximate
nearest neighbor problem (ANN), where the goal is to find a point in V whose
distance to q is within a factor c of the distance to q’s true nearest neighbor in V .
In the Euclidean setting, celebrated results of Kushilevitz, Ostrovsky and Rabani
[27] (see also [31,32]) and Indyk and Motwani [18,22] achieved polynomial-size
data structures which return a (1 + ε)-ANN in query time polynomial in d log n
(when ε > 0 is any constant). These results can be extended to all �p with
1 ≤ p ≤ 2.

Y. Bartal is supported in part by an Israel Science Foundation grant #1817/17.
L.-A. Gottlieb is supported in part by an Israel Science Foundation grant #755/15.

1 This is a space equipped with a Minkowski norm, which defines the distance between
two d-dimensional vectors x, y as ‖x − y‖p = (

∑d
i=1 |xi − yi|p)1/p.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 120–133, 2018.
https://doi.org/10.1007/978-3-319-77404-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_10&domain=pdf

Approximate Nearest Neighbor Search 121

However, the more difficult regime of p > 2 is significantly less well under-
stood. Recalling that for any vector v and p > 2, d

1
p− 1

2 ‖v‖2 ≤ ‖v‖p ≤ ‖v‖2, we
conclude that simply running an �2 ANN algorithm on V ⊂ �p (that is, treat-
ing V as if it resided in �2) will return an O(d

1
2− 1

p)-ANN in time polynomial
in d log n. If we allow exponential space, then a (1 + ε)-ANN can be found in
query time O(d log n) and space ε−O(d)n by utilizing an approximate Voronoi
diagram (AVD) [4,18] (These structures were developed for Euclidean spaces,
but apply to all �p, p ≥ 1 as well [20].) For �∞, Indyk [21] gave a polynomial-size
structure which answers O(log log d)-approximate queries in d logO(1) n query
time, and remarkably there are indications that this bound may be optimal [2].
Since for any vector v we have ‖v‖∞ ≤ ‖v‖p ≤ d1/p‖v‖∞, Indyk’s �∞ struc-
ture gives a O(d1/p log log d)-ANN algorithm for all p > 2, and in particular an
O(log log d)-ANN whenever p = Ω(log d). Finally, Andoni [3] gave an embedding-
based algorithm for p > 2 which combined with Indyk’s result for l∞ returns an
O(log log d�log1/p

t n�)-ANN in time O(td log2 n) for any t > 2.

Our contributions. We revisit the problem of ANN in �p spaces for 2 < p <
∞, and give improvements over what was previously known. Note that the �p-
norm for this regime finds application in fields such as image resolution [16,17],
time-series comparison [33], and k-means clustering [14]. We are interested in
polynomial-size structures that have query time polynomial in d log n (with both
space and query time independent of p). Hence we shall make the simplifying
assumptions2 that d = ω(log n) and d = no(1).

In Sect. 2.1, we give a simple presentation of Andoni’s algorithm for �p

spaces, showing how the max-stability property of Fréchet random variables
can be exploited to give a randomized embedding from �p into �∞ that is non-
contractive and has small expansion. By running Indyk’s �∞ algorithm on the
embedded space, Andoni obtains the approximation and runtime stated above;
taking t = dO(1) gives a O(log log d�log1/p

d n�)-ANN in time polynomial in d log n.
Our first contribution (Sect. 2.2) is to improve on Andoni’s result for subspaces
of low intrinsic dimension, where we remove the dependence on log n in the
approximation and replace it with a similar dependence on the doubling dimen-

sion of the subspace. We show that a O

(
log log d ·

⌈
ddim log ddim

log d

⌉1/p
)

-ANN can

be found in polynomial time.
Having improved on Andoni’s approach, which is based on Indyk’s �∞ algo-

rithm, we proceed to introduce an embedding which greatly extends the range of
p for which the �2 algorithms are applicable. In Sect. 3, we introduce the Mazur
map as an algorithmic tool. This mapping allows us to embed �p into �2, and we

2 If d = O(log n) then AVDs may be used, and if d = nΩ(1) then comparing the query
point q to each point in V in a brute-force manner can be done in O(dn) = dO(1)

time. (We recall also that there exists an oblivious mapping for all �p that embeds �m
p

into �d
p for d =

(
n
2

)
dimensions [5,15].) We also assume that d = 2o(ddim), as otherwise

a constant-factor approximation can be computed in polynomial time [13,19].

122 Y. Bartal and L.-A. Gottlieb

then solve ANN in the embedded space. Although the Mazur map induces distor-
tion dependent on the diameter of the set, thereby confounding the ANN search,
we show that the mapping can be applied to small low-diameter subproblems.
Our final result is a polynomial-size structure which answers 2O(p)-approximate
queries in time polynomial in d log n (Theorem 5). This yields non-trivial results
for small p. Comparing this result with Andoni’s algorithm:

– When p = O(log log log d +
√

log logd n), the 2O(p)-ANN algorithm is best.
– When p = Ω(log log log d +

√
log logd n), the O(log log d log1/p

d n)-ANN algo-
rithm is best.

Note that the worst case is when p = Θ(log log log d +
√

log logd n), where the

approximation ratio is 2O(p) = log log d · 2O(
√

log logd n). This provides the first
sub-logarithmic approximation bound for all values of p. When our doubling
dimension bounds are taken into account, the worst case is achieved at p =
O(log log log d +

√
log(ddim / log d)), where the approximation ratio is log log d ·

2O(
√

log(ddim / log d)).

1.1 Related Work

For Euclidean space, Chan [11] gave a deterministic construction which gives an
O(d3/2)-ANN, in time O(d2 log n) and using polynomial space (see also [8]). For
�p (p ≥ 1), Neylon [30] gave an O(d)-ANN structure which runs in O(d2 log n)
time and uses Õ(dn) space.

For ANN in general metric spaces, Krauthgamer and Lee [26] showed that
the doubling dimension can be used to control the search runtime: For a metric
point set S, they constructed a polynomial-size structure which finds an O(1)-
ANN in time 2O(ddim(S)) log Δ, where Δ = Δ(S) is the aspect ratio of S, the
ratio between the maximum and minimum inter-point distances in S. The space
requirements of this data structure were later improved by Beygelzimer et al.
[9]. Har-Peled and Mendel [19] and Cole and Gottlieb [13] showed how to replace
the dependence on log Δ with dependence on log n.

Subsequent to the public dissemination of our Mazur map algorithm, Naor
and Rabani informed us that they independently discovered a NNS algorithm for
p > 2, also using the Mazur map [29] (mentioned in [28, Remark 4.2]). We defer
a detailed comparison until their algorithm is publicized. In personal communi-
cation, Assaf Naor broached the question of better dependence on p in the 2O(p)

approximation bound of Theorem5. He noted that all uniform embeddings of �p

(p > 2) into �2 (such as the Mazur map) possess distortion exponential in p [28,
Lemma 5.2], although non-uniform embeddings of �p into �2 may possess better
distortion bounds. We have somewhat mitigated this problem by combining our
algorithm with that of Andoni, which is an embedding into �∞.

1.2 Preliminaries

Embeddings and metric transforms. A much celebrated result for dimension
reduction is the well-known l2 flattening lemma of Johnson and Lindenstrauss

Approximate Nearest Neighbor Search 123

[24]: For every n-point subset of l2 and every 0 < ε < 1, there exists a mapping
into lk2 that preserves all inter-point distances in the set within factor 1+ε, with
target dimension k = O(ε−2 log n).

Following Batu et al. [6], we define an oblivious embedding to be an embed-
ding which can be computed for any point of a database or query set, without
knowledge of any other point in these sets. (This differs slightly from the defini-
tion put forth by Indyk and Naor [23].) Familiar oblivious embeddings include
standard implementations of the Johnson-Lindenstrauss transform for l2 [24], the
dimension reduction mapping of Ostrovsky and Rabani [32] for the Hamming
cube, and the embedding of Johnson and Schechtman [25] for �p, p ≤ 2.

An embedding of X into Y with distortion D is a mapping f : X → Y such
that for all x, y ∈ X, 1 ≤ c · dY (f(x),f(y))

dX(x,y) ≤ D, where c is any scaling constant.
An embedding is non-contractive if this holds with c ≤ 1, and non-expansive (or
Lipschitz) if c ≥ D.

Doubling dimension. For a metric M , let λ > 0 be the smallest value such that
every ball in M can be covered by λ balls of half the radius. λ is the doubling
constant of M , and the doubling dimension of M is ddim(M) = log2 λ. Then
clearly ddim(M) = O(log n). Note that while a low �p vector dimension implies a
low doubling dimension – simple volume arguments demonstrate that �p metrics
(p ≥ 1) of dimension d have doubling dimension O(d) – low doubling dimension is
strictly more general than low �p dimension. We will often use the notation ddim
when the ambient space is clear from context. The following packing property
can be shown (see for example [26]):

Lemma 1. Suppose that S ⊂ M has minimum inter-point distance α, and let

diam(S) be the diameter of S. Then |S| ≤
(

2 diam(S)
α

)ddim(M)

.

Nets and hierarchies. Given a point set S residing in metric space M , S′ ⊂ S
is a γ-net of S if the minimum inter-point distance in S′ is at least γ, while the
distance from every point of S to its nearest neighbor in S′ is less than γ. Let S
have minimum inter-point distance 1. A hierarchy is a series of �log Δ� nets (Δ
being the aspect ratio of S), where each net Si is a 2i-net of the previous net Si−1.
The first (or bottom) net is S0 = S, and the last (or top) net St contains a single
point called the root. For two points u ∈ Si and v ∈ Si−1, if d(u, v) < 2i then we
say that u covers v, and this definition allows v to have multiple covering points
in 2i. The closest covering point of v is its parent. The distance from a point in
Si to its ancestor in Sj (j > i) is at most

∑j
k=i+1 2k = 2 · (2j − 2i+1) < 2 · 2j .

Given S, a hierarchy for S can be built in time min{2O(ddim)n,O(n2)} (where
n = |S|), and this term also bounds the space needed to store the hierarchy
[13,19,26]. (This stored hierarchy is compressed, in that points which do not
cover any other points in the previous net may be represented implicitly.) Sim-
ilarly, we can maintain links from each hierarchical point in Si to all neighbors
in net Si within distance c · 2i, and this increases the space requirement to

124 Y. Bartal and L.-A. Gottlieb

min{cO(ddim)n,O(n2)}. From a hierarchy, a net-tree may be extracted by plac-
ing an edge between each point p ∈ Si and its parent in Si+1 [26]. The height of
the (compressed) tree is bounded by O(min{n, log Δ}).

Near neighbor problem. A standard technique for ANN on set V ⊂ �p is the
reduction of this problem to that of solving a series of so-called approximate
near neighbor problems [18,22,27] (also called the Point Location in Equal Balls
problem). The c-approximate near neighbor problem for a fixed distance r and
parameter c > 1 is defined thus:

– If there is a point in V within distance r of query q, return some point in V
within distance cr of q.

– If there is no point in V within distance r of query q, return null or some
point in V within distance cr of q.

For example, suppose we had access to an oracle for the c-approximate near
neighbor problem. If we preprocess a series of oracles for the O(log Δ) values
r = {diam(V), diam(V)

2 , diam(V)
4 , . . .}, and query them all, then clearly one of

these queries would return a 2c-ANN of q. In particular, if r′ is the distance
from q to its nearest neighbor in V , then the oracle query for the value for r
satisfying r′ ≤ r < 2r′ would return such a solution. Further, it suffices to seek
the minimum r that returns an answer other then null. Then we may execute a
binary search over the candidate values of r, and so O(log log Δ) oracle queries
suffice.

Har-Peled et al. [18] show that for all metric spaces, the ANN problem can be
solved by making only O(log n) queries to oracles for the near neighbor problem.
The space requirement is O(log2 n) times that required to store a single oracle.
The reduction incurs a loss in the approximation factor, but this loss can be
made arbitrarily small. In Sect. 3, we will require a more specialized reduction,
where we allow near neighbor oracle queries only on problem instances that have
constant aspect ratio.

2 ANN for �p-Space via Embedding into �∞

In this section, we first review the the algorithm of Andoni (Sect. 2.1), which
includes his embedding from �p-space into �∞ and utilization of Indyk’s �∞
ANN structure. We then refine this technique in Sect. 2.2 to give distortion that
depends on the doubling dimension of the space instead of its cardinality.

2.1 Embedding into �∞

Here we show that any n-point �d
p space admits an oblivious embedding into �d

∞
with favorable properties: The embedding is non-contractive with high probabil-
ity, while the interpoint expansion is small. Hence the embedding approximately
preserves the nearest neighbor for a fixed query point q, and keeps more distant
points far away. This implies that Indyk’s �∞ ANN algorithm can be applied to
all �p.

Approximate Nearest Neighbor Search 125

Max-stability. The embedding utilizes max-stable random variables, specifically
those drawn from a Fréchet distribution: Having fixed p, the Fréchet random
variable Z obeys for all x > 0, Pr[Z ≤ x] = e−x−p

. We state the well-known
max-stability property of the Fréchet distribution:

Fact 1. Let random variables X,Z1, . . . , Zd be drawn from the above Fréchet
distribution, and let v = (v1, . . . , vd) be a non-negative valued vector. Then the
random variable Y := maxi{viZi} is distributed as ‖v‖p · X (that is, Y ∼ ‖v‖p ·
X).

To see this, observe that Pr[Y ≤ x] = Pr[maxi{viZi} ≤ x] = Πi Pr[viZi ≤
x] = Πi Pr[Zi ≤ x/vi] = Πie

−(vi/x)p = e−(
∑

i vp
i)/xp

= e−(‖v‖p/x)p . And sim-
ilarly, Pr[‖v‖p · X ≤ x] = Pr[X ≤ x/‖v‖p] = e−(‖v‖p/x)p . So indeed the two
random variables have the same distribution.

Embedding into �∞. Given set V ⊂ �p of d-dimensional vectors, the embedding
fb : V → �∞ (for any constant b > 0) is defined as follows: First, we draw d
Fréchet random variables Z1, . . . , Zd from the above distribution. Embedding fb

maps each vector v ∈ V to vector fb(v) = (bv1Z1, . . . , bvdZd). The resulting set
is V ′ ∈ �∞. Clearly, the embedding can be computed in time O(d) per point. We
prove the following lemma.

Lemma 2. For all p ≥ 1, embedding fb applied to set V ⊂ �p, for b = (3 ln n)1/p

and t > 2, satisfies

– Contraction: fb is non-contractive with probability at least 1 − 1
n .

– Expansion: For any pair u,w ∈ V , ‖fb(u) − fb(w)‖∞ ≤ b
ln1/p t

‖u − w‖p with
probability 1

t .

Proof. Consider some vector v with ‖v‖p = 1. Then by Fact 1, ‖fb(v)‖∞ ∼
b‖v‖p · X = b · X, where X is a Fréchet random variable drawn from the above
distribution. Then Pr[‖fb(v)‖∞ < 1] = Pr[b ·X < 1] = e−(1/b)−p

= 1
n3 . Since the

embedding is linear, v may be taken to be any inter-point distance between two
vectors in V (v = u−w

‖u−w‖p
), and so the probability that any inter-point distance

decreases is less than n2 · 1
n3 = 1

n . Also, Pr[‖fb(v)‖∞ ≤ b
ln1/p t

] = 1
t , and so for

any vector pair u,w ∈ V we have Pr[‖fb(u) − fb(w)‖∞ ≤ b
ln1/p t

‖u − w‖p] = 1
t .

Indyk’s near neighbor structure is given a set V ∈ �∞ and distance r, and
answers O(log log d)-near neighbor queries for distance r in time O(d log n) and
space n1+δ, where δ is an arbitrarily small constant (that affects the approxima-
tion bounds). Combining this structure and Lemma2, we have:

Corollary 1. Given set V ⊂ �p for p > 2 and a fixed distance r, and 2 < t < n,
there exists a data structure of size and preprocessing time n1+δ (for arbitrarily
small constant δ) that solves the O(log log d log1/p

t n)-approximate near neighbor
problem for distance r with query time O(d log n), and is correct with probability
at least 1

t − 1
n .

126 Y. Bartal and L.-A. Gottlieb

Proof. Given a set V and distance r, we preprocess the set by computing the
embedding of Lemma 2 for each point. On the resulting set we precompute
Indyk’s structure for distance r′ = O(log1/p

t n) · r. Given a query point q, we
embed the query point and query Indyk’s structure. The space and runtime
follow.

For correctness, by the guarantees of Lemma 2, if ‖q−v‖p ≤ r for some point
v ∈ V , then under the expansion guarantee of the mapping, their �∞ distance is
at most 2(3 lnn)1/p

ln1/p t
· r ≤ r′, so the structure does not return null. On the other

hand, if the embedding succeeds then it is non-contractive, and so any returned
point must be within �p distance O(log log d) · r′ of q. The probability follows
from the contraction and expansion guarantees of Lemma2.

Finally, we use the near neighbor algorithm to solve the ANN problem, which
was our ultimate goal:

Theorem 2. Given set V ⊂ �p for p > 2 and any 2 < t < n
2 , there exists a data

structure of size and preprocessing time n1+δ (for arbitrarily small constant δ)
which returns an O(log log d log1/p

t n)-ANN in time O(td log2 n log log n), and is
correct with constant probability.

Proof. We invoke the reduction of Har-Peled et al. [18] to reduce ANN to
O(log n) near neighbor queries. We require that all O(log n) queries succeed
with constant probability, hence each near neighbor query must be correct with
probability 1−O

(
1

log n

)
. Each near neighbor query is resolved by preprocessing

and querying O(t log log n) independent structures of Corollary 1. The probabil-
ity that all these structures fail simultaneously is at most (1− 1

t + 1
n)O(t log log n) ≤

(1 − 1
2t)

O(t log log n) = O
(

1
log n

)
, and so at least one is correct with the desired

probability. The runtime follows.
The reduction of [18] increases the space usage by a factor of O(log2 n),

and the additional oracles by a factor of O(t log log n), but these increases are
subsumed under the constant δ in the exponent.

When p = Ω(log log n), the construction of Andoni recovers the O(log log d)-
approximation guarantees of Indyk’s �∞ structure, previously known to extend
only to p = Ω(log d)).

Comment. For constant values of t, one can achieve a better runtime than
implied by Theorem2: Note that for embedding fb in Lemma 2, we have that
‖fb(u) − fb(w)‖∞ ≤ 2b‖u − w‖p with probability at least 1 − 2−p. Then in
place of Corollary 1, we have a data structure of size n1+δ that solves the
O(log log d log1/p n)-approximate near neighbor problem for distance r with
query time O(d log n), and is correct with probability at least 1 − 1

n − 1
2p .

An analysis similar to that of Theorem 2 – but using O(�log2p log n�) =
O

(⌈
log log n

p

⌉)
substructures – gives a data structure of size n1+δ which returns

an O(log log d log1/p n)-ANN in time O(d log2 n) · ⌈
log log n

p

⌉
, and is correct with

constant probability.

Approximate Nearest Neighbor Search 127

2.2 Embedding with Distortion Dependent on the Doubling
Dimension

Here we give an ANN algorithm whose approximation factor depends on the
doubling dimension, instead of the cardinality of the space. We begin with a
statement that applies only to nets. Our approach is motivated by a technique
for low-dimensional Euclidean embeddings that appeared in [23].

Lemma 3. Let set V ⊂ �p have minimum inter-point distance 1, and let q ∈ �p

be any query point. Let ddim ≥ 2 be the doubling dimension of V ∪ {q}, and fix
any value c ≥ 4. For all p ≥ 1, embedding f1 (of Lemma 2) applied to set V ∪{q}
satisfies

– Contraction: Let W ⊂ V include all points at distance at least h =
c(4 ddim ln(16cddim))1/p from q. Then minv∈W ‖f1(q) − f1(v)‖∞ > c, with
probability at least 1 − ddim− ddim.

– Expansion: For any pair v, w ∈ V ∪ {q} and t > 1, ‖f1(v) − f1(w)‖∞ ≤
1

ln1/p t
‖v − w‖p with probability 1

t .

Proof. Let Wi ⊂ W include all points with distance to query point q in the range
[2i, 2i+1). Since W has minimum inter-point distance 1 and diameter less that
2i+1, Lemma 1 implies that |Wi| ≤ 2(i+2) ddim. Let Ei be the bad event that Wi

contains any point v ∈ Wi for which ‖f1(v) − f1(q)‖∞ ≤ c.
Set j = log h, so that all points in W are found in sets Wj+k for integral

k ≥ 0. For any point v ∈ Wj+k the probability that the distance from q to v

contracts to c or less is Pr[‖f1(v) − f1(q)‖∞ ≤ c] = e−(‖v−q‖p/c)p ≤ e−(2j+k/c)p .
Hence, the probability of bad event Ej+k is at most

Pr[Ej+k] ≤ |Wj+k| · e−(2j+k/c)p = 2(j+k+2) ddime−(2j+k/c)p ≤ e−(2j+k/c)p/2

< ddim−2 ddim ·2k

where the penultimate inequality follows from the fact that for all x ≥ h we
have (x/c)p ≥ 2 ddim(log x + 2). The probability that any point in W con-
tracts to within distance c of q is at most

∑∞
k=0 Ej+k <

∑∞
k=0 ddim−2 ddim ·2k <

ddim− ddim, as claimed. The expansion guarantee follows directly from Fact 1.

As before, Lemma 3 can be used to solve the near neighbor problem:

Corollary 2. Given set V ⊂ �p for p > 2, a distance r and any 1 < t <

ddimddim, there exists a data structure of size and preprocessing time n1+δ (for

arbitrarily small constant δ) which solves the O

(
log log d

(
ddim log ddim)

log t

)1/p
)
-

approximate near neighbor problem for distance r in time O(d log n), and is
correct with probability 1

t − ddim− ddim.

Proof. Given a set V and distance r, we preprocess the set by extracting an r-net,
and then scaling down the magnitude of all vectors by r, so that the resulting

128 Y. Bartal and L.-A. Gottlieb

set has minimum inter-point distance 1. We then compute the embedding of
Lemma 3 into �∞ for each net-vector, and precompute Indyk’s �∞ structure for
distance 2

ln1/p t
. Given a query point q, we scale it down by r, embed it into �∞

using the same embedding as before, and query Indyk’s structure on distance
2

ln1/p t
. The space and runtime follows.

For correctness, let ‖q − v‖p ≤ r for some point v ∈ V . After extracting
the net, some net-point w satisfied ‖w − v‖p ≤ r, and so ‖q − w‖p ≤ 2r.
After scaling, we have ‖q − w‖p ≤ 2, and after applying the embedding into
�∞, ‖q − w‖p ≤ 2

ln1/p t
with probability at least 1

t . In this case Indyk’s near
neighbor structure must return a point within distance O(log log d) of q in the
embedded space (that is �∞). By the contraction guarantees of Lemma 3 (taking
c = Θ

(
log log d
log1/p t

)
and assuming d = 2o(ddim)), the distance from the returned

point to q in the scaled �p space is at most O

(
log log d ·

(
ddim log ddim

log t

)1/p
)

,

and so it is an O

(
log log d ·

(
ddim log ddim

log t

)1/p
)

-approximate near neighbor in

the origin space.

Similar to the derivation of Theorem2, we have:

Theorem 3. Given set V ⊂ �p for p > 2 and any 1 < t < ddimddim,
there exists a data structure of size and preprocessing time n1+δ (for arbitrar-

ily small constant δ) which returns an O

(
log log d ·

(
ddim log ddim

log t

)1/p
)
-ANN in

time O(td log2 n log log n) and is correct with positive constant probability.

For constant t, we have that when p = Ω(log ddim) we recover the
O(log log d)-approximation of Indyk, and this improves upon the p = Ω(log log n)
guarantee of the previous section.

3 ANN for �p-Space via Embedding into �2

In this section, we show that an embedding from �p (p > 2) into �2 can be used
to derive a 2O(p)-ANN in logarithmic query time.

We review the guarantees of the Mazur map below, and show it can be used
as an embedding into �2. We then solve the ANN problem in the embedded
space. This is however non-trivial, as the map incurs distortion that depends on
the set diameter, a problem we address below.

3.1 The Mazur Map

The Mazur map for the real valued vectors is defined as a mapping from �m
p

to �m
q (for any 0 < p, q < ∞). The mapping of vector v ∈ �p is defined as

M(v) = {|v(0)|p/q, |v(1)|p/q, . . . , |v(m−1)|p/q}, where v(i) is the i-th coordinate
of v. The following theorem introduces a scaled Mazur map, and is adapted
from [10].

Approximate Nearest Neighbor Search 129

Theorem 4. Let x, y ∈ �p, p < ∞, be vectors such that ‖x‖p, ‖y‖p ≤ C. The
Mazur map for 1 ≤ q < p scaled down by factor p

q Cp/q−1 fulfills the following:

– Expansion: The mapping is non-expansive.
– Contraction: ‖M(x) − M(y)‖q ≥ q

p (2C)1−p/q‖x − y‖p/q
p .

The scaled Mazur map implies an embedding from �p (p > 2) into �2, as in
the following. (See also [28, Lemma 7.6], a significantly more general result.)

Corollary 3. Any subset V ⊂ �p, p < ∞ with ‖x‖p ≤ C for all x ∈ V possesses
an embedding f : V → l2 with the following properties for all x, y ∈ V :

– Expansion: The embedding f is non-expansive.
– Contraction: For ‖x − y‖p = u, ‖f(x) − f(y)‖q ≥ 2

p (2C)1−p/2up/2.

3.2 Nearest Neighbor Search via the Mazur Map

Using the Mazur map, we can give an efficient algorithm for ANN for all p > 2.
Recall that by definition, ddim = O(log n). First we define the c-bounded near
neighbor problem (c-BNN) for c > 9 as follows: For a d-dimensional set V for
which ‖x‖p ≤ c for all x ∈ V , given a query point q:

– If there is a point in V within distance 1 of query q, return some point in V
within distance c

9 of q.
– If there is no point in V within distance 1 of query q, return null or some

point in V within distance c
9 of q.

(The term c
9 was chosen to simplify the calculations below.)

Lemma 4. For c = p18p/2, there exists a data structure for the c-bounded near
neighbor problem for V ⊂ �p, p > 2, that preprocesses V in time and space nO(1),
and resolves a query in time O(d log n) with probability 1 − n−O(1).

Proof. The points are preprocessed by first applying the scaled Mazur map to
embed V into �2 in time O(dn). We then use the Johnson-Lindenstrauss (JL)
transform [24] (or the fast JL transform [1]) to reduce dimension to d′ = O(log n)
with no expansion and contraction less than 1

2 , in time O(dn log n). On the new
space, we construct a data structure of size 2O(d′) = nO(1) supporting Euclidean
2-approximate near neighbor queries in O(d′ log n) time per query [18,27].

Given a query point q, we apply the Mazur map and JL transform on the
new point in time O(d log n), and use the resulting vector as a query for the 2-
approximate near neighbor algorithm on the embedded space in time O(d′ log n).
If the point x returned by this search satisfies ‖q − x‖p ≤ c

9 then we return it,
and otherwise we return null.

To show correctness: The Mazur map is non-expansive, as is the JL
transform (which is correct with probability 1 − n−O(1)). By Corollary 3, the
Mazur map ensures that inter-point distances of c

9 or greater map to at least

130 Y. Bartal and L.-A. Gottlieb

2
p (2c)1−p/2(c/9)p/2 = 2

p2c18−p/2 = 2
p2(p18p/2)18−p/2 = 4, and then the contrac-

tion guarantee of the JL-transform implies that the distance in the embedded
Euclidean space is greater than 2. It follows that if q possesses a neighbor in
the original space at distance 1 or less, the 2-ANN in the embedded Euclidean
space finds a neighbor at distance 2 in the embedded space and less than c

9 in
the origin space.

We will show that an oracle solving c-BNN can be used as a subroutine
for a data structure solving the c-approximate nearest neighbor problem. This
parallels the classical reduction from ANN to the near neighbor problem utilized
above. However, in order to minimize the distortion introduced by the Mazur
map we must restrict the oracle to bounded diameter sets, and this results in a
different reduction, adapted from [26].

Theorem 5. Let V and c be as in Lemma 4. There exists a data structure for the
6c = 6p18p/2-ANN problem on V , which preprocesses min{2O(ddim)n,O(n2)} ·⌈
log log d
p ddim

⌉
separate c-BNN oracles, each for a subset of V of size at

most z = min{cO(ddim(S)), n}, in total time and space O(znd log log d).
The structure resolves a query with constant probability or correctness
by executing O

(
log d ·

⌈
log log d
log z

⌉)
c-BNN oracle invocations, in total time

O
(
d2 log n + d log d · log z ·

⌈
log log d
log z

⌉)
.

Proof. We preprocess a hierarchy and net-tree for V . Given query point q, we
will seek a hierarchical point w ∈ Sj which satisfies ‖w−q‖p ≤ 3 ·2j , for minimal
j. Note that if such a point w exists, then every hierarchical ancestor w′ ∈ Si

(i > j) of w also satisfies ‖w′ − q‖p ≤ 3 · 2i: We have ‖w′ − w‖p ≤ 2 · 2i − 2 · 2j ,
and so ‖w′ − q‖p ≤ ‖w′ − w‖p + ‖w − q‖p < (2 · 2i − 2 · 2j) + 3 · 2j < 3 · 2i.

To find w, we modify the navigating-net algorithm of Krauthgamer and Lee
[26]: Beginning with the root point at the top level of the hierarchy, we descend
down the levels of the hierarchy, while maintaining at each level Si a single point
of interest t ∈ Si satisfying d(t, q) ≤ 3 · 2i.

Let t ∈ Si be the point of interest in level Si. Then the next point of interest
t′ ∈ Si−1 satisfies ‖t′ − t‖p ≤ ‖t′ − q‖p +‖q − t‖p ≤ 3 ·2i +3 ·2i−1 = 4.5 ·2i. So to
find t′ it suffices to search all points of Si−1 within distance 4.5 ·2i of t. But there
may be 2Θ(ddim) such points, and so we cannot afford a brute-force search on the
set. Instead, we utilize the c-BNN data structure of Lemma 4: For each net-point
t ∈ Si, preprocess a set N(t, i) that includes all these candidate points of Si−1,
as well as all their descendants in the hierarchical level Sk, k = i−�log 4c� within
distance 4.5 · 2i of t. After translating N(t, i) so that t is the origin, and scaling
so that all points have magnitude at most c, we preprocess for N(t, i) the c-BNN
oracle of Lemma 4. (Note that |N(t, i)| = O(w).) To find t′, execute a c-BNN
query on N(t, i) and q, and if the query returns a point q′, then set t′ to be the
ancestor of q′ in Si−1: ‖t′ −q‖p ≤ ‖t′ −q′‖p +‖q′ −q‖p < 2 ·2i−1+ 4.5·2i

9 = 3 ·2i−1.
We terminate the algorithm in any of three events:

Approximate Nearest Neighbor Search 131

– The root t ∈ Si does not satisfy ‖q − t‖p ≤ 3 · 2i. In this case the root itself is
at worst a 3-ANN of q, as the distance from all descendants of the root (that
is, all points) to q is greater than ‖q − t‖p − 2 · 2i.

– The algorithm locates a point w ∈ S0 satisfying ‖w − q‖ ≤ 3. Then the
nearest neighbor of q can be either w or a point within distance 6 of w. We
execute a c-BNN query on the set of points within distance 6 of w. (That is,
as above we translate w to the origin, scale so that the maximum magnitude
is c, and preprocess a query structure.) If the query returns null, then there is
no point within distance 6

c of q, and so w is a 3
6/c = c

2 -ANN of q. If the query
return some point, then that point is within distance 6

9 = 2
3 of q. Since the

minimum inter-point distance of the set is 1, there cannot be another point
within distance 1

3 of q, and so the returned point is a 2-ANN of q.
– A c-BNN query on some set N(t, i) returns null. As the diameter of N(t, i) is

at least 2i, this implies that there is no point in N(t, i) within distance 2i

c of
q. As all descendants of a point in Sk (k = i − �log 4c�) are within distance
2 · 2k of their ancestor, the distance from q to all other points is at least
2i

c − 2 · 2k = 2i

c − 2 2i

4c = 2i

2c . It follows that t is a 3·2i
2i/2c = 6c-ANN of q.

We conclude that the above algorithm returns the nearest neighbor stipulated
by the lemma. However, its runtime depends on the number of levels in the
hierarchy, that is O(min{n,Δ}). To remove this dependence, we first invoke
the algorithm of Chan [11] to find in time O(d2 log n) and high probability a
O(d3/2)-ANN of q, called q′. We then locate the ancestor of q′ in level Si, i =
�log ‖q − q′‖p�, of the hierarchy in time O(log n), which can be done easily using
standard tree decomposition algorithms. We assign this ancestor as our first point
of interest t; note that we have ‖t−q‖p ≤ ‖t−q′‖p +‖q′ −q‖p < 2 ·2i +2i = 3 ·2i,
so indeed t is a valid point of interest. After descending O(log d) levels in the
search, we reach radii that are smaller than the true distance from q to its nearest
neighbor in V , and the search must terminate.

In order for the entire procedure to succeed with constant probability, we
require the failure probability of each level c-BNN query to be O(1/ log d). Each
c-BNN oracle consists of O

(⌈
log log d
log z

⌉)
structures of Lemma 4, and (recalling

that a query is executed on a set of size O(z)) the probability that they all fail
simultaneously is 2−O(log z·(log log d)/ log z) = O(1/ log d). The final space and run-
time follow directly from the time and space required for building and querying
the c-BNN oracles, each of size O(z), plus the single level ancestor query.

Comment. Note that the query time is linear in the doubling dimension, as
opposed to the exponential dependence common to ANN for doubling metrics.
We can extend this lemma by noting that once a 2O(p)-ANN is found, we can
run the standard navigating net algorithm to descend O(p) additional levels and
locate a constant-factor ANN in time p2O(ddim). We then search ε−O(ddim) more
points in a brute-force fashion and locate a (1 + ε)-ANN. So a (1 + ε)-ANN can
be found with p2O(ddim) + ε−O(ddim) additional work.

132 Y. Bartal and L.-A. Gottlieb

Acknowledgements. We thank Sariel Har-Peled, Piotr Indyk, Robi Krauthgamer,
Assaf Naor and Gideon Schechtman for helpful conversations.

References

1. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In: STOC 2006, pp. 557–563 (2006)

2. Andoni, A., Croitoru, D., Patrascu, M.: Hardness of nearest neighbor under L-
infinity. In: Foundations of Computer Science, pp. 424–433 (2008)

3. Andoni, A.: Nearest neighbor search: the old, the new, and the impossible. Ph.D.
thesis, MIT (2009)

4. Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: SODA
2002, pp. 147–155 (2002)

5. Ball, K.: Isometric embedding in lp-spaces. Eur. J. Comb. 11(4), 305–311 (1990)
6. Batu, T., Ergun, F., Sahinalp, C.: Oblivious string embeddings and edit distance

approximations. In: SODA 2006, pp. 792–801 (2006)
7. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University

Press, Princeton (1961)
8. Bern, M.: Approximate closest-point queries in high dimensions. Inf. Process. Lett.

45(2), 95–99 (1993)
9. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:

ICML 2006, pp. 97–104 (2006)
10. Binyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Col-

loquium Publications (American Mathematical Society), Providence (2000)
11. Chan, T.M.: Approximate nearest neighbor queries revisited. Discret. Comput.

Geom. 20(3), 359–373 (1998)
12. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Com-

put. 17(4), 830–847 (1988)
13. Cole, R., Gottlieb, L.: Searching dynamic point sets in spaces with bounded dou-

bling dimension. In: STOC 2006, pp. 574–583 (2006)
14. de Amorim, R.C., Mirkin, B.: Minkowski metric feature weighting and anomalous

cluster initializing in k-means clustering. Pattern Recogn. 45(3), 1061–1075 (2012)
15. Fichet, B.: lp-spaces in data analysis. In: Bock, H.H. (ed.) Classification and

Related Metods of Data Analysis, pp. 439–444. North-Holland, Amsterdam (1988)
16. Finlayson, G.D., Rey, P.A.T., Trezzi, E.: General lp constrained approach for colour

constancy. In: ICCV Workshops 2011, pp. 790–797 (2011)
17. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: CIC 2004,

pp. 37–41 (2004)
18. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: towards

removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012)
19. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics

and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)
20. Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized

proximity search. SIAM J. Comput. 44(4), 944–974 (2015)
21. Indyk, P.: On approximate nearest neighbors in non-Euclidean spaces. In: FOCS,

pp. 148–155 (1998)
22. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: STOC 1998, pp. 604–613 (1998)
23. Indyk, P., Naor, A.: Nearest-neighbor-preserving embeddings. ACM Trans. Algo-

rithms 3(3), 31 (2007)

Approximate Nearest Neighbor Search 133

24. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Conference in Modern Analysis and Probability, New Haven, Connecti-
cut, 1982, pp. 189–206. American Mathematical Society, Providence (1984)

25. Johnson, W.B., Schechtman, G.: Embedding lmp into ln1 . Acta Math. 149(1–2),
71–85 (1982)

26. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: SODA 2004, pp. 791–801 (2004)

27. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. In: STOC 1998, pp. 614–623 (1998)

28. Naor, A.: Comparison of metric spectral gaps. Anal. Geome. Metr. Spaces 2(1),
1–52 (2014)

29. Naor, A., Rabani, Y.: On approximate nearest neighbor search in �p, p > 2 (2006,
manuscript)

30. Neylon, T.: A locality-sensitive hash for real vectors. In: SODA 2010, pp. 1179–1189
(2010)

31. Ostrovsky, R., Rabani, Y.: Polynomial time approximation schemes for geometric
k-clustering. In: FOCS 2000, pp. 349–358 (2000)

32. Ostrovsky, R., Rabani, Y.: Polynomial-time approximation schemes for geometric
min-sum median clustering. J. ACM 49(2), 139–156 (2002)

33. Yu, D., Yu, X., Wu, A.: Making the nearest neighbor meaningful for time series
classification. In: CISP 2011, pp. 2481–2485 (2011)

The Impact of Locality on the Detection
of Cycles in the Broadcast Congested

Clique Model

Florent Becker1, Pedro Montealegre2(B), Ivan Rapaport3, and Ioan Todinca1

1 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

p.montealegre@uai.cl
3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

Abstract. The broadcast congested clique model is a message-passing
model of distributed computation where n nodes communicate with each
other in synchronous rounds. The joint input to the n nodes is an undi-
rected graph G on the same set of nodes, with each node receiving the list
of its immediate neighbors in G. In each round each node sends the same
message to all other nodes, depending on its own input, on the messages
it has received so far, and on a public sequence of random bits. One
parameter of this model is an upper bound b on the size of the messages,
also known as bandwidth. In this paper we introduce another parameter
to the model. We study the situation where the nodes, initially, instead
of knowing their immediate neighbors, know their neighborhood up to a
fixed radius r.

In this new framework we study one of the hardest problems in dis-
tributed graph algorithms, this is, the problem of detecting, in G, an
induced cycle of length at most k (Cycle≤k) and the problem of detect-
ing in G an induced cycle of length at least k + 1 (Cycle>k). For r = 1,
we exhibit a deterministic, one-round algorithm for solving Cycle≤k

with b = O(n2/k log n) if k is even, and b = O(n2/(k−1) log n) if k is odd.
We also prove, assuming the Erdős Girth Conjecture, that this result is
tight for k ≥ 4, up to logarithmic factors. More precisely, if each node,
instead of being able to see only its immediate neighbors, is allowed to see
up to distance r = �k/4�, and if we also allowed randomization and mul-
tiple rounds, then the number of rounds R needed to solve Cycle≤k must
be such that R·b = Ω(n2/k) if k is even, and R·b = Ω(n2/(k−1)) if k is odd.

On the other hand, we show that, if each node is allowed to see up to
distance r = �k/2� + 1, then a polylogarithmic bandwidth is sufficient
for solving Cycle>k with only two rounds. Nevertheless, if nodes were
allowed to see up to distance r = �k/3�, then any one-round algorithm
that solves Cycle>k needs the bandwidth b to be at least Ω(n/ log n).

Keywords: Broadcast congested clique · Induced cycles
Graph degeneracy

Additional support from CONICYT via Basal in Applied Mathematics (P.M. and
I.R.) and Fondecyt 1170021 (I.R.).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 134–145, 2018.
https://doi.org/10.1007/978-3-319-77404-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_11&domain=pdf

The Impact of Locality on the Detection of Cycles 135

1 Introduction

The broadcast congested clique model is a message-passing model of distributed
computation where n nodes communicate with each other in synchronous rounds
over a complete network [1,2,4,6–8,14,16,18,21]. The joint input to the n nodes
is an undirected graph G on the same set of nodes, with node u receiving the list
of its neighbors in G. Nodes have pairwise distinct identities, which are numbers
upper bounded by some polynomial in n. The identity of node u is denoted by
id(u). All nodes know n, the size of the network.

Each node broadcasts, in each round, a single b-bit message along each of its
n − 1 communication links. The size of the messages is known as the bandwidth
of the system, and it is a parameter of the model (which could grow with n).
Broadcasting is equivalent to writing the messages on a whiteboard, visible to
every node. In each round every node produces its message using its input, the
contents of the whiteboard, and a sequence of public random bits.

Typically, the goal of an algorithm is to decide whether the input graph G
belongs to some graph class C. An algorithm is correct if it terminates with every
node knowing the correct answer (that is, whether G ∈ C) with high probability.
The round complexity of an algorithm is the maximum number of rounds over
all possible input graphs (of size n).

Few fast algorithms are known in the broadcast congested clique model. In
fact, if the bandwidth b = O(log n), then there exist one-round algorithms for
deciding whether the input graph G has bounded degeneracy [6], contains a fixed
forest [14], is a cograph [21]. Also, if b = O(polylogn), then there is a one-round
algorithm for deciding whether G is connected [1,2].

One way to increase the computing power of the model is to lift the broad-
cast restriction and to allow the nodes the possibility of sending different mes-
sages through different links. This general model, known as unicast congested
clique [14], gives the possibility to perform a load balancing procedure effi-
ciently. Such enormous intrinsic power has allowed some authors to provide fast
algorithms for solving natural problems: an O(log log log n)-round algorithm for
finding a 3-ruling set [17], O(n0.158)-round algorithms for counting triangles, for
counting 4-cycles and for computing the girth [12], an O(1)-round algorithm
for detecting a 4-cycle [12], an O(1)-round algorithm constructing a minimum
spanning tree [20].

Another very natural, much more limited and less dramatic way to increase
the computing power of the broadcast congested clique model, is to expand
the local knowledge the nodes initially have about G. The idea of a constant-
radius neighborhood independent of the size of the network is present in the
research on local algorithms pioneered by Angluin [3], Linial [23] and Naor and
Stockmeyer [25].

We therefore use the KTr notion, introduced by Awebuch et al. [5], which
means Knowledge of Topology up to distance r, excluding edges with both end-
points at distance r. More precisely, we call BClique[r] the extension of the
broadcast congested clique model where each node u “sees” (receives as input)
the set of all edges lying on a path of length at most r, starting in u. Hence,

136 F. Becker et al.

BClique[1] corresponds to the classical broadcast congested clique model, and
is simply denoted BClique.

One of the most studied problems in the BClique model is related to the
existence of cycles in the input graph G. The first natural question one can
formulate, that is, deciding whether G contains a cycle has been, until now,
the only question amenable to a simple algorithm. In fact, Becker et al. [6]
show that a simple set of logarithmic size messages is sufficient to recognize,
deterministically and in one round, whether the input graph G is acyclic.

Any other natural question concerning cycles has given strong negative
results. Drucker et al. [14] showed that, if � ≥ 4, then any algorithm that decides
whether the �-node cycle C� is a subgraph (or an induced subgraph) of the input
graph G needs Ω(ex(n,C�)/nb) rounds, where ex(n,H) is the Turán number of
H, i.e., the maximal number of edges of an n-node graph which does not contain
a subgraph isomorphic to H. Remark that ex(n,C�) is Θ(n2) for odd values �,
and Θ(n1+1/�) for even values (assuming the Erdős Girth Conjecture1 [15]).

Moreover, even in the very powerful unicast congested clique model , the algo-
rithms for cycle detection are rather slow. In fact, the best algorithm for detect-
ing C� uses O(nρ log n) rounds, for every � ≥ 3, where ρ < 0.15715 [12]. The
only exception being the detection of squares C4, for which an extremely elegant
O(1)-round algorithm has been devised [12].

In this paper, we mainly study two problems: Cycle≤k and Cycle>k. The
first one consists in deciding whether the graph contains an induced cycle of
length at most k (i.e., deciding whether the girth of the graph is at most k).
The second problem, complementary to the first one, consists in detecting the
existence of an induced cycle of length at least k + 1. This difficulty to find
fast algorithms for problems related to the existence of cycles is what makes the
positive results of this paper surprising.

Note that the existence of an induced cycle of length at most k is equivalent
to the existence of a cycle (not necessarily induced) of length at most k. On the
other hand, as we are going to explain later, finding an algorithm for detecting
induced cycles of length at least k + 1 requires much more involved arguments
than finding algorithms for detecting cycles (not necessarily induced) of length
at least k + 1.

Our Results

In Sect. 3 we show that there is a deterministic, one-round BClique algorithm
for solving problem Cycle≤k with bandwidth O(n2/k log n) if k is even, and
bandwidth O(n2/(k−1) log n) if k is odd. The main ingredient for proving this
is a deterministic, one-round algorithm given in [24] that reconstructs a graph
of degeneracy at most d in the BClique model using bandwidth O(d log n)
(reconstruction means that every node knows all the edges of the input graph).

1 This conjecture states that there exist graphs with n vertices and Ω(n1+1/k) edges
not containing cycles of length less than or equal to 2k.

The Impact of Locality on the Detection of Cycles 137

Recall that the degeneracy of G is the minimum d such that, by iteratively
removing vertices of degree at most d, we obtain the empty graph.

We also show that previous upper bounds match the lower bounds up to
logarithmic factors, even in the BClique[�k/4�] model allowing randomization
and multiple rounds. More precisely, if we allowed the nodes to see up to distance
�k/4�, to use public coins and multiple rounds, then the number of rounds R
and bandwidth b needed to solve Cycle≤k is such that R · b = Ω(n2/k) if k is
even, and R · b = Ω(n2/(k−1)) if k is odd (in both cases k ≥ 4), for every ε-error
algorithm. (For these lower bounds we assume the Erdős Girth Conjecture).

We start Sect. 4 by giving a useful, “local” characterization of graphs which
do not have long induced cycles. Using this, together with a technique inspired
by the linear sketches of [1,19], we show that, if each node is allowed to see
at distance �k/2� + 1, then a polylogarithmic number of bits is sufficient for
detecting in two rounds an induced cycle of length strictly larger than k. More
precisely, we prove that for every k ≥ 3, there exists a two-round algorithm
in the BClique[�k/2� + 1] model that solves Cycle>k with high probability
using bandwidth O(log4 n). The approach is based on the randomized algorithm
of Ahn et al. [1] for computing a spanning forest in the BClique model with
bandwidth O(log3 n). With respect to lower bounds, we prove that any one-
round, public-coin BClique[�k/3�] algorithm that solves Cycle>k needs the
bandwidth to be at least Ω(n/ log n). Note that the case k = 3 corresponds
to decide whether the input graph G is chordal, i.e., whether the only induced
cycles in G are triangles.

The results of this article are summarized in Tables 1 and 2.

Table 1. Results concerning problem Cycle≤k. The lower bounds assume the Erdős
Girth Conjecture.

BClique[r] #Rounds Bandwidth Randomized?

Upper bound
Theorem

r = 1 1 O(n2/k log n), k even
O(n2/(k−1) log n), k odd

Deterministic

Lower bound
Theorem

r ≤ k/3 1 Ω(n2/k/ log n), k even
Ω(n2/(k−1)/ log n), k odd

Randomized
ε-error

Lower bound
Theorem

r ≤ k/4 R Ω(n2/k/R), k even
Ω(n2/(k−1)/R), k odd

Randomized
ε-error

Table 2. Results concerning problem Cycle>k

BClique[r] #Rounds Bandwidth Randomized?

Upper bound
Theorem

r ≥ k
2

+ 1 2 O(log4 n) Randomized
(w.h.p.)

Lower bound
Theorem

r ≤ k/3 1 Ω(n/ log n) Randomized
ε-error

138 F. Becker et al.

2 Basic Definitions and Notations

Let G = (V,E) be an undirected graph, and let u ∈ V . We call NG(u) =
{v ∈ V |uv ∈ E} and NG[u] = NG(u) ∪ {u}, the open and closed neighbor-
hoods of u, respectively. Similarly, for U ⊆ V , NG(U) = ∪u∈UNG(u) − U and
NG[U] = NG(U)∪{U} are the open and closed neighborhoods of U , respectively.
When no ambiguity is possible, we will omit the subindices. By extension, we
denote Nr[u] the set of vertices at distance at most r from u, and we call it closed
r-neighborhood of u. Analogously, Nr(u) = Nr[u]\{u} is the open r-neighborhood
of u.

Graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. If,
for any edge uv ∈ E with u, v ∈ V ′ we also have uv ∈ E′, we say that H is an
induced subgraph of G, or that H is the subgraph of G induced by V ′. Given a
vertex subset S, the subgraph induced by S is denoted G[S]. We simply write
G−S for G[V \S]. Also, if F is a subset of edges, we denote by G−F the graph
obtained from G by removing the edges of F . The degeneracy of a graph G is
the minimum d such that, by iteratively removing vertices of degree at most d,
we obtain the empty graph.

If S is a vertex subset of G = (V,E), the contraction of S consists in replacing
the whole subset S by a unique vertex vS , such that the neighborhood of vS in the
new graph is NG(S) while G − S remains unchanged. A connected component
of G is the inclusion-maximal set of vertices inducing a connected graph. An
induced path (resp. cycle) of graph G is called a chordless path (cycle). A graph
is called k-chordal if it does not contain any induced cycle of length greater
than k. The 3-chordal graphs are known as chordal graphs.

The BClique[r] model is formally defined as follows. There are n nodes
which are given distinct identities (IDs), that we assume for simplicity to be
numbers between 1 and n. In this paper we consider the situation where the joint
input to the nodes is a graph G. More precisely, each node u receives as input
the subgraph of radius r around itself (i.e., all edges lying on a path of length at
most r, starting in u). Nodes execute an algorithm, broadcasting b-bit messages
in synchronous rounds. Their goal is to compute some function f that depends
on G. When an algorithm stops every node must know f(G). Function f defines
the problem to be solved. A 0 − 1 function corresponds to a decision problem.

An algorithm may be deterministic or randomized. We distinguish two sub-
cases of randomized algorithms: the private-coin setting, where each node flips
its own coin; and the public-coin setting, where the coin is shared between all
nodes. (In this work we are going to consider public-coin algorithms only). An
ε-error algorithm A that computes a function f is a randomized algorithm such
that, for every input graph G, Pr{A outputs f(G)} ≥ 1 − ε. In the case where
ε → 0 as n → ∞, we say that A computes f with high probability (whp).

We consider several decision problems in this paper: Cycle=k, Cycle≤k and
Cycle>k. These problems consist in deciding, respectively, whether the input
graph has an induced cycle of length exactly k, at most k, and strictly larger
than k. Problems Sub-Cycle=k, Sub-Cycle≤k and Sub-Cycle>k are defined
in a similar way, but in this case we ask whether the input graph has a cycle as
a subgraph (induced or not) of length k, at most k, and strictly larger than k.

The Impact of Locality on the Detection of Cycles 139

3 Detection of Short Cycles

Let us denote by ex(n, k) the maximum number of edges in an n-vertex graph
not containing a cycle of length at most k. A very helpful result in the study
of graphs without short cycles is the one that relates the nonexistence of short
cycles in G with the degeneracy of G. More precisely, graphs with no cycles of
length at most k (as subgraphs) have a relatively small degeneracy.

Proposition 1 ([14]). Graphs with no cycles of length at most k are of degen-
eracy O(ex(n, k)/n).

In [24] it is shown that graphs of degeneracy at most d can be recognized,
and even reconstructed, by a one-round algorithm in the BClique model using
bandwidth O(d · log n). Recall that reconstruction means that at the end of the
algorithm, every node knows all the edges of the input graph.

Theorem 1 ([24]). There is a one-round, deterministic algorithm in the model
BClique, that reconstructs the input graph G if the graph is d-degenerate, and
rejects otherwise, using bandwidth O(d · log n).

By Proposition 1, the degeneracy of the NO-instances of Cycle≤k is upper
bounded by O(ex(n, k)/n). Therefore, from Theorem 1, we conclude the exis-
tence of a one-round algorithm for Cycle≤k such that, each node, either (1)
fully reconstructs the graph and decides the existence of a cycle of length at
most k or (2) notices that the degeneracy of the input graph is larger than the
bound required by the NO instances, and concludes that the input graph must
be a YES instance. Therefore, we have the following corollary.

Corollary 1. Problem Cycle≤k can be solved with a one-round, deterministic
algorithm in the BClique model using bandwidth O((ex(n, k)/n) log n).

Previous algorithm is rather restrictive. It is deterministic, it works in one-
round and the information each node has about the graph is minimal, consisting
in the 1-neighborhood. The question we ask here is the following: is it possible,
by lifting previous restrictions, to decrease the total number of bits broadcasted
by each node? Next results give a negative answer to this question. In other
words, the one-round deterministic algorithm based on the degeneracy seems to
be the best we can do.

Recall that BClique[r] is the extension of the broadcast congested clique
model where each node u receives as input the set of all edges lying on a path of
length at most r, starting in u. Our first result tackles the case where r ≤ �k/4�.
Theorem 2. Let ε ≤ 1/3 and 0 < r ≤ k/4. Then, any ε-error, R-round, b-
bandwidth algorithm in the BClique[r] model solving Cycle≤k satisfies R · b =
Ω(ex(n, k)/n).

In the case where the nodes have more knowledge of the graph, i.e., when
k/4 ≤ r ≤ k/3, we obtain a tight bound for one-round algorithms.

140 F. Becker et al.

Theorem 3. Let ε ≤ 1/3 and k/4 < r ≤ k/3. Then, any ε-error, one-round
algorithm in the BClique[r] model that solves Cycle≤k requires bandwidth b =
Ω(ex(n, k)/(n log n)).

Remark 1. Bondy and Simonovits [10] showed that ex(n, k) = O(n1+2/k) if k is
even, and ex(n, k) = O(n1+2/(k−1)) if k is odd. On the other hand, the Erdős
Girth Conjecture states that this bound is tight, implying the results of Table 1.
Note that currently, the best constructions provide a lower bound for ex(n, k) =
Ω(n1+4/(3k−7)) if k is even, and ex(n, k) = Ω(n1+4/(3k−9)) if k is odd [22].

4 Detection of Long Cycles

Recall that graphs without induced cycles of length greater than k are called
k-chordal [11]. 3-chordal graphs, i.e., graphs in which every cycle (not necessar-
ily induced) of 4 or more vertices has a chord, are called chordal graphs. It is
known that a graph G is chordal if and only if, for each vertex u ∈ V , and each
connected component C in G − N [u], the neighborhood N(C) of this compo-
nent induces a clique in G. This “local” characterization has been exploited by
Chandrasekharan and Sitharama Iyengar [13] for devising a fast parallel algo-
rithm recognizing chordal graphs. We begin this section by extending previous
characterization to arbitrary chordalities k > 3 in order to take advantage of
this in our distributed framework.

Let G be a graph, u ∈ V (G) and k > 0. Let D1, . . . , Dp be the p connected
components of G − N�k/2�[u] (obtained by removing the vertices at distance at
most �k/2� from u). Let Hk

u denote the graph obtained from G by contracting
each component Di into a single node di.

Lemma 1. Let G be a graph. G is k-chordal if and only if, for every u ∈ V (G),
Hk

u is k-chordal.

Lemma 1 provides us with a strategy for deciding k-chordality, i.e., for decid-
ing whether the input graph G is a NO instance of problem Cycle>k. For doing
this every node x must compute the graph Hk

x and then decides whether Hk
x is

k-chordal. In order to compute Hk
x , each node x needs first to find the connected

components of G − N�k/2�[x]. Let Fx is the set of all edges lying on a path of
length at most �k/2� + 1 starting in x. We need then each node to compute the
connected components of G − Fx outside N�k/2�[x].

4.1 Computing the Connected Components of G − Fx

Ahn et al. provide a probabilistic, one-round algorithm for computing a span-
ning forest of the input graph G, in the BClique model using bandwidth
O(log3 n) [1]. In their algorithm, each node constructs a message based on its
neighborhood and on a sequence of public random coins, and broadcasts it to all
other nodes. Using all these messages, every node is able to construct a spanning
forest of the graph with probability 1 − ε, for a fixed ε > 0.

The Impact of Locality on the Detection of Cycles 141

We want each node x to compute the connected components of G−Fx. Recall
that Fx is the set of all edges lying on a path of length at most �k/2�+1 starting
in x. We place ourselves in the BClique[�k/2� + 1] model with bandwidth
O(log4 n). We amplify the bandwidth by a log(n) factor, with respect to the
spanning tree algorithm of [1], to ensure that it succeeds with high probability.
Also, every node needs to know all the set of edges Fx, that is why we choose
the BClique[�k/2� + 1] model. Using the spanning forest algorithm of [1], we
prove that each node x can construct a spanning forest of G − Fx with high
probability.

The key observation is that the messages produced by each vertex is a linear
function (w.r.t. to the edges of the graph). Therefore, from the messages of G,
each vertex x computes the messages that the algorithm would have constructed
on G − Fx.

Definition 1. Let n, k, δ > 0. A δ-linear sketch of size k is a function S:
{0, 1}O(log n) × {−1, 0, 1}n → {0, 1}k, such that, if we call Sr = S(r, ·), then

– Sr is linear, for each r ∈ {0, 1}O(log n);
– If r is chosen uniformly at random, then there is an algorithm that on input

Sr(x) returns ERROR with probability at most δ, and otherwise returns a
pair (i, xi) such that xi �= 0 and coordinate i is picked uniformly at random
between the non-zero coordinates of x. The probabilities are taken over the
random choices of r.

Proposition 2 ([19]). For each n, δ > 0, there exists a δ-linear sketch of size
O(log2 n log δ−1).

Let G = (V,E) be a graph of size n, and x ∈ V . We call ax the connectivity
vector of x in G, defined as the vector of dimension

(
V
2

)
such that:

ax
{u,v} =

⎧
⎨

⎩

1 if {u, v} ∈ E, x = u and u < v,
−1 if {u, v} ∈ E, x = v and u < v,
0 otherwise.

For r ∈ {0, 1}O(log n), we say that Sr(G) = {Sr(ax)}x∈V (G) is a δ-connectivity
sketch of G, where S is a δ-linear sketch. Note that for any x ∈ V , each non
zero coordinate of ax represents an edge of N(x), and for any U ⊆ V the non
zero coordinates of

∑
x∈U ax are exactly the edges in the cut between U and its

complement V \U .
Let G = (V,E) be the input graph. The one-round algorithm in the BClique

model devised by Ahn et al. for computing a spanning forest of G works as fol-
lows. Let t = �log n. Each node computes and sends t independent δ-linear
sketches of its connectivity vector, using t random strings r1, . . . , rt picked uni-
formly at random. Using these messages, any node can compute t independent
δ-connectivity sketches of G and therefore it can compute a spanning tree using
the following t steps procedure. First, let us denote by V̂ the set of supernodes,
which initially are the n singletons {{u}|u ∈ V }. At step 0 ≤ i < t, each node
samples an incident edge to each set v̂ ∈ V̂ using the ith collection of linear

142 F. Becker et al.

sketches
∑

x∈v̂ Sri
(ax), and merge the obtained connected components into a

single supernode. The procedure finishes before t = �log n steps since the num-
ber of supernodes at least halves at each step. This idea is behind the proof of
the following proposition.

Proposition 3 (Ahn et al. [1]). Let n, δ > 0 and t = �log n. There exists an
algorithm that receives t independent δ-connectivity sketches of a graph G, pro-
duced with r1, . . . , rt ∈ {0, 1}O(log n) random strings picked uniformly at random,
and outputs a spanning forest of G with probability 1 − δ.

Lemma 2. There exists a one-round algorithm in the BClique[�k/2� + 1]
model which computes, for every node x ∈ V , the connected components of
G − N�k/2�[x], using bandwidth O(log4 n) and with high probability.

Proof. The algorithm works as follows. First, each node x sends t = �log n
different 1/n2-linear sketches of its connectivity vector ax, using t random strings
r1, . . . , rt. Note that each node knows Fx. Observe that the components of G −
N�k/2�[x] are exactly the components of G−Fx without considering the nodes in
N�k/2�[x]. In the following, we show that after the communication round, each
node x can compute a spanning forest of G−Fx with probability at least 1−1/n2.
Therefore, the whole algorithm succeeds with probability at least 1 − 1/n.

Let Sr(G) = (Sr(ax1), . . . , Sr(axn)) be one of the 1/n2-connectivity sketches
of G, produced with the random string r, received in the communication round.
Consider, for each e ∈ Fx and u ∈ e, the vector bu,e of dimension

(
n
2

)
where,

bu,e
e′ =

{−au
e if e′ = e,

0 otherwise , for each e′ ∈
(

n

2

)
.

Let us call cu be the connectivity vector of node u in G − Fx. Note that, for
each e ∈ (

n
2

)
,

cu
e = au

e +
∑

{e′∈Fx:u∈e′}
bu,e′
e =

{
au

e if e ∈ E(G) \ Fx,
0 otherwise.

If we define Su
r = Sr(au) +

∑
{e∈Fx:u∈e} Sr(bu,e), we obtain, by linearity of

Sr, that Su
r = Sr(cu) and then {Sr(cu)}u∈V is a 1/n2-connectivity sketch of

G − Fx produced with r.
Then, after the communication round, any node x can obtain t different 1/n2-

connectivity sketches of G − Fx produced with random strings r1, . . . , rt picked
uniformly at random. Therefore, by Proposition 3, it can produce a spanning
forest of that graph with probability at least 1 − 1/n2. ��

4.2 Deciding k-Chordality

We are now able to express the distributed algorithm recognizing k-chordal
graphs, see Algorithm 1.

The Impact of Locality on the Detection of Cycles 143

Theorem 4. Let k ≥ 3. There exists a two-round randomized algorithm in the
BClique[�k/2� + 1] model, that recognizes k-chordal graphs, and thus solves
problem Cycle>k, with bandwidth O(log4 n) and high probability.

Proof. In the first round, each node x ∈ G computes the connected components
of G−N�k/2�[x] using the algorithm of Lemma 2. After the first round, each node
x uses its knowledge of G to locally reconstruct Hk

x by identifying the connected
components D1, . . . , Dp of G − N�k/2�[x] and contracting each Di into a unique
vertex di. Note that x sees the edges between Di and N�k/2�[x]. Finally, x checks
whether Hk

x is k-chordal and communicates the answer in the second round. By
Lemma 1, the input graph is chordal if and only if each vertex x communicated
a YES answer. We emphasis that the second round is needed only because the
nodes must all agree on the output.

The algorithm may fail only when some node x fails to compute the compo-
nents of G − N�k/2�[x]; this event may occur, from Lemma 2, with probability
at most 1/n. ��

Algorithm 1. k-chordality
1 Round 1
2 Run the algorithm of Lemma 2 to compute the components of

G − N�k/2�[x];

3 Round 2

4 Each node x builds Hk
x contracting each component of G − N�k/2�[x] into a

single node;

5 Each node x checks whether Hk
x is k-chordal and communicates the answer

to the other nodes;
6 The graph is k-chordal if all messages communicated during this round are

YES messages;

We end this section giving a lower-bound on the bandwidth b for any one-
round algorithm solving Cycle>k in the BCliquer model, when 0 < r ≤ k/3.

Theorem 5. Let ε ≤ 1/3, and 0 < r ≤ k/3. Any ε-error, one-round algorithm
in the BClique[r] model that solves Cycle>k requires bandwidth Ω(n/ log n).

5 Conclusion

All throughout the paper we considered problems Cycle≤k and Cycle>k.
Let us briefly discuss the similar problems Sub-Cycle≤k, Sub-Cycle>k and
Sub-Cycle=k, which consist in deciding whether the input graphs has, as a sub-
graph, a cycle of length at most k, greater than k, and equal to k, respectively.

Observe that Sub-Cycle≤k is identical to Cycle≤k, so upper and lower
bounds coincide. We emphasize that, for k ≥ 3r, the lower and upper bounds
for these problems are tight up to polylogarithmic factors.

144 F. Becker et al.

Unlike the case of short cycles, there is a significative difference between
detecting long induced cycles and detecting long cycles (induced or not). By
a result of Birmelé [9], graphs with no cycles of length greater than k have
treewidth (and hence degeneracy) at most k. Therefore, they can be recognized
by a one-round deterministic algorithm in the BClique model with bandwidth
O(k log n), based on Theorem 1.

Further lower bounds can be obtained for both Cycle=k and Sub-Cycle=k

problems in the BClique[r] model, when k is an odd number between 3r and
4r. These bounds are obtained by a reduction from a 3-party Number-On-the-
Forehead version of the disjointness problem DISJ, and show that any determin-
istic R-round b-bandwidth algorithm for this problem, in the BClique[r] model,
is such that R · b = Ω(n1−o(1)). Under some stronger complexity assumptions,
this lower bound can be extended to randomized algorithms.

When k is even, problem Sub-Cycle=k can be solved by a one-round deter-
ministic algorithm in BClique with bandwidth O(n2/k log n), thanks to degen-
eracy arguments.

We leave as open problems the question whether Cycle>k can be solved by
a non-trivial one-round algorithm in the BClique[�k/2� + 1] model, as well as
the question of multi-round lower bounds for this problem in the BClique[r]
model for r < k/2.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, pp. 459–467 (2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: Proceedings of the 31st Symposium on Principles of Database Sys-
tems, PODS 2012, pp. 5–14 (2012)

3. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 82–93. ACM
(1980)

4. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 2

5. Awerbuch, B., Goldreich, O., Vainish, R., Peleg, D.: A trade-off between informa-
tion and communication in broadcast protocols. J. ACM 37(2), 238–256 (1990)

6. Becker, F., Kosowski, A., Matamala, M., Nisse, N., Rapaport, I., Suchan, K.,
Todinca, I.: Allowing each node to communicate only once in a distributed system:
shared whiteboard models. Distrib. Comput. 28(3), 189–200 (2015)

7. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding
a referee to an interconnection network: what can(not) be computed in one round.
In: Proceedings of the 25th IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2011, pp. 508–514 (2011)

8. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83–95.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9 8

https://doi.org/10.1007/978-3-319-12340-0_2
https://doi.org/10.1007/978-3-319-09620-9_8

The Impact of Locality on the Detection of Cycles 145

9. Birmelé, E.: Tree-width and circumference of graphs. J. Graph Theory 43(1), 24–25
(2003)

10. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Comb. Theory,
Ser. B 16(2), 97–105 (1974)

11. Brandstädt, A., Spinrad, J.P., et al.: Graph classes: a survey, vol. 3. Siam (1999)
12. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:

Algebraic methods in the congested clique. In: Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing, PODC 2015, pp. 143–152 (2015)

13. Chandrasekharan, N., Sitharama Iyengar, S.: NC algorithms for recognizing
chordal graphs and k trees. IEEE Trans. Comput. 37(10), 1178–1183 (1988)

14. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: ACM Symposium on Principles of Distributed Computing, PODC 2014, pp.
367–376 (2014)

15. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Appli-
cations. Proceedings of the Symposium, Smolenice (1964)

16. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic
graph streams. In: Proceedings of the 34th ACM Symposium on Principles of
Database Systems, pp. 241–247. ACM (2015)

17. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time dis-
tributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 514–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 35

18. Holzer, S., Pinsker, N.: Approximation of distances and shortest paths in the broad-
cast congest clique. In: 19th International Conference on Principles of Distributed
Systems, OPODIS 2015, Leibniz International Proceedings in Informatics (LIPIcs),
vol. 46, pp. 1–16 (2016)

19. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for lp samplers, finding dupli-
cates in streams, and related problems. In: Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, pp.
49–58 (2011)

20. Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of the congested clique. Preprint
arXiv:1707.08484 (2017)

21. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraph

problem in the randomized multiparty simultaneous messages model. In: Schei-
deler, C. (ed.) Structural Information and Communication Complexity. LNCS,
vol. 9439, pp. 370–384. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25258-2 26

22. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: A new series of dense graphs of high
girth. Bull. Am. Math. Soc. 32(1), 73–79 (1995)

23. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com. 21(1), 193–201
(1992)

24. Montealegre, P., Todinca, I.: Brief anouncement: deterministic graph connectivity
in the broadcast congested clique. In: Proceedings of the 35th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 2016 (2016)

25. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

https://doi.org/10.1007/978-3-662-45174-8_35
https://doi.org/10.1007/978-3-662-45174-8_35
http://arxiv.org/abs/1707.08484
https://doi.org/10.1007/978-3-319-25258-2_26
https://doi.org/10.1007/978-3-319-25258-2_26

Partitioning Orthogonal Histograms
into Rectangular Boxes

Therese Biedl1, Martin Derka2, Veronika Irvine1, Anna Lubiw1 ,
Debajyoti Mondal3(B), and Alexi Turcotte1

1 Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

2 School of Computer Science, Carleton University, Ottawa, Canada
3 Department of Computer Science,

University of Saskatchewan, Saskatoon, Canada
dmondal@cs.usask.ca

Abstract. The problem of partitioning an orthogonal polyhedron into
a minimum number of boxes was shown to be NP-hard in 1991, but
no approximability result is known except for a 4-approximation algo-
rithm for 3D-histograms. In this paper we broaden the understanding
of the 3D-histogram partitioning problem. We prove that partitioning a
3D-histogram into a minimum number of boxes is NP-hard, even for his-
tograms of height two. This settles an open question posed by Floderus
et al. We then show the problem to be APX-hard for histograms of
height four. On the positive side, we give polynomial-time algorithms to
compute optimal or approximate box partitions for some restricted but
interesting classes of polyhedra and 3D-histograms.

1 Introduction

Partitioning a geometric object or a shape into simpler parts is a classic prob-
lem in computational geometry. Such partitioning problems are motivated by
their applications in image processing, camera placement in security systems,
computer graphics, VLSI manufacturing, and so on.

An important special case is when the object is an orthogonal polygon or
polyhedron—meaning that the edges or faces are parallel to the axes or coordi-
nate planes—and the goal is to partition into a minimum number of rectangles
or boxes, where a box is an orthogonal polyhedron with 6 faces (i.e., the 3D
equivalent of a rectangle).

In two dimensions the problem of partitioning an orthogonal polygon into
a minimum number of rectangles can be solved in polynomial time, both for
simple polygons and for polygons with holes [5,7,12–14]. In three dimensions the
problem becomes NP-hard in general, as proved by Dielissen and Kaldewaij [3].
Our aim is to explore the boundary between hard and easy for a special class of
orthogonal polyhedra, namely histograms.

A 2D-histogram is an orthogonal polygon L that contains an edge e such that
for any point p ∈ L, the line segment connecting p to its orthogonal projection on
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 146–160, 2018.
https://doi.org/10.1007/978-3-319-77404-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_12&domain=pdf
http://orcid.org/0000-0002-2338-361X

Partitioning Orthogonal Histograms into Rectangular Boxes 147

Fig. 1. (a) A 2D-histogram with a minimum partition into rectangles, as witnessed by
the given “independent” points, no two of which lie in a rectangle. (b) A 3D-histogram
requiring 4 boxes in its optimal partition since there are four “independent” points (no
two in a box). (c)–(d) A guillotine cut.

e lies entirely inside L. See Fig. 1(a). Similarly, a 3D-histogram is an orthogonal
polyhedron H that contains a face f such that for any point p ∈ H, the line
segment connecting p to its orthogonal projection on f lies entirely inside H.
See Fig. 1(b). The face f is called the base of the histogram. Note that any
histogram can be adjusted so that the vertices (and consequently also edges and
faces) have integer coordinates, and the combinatorial structure of the histogram
is preserved. Throughout this paper, we assume that any histogram has integer
coordinates and that the base has z-coordinate 0 and all other faces lie above
the base. The height of a face parallel to the base is its z-coordinate, and the
maximum of these is called the height of the histogram.

Floderus et al. [8] gave an O(n log n)-time 4-approximation algorithm to par-
tition a 3D-histogram into a minimum number of boxes and asked whether the
problem is NP-hard for histograms. We note that the NP-hardness reduction of
Dielissen and Kaldewaij [3] does not hold for histograms.

Contributions: In this paper, we prove that partitioning 3D-histograms (even
with height 2) into a minimum number of boxes is NP-hard (Sect. 3). The prob-
lem is APX-hard for 3D-histograms of height 4 (Sect. 4). We show that optimal
partitioning must consider cuts beyond those that are “guillotine” (Sect. 5). We
then focus on restricted classes of polyhedron (Sects. 6–7). If two dimensions of
the polyhedron are fixed, then we compute a minimum box partition in polyno-
mial time. If one dimension is bounded by t, then we produce a t-approximation
in polynomial time. Finally, we give a polynomial-time 2-approximation algo-
rithm for the box partition of corner polyhedra.

Background: The problem of partitioning an orthogonal polygon into rectan-
gles has also been considered with different objective functions, for example,
minimizing the total length of the cuts (“minimum ink”) [11], avoiding very thin
rectangles by minimizing the aspect ratio [16], or minimizing the so-called “stab-
bing number” [4]. Computing a minimum decomposition of arbitrary polygons
with holes into (perhaps overlapping) convex, star-shaped, or spiral subsets is
NP-hard [15]. If Steiner points are not permitted, then some partition and cover-
ing problems become polynomial-time solvable for arbitrary simple polygons [10].

148 T. Biedl et al.

2 Preliminaries

The top surface of a 3D-histogram H denotes the union of the faces parallel to
the base, excluding the base itself. For any integer h ≥ 1, an h-region of the
histogram is a maximal region that all has the same face f as top surface, and
f has height h.

For a point p in R
3, we denote its x, y and z-coordinates by px, py and pz,

respectively. A set of points in H is called independent if there does not exist
any box in H that contains two or more of these points. A set of edges in H is
called a set of forcing edges if there does not exist any box in H that properly
intersects two or more of these edges. This implies that the midpoints of the
forcing edges form an independent set of points. Consequently, if there are k
forcing edges in a 3D-histogram, then k is a lower bound on the size of any box
partition of the histogram.

Let L be a plane parallel to one of the axis planes. We say that a guillotine cut
along L partitions a polyhedron H into two polyhedra H1 and H2 if H1∪H2 = H
and H1 ∩ H2 ⊂ L (Fig. 1(c)–(d)).

Let G = (V,E) be a graph with n = |V | vertices and m = |E| edges. We call
G a planar graph if it admits a drawing on the Euclidean plane such that no two
edges cross except possibly at a common end-point. G is cubic if the degree of
every vertex in G is exactly three. A vertex cover of G is a set of vertices C in
G such that for every edge (v, w), at least one of v and w belongs to C.

3 3D-Histogram Partition is NP-Hard for Height ≥2

In this section we prove that partitioning a 3D-histogram into a minimum num-
ber of boxes (3D-Histogram Partition) is NP-hard even when the histogram has
height two. We reduce from the problem of computing a minimum-cardinality
vertex cover in a cubic planar graph, which is NP-hard [18].

Let G be a cubic planar graph and let G′ be the 2-subdivision of G, defined to
be the graph obtained from G by replacing each edge of G by a path with three
edges, of which the middle one is a double edge. Observe that G′ is also cubic
and planar. The crucial idea for constructing a histogram is to use a suitable
drawing of G′. Here, an orthogonal drawing of a planar graph G is a planar
drawing of G such that each vertex is mapped to a point in the Euclidean plane,
and each edge is mapped to an axis-aligned polyline between the corresponding
points. It is called 1-bend if every polyline has exactly one bend.

Lemma 1. Let G be a cubic planar graph. Then the 2-subdivision G′ of G admits
a 1-bend orthogonal drawing Γ ′.

Proof. (Sketch) Take an orthogonal drawing Γ of G with at most two bends per
edge, which can be constructed in linear time [9]. For any edge without bends in
Γ , apply a so-called zig-zag transformation so that it obtains exactly two bends.
We obtain Γ ′ by replacing the drawing of each edge of e with the drawing of a
path with a double edge along e’s poly-line, see Fig. 2(b)–(c). ��

Partitioning Orthogonal Histograms into Rectangular Boxes 149

Construction of H: Graph G′ has n′ = n + 2m vertices and m′ = 3
2n′ edges.

We construct a histogram H that can be partitioned into (4n′+3m′+α′) boxes if
and only if G′ contains a vertex cover of size α′. Note that G′ contains a vertex
cover of size α′ if and only if G contains a vertex cover of size α′ − m (see e.g.,
see [17]), so this then proves the reduction.

We transform the 1-bend drawing Γ ′ of G′ into the desired histogram H.
Specifically, we replace each vertex v of Γ ′ (i.e., both original and subdivision
vertices) by a vertex gadget λ(v) (see Fig. 2(d)–(e)). The numbers in Fig. 2(d)
illustrate the heights of the corresponding regions. We then replace each edge
(v, w) of Γ ′ using an edge gadget λ(v, w) (see Fig. 2(f)). The edge gadgets cor-
responding to the edges incident to v are attached to the three sides of height 1
of λ(v). This completes the construction of H.

Fig. 2. (a) A cubic graph G. (b) Its orthogonal drawing Γ . (c) A 1-bend orthogonal
drawing Γ ′ of G′. (d) Top view of a vertex gadget, where the edge connections are
shown in gray. (e) Side view of a vertex gadget. (f) Connecting vertex gadgets using
edge gadgets.

Let Opt(H) be a partition of H into a minimum number of boxes. The
following lemmas (whose proofs are omitted) discuss some properties of the
gadgets with respect to Opt(H). In brief, Lemma 2 follows from the forcing
edges that are illustrated in Fig. 2(c). Lemmas 3–4 follow from the observation
that a box that touches a face of height 2 (on the top surface) cannot touch a
face of height 1, and that the edge gadgets are “non-aligned”.

Lemma 2. For every vertex gadget λ(v), Opt(H) contains at least four distinct
boxes that lie entirely inside λ(v). If it contains exactly four such boxes, then none
of the 1-regions in λ(v) are covered by these boxes.

Lemma 3. For every edge gadget λ(v, w), Opt(H) must contain 3 boxes that
intersect λ(v, w). No box in Opt(H) can intersect more than one edge gadget.

Lemma 4. If an edge gadget λ(v, w) is entirely covered by exactly three boxes in
Opt(H), then these three boxes cover at most one of the two 1-regions of λ(v)
and λ(w) that are adjacent to λ(v, w) (e.g., see Fig. 3(a)–(d)).

Equivalence Between Instances: Given a set of r boxes, it is straightforward
to verify whether the boxes are interior disjoint and cover the input histogram

150 T. Biedl et al.

Fig. 3. (a)–(b) Illustration for λ(v, w). (c) A partition of the edge gadget that covers
the 1-region of v at (v, w). (d) A schematic representation of the partition. (e)–(g)
Illustration for Lemma 5.

in polynomial time. Hence the problem 3D-Histogram Partition is in NP.
Since H can be constructed in polynomial time, we can use the following lemma
to obtain the NP-hardness.

Lemma 5. G′ contains a vertex cover C of size α′ if and only if H can be
partitioned into (4n′ + 3m′ + α′) boxes.

Proof (sketch). We construct a partition of H from a vertex cover, as follows.

A. If v 	∈ C, then we use four maximal boxes to cover the 2-regions of λ(v),
as illustrated in Fig. 3(e)–(f). The remaining regions of λ(v) are 1-regions,
which will be covered by the boxes partitioning the edge gadgets.

B. If v ∈ C, then we use 5 maximal boxes to cover λ(v), e.g., see Fig. 3(g).
C. We use three maximal boxes to cover each edge gadget λ(v, w). Note that

either v or w must lie in C. If v 	∈ C, then one of these boxes will cover the
1-region of λ(v) at λ(v, w), e.g., see Fig. 3(a)–(d). Similarly, if w 	∈ C, then
one of these boxes will cover the 1-region of λ(w) at λ(v, w).

One easily verifies that Steps A–C partition the histogram H into (3m′ +
4n′ + α′) boxes. For the other direction, assume that H admits a partition B
with (3m′ + 4n′ + α′) boxes, and construct a vertex cover of size at most α′

in G′. By Lemma 2, every vertex gadget contributes to at least four distinct
boxes in B, which corresponds to the 2-regions. Hence we use at least 4n′ boxes
of B to cover those regions. Note that all these boxes lie entirely inside the
vertex gadgets. By Lemma 3, every edge gadget must use at least three distinct
boxes, which altogether sum up to at least 3m′. These boxes may also cover
some 1-regions of the vertex gadgets (e.g., see Lemma 4). Since B contains at
most (3m′ + 4n′ + α′) boxes, we have at most α′ boxes remaining to cover the
remaining 1-regions of the vertex gadgets. We now construct a set S as follows:
(a) If a vertex gadget λ(v) contains more than four boxes lying entirely inside
λ(v), then we include v into S. (b) If four or more boxes intersect an edge gadget
λ(v, w), then we choose one of v and w arbitrarily into S.

Note that each step can be charged uniquely to one of the remaining α′ boxes,
i.e., the box charged in Step (a) lies entirely inside λ(v) and hence cannot be
charged again in Step (b). Hence the number of vertices in S is at most α′. One

Partitioning Orthogonal Histograms into Rectangular Boxes 151

argues that S is a vertex cover based on the observation that either (a) or (b)
must apply for each edge gadget. ��
Theorem 1. Partitioning a 3D-histogram into a minimum number of boxes is
NP-hard, even when the histogram is of height two.

4 3D-Histogram Partition is APX-Hard for Height ≥4

In this section we prove that partitioning a 3D-histogram into a minimum num-
ber of boxes is APX-hard, even for histograms of height 4. We reduce from the
problem of computing a minimum-cardinality vertex cover in a cubic graph (not
necessarily planar), which is APX-hard [1].

Construction of H: Let V = {v1, . . . , vn} and E = {e1, . . . , em} be the vertices
and edges of G. Consider an integer grid of size (8n+1)×(2n+10m+1). Column
8i−3 is assigned to vi, and column 8i+1 is assigned to the transition from vi to
vi+1 (we write wi,i+1 for short as in Fig. 4(b)). Below the grid we add a staircase
that descends at each column of vi or wi,i+1, and here add a tooth, i.e., a square
for which all but the top sides are on the boundary. Edge ej is assigned to row
10i+2n+4. For each edge, cut out H-shaped holes in the polygon where the row
of the edge meets the columns of its endpoints. These holes have width 7, height
7 or more, and remove four (five) squares from the column of the left (right)
endpoint. The resulting polygon P (Fig. 4(a)) forms the base of the histogram
(except for some additions via edge gadgets that will be listed below). Extrude
all of P to height 2; we call the result the platform.

For each edge e = (v, w), we add an edge gadget λ(v, w) that consists of two
endpoint gadgets and a connector. Here, the endpoint gadget at v consists of
the four (five) squares from the vertex column of v (we call these the decision
column λ(v, e)) as well as a surrounding polygon; all of these have height 1 (see
Fig. 4(d)–(e)). The connector connects the two endpoint gadgets via a sequence
of 2-regions, 3-regions and 4-regions along the row of the edge; it sits partially
on the endpoint gadgets and partially on the platform (see Fig. 4(f)–(g)). This
completes the construction of H.

To argue the correctness, we fix a set F of 13n + 1 edges (shown in bold
in Fig. 4(b)) that can easily be seen to be forcing edges. We use the 2n + 1
horizontal top edges of the teeth, as well as the 2n horizontal top edges that lie
between these teeth. For each edge, we select 6 further horizontal edges from
the hole boundaries of its two endpoints, see Fig. 4(b); we assume that these
hole boundaries were chosen that none of them have the same y-coordinate.
Consequently, we obtain a set of (2n + 1) + (2n) + (6m) = 4n + 9n + 1 forcing
edges, all of which are on top of the platform.

We must argue how many boxes are needed to cover most (but not all) of an
edge gadget λ(v, w). We say that a sub-partition of λ(v, w) is a set of disjoint
boxes that cover the entire edge gadget except that they may leave one or both
decision columns λ(v, e) or λ(w, e) uncovered. Given a partition of the histogram,
we charge a box B to edge-gadget λ(v, w) if either B intersects the interior of
λ(v, w) or if B lies inside the platform and the top front edge of B lies on the

152 T. Biedl et al.

Fig. 4. (a) Schematic representation and (b) top view of H. (c) Illustration for the
heights near one edge gadget. (d)–(e) Endpoint gadgets and decision columns. (f)–(g)
A connector gadget is shown in gray.

boundary of the 4-region of λ(v, w). (In particular, such a box cannot cover
an edge in F and it can only be charged to one edge-gadget.) Crucial for the
reduction is the following lemma:

Lemma 6. The edge gadgets satisfy the following properties: (P1) Every sub-
partition of an edge gadget has least 12 boxes charged to it. (P2) Every partition
of an edge gadget (covering both decision columns) has at least 13 boxes charged
to it.

Proof (sketch). Consider a (sub-)partition B of some edge gadget λ(v, w).
Figure 4(c) shows some forcing edges of λ(v, w). Of these, there are three each in
the endpoint gadgets, forcing three boxes each, and four more in the connector-
gadget.

In fact, the connector-gadget requires five boxes to be charged, as can be seen
as follows: If no box of B intersects the platform below the connector-gadget,

Partitioning Orthogonal Histograms into Rectangular Boxes 153

Fig. 5. (a) The maximal boxes determined by the forcing edges. (b)–(c) Partition of
the endpoint gadget excluding the left and right decision column, respectively.

then we can find another independent point (on the downward-facing face of the
3-region on the right in Fig. 4(c), at height 1.5). If some box B of B intersects
the platform, then some other box of the partition of P must share a side with
B, and this other box is also charged to λ(v, w).

Thus we have now 11 boxes to be charged to λ(v, w). One can also easily
verify that if at one connector-gadget the decision column is covered, then this
requires one additional box not counted elsewhere. This proves the claim in all
cases except the one where neither decision-column is covered, each endpoint-
gadget uses exactly three boxes, and the connector-gadget has exactly five boxes
charged to it. One can verify that this is impossible if none of the boxes overlap.

��
Equivalence Between Instances: We now prove that H can be partitioned
into (|F | + 12m + k) boxes if and only if G has a vertex cover of size at most k.

Lemma 7. If G has a vertex cover C of size k, then H admits a partition into
(|F | + 12m + k) boxes.

Proof (sketch). For each vertex v ∈ C, construct a box that has width and height
1 and whose depth is so large that is spans the entire column of v. In particular
it covers all decision columns λ(v, e) of incident edges of v, e.g., see the gray box
for vi in Fig. 5(a). The rest of the platform can be covered using one box per
forcing edge. Finally, there are sub-partitions of an edge gadget λ(v, w) using 12
boxes (e.g., Fig. 5(b)–(c)) so that λ(v, e), λ(w, e), or neither, is covered. Applying
the suitable one to each edge (depending on whether v ∈ C, w ∈ C, or v, w ∈ C)
gives the desired partition. ��

154 T. Biedl et al.

Lemma 8. If H admits a partition B into (|F | + 12m + k) boxes, then G has a
vertex cover of size at most k.

Proof. We construct a vertex cover C of G as follows: (a) For every decision
column λ(v, e), if the box covering it lies entirely in the column of v, then add
v to C. (b) For an edge (v, w), if neither v nor w belongs to C, and at least 13
boxes are charged to λ(v, w), then arbitrarily add one of v and w to C.

We first show that C contains at most k vertices. The set F of forcing edges
determines |F | boxes that we denote by RF . All of them cover no decision column
and cover no part of an edge-gadget or are charged to it. B − RF has 12m + k
boxes. By Lemma 6 at least 12 of them are charged to each edge. This leaves at
most k boxes that lead to an addition to C.

Suppose now for a contradiction that for some edge e = (v, w) neither v nor
w belongs to C. Then the boxes covering λ(v, e) and λ(w, e) cannot lie entirely
inside their corresponding vertex columns. In other words, Step (a) did not apply.
In this scenario, both these decision columns are covered using boxes from the
edge-gadget, so by Lemma 6 at least 13 boxes are charged to λ(v, w). Hence by
Step (b), either v or w must belong to C. ��
Theorem 2. 3D-Histogram-Partition is APX-hard.

Proof. Let C∗ and S∗ be the optimum vertex cover of G and the optimum box
partition of H, respectively. Assume that we had an (1+ ε)-approximation algo-
rithm for 3D-Histogram-Partition that computes a solution S from which
we extract a vertex cover C. By Lemmas 7–8, we have |S| = |F | + 12m + |C|
and |S∗| = |F | + 12m + |C∗|. Since G is cubic, |C∗| ≥ n/3. Finally observe that
|S∗| ≤ |F | + 12m + |C∗| ≤ 13n + 1 + 18n + (n − 1) = 32n. Hence we get

|C|
|C∗| =

|S|−|F |−12m

|S∗|−|F |−12m
≤ (1+ε)|S∗|−|F |−12m

|S∗|−|F |−12m
= 1+

ε|S∗|
|C∗| ≤ 1+

32nε

n/3
= 1+96ε,

implying an approximation algorithm for vertex cover. The APX-hardness of
3D-Histogram-Partition now follows from the APX-hardness of minimum
vertex cover. ��

5 Partitioning Using Guillotine Cuts

In this section we show that there is an infinite family of 3D-histograms that can-
not be optimally partitioned using guillotine cuts, whereas 2D-polygons can be
partitioned optimally using such cuts by first cutting along “good diagonals” [5].

We say that P is a partitioning of a polyhedron H into boxes using guil-
lotine cuts if P is a partition of H into boxes and there is a sequence P0 =
{H},P1, . . . ,Pk = P of sets of polyhedra such that every Pi+1 is obtained from
Pi by partitioning Pi using guillotine cuts.

Theorem 3. There is an infinite family of 3D-histograms that cannot be parti-
tioned optimally using only guillotine cuts.

Partitioning Orthogonal Histograms into Rectangular Boxes 155

Fig. 6. (a) Illustration for H. (b) The top view of H. (c) Construction of Hk.

Proof. We first refer the reader to the histogram H of Fig. 6(a). Since H has five
faces of distinct height, any partition of H into boxes would require 5 boxes, and
H admits such a partition (e.g. by cutting along the edges of the top view in
Fig. 6(b)). We now show that H cannot be partitioned into 5 boxes if we restrict
the cuts to be guillotine.

Consider starting with a vertical guillotine cut, i.e., a cut perpendicular to
the x-axis or y-axis. Any such cut results in two polyhedra: one with at least 4
faces of distinct height, and another with at least 2 faces of distinct height. Any
further cutting of these polyhedra will result in at least 6 boxes, a contradiction.

If instead we start with a horizontal cut (perpendicular to the z-axis), we
have 4 choices: cutting at heights 1, 2, 3, or 4. Cutting at any height other than
1 results in two polyhedra, one of which with 5 boxes in its optimal partitioning,
a contradiction. Assume that we start by cutting at height 1. Any subsequent
vertical guillotine cut results in two polyhedra: one with at least 3 faces of distinct
height, and another with at least 2. Therefore, no vertical guillotine cuts are
acceptable. Any subsequent horizontal cut immediately result in a contradiction:
one of the polyhedra resulting from such a horizontal guillotine cut has 4 boxes
in its optimal partitioning, and together with the 1 box from the first cut and
the (at least) 1 other box from this cut we have at least 6 boxes.

It is now straightforward to create an infinite family of polyhedra H1(=
H),H2, . . . , Hk by attaching up to k copies of H on a rectangular box, as in
Fig. 6(c), such that none of them can be partitioned optimally using only guil-
lotine cuts. ��

6 Orthogonal Polyhedra with Bounded Dimensions

In this section we focus on orthogonal polyhedra with bounded dimensions (recall
that all vertex-coordinates are assumed to be integers). If one dimension of the
input polyhedron P is bounded by t, then we construct a t-approximate box
partition. If two dimensions are bounded, then we compute an optimal box par-
tition in polynomial time. This works for all polyhedra of bounded dimensions,
even if they are not histograms or have holes.

156 T. Biedl et al.

Fig. 7. Illustration for Lemma 10.

So let P be a polyhedron that resides within the [0,W] × [0, L] × [0,H] box.
If H is bounded by t, then we partition the polyhedron into (up to) t sets of
polyhedra Pi where 0 ≤ i < t and Pi is bounded by the planes z = i, z = i + 1.
For each Pi, we compute an optimal box partition B∗

i = Opt(Pi) using the
algorithm for partitioning 2D-polygons [5]. We claim that

⋃
i B

∗
i gives a partition

that is within a factor of t of the optimum.
Fix an optimal partition Opt(P) and partition it by the planes z = i. Let

Bi be the boxes between the planes z = i and z = i + 1. Then |Bi| ≥ |B∗
i | but

also |Bi| ≤ |Opt(P)|. Hence
∑

i |B∗
i | ≤ ∑

i |Bi| ≤ t · |Opt(P)| and we have:

Lemma 9. For orthogonal polyhedra with one dimension bounded by t, a mini-
mum box partition can be approximated within a factor of t in polynomial time.

Consider now the scenario when two dimensions are fixed, e.g., W ·L ∈ O(1).
We rely on the following lemma.

Lemma 10. Any orthogonal polyhedron P with vertices having integer coordi-
nates can be optimally partitioned into boxes where the coordinates are integral.

Proof (sketch). Assume that in a partition some box-face is within a plane (say
plane x = px) for which px is not integral. Then we can shift all box-boundaries
within that plane to lie within x = px + ε instead (see Fig. 7) to get closer to a
solution where all coordinates are integral. ��

Let the voxel vi,j,k be the unit cube [i−1, i]× [j −1, j]× [k −1, k] and let the
column ci,j be all the voxels {vi,j,k : 1 ≤ k ≤ H}. (In the following, whenever the
range of i, j is unspecified then we mean 1 ≤ i ≤ W and 1 ≤ j ≤ L.) We have
W · L ∈ O(1) columns, and hence O(H) voxels. Consider some box partition B
of P that uses only boxes with integer coordinates. Let B′ be some set of boxes
obtained from B by removing (repeatedly) some box whose entire top is visible
to infinity, or becomes visible after some other boxes in B − B′ were removed.
Boxes B′ cover a subset P ′ of P, and this subset can be described as follows:
For each column ci,j , P ′ contains all voxels of ci,j that belong to P, up to some
limit bi,j , and then contains no other voxels of ci,j .

Partitioning Orthogonal Histograms into Rectangular Boxes 157

This observation is the key idea for a dynamic programming algorithm to find
the optimum partition of P. For any integer values bi,j , define the polyhedron
P[{bi,j}i,j] to be the polyhedron obtained from P by removing for each column
ci,j all voxels vi,j,q with q > bi,j . For each such polyhedron, we compute (recur-
sively) the size T [{bi,j}i,j] of the optimal box partition. This gives the optimal
box partition for P = P[{H}i,j].

We can fill an entry T [{bi,j}i,j] by considering any box B = [i1, i2]× [j1, j2]×
[k1, k2] that could be part of a box partition of P[{bi,j}i,j] such that the top face
of B is visible to infinity. In particular, we must have bi,j = k2 and vi,j,k ⊂ P
for all i1 < i ≤ i2, j1 < j ≤ j2, and k1 < k ≤ k2. If this is satisfied, then one
possible value for T [{bi,j}i,j] is to add one to the value for T [{b′

i,j}i,j] (where
b′
i,j = k1 for all i1 < i ≤ i2, j1 < j ≤ j2 and b′

i,j = bi,j otherwise).
There are W 2L2 ∈ O(1) possibilities for i1, i2, j1, j2, and for each of them, we

can find the only possible value k2 in O(W ·L) = O(1) time and all possible values
of k1 in O(H) time. One update to the table can hence be done in O(H) time.
There are O(HWL) table-entries, so the entire dynamic program takes O(HO(1))
time. We may assume that any plane z = i for integral i contains at least one
vertex of P (else we could shrink the polyhedron to obtain a combinatorially
equivalent one) so that H ∈ Θ(n). Therefore we can find the optimal partition
in O(nO(1)) time.

Theorem 4. Given an orthogonal polyhedron P such that two dimensions of P
are bounded, one can compute a minimum box partition of P in polynomial time.

7 Corner Polyhedra

In this section we give a polynomial-time algorithm with approximation factor
2 for partitioning a corner polyhedron into a minimum number of rectangular
boxes. This improves on the approximation factor of 4 for histograms.

A corner polyhedron (as defined by Eppstein [6]) is an orthogonal polyhedron
in which all but three “back” faces are oriented towards the vector (1, 1, 1), i.e.,
visible from a point at infinity on the line x = y = z. See Fig. 8. Without loss
of generality we will assume that the three back faces intersect at the vertex
(0, 0, 0). A corner polyhedron can be drawn in the plane by isometric projection
with all vertices except (0, 0, 0) visible. For any point p = (px, py, pz) inside a
corner polyhedron, the three orthogonal line segments connecting p to the planes
z = 0, y = 0, and x = 0 are contained in the polyhedron. This implies that a
corner polyhedron is a histogram with any of the three back faces as the base.

A peak of a corner polyhedron is a vertex that is a local maximum in the
direction (1, 1, 1). Equivalently a peak is a vertex where the solid angle is 4π/8,
not including the vertices that lie on the axis planes. Let k be the number
of peaks. Observe that the peaks form a set of independent points, thus k is
a lower bound on the number of boxes needed in a partition. We will show
that any corner polyhedron can be partitioned into 2k boxes, which gives the
approximation factor 2.

158 T. Biedl et al.

Fig. 8. (a) P, with peaks shown as red dots. (b) H, the projection of P to the z = 0
plane, and a partition of H into rectangles. (c) A forbidden corner in H. (Color figure
online)

Lemma 11. A corner polyhedron P with k peaks can be partitioned into 2k
boxes. Furthermore, such a partition can be found in polynomial time.

Proof. Project P onto one of the axis planes, say z = 0. Call the result H. Then
H is a histogram partitioned into orthogonal polygons that correspond to the
top faces of P.

We claim that each such polygon consists of two monotone chains, each
consisting of edges in the +x and −y directions. See Fig. 8(b). To justify this
claim, observe that if a polygon of H were not monotone then it would have
a vertex v where one edge goes to the left and one edge goes up, as shown in
Fig. 8(c). Let p1 be a point just above and left of v, and let p2 be a point just
above and right of v. Assume that p1 and p2 are the projections of points q1 and
q2 on the surface of P. We consider their z coordinates. If z(q1) > z(q2) then a
line from q1 to the y = 0 plane leaves P, and if z(q1) < z(q2) then a line from
q2 to the x = 0 plane leaves P—a contradiction in both cases.

Given that the polygons of H are monotone, we can partition them into
rectangles by adding, from each peak vertex in H, two vertical (i.e., in the y
direction) segments, one going upwards and one going downwards. Each line
segment stops when it is blocked by the interior of a horizontal edge of H. This
partitions H into at most 2k rectangles. Expand each rectangle into a 3D box
from z = 0 to the maximum possible height. The result is 2k boxes that partition
P. See the final partition of P in Fig. 8(a). ��
Theorem 5. There is a polynomial-time 2-approximation algorithm to partition
a corner polyhedron into boxes.

8 Open Problems

1. Is there a constant-factor approximation algorithm for the case of general 3D
orthogonal polyhedra?

2. For histograms, there is a 4-approximation algorithm [8]. Can the approxi-
mation factor of 4 be reduced?

3. For corner polyhedra, we gave a 2-approximation algorithm. Is there a PTAS,
or even a polynomial-time algorithm?

Partitioning Orthogonal Histograms into Rectangular Boxes 159

4. What about other special cases of histograms, for example “convex polyhe-
dra” [3] and “orthoballs” [2]?

For all these questions, the concept of independent points may be useful.
While there are histograms for which the optimal box partition has a higher
cardinality than any independent set of points (e.g. the one in Fig. 1(c) has only
three independent points but requires four boxes), the maximum cardinality of
an independent set of points could serve as a lower bound for an approximation
algorithm. Can it be computed efficiently?

Acknowledgements. This work was done as part of the Algorithms Problem Session
at the University of Waterloo. We thank the other participants for valuable discussions.
Research of T.B. and A.L. supported by NSERC, M.D. supported by Vanier CGS, M.D.
and D.M. supported by an NSERC PDF.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Barrera-Cruz, F., Biedl, T.C., Derka, M., Kiazyk, S., Lubiw, A., Vosoughpour, H.:
Turning orthogonally convex polyhedra into orthoballs. In: Proceedings of CCCG
(2014)

3. Dielissen, V.J., Kaldewaij, A.: Rectangular partition is polynomial in two dimen-
sions but NP-complete in three. Inf. Process. Lett. 38(1), 1–6 (1991)

4. Durocher, S., Mehrabi, S.: Computing conforming partitions of orthogonal poly-
gons with minimum stabbing number. Theor. Comput. Sci. 689, 157–168 (2017)

5. Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In:
Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11409-0 1

6. Eppstein, D., Mumford, E.: Steinitz theorems for simple orthogonal polyhedra. J.
Comput. Geom. 5(1), 179–244 (2014)

7. Ferrari, L., Sankar, P.V., Sklansky, J.: Minimal rectangular partitions of digitized
blobs. Comput. Vis. Graph. Image Process. 28(1), 58–71 (1984)

8. Floderus, P., Jansson, J., Levcopoulos, C., Lingas, A., Sledneu, D.: 3D rectangu-
lations and geometric matrix multiplication. Algorithmica (2016, in press)

9. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

10. Keil, M., Snoeyink, J.: On the time bound for convex decomposition of simple
polygons. Int. J. Comput. Geom. Appl. 12(03), 181–192 (2002)

11. Lingas, A., Pinter, R., Rivest, R., Shamir, A.: Minimum edge length partition-
ing of rectilinear polygons. In: Proceedings of the Annual Allerton Conference on
Communication, Control, and Computing, vol. 10, pp. 53–63 (1982)

12. Lipski, W., Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional data
organization II. Fundam. Informaticae 2, 245–260 (1979)

13. Lipski, W.: Finding a Manhattan path and related problems. Networks 13(3),
399–409 (1983)

14. Ohtsuki, T.: Minimum dissection of rectilinear regions. In: Proceedings of the IEEE
International Symposium on Circuits and Systems, pp. 1210–1213 (1982)

https://doi.org/10.1007/978-3-642-11409-0_1

160 T. Biedl et al.

15. O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems.
IEEE Trans. Inf. Theory 29(2), 181–189 (1983)

16. O’Rourke, J., Tewari, G.: The structure of optimal partitions of orthogonal poly-
gons into fat rectangles. Comput. Geom. 28(1), 49–71 (2004)

17. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ.
Carol. 15(2), 307–309 (1974)

18. Uehara, R.: NP-complete problems on a 3-connected cubic planar graph and their
applications. Technical report TWCU-M-0004, Tokyo Woman’s Christian Univer-
sity (1996)

Compact Self-Stabilizing Leader Election
for General Networks

Lélia Blin1(B) and Sébastien Tixeuil2

1 Sorbonne Universités, CNRS, Université d’Evry-Val-d’Essonne,
LIP6 UMR 7606, 4 place Jussieu, 75005 Paris, France

lelia.blin@lip6.fr
2 Sorbonne Universités, CNRS, LIP6 UMR 7606, 4 place Jussieu,

75005 Paris, France

Abstract. We present a self-stabilizing leader election algorithm for
general networks, with space-complexity O(log Δ + log log n) bits per
node in n-node networks with maximum degree Δ. This space com-
plexity is sub-logarithmic in n as long as Δ = no(1). The best space-
complexity known so far for general networks was O(log n) bits per node,
and algorithms with sub-logarithmic space-complexities were known for
the ring only. To our knowledge, our algorithm is the first algorithm
for self-stabilizing leader election to break the Ω(log n) bound for silent
algorithms in general networks. Breaking this bound was obtained via
the design of a (non-silent) self-stabilizing algorithm using sophisticated
tools such as solving the distance-2 coloring problem in a silent self-
stabilizing manner, with space-complexity O(log Δ + log log n) bits per
node. Solving this latter coloring problem allows us to implement a sub-
logarithmic encoding of spanning trees — storing the IDs of the neigh-
bors requires Ω(log n) bits per node, while we encode spanning trees
using O(log Δ + log log n) bits per node. Moreover, we show how to con-
struct such compactly encoded spanning trees without relying on vari-
ables encoding distances or number of nodes, as these two types of vari-
ables would also require Ω(log n) bits per node.

1 Introduction

This paper tackles the problem of designing memory efficient self-stabilizing
algorithms for the leader election problem. Self-stabilization [15] is a general
paradigm to provide recovery capabilities to networks. Intuitively, a protocol
is self-stabilizing if it can recover from any transient failure, without external
intervention. Leader election denoted by L.E. is one of the fundamental building
blocks of distributed computing, as it enables a single node in the network to be
distinguished, and thus to perform specific actions. L.E. is especially important
in the context of self-stabilization as many protocols for various problems assume

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03),
supported by French state funds managed by the ANR (Agence Nationale de la
Recherche).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 161–173, 2018.
https://doi.org/10.1007/978-3-319-77404-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_13&domain=pdf

162 L. Blin and S. Tixeuil

that a single leader exists in the network, even after faults occur. Hence, a self-
stabilizing L.E. mechanism enables such protocols to be run in networks where
no leader is given a priori, by using simple stabilization-preserving composition
techniques [15]. Memory efficiency relates to the amount of information to be
sent to neighboring nodes for enabling stabilization. As a result, only mutable
memory (used to store variables) is considered for computing memory complexity
of a self-stabilizing protocols, while immutable memory (used to store the code
of the protocol) is not considered. A small space-complexity induces a smaller
amount of information transmission, which (1) reduces the overhead of self-
stabilization when there are no faults, or after stabilization [1], and (2) facilitates
mixing self-stabilization and replication [21].

An algorithm is silent if each of its executions reaches a point in time after
which the states of nodes do not change. A non-silent algorithm is said to be
talkative (see [10]). A foundational result regarding space-complexity in the
context of self-stabilizing silent algorithmsis due to Dolev et al. [16], stating
that in n-node networks, Ω(log n) bits of memory per node are required for
solving tasks such as leader election. So, only talkative algorithms may have
o(log n)-bit space-complexity for self-stabilizing L.E. Several attempts to design
compact self-stabilizing L.E. algorithms (i.e., algorithms with space-complexity
o(log n) bits) were performed but restricted to rings (See e.g. the paper by Blin
et al. [10] and references therein). The best result known so far in this con-
text [10] is a deterministic self-stabilizing L.E. algorithm for rings of arbitrary
size using identifiers of arbitrary polynomially bounded values, with space com-
plexity O(log log n) bits per node.

In general networks, self-stabilizing L.E. is tightly connected to self-
stabilizing tree-construction. On the one hand, the existence of a leader permits
time- and memory-efficient self-stabilizing tree-construction [9,12,13,17,25]. On
the other hand, growing and merging trees is the main technique for design-
ing self-stabilizing L.E. algorithms in networks, as the leader is often the root
of an inward tree [2–4]. To the best of our knowledge, all algorithms that do
not assume a pre-existing leader [2–4,7] for tree-construction use Ω(log n) bits
per node. This high space-complexity is due to the implementation of two main
techniques, used by all algorithms, and recalled below.

The first technique is the use of a pointer-to-neighbor variable, that is meant
to designate unambiguously one particular neighbor of every node. For the pur-
pose of tree-construction, pointer-to-neighbor variables are typically used to
store the parent node in the constructed tree. Specifically, the parent of every
node is designated unambiguously by its identifier, requiring Ω(log n) bits for
each pointer variable. In principle, it would be possible to reduce the memory
to O(log Δ) bits per pointer variable in networks with maximum degree Δ, by
using node-coloring at distance 2 instead of identifiers to identify neighbors. How-
ever, this, in turn, would require the availability of a self-stabilizing distance-2
node-coloring algorithm that uses o(log n) bits per node. Previous self-stabilizing
distance-2 coloring algorithms use variables of large size. For instance, in the
algorithm by Herman et al. [22], every node communicates its distance-3 neigh-

Compact Self-Stabilizing Leader Election for General Networks 163

borhood to all its neighbors, which yields a space-complexity of O(Δ3 log n)
bits. Johnen et al. [20] draw random colors in the range [0, n2], which yields
a space-complexity of O(log n) bits. Finally, while the deterministic algorithm
of Blair et al. [6] reduces the space-complexity to O(log Δ) bits per node, this
is achieved by ignoring the cost of storing another pointer-to-neighbor variable
at each node. In absence of a distance-2 coloring (which their algorithm [6] is
precisely supposed to produce), their implementation still requires Ω(log n) bits
per node. To date, no self-stabilizing algorithm implement pointer-to-neighbor
variables with space-complexity o(log n) bits in arbitrary networks.

The second technique for tree-construction or L.E. is the use of a distance
variable that is meant to store the distance of every node to the elected node
in the network. Such distance variable is used in self-stabilizing spanning tree-
construction for breaking cycles resulting from arbitrary initial state (see [2–4]).
Clearly, storing distances in n-node networks may require Ω(log n) bits per node.
There are a few self-stabilizing tree-construction algorithms that are not using
explicit distance variables (see, e.g., [14]), but their space-complexity is huge
(e.g. O(n log n) bits [14]). Using the general principle of distance variables with
space-complexity below Θ(log n) bits was attempted by Awerbuch et al. [5], and
Blin et al. [10]. These papers distribute pieces of information about the distances
to the leader among the nodes according to different mechanisms, enabling to
store o(log n) bits per node. However, these sophisticated mechanisms have only
been demonstrated in rings. To date, no self-stabilizing algorithms implement
distance variables with space-complexity o(log n) bits in arbitrary networks.

Our results

In this paper, we design and analyze a self-stabilizing L.E. algorithm with space-
complexity O(log Δ + log log n) bits in n-node networks with degree Δ. This
algorithm is the first self-stabilizing L.E. algorithm for arbitrary networks with
space-complexity o(log n) (whenever Δ = no(1)). It is designed for the stan-
dard state model (a.k.a. shared memory model) for self-stabilizing algorithms in
networks, and it performs against the unfair distributed scheduler.

The design of our algorithm requires overcoming several bottlenecks, includ-
ing the difficulties of manipulating pointer-to-neighbor and distance variables
using o(log n) bits in arbitrary networks. Overcoming these bottlenecks was
achieved thanks to the development of sub-routine algorithms, each deserving
independent special interest described hereafter.

First, we generalize to arbitrary networks the results proposed [10] for rings,
and aiming at publishing the identifiers in a bit-wise manner. This generalization
allows us to manipulate the identifiers with just O(log log n) bits of memory per
node denoted in the following by bits/nd.

Second, we propose the first silent self-stabilizing algorithm for distance-2
coloring that breaks the space-complexity of Ω(log n) bits/nd. More precisely
this new algorithm achieves a space-complexity of O(log Δ + log log n) bits/nd.
As opposed to previous distance-2 coloring algorithms, we do not use identifiers
for encoding pointer-to-neighbor variables, but we use a compact representation

164 L. Blin and S. Tixeuil

of the identifiers to break symmetries. This algorithm allows us to design a
compact encoding of spanning trees.

Third, we design a new technique to detect the presence of cycles in the
initial configuration resulting from a transient failure. This approach does not
use distances, but it is based on the uniqueness of each identifier in the network.
Notably, this technique can be implemented by a silent self-stabilizing algorithm,
with space-complexity O(log Δ + log log n) bits/nd.

Last but not least, we design a new technique to avoid the creation of cycles
during the execution of the L.E. algorithm. Again, this technique does not uses
distances but maintains a spanning forest, which eventually reduces to a single
spanning tree rooted at the leader at the completion of the L.E. algorithm.
Implementing this technique results in a self-stabilizing algorithm with space
complexity O(log Δ + log log n) bits/nd.

2 Model and Definitions

2.1 Protocol Syntax and Semantics

We consider a distributed system consisting of n processes that form an arbitrary
communication graph. The processes are represented by the nodes of this graph,
and the edges represent pairs of processes that can communicate directly with
each other. Such processes are said to be neighbors.

Let G = (V,E) be an n-node graph, where V is the set of nodes, and E the
set of edges and Δ the degree of the graph. A node v has access to a constant
unique identifier idv, but can only access its identifier one bit at a time, using the
Bitv(i) function, which returns the position of the ith most significant bit equal
to 1 in idv. Even though identifiers require Ω(log n) bits/nd in the worst case,
the Bit function can be stored in the immutable code portion of the node. We
present here the pseudocode for the Bitv function at a particular node v. Note
that since nodes have unique identifiers, they are allowed to execute unique code.
For example, suppose node v has identifier 10 (in decimal notation), or 1010 (in
binary notation). Then, one can implement Bitv(i) as follows for v = 1010:

Bitv(i) :=

⎧
⎨

⎩

4 if i = 1
2 if i = 2
−1 if i > 2

Since we assume that all identifiers are O(log n) bits long, the Bitv function only
returns values with O(log log n) bits. Also, when executing Function Bitv, the
program counter only requires O(log log n) values. In turn, this position can be
encoded with O(log log n) bits when identifiers are encoded using O(log n) bits,
as we assume they are. A node v has access to locally unique port numbers
associated with its adjacent edges. We do not assume any consistency between
port numbers of a given edge. In short, port numbers are constant throughout
the execution but initialized by an adversary. Each process contains variables
and rules. Variable ranges over a domain of values. The variable varv denote

Compact Self-Stabilizing Leader Election for General Networks 165

the variable var located at node v. A rule is of the form 〈label〉 : 〈guard〉 −→
〈command〉. A guard is a boolean predicate over process variables. A command
is a set of variable-assignments. A command of process p can only update its
own variables. On the other hand, p can read the variables of its neighbors. This
classical communication model is called the state model or the state-sharing
communication model.

An assignment of values to all variables in the system is called a configuration.
A rule whose guard is true in some system configuration is said to be enabled
in this configuration. The rule is disabled otherwise. The atomic execution of a
subset of enabled rules (at most one rule per process) results in a transition of
the system from one configuration to another. This transition is called a step. A
run of a distributed system is a maximal alternating sequence of configurations
and steps. Maximality means that the execution is either infinite or its final
configuration has no rule enabled.

2.2 Schedulers

The asynchronism of the system is modeled by an adversary (a.k.a. scheduler)
that chooses, at each step, the subset of enabled processes that are allowed to
execute one of their rules during this step. Those schedulers can be classified
according to their characteristics (like fairness, distribution, ...), and a taxon-
omy was presented By Dubois et al. [18]. Note that we assume here an unfair
distributed scheduler. This scheduler is the most challenging since no assump-
tion is made of the subset of enabled processes chosen by the scheduler at each
step. We only require this set to be nonempty if the set of enabled processes is
not empty in order to guarantee progress of the algorithm.

A round is the smallest portion of execution where every process has the
opportunity to execute at least one action. In more detail, each process having
at least one enabled rule at the beginning of a round r is either scheduled for
execution during r, or all its rules become disabled due to neighbors’ rules being
executed during r.

3 Compact Self-stabilizing Leader Election for Networks

Our new self-stabilizing L.E. algorithm is based on a spanning tree-construction
rooted at a maximum degree node, without using distances. If multiple maximum
degree nodes are present in the network, we break ties with colors and if necessary
with identifiers.

Theorem 1. Algorithm C-LE solves the L.E. problem in a talkative self-
stabilizing manner in any n-node graph, assuming the state model and a dis-
tributed unfair scheduler, with O(log Δ + log log n) bits/nd.

Our talkative self-stabilizing algorithm reuses and extends a technique for
obtaining compact identifiers of size O(log log n) bits/nd presented in Sect. 3.1.
Then, the L.E. process consists in running several algorithms layers using
decreasing priorities:

166 L. Blin and S. Tixeuil

1. An original silent self-stabilizing distance-2 coloring presented in Subsect. 3.2
that permits to implement pointer-to-neighbors with o(log n) bits/nd.

2. A silent self-stabilizing cycle and illegitimate sub spanning tree-destruction
reused from previous work [8,10] presented in Subsect. 3.3.

3. A new silent self-stabilizing cycle detection that does not use distance to the
root variables presented in Subsect. 3.4.

4. An original talkative self-stabilizing spanning tree-construction, that still does
not use distance to the root variables, presented in Subsect. 3.5. This algo-
rithm is trivially modified to obtain a L.E. algorithm.

Due to the lack of space most of the proofs and predicates are delegated in [11].

3.1 Compact Memory Using Identifiers

As many deterministic self-stabilizing L.E. algorithms, our approach ends up
comparing node unique identifiers. However, to avoid communicating the full
Ω(log n) bits to each neighbor at any given time, we reuse the scheme devised in
previous work [10] to progressively publish node identifiers. Let idv be the identi-
fier of node v. We assume that idv =

∑k
i=0 bi2i. Let Iv =

{
i ∈ {0, ..., k}, bi �= 0

}

be the set of all non-zero bit-positions in the binary representation of idv. Then,
Iv can be written as {pos1, ..., posj}, where posk > posk+1. In the process of com-
paring node unique identifiers during the L.E. algorithm execution, the nodes
must first agree on the same bit-position posj−i+1 (for i = 1, . . . , j); this step
of the algorithm defines phase i. Put differently, the bit-positions are communi-
cated in decreasing order of significance in the encoding of the identifier. In turn,
this may propagate it to their neighbors, and possibly to the whole network in
subsequent phases. This propagation is used in the following to break symmetries
in the coloring problem or to detect a cycle in spanning tree construction.

If all identifiers are in [1, nc], for some constant c ≥ 1, then the communicated
bit-positions are less than or equal to c�log n	, and thus can be represented with
O(log log n) bits. However, the number of bits used to encode identifiers may be
different for two given nodes, so there is no common upper bound for the size
of identifiers. We circumvent this problem using a ranking on bit-positions that
is agnostic on the size of the identifiers. We extract of our previous works the
part dedicated to the propagation of the identifier bit by bit in phases, remark
that we slightly modify our previous work. Since we do not assume that the
identifiers of every node are encoded using the same number of bits, simply
comparing the i-th most significant bit of two nodes is irrelevant. Instead, we
use variable B̂v, which represents the most significant bit-position of node v.
In other words, B̂v represents the size of the binary representation of idv. The
variables ph, Bp are the core of the identifier comparison process. Variable phv

stores the current phase number i, while variable Bpv stores the bit-position of
idv at phase i. Remark that the number of non-zero bits can be smaller than
the size of the binary representation of the identifier of the node, so if there
are no more non-zero bit at phase i ≤ B̂v, we use Bpv = −1. To make the
algorithm more readable, we introduce variable Cidv = (B̂v, phv,Bpv), called a

Compact Self-Stabilizing Leader Election for General Networks 167

compact identifier in the sequel. When meaningful, we use Cid i
v = (B̂v,Bpv),

where i = phv.

3.2 Silent Self-stabilizing Distance-2 Coloring

In this section, we provide a new solution to assign colors that are unique up to
distance two (and bounded by a polynom of the graph degree) in any graph.
Those colors are meant to efficiently implement the pointer-to-neighbor mecha-
nism that otherwise requires Ω(log n) bits/nd.

Our solution uses compact identifiers to reduce memory usage. When a node
v has the same color as (at least one of) its neighbors, then if the node v has
the smallest conflicting color in its neighborhood and is not the biggest identifier
among conflicting nodes, then v changes its color. To make sure a fresh color
is chosen by v, all nodes publish the maximum color used by their neighbor-
hood (including themself). So, when v changes its color, it takes the maximum
advertised color plus one. Conflicts at distance two are resolved as follow: let us
consider two nodes u and v in conflict at distance two, and let w be (one of)
their common neighbor; as w publishes the color of u and v, it also plays the role
of a relay, that is, w computes and advertises the maximum identifiers between
u and v, using the compact identifiers mechanisms that were presented above;
a bit by bit, then, if v has the smallest identifier, it changes its color to a fresh
one. To avoid using too many colors when selecting a fresh one, all changes of
colors are made modulo an upper bound on the number of neighbors at distance
2, which is computed locally by each node.

Self-stabilizing Algorithm Description. Each node v maintains a color vari-
able denoted by cv and a degree variable denoted by δv. A variable qcv stores the
minimum color in conflict in its neighborhood (including itself). The variable ĉv

stores the maximum color observed in its neighborhood. We call v a player node
when v has the minimum color in conflict. Also, we call u a relay node when u
does not have the minimum color in conflict, yet at least two of its neighbors
have the minimum color in conflict.

The rule RΔ assures that the degree variable is equal to the degree of the
node. Each node v must maintain its color in range [1,Δ(v)2 + 1] to satisfy the
memory requirements of our protocol, where Δ(v) is a function that returns
the maximum degree of its neighborhood (including itself). Whenever v’s color
exceeds its expected range, rule R

+
Δ resets the color to one.

Rule RUp is dedicated to updating the variables of v whenever they do not
match the observed neighborhood of v (see Bad(v)), or when a player node has
an erroneous phase variable when comparing its identifier with another player
node (see function Oth(v)). In both cases, the v computes the minimum and
maximum color and resets its compact identifier variable.

The rule RColor increases the color of the node v but maintains the color
in some range, when v has the minimum color in conflict and the minimum
identifier. The rule RBit increases the phase of v, when v is a player and does

168 L. Blin and S. Tixeuil

not have the minimum identifier at the selected phase. The rule RRelay updates
the identifier variable when v is a relay node.

Algorithm 1. C-Color
RΔ : (δv �= deg(v)) −→ δv := deg(v);

R
+
Δ : (δv = deg(v)) ∧ (cv > Δ(v)2) −→ cv := 1;

RUp : (δv = deg(v)) ∧ (cv ≤ Δ(v)2) ∧ Bad(v) −→ Update(v);

RColor : (δv = deg(v)) ∧ (cv ≤ Δ(v)2) ∧ ¬Bad(v) ∧ Player(v) ∧ Loser(v)
−→ N ewcolor(v);

RBit : (δv = deg(v)) ∧ (cv ≤ Δ(v)2) ∧ ¬Bad(v) ∧ Player(v) ∧ ¬Loser(v) ∧ SPh+(v, Oth(v))
−→ IncPh(v);

RRelay : (δv = deg(v)) ∧ (cv ≤ Δ(v)2) ∧ ¬Bad(v) ∧ Relay(v) ∧ RUp(v, PlayR(v))
−→ Opt(v, PlayR(v),max);

Theorem 2. Algorithm C-Color solves the vertex coloration problem at dis-
tance two in a silent self-stabilizing manner in graph, assuming the state model,
and a distributed unfair scheduler. Moreover, if the n node identifiers are in
[1, nc], for some c ≥ 1, then C-Color uses O(log Δ + log log n) bits/nd. More-
over, algorithm C-Color stabilizes in O(n log2 n) rounds.

3.3 Cleaning a Cycle or an Impostor-Rooted Spanning Tree

The graph G is supposed to be colored up to distance 2, thanks to our previous
algorithm. To construct a spanning tree of G, each node v maintains a variable
pv storing the color of v’s parent (∅ otherwise). The function Ch(v) to return
the subset of v’s neighbors considered as its children (that is, each such node u
has its pu variable equal v’s color). Note that the variable parent is managed by
the algorithm of spanning tree-construction.

An error is characterized by the presence of inconsistencies between the val-
ues of the variables of a node v and those of its neighbors. In the process of
a tree-construction, an error occurring at node v may have an impact on its
descendants. For this reasons, after a node v detects an error, our algorithm
cleans v and all of its descendants. The cleaning process is achieved by Algo-
rithm Freeze, already presented in previous works [8,10]. Algorithm Freeze is
run in two cases: cycle detection (thanks to predicate ErCycle(v), presented in
Subsect. 3.4), and impostor leader detection (thanks to predicate ErST(v), pre-
sented in Subsect. 3.5). An impostor leader is a node that (erroneously) believes
that it is a root.

When a node v detects a cycle or an impostor root, v deletes its parent. Simul-
taneously, v becomes a frozen node. Then, every descendant of v becomes frozen.
Finally, from the leaves of the spanning tree rooted at v, nodes delete their par-
ent and reset all variables that are related to cycle detection or tree-construction.

Compact Self-Stabilizing Leader Election for General Networks 169

So, this cleaning process cannot create a livelock. Algorithm Freeze is a silent
self-stabilizing algorithm using O(1) bits of memory per node finally from the
leaves of the spanning tree rooted in v the nodes delete their parent and reset all
the variables relative to the construction of the spanning tree and the detection
of the cycle.

It is important to note that a frozen node, or the child of a frozen node, does
not participate to cycle detection or spanning tree-construction. It is important
to note that a frozen node or a child of a frozen node does not participate to the
detection of a cycle or to the construction of the spanning tree.

3.4 Silent Self-stabilizing Algorithm for Cycle Detection

We present in this subsection a self-stabilizing algorithm to detect cycles (pos-
sibly due to initial incorrect configuration) without using the classical method
of computing the distance to the root. We first present our solution with the
assumption of global identifiers (hence using O(log n) bits for an n-node net-
work) and then using our compact identifier scheme.

Silent Self-stabilizing Algorithm with Identifiers. The main idea to detect
cycles is to use the uniqueness of the identifiers. We flow the minimum identifier
up to the tree to the root, then if a node whose identifier is minimum receives
its identifier, it can detect a cycle. Similarly, if a node v has two children flowing
the same minimum identifier, v can detect a cycle. The main issue to resolve is
when the minimum identifier that is propagated to the root does not exist in the
network (that is, it results from an erroneous initial state).

The variable mv stores the minimum identifier collected from the leaves to
the root up to node v. We denote by Ev the minimum identifier obtained by v
during the previous iteration of the protocol (this can be ∅). A node v may selects
among its children the node u with the smallest propagated identifier stored in
mu, we call this child kid returned by the function k(v). Predicate ErCycle(v) is

Fig. 1. Spanning structure

the core of our algorithm. Indeed, a node v can detect
the presence of a cycle if it has a parent and if (i)
one of its child publishes its own identifier, or (ii)
two of its children publish the same identifier. Let us
explain those conditions in more detail. We consider
a spanning structure S, a node v ∈ S and let u and w
be two of its children. Suppose that v and u belong
to a cycle C, note that, since a node has a single
parent, w cannot belong to any cycle (see Fig. 1). Let
qm be the minimum identifier stored by any variable
mz such that z belongs to S. So, z is either in C, or
in the subtree rooted to w, denoted by Tw.

First, let us consider the case where qm is stored in Tw. As any node selects
the minimum for flowing the m upstream, there exists a configuration γ where
mw = qm, and a configuration γ′ > γ where mu = qm. In γ′, v can detect an

170 L. Blin and S. Tixeuil

error, due to the uniqueness of identifier, it is not possible for two children of v
to share the same value when there is no cycle.

Now, let us suppose that qm is in C, and let v′ be the node with the smallest
identifier in C, so mv′ = qm or mv′ �= qm (mv′ �= qm means that the identifier qm
does not exist in C.) If mv′ = qm, as any node selects the minimum for flowing the
m upstream, there exists a configuration γ where mu′ = qm and u′ is the child
of v′ involved in C, then v′ can detect an error. Indeed, due to the uniqueness
of identifier, it is not possible that one of its children store its identifier when
there is no cycle. The remaining case is when mv′ �= qm. In this case, as any node
selects the minimum for flowing the m upstream, there exists a configuration
γ where mz = qm, with z belonging to C. When a node v, its parent and one
of its children share the same minimum, they restart the computation of the
minimum identifier. For this purpose, they put their own identifier in the m
variable. To avoid livelock, they also keep track of the previous qm in variable
Ev. Now qm = mv′ , so the system reaches the first case. Note that the variable
Ev blocks the live-lock but also the perpetual restart of the nodes, as a result of
this, a silent algorithm. Moreover, a node v collects the minimum identifier from
the leaves to the root, if mv contains an identifier bigger than the identifier of
the node v, then v detects an error. The same holds, when v has a mv smaller
than mu with u children of v, since the minimum is computed between mk(v)

and its own identifier.

ErCycle(v) ≡ (pv �= ∅) ∧
(
(mk(v) = idv) ∨ (∃(u,w) ∈ Ch(v) : mu = mw)

∨(mv > idv) ∨ (
(mv �= idv) ∧ (mv < mk(v))

)) (1)

Our algorithm only contains three rules. The rule RMin(v) updates the vari-
able mv if the variable mu of a child u is smaller, nevertheless this rule is enabled
if and only if the variable Ev does not contain the minimum mu published by
the child. When v and its relatives have the same minimum, v declares its intent
to restart a minimum identifier computation by erasing its current (and storing
it in Ev). The rule RStart(v) is dedicated to declaring its intent to restart. When
all its neighbors have the same intent, v can restart (see rule RID(v)).

Algorithm 2. Algorithm Break For node v with ¬ErCycle(v)

RMin : (mv > mk(v)) ∧ (Ev �= mk(v)) −→ mv := mk(v);
RStart : (mpv = mv = mk(v)) ∧ (Ev �= mv) −→ Ev := mv;
RID : (Epv = Ev = Ek(v) = mv) ∧ (mv �= idv) −→ mv := idv;

Theorem 3. Algorithm Break solves the detection of cycle in n-node graph in a
silent self-stabilizing manner, assuming the state model, and a distributed unfair
scheduler. Moreover, if the n node identifiers are in [1, nc], for some c ≥ 1, then
algorithm Break uses O(log n) bits/nd.

Compact Self-Stabilizing Leader Election for General Networks 171

3.5 Talkative Spanning Tree-Construction Without Distance

Our approach for self-stabilizing L.E. is to construct a spanning tree whose root is
to be the elected leader. Two main obstacles to self-stabilizing tree-construction
are the possibility of an arbitrary initial configuration containing one or more
cycles, or the presence of one or more impostor-rooted spanning trees. We already
explained how the cycle detection and cleaning process takes place, so we focus
in this section on cycleless configurations.

The main idea is to mimics the fragments approach introduced by Gallager
et al. [19]. In an ideal situation, at the beginning each node is a fragment, each
fragment merges with a neighbor fragment holding a bigger root signature, and
at the end remains only one fragment, rooted in the root with the biggest sig-
nature (that is, the root with maximum degree, maximum color, and maximum
global identifier). To maintain a spanning structure, the neighbors that become
relatives (that is, parents or children) remain relatives after that. Note that the
relationship may evolve through time (that is, a parent can become a child and
vice versa). So our algorithm maintains that as an invariant.

Indeed, when two fragments merge, the one with the root with smaller signa-
ture F1 and the other one with a root with bigger signature F2, the root of F1 is
re-rooted toward its descendants until reaching the node that identified F2. This
approach permits to construct an acyclic spanning structure, without having to
maintain distance information.

The variable Rv stores the signature relative to the root (that is, its degree,
its color, and its identifier). Note that, the comparison between two R is done
using lexical ordering. The variable newv stores the color of the neighbor w of
v leading to u with Ru > Rv if there exists such a node, and ∅ otherwise. The
function f(v) returns the color of the neighbor of v with the maximum root.

Theorem 4. Algorithm ST solves the spanning tree-construction problem in a
silent self-stabilizing way in any n-node graph, assuming the absence of spanning
cycle, the state model, and a distributed unfair scheduler, using O(log n) bits/nd.

We adapt ST to use compact identifiers and obtain Algorithm C-ST. It is simple
to compare two compact identifiers when the nodes are neighbors. Along the
algorithm execution, some nodes become non-root, and therefore the remaining
root of fragments can be far away, separated by non-root nodes. To enable multi-
hop comparison, we use a broadcasting and convergecast wave on a spanning
structure to assure the propagation of the compact identifier.

Theorem 5. C-ST solves the spanning tree-construction problem in a talkative
self-stabilizing way in any n-node graph, assuming the absence of spanning cycle,
the state model, and a distributed unfair scheduler, in O(log Δ + log log n)
bits/nd.

4 Self-stabilizing Leader Election

We now present the final assembly of tools we developed to obtain a self-
stabilizing L.E. algorithm. We add to Algorithm C-ST an extra variable � that

172 L. Blin and S. Tixeuil

is maintained as follows: if a node v has no parent, then �v = true, otherwise,
�v = false. Variable �v is meant to be the output of the L.E. process.

Proof sketch of Theorem 1: Our self-stabilizing L.E. algorithm results from
combining severals algorithms. As already explained, a higher priority algorithm
resets all the variables used by lesser priority algorithms. Moreover, lesser pri-
ority algorithm do not modify the variables of the higher priority algorithms.
Algorithms are prioritized as follows: C-Color, Freeze, C-Break and C-ST.
Only algorithm C-ST is talkative. We first proove that the number of acti-
vations of rules of algorithm C-ST are bounded if there exist nodes enabled
by C-Color, Freeze or C-Break, ensuring termination of those components.
Thanks to Theorem 5, we obtain a spanning tree rooted in the node with the
maximum degree, maximum color, and maximum identifier. As a consequence,
only the root r has �r = true and every other node v ∈ V \ {r} has �v = false.

5 Conclusion

We presented the first self-stabilizing leader election for arbitrary graphs of size
n that uses o(log n) bits of memory per node, breaking a long-standing lower
bound. Our solution does not require any weakening of the usual self-stabilization
model. Besides tree construction and leader election, our research paves the way
for new memory efficient self-stabilizing algorithms. For example, some of the
solutions for self-stabilizing maximal matching construction use a fixed number
of “pointer to neighbor” variables [23,24]. Using our distance two coloring process
would permit to go from O(log n) to O(max{log Δ, log log n}) bits per node.

References

1. Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating practical tolerance properties
of stabilizing programs through simulation: the case of propagation of information
with feedback. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp.
126–132. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-
5 13

2. Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by
power supply. Chicago J. Theor. Comput. Sci. (1998)

3. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol.
486, pp. 15–28. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-
7 2

4. Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038
(1994)

5. Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network reset.
In: PODC, pp. 254–263. ACM (1994)

6. Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm.
Theor. Comput. Sci. 444, 28–39 (2012)

7. Blin, L., Boubekeur, F., Dubois, S.: A self-stabilizing memory efficient algorithm
for the minimum diameter spanning tree under an omnipotent daemon. In: IPDPS
2015, pp. 1065–1074 (2015)

https://doi.org/10.1007/978-3-642-33536-5_13
https://doi.org/10.1007/978-3-642-33536-5_13
https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/3-540-54099-7_2

Compact Self-Stabilizing Leader Election for General Networks 173

8. Blin, L., Fraigniaud, P.: Space-optimal time-efficient silent self-stabilizing construc-
tions of constrained spanning trees. In: Proceedings of ICDCS 2015, pp. 589–598
(2015)

9. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-
approximation algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–
112 (2013)

10. Blin, L., Tixeuil, S.: Compact deterministic self-stabilizing leader election on a
ring: the exponential advantage of being talkative. Distrib. Comput. 1–28 (2017).
https://doi.org/10.1007/s00446-017-0294-2

11. Blin, L., Tixeuil, S.: Compact self-stabilizing leader election for arbitrary networks.
Technical report 1702.07605, ArXiv eprint, Febrary 2017

12. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett. 39(3), 147–151 (1991)

13. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6),
297–301 (1994)

14. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited.
J. Aerosp. Comput. Inf. Commun. (JACIC) 3(10), 498–514 (2006)

15. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
16. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabiliza-

tion. Acta Inf. 36(6), 447–462 (1999)
17. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming

only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)
18. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. Technical

report 1110.0334, ArXiv eprint, October 2011
19. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-

weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)
20. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under

unfair scheduler. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-
Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44681-8 67

21. Herman, T., Pemmaraju, S.V.: Error-detecting codes and fault-containing self-
stabilization. Inf. Process. Lett. 73(1–2), 41–46 (2000)

22. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wire-
less sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS
2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27820-7 6

23. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon without global identifiers. In:
Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 195–212.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 17

24. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon for arbitrary networks. In: Spirakis,
P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69084-1 7

25. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: Proceedings of PODC 2011,
pp. 311–320. ACM, New York (2011)

https://doi.org/10.1007/s00446-017-0294-2
https://doi.org/10.1007/3-540-44681-8_67
https://doi.org/10.1007/3-540-44681-8_67
https://doi.org/10.1007/978-3-540-27820-7_6
https://doi.org/10.1007/978-3-540-27820-7_6
https://doi.org/10.1007/978-3-319-49259-9_17
https://doi.org/10.1007/978-3-319-69084-1_7

Random Walks with Multiple Step
Lengths

Lucas Boczkowski1, Brieuc Guinard1(B), Amos Korman1(B), Zvi Lotker2,
and Marc Renault3

1 IRIF, CNRS and University Paris Diderot, Paris, France
{guinard,pandit}@irif.fr

2 Ben Gurion University of the Negev, Beersheba, Israel

3 Computer Sciences Department, University of Wisconsin - Madison, Madison, USA

Abstract. In nature, search processes that use randomly oriented steps
of different lengths have been observed at both the microscopic and the
macroscopic scales. Physicists have analyzed in depth two such processes
on grid topologies: Intermittent Search, which uses two step lengths, and
Lévy Walk, which uses many. Taking a computational perspective, this
paper considers the number of distinct step lengths k as a complexity mea-
sure of the considered process. Our goal is to understand what is the opti-
mal achievable time needed to cover the whole terrain, for any given value
of k. Attention is restricted to dimension one, since on higher dimensions,
the simple random walk already displays a quasi linear cover time.

We say X is a k-intermittent search on the one dimensional n-node
cycle if there exists a probability distribution p = (pi)

k
i=1, and inte-

gers L1, L2, . . . , Lk, such that on each step X makes a jump ±Li with
probability pi, where the direction of the jump (+ or −) is chosen inde-
pendently with probability 1/2. When performing a jump of length Li,
the process consumes time Li, and is only considered to visit the last
point reached by the jump (and not any other intermediate nodes). This
assumption is consistent with biological evidence, in which entities do
not search while moving ballistically.

We provide upper and lower bounds for the cover time achievable by
k-intermittent searches for any integer k. In particular, we prove that in
order to reduce the cover time Θ(n2) of a simple random walk to lin-
ear in n up to logarithmic factors, roughly logn

log logn
step lengths are both

necessary and sufficient, and we provide an example where the lengths
form an exponential sequence.

In addition, inspired by the notion of intermittent search, we introduce
the Walk or Probe problem, which can be defined with respect to arbi-
trary graphs. Here, it is assumed that querying (probing) a node takes
significantly more time than moving to a random neighbor. Hence, to
efficiently probe all nodes, the goal is to balance the time spent walking
randomly and the time spent probing. We provide preliminary results
for connected graphs and regular graphs.

This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No. 648032).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 174–186, 2018.
https://doi.org/10.1007/978-3-319-77404-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_14&domain=pdf

Random Walks with Multiple Step Lengths 175

1 Introduction

1.1 Background and Motivation

The theory of random walks was first studied in an attempt to abstract the move-
ment of natural entities, such as particles or insects [16,34]. The term “random
walk” itself was originally coined by Pearson in 1905 aiming to model the move-
ment of a mosquito in a forest [34]. Random walk theory has since attracted the
attention of researchers in many different disciplines, and has developed into one
of the most impressive manifestations of a cross-disciplinary theory. In particu-
lar, motivated by the simplicity of this memoryless algorithm, mathematicians
and computer scientists have studied random walks intensively, focusing mostly
on analyzing its time complexities in finite graphs [2,12,17,18,28,29], as well as
on identifying various applications of it in different, often seemingly unrelated,
computational contexts, see e.g. [3,22,35] among many others.

In the last couple of decades, empirical evidence has suggested that in various
natural contexts, movement appears to be similar to random walks, yet with
heterogeneous step lengths (jumps). Examples appear both on the microscopic
scale, such as in the reaction pathway of DNA binding proteins, immune cells
movement, crawling amoeba, optics, and in low dimension Hamiltonian chaos [8,
13,21,25], as well as on the macroscopic scale, such as in albatrosses, bumblebees,
deer, and even humans [4,5,9,26,36,37,39,40]1. Most of these examples appear
in search contexts, e.g., searching for pathogens or food. It has been further
argued in these works that in the corresponding contexts, biological entities
alternate between slow diffusing phases in which targets can be detected, and
faster phases of ballistic movements (which are typically more rare) during which
the search efficiency is weak, effectively allowing targets to be found only between
jumps. This compromise between moving and searching has also been studied
in deterministic settings [14]. From a search efficiency perspective, it has further
been argued that such processes can help to strike a proper balance between
global exploration and local exploitation.

Within this family of search strategies, two extreme cases have been exten-
sively studied, namely, Intermittent search and Lévy walks (see the survey [6]
and the references therein). The former process is essentially a random walk
with two step lengths: choose an angle uniformly at random (u.a.r), then take a
step of unit length with some probability p; otherwise, take a step of some pre-
determined larger length L. In the latter process, step lengths have a probability
distribution that is heavy-tailed: at each step an angle is chosen u.a.r, and the
probability to perform a step of length d is proportional to d−α, for some fixed
parameter α > 1. Based on differential equation techniques, these two types of
processes have been studied by physicists, aiming to optimize the parameters
involved in order to minimize the hitting time under various target distributions
in continuous Euclidean spaces [6,10,30,31,33,40]. For example, [31,33] showed
1 Some of these statistical findings which claim that these animals perform Lévy walks

have recently been under debate, due to the difficulty of fitting empirical data to a
particular distribution of step lengths [15,38].

176 L. Boczkowski et al.

that on the one dimensional n-cycle of length n, an intermittent search with the
right choice of parameters can reduce the cover time of a simple random walk
from roughly n2 to roughly n4/3. Lévy walks can reduce the cover time substan-
tially further. Indeed, with a little extra work (as appears in the full version), it
follows from [1] that a Lévy walk process with parameter α = 2 can reduce the
cover time to almost linear (up to polylog factors).

This paper studies random walk processes with multiple step lengths from
a more unified computational perspective. Specifically, driven by the plausible
assumption that utilizing more step lengths (while associating to each a tailored
probability) may require more computational resources, our main subject of
interest concerns quantifying the trade-off between the number of step lengths
and the best possible search performances. Specifically, we are interested in the
best cover time achievable by a random walk that uses k step lengths for every
integer k. From a technical point of view, the challenge lies in understanding
what is the best possible balance between actions on different scales, ranging
from highly local ones (small jumps) to highly global ones (large jumps) [24,27].

The underlying topology we concentrate on is a discrete cycle of n nodes. It is
possible to define the notion of random walks with multiple step lengths in tori or
grids of all dimensions, but in this preliminary work, we focus on one dimension
since this case enjoys the highest increase in performance as the number of step
lengths grows. Indeed, simple random walks are already highly competitive in
higher dimensions. We note that one dimension search finds relevance in several
biological contexts, including in collective navigation by ants [19] and in the
reaction pathway of DNA binding proteins [8,13]. The latter case is a good
example of a search with two phases, one which is three-dimensional and fast,
the other one-dimensional, slow, which corresponds to sliding along the DNA to
find the target site.

Finally, inspired by the notion of intermittent random walks, and aiming to
further develop the aforementioned balancing principle, we introduce and inves-
tigate a problem, called Walk or Probe, which can be defined with respect to
arbitrary underlying graphs, and is of independent interest. Here, it is assumed
that querying (probing) a node takes significantly more time than moving to a
random neighbor. This assumption is consistent with the aforementioned hypoth-
esis that many processes in nature, including e.g., immune cells, cannot engage
in moving fast, and, at the same time, execute their search mechanism. Hence,
to probe all nodes in a relatively short time, the goal is to balance the time spent
walking randomly and the time spent probing. In some sense, a long phase in
which the process executes a random walk may be interpreted as “implementing
a long jump”, in the sense that, with a certain cost, it allows the process to
re-start at a different area of the graph.

1.2 Models

k-intermittent search. Let Cn be the n-node cycle and let k be an integer. We
say X is a k-intermittent search on Cn if there exists a probability distribution
p = (pi)k

i=1, where
∑

i pi = 1, and integers L1, L2, . . . , Lk such that, on each step,

Random Walks with Multiple Step Lengths 177

X makes a jump {0,−Li,+Li} with probability respectively pi/2, pi/4, pi/4.
Overall, with probability 1/2, the process X stays in place2. The numbers (pi)
and (Li) are called the parameters of the search process X.

Our goal is to show upper and lower bounds on the cover time of a k-
intermittent search; that is, the expected time to visit every node of the ambient
graph Cn, where we assume that a jump from some point to b visits only the
endpoint b, and not any of the intermediate nodes. Importantly, we are interested
in time rather than the number of moves and, hence, need to account for the
travel time of jumps. For simplicity, we assume that the speed of the walker is
constant (rather than varying between step lengths), which in particular means
that it takes one unit of time to make a move to a neighbor and L units of time
to make a jump of length L.

More formally, let us denote by V1, V2, . . . , Vs, . . . independent random vari-
ables taking value Li with probability pi for every i ∈ [k]. We also use sign
variables ξ1, ξ2, . . . which take value 0 or ±1 with probability 1

2 , 1
4 , 1

4 . We call
a product ξsVs a jump and ξs is the sign of the jump. We can then define the
move-process Z(m) on Z and X(m) on the cycle Cn, after m moves, as

Z(m) =
m∑

s=1

ξs · Vs, X(m) = Z(m) mod n. (1)

As we consider it takes one unit of time to travel a distance 1, the time it took
to accomplish the first m moves, denoted T (m), is defined as

T (m) :=
m∑

s=1

|ξs| · Vs. (2)

On the finite graph Cn, we denote by M the random number of moves needed
before X has visited every node of Cn. The quantity whose expectation we want
to bound is T (M), the time needed to visit all nodes, which is called the cover
time.

Walk or Probe. Consider a simple random walker that walks on a connected
graph G and aims to probe all nodes in G as fast as possible. The walker at a
node is unable to detect whether it has previously probed it. At this point it
needs to decide whether to continue the walk or probe it and then continue the
walk. Crucially, probing a node is time consuming, and can potentially be very
slow with respect to the time required to move between neighbors. Specifically,
let us assume that each edge traversal costs 1 unit of time, while probing a node
costs C ≥ 0 time units, where C can be a function of several parameters of G
(e.g., the number of nodes, edges, or maximal degree).

The Walk or Probe problem aims to find a strategy that balances the time
spent in walking vs. probing so as to minimize the probing cover time, that is,
the expected time until all nodes are probed.
2 This laziness assumption is used for technical reasons, as is common in many other

contexts of random walks. However, note with Eq. (2) that this assumption does not
affect the time of the process.

178 L. Boczkowski et al.

1.3 Our Results

k-intermittent search on the cycle. We report our results in terms of cover
time, but the same bounds, divided by a log n term, apply for hitting times (the
time to find any given node), as is clear from our proofs.

Definition 1. Let B be an integer. Define the k-intermittent search with base
B, by the parameters3 Li = Bi for every 1 ≤ i ≤ k − 1, pi = 1

Li
and L0 = 1 and

p0 = 1 − ∑k−1
i=1 pi.

Theorem 1. Let k,B, n be integers such that 2 ≤ B < n and Bk−1 ≤ n ≤ Bk.
The cover time of the k-intermittent search with base B on the n-cycle is at most
poly(k) · poly(B) · n log n.

Hence, from Theorem 1, taking B = �n1/k�, we derive the following corollary.

Corollary 2. For any k ≤ log n
log log n , there exists a k-intermittent search with

cover time n1+O(1
k) log n. In particular, if k = log n

log log n , then the expected cover

time is n · logO(1)(n).

Corollary 2 is almost tight, as shown by the following lower bound:

Theorem 3. For every ε > 0, there exist sufficiently small constants c, c′ > 0
such that for k ≤ c′ log n

log log n , any k-intermittent search cannot achieve a cover

time better than c · n1+
1/2−ε

k+1 . In particular, for k = o(log n
log log n), the cover time is

n · logω(1)(n).

Walk or Probe. Consider the Walk or Probe model on a connected graph
G = (V,E) with n nodes, with cost of probing C. Denote by tcov (resp. tmix)
the cover time (resp. mixing time) of a random walk on G (see Sect. 4 for the
definition of the mixing time). The most naive strategy is to probe after each
step, in which case we get a probing cover time of:

(C + 1) · tcov. (3)

We show that there exists another simple strategy whose running time depends
on tmix, which can be much more efficient in some cases. Let us call t-strategy
the tactic that consists in probing only once every t steps. Let G = (V,E) be an
n-node connected graph.

3 Note that
∑k−1

i=1 pi =
∑k−1

i=1 B−i = 1
B−1

(1− 1
Bk−1) is a decreasing function of B ≥ 2,

and for B ≥ 3 is less than 1
2

so that p0 ≥ 1
2
. For B = 2, we would have p0 = Θ(1

n
).

In this case, we can change the definition of pi by dividing by a factor 2, which will
allow to have p0 ≥ 1

2
. This does not change anything beyond the constants we use

in the proofs and in the results.

Random Walks with Multiple Step Lengths 179

Theorem 4. The probing cover time of the
√

tmix-strategy is

O
(
(C +

√
tmix) · |E| log n

)
. (4)

And if G is regular, the probing cover time of the
√

tmix-strategy is

O
(
(C +

√
tmix) · n log n

)
. (5)

In particular, we can derive from Theorem 4 (taking C = 0) the following upper
bound.

Corollary 5. For any n-node connected graph G = (V,E),

tcov =

{
O(

√
tmixn log n) if G is regular

O(
√

tmix|E| log n) otherwise.
(6)

For the case of regular graphs, the upper bound on tcov mentioned in Corollary 5
was already known ([23, Theorem 1.4]). To the best of our knowledge, the latter
bound, for general graphs, is new.

Since the search should cover every node and probe every node of G, we have
the following trivial lower bound for the probing cover time:

tcov + C · n. (7)

Let us compare this lower bound to the upper bounds on the probing cover time
of the 1- and

√
tmix-strategies, given by Eqs. (3) and (5), in the case of regular

graphs.
One family of instances consists of regular graphs for which Eq. (6) is tight

(up to poly-logarithmic factors). In this case Eq. (5) becomes, up to poly-
logarithmic factors, Cn + tcov, and so the

√
tmix-strategy is near optimal. This

happens, for example, if the mixing time is poly-logarithmic (e.g. cliques and all
expander graphs, such as random r-regular graphs [20]) and in such cases, by
Eq. (3), the 1-strategy is also near optimal since the cover time is almost linear
as Eq. (6) shows. On the other hand, Eq. (6) is also tight for the path and the
cycle, on which the mixing time and cover time are O(n2). Hence, in this case the√

tmix-strategy significantly outperforms the trivial 1-strategy when C is large.
If Eq. (6) is not tight then the

√
tmix-strategy may not be optimal. An exam-

ple where this happens is the torus of dimension d ≥ 2: Indeed, the mixing time
of such a torus is Θ(n2/d), while the cover time is almost linear [29, Sects. 5.3.2
and 10.4]. In this case the 1-strategy has probing cover time near optimal by
Eq. (3), but the

√
tmix-strategy, which needs at least

√
tmixn steps (because it

must probe at least n times), is not optimal.
Finally, regarding the general bound in Eq. 4 (for not-necessarily regular

graphs), let us look at Erdos-Renyi random graphs G(n, p) with p = c/n for
a constant c > 1. In this case the mixing time is a.a.s. Θ(log2 n) [7, Theorem 1.1]
and the cover time is a.a.s. Θ(n log2 n) [11, Theorem 2(a)], and the number of
vertices is a.a.s. linear in n. Therefore, by Eq. (4), the

√
tmix-strategy has prob-

ing cover time O(Cn log n+n log2 n), while the 1-strategy, by Eq. (3), takes time
(C + 1)n log2 n, and hence the former strategy gains a logarithmic factor in the
number of probes.

180 L. Boczkowski et al.

1.4 Preliminaries

Notation. When writing logarithms, unless mentioned otherwise, we assume
that the base is 2. We denote the cycle of length n by Cn and label its nodes
with the serials {0, 1, . . . , n − 1}. We use the symbols c, c′, c′′ for constants that
we do not compute explicitly. In order to avoid the use of too many symbols, we
sometimes employ the same symbol for different constants.

From counting time to counting steps. Recall that T (m) =
∑m

s=1 |ξs| · Vs.
Let us recall also the well-known.

Lemma 6 (Wald’s identity). If (Xt)t≥0 is an i.i.d. sequence with |E(X0)| <
∞, and T is a stopping time for this sequence (i.e. at each time t, the occurrence
of the event T = t depends only on X0,X1, . . . , Xt), with |E(T)| < ∞, then:

E(
T∑

t=0

Xt) = E(T)E(X0).

As a direct application, we obtain the following.

Lemma 7. E(T (M)) = E(M) · E(V1)
2 .

From hitting times to cover time. The following relates the probability to
hit a node to the cover time, and can be thought of as a loose but easy Matthew
(upper) bound.

Lemma 8. Let (Xt)t be a finite Markov chain with n states and, for a state
x,M(x) be the random number of steps before the chain hits x. If there are m
and p > 0 such that for every state x,Pr(M(x) ≤ m) ≥ p, then the cover time
of the chain is O(m log(n)

p).

Proof. Split the moves into phases, each composed of m consecutive moves.
Using the Markov property of the process, during each phase, x is visited with
probability at least p, independently of the trajectory on previous phases. Then
the probability to not have visited x after � phases yet, is less than (1 − p)�.
Using a union bound, the probability that there exists a node which has not
been visited after � phases is thus less than n(1 − p)�. For

�j =
− log(2jn)
log (1 − p)

= O

(
j log n

p

)

,

this probability is less than 2−j . Hence, the expected number of phases before
covering all nodes is less than

∑

j

�j+1 · 2−j = O

(
log n

p

)

.

Multiplying this number by m gives the expected number of moves before cov-
ering all states. 	

Random Walks with Multiple Step Lengths 181

From the infinite line to the n-nodes cycle

Remark 9. With the notations of Eq. (1), if for x ∈ [0, n−1] ⊂ Z,MZ(x) (resp.
MCn

(x)) is the random number of moves for Z (resp X = Z mod n) to hit x,
we have MCn

(x mod n) ≤ MZ(x).

Combining this remark with the two previous lemmas, we obtain:

Claim 10. If we have m and p such that for all x ∈ [0, n − 1],Pr(MZ(x) ≤
m) ≥ p, then the cover time of X is O

(
E(V1)m log n

p

)
. Note that E(V1) = k in

the particular base B process with k lengths.

A useful identity. All of our upper bounds rely on the following identity, the
usefulness of which was highlighted in [23]. If N is a nonnegative random variable
then:

Pr(N ≥ 1) =
E(N)

E(N | N ≥ 1)
. (8)

2 Upper Bound on the Cycle

This section is dedicated to proving Theorem1. We begin with an overview of the
proof. Using Claim 10, the bound of Theorem1 can be established by studying
the process on the infinite line.

The core of the computations for Theorem 1 are encapsulated in Lemmas 11
and 12. These bounds on the distribution of the move process Z are used to lower
bound the expected number of visits to any point on the infinite line, and upper
bound the expected number of returns to the starting point. A lower bound on
the probability of any node being visited follows from Eq. (8).

The following two lemmas consider the move process on the infinite line and
present the main technical aspects of the proof. The corresponding proofs are
all deferred to the full version. Recall, from Theorem1, that we assume that k
is such that k ≥ 2 and Bk−1 ≤ n ≤ Bk.

Lemma 11. There exist sufficiently large constants c and c′ (independent of all
other parameters), such that for any j ∈ [0, k − 1] and m ≥ cBj+1 log kB, we
have Pr(Z(m) = 0) ≤ c′B−j .

Lemma 12. Let c (resp. c′) be a big (resp. small) enough constant. Let m0 :=
cBk+1 log kB. For any x ∈ [0, n − 1] ⊆ [0, Bk − 1], and m ∈ [m0,m0 + n], we
have Pr(Z(m) = x) ≥ c′

Bk
√
log kB

.

With Claim 10, Lemmas 11, and 12, we are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Fix a point x ∈ Z. Define Nx(m) as the number of
visits to x after the first m moves have been made. We want to apply Eq. (8) to

182 L. Boczkowski et al.

Nx(m). This will imply a lower bound on the probability that the node x has
been visited before m moves (i.e., the event Nx(m) ≥ 1). Set

m0 = cBk+1 log kB, and m1 = m0 + n,

for some constant c > 0 big enough so that both the conclusion of Lemmas 11
and 12 hold. Note that since Bk−1 ≤ n,m1 = O(nB2 log kB).

Our first goal is to show that E(Nx(m1) | Nx(m1) ≥ 1) = O(kB2 log kB).
Since the number of returns to x before time m1 is maximized when we begin
at x, we have:

E(Nx(m1) | Nx(m1) ≥ 1) ≤ E(N0(m1)) ≤ 1 +
m1∑

m=1

Pr(Z(m) = 0). (9)

Next, using Lemma 11, for any j ∈ [1, k − 1] and any m, such that

cBj+1 log kB ≤ m < cBj+2 log kB,

we upper bound Pr(Z(m) = 0) by c′B−j with c′ some other constant. When
m ≤ cB2 log kB, we use Pr(Z(m) = 0) ≤ 1. Using Inequality (9), we obtain:

E(Nx(m1) | Nx(m1) ≥ 1) = O

⎛

⎝B2 log kB +
k−2∑

j=1

Bj+2 log kB

Bj

⎞

⎠

= O(kB2 log kB) , (10)

as desired. We next lower bound E (Nx(m1)) for any x ∈ [0, n − 1], by summing
the Inequality of Lemma 12 between m0 and m1:

E(Nx(m1)) ≥ c′ · n

Bk
√

log kB
= Ω

(
1

B
√

log kB

)

. (11)

Dividing (11) by (10), it follows from Eq. (8) that for any x ∈ [0, n − 1], we
have Pr(Nx(m1) > 1) = Ω

(
1

kB3 log3/2 kB

)
. Using Claim 10 with m = m1 =

O(nB2 log kB) and p = Ω
(

1
kB3 log3/2 kB

)
, we obtain an upper bound on the

expected cover time on the n cycle of O(k2B5 log5/2 kB · n log n). The result
follows by bounding O(k2B5 log5/2 kB) by poly(k) · poly(B). 	

3 Lower Bound on the Cycle

This section is dedicated to proving Theorem3. Consider a k-intermittent search
X on the cycle Cn and denote by (pi)k

i=1 and (Li)k
i=1 its parameters with Li <

Li+1 for all i ∈ [k − 1]. We also set Lk+1 = n. Theorem 3 is a direct consequence
of the following lemma, as appears in the full version (in short, the biggest
multiplicative gap between consecutive Li is minimized when setting Li = n

i
k

and this yields the lower bound).

Random Walks with Multiple Step Lengths 183

Lemma 13. There exists a constant c > 0 such that, in expectation, for any
i ≤ k, the time needed for X to visit n distinct points is at least

c
n

k
·
√

Li+1

Li
,

Proof. Let i ∈ [k] be fixed throughout the proof. Recall that we need to count
time and not the number of moves. We divide time into phases, each of length
precisely Li+1. We call any jump of length Lj for j ≥ i + 1 a long jump. By
definition, during a phase, at most one endpoint of a long jump is visited. Let us
denote by N� the number of nodes visited during phase � (some of these nodes
may have been previously visited on a phase �′ < �). The proof of the following
claim appears in the full version.

Claim 14. For every � ∈ N, it holds that E(N�) = O
(
k
√

Li · Li+1

)
.

Using Claim 14, we can bound the total number of nodes visited during the first
s phases E (

∑s
�=1 N�) ≤ s · O (

k
√

Li · Li+1

)
. Let s1 := n · c

k·
√

Li·Li+1
for a small

constant c. With this choice for s, the previous bound is less than n/2. Using a
Markov inequality, we get Pr (

∑s1
�=1 N� ≥ n) < 1

2 . Consequently, with probability
at least 1/2, more than s1 phases are needed in order to visit n distinct nodes.
Since each phase lasts (exactly) Li+1 time, the total expected time required in

order to visit n distinct nodes is at least s1 · Li+1 = Ω
(

n
k ·

√
Li+1
Li

)
. 	

4 Efficient Strategy for Walk or Probe

Our strategy for the Walk or Probe problem is simple: instead of probing at every
step, we probe every

√
tmix steps (we omit ceilings for readability). We prove

here that this tactic gives the bounds of Theorem 4. In fact, here we essentially
prove a bound on the cover time of the Markov chain (Xk

√
tmix

)k≥0, where (Xt)t

is the lazy random walk on the connected graph G.

Proof. We first recall some basic results about mixing time. The notion of mixing
time we refer to is the total variation mixing time [29, Sect. 4.5]. It is defined as:

tmix = min

{

t ≥ 1 : max
x

∑

y

|P t(x, y) − π(y)| ≤ 1
2

}

,

where P t(x, ·) denotes the law of the random walk started at x after t steps
and π is the stationary distribution. Lemmas 4.5 and 4.7 in [2] imply that, for
t ≥ 4tmix, P t(x, y) ≥ π(y)

2 . Since π(x) = Δ(x)/2|E|, where Δ(x) is the degree of
node x, for t ≥ 4tmix, we have:

Pr(Xt = x) ≥ Δ(x)
4|E| . (12)

184 L. Boczkowski et al.

Let N be the number of times we probe x between times 4tmix and (4 + c)tmix.
Then, by Eq. (8), the probability that x was probed in this time interval equals

E(N)
E(N|N ≥ 1)

. (13)

By Eq. (12) we have:

E(N) =
c
√

tmix∑

k=0

Pr(X4tmix+k
√

tmix
= x) ≥ c

√
tmix

Δ(x)
4|E| .

For the denominator in (13), since the process is markovian, we can shift the
times and so this is equal to E (Nx(c tmix)|Nx(c tmix) ≥ 1)) where Nx(c tmix) is
the number of times we probe x before time c tmix. As the number of returns is
maximized whenever we begin at x, this is less than E (Nx(c tmix)|X0 = x). We
next use the following bounds on the probability of returns. For any x ∈ G,

Pr(Xt = x) ≤ 5/
√

t if t ≤ 5n2 and G is regular, (14)

≤ Δ(x)/
√

t if t ≤ |E|2 − 1. (15)

The bound for regular graphs is taken from Proposition 6.18 in [2], while the
general bound follows from the more elaborate bound in Lemma 3.4 in [32]. Let
us write these bounds as

Pr(Xt = x) ≤ βx√
t

with βx = 5 if G is regular and βx = Δ(x) otherwise. Note that we can use these
bounds for t ≤ c tmix, for c small enough, since tmix ≤ 3tcov [29, Eq. (10.24)] and,
in connected graphs tcov ≤ 2|E|(n − 1) ≤ 2|E|2 [3, Theorem], while in regular
graphs we have tcov ≤ 2n2 [17, Corollary 6]. Thus, using that

∑t
k=1

1√
k

≤ 2
√

t,
we have:

E(Nx(c tmix)|X0 = x) =
c
√

tmix∑

k=0

Pr(Xk
√

tmix
= x|X0 = x)

≤ 1 +
βx

t
1
4
mix

c
√

tmix∑

k=1

1√
k

≤ 1 + 2βx

√
c.

Hence, the probability that x is probed before time (4 + c)tmix is greater than

Δ(x)
4|E|

c
√

tmix

1 + 2βx
√

c
= Ω

(√
tmix

γ

)

,

where γ = n if G is regular and γ = |E| otherwise. By Lemma 8 applied to the
Markov chain (Xk

√
tmix

)k≥0, the expected number of moves to probe all nodes
is O(γ

√
tmix log(n)). Since we probe every

√
tmix steps with cost C, and a step

has a unit cost, the probing cover time is O(Cγ log(n) + γ
√

tmix log(n)). This
completes the proof of Theorem 4. 	

Random Walks with Multiple Step Lengths 185

References

1. Adler, M., Räcke, H., Sivadasan, N., Sohler, C., Vöcking, B.: Randomized pursuit-
evasion in graphs. Comb. Probab. Comput. 12(3), 225–244 (2003)

2. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs.
Unfinished monograph, recompiled 2014 (2002). http://www.stat.berkeley.edu/
aldous/RWG/book.html

3. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: SFCS.
IEEE Computer Society, Washington, D.C., USA (1979)

4. Bartumeus, F., Catalan, J., Fulco, U.L., Lyra, M.L., Viswanathan, G.M.: Optimiz-
ing the encounter rate in biological interactions: Lévy versus Brownian strategies.
Phys. Rev. Lett. 88, 097901 (2002)

5. Bartumeus, F.: Lévy processes in animal movement: an evolutionary hypothesis.
Fractals 15(02), 151–162 (2007)

6. Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Intermittent search strate-
gies. Rev. Mod. Phy. 83(1), 81 (2011)

7. Benjamini, I., Kozma, G., Wormald, N.: The mixing time of the giant component
of a random graph. Random Struct. Algorithms 45(3), 383–407 (2014)

8. Berg, O.G., Winter, R.B., Von Hippel, P.H.: Diffusion-driven mechanisms of pro-
tein translocation on nucleic acids. 1. Models and theory. Biochemistry 20(24),
6929–6948 (1981)

9. Boyer, D., et al.: Scale-free foraging by primates emerges from their interaction
with a complex environment. Proc. R. Soc. Lond. B Biol. Sci. 273(1595), 1743–
1750 (2006)

10. Chupeau, M., Benichou, O., Voituriez, R.: Cover times of random searches. Nat.
Phy. 11(10), 844 (2015)

11. Cooper, C., Frieze, A.: The cover time of the Giant component of a random graph.
Random Struct. Algorithms 32(4), 401–439 (2008)

12. Coppersmith, D., Feige, U., Shearer, J.B.: Random walks on regular and irregular
graphs. SIAM J. Discret. Math. 9(2), 301–308 (1996)

13. Coppey, M., Bnichou, O., Voituriez, R., Moreau, M.: Kinetics of target site local-
ization of a protein on DNA: a stochastic approach. Biophys. J. 87(3), 1640–1649
(2004)

14. Czyzowicz, J., Gçsieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
Beachcombers’ problem: walking and searching with mobile robots. Theor. Com-
put. Sci. 608(Part 3), 201–218 (2015). Structural Information and Communication
Complexity

15. Edwards, A.M., et al.: Revisiting levy flight search patterns of wandering alba-
trosses, bumblebees and deer. Nature 449(7165), 1044 (2007)

16. Einstein, A.: Investigations on the theory of the Brownian movement. Annal.
Physik 34, 591–592 (1911)

17. Feige, U.: Collecting coupons on trees, and the analysis of random walks. Technical
report (1994)

18. Feige, U.: A tight lower bound on the cover time for random walks on graphs.
Random Struct. Algorithms 6(4), 433–438 (1995)

19. Fonio, E., Heyman, Y., Boczkowski, L., Gelblum, A., Kosowski, A., Korman, A.,
Feinerman, O.: A locally-blazed ant trail achieves efficient collective navigation
despite limited information. eLife 5 (2016)

http://www.stat.berkeley.edu/aldous/RWG/book.html
http://www.stat.berkeley.edu/aldous/RWG/book.html

186 L. Boczkowski et al.

20. Friedman, J.: A proof of Alon’s second eigenvalue conjecture and related problems.
CoRR, cs.DM/0405020 (2004)

21. Harris, T.H., et al.: Generalized Lévy walks and the role of chemokines in migration
of effector CD8(+) T cells. Nature 486, 545 (2012)

22. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: PODC. ACM (1990)

23. Kanade, V., Mallmann-Trenn, F., Sauerwald, T.: On coalescence time in graphs-
when is coalescing as fast as meeting? CoRR, abs/1611.02460 (2016)

24. Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and resource location
protocols. J. ACM 51(6), 943–967 (2004)

25. Klafter, J., Zumofen, G.: Lévy statistics in a Hamiltonian system. Phys. Rev. E
49, 4873 (1994)

26. Klafter, J., Shlesinger, M.F., Zumofen, G.: Beyond Brownian motion. Phys. Today
49(2), 33 (1996)

27. Kleinberg, J.M.: The small-world phenomenon: an algorithmic perspective. In:
STOC (2000)

28. Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge Univer-
sity Press, Cambridge (2010)

29. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing. American Math-
ematical Society, Providence (2008)

30. Lomholt, M.A., et al.: Lévy strategies in intermittent search processes are advan-
tageous. Proc. Natl. Acad. Sci. 105(32), 11055–11059 (2008)

31. Loverdo, C.: Optimal search strategies and intermittent random walk: from restric-
tion enzymes to the albatross flight, December 2009

32. Lyons, R.: Asymptotic enumeration of spanning trees. Comb. Probab. Comput.
14(4), 491–592 (2005)

33. Oshanin, G., et al.: Intermittent random walks for an optimal search strategy:
one-dimensional case. J. Phy. Condens. Matter 19(6), 065142 (2007)

34. Pearson, K.: The problem of the random walk. Nature 72, 1905 (1865)
35. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24

(2008)
36. Reynolds, G.: Navigating our world like birds and bees. The New York Times

(2014)
37. Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: On the Levy-walk nature of human

mobility. In: IEEE INFOCOM 2008 (2008)
38. Travis, J.: Do wandering albatrosses care about math? Science 318(5851), 742–743

(2007)
39. Viswanathan, G.M., et al.: Levy flight search patterns of wandering albatrosses.

Nature 381(6581), 413 (1996)
40. Viswanathan, G.M., et al.: Optimizing the success of random searches. Nature

401(6756), 911 (1999)

Tight Kernels for Covering and Hitting:
POINT HYPERPLANE COVER

and POLYNOMIAL POINT HITTING SET

Jean-Daniel Boissonnat1, Kunal Dutta1, Arijit Ghosh2(B),
and Sudeshna Kolay3

1 Université Côte d’Azur, Inria, Sophia Antipolis, France
{Jean-Daniel.Boissonnat,Kunal.Dutta}@inria.fr

2 Indian Statistical Institute, Kolkata, India
agosh@mpi-inf.mpg.de

3 Eindhoven University of Technology, Eindhoven, Netherlands
s.kolay@tue.nl

Abstract. The Point Hyperplane Cover problem in R
d takes as

input a set of n points in R
d and a positive integer k. The objective

is to cover all the given points with a set of at most k hyperplanes.
The D-Polynomial Points Hitting Set (D-Polynomial Points HS)
problem in R

d takes as input a family F of D-degree polynomials from
a vector space R in R

d, and determines whether there is a set of at most
k points in R

d that hit all the polynomials in F . For both problems, we
exhibit tight kernels where k is the parameter.

1 Introduction

A set system is a tuple (U,F) where U is a universe of n elements and F is a
family of m subsets of U . A set system is also referred to as a hypergraph, with
the elements in the universe U named as vertices and the subsets in F named
as hyperedges. A hyperedge is said to cover a vertex if the vertex belongs to the
hyperedge. Similarly a subfamily F ′ of hyperedges is said to cover a subset V of
vertices if for each vertex v ∈ V there is a hyperedge h ∈ F ′ such that h covers
v. A vertex is said to hit a hyperedge if the vertex belongs to the hyperedge,
and a subset V of vertices is said to hit a subfamily F ′ of hyperedges if for each
hyperedge h ∈ F ′ there is a vertex v ∈ V that belongs to h.

The Set Cover and Hitting Set problems are two of the most well-studied
problems in computer science. For the Set Cover problem, the input is a set
system (U,F) and a positive integer k. The objective is to determine whether
there is a subfamily F ′ ⊆ F with at most k subsets, such that F ′ covers all
the elements in U . Such a family F ′ is referred to as a solution family or a
covering family. The Hitting Set problem can be thought of as a dual problem.
Here, the input is the same as in Set Cover. However, now the objective is to
determine whether there is a subset S ⊆ U of size at most k, such that for each
hyperedge h ∈ F , h ∩ S �= ∅. Such a set S is referred to as a solution set.
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 187–200, 2018.
https://doi.org/10.1007/978-3-319-77404-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_15&domain=pdf

188 J.-D. Boissonnat et al.

These problems are part of the original 21 NP-complete problems posed
by Karp [15]. However, the numerous applications for these problems inspired
researchers to design algorithms to find solutions with reasonable efficiency, for
different measures of efficiency. For Set Cover, the best approximation factor
is O(log n) [20]. It was shown in [9] that log n is the best possible approxima-
tion factor unless P = NP. Since Hitting Set is just a reformulation of the Set
Cover problem, the same approximation factors hold. The d-Hitting Set prob-
lem, where the size of each subset in F is exactly d, is known to be APX-hard [2],
consequent to results obtained for the special case of the Vertex Cover prob-
lem where d = 2.

Set Cover and Hitting Set have been studied in parameterized complexity.
In parameterized complexity, we say that a problem is fixed parameter tractable
(FPT) with respect to a parameter k, if there is an algorithm that takes an
instance of size n of the problem, and solves the problem in f(k).nO(1) time,
where f is a computable function. For a brief introduction to parameterized
complexity please refer to the Preliminaries. For further details please refer to [7,
11,12]. The d-Hitting Set problem, parameterized by the solution size k, is
known to be FPT, with a tight O(kd)-sized kernel [8] under standard complexity
theoretic assumptions. In this paper, unless otherwise mentioned, all variants of
Hitting Set and Set Cover are parameterized by k. The Set Cover and the
general Hitting Set problems are W[2]-hard, and are not expected to be FPT.

Interestingly, the instances of many real world applications of these two noto-
riously hard problems have inherent structure in them. With the hope of design-
ing efficient algorithms for such instances by exploiting their structural informa-
tion, numerous variants of Set Cover and Hitting Set have been studied. A
very natural extension in this field of study is to assume geometric structure
on the instances. In recent years, there has been a lot of attention to study
geometric variants of both the problems.

The Point Line Cover is an example of a geometric variant of Set Cover,
where the universe is a set of points in R

2 and the hyperedges are the maximal
sets of collinear points in the input. Point Line Cover is known to be FPT [17].
Kratsch et al. showed in [16] that the problem has a tight polynomial kernel with
O(k2) points. In [1], several generalizations of the Point Line Cover problem
were studied - a universe is a set of points in a Euclidean space and the family
of hyperedges are geometric structures like hyperplanes, spheres, curves, etc.
Geometric variants of Set Cover have been studied in [3,4].

The results in [16] also imply parameterized results for Line Point Hitting

Set, where the universe is a set of lines in R
2 and the objective is to find at

most k points in R
2 to hit the universe of lines. This problem is FPT and has

a tight kernel with O(k2) lines. Other geometric variants of the Hitting Set
problem has been studied in parameterized complexity [10,13,14]. Bringmann et
al. [6] studied the problem for set systems with bounded VC dimensions. They
showed that there are set systems with VC dimension as low as 2, where both the
Hitting Set, and consequently the Set Cover problem are W[1]-hard. This
gives an interesting dichotomy, since they also show that when the VC dimension
of the set system is 1, then the Hitting Set problem is in P.

Tight Kernels for Covering and Hitting 189

In this paper, we consider two parameterized variants.

Point Hyperplane Cover in R
d Parameter: k

Input: A set P of n points in R
d, a positive integer k.

Question: Is there a family of at most k hyperplanes in R
d that cover all

the points in P?

We also study the Projective Point Hyperplane Cover problem, where
the family of hyperplanes allowed to cover the input set of points must pass
through the origin in R

d, and we are not allowed to include the origin in the
input set of points. Note that this problem is equivalent to that of covering points
on a sphere with the great circles (radius is equal to the radius of the sphere) of
the sphere, which has many applications in computational geometry.

D-Polynomial Point HS
a
in R

d Parameter: k
Input: A set F of n D-degree polynomials from a specified vector space R
of D-degree polynomials in R

d, a positive integer k.
Question: Is there a set S of at most k points in R

d such that for each
polynomial f ∈ F , there is a point p ∈ S with f(p) = 0?

a HS is a shorthand for hitting set.

Please refer to the Preliminaries for the definition of D-degree polynomi-
als. Both problems are NP-hard, because of the NP-hardness of Point Line
Cover [19]. Parameterized by k, we study the parameterized complexity of
these problems.

Our results. Extending the results of Kratsch et al. [16], we show that Point
Hyperplane Cover and Projective Point Hyperplane Cover in R

d have
tight polynomial kernels with O(kd) and O(kd−1) points, respectively. These
results are presented in Sect. 3. The highlight of this proof is, given any positive
integer n, the construction of a set P of n points in R

d in general position such
that the family of hyperplanes, defined by any d points from P, do not have too
many hyperplanes intersecting at a point outside P. This is crucial for a many-
one reduction from d-Hitting Set, that results in lower bounds on the size as
well as the number of points in a kernel under complexity theoretic assumptions.
The construction is similar to that in [16] in spirit, but requires more geometric
insight since we are working in higher dimensions now.

Note that the results of Point Hyperplane Cover also imply that the dual
problem, Hyperplane Point HS in R

d, also has a tight kernel with Ω(kd) hyper-
planes. Similarly, we can show that Projective Hyperplane Point Cover

has a tight kernel with Ω(kd−1) hyperplanes.
Our main contribution is to show tight polynomial bounds for kernel sizes

for D-Polynomial Point HS in R
d, for a large family of vector spaces R of D-

degree polynomials. For more details on the characterization of R, please see the
Preliminaries. The vector space of hyperplanes, spheres and ellipses are among

190 J.-D. Boissonnat et al.

natural vector spaces of polynomials that are covered by this characterization.
Therefore, our techniques provide a general framework for proving tight kernels
for covering problems, as one can get a tight bound for many families directly.
This result is given in Sect. 4.

Our proof strategy is to use the Veronese mapping [18] to transform the space
of points and polynomials to a higher dimensional space, where the polynomials
transform into hyperplanes and point-polynomial incidences are preserved. The
upper bound on the kernel size comes directly from the Veronese mapping. For
the lower bound, we show that points in general position with respect to polyno-
mials transform to an equal-sized set of points in general position with respect
to hyperplanes in the image space. Using this fact, we construct hard instances
of D-Polynomial Point HS. In [5], the Veronese mapping was used to give
upper bounds on kernel sizes. In this paper, we also utilize the map to exhibit
kernel lower bounds.

2 Preliminaries

Multivariate Polynomials. Given a set {X1, X2, . . . , Xd} of variables a real
multivariate polynomial on these variables is of the form P (X1, . . . , Xd) =
∑

i1,i2,...,id
ai1i2...id

∏
j∈[d] X

ij
j where [d] = {1, . . . , d} and ai1i2...id ∈ R. The

set of all real multivariate polynomials in the variables X1, . . . , Xd will be
denoted by R[X1, X2, . . . , Xd]. The degree of such a polynomial P (X1, . . . , Xd)
is defined as deg(P) := max{i1 + i2 + . . . + id | ai1i2...id �= 0}. A polynomial is
said to be a D-degree polynomial if its degree is D.

In this paper, we are interested in the set/subsets of polynomials whose degree
is bounded by D, for some D∈N. In this context we define PolyD[X1, . . . , Xd] :=
{f(X1, . . . , Xd) ∈ R[X1, . . . , Xd] | deg(f) ≤ D}. Observe that the vector space
PolyD[X1, . . . , Xd] over R has the monomials

{
Xi1

1 . . . Xid
d | 0 ≤ ∑d

j=1 ij ≤ D
}

as a basis and
∣
∣
∣
{

Xi1
1 . . . Xid

d | 0 ≤ ∑d
j=1 ij ≤ D

}∣
∣
∣ =

(
D+d

D

)
. For ease of notation,

we define the vector X = (X1, . . . , Xd).
Given a polynomial f and a point p, the point hits the polynomial if f(p) = 0.

In the same situation, the polynomial is said to cover the point.

General position in Geometry. An i-flat in R
d is the affine hull of i + 1 affinely

independent points. The dimension of a (possibly infinite) set of points P,
denoted as dim(P), is the minimum i such that the entire set P is contained
in an i-flat of R

d [17]. We use the term hyperplanes interchangeably for (d − 1)-
flats. A set P of points in R

d is said to be in general position with respect to
hyperplanes, if for each i-flat, i ≤ d − 1, in R

d there are at most i + 1 points
from P lying on the i-flat.

Consider, for i ≤ d − 1, a family F of i-flats such that there is a point p that
belongs to all the i-flats in F . Then a set P ∈ R

d \ {p} of points is said to be in
general position with respect to F if each i-flat contains at most i points from
P lying on the i-flat. This is called general position in projective geometry.

Tight Kernels for Covering and Hitting 191

Similarly, we can define the notion of general position (resp. projective gen-
eral position) with respect to multivariate polynomials. Let R be a vector
space of PolyD[X], defined by a basis {f1(X), . . . , fb(X), 1} (resp. by a basis
{f1(X), . . . , fb(X)} with deg(fi) > 0). A subset of points is said to be in
general position (resp. projective general position) with respect to the vector
space R of polynomials if no more than b points (resp. b − 1 points) from the
subset satisfy any equation of the form f(X) :=

∑b
i=1 λifi(X) + λb+1 = 0

(f(X) :=
∑b

i=1 λifi(X) = 0), where all the λj ∈ R and not all the λj ’s can be
zero simultaneously.

Definition 1. Given a rational number α > 0, a vector space R of polynomials
in R

d is said to be α-good if for any positive integers b,m the following conditions
hold:

1. In O(1) time we can compute a set of b points in R
d such that the set is in

general position with respect to R.
2. Given a d-dimensional m×· · ·×m grid in R

d, each polynomial in R contains
at most md−α vertices of the grid.

Hyperplanes, spheres, ellipses and many other natural vector spaces of poly-
nomials can be described as α-good vector spaces.

Veronese mapping. In this paper, one of our strategies for generalizing our
results is to convert D-Polynomial Point HS in R

d to Hyperplane Point
HS in R

b by using a variant of Veronese mapping [18] from R
d → R

b. The
Veronese mapping of a vector space R of D-degree polynomials, with a basis
{f1(X), . . . , fb(X), 1} (also with a basis {f1(X), . . . , fb(X)} where deg(fi) > 0),
is as follows- ΦR : R

d → R
b, where ΦR(X) = (f1(X), . . . , fb(X)) where

X = (X1, . . . , Xd). Observe that if p = (p1, . . . , pd) satisfies the equation
f(X) :=

∑b
i=1 λifi(X) + λb+1 = 0 (resp. the equation f(X) :=

∑b
i=1 λifi(X) =

0) then ΦR(p) will also satisfy the linear equation
∑b

j=1 λjZj + λb+1 = 0 (or

the equation
∑b

j=1 λjZj = 0), on the variable vector Z = (Z1, . . . , Zb). In other
words, for any set of points P in R

d and F , the incidences between P and R and
incidences between ΦR(P) and hyperplanes in R

b (or the hyperplanes passing
through the origin in R

b) are preserved under the mapping ΦR. Also, observe
that there is a bijection between polynomials in R and hyperplanes in R

b (resp.
hyperplanes passing through the origin in R

b). This transformation from poly-
nomials to hyperplanes is also referred to as linearization.

Parameterized Complexity. The instance of a parameterized problem or language
is a pair containing the actual problem instance of size n and a positive integer
called a parameter, usually represented as k. The problem is said to be in FPT
if there exists an algorithm that solves the problem in f(k) · nO(1) time, where
f is a computable function. The problem is said to admit a g(k)-sized kernel,
if there exists a polynomial time algorithm that converts the actual instance
to a reduced instance of size g(k), while preserving the answer. When g is a

192 J.-D. Boissonnat et al.

polynomial function, then the problem is said to admit a polynomial kernel. A
reduction rule is a polynomial time procedure that changes a given instance I1
of a problem Π to another instance I2 of the same problem Π. We say that the
reduction rule is safe when I1 is a Yes instance of Π if and only if I2 is a Yes

instance. Readers are requested to refer to [7] for more details on Parameterized
Complexity.

Lower bounds in Parameterized Algorithms. There are several methods of show-
ing lower bounds in parameterized complexity under standard assumptions in
complexity theory. In this paper we require a lower bound technique given by
Dell and Melkebeek [8]. This technique links kernelization to oracle protocols.

Definition 2. Given a language L, an oracle communication protocol for L is
a two-player communication protocol. The first player gets an input x and can
only execute computations taking time polynomial in |x|. The second player is
computationally unbounded, but does not know x. At the end of the protocol, the
first player has to decide correctly whether x ∈ L. The cost of the protocol is the
number of bits of communication from the first player to the second player.

Proposition 3 [8]. Let d ≥ 2 be an integer, and ε be a positive real number. If
co-NP � NP/poly, then there is no protocol of cost O(nd−ε) to decide whether
a d-uniform hypergraph on n vertices has a d-hitting set of at most k vertices,
even when the first player is co-nondeterministic.

As noted in [8], this implies that for any d ≥ 2 and any positive real number
ε, if co-NP � NP/poly, then there is no kernel of size O(kd−ε) for d-Hitting Set.
In general, a lower bound for oracle communication protocols for a parameterized
language L gives a lower bound for kernelization for L.

Kernels: size vs number of elements. In the literature, a lower bound on the
kernel implies a lower bound on the size in bits of the kernel, but not necessarily
on the number of input elements in the kernel. Kratsch et al. [16] were one of
the first to study lower bounds in terms of the number of input elements in the
kernel. They used the results of Dell and Melkebeek [8] along with results in
two dimensional geometry to build a new technique to show lower bounds for
the number of input elements in a kernel for a problem. In this paper, we have
adhered to the general convention by saying that a kernel has a lower bound
on its size if it has a lower bound on its representation in bits, while explicitly
mentioning the cases where the kernel has a lower bound on the number of input
elements.

3 Kernelization Lower Bound for POINT HYPERPLANE
COVER

In this section, we show that Point Hyperplane Cover in R
d has a tight

kernel of size Θ(kd). The results in [17] imply that Point Hyperplane Cover

Tight Kernels for Covering and Hitting 193

in R
d has a kernel of size O(kd). We show that the problem cannot have a kernel

of size O(kd−ε) if co-NP � NP/poly. We show this by the standard technique of
polynomial parameter transformation. For a fixed d, we reduce the d-Hitting

Set problem to the problem of Point Hyperplane Cover in R
d. We first

state the folklore equivalence between Point Hyperplane Cover in R
d and

Hyperplane Point HS in R
d.

Lemma 4. Point Hyperplane Cover in R
d and Hyperplane Point HS in

R
d are equivalent problems.

From now on, we will be showing lower bounds for Hyperplane Point HS.
The proof strategy is the same as that in [16]. For this, we construct for each
positive integer n and each d, a set of n points in R

d with some special properties.
This construction is more involved than in the case of Point Line Cover.

Lemma 5. For every n ∈ Z
+, there is a poly(n) time algorithm to construct a

set P of n points in R
d that have the following properties:

(1) The points are in general position.
(2) Let H be the family of hyperplanes defined by all sets of d points from P. The

hyperplanes in the family H are in general position, i.e., given r hyperplanes
H1, . . . , Hr in H with r ≤ d the dimension of the affine space ∩r

i=1Hr is
d − r.

(3) For any point p in R
d\P, there are at most d hyperplanes in H that contain p.

Proof. The set P is built inductively. When n = d, it is the base case and the
construction follows trivially by taking any n points in general position. There
is exactly one hyperplane that is defined by this set of d points, therefore all
required conditions are met. Now, assume that for d ≤ t < n, we have con-
structed a point set Pt that satisfies the above conditions. As in [16], our goal
will be to extend the point set Pt by one point. We will show that points forbid-
den to be added to the set Pt will lie on a bounded number of hyperplanes and
we will call these hyperplanes forbidden hyperplanes. Observe that the number of
forbidden hyperplanes arising due to condition (1) is O(td). A forbidden hyper-
plane due to condition (2) is defined by the intersection space of a set of at most
d hyperplanes and a set of at most d−1 points from Pt. Therefore, the bound on
the number of forbidden hyperplanes arising from condition (2) is O(td

2+d−1).
Unlike the case when d = 2, it is harder to bound the number of forbidden

hyperplanes due to condition (3). Let q ∈ R
d be a point where the point set

P ′ = Pt ∪{q} satisfies conditions (1) and (2), but not condition (3). We will call
such a point q a forbidden point. Let H′ be the family of hyperplanes defined
by each set of d points from P ′. Let H1, . . . , Hd+1 be a set of d + 1 hyperplanes
in H′ such that they intersect at point s with s ∈ R

d \ P ′. Observe that since
the point set Pt satisfied all the three conditions, q will lie on at least 1 hyper-
plane from the family {H1, . . . , Hd+1}. Suppose q was contained in at least d
hyperplanes from the family, then q = s as P ′ satisfies condition (2). Therefore,
it must be the case that q lies in at least 1 and at most d − 1 hyperplanes from

194 J.-D. Boissonnat et al.

the family {H1, . . . , Hd+1}. Without loss of generality, assume that q lies on
the hyperplanes {H1, . . . , Hr}. Let Ar−1 denote the (r − 1) dimensional affine
plane ∩d+1

i=r+1Hi. For j ∈ [r], let the hyperplanes Hj be generated by the set
{q, pj

1, . . . , pj
d−1} ⊂ P ′. The point s also belongs to Ar−1. Since we are inter-

ested in understanding where the forbidden point q can lie, we try to understand
the inverse problem where Ar−1, s, and points pj

� (for all 	 ∈ [d − 1]) are fixed
and q is the variable point such that ∩d+1

i=1 Hi = s ∈ R
d \ P ′. Using elementary

Euclidean geometry, we get that at least d − r + 1 coordinates of s are fixed
when Ar−1 gets fixed. We know that q lies on a d − r + 1 dimensional affine
plane passing through s. Since d − r + 1 coordinates of s are fixed by Ar−1, the
slope of the affine plane depends only on Ar−1 and the points pj

� , j ∈ [r] and
	 ∈ [d − 1]. This implies that as we vary s on Ar−1 we will span a hyperplane
which only depends on Ar−1 and the points pj

� , j ∈ [r] and 	 ∈ [d−1]. Therefore,
once the hyperplanes Hr+1 till Hd+1 and the point set {pj

t |j ∈ [r], 	 ∈ [d−1]} are
fixed, the point q will lie on a unique hyperplane. This implies that the number
of forbidden hyperplanes due to condition (3) is bounded by O(td

2+d−1).
As we have an upper bound on the number of forbidden hyperplanes, we can

now use the trick of Kratsch et al. to generate points satisfying conditions (1) to
(3) [16, Lemma 2.4]. In our case, we take a d-dimensional m × · · · × m grid with
m = nd2+d. Observe that the number of points from this d-dimensional grid that
can lie on any hyperplane is bounded by md−1.

Finally, we are ready to prove the following Theorem.

Theorem 6. Hyperplane Point HS in R
d cannot have a kernel of size

O(kd−ε) if co-NP � NP/poly.

Proof. We give a reduction from d-Hitting Set. Let (U,F , k) be an instance
of d-Hitting Set. First we reduce this instance to the following instance
(U ′,F ′, dk) where:

1. For each v ∈ U we make d copies {v1, v2, . . . , vd}. We also refer to the set
{v1, v2, . . . , vd} as the row of v.

2. U ′ = U1 � U2 � . . . � Ud such that for each i ∈ {1, . . . , d} Ui = {vi|v ∈ U}.
3. F ⊂ F ′.
4. Assume that there is an arbitrary ordering on the vertices of U =

{v1, v2, . . . , vn}. For each f = {vj1 , vj2 , . . . , vjd} ∈ F , and for each
i1, i2, . . . , id ∈ {1, . . . , d}, we create a subset fi1,i2,...,id = {vi1

j1
, vi2

j2
, . . . , vid

jd
}.

We put fi1,i2,...,id in the set F ′.
5. For clarity of arguments in what follows, we give some more definitions. For

each f = {vj1 , vj2 , . . . , vjd} ∈ F , the subfamily of hyperedges Fvj1 ,vj2 ,...,vjd
=

{fi1,i2,...,id} = {vi1
j1

, vi2
j2

, . . . , vid
jd

}|i1, i2, . . . , id ∈ {1, . . . , d}} is called a subsys-
tem of {vj1 , vj2 , . . . , vjd}. Also, Fvj1 ,vj2 ,...,vjd

is called a subsystem of f , for
all hyperedges f ∈ Fvj1 ,vj2 ,...,vjd

. It follows from the previous definition that
a row in a subsystem corresponds to the d copies of a vertex participating in
the subsystem.

Tight Kernels for Covering and Hitting 195

Claim 1. (U,F , k) is a Yes instance of d-Hitting Set if and only if (U ′,F , dk)
is a Yes instance of d-Hitting Set.

Next, we give a reduction from the instance (U ′,F , dk) of d-Hitting Set to
a instance of Hyperplane Point HS. The correctness of this reduction shows
that there is a polynomial time reduction from d-Hitting Set to Hyperplane

Point HS such that the parameter transformation is linear.
We construct the following instance of Hyperplane Point HS:

1. Using Lemma 5, we construct a set P of dn points, same as the number of
elements in the universe U ′. We arbitrarily assign each element of U ′ to a
unique point in P.

2. For a hyperedge f ∈ F ′, let Hf be the hyperplane defined by the d points
contained in f . The set H is the family of such hyperplanes.

Claim 2. (U,F , k) is a Yes instance of d-Hitting Set if and only if (H, dk)
is a Yes instance of Hyperplane Point HS in R

d.

To prove this claim, we need the following claim regarding a solution set with
minimum number of points outside P.

Claim 3. Let Q be a minimum sized set of points that covers all the hyperplanes
in H. Also, assume that Q has the minimum possible points in Q \ P. Moreover,
let q ∈ Q\P that covers the minimum number of hyperedges uniquely. We assume
that there is no other set Q′ of the same size as Q, with |Q′ \ P| = |Q \ P| and
with a q′ ∈ Q′ \ P that covers strictly less number of hyperedges uniquely in Q′

than q does in Q. Then for any element v ∈ U ′ \ Q, at most d − 1 hyperedges
containing v can have no intersection with Q.

Proof. Firstly, by the condition of minimality on Q, each point in Q \ P must
uniquely cover at least 2 hyperplanes in H. Otherwise we could find a equal-sized
solution Q′ where |Q′ \ P| < |Q \ P|, which is a contradiction.

Suppose that there is a vertex v ∈ U ′ \ Q such that at least a family H′

of d hyperedges in H containing v can have no intersection with Q. These
d hyperplanes are covered by a set Q′ of points that are in Q \ P. Suppose
Q′ = {u1, . . . , u�} such that the for each j ∈ {1, . . . , 	}, uj uniquely covers cj

hyperplanes of H′. By definition, Σjcj = d. By the minimality condition of Q
and property (2) of Lemma5, each such point in Q′ ⊆ Q \ P uniquely covers
between 2 to d hyperplanes of H. Thus, for each j ∈ {1, 2, . . . , 	} the vertex uj

covers at most d−cj hyperplanes not in H′. We call the family of all hyperplanes
covered by vertices of Q′ as H′′. This family has at most d(d−1)+d hyperplanes.
We construct the following set Q̂:

– All points of Q \ Q′ are included in Q̂. The point v is also included.
– For each j ∈ {1, . . . , 	}, let Hj be the subfamily of at most d− cj hyperplanes

that are uniquely covered by the vertex uj and which are not in H′. Starting
from j = 1, we build a subfamily H′

j and find a point u′
j corresponding to uj .

First all the hyperplanes in Hj are added to H′
j . Then, iterating a variable t

196 J.-D. Boissonnat et al.

from j + 1 to 	, we add the hyperplanes in Ht till there are d hyperplanes or
all hyperplanes in

⋃
t≥j Ht have been added. Take a point in the intersection

of H′
j and name that point u′

j . We show that the last nonempty subfamily
Ht must be for t < 	. Suppose not. Then by definition, when we consider
the last point u�, the number of hyperplanes in H� that are not yet covered
by {u′

1, . . . , u
′
�−1} are at most d − c� − Σj<�cj = d − Σj≤�cj = 0. Therefore,

{c′
1, c

′
2, . . . , c�−1′} cover all the hyperplanes in H′′ \ H′. By definition of H′,

the set {v, c′
1, c

′
2, . . . , c�−1′} covers all the hyperplanes in H′′.

By definition the size of Q̂ is at most that of Q. However, the number of
vertices in Q̂ \ P is strictly less than the number of vertices in Q \ P. This is a
contradiction to the definition of Q.

Hence, we have proven the claim.
The proofs of the other claims can be found in the full version of the paper.

Due to Claim 2, we show that there is a linear parameter transformation from d-
Hitting Set to Hyperplane Point HS in R

d. This implies that Hyperplane

Point HS in R
d cannot have a kernel of size O(kd−ε) if co-NP � NP/poly.

The following Corollary follows from Theorem6 and Lemma 4.

Corollary 7. Point Hyperplane Cover in R
d has a kernel of size Θ(kd) if

co-NP � NP/poly.

Using similar techniques, we also obtain tight kernels for Projective Point
Hyperplane Cover in R

d.

Lemma 8. Projective Point Hyperplane Cover in R
d has a kernel of size

Θ(kd−1) if co-NP � NP/poly.

By the method suggested by Dell an Melkebeek [8], we can show a lower
bound on the number of points of a polynomial kernel for Point Hyperplane

Cover in R
d, for each fixed positive integer d.

Lemma 9. Point Hyperplane Cover in R
d cannot have a kernel with

O(kd−ε) points if co-NP � NP/poly.

Since Point Hyperplane Cover and Hyperplane Point HS are equiva-
lent problems, we obtain the following corollary.

Corollary 10. Hyperplane Point HS in R
d cannot have a kernel with

O(kd−ε) hyperplanes if co-NP � NP/poly.

We also obtain the following corollary.

Corollary 11. Projective Point Hyperplane Cover in R
d cannot have a

kernel with O(kd−1−ε) points if co-NP � NP/poly.

Tight Kernels for Covering and Hitting 197

4 Covering Polynomials of Bounded Degree with Points

In this section, we consider the D-Polynomial Point HS problem and show
that this problem is equivalent to Hyperplane Point HS in a higher dimen-
sional space. We utilize this to give tight polynomial kernels for D-Polynomial
Point HS, when the underlying vector space of polynomials is α-good.

Recall that in D-Polynomial Point HS, a vector space R of D-degree
polynomials in PolyD[X1,X2, . . . , Xd] is specified. The input is a set F of n
polynomials from R and the objective is to find at most k points in R

d that
cover all the input polynomials.

We utilize the Veronese mapping from a vector space of D-degree polynomials
to the subsystem of hyperplanes in Euclidean space R

b. Such a mapping is a
bijective mapping between the vector space of D-degree polynomials and the
hyperplanes in R

b. However, the mapping need not be an onto mapping from
R

d to R
b. Let VerR(Rd) be the image of R

d under the Veronese mapping ΦR.
Thus, VerR(Rd) ⊆ R

b. We show that the Hyperplane Point HS problem for
an α-good vector space R in R

b when the solution set is restricted to belonging
to VerR(Rd), does not have a O(kb−ε) kernel unless co-NP ⊆ NP/poly.

Before this, we require a few results regarding the behaviour of points under
the Veronese mapping.

First, we show that a set of n points in R
d that are in general position with

respect to R are mapped to a set of n points in R
b in general position with

respect to hyperplanes in R
b.

Claim 4. Let P be a set of points in R
d, and R be a subspace of PolyD

[X1, . . . , Xd] with a basis {f1(X), . . . , fb(X), 1} where X = (X1, . . . , Xd).

1. If the set P is in general position with respect to the polynomial family R
then the image ΦR(P), under the Veronese mapping ΦR, is a |P|-sized set in
general position with respect to hyperplanes in R

b.
2. Let S = {q1, . . . , q�} ⊆ ΦR(P) be in general position with respect to hyper-

planes in R
b. Then the set S′ = {p1, . . . , p�}, where pi ∈ Φ−1

R (qi) ∩ P, will be
a |S|-sized set in general position with respect to R.

Proof. 1. First, observe that if the map ΦR is injective on P then the result will
directly follow. However, in general, the map ΦR need not be an injective
mapping on an arbitrary set of n points in R

d. We show that ΦR is injective
when restricted to P if P is in general position with respect to R. To reach
a contradiction, let ΦR(p1) = ΦR(p2) where p1, p2 (�= p1) ∈ P. Let S ⊆
P be of size b + 1 and p1, p2 ∈ P. Observe that the set ΦR(S) will have
less than b + 1 points and this will imply that there exists a hyperplane∑b

i=1 λiZi + λb+1 = 0 on which the set ΦR(S) will lie. But this implies that
the polynomial

∑b
i=1 λifi(X) + λb+1 = 0 will be satisfied by all the points in

S. Thus, we have reached a contradiction from the fact that the point set P
was in general position.

2. The second part of the Claim follows directly from the construction of the
mapping ΦR.

198 J.-D. Boissonnat et al.

Next, for each n we construct a set of n points that satisfy the conditions
of Lemma 5 and belong to VerR(Rd), where R is α-good. This construction is
mainly done in R

d and follows exactly along the lines of the proof of Lemma5.

Lemma 12. Let R be a α-good vector space of D-degree polynomials in R
d and

let the Veronese mapping ΦR linearize R into R
b. Let VerR(Rd) be the image of

ΦR. Then for every n ∈ Z
+, there is a poly(n) time algorithm to construct a set

P of n points in R
b that have the following properties:

(1) The points are in general position with respect to hyperplanes in R
b.

(2) Let H be the family of hyperplanes defined by each set of b points from P. The
hyperplanes in the family H are in general position, i.e., given r hyperplanes
H1, . . . , Hr in H with r ≤ b the dimension of the affine space ∩r

i=1Hr is
b − r.

(3) For any point p in R
b\P, there are at most b hyperplanes in H that contain p.

Proof. As in the proof of Lemma 5, we will construct the set P inductively.
We start with a set Pb of size b such that the set is in general position with
respect to R. This can be constructed in O(1) time as R is α-good. We then
extend this set one point at a time using points from the grid (as in the proof
of Lemma 5). Assume that for b ≤ t < n, we have constructed a point set Pt

that satisfies the above conditions. The points forbidden to be added to the
set Pt will lie on a bounded number of polynomials from R and we will call
these polynomials forbidden polynomials. The hyperplane that is in bijective
correspondence with a forbidden polynomial under the Veronese mapping ΦR is
called a forbidden hyperplane. As in the proof of Lemma 4, we can show, using
the Veronese mapping ΦR, that the number of forbidden hyperplanes arising due
to conditions (1), (2) and (3) is bounded by O(tb), O(tb

2+b−1) and O(tb
2+b−1)

respectively. This also gives a bound on the number of forbidden polynomials.
As we have an upper bound on the number of forbidden polynomials, we

can now use the same trick to generate points satisfying conditions (1) to (3) as
Lemma 4. In this case we take a d-dimensional m× · · ·×m grid with m = nb2+b

and use the fact that given any polynomial from R, the number of points of the
grid hitting it is bounded by md−α. This completes the proof. �

This helps us to prove a kernel lower bound on the restricted version of
Hyperplane Point Cover described above.

Lemma 13. Let R be an α-good vector space of D-degree polynomials in R
d and

let the Veronese mapping ΦR linearize R into R
b. Then Hyperplane Point

Cover, when the solution is restricted to belong to VerR(Rd) = ΦR(Rd), cannot
have a kernel of size O(kb−ε) unless co-NP ⊆ NP/poly.

Proof. The construction of n points in VerR(Rd) described in Lemma 12 has all
the properties described in Lemma 5. The rest of the proof follows exactly as the
proof of Theorem 6.

Tight Kernels for Covering and Hitting 199

Finally, the following Theorem is derived from Lemma 13 by utilizing the
Veronese mapping ΦR.

Theorem 14. D-Polynomial Point HS for an α-good vector space R in
R

d, and having the Veronese mapping into R
b, (i) has a polynomial kernel

of size O(kb), (ii) does not have a polynomial kernel of size O(kb−ε), unless
co-NP ⊆ NP/poly.

Proof. To prove the tightness of a O(kb) kernel for D-Polynomial Point
HS in R

d with the Veronese mapping into R
b, first we prove (i) by giving an

upper bound on the size of a kernel. Let the polynomials in an instance of D-
Polynomial Point HS come from the vector space R, as defined earlier. The
Veronese mapping ΦR is a reduction from D-Polynomial Point HS in R

d to
Hyperplane Point HS in R

b. Thus, since Hyperplane Point HS in R
b has

a O(kb) kernel [17], so does D-Polynomial Point HS in R
d with the Veronese

mapping into R
b.

To prove (ii), we use the Veronese mapping on the vector space R of D-degree
polynomials more carefully. Let the hyperplanes, to which the polynomials are
mapped, be in R

b. The mapping is a bijective function. Thus, in order to obtain
the required result, we give a reduction from Hyperplane Point HS in R

b,
where the solution set of points come from VerR(Rd). The reduction is simply
the reverse function of the Veronese mapping. Suppose an instance (H, k) of
Hyperplane Point HS where the solution set of points belong to VerR(Rd)
reduces to the instance (H′, k) of D-Polynomial Point HS. If (H, k) is a Yes

instance, then there is a set S of at most k points in R
b that covers all the

hyperplanes in H. Consider the set S′ of points in R
d by taking one preimage of

each point in S. The set S′ is exactly the same size as S, and therefore contains at
most k points. Moreover, by definition of the Veronese mapping, S′ covers all the
polynomials in H′. Therefore, (H′, k) is also a Yes instance for D-Polynomial
Point HS.

On the other hand, if (H′, k) is a Yes instance of D-Polynomial Point HS,
then there is a set S′ of at most k points that cover all the polynomials in H′.
The image of S′ under the Veronese mapping will be of size at most S′ and will
cover the family H. Therefore, (H, k) will be a Yes instance of Hyperplane

Point Cover when the solution points can come only from VerR(Rd). Thus, by
Lemma 13, we conclude that D-Polynomial Point HS cannot have a kernel of
size O(kb−ε) unless co-NP ⊆ NP/poly.

5 Open Problems

The D-Point Polynomial Cover problem in R
d requires a set of n points

in R
d to be covered by at most k D-degree polynomials. Although polynomial

kernels for D-Point Polynomial Cover in R
d can be exhibited, tight lower

bounds for this problem are unknown.

200 J.-D. Boissonnat et al.

References

1. Afshani, P., Berglin, E., van Duijn, I., Nielsen, J.S.: Applications of incidence
bounds in point covering problems. In: SoCG, pp. 60:1–60:15 (2016)

2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. TCS
237(1–2), 123–134 (2000)

3. Ashok, P., Kolay, S., Misra, N., Saurabh, S.: Unique covering problems with geo-
metric sets. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp.
548–558. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9 43

4. Ashok, P., Kolay, S., Saurabh, S.: Multivariate complexity analysis of geometric
red blue set cover. Algorithmica 79, 1–31 (2015)

5. Boissonnat, J., Dutta, K., Ghosh, A., Kolay, S.: Kernelization of the subset general
position problem in geometry. In: MFCS, pp. 25:1–25:13 (2017)

6. Bringmann, K., Kozma, L., Moran, S., Narayanaswamy, N.S.: Hitting set for hyper-
graphs of low VC-dimension. In: ESA, pp. 23:1–23:18 (2016)

7. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 3. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21275-3

8. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: STOC, pp. 251–260. ACM (2010)

9. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pages
624–633. ACM (2014)

10. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing
rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM
2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00202-1 26

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999). https://doi.org/10.1007/978-1-4612-0515-9. 530 p.

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, New York Inc., Secaucus (2006).
https://doi.org/10.1007/3-540-29953-X

13. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geo-
metric problems. Comput. J. 51(3), 372–384 (2008)

14. Heggernes, P., Kratsch, D., Lokshtanov, D., Raman, V., Saurabh, S.: Fixed-
parameter algorithms for cochromatic number and disjoint rectangle stabbing via
iterative localization. Inf. Comput. 231, 109–116 (2013)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Jünger, M., et al.
(eds.) 50 Years of Integer Programming 1958–2008 - From the Early Years to
the State-of-the-Art, pp. 219–241. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-540-68279-0 8

16. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight.
TALG 12(3), 40 (2016)

17. Langerman, S., Morin, P.: Covering things with things. DCG 33(4), 717–729 (2005)
18. Matoušek, J.: Lectures on Discrete Geometry, vol. 212. Springer Science & Business

Media, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7
19. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.

Oper. Res. Lett. 1(5), 194–197 (1982)
20. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media,

Heidelberg (2013). https://doi.org/10.1007/978-3-662-04565-7

https://doi.org/10.1007/978-3-319-21398-9_43
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-00202-1_26
https://doi.org/10.1007/978-3-642-00202-1_26
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-3-662-04565-7

A Tight Bound for Shortest Augmenting
Paths on Trees

Bart�lomiej Bosek1, Dariusz Leniowski2, Piotr Sankowski2,
and Anna Zych-Pawlewicz2(B)

1 Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science, Jagiellonian University,

Kraków, Poland
bosek@tcs.uj.edu.pl

2 Institute of Computer Science, University of Warsaw, Warsaw, Poland
{d.leniowski,sank,anka}@mimuw.edu.pl

Abstract. The shortest augmenting path technique is one of the funda-
mental ideas used in maximum matching and maximum flow algorithms.
Since being introduced by Edmonds and Karp in 1972, it has been widely
applied in many different settings. Surprisingly, despite this extensive
usage, it is still not well understood even in the simplest case: online
bipartite matching problem on trees. In this problem a bipartite tree
T = (W � B, E) is being revealed online, i.e., in each round one vertex
from B with its incident edges arrives. It was conjectured by Chaudhuri
et al. [7] that the total length of all shortest augmenting paths found
is O(n log n). In this paper we prove a tight O(n log n) upper bound for
the total length of shortest augmenting paths for trees improving over
O(n log2 n) bound [5].

1 Introduction

One of the most fundamental techniques used to solve maximum matchings or
flow problems is the augmenting path technique. It augments the solution along
residual paths until the maximum size matching/flow is found. Intuitively, the
work needed for that should be minimized if shortest paths are chosen each
time. In particular, this was the key concept that allowed Edmonds and Karp
in 1972 to show the first strongly polynomial time algorithm for the maximum
flow problem [9]. Since then it has been widely applied. Surprisingly, despite this
effort, it is still not well understood even in the simplest case—online bipartite
matching problem on trees. This may be due to the fact that shortest augmenting
paths do not seem to have strong enough structure admitting exact analysis.
Other methods for choosing augmenting paths are easier to analyze [4,7]. Our

The work of all authors was supported by Polish National Science Center grant
2013/11/D/ST6/03100. Additionally, the work of P. Sankowski was partially sup-
ported by the project TOTAL (No. 677651) that has received funding from ERC.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 201–216, 2018.
https://doi.org/10.1007/978-3-319-77404-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_16&domain=pdf

202 B. Bosek et al.

work is meant as a step forward towards understanding the shortest augmenting
path method for computing the matching on bipartite graphs.

To be able to analyze this approach we adopt the following model. Let W
and B be the bipartition of vertices over which the tree will be formed. The set
W (called white vertices) is given up front to the algorithm, whereas the vertices
in B (black vertices) arrive online. We denote by Ft = 〈W � Bt, Et〉 the forest
after the t’th black vertex has arrived where X � Y is a disjoint sum of X and
Y . The graphs Ft for t ∈ [n] = {1, . . . , n} are constructed online in the following
manner. We start with F0 = 〈W � B0, E0〉 = 〈W � ∅, ∅〉. In turn t ∈ [n] a new
vertex bt ∈ B together with all its incident edges E(bt) is revealed and Ft is
defined as: Et = Et−1 ∪ E(bt) and Bt = Bt−1 ∪ {bt}. In the model we consider,
none of the newly added edges is allowed to close the cycle. For simplicity we
assume that we add in total n = |W | black vertices. The final graph is a tree
denoted as Fn = (W � Bn, En).

The goal of the online algorithm is to compute for each Ft the maximum size
matching Mt, possibly making use of Mt−1. In this paper we study one specific
algorithm, referred to as the Shortest Augmenting Path algorithm. When bt

arrives, the Shortest Augmenting Path algorithm always chooses the shortest
among all available augmenting paths. A natural question that we ask is what is
the total length of all paths applied by the Shortest Augmenting Path algorithm.
In this paper the unmatched vertices are referred to as free. For a vertex v we
denote its neighborhood in Ft as Nt(v). By F [X] = 〈X,E(X)〉 we denote a
subgraph of F induced by X ⊆ W ∪ B, where E(X) = {e ∈ E : e ⊆ X}.

2 Motivation and Related Work

The online bipartite matching problem with augmentations has recently received
increasing attention [1,4,5,7,10,11]. The model we study has been introduced
in [10]. As mentioned before, the key point of this model is to focus on bounding
the total length of augmenting paths and not the running time of the algorithm.
This is motivated as follows. Imagine that the white vertices are servers and
black vertices are clients. The clients arrive online. A typical client may be a
portable computing box, trying to connect to a huge network of services with
some specific request. The edges of the graph reflect eligibility of the servers to
answer clients request. The classical online model (as in [3,8,13]) does not allow
preemption, i.e., the client cannot change the server. In such setting one must
accept some clients not being served while they could possibly be served with
preemption. In that model a famous ranking algorithm gives an optimal (1−1/e)-
approximation [13]. The authors in [10] wonder if preemption makes sense. It
may be beneficial to reallocate clients provided that only a limited number of
reallocations is needed. This leads to the question of how many reallocations are
needed if one insists on serving every client. In [10] a special case is studied when
each client can connect to at most two servers. In such scenario the authors prove
that the Shortest Augmenting Path algorithm performs O(n log n) reallocations
and that no algorithm can do better than that. Chaudhuri et al. [7] show that the

A Tight Bound for Shortest Augmenting Paths on Trees 203

Shortest Augmenting Path algorithm makes a total of O(n log n) reallocations in
the case of general bipartite graph, provided that the clients arrive in a random
order. They conjecture, however, that this should be the case also for the worst
case arriving order of clients. Until this paper, this conjecture remained open even
for trees. In [5] the authors prove a bound of O(n log2 n) for Shortest Augmenting
Path algorithm given that the underlying graph is a tree. In this paper we take a
different approach and prove the conjecture of Chaudhuri et al. for trees. In this
restricted case, the authors of [7] proposed a different augmenting path algorithm
that achieves total paths’ length of O(n log n). Their algorithm, however, is only
applicable to trees. The Shortest Augmenting Path algorithm, on the other hand,
applies to any bipartite graph and also is very simple. This is the reason why
we feel it is important to study this algorithm. Our ultimate goal is to show the
bound of O(n log n) for general bipartite graphs. We believe that the techniques
proposed in this paper are an important step forward on the path to achieve
this goal. In parallel work to ours [1] the authors provide a bound of O(n log2 n)
total number of reallocations for the Shortest Augmenting Path algorithm on
general bipartite graphs. This recent result has been accepted to SODA 2018
and it nearly closes the conjecture of Chaudhuri et al. We note, however, that
their techniques alone do not lead to O(n log n) even for trees. Before this result,
for general graphs, nothing interesting was known for Shortest Augmenting Path
algorithm. A different algorithm was proposed achieving much worse O(n

√
n)

bound on the total length of augmenting paths [4].
Our model is strongly related to dynamic algorithms. There, we are not

only interested in constructing short augmenting paths. An efficient way of find-
ing them is the most important aspect. Most papers in this area consider edge
updates in a general fully-dynamic model which allows for insertions and dele-
tions of edges intermixed with each other. This is a much more difficult sce-
nario in which one cannot do much when constrained by our model. In par-
ticular, if edges are added to a bipartite graph, one can show an instance for
which any algorithm maintaining a maximum matching performs Ω(n2) real-
locations. Hence, it is reasonable to stop insisting on matching every client
and accept approximate solutions. Here we want to approximate the maximum
matching size and not the number of reallocations. One also needs to keep in
mind that a trivial greedy algorithm maintaining a maximal matching gives a
1/2-approximation and preforms no reallocations at all. A 2/3-approximation
algorithm by [14] achieves O(

√
m) update time. Gupta and Peng give a (1 − ε)-

approximation in O(
√

mε−2) time per update [12]. The O(
√

m) barrier was
broken by Bernstein and Stein who gave a (2

3 − ε)-approximation algorithm
that achieves O(m1/4ε−2.5) update time [2]. Finally, (1 − ε) approximation in
O(mε−1) total time and with O(nε−1) total length of paths was shown in [4] in
a model most related to ours, i.e., when vertices are added on one side of the
bipartition. There are also randomized algorithms in the dynamic model [15]
maintaining the exact size of a maximum matching with O(n1.495) update time.
They do not imply any bound on the number of changes to the matching as they
use algebraic techniques that are not based on augmenting paths.

204 B. Bosek et al.

3 The Mini-Max Game

Our goal in this paper is to prove that the total length of all augmenting paths
applied by Shortest Augmenting Path algorithm on a tree is O(n log n). More
formally, we want to prove the following, where by ||π|| we denote the number of
edges on a path π.

Theorem 1. Let πt be the path applied by Shortest Augmenting Path algorithm
in turn t. Then

∑n
t=1 ||πt|| ∈ O(n log n).

The idea is not to study directly the paths applied by Shortest Augmenting
Path algorithm, but a collection of other paths that are possibly longer. To be
more precise, we model a scenario where in each turn Shortest Augmenting Path
algorithm gets the worst possible matching on Ft (i.e., the one maximizing the
shortest augmenting path). We then study the worst case augmenting paths
rather then the ones given by the matching produced by Shortest Augmenting
Path algorithm. Interestingly, these paths can be defined without mentioning
any matching. In this section we provide the appropriate definitions and show
that they work as expected.

Let us consider what worst possible matching could there be. Think of a
game, where the algorithm chooses a shortest augmenting path, and the adver-
sary chooses a matching where such path is the longest. We are given graph Ft

and the newly presented vertex bt. We are interested in a matching where bt is
not matched, so that we model the worst case matching before bt is matched. The
game starts in vertex bt, where the algorithm may choose which edge to follow
among the unmatched edges incident to bt. Then the algorithm stumbles upon a
white vertex where it has to follow the matching edge chosen by the adversary.
The game continues until a leaf is reached (either black or white, black meaning
that the algorithm did not find a path). It is not hard to see that the algorithm,
when it has a choice, wants to minimize the distance to a free white vertex, while
the adversary tries to maximize it. This way we obtain a two-person game, where
the outcome of the game is the length of the shortest augmenting path. If the
path does not exist, we let the outcome be infinite. Throughout the paper we
let ∞ + 1 = ∞ and we write x < ∞ to indicate that x is simply an integer.

We move on to stating formal definitions. We start by introducing our game
on any rooted tree T whose vertices are either black or white. We then define the
outcome of the algorithm player in time t for a specific T closely related to Ft.
For a rooted tree T we denote the list of children of a vertex v in T as ChT (v)
and a parent of v as parentT (v).

Definition 1. Let T be a rooted tree whose vertices are partitioned into two
sets: V (T) ⊆ B � W . For each b ∈ B we define its revenue as mini-maxT (b) =
minw∈ChT (b) mini-maxT (w) + 1 if ChT (b) �= ∅ and mini-maxT (b) = ∞ other-
wise. For each w ∈ W we define its revenue as mini-maxT (w) = maxb∈ChT (w)

mini-maxT (b)+ 1 if ChT (w) �= ∅ and mini-maxT (w) = 0 otherwise. We let
mini-max-nextT (v) be the child of v whose revenue determines the minimum or

A Tight Bound for Shortest Augmenting Paths on Trees 205

Fig. 1. (a) Example of a rooted mini-max tree with vertex revenues. (b) Example of
mini-max distances for a vertex v in turn t.

the maximum respectively.1 If v has no children, mini-max-nextT (v) is undefined.
We define the mini-max path starting in a vertex v as mini-max-pathT (v) =
v · mini-max-pathT (mini-max-nextT (v)) if mini-max-nextT (v) is defined and
mini-max-pathT (v) = v otherwise.2

Definition 1 is illustrated by example in Fig. 1(a). Based on this definition we
can define the first and the second mini-max distance from a given vertex to a
white leaf in a specific time moment t. In addition to that we define the first and
second direction, i.e., the vertex one needs to follow to find the first and second
mini-max distance.

Definition 2. Let t ∈ [n] and v ∈ Bt ∪ W . Let T be the connected com-
ponent of v in Ft rooted in v. Let distt(v) = mini-maxT (v) and dirt(v) =
mini-max-nextT (v). Let now S be a rooted tree, where from T we remove
mini-max-nextT (v) and all its descendants. Let sec-distt(v) = mini-maxS(v) and
sec-dirt(v) = mini-max-nextS(v).

Definition 2 is illustrated by example in Fig. 1(b). We next observe the mono-
tonicity of the mini-max distance functions we defined.

Observation 2 (Appendix A in [6]). Fix a vertex u ∈ B ∪ W . The functions
distt(u) and sec-distt(u) are non-decreasing with respect to t for the whole range
of t where u ∈ V (Ft).

We intuitively explained how the mini-max distances correspond to the aug-
menting paths of the worst case matching, so the hope is that they bound from
above the augmenting paths applied by Shortest Augmenting Path algorithm.
The next lemma shows that this intuition is reflected in reality. It states that
no matter what matching is given on Ft for some t ∈ [n], the path chosen by
Shortest Augmenting Path algorithm to match bt is bounded by distt(bt).

1 If there are more such vertices we choose the first one according to some predefined
order on B ∪ W .

2 Symbol · denotes concatenation of paths.

206 B. Bosek et al.

Lemma 3 (Appendix A in [6]). Let 1 � t0 � t � n and let ρt be the shortest
augmenting path from bt0 to a free white vertex according to any given matching
M in Ft where bt0 is free. It holds that if distt(bt0) < ∞ then ρt exists and
||ρt|| � distt(bt0).

4 Dead Vertices

In this section we introduce another concept crucial for our result. We define here
dead vertices and give some intuition why this makes sense. In fact dead vertices
reflect the infinity of some mini-max distance functions. For completeness, in
addition to defining dead vertices, we describe the situations when the mini-
max distance functions are infinite. We start with the statements.

Definition 3. A vertex bt0 ∈ Bt breaks Hall’s condition in time t � t0 iff bt0 ∈
X for some inclusion-wise minimal set X satisfying |Nt(X)| < |X|.
Lemma 4 (Appendix B in [6]). Let 1 � t0 � t � n. Then distt(bt0) = ∞ iff bt0

breaks Hall’s condition in time t.

Corollary 5. If distt(bt) is infinite, and we are given some maximum matching
Mt−1 for Ft−1, then there is no augmenting (with respect to Mt−1) path for bt

in time t.

We now move on to defining dead vertices. The definitions may not seem
very intuitive, but we provide some intuition shortly after introducing them.

Definition 4. We say that a vertex bt0 ∈ B is dead in turn t � t0 iff
sec-distt(bt0) = ∞.

Definition 4 combined with Lemma 4 implies, that any black vertex that
breaks Hall’s condition in time t is dead in time t, but not necessarily the other
way around.

Definition 5. A white vertex w ∈ W is dead in time t iff distt(w) = ∞.

We say that a vertex is alive iff it is not dead. We denote as At the set of
vertices of Bt ∪W that are alive in turn t and as Dt the set of vertices of Bt ∪W
that are dead in turn t. If v ∈ At−1∩Dt, we say that v dies in turn t. Note that due
to monotonicity (Observation 2), once a vertex dies, it never comes back alive.
The following observations bring some intuition into the picture of dead versus
alive vertices. Observation 6 given below follows from Definitions 2, 4 and 5.

Observation 6. 1. A black leaf is dead from the moment it arrives.
2. A black vertex is dead iff it has at most one alive neighbour.
3. A white vertex is dead iff it has at least one dead neighbour.

A Tight Bound for Shortest Augmenting Paths on Trees 207

The intuition behind dead vertices is that they determine regions of Ft where
Hall’s condition is either broken or tight. The mini-max paths in turn t that
correspond to finite mini-max distances do not visit vertices that were dead in
turn t − 1. Moreover, if a mini-max path in Ft (whose corresponding mini-max
distance is finite) enters a vertex that is alive in turn t, it does not visit anymore
vertices dead in turn t. We state this formally as Lemma 7. This reflects the
behavior of augmenting paths. If a maximum matching is maintained, then the
augmenting path from turn t does not enter the regions where Hall’s condition
is tight in Ft−1.

Lemma 7 (Appendix B in [6]). Let t ∈ [n] and v ∈ At. Pick any vertex as a
root of the connected component of v in Ft and let T be the corresponding rooted
tree. Then V (mini-max-pathT (v)) ⊆ At.

In the remainder of this section we specify precisely which vertices die in turn
t. The first lemma does not describe who dies or stays alive, but it is an important
complement of the subsequent two lemmas, which cover all the situations when
vertices die.

Lemma 8 (Appendix B in [6]). If bt does not break Hall’s condition in turn t,
then bt has at least one neighbour in Ft which was alive in turn t − 1.

So if a black vertex added in turn t does not break Hall’s condition, then it
has at least one neighbour who was alive in turn t − 1. The next two lemmas
cover two cases. The first lemma states that if the new black vertex has at least
two such neighbours, then no vertices die in turn t. If, however, it has exactly one
such neigbour, then some vertices die in turn t and the second lemma describes
precisely which ones.

Lemma 9 (Appendix B in [6]). If bt has at least two neighbours which are
alive in turn t − 1 then bt is alive in turn t and no vertex dies in turn t.

The last lemma covers the only case when vertices die in turn t. It shows
that there is a certain region around bt where vertices die, and a barrier for
that region are special vertices called life portals, defined below. The picture
illustrating which region dies in turn t is given in Fig. 2.

Life portals

Fig. 2. The vertices that die in turn t.

208 B. Bosek et al.

Definition 6. A black vertex b is a life portal in turn t iff |Nt(b) ∩ At−1| � 3.
The set of life portals in turn t is denoted as LPt.

Lemma 10 (Appendix B in [6]). If bt has exactly one neighbour in Ft which
was alive in turn t− 1 and there is a path π from bt to v ∈ Bt ∪W such that (1)
all vertices of π were alive in turn t − 1 and (2) there are no life portals from
LPt on π, then v dies in turn t. Vertices of Bt ∪ W that cannot be reached from
bt via such path do not die in turn t.

Corollary 11. Lemma 10 shows, that for all t such that bt does not break
Hall’s condition and has exactly one neighbour alive in turn t − 1, statement
|Nt(b) ∩ At−1| � 3 in Definition 6 is equivalent to |Nt(b) ∩ At| � 2.

5 The Proof

In the remainder of the paper we present the proof of Theorem 1, which states
that if πt is the path applied by Shortest Augmenting Path algorithm in turn
t, then

∑n
t=1 ||πt|| ∈ O(n log n). As we mentioned in Sect. 3, we do not study

||πt|| directly. Instead, we want to study distance functions distt(bt) introduced
in Sect. 3. By Lemma 3 given in Sect. 3 we know that distt(bt) bounds ||πt|| from
above. Recall that distt(bt) is the mini-max distance from bt to a white leaf in
Ft. By definition if distt(bt) < ∞, then there is a path from bt to a white leaf
which certifies it. We introduce the formal definition of such path below.

Definition 7. Let t ∈ [n] and v ∈ Bt ∪ W . Let T be a connected component of
v in Ft rooted at v. Then patht(v) = mini-max-pathT (v).

Note that by Definitions 1 and 2, if distt(bt) < ∞, then ||patht(bt)|| =
distt(bt). In addition to that, we define a path that certifies that sec-distt(bt)
is finite.

Definition 8. Let t ∈ [n] and v ∈ Bt ∪ W . Let S be a connected component of
v in Ft − {v,dirt(v)} rooted at v, where Ft − {v,dirt(v)} denotes Ft with edge
{v,dirt(v)} removed. Then sec-patht(v) = mini-max-pathS(v).

Again by Definitions 1 and 2, if sec-distt(bt) < ∞, then ||sec-patht(bt)|| =
sec-distt(bt). Instead of proving Theorem1, in the remainder of this paper we
prove that

∑
t:distt(bt)<∞ ||patht(bt)|| ∈ O(n log n). This is in fact a stronger state-

ment. We claim that even if the adversary picks the worst possible maximum
matching in each turn, the Shortest Augmenting Path algorithm still applies
paths of total length O(n log n). Note that if distt(bt) = ∞, then due to Corol-
lary 5 Shortest Augmenting Path algorithm cannot match the new vertex bt if
the maximum matching is given on the remaining vertices. Our proof of such
simple statement is unfortunately rather complex. Before we move on to it, we
give some intuitions on where the actual problem hides. It is enlightening to dis-
cover, that with the additional assumption that the black vertices are of degree
two or more, the statement above has a very simple proof.

A Tight Bound for Shortest Augmenting Paths on Trees 209

Lemma 12. If each black vertex bt has degree at least 2, then
∑n

t=1

||patht(bt)|| � n log2 n.

Proof. We start by observing that no vertex ever dies. In turn t = 0 the only
presented vertices are W , so by definition all vertices are alive in turn t = 0. Let
t > 0 and assume that no vertices died up until turn t − 1. Due to Lemma 9 no
vertex dies in turn t and bt is alive in turn t. This implies that distt(bt) < ∞ and
sec-distt(bt) < ∞. Hence, patht(bt) and sec-patht(bt) are two separate paths,
contained in two different components of Ft−1 connected in turn t by bt. Also,
||patht(bt)|| � ||sec-patht(bt)||. Thus, patht(bt) is at most as long as the size of
the smaller of the two components. We pay for patht(bt) by charging 1 token to
each vertex in every component but the largest one among the components of
Ft−1 connected by bt in turn t. A vertex v is charged when v’s component size
increases at least twice, so v cannot be charged more than log2 n times. This
gives a total charge of at most n log2 n. �

The essence of this proof is that every time a black vertex is added, it connects
at least two trees into one. As a consequence there are at least two alternative
mini-max paths starting from the added vertex, each in a separate tree. The
length of the shorter of the two can be charged to the vertices of the smaller tree.
If we allow black vertices of degree 1, the situation becomes more complicated,
because: (1) there is no alternative path, i.e., the path needs to follow the only
edge adjacent to the newly added black vertex, and (2) no trees are merged.
Nevertheless the proof of Theorem 1 is a generalization of the proof of Lemma12.
The majority of the remainder of this paper is devoted to addressing issue (2).
We define trees which are merged in each turn and allow introducing the charging
scheme that generalizes the scheme of Lemma 12. We start, though, by addressing
issue (1). To that end we introduce a concept of a dispatching vertex. Even
though bt does not necessarily fork into two alternative mini-max paths, there
is another vertex which does. It is the first life portal on patht(bt). We refer to
it as dispatching vertex in turn t. To be more formal, we introduce the following
definition.

Definition 9. The dispatching vertex at time t ∈ [n] is the first black vertex on
patht(bt) such that |Nt(b) ∩ At| � 2. We denote it as b̌t.

First observe that b̌t has two alive neighbours in turn t, so there are two
alternative mini-max paths branching from b̌t. Our next observation is that if
b̌t �= bt, then b̌t ∈ LPt: if bt has two neighbours alive in t−1, then due to Lemma 9
no vertex dies in turn t so bt has two neigbours alive in turn t and hence bt = b̌t;
otherwise, if bt has one neigbour alive in turn t − 1, then due to Lemma 10 and
Corollary 11 it holds that b̌t is the first life portal of LPt on patht(bt). Then
also b̌t is the first vertex on patht(bt) that remains alive. All vertices that follow
b̌t on patht(bt) remain alive as well. It may happen that patht(bt) contains no
life portals, in which case there is no dispatching vertex defined in turn t. This
case however is not of concern, since the whole patht(bt) dies in turn t due to
Lemma 10. In general, we do not have to worry about vertices that die, and we
state this observation as Observation 13 preceded by Definition 10.

210 B. Bosek et al.

Definition 10. Let t ∈ [n] be such that distt(bt) < ∞. We let patht(bt) =
pathp

t (bt) ·paths
t (bt), where pathp

t (bt) is the prefix of patht(bt) that dies (possibly
empty) and paths

t (bt) is the corresponding suffix (also possibly empty).

Note that if b̌t is defined then paths
t (bt) begins with b̌t. Since the final forest

has 2n vertices and each can die only once, we have the following:

Observation 13.
∑

t:distt(bt)<∞ ||pathp
t (bt)|| � 2n.

Thus, to bound
∑

t:distt(bt)<∞ ||patht(bt)|| it suffices to bound
∑

t:distt(bt)<∞ ||paths
t (bt)||. We conclude the list of properties of the dispatching

vertex with the following observation.

Observation 14 (Appendix C in [6]). Let t ∈ [n] and distt(bt) < ∞ and b̌t is
defined. Then ||paths

t (bt)|| = distt(b̌t).

To proceed further, we introduce the crucial notion in our proof: the notion of
a level. The levels are some numbers assigned to vertices: each vertex is assigned
its level. The intuitive meaning of the level of a vertex is the following. Consider
patht(bt), which is the worst case shortest augmenting path for a black vertex
bt added in turn t. For a vertex v, if patht(bt) crosses v, level in Ft returns the
value representing the length of the suffix of patht(bt) starting in v. Formally,
the level function is defined in the following way.

Definition 11. For v ∈ W ∪ B and t ∈ {0, . . . , n} let levelt(v) = sec-distt(v) if
v ∈ W , levelt(v) = distt(v) if v ∈ Bt, and levelt(v) = 0 otherwise.

It may at first seem confusing that the level of a white vertex is the second
maximum distance to a leaf. It is defined this way because, surprisingly, in every
turn t the path patht(bt) enters its white vertices through the edge determin-
ing the maximum distance from the white vertex to a leaf. We illustrate the
introduced definitions in Fig. 3. We present there an example run of an online
scenario together with changing levels of vertices. We mark the dispatching ver-
tices in each turn. An important property of the level function is that the levels
of vertices drop by at most one along both patht(bt) and sec-patht(bt).

Fig. 3. Levels

A Tight Bound for Shortest Augmenting Paths on Trees 211

Lemma 15 (Appendix C in [6]). For v ∈ W ∪ Bt and u ∈ {dirt(v), sec-dirt(v)}
it holds that |levelt(v) − levelt(u)| � 1.

We are ready to move on to the proof of Theorem 1. We consider two cases:

1. the level of a dispatching vertex in turn t grows by at most a factor of β.
2. the level of a dispatching vertex in turn t grows by more than a factor of β.

where β is some constant value greater than 1 which we reveal later on. The
total length of paths paths

t (bt) satisfying case (1) is bounded by Lemma 16 while
the total length of paths paths

t (bt) satisfying case (2) is bounded by Lemma 17.

Lemma 16. For cases when distt(bt) < ∞, b̌t is defined and levelt(b̌t) <
β levelt−1(b̌t) the total length of paths paths

t (bt) is bounded by 2βn + βn log2 n.

Proof. Let t be such that it satisfies the assumptions of the lemma. First observe
that bt �= b̌t, otherwise levelt−1(b̌t) = 0 < levelt(b̌t)/β. Due to Lemmas 8 and 9,
bt has precisely one neighbour alive in turn t − 1.

In order to show an appropriate charging scheme, consider the final forest
F = Fn. We study the connected components of a subforest F [At] of F induced
on vertices alive in turn t. Recall that vertices not yet presented are considered
alive. In turn t some vertices, in particular bt, die. Due to Lemma 10 vertices that
die in turn t form a connected component D of F [At−1]. Then the connected
component C of b̌t in F [At−1] splits into D and components C1, . . . , Ck in F [At].
Let C1 be the largest component among C1, . . . , Ck. Due to Lemma 10, paths

t (bt)
is contained entirely in one of the components C1, . . . , Ck, say paths

t (bt) is con-
tained in Ci. If i �= 1, we can charge the length of paths

t (bt) by charging 1 token
to the vertices of Ci. A particular vertex can be charged at most log2 n tokens
this way, as each time it is charged its component halves the size. It remains to
deal with the case when paths

t (bt) is contained in the largest component C1. For
the reference see Fig. 4. Let wp be the predecessor of b̌t on patht(bt). Let T be the
connected component of b̌t in Ft−1 rooted at b̌t and let T� be the connected com-
ponent of b̌t in Ft−1 rooted at wp. For the reference see Fig. 5. By Observation 14
and our assumptions it holds that ||paths

t (bt)|| = distt(b̌t) < β distt−1(b̌t) =
β minw∈ChT (b̌t)

mini-maxT (w)+β � β mini-maxT (wp)+β. The constant cost of
β gives a total cost of βn over all turns. What remains to show is how to charge
the cost of β mini-maxT (wp). Since wp ∈ At−1 it holds that mini-maxT (wp) =
maxb∈ChT�

(wp)\{b̌t} mini-maxT�
(b) + 1 � maxb∈ChT�

(wp) mini-maxT�
(b) + 1 =

distt−1(wp) < ∞. Thus mini-maxT (wp) = ||mini-max-pathT (wp)||. We charge
the vertices of mini-max-pathT (wp) to pay for the cost given by its length. Due
to Lemma 7 it holds that mini-max-pathT (wp) visits only vertices that are alive
in turn t − 1. By definition V (mini-max-pathT (wp)) ∩ C1 = ∅, so each vertex of
mini-max-pathT (wp) either dies in turn t or is contained in Ci for i > 1. To pay
for that, we charge β tokens to every vertex that dies in turn t and we charge
β tokens to each vertex of components C2 . . . Ck. The total charge for this case
sums up to βn + βn log2 n. If we add the charge we needed for other cases, we
obtain a total of 2βn + βn log2 n. �

212 B. Bosek et al.

Fig. 4. Splitting the component C into C1, . . . , C5 and D.

Fig. 5. The connected component of Ft−1 rooted in b̌t and wp.

Lemma 17. For cases when distt(bt) < ∞, b̌t is defined and levelt(b̌t) �
β levelt−1(b̌t) the sum of the lengths of paths paths

t (bt) is bounded by
β(β+1)
(β−1)2 n(2 ln n + 3.4) + n.

Proof. Given the level function, we want to consider the vertices of F = Fn

whose level in turn t is above a certain value l. To be more precise, we need
to consider the subforest of F induced by such vertices. This forest changes
dynamically as the turns pass by. We describe it more formally below.

Definition 12. For t ∈ [n] and l ∈ N we define F l
t = F [{v ∈ W ∪ B :

l � levelt(v)}].

Recall that if b ∈ B \ Bt then levelt(b) = 0. For a subforest F ′ = 〈V ′, E′〉
of F = 〈W ∪ B,E〉, we denote a connected component of vertex v ∈ V ′ as
comp(v, F ′). The family of all connected components is denoted as C(F ′) =
{comp(v, F ′) : v ∈ V ′}. For a fixed l we observe how F l

t changes from turn t − 1
to t. Since the level function is monotonic, i.e., it satisfies levelt−1(v) � levelt(v)
(see Observation 2), the following hold:

Observation 18. F l
t−1 is a subforest of F l

t . Also, V(F l
t) = V(F l

t−1) ∪
{v ∈ V(F) : levelt−1(v) < l � levelt(v)}.

We fix a turn t for which distt(bt) < ∞, b̌t is defined, and levelt(b̌t) �
β levelt−1(b̌t). The idea is the following. We let l = levelt−1(b̌t) and l = levelt(b̌t).
For the purpose of the proof we need a function that describes some interme-
diate level between levelt−1() and levelt(). We thus extend the level function to
rational indices: levelt−1/2(v) = levelt−1(v) if v = b̌t and levelt−1/2(v) = levelt(v)
otherwise. Observe that levelt(v) function is still monotonic in t after the exten-
sion. We illustrate these definitions by example in Fig. 6. We observe that on

A Tight Bound for Shortest Augmenting Paths on Trees 213

Fig. 6. Fractional levels

levels l from l to l − 1 the separate components of F l
t−1/2 are merged in F l

t . It is
this merging that allows us to provide the charging scheme. The level defined for
fractional indices may be interpreted as an additional fractional turn between
t − 1 and t.

Let us fix a level l. In every turn t = 0, 1
2 , 1, 1 1

2 , . . . , n a number of δ tokens
is assigned to every connected component C in F l

t such that |C| � ρl, where δ
and ρ are constants that we compute later. Smaller components are not assigned
any tokens. Note that if l is large, only large components are assigned tokens.
We plan to use these tokens to pay for the mini-max paths in each turn. First,
however, we describe how we maintain such an assignment on level l.

First we consider moving from turn t − 1 to turn t − 1/2. The forest
F l

t−1/2 is obtained by adding the set of vertices Δ = V(F l
t−1/2) \ V(F l

t−1) =
{v ∈ Bt ∪ W : levelt−1(v) < l � levelt−1/2(v)} to F l

t−1 (see Observation 18). We
want to add some structure to this process. We divide transformation from F l

t−1

to F l
t−1/2 into two sub-phases. In the first sub-phase, the vertices of Δ form new

singleton components: C′ =
⋃

v∈Δ{〈{v}, ∅〉}, where 〈{v}, ∅〉 is a graph with only
one vertex v and without edges. Together with the set of connected components
of F l

t−1 (referred to as C(F l
t−1)) they form a family I = C(F l

t−1)∪C′. In the second
sub-phase, components in I merge whenever there is an edge of F connecting
them, finally becoming the connected components of F l

t−1/2. Every component
C ∈ C(F l

t−1/2) can be assigned a set of components IC = {C1 . . . Ck} ⊆ I that
merged into C. There are two possible options:

(a) there is the component Ci ∈ I with size |Ci| � ρl, so Ci is already assigned
δ tokens

(b) every Ci ∈ I satisfies |Ci| < ρl, so none of them is assigned any tokens.

In case (a), δ assigned to Ci, which ceases to exist, is now transferred to C. In
case (b), if |C| � ρl, every vertex v ∈ C chips in with a payment of δ

ρl , so the
vertices of C pay in total at least δ. We count the total amount that is paid at
the end of the proof.

We now consider the transition from turn t−1/2 to turn t. There is only one
vertex, mainly b̌t, which changes its level. Its level increases from l to l. Level l
is only affected by this transition if l < l � l. So, the forest F l

t is formed from
F l

t−1/2 by adding b̌t. The only difference between C(F l
t−1/2) and C(F l

t) is that
some family of separate components of C(F l

t−1/2) becomes connected by b̌t and

214 B. Bosek et al.

forms a new connected component comp(b̌t, F
l

t). The set of components that
merge into comp(b̌t, F

l
t) is precisely I ′ = C(comp(b̌t, F

l
t) \ b̌t) ∪ {〈b̌t, ∅

〉}. The
way of assigning δ to comp(b̌t, F

l
t) if |comp(b̌t, F

l
t)| � ρl is the same as in the

transition from t − 1 to t − 1/2. The difference is that now we want to utilize
some of the assigned tokens to pay for the mini-max path in turn t. Thus, we
distinguish three cases now:

(i) exactly one of the components C ′ ∈ I ′ satisfies |C ′| � ρl, so C ′ is assigned
δ tokens,

(ii) every C ∈ I ′ satisfies |C| < ρl so none of them is assigned tokens,
(iii) two or more components C ′, C ′′ ∈ I ′ satisfy |C ′| � ρl and |C ′′| � ρl, so C ′

and C ′′ are both already assigned δ tokens.

Cases (i) and (ii) are handled in the exactly same manner as in the transition
from t − 1 to t − 1/2. The difference is that in case (iii) we utilize δ tokens
assigned to C ′ while δ tokens assigned to C ′′ transfer to comp(b̌t, F

l
t).

It remains to prove that the tokens utilized in turn t suffice to pay for
||paths

t (bt)||. Observation 14 shows that levelt(b̌t) = ||paths
t (bt)||. So we need to

pay levelt(b̌t) tokens when moving from turn t−1/2 to t. Let ρ := (β−1)/(β+1).
By Claim 19, proved later on, case (iii) occurs on at least (l − l)/2 levels. Since
l � l/β, we utilize at least δ(l − l/β)/2 = δ(1−1/β)

2 levelt(b̌t) tokens. Setting
δ := 2/(1 − 1/β) allows paying the desired amount.

Now we count the sum of lengths of paths
t (bt). Every vertex pays δ

ρl at most
once per level and the highest level is not greater than 2n, so the total amount
paid by a vertex over all the turns is bounded by δ

ρ

∑2n
l=1

1
l � δ

ρ (ln(2n) + 1).
Hence, the total amount paid by all vertices is at most δ

ρn(ln n+1.7). If we plug
in the constants ρ = (β − 1)/(β + 1) and δ = 2/(1 − 1/β) into above bound, we
obtain that

∑
t∈T ||paths

t (bt)|| � β(β+1)
(β−1)2 n(2 ln n + 3.4). �

To complete the proof of Lemma 17 we move on to proving the following
Claim.

Claim 19. For a fixed t ∈ [n] let l0 = levelt−1(b̌t) + 1 and l1 =
⌊
(levelt−1(b̌t)+

levelt(b̌t))/2
⌋
. For ρ = β−1

β+1 and l ∈ {l0, . . . , l1} there exist two different vertices
w1, w2 ∈ Nt(b̌t) ∩ At such that comp(w1, F

l
t−1/2) and comp(w2, F

l
t−1/2) are two

separate components of F l
t−1/2 and |comp(wi, F

l
t−1/2)| � ρl for i ∈ {1, 2}.

Proof. Fix l ∈ {l0, . . . , l1}. By definition Nt(b̌t) ∩ At � 2. Thus, distt(b̌t) < ∞
and sec-distt(b̌t) < ∞. We show that w1 = dirt(b̌t) and w2 = sec-dirt(b̌t) satisfy
the desired conditions.

First note that w1, w2 ∈ V(F l
t−1/2), because levelt(wi) � levelt(b̌t) − 1 �

l1 for i ∈ {1, 2} due to Lemma 15. Note also that comp(w1, F
l

t−1/2) and
comp(w2, F

l
t−1/2) are two separate components of F l

t−1/2 because the only
path connecting w1 and w2 in F is through b̌t and b̌t /∈ V (F l

t) because
levelt−1/2(b̌t) = levelt−1(b̌t) < l0 � l.

A Tight Bound for Shortest Augmenting Paths on Trees 215

Due to Lemma 15 the levels of vertices drop by at most one along patht(b̌t)
and sec-patht(b̌t). Let π1 be the prefix of patht(b̌t) of length l − l and π2 be
the prefix of sec-patht(b̌t) of length l − l, where l = levelt(b̌t). It holds that if
v ∈ V (πi) then levelt−1/2(v) = levelt(v) � l. Because l0 − 1 = levelt−1(b̌t) �
levelt(b̌t)/β = l/β and l � l1 =

⌊
(l0 − 1 + l)/2

⌋
we have l � (l/β + l)/2 =

(1/β + 1) · l/2. This implies |comp(w,F l
t)| � l − l = 2β

β+1 · 1+1/β
2 · l − l �

2β
β+1 · l − l = β−1

β+1 · l. Setting ρ = (β − 1)/(β + 1) completes the proof of the
claim. �

We can now put all the pieces together to prove our main result.

Theorem 20.
∑

t∈[n]:distt(bt)<∞ distt(bt) ∈ O(n log n).

Proof. By Definition 10 we have patht(bt) = pathp
t (bt) · paths

t (bt). By Obser-
vation 13 it holds that

∑
t∈[n]:distt(bt)<∞ ||pathp

t (bt)|| � 2n. If b̌t is undefined,
then paths

t (bt) is empty so its length is 0. For the cases when b̌t is defined and
levelt(b̌t) < β levelt−1(b̌t) we have

∑
t∈[n]:distt(bt)<∞ ||paths

t (bt)|| � 2βn+βn log n.
For the cases when b̌t is defined and levelt(b̌t) � β levelt−1(b̌t) we have
∑

t∈[n]:distt(bt)<∞ ||paths
t (bt)|| � β(β+1)

(β−1)2 n(2 ln n + 3.4) + n. This gives the theo-
rem statement for any β > 1. �

References

1. Bernstein, A., Holm, J., Rotenberg, E.: Online bipartite matching with amortized
O(log2 n) replacements. arXiv:1707.06063 (2017)

2. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In: ICALP,
Part I, pp. 167–179 (2015)

3. Birnbaum, B.E., Mathieu, C.: On-line bipartite matching made simple. SIGACT
News 39(1), 80–87 (2008)

4. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in
oine time. In: FOCS, pp. 384–393 (2014)

5. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Shortest augmenting paths for
online matchings on trees. In: WAOA, pp. 59–71 (2015)

6. Bosek, B., Leniowski, D., Sankowski, P., Zych-Pawlewicz, A.: A tight bound for
shortest augmenting paths on trees. arXiv:1704.02093v2 (2017)

7. Chaudhuri, K., Daskalakis, C., Kleinberg, R.D., Lin, H.: Online bipartite perfect
matching with augmentations. In: INFOCOM, pp. 1044–1052 (2009)

8. Devanur, N.R., Jain, K., Kleinberg, R.D.: Randomized primal-dual analysis of
RANKING for online bipartite matching. In: SODA, pp. 101–107 (2013)

9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972)

10. Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Online perfect matching and
mobile computing. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS
1995. LNCS, vol. 955, pp. 194–205. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60220-8 62

11. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: matching,
scheduling, and flows. In: SODA, pp. 468–479 (2014)

http://arxiv.org/abs/1707.06063
http://arxiv.org/abs/1704.02093v2
https://doi.org/10.1007/3-540-60220-8_62
https://doi.org/10.1007/3-540-60220-8_62

216 B. Bosek et al.

12. Gupta, M., Peng, R.: Fully dynamic (1+ε)-approximate matchings. In: FOCS, pp.
548–557 (2013)

13. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: STOC, pp. 352–358 (1990)

14. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: STOC, pp. 745–754 (2013)

15. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: SODA, pp.
118–126 (2007)

Approximation Algorithms
for Replenishment Problems
with Fixed Turnover Times

Thomas Bosman1(B) , Martijn van Ee6, Yang Jiao2,
Alberto Marchetti-Spaccamela3,5, R. Ravi2 , and Leen Stougie1,4,5

1 Vrije Universiteit, Amsterdam, The Netherlands
{thomas.bosman,l.stougie}@vu.nl

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
{yangjiao,ravi}@andrew.cmu.edu

3 Sapienza University of Rome, Rome, Italy
alberto@dis.uniroma1.it

4 Centrum voor Wiskunde en Informatica (CWI),
Amsterdam, The Netherlands

stougie@cwi.nl
5 Erable, Inria, Paris, France

6 Netherlands Defence Academy, Den Helder, The Netherlands
m.v.ee.01@mindef.nl

Abstract. We introduce and study a class of optimization problems we
coin replenishment problems with fixed turnover times: a very natural
model that has received little attention in the literature. Nodes with capac-
ity for storing a certain commodity are located at various places; at each
node the commodity depletes within a certain time, the turnover time,
which is constant but can vary between locations. Nodes should never run
empty, and to prevent this we may schedule nodes for replenishment every
day.The natural feature thatmakes this problem interesting is thatwemay
schedule a replenishment (well) before a node becomes empty, but then the
next replenishment will be due earlier also. This added workload needs to
be balanced against the cost of routing vehicles to do the replenishments.
In this paper, we focus on the aspect of minimizing routing costs. However,
the framework of recurring tasks, in which the next job of a task must be
done within a fixed amount of time after the previous one is much more
general and gives an adequate model for many practical situations.

Note that our problem has an infinite time horizon. However, it can
be fully characterized by a compact input, containing only the location
of each store and a turnover time. This makes determining its computa-
tional complexity highly challenging and indeed it remains essentially
unresolved. We study the problem for two objectives: min-avg mini-
mizes the average tour length and min-max minimizes the maximum
tour length over all days. For min-max we derive a logarithmic factor
approximation for the problem on general metrics and a 6-approximation
for the problem on trees, for which we have a proof of NP-hardness.
For min-avg we present a logarithmic approximation on general metrics,
2-approximation for trees, and a pseudopolynomial time algorithm for
the line. Many intriguing problems remain open.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 217–230, 2018.
https://doi.org/10.1007/978-3-319-77404-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_17&domain=pdf
http://orcid.org/0000-0002-4346-920X
http://orcid.org/0000-0001-7603-1207

218 T. Bosman et al.

1 Introduction

Imagine the following particular inventory-routing problem. A set of automatic
vendor machines are spread over a country or a city. They have a certain turnover
time: the number of days in which a full machine will be sold out. Replenishment
is done by vehicles. Let us assume that turnover times are machine dependent
but not time dependent, and that it is highly undesirable to have an empty
machine. However, the holding costs of the machine are negligible, so that we
will always fill the machine to capacity. There is nothing against replenishing a
machine before it has become empty, but then the next replenishment will due
earlier as well. That is, the deadline of the next replenishment is always within
the turnover time after the last replenishment. Equivalently, in any consecutive
number of days equal to the turnover time, at least one replenishment has to
take place. Replenishing a machine earlier to combine it with the replenishment
of another machine that is due earlier may lead to cost savings. The feature
that makes this problem so special w.r.t. existing literature, is that it can be
compactly modeled by only specifying for every machine its location and the
turnover time. The feature is very natural but has hardly been studied in the
existing literature. There are intriguing basic open complexity questions, and
some highly non-trivial results.

The motivation for studying this problem comes linea recta from a business
project for the replenishment of ATMs in the Netherlands, in which some of
the co-authors are involved. The replenishment of the ATMs of all the large
banks in the Netherlands has been outsourced to a single company: Geld Service
Nederland. Of course the real-life ATM replenishment problem is not as stylized
as described above; the turnover time is not strictly the same over time but
subject to variability, there are restrictions on the routes for the vehicles, etc.
But the feature that is least understood in the ATM-problem is exactly the
problem of how to deal with the trade-off between replenishing an ATM earlier
than its due date leading to a higher frequency of replenishments and the savings
on vehicle routing costs.

Formally, an instance of the problem that we study in this paper, which we
baptize the replenishment problem with fixed turnover times (rftt),
consists of a pair (G, τ), where G = (V ∪ {s}, E, c) is a weighted graph with a
designated depot vertex s and weights on the edges c : E → R+, and turnover
times τ ∈ N

|V |, indicating that vj ∈ V should be visited at least once in every
interval of τj days.

A solution consists, for each day k, of a tour Tk in G starting in and return-
ing to the depot s and visiting a subset of the vertices Jk ⊆ V . It is feasible
if vj ∈ ⋃t+τj

k=t+1 Jk, ∀t and ∀vj ∈ V . We will focus on solutions that repeat
themselves after a finite amount of time, that is, in which (Tk, . . . , Tk+�) =
(Tk+�+1, . . . , Tk+2�) for some �, and all k. Since all turnover times are finite, this
is no real restriction.

We consider two versions of rftt. In the first version, called min-avg, the
goal is to find a feasible solution that minimizes the average tour length. In
the min-max problem, we want to find a feasible solution that minimizes the
maximum tour length over all days.

Approximation Algorithms for Replenishment Problems 219

We emphasize that the particular feature of this model, that jobs or visits to
clients recur and need to be done within each job-specific consecutive time inter-
val occurs naturally in many problem settings. It allows any job of a recurring
task to be done before its deadline, but then the next job of the task comes earlier
and hence its deadline. This is a feature that, despite its natural applicability,
has hardly been studied in the literature from a theoretical point of view.

Related work. As mentioned before, our problem can be seen as a special case of
the Inventory Routing Problem (IRP) [8]. Here, clients (vertices) have their
own storage with a certain capacity and for each day a demand is specified. The
clients pay holding cost over their inventory. However, omitting inventory cost,
we can interpret our problem as such an inventory routing problem in which
the demand at any given location is the same every day, leading to a very small
input description of our problem consisting only of a location and a turnover
time (storage capacity divided by daily demand), which makes it incomparable
to the inventory routing problem from a complexity point of view. Indeed it is
unclear if the decision version of our problem is in NP or in co-NP.

Another closely related problem is the Periodic Latency Problem [9],
which features the recurring visits requirement of rftt. We are given recur-
rence length qi for each client i and travel distances between clients. Client i is
considered served if it is visited every qi time units. The server does not return
to the depot at the end of each time unit (e.g. day), but keeps moving contin-
uously between clients at uniform speed. Another difference between Periodic
Latency Problem and rftt is the objective function. Coene et al. [9] study
two versions of the problem: one that maximizes the number of served clients
by one server, and one that minimizes the number of servers needed to serve
all clients. They resolve the complexity of these problems on lines, circles, stars,
trees, and general metrics.

A problem that does share the compact input size and is in fact a very
special case of our problem is known under the guise of Pinwheel Scheduling.
It has been introduced to model the scheduling of a ground station to receive
information from a set of satellites without data loss. In terms of our problem
no more than one vertex can be replenished per day and all distances to the
depot are the same; the interesting question here is if there exists a feasible
schedule for replenishing the vertices. Formally, a set of jobs {1, . . . , n} with
periods p1, . . . , pn is given, and the question is whether there exists a schedule
σ : N → {1, . . . , n} such that j ∈ ⋃t+pj

k=t+1 σk, ∀t ≥ 0 and ∀j.
Pinwheel Scheduling was introduced by Holte et al. [17], who showed that

it is contained in PSPACE. The problem is in NP if the schedule σ is restricted to
one in which for each job the time between two consecutive executions remains
constant throughout the schedule. In particular this holds for instances with
density ρ =

∑
j 1/pj = 1 [17]. They also observed that the problem is easily

solvable when ρ ≤ 1 and the periods are harmonic, i.e. pi is a divisor of pj or
vice versa for all i and j. As a corollary, every instance with ρ ≤ 1

2 is feasible.

220 T. Bosman et al.

Chan and Chin [7] improved the latter result by giving an algorithm that
produces a feasible schedule for Pinwheel Scheduling whenever ρ ≤ 2

3 . In [6],
they improved this factor to 7

10 . Later, Fishburn and Lagarias [14] showed that
every instance with ρ ≤ 3

4 has a feasible schedule. All these papers work towards
the conjecture that there is a feasible schedule if ρ ≤ 5

6 . That this bound is tight
can be seen by the instance with p1 = 2, p2 = 3 and p3 = M , with M large.
This instance cannot be scheduled, but has a density of 5

6 + 1
M .

The complexity of Pinwheel Scheduling has been open since it was intro-
duced. It was only recently shown by Jacobs and Longo [18] that there is no
pseudopolynomial time algorithm solving the problem unless SAT has an exact
algorithm running in expected time nO(log n log log n), implying for example that
the randomized exponential time hypothesis fails to hold [5,10]. Since the lat-
ter is unlikely, one could conclude that Pinwheel Scheduling is not solvable
in pseudopolynomial time. It remains open whether the problem is PSPACE-
complete.

Similar to Pinwheel Scheduling, the k-server Periodic Maintenance

Problem [2,11,19] has n jobs, each with a specified periodicity and a processing
time. Each server may serve at most one job per time unit. However, job i is
required to be served exactly every mi days apart rather than within every mi

days. The case k = 1, cj = 1 for all j is analogous to Pinwheel Scheduling,
except for the exact periodicity constraint. For any k ≥ 1, Mok et al. [19] have
shown it is NP-complete in the strong sense. For the special case when mi are
multiples of each other or when there are at most 2 different periodicities, they
have shown it is in P.

Other related problems with a compact input representation include real-
time scheduling of sporadic tasks [1,3], where we are given a set of recurrent
tasks. On a single machine, EDF (Earliest Deadline First) is optimal. However,
we remark that the complexity of deciding whether a given set of tasks is feasible
has been open for a long time and only recently proved showing that it is coNP-
hard to decide whether a task system is feasible on a single processor even if the
utilization is bounded [12].

Another related problem is the Bamboo Garden Trimming Problem intro-
duced by Gasieniec et al. [16]. There are n bamboos, each having a given growth
rate, which may be viewed as inducing a periodicity. On each day, a robot may
trim at most one bamboo back to height 0. The goal is to minimize the maxi-
mum height of the bamboos. Gasieniec et al. provide a 4-approximation for the
general case and a 2-approximation for balanced growth rates.

This paper. We investigate the computational complexity of both the min-max

and the min-avg version of rftt. Mostly we will relate their complexity to
the complexity of Pinwheel Scheduling. Some interesting inapproximability
results follow from this relation. After that, we will start with some special
cases. In Sect. 3, we give our most remarkable result, a constant factor approxi-
mation for min-max on a tree, next to a less remarkable constant approximation
for the min-avg version on the tree. In the same section, we show for min-

avg that the problem can be solved to optimality in pseudopolynomial time on

Approximation Algorithms for Replenishment Problems 221

line metrics. Finally, in Sect. 4, we present logarithmic factor approximations for
both problem versions on general metrics.

2 Complexity

In this section, we investigate the computational complexity for both object-
ives. Since our problem requires finding a shortest tour visiting some subset
of vertices for every day, it is at least as hard as the Traveling Salesman
Problem (tsp). However it is also interesting to note that the problems are
at least as hard as Pinwheel Scheduling as well. For the min-max objective
there is a direct reduction showing that a factor 2 approximation is at least as
hard as Pinwheel Scheduling: construct an unweighted star with the depot
at the center and each leaf corresponding to a job in the pinwheel instance.
This instance has value 2 only if there exists a pinwheel schedule and at least 4
otherwise.

For the min-avg rftt the reduction is a bit more involved, and given in the
appendix of the full version of this paper [4].

Theorem 1. On series-parallel graphs, min-avg rftt is at least as hard as
Pinwheel scheduling.

We note that this hardness result is incomparable to the tsp reduction. Pinwheel
is neither known to be NP-hard nor in NP, although it is conjectured to be
PSPACE-complete.

Lastly, as Theorem 2 shows, the min-max rftt remains hard even on star
graphs (where TSP is trivial). A reduction can be found in the appendix of the
full paper [4].

Theorem 2. min-max rftt is NP-hard on star graphs.

3 Approximation on Trees

In this section we give a 2-approximation for min-avg and a 6-approximation
for min-max on trees.

We start out with a simplifying result, which will also be of use in the next
sections.

Lemma 1. Given an instance (G, τ) of rftt, let τ ′ be found by rounding every
turnover time in τ down to a power of 2. Then OPT (G, τ ′) ≤ 2OPT (G, τ) for
both min-avg and min-max objectives.

Proof. Let (G, τ̄) denote the instance found from (G, τ) by rounding every
turnover time up to a power of 2. Since any schedule remains feasible if we round
up the turnover times, we have that OPT (G, τ̄) ≤ OPT (G, τ) ≤ OPT (G, τ ′).

Suppose we have an optimal solution for (G, τ̄) in which T̄k is scheduled
on day k. We can construct a feasible schedule for (G, τ ′) by scheduling the
concatenation of T̄2k−1 and T̄2k on day k. The maximum tour length in this
schedule is at most twice that of the optimal solution for (G, τ̄) and every tour
from the original schedule is visited exactly twice in the new schedule, so this
yields a factor 2 increase in both the min-max and the min-avg objective.

222 T. Bosman et al.

In the remainder we assume w.l.o.g. that G is rooted at s and that turnover
times are increasing on any path from the depot to a leaf node in G. Furthermore,
for an edge e in E we define D(e) to be the set of vertices that are descendants
of e. We also need the following definition.

Definition 1 (tt-weight of an edge). For any edge in G we define:

q(e) = min
j∈D(e)

τj .

We call this quantity the tt-weight (turnover time-weight) of e.

This definition allows us to express the lowerbound in Lemma 2.

Lemma 2 (tt-weighted tree). For an instance (G, τ) of the rftt on trees
it holds that the average tour length is at least:

L(G, τ) := 2
∑

e∈E

c(e)
q(e)

.

Proof. This follows immediately from the fact that 2
q(e) lower bounds the number

of times edge e must be traversed on average in any feasible solution.

Since the maximum tour length is at least the average tour length, Lemma2 also
provides a lower bound for the min-max objective.

An approximation for min-avg rftt is thus found by rounding all turnover
times to powers of 2 and then visit each client j on every day that is a multiple
of τj . Since in that case the lower bound of Lemma2 is exactly attained on the
rounded instance, Lemma 1 implies the following theorem.

Theorem 3. There is a 2-approximation for min-avg rftt on trees.

3.1 MIN-MAX

We will now show that we can achieve a 6-approximation for min-max rftt on
trees by providing a 3-approximation algorithm if all turnover times are powers
of 2 and then applying Lemma1.

The main idea is to take a TSP-tour and recursively split it to obtain a sched-
ule for the clients with increasing turnover times. During the splitting process,
we assign each client j on that tour to a congruence class āτj = {k ∈ N|k ≡ a
(mod τj)} for some a ≤ τj , to indicate we want to visit j on each day in āτj .
Similarly, we distribute all edges e to a congruence class āq(e). We do this ensur-
ing that on any given day, we can create a tour through all clients associated
with that day, using the edges associated with that day plus a small set of extra
edges.

Let us define some further notation. For a given congruence class ām ⊆ N, we
denote g(ām) ⊆ V the set of vertices and f(ām) ⊆ E the set of edges assigned
to that class. Note that ām and (a + m)m define the same congruence class, so

Approximation Algorithms for Replenishment Problems 223

f(ām) = f((a + m)m). Then, for any k ∈ N we have that Jk, the set of clients
we need to visit on day k, is

Jk =
⋃

m∈N,a≤m|k∈ām

g(ām).

Algorithm 1. Algorithm for recursively constructing f(·) and g(·)
function RecurseTreeSchedule(d, a, m)

Require: d, a connected sequence of edges in G, powers of 2 turnover times τ ; a, m,
integers

if d �= ∅ then
f(ām) = {e ∈ d | q(e) = m}
g(ām) = {j ∈ V (d) | τj = m}
k = maxk′ s.t.

∑
i∈[k′−1]|q(di)>m

c(di)
q(di)

≤ 1
2

∑
i∈[n]|q(di)>m

c(di)
q(di)

d1 = (d1, . . . , dk−1)
d2 = (dk+1, . . . , dn)
RecurseTreeSchedule(d1, a, 2m), RecurseTreeSchedule(d2, a + m, 2m)

end if
end function

The assignment of vertices and edges to classes is guided by the recursive
splitting of a TSP-tour in G. The full procedure for constructing f(·) and g(·)
is shown in Algorithm 1. The algorithm is initially called with d, a TSP-tour
visiting all vertices in G, and a = m = 1 and will determine the set of vertices
to be visited on every day (i.e., those congruent to ā1). Then the first (second)
recursive call determines the sets of vertices with turnover time 2 that will be
visited on odd (even) days. Analogously, RecurseTreeSchedule(d1, a,m) will
return the set of vertices with turnover time m to be visited on days in the
congruence class ām and the two recursive calls will return the set of vertices
with turnover time 2m that are visited on days a, a+2m,a+4m, . . . and a+m,
a + 3m,a + 5m, . . ., respectively.

In the remainder we assume that any call to f(·) and g(·) returns the empty
set for any argument that is not explicitly handled in Algorithm1. Note that we
use the notation V (A) to denote the vertices incident to edges in A ⊆ E.

Lemma 3. After Algorithm1 terminates, each vertex j appears in some set
g(āτj) for some a.

Proof. Note that d1 ∩d2 = ∅ and that |d1 ∪d2| = |d|−1; since d is a connected
set of edges then in each call to RecurseTreeSchedule, V (d1) ∪ V (d2) =
V (d). Therefore no vertex is skipped in the construction of g(·).

In order to find a tour on day k through the vertices in Jk we use edges
in

⋃
h=1,2,...,m f(āh); as we already observed this set of edges does not neces-

sarily connect vertices in g(ām) to the depot. The next lemma shows that a

224 T. Bosman et al.

tree that connects all vertices in g(ām) to the root can be found by considering
∪h=1,2,...,mf(āh) and adding a shortest path from some vertex in g(ām) to the
depot.

Lemma 4. Let a,m be such that f(ām) is nonempty. Let P be the set of edges
on the shortest path connecting some arbitrary edge in f(ām) to the root of G.
Then the following edge set forms a connected component:

T (ām) := P ∪ (
⋃

h=1,2,...,m

f(āh)).

Moreover, T (ām) spans
⋃

h=1,2,...,m/2,m g(āh).

Proof. To prove our first claim, we first show that for k ≤ m, f(āk) either
induces at most one connected component, or each component it induces is
incident to a component induced by

⋃
h=1,2,...,k/2 f(āh). Then, we will show

that if f(āk) induces at most one connected component, it is incident to P ∪
(
⋃

h=1,2,...,k/2 f(āh)).
Suppose f(āk) does not induce at most one component. Note that f(āk) is

the subset of edges in some connected edge sequence d through G that have
tt-weight k. But by the way tt-weight is defined and the fact that G is a tree,
a simple path connecting disjoint edges with tt-weight k, can only consist of
edges with tt-weight at most k. So every two components in f(āk) are connected
through a path of edges with tt-weight of at most k. Moreover since the sequence
d used to construct f(āk) is a subset of the sequence used to construct f(āk/2),
by induction these connecting paths must be contained in

⋃
h=1,2,...,k/2 f(āh), as

required.
Next we show that for any k ≤ m such that f(āk) �= ∅, if f(āk) is not incident

to P then it is incident to
⋃

h=1,...,k/2 f(āh).
Let d be the sequence that was used to construct f(āk). Since d contains all

edges in f(ām) and P contains at least one such edge, there exists a minimal path
Q that contains some edge e in f(āk) such that Q is connected to P . Moreover
since Q is minimal and P contains the root, e must be the edge furthest away
from the root on Q. This implies that all edges on Q have tt-weight k or less.
Now suppose that Q contains edges with tt-weight strictly less than k. Then
those edges are necessarily in

⋃
h=1,...,k/2 f(āh) and therefore f(āk) is incident

to that set. If not then Q is strictly contained in f(āk) and therefore f(āk) is
connected to P .

The first claim of our lemma now follows by induction. P ∪ f(ā1) is clearly
connected. If P ∪ ⋃

h=1,2,...,k/2 f(āh) is connected, we get that f(āk) is either
empty or is connected to P or to

⋃
h=1,2,...,k/2 f(āh), and the result follows.

To prove our second claim, suppose that for some k and j ∈ g(āk) it holds
that no edge incident to j, is in

⋃
h=1,2,...,k f(āh). We will show that j appears

on P , from which our claim immediately follows.
Let d be the sequence used to construct g(āk). The edge e incident to j that

is closest to the root, satisfies q(e) ≤ k. So, it cannot be in d otherwise it would

Approximation Algorithms for Replenishment Problems 225

be contained in
⋃

h=1,2,...,k f(āh). But this implies that e cuts off every edge in
d from the root, and therefore e appears on P , as claimed, concluding the proof.

The next lemma allows us to bound the cost of edges included in f(āh).

Lemma 5. During each (recursive) call to RecurseTreeSchedule, it holds
that

∑

e∈d|q(e)≥m

m
c(e)
q(e)

+
m/2∑

h=1

∑

e∈f(āh)|q(e)=h

c(e) ≤ L(G, τ).

Proof. The proof is by induction on m. Since we initially call the algorithm with
d a TSP-tour in G, which visits each edge twice, it clearly holds for m = 1.

Now for m > 1, suppose it holds for all smaller m. Without loss of generality,
suppose we have a call to the function with input d1, a,m, such that d, a,m/2
are the input parameters for its parent in the call stack.

∑

e∈d1|q(e)≥m

m
c(e)
q(e)

+
∑

h=1,2,..., m2

∑

e∈f(āh)|q(e)=h

c(e)

=
∑

e∈d1|q(e)≥m

m
c(e)
q(e)

+
∑

e∈f(ām/2)|q(e)=m/2

m

2
c(e)
q(e)

+
∑

h=1,2,...,m4

∑

e∈f(āh)|q(e)=h

c(e)

≤
∑

e∈d|q(e)≥m

m

2
c(e)
q(e)

+
∑

e∈f(ām/2)|q(e)=m/2

m

2
c(e)
q(e)

+
∑

h=1,2,..., m4

∑

e∈f(āh)|q(e)=h

c(e)

≤
∑

e∈d|q(e)≥m/2

m

2
c(e)
q(e)

+
∑

h=1,2,...,m4

∑

e∈f(āh)|q(e)=h

c(e) ≤ L(G, τ)

For the first equality, we split the second sum into an h = m/2 part and an
h = 1, . . . , m/4 part. In the first inequality we used the way d1 and d2 are
determined in Algorithm 1, in the second inequality we used that f(ām) ⊆ d and
in the last inequality we used the inductive hypothesis, concluding the proof.

We are now ready for the main theorem.

Theorem 4. There is a 6-approximation for min-max rftt on trees.

Proof. We first round all turnover times down to powers of 2, which loses a factor
of 2 in the optimal solution. We then use Algorithm1 to construct f(·) and g(·)
thus determining the set of vertices Jk to be visited on day k. By Lemma 3 this
defines a feasible schedule.

If we then take T (k̄τmax
) as in Lemma 4, we get a tree that spans Jk. Moreover

the weight of T (k̄τmax
) is at most 3

2OPT : the contribution of P is at most 1
2OPT ,

since we need to reach any client at least on some day (and drive back), while
the contribution of

⋃
h=1,...τmax

f(k̄h) is at most L(G, τ) ≤ OPT , which can be
seen by applying Lemma 5 for m = 2τmax. Lastly, since we need a tour around
T (k̄τmax

), we lose another factor 2. This gives the approximation factor of 6.

226 T. Bosman et al.

It remains to show that Algorithm 1 runs in polynomial time, and that we can
find a polynomial representation for the schedule. For the first claim, note that
in each recursive call to the algorithm, the following equality holds |d1 ∪ d2| =
|d| − 1; hence the algorithm terminates after at most 2|E(G)| calls.

For the second claim, the crucial observation is that we only need to store
the entries of g for a and m such that g(ām) is nonempty. Since at most one
entry is defined in every call to the algorithm, and we can simply check if k ≡ a
(mod m) for all stored entries, the claim, and the theorem, follow.

3.2 MIN-AVG on the Line

As an even more special underlying metric, we might consider the min-avg

problem on the line (on a path). For the min-max version this case is trivial,
but for the min-avg version its complexity is unclear: we do not know whether
it is in NP, although we expect it to be NP-hard.

On the positive side we can show that the problem is not strongly NP-hard.

Theorem 5. min-avg on the line can be solved in pseudopolynomial time.

We give a DP that finds an optimal schedule in polynomial time for any
instance with polynomially bounded turnover times. Since we are minimizing
the average, it is easy to see that we can reduce this problem to two times the
min-avg problem on the half-line (a path with the depot in one of the leaves).
On the half-line each vertex i has a distance di ∈ N from the origin. Suppose
vertices are numbered such that d1 ≤ . . . ≤ dn. We present a pseudopolynomial
time dynamic programming agorithm for this problem, based on the following
observations.

First of all, we note that on any tour visiting vertex j automatically visits
every vertex i < j. As in the tree case, we therefore assume that τi ≤ τj for
i < j. Thus, after visiting j, all i ≤ j have a remaining turnover time of τi. For
the dynamic program to work, we guess L, the day on which vertex n is visited
for the first time and try all guesses between 1 and τn.

The dynamic program now works as follows. Suppose we are given the optimal
solution for vertices 1, . . . , i−1 when only considering the days 1, . . . , k. Now we
want to include i in the optimal solution for the first k days. If k < min{τi, L},
it is not necessary to visit i during the first k days, and hence it is optimal to
take the optimal solution for the first i − 1 vertices and k days. Otherwise, we
need to visit i on some day � in {1, . . . ,min{τi, L}}. Before day �, we only need
to visit the vertices 1, . . . , i−1. Thus, we take the optimal �−1 tours for visiting
the first i − 1 vertices in the first � − 1 days. After day �, all vertices have the
same remaining turnover time as they had at time zero. Hence, we can take the
optimal tours for the first i vertices and k − � days.

Let φL(i, k) := the minimum cost of the first k tours visiting vertices
1, . . . , i. We initialize φL(0, k) = φL(i, 0) = 0 and we use the recursion:

φL(i, k)=

⎧
⎨

⎩

φL(i − 1, k), if k < min{τi, L}
min

�=1,...,min{τi,L}
φL(i − 1, � − 1)+di + φL(i, k − �), else

Approximation Algorithms for Replenishment Problems 227

The optimal solution is the schedule that corresponds to the value L ∈
{1, . . . , τn} minimizing φL(n,L)/L. Note that the algorithm runs in time O(nτ3

n),
implying the theorem.

4 Approximation on General Graphs

We will now present logarithmic approximations for both objectives. Note that
an O(log τmax)-approximation is readily achieved; simply treat the sets of clients
with equal turnover time as independent instances. For min-avg, the problem
with equal turnover times is simply tsp, for the min-max we get a problem
sometimes called the k-tsp, for which a 5

2 approximation is known [15]. Since
by rounding to powers of 2, we ensure there are O(log(τmax)) different turnover
times, we get Theorem 6.

Theorem 6. min-max and min-avg rftt have an O(log τmax)-approximation.

Proof. By Lemma 1 we may assume every τi is a power of 2 so that there are at
most log τmax different turnover times. We simply treat the sets of vertices with
the same turnover time as separate instances and concatenate the solutions. Our
result then follows from the fact that for all these instances a constant factor
approximation is available. In the case of the min-max objective we get the
k-tsp problem, where k is equal to the turnover time of the vertices in the
instance. In the case of min-avg, we need to minimize the sum over all k tours.
But since all turnover times are equal there is no advantage to visiting vertices
on different days, hence we recover a simple tsp problem.

In the case of min-max it is relatively simple to adapt this idea for an
O(log n)-approximation by appropriately reassigning clients to lower turnover
times, as per Theorem 7.

Theorem 7. min-max rftt has an O(log n)-approximation.

Proof. We start by assuming that every turnover time is a power of 2. Next,
we split up the instance into two new instances. To this end we first define a
turnover time k to be saturated if |{j ∈ V |τj = k}| ≥ k. In the first instance we
retain the set of vertices V1 with saturated turnover times, and in the second
all vertices V2 with unsaturated turnover times. Now if all turnover times are
saturated, then τmax = O(n) and we can find a O(log n)-approximation using
Theorem 6. So what remains is to find a O(log n)-approximation for the second
instance.

Since no turnover time is saturated, it is easy to see that we can partition
the vertices in V2 into log n� sets W1,W2,W4, . . . ,W2�log n� , such that |Wi| ≤ i,
and such that τj ≥ i for all j ∈ Wi. For example we could first add all vertices
j with τj = i to Wi for i ≤ log n�, and then arbitrarily distribute vertices j
with τj > log n� among the sets that have space. We now produce a schedule
by visiting all clients in any set Wk on different days. This is feasible and implies
that at most log n clients are visited on a given day, which leads to O(log n)-
approximation factor, as required.

228 T. Bosman et al.

The approach of Theorem 6 does not trivially extend to the min-avg case.
However, we may combine our result on trees with the FRT tree embeddings [13],
to get a randomized O(log n)-approximation.

A more direct, and deterministic O(log n)-approximation is possible as well.
In particular, we use the simple heuristic of visiting each client on every day
that is a multiple of its turnover time, when turnover times are powers of 2. We
call such a schedule a synchronized solution, and show that gives a logarithmic
approximation.

The proof of this approximation factor, which is not trivial, works by show
that a synchronized schedule is no more costly than a non-decreasing schedule,
in which all tours are routed along a tree with turnover times non-decreasing
from the root. We then show how to transform any schedule to a non-decreasing
one, losing a logarithmic factor in the process. As a byproduct we show that
the analysis is tight, and that a non-decreasing schedule must be Ω(log n) times
more costly than OPT in the worst case. The deterministic proof of Theorem8
can be found in the appendix of the full paper [4].

Theorem 8. min-avg rftt has an O(log n)-approximation.

Proof. We will apply the FRT tree embedding [13] of the initial instance and
then use the 2-approximation for tree metrics to obtain the final solution. Given
the instance (G, τ), let T be a random tree produced by the tree metric approxi-
mation with O(log n) distortion. Then dG(u, v) ≤ dT (u, v) and E[dT (u, v)] ≤
O(log n)dG(u, v). Let S be the solution produced by the 2-approximation
for min-avg rftt on the tree metric T . Then E[S] ≤ 2E[OPT (T, τ)] ≤
O(log n)E[OPT (G, τ)] by linearity of expectation on the sum over the edges.

It is an open question whether there exists a constant factor approximation
algorithm for the general case. We observe that the approach of first finding a tree
spanning all vertices and then using the algorithm of Sect. 3 is unsuccessful. In
fact there exist instances of the problem on a graph G with n vertices, such that
if we limit our attention to tours that for each day use only edges of a spanning
tree of G then the obtained solution is Ω(log n) approximated. This implies that
we need some new ideas, in order to improve the O(log n) approximation of the
previous theorem.

5 Conclusion

In this paper, we considered replenishment problems with fixed turnover times, a
natural inventory-routing problem that has not been studied before. We formally
defined the rftt problem and considered the objectives min-avg and min-max.
For the min-avg rftt, we showed that it is at least as hard as the intractable
Pinwheel Scheduling Problem on series-parallel graphs and we gave a 2-
approximation for trees. For the min-max objective we showed NP-hardness on
stars and gave a 6-approximation for tree metrics. We also presented a DP that

Approximation Algorithms for Replenishment Problems 229

solved the min-avg rftt in pseudopolynomial time on line graphs. Finally, we
gave a O(log n)-approximation for the min-max objective on general metrics.

The results that we present should be considered as a first step in this area
and many problems remain open. An intriguing open problem is the complexity
of the of rftt on a tree. Namely, for min-avg variant we conjecture that the
problem is hard, and we ask whether the simple 2-approximation we provide
can be improved. For the min-max variant it is open whether the problem is
APX-hard and whether we can improve the 6-approximation.

Next to replenishing locations with routing aspects as we studied in this
paper, scheduling problems modeling maintenance or security control of sys-
tems, form a class of problems to which this model naturally applies. It would
be interesting to study such fixed turnover time problems in combination with
scheduling. Would this combination allow for more definitive results?

Acknowledgments. The research of YJ and RR is supported in part by the U. S.
National Science Foundation under award numbers CCF-1527032 and CCF-1655442.
The research of MvE was done while he was employed by Vrije Universiteit Amsterdam.

References

1. Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity.
In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC
Press, Boca Raton (2003)

2. Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic main-
tenance. In: Proceedings of the International Computer Symposium, pp. 315–320
(1990)

3. Bonifaci, V., Marchetti-Spaccamela, A.: Feasibility analysis of sporadic real-time
multiprocessor task systems. Algorithmica 63(4), 763–780 (2012)

4. Bosman, T., van Ee, M., Jiao, Y., Marchetti-Spaccamela, A., Ravi, R., Stougie, L.:
Approximation algorithms for replenishment problems with fixed turnover times.
arXiv preprint arXiv:1712.05218 (2017)

5. Calabro, C., Impagliazzo, R., Kabenets, V., Paturi, R.: The complexity of unique
k-SAT: an isolation lemma for k-CNFs. J. Comput. Syst. Sci. 74(3), 386–393 (2008)

6. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

7. Chan, M.Y., Chin, F.Y.L.: Schedulers for larger classes of pinwheel instances. Algo-
rithmica 9(5), 425–462 (1993)

8. Coelho, L.C., Cordeau, J.-F., Laporte, G.: Thirty years of inventory routing.
Transp. Sci. 48(1), 1–19 (2013)

9. Coene, S., Spieksma, F.C.R., Woeginger, G.J.: Charlemagne’s challenge: the peri-
odic latency problem. Oper. Res. 59(3), 674–683 (2011)

10. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time
complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms
10(4), 21:1–21:32 (2014)

11. Eisenbrand, F., Hähnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese, A.:
Scheduling periodic tasks in a hard real-time environment. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 299–311. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14165-2 26

http://arxiv.org/abs/1712.05218
https://doi.org/10.1007/978-3-642-14165-2_26
https://doi.org/10.1007/978-3-642-14165-2_26

230 T. Bosman et al.

12. Ekberg, P., Yi, W.: Schedulability analysis of a graph-based task model for mixed-
criticality systems. Real-Time Syst. 52(1), 1–37 (2016)

13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

14. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

15. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. In: Proceedings of the 17th International Symposium on Foun-
dations of Computer Science, pp. 216–227 (1976)

16. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

17. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-
time scheduling problem. In: Proceedings of the 22th Annual Hawaii International
Conference on System Sciences, vol. 2, pp. 693–702 (1989)

18. Jacobs, T., Longo, S.: A new perspective on the windows scheduling problem. arXiv
preprint arXiv:1410.7237 (2014)

19. Mok, A., Rosier, L., Tulchinksy, I., Varvel, D.: Algorithms and complexity of the
periodic maintenance problem. Microprocess. Microprogr. 27(1–5), 657–664 (1989)

https://doi.org/10.1007/978-3-319-51963-0_18
http://arxiv.org/abs/1410.7237

Maximum Box Problem on Stochastic
Points

Luis Evaristo Caraballo1, Pablo Pérez-Lantero2(B), Carlos Seara3 ,
and Inmaculada Ventura1

1 Dept. de Matemática Aplicada II, Universidad de Sevilla, Seville, Spain
{lcaraballo,iventura}@us.es

2 Dept. de Matemática y Ciencia de la Computación, Universidad de Santiago,
Santiago, Chile

pablo.perez.l@usach.cl
3 Dept. de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain

carlos.seara@upc.edu

Abstract. Given a finite set of weighted points in R
d (where there can

be negative weights), the maximum box problem asks for an axis-aligned
rectangle (i.e., box) such that the sum of the weights of the points that
it contains is maximized. We consider that each point of the input has
a probability of being present in the final random point set, and these
events are mutually independent; then, the total weight of a maximum
box is a random variable. We aim to compute both the probability that
this variable is at least a given parameter, and its expectation. We show
that even in d = 1 these computations are #P-hard, and give pseudo
polynomial-time algorithms in the case where the weights are integers in
a bounded interval. For d = 2, we consider that each point is colored red
or blue, where red points have weight +1 and blue points weight −∞.
The random variable is the maximum number of red points that can be
covered with a box not containing any blue point. We prove that the
above two computations are also #P-hard, and give a polynomial-time
algorithm for computing the probability that there is a box containing
exactly two red points, no blue point, and a given point of the plane.

1 Introduction

Let P ⊂ R
d be a finite point set of n points, where each point is assigned a

positive or negative weight. The maximum box problem receives P and outputs
an axis-aligned hyperrectangle (i.e., box) such that the sum of the weights of the
points of P that it contains is maximized; and it can be solved in O(nd) time [4].

This work is the union of two works that appear in the book of abstracts of the XVII
Spanish Meeting on Computational Geometry, Alicante, Spain, 2017. The extended
version is available at https://sites.google.com/a/usach.cl/pablo/maxbox.pdf.

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 734922.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 231–244, 2018.
https://doi.org/10.1007/978-3-319-77404-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_18&domain=pdf
http://orcid.org/0000-0002-0095-1725
http://orcid.org/0000-0003-1217-3913
https://sites.google.com/a/usach.cl/pablo/maxbox.pdf

232 L. E. Caraballo et al.

We consider the maximum box problem on a recent uncertainty model in
which each input point has assigned a probability of being present in the final
(hence random) point set. Particularly, each point p ∈ P has assigned the prob-
ability π(p) ∈ [0, 1] and we consider the random point set S ⊆ P where each
point p ∈ P is included in S independently and uniformly at random with prob-
ability π(p). Let box(S) denote the total weight of the points of S covered by
a maximum box of S, which is now a random variable. Then, one can ask the
following questions: What is the probability that for the final point set there
exists a box that covers a weight sum at least a given parameter k (i.e., compute
Pr[box(S) ≥ k])? What is the expectation of the maximum weight sum that can
be covered with a box (i.e., compute E[box(S)])?

Uncertainty models come from real scenarios in which the big amount of data,
arriving from many sources, have inherent uncertainty. In computational geome-
try, we can find several recent works on uncertain point sets such as: the expected
total length of the minimum Euclidean spanning tree [6]; the probability that
the distance between the closest pair of points is at least a given parameter [11];
the computation of the most-likely convex hull [13]; the probability that the
area or perimeter of the convex hull is at least a given parameter [12]; the center
minimizing the maximum expected distance from the points [9]; the probability
that the 2-colored point set is linearly separable [10]; and data structures for
range-max queries on uncertain data [1].

Note that

Pr[box(S) ≥ k] =
∑

X⊆P

1[box(X)≥k](X) · Pr[S = X]

and
E[box(S)] =

∑

X⊆P

box(X) · Pr[S = X],

where
Pr[S = X] =

∏

p∈X

π(p) ·
∏

p∈P\X

(1 − π(p)).

Hence, since for any X ⊆ P we can compute box(X) in O(|X|d) = O(nd) time
for fixed d, both Pr[box(S) ≥ k] and E[box(S)] can be trivially computed exactly
in exponential time. We show that even in d = 1 the exact computations of these
values are #P-hard problems. To estimate them with high probability of success,
we can use standard Monte-Carlo methods in which we generate a polynomial
number of outcomes X ⊆ P and compute box(X) for each of them.

For d = 1, the maximum box problem asks for an interval of the line. If the
points are uncertain as described above, then it is equivalent to consider as input
a sequence of random numbers, where each number has two possible outcomes:
zero if the number is not present and the actual value of the number otherwise.
The output is the subsequence of consecutive numbers with maximum sum. We
consider the simpler case when the subsequence is a partial sum, that is, it
contains the first (or leftmost) number of the sequence. More formally: We say

Maximum Box Problem on Stochastic Points 233

that a random variable X is zero-value if X = v with probability ρ, and X = 0
with probability 1 − ρ, for an integer number v = v(X) �= 0 and a probability ρ.
We refer to v as the value of X and to ρ as the probability of X. In any sequence
of zero-value variables, all variables are assumed to be mutually independent.
Let X = X1,X2, . . . , Xn be a sequence of n mutually independent zero-value
variables, whose values are a1, a2, . . . , an, respectively. We study the random
variable S(X) = max{0,X1,X1+X2, . . . , X1+ · · ·+Xn}, which is the maximum
partial sum of the random sequence X . We prove (Sect. 2.1) that computing
Pr[S(X) ≥ z] for any fixed z ≥ 1, and computing the expectation E[S(X)] are
both #P-hard problems, even if all variables of X have the same positive, less-
than-one probability. When a1, a2, . . . , an ∈ [−a..b] for bounded a, b ∈ N, we
show (Sect. 2.2) that both Pr[S(X) ≥ z] and E[S(X)] can be computed in time
polynomial in n, a, and b.

For d = 2, we consider the maximum box problem in the context of red
and blue points, where red points have weight +1 and blue points weight −∞.
Let R and B be disjoint finite point sets in the plane with a total of n points,
where the elements of R are colored red and the elements of B are colored blue.
The maximum box problem asks for a box H such that |H ∩ R| is maximized
subject to |H ∩ B| = ∅. This problem has been well studied, with algorithms
whose running times go from O(n2 log n) [7], O(n2) [4], to O(n log3 n) [3]. In our
uncertainty model, box(S) denotes the random variable equal to the maximum
number of red points in the random point set S ⊆ R∪B that can be covered with
a box not covering any blue point of S. We prove (Sect. 3.1) that computing the
probability Pr[box(S) ≥ k] for any given k ≥ 2, and computing the expectation
E[box(S)], are both #P-hard problems. We further show (Sect. 3.2) that given a
point o of the plane, computing the probability that there exists a box containing
exactly two red points of S as opposite vertices, no blue point of S, and the point
o can be solved in polynomial time. If we remove the restriction of containing o,
this problem is also #P-hard.

2 Weighted Points in One Dimension

2.1 Hardness

Theorem 1. For any integer z ≥ 1 and any ρ ∈ (0, 1), given a sequence X =
X1,X2, . . . , Xn of n zero-value random variables, each with probability ρ, it is
#P-hard to compute Pr[S(X) ≥ z].

Proof. Let z ≥ 1 be an integer, and ρ ∈ (0, 1) a probability. We show a
Turing reduction from the #SubsetSum problem, which is known to be
#P-complete [8]. Our reduction assumes an unknown algorithm (i.e., oracle)
A(X) computing Pr[S(X) ≥ z] for any finite sequence X of zero-value ran-
dom variables, that will be called twice. #SubsetSum receives as input a set
{a1, . . . , an} ⊂ N of n numbers and a target t ∈ N, and counts the number of
subsets J ⊆ [1..n] such that

∑
j∈J aj = t. It remains #P-hard if the subsets J

234 L. E. Caraballo et al.

to count must also satisfy |J | = k, for given k ∈ [1..n]. Let ({a1, . . . , an}, t, k) be
an instance of this #SubsetSum, in which we assume t ≤ a1 + · · · + an.

Let m = max{z, 1 + a1 + · · · + an} > t, and X = X0,X1,X2, . . . , Xn be a
sequence of n + 1 zero-value random variables, each with probability ρ, where
the value of X0 is −km− t+ z, and the value of Xi is m+ai for every i ∈ [1..n].
Observe that for J ⊆ [1..n] we have

∑

j∈J

(m + aj) = km + t ⇔
⎛

⎝
∑

j∈J

aj = t and |J | = k

⎞

⎠ .

Furthermore, |J | > k implies
∑

j∈J(m + aj) > km + t. Let JX = {j ∈ [1..n] :
Xj �= 0}, and for any s, let Ns = |J ⊆ [1..n] : |J | = k,

∑
j∈J aj ≥ s|. Then, the

#SubsetSum asks for Nt − Nt+1. Call A(X) to compute Pr[S(X) ≥ z]. Then:

Pr[S(X) ≥ z] = Pr[S(X) ≥ z,X0 = 0] + Pr[S(X) ≥ z,X0 = −km − t + z]

where,

Pr[S(X) ≥ z,X0 = 0] = Pr[X0 = 0] · Pr[S(X) ≥ z | X0 = 0]
= (1 − ρ) · Pr[|JX | ≥ 1] = (1 − ρ) · (1 − Pr [|JX | = 0])
= (1 − ρ) · (1 − (1 − ρ)n),

and

Pr[S(X) ≥ z,X0 = −km − t + z]
= Pr[X0 = −km − t + z] · Pr[S(X) ≥ z | X0 = −km − t + z]

= ρ · Pr

⎡

⎣−km − t + z +
∑

j∈JX

(m + aj) ≥ z

⎤

⎦ = ρ · Pr

⎡

⎣
∑

j∈JX

(m + aj) ≥ km + t

⎤

⎦

= ρ ·
⎛

⎝Pr

⎡

⎣|JX | = k,
∑

j∈JX

(m + aj) ≥ km + t

⎤

⎦

+
n∑

i=k+1

Pr

⎡

⎣|JX | = i,
∑

j∈JX

(m + aj) ≥ km + t

⎤

⎦

⎞

⎠

= ρ · Pr

⎡

⎣|JX | = k,
∑

j∈JX

aj ≥ t

⎤

⎦ + ρ ·
n∑

i=k+1

Pr[|JX | = i]

= ρ · Nt · ρk · (1 − ρ)n−k + ρ ·
n∑

i=k+1

(
n

i

)
· ρi · (1 − ρ)n−i.

Hence, we can compute Nt in polynomial time from the value of Pr[S(X) ≥ z].
Consider now the random sequence X ′ = X ′

0,X1,X2, . . . , Xn, where X ′
0 has

value −km − (t + 1) + z. Using arguments similar as above, by calling A(X ′)

Maximum Box Problem on Stochastic Points 235

to compute Pr[S(X ′) ≥ z], we can compute Nt+1 in polynomial time from this
probability. Then, Nt −Nt+1 can be computed in polynomial time, plus the time
of calling twice the oracle A. This implies the theorem. �
Theorem 2. For any ρ ∈ (0, 1), given a sequence X = X1, . . . , Xn of n
zero-value random variables, each with probability ρ, it is #P-hard to compute
E[S(X)].

Proof. Let X = X1,X2, . . . , Xn be any sequence of zero-value random variables,
each with probability ρ, and consider the sequence X ′ = X0,X1, . . . , Xn, where
X0 is a zero-value random variable with value −1 and probability ρ. Let w be
the sum of the positive values among the values of X1, . . . , Xn. Then:

E[S(X)] =
w∑

i=1

i · Pr[S(X) = i] =
w∑

i=1

Pr[S(X) ≥ i],

and

E[S(X ′)] =
w∑

i=1

Pr[S(X ′) ≥ i]

=
w∑

i=1

(Pr[S(X ′) ≥ i,X0 = 0] + Pr[S(X ′) ≥ i,X0 = −1])

=
w∑

i=1

(Pr[X0 = 0] · Pr[S(X ′) ≥ i | X0 = 0]

+ Pr[X0 = −1] · Pr[S(X ′) ≥ i | X0 = −1])

=
w∑

i=1

((1 − ρ) · Pr[S(X) ≥ i] + ρ · Pr[S(X) ≥ i + 1])

=
w∑

i=1

(1 − ρ) · Pr[S(X) ≥ i] +
w+1∑

i=2

ρ · Pr[S(X) ≥ i]

= (1 − ρ) · Pr[S(X) ≥ 1] +
w∑

i=2

Pr[S(X) ≥ i].

Then, we have that E[S(X)] − E[S(X ′)] = ρ · Pr[S(X) ≥ 1]. Since computing
Pr[S(X) ≥ 1] is #P-hard (Theorem 1), then computing E[S(X)] is also #P-hard
via a Turing reduction. �

2.2 Pseudo-Polynomial Time Algorithms

Let X = X1,X2, . . . , Xn be a sequence of n random zero-value variables, with
values a1, a2, . . . , an ∈ [−a..b] ⊂ Z and probabilities ρ1, ρ2, . . . , ρn, respectively,
for some a, b ∈ N. We show that both Pr[S(X) ≥ z] and E[S(X)] can be computed
in time polynomial in n, a, and b. Let J = {j ∈ [1..n] : aj < 0} and

w0 =
∑

j∈J

|aj | = O(na) and w1 =
∑

j∈[1..n]\J

aj = O(nb).

236 L. E. Caraballo et al.

For every t ∈ [1..n], let

St = X1 + · · · + Xt, Mt = max{0, S1, S2, . . . , St}, and
Gt = {Pr[Mt = k, St = s] : k ∈ [0..w1], s ∈ [−w0..w1], k ≥ s}.

Observe that Gt has size O(w1(w0 + w1)) = O(nb(na + nb)) = O(n2b(a + b)) for
every t, and that G1 can be trivially computed. Using the dynamic programming
algorithm design paradigm, we next show how to compute the values of Gt, t ≥ 2,
assuming that all values of Gt−1 have been computed. Note that:

Pr[Mt = k, St = s] = Pr[Mt = k, St = s,Xt = 0] + Pr[Mt = k, St = s,Xt = at],

where

Pr[Mt = k, St = s,Xt = 0] = Pr[Xt = 0] · Pr[Mt = k, St = s | Xt = 0]
= (1 − ρt) · Pr[Mt−1 = k, St−1 = s]

and

Pr[Mt = k, St = s,Xt = at] = Pr[Xt = at] · Pr[Mt = k, St = s | Xt = at]
= ρt · Pr[Mt = k, St = s | Xt = at].

When k = s, we have for at < 0 that Pr[Mt = k, St = s | Xt = at] = 0, since this
event indicates that St = X1 + · · ·+Xt is a maximum partial sum of X1, . . . , Xt,
but this cannot happen because any maximum partial sum ends in a positive
element. For at > 0 we have

Pr[Mt = k, St = s | Xt = at] = Pr[Mt−1 ≤ k, St−1 = s − at]

=
k∑

i=s−at

Pr[Mt−1 = i, St−1 = s − at].

When k > s, Mt does not count the element at, hence Mt−1 = Mt. Then

Pr[Mt = k, St = s | Xt = at] = Pr[Mt−1 = k, St−1 = s − at].

Modeling each set Gt as a 2-dimensional table (or array), note that each value of
Gt can be computed in O(k − (s−at)) = O(w1) time, and hence all values of Gt

can be computed in O(w1) ·O(n2b(a+b)) = O(n3b2(a+b)) time. Finally, once all
the values of Gn have been computed in O(n) · O(n3b2(a + b)) = O(n4b2(a + b))
time, we can compute Pr[S(X) ≥ z] as

Pr[S(X) ≥ z] =
w1∑

k=z

Pr[S(X) = k] =
w1∑

k=z

k∑

s=−w0

Pr[Mn = k, Sn = s]

in O(w1(w0 + w1)) = O(n2b(a + b)) time, and E[S(X)] =
∑w1

z=1 Pr[S(X) ≥ z] in
O(w1) = O(nb) time. As a consequence, we get the following result.

Theorem 3. Let X be a sequence of n random zero-value variables, with values
in the range [−a..b] ⊂ Z for some a, b ∈ N. Then, both Pr[S(X) ≥ z] and E[S(X)]
can be computed in time polynomial in n, a, and b.

Maximum Box Problem on Stochastic Points 237

3 Red and Blue Points in the Plane

In this section, we show that computing Pr[box(S) ≥ k] and E[box(S)] when
S ⊆ R ∪ B is taken at random, are both #P-hard. To do that, we will show a
one-to-many reduction from the problem of counting the number of independent
sets in a planar bipartite graph with maximum degree 4. Given such a graph G,
we will generate a polynomial number of inputs (i.e., random colored point sets)
for the problem of computing Pr[box(S) ≥ k] (or E[box(S)]), where each input
is associated with a different graph Gs for some s ≥ 1, obtained by adding s
vertices to each edge of G. For every input, the number N(Gs) of independent
sets of Gs can be computed in polynomial time, plus a call to an oracle computing
Pr[box(S) ≥ k] (or E[box(S)]). Before the reduction, it is shown that N(G) (the
number of independent sets of G) can be computed in polynomial time from
the values of N(Gs) for all s. We complement these hardness results with a
polynomial-time algorithm to compute the probability that there exists a box
restricted to contain a given point o /∈ R ∪ B of the plane, two red points as
opposite vertices, and no blue point.

3.1 Hardness

Given a graph G = (V,E), a subset V ′ ⊆ V is an independent set of G if no pair
of vertices of V ′ define en edge in E. Let N(G) denote the number of independent
sets of G. The problem #IndSet of counting the number of independent sets in a
graph is #P-complete, even if the graph is planar, bipartite, and with maximum
degree 4 [14]. We show a one-to-many Turing reduction from #IndSet to the
problem of computing Pr[box(S) ≥ k], for any given k ≥ 2. Let G = (V,E)
be the input of #IndSet, where G is a planar bipartite graph with maximum
degree 4. Let n = |V | and m = |E| = O(n).

For any subset V ′ ⊆ V and any edge e = {u, v} ∈ E, we say that V ′ 1-covers
edge e if exactly one of u and v belongs to V ′. We also say that V ′ 2-covers e
if both u and v belong to V ′. Let Ci,j denote the number of subsets of V that
1-cover exactly i edges and 2-cover exactly j edges. Then, N(G) =

∑m
i=0 Ci,0.

For s ≥ 1, let Gs = (Vs, Es) be the graph obtained from G by adding exactly
s intermediate vertices on each edge of E. Let {fi}∞

i=1 be the Fibonacci sequence,
with f1 = f2 = 1 and fi = fi−1 + fi−2 for i ≥ 3. Let αi = fi+1/fi+2 for i ≥ 0.

Lemma 1. We have

N(Gs) = (fs+2)m ·
∑

0≤i+j≤m

Ci,j · (αs)i · (1 − αs)j .

Proof. Any independent set V ′
s ⊆ Vs of Gs induces the subset V ′

s ∩V of V , which
is not necessarily an independent set of G because it may 2-cover some edges.
Let V ′ ⊆ V be any subset of V that 1-covers i edges and 2-covers j edges. For
any edge e ∈ E, let pe denote the path of Gs induced by the s vertices added to
e when constructing Gs from G. An independent set of Gs inducing V ′ can be
obtained by starting with V ′ and adding vertices in the following way. For every
edge e = {u, v} ∈ E:

238 L. E. Caraballo et al.

(1) if V ′ neither 1-covers nor 2-covers e, then add any independent set of pe.
(2) if V ′ 1-covers e, say u ∈ V ′, then add any independent set of pe not contain-

ing the extreme vertex of pe adjacent to u in Gs.
(3) if V ′ 2-covers e, then add any independent set of pe with no extreme vertex.

It is well known that the number of independent sets of a path of length � is
exactly f�+3 [14]. For example, if � = 1 then the path is an edge {u, v}, and
has f1+3 = f4 = 3 independent sets: {}, {u}, and {v}. Since pe has length
s − 1 for every e, the number of choices for cases (1), (2), and (3) are fs+2,
fs+1, and fs, respectively. Therefore, the number of independent sets of Gs

inducing a subset of V that 1-covers i edges and 2-covers j edges is precisely
Ci,j · (fs+1)i · (fs)j · (fs+2)m−i−j . Hence, the number N(Gs) of independent sets
of Gs satisfies

N(Gs) =
∑

0≤i+j≤m

Ci,j · (fs+1)i · (fs)j · (fs+2)m−i−j

= (fs+2)m ·
∑

0≤i+j≤m

Ci,j ·
(

fs+1

fs+2

)i

·
(

fs

fs+2

)j

= (fs+2)m ·
∑

0≤i+j≤m

Ci,j ·
(

fs+1

fs+2

)i

·
(

1 − fs+1

fs+2

)j

= (fs+2)m ·
∑

0≤i+j≤m

Ci,j · (αs)i · (1 − αs)j ,

which completes the proof. �
Lemma 2. Let T be a set of m + 1 integers, each in the range [1..nc] for some
constant c > 0. If we know the value of N(Gs) for every s ∈ T , then the number
N(G) can be computed in time polynomial in n.

Proof. For every s ∈ T , the value of (fs+2)m can be computed in O(log s +
log m) = O(log n) time, and the value of αs also in O(log s) = O(log n) time.
Let bs = N(Gs)/(fs+2)m for every s ∈ T . Consider the polynomial

P (x) =
∑

0≤i+j≤m

Ci,j · xi · (1 − x)j = a0 + a1x + a2x
2 + · · · + amxm,

of degree m, whose coefficients a0, a1, . . . , am are linear combinations of the terms
Ci,j . By Lemma 1, and using the known values of bs and αs for every s ∈ T , we
have m + 1 evaluations of P (x) of the form bs = P (αs), each corresponding to the
linear equation bs = a0+a1·αs+a2·α2

s+· · ·+am·αm
s with variables the coefficients

a0, a1, . . . , am. The main matrix of this system of m + 1 linear equations is
Vandermonde, with parameters αs for every s ∈ T . All αs are distinct [14], then
the determinant of the main matrix is non-zero, and the system has a unique
solution a0, a1, . . . , am which can be computed in time polynomial in n. Finally,

Maximum Box Problem on Stochastic Points 239

Fig. 1. (a) An embedding of G. (b) The embedding of Gs for s = 2: two intermediate
vertices are added to each edge of G so that all polyline bends are covered.

observe that for j = 0, the coefficient of the polynomial Ci,j ·xi ·(1−x)j = Ci,0 ·xi

is Ci,0. Furthermore, for j > 0, all the coefficients of the polynomial

Ci,j · xi · (1 − x)j = Ci,j · xi ·
((

j

0

)
−

(
j

1

)
x1 +

(
j

2

)
x2 − · · · + (−1)j

(
j

j

)
xj

)

sum up to zero. Hence, a0 + a1 + · · · + am =
∑m

i=0 Ci,0 = N(G) which shows
that N(G) can be computed in time polynomial in n. �

In polynomial time, the graph G = (V,E) can be embedded in the plane
using O(n2) area in such a way that its vertices are at integer coordinates, and
its edges are drawn so that they are polylines made up of line segments of the
form x = i or y = j, for integers i and j [15] (see Fig. 1a). Let s0 = O(n) be the
maximum number of bends of the polylines corresponding to the edges.

For an arbitrary s ∈ N, such that s ≥ s0 and s = O(n), we embed the graph
Gs in the following way. We embed the graph G as above; scale the embedding by
factor 2(s+1); and for each edge of G, add s intermediate vertices to the polyline
of the edge so that they have even integer coordinates and cover all bends of the
polyline (see Fig. 1b). Then, each edge of Gs is represented in the embedding
by a vertical or horizontal segment. Let the point set R0 = R0(s) ⊂ Z

2 denote
the vertex set of the embedding, and color these points in red. By translation if
necessary, we can assume R0 ⊂ [0..N]2 for some N = O(n2). Let B0 = B0(s) be
the next set of blue points: For each horizontal or vertical line � through a point
of R0, and each two consecutive points p, q ∈ R0 in � such that the vertices p and
q are not adjacent in Gs, we add a blue point in the segment pq connecting p and
q so that it has one odd coordinate. Note that |B0| = O(|R0|) = O(n + m · s) =
O(n2). Now, a horizontal or vertical segment connecting two points p and q of
R0 ∪ B0 represents an edge of Gs if and only if p, q ∈ R0 and the segment does
not contain any other point of R0 ∪ B0 in its interior.

We would like that two red points of R0 can be covered with a box avoiding
blue points if and only if the two red points represent an edge of Gs. To achieve
this, we perturb the elements of R0 ∪ B0 and add extra blue points.

We perturb R0 ∪B0 ⊂ [0..N]2 to obtain a point set in general position (with
rational coordinates) by applying the function λ : [0..N]2 → Q

2, where

λ(p) =
(

x(p) +
x(p) + y(p)

4N + 1
, y(p) +

x(p) + y(p)
4N + 1

)
,

240 L. E. Caraballo et al.

a

b

⇒

λ(a)

λ(b)

a

b

⇒

λ(a)

λ(b)

a b
⇒

λ(a)

λ(b)

Fig. 2. The way in which points are perturbed using function λ.

to every p ∈ R0 ∪ B0, where x(p) and y(p) denote the x- and y-coordinates of
p, respectively. Similar perturbations can be found in [2,5], and refer to Fig. 2.
Since λ is injective [5], let λ−1 denote the inverse of λ. For X ⊂ [0..N]2, let
λ(X) = {λ(p) | p ∈ X}, and for Y ⊂ λ([0..N]2) let λ−1(Y) = {λ−1(p) | p ∈ Y }.
Let δ = 1/(4N + 2), and define the sets

R = λ(R0) and B = λ(B0) ∪ {p + (1/2, 1/2), p + (δ,−δ) | p ∈ R} .

Note that |R| = O(n2) and |B| = O(n2). For two points a and b, let D(a, b) be
the box with the segment ab as a diagonal.

Lemma 3. For any different p, q ∈ R, the box D(p, q) contains no points of B
if and only if the vertices λ−1(p) and λ−1(q) are adjacent in Gs.

The proof of Lemma 3 is deferred to the extended version.

Theorem 4. Given R ∪ B, it is #P-hard to compute Pr[box(S) ≥ k] for every
integer k ≥ 2, and it is also #P-hard to compute E[box(S)].

Proof. Let k = 2. Assume that there exists an algorithm (i.e., oracle) A that
computes Pr[box(S) ≥ 2]. Consider the planar bipartite graph G = (V,E), with
maximum degree 4, the input of #IndSet. Let T = {s0, s0 + 1, . . . , s0 + m}.
For each s ∈ T we create the graph Gs, embed Gs in the plane, and create the
colored point set R ∪B from this embedding. To each red point p ∈ R we set its
probability π(p) to 1/2, and for each blue point q ∈ B we set π(q) = 1. Note from
Lemma 3 that there does not exist any box containing more than two red points
of R and no blue point from B. Then, we have Pr[box(S) ≥ 2] = Pr[box(S) = 2],
where S ⊆ R ∪ B is the random subset of R ∪ B. Furthermore,

Pr[box(S) = 2] = Pr[λ−1(S ∩ R) is not an independent set in Gs]
= 1 − Pr[λ−1(S ∩ R) is an independent set in Gs]

= 1 − N(Gs)
2|R|

N(Gs) = 2|R| · (1 − Pr[box(S) ≥ 2]).

Then, for each s ∈ T we can compute N(Gs) by calling A once. By Lemma 2,
we can compute N(G) from the m+1 computed values of N(Gs) for each s ∈ T .
Hence, it is #P-hard to compute Pr[box(S) ≥ 2] via a Turing reduction from

Maximum Box Problem on Stochastic Points 241

#IndSet. To show that computing E[box(S)] is also #P-hard, for each s ∈ T
consider the above point set R ∪ B and note that

E[box(S)] = 1 · Pr[λ−1(S ∩ R) is an independent set in Gs, S ∩ R �= ∅] +
2 · Pr[λ−1(S ∩ R) is not an independent set in Gs]

=
N(Gs) − 1

2|R| + 2 ·
(

1 − N(Gs)
2|R|

)

= 2 − N(Gs) + 1
2|R|

N(Gs) = 2|R| · (2 − E[box(S)]) − 1.

Let now k ≥ 3. For each s ∈ T , the graph Gs can be colored with two colors, 0
and 1, because it is also a bipartite graph. Each red point in R corresponds to
a vertex in Gs. Then, for each red point p ∈ R with color 0 we add new �k

2 � − 1
red points close enough to p (say, at distance much smaller than δ), and for each
red point q ∈ R with color 1 we add new �k

2 � − 1 red points close enough to q.
Let R′ = R′(s) be the set of all new red points, and assign π(u) = 1 for every
u ∈ R′. In this new colored point set R ∪ R′ ∪ B, there is no box containing
more than k red points and no blue point. Furthermore, every box containing
exactly k red points and no blue point contains two points p, q ∈ R such that
λ−1(p) and λ−1(q) are adjacent in Gs; and for every p, q ∈ R such that λ−1(p)
and λ−1(q) are adjacent in Gs such a box containing p and q exists. Then, when
taking S ⊆ R ∪ R′ ∪ B at random, we also have

Pr[box(S) ≥ k] = Pr[box(S) = k]
= Pr[λ−1(S ∩ R) is not an independent set in Gs]
= 1 − N(Gs)/2|R|.

Hence, computing Pr[box(S) ≥ k] is also #P-hard for any k ≥ 3. �

3.2 Two-Point Boxes

From the proof of Theorem 4, note that it is also #P-hard to compute the prob-
ability that in S ⊆ R ∩ B there exists a box that contains exactly 2 red points
as opposite vertices and no blue point. In this section, we present a polynomial-
time algorithm to compute the probability that there exists a box restricted to
contain a given point o /∈ R ∪ B of the plane, two red points as opposite vertices,
and no blue point. We assume general position, that is, there are no two points
of R∪B ∪{o} with the same x- or y-coordinate. We further assume w.l.o.g. that
o is the origin of coordinates.

Given a fixed X ⊆ R ∪ B, and S ⊆ R ∪ B taken at random, let E(X) =
E(X,S) be the event that there exists a box containing the origin o, exactly two
red points in S ∩ X as opposite vertices, and no blue in S ∩ X. Then, our goal
is to compute Pr[E(R ∪ B)].

Theorem 5. Given R ∪ B, Pr[E(R ∪ B)] can be computed in polynomial time.

242 L. E. Caraballo et al.

Proof. Let X ⊆ R ∪ B, and define X+ = {p ∈ X | y(p) > 0} and X− = {p ∈
X | y(p) < 0}. Given points q ∈ X+ and r ∈ X−, define the events

Uq(X) = Uq(X,S) =
[
q = arg min

p∈X+∩S
{y(p)}

]
,

and

Dr(X) = Dr(X,S) =
[
r = arg max

p∈X−∩S
{y(p)}

]
.

Let Uq(X) = Uq(X,S) and Dr(X) = Dr(X,S). Using the formula of the total
probability, we have:

Pr[E(X)] =
∑

q∈X+

Pr [E(X) | Uq(X)] · Pr [Uq(X)]

=
∑

q∈X+

Pr [E(X) | Uq(X)] ·
⎛

⎝π(q) ·
∏

p∈X+:y(p)<y(q)

(1 − π(p))

⎞

⎠ .

To compute Pr [E(X) | Uq(X)], we assume x(q) > 0. The case where x(q) < 0 is
symmetric. If q ∈ B, then observe that when restricted to the event Uq(X) any
box containing exactly two red points of S ∩ X and the origin o of coordinates,
where one of these red points is to the right of q, will contain q. Hence, we must
“discard” all points to the right of q, all points in between the horizontal lines
through q and o because they are not present, and q itself. Hence:

Pr [E(X) | Uq(X)] = Pr[E(Xq)],

where Xq ⊂ X contains the points p ∈ X such that x(p) < x(q) and either
y(p) > y(q) or y(p) < 0. If q ∈ R, we expand Pr [E(X) | Uq(X)] as follows:

Pr [E(X) | Uq(X)] =
∑

r∈X−
Pr [E(X) | Uq(X),Dr(X)] · Pr [Dr(X)]

=
∑

r∈X−
Pr [E(X) | Uq(X),Dr(X)] ·

⎛

⎝π(r) ·
∏

p∈X−:y(p)>y(r)

(1 − π(p))

⎞

⎠ .

There are now three cases according to the relative positions of q and r.

Case 1: x(r) < 0 < x(q). Let Yq,r ⊂ X contain the points p ∈ X (including q)
such that x(r) < x(p) ≤ x(q) and either y(p) < y(r) or y(p) ≥ y(q). If r ∈ R,
then Pr [E(X) | Uq(X),Dr(X)] = 1. Otherwise, if r ∈ B, given that Uq(X) and
Dr(X) hold, any box containing exactly two red points of S ∩ X and the origin
o, where one red point is not in Yq,r, will contain q or r in the interior. Then

Pr [E(X) | Uq(X),Dr(X)] = Pr[E(Yq,r) | Uq(Yq,r)].

Similar arguments are given in the next two cases.

Maximum Box Problem on Stochastic Points 243

Case 2: 0 < x(q) < x(r). We have

Pr [E(X) | Uq(X),Dr(X)] = Pr[E(Xq ∪ {q}) | Uq(Xq ∪ {q})].

Case 3: 0 < x(r) < x(q). If r ∈ R, then

Pr [E(X) | Uq(X),Dr(X)] = Pr[E(Zq,r ∪ {r}) | Dr(Zq,r ∪ {r})],

where Zq,r ⊂ X contains the points p ∈ X such that x(p) < x(r) and either
y(p) < y(r) or y(p) > y(q). Note that the event [E(Zq,r ∪ {r}) | Dr(Zq,r ∪ {r})]
is symmetric to the event [E(X) | Uq(X)], thus its probability can be computed
similarly. Otherwise, if r ∈ B, we have

Pr [E(X) | Uq(X),Dr(X)] = Pr[E(Zq,r)].

Note that in the above recursive computation of Pr[E(X)], for X = R ∪ B,
there is a polynomial number of subsets Xq, Yq,r, and Zq,r; each of such subsets
can be encoded in constant space (i.e., by using a constant number of coordi-
nates). Then, we can use dynamic programming, with a polynomial-size table,
to compute Pr[E(R ∩ B)] in time polynomial in n. �

4 Discussion and Open Problems

For fixed d, the maximum box problem for non-probabilistic points can be solved
in polynomial time [4]. Then, generating a polynomial number of outcomes of
the probabilistic point set, and computing a maximum box for each of them, can
be used to estimate both the probability that the total weight of a maximum box
is at least a given parameter, and its expectation; in overall polynomial time and
with high probability of success. We have as future work to design polynomial-
time algorithms to approximate both values with deterministic success.

For the case of red and blue points in the plane, there are several open
problems: For example, to compute Pr[box(S) ≥ k] (even for k = 3) when the
box is restricted to contain a fixed point. Other variants appear when the box
is restricted to contain a given point as vertex, or to have some side contained
in a given line. All these variants can be considered when all blue points have
probability 1 and all red ones probability less than 1. For red and blue points in
d = 1, both Pr[box(S) ≥ k] and E[box(S)] can be solved in polynomial time.

Acknowledgements. L.E.C. and I.V. are supported by MTM2016-76272-R (AEI/
FEDER, UE). L.E.C. is also supported by the Spanish Government under the
FPU grant agreement FPU14/04705. P.P.L. is supported by CONICYT FONDE-
CYT/Regular 1160543 (Chile). C.S. is supported by Gen. Cat. DGR 2014SGR46 and
MINECO MTM2015-63791-R.

244 L. E. Caraballo et al.

References

1. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Range-max queries on uncertain
data. J. Comput. Syst. Sci. (2017)

2. Alliez, P., Devillers, O., Snoeyink, J.: Removing degeneracies by perturbing the
problem or perturbing the world. Reliab. Comput. 6(1), 61–79 (2000)

3. Backer, J., Keil, J.M.: The mono- and bichromatic empty rectangle and square
problems in all dimensions. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol.
6034, pp. 14–25. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12200-2 3

4. Barbay, J., Chan, T.M., Navarro, G., Pérez-Lantero, P.: Maximum-weight planar
boxes in O(n2) time (and better). Inf. Process. Lett. 114(8), 437–445 (2014)

5. Caraballo, L.E., Ochoa, C., Pérez-Lantero, P., Rojas-Ledesma, J.: Matching colored
points with rectangles. J. Comb. Optim. 33(2), 403–421 (2017)

6. Chan, T.M., Kamousi, P., Suri, S.: Stochastic minimum spanning trees in Euclidean
spaces. In: SoCG 2011, pp. 65–74 (2011)

7. Cortés, C., Dı́az-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura,
I.: Bichromatic separability with two boxes: a general approach. J. Algorithms
64(2–3), 79–88 (2009)

8. Faliszewski, P., Hemaspaandra, L.: The complexity of power-index comparison.
Theor. Comput. Sci. 410(1), 101–107 (2009)

9. Feldman, D., Munteanu, A., Sohler, C.: Smallest enclosing ball for probabilistic
data. In: SoCG 2014, pp. 214–223 (2014)

10. Fink, M., Hershberger, J., Kumar, N., Suri, S.: Hyperplane separability and con-
vexity of probabilistic point sets. JCG 8(2), 32–57 (2017)

11. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for
stochastic points. Comput. Geom. 47(2), 214–223 (2014)

12. Pérez-Lantero, P.: Area and perimeter of the convex hull of stochastic points.
Comput. J. 59(8), 1144–1154 (2016)

13. Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points.
In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 791–802.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4 67

14. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

15. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput.
100(2), 135–140 (1981)

https://doi.org/10.1007/978-3-642-12200-2_3
https://doi.org/10.1007/978-3-642-12200-2_3
https://doi.org/10.1007/978-3-642-40450-4_67

The Online Set Aggregation Problem

Rodrigo A. Carrasco1(B) , Kirk Pruhs2, Cliff Stein3, and José Verschae4

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
rax@uai.cl

2 Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
kirk@cs.pitt.edu

3 Department of Industrial Engineering and Operations Research,
Columbia University, New York, NY, USA

cliff@ieor.columbia.edu
4 Facultad de Matemáticas & Escuela de Ingenieŕıa,

Pontificia Universidad Católica de Chile, Santiago, Chile
jverschae@uc.cl

Abstract. We introduce the online Set Aggregation Problem, which is
a natural generalization of the Multi-Level Aggregation Problem, which
in turn generalizes the TCP Acknowledgment Problem and the Joint
Replenishment Problem. We give a deterministic online algorithm, and
show that its competitive ratio is logarithmic in the number of requests.
We also give a matching lower bound on the competitive ratio of any
randomized online algorithm.

Keywords: Online algorithms · Competitive analysis
Set aggregation · Multilevel aggregation

1 Introduction

Problem Statement: We introduce an online problem, which we call the Set
Aggregation Problem. In this problem, a sequence R of requests arrives over time.
We assume time is continuous. Each request ρ ∈ R has an associated release time
rρ when it arrives, and an associated waiting cost function wρ(t) that specifies
the waiting cost for this request if it is first serviced at time t. We assume that
the online algorithm learns wρ(t) at time rρ. We also assume that each wρ(t) is
non-decreasing, left continuous, and limt→∞ wρ(t) = ∞.

At any time t, the online algorithm can decide to service any subset S of
the previously released requests. Thus, a schedule for this instance is a sequence

R. A. Carrasco—Supported in part by Fondecyt Project Nr. 1151098.
K. Pruhs—Supported in part by NSF grants CCF-1421508 and CCF-1535755, and
an IBM Faculty Award.
C. Stein—Supported in part by NSF grant CCF-1421161.
J. Verschae—Supported in part by Nucleo Milenio Información y Coordinación en
Redes ICM/FIC CODIGO RC130003, and Fondecyt Project Nr. 11140579.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 245–259, 2018.
https://doi.org/10.1007/978-3-319-77404-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_19&domain=pdf
http://orcid.org/0000-0002-6511-5998

246 R. A. Carrasco et al.

(S1, t1), (S2, t2), . . . , (Sk, tk), where the Si’s are sets of requests and the ti’s are
the times that these sets were serviced. We will implicitly restrict our attention
to feasible schedules, which are those for which every request is serviced, i.e. for
all ρ ∈ R, exists an (Si, ti) in the resulting sequence where ρ ∈ Si and ti ≥ rρ.

We assume that there is a time-invariant service cost function C(S) that
specifies the cost for servicing a set S of the requests. Without any real loss of
generality, we will generally assume that C(S) is monotone in the sense that
adding requests to S can not decrease C(S). We will postpone the discussion on
how the online algorithm learns C(S) until we state our results, but essentially
our lower bound holds even if the online algorithm knows C(S) a priori, and our
upper bound holds even if C(S) is only known for subsets S of released requests.

The online algorithm then incurs in two types of costs, a waiting cost and
a service cost. At time ti the algorithm incurs a waiting cost of Wt(Si) =∑

ρ∈Si
wρ(t) for servicing set Si, which is just the aggregate waiting cost of

the serviced requests. At the same time ti the algorithm also incurs in a service
cost of C(Si), and the total service cost the algorithm incurs is

∑k
i=1 C(Si).

The total cost associated with schedule (S1, t1), (S2, t2), . . . , (Sk, tk) is therefore
∑k

i=1 C(Si) +
∑k

i=1 Wt(Si), and the objective is to find the schedule that mini-
mizes the total cost.

In the deadline version of the set aggregation problem, the waiting cost of
each request is zero until a specified deadline for that request, after which the
waiting cost becomes infinite.

Most Relevant Background: Our main motivation for introducing the Set
Aggregation Problem is that it is a natural generalization of the Multi-Level
Aggregation Problem (MLAP), which was introduced by [1]. In the MLAP, the
requests are vertices in an a priori known tree T , and the edges (and/or vertices)
of T have associated costs. Further, a set S of requests has service cost equal
to the minimum cost subtree of T that contains the root of T and contains all
of the requests in S. The motivation for [1] to introduce the MLAP is that it
generalizes both the well-known TCP Acknowledgment Problem (TCPAP), and
the well-known Joint Replenishment Problem (JRP), both of which correspond
to special cases of the MLAP in which the tree T has constant height. In [1]
the authors gave an online algorithm for the Multi-Level Aggregation Problem,
and showed that the competitive ratio of the algorithm is O(d42d), where d
is the height of T . It is an open question whether constant competitiveness is
achievable in the MLAP, and only a constant lower bound is known. In [2] the
authors gave an O(d)-approximation for the deadline version of the problem.

Our Results: The Set Aggregation Problem allows us to study how critical is
the restriction that service costs come from an underlying tree. More specifically
it is natural to ask:

– Can constant competitiveness be achieved if there are no restrictions on ser-
vice costs (other than monotonicity)?

– And if not, what is the best achievable competitive ratio?

The Online Set Aggregation Problem 247

In this paper we answer these two questions. We first show, in Sect. 2, that
the competitive ratio of every algorithm (deterministic or randomized) is at
least logarithmic in the number of requests for the deadline version of the set
aggregation problem. This lower bound holds against an online algorithm that
a priori knows the domain R of all possible requests that might arrive, and the
service cost C(S) for each possible subset S of R. Thus, we can conclude that if a
constant competitive algorithm exists for the Multi-Level Aggregation Problem,
then the analysis must use the fact that the service costs can not be arbitrary.

Intuitively, the requests in our lower bound instance are each associated with
a node in a full binary tree T . There are n/2d requests associated with a node
of depth d in the tree. The lifetime of the requests inherit the same laminar
structure of the tree– the lifetime of the n requests associated with the root of
T is [0, n], the lifetime of the n/2 requests associated with the left child of the
root is [0, n/2], and the lifetime of the n/2 requests associated with the right
child of the root is [n/2, n]. The set costs are defined so that there is clearly
no benefit to include more than one request associated with each node in any
serviced set. Then the requests in the subtree rooted at the left child of the
root aggregate with all requests associated with the root, but the only requests
associated with the root that aggregate with requests associated with the right
child of the root are those that the algorithm serviced during the first half of
these request’s lifetime. So the algorithm incurs an unnecessary incremental cost
for each set serviced during [n/2, n]. The instance recursively applies this same
idea lower down in T .

To complement this lower bound, in Sect. 3 we give a deterministic online
algorithm RetrospectiveCover for the set aggregation, and show the com-
petitive ratio of this algorithm is logarithmic in the number of requests. The
algorithm only needs to know the service cost C(S) for subsets S of requests
that are released but unserviced.

Let us give a brief (necessarily simplified) overview of, and intuition for,
the RetrospectiveCover algorithm. Define a proactive schedule to be one
in which the total waiting cost of every serviced set is at most its service cost.
The algorithm maintains a lower bound LB(t) for the least possible service cost
incurred by any proactive schedule up until the current time t. Let u be a time
where LB(u) = 2k and let v be the future time where LB(v) = 2k, assuming
no more requests are released. Intuitively, at time u the sets in the proactive
schedule associated with LB(v) are serviced, and then a recursive call is made
to handle requests that arrive until the time w when LB(w) = 2k+1. Note that
due to the release of new requests it may be that w is earlier than v.

Computing the state of the optimum at the current time, and moving
to that state, is a classic technique in online algorithms, and is often called
the Retrospective algorithm [3]. For example, the Retrospective algo-
rithm is optimally competitive for the online metric matching problem [4,5].
Intuitively the RetrospectiveCover algorithm is a generalization of the
Retrospective algorithm, that computes the state of optimal at many
carefully-selected times, for many different carefully-selected sub-instances, and
then moves to a state that somehow covers/combines all of these optimal states.

248 R. A. Carrasco et al.

This RetrospectiveCover algorithmic design technique seems relatively gen-
eral, and at least plausibly applicable to other problems.

Within the context of the Multi-Level Aggregation problem, our upper bound
on the achievable competitive ratio is incomparable to the upper bound obtained
in [1]. The upper bound obtained in [1] is better if dr2d is asymptotically less
than the logarithm of the number of requests, otherwise the upper bound that
we obtain is better. As a caveat, computing the lower bound used by our algo-
rithm is definitely NP -hard, and its not clear to us how to even obtain a
polynomial-time offline O(log |R|)-approximation algorithm. Techniques used in
the prior literature on offline algorithms for TCPAP and JRP do not seem to be
applicable.

Further Background: As mentioned above, the Set Aggregation Problem gen-
eralizes the TCPAP and the JRP. More generally, we can think of the case of
the Set Aggregation Problem where the set relationship forms a tree. More pre-
cisely, if we include an edge for every pair of sets S1 and S2, where S1 ⊂ S2

and there is no set S3 such that S1 ⊂ S3 ⊂ S2, the family of sets Si is lami-
nar and the resulting graph is a tree. In [6], this problem is referred to as the
Multi-Level Aggregation Problem. If the tree is of height one (a root and leaves),
we obtain the TCPAP. The offline version of the TCPAP on n requests can be
solved exactly in O(n log n) time [7]. The best deterministic approximation has
competitive ratio 2 [8], and the best randomized is e/(e − 1) [9]. We note that
the TCPAP is equivalent to the Lot Sizing Problem that has been studied in the
operations research literature since the 1950s.

If the tree has two levels, we obtain the Joint Replenishment Problem. The
best offline approximation is 1.791 [10] and the best competitive ratio is 3, via
a primal dual-algorithm [11]. There is also a deadline version of the JRP where
there is no cost for waiting but each request must be satisfied before its deadline.
This problem is a special case of a general cost function and has an approximation
ratio of 1.574 [12] and online competitive ratio of 2 [10].

For general trees of height D, we obtain the Multi-Level Aggregation Prob-
lem. This more general problem has several applications in computing, including
protocols for aggregating control messages [13,14], energy efficient data aggrega-
tion and fusion in sensor networks [15,16], and message aggregation in organiza-
tional hierarchies [17]. There are also applications in lot sizing problems [18–20].
For the deadline version of the MLAP, there is an offline 2-approximation algo-
rithm [21]. In unpublished work, Pedrosa [22] showed how to adapt an algorithm
of Levi et al. [23] for the Multistage Assembly Problem to obtain a 2+ ε approx-
imation algorithm for the MLAP with general waiting cost functions. For the
online case, there is no constant competitive algorithm known. In [1], the authors
give a O(d42d) competitive algorithm for trees of height d, and a somewhat bet-
ter bound of O(d22d) for the deadline version. Their algorithms use a reduction
from general trees to trees of exponentially decreasing weights as one goes down
the tree, and therefore relies heavily on the tree structure. Building on this, [2]
give an O(d)-competitive algorithm for the deadline version.

The Online Set Aggregation Problem 249

2 The Lower Bound

We prove a Ω(log |R|) lower bound on the competitive ratio of any deterministic
online algorithm for the deadline version of the Set Aggregation Problem.

Instance Construction. Conceptually the requests are partitioned such that each
request is associated with a node in a full n-node binary tree T . The root of T
has depth 0 and height lg n. A leaf of T has depth lg n and height 0. A node
of height h in T will have 2h requests associated with it. Thus a leaf in T has
one associated request, and the root of T has n requests associated with it.
Hence there are n requests per level and n(1 + lg n) in total. The lifetime of a
request associated with the kth node at depth d (so k ∈ {1, 2, . . . , 2d}) in the
tree is [(k − 1)n/2d, kn/2d). So the lifetime of all requests associated with the
same node are the same, the lifetimes of the requests inherit the same laminar
structure from T , and the lifetimes of the requests associated with nodes at a
particular level of the tree cover the time interval [0, n). Let Rx be the requests
associated with a node x in T , and Tx be the requests associated with nodes in
the subtree rooted at x in T . We say a collection S of requests is sparse if it
does not contain two requests associated with nodes of the same depth in T .

We now proceed to describe the service costs. To do so we will split each
set Rx into two sets of equal cardinality by defining a set Ux ⊆ Rx with |Ux| =
|Rx|/2. The specific requests that belong to Ux will be decided online by the
adversary depending on partial outputs of the algorithm. Let us consider a set
of requests S. If S is ever serviced by any algorithm at a given point in time t ∈
(0, n), the laminar structure of the lifetimes implies that the requests correspond
to a subset of nodes in a path P of T with endpoints at the root and some leaf
v of T , where the lifetime of v contains t. Otherwise, we can define the cost of S
arbitrarily, e.g., as ∞. We first define the cost of a set S that is sparse. The cost
of S is defined inductively by walking up the path P . We say that a request r
aggregates with a set S if the service cost of S ∪ {r} is the same as the service
cost of S. If r does not aggregate with S then the service cost of S ∪ {r} is the
service cost of S plus one. Finally, we say that r is not compatible with S if the
cost of S∪{r} is +∞. If S is a sparse set of requests in Rx where x is a leaf, then
|S| = 1 and its service cost is also one. Consider now a sparse set S �= ∅ with
requests belonging to Ty for some y. Let x be the parent of y and r a request
corresponding to x. Note that x is not a node associated to the requests in S.
We have three cases:

– If S ∩ Ry = ∅, then r is not compatible with S.
– Otherwise if y is a left-child of x, then r always aggregates with S.
– Otherwise if y is a right-child of x, then r aggregates with S when r �∈ Ux,

and it does not aggregate with S if r ∈ Ux.

Notice that, using this definition inductively, we have that the cost of
S �= ∅ is either infinity or an integer between 1 and the height of y plus one

250 R. A. Carrasco et al.

(inclusive)1. Also, the first condition implies that for a sparse set S to have
finite cost there must exists a unique path P from a leaf to node x such that
exactly one request in S belongs to Rv for each node v of P .

If S is an arbitrary set of requests (always corresponding to a leaf-to-root
path P), then S can be decomposed into several sparse sets. We define the cost
of S as the minimum over all possible decomposition, of the sum of the costs of
the sparse sets in the decomposition. In this way, any solution can be converted
to a solution of the same cost where each serviced set is sparse. Hence, we can
restrict ourselves to consider only sparse sets.

Adversarial Strategy. We now explain how to choose the requests in Ux for each
x ∈ T . Let (ax, cx) be the lifetime of the requests associated with x, and bx

the midpoint of (ax, cx). Let the left and right children of x be �(x) and r(x),
respectively. Let Sx be the requests in Rx that the online algorithm has serviced
by time bx. If |Sx| ≤ |Rx|/2 then let Ux be an arbitrary subset of |Rx|/2 requests
from Rx − Sx. If |Sx| > |Rx|/2 then let Ux contain all the requests in Rx − Sx

plus an arbitrary set of |Sx| − |Rx|/2 requests from Sx.
To see that this is a valid adversarial strategy, consider a node x in T , and

let P be the path in T from the root to x, and u1, . . . , uk be the nodes in P
whose right child is also in P . The requests associated with ancestors of x in T
that requests in Rx will not aggregate with are affected by the sets Uu1 , . . . Uuk

,
which are all known by time ax.

Competitiveness Analysis. It is not hard to see that the optimum has cost at
most n. We can construct a solution where each serviced set is sparse as follows.
For each node x in T , any one request in Ux is serviced at each time in (ax, bx),
and any one request from Rx−Ux is serviced at each time in (bx, cx). We can now
construct a solution in which each serviced set S corresponds to each different
leaf-to-root path, where each node in the path corresponds to exactly one request
in S. Each set S can me made to have a service cost of one. Since there are n
leaves, thus n leaf-to-root paths, the constructed solution will have cost n.

Now consider the cost to the online algorithm for requests in Rx. We say
that the incremental cost at x is how much more the online algorithm would
pay for servicing the requests associated to nodes in Tx than it would pay for
servicing requests in Tx −Rx if requests in Rx were deleted from any (sparse) set
S serviced by the online algorithm. First consider the case that |Sx| ≤ |Rx|/2.
In this case at time bx the online algorithm has |Rx|/2 unserviced requests in
Ux that do not aggregate with any requests in Tr(x). Each such request can be
only serviced together with a set S ⊆ Tr(x), and thus each request in Ux imply
an increase of 1 in the cost. Then the incremental cost at x is at least |Rx|/2.

1 We remark that this definition does not yield monotone service costs. However this
does not cause any trouble. Indeed, if two sets S1 ⊆ S2 fulfill C(S2) < C(S1), then
the algorithm can simply serve S2 instead of S1 without increasing its cost and
without affecting feasibility. Hence, any instance with service cost C can be turned
to an equivalent instance with non-decreasing service cost C′(S) = minT⊇S C(T).

The Online Set Aggregation Problem 251

Now let us assume that |Sx| > |Rx|/2. Consider requests in Sx, which are
serviced during the time period (ax, bx). Indeed, a request in Sx can be compat-
ible with at most |R�(x)| = |Rx|/2 many sparse sets within R�(x) (one for each
request in R�(x)). Hence, in this case the online algorithm incurs an incremental
cost of at least |Sx| − |Rx|/2 for the requests in Sx. Request in Rx −Sx = Ux all
do not aggregate (or are incompatible) with sparse sets in Tr(x), and hence the
incur a cost of |Rx| − |Sx|. Thus in both cases the total the incremental cost at
x is at least |Rx|/2. As there are n log n requests in total, the online algorithms
pays at least (n log n)/2. Thus we have shown a lower bound of Ω(log n) on the
competitive ratio.

Note that one can apply Yao’s technique, where the identity of the requests in
Ux are selected uniformly at random from the requests in Rx, to get an Ω(log n)
lower bound on the competitive ratio of any randomized online algorithm.

Theorem 1. Any randomized online algorithm for the deadline version of the
online set aggregation problem is Ω(log(|R|))-competitive.

3 The Upper Bound

In Subsect. 3.1 we define a lower bound on the optimum used within the online
algorithm, and observe some relatively straightforward properties of this lower
bound. In Subsect. 3.2 we state the online algorithm. In Subsect. 3.3 we show
that the online algorithm is O(log |R|) competitive.

3.1 Lower Bound on the Optimal Solution

We will simplify our lower bound and algorithm by restricting our attention to
sets whose waiting cost is at most their service cost. By doing so, we will be able
to focus only on service cost.

Definition 1. We say that a set S of requests is violated at time t in a schedule
if time t Wt(S) > C(S). A feasible schedule is proactive if it does not contain
any violated set.

We will also use in our algorithm a lower bound on the service cost of sched-
ules for subsets of the input in subintervals of time. As mentioned in Sect. 1,
computing the lower bound is NP-hard, but it is critical to guide our online
algorithm.

Definition 2. The lower bound LB−(s, t, d) is the minimum cost over all proac-
tive schedules Z for the requests released in the time interval (s, t), of the total
service cost incurred in Z during the time period (s, d). Let LB+(s, t, d) be the
minimum over all proactive schedules Z for the requests released in the time
interval (s, t), of the total service cost incurred in Z during the time period (s, d].
Polymorphically we will also use LB−(s, t, d) (resp. LB+(s, t, d)) to denote the
sets serviced within (s, d) (resp. (s, d]) by the proactive schedules that attains the
minimum.

252 R. A. Carrasco et al.

The difference between LB−(s, t, d) and LB+(s, t, d) is that service cost
incurred at time d are included in LB+(s, t, d), but not in LB−(s, t, d). Notice
that the values of LB−(s, t, d) and LB+(s, t, d) do not depend on future requests,
and thus can be computed at time t by an online algorithm.

Lemma 1. There exists a proactive schedule whose objective value is at most
twice optimal.

Lemma 2. The value LB−(s, t, d) and LB+(s, t, d) are monotone on the set of
requests, that is, adding more requests between times s and t can not decrease
either. Moreover, LB−(s, t, d) and LB+(s, t, d) are non-decreasing as a function
of t and as a function of d, for any s ≤ t ≤ d.

The proof for Lemmas 1 and 2 are in Sect. A.

3.2 Algorithm Design

We now give our algorithm RetrospectiveCover, which is executed at each
time t. Although we understand that this is nonstandard, we believe that
most intuitive way to conceptualize our algorithm is to think of the algorithm
as executing several concurrent processes. The active processes are numbered
1, 2, . . . , a. Each process i maintains a start time s[i]. A process i reaches a new
milestone at time t if the value of LB+(s[i], t, t) is at least 2 ·LB+(s[i],m[i],m[i]),
where m[i] is the time of the last milestone for process i. When a milestone
for process i is reached at time t, each higher numbered process � services the
sets in LB−(s[�], t, t), and then terminates. Process i then services the sets in
LB−(s[i], t, d[i]), where d[i] is the earliest time after t where LB+(s[i], t, d[i]) ≥
2 · LB+(s[i], t, t). Process i then starts a process i + 1 with start time of t.

We give pseudocode for our algorithm RetrospectiveCover to explain how
various corner cases are handled, and to aide readers who don’t want to think
about the algorithm in terms of concurrent processes. RetrospectiveCover

uses a subroutine CheckMilestone that checks, for a process i, whether it has
reached a milestone at the current time t. RetrospectiveCover is initialized
by setting a = 1, s[1] = 0 and m[1] = s[1].

CheckMilestone(i, t)
1 if m[i] = s[i] then
2 // Process i has not seen its first milestone yet
3 if LB+(s[i], t, t) > 0 then
4 return true
5 else return false
6 else
7 if LB+(s[i], t, t) ≥ 2 · LB+(s[i],m[i],m[i]) then
8 return true
9 else return false

The Online Set Aggregation Problem 253

RetrospectiveCover(t)
1 for i = 1 to a
2 if CheckMilestone(i, t) then
3 for � = a downto i + 1
4 if any request has arrived since time m[�] then
5 service every set in LB−(s[�], t, t)

// Intuitively process � now terminates
6 // The analysis will prove in an inductive invariant on the state

at this point
7 Let d[i] be the earliest time after t where

LB+(s[i], t, d[i]) ≥ 2 · LB+(s[i], t, t)
if such a time exists, and d[i] is infinite otherwise.

8 Service the sets in LB−(s[i], t, d[i])
9 m[i] = t

10 a = i + 1; s[a] = t; m[a] = s[a]; return

3.3 Algorithm Analysis

The first part of this subsection is devoted to proving Lemma4, which is the key
lemma, and states that the service cost incurred by RetrospectiveCover is
within a logarithmic factor of optimal. Next, we show how this readily implies
that RetrospectiveCover is O(log |R|)-competitive.

We first make some simplifying assumptions, and then prove one simple prop-
erty of RetrospectiveCover. Without loss of generality, we can assume that
no two requests are released at the same time, and that no requests are released
exactly at any milestone (one can sequentialize the releases arbitrarily followed
by the unique milestone). Similarly, without loss of generality we can assume that
each waiting function wρ(t) is a continuous function of t. Finally, we can assume
without loss of generality that the initial waiting time is 0, that is wρ(rρ) = 0.
With this we can state the following Lemma, which is proved in Sect.A.

Lemma 3. Assume that RetrospectiveCover just computed a new deadline
d[i] in line 7. Then process i will either reach a new milestone or be terminated
by time d[i].

3.3.1 The Key Induction Argument
Lemma 4. Let c = 6. Consider a point of time when RetrospectiveCover

is at line 6. Let Y be the number of requests that arrive during the time interval
(s[i], t). Then the service cost incurred by RetrospectiveCover up until this
point is at most c(lg Y)LB+(s[i], t, t).

The rest of this subsubsection is devoted to proving Lemma 4 by induction
on the number of times that line 6 in RetrospectiveCover is invoked. So
consider an arbitrary time that RetrospectiveCover is at line 6. We now
need to introduce some more notation. (See Fig. 1 for an illustration of the
various concepts and notation). Let u−1 = s[i], u0 = m[i], y0 be the number of

254 R. A. Carrasco et al.

Fig. 1. An illustration of the generic situation, and when costs are incurred by
RetrospectiveCover. The terms in the diagonal depict the cost incurred in line 8
and the terms on the right terms in line 5.

requests that arrive during (s, u0), and x0 = LB+(s[i],m[i],m[i]). Let k = a − i.
Then for j ∈ {1, 2, . . . , k}, let uj−1 = s[i+ j] = m[i+ j − 1], uk = t, let yj be the
number of requests that arrive during (uj−1, uj), and xj = LB+(uj−1, uj , uj).
Also, for notational convenience let z = LB+(s[i], t, t).

Before making our inductive argument, we need to detour slightly. Lemma5
gives an inequality on service costs that will be useful in our analysis, and the
proof is given in Sect. A.

Lemma 5. It holds that
∑k−1

j=1 xj ≤ x0.

We are now ready to make our inductive argument. We start with the base
case. The first milestone occurs at the first time t where LB+(0, t, t) is positive.
When this occurs, RetrospectiveCover has incurred no service cost until
this point because LB−(0, t, t) = 0. Note that if Y = 1 or k = 0, then again
RetrospectiveCover has incurred no service cost until this point because
LB−(0, t, t) = 0. So assume from now on that Y ≥ 2 and k ≥ 1.

Now consider the case that k = 1. In this case, process i incurred a cost of at
most 2x0 when line 8 is invoked at time u0, and as process i+1 did not reach its
first milestone (which would have caused process i + 2 to start), no additional
cost is incurred at time t. Thus to establish the induction, it is sufficient to show
that 2x0 + cx0 lg y0 ≤ cz lg Y .

Normalizing costs so that x0 = 1, and using the fact that z ≥ 2x0 (since t is
the next milestone), it is sufficient to show that 4yc

0 ≤ Y 2c. Using the fact that
y0 ≤ Y , it is sufficient to show 4Y c ≤ Y 2c. This holds as Y ≥ 2 and c = 6.

Now consider the case that k = 2. In this case, process i incurred a cost of at
most 2x0 when line 8 is invoked at time u0, process i+1 incurs a cost of at most
2x1 when line 8 is invoked at time u1 and at most 2x1 when line 5 is invoked at
time t, and process i+2 incurs no cost at time t. Thus to establish the induction,
it is sufficient to show that 2x0 + 4x1 + cx0 lg y0 + cx1 lg y1 ≤ cz lg Y .

Normalizing costs so that x0 = 1, and using the fact that z ≥ 2, x1 ≤ x0,
and y0 + y1 ≤ Y , it is sufficient to show that: 64yc

0y
c
1 ≤ (y0 + y1)2c, which holds

by the binomial theorem as 64 ≤ (
2c
c

)
=

(
12
6

)
.

For the remainder of the proof, we assume k ≥ 3. At time uj , for 0 ≤ j ≤ k−1,
process i + j incurs a cost at most 2xj when line 8 is invoked. At time t process
i+j, for 1 ≤ j ≤ k−1, incurs a cost of at most 2xj when line 5 is invoked. Indeed,
the algorithm pays LB−(uj−1, t, t), which must be less than 2LB+(uj−1, uj , uj),

The Online Set Aggregation Problem 255

otherwise process i + j would have hit a milestone within (uj , t). Similarly, at
time t point process i + k = a does not incur any cost, as otherwise process a
would have hit a milestone before time t. Thus to establish the induction, we
need to show that 2x0 + 4

∑k−1
j=1 xj + c

∑k−1
j=0 xj lg yj ≤ cz lg Y .

Note that our induction is using the fact that the cost for
RetrospectiveCover during a time interval (uj−1, uj) is identical to the cost
of RetrospectiveCover on the subinstance of requests that are released dur-
ing (uj−1, uj), essentially because RetrospectiveCover can be viewed as a
recursive algorithm. We now normalize costs so that x0 = 1. Note that by
Lemma 5,

∑k−1
j=1 xj ≤ 1, and z ≥ 2 (or t wouldn’t be the next milestone). Thus

it is sufficient to show that 64
∏k−1

j=0 y
cxj

j ≤ Y 2c.
We now claim that the left hand side of this inequality is maximized, subject

to the constraint that
∑k−1

j=0 yj ≤ Y , when each yj = xjY/X, where X =
∑k−1

j=0 xj (this can be shown using the method of Lagrangian multipliers). Thus

it is sufficient to show that 64
∏k−1

j=0 (Y xj/X)cxj ≤ Y 2c, which is equivalent to

64Y c(X−2)
∏k−1

j=0 (xj)cxj ≤ XcX .
Since X ≤ 2 and Y ≥ 2, the value Y c(X−2) is maximized when Y = 2. Thus

it suffices to show that 64 · 2c(X−2)
∏k−1

j=0 (xj)cxj ≤ XcX . Because x0 = 1, it is

sufficient to show that 64 · 2c(X−2)
∏k−1

j=1 (xj)cxj ≤ XcX .
Using again the method of Lagrangian multipliers, we have that the max-

imum of the left hand side of this inequality, subject to
∑k−1

j=1 xj = X − 1, is

reached when all xj are equal. Hence it suffices show that 64·2c(X−2)
(

X−1
k−1

)cX

≤
XcX . Since ((X − 1)/X)cX is clearly between 0 and 1, it is sufficient to show
that 26−2c · 2cX ≤ (k − 1)cX , which, by simple algebra, is true for c = 6 and
when k ≥ 3.

The Rest of the Analysis. Lemma 6, which is proved in Sect.A, shows that
because the algorithm is trying to mimic proactive schedules, it will be the case
that the waiting cost for the algorithm is at most twice its service cost. Finally
in Theorem 2, also proved in Sect.A, we conclude that these lemmas imply that
our algorithm is O(log |R|)-competitive.

Lemma 6. For any set S serviced at time t in the schedule produced by the
algorithm RetrospectiveCover, it will be the case that Wt(S) ≤ 2C(S).

Theorem 2. The RetrospectiveCover algorithm is O(log |R|)-competitive.

4 Conclusion

Another possible way to generalize the multilevel aggregation problem is to
assume that the domain R of possible requests (perhaps it is useful to think
of R as “types” of possible requests), and the service cost C(S) for every sub-
set S of R, is known to the online algorithm a priori, and then consider the

256 R. A. Carrasco et al.

competitive ratio as a function of |R|. Our lower bound instance shows that the
optimal competitive ratio is Ω(log log |R|). Its not immediately clear to us how
to upper bound the competitiveness of our algorithm RetrospectiveCover in
terms of |R|, or how to design an algorithm where such an analysis is natural.
So, determining the optimal competitive ratio as a function of |R| seems like a
reasonable interesting open problem.

A Detailed Proofs

In this section we detail some of the proofs from Sect. 3.

Lemma 1. There exists a proactive schedule whose objective value is at most
twice optimal.

Proof. We show how to iteratively transform an arbitrary schedule Z into a
proactive schedule in such a way that the total cost at most doubles. Let t be
the next time in Z when there is an unserved set S, with the property that the
waiting time for S, infinitesimally after t, is greater than the service cost for S.
We then add the set S at time t to Z. The service cost of this set is at most
the total waiting time of the requests that it serves. Thus the total service cost
of the final schedule is at most the waiting time in the original Z ′. Further the
transformation can only decrease the total waiting cost, since the requests in S
are being served no later than they were originally.

Lemma 2. The value LB−(s, t, d) and LB+(s, t, d) are monotone on the set of
requests, that is, adding more requests between times s and t can not decrease
either. Moreover, LB−(s, t, d) and LB+(s, t, d) are non-decreasing as a function
of t and as a function of d, for any s ≤ t ≤ d.

Proof. Any schedule that is proactive for the larger set of requests is also proac-
tive for the smaller set of requests, because the waiting time of the requests
serviced can not be more in the smaller set of requests than in the larger set of
requests. The monotonicity on t follows directly from the monotonicity on the
set of requests. The monotonicity on d is clear since for any d ≤ d′, a proactive
solution up to time d′ is also proactive up to time d.

Lemma 3. Assume that RetrospectiveCover just computed a new deadline
d[i] in line 7. Then process i will either reach a new milestone or be terminated
by time d[i].

Proof. If d[i] is infinite, then this is obvious, so assume otherwise. If process i
is terminated before time d[i] then this is obvious, so assume otherwise. If no
requests arrive during the time interval (m[i], d[i]) then process i will reach a new
milestone exactly at time d[i] by the definition of milestones. If requests arrive
before d[i] then the claim follows by the monotonicity of LB+, see Lemma 2.

Lemma 5. It holds that
∑k−1

j=1 xj ≤ x0.

The Online Set Aggregation Problem 257

Proof. First notice that LB−(u−1, t, t) ≤ 2LB+(u−1, u0, u0) = 2x0, since oth-
erwise process i would have hit a milestone within the interval (u0, t). Then,
it suffices to show that

∑k−1
j=0 xj ≤ LB−(u−1, t, t). To show this last bound, fix

j ∈ {0, . . . , k − 1} and consider a proactive schedule Z for requests arriving
in (u−1, t). Within each interval (uj−1, uj), the solution is proactive when con-
sidering requests with release date in (uj−1, uj], and hence the serving cost of
the requests served by Z within this interval is at most LB+(uj−1, uj−1, uj).
We remark that this is also true for j = k − 1 as uk−1 < t. Taking Z
minimizing the service cost within (u−1, t), we obtain the required bound,
∑k−1

j=0 xj ≤ LB−(u−1, t, t).

Lemma 6. For any set S serviced at time t in the schedule produced by the
algorithm RetrospectiveCover, it will be the case that Wt(S) ≤ 2C(S).

Proof. Assume that a process i hit a milestone at time t. We adopt the nota-
tion from Subsubsect. 3.3.1 and illustrated in Fig. 1. Additionally let Uj be the
requests that are released in the time interval (uj−1, uj) for j ∈ {0, 1, . . . , k}.

We now prove that the sets serviced in line 5 have waiting time at most twice
the service cost. Also, we show that after serving such sets, the set ∪k

h=k−jUh

has no violated subset at time t, where j = a − �. We show this by induction
on j = a − �. The base case is when j = 0 (� = a). There is no violated subset
of Uk at time t since process i + k = a did not hit a milestone before time t.
Thus, no set serviced in LB−(s[a], t, t) is violated. Obviously, after servicing
such sets, Uk still has no violated subset. Now let us show the two properties for
an arbitrary j. By induction hypothesis, the set ∪k

h=k−(j−1)Uh has no violated
subset at time t. There is no violated subset of Uk−j at time t since the servicing
of sets in LB−(s[a − j],m[a − j], d[a − j]) = LB−(uk−j−1, uk−j , d[a − j]) at time
m[a − j] guaranteed that Uk−j would not have any violated subsets until after
time d[a− j] and t ≤ d[a− j]. Thus no set serviced in LB−(s[a− j], t, t) in line 5
has waiting time at most twice the service cost. Further since LB−(s[a−j], t, t) =
LB−(uk−j−1, t, t) is a proactive schedule, after serving sets in such solution the
set ∪k

h=k−jUh has no violated subset at time t.
Finally the same argument can be applied to the sets serviced in line 8 in

RetrospectiveCover.

Theorem 2. The RetrospectiveCover algorithm is O(log |R|)-competitive.

Proof. Applying Lemma 4 to the original process, and noting that the service
cost in the final invocation of line 8 is at most twice the previous service costs,
one obtains that the service cost for the algorithm is O(log |R|) times the lower
bound. By Lemma 1 the lower bound is at most twice the optimal, and by
Lemma 6 the waiting cost for requests serviced by the algorithm is at most the
service cost of these requests. Finally the waiting cost of any unserviced requests
is at most twice the service cost of the algorithm.

258 R. A. Carrasco et al.

References

1. Bienkowski, M., Böhm, M., Byrka, J., Chrobak, M., Dürr, C., Folwarcznỳ, L., Jez,
L., Sgall, J., Thang, N.K., Veselỳ, P.: Online algorithms for multi-level aggregation.
In: European Symposium on Algorithms, pp. 12:1–12:17 (2016)

2. Buchbinder, N., Feldman, M., Naor, J.S., Talmon, O.: O(depth)-competitive algo-
rithm for online multi-level aggregation. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 1235–1244 (2017)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)

4. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

5. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

6. Bienkowski, M., Böhm, M., Byrka, J., Chrobak, M., Dürr, C., Folwarcznỳ, L., Jeż,
L., Sgall, J., Thang, N.K., Veselỳ, P.: Online algorithms for multi-level aggregation.
arXiv preprint arXiv:1507.02378 (2015)

7. Aggarwal, A., Park, J.K.: Improved algorithms for economic lot sizing problems.
Oper. Res. 41, 549–571 (1993)

8. Dooly, D.R., Goldman, S.A., Scott, S.D.: On-line analysis of the TCP acknowledg-
ment delay problem. J. ACM 48(2), 243–273 (2001)

9. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other
stories about e/(e − 1). Algorithmica 36(3), 209–224 (2003)

10. Bienkowski, M., Byrka, J., Chrobak, M., Jeż, �L., Nogneng, D., Sgall, J.: Better
approximation bounds for the joint replenishment problem. In: ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 42–54 (2014)

11. Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online
make-to-order joint replenishment model: primal-dual competitive algorithms. In:
ACM-SIAM Symposium on Discrete Algorithms, pp. 952–961 (2008)

12. Bienkowski, M., Byrka, J., Chrobak, M., Dobbs, N., Nowicki, T., Sviridenko, M.,
Świrszcz, G., Young, N.E.: Approximation algorithms for the joint replenishment
problem with deadlines. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg,
D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 135–147. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39206-1 12

13. Badrinath, B., Sudame, P.: Gathercast: the design and implementation of a pro-
grammable aggregation mechanism for the internet. In: International Conference
on Computer Communications and Networks, pp. 206–213 (2000)

14. Bortnikov, E., Cohen, R.: Schemes for scheduling of control messages by hierarchi-
cal protocols. In: Joint Conference of the IEEE Computer and Communications
Societies, vol. 2, pp. 865–872 (1998)

15. Hu, F., Cao, X., May, C.: Optimized scheduling for data aggregation in wireless
sensor networks. In: International Conference on Information Technology: Coding
and Computing (ITCC 2005), vol. 2, pp. 557–561 (2005)

16. Yuan, W., Krishnamurthy, S., Tripathi, S.: Synchronization of multiple levels of
data fusion in wireless sensor networks. In: Global Telecommunications Conference,
vol. 1, pp. 221–225 (2003)

17. Papadimitriou, C.H.: Computational aspects of organization theory. In: Diaz, J.,
Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 559–564. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61680-2 82

http://arxiv.org/abs/1507.02378
https://doi.org/10.1007/978-3-642-39206-1_12
https://doi.org/10.1007/3-540-61680-2_82

The Online Set Aggregation Problem 259

18. Crowston, W.B., Wagner, M.H.: Dynamic lot size models for multi-stage assembly
systems. Manag. Sci. 20(1), 14–21 (1973)

19. Kimms, A.: Multi-level lot sizing and scheduling: methods for capacitated,
dynamic, and deterministic models. Springer, Heidelberg (1997). https://doi.org/
10.1007/978-3-642-50162-3

20. Lambert, D.M., Cooper, M.C.: Issues in supply chain management. Ind. Mark.
Manag. 29(1), 65–83 (2000)

21. Becchetti, L., Marchetti-Spaccamela, A., Vitaletti, A., Korteweg, P., Skutella, M.,
Stougie, L.: Latency-constrained aggregation in sensor networks. ACM Trans. Algo-
rithms 6(1), 13:1–13:20 (2009)

22. Pedrosa, L.L.C.: Private communication (2013)
23. Levi, R., Roundy, R., Shmoys, D.B.: Primal-dual algorithms for deterministic

inventory problems. Mathematics of Operations Research 31(2), 267–284 (2006)

https://doi.org/10.1007/978-3-642-50162-3
https://doi.org/10.1007/978-3-642-50162-3

Agglomerative Clustering
of Growing Squares

Thom Castermans1(B), Bettina Speckmann1 , Frank Staals2,
and Kevin Verbeek1

1 TU Eindhoven, Eindhoven, The Netherlands
{t.h.a.castermans,b.speckmann,k.a.b.verbeek}@tue.nl

2 Utrecht University, Utrecht, The Netherlands
f.staals@uu.nl

Abstract. We study an agglomerative clustering problem motivated by
interactive glyphs in geo-visualization. Consider a set of disjoint square
glyphs on an interactive map. When the user zooms out, the glyphs
grow in size relative to the map, possibly with different speeds. When
two glyphs intersect, we wish to replace them by a new glyph that cap-
tures the information of the intersecting glyphs.

We present a fully dynamic kinetic data structure that main-
tains a set of n disjoint growing squares. Our data structure uses
O(n(log n log log n)2) space, supports queries in worst case O(log3 n)
time, and updates in O(log7 n) amortized time. This leads to an
O(nα(n) log7 n) time algorithm (where α is the inverse Ackermann func-
tion) to solve the agglomerative clustering problem, which is a significant
improvement over the straightforward O(n2 log n) time algorithm.

1 Introduction

We study an agglomerative clustering problem motivated by interactive glyphs
in geo-visualization. Specifically, GlamMap1 [6] is a visual analytics tool for
the eHumanities which allows the user to interactively explore datasets which
contain metadata of a book collection. Each book is depicted by a square, color-
coded by publication year, and placed on a map according to the location of
its publisher. Overlapping squares are recursively aggregated into a larger glyph
until all glyphs are disjoint. As the user zooms out, the glyphs “grow” relative
to the map to remain legible. As a result, glyphs start to overlap and need to be
merged into larger glyphs to keep the map clear and uncluttered. To allow the

The Netherlands Organisation for Scientific Research (NWO) is supporting
T. Castermans (project number 314.99.117), B. Speckmann (project number
639.023.208), F. Staals (project number 612.001.651), and K. Verbeek (project num-
ber 639.021.541).

1 http://glammap.net/glamdev/maps/1, best viewed in Chrome. GlamMap currently
does not implement the algorithm described in this article.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 260–274, 2018.
https://doi.org/10.1007/978-3-319-77404-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_20&domain=pdf
http://orcid.org/0000-0002-8514-7858
http://glammap.net/glamdev/maps/1

Agglomerative Clustering of Growing Squares 261

Fig. 1. Events for growing squares: intersecting squares in red, merged squares in blue.
(Color figure online)

user to filter and browse real world data sets2 at interactive speed we hence need
an efficient agglomerative clustering algorithm for growing squares (glyphs).

Formal problem statement. Let P be a set of points in R
2. Each point p ∈ P

has a positive weight pw. Given a “time” parameter t, we interpret the points in
P as squares. More specifically, let �p(t) be the square centered at p with width
tpw. For ease of exposition we assume all point locations to be unique. With
some abuse of notation we may refer to P as a set of squares rather than the
set of center points of squares. Observe that initially, i.e. at t = 0, all squares
in P are disjoint. As t increases, the squares in P grow, and hence they may
start to intersect. When two squares �p(t) and �q(t) intersect at time t, we
remove both p and q and replace them by a new point z = κp + (1 − κ)q, with
κ = pw/(pw + qw), of weight zw = pw + qw (see Fig. 1). Our goal is to compute
the complete sequence of events where squares intersect and merge.

We present a fully dynamic data structure that uses O(n(log n log log n)2)
space, supports updates in O(log7 n) amortized time, and queries in O(log3 n)
time, which allows us to compute the agglomerative clustering for n squares in
O(nα(n) log7 n) time. Here, α is the extremely slowly growing inverse Ackermann
function. To the best of our knowledge, this is the first fully dynamic clustering
algorithm which beats the straightforward O(n2 log n) time bound.

Related Work. Funke et al. [7] introduced so-called “ball tournaments”, a
related, but simpler, problem, which is motivated by map labeling. Their input
is a set of balls in R

d with an associated set of priorities. The balls grow linearly
and whenever two balls touch, the ball with the lower priority is eliminated.
The goal is to compute the elimination sequence efficiently. Bahrdt et al. [4] and
Funke and Storandt [8] improved upon the initial results and presented bounds
which depend on the ratio Δ of the largest to the smallest radius. Specifically,
Funke and Storandt [8] show how to compute an elimination sequence for n balls
in O(n log Δ(log n+Δd−1)) time in arbitrary dimensions and in O(Cnpolylogn)
time for d = 2, where C denotes the number of different radii. In our setting
eliminations are not sufficient, since merged glyphs need to be re-inserted. Fur-

2 For example, the catalogue of WorldCat contains more than 321 million library
records at hundreds of thousands of distinct locations.

262 T. Castermans et al.

thermore, as opposed to typical map labeling problems where labels come in
fixed sizes, our glyphs can vary by a factor of 10.000 or more.

Ahn et al. [2] very recently and independently developed the first sub-
quadratic algorithms to compute elimination orders for ball tournaments. Their
results apply to balls and boxes in two or higher dimensions. Specifically, for
squares in two dimensions they can compute an elimination order in O(n log4 n)
time. Their results critically depend on the fact that they know the elimination
priorities at the start of their algorithm and that they have to handle only dele-
tions. Hence they do not have to run an explicit simulation of the growth process
and can achieve their results by the clever use of advanced data structures. In
contrast, we are handling the fully dynamic setting with both insertions and
deletions, and without a specified set of priorities.

Our clustering problem combines both dynamic and kinetic aspects: squares
grow, which is a restricted form of movement, and squares are both inserted
and deleted. There are comparatively few papers which tackle dynamic kinetic
problems. Alexandron et al. [3] present a dynamic and kinetic data structure for
maintaining the convex hull of points moving in R

2. Their data structure pro-
cesses (in expectation) O(n2βs+2(n) log n) events in O(log2 n) time each. Here,
βs(n) = λs(n)/n, and λs(n) is the maximum length of a Davenport-Schinzel
sequence on n symbols of order s. Agarwal et al. [1] present dynamic and kinetic
data structures for maintaining the closest pair and all nearest neighbors. The
expected number of events processed is roughly O(n2βs+2(n)polylogn), each of
which can be handled in O(polylogn) expected time. Some of our ideas and
constructions are similar in flavor to the structures presented in their paper.

Results and organization. We present a fully dynamic data structure that
can maintain a set P of disjoint growing squares. Our data structure reports an
intersection event at every time t when a square �q touches �p of a point p ∈ P
that dominates q. Here we say that a point p dominates q if and only if qx ≤ px

and qy ≤ py. We combine four of these data structures, one for each quadrant,
to ensure that all squares in P remain disjoint. When our structure detects an
intersection event we have to delete two or more of the squares and subsequently
insert a new, merged, square. At any time, our data structure supports querying
if a new square is disjoint from the ones in P (see Sect. 3.2), and inserting a new
disjoint square or removing an existing square (see Sect. 3.3).

The crucial observation is that we can maintain the points D(q) dominating
q in an order so that a prefix of D(q) will have their squares intersect the top
side of �q first, and the remaining squares will intersect the right side of �q first.
We formalize this in Sect. 2. We then present our data structure—essentially a
pair of range trees interlinked with “linking certificates”—in Sect. 3. While our
data structure is conceptually simple, the details are somewhat intricate. Our
initial analysis shows that our data structure maintains O(log6 n) certificates per
square, which yields an O(log7 n) amortized update time. This allows us to sim-
ulate the process of growing the squares in P—and thus solve the agglomerative
glyph clustering problem—in O(nα(n) log7 n) time using O(n log6 n) space.

Agglomerative Clustering of Growing Squares 263

In Sect. 4 we analyze the relation between canonical subsets in dominance
queries. We show that for two range trees TR and TB in R

d, the number of
pairs of nodes r ∈ TR and b ∈ TB for which r occurs in the canonical subset
of a dominance query defined by b and vice versa is only O(n(log n log log n)2),
where n is the total size of TR and TB. This implies that the number of linking
certificates that our data structure maintains, as well as the total space used, is
actually only O(n(log n log log n)2). Since the linking certificates actually provide
an efficient representation of all dominance relations between two point sets (or
within a point set), we believe that this result is of independent interest.

All proofs omitted from this article can be found in the full version [5].

2 Geometric Properties

Fig. 2. The projection of the square centers
and relevant corners onto line γ.

Let �q denote the bottom left vertex of
a square �q, and let rq denote the top
right vertex of �q. Furthermore, let
D(q) denote the subset of points of P
dominating q, and let L(q) = {�p | p ∈
D(q)} denote the set of bottom left
vertices of the squares of those points.

Observation 1. Let p ∈ D(q) be a
point dominating point q. The squares
�q(t) and �p(t) intersect at time t if
and only if rq(t) dominates �p(t) at
time t.

Consider a line γ with slope minus
one, project all points in Z(t) =
{rq(t)}∪L(q)(t), for some time t, onto
γ, and order them from left to right.
Observe that, since all points in Z
move along lines with slope one, this order does not depend on the time t.
Moreover, for any point p, we have rp(0) = �p(0) = p, so we can easily compute
this order by projecting the centers of the squares onto γ and sorting them. Let
D−(q) denote the (ordered) subset of D(q) that occur before q in the order along
γ, and let D+(q) denote the ordered subset of D(q) that occur at or after q in
the order along γ. We define L−(q) and L+(q) analogously (see Fig. 2).

Observation 2. Let p ∈ D(q) be a point dominating point q, and let t∗ be the
first time at which r = rq(t∗) dominates � = �p(t∗). We then have that

– �x < rx and �y = ry if and only if p ∈ D−(q), and
– �x = rx and �y ≤ ry if and only if p ∈ D+(q).

264 T. Castermans et al.

Observation 2 implies that the points p in D−(q) will start to intersect �q at
some time t∗ because the bottom left vertex �p of �p will enter �q through the
top edge, whereas the bottom left vertex of the (squares of the) points in D+(q)
will enter �q through the right edge. We thus obtain the following result.

Lemma 3. Let t∗ be the time that a square �p of a point p ∈ D(q) touches �q.
We then have that

(i) rq(t∗)y = �p(t∗)y, and �p(t∗) is the point with minimum y-coordinate among
the points in L−(q)(t∗) at time t∗, if and only if p ∈ D−(q), and

(ii) rq(t∗)x = �p(t∗)x, and �p(t∗) is the point with minimum x-coordinate among
the points in L+(q)(t∗) at time t∗, otherwise (i.e. if and only if p ∈ D+(q)).

3 A Kinetic Data Structure for Growing Squares

In this section we present a data structure that can detect the first intersection
among a dynamic set of disjoint growing squares. In particular, we describe a
data structure that can detect intersections between all pairs of squares �p,�q

in P such that p ∈ D+(q). We build an analogous data structure for when
p ∈ D−(q). This covers all intersections between pairs of squares �p,�q, where
p ∈ D(q). We then use four copies of these data structures, one for each quadrant,
to detect the first intersection among all pairs of squares.

We describe the data structure itself in Sect. 3.1, and we briefly describe how
to query it in Sect. 3.2. We deal with updates, e.g. inserting a new square into
P or deleting an existing square from P , in Sect. 3.3. In Sect. 3.4 we analyze the
total number of events that we have to process, and the time required to do so,
when we grow the squares.

3.1 The Data Structure

Our data structure consists of two three-layered trees TL and TR, and a set of
certificates linking nodes from TL and TR. These trees essentially form two 3D
range trees on the centers of the squares in P , taking the third coordinate pγ

of each point to be their rank in the order (from left to right) along the line γ.
The third layer of TL doubles as a kinetic tournament tracking the bottom left
vertices of squares. Similarly, TR tracks the top right vertices of the squares.

The Layered Trees. The tree TL is a 3D-range tree storing the center points in
P . Each layer is implemented by a bb[α] tree [11], and each node μ corresponds
to a canonical subset Pμ of points stored in the leaves of the subtree rooted
at μ. The points are ordered on x-coordinate first, then on y-coordinate, and
finally on γ-coordinate. Let Lμ denote the set of bottom left vertices of squares
corresponding to the set Pμ, for some node μ.

Agglomerative Clustering of Growing Squares 265

Consider the associated structure XL
v of some secondary node v. We consider

XL
v as a kinetic tournament on the x-coordinates of the points Lv [1]. More

specifically, every internal node w ∈ XL
v corresponds to a set of points Pw

consecutive along the line γ. Since the γ-coordinates of a point p and its bottom
left vertex �p are equal, this means w also corresponds to a set of consecutive
bottom left vertices Lw. Node w stores the vertex �p in Lw with minimum
x-coordinate, and will maintain certificates that guarantee this [1].

The tree TR has the same structure as TL: it is a three-layered range tree
on the center points in P . The difference is that a ternary structure XR

v , for
some secondary node v, forms a kinetic tournament maintaining the maximum
x-coordinate of the points in Rv, where Rv are the top right vertices of the
squares (with center points) in Pv. Hence, every ternary node z ∈ XR

v stores the
vertex rq with maximum x-coordinate among Rv. Let X L and X R denote the
set of all kinetic tournament nodes in TL and TR, respectively.

Linking the Trees. Next, we describe how to add linking certificates between
the kinetic tournament nodes in the trees TL and TR that guarantee the squares
are disjoint. More specifically, we describe the certificates, between nodes w ∈ X L

and z ∈ X R, that guarantee that the squares �p and �q are disjoint, for all pairs
q ∈ P and p ∈ D+(q).

Consider a point q. There are O(log2 n) nodes in the secondary trees of TL,
whose canonical subsets together represent exactly D(q). For each of these nodes
v we can then find O(log n) nodes in XL

v representing the points in L+(q). So,
in total q is interested in a set QL(q) of O(log3 n) kinetic tournament nodes.
It now follows from Lemma 3 that if we were to add certificates certifying that
rq is left of the point stored at the nodes in QL(q) we can detect when �q

intersects with a square of a point in D+(q). However, as there may be many
points q interested in a particular kinetic tournament node w, we cannot afford
to maintain all of these certificates. The main idea is to represent all of these
points q by a number of canonical subsets of nodes in TR, and add certificates
to only these nodes.

Consider a point p. Symmetric to the above construction, there are O(log3 n)
nodes in kinetic tournaments associated with TR that together exactly represent
the (top right corners of) the points q dominated by p and for which p ∈ D+(q).
Let QR(p) denote this set of kinetic tournament nodes.

Next, we extend the definitions of QL and QR to kinetic tournament
nodes. To this end, we first associate each kinetic tournament node with a
(query) point in R

3. Consider a kinetic tournament node w in a tourna-
ment XL

v , and let u be the node in the primary TL for which v ∈ Tu.
Let mw = (mina∈Pu

ax,minb∈Pv
by,minc∈Pw

cγ) be the point associated with
w (note that we take the minimum over different sets Pu, Pv, and Pw for
the different coordinates), and define QR(w) = QR(mw). Symmetrically, for
a node z in a tournament XR

v , with v ∈ Tu and u ∈ TR, we define
mz = (maxa∈Pu

ax,maxb∈Pv
by,maxc∈Pz

cγ) and QL(z) = QL(mz). See Fig. 3.

266 T. Castermans et al.

Fig. 3. The points mz and mw are defined by a pair of nodes z ∈ XR
v′ , with v′ ∈ Tu′ , and

w ∈ XL
v , with v ∈ Tu. If w ∈ QL(mz) and z ∈ Q(mw) then we add a linking certificate

between the rightmost upper right-vertex rq, q ∈ Pz, and the leftmost bottom left
vertex �p, p ∈ Pw.

We now add a linking certificate between every pair of nodes w ∈ X L and
z ∈ X R for which (i) w is a node in the canonical subset of z, that is w ∈ QL(z),
and (ii) vice versa, z ∈ QR(w). Such a certificate will guarantee that the point
rq currently stored at z lies left of the point �p stored at w.

Lemma 4. Every kinetic tournament node is involved in O(log3 n) linking cer-
tificates, and thus every point p is associated with at most O(log6 n) certificates.

We now argue that we can still detect the first upcoming intersection.

Lemma 5. Consider two sets of elements, say blue elements B and red elements
R, stored in the leaves of two binary search trees TB and TR, respectively, and let
p ∈ B and q ∈ R, with q < p, be leaves in trees TB and TR, respectively. There is
a pair of nodes b ∈ TB and r ∈ TR, such that (i) p ∈ Pb and b ∈ C(TB , [x′,∞)),
and (ii) q ∈ Pr and r ∈ C(TR, (−∞, x]), where x′ = max Pr, x = min Pb, and
C(TS , I) denotes the minimal set of nodes in TS whose canonical subsets together
represent exactly the elements of S ∩ I.

Agglomerative Clustering of Growing Squares 267

Fig. 4. The nodes b and r in
the trees TB and TR. (Color
figure online)

Proof. Let b be the first node on the path from the
root of TB to p such that the canonical subset Pb of b
is contained in the interval [q,∞), but the canonical
subset of the parent of b is not. We define b to be
the root of TB if no such node exists. We define r
to be the first node on the path from the root of
TR to q for which Pr is contained in (−∞, x] but
the canonical subset of the parent is not. We again
define r as the root of TR if no such node exists (see
Fig. 4). Clearly, we now have that r is one of the
nodes whose canonical subsets form R ∩ (−∞, x],
and that q ∈ Pr (as r lies on the search path to
q). It is also easy to see that p ∈ Pb, as b lies on
the search path to p. All that remains is to show
that b is one of the canonical subsets that together
form B ∩ [x′,∞). This follows from the fact that
q ≤ x′ < x ≤ p—and thus Pb is indeed a subset of
[x′,∞)—and the fact that the subset of the parent
v of b contains an element smaller than q, and can
thus not be a subset of [x′,∞). ��
Lemma 6. Let �p and �q, with p ∈ D+(q), be the first pair of squares to
intersect, at some time t∗, then there is a pair of nodes w, z that have a linking
certificate that fails at time t∗.

Proof. Consider the leaves representing p and q in TL and TR, respectively. By
Lemma 5 we get that there is a pair of nodes u ∈ TL and u′ ∈ TR that, among
other properties, have p ∈ Pu and q ∈ Pu′ . Hence, we can apply Lemma 5 again
on the associated trees of u and u′, giving us nodes v ∈ Tu and v′ ∈ Tu′ which
again have p ∈ Pv and q ∈ Pv′ . Applying Lemma 5 once more on XL

v and XR
v′

gives us nodes w ∈ XL
v and z ∈ XR

v′ with p ∈ Pw and q ∈ Pz. In addition, these
three applications of Lemma 5 give us two points (x, y, γ) and (x′, y′, γ′) where:

– Pu occurs as a canonical subset representing P ∩ ([x′,∞) × R
2),

– Pv occurs as a canonical subset representing Pu ∩ (R × [y′,∞) × R), and
– Pw occurs as a canonical subset representing Pv ∩ (R2 × [γ′,∞)),

and such that

– Pu′ occurs as a canonical subset representing P ∩ ((−∞, x] × R
2),

– Pv′ occurs as a canonical subset representing Pu′ ∩ (R × (−∞, y] × R), and
– Pz occurs as a canonical subset representing Pv′ ∩ (R2 × (−∞, γ]).

Combining these first three facts, and observing that mz = (x′, y′, γ′) gives
us that Pw occurs as a canonical subset representing P ∩ ([x′,∞) × [y′,∞) ×
[γ′,∞)) = D+((x′, y′, γ′)), and hence w ∈ QL(mz) = QL(z). Analogously, com-
bining the latter three facts and mw = (x, y, γ) gives us z ∈ QR(w). Therefore,
w and z have a linking certificate. This linking certificate involves the leftmost
bottom left vertex �a for some point a ∈ Pw and the rightmost top right vertex

268 T. Castermans et al.

rb for some point b ∈ Pz. Since p ∈ Pw and q ∈ Pz, we have that rq ≤ rb and
�a ≤ �p, and thus we detect their intersection at time t∗. ��

From Lemma 6 it follows that we can now detect the first intersection between
a pair of squares �p,�q, with p ∈ D+(q). We define an analogous data structure
for when p ∈ D−(q). Following Lemma3, the kinetic tournaments will maintain
the vertices with minimum and maximum y-coordinate for this case. We then
again link up the kinetic tournament nodes in the two trees appropriately.

Space Usage. Our trees TL and TR are range trees in R
3, and thus use

O(n log2 n) space. However, it is easy to see that this is dominated by the space
required to store the certificates. For all O(n log2 n) kinetic tournament nodes
we store at most O(log3 n) certificates (Lemma 4), and thus the total space used
by our data structure is O(n log5 n). In Sect. 4 we will show that the number of
certificates that we maintain is actually only O(n(log n log log n)2). This means
that our data structure also uses only O(n(log n log log n)2) space.

3.2 Answering Queries

The basic query that our data structure supports is testing if a query square
�q currently intersects with a square �p in P , with p ∈ D+(q). To this end, we
simply select the O(log3 n) kinetic tournament nodes whose canonical subsets
together represent D+(q). For each node w we check if the x-coordinate of the
lower-left vertex �p stored at that node (which has minimum x-coordinate among
Lw) is smaller than the x-coordinate of rq. If so, the squares intersect. The
correctness of our query algorithm directly follows from Observation 2. The total
time required for a query is O(log3 n). Similarly, we can test if a given query
point q is contained in a square �p, with p ∈ D+(q). Our complete data structure
contains additional trees analogous to TL that can be used to check if there is
a square �p ∈ P that intersects �q, with p ∈ D−(q) or p in one of the other
quadrants defined by q.

3.3 Inserting or Deleting a Square

At an insertion or deletion of a square �p we proceed in three steps. (1) We
update TL and TR, restoring range tree properties, and ensure that the ternary
data structures are correct kinetic tournaments. (2) For each kinetic tournament
node in X L affected by the update, we query TR to find a new set of linking
certificates. We update X R analogously. (3) We update the global event queue.

Lemma 7. Inserting or deleting a square in TL takes O(log3 n) amortized time.

Proof. We use the following standard procedure for updating the three-level
bb[α] trees TL in O(log3 n) amortized time. An update (insertion or deletion) in
a ternary data structure can easily be handled in O(log n) time. When we insert
into or delete an element x in a bb[α] tree that has associated data structures, we
add or remove the leaf that contains x, rebalance the tree by rotations, and finally

Agglomerative Clustering of Growing Squares 269

Fig. 5. After a left rotation around an edge (μ, ν), the associated data structure Tµ of
node μ (pink) has to be rebuilt from scratch as its canonical subset has changed. For
node ν we can reuse the old associated data of node μ. No other nodes are affected.
(Color figure online)

add or remove x from the associated data structures. When we do a left rotation
around an edge (μ, ν) we have to build a new associated data structure for node μ
from scratch. See Fig. 5. Right rotations are handled analogously. It is well known
that if building the associated data structure at node μ takes O(|Pμ| logc |Pμ|)
time, for some c ≥ 0, then the costs of all rebalancing operations in a sequence
of m insertions and deletions takes a total of O(m logc+1 n) time, where n is the
maximum size of the tree at any time [10]. We can build a new kinetic tournament
XL

v for node v (using the associated data structures at its children) in linear
time. Note that this cost excludes updating the global event queue. Building
a new secondary tree Tv, including its associated kinetic tournaments, takes
O(|Tv| log |Tv|) time. It then follows that the cost of our rebalancing operations
is at most O(m log2 n). This is dominated by the total number of nodes created
and deleted, O(m log3 n), during these operations. Hence, we can insert or delete
a point (square) in TL in O(log3 n) amortized time. ��

Clearly we can update TR in O(log3 n) amortized time as well. Next, we
update the linking certificates. We say that a kinetic tournament node w in TL

is affected by an update if (i) the update added or removed a leaf node in the
subtree rooted at w, (ii) node w was involved in a tree rotation, or (iii) w occurs
in a newly built associated tree XL

v (for some node v). Let X L
i denote the set

of nodes affected by update i (X R
i of TR is defined analogously). For each node

w ∈ X L
i , we query TR to find the set of O(log3 n) nodes whose canonical subsets

represent QR(w). For each node z in this set, we test if we have to add a linking
certificate between w and z. As we show next, this takes constant time for each
node z, and thus O(

∑
i |X L

i | log3 n) time in total, for all nodes w (analogously
for X R

i).
We have to add a link between a node z ∈ QR(w) and w if and only if we also

have w ∈ QL(z). We test this as follows. Let v be the node whose associated tree
XL

v contains w, and let u be the node in TL whose associated tree contains v.
We have that w ∈ QL(z) if and only if u ∈ C(TL, [mz

x,∞)), v ∈ C(Tu, [mz
y,∞)),

and w ∈ C(XL
v , [mz

γ ,∞)). We can test each of these conditions in constant time:

Observation 8. Let q be a query point in R
1, let w be a node in a binary

search tree T , and let xp = min Pp of the parent p of w in T , or xp = −∞ if no

270 T. Castermans et al.

such node exists. We have that w ∈ C(T, [q,∞)) if and only if q ≤ min Pw and
q > xp.

Finally, we delete all certificates involving no longer existing nodes from our
global event queue, and replace them by all newly created certificates. This
takes O(log n) time per certificate. We charge the cost of deleting a certificate to
when it gets created. Since every node w affected creates at most O(log3 n) new
certificates, all that remains is to bound the total number of affected nodes. Here
we can use basically the same argument as when bounding the update time.

Lemma 9. Inserting a disjoint square into P , or deleting a square from P takes
O(log7 n) amortized time.

3.4 Running the Simulation

All that remains is to analyze the number of events processed, and the time to
do so. Since each failure of a linking certificate produces an intersection, and
thus an update the number of such events is at most the number of updates. To
bound the number of events created by the tournament trees we use an argument
similar to that of Agarwal et al. [1].

Theorem 10. We can maintain a set P of n disjoint growing squares in a
fully dynamic data structure such that we can detect the first time that a square
�q intersects with a square �p, with p ∈ D+(q). Our data structure uses
O(n(log n log log n)2) space, supports updates in O(log7 n) amortized time, and
queries in O(log3 n) time. For a sequence of m operations, the structure processes
a total of O(mα(n) log3 n) events in a total of O(mα(n) log7 n) time.

Proof. We argued the bounds on the space usage, the query time, and the update
time before. All that remains is to bound the number of events processed, and
the time it takes to do so.

We start by the observation that each failure of a linking certificate produces
an intersection, and thus a subsequent update. It thus follows that the number
of such events is at most m.

To bound the number of events created by the tournament trees we extend
the argument of Agarwal et al. [1]. For any kinetic tournament node w in TL, the
minimum x-coordinate corresponds to a lower envelope of line-segments in the
t, x-space. This envelope has complexity O(|P ∗

w|α(|P ∗
w|)) = O(|P ∗

w|α(n)), where
P ∗

w is the multiset of points that ever occur in Pw, i.e. that are stored in a leaf
of the subtree rooted at w at some time t. Hence, the number of tournament
events involving node w is also at most O(|P ∗

w|α(n)). It then follows that the
total number of events is proportional to the size of these sets P ∗

w, over all
w in our tree. As in Lemma 7, every update directly contributes one point to
O(log3 n) nodes. The remaining contribution is due to rebalancing operations,
and this cost is again bounded by O(m log2 n). Thus, the total number of events
processed is O(mα(n) log3 n).

Agglomerative Clustering of Growing Squares 271

At every event, we have to update the O(log3 n) linking certificates of w.
This can be done in O(log4 n) time (including the time to update the global
event queue). Thus, the total time for processing all kinetic tournament events
in TL is O(mα(n) log7 n). The analysis for the kinetic tournament nodes z in
TR is analogous. ��

To simulate the process of growing the squares in P , we now maintain eight
copies of the data structure from Theorem 10: two data structures for each quad-
rant (one for D+, the other for D−). We thus obtain the following result.

Theorem 11. We can maintain a set P of n disjoint growing squares in a
fully dynamic data structure such that we can detect the first time that two
squares in P intersect. Our data structure uses O(n(log n log log n)2) space, sup-
ports updates in O(log7 n) amortized time, and queries in O(log3 n) time. For
a sequence of m operations, the structure processes O(mα(n) log3 n) events in a
total of O(mα(n) log7 n) time.

And thus we obtain the following agglomerative glyph clustering solution.

Theorem 12. Given a set of n initial square glyphs P , we can compute an
agglomerative clustering of the squares in P in O(nα(n) log7 n) time using
O(n(log n log log n)2) space.

4 Efficient Representation of Dominance Relations

The linking certificates of our data structure actually comprise an efficient repre-
sentation of all dominance relations between two point sets. This representation,
and in particular the tighter analysis in this section, is of independent interest.

Let R and B be two point sets in R
d with |R| = n and |B| = m, and let

TR and TB be range trees built on R and B, respectively. We assume that each
layer of TR and TB is a bb[α]-tree. By definition, every node u on the lowest
layer of TR or TB has an associated d-dimensional range Qu (the hyper-box, not
the subset of points). For a node u ∈ TR, we consider the subset of points in B
that dominate all points in Qu, which can be comprised of O(logd m) canonical
subsets of B, represented by nodes in TB . Similarly, for a node v ∈ TB, we
consider the subset of points in R that are dominated by all points in Qv, which
can be represented by O(logd n) nodes in TR. We now link a node u ∈ TR and
a node v ∈ TB if and only if v represents such a canonical subset for u and
vice versa. By repeatedly applying Lemma 5 for each dimension, it can easily be
shown that these links represent all dominance relations between R and B.

As a d-dimensional range tree consists of O(n logd−1 n) nodes, a trivial bound
on the number of links is O(m log2d−1 n) (assuming n ≥ m). Below we show that
the number of links can be bounded by O(n(log n log log n)d−1).

Analyzing the Number of Links in 1D. Let R and B be point sets in R

with |R| = n, |B| = m, and n ≥ m. Now, every associated range of a node u in
TR or TB is an interval Iu. We extend the interval to infinity in one direction;

272 T. Castermans et al.

to the left for u ∈ TR, and to the right for u ∈ TB. For analysis purposes we
construct another range tree T on R∪B, where T is not a bb[α]-tree, but instead
a perfectly balanced tree with height
log(n + m)�. For convenience we slightly
expand the associated intervals of T so that all points in R ∪ B are interior to
the associated intervals. We associate a node u in TR or TB with a node v in T
if the endpoint of Iu is contained in the associated interval Iv of v.

Observation 13. Nodes of TR or TB are associated with at most one node per
level of T .

For two intervals Iu = (−∞, a] and Iv = [b,∞), corresponding to a node u ∈ TR

and a node v ∈ TB , let [a, b] be the spanning interval of u and v. We now want to
charge spanning intervals of links to nodes of T . We charge a spanning interval
Iuv = [a, b] to a node w of T if and only if [a, b] is a subset of Iw, and [a, b] is cut
by the splitting coordinate of w. Clearly, every spanning interval can be charged
to exactly one node of T . Now, for a node u of T , let hR(u) be the height of the
highest node of TR associated with u, and let hB(u) be the height of the highest
node of TB associated with u.

Lemma 14. O(hR(u) · hB(u)) spanning intervals are charged to a node u of T .

Proof. Let x be the splitting coordinate of u and let r ∈ TR and b ∈ TB form a
spanning interval that is charged to u. We claim that, using the notation intro-
duced in Lemma 5, r ∈ C(TR, (−∞, x]) (and symmetrically, b ∈ C(TB , [x,∞))).
Let Ib = [x′,∞) be the associated interval of b, where x′ > x. By definition,
r ∈ C(TR, (−∞, x′]). If r /∈ C(TR, (−∞, x]), then the right endpoint of Ir must
lie between x and x′. But then the spanning interval of r and b would not be
charged to u. As a result, we can only charge spanning intervals between hR(u)
nodes of TR and hB(u) nodes of TB, of which there are O(hR(u) · hB(u)). ��

Using Lemma 14, we count the total number of charged spanning intervals
and hence, links between TR and TB. We refer to this number as N(TR, TB).
This is simply

∑
u∈T O(hR(u)·hB(u)) ≤ ∑

u∈T O(hR(u)2+hB(u)2). We can split
the sum and assume w.l.o.g. that N(TR, TB) ≤ 2

∑
u∈T O(hR(u)2). Rewriting

the sum based on heights in TR and writing nT (hR) for the number of nodes of
T that have a node of height hR associated with it gives

N(TR, TB) ≤
height(TR)∑

hR =0

nT (hR) · O(h2
R).

To bound nT (h) we use Observation 13 and the fact that TR is a bb[α] tree. Let
c = 1

1−α , then we get that height(TR) ≤ logc(n) from properties of bb[α] trees.
Therefore, the number of nodes in TR that have height h is at most O(n

ch
).

Lemma 15. nT (h) = O
(

(n+m)h
ch

)
.

Agglomerative Clustering of Growing Squares 273

Proof. As argued, there are at most O(n/ch) nodes in TR of height h. Consider
cutting the tree T at level log(n/ch). This results in a top tree of size O(n/ch),
and O(n/ch) bottom trees. Clearly, the top tree contributes at most its size
to nT (h). All bottom trees have height at most
log(n + m)� − log(n/ch) =
O(log(ch)+log(1+m/n)) = O(h+m/n). Every node in TR of height h can, in the
worst case, be associated with one distinct node per level in the bottom trees by
Observation 13. Hence, the bottom trees contribute at most O(n(h+m/n)/ch) =
O((nh + m)/ch) = O((n + m)h/ch) to nT (h). ��

Using this bound on nT (h) in the sum we previously obtained gives

N(TR, TB) ≤
height(TR)∑

hR=0

O

(
(n + m)h3

R

chR

)

≤ O(n + m)
∞∑

h=0

h3

ch
= O(n + m).

Where indeed,
∑∞

h=0
h3

ch
= O(1) because c > 1. Thus, we conclude:

Theorem 16. The number of links between two 1-dimensional range trees TR

and TB containing n and m points, respectively, is bounded by O(n + m).

Extending to Higher Dimensions. We now extend the bound to d dimen-
sions. We first determine the links for the top-layer of the range trees. This results
in links between associated range trees of d − 1 dimensions (see Fig. 6). We then
bound the number of links within the linked associated trees by induction on d.

Fig. 6. Two layered trees with two layers, and the links between them (sketched in
black). We are interested in bounding the number of such links.

Theorem 17. The number of links between two d-dimensional range trees TR

(on n points) and TB (on m ≤ n points), is bounded by O(n(log n log log n)d−1).

Proof. We show by induction on d that the number of links is bounded by the
minimum of O(n(log n log log n)d−1) and O(m log2d−1 n). The second bound is
the trivial bound stated above. The base case d = 1 is provided by Theorem16.
Consider the case d > 1. We first determine the links for the top-layer of TR

and TB. Now consider the links between an associated tree Tu in TR containing
k points and other associated trees T0, . . . , Tr that contain at most k points.
Since Tu can be linked with only one associated tree per level, and because
both range trees use bb[α] trees, the number of points m0, . . . , mr in T0, . . . , Tr

274 T. Castermans et al.

satisfy mi ≤ k/ci (0 ≤ i ≤ r) where c = 1
1−α . By induction, the number of links

between Tu and Ti is bounded by the minimum of O(k(log n log log n)d−2) and
O(mi log2d−3 n). Now let i∗ = logc(logd−1 n) = O(log log n). Then, for i ≥ i∗, we
get that O(mi log2d−3 n) = O(k logd−2 n). Since the sizes of the associated trees
decrease geometrically, the total number of links between Tu and Ti for i ≥ i∗ is
bounded by O(k logd−2 n). The links with the remaining trees can be bounded
by O(k logd−2 n(log log n)d−1). Finally note that the top-layer of each range tree
has O(log n) levels, and that each level contains n points in total. Thus, we
obtain O(n logd−1 n(log log n)d−1) links in total. The remaining links for which
the associated tree in TB is larger than in TR can be bounded analogously. ��
It follows from Theorem 17 that the number of certificates maintained, and thus
the space used, by our data structure from Sect. 3 is only O(n(log n log log n)2).

References

1. Agarwal, P.K., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for
closest pair and all nearest neighbors. ACM Trans. Algorithms 5(1), 4:1–4:37 (2008)

2. Ahn, H.-K., Bae, S.W., Choi, J., Korman, M., Mulzer, W., Oh, E., Park, J.-W.,
van Renssen, A., Vigneron, A.: Faster algorithms for growing prioritized disks and
rectangles. In: International Symposium on Symbolic and Algebraic Computation,
pp. 1–13 (2017)

3. Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for
convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36(2), 144–1158
(2007)

4. Bahrdt, D., Becher, M., Funke, S., Krumpe, F., Nusser, A., Seybold, M., Storandt,
S.: Growing balls in R

d. In: Proceedings of the 19th Workshop on Algorithm Engi-
neering and Experiments, pp. 247–258 (2017)

5. Castermans, T., Speckmann, B., Staals, F., Verbeek, K.: Agglomerative clustering
of growing squares. ArXiv e-prints (2017)

6. Castermans, T., Speckmann, B., Verbeek, K., Westenberg, M.A., Betti, A.,
van den Berg, H.: GlamMap: geovisualization for e-humanities. In: Proceedings
of the 1st Workshop on Visualization for the Digital Humanities (2016)

7. Funke, S., Krumpe, F., Storandt, S.: Crushing disks efficiently. In: Mäkinen, V.,
Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 43–54. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44543-4 4

8. Funke, S., Storandt, S.: Parametrized runtimes for ball tournaments. In: Proceedings
of the 33rd European Workshop on Computational Geometry, pp. 221–224 (2017)

9. Guibas, L.: Kinetic data structures. In: Mehta, D.P., Sahni, S. (eds.) Handbook of
Data Structures and Applications, pp. 23:1–23:18. CRC Press, Boca Raton (2004)

10. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer,
Heidelberg (1984). https://doi.org/10.1007/978-3-642-69672-5

11. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J.
Comput. 2(1), 33–43 (1973)

https://doi.org/10.1007/978-3-319-44543-4_4
https://doi.org/10.1007/978-3-642-69672-5

Fourier Entropy-Influence Conjecture
for Random Linear Threshold Functions

Sourav Chakraborty1,2, Sushrut Karmalkar3, Srijita Kundu4,
Satyanarayana V. Lokam5 , and Nitin Saurabh6(B)

1 Chennai Mathematical Institute, Chennai, India
sourav@cmi.ac.in

2 Centrum Wiskunde Informatika, Amsterdam, Netherlands
3 University of Texas, Austin, USA

sushrutk@cs.utexas.edu
4 Centre for Quantum Technologies, Singapore, Singapore

srijita.kundu@u.nus.edu
5 Microsoft Research, Bangalore, India

Satya.Lokam@microsoft.com
6 Charles University, Prague, Czech Republic

nitin@iuuk.mff.cuni.cz

Abstract. The Fourier-Entropy Influence (FEI) Conjecture states that
for any Boolean function f : {+1,−1}n → {+1,−1}, the Fourier entropy
of f is at most its influence up to a universal constant factor. While the
FEI conjecture has been proved for many classes of Boolean functions, it
is still not known whether it holds for the class of Linear Threshold Func-
tions. A natural question is: Does the FEI conjecture hold for a “random”
linear threshold function? In this paper, we answer this question in the
affirmative. We consider two natural distributions on the weights defin-
ing a linear threshold function, namely uniform distribution on [−1, 1]
and Normal distribution.

1 Introduction

Boolean functions are the most basic object of study in Theoretical Computer
Science. There are many complexity measures associated with a Boolean function
f : {+1,−1}n → {+1,−1}, e.g., degree, sensitivity, certificate complexity, etc.
These measures provide lower bound on the complexity of a Boolean function
in different models of computation (e.g., PRAM, Circuits/Formulas, Decision
trees, etc.).

A particularly interesting one is the average sensitivity of a Boolean function.
Given f : {+1,−1}n → {+1,−1}, and an input x ∈ {+1,−1}n, sensitivity of f
at x, denoted s(f, x), is defined as the number of neighbours of x in the Hamming
cube where f takes different value than at x. The average sensitivity of f , denoted

N. Saurabh—The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013)/ERC Grant Agreement n. 616787.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 275–289, 2018.
https://doi.org/10.1007/978-3-319-77404-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_21&domain=pdf
http://orcid.org/0000-0002-0218-6668

276 S. Chakraborty et al.

as(f), is the average of s(f, x), Ex[s(f, x)], under the uniform distribution. In the
definition above, we fixed an x ∈ {+1,−1}n and looked at the variables the
value of f(x) depends on. Similarly, we can fix a variable i ∈ [n], and look at the
number of inputs x such that the value f(x) depends on this variable. This leads
us to the notion of influence. The influence of the i-th variable, denoted Infi(f),
is defined to be Prx[f(x) �= f(xi)], where x is chosen uniformly at random and
xi denotes x with i-th variable negated. The influence of f , Inf(f), is defined
as

∑n
i=1 Infi(f). It is easily seen that Inf(f) equals as(f). Influence is related

to many complexity measures, and many of these relations can be established
via Fourier analysis. For example, circuit size [1,2], formula size [3], decision
trees [4], etc. For an in-depth treatment of Fourier analysis in Boolean functions
we refer to [5].

Every Boolean function f : {+1,−1}n → {+1,−1} has a unique representa-
tion in the Fourier basis :

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S

xi .

The set of Fourier coefficients is given by {f̂(S)}S⊆[n]. It follows from Parse-
val’s identity that

∑
S⊆[n] f̂(S)2 = Ex[f(x)2] = 1. Thus, the squared Fourier

coefficients naturally define a distribution over the subsets of {1, 2, . . . , n}. The
Fourier-entropy of f , denoted H(f), is defined to be the Shannon entropy of this
distribution. That is,

H(f) :=
∑

S⊆[n]

f̂(S)2 log
1

f̂(S)2
.

A longstanding and important conjecture in Analysis of Boolean functions states
that the Fourier entropy of a Boolean function is bounded above by the total
influence of the function up to a constant factor. More formally,

Fourier-Entropy Influence (FEI) Conjecture: There exists a universal constant
C > 0 such that for all f : {+1,−1}n → {+1,−1}, H(f) � C · Inf(f). That is,

∑

S⊆[n]

f̂(S)2 log
1

f̂(S)2
� C ·

∑

S⊆[n]

|S|f̂(S)2 . (1)

The conjecture was made by Friedgut and Kalai [6] in 1996. The genesis of
the conjecture is in the study of threshold phenomena in random graphs [6].
For example, it implies a lower bound of Ω(log2 n) on the influence of any n-
vertex monotone graph property. The current best lower bound, by Bourgain
and Kalai [7], is Ω(log2−ε n), for any constant ε > 0. However, over time, many
non-trivial implications have been observed. In particular, it implies a variant of
Mansour’s Conjecture [8] that is sufficient to imply a polynomial time agnostic
learning algorithm for DNFs [9], for any constant error parameter, resolving a
major open problem [10] in computational learning theory.

Fourier Entropy-Influence Conjecture 277

Mansour’s Conjecture (variant): Let f : {+1,−1}n → {+1,−1} be any Boolean
function computable by a t-term DNF formula. Then, for any ε > 0, there exists a
polynomial p with tO(1/ε) terms such that E[(f −p)2] � ε. (Mansour conjectured
the exponent of t to be O(log 1

ε) [8].)
In general, the FEI conjecture implies sparse L2-approximations for Boolean

functions. That is, it implies the existence of a polynomial p with 2O(Inf(f)/ε)

terms such that E[(f − p)2] � ε, for any ε > 0. Presently, the best known
construction [11] yields a bound of 2O((Inf(f)/ε)2) on the number of terms.

Finally, the FEI inequality (1) is also known to imply the famous Kahn-
Kalai-Linial theorem [12].

KKL Theorem: For any Boolean function f : {+1,−1}n → {+1,−1}, there
exists an i ∈ [n] such that Infi(f) = Ω

(
Var(f) log n

n

)
.

In fact, as observed by [13], the following weakening of the FEI conjecture
suffices to imply the KKL theorem.

Fourier Min-Entropy-Influence (FMEI) Conjecture: There exists a universal
constant C > 0 such that for all f : {+1,−1}n → {+1,−1},

min
S⊆[n]

log
1

f̂(S)2
� C · Inf(f).

In other words, it conjectures how large the maximum Fourier coefficient must
be. That is, there exists a set S ⊆ [n] such that f̂(S)2 � 2−C·Inf(f).

For more on the FEI conjecture we refer the interested reader to Gil Kalai’s
blog post [14].

While the FEI and the FMEI conjectures have resisted solutions for long, it
is easy to verify the conjectures for simple functions such as OR, AND, Tribes,
Majority, etc. Thus, researchers have tried to establish the conjectures for special
classes of Boolean functions. In particular, it has been shown that FEI conjec-
ture holds for random DNFs [15], symmetric functions and read-once decision
trees [13], random functions [16], read-once formulas [17,18], decision trees with
bounded average depth [18,19], and bounded read decision trees [19]. In [13] it
was also observed that FMEI conjecture holds for monotone functions.

In this paper, we study the FEI conjecture for the class of linear threshold
functions (LTF). A Boolean function f : {+1,−1}n → {+1,−1} is said to be
an LTF if there exists w0, w1, . . . , wn ∈ R such that for all x ∈ {+1,−1}n,
f(x) = sign(w0 + w1x1 + · · · + wnxn), where, the sign is the function that maps
positive values to +1 and negative values to −1. We assume, without loss of
generality, sign(0) = −1.

We observe that the KKL theorem implies Fourier Min-Entropy-Influence
conjecture holds for linear threshold functions using the same idea from [13].
But for the case of the FEI conjecture we still cannot show that it holds for
linear threshold functions in general. So a natural question to ask is:

Does FEI conjecture hold for a random LTF?

278 S. Chakraborty et al.

Similar question has been asked and answered for other classes of functions
(for random DNFs [15] and for random Boolean functions [16]). A natural way
of defining a random LTF is when the coefficients w0, . . . , wn are drawn from
a distribution D. Choosing w0, . . . , wn is equivalent to choosing a direction in
(n + 1)-dimensions. Thus, a natural way of sampling an LTF is to sample a
unit vector in (n + 1)-dimensions. There are many ways to sample a unit vector
uniformly [20–23]. It is well known that a simple way to sample a unit vector
uniformly in (n + 1)-dimensions is to sample each coordinate from standard
normal distribution and then normalize the vector. Specifically, we consider for
D the standard normal distribution and the uniform distribution over [−1, 1].
To establish our main result, Theorem1, we prove a generic technical result
that says that the FEI conjecture holds with very high probability as long as D
possesses some “nice” properties. Informally, these properties say that a centered
random variable with variance 1 and bounded third absolute moment has at least
a constant probability mass above the third absolute moment. Our main results
are stated below for two specific natural distributions.

Theorem 1 (Main) [Informal]

1. If w0, . . . , wn are drawn from the normal distribution N(0, 1) and f(x) =
sign(w0 + w1x1 + · · · + wnxn) then with high probability the FEI Conjecture
holds for f .

2. If w0, . . . , wn are drawn from the uniform distribution over [−1, 1] and f(x) =
sign(w0 + w1x1 + · · · + wnxn) then with high probability the FEI Conjecture
holds for f .

We also identify (Corollary 10) certain subclasses of linear threshold functions
for which FEI conjecture holds.

1.1 Our Proof Technique

To prove the FEI conjecture for a function f (or, any class of Boolean functions)
one needs to provide an upper bound on the Fourier entropy of f and a matching
(up to a constant factor) lower bound on the influence of f . For upper bounding
the Fourier entropy of a LTF we crucially use the following theorem proved in [18].

Theorem 2 [18]. If f : {+1,−1}n → {+1,−1} is any linear threshold function,
then H(f) � C · √

n, where, C is a universal constant.

Thus if f is an LTF with influence lower bounded by Ω(
√

n), then using The-
orem 2, we conclude that FEI conjecture holds for f . Our main contribution in
the paper is to prove that a “random” LTF has influence Ω(

√
n).

We provide two techniques of proving a lower bound on the influence of an
LTF f . The first technique (Theorem 4) is a simple application of the Khintchine
Inequality [24]. While this lower bound technique is easy and simple, this does
not yield a high probability statement about the event Inf(f) = Ω(

√
n) when the

coefficients are distributed according to the normal distribution (see Sect. 3.2).
For this, we need the second technique.

Fourier Entropy-Influence Conjecture 279

The starting point in this case is the following basic inequality for LTF’s.

Infi(f) = Pr
x∈{+1,−1}n

⎡

⎣−|wi| < w0 +
∑

j�n : j �=i

wjxj � |wi|
⎤

⎦ . (2)

We bound this probability using concentration inequalities. In particular, we
crucially use an optimal version of the Berry-Esseen Theorem (Theorem 7) that
was proved recently by Shevtsova [25]. Using the Berry-Esseen Theorem we show,
informally, if a variable has a “high” weight then it has “high” influence. More
precisely, we prove the following technical lemma en route to establishing the
main theorem. Consider a symmetric distribution D around 0 with variance 1.

Lemma 3. Let wj ∼ D for 1 � j � n. For all i ∈ [n], α ∈ R
+, and δ > 0, with

probability at least 1 − e−Ω(nμ2
3) over the choices of wj’s,

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

1�j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ � θ√
n

− O

(
1

n2/3

)

,

where θ = (α − μ3(1 + 2δ
1−δ))/

√
2π(1 + δ), and μ3 = Ew∼D[|w|3].

Observe that for the statement to be non-trivial α > μ3 + δ′ for some δ′ > 0.
The optimality of Shevtsova’s theorem (Theorem 7) is crucial to the fact that α
can be chosen to be only slightly larger than μ3, by an additive constant rather
than C · μ3 for some large constant C > 1. This difference is significant when D
is a truncated distribution. A truncated distribution is a conditional distribution
that results from restricting the support of some other probability distribution.

Organization of the paper: In Sect. 2 we present the two techniques to lower
bound the influence of an LTF. We then show that the FEI conjecture holds for
a ‘random’ LTF in Sect. 3, and conclude with some observations in Sect. 4.

2 Lower Bounds on Influence

Recall that f : {+1,−1}n → {+1,−1} is a linear threshold function if there
exists n + 1 real numbers, w0, w1, . . . , wn, such that

∀x = x1 . . . xn ∈ {+1,−1}n : f(x) = sign(w0 + w1x1 + · · · + wnxn),

where sign(z) = 1 if z > 0, and −1 if z � 0. It is clear that there are infinitely
many (n + 1)-tuples that define the same Boolean function f . Nevertheless,
relationships among wi’s characterize many properties of the function. In fact,
the influence of f is a function on the wi’s. Our goal is to obtain lower bounds
for this function using various properties of wi’s. In this section we present two
such lower bounds.

The first lower bound that we obtain is a simple observation and the lower
bound is in terms of the �2-norm of the wi’s and the maximum value of the wi’s.

280 S. Chakraborty et al.

Theorem 4. Let f : {+1,−1}n → {+1,−1} be such that f(x) = sign(w0 +∑n
i=1 xiwi) for some weights w0, w1, . . . , wn ∈ R. Then,

Inf(f) �
√∑n

i=0 w2
i

2
√

2 maxi |wi|
− |f̂(∅)| �

√∑n
i=0 w2

i

2
√

2 maxi |wi|
− 1.

The proof is omitted. It follows from an easy application of the well-known
Khintchine Inequality.

Theorem 5 (Khintchine Inequality) [24]. Let w1, w2, . . . , wn ∈ R be such
that

∑
i w2

i = 1. Then, Ex∈{+1,−1}n [|w1x1 + · · · + wnxn|] � 1√
2
.

The second lower bound we obtain is more sophisticated lower bound. Recall
that the i-th influence of f is given by Prx∈{+1,−1}n [f(x) �= f(xi)]. Using the
fact that f is an LTF, it is easily seen to be equivalent to Eq. (2). We bound the
expression in (2) from below to establish the lower bound.

Theorem 6 Let w0, w1, . . . , wn ∈ R and let f : {+1,−1}n → {+1,−1} be
defined by f(x) = sign(w0 +

∑n
i=1 xiwi). Then, for 1 � i � n,

Infi(f) � 1
2
√

2π(n − 1)Bi

(

|wi| − Ai

Bi

)

− |wi|3
6
√

2π((n − 1)Bi)3/2
− 3.4106 A

4/3
i

(n − 1)2/3B2
i

,

where Ai := 1
n−1

∑
0�j �=i�n |wj |3 and Bi := 1

n−1

∑
0�j �=i�n |wj |2.

A crucial ingredient in the proof is the following optimal version of Berry-Esseen
Theorem that bounds the uniform distance between the cumulative distribution
function of the standard normal distribution N(0, 1) and the standardized sum
of independent symmetric Bernoulli random variables.

Theorem 7 (Corollary 4.19 in [25]). Let X1, . . . , Xn be independent sym-
metric Bernoulli random variables such that for all 1 � j � n there exist aj

with Pr[Xj = aj] = Pr[Xj = −aj] = 1
2 . If Φ(x) is the cumulative distribution

function of the standard normal distribution, then,

sup
x

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣X1 + · · · + Xn√∑n
j=1 a2

j

< x

⎤

⎦ − Φ(x)

∣
∣
∣
∣
∣
∣
� �n√

2π
+ 3.4106 · �4/3

n ,

where �n = (
∑

j |aj |3)/(
∑

j a2
j)

3/2.

The optimality is in the fact that the constant of 1/
√

2π (as a coefficient of �n)
is the best possible.

We will prove Theorem 6 in two stages. First we establish it under the assump-
tion that w0 = 0. Then, in AppendixA, we reduce the non-homogeneous case
(w0 �= 0) to the homogeneous case (w0 = 0) to complete the proof.

Fourier Entropy-Influence Conjecture 281

2.1 Proof of Theorem6 (assuming w0 = 0)

As mentioned earlier, the full proof of Theorem6 will follow from the discussions
in AppendixA. Thus, for some w1, . . . , wn ∈ R, we have f(x) = sign(

∑n
i=1 wixi)

for all x ∈ {+1,−1}n. Relaxing the estimate in Eq. (2), we have

Infi(f) � 1
2

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� |wi|

⎤

⎦ .

To obtain the claimed lower bound on influence, we further lower bound the
above expression. We start with some definitions required for the proof.

For any 1 � i � n, we define

Ai :=
1

n − 1

∑

j �=i

|wj |3, and Bi :=
1

n − 1

∑

j �=i

|wj |2.

Note that the proof of Theorem6, for the case when w0 = 0, follows by
substituting α = |wi| in the following lemma.

Lemma 8. For all i ∈ [n] and any α ∈ R
+,

1

2
Pr

x∈{+1,−1}n

⎡
⎢⎣

∣∣∣∣∣∣∣
∑

j�n : j �=i

wjxj

∣∣∣∣∣∣∣
� α

⎤
⎥⎦ �

1
√

2π(n − 1)Bi

(
α −

Ai

Bi

)
−

α3

6
√

2π((n − 1)Bi)
3/2

−
3.4106 A

4/3
i

(n − 1)2/3B2
i

.

Proof. For any α > 0, by the symmetry of distribution over
∑

wjxj , we have

1
2

Pr
x

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ = Pr
x

⎡

⎣0 �
∑

j�n : j �=i

wjxj � α

⎤

⎦

= Pr
x

⎡

⎣

∑
j�n : j �=i wjxj

√∑
j�n : j �=i w2

j

� α
√∑

j�n : j �=i w2
j

⎤

⎦ − 1
2
.

Using Theorem 7 on random variables wjxj ’s, we obtain the following lower bound

1

2
Pr
x

⎡
⎣

∣∣∣∣∣∣
∑

j�n : j �=i

wjxj

∣∣∣∣∣∣
� α

⎤
⎦ � Φ

⎛
⎜⎝ α√∑

j�n : j �=i w2
j

⎞
⎟⎠ −

(
1

2

)
− L(n−1)√

2π
− 3.4106 · L

4/3
(n−1)

,

(3)

where

L(n−1) =

∑
j�n : j �=i |wj |3

(
∑

j�n : j �=i |wj |2)3/2
=

(n − 1)Ai

((n − 1)Bi)3/2
.

Thus we have

−L(n−1)√
2π

− 3.4106 · L
4/3
(n−1) = − 1√

2π
· Ai
√

(n − 1)B3/2
i

− 3.4106
A

4/3
i

(n − 1)2/3B2
i

.

(4)

282 S. Chakraborty et al.

Also, using the following Maclaurin series

Φ(x) − 1
2

=
1√
2π

(

x − 1
6
x3 +

1
40

x5 − · · ·
)

,

we have

Φ

⎛

⎝ α
√∑

j�n : j �=i w2
j

⎞

⎠ − 1
2

� α
√

2πBi(n − 1)
− α3

6
√

2π((n − 1)Bi)3/2
. (5)

Using Eqs. (5) and (4) in Eq. (3), we obtain

1

2
Pr
x

⎡
⎣

∣∣∣∣∣∣
∑

j�n : j �=i

wjxj

∣∣∣∣∣∣
� α

⎤
⎦ � 1√

2π(n − 1)Bi

(
α − Ai

Bi

)
− α3

6
√
2π((n − 1)Bi)3/2

− 3.4106 A
4/3
i

(n − 1)2/3B2
i

.

�
In our applications of the lemma, the second and third terms will be negligible

compared to the first term.

2.2 Fourier Entropy Influence Conjecture for a Class of Linear
Threshold Functions

In this section we identify a class of LTFs for which we prove the FEI conjecture.
The class of functions is τ -regular functions.

Definition 9. Suppose w0, w1, . . . , wn are real numbers such that
∑n

i=0 w2
i = 1.

If for all 0 � i � n, |wi| � τ then the linear threshold function, f defined as
f(x1, . . . , xn) = sign(w0 +

∑n
i=1 wixi) is called a τ -regular LTF.

From Theorems 2 and 4 we can show that τ -regular LTFs satisfy the FEI
conjecture.

Corollary 10. If τ � c/
√

n and if f is a τ -regular function then

H(f) � O(Inf(f)),

where the constant in the Big-oh notation depends on c.

3 Lower Bounds on Influence for Random Linear
Threshold Functions

Given that we still cannot prove the FEI conjecture for all Linear Threshold Func-
tions a natural question is whether FEI conjecture holds for a “random” LTF.

Suppose w0, w1, . . . , wn are drawn independently from a distribution D. Con-
sider the function f(x) where

∀x = x1, . . . , xn ∈ {+1,−1}n : f(x) = sign(w0 + w1x1 + · · · + wnxn).

Fourier Entropy-Influence Conjecture 283

Without loss of generality we can assume that the distribution is symmetric
around the origin and thus the mean of the distribution μ(D) is 0. Also since
the function remains same even if we scale the wi’s by any value, so we can also
assume that the variance of the distribution σ(D) is 1.

As a step towards proving the FEI conjecture for f we need to lower bound
the influence of f . Note that Theorems 4 and 6 give lower bounds on the influence
of f in terms of wi’s. Using similar arguments we can obtain a lower bound on
the influence that holds for a random f (that is, when wi’s are drawn from a
distribution D) with high probability.

For any n ∈ N, let w1, . . . , wn ∼ D be the outcome of n independent samples
according to D. We define, for any α ∈ R

+, pD,n(α) = Pr[maxn
i=1{|wi|} � α].

Corollary 11 (Corollary of Theorem 4). For any α ∈ R
+, with probability

at least 1 − pD,n+1(α) − o(1),

Inf(f) � Ω(
√

n/α).

Using Bernstein’s inequality it is easily seen that
∑

i w2
i = Ω(n) with probabil-

ity 1 − o(1).

Theorem 12. For any α ∈ R
+ and any δ > 0, with probability at least

1 − e−δ2nμ2
3/σ3 − 2e−δ2n/σ2 − 2e−(n/4)pD,1(α)2 over the choices of wj’s

Inf(f) � pD,1(α) · Θ(α) · √n,

where Θ(α) =
(
α − μ3(1 + 2δ

1−δ)
)

/
√

2π(1 + δ), μ3 = Ew∼D[|w|3], and σ2 and

σ3 are the standard deviations of w2 and |w|3, respectively.

3.1 Proof of Theorem12

As argued in AppendixA, it suffices to establish the lower bound on influence
when w0 = 0. To establish the theorem we argue similarly as in the proof of
Lemma 8. We consider the case when the distribution D over R is symmetric
around 0 and with variance 1. That is, Ew∼D[w2] = 1. Let μ3 := Ew∼D[|w|3].
Further, σ2 and σ3 denote the standard deviation of w2 and |w|3, respectively.
That is, σ2

2 = E[(w2 − E[w2])2] and σ2
3 = E[(|w|3 − E[|w|3])2].

The following lemma gives a lower bound on the i-th influence.

Lemma 13. Let wj ∼ D for 1 � j � n. For all i ∈ [n], α ∈ R
+, and δ > 0,

with probability at least 1 − e−δ2nμ2
3/σ3 − 2e−δ2n/σ2 over the choices of wj’s,

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

1�j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ � θ√
n

− O

(
1

n2/3

)

,

where θ = (α − μ3(1 + 2δ
1−δ))/

√
2π(1 + δ).

284 S. Chakraborty et al.

Proof. To start we have w1, . . . , wn that are independently and identically dis-
tributed according to D. Define random variables Ai = (

∑
j �=i |wj |3)/(n−1) and

Bi = (
∑

j �=i w2
j)/(n − 1). Thus E[Ai] = μ3 and E[Bi] = 1. Using Bernstein’s

inequality (see Corollary 2.11 in Chapter 2 of [26]) on independent symmetric
random variables wj ’s we obtain

(1 − δ)(n − 1) �
∑

1�j�n : j �=i

w2
j � (1 + δ)(n − 1), (6)

with probability at least 1 − 2e−δ2n/σ2 , where σ2
2 = Varw∼D(w2). Similarly, we

also have
∑

1�j�n : j �=i

w3
j � (1 + δ)C(n − 1), (7)

with probability at least 1 − e−2δ2nμ2
3/σ3 , where σ2

3 = Varw∼D(|w|3). Thus, from
the union bound, it follows that both Eqs. (6) and (7), holds with probability
at least 1 − e−δ2nμ2

3/σ3 − 2e−δ2n/σ2 , and thus with this probability we have
(Ai/Bi) �

(
1 + 2δ

1−δ

)
μ3. Recall from Lemma 8 we know

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j�n:j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ � 1
√

2π(n − 1)Bi

(

α − Ai

Bi

)

− O

(
1

n2/3

)

.

Thus plugging in the bound on (Ai/Bi) in the above inequality we obtain
the lemma,

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j�n:j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ �
α − (1 + 2δ

1−δ)μ3
√

2π(1 + δ)(n − 1)
− O

(
1

n2/3

)

.

�
We now proceed to complete the proof of the theorem. For any α ∈ R

+,

Inf(f) =
∑

i

Infi(f) �
∑

i:wi�α

Infi(f) �
∑

i:wi�α

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� α

⎤

⎦ .

Thus, from Lemma 13, we have with probabiltity at least 1 − e−δ2nμ2
3/σ3 −

2e−δ2n/σ2 over the choices of wj ’s,

Inf(f) � Nα ·
⎛

⎝
α − μ3

(
1 + 2δ

1−δ

)

√
2(n − 1)π(1 + δ)

− O

(
1

n2/3

)
⎞

⎠ ,

where Nα is the number of wi’s that are bigger than α. Now the following lemma
shows that with probability at least 1 − 2e− n

4 pD,1(α)2 we have Nα � n
2 · pD,1(α),

and that establishes the theorem.

Fourier Entropy-Influence Conjecture 285

Lemma 14. Fix an α ∈ R
+. If we sample n points according to D then with

probability at least 1 − 2e− n
4 pD,1(α)2 the number of points in the interval [α,∞)

is greater than n·pD,1(α)
2 and less than 3n·pD,1(α)

2 .

Proof. Let 1i be the indicator function of the event that the i-th sample lies in
the interval [α,∞). Define X =

∑n
j=1 1j . Note that for each j, E[Ij] = pD,1(α),

so using Chernoff bound on X we get,

Pr
[
n · pD,1(α)

2
� X � 3n · pD,1(α)

2

]

� 1 − 2e− 1
4n(pD,1(α))2 .

�

3.2 Fourier Entropy Conjecture for a Random Linear Threshold
Function

In this section, we give two natural examples of distributions on the wi’s under
which the FEI conjecture holds with high probability. First we consider the uni-
form distribution on the closed interval [−1, 1], and then the normal distribution
N(0, 1). Together this completes the proof of Theorem 1.

Uniform Distribution on [−1, 1]: U(−1, 1)

Corollary 15. If wi ∼ U(−1, 1) for i ∈ {0, . . . , n}, then the FEI holds with
high probability.

Proof. Since Ex∼U(−1,1)[x2] = 1/3, when w0, . . . , wn are drawn independently
from U [−1, 1], by Chernoff bound we have with high probability

∑n
i=0 E[w2

i] =
Ω(n). Therefore, from Corollary 11, we have with high probability Inf(f) =
Ω(

√
n). Using the upper bound on the Fourier entropy from Theorem2 we have

our result.
�

Normal Distribution: N(0, 1). We note that for the normal distribution,
unlike the case of uniform distribution, the FEI conjecture does not follow from
Khintchine’s inequality. Indeed, Corollary 11 does not give us what we want, i.e.,
a high probability on the event Inf(f) = Ω(

√
n). On the other hand, if we try to

boost the probability we end up with a weaker lower bound on the influence. To
see this, observe that when w1, . . . , wn are drawn independently from N(0, 1),

1. E[
∑

i w2
i] = n (since E[X2] = 1 for X ∼ N(0, 1)). This implies that with high

probability
∑

w2
i = Ω(n), and hence

√∑
w2

i = Ω(
√

n).
2. The probability that maxn

i=1 |wi| = O(
√

log n) is 1 − o(1). Using the fact
Pr[X > x] � e−x2/2 when X ∼ N(0, 1), we have Pr[wi >

√
2c log n] � 1

nc .
Since wi’s are drawn independently, the probability that all the wi’s are less
than

√
2c log n is lower bounded by 1 − 1

nc−1 , where c > 1 is a constant.

286 S. Chakraborty et al.

Applying Corollary 11 to this now gives us Inf(f) � Ω
(√

n
log n

)
with 1 − o(1)

probability. Moreover, the max-central limit theorem implies that for large
enough n, with high probability, maxi |wi| = Θ(

√
log n) (see Example 10.5.3

in [27]). However using the other technique, namely Theorem 12, we can obtain
our desired result.

Corollary 16. If wi ∼ N(0, 1) for i ∈ {0, . . . , n}, then the FEI holds with
probability at least 1 − e−Ω(n).

Proof. We use the following well known bounds on moments of N(0, 1).

Ew∼N(0,1)[|w|r] =

{√
2
π (r − 1)!! if r is odd,

(r − 1)!! if r is even.

Therefore, we have μ3 = 2
√
2√

π
, σ2

2 = E[w4] − (E[w2])2 = 2, and σ2
3 = E[|w|6] −

(E[|w|3])2 = (15 − 8
π). Further, we set α = μ3(2 + 2δ

1−δ), for any δ > 0. Hence,

pD,1(α) � 2 · 1√
2π

e− α2
2

(
1
α

− 1
α3

)

= Ω(1).

The first inequality is easily established; for example, see Exercise 1, Chapter 7
in [28]. Thus, from Theorem 12 we have that Inf(f) = Ω(

√
n) and now using

Theorem 2 we have our result.
�
Remark 1. We note that the proof of Theorem 12 shows that the FEI conejcture
holds with high probability, as long as D (with μ = 0 and σ2 = 1) satisfies the fol-
lowing properties: (i) Ew∼D[|w|3] is finite, and (ii) Prw∼D[|w| > Ew∼D[|w|3]] =
Ω(1). In particular, our proof holds for truncated distributions, and the optimal-
ity of the constant in Shevtsova’s theorem (Theorem7) is crucial in such cases
to establish property (ii).

4 Conclusion and Open Problems

We proved in this paper that for a random linear threshold function f(x) :=
sign(w0 +

∑
i wixi), where the wi’s are drawn from a distribution that has some

‘nice’ properties (Remark 1), the FEI conjecture holds with high probability.
Moreover, we show that the uniform distribution over an interval, say [−1, 1],
and the normal distribution N(0, 1) satisfy these ‘nice’ properties. Indeed, we
established that a random LTF sampled according to these distributions has
influence Ω(

√
n). When combined with the O(

√
n) upper bound (Theorem2)

from previous work on the Fourier entropy of all LTF’s, we conclude that the
FEI conjecture holds for the random LTF’s sampled as above. In the process,
we obtain non-trivial lower bounds on the influence of f in terms of the wi’s.

An obvious open question is to prove that the FEI conjecture holds for all
LTF’s. While our current techniques seem far from sufficient to achieve this goal,

Fourier Entropy-Influence Conjecture 287

a natural question is to prove a generalization of Theorem2, and give an upper
bound on the Fourier entropy in terms of wi’s. We believe it is possible to obtain
such a general upper bound as a function of a suitable notion of “skewness” of
the weights wi.

Another natural question is whether one can show that FEI conjecture holds
for a random polynomial threshold function of degree d. A polynomial threshold
function of degree d is defined as the sign of a degree-d polynomial. For a degree-
d PTF f(x) = sign(p(x1, . . . , xn)), observe that Infi(f) = Prx[sign(p(x)) �=
sign(p(xi))] = Prx[|p(x)| < 2|Dip(x)|], where Dip(x) is the partial derivative of
p(x) with respect to xi. Hence, to lower bound the influence, a standard approach
would be to show that p(x) has certain concentration properties and Dip(x) has
certain anti-concentration properties, for a random p. However, we currently
do not know such strong enough concentration/anti-concentration bounds. Our
techniques do not seem to generalize even to polynomial threshold functions
of degree 2. Such generalizations seem to require more powerful tools. We also
note that currently the best bound on the Fourier entropy of a degree-d PTF is
O(

√
n(log n)O(d log d)) where the constant in O(·) depends on the degree d. (It

follows from Kane’s bound on the average sensitivity of a PTF [29].)

Acknowledgments. We thank the reviewers for helpful comments that improved the
presentation of the paper.

A Reducing Non-homogeneous to Homogeneous case

Let f(x) = sign(w0 +
∑n

i=1 wixi) for all x ∈ {+1,−1}n. Recall from Eq. (2) we
have an exact expression for the i-th influence for all 1 � i � n. We can relax
the probability estimate to lower bound the influence as follows,

Infi(f) � 1
2

Pr
x∈{+1,−1}n

⎡

⎣

∣
∣
∣
∣
∣
∣
w0 +

∑

j�n : j �=i

wjxj

∣
∣
∣
∣
∣
∣
� |wi|

⎤

⎦ . (8)

Now consider the function g(x0, x1, . . . , xn) = sign(
∑n

i=0 wixi) by adding the
extra variable x0. We claim that Infi(g) � 2Infi(f), for all 1 � i � n. Fix an
i ∈ [n]. From Eq. (2) we know that Infi(g) equals

1

2

⎛
⎝Pr

⎡
⎣−|wi| < w0 +

∑
1�j�n : j �=i

wjxj � |wi|
⎤
⎦ + Pr

⎡
⎣−|wi| < −w0 +

∑
1�j�n : j �=i

wjxj � |wi|
⎤
⎦

⎞
⎠ ,

where the probabilities are uniform distribution over x1, . . . , xn ∈ {+1,−1}n.
By relaxing the event in each case we have

Infi(g) �
1

2

⎛
⎜⎝Pr

⎡
⎢⎣−|wi| � w0 +

∑

1�j�n : j �=i

wjxj � |wi|

⎤
⎥⎦ + Pr

⎡
⎢⎣−|wi| � −w0 +

∑

1�j�n : j �=i

wjxj � |wi|

⎤
⎥⎦

⎞
⎟⎠ .

288 S. Chakraborty et al.

It is easily seen that,

Pr
x∈{+1,−1}n

⎡

⎣−|wi| � w0 +
∑

1�j�n : j �=i

wjxj � |wi|
⎤

⎦

= Pr
x∈{+1,−1}n

⎡

⎣−|wi| � −w0 +
∑

1�j�n : j �=i

wjxj � |wi|
⎤

⎦ .

Indeed, there exists a 1-1 correspondence between n-bit strings satisfying the
left hand side event and the right hand side event. Thus,

Infi(g) � Pr
x∈{+1,−1}n

⎡

⎣−|wi| � w0 +
∑

1�j�n : j �=i

wjxj � |wi|
⎤

⎦ � 2 · Infi(f) ,

where the second inequality follows from (8).
Therefore, we have

Inf(f) �
n∑

i=1

Infi(g)
2

=
Inf(g) − Inf0(g)

2
� Inf(g) − 1

2
.

Thus we can translate a lower bound on influences in the homogeneous case to
the non-homogeneous case.

References

1. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and
learnability. J. ACM 40(3), 607–620 (1993)

2. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inf. Process.
Lett. 63(5), 257–261 (1997)

3. Ganor, A., Komargodski, I., Lee, T., Raz, R.: On the noise stability of small
Demorgan formulas, Technical report, Electronic Colloquium on Computational
Complexity (ECCC) TR 12-174 (2012)

4. O’Donnell, R., Saks, M., Schramm, O.: Every decision tree has an influential vari-
able. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2005, pp. 31–39. IEEE Computer Society (2005)

5. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.
Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)

7. Bourgain, J., Kalai, G.: Influences of variables and threshold intervals under group
symmetries. Geom. Funct. Anal. (GAFA) 7(3), 438–461 (1997)

8. Mansour, Y.: An O(nlog logn) learning algorithm for DNF under the uniform dis-
tribution. J. Comput. Syst. Sci. 50(3), 543–550 (1995)

9. Gopalan, P., Kalai, A.T., Klivans, A.: Agnostically learning decision trees. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 527–536 (2008)

Fourier Entropy-Influence Conjecture 289

10. Gopalan, P., Kalai, A., Klivans, A.R.: A query algorithm for agnostically learning
DNF? In: 21st Annual Conference on Learning Theory - COLT 2008, 9–12 July
2008, Helsinki, Finland, pp. 515–516 (2008)

11. Friedgut, E.: Boolean functions with low average sensitivity depend on few coor-
dinates. Combinatorica 18(1), 27–35 (1998)

12. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In:
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pp. 68–80 (1988)

13. O’Donnell, R., Wright, J., Zhou, Y.: The Fourier entropy–influence conjecture for
certain classes of Boolean functions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011. LNCS, vol. 6755, pp. 330–341. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22006-7 28

14. Kalai, G.: The entropy/influence conjecture. Terence Tao’s blog: https://terrytao.
wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

15. Klivans, A., Lee, H., Wan, A.: Mansour’s conjecture is true for random DNF for-
mulas. In: Proceedings of the 23rd Conference on Learning Theory, pp. 368–380
(2010)

16. Das, B., Pal, M., Visavaliya, V.: The entropy influence conjecture revisited. Tech-
nical report, arXiv:1110.4301 (2011)

17. O’Donnell, R., Tan, L.Y.: A composition theorem for the Fourier entropy-influence
conjecture. In: Proceedings of Automata, Languages and Programming - 40th
International Colloquium, pp. 780–791 (2013)

18. Chakraborty, S., Kulkarni, R., Lokam, S.V., Saurabh, N.: Upper bounds on Fourier
entropy. Theor. Comput. Sci. 654, 92–112 (2016)

19. Wan, A., Wright, J., Wu, C.: Decision trees, protocols and the entropy-influence
conjecture. In: Innovations in Theoretical Computer Science, pp. 67–80 (2014)

20. Hicks, J.S., Wheeling, R.F.: An efficient method for generating uniformly dis-
tributed points on the surface of an n-dimensional sphere. Commun. ACM 2(4),
17–19 (1959)

21. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional
spheres. Commun. ACM 2(4), 19–20 (1959)

22. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat.
43(2), 645–646 (1972)

23. Petersen, W.P., Bernasconi, A.: Uniform sampling from an n-sphere. Technical
report. Swiss Center for Scientific Computing (1997)

24. Szarek, S.J.: On the best constants in the Khinchine inequality. Studia Math. 58,
197–208 (1976)

25. Shevtsova, I.: Moment-type estimates with asymptotically optimal structure for the
accuracy of the normal approximation. Annales Mathematicae Et Informaticae 39,
241–307 (2012)

26. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, Oxford (2013)

27. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, Hoboken (2003)
28. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd

edn. Wiley, Hoboken (1968)
29. Kane, D.M.: The correct exponent for the Gotsman-Linial Conjecture. Comput.

Complex. 23(2), 151–175 (2014)

https://doi.org/10.1007/978-3-642-22006-7_28
https://doi.org/10.1007/978-3-642-22006-7_28
https://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
https://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
http://arxiv.org/abs/1110.4301

Property Suffix Array with Applications

Panagiotis Charalampopoulos, Costas S. Iliopoulos, Chang Liu,
and Solon P. Pissis(B)

Department of Informatics, King’s College London, London, UK
{panagiotis.charalampopoulos,costas.iliopoulos,chang.2.liu,

solon.pissis}@kcl.ac.uk

Abstract. The suffix array is one of the most prevalent data structures
for string indexing; it stores the lexicographically sorted list of suffixes
of a given string. Its practical advantage compared to the suffix tree is
space efficiency. In Property Indexing, we are given a string x of length
n and a property Π, i.e. a set of Π-valid intervals over x. A suffix-
tree-like index over these valid prefixes of suffixes of x can be built in
time and space O(n). We show here how to directly build a suffix-array-
like index, the Property Suffix Array (PSA), in time and space O(n).
We mainly draw our motivation from weighted (probabilistic) sequences:
sequences of probability distributions over a given alphabet. Given a
probability threshold 1

z
, we say that a string p of length m matches a

weighted sequence X of length n at starting position i if the product of
probabilities of the letters of p at positions i, . . . , i+m−1 in X is at least
1
z
. Our algorithm for building the PSA can be directly applied to build

an O(nz)-sized suffix-array-like index over X in time and space O(nz).

1 Introduction

Property matching, introduced in [4], comprises of matching a pattern to a text
of which only certain intervals are valid. The on-line version of this problem is
trivial and thus the indexing version has received much more attention. In the
Property Indexing problem, we are given a text x of length n over an alphabet
of size σ and a property Π; Π is a set of subintervals of [0, n − 1] with integer
endpoints. The goal is to then preprocess the text so that given a pattern p we
can return its occurrences in the Π-valid intervals of x, i.e. we want to report
x[i . . j] if and only if it is equal to p and [i, j] is a subinterval of some [a, b] ∈ Π.

Most of the prevalent text indexing data structures are built over the suffixes
of the text [22]. However, by introducing the property Π only some prefixes of
each suffix are now valid. The authors in [4] presented an algorithm for build-
ing the Property Suffix Tree (PST) in O(n log σ + n log log n) time for integer
alphabets, implicitly sorting the prefixes of the suffixes that are valid. Recently,
the authors in [5,6] have presented an O(n)-time algorithm for the construction

P. Charalampopoulos—Supported by the Graduate Teaching Scholarship scheme of
the Department of Informatics at King’s College London and by the A.G. Leventis
Foundation.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 290–302, 2018.
https://doi.org/10.1007/978-3-319-77404-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_22&domain=pdf

Property Suffix Array with Applications 291

of the PST that also works for integer alphabets. This is based on a technique
by Kociumaka, Radoszewski, Rytter and Waleń for answering off-line weighted
ancestor queries in suffix trees (see the Appendix of [5]). A dynamic instance of
Property Indexing has also been studied in [19], where the author also makes
use of the suffix tree.

An O(n)-time algorithm for building an index over the suffix tree of x for
integer alphabets that allows for property matching queries was proposed by the
authors of [14,15]. This solution, however, does not sort the prefixes of suffixes
that are valid (which is an interesting problem per se); it offloads the difficulty
of the computation from the construction to the queries.

The suffix array (SA) of a text x of length n is an integer array of size
n that stores the lexicographically sorted list of suffixes of x [20]. In order to
construct the Property Suffix Array, which we denote by PSA, we essentially need
to lexicographically sort a multiset consisting of substrings of x; this multiset
contains at most one prefix of each suffix of x. This can be achieved in linear
time by traversing the PST, however our aim here is to do it directly—we do not
want to construct or store the PST. It is well-known from the setting of standard
strings that the SA is more space efficient than the suffix tree [1].

Note that for clarity of presentation we represent Π—and assume the input
is given in this form—by an integer array L of size n, such that

L[i] = max{j|(k, j) ∈ Π, k ≤ i} − i + 1

is the length of the longest prefix of x[i . . n − 1] that is valid. It should be clear
that L can be obtained from Π in O(n+ |Π|) time. We also assume that L[i] > 0
for all i; the case that L[i] = 0 can be handled easily as the resulting substring
would just be the empty string.

Example 1 (Running example). Consider the string x = acababaab and property
Π = {(0, 3), (4, 6), (6, 8)}:

i 0 1 2 3 4 5 6 7 8
x[i] a c a b a b a a b
L[i] 4 3 2 1 3 2 3 2 1
SA[i] 6 7 4 2 0 8 5 3 1
PSA[i] 6 2 7 4 0 3 8 5 1

Our main result is an O(n)-time and O(n)-space direct construction of the
PSA for integer alphabets. The problem can be formally defined as follows.

Property Suffix Array
Input: A string x of length n and an integer array L of size n, satisfying
0 < L[i] ≤ n − i and L[i] ≥ L[i − 1] − 1.
Output: An array PSA that stores a permutation of 0, . . . , n − 1 and for all
1 ≤ r < n, letting PSA[r−1] = j and PSA[r] = k, we have x[j . . j+L[j]−1] ≤
x[k . . k + L[k] − 1].

292 P. Charalampopoulos et al.

Application. We apply our solution to this problem in the setting of weighted
sequences. In a weighted sequence every position contains a subset of the alpha-
bet and every letter of this subset is associated with a probability of occurrence
such that the sum of probabilities at each position equals 1. This data repre-
sentation is common in a wide range of applications: (i) imprecise sensor data
measurements; (ii) flexible sequence modeling, such as binding profiles of DNA
sequences; (iii) observations that are private and thus sequences of observations
may have artificial uncertainty introduced deliberately (see [2] for a survey).
Pattern matching (or substring matching) is a core operation in a wide variety
of applications including bioinformatics, information retrieval, text mining, and
pattern recognition. Many pattern matching applications generalize naturally
to the weighted case as much of this data is more commonly uncertain (e.g.
genomes with incorporated SNPs from a population) than certain.

In the weighted pattern matching (WPM) problem we are given a string p
of length m called a pattern, a weighted sequence X of length n called a text,
both over an alphabet Σ of size σ, and a threshold probability 1

z . The task is to
find all positions i in X where the product of probabilities of the letters of p at
positions i, . . . , i+m−1 in X is at least 1

z [8,17]. Each such position is called an
occurrence of the pattern; we also say that the fragment and the pattern match.

Here we consider the problem of indexing a weighted sequence. We are given
a weighted sequence X of length n and a probability threshold 1

z , and we are
asked to construct an index which will allow us to efficiently answer queries
with respect to the contents of X. This problem was considered in [4], where a
reduction to Property Indexing of a text of size O(nz2 log z) was proposed. The
authors in [6] reduced this to a text of size nz, thus presenting an O(nz)-time and
O(nz)-space construction of an O(nz)-sized index that answers pattern matching
queries on X in optimal time. The same index as the one in [6] was first presented
in [7] but with a different O(nz)-time and O(nz)-space construction algorithm.
Approximate variants of these indexes have also been considered in [6,10].

All these indexes [4,6,7] are based on constructing and traversing the suf-
fix tree. Here, using our solution to problem Property Suffix Array and
the main idea of [6], we show how to construct directly an array data structure
within the same complexities. Moreover, we present experiments that show the
advantage of our new data structure: as expected, it requires much less space
than the one of [6,7]. Our index, apart from being simple and small in practice,
is asymptotically smaller than the input weighted sequence when z = o(σ).

Structure of the paper. In Sect. 3, we provide three O(n)-space algorithms
for computing the PSA directly, with time complexities O(n log2 n), O(n log n)
and O(n). In Sect. 4, we apply our solution to this general problem in the setting
of weighted sequences to obtain an O(nz)-time and O(nz)-space algorithm for
constructing a new O(nz)-sized array index for weighted sequences. Finally, in
Sect. 5, we present an experimental evaluation of the proposed algorithms.

Property Suffix Array with Applications 293

2 Preliminaries

Let x = x[0]x[1] . . . x[n − 1] be a string of length |x| = n over a finite ordered
alphabet Σ of size σ, i.e. σ = |Σ|. In particular, we consider the case of an integer
alphabet ; in this case each letter is replaced by its rank such that the resulting
string consists of integers in the range {1, . . . , n}.

For two positions i and j on x, we denote by x[i . . j] = x[i] . . . x[j] the factor
(sometimes called substring) of x that starts at position i and ends at position
j. We recall that a prefix of x is a factor that starts at position 0 (x[0 . . j]) and
a suffix of x is a factor that ends at position n − 1 (x[i . . n − 1]). We denote a
string x that is lexicographically smaller than (resp. smaller than or equal to) a
string y by x < y (x ≤ y).

2.1 Suffix Array

We denote by SA the suffix array of a non-empty string x of length n. SA is
an integer array of size n storing the starting positions of all (lexicographically)
sorted non-empty suffixes of x, i.e. for all 1 ≤ r < n we have x[SA[r−1] . . n−1] <
x[SA[r] . . n−1] [20]. Let lcp(r, s) denote the length of the longest common prefix
between x[SA[r] . . n − 1] and x[SA[s] . . n − 1] for all positions r, s on x, and 0
otherwise. We denote by LCP the longest common prefix array of y defined by
LCP[r] = lcp(r − 1, r) for all 1 ≤ r < n, and LCP[0] = 0. The inverse iSA of
the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. It is known that
SA [21], iSA, and LCP [16] of a string of length n, over an integer alphabet, can
be computed in time and space O(n). It is then known that a range minimum
query (RMQ) data structure over the LCP array, that can be constructed in
O(n) time and O(n) space [9], can answer lcp queries in O(1) time per query by
returning the index of a minimal value in the respective range of the SA.

3 O(n)-Space Algorithms for Computing PSA

3.1 Sparse Table-Based O(n log2 n)-Time Algorithm

The algorithm presented in this subsection applies a combination of the Sparse
Table idea for answering RMQs [9] and the doubling technique [20] to the context
of sorting prefixes of suffixes (factors) of x. Using this combination, one may
easily obtain an O(n log n)-time and O(n log n)-space algorithm for constructing
the PSA [12]. We tweak this solution to require only O(n) space, suffering an
additional multiplicative log n factor in the time complexity. There are O(log n)
levels: at the kth level, we sort prefixes of suffixes up to length 2k+1; at each level,
O(n log n) time is required to sort these factors using any optimal comparison-
based sorting algorithm [11].

The aforementioned scheme assumes that we can compare two factors in con-
stant time. To this end, we borrow the Sparse Table algorithm idea for answering
RMQs: the minimum value in a given range r is the minimum between the mini-
mums of any two, potentially overlapping, subranges whose union is r. The same
idea can be applied in a completely different context:

294 P. Charalampopoulos et al.

Fact 2. Given two strings x and y, with |x| ≤ |y|, and k = �log |x|�, x ≤ y if
and only if (x[0 . . 2k], x[|x| − 2k . . |x| − 1]) ≤ (y[0 . . 2k], y[|x| − 2k . . |x| − 1]).

We thus compute the ranks of prefixes of suffixes whose lengths are multiples of
two using the doubling technique [20] and then use these ranks to sort prefixes
whose lengths may not be multiples of two by applying Fact 2. Note that this
computation can be done level by level in a total of O(log n) levels, and therefore
the working space is O(n). We formalize this algorithm, denoted by ST-PSA, in
the pseudocode below. We start by initializing the elements in the PSA by sorting
and ranking the letters of x (Lines 2–8). We store these ranks in an array (Line
9). Then, at level k (Line 10), we compute the ranks of prefixes whose lengths
are multiples of two using the previous level information and radix sort in O(n)
time (Lines 11–12). Next, we sort and rank all prefixes up to length 2k+1 using a
comparison-based sorting algorithm and Fact 2 in O(n log n) time (Lines 13–14).
We store these ranks in an array (Line 15) and proceed to the next level. Thus
the total time required is O(n log2 n) and the space is O(n). The value of this
algorithm is its practicality: (a) it requires very little space; (b) the number of
levels required is in fact �log ��, where � is the maximum value in L; and (c) at
level k it suffices to sort groups of elements having the same rank at level k − 1.

1 Algorithm ST-PSA(x, n, L)
2 for i ← 0 to n − 1 do

3 PSA[i] ← i;

4 Sort PSA using the following comparison rule for PSA[i] and PSA[j]:

5 if x[i] < x[j] then PSA[i] < PSA[j];

6 else if x[i] > x[j] then PSA[i] > PSA[j];

7 else PSA[i] = PSA[j];

8 Rank the elements of PSA and store their ranks in RankPSA;

9 RankPREF ← RankPSA;

10 for k ← 1 to �logn� do

11 Construct an array A of pairs: A[i] = (RankPREF[i],RankPREF[i + 2k−1]);

12 Sort the pairs in A using radix sort and store their ranks in RankCURR;

13 Sort PSA using L, RankPSA, RankCURR, and Fact 2 for the comparison;

14 Rank the elements of PSA and store their new ranks in RankPSA;

15 RankPREF ← RankCURR;

16 return PSA;

3.2 LCP-Based O(n logn)-Time Algorithm

The algorithm presented in this subsection is based on the following fact.

Fact 3. Given two factors of x, x[i1 . . j1] and x[i2 . . j2], with iSA[i1] < iSA[i2],
we have that x[i2 . . j2] ≤ x[i1 . . j1] if and only if j2 − i2 ≤ lcp(iSA[i1], iSA[i2])
and j2 − i2 ≤ j1 − i1.

Property Suffix Array with Applications 295

Recall that lcp queries for two arbitrary suffixes of x can be answered in time
O(1) per query after an O(n)-time preprocessing of the LCP array of x [9,20]. We
can then perform any optimal comparison-based sorting algorithm (use Fact 3 for
the comparison) on the set of prefixes of suffixes. Thus the total time required is
O(n log n) and the working space is O(n). We formalize this algorithm, denoted
by LCP-PSA, in the pseudocode below.

1 Algorithm LCP-PSA(x, n, L)
2 Compute SA, iSA, LCP,RMQLCP of x;

3 for i ← 0 to n − 1 do

4 PSA[i] ← SA[i];

5 Sort PSA using the following comparison rule for PSA[i] and PSA[j]:

6 if i < j then k ← RMQLCP(i + 1, j);

7 else k ← RMQLCP(j + 1, i);

8 if LCP[k] < min{L[SA[i]], L[SA[j]]} then

9 PSA[i] < PSA[j];

10 else

11 if L[SA[i]] < L[SA[j]] then
12 PSA[i] < PSA[j];

13 else

14 PSA[i] > PSA[j];

15 return PSA;

3.3 Union-Find-Based O(n)-Time Algorithm

In this section we assume the precomputation of SA, iSA and LCP of x. Given
the iSA, the LCP array and L, let fi = max

0≤r≤iSA[i]
{r|LCP[r] < L[i]}. Informally,

fi tells us how many suffixes are lexicographically smaller than x[i . . i+L[i]− 1]
(see also Example 5 in this regard). It follows from the following lemma that in
order to construct the PSA it is enough to sort the ordered pairs (fi,L[i]).

Lemma 4. Given two factors of x, x[i1 . . j1] and x[i2 . . j2], we have that if
(fi1 , j1 − i1) ≤ (fi2 , j2 − i2) then x[i1 . . j1] ≤ x[i2 . . j2].

Proof. Note that x[i . . j] is a prefix of x[SA[fi] . . n − 1]. Thus if

– either fi1 < fi2
– or fi1 = fi2 and j1 − i1 ≤ j2 − i2

then we have that x[i1 . . j1] ≤ x[i2 . . j2]. ��
Example 5 (Running example).

296 P. Charalampopoulos et al.

i 0 1 2 3 4 5 6 7 8
L[i] 4 3 2 1 3 2 3 2 1
SA[i] 6 7 4 2 0 8 5 3 1
LCP[i] 0 1 2 3 1 0 1 2 0
L[SA[i]] 3 2 3 2 4 1 2 1 3
fSA[i] 0 1 2 1 4 5 6 5 8
PSA[i] 6 2 7 4 0 3 8 5 1

For i = 3, we have that iSA[3] = 7, and hence we obtain the pair (f3,L[3]) =
(5, 1).

The computational problem is to compute fi efficiently for all i; for this we
rely on the Union-Find data structure [11] in a similar manner as the authors
in [18]. Our technique also resembles the technique by Kociumaka, Radoszewski,
Rytter and Waleń for answering off-line weighted ancestor queries in trees;
it can be found in the Appendix of [5]. Union-Find maintains a partition of
{0, 1, . . . , n − 1}, where each set has a representative element, and supports
three basic operations:
– MakeSet(n) creates n new sets {0}, {1}, . . . , {n−1}, where the representative

index of set {i} is i.
– Find(i) returns the representative of the set containing i.
– Union(i, j) first finds the set Si containing i and the set Sj containing j. If

Si 	= Sj , then they are replaced by the set Si ∪ Sj .

In the algorithm described below, we only encounter linear Union-Find instances,
in which the sets of the partition consist of consecutive integers and the repre-
sentative of each set is its smallest element. We rely on the following result.

Theorem 6 ([13]). A sequence of q given linear Union and Find operations over
a partition of {0, 1, . . . , n − 1} can be performed in time O(n + q).

We perform the following initialization steps in O(n) time:

1. Initialize an array A of linked lists of size n;
2. Initialize the Union-Find data structure by calling MakeSet(n);
3. Sort indices {0, 1, . . . , n − 1} based on L[i] (store them in an array ML);
4. Sort indices {0, 1, . . . , n− 1} based on LCP[i] (store them in an array MLCP).

Then, for all j from k = max{maxi{LCP[i]},maxi{L[i]}} down to 1 we do the
following:
1. Union(i − 1, i) for each i such that LCP[i] = j using MLCP;
2. We find all i for which L[i] = j using ML and conclude that fi = Find(iSA[i]);

we store i at the head of the linked list A[fi].

Note that after performing the Union operations for some j, the representa-
tive element of the set containing α, Find(α), is the greatest β ≤ α, for which
LCP[β] ≤ j − 1. Thus, in the end of the computation, A[j] stores the indices i,
for which fi = j. In addition, the elements of each list A[j] are in the order of
non-decreasing L[i]. We can thus just read the elements of the linked lists in A
from the left to the right and from the head to the tail to obtain the PSA. We
formalize this algorithm, denoted by UF-PSA, in the pseudocode below.

Property Suffix Array with Applications 297

1 Algorithm UF-PSA(x, n, L)
2 Compute SA, iSA and LCP of x;

3 Construct a map MLCP such that MLCP[i] = {j|LCP[j] = i};
4 Construct a map ML such that ML[i] = {j|L[j] = i};
5 Initialize an array of lists A of size n;

6 Initialize a Union-Find data structure UF ;

7 UF .MakeSet(n);

8 lcpmax ← max{LCP[0], LCP[1], . . . , LCP[n − 1]};
9 �max ← max{L[0], L[1], . . . , L[n − 1]};

10 for j ← k = max{lcpmax, �max} to 1 do

11 foreach i ∈ MLCP[j] do

12 UF .Union(i − 1, i);

13 foreach i ∈ ML[j] do

14 f ← UF .Find(iSA[i]);

15 Insert i at the head of A[f];

16 for j ← 0 to n − 1 do

17 foreach i ∈ A[j] do

18 Insert(i,PSA);

19 return PSA;

Example 7 (Running example). The following two tables show the partition of
{0, 1, . . . , n−1} before (top) and after (bottom) the Union operations performed
for j = 1. Each monochromatic block represents a set in the partition.

i 0 1 2 3 4 5 6 7 8
LCP[i] 0 1 2 3 1 0 1 2 0

i 0 1 2 3 4 5 6 7 8
LCP[i] 0 1 2 3 1 0 1 2 0
L[i] 4 3 2 1 3 2 3 2 1

Find operations are then performed for those i for which L[i] = 1. For example
for i = 3 we have that Find(iSA[3]) = Find(7) = 5, since 5 is the smallest element
in the set where 7 belongs. Hence 3 is added in the head of the linked list A[5].

Putting together Lemma 4, Theorem 6 and the above description we obtain
the following.

Theorem 8. Problem Property Suffix Array can be solved in time and
space O(n).

In the standard setting, the SA is usually coupled with the LCP array to allow
for efficient on-line pattern searches (see [20] for the details).

298 P. Charalampopoulos et al.

Definition 9. The property Longest Common Prefix array (pLCP) for x and L
is an integer array of size n such that, for all 1 ≤ r < n, pLCP[r] is the length
of the longest common prefix of x[i . . i + L[i] − 1] and x[j . . j + L[j] − 1], where
i = PSA[r] and j = PSA[r − 1].

Lemma 10. We can compute the pLCP array in time O(n).

Proof. We compute the pLCP array while constructing the PSA as follows. If we
read both PSA[r−1] and PSA[r] from A[j], we set pLCP[r] = L[PSA[r−1]] since
x[i . . i+L[i]−1]] is a prefix of x[i′ . . i′ +L[i′]−1]]. Otherwise, we read PSA[r−1]
from A[j] and PSA[r] = i′ from A[j′] and proceed as follows:

1. If iSA[i′] < iSA[i] then x[i . . i + L[i] − 1] is a prefix of x[i′ . . i′ + L[i′] − 1] and
hence we set pLCP[r] = L[i];

2. Else iSA[i] < iSA[i′], and since L[i] ≤ lcp(j, iSA[i]) and L[i′] ≤ lcp(j′, iSA[i′])
we set pLCP[r] = min{lcp(j, j′),L[i],L[i′]}.

We can compute lcp(j, j′) for all consecutive non-empty lists A[j], A[j′] in a
simple scan of the LCP array in time O(n). ��
Remark 11. Alternatively, we can compute the pLCP array using lcp queries,
since pLCP[r] = min{lcp(PSA[r − 1],PSA[r]),L[PSA[r − 1]],L[PSA[r]]}.

Finally, it is worth noting that the algorithms presented in this section for con-
structing the PSA depend neither on the fact that L[i] ≥ L[i − 1] − 1 nor on the
fact that we have (at most) one substring starting at each position. As a byprod-
uct we thus obtain the following result without the aid of suffix tree, which is
interesting in its own right.

Theorem 12. Given q substrings of a string x of length n, encoded as intervals
over x, we can sort them lexicographically in time O(n + q).

4 Weighted Suffix Array

A weighted sequence X of length |X| = n over an alphabet Σ is an n × σ
matrix that specifies, for each position i ∈ {0, . . . , n − 1} and letter c ∈ Σ,
a probability π

(X)
i (c) of c occurring at position i. If the considered weighted

sequence is unambiguous, we write πi instead of π
(X)
i . These values are non-

negative and sum up to 1 for any given i.
The probability of matching of a string p with a weighted sequence X (|p| =

|X|) equals

P(p,X) =
|p|−1∏

i=0

π
(X)
i (p[i]).

We say that a string p matches a weighted sequence X with probability at least
1
z if P(p,X) ≥ 1

z . By X[i. .j] we denote a weighted sequence called a factor of X

Property Suffix Array with Applications 299

and equal to X[i] . . . X[j]. We then say that a string p occurs in X at position i
if p matches the factor X[i . . i + |p| − 1].

A weighted sequence is called special if, at each position, it contains at most
one letter with positive probability. In this special case the assumption that the
probabilities sum up to 1 for a given position is waived.

In this section, we present an algorithm for constructing a new index for
a weighted sequence X of length n and a probability threshold 1

z . We com-
bine the ideas presented above with the following powerful combinatorial result
(Theorem 13) presented in [5]. Informally, Theorem 13 tells us that one can
construct in O(nz) time a family of �z� special weighted sequences, each of
length n, that carry all the information about all the strings occurring in X.
More specifically, a string occurs with probability β ≥ 1

z at position i in one of
these �z� special weighted sequences if and only if it occurs at position i of X
with probability β. The authors of [5] used this result to design an O(nz)-time
and O(nz)-space algorithm for constructing the Weighted Index: an O(nz)-sized
suffix-tree-like index for X. The Weighted Index is essentially the PST built over
this family of strings after some appropriate property shifting.

Theorem 13 ([5]). For a weighted sequence X of length n over an integer
alphabet of size σ and a threshold 1

z , one can construct in O(nσ + nz) time
an equivalent collection of �z� special weighted sequences.

Definition 14. The Weighted Suffix Array (WSA) for X and 1
z is an integer

array (of size at most n�z�) storing the path-labels of the terminal nodes of
the Weighted Index for X and 1

z in the order in which they are visited in a
(lexicographic) depth first traversal.

The idea is to create a new special weighted sequence Y by concatenating
these �z� special weighted sequences. At this point we view Y as the standard
string y of length n�z� (at most one letter per position has a positive probability).
The probabilities at each position of Y and the ends of the original �z� special
weighted sequences give array L for y. We then construct the PSA for y and L.

We are not done yet since a string of length m occurring at a position i of
X may occur at several positions j0, j1, . . . , jk−1 in y, with jp = i(mod n) and
L[jp] = m for all 0 ≤ p < k. We naturally want to keep one of these occurrences.
We do that as follows: we identify maximal intervals [r, s] in the PSA satisfying
L[PSA[q]] = pLCP[t] = m for all r − 1 ≤ q ≤ s and r ≤ t ≤ s; for each such
interval, we consider all of the indices in {PSA[q]|r − 1 ≤ q ≤ s} modulo n, we
bucket sort the residuals, and finally keep one representative for each of them.
Doing this for the PSA of y and L from left to right, we end up with an array of
size at most n�z� that is the WSA for X and 1

z .

Theorem 15. The WSA for a weighted sequence X of length n over an integer
alphabet of size σ and a threshold 1

z can be constructed in O(nσ + nz) time.

The WSA for X and 1
z , coupled with the naturally defined weighted Longest

Common Prefix array (wLCP), which can be inferred directly from the pLCP
array of y and L, is an index with comparable capabilities as the ones of the SA
coupled with the LCP array in the standard setting [20].

300 P. Charalampopoulos et al.

Example 16. Let X = [(a, 0.5), (b, 0.5)]bab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)] and
1
z = 1/4. The family of z strings and the corresponding index are as follows:

i 0 1 2 3 4 5
a b a b b b
a b a b a b
b b a b b a
b b a b a a

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
y[i] a b a b b b a b a b a b b b a b b a b b a b a a
WSA[i] 17 22 10 20 8 6 0 14 2 5 16 21 9 19 7 13 1 4 15 18 12 3
L[WSA[i]] 1 2 2 4 4 5 5 4 4 1 2 3 3 5 5 5 5 2 3 5 5 3
wLCP[i] 0 1 1 2 3 4 4 2 3 0 1 2 2 3 4 3 4 1 2 3 4 2

5 Experimental Results

We have implemented algorithms ST-PSA and UF-PSA to compute the PSA. The
programs have been implemented in the C++ programming language and devel-
oped under the GNU/Linux operating system. The input parameters for both
programs are a string of length n and an integer array of size n for the corre-
sponding Π-valid intervals. The output of both programs is the PSA. The source
code is distributed at https://github.com/YagaoLiu/WSA under the GNU Gen-
eral Public License. For comparison purposes, we used the implementation of the
PST from [6] which has a similar interface (https://bitbucket.org/kociumaka/
weighted index). All experiments have been conducted on a Desktop PC using
one core of Intel Xeon CPU E5-2640 at 2.60 GHz. All programs have been com-
piled with g++ version 6.2.0 at optimization level 3 (-O3).

It is well-known, among practitioners and elsewhere, that optimal RMQ data
structures for on-line O(1)-time querying carry high constants in their prepro-
cessing and querying time [3]. One would not thus expect that algorithm LCP-
PSA performs well in practice. Indeed, we have implemented LCP-PSA but we
omit its presentation here since it was too slow for the same inputs.

To evaluate the time and space performance of our implementations, we used
synthetic weighted DNA sequences (σ = 4). We used the weighted sequences to
create a new standard string y and compute the integer array L as described in
Sect. 4. Thus given a weighted sequence of length n and a probability threshold
1
z , we obtained a new string of length nz. In our experiments, we used weighted
sequences of length ranging from 125,000 to 4,000,000; the probability threshold
was set to 1/8. The strings obtained from weighted sequences are thus of length
ranging from 1,000,000 to 32,000,000. The results are plotted in Figs. 1 and 2.
In Fig. 1 we see that: (i) UF-PSA and PST run in linear time; (ii) ST-PSA runs
in (slightly) super-linear time; and (iii) UF-PSA is the fastest of the three imple-
mentations. In Fig. 2 we see that: (i) all three implementations run in linear
space; (ii) PST is by far the most space inefficient of the three implementations;
and (iii) ST-PSA is the most space efficient of the three implementations. The
presented experimental results confirm fully our theoretical findings and justify
the motivation for the contributions of this paper.

https://github.com/YagaoLiu/WSA
https://bitbucket.org/kociumaka/weighted_index
https://bitbucket.org/kociumaka/weighted_index

Property Suffix Array with Applications 301

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 4 8 12 16 20 24 28 32

T
im

e
[s

]

String Length [MB]

ST-PSA
UF-PSA
PST

Fig. 1. Elapsed time of ST-PSA, UF-PSA, and PST using synthetic texts of length
ranging from 1MB to 32MB over the DNA alphabet.

 0

 2

 4

 6

 8

 10

 12

 14

 0 4 8 12 16 20 24 28 32

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

String Length [MB]

ST-PSA
UF-PSA
PST

Fig. 2. Peak memory usage of ST-PSA, UF-PSA, and PST using synthetic texts of
length ranging from 1MB to 32MB over the DNA alphabet.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)

302 P. Charalampopoulos et al.

3. Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P.: How to answer
a small batch of RMQs or LCA queries in practice. In: IWOCA. LNCS. Springer
International Publishing (2017, in press)

4. Amir, A., Chencinski, E., Iliopoulos, C., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395(2–3), 298–310 (2008)

5. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. CoRR abs/1704.07625v1 (2017)

6. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. CoRR abs/1704.07625v2 (2017)

7. Barton, C., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Efficient index for
weighted sequences. In: CPM. LIPIcs, vol. 54, pp. 4:1–4:13. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

8. Barton, C., Liu, C., Pissis, S.P.: On-line pattern matching on uncertain sequences
and applications. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS,
vol. 10043, pp. 547–562. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48749-6 40

9. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

10. Biswas, S., Patil, M., Thankachan, S.V., Shah, R.: Probabilistic threshold indexing
for uncertain strings. In: EDBT. pp. 401–412 (2016). OpenProceedings.org

11. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Pennsylvania (2001)

12. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Stencel,
K., Walen, T.: New simple efficient algorithms computing powers and runs in
strings. Discrete Appl. Math. 163(Part 3), 258–267 (2014)

13. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

14. Iliopoulos, C.S., Rahman, M.S.: Faster index for property matching. Inf. Process.
Lett. 105(6), 218–223 (2008)

15. Juan, M.T., Liu, J.J., Wang, Y.L.: Errata for “faster index for property matching”.
Inf. Process. Lett. 109(18), 1027–1029 (2009)

16. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

17. Kociumaka, T., Pissis, S.P., Radoszewski, J.: Pattern matching and consensus
problems on weighted sequences and profiles. In: ISAAC. LIPIcs, vol. 64, pp. 46:1–
46:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

18. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Walen, T.: Efficient
algorithms for shortest partial seeds in words. Theor. Comput. Sci. 710, 139–147
(2018)

19. Kopelowitz, T.: The property suffix tree with dynamic properties. Theor. Comput.
Sci. 638(C), 44–51 (2016)

20. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

21. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: DCC, pp. 193–202. IEEE (2009)

22. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11.
IEEE Computer Society (1973)

https://doi.org/10.1007/978-3-319-48749-6_40
https://doi.org/10.1007/978-3-319-48749-6_40
https://doi.org/10.1007/10719839_9
http://openproceedings.org/
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17

Competitive Algorithms for Demand
Response Management in Smart Grid

Vincent Chau1, Shengzhong Feng1, and Nguyen Kim Thang2(B)

1 Shenzhen Institutes of Advanced Technology,
Academy of Sciences, Shenzhen, China
{vincentchau,sz.feng}@siat.ac.cn

2 IBISC, Univ Évry, Université Paris-Saclay, 91025 Évry, France
thang@ibisc.fr

Abstract. We consider a scheduling problem which abstracts a model
of demand-response management in Smart Grid. In the problem, there is
a set of unrelated machines and each job j (representing a client demand)
is characterized by a release date, and a power request function repre-
senting its request demand at specific times. Each machine has an energy
power function and the energy cost incurred at a time depends on the
load of the machine at that time. The goal is to find a non-migration
schedule that minimizes the total energy (over all times).

We give a competitive algorithm for the problem in the online set-
ting where the competitive ratio depends (only) on the power functions
of machines. In the setting with typical energy function P (z) = zν , the
algorithm is Θ(νν)-competitive, which is optimal up to a constant factor.
Our algorithm is robust in the sense that the guarantee holds for arbi-
trary request demands of clients. This enables flexibility on the choices
of clients in shaping their demands — a desired property in Smart Grid.

We also consider a special case in offline setting in which jobs have
unit processing time, constant power request and identical machines with
energy function P (z) = zν . We present a 2ν-approximation algorithm for
this case.

1 Introduction

Electrical Smart Grid is one of the major challenges in the 21st century [20].
It is a network of electricity distribution that promotes the traffic information
between producers and consumers in order to adjust the electricity flow in real
time, i.e. it aims to improve the journey of the electricity through information
and communication technologies in contrast of the traditional power system. It
has been raised in [6] that in the US power grid, 10% of all generation assets

V. Chau and S. Feng—Research supported by NSFC (no. 61433012, U1435215), by
Shenzhen basic research grant JCYJ20160229195940462 and by National High-Tech
R&D Program of China (863 Program) 2015AA050201.
N. K. Thang—Research supported by the ANR project OATA no. ANR-15-CE40-
0015-01, Hadamard PGMO and DIM RFSI.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 303–316, 2018.
https://doi.org/10.1007/978-3-319-77404-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_23&domain=pdf

304 V. Chau et al.

and 25% of distribution infrastructure are required for less than 400 hours per
year, which represents roughly 5% of the time [20]. A smart grid is a power grid
system that optimizes the efficiency of the power generation, distribution and
consumption, and eventually the storage, of the energy in order to coordinate the
electric network, from the production to the consumer. It can be noticed that the
power grid may not be efficient during the peak demand hour if the management
of the smart grid is not well handled. Indeed, the cost of the electricity production
can be high if there is a high demand, and the electricity suppliers may charge the
consumer according to the generation cost. Therefore, the cost of the electricity
can be different over time, intuitively we have a lower price during off-peak hours
and a higher price during peak hours. That is why demand response management
[10] has been studied in order to overcome this problem. The goal of each user
is to minimize his own cost by requesting the electricity during off-peak hours
and reduce the peak load while satisfying his demand. Thus, demand response
management is essentially beneficial to the consumers.

In fact, it can be seen as a scheduling problem. Each user is a job with
the same release date and deadline in which the job cannot be schedule before
the release date, nor after the deadline. Furthermore, a user is defined by an
electricity demand over time which can also be represented in the scheduling
problem. Finally, we have a cost that will be charged to users depending on the
load at each moment. The goal is to minimize the total cost while satisfying all
demands. A more formal definition is given in the next section.

In this paper, we consider a general online scheduling problem which mod-
els the demand response management and we design algorithms towards the
following main purposes of Smart Grid:

– Optimizing the energy consumption.
– Enabling customer choice and letting them react rationally.

1.1 Model Definition

We consider the following scheduling problem. We are given m unrelated
machines and a set of n jobs. Here, machines represents different resources in a
smart grid or different electrical sub-networks. Each job represents the demand
of a client and the demand is customized by the client. Specifically, each job j
is characterized by its release date rj and an arbitrary power request function
hi,j,k : N → R

+, meaning that if a job j starts at time k in machine i then
its request demand at time t is hi,j,k(t). We denote the execution of job j as
si,j,k if job j is processed in machine i with the starting time k. In the problem,
migration of jobs between machines is not allowed. (In other words, a job must
be executed in exactly one machine.) It is a desired property in various systems
since in case of migration, the communications and storage/reloading data of
jobs are costly.

Given a schedule (executions of all jobs), the total load at time t in machine
i is

∑
j,k hi,j,k(t) where the sum is taken over all job executions in machine i.

The total energy is defined as
∑

i

∑
t Pi

(∑
j,k hi,j,k(t)

)
where Pi is an energy

Competitive Algorithms for Demand Response Management in Smart Grid 305

power function of machine i. Typically, Pi(z) = zνi for some constant parameter
νi ≥ 1. In the problem, we consider Pi as arbitrary non-decreasing functions,
and possibly non-convex. The goal is find a feasible schedule that minimize the
total energy consumption over all times.

In the paper, we consider both offline and online settings. In the offline set-
ting, the scheduler has the full knowledge on all parameters while in the online
setting, jobs arrive over time and the scheduler is aware of jobs (and their param-
eters) only at their arrival time. The online setting is appropriate to the dynamic
nature of the demand response management.

The presented model encompasses the previous ones [11] in literature. In the
latter, jobs have release date rj , deadline dj , processing time pi,j and jobs have
to be processed non-preemptively. The power request of a job j is some constant
hj during its non-preemptive execution. It is captured by the model by defining

hi,j,k(t) =

⎧
⎪⎨

⎪⎩

hj if rj ≤ k ≤ dj − pij and t ∈ [k, k + pij],
0 if rj ≤ k ≤ dj − pij and t /∈ [k, k + pij],
∞ otherwise.

(1)

Geometrically, in the model as shown in Eq. (1), each job corresponds to a rect-
angle and the problem essentially consists of packing rectangles to minimize the
total energy. In this case, the power request is constant from the beginning to
the end of the request. For short, we call the model defined by Eq. (1) rectan-
gle scheduling. In our model, there is no condition on the demand (i.e., energy
request) of jobs and the demands can be specifically customized by clients. Geo-
metrically, each job in our model has an arbitrary (not necessarily continuous)
form which represents varying power requests during its execution (See Fig. 1).
Hence, the model offers flexible choices to clients along the line of Smart Grid’s
purposes.

time

power request

Fig. 1. Example of a schedule with arbitrary power requests during execution of jobs.

1.2 Related Works

In this section, we summarize related works in the model of rectangle scheduling
which, to the best of our knowledge, is the only one that has been studied so
far.

306 V. Chau et al.

Koutsopoulos and Tassiulas [11] formulated the rectangle scheduling model
where the cost function is piecewise linear. They show that the problem is NP-
hard, and it can further be adapted to show the NP-hardness of the general prob-
lem where the cost function is convex [5]. In the offline setting, Burcea et al. [5]
gave a polynomial time algorithms for the case of unit height (i.e., unit power
request) and unit width (i.e., duration of request). Furthermore, in the full ver-
sion of [13] (see [14]), Liu et al. showed that the offline case, where jobs have unit
processing time but with arbitrary power request, admits a 2ν+1-approximation
algorithm which is based on the results of the the dynamic speed scaling
problem [1,4,21].

In the online setting, [9] proposed a simple greedy algorithm which is 2-
competitive for the unit case and the power function is z2. However, [13] showed
that the greedy algorithm is in fact at least 3-competitive by providing a counter
example. In the same paper, Liu et al. [13] considered the single machine setting
in which they presented an online Θ

(
logν

(
pmax
pmin

))
-competitive algorithm where

pmin = minj{pj : pj > 0} and pmax = maxj pj . This is the best known algorithm
(even in offline setting) where jobs have arbitrary width, arbitrary height and
the power energy function is zν . Furthermore, for special cases of jobs with unit
processing time, Liu et al. [13] also gave competitive algorithms. A summary of
the results can be found in Table 1.

Table 1. Summary of competitive ratios in the rectangle scheduling model with power
function zν for a single machine. Our result holds for unrelated machines.

Processing time pj Power request
hj

Prior best-known
results

Our result

Unit Uniform (i.e.,
hj = hj′)

min{(4ν)ν/2 +
1, 2ν(8eν + 1)} [13]

Arbitrary 2ν(8eν + 1) [13]

Arbitrary Arbitrary O
(
logν

(
pmax
pmin

))
[13] Θ(νν)

Ω (νν) [13]

Besides, Salinas et al. [18] considered a multi-objective problem to minimize
energy consumption cost and maximize some utility that can be the profit for
the operator as well as for the clients. On the other hand, a related problem is
to manage the load by considering different price of electricity over time [8,16].
Recent surveys of the area can be found in [2,10,15].

1.3 Our Contribution and Approaches

In this paper, we investigate the online and offline aspects of the problem.

Competitive Algorithms for Demand Response Management in Smart Grid 307

Online Setting. The main result of the paper is a competitive algorithm for the
problem in online setting where the competitive ratio is characterized by a notion
called smoothness [17,19] of the machine energy power functions. Informally, the
algorithm assigns and executes each job that arrives on a machine in such a way
that minimizes the marginal increase of the total cost.

In designing a competitive algorithm for the problem, we consider a primal-
dual approach. The main difficulty in proving the performance of the algorithm
is that all known LPs has unbounded integrality gap, even for the special case
of rectangle scheduling. Intuitively, the drawback of all known LPs is that in
the optimal fractional solution, jobs are fractionally assigned to machines while
in the optimal integer solution, migration of jobs is not allowed. To bypass this
obstacle, we consider the primal-dual framework based on configuration linear
programs in [19]. The framework is presented in order to reduce the integrality
gap and also to study problems with non-linear, non-convex objective functions.
The approach is particularly useful since the energy power functions are non-
linear. Employing the techniques from [19], we derive a greedy algorithm with
competitive ratio characterized by the notion of smoothness, which is defined as
follows.

Definition 1. A function f : R
+ → R

+ is (λ, μ)-smooth if for any sets of
non-negative numbers A = {a1, . . . , an} and B = {b1, . . . , bn}, the following
inequality holds:

n∑

i=1

⎡

⎣f

(

ai +
i∑

j=1

bj

)

− f

(i∑

j=1

bj

)
⎤

⎦ ≤ λ · f

(n∑

i=1

ai

)

+ μ · f

(n∑

i=1

bi

)

A set of cost functions {fe : e ∈ E} is (λ, μ)-smooth if every function fe is
(λ, μ)-smooth.

Specifically, in the problem, assuming that all energy power functions are (λ, μ)-
smooth for some λ > 0 and 0 < μ < 1, our algorithm is λ/(1 − μ)-competitive.
For energy power functions of forms Pi(z) = zνi , they are

(
O(νν−1), ν−1

ν

)
-

smooth where ν = maxi νi. That leads to the competitive ratio O(νν) which
improves upon the best-known Θ

(
logν

(
pmax
pmin

))
-competitive algorithm where

pmin = minj{pj : pj > 0} and pmax = maxj pj . Our competitive ratio is not
only independent on the jobs’ parameters but it is indeed optimal up to a con-
stant factor. The matching lower bound is given by [13, Theorem 9] for a single
machine in the rectangle scheduling model. In particular, [13] gave a lower bound
which is 1

3

(
log pmax

pmin

)ν where log pmax
pmin

= ν.
Our greedy algorithm has several interesting features toward the purposes of

Smart Grid. First, the algorithm is simple and easy to implement which makes
it practically appealing. Note that despite the simplicity of our algorithm, no
bounded competitive ratio has been known even for the rectangle scheduling
model. Second, the algorithm performance guarantee holds for jobs with arbi-
trary varying power requests (arbitrary forms). Apart of answering open ques-
tions raised in [13], it is particularly useful for the demand response management.

308 V. Chau et al.

Once the algorithm is publicly given and clients are charged accordingly to the
marginal increase of the total energy cost, clients can arbitrarily customized their
demand in order to minimize their payment. This property is desirable since it
enables the clients to react rationally. In the side of the smart grid manage-
ment, no modification in the algorithm is needed while always maintaining the
competitiveness (optimality in case of typical energy functions).

Offline Setting. In offline setting, we give an improved 2ν-approximation algo-
rithm when jobs have unit processing time. This result improves upon the 2ν+1-
approximation algorithm given by Liu et al. [14] in two aspects. First, it slightly
improves the competitive ratio. Secondly, our result holds for multiple (identical)
machine environment. Our algorithm makes use of the approximation algorithm
for scheduling problems with convex norm objective functions given by [3]. The
latter is designed by solving a convex relaxation and round to an integer solution
using the Lenstra-Shmoys-Tardos scheme [12].

2 A Competitive Online Algorithms

Formulation. In the model, the execution of a job is specified by two parameters:
(1) a machine in which it is executed; and (2) a starting time. Note that these
parameters fully represent the demand of a job, including the power request at
any time t during its execution. Formally, we denote the execution of job j as
si,j,k if job j is processed in machine i with the starting time k. Recall that if
the execution of a job j is si,j,k then the request demand of the job at time t
is hi,j,k(t). Let Sj be a set of feasible executions of job j. For example, in the
rectangle scheduling model, Sj consists of si,j,k for all machines i and starting
time k such that rj ≤ k ≤ dj − pij . As the set of machines and times1 are finite,
so is the set Sj for every job j. Let xi,j,k be a variable indicating whether the
execution of job j is si,j,k ∈ Sj . We say that A is a scheduling configuration
(configuration in short) in machine i if A is a feasible schedule of a subset of
jobs. Specifically, A consists of tuples (i, j, k) meaning that the execution of job
j is si,j,k. For a scheduling configuration A and machine i, let zi,A be a variable
such that zi,A = 1 if and only if for every tuple (i, j, k) ∈ A, we have xi,j,k = 1.
In other words, zi,A = 1 if and only if the schedule in machine i follows exactly
the configuration A. Given a scheduling configuration A, let A(t) be the load
(height) of the corresponding schedule at time t. We denote the energy cost of a
configuration A of machine i as ci(A) :=

∑
t Pi(A(t)). We consider the following

formulation and the dual of its relaxation.

1 For convenience, we consider schedules up to a time T , which can be arbitrarily large
but finite.

Competitive Algorithms for Demand Response Management in Smart Grid 309

min
∑

i,A

ci(A)zi,A

∑

i,k:si,j,k∈Sj

xi,j,k = 1 ∀j

∑

A:(i,j,k)∈A

zi,A = xi,j,k ∀i, j, k

∑

A

zi,A = 1 ∀i

xi,j,k, zi,A ∈ {0, 1} ∀i, j, k, A

max
∑

j

αj +
∑

i

γi

αj ≤ βi,j,k ∀i, j, k

γi +
∑

(i,j,k)∈A

βi,j,k ≤ ci(A) ∀i, A

In the primal, the first constraint guarantees that a job j has to be processed
by some feasible execution (in some machine). The second constraint ensures
that if job j follows the execution si,j,k then in the solution, the scheduling con-
figuration of machine i must contain the tuple (i, j, k) corresponding to execution
si,j,k. The third constraint says that in the solution, there is always a scheduling
configuration (possibly empty set) associated to machine i.

Algorithm. We first interpret intuitively the dual variables, dual constraints and
derive useful observations for a competitive algorithm. Variable αj represents the
increase of energy to the arrival of job j. Variable βi,j,k stands for the marginal
energy if job j follows execution si,j,k. By this interpretation, the first dual
constraint clearly indicates the greedy behavior of an algorithm. That is, if a
new job j is released, select an execution si,j,k ∈ Sj that minimizes the marginal
increase of the total energy.

Formally, let A∗
i be the set of current schedule of machine i and initially,

A∗
i ← ∅ for every machine i. At the arrival of job j, select an execution si∗,j,k∗ ∈

Sj such that
si∗,j,k∗ ∈ arg min

si,j,k∈Sj

[
ci(A∗

i ∪ si,j,k) − ci(A∗
i)

]

or equivalently,

si∗,j,k∗ ∈ arg min
si,j,k∈Sj

∑

t

[

Pi

(

A∗
i (t) + hi,j,k(t)

)

− Pi

(

A∗
i (t)

)]

where (A∗
i ∪ si,j,k) is the current schedule with additional execution si,j,k of job

j. Note that in configuration (A∗
i ∪ si,j,k), the load at time t in machine i is

Pi

(
A∗

i (t) + hi,j,k(t)
)
. Then assign job j to machine i∗ and process it according

to the corresponding execution of si∗,j,k∗ .

Dual variables. Assume that all energy power functions Pi are (λ, μ)-smooth for
some fixed parameters λ > 0 and μ < 1, then we construct a dual feasible solution
in the following way. Let A∗

i,≺j be the scheduling configuration of machine i (due
to the algorithm) prior to the arrival of job j. Define αj as 1/λ times the increase

310 V. Chau et al.

of the total cost due to the arrival of job j. In other words, if the algorithm selects
the execution si∗,j,k∗ for job j then

αj =
1
λ

[

ci∗(A∗
i∗,≺j ∪ si∗,j,k∗) − ci∗(A∗

i∗,≺j)
]

=
1
λ

∑

t

[

Pi∗

(

A∗
i∗,≺j(t) + hi∗,j,k∗(t)

)

− Pi∗

(

A∗
i∗,≺j(t)

)]

For each machine i and job j, we set

βi,j,k =
1
λ

[

ci(A∗
i,≺j ∪ si,j,k) − ci(A∗

i,≺j)
]

=
1
λ

∑

t

[

Pi

(

A∗
i,≺j(t) + hi,j,k(t)

)

− Pi

(

A∗
i,≺j(t)

)]

.

Finally, for every machine i, we define the dual variable

γi = −μ

λ
ci(A∗

i)

where A∗
i is the schedule on machine i (at the end of the instance).

Lemma 1. The dual variables defined as above are feasible.

Proof. By the definition of dual variables, the first constraint reads

1
λ

[

ci∗(A∗
i∗,≺j ∪ si∗,j,k∗) − ci∗(A∗

i∗,≺j)
]

≤ 1
λ

[

ci(A∗
i,≺j ∪ si,j,k) − ci(A∗

i,≺j)
]

This inequality follows immediately the choice of the algorithm.
We now show that the second constraint holds. Fix a machine i and an

arbitrary configuration A on machine i. The corresponding constraint reads

− μ

λ
ci(A∗

i) +
1
λ

∑

(i,j,k)∈A

[

ci(A∗
i,≺j ∪ si,j,k) − ci(A∗

i,≺j)
]

≤ ci(A)

⇔
∑

(i,j,k)∈A

[

ci(A∗
i,≺j ∪ si,j,k) − ci(A∗

i,≺j)
]

≤ λci(A) + μci(A∗
i)

⇔
∑

(i,j,k)∈A

∑

t

[

Pi(A∗
i,≺j(t) + hi,j,k(t)) − Pi(A∗

i,≺j(t))
]

≤ λ
∑

t

Pi(A(t)) + μ
∑

t

Pi(A∗
i (t)) (2)

where A∗
i,≺j(t) is the load (height) of machine i (due to the algorithm) at time

t before the arrival of job j.

Competitive Algorithms for Demand Response Management in Smart Grid 311

Observe that A∗
i,≺j(t) is the sum of power requests (according to the algo-

rithm) at time t of jobs assigned to machine i prior to job j. As the power
function Pi is (λ, μ)-smooth, for any time t we have

∑

(i,j,k)∈A

[

Pi

(
A∗

i,≺j(t) + hi,j,k(t)
) − Pi

(
A∗

i,≺j(t)
)
]

≤ λPi

(∑

(i,j,k)∈A

hi,j,k(t)
)

+ μPi

(
A∗

i (t)
)

Summing over all times t, Inequality (2) holds. Therefore, the lemma follows.

We are now ready to prove the main theorem.

Theorem 1. If all energy power functions are (λ, μ)-smooth, then the algorithm
is λ/(1−μ)-competitive. In particular, if Pi(z) = zνi for νi ≥ 1 then the algorithm
is O(νν)-competitive where ν = maxi νi.

Proof. By the definitions of dual variables, the dual objective is

∑

j

αj +
∑

i

γi =
∑

i

1
λ

ci(A∗
i) −

∑

i

μ

λ
ci(A∗

i) =
1 − μ

λ

∑

i

ci(A∗
i)

Besides, the cost of the solution due to the algorithm is
∑

i ci(A∗
i). Hence, the

competitive ratio is at most λ/(1 − μ).
Particularly, energy power functions of forms Pi(z) = zνi for νi ≥ 1

are
(
O(νν−1), ν−1

ν

)
-smooth for ν = maxi νi. In fact, the smoothness follows

(smooth) inequalities in [7], which states: for ν > 1 and for any sets of non-
negative numbers A = {a1, . . . , an} and B = {b1, . . . , bn}, it always holds that

n∑

i=1

⎡

⎣
(

ai +
i∑

j=1

bj

)ν

−
(i∑

j=1

bj

)ν
⎤

⎦ ≤ O(νν−1) ·
(n∑

i=1

ai

)ν

+
ν − 1

ν
·
(n∑

i=1

bi

)ν

That implies the competitive ratio νν of the algorithm for power functions
Pi(z) = zνi . �

3 An Approximation Algorithm for Unit Processing
Time Jobs

In this section, we investigate the offline case in identical machine environment
where jobs have unit processing time but different power requests on different
machines. Note that this corresponds to the restricted model of rectangle schedul-
ing. We consider typical energy power function P (z) = zν for every machine and
we assume that jobs need to be assigned to time-slot. This problem is proved to
be NP-hard by a reduction to the 3-Partition problem even for the case where
jobs have common release time and common deadline [5].

312 V. Chau et al.

Let Θ = ∪n
j=1{rj + a | a = −n, . . . , n} ∪n

j=1 {dj + a | a = −n, . . . , n} to be a
set of time-slots. We show that it is sufficient to consider only schedules in which
jobs are processed within these time-slots. In particular, this set contains O(n2)
time-slots and will help to design a polynomial time approximation algorithm.

Lemma 2. The schedules in which jobs start at a date in Θ are dominant. In
other words, any schedule can be transformed to one in which jobs start at a date
in Θ without increasing the cost.

Proof. It is sufficient to consider a machine and show how to transform the
schedule of the machine to the new one such that each job starts at a date in Θ
without increasing the cost.

Let t be the first moment where jobs that are assigned to this time-slot does
not belong to Θ. We consider the maximal continuous interval from time-slot t
in which every time-slot has at least one job that is assigned. If the considered
interval is [t, u), then the time-slot u + 1 is idle.

First, we observe that the length of this interval is lower or equal to n. Indeed,
in the worst case, each job is assigned to different time-slot. We shift this interval,
as well as the jobs, by one unit time to the right, i.e. after the shift, the interval
will be [t + 1, u + 1).

Three cases may occur (see Fig. 2):

– We reach another job. We then consider the new maximal continuous interval
and continue to shift it.

– We reach a deadline. The starting time of the interval must be in Θ since the
length of the interval is at most n.

– None of the above cases, we continue to shift the interval to the right.

By this operation, we observe that the cost of the schedule remains the same
because the costs of time-slots are independent. By doing a such modification,
jobs are executed at the same way, with the same order and with the same cost,
the only difference is the time-slots in which the jobs are executed. �

The main idea is to reduce the smart grid problem to the following Lν-norm
problem. In the latter, we are given a set J of n jobs and a set M of m unrelated
machine. Each job j ∈ J have a processing time pi,j if it is assigned to machine
i. We define the decision variable yi,j = 1 if the job j is assigned to machine i,
and yi,j = 0 otherwise. The goal is to minimize the following function:

ν

√
√
√
√
√

∑

i∈M

⎛

⎝
n∑

j=1

yi,jpi,j

⎞

⎠

ν

(3)

Lemma 3. The problem of smart grid with unit processing time jobs and identi-
cal machines can be polynomially reduced to the Lν-norm minimization problem
on unrelated machines.

Competitive Algorithms for Demand Response Management in Smart Grid 313

time

power request

t u

time

power request

t u

u+ 1

u+ 1

t+ 1

t+ 1

Fig. 2. Illustration of a shift of an interval. After the shift, the former interval meet
another job. We then need to consider the continuous interval from time-slot t + 1. It
corresponds to the first case in the proof of Lemma 2.

Proof. By Lemma 2, there is a polynomial number of time-slots to which jobs
can be assigned. We create a corresponding machine (i, t) for each time-slot
t ∈ Θ and each machine i. Similarly, we create a new job j′ ∈ J (in Lν-norm
problem) which corresponds to job j ∈ J (in the smart grid problem) in the
following way:

p(i,t),j′ =

{
hj if t ∈ [rj , dj)
+∞ otherwise

(4)

Given a schedule for the Lν-norm problem with cost C, we show how to build
a feasible schedule for the smart grid problem with cost Cν .

For each job j ∈ J that is assigned to machine (i, t) ∈ M in the Lν-norm
problem, we schedule this job at the time-slot t on machine i in the initial
problem. By doing that, the load at any time-slot t on machine i in the initial
problem equals the load of the machine (i, t) in the Lν-norm problem. Therefore,
the constructed schedule for the initial problem has cost Cν where C is the cost
of the schedule in the Lν-norm problem. �

By Lemma 3, solving the smart grid problem with unit processing time jobs
and identical machines is essentially solving the Lν-norm problem. Hence, in our
algorithm (Algorithm 1), we invoke the Azar-Epstein algorithm [3] in order to get
an approximation algorithm for the latter. Roughly speaking, the Azar-Epstein
algorithm consists of solving a relaxed convex program and rounding fractional
solutions to integral ones using the standard scheme of Lenstra et al. [12]. Given
a solution for the Lν-norm problem, we reconstruct a feasible solution for the
smart grid problem with approximation ratio of 2ν .

Theorem 2. Algorithm 1 achieves an approximation ratio of 2ν .

314 V. Chau et al.

Algorithm 1. Approximation algorithm for the smart grid scheduling problem
with unit processing time jobs and identical machines
1: Θ = ∪n

j=1{rj + a | a = −n, . . . , n} ∪n
j=1 {dj + a | a = −n, . . . , n}

2: Let Π = ∅ be the set of machines and J = ∅ be the set of jobs
3: for each t ∈ Θ and each machine i do
4: Create a machine (i, t) and Π ← Π ∪ {(i, t)}
5: end for
6: for each job j do
7: Create a new job j′ with p(i,t),j′ = hj if t ∈ [rj , dj), otherwise we have p(i,t),j′ =

+∞
8: J ← J ∪ {j′}
9: end for

10: Apply the Azar-Epstein algorithm [3] on instance (Π, J).
11: Build the schedule for the smart grid problem as in Lemma 3.

Proof. By Lemma 3, we know that given an assignment of jobs for the Lν-
norm problem on unrelated machines of cost C, we can construct a schedule for
the smart grid problem with a cost of Cν in polynomial time. Thus we have
(OPTL)ν = OPTSG where OPTL is the optimal cost of the Lν-norm problem
and OPTSG is the optimal cost of the smart grid problem.

Besides, Azar-Epstein algorithm [3] is 2-approximation for the Lν-norm prob-
lem. Therefore, we have OPTL ≤ C ≤ 2OPTL. Finally, by raising each term of
the inequality by a power of ν, we have (OPTL)ν ≤ Cν ≤ 2ν(OPTL)ν , so
OPTSG ≤ Cν ≤ 2νOPTSG. The theorem follows. �

4 Concluding Remarks

In the paper, we have considered a general model of demand-response manage-
ment in Smart Grid. We have given a competitive algorithm which is optimal
(up to a constant factor) in typical settings. Our algorithm is robust to arbitrary
demands and so enables the flexibility on the choices of clients in shaping their
demands. The paper gives rise to several directions for future investigations.
First, in the scheduling aspect, it would be interesting to consider problems in
the general model with additional requirements such as precedence constraints,
etc. Secondly, in the game theory aspect, designing pricing schemes that allow
clients to react rationally while maintaining the efficiency in the energy con-
sumption has received particular interests from both theoretical and practical
studies in Smart Grid. Through the primal-dual view point, dual variables can
be interpreted as the payments of clients. An interesting direction is to design a
pricing scheme based on primal-dual approaches.

Competitive Algorithms for Demand Response Management in Smart Grid 315

Acknowledgement. We thank Prudence W. H. Wong for insightful discussions and
anonymous reviewers for useful comments that helps to improve the presentation.

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Alford, R., Dean, M., Hoontrakul, P., Smith, P.: Power systems of the future: the

case for energy storage, distributed generation, and microgrids. Zpryme Research
& Consulting, Technical report (2012)

3. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel
machines. In: Proceedings 37th Annual ACM Symposium on Theory of Computing,
pp. 331–337 (2005)

4. Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes
and deadlines. J. Comb. Optim. 29(4), 739–749 (2015)

5. Burcea, M., Hon, W., Liu, H.H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for elec-
tricity cost in a smart grid. J. Sched. 19(6), 687–699 (2016)

6. Chen, C., Nagananda, K., Xiong, G., Kishore, S., Snyder, L.V.: A communication-
based appliance scheduling scheme for consumer-premise energy management sys-
tems. IEEE Trans. Smart Grid 4(1), 56–65 (2013)

7. Cohen, J., Dürr, C., Thang, N.K.: Smooth inequalities and equilibrium inefficiency
in scheduling games. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp.
350–363. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-
6 26

8. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Scheduling on a single machine
under time-of-use electricity tariffs. Ann. OR 238(1–2), 199–227 (2016)

9. Feng, X., Xu, Y., Zheng, F.: Online scheduling for electricity cost in smart grid. In:
Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486,
pp. 783–793. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-
8 58

10. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power
Energy Mag. 8(3), 60–65 (2010)

11. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power
grid: scheduling of power demands for optimal energy management. In: e-Energy,
pp. 41–50. ACM (2011)

12. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(1), 259–271 (1990)

13. Liu, F., Liu, H.H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart
grid model. In: Proceedings 27th Symposium on Algorithms and Computation,
vol. 64, pp. 53:1–53:13 (2016)

14. Liu, F., Liu, H.H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart
grid model. CoRR abs/1602.06659 (2016). http://arxiv.org/abs/1602.06659

15. Lui, T.J., Stirling, W., Marcy, H.O.: Get smart. IEEE Power Energy Mag. 8(3),
66–78 (2010)

16. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand
response management in the smart grid: a stackelberg game approach. IEEE Trans.
Smart Grid 4(1), 120–132 (2013)

17. Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM 62(5), 32
(2015)

18. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling
in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)

https://doi.org/10.1007/978-3-642-35311-6_26
https://doi.org/10.1007/978-3-642-35311-6_26
https://doi.org/10.1007/978-3-319-26626-8_58
https://doi.org/10.1007/978-3-319-26626-8_58
http://arxiv.org/abs/1602.06659

316 V. Chau et al.

19. Thang, N.K.: Online primal-dual algorithms with configuration linear programs.
CoRR abs/1708.04903 (2017)

20. US Department of Energy: The smart grid: an introduction (2009). https://energy.
gov/oe/downloads/smart-grid-introduction-0

21. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy.
In: FOCS, pp. 374–382. IEEE Computer Society (1995)

https://energy.gov/oe/downloads/smart-grid-introduction-0
https://energy.gov/oe/downloads/smart-grid-introduction-0

An Average-Case Lower Bound
Against ACC0

Ruiwen Chen, Igor C. Oliveira(B), and Rahul Santhanam

Department of Computer Science, University of Oxford, Oxford, UK
{ruiwen.chen,igor.carboni.oliveira,rahul.santhanam}@cs.ox.ac.uk

Abstract. In a seminal work, Williams [22] showed that NEXP (non-
deterministic exponential time) does not have polynomial-size ACC0 cir-
cuits. Williams’ technique inherently gives a worst-case lower bound, and
until now, no average-case version of his result was known. We show that
there is a language L in NEXP and a function ε(n) = 1/ log(n)ω(1) such
that no sequence of polynomial size ACC0 circuits solves L on more than
a 1/2+ε(n) fraction of inputs of length n for all large enough n. Comple-
menting this result, we give a nontrivial pseudo-random generator against
polynomial-size AC0[6] circuits. We also show that learning algorithms
for quasi-polynomial size ACC0 circuits running in time 2n/nω(1) imply
lower bounds for the randomised exponential time classes RE (random-
ized time 2O(n) with one-sided error) and ZPE/1 (zero-error randomized
time 2O(n) with 1 bit of advice) against polynomial size ACC0 circuits.
This strengthens results of Oliveira and Santhanam [15].

Keywords: Circuit lower bounds · Average-case complexity
Pseudorandomness · Learning and natural properties

1 Motivation and Background

Significant advances in unconditional lower bounds are few and far between, spe-
cially in non-monotone boolean circuit models. In the 80s, there was substantial
progress in proving circuit lower bounds for AC0 (constant-depth circuits with
unbounded fan-in AND and OR gates) [2,8,11,24] and AC0[p] (AC0 circuits
extended with MODp gates) for p prime [16,19]. But even the case of AC0[m]
with m composite has remained little understood after decades of investigation,
despite our expectation that MODm gates do not have much computational
power.

In a seminal paper from a few years ago, Williams [22] proved a super-
polynomial lower bound against ACC0 (constant-depth circuits with unbounded
fan-in AND, OR and MODm gates, for a fixed but arbitrary m) using a new
lower bound technique: the algorithmic method. This result represents exciting
progress on circuit lower bounds after a long gap. However, it has a couple of
drawbacks when compared to previous lower bounds.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 317–330, 2018.
https://doi.org/10.1007/978-3-319-77404-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_24&domain=pdf

318 R. Chen et al.

First, while previous lower bounds were for explicit functions, i.e., functions
in P (deterministic polynomial time), Williams’ lower bound is only known to
hold for functions in NEXP [22], or in closely related classes [23]. (We note that
even proving a lower bound for these much larger classes had been a longstanding
open problem.) Unfortunately, the algorithmic method of Williams does not seem
to be easily adaptable to give lower bounds for explicit functions.

Second, previous lower bounds and their subsequent extensions worked also
in the average case setting, i.e., they showed that there were explicit functions
which cannot be computed by polynomial-size circuits on significantly more than
half the inputs of any input length. In other words, even computing the function
correctly on a random input is hard. Williams’ lower bound, on the other hand,
only seems to give a worst-case lower bound, meaning that any polynomial-size
family of ACC0 circuits is only guaranteed to fail to compute the hard function
in NEXP on a negligible fraction of inputs of length n, for infinitely many n.
The question of strengthening the existing worst-case ACC0 lower bound to the
average case has been recently posed and discussed in [1].

2 Results and Techniques

Our main result addresses this second drawback of Williams’ lower bound, and
strengthen the main result from [22] to an average-case lower bound.

Theorem 1 (An average-case lower bound against ACC0). There is a
function ε(n) = 1/ log(n)ω(1) such that the following holds. There is a language
L in NEXP such that for any polynomial-size family {Cn} of ACC0 circuits, there
are infinitely many n such that Cn computes L correctly on at most a 1/2+ε(n)
fraction of inputs of length n.

Our proof of Theorem1 in fact gives a much smaller upper bound on ε(n), but
stating this bound is a bit technical, so we defer it to Sect. 3.

Before sketching the main ideas behind the proof of Theorem1, we attempt
to explain why the original proof based on the algorithmic method fails to give an
average-case lower bound. Williams’ proof [22] employs an indirect diagonaliza-
tion technique. The technique exploits Williams’ algorithm solving satisfiability
of poly-size ACC0 circuits in time 2n−ω(log(n)). Assume, for the sake of contra-
diction, that NTIME(2n) does have ACC0 circuits of polynomial-size. It can be
shown from this assumption that languages in NTIME(2n) have succinct wit-
nesses, i.e., YES instances have witnesses which can be represented succinctly
by ACC0 circuits of size poly(n). Now we can use the following guess-and-check
procedure to compute any L ∈ NTIME(2n) in non-deterministic time 2n/nω(1),
contradicting the non-deterministic time hierarchy theorem. We guess a poly-
size ACC0 circuit encoding a witness for the instance, and then check that this
circuit indeed encodes a witness by using the satisfiability algorithm for ACC0

circuits. From the fact that the satisfiability algorithm runs in time 2n/nω(1),
it follows that this guess-and-check procedure runs in time 2n/nω(1), giving the

An Average-Case Lower Bound Against ACC0 319

desired contradiction to the non-deterministic time hierarchy theorem. (This is
just a high-level description – we refer to [22] for more details.)

A crucial step in the above proof is to use the assumption that NEXP is in
poly-size ACC0 to get succinct witnesses for NEXP languages. This step simply
does not work if our assumption is that NEXP is in poly-size ACC0 on average
rather than in the worst case, and the proof fails completely.

It seems difficult to adapt the algorithmic method to get an average-case
lower bound, so we try a different approach. A popular paradigm in complexity-
theoretic pseudorandomness is hardness amplification: transforming a function
that is worst-case hard for some class of circuits to a function that is average-case
hard for the same class of circuits. Williams’ result gives us a worst-case lower
bound against polynomial-size ACC0 circuits. Can we use hardness amplification
to derive an average-case lower bound from this?

There are a couple of obstacles we need to overcome to make this app-
roach work. First, hardness amplification typically requires that the class of
circuits against which we are performing amplification can compute the Major-
ity function [18]. We are trying to show an average-case lower bound against
ACC0 circuits, and we do not believe that poly-size ACC0 circuits can compute
Majority. However, while this does preclude us from amplifying to hardness
1/2−1/poly(n) (i.e., showing that any circuits computing the function must fail
on a 1/2− 1/poly(n) fraction of inputs) in a black-box way, we can still hope for
weaker hardness amplification results which get us hardness 1/2 − o(1). Indeed,
using the connection between hardness amplification and list-decodable error-
correcting codes due to Sudan et al. [21], hardness amplification procedures are
known [9,10] which are applicable in our setting.

Second, and more problematically, the hard function we begin with is in
NEXP, and we would like our new function resulting from hardness amplification
also to be in NEXP. If we were to do hardness amplification in a black-box way
starting from a NEXP function, the amplification needs to be monotone, and it
is not hard to see that black-box monotone hardness amplification cannot even
amplify worst-case hardness to hardness 0.99.1

To overcome this obstacle, we use instead a later result of Williams [23], where
he shows that his lower bound [22] also holds for a function in (NE ∩ coNE)/1,
i.e., both in NE = NTIME[2O(n)] and coNE = coNTIME[2O(n)], but with 1 bit of
advice depending only on the input length. The advantage of starting from this
later result of Williams is that when standard hardness amplification is applied,
the resulting function stays in (NE ∩ coNE)/1.

This still leaves the problem of eliminating the 1 bit of advice in the upper
bound. Doing this in a naive way would stop us from achieving hardness less
than 3/4, but we show how to eliminate the advice with a negligible loss in our
hardness parameter. This concludes our high-level description of the proof of
Theorem 1.

1 This corresponds to monotone error-correcting codes, which cannot have good dis-
tance. We refer to [4] for more details.

320 R. Chen et al.

A natural question that arises when we have an average-case lower bound
against a circuit class is whether we can construct pseudo-random generators
(PRG) against the circuit class. An influential paradigm of [13], motivated by a
similar paradigm in the cryptographic setting, shows how to transform average-
case hardness into pseudorandomness, and conversely. However, this is only
applicable when we have a hardness parameter ε(n) � 1/nΩ(1), which Theorem 1
fails to achieve.

More recent work of [7] studies how to derive pseudorandomness from
average-case hardness in cases where the hardness is not strong enough to apply
[13]. It is shown in [7] that when the hard function has a property known as
resamplability (a certain form of random self-reducibility), it is possible to get
low-stretch pseudorandom generators with error o(1) even under the weaker
assumption that ε(n) = o(1). We cannot directly apply their result in our set-
ting because it is unclear if our hard function in NEXP satisfies the resamplability
property.

However, by a win-win analysis and a result from [7], we are able to get a
low-stretch pseudo-random generator against AC0[6].2 Ideally, we would like this
generator to be computable in deterministic exponential time, but because our
hard function for ACC0 is in (NE∩coNE)/1, we are only able to get computability
in strong non-deterministic linear exponential time with 1 bit of advice.3

Theorem 2 (A pseudo-random generator against AC0[6]). For every
depth d � 1 and δ > 0, there is a sequence of functions {Gn} computable in
(NE∩coNE)/1, where each Gn : {0, 1}� → {0, 1}n has seed length �(n) = n−n1−δ,
for which the following holds. Let {Cn} be a sequence of AC0[6] circuits, where
each Cn has depth �d and size �nd. Then, for infinitely many values of n,

∣
∣
∣Pry∈{0,1}� [Cn(Gn(y)) = 1] − Prx∈{0,1}n [Cn(x) = 1]

∣
∣
∣ � o(1).

We observe that, using the pseudo-random generator in Theorem 2, we can
get an alternative proof of a variant of Theorem1. Since this is obtained in a
somewhat more indirect way, we do not discuss it further.

There are a couple of directions in which we could aspire to strengthen these
results. First, in Theorem1, we might hope to get a hardness parameter ε(n) =
1/nΩ(1), or even ε(n) = 1/nω(1). Indeed, we are able to obtain an analogous
result with ε(n) = 1/nΩ(1), but for a hard function in ENP instead of NEXP (see
Theorem 9 in Sect. 3.4). Nevertheless, getting even stronger results seems to be
a difficult task using existing techniques, for the following reason. Even for the
substantially simpler case of AC0[p] circuits, when p is prime, we do not know

2 We stick to modulo 6 gates mostly for simplicity. Theorem 2 can be extended to any
modulus m for which the results from [7] hold.

3 In other words, the non-deterministic algorithm, when given the correct advice bit
(that only depends on the input length parameter), outputs either “abort” of the
correct string, and outputs the correct string in at least one computation path. We
refer to Sect. 3.1 for more details.

An Average-Case Lower Bound Against ACC0 321

how to get ε(n) = o(1/
√

n) for an explicit function, and showing a stronger
hardness result is a long-standing open problem (cf. [20]).

Second, we could hope to get a PRG computable in deterministic linear
exponential time in Theorem 2. But this would imply that EXP is hard on average
for poly-size AC0[6] circuits, and so far we have been unable to show even worst-
case hardness against poly-size AC0[6] for EXP. This brings us back to the first
drawback in Williams’ algorithm technique, discussed in Sect. 1, and which we
further explore now.

While substantially improving the explicitness in Williams’ lower bounds
[22,23] and in Theorem 1 remains a major challenge, [14] recently introduced
another approach that could lead to further progress in this direction. They
considered a learning-theoretic analogue of Williams’ approach. While Williams
derives circuit lower bounds from circuit satisfiability algorithms that are “non-
trivial” in that they beat the naive brute force search algorithm, [14] show impli-
cations for circuit lower bounds from learning algorithms that are similarly non-
trivial in that they beat a brute force search approach.

We say that a randomized learning algorithm is a non-trivial learner for a
circuit class C if it runs in time bounded by 2n/nω(1). For concreteness and
simplicity, we consider learning algorithms that make membership queries, and
that learn under the uniform distribution with error at most 1/n and with failure
probability at most 1/n.

For convenience, we use ACC0
d,m(s(n)) to denote the class of boolean functions

computable by depth-d ACC0 circuits over a fixed modulo m and of size �s(n).
The following connection between learning algorithms and non-uniform lower
bounds was established in [14].

Proposition 1 (REXP lower bounds from learning sub-exponential size
ACC0 circuits [14]). If for every depth d � 1 and modulo m � 1 there is ε > 0
such that ACC0

d,m(2nε

) can be learned in non-trivial time, then REXP � ACC0.

Recall that REXP ⊆ NEXP is the class of languages decided by one-sided ran-
domized exponential time algorithms, and that under standard derandomization
hypotheses, REXP = EXP.4 Consequently, Proposition 1 offers a potential path
to more explicit (worst-case) ACC0 lower bounds via the design of non-trivial
learning algorithms, and it can be seen as another instantiation of the algorith-
mic method.5

However, note that the learnability of sub-exponential size circuits is a strong
assumption. Indeed, by the Speedup Lemma of [14], it implies that polynomial
size ACC0 circuits can be learned in quasi-polynomial time, a result that is only
known to hold for AC0 and AC0[p] circuits [5]. Ideally, we would like to get
stronger and more explicit lower bounds from much weaker assumptions.

4 For a concrete example of the benefits of improving an NEXP lower bound to ran-
domized exponential time classes such as REXP, we refer the reader to [15].

5 The design of concrete non-trivial learning algorithms for some circuit classes and in
some alternative but related learning models has been recently investigated in [17].

322 R. Chen et al.

The proof of Proposition 1 relies on a variety of techniques from complexity
theory. An important element in the argument is the use of Williams’ uncondi-
tional proof that NEXP � ACC0. This lower bound is employed as a black-box in
the argument from [14], and in Sect. 8 of the same work, the authors speculate
about the possibility of establishing stronger connections between non-trivial
algorithms and lower bounds by combining ideas from different frameworks.

We present a new application of the interaction between the learning frame-
work of [14], and the satisfiability framework of Williams [22,23]. We combine the
proofs of existing connections between non-trivial algorithms and non-uniform
lower bounds, and establish the following result.

Theorem 3 (Stronger connection between ACC0-learnability and lower
bounds). Assume that for every fixed choice of parameters d,m, c � 1, the class
ACC0

d,m(n(log n)c

) can be non-trivially learned. Then,

RTIME[2O(n)] � ACC0(nlog n) and ZPTIME[2O(n)]/1 � ACC0(nlog n).

We note that the worst-case lower bound for ZPTIME[2O(n)]/1 in Theorem 3
can be strengthened to an average-case lower bound using the same technique
as in the proof of Theorem 1.

Observe that this result strengthens Proposition 1 in a few ways. The assump-
tion is considerably weaker, and the lower bound is quantitatively stronger. In
addition, it provides a lower bound for zero-error randomized computations with
one bit of advice, while in Proposition 1 the randomized algorithm computing the
hard function makes mistakes. Interestingly, Theorem3 is not known to hold for
larger circuit classes, and its proof explores specific results about ACC0 circuits
in a crucial way.

We note that there is a connection between non-trivial algorithms and non-
uniform lower bounds for ZPEXP, but it assumes the existence of P-natural
properties useful against sub-exponential size circuits (see Theorem 44 from [14],
and also [12]). Although in Theorem3 the uniformity over the hard language is
not as strong (i.e., REXP and ZPEXP/1 versus ZPEXP), it almost matches the
uniformity condition, while its assumption is considerably weaker.

We sketch in the next section the proof of Theorem1. Due to space limita-
tions, we refer to the full version of the paper [6] for more details about our
results.

3 Proof of Theorem 1

3.1 Notation for Complexity Classes and Circuit Classes

Let TIME[t(n)] be the classes of languages decided by deterministic Turing
machines (TM) running in time O(t(n)), and let NTIME[t(n)] be the class of
languages decided by non-deterministic Turing machines (NTM) running in
time O(t(n)). We use standard notions of complexity classes, such as P, NP,
EXP, NEXP, etc. In particular, E = TIME[2O(n)], NE = NTIME[2O(n)], and

An Average-Case Lower Bound Against ACC0 323

L is the class of languages computable in (uniform) logarithmic space. A func-
tion t : N → N is time-constructible if there is a TM M , which on input 1n

outputs t(n) in time O(t(n)). We sometimes informally use the term algorithm
instead of Turing machines. We refer to a textbook such as [3] for more back-
ground in complexity theory.

A strong non-deterministic Turing machine (SNTM) is a NTM where each
branch of the computation has one of three possible outputs: 0, 1, and ‘?’. We say
that a SNTM M decides a language L if the following promise holds: if x ∈ L,
each branch ends with 1 or ‘?’, and at least one branch ends with 1; if x /∈ L,
each branch ends with 0 or ‘?’, and at least one branch ends with 0. It is easy
to see that a language L ∈ NE ∩ coNE if and only if L is decided by a SNTM
in time 2O(n). When we say that a sequence of functions Gn : {0, 1}� → {0, 1}n

is computed by a SNTM M , we formally mean that the language LG ⊆ {0, 1}�

that encodes {Gn} is computed by M , where LG is defined in a natural way. For
concreteness, we let LG be the set of strings encoding tuples 〈1n, y, i, b〉, where
b ∈ {0, 1}, y ∈ {0, 1}�(n), i ∈ [n], and Gn(y)i = b. We assume that the tuples
obtained from each choice of the parameter n have all the same length as strings
in {0, 1}� (this is relevant when defining computation with advice below).

We define advice classes as follows. For a deterministic or non-deterministic
uniform complexity class C and a function α(n), the class C/α(n) is the set of
languages L such that there is a language L′ ∈ C and a sequence of strings {an}
with |an| = α(n) which satisfy that L(x) = L′(x, a|x|) for all strings x ∈ {0, 1}�.

For semantic classes C (such as BPP, NE ∩ coNE, etc.) with advice, we only
require the promise condition for the class C to hold when the correct advice is
given. For example, a language L is in (NE∩ coNE)/α(n) if there is a SNTM M
running in time 2O(n) and a sequence of advice strings {an} with |an| = α(n) such
that, on each input x, the computation paths of M(x, a|x|) satisfy the promise
condition in the definition of SNTMs. Note that M running with incorrect advice
may not satisfy the promise on its branches.

We also define infinitely often classes. For a (syntactic) deterministic or non-
deterministic class C, the class i.o.C is the set of languages L for which there is
a language L′ ∈ C such that, for infinitely many values of n, L ∩ {0, 1}n = L′ ∩
{0, 1}n. For a semantic class C, we relax the definition, and let i.o.C be the class of
languages L decided by a Turing machine M such that, for infinitely many input
lengths n, M is of type C on inputs of length n (i.e., it satisfies the corresponding
promise). Note that M might not be of type C on other input lengths.

We use standard notation for circuit classes. In particular, AC0 is the class
of circuit families of constant depth and polynomial size, with AND, OR,
and NOT gates, where AND and OR gates have unbounded fan-in. AC0[m]
extends AC0 by allowing unbounded fan-in MODm gates, where m is fixed, and
ACC0 def=

⋃

m AC0[m] (we often write AC0[m] and ACC0[m] interchangeably).
For convenience, we use Cd(s) to restrict a circuit class to circuits of depth �d
and size �s. We often deliberately conflate a class of circuit families with the
class of languages computed by the circuit families. These circuit families are all
non-uniform, unless otherwise stated.

324 R. Chen et al.

We say that a language L is γ(n)-hard for a circuit class C if for each L′ ∈ C
and for infinitely many values of n, Prx∈{0,1}n [L(x) = L′(x)] � 1−γ(n). Finally,
a class Γ is γ(n)-hard for C if there is a language in Γ that is γ(n)-hard for C.

3.2 Background on ACC0 Lower Bounds

We recall the following ACC0 circuit lower bounds.

Theorem 4 ([22]). For every d � 1 and m � 1, there is a δ > 0 and a language
in ENP that is not computable by a sequence of ACC0[m] circuits of depth d and
size O(2nδ

).

Theorem 5 ([23]). There is a language in (NE ∩ coNE)/1 that does not admit
ACC0 circuits of size O(nlog n).

In order to prove Theorem 1 and its extensions, we need a strengthening of The-
orem 5. We use the following technical definitions. A function f : N → N is sub-
half-exponential if for every fixed k � 1, f(f(nk)k) � 2no(1)

. Similarly, a function
g : N → N is sub-third-exponential if for every fixed k � 1, g(g(g(nk)k)k) � 2no(1)

.
For instance, for a fixed integer a � 1, g(n) def= 2(log n)a

is sub-third-exponential.
By a more careful application of William’s techniques, the following result

can be established. We refer to the full version of the paper [6] for details.

Theorem 6 (Sub-third-exponential lower bounds against ACC0). (NE∩
coNE)/1 does not have ACC0 circuits of sub-third-exponential size.

3.3 Tools: Error Correcting Codes and Hardness Amplification

We follow part of the terminology from [10]. The proof of Theorem 1 requires
certain correcting codes that admit a uniform encoding procedure, but whose
decoding can be non-uniform.

Definition 1 (Local-list-decoding in error correcting codes). A family
{CM}M of functions CM : {0, 1}M → {0, 1}N is a (d, L)-locally-list-decodable
code if there is an oracle Turing machine D that takes an index i ∈ [M], advice
a ∈ [L], and a random string r, and for which the following holds. For every
input x ∈ {0, 1}M and y ∈ {0, 1}N for which Δ(CM (x), y) � d, there exists
a ∈ [L] such that, for all i ∈ [M],

Prr[Dy(i, a, r) = xi] > 9/10.

Here Δ(w1, w2) ∈ [0, 1] is the relative hamming distance between strings w1

and w2, and one should think of N = N(M), d = d(M), etc. as a sequence of
parameters indexed by M . We say that a code of this form is explicit if it can
be computed in time poly(N(M)).

An Average-Case Lower Bound Against ACC0 325

We will need results on hardness amplification and constructions of efficient
error correcting codes.

Definition 2 (Black-box hardness amplification). A (1/2− ε, δ)-black-box
hardness amplification from input length k to input length n is a pair (Amp,Dec)
where Amp is an oracle Turing machine that computes a (sequence of) boolean
function on n bits, Dec is a randomized oracle Turing machine on k bits which
also takes an advice string of length a, and for which the following holds. For
every pair of functions f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that

Prx∼{0,1}n [h(x) = Ampf (x)] > 1/2 + ε,

there is an advice string α ∈ {0, 1}a such that

Prx∼{0,1}k,Dec[Dec
h(x, α) = f(x)] > 1 − δ.

(We will also view Dech as a non-uniform oracle boolean circuit. Observe that if
δ = 2−k then there is a way to fix the randomness and the advice string of Dech

so that it correctly computes f on every input x ∈ {0, 1}k.6)

The following is a well-known connection [21] between fully black-box hard-
ness amplification and binary locally-list-decodable codes.

Theorem 7 (Connection between hardness amplification and local-
list-decodable codes). If there is a (1/2 − ε, L)-locally list decodable error-
correcting code C : {0, 1}K → {0, 1}N with a corresponding decoder D then
there is a (1/2 − ε, 2−k)-black-box hardness amplification procedure from length
k = log K to length n = log N , where Amp is defined by the encoder of C, and
Dec is defined by the decoder D with advice length a = log L.

We need the following construction of list-decodable codes (and correspond-
ing hardness amplification procedure).

Theorem 8 (Efficient construction of locally-list-decodable codes
[9,10]). For every exp(−Θ(

√
log M)) � ε < 1/2, there is an explicit (1/2 −

ε, poly(1/ε))-locally-list-decodable code CM : {0, 1}M → {0, 1}poly(M) with a local
decoder that can be implemented by a family of constant-depth circuits of size
poly(log M, 1/ε) using majority gates of fan-in Θ(1/ε) and AND/OR gates of
unbounded fan-in.

Observe that it is possible to get an AC0 decoder by a standard simulation
of majority gates via large AC0 circuits.

6 Note that the process of amplifying the success probability of randomized algorithms
and fixing the randomness can be done with only an AC0 overhead on the overall
complexity, since approximate majority functions can be computed in this circuit
class.

326 R. Chen et al.

Corollary 1 (Limited hardness amplification via constant-depth cir-
cuits of bounded size). For every parameter exp(−Θ(

√
log M)) � ε < 1/2

and each large enough constant d, there is an explicit (1/2− ε, poly(1/ε))-locally-
list-decodable code CM : {0, 1}M → {0, 1}poly(M) with a local decoder that can be
implemented by AC0 circuits of size poly(log M, exp((1/ε)O(1/d))) and depth at
most d.

Corollary 1 and the connection to hardness amplification are crucial results
needed in the proof of Theorem1 and its extensions. We will implicitly use
these locally-list-decodable codes in order to amplify from worst-case hardness
to average-case hardness.

3.4 The Proof of Theorem 1 and Its Extensions

We start off by showing a (1/2 − 1/nΩ(1))-hardness result for ENP.

Theorem 9 (An average-case lower bound for ENP). For every d � 1 and
m � 1, there is a γ > 0 and a language in ENP that is (1/2 − 1/nγ)-hard for
nonuniform AC0[m] circuits of depth d and size 2nγ

.

Proof. Given a sufficiently large d � 1 and a fixed modulo m, let Ld ∈ ENP

be the language guaranteed to exist by Theorem4, and δ = δ(d,m) > 0 be the
corresponding constant. In other words, Ld is not computed by AC0[m] circuits of
depth d and size 2nδ

for infinitely many values of n. For a function ε′ = ε′(M ′) �
exp(−Θ(

√
log M ′)) to be fixed later in the proof, and d′ sufficiently large (but

smaller than d), let {CM ′} be the sequence of explicit error-correcting codes
provided by Corollary 1, where each CM ′ : {0, 1}M ′ → {0, 1}N , and N(M ′) =
M ′c for a fixed positive integer c � 1. Consider a new language L� that depends
on Ld and on {CM ′}, defined as follows. Given x ∈ {0, 1}n, if n is not of the form
cm′ for some m′ ∈ N, then x is not in L�. Otherwise, let T ∈ {0, 1}2m′

be the
truth-table of Ld on m′-bit inputs, and consider the codeword CM ′(T) ∈ {0, 1}N ,
where M ′ = 2m′

and N = M ′c = 2cm′
= 2n. Then x ∈ L� if and only if the

entry of CM ′(T) indexed by x is 1. This completes the description of L�.
Given that Ld ∈ ENP and CM ′ can be computed in deterministic time

poly(M ′), we can compute L� in ENP as follows. Let x be an input of length
N , on which we wish to solve L�. First, check if N = M ′c for some integer M ′.
If not, output 0. Otherwise, compute the truth table T of Ld on input length M ′

by running the ENP machine for Ld on every possible input of length M ′. Then
compute CM ′(T) and output the x’th bit of that string. The computation of T
can be done in ENP as it involves at most 2N runs of an ENP machine on inputs
of length �N , and the computation of CM ′(T) can be done in time 2O(N) just
using the efficiency guarantee for CM ′ . Hence the procedure described above can
be implemented in ENP.

Now we show that L� has the claimed average-case hardness. For n = cm′ and
M ′ = 2m′

as above, we set ε′(M ′) def= 1/n2γ 	 exp(−Θ(
√

log M ′)), where 0 <
γ < δ/2 is a sufficiently small constant. We claim that L� cannot be computed

An Average-Case Lower Bound Against ACC0 327

with advantage larger than 1/nγ on infinitely many input lengths by AC0[m]
circuits of depth �d and size �2nγ

. This follows by the properties of the code
CM ′ and the connection to hardness amplification. Indeed, if for all large n of the
form cm′ the boolean function computed by L�

n could be approximated by such
circuits, by hardcoding their descriptions into the AC0 local decoders provided
by Corollary 1 it would follow that for all large n the language Ld is (worst-case)
computable by AC0[m] circuits of depth �d and size �2nδ

, a contradiction.
(This last step crucially uses that γ is sufficiently small compared to the other
parameters, and the size bound in Corollary 1.)

Next, we address the more difficult problem of showing an average-case lower
bound for NEXP. We first establish a lower bound for (NE ∩ coNE)/1, and then
show how to remove the advice.

Lemma 1. (NE∩ coNE)/1 is (1/2 − 1/ log(t(n)))-hard for ACC0 circuits of size
t(n), for any (time-constructible) sub-third-exponential function t(n).

Proof. The argument follows the same high-level approach of Theorem 9, so we
use the same notation and only describe the relevant differences. By Theorem 6,
there is a language L ∈ (NE ∩ coNE)/1 that is not computable by ACC0 circuits
of sub-third-exponential size t(n). Similarly, we define a language L� obtained
from L and the locally-list-decodable codes provided by Corollary 1. We need to
make sure the new language is still computable in (NE ∩ coNE)/1, and explain
the choice of parameters in the construction.

Since L ∈ (NE∩coNE)/1, there is a strong non-deterministic Turing machine
(SNTM) S with one bit of advice computing L. Let the advice sequence for M
be α(·), where |α(n)| = 1 for all n ∈ N. We define an SNTM S′ with one bit
of advice computing L�. S′ acts as follows on input x of length N . It checks
if N = M ′c for some integer M ′. If not, it rejects. If yes, it simulates S with
advice α(M ′) on each input of length M ′. The advice α(M ′) is the advice bit
for S′ - note that N completely determines M ′ and hence α(M ′). If any of these
simulations outputs ‘?’, it outputs ‘?’ and halts. If all of these simulations output
non-‘?’ values, S′ uses the results of its simulations of S to compute the truth
table T of L on input length M ′, and applies the mapping CM ′ to this string. It
then outputs the bit with index x of the resulting string.

We need to show that S′ is an SNTM with one bit of advice deciding L�

correctly in time 2O(N). By definition of S′, and using the fact that S is an SNTM
with one bit of advice, we have that whenever S′ computes a string T , this is the
correct truth table of L on inputs of length M ′, if S′ uses advice β(N) = α(M ′).
Moreover, this happens on at least one computation path of S, using the fact
that S′ is an SNTM with one bit of advice. On any such computation path, the
correct value L�(x) is output, as S′ is completely deterministic after computing
T , and using the definition of L�. The time taken by S′ is 2O(n), as it simulates
S on inputs of length �N at most 2N times, and using the efficiency guarantee
on CM ′ .

Finally, we sketch the choice of parameters in the hardness amplifica-
tion, which correspond to the parameters in the construction of L� via the

328 R. Chen et al.

error-correcting code provided by Corollary 1. Following the notation in the proof
of Theorem 9, we let ε(M ′) be of order 1/ log(t(βn)β), where β > 0 is sufficiently
small. Under this definition, observe that the circuit complexity overhead coming
from the decoder in the analysis of the average-case hardness of L� is at most
poly(n, exp(1/ε′)) � poly(n, exp(log t(βn)β)) � t(n)γ , for a fixed but arbitrarily
small γ > 0 that depends on β. This implies that L� is 1/ log t(Ω(n))Ω(1)-hard
against circuits of size t(n)Ω(1). Since our original sub-third-exponential function
t(n) was arbitrary and after composition with polynomials a function remains
in this class, the proof is complete.

We give a generic way to eliminate advice from the upper bound for average-
case hardness results.

Lemma 2. If NE/1 is (1/2 − ε(n))-hard for C circuits of size s(n), then NE is
(1/2 − ε(
n/2�))-hard for C circuits of size s(
n/2�).
Proof. Let L be a language in NE/1 which is (1/2 − ε)-hard for C circuits of size
s(n). Suppose L is decided by a NTM M running in nondeterministic time 2O(n)

and taking advice bits {bn}, where |bn| = 1. In other words, for every string x,
we have L(x) = M(x, b|x|).

Define a new language L′ as follows. We divide the input string z in the
middle, and denote it by xy, where either |y| = |x| (when |z| is even) or |y| =
|x|+1 (when |z| is odd). Then we decide by running M on the first half x, using
an advice bit which depends only on the length of y. More precisely, we let

L′(xy) def=

{

M(x, 0), if |y| = |x|;
M(x, 1), if |y| = |x| + 1.

Obviously, L′ is in NE by simulating M .
We show that if Ln is hard to approximate, then either L′

2n or L′
2n+1 is also

hard to approximate. For contradiction, suppose that both L′
2n and L′

2n+1 can
be computed correctly on more than a 1/2+ε fraction of inputs by circuits of size
s. If the advice bit bn = 0, let C0 be a circuit of size s such that Prxy[L′

2n(xy) =
C0(xy)] > 1/2 + ε, where x and y are both chosen independently and uniformly
at random from {0, 1}n. By an averaging argument, there is a specific y� such
that by fixing y = y�, Prx[L′

2n(xy�) = C0(xy�)] > 1/2 + ε. Note also that, since
bn = 0, we have that for all x of length n, L′

2n(xy�) = M(x, 0) = Ln(x). Thus
Prx[Ln(x) = C0(xy�)] > 1/2 + ε. That is, we can use C0 to approximate Ln by
fixing the second half of the inputs to y�. In the other case where the advice bit
bn = 1, we can use the approximate circuit for L′

2n+1 to approximate Ln in the
same way. As a consequence, if Ln is (1/2 − ε(n))-hard for C circuits of size s,
then either L′

2n or L′
2n+1 is also (1/2 − ε(n))-hard for C circuits of size s.

Finally, since there are infinitely many input lengths n such that Ln is (1/2−
ε(n))-hard for C circuits of size s(n), there are also infinitely many input lengths
n such that L′

n is (1/2 − ε(
n/2�))-hard for C circuits of size s(
n/2�). This
completes the proof.

An Average-Case Lower Bound Against ACC0 329

Finally, by combining the previous two lemmas, we get the following strength-
ened version of Theorem 1.

Theorem 10 (An average-case lower bound for NE against sub-third-
exponential size ACC0). NE is (1/2 − 1/ log t(n))-hard for ACC0 circuits of
size t(n) when t(n) is time-constructible and sub-third-exponential.

Acknowledgements. We would like to thank Marco Carmosino for posing the ques-
tion of proving average-case hardness against ACC0, and for useful discussions. This
work was supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2014)/ERC Grant Agrement no. 615075.

References

1. TCS Stack Exchange: How powerful is ACC0 circuit class in average case? https://
cstheory.stackexchange.com/q/37232. Accessed 27 Sept 2017

2. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983). https://doi.org/10.1016/0168-0072(83)90038-6
3. Arora, S., Barak, B.: Complexity Theory: A Modern Approach. Cambridge Uni-

versity Press, Cambridge (2009)
4. Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplifi-

cation in NP via monotone codes. In: Electronic Colloquium on Computational
Complexity (ECCC) TR06-154 (2006). https://eccc.weizmann.ac.il/eccc-reports/
2006/TR06-154/

5. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algo-
rithms from natural proofs. In: Conference on Computational Complexity (CCC),
pp. 10:1–10:24 (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.10

6. Chen, R., Oliveira, I.C., Santhanam, R.: An average-case lower bound against
ACC0. In: Electronic Colloquium on Computational Complexity (ECCC) TR17-
173 (2017). https://eccc.weizmann.ac.il/report/2017/173/

7. Fefferman, B., Shaltiel, R., Umans, C., Viola, E.: On beating the hybrid argument.
Theory Comput. 9, 809–843 (2013). https://doi.org/10.4086/toc.2013.v009a026

8. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Math. Syst. Theory 17(1), 13–27 (1984). https://doi.org/10.1007/BF01744431

9. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Verifying
and decoding in constant depth. In: Symposium on Theory of Computing (STOC),
pp. 440–449 (2007). https://doi.org/10.1145/1250790.1250855

10. Gutfreund, D., Rothblum, G.N.: The complexity of local list decoding. In: Goel,
A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008.
LNCS, vol. 5171, pp. 455–468. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85363-3 36

11. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Symposium
on Theory of Computing (STOC), pp. 6–20 (1986). https://doi.org/10.1145/12130.
12132

12. Impagliazzo, R., Kabanets, V., Volkovich, I.: The power of natural properties as
oracles. In: Electronic Colloquium on Computational Complexity (ECCC) TR17-
023 (2017). https://eccc.weizmann.ac.il/report/2017/023/

13. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994). https://doi.org/10.1016/S0022-0000(05)80043-1

https://cstheory.stackexchange.com/q/37232
https://cstheory.stackexchange.com/q/37232
https://doi.org/10.1016/0168-0072(83)90038-6
https://eccc.weizmann.ac.il/eccc-reports/2006/TR06-154/
https://eccc.weizmann.ac.il/eccc-reports/2006/TR06-154/
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://eccc.weizmann.ac.il/report/2017/173/
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1145/12130.12132
https://doi.org/10.1145/12130.12132
https://eccc.weizmann.ac.il/report/2017/023/
https://doi.org/10.1016/S0022-0000(05)80043-1

330 R. Chen et al.

14. Oliveira, I.C., Santhanam, R.: Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In: Computational Complexity Conference
(CCC), pp. 18:1–18:49 (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

15. Oliveira, I.C., Santhanam, R.: Pseudodeterministic constructions in subexponen-
tial time. In: Symposium on Theory of Computing (STOC), pp. 665–677 (2017).
https://doi.org/10.1145/3055399.3055500

16. Razborov, A.A.: Lower bounds on the size of bounded-depth networks over the
complete basis with logical addition. Math. Notes Acad. Sci. USSR 41(4), 333–338
(1987)

17. Servedio, R., Tan, L.Y.: What circuit classes can be learned with non-trivial sav-
ings? In: Innovations in Theoretical Computer Science Conference (ITCS), pp.
1–23 (2017)

18. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. SIAM J.
Comput. 39(7), 3122–3154 (2010). https://doi.org/10.1137/080735096

19. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Symposium on Theory of Computing (STOC), pp. 77–82 (1987).
https://doi.org/10.1145/28395.28404

20. Srinivasan, S.: On improved degree lower bounds for polynomial approximation.
In: Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pp. 201–212 (2013). https://doi.org/10.4230/LIPIcs.FSTTCS.
2013.201

21. Sudan, M., Trevisan, L., Vadhan, S.P.: Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001). https://doi.org/10.1006/jcss.
2000.1730

22. Williams, R.: Nonuniform ACC circuit lower bounds. J. ACM 61(1), 2:1–2:32
(2014). https://doi.org/10.1145/2559903

23. Williams, R.: Natural proofs versus derandomization. SIAM J. Comput. 45(2),
497–529 (2016). https://doi.org/10.1137/130938219

24. Yao, A.C.: Separating the polynomial-time hierarchy by oracles (preliminary ver-
sion). In: Symposium on Foundations of Computer Science (FOCS), pp. 1–10
(1985). https://doi.org/10.1109/SFCS.1985.49

https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.1137/080735096
https://doi.org/10.1145/28395.28404
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.201
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.201
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
https://doi.org/10.1109/SFCS.1985.49

Compressed Indexing with Signature
Grammars

Anders Roy Christiansen and Mikko Berggren Ettienne(B)

The Technical University of Denmark, Kongens Lyngby, Denmark
miet@dtu.dk

Abstract. The compressed indexing problem is to preprocess a string
S of length n into a compressed representation that supports pattern
matching queries. That is, given a string P of length m report all occur-
rences of P in S.

We present a data structure that supports pattern matching queries
in O(m + occ(lg lg n + lgε z)) time using O(z lg(n/z)) space where z is
the size of the LZ77 parse of S and ε > 0 is an arbitrarily small constant,
when the alphabet is small or z = O(n1−δ) for any constant δ > 0. We
also present two data structures for the general case; one where the space
is increased by O(z lg lg z), and one where the query time changes from
worst-case to expected. These results improve the previously best known
solutions. Notably, this is the first data structure that decides if P occurs
in S in O(m) time using O(z lg(n/z)) space.

Our results are mainly obtained by a novel combination of a ran-
domized grammar construction algorithm with well known techniques
relating pattern matching to 2D-range reporting.

1 Introduction

Given a string S and a pattern P , the core problem of pattern matching is to
report all locations where P occurs in S. Pattern matching problems can be
divided into two: the algorithmic problem where the text and the pattern are
given at the same time, and the data structure problem where one is allowed to
preprocess the text (pattern) before a query pattern (text) is given. Many prob-
lems within both these categories are well-studied in the history of stringology,
and optimal solutions to many variants have been found.

In the last decades, researchers have shown an increasing interest in the
compressed version of this problem, where the space used by the index is related
to the size of some compressed representation of S instead of the length of S. This
could be measures such as the size of the LZ77-parse of S, the smallest grammar
representing S, the number of runs in the BWT of S, etc. see e.g. [3,8–10,13,
16,17]. This problem is highly relevant as the amount of highly-repetitive data
increases rapidly, and thus it is possible to handle greater amounts of data by
compressing it. The increase in such data is due to things like DNA sequencing,
version control repositories, etc.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 331–345, 2018.
https://doi.org/10.1007/978-3-319-77404-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_25&domain=pdf

332 A. R. Christiansen and M. B. Ettienne

In this paper we consider what we call the compressed indexing problem,
which is to preprocess a string S of length n into a compressed representation
that supports fast pattern matching queries. That is, given a string P of length
m, report all occ occurrences of substrings in S that match P .

Table 1 gives an overview of the results on this problem.

Table 1. Selection of previous results and our new results on compressed indexing.
The variables are the text size n, the LZ77-parse size z, the pattern length m, occ is
the number of occurrences and σ is the size of the alphabet. (The time complexity
marked by † is expected whereas all others are worst-case)

Index Space Locate time σ

Gagie et al. [9] O(z lg(n/z)) O(m lg m + occ lg lg n) O(1)

Nishimoto et al. [17] O(z lg n lg∗ n) O(m lg lg n lg lg z +
lg z lg m lg n(lg∗ n)2 +
occ lg n)

nO(1)

Bille et al. [3] O(z lg(n/z)) O(m + occ(lgε n +
lg lg n))

O(1)

Bille et al. [3] O(z lg(n/z) lg lg z) O(m + occ lg lg n) nO(1)

Theorem 1 O(z lg(n/z)) O(m + occ(lgε z +
lg lg n))

O(1)

Theorem 2 (1) O(z(lg(n/z) + lg lg z)) O(m + occ(lgε z +
lg lg n))

nO(1)

Theorem 2 (2) O(z(lg(n/z)) O(m + occ(lgε z +
lg lg n))†

nO(1)

1.1 Our Results

In this paper we improve previous solutions that are bounded by the size of the
LZ77-parse. For constant-sized alphabets we obtain the following result:

Theorem 1. Given a string S of length n from a constant-sized alphabet with
an LZ77 parse of length z, we can build a compressed-index supporting pattern
matching queries in O(m + occ(lg lg n + lgε z)) time using O(z lg(n/z)) space.

In particular, we are the first to obtain optimal search time using only
O(z lg(n/z)) space. For general alphabets we obtain the following:

Theorem 2. Given a string S of length n from an integer alphabet polynomially
bounded by n with an LZ77-parse of length z, we can build a compressed-index
supporting pattern matching queries in:

(1) O(m + occ(lg lg n + lgε z)) time using O(z(lg(n/z) + lg lg z)) space.
(2) O(m + occ(lg lg n + lgε z)) expected time using O(z lg(n/z)) space.
(3) O(m + lgε z + occ(lg lg n + lgε z)) time using O(z lg(n/z)) space.

Compressed Indexing with Signature Grammars 333

Note lg lg z = O(lg(n/z)) when either the alphabet size is O(2lg
ε n) or z = o(n

lgε′n)
where ε and ε′ are arbitrarily small positive constants. Theorem1 follows directly
from Theorem 2 (1) given these observations. Theorem 2 is a consequence of
Lemmas 9, 11, 12 and 13.

1.2 Technical Overview

Our main new contribution is based on a new grammar construction. In [15]
Melhorn et al. presented a way to maintain dynamic sequences subject to equal-
ity testing using a technique called signatures. They presented two signature
construction techniques. One is randomized and leads to complexities that hold
in expectation. The other is based on a deterministic coin-tossing technique of
Cole and Vishkin [5] and leads to worst-case running times but incurs an iter-
ated logarithmic overhead compared to the randomized solution. This technique
has also resembles the string labeling techniques found e.g. in [19]. To the best
of our knowledge, we are the first to consider grammar compression based on
the randomized solution from [15]. Despite it being randomized we show how to
obtain worst-case query bounds for text indexing using this technique.

The main idea in this grammar construction is that similar substrings will
be parsed almost identically. This property also holds true for the deterministic
construction technique which has been used to solve dynamic string problems
with and without compression, see e.g. [1,17]. In [12] Jeż devices a different
grammar construction algorithm with similar properties to solve the algorithmic
pattern matching problem on grammar compressed strings which has later been
used for both static and dynamic string problems, see [11,20]

Our primary solution has an lgε z term in the query time which is problematic
for short query patterns. To handle this, we show different solutions for handling
short query patterns. These are based on the techniques from LZ77-based index-
ing combined with extra data structures to speed up the queries.

2 Preliminaries

We assume a standard unit-cost RAM model with word size Θ(lg n) and that
the input is from an integer alphabet Σ = {1, 2, . . . , nO(1)}. We measure space
complexity in terms of machine words unless explicitly stated otherwise. A string
S of length n = |S| is a sequence of n symbols S[1] . . . S[n] drawn from an
alphabet Σ. The sequence S[i, j] is the substring of S given by S[i] . . . S[j] and
strings can be concatenated, i.e. S = S[1, k]S[k + 1, n]. The empty string is
denoted ε and S[i, i] = S[i] while S[i, j] = ε if j < i, S[i, j] = S[1, j] if i < 1 and
S[i, n] if j > n. The reverse of S denoted rev(s) is the string S[n]S[n−1] . . . S[1].
A run in a string S is a substring S[i, j] with identical letters, i.e. S[k] = S[k+1]
for k = i, . . . , j −1. Let S[i, j] be a run in S then it is a maximal run if it cannot
be extended, i.e. S[i − 1] �= S[i] and S[j] �= S[j + 1]. If there are no runs in S we
say that S is run-free and it follows that S[i] �= S[i + 1] for 1 ≤ i < n. Denote
by [u] the set of integers {1, 2, . . . , u}.

334 A. R. Christiansen and M. B. Ettienne

Let X ⊆ [u]2 be a set of points in a 2-dimensional grid. The 2D-orthogonal
range reporting problem is to compactly represent Z while supporting range
reporting queries, that is, given a rectangle R = [a1, b1] × [a2, b2] report all
points in the set R ∩ X. We use the following:

Lemma 1 (Chan et al. [4]). For any set of n points in [u] × [u] and con-
stant ε > 0, we can solve 2D-orthogonal range reporting with O(n lg n) expected
preprocessing time using:

(i) O(n) space and (1 + k) · O(lgε n lg lg u) query time
(ii) O(n lg lg n) space and (1 + k) · O(lg lg u) query time

where k is the number of occurrences inside the rectangle.

A Karp-Rabin fingerprinting function [14] is a randomized hash function for
strings. Given a string S of length n and a fingerprinting function φ we can in
O(n) time and space compute and store O(n) fingerprints such that the finger-
print of any substring of S can be computed in constant time. Identical strings
have identical fingerprints. The fingerprints of two strings S and S′ collide when
S �= S′ and φ(S) = φ(S′). A fingerprinting function is collision-free for a set of
strings when there are no collisions between the fingerprints of any two strings
in the set. We can find collision-free fingerprinting function for a set of strings
with total length n in O(n) expected time [18].

Let D be a lexicographically sorted set of k strings. The weak prefix search
problem is to compactly represent D while supporting weak prefix queries, that
is, given a query string P of length m report the rank of the lexicographically
smallest and largest strings in D of which P is a prefix. If no such strings exist,
the answer can be arbitrary.

Lemma 2 (Belazzougui et al. [2], Appendix H.3). Given a set D of k
strings with average length l, from an alphabet of size σ, we can build a data
structure using O(k(lg l + lg lg σ)) bits of space supporting weak prefix search for
a pattern P of length m in O(m lg σ/w + lg m) time where w is the word size.

We will refer to the data structure of Lemma 2 as a z-fast trie following the
notation from [2]. The m term in the time complexity is due to a linear time
preprocessing of the pattern and is not part of the actual search. Therefore it is
simple to do weak prefix search for any length l substring of P in O(lg l) time
after preprocessing P once in O(m) time.

The LZ77-parse [21] of a string S of length n is a string Z of the form
(s1, l1, α1) . . . (sz, lz, αz) ∈ ([n], [n], Σ)z . We define u1 = 1, ui = ui−1 + li−1 + 1
for i > 1. For Z to be a valid parse, we require l1 = 0, si < ui, S[ui, ui + li −1] =
S[si, si + li − 1], and S[ui + li] = αi for i ∈ [z]. This guarantees Z represents S
and S is uniquely defined in terms of Z. The substring S[ui, ui + li] is called the
ith phrase of the parse and S[si, si + li − 1] is its source. A minimal LZ77-parse
of S can be found greedily in O(n) time and stored in O(z) space [21]. We call
the positions u1 + l1, . . . , uz + lz the borders of S.

Compressed Indexing with Signature Grammars 335

3 Signature Grammars

We consider a hierarchical representation of strings given by Melhorn et al. [15]
with some slight modifications. Let S be a run-free string of length n from an
integer alphabet Σ and let π be a uniformly random permutation of Σ. Define a
position S[i] as a local minimum of S if 1 < i < n and π(S[i]) < π(S[i − 1]) and
π(S[i]) < π(S[i+1]). In the block decomposition of S, a block starts at position
1 and at every local minimum in S and ends just before the next block begins
(the last block ends at position n). The block decomposition of a string S can
be used to construct the signature tree of S denoted sig(S) which is an ordered
labeled tree with several useful properties.

Lemma 3. Let S be a run-free string S of length n from an alphabet Σ and
let π be a uniformly random permutation of Σ such that π(c) is the rank of the
symbol c ∈ Σ in this permutation. Then the expected length between two local
minima in the sequence π(S[1]), π(S[2]), . . . , π(S[n]) is at most 3 and the longest
gap is O(lg n) in expectation.

Proof. First we show the expected length between two local minima is at most
3. Look at a position 1 ≤ i ≤ n in the sequence π(S[1]), π(S[2]), . . . , π(S[n]).
To determine if π(S[i]) is a local minimum, we only need to consider the two
neighbouring elements π(S[i − 1]) and π(S[i + 1]) thus let us consider the triple
(π(S[i − 1]), π(S[i]), π(S[i + 1])). We need to consider the following cases. First
assume S[i − 1] �= S[i] �= S[i + 1]. There exist 3! = 6 permutations of a triple
with unique elements and in two of these the minimum element is in the middle.
Since π is a uniformly random permutation of Σ all 6 permutations are equally
likely, and thus there is 1/3 chance that the element at position i is a local
minimum. Now instead assume S[i − 1] = S[i + 1] �= S[i] in which case there is
1/2 chance that the middle element is the smallest. Finally, in the case where
i = 1 or i = n there is also 1/2 chance. As S is run-free, these cases cover all
possible cases. Thus there is at least 1/3 chance that any position i is a local
minimum independently of S. Thus the expected number of local minima in the
sequence is therefore at least n/3 and the expected distance between any two
local minima is at most 3.

The expected longest distance between two local minima of O(lg n) was
shown in [15].

3.1 Signature Grammar Construction

We now give the construction algorithm for the signature tree sig(S). Consider
an ordered forest F of trees. Initially, F consists of n trees where the ith tree is a
single node with label S[i]. Let the label of a tree t denoted l(t) be the label of its
root node. Let l(F) denote the string that is given by the in-order concatenation
of the labels of the trees in F . The construction of sig(S) proceeds as follows:

1. Let ti, . . . , tj be a maximal subrange of consecutive trees of F with identical
labels, i.e. l(ti) = . . . = l(tj). Replace each such subrange in F by a new tree

336 A. R. Christiansen and M. B. Ettienne

having as root a new node v with children ti, . . . , tj and a label that identifies
the number of children and their label. We call this kind of node a run node.
Now l(F) is run-free.

2. Consider the block decomposition of l(F). Let ti, . . . , tj be consecutive trees
in F such that their labels form a block in l(F). Replace all identical blocks
ti, . . . , tj by a new tree having as root a new node with children ti, . . . , tj and
a unique label. We call this kind of node a run-free node.

3. Repeat steps 1 and 2 until F contains a single tree, we call this tree sig(S).

In each iteration the size of F decreases by at least a factor of two and each
iteration takes O(|F |) time, thus it can be constructed in O(n) time.

Consider the directed acyclic graph (DAG) of the tree sig(S) where all iden-
tical subtrees are merged. Note we can store run nodes in O(1) space since all
out-going edges are pointing to the same node, so we store the number of edges
along with a single edge instead of explicitly storing each of them. For run-free
nodes we use space proportional to their out-degrees. We call this the signature
DAG of S denoted dag(S). There is a one-to-one correspondence between this
DAG and an acyclic run-length grammar producing S where each node corre-
sponds to a production and each leaf to a terminal.

3.2 Properties of the Signature Grammar

We now show some properties of sig(S) and dag(S) that we will need later. Let
str(v) denote the substring of S given by the labels of the leaves of the subtree
of sig(S) induced by the node v in left to right order.

Lemma 4. Let v be a node in the signature tree for a string S of length n. If v
has height h then |str(v)| is at least 2h and thus sig(S) (and dag(S)) has height
O(lg n).

Proof. This follows directly from the out-degree of all nodes being at least 2.

Denote by T (i, j) the set of nodes in sig(S) that are ancestors of the ith through
jth leaf of sig(S). These nodes form a sequence of adjacent nodes at every level
of sig(S) and we call them relevant nodes for the substring S[i, j].

Lemma 5. T (i, j) and T (i′, j′) have identical nodes except at most the two first
and two last nodes on each level whenever S[i, j] = S[i′, j′].

Proof. Trivially, the leaves of T (i, j) and T (i′, j′) are identical if S[i, j] = S[i′, j′].
Now we show it is true for nodes on level l assuming it is true for nodes on level
l − 1. We only consider the left part of each level as the argument for the right
part is (almost) symmetric. Let v1, v2, v3, . . . be the nodes on level l−1 in T (i, j)
and u1, u2, u3, . . . the nodes on level l − 1 in T (i′, j′) in left to right order. From
the assumption, we have va, va+1, . . . are identical with ub, ub+1, . . . for some
1 ≤ a, b ≤ 3. When constructing the lth level of sig(S), these nodes are divided
into blocks. Let va+k be the first block that starts after va then by the block

Compressed Indexing with Signature Grammars 337

decomposition, the first block after ub starts at ub+k. The nodes v1, . . . , va+k

are spanned by at most two blocks and similarly for u1, . . . , ub+k. These blocks
become the first one or two nodes on level l in T (i, j) and T (i′, j′) respectively.
The block starting at va+k is identical to the block starting at ub+k and the same
holds for the following blocks. These blocks result in identical nodes on level l.
Thus, if we ignore the at most two first (and last) nodes on level l the remaining
nodes are identical.

We call nodes of T (i, j) consistent in respect to T (i, j) if they are guaranteed to
be in any other T (i′, j′) where S[i, j] = S[i′, j′]. We denote the remaining nodes
of T (i, j) as inconsistent. From the above lemma, it follows at most the left-most
and right-most two nodes on each level of T (i, j) can be inconsistent.

Lemma 6. The expected size of the signature DAG dag(S) is O(z lg(n/z)).

Proof. We first bound the number of unique nodes in sig(S) in terms of the
LZ77-parse of S which has size z. Consider the decomposition of S into the 2z
substrings S[u1, u1+l1], S[u1+l1+1], . . . , S[uz, uz +lz], S[uz +lz +1] given by the
phrases and borders of the LZ77-parse of S and the corresponding sets of relevant
nodes R = {T (u1, u1 + l1), T (u1 + l1 + 1, u1 + l1 + 1), . . .}. Clearly, the union of
these sets are all the nodes of sig(S). Since identical nodes are represented only
once in dag(S) we need only count one of their occurrences in sig(S). We first
count the nodes at levels lower than lg(n/z). A set T (i, i) of nodes relevant to a
substring of length one has no more than O(lg(n/z)) such nodes. By Lemma 5
only O(lg(n/z)) of the relevant nodes for a phrase are not guaranteed to also
appear in the relevant nodes of its source. Thus we count a total of O(z lg(n/z))
nodes for the O(z) sets of relevant nodes. Consider the leftmost appearance of
a node appearing one or more times in sig(S). By definition, and because every
node of sig(S) is in at least one relevant set, it must already be counted towards
one of the sets. Thus there are O(z lg(n/z)) unique vertices in sig(S) at levels
lower than lg(n/z). Now for the remaining at most lg(z) levels, there are no more
than O(z) nodes because the out-degree of every node is at least two. Thus we
have proved that there are O(z lg(n/z)) unique nodes in sig(S). By Lemma 3
the average block size and thus the expected out-degree of a node is O(1). It
follows that the expected number of edges and the expected size of dag(S) is
O(z lg(n/z)).

Lemma 7. A signature grammar of S using O(z lg(n/z)) (worst case) space
can be constructed in O(n) expected time.

Proof. Construct a signature grammar for S using the signature grammar con-
struction algorithm. If the average out-degree of the run-free nodes in dag(S) is
more than some constant greater than 3 then try again. In expectation it only
takes a constant number of retries before this is not the case.

Lemma 8. Given a node v ∈ dag(S), the child that produces the character at
position i in str(v) can be found in O(1) time.

338 A. R. Christiansen and M. B. Ettienne

Proof. First assume v is a run-free node. If we store |str(u)| for each child u
of v in order, the correct child corresponding to position i can simply be found
by iterating over these. However, this may take O(log n) time since this is the
maximum out-degree of a node in dag(S). This can be improved to O(log log n)
by doing a binary search, but instead we use a Fusion Tree from [7] that allows
us to do this in O(1) time since we have at most O(log n) elements. This does
not increase the space usage. If v is a run node then it is easy to calculate the
right child by a single division.

4 Long Patterns

In this section we present how to use the signature grammar to construct a
compressed index that we will use for patterns of length Ω(lgε z) for constant
ε > 0. We obtain the following lemma:

Lemma 9. Given a string S of length n with an LZ77-parse of length z we can
build a compressed index supporting pattern matching queries in O(m + (1 +
occ) lgε z) time using O(z lg(n/z)) space for any constant ε > 0.

4.1 Data Structure

Consider a vertex v with children u1, . . . , uk in dag(S). Let pre(v, i) denote the
prefix of str(v) given by concatenating the strings represented by the first i
children of v and let suf(v, i) be the suffix of str(v) given by concatenating the
strings represented by the last k − i children of x.

The data structure is composed of two z-fast tries (see Lemma 2) T1 and T2

and a 2D-range reporting data structure R.
For every non-leaf node v ∈ dag(S) we store the following. Let k be the

number of children of v if v is a run-free node otherwise let k = 2:

– The reverse of the strings pre(v, i) for i ∈ [k − 1] in the z-fast trie T1.
– The strings suf(v, i) for i ∈ [k − 1] in the z-fast trie T2.
– The points (a, b) where a is the rank of the reverse of pre(v, i) in T1 and b is

the rank of suf(v, i) in T2 for i ∈ [k − 1] are stored in R. A point stores the
vertex v ∈ dag(S) and the length of pre(v, i) as auxiliary information.

There are O(z lg(n/z)) vertices in dag(S) thus T1 and T2 take no more than
O(z lg(n/z)) words of space using Lemma 2. There O(z lg(n/z)) points in R
which takes O(z lg(n/z)) space using Lemma 1 (i) thus the total space in words
is O(z lg(n/z)).

4.2 Searching

Assume in the following that there are no fingerprint collisions. Compute all the
prefix fingerprints of P φ(P [1]), φ(P [1, 2]), . . . , φ(P [1,m]). Consider the signature
tree sig(P) for P . Let lki denote the k’th left-most vertex on level i in sig(P) and

Compressed Indexing with Signature Grammars 339

let j be the last level. Let PL = {|str(l11)|, |str(l11)|+ |str(l21)|, |str(l12)|, |str(l12)|+
|str(l22)|, . . . , |str(l1j)|, |str(l1j)| + |str(l2j)|}. Symmetrically, let rk

i denote the k’th
right-most vertex on level i in sig(P) and let PR = {m−|str(r11)|,m−|str(r11)|−
|str(r21)|,m−|str(r12)|,m−|str(r12)|− |str(r22)|, . . . , m−|str(r1j)|,m−|str(r1j)|−
|str(r2j)|}. Let PS = PL ∪ PR.

For p ∈ PS search for the reverse of P [1, p] in T1 and for P [p + 1,m] in T2

using the precomputed fingerprints. Let [a, b] and [c, d] be the respective ranges
returned by the search. Do a range reporting query for the (possibly empty) range
[a, b] × [c, d] in R. Each point in the range identifies a node v and a position i
such that P occurs at position i in the string str(v). If v is a run node, there is
furthermore an occurrence of P in str(v) for all positions i + k · |str(child(v))|
where k = 1, . . . , j and j · |str(child(v))| + m ≤ str(v).

To report the actual occurrences of P in S we traverse all ancestors of v in
dag(S); for each occurrence of P in str(v) found, recursively visit each parent
u of v and offset the location of the occurrence to match the location in str(u)
instead of str(v). When u is the root, report the occurrence. Observe that the
time it takes to traverse the ancestors of v is linear in the number of occurrences
we find.

We now describe how to handle fingerprint collisions. Given a z-fast trie,
Gagie et al. [9] show how to perform k weak prefix queries and identify all
false positives using O(k lg m+m) extra time by employing bookmarked extrac-
tion and bookmarked fingerprinting. Because we only compute fingerprints and
extract prefixes (suffixes) of the strings represented by vertices in dag(S) we
do not need bookmarking to do this. We refer the reader to [9] for the details.
Thus, we modify the search algorithm such that all the searches in T1 and T2

are carried out first, then we verify the results before progressing to doing range
reporting queries only for ranges that were not discarded during verification.

4.3 Correctness

For any occurrence S[l, r] of P in S there is a node v in sig(S) that stabs S[l, r],
i.e. a suffix of pre(v, i) equals a prefix P [1, j] and a prefix of suf(v, i) equals the
remaining suffix P [j + 1,m] for some i and j. Since we put all combinations of
pre(v, i), suf(v, i) into T1, T2 and R, we would be guaranteed to find all nodes v
that contains P in str(v) if we searched for all possible split-points 1, . . . ,m − 1
of P i.e. P [1, i] and P [i + 1,m] for i = 1, . . . ,m − 1.

We now argue that we do not need to search for all possible split-points of P
but only need to consider those in the set PS . For a position i, we say the node
v stabs i if the nearest common ancestor of the ith and i + 1th leaf of sig(S)
denoted NCA(li, li+1) is v.

Look at any occurrence S[l, r] of P . Consider TS = T (l, r) and TP = sig(P).
Look at a possible split-point i ∈ [1,m − 1] and the node v that stabs position
i in TP . Let ul and ur be adjacent children of v such that the rightmost leaf
descendant of ul is the ith leaf and the leftmost leaf descendant of ur is the
i + 1th leaf. We now look at two cases for v and argue it is irrelevant to consider
position i as split-point for P in these cases:

340 A. R. Christiansen and M. B. Ettienne

1. Case v is consistent (in respect to TP). In this case it is guaranteed that
the node that stabs l + i in TS is identical to v. Since v is a descendant of the
root of TP (as the root of TP is inconsistent) str(v) cannot contain P and
thus it is irrelevant to consider i as a split-point.

2. Case v is inconsistent and ul and ur are both consistent (in respect
to TP). In this case ul and ur have identical corresponding nodes u′

l and u′
r

in TS . Because ul and ur are children of the same node it follows that u′
l and

u′
r must also both be children of some node v′ that stabs l + i in TS (however

v and v′ may not be identical since v is inconsistent). Consider the node u′
ll

to the left of u′
l (or symmetrically for the right side if v is an inconsistent

node in the right side of TP). If str(v′) contains P then u′
ll is also a child of

v′ (otherwise ul would be inconsistent). So it suffices to check the split-point
i− |ul|. Surely i− |ul| stabs an inconsistent node in TP , so either we consider
that position relevant, or the same argument applies again and a split-point
further to the left is eventually considered relevant.

Thus only split-points where v and at least one of ul or ur are inconsistent
are relevant. These positions are a subset of the position in PS , and thus we try
all relevant split-points.

4.4 Complexity

A query on T1 and T2 takes O(lg m) time by Lemma 2 while a query on R
takes O(lgε z) time using Lemma 1 (i) (excluding reporting). We do O(lg m)
queries as the size of PS is O(lg m). Verification of the O(lg m) strings we
search for takes total time O(lg2 m + m) = O(m). Constructing the sig-
nature DAG for P takes O(m) time, thus total time without reporting is
O(m+lg m lgε z) = O(m+lgε′

z) for any ε′ > ε. This holds because if m ≤ lg2ε z

then lg m lgε z ≤ lg lg2ε z lgε z = O(lgε′
z), otherwise m > lg2ε z ⇔ √

m > lgε z
and then lg m lgε z = O(lg m

√
m) = O(m). For every query on R we may find

multiple points each corresponding to an occurrence of P . It takes O(lgε z) time
to report each point thus the total time becomes O(m + (1 + occ) lgε′

z).

5 Short Patterns

Our solution for short patterns uses properties of the LZ77-parse of S. A primary
substring of S is a substring that contains one or more borders of S, all other
substrings are called secondary. A primary substring that matches a query pat-
tern P is a primary occurrence of P while a secondary substring that matches
P is a secondary occurrence of P . In a seminal paper on LZ77 based index-
ing [13] Kärkkäinen and Ukkonen use some observations by Farach and Thorup
[6] to show how all secondary occurrences of a query pattern P can be found
given a list of the primary occurrences of P through a reduction to orthogonal
range reporting. Employing the range reporting result given in Lemma1 (ii), all
secondary occurrences can be reported as stated in the following lemma:

Compressed Indexing with Signature Grammars 341

Lemma 10 (Kärkkäinen and Ukkonen [13]). Given the LZ77-parse of a
string S there exists a data structure that uses O(z lg lg z) space that can report
all secondary occurrences of a pattern P given the list of primary occurrences of
P in S in O(occ lg lg n) time.

We now describe a data structure that can report all primary occurrences of
a pattern P of length at most k in O(m + occ) time using O(zk) space.

Lemma 11. Given a string S of length n and a positive integer k ≤ n we can
build a compressed index supporting pattern matching queries for patterns of
length m in O(m + occ lg lg n) time using O(zk + z lg lg z) space that works for
m ≤ k.

Proof. Consider the set C of z substrings of S that are defined by S[ui − k, ui +
k − 1] for i ∈ [z], i.e. the substrings of length 2k surrounding the borders of the
LZ77-parse. The total length of these strings is Θ(zk). Construct the generalized
suffix tree T over the set of strings C. This takes Θ(zk) words of space. To ensure
no occurrence is reported more than once, if multiple suffixes in this generalized
suffix tree correspond to substrings of S that starts on the same position in S,
only include the longest of these. This happens when the distance between two
borders is less than 2k.

To find the primary occurrences of P of length m, simply find all occurrences
of P in T . These occurrences are a super set of the primary occurrences of P
in S, since T contains all substrings starting/ending at most k positions from a
border. It is easy to filter out all occurrences that are not primary, simply by
calculating if they cross a border or not. This takes O(m+ occ) time (where occ
includes secondary occurrences). Combined with Lemma 10 this gives Lemma 11.

6 Semi-short Patterns

In this section, we show how to handle patterns of length between lg lg z and
lgε z. It is based on the same reduction to 2D-range reporting as used for long
patterns. However, the positions in S that are inserted in the range reporting
structure is now based on the LZ77-parse of S instead. Furthermore we use
Lemma 1 (ii) which gives faster range reporting but uses super-linear space,
which is fine because we instead put fewer points into the structure. We get the
following lemma:

Lemma 12. Given a string S of length n we solve the compressed indexing
problem for a pattern P of length m with lg lg z ≤ m ≤ lgε z for any positive
constant ε < 1

2 in O(m + occ(lg lg n + lgε z)) time using O(z(lg lg z + log(n/z)))
space.

6.1 Data Structure

As in the previous section for short patterns, we only need to worry about
primary occurrences of P in S. Let B be the set of all substrings of length at

342 A. R. Christiansen and M. B. Ettienne

most lgε z that cross a border in S. The split positions of such a string are the
offsets of the leftmost borders in its occurrences. All primary occurrences of P
in S are in this set. The size of this set is |B| = O(z lg2ε z). The data structure
is composed by the following:

– A dictionary H mapping each string in B to its split positions.
– A z-fast trie T1 on the reverse of the strings T [ui, li] for i ∈ [z].
– A z-fast trie T2 on the strings T [ui, n] for i ∈ [z].
– A range reporting data structure R with a point (c, d) for every pair of strings

Ci = T [ui, li],Di = T [ui+1, n] for i ∈ [z] where Dz = ε and c is the lexico-
graphical rank of the reverse of Ci in the set {C1, . . . , Cz} and d is the lexi-
cographical rank of Di in the set {D1, . . . Dz}. We store the border ui along
with the point (c, d).

– The data structure described in Lemma 10 to report secondary occurrences.
– The signature grammar for S.

Each entry in H requires lg lgε z = O(lg lg z) bits to store since a split posi-
tion can be at most lgε z. Thus the dictionary can be stored in O(|B| · lg lg z) =
O(z lg2ε z lg lg z) bits which for ε < 1

2 is O(z) words. The tries T1 and T2

take O(z) space while R takes O(z lg lg z) space. The signature grammar takes
O(z log(n/z)). Thus the total space is O(z(lg lg z + log(n/z))).

6.2 Searching

Assume a lookup for P in H does not give false-positives. Given a pattern P
compute all prefix fingerprints of P . Next do a lookup in H. If there is no match
then P does not occur in S. Otherwise, we do the following for each of the split-
points s stored in H. First split P into a left part Pl = P [0, s − 1] and a right
part Pr = P [s,m]. Then search for the reverse of Pl in T1 and for Pr in T2 using
the corresponding fingerprints. The search induces a (possibly empty) range for
which we do a range reporting query in R. Each occurrence in R corresponds to
a primary occurrence of P in S, so report these. Finally use Lemma 10 to report
all secondary occurrences.

Unfortunately, we cannot guarantee a lookup for P in H does not give a false
positive. Instead, we pause the reporting step when the first possible occurrence
of P has been found. At this point, we verify the substring P matches the found
occurrence in S. We know this occurrence is around an LZ-border in S such that
Pl is to the left of the border and Pr is to the right of the border. Thus we can
efficiently verify that P actually occurs at this position using the grammar.

6.3 Analysis

Computing the prefix fingerprints of P takes O(m) time. First, we analyze the
running time in the case P actually exists in S. The lookup in H takes O(1) time
using perfect hashing. For each split-point we do two z-fast trie lookups in time
O(lg m) = O(lg lg z). Since each different split-point corresponds to at least one

Compressed Indexing with Signature Grammars 343

unique occurrence, this takes at most O(occ lg lg z) time in total. Similarly each
lookup and occurrence in the 2D-range reporting structure takes lg lg z time,
which is therefore also bounded by O(occ lg lg z) time. Finally, we verified one
of the found occurrence against P in O(m) time. So the total time is O(m +
occ lg lg z) in this case.

In the case P does not exists, either the lookup in H tells us that, and we
spend O(1) time, or the lookup in H is a false-positive. In the latter case, we
perform exactly two z-fast trie lookups and one range reporting query. These all
take time O(lg lg z). Since m ≥ lg lg z this is O(m) time. Again, we verified the
found occurrence against P in O(m) time. The total time in this case is therefore
O(m).

Note we ensure our fingerprint function is collision free for all substrings in
B during the preprocessing thus there can only be collisions if P does not occur
in S when m ≤ lgε z.

7 Randomized Solution

In this section we present a very simple way to turn the O(m + (1 + occ) lgε z)
worst-case time of Lemma 9 into O(m + occ lgε z) expected time. First observe,
this is already true if the pattern we search for occurs at least once or if m ≥ lgε z.

As in the semi-short patterns section, we consider the set B of substrings
of S of length at most lgε z that crosses a border. Create a dictionary H with
z lg3ε z entries and insert all the strings from B. This means only a lgε z fraction
of the entries are used, and thus if we lookup a string s (where |s| ≤ lgε z) that
is not in H there is only a 1

lgε z chance of getting a false-positive.
Now to answer a query, we first check if m ≤ lgε z in which case we look it

up in H. If it does not exist, report that. If it does exist in H or if m > lgε z use
the solution from Lemma 9 to answer the query.

In the case P does not exist, we spend either O(m) time if H reports no, or
O(m + lgε z) time if H reports a false-positive. Since there is only 1

lgε z chance
of getting a false positive, the expected time in this case is O(m). In all other
cases, the running time is O(m + occ lgε z) in worst-case, so the total expected
running time is O(m + occ lgε z). The space usage of H is O(z lg3ε z) bits since
we only need to store one bit for each entry. This is O(z) words for ε ≤ 1/3. To
sum up, we get the following lemma:

Lemma 13. Given a signature grammar for a text S of length n with an LZ77-
parse of length z we can build a compressed index supporting pattern matching
queries in O(m + occ lgε z) expected time using O(z lg(n/z)) space for any con-
stant 0 < ε ≤ 1/3.

344 A. R. Christiansen and M. B. Ettienne

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Pro-
ceedings of the 11th Annual Symposium on Discrete Algorithms. Citeseer (2000)

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
427–438. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 37

3. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for
Lempel-Ziv compressed indexing. In: 28th Annual Symposium on Combinatorial
Pattern Matching. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)

4. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th SOCG, pp. 1–10 (2011)

5. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70(1), 32–53 (1986)

6. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. Algo-
rithmica 20(4), 388–404 (1998)

7. Fredman, M.L., Willard, D.E.: Blasting through the information theoretic barrier
with fusion trees. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, STOC 1990, pp. 1–7. ACM, New York (1990)

8. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28332-1 21

9. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63

10. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. arXiv preprint arXiv:1705.10382 (2017)

11. Gawrychowski, P., Karczmarz, A., Kociumaka, T., �L ↪acki, J., Sankowski, P.: Opti-
mal dynamic strings. arXiv preprint arXiv:1511.02612 (2015)

12. Jeż, A.: Faster fully compressed pattern matching by recompression. ACM Trans.
Algorithms (TALG) 11(3), 20 (2015)

13. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proceedings of the 3rd South American Workshop
on String Processing (WSP 1996), vol. 26, no. (Teollisuuskatu 23), pp. 141–155
(1996)

14. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

15. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

16. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
(CSUR) 39(1), 2 (2007)

17. Nishimoto, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Dynamic
index, LZ factorization, and LCE queries in compressed space. arXiv preprint
arXiv:1504.06954 (2015)

18. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming
model. In: Proceedings of the 50th FOCS, pp. 315–323 (2009)

https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
http://arxiv.org/abs/1705.10382
http://arxiv.org/abs/1511.02612
http://arxiv.org/abs/1504.06954

Compressed Indexing with Signature Grammars 345

19. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm. In: Proceedings of 37th Conference on Foundations
of Computer Science, October 1996

20. Tomohiro, I.: Longest common extension with recompression (2017)
21. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theory 23(3), 337–343 (1977)

Combinatorics of Beacon-Based Routing
in Three Dimensions

Jonas Cleve(B) and Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, Berlin, Germany
{jonascleve,mulzer}@inf.fu-berlin.de

Abstract. A beacon is a point-like object which can be enabled to exert
a magnetic pull on other point-like objects in space. Those objects then
move towards the beacon in a greedy fashion until they are either stuck at
an obstacle or reach the beacon’s location. Beacons placed inside polyhe-
dra can be used to route point-like objects from one location to another.
A second use case is to cover a polyhedron such that every point-like
object at an arbitrary location in the polyhedron can reach at least one
of the beacons once the latter is activated.

The notion of beacon-based routing and guarding was introduced by
Biro et al. [FWCG’11] in 2011 and covered in detail by Biro in his Ph.D.
thesis [SUNY-SB’13], which focuses on the two-dimensional case.

We extend Biro’s result to three dimensions by considering beacon
routing in polyhedra. We show that �m+1

3
� beacons are always sufficient

and sometimes necessary to route between any pair of points in a given
polyhedron P , where m is the number of tetrahedra in a tetrahedral
decomposition of P . This is one of the first results that show that bea-
con routing is also possible in three dimensions.

1 Introduction

A beacon b is a point-like object in a polyhedron P which can be enabled to exert
a magnetic pull on all points inside P . Those points then move in the direction in
which the distance to b decreases most rapidly. As long as the distance decreases,
points can also move along obstacles they hit on their way.

The resulting attraction path alternates between unrestricted movement
inside P and restricted movement on the boundary of P . If the attraction path
of a point p towards a beacon b ends in b we say that b covers p. On the other
hand, p is stuck if it is in a position where it cannot decrease its distance to b.

A point p can be routed via beacons towards a point q if there exists a
sequence of beacons b1, b2, . . . , bk = q such that b1 covers p and bi+1 covers bi
for all 1 ≤ i < k. In our model at most one beacon can be enabled at any time
and a point has to reach the beacon’s location before the next beacon can be
enabled.

Supported in part by DFG grant MU 3501/1 and ERC StG 757609.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 346–360, 2018.
https://doi.org/10.1007/978-3-319-77404-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_26&domain=pdf
http://orcid.org/0000-0001-8480-1726
http://orcid.org/0000-0002-1948-5840

Combinatorics of Beacon-Based Routing in Three Dimensions 347

The notion of beacon attraction was introduced by Biro et al. [4,5] for two
dimensions. This extends the classic notion of visibility [9]: the visibility region
of a point is a subset of the attraction region of a point.

Here, we study the case of three-dimensional polyhedra. A three-dimensional
polytope or polyhedron is a compact connected set bounded by a piecewise linear
2-manifold. The results in this work are based on the master’s thesis of the first
author [8] in which various aspects of beacon-based routing and guarding were
studied in three dimensions. Simultaneously, Aldana-Galván et al. [1,2] looked
at orthogonal polyhedra and introduced the notion of edge beacons.

For two dimensions, Biro [4] provided bounds on the number of beacons for
routing in a polygon. He also showed that it is NP-hard and APX-hard to find a
minimum set of beacons for a given polygon such that it is possible to (a) route
between any pair of points, (b) route one specific source point to any other point,
(c) route any point to one specific target point, or (d) cover the polygon.

It is easy to reduce the two-dimensional problems to their three-dimensional
counterparts by lifting the polygon into three dimensions. It thus follows that the
corresponding problems in three dimensions are also NP-hard and APX-hard.
More details can be found in [8, Chap. 4].

2 Preliminary Thoughts on Tetrahedral Decompositions

To show an upper bound on the number of beacons necessary to route between
any pair of points in two dimensions Biro et al. [5] look at a triangulation of the
polygon. They show that for every two additional triangles at most one beacon is
needed. Even though there is a slight flaw in the case analysis of their proof, this
can be easily repaired, see [8, Chap. 3.1] for more details and the working proof.
We extend this approach to three dimensions by looking at the decomposition
of a polyhedron into tetrahedra.

The tetrahedral decomposition is no general solution: Lennes [10] has shown
in 1911 that a polyhedron cannot, in general, be decomposed into tetrahedra if no
additional vertices are allowed. The problem of deciding whether such a decom-
position exists is, in fact, NP-complete as shown by Ruppert and Seidel [11].

In the two-dimensional case, every simple polygon with n vertices has a trian-
gulation with exactly n− 2 triangles; a polygon with h holes has a triangulation
of n − 2 + 2h triangles. In contrast, for three dimensions the number of tetra-
hedra in a tetrahedral decomposition is not directly related to the number of
vertices. Chazelle [7] showed that for arbitrary n there exists a polyhedron with
Θ(n) vertices for which at least Ω(n2) convex parts are needed to decompose it.
Naturally, this is also a worst-case lower bound on the number of tetrahedra. On
the other hand, Bern and Eppstein [3, Theorem 13] show that any polyhedron
can be triangulated with O(n2) tetrahedra with the help of O(n2) Steiner points.
Furthermore, it is clear that every tetrahedral decomposition consists of at least
n − 3 tetrahedra.

One polyhedron can have different tetrahedral decompositions with different
numbers of tetrahedra. An example of such a polyhedron is a triangular bipyra-
mid which can be decomposed into two or three tetrahedra, see [11, p. 228].

348 J. Cleve and W. Mulzer

Due to this, we will prove bounds on the number of beacons needed for routing
relative to the number of tetrahedra m rather than the number of vertices n.
Since we accept any kind of decomposition and do not have any general position
assumption tetrahedral decompositions with Steiner points are allowed.

To successfully apply the ideas for two dimensions to three dimensions we
need the following preliminary definition and lemma.

Definition 2.1 (Dual graph of tetrahedral decompositions). Given a
polyhedron with a tetrahedral decomposition Σ = {σ1, . . . , σm} into m tetrahedra,
its dual graph is an undirected graph D(Σ) = (V,E) where

(i) V = {σ1, . . . , σm} and
(ii) E = {{σi, σj} ∈ (V

2) |σi and σj share exactly one triangular facet}.
Observation 2.2. Unlike in two dimensions, the dual graph of a tetrahedral
decomposition is not necessarily a tree. We can still observe that each node in
the dual graph has at most 4 neighbors—one for each facet of the tetrahedron.

Lemma 2.3. Given a tetrahedral decomposition Σ of a polyhedron together with
its dual graph D(Σ) and a subset S ⊆ Σ of tetrahedra from the decomposition
whose induced subgraph D(S) of D(Σ) is connected, then

(i) |S| = 2 implies that the tetrahedra in S share one triangular facet,
(ii) |S| = 3 implies that the tetrahedra in S share one edge, and
(iii) |S| = 4 implies that the tetrahedra in S share at least one vertex.

Proof. We show this seperately for every case.

(i) This follows directly from Definition 2.1.
(ii) In a connected graph of three nodes there is one node neighboring the other

two. By Definition 2.1 the dual tetrahedron shares one facet with each of
the other tetrahedra. In a tetrahedron every pair of facets shares one edge.

(iii) By case (ii) there is a subset of three (connected) tetrahedra that shares
one edge e. This edge is therefore part of each of the three tetrahedra. By
Definition 2.1, the fourth tetrahedron shares a facet f with at least one of
the other three (called σ). Since f contains three and e two vertices of σ
they share at least one vertex. A depiction of the possible configurations of
four tetrahedra can be seen in Fig. 1. ��

3 An Upper Bound for Beacon-Based Routing

After the preparatory work, we can now show an upper bound on the number of
beacons needed to route within a polyhedron with a tetrahedral decomposition.
The idea of the proof is based on the proof by Biro et al. [5] for (two-dimensional)
polygons. We want to show the following

Hypothesis 3.1. Given a polyhedron P with a tetrahedral decomposition Σ with
m = |Σ| tetrahedra it is always sufficient to place �m+1

3 � beacons to route
between any pair of points in P .

Since the proof is quite long and consists of many cases it is split up into various
lemmas which are finally combined in Theorem 3.7.

Combinatorics of Beacon-Based Routing in Three Dimensions 349

(a) One tetrahedron in
the center has all other
tetrahedra as neighbors.

(b) Two tetrahedra with
one and two tetrahedra
with two neighbors.

(c) In this configuration
all four tetrahedra share
one edge.

Fig. 1. A polyhedron with a tetrahedral decomposition of four tetrahedra is in one of
those three configurations. The shared vertex or edge is marked.

3.1 Preparation

Given the polyhedron P and a tetrahedral decomposition Σ with m = |Σ|
tetrahedra, we look at the dual graph D(Σ) of the tetrahedral decomposition.
For the rest of the section we want the dual graph to be a tree. This is possible
by looking at a spanning tree T of D(Σ) rooted at some arbitrary leaf node.

In the following, we will place beacons depending only on the neighborhood
relation between tetrahedra. If T is missing some edge {u, v} from D(Σ) we
“forget” that tetrahedra u and v are neighbors, i.e., share a common facet. We
have less information about a tetrahedron’s neighborhood and thus we might
place more beacons than needed—but never less.

Note 3.2. In the following we will refer to nodes of T as well as their correspond-
ing tetrahedra with σi. It should be clear from the context when the node and
when the tetrahedron is meant—if not, it is indicated.

The main idea of the proof is as follows: In a recursive way we are going to
place a beacon and remove tetrahedra until no tetrahedra are left. As will be
shown, for every beacon we can remove at least three tetrahedra which yields
the claimed upper bound. We will show this by induction and start with the
base case:

Lemma 3.3 (Base case). Given a polyhedron P with a tetrahedral decom-
position Σ with m = |Σ| ≤ 4 tetrahedra it is always sufficient to place �m+1

3 �
beacons to route between any pair of points in P .

Proof. If m = 1 then P is a tetrahedron and due to convexity no beacon is
needed.

If 2 ≤ m ≤ 4 we can apply Lemma 2.3 which shows that all tetrahedra share
at least one common vertex v. We place the only beacon we are allowed to place
at v. Then v is contained in every tetrahedron and thus, by convexity, every
point in P can attract and be attracted by a beacon at v. ��

350 J. Cleve and W. Mulzer

σ1

σ2

σ3 σ4

(a) Remove σ1, σ3, and σ4

by placing a beacon where
all four tetrahedra meet.

σ1

σ2

σ3

σ4

(b) Remove σ1, σ2, and σ3

by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

(c) Remove σ1, σ2, and σ3

by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5 σ6

(d) Remove σ1, σ2, and σ4

by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5

σ6 σ7

(e) Remove σ1, σ2, σ4,
and σ5 by placing a
beacon where σ1 to σ5

meet.

σ1

σ2

σ3

σ4

σ5

σ6

(f) The number and
configuration of σ6’s
children needs to be
looked at.

Fig. 2. The possible configurations in the first part of the inductive step.

We can now proceed with the inductive step, that is, polyhedra with a tetra-
hedral decomposition of m > 4 tetrahedra. Our goal is to place k beacons which
are contained in at least 3k + 1 tetrahedra and can therefore mutually attract
all points in those tetrahedra. Afterwards, we will remove at least 3k tetrahedra,
leaving a polyhedron with a tetrahedral decomposition of strictly less than m
tetrahedra, to which we can apply the induction hypothesis. We then need to
show how to route between the smaller polyhedron and the removed tetrahedra.

To do this, we look at a deepest leaf σ1 of the spanning tree T . If multiple
leaves with the same depth exist we choose the one whose parent σ2 has the
largest number of children, breaking ties arbitrarily. In Fig. 2 we can see different
cases how the part of T which contains σ1 and σ2 might look like. We first
concentrate on Figs. 2a to e and show for them the first part of the inductive
step. Note that in all five cases there needs to be at least one additional root
node—either because we have strictly more than four tetrahedra or because the
tree is required to be rooted at a leaf node. The second part of the inductive
step, namely Fig. 2f will be dealt with in Lemma 3.6.

Lemma 3.4 (Inductive step I). Given a polyhedron P with a tetrahedral
decomposition Σ with m = |Σ| > 4 tetrahedra and a spanning tree T of its dual
graph D(Σ) rooted at some arbitrary leaf node. Let σ1 be a deepest leaf of T with

Combinatorics of Beacon-Based Routing in Three Dimensions 351

the maximum number of siblings and let σ2 be its parent. Assume furthermore that
any of the following conditions holds:

(i) σ2 has three children σ1, σ3, and σ4 (see Fig. 2a),
(ii) σ2 has two children σ1 and σ3 and a parent σ4 (see Fig. 2b),
(iii) σ2 has one child σ1 and is the only child of its parent σ3 whose parent is σ4

(see Fig. 2c),
(iv) σ2 has one child σ1 and its parent σ3 has two or three children of which

one, σ4, is a leaf (Fig. 2d), or
(v) σ2 has one child σ1 and its parent σ3 has three children each of which has

a single leaf child (Fig. 2e).

Then we can place one beacon b at a vertex of σ1 which is contained in at least
four tetrahedra. We can then remove at least three tetrahedra containing b without
violating the tree structure of T and while there is at least one tetrahedron left
in T which contains b.

Proof. We show this individually for the conditions.

(i)–(iv) In all those cases the induced subgraph of the nodes σ1, σ2, σ3, and σ4 is
connected. We can then see with Lemma 2.3(iii) that the four tetrahedra
share at least one vertex at which b is placed.
After that we either remove σ1, σ3, and σ4 (case (i)); σ1, σ2, and σ3

(cases (ii) and (iii)); or σ1, σ2, and σ4 (case (iv)). In all of those cases
only leaves or inner nodes with all their children are removed which
means that the tree structure of T is preserved. Additionally, we only
remove three of the four tetrahedra that contain b, thus, one of them
remains in T .

(v) Looking at Fig. 2e we see that we have three different sets, each con-
taining σ3, a child σi of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and
{σ7, σ6, σ3}.
When applying Lemma2.3(ii), we see that each set shares one edge, giv-
ing us three edges of σ3. Since at most two edges in any tetrahedron can
be disjoint, at least two of the given edges must share a common vertex.
Without loss of generality let these be the edges shared by {σ1, σ2, σ3}
and {σ5, σ4, σ3}. We can then place b at the shared vertex and after-
wards remove σ1, σ2, σ4, and σ5. The beacon b is also contained in σ3

which remains in T . ��

3.2 Special Cases in the Inductive Step

Until now, we have ignored the configuration in Fig. 2f. The problem here is that
to remove the tetrahedra σ1 to σ5 we need to place two beacons. Placing two
beacons but only removing five tetrahedra violates our assumption that we can
always remove at least 3k tetrahedra by placing k beacons. If we removed σ6 and
σ6 had additional children then T would no longer be connected which also leads
to a non-provable situation. Thus, we need to look at the number and different
configurations of the (additional) children of σ6.

352 J. Cleve and W. Mulzer

σ6

σ3

σ4

σ5

σ2

σ1

(a) The dual
graph of the
tetrahedral
decomposition.

σ5 σ1

σ4 σ2

σ3

σ6

(b) All tetrahedra but the
rearmost tetrahedron σ6

share one common vertex,
here marked in orange.

σ5

σ1

σ4

σ2

σ3

σ6

(c) The four tetrahedra on the
left share a common vertex
while the right four tetrahedra
share a common edge.

Fig. 3. One tetrahedron σ6 with a subtree of five tetrahedra. Subfigures (b) and (c)
depict configurations that satisfy cases (i) and (ii) of Lemma 3.5, respectively. (Color
figure online)

Since there are many different configurations of σ6’s children (and their sub-
trees) we decided to use a brute force approach to generate all cases we need to
look at. Afterwards we removed all cases where Lemma 3.4 can be applied and
all cases where only the order of the children differed. This leaves us with nine
different cases where (obviously) the subtree from Fig. 2f is always present. Thus
we seek more information from this specific configuration.

Lemma 3.5. Given a tetrahedral decomposition of six tetrahedra with the dual
graph as depicted in Fig. 3a. Then at least one of the following holds:

(i) σ1 to σ5 share a common vertex, or
(ii) σ3, σ4, σ5, and σ6 share a common vertex v; σ1, σ2, σ3, and σ6 share a

common edge e; and v ∩ e = ∅.
Proof. We first define S1 = {σ3, σ4, σ5, σ6} and S2 = {σ1, σ2, σ3, σ6}. We observe
that by Lemma 2.3 each set shares at least a vertex, but can also share an edge.
We distinguish the cases by the shared geometric object:

– If both S1 and S2 each share an edge, case (i) holds. Each such edge needs
to be part of the triangular facet which connects σ3 and σ6. Thus both edges
share a common vertex.

– If just one of the two sets shares an edge e and the other shares only a vertex
v there are two trivial cases: If v ∩ e = ∅ then case (ii) is true—see Fig. 3c for
an example. On the other hand, if v ∩ e = v then case (i) holds.

– The last case is the one in which each of the sets shares only a vertex. The
situation can be seen in Fig. 3b. First look at the vertex v of σ3 not contained
in the facet shared by σ3 and σ6, i.e., v /∈ σ3 ∩ σ6. In the figure v is marked
in orange. We observe that then all neighbors of σ3 except σ6 contain v.
Thus, σ2 contains v and three of its four facets are incident to v. One of the

Combinatorics of Beacon-Based Routing in Three Dimensions 353

σ6

σ3

σ2

σ1

σ4

σ5

(a)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

(b)

σ6

σ3

σ2

σ1

σ4

σ5

σ7 σ8

(c)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

(d)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

(e)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

(f)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

(g)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

(h)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

σ14

σ15

σ16

(i)

Fig. 4. All “nontrivial” configurations of children of σ6. The tree in (a) is a subtree
of all configurations. In all cases σ6 has no other children than the ones shown here.
Furthermore by the requirement that T is rooted at a leaf node, σ6 needs to have an
additional parent (except for case (a)).

facets is the shared facet with σ3, but the other two are where σ1 could be
placed. σ1 cannot be located at the fourth facet of σ2, since it would then share
an edge with σ3 and σ6 which is covered in the previous cases. Therefore, σ1

contains v and with the same argument the same holds true for σ5. Then case
(i) holds. ��

Lemma 3.6 (Inductive step II). Given a polyhedron P with a tetrahedral
decomposition Σ with m = |Σ| > 4 tetrahedra and a spanning tree T of its dual
graph D(Σ) rooted at some arbitrary leaf node. Let T ′ ⊆ T be a subtree of T
with height 3 for which Lemma 3.4 cannot be applied. (See Fig. 4 for all possible
cases.)

In T ′ we can then place k ≥ 2 beacons for which it holds that the beacons
are contained in at least 3k + 1 tetrahedra and the graph of the beacons and the
edges they are contained in is connected.

We can then remove at least 3k tetrahedra from T ′, each of which contains a
beacon, without violating the tree structure of T . After removal there is at least
one tetrahedron left in T which contains one of the beacons.

354 J. Cleve and W. Mulzer

Due to space constraints we omit the proof here. It involves analyzing each
of the nine cases individually and carefully applying Lemma3.5. The full proof
can however be found in [8, Lemma 5.9, pp. 34–37].

Lemma 3.4 shows the inductive step for all subtrees with height at most 2
and Lemma 3.6 enumerates all combinatorically different subtrees with height
exactly 3. Since in both lemmas the height of the subtree decreases by at least
1 we can always apply either of them.

3.3 Conclusion

We can now restate Hypothesis 3.1 as a theorem:

Theorem 3.7 (Upper bound). Given a polyhedron P with a tetrahedral
decomposition Σ with m = |Σ| tetrahedra it is always sufficient to place �m+1

3 �
beacons to route between any pair of points in P .

Proof. We show this by induction. The base case is shown by Lemma 3.3. We
assume that the induction hypothesis (Hypothesis 3.1) holds for all polyhedra with
a tetrahedral decomposition with strictly less than m tetrahedra. We then show
that it also holds for tetrahedral decompositions Σ with exactly m tetrahedra.

Look at a spanning tree T of the dual graph D(Σ) of the tetrahedral decom-
position Σ which is rooted at an arbitrary leaf node. Let σ1 be a deepest leaf
node and if σ1 is not unique choose the one with the largest number of siblings,
breaking ties arbitrarily. We can then apply either Lemma3.4 or Lemma 3.6 and
know at least the following:

(i) We have placed k ≥ 1 beacons and removed at least 3k tetrahedra.
(ii) Every removed tetrahedron contains at least one beacon.
(iii) The induced subgraph of the placed beacons on the vertices and edges of

the polyhedron is connected.
(iv) There is at least one beacon b contained in the remaining polyhedron P ′.

From (i) it follows that the new polyhedron P ′ has a tetrahedral decomposi-
tion of m′ ≤ m− 3k tetrahedra. We can then apply the induction hypothesis for
P ′. Thus we only need to place k′ = �m′+1

3 � ≤ �m−3k+1
3 � = �m+1

3 � − k beacons
in P ′ to route between any pair of points in P ′. Since k′ + k = �m+1

3 � we never
place more beacons than we are allowed.

From the induction hypothesis and (iv) we conclude that we are especially
able to route from any point in P ′ to the beacon b and vice versa, since b
is contained in P ′. With (ii) we know that for every point p in the removed
tetrahedra there is a beacon b′ such that p attracts b′ and b′ attracts p. Finally,
with (iii) we know that we can route between all beacons we have placed. This
especially means that we can route from every beacon to the beacon b which is
inside P ′ and vice versa.

This completes the inductive step and thus, by induction, we have proved
the theorem. ��

Combinatorics of Beacon-Based Routing in Three Dimensions 355

Observation 3.8. Placing max
(
1, �m+1

3 �) beacons is always sufficient to cover
a polyhedron with a tetrahedral decomposition with m tetrahedra. We need at
least one beacon to cover a polyhedron and placing them as in the previous proof
is enough.

4 A Lower Bound for Beacon-Based Routing

We now want to show a lower bound for the number of beacons needed to route
within polyhedra with a tetrahedral decomposition. To do this we first show a
different lower bound proof for two dimensions which can then be easily applied
to three dimensions.

As shown by Biro et al. [6], �n
2 � − 1 is not only an upper but also a lower

bound for the necessary number of beacons in simple polygons. The idea for
the following construction is similar to the one used by Shermer [12] for the
lower bound for beacon-based routing in orthogonal polygons. We first show the
construction of a class of spiral-shaped polygons for which we will then show
that �n

2 � − 1 beacons are needed for a specific pair of points.

Definition 4.1. For every c ∈ N
≥1 and some small 0 < δ < 1 a c-corner spiral

polygon is a simple polygon with n = 2c + 2 vertices. These vertices, given in
counterclockwise order, are called s, q1, q2, . . ., qc, t, rc, rc−1, . . ., r1 and their
coordinates are given in polar notation as follows:

– s = (1; 0π), t =
(� c+1

3 � + 1; (c + 1) · 2
3π

)
,

– qk =
(�k

3 � + 1 + δ; k · 2
3π

)
for all 1 ≤ k ≤ c, and

– rk =
(�k

3 � + 1; k · 2
3π

)
for all 1 ≤ k ≤ c.

The two vertices rk and qk form the k-th corner. The trapezoids rkqkqk+1rk+1

for all 1 ≤ k < c and the two triangles �sr1q1 and �trcqc are each called a
hallway.

An example for c = 5 can be seen in Fig. 5. There are five corners and we
have already placed five beacons to be able to route from s to t.

Lemma 4.2 (Two-dimensional lower bound). Given a c-corner spiral poly-
gon c beacons are necessary to route from s to t.

Proof. To show that we need c beacons we introduce some additional notational
conventions as depicted in Fig. 6a. The exterior angle at each (reflex) vertex rk
is called αk. We split each hallway into two parts. To achieve this, three rays
starting at the origin with the angles 1

3π, π, and 5
3π (the dotted rays in Fig. 5)

are drawn. Every hallway is divided by exactly one of the three rays and the
intersection points with the polygon’s boundary are called ak and bk: ak is the
intersection of one of the rays with the edge rk−1rk and bk with the edge qk−1qk.

We observe that, due to the triangular shape, the angle αk is always strictly
less than 90◦, for every 1 ≤ k ≤ c.

356 J. Cleve and W. Mulzer

0π

2
3
π

4
3
π

s t

Fig. 5. A 5-corner spiral polygon with δ = 0.4 for which five beacons (marked in red)
are necessary to route from s to t. (Color figure online)

We now divide our polygon into c + 2 subpolygons C0 to Cc+1 at each pair
ak and bk. This subdivision results in two triangles C0 and Cc+1 which contain s
and t, respectively, and c subpolygons C1 to Cc which are called complete corners
and which all have the same structure. We show that every such complete corner
needs to contain at least one beacon to be able to route from s to t. We look at
one complete corner Ck, 1 ≤ k ≤ c, shown in Fig. 6b.

We want to route from Ck−1 to Ck+1. To route any point from Ck−1 (which
all lie to the right of akbk) towards bk+1 there has to be a beacon such that
the shortest line segment of this beacon to the line segment rkak ends in rk.
Otherwise, an attracted point will get stuck on rkak because the shortest path
ends somewhere on rkak (excluding rk itself). In Fig. 6b we see the case where
bk+1 is a beacon. Here d is a dead point with respect to bk+1 and no point from
Ck−1 will travel further into Ck when attracted by bk+1.

The marked region in Fig. 6b is the region in which every point can attract at
least all points on the line segment akbk. Additionally, every point in the region
can be attracted by a beacon somewhere in the region of Ck+1 to the left of the
line trough ak+1rk, i.e., the part of Ck+1 before turning at rk+1.

On the other hand, there is no better option than bk+1 for a beacon position
outside of Ck. All other points in Ck+1 lie to the right of the line through bk+1d
and hence their respective dead point on rkrk−1 lies further away from rk.

We can see that if the length of the hallways (the distance between rk and rk+1)
is sufficiently large compared to their width (the distance between ak and bk) it is

Combinatorics of Beacon-Based Routing in Three Dimensions 357

rk−1

rk

qk−1

qk

ak

bk

ak+1bk+1

αk

αk−1

(a) Notation for various parts on the triangular
spiral.

drk

qk

ak

bk

ak+1bk+1

Ck−1

Ck+1

(b) The complete corner Ck in
lighter gray.

Fig. 6. A more detailed look at the parts of the spiral polygon.

never possible for a point outside of Ck to be inside the marked region. Therefore
it is not possible to route from somewhere inside Ck−1 to somewhere inside Ck+1

without an additional beacon inside Ck. ��
We now apply the idea of this proof to three dimensions starting with the

definition of the spiral polyhedron.

Definition 4.3. For every c ∈ N
≥1 and some small 0 < δ < 1 a c-corner spiral

polyhedron is a polyhedron with n = 3c + 2 vertices. These vertices are s and
t as well as qk, rk, and zk for all 1 ≤ k ≤ c. The coordinates of s, t, qk, and
rk are the same as in Definition 4.1 with their z-coordinate set to 0. The zk are
positioned above rk or more formally zk := rk +

(
0
0
1

)
for all 1 ≤ k ≤ c.

The edges and facets of the polyhedron are given by the tetrahedral decompo-
sition:

– The start and end tetrahedra are formed by r1q1z1s and rcqczct.
– The hallway between two triangles �rkqkzk and �rk+1qk+1zk+1 consists of

the three tetrahedra rkqkzkrk+1, rk+1qk+1zk+1qk, and qkzkrk+1zk+1.

The three vertices rk, qk, and zk form the k-th corner.

Observation 4.4. The smallest c-corner spiral polyhedron with c = 1 consists
of exactly two tetrahedra. For greater c we add exactly c − 1 hallways, each
consisting of three tetrahedra. This means that a c-corner spiral polyhedron
has a tetrahedral decomposition with m = 3c − 1 tetrahedra. It follows from
Definition 4.3 that the number of tetrahedra relative to the number of vertices
is m = 3 · n−2

3 − 1 = n − 3.

Lemma 4.5 (Lower bound). Given a c-corner spiral polyhedron P , c beacons
are necessary to route from s to t.

358 J. Cleve and W. Mulzer

Proof. We project P onto the xy-plane which results in a c-corner spiral polygon
P ′ due to the construction of the c-corner spiral polyhedron. To P ′ we can apply
Lemma 4.2 where we showed that c beacons (placed in an area around each of
the c corners) are sometimes necessary to route in P ′.

As opposed to the polygon, the movement in the polyhedron is not con-
strained to the xy-plane. Additionally, beacons can be placed at locations which
do not lie in the xy-plane. We need to show that this does not change the situ-
ation in a way so that less than c beacons are necessary.

First, note that, due to the construction in Definition 4.3, every cross section
of the polyhedron parallel to the xy-plane yields a c-corner spiral polygon with
different widths δ. For every such cross section, Lemma 4.2 tells us that to route
only in this cross section, c beacons are needed.

Additionally, the hallway’s inner boundary rkzkrk+1zk+1 is perpendicular to
the xy-plane. This means that the movement of all points p which are attracted
by a beacon b can be split into a xy-movement and a z-movement because the
z-coordinate is not important for any movement along the inner boundary. Since
each hallway is convex there is no other movement of a point p attracted by a
beacon b which is constrained by the polyhedron’s boundary ∂P . We can then
only look at the xy-movement which again yields a two-dimensional situation to
which Lemma 4.2 can be applied. ��

5 A Sharp Bound for Beacon-Based Routing

Theorem 5.1. Given a polyhedron P for which a tetrahedral decomposition with
m tetrahedra exists, it is always sufficient and sometimes necessary to place
�m+1

3 � beacons to route between any pair of points in P .

Proof. In Theorem 3.7 we have shown that �m+1
3 � is an upper bound.

For any given m we can construct a c-corner spiral polyhedron Pm with c =
�m+1

3 � corners for which, by Lemma 4.5, c beacons are necessary. The number
of tetrahedra in Pm is m′ = 3c − 1 (see Observation 4.4) and this is also the
smallest number of tetrahedra in any tetrahedral decomposition of Pm: If there
was a tetrahedral decomposition with less tetrahedra then by Theorem3.7 less
than c beacons would be needed which contradicts Lemma 4.5.

If m′ < m, i.e. due to the flooring function the c-corner spiral contains one
or two tetrahedra less than m, we add the missing tetrahedra as if constructing
a c + 1-corner spiral. This does not lead to less beacons being needed. ��

6 Conclusion

We have shown that the problem of finding a minimal beacon set in a polyhedron
P to route between all pairs of points or all points and a specific point is NP-
hard and APX-hard. This holds also true for the problem of finding a minimal
beacon set to cover a polyhedron P .

Combinatorics of Beacon-Based Routing in Three Dimensions 359

We have shown that, given a tetrahedral decomposition of a polyhedron P
with m tetrahedra it is always sufficient to place �m+1

3 � beacons to route between
any pair of points in P . We then gave a class of polyhedra for which this upper
bound is always necessary.

A lot of questions which have been answered by various authors in two dimen-
sions remain open for the three-dimensional case. They include learning about
the complexity of finding an optimal beacon set to route between a given pair of
points. Additional open questions are about attraction regions (computing the
set of all points attracted by a single beacon) and beacons kernels (all points at
which a beacon can attract all points in the polyhedron).

Furthermore Cleve [8] has shown that not all polyhedra can be covered
by beacons placed at the polyhedron’s vertices and Aldana-Galván et al. [1,2]
showed that this is even true for orthogonal polyhedra. Given a tetrahedral
decomposition of a polyhedron it remains open whether it is possible to cover
a polyhedron with less than max

(
1, �m+1

3 �) beacons as seen in Observation 3.8.
It seems challenging to further look at the beacon-coverage problem in general
polyhedra.

Acknowledgments. We thank the anonymous reviewers for their thorough reading
of the paper and helpful suggestions.

References

1. Aldana-Galván, I., Álvarez-Rebollar, J.L., Catana-Salazar, J.C., Maŕın-Nevárez,
N., Soĺıs-Villarreal, E., Urrutia, J., Velarde, C.: Beacon coverage in orthogonal
polyhedra. In: 29th Canadian Conference on Computational Geometry (CCCG
2017), Ottawa, pp. 166–171, July 2017

2. Aldana-Galván, I., Álvarez-Rebollar, J.L., Catana-Salazar, J.C., Maŕın-Nevárez,
N., Soĺıs-Villarreal, E., Urrutia, J., Velarde, C.: Covering orthotrees with guards
and beacons. In: XVII Spanish Meeting on Computational Geometry (XVII ECG),
Alicante, June 2017

3. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. Comput.
Euclidean Geom. 4, 47–123 (1995)

4. Biro, M.: Beacon-based routing and guarding. Ph.D. thesis, State University of
New York at Stony Brook (2013)

5. Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Beacon-based routing
and coverage. In: 21st Fall Workshop on Computational Geometry (FWCG 2011)
(2011)

6. Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Combinatorics of
beacon-based routing and coverage. In: Proceedings of the 25th Canadian Confer-
ence on Computational Geometry (CCCG 2013), vol. 1, p. 3 (2013)

7. Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM J. Comput. 13(3), 488–507 (1984)

8. Cleve, J.: Combinatorics of beacon-based routing and guarding in three dimensions.
Master’s thesis, Freie Universität Berlin, Berlin, March 2017

9. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press,
Cambridge (2007)

360 J. Cleve and W. Mulzer

10. Lennes, N.J.: Theorems on the simple finite polygon and polyhedron. Am. J. Math.
33(1/4), 37 (1911)

11. Ruppert, J., Seidel, R.: On the difficulty of triangulating three-dimensional non-
convex polyhedra. Discret. Comput. Geom. 7(3), 227–253 (1992)

12. Shermer, T.C.: A combinatorial bound for beacon-based routing in orthogonal
polygons. arXiv preprint arXiv:1507.03509 (2015)

http://arxiv.org/abs/1507.03509

On Split B1-EPG Graphs

Zakir Deniz1(B) , Simon Nivelle2, Bernard Ries3, and David Schindl4

1 Duzce University, Duzce, Turkey
zakirdeniz@duzce.edu.tr

2 ENS Paris Saclay, Paris, France
snivelle@ens-paris-saclay.fr

3 University of Fribourg, Fribourg, Switzerland
bernard.ries@unifr.ch

4 Geneva School of Business Administration, Geneva, Switzerland
david.schindl@hesge.ch

Abstract. In this paper, we are interested in edge intersection graphs
of paths in a grid, such that each such path has at most one bend. These
graphs were introduced in [12] and they are called B1-EPG graphs. In
particular, we focus on split graphs and characterise those that are B1-
EPG. This characterisation allows us to disprove a conjecture of Cameron
et al. [7]. The existence of polynomial-time recognition algorithm for
this graph class is still unknown. We furthermore investigate inclusion
relationships among subclasses of split graphs that are B1-EPG.

1 Introduction

Golumbic et al. introduced in [12] the notion of edge intersection graphs of paths
in a grid (referred to as EPG graphs). An undirected graph G = (V,E) is called
an EPG graph, if one can associate a path in a rectangular grid with each vertex
such that two vertices are adjacent if and only if the corresponding paths intersect
on at least one grid-edge. The authors showed in [12] that every graph is in fact
an EPG graph. Therefore, they introduced additional restrictions on the paths
by limiting the number of bends (a bend is a 90◦ turn of a path at a grid-point)
that a path can have. An undirected graph G = (V,E) is then called a Bk-EPG
graph, for some integer k ≥ 0, if one can associate with each vertex a path with
at most k bends in a rectangular grid such that two vertices are adjacent if and
only if the corresponding paths intersect on at least one grid-edge.

One motivation for introducing these graphs comes from chip manufacturing.
Indeed, each wire on a chip can be seen as a path on a rectangular grid. Since
each wire bend requires a so-called transition hole, and since a large number of
such holes increase the layout area as well as the overall cost of the chip, it is
of interest to limit the total number of holes respectively to limit the number of
bends per wire. Another motivation comes from the fact that Bk-EPG graphs
generalize the well-known class of interval graphs. From its definition, it is easy
to see that the class of B0-EPG graphs is indeed equivalent to the class of interval
graphs.
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 361–375, 2018.
https://doi.org/10.1007/978-3-319-77404-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_27&domain=pdf
http://orcid.org/0000-0002-0701-0397

362 Z. Deniz et al.

Since the introduction of the notion of Bk-EPG graphs, there has been a lot
of research done on these graphs from several points of view (see for instance
[1–8,10,11,13–15]). Since B0-EPG graphs coincide with the class of interval
graphs, particular attention has been paid to the class of B1-EPG graphs. The
authors in [13] showed that recognizing B1-EPG graphs is an NP-complete prob-
lem; the same holds for B2-EPG graphs as recently shown in [15]. In any repre-
sentation of a B1-EPG graph, each path can only have one of the following four
shapes: �, �, �, � (a path with only a horizontal part or only a vertical part can
be considered as a degenerate path of one of the four shapes mentioned before).
In [7], the authors analysed B1-EPG graphs for which the number of different
shapes is restricted to a subset of the set above. They showed that testing mem-
bership to each of these restricted classes is also NP-complete. Furthermore,
they focused on chordal graphs that are B1-EPG with the additional restriction
that only one particular shape (namely �) is allowed for all paths. In particular,
they state a conjecture concerning the characterisation of split graphs that are
B1-EPG and where only paths with an � shape are allowed, by a family of for-
bidden induced subgraphs. Indeed, they present a list of nine forbidden induced
subgraphs and conjecture that these are the only ones. In this paper, we disprove
this conjecture by providing an additional forbidden induced subgraph. However,
giving a complete list of forbidden induced subgraphs or deciding whether such
a finite list exists remains open. Furthermore, we provide a characterisation of
split graphs that are B1-EPG and where only paths with an � shape are allowed.
Notice that this characterisation does not imply a polynomial-time recognition
algorithm. In addition, for any subset P of the four possible shapes mentioned
above, we investigate inclusion relationships among subclasses of split graphs
that are B1-EPG and where only shapes from P are allowed.

Our paper is organised as follows. In Sect. 2, we present definitions and nota-
tions as well as some preliminary results and observations that we will use
throughout the paper. Section 3 deals with the inclusion relationships among
subclasses of split graphs that are B1-EPG. In Sect. 4, we present a characteri-
sation of split B1-EPG graphs and disprove the conjecture of Cameron et al. [7].
We finish with Sect. 5 in which we also mention further results that we obtained
and suggest some further research directions.

2 Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple
edges. We refer to [9] or [16] for undefined terminology. Let G = (V,E) be a
graph. For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by S,
which has vertex set S and edge set {uv ∈ E | u, v ∈ S}. We write H ⊆i G if a
graph H is an induced subgraph of G. Moreover, for a vertex v ∈ V , we write
G − v = G[V \{v}] and for a subset V ′ ⊆ V , we write G − V ′ = G[V \V ′]. The set
of vertices adjacent to some vertex u is called the neighborhood of u and will be
denoted by N(u). The closed neighborhood of u is defined as N [u] = N(u)∪{u}.
A vertex u dominates some adjacent (resp. non-adjacent) vertex v if N [v] ⊆ N [u]

On Split B1-EPG Graphs 363

(resp. if N(v) ⊆ N(u)). Two vertices u, v in G are said to be comparable if u
dominates v or v dominates u. Two vertices that are not comparable are said to
be incomparable. A split graph is a graph G = (V,E) whose vertex set V can be
partitioned into a clique K (i.e., a set of pairwise adjacent vertices) and a stable
set S (i.e., a set of pairwise non-adjacent vertices). We say that (K,S) is a split
partition of G. The vertices in S will be called the S-vertices.

Let G be a rectangular grid of size m × m′. The horizontal grid lines will
be referred to as rows and denoted by x0, x1, · · · , xm−1 and the vertical grid
lines will be referred to as columns and denoted by y0, y1, · · · , ym′−1. As already
mentioned above, in any representation of a B1-EPG graph, each path can only
have one of the following four possible shapes: �, �, �, �. A path with an �-shape
will be called an �-path. In a similar way we define �-path, �-path and �-path. For
any subset P of the four possible shapes, we denote by [P] the class of B1-EPG
graphs which admit a representation in which each path has one of the shapes in
P . In particular, we denote by [P]s the class of B1-EPG split graphs which admit
a representation in which each path has one of the shapes in P . For simplicity,
if P contains all four shapes, we write B1-EPGs. A representation of a B1-EPG
graph containing only paths with a shape in P is called a [P]-representation.

Let G = (V,E) be a B1-EPG graph and let v ∈ V . We denote by Pv the path
representing v in a B1-EPG representation of G. Consider a clique K (resp. a
stable set S) in G. Any path representing a vertex in K (resp. in S) will simply
be referred to as a path of K (resp. path of S). Concerning cliques, the following
useful lemma has been shown in [12].

Lemma 1. Let G = (V,E) be a B1-EPG graph. In any B1-EPG representation
of G, a clique K of G is represented either as an edge-clique or as a claw-clique
(see Fig. 1).

Notice that in an edge-clique, all paths share a common grid-edge, called the
base of the clique, while in a claw-clique, all paths share a common grid-point,
called the center of the clique.

A gem is a graph with vertex set {c1, c2, c3, s1, s2} and edge set {s1c1, s1c2,
c1c2, c2c3, c1c3, s2c2, s2c3} (see Fig. 2(a)). It is easy to see that a gem, as an
induced subgraph of a split graph G = (V,E) with split partition (K,S),
must satisfy c1, c2, c3 ∈ K and s1, s2 ∈ S. A bull is a graph with vertex set
{c1, c2, s1, s2, s3} and edge set {c1c2, c1s2, c2s2, c1s1, c2s3} (see Fig. 2(b)). Again,
it is easy to see that a bull, as an induced subgraph of a split graph G = (V,E)
with split partition (K,S), must satisfy c1, c2 ∈ K and s1, s3 ∈ S. In the case

(a) (b)

Fig. 1. An edge-clique (a) and a claw-clique (b).

364 Z. Deniz et al.

where s2 ∈ S as well, the bull is called an S-bull. Gems and S-bulls have played
an important role in [7]. As we will see, they are also crucial in our results.

s1 c2 s2

c3c1

(a)

c1 c2

s3s2s1

(b)

Fig. 2. (a) A gem. (b) An S-bull.

The following definitions have been introduced in [7]. Let G = (V,E) be in
[�]s with split partition (K,S). Consider an [�]s-representation of G. Clearly,
the clique K must be represented as an edge-clique. This grid-edge is called the
base. Without loss of generality, we may assume that the base is vertical. The
horizontal parts of the paths representing vertices in K are called branches. Let
F be the vertical line-segment which is the union of the vertical parts of all paths
representing vertices in K. The part of F below the base is called the trunk. The
part of F above trunk is called the crown (see Fig. 3).

The following three observations have been made in [7]. As we will see, they
will be very helpful in the proof of our main results.

Observation 1 ([7]). Let G = (V,E) be a split graph in [�]s. Then, the S-
vertices whose paths lie on the same branch (or on the crown) are pairwise
comparable. Furthermore, an S-vertex whose path lies on the trunk dominates
all S-vertices whose paths lie below it in the representation.

Base

Crown

Trunk
Branches

Fig. 3. An [�]-representation of a split graph with the notions of crown, base, branches
and trunk.

On Split B1-EPG Graphs 365

Observation 2 ([7]). Let G = (V,E) be a split graph in [�]s. If G contains a
gem, then exactly one of the gem’s S-vertices has its path lying on the crown of
the representation.

Observation 3 ([7]). Let G = (V,E) be a split graph in [�]s. If G contains
an S-bull, then some S-vertices of this bull have their paths lying on either the
crown or trunk of the representation.

It is easy to see that we can generalize Observation 1 in the following way.

Observation 4. Let G = (V,E) be a split graph in B1-EPGs with split partition
(K,S).

Assume that K is represented as an edge-clique with base going from (xi, yj)
to (xi+1, yj) (see Fig. 4(a)). Then, the S-vertices whose paths use column yj

above (xi+1, yj), say between rows xi+1 and xi+k (resp. below (xi, yj), say between
rows xi−k and xi) and the S-vertices whose paths use some row xi+�, � ≥ k (resp.
xi−�, � ≥ k) on a same side of yj (right or left) are pairwise comparable.

Similarly, assume that K is represented as a claw-clique with center (xi, yj)
and assume that no path of K uses the grid-edge going from (xi, yj−1) to (xi, yj)
(see Fig. 4(b)). Then, the S-vertices whose paths use column yj above (xi, yj),
say between rows xi+1 and xi+k (resp. below (xi, yj), say between rows xi−k

and xi−1) and the S-vertices whose paths use some row xi+�, � ≥ k (resp. xi−�,
� ≥ k) on a same side of yj are pairwise comparable. Furthermore, the S-vertices
whose paths use row xi to the right of (xi, yj) are also pairwise comparable.

xi

xi+1

xi+k

xi−k

yj

S4

S5

S1

S3

Base

S2

(a)

xi−1

xi

xi+1

xi+k

xi−k

yjS4

S5

S1

S3

S2

(b)

Fig. 4. (a) Vertices in S1 ∪ S2 (resp. S1 ∪ S5, S3 ∪ S4) are pairwise comparable. (b)
Vertices in S1 ∪ S2 (resp. S3 ∪ S4) are pairwise comparable; also the vertices of S5 are
pairwise comparable.

366 Z. Deniz et al.

3 Subclasses of B1-EPGs

In [7], the authors showed that [�] � [�, �], [�, �] � [�, �, �] � B1-EPG and that
the two classes [�, �], [�, �] are incomparable. Here, we obtain a similar result
when restricted to split graphs.

Theorem 1. [�]s � [�, �]s � [�, �]s � [�, �, �]s � B1-EPGs.

Notice that for split graphs we have [�, �]s � [�, �]s. We will prove Theorem 1
by a series of four lemmas (Lemmas 2, 3, 4 and 5). We first start with a useful
proposition.

Proposition 1. Consider a B1-EPG representation of a gem (see Fig. 2(a)).
Let K = {c1, c2, c3} and S = {s1, s2}. If K is represented as an edge-clique
with base going from (xi, yj) to (xi+1, yj) or if K is represented as a claw-clique
with center (xi, yj) and no path of K uses the grid-edge going from (xi, yj−1) to
(xi, yj), then at least one of Ps1 , Ps2 intersects paths of K on column yj.

Proof. Consider a B1-EPG representation of a gem with K = {c1, c2, c3} and
S = {s1, s2}. Suppose that K is represented as an edge-clique with base going
from (xi, yj) to (xi+1, yj) or K is represented as a claw-clique with center (xi, yj)
and no path of K uses the grid-edge going from (xi, yj−1) to (xi, yj). By con-
tradiction assume that both Ps1 , Ps2 do not intersect paths of K on column yj .
Since all paths have at most one bend, it follows that both Ps1 , Ps2 intersect
paths of K on rows. Since s1, s2 have a common neighbour, Ps1 , Ps2 must inter-
sect paths of K on a same row xk either both to the right of yj or both to the left
of yj . But this is not possible since s1, s2 are incomparable (see Observation 4).

Lemma 2. [�]s � [�, �]s.

Proof. We clearly have [�]s ⊆ [�, �]s. Consider the graph G4 in Fig. 5(a). We
know from [7] that G4 is not in [�]s. But it is easy to see that G4 is in [�, �]s (see
Fig. 5(b)). Thus, [�]s � [�, �]s.

c3 c4

c5

c6c1

c2

s2

s1

s4

s3

(a)

Ps1

Ps3

Ps2

Ps4

Pc6Pc1

Pc2Pc3

Pc4Pc5

(b)

Fig. 5. The graph G4 and a [�, �]-EPG representation of it.

Since G4 is a minimal forbidden induced subgraph for the class [�]s, it is minimal
under inclusion with the property that it belongs to [�, �]s\[�]s. However, there
may exist other examples with fewer vertices.

On Split B1-EPG Graphs 367

s1 c1 s2

c2c3

s3

(a)

Ps1

Pc1
Pc3

Pc2 Ps2

Ps3

(b)

Fig. 6. The graph G1 and a [�, �]-EPG representation of it.

Lemma 3. [�, �]s � [�, �]s.

Proof. Consider the graph G1, also called the 3-sun, in Fig. 6(a). It is clearly a
split graph, and it has been shown in [7] to belong to [�, �]\[�, �] (see Fig. 6(b)
for a [�, �]-EPG representation of it).

So we conclude that [�, �]s �= [�, �]s. It remains to show that [�, �]s ⊂ [�, �]s.
Consider a split graph G in [�, �]s with split partition (K,S). It follows from
Lemma 1, that K must be represented as an edge-clique. Without loss of gen-
erality, we may assume that the base of K is vertical and goes from (xi, yj)
to (xi+1, yj). Notice that, since only �-paths and �-paths are allowed, we may
assume that each path of S intersects paths of K either with its vertical part or
with its horizontal part, but never with both and thus, it is a degenerate path.
Notice that no �-path has its horizontal part below (xi+1, yj), and no �-path has
its horizontal part above (xi, yj). We may therefore transform the part above
(xi+1, yj) of the whole representation by a symmetry with respect to column yj ,
resulting in a [�, �] representation of G. Thus, [�, �]s � [�, �]s.

Notice that the symmetry used in the proof of Lemma 3 could not be used
if one wanted to show that [�, �]s � [�, �]s, since the graph may have its clique
represented by a claw-clique. Therefore, [�, �]s\[�, �]s is exactly the set of those
[�, �]s-EPG graphs admitting no split partition (K,S) such that K can be rep-
resented by an edge-clique. Notice also that since G1 is the smallest graph not
in [�]s (see [7]), it is also the smallest graph in [�, �]s\[�, �]s.

Lemma 4. [�, �]s � [�, �, �]s.

Proof. We clearly have [�, �]s ⊆ [�, �, �]s. Let us consider the graph G5 which
belongs to [�, �, �]s (see Fig. 7(a) and (b)). We will show that G5 does not belong
to [�, �]s.

By contradiction, assume that G5 belongs to [�, �]s. We will distinguish two
cases. First, suppose that the clique K induced by {c1, · · · , c8} is represented as
an edge-clique. Without loss of generality, we may assume that the base of K is
vertical and goes from (xi, yj) to (xi+1, yj). Since the vertex set {c1, c2, c3, s1, s2}
induces a gem, it follows from Proposition 1 that at least one of Ps1 , Ps2 inter-
sects paths of K on column yj , say Ps1 . Also, we may assume, without loss

368 Z. Deniz et al.

c1

c2

c3

c4

c5

c6

c7

c8

s1

s2

s3

s4

s6

s7

s5

(a)

Pc1

Pc2

Pc5

Pc4

Pc8Pc7

Ps5

Ps6 Ps7

Ps1 Ps4

Ps2 Ps3

Pc3

Pc6

(b)

Fig. 7. The graph G5 and a [�, �, �]-EPG representation of it.

of generality, that it intersects paths of K above row xi+1, say above row xr1 ,
r1 ≥ i + 1. Using the same argument for the gem induced by {c4, c5, c6, s3, s4},
we may assume that Ps3 intersects path of K on column yj . Since s1, s3 are
incomparable, it follows that Ps3 lies below row xi, say below row xr3 , r3 ≤ i
(see Observation 4). Now consider the S-bull induced by {c7, c8, s5, s6, s7}. Since
c7, c8 are non-adjacent to s1, s3, their paths do neither go above row xr1 , nor
below row xr3 . Since s5, s6, s7 are non-adjacent to c1, · · · , c6, it follows that
Ps5 , Ps6 , Ps7 cannot intersect paths of K on column yj . Therefore, they must
intersect paths of K on some same row xr (since s5 is adjacent to both c7, c8)
and these intersections are all to the right of yj (since we only allow �-paths and
�-paths. But this is clearly impossible, since s6 and s7 are incomparable. So we
conclude that K cannot be represented as an edge-clique.

So we may assume now that K is represented as a claw-clique with center
(xi, yj). Without loss of generality, we may assume that only paths of K use the
grid edges going from (xi−1, yj) to (xi+1, yj). Clearly, all paths of S intersecting
paths of K on row xi must be pairwise comparable (see Observation 4). Hence,
we immediately see that there are at most two such paths of S.

First assume there are exactly two paths of S intersecting paths of K on
row xi. Then, these must be paths Ps5 , Ps6 (resp. Ps5 , Ps7). Without loss of
generality, we may assume that c7 is represented as a �-path and c8 is represented
as an �-path. Notice that every other path of K with bend point (xi, yj) can be
transformed into a vertical path (by deleting its horizontal part and extending it
to (xi−1, yj) if it is an �-path and to (xi+1, yj) if it is a �-path), since it does not
intersect any path on row xi. Hence, Pc7 , Pc8 are the only paths of K with bend
point (xi, yj). Now, since c7 (resp. c8) has only two neighbours in S, namely
s5, s6 (resp. s5, s7), it follows that it does not intersect any path of S with its
vertical part. So we may transform Pc7 (resp. Pc8) into an �-path (resp. a �-path)

On Split B1-EPG Graphs 369

with vertical part going from (xi, yj) to (xi+1, yj) (resp. to (xi−1, yj)). Hence,
K is representable as an edge-clique. But we know from the above that this is
not possible.

So let us now assume, that exactly one path of S is intersecting paths of K
on row xi. As before, notice that every path of K with bend point (xi, yj) not
intersecting any path of S on row xi can be transformed into a vertical path
(by deleting its horizontal part and extending it to (xi−1, yj) if it is an �-path
and to (xi+1, yj) if it is a �-path). So this unique path of S intersecting paths of
K on row xi represents a vertex of degree at least two, hence one of s1, · · · , s5
(otherwise we obtain again the case where K is represented as an edge-clique).
First assume it represents s1 (the cases when it represents s2, s3 or s4 can be
handled similarly). In other words, Pc1 , Pc2 are the only paths of K using row
xi. We may assume, without loss of generality, that c1 is represented by a �-path
and c2 by an �-path. Since c1 does not have any neighbour in S except s1, it
follows that it does not intersect any path of S with its vertical part. Thus, as in
the previous case, we can transform Pc1 into an �-path with vertical part going
from (xi, yj) to (xi+1, yj). But then K is again represented as an edge-clique, a
contradiction. So we may assume now that this unique path of S intersecting
paths of K is s5. Using the same arguments as above, we may assume that c7 is
represented by a �-path and c8 by an �-path and Pc7 , Pc8 are the only paths of K
using row xi. We immediately conclude that Ps6 must intersect Pc7 on column
yj below row xi−1, and Ps7 must intersect Pc8 on column yj above row xi+1. It
follows from Proposition 1, that at least one of Ps1 , Ps2 intersects paths of K on
column yj , since {c1, c2, c3, s1, s2} induces a gem. But this is not possible since
neither of them is comparable with one of s6, s7 (see Observation 4). Thus, G5

does not belong to [�, �]s.

Lemma 5. [�, �, �]s � B1-EPGs.

Proof. We clearly have [�, �, �]s ⊆ B1-EPGs. Consider the graph G8 which
belongs to B1-EPGs (see Fig. 8(a) and (b)). We will show that G8 does not
belong to [�, �, �]s. By contradiction suppose that G8 ∈ [�, �, �]s. Assume first
there exists a [�, �, �]-representation of G8, where the clique K induced by
{c1, · · · , c10} is an edge-clique. Without loss of generality, we may assume
that the base of K is vertical, say it goes from (xi, yj) to (xi+1, yj). Since
{s3, s6, c2, c3, c4} induces a gem, it follows from Proposition 1 that at least
one of Ps3 , Ps6 intersects paths of K on column yj , say Ps3 . Similarly, since
{s9, s12, c7, c8, c9} also induces a gem, we may assume that Ps9 intersects paths
of K on column yj . Since s3 and s9 are incomparable, one of these paths will
be above row xi+1, say Ps3 , and the other will be below row xi, say Ps9 (see
Observation 4). Now consider Ps12 . Since s9 and s12 are incomparable and have
a common neighbor, it follows from Observation 4 that Ps12 must be above row
xi+1. But s12 has no common neighbour with s3, so it follows from Observation
4 that Ps12 must intersect all three paths Pc8 , Pc9 and Pc10 on a same row, say
row xk, k > i, below Ps3 . Next consider s10 and s11. Since they have each only
one neighbour in K, and it is a common neighbour with s12, it follows from the

370 Z. Deniz et al.

above that they must intersect this neighbour on the same row xk. But since
s10, s11 are incomparable, they cannot intersect their neighbours on the same
side of column yj . So one will be to the right and the other to the left of column
yj (see Fig. 8(b)). Thus one of Pc9 and Pc10 must be a �-path and one must be
a �-path. The same reasoning can be done for s6, s4 and s5 with the conclusion
that one of Pc4 and Pc5 must be an �-path and one must be a �-path. But this
contradicts the fact that G8 ∈ [�, �, �].

c7

c6

c5

c4

c2
c1

c10

c9

c8

c3

s8

s4

s2

s10

s9 s7

s5

s6

s3s1

s11

s12

(a)

Pc8

Pc3

Ps7

Ps8Ps9

Ps1

Ps2
Ps3

Ps11

Ps10

Ps4

Ps5

Pc6

Pc7

Pc1

Pc2

Pc9Pc10

Pc5Pc4

Ps12

Ps6

(b)

Fig. 8. The graph G8 and a B1-EPG representation of it.

Now assume there exists a [�, �, �]-representation of G8 where the clique K
is a claw-clique with center (xi, yj). Without loss of generality, we may assume
that only paths of K use the grid-edges going from (xi−1, yj) to (xi+1, yj). Also,
we may assume that all paths of K have a part lying on column yj . It follows
from Observation 4 that the S-vertices whose paths intersect paths of K on row
xi are pairwise comparable. Thus, we conclude that there can be at most two
such vertices. First assume there are exactly two. Without loss of generality, we
may assume that Ps1 and Ps3 intersect paths of K on row xi (the proof is the
same if two other paths of comparable S-vertices intersect paths of K on row xi).
Since s2 and s6 have both a common neighbour with s3, their paths intersect
paths of K on column yj . Furthermore, s2, s6 are not comparable, so one of
the paths Ps2 , Ps6 uses column yj above (xi+1, yj) and the other uses column
yj below (xi−1, yj). Now {s9, s12, c7, c8, c9} induces a gem, thus it follows from
Proposition 1 that at least one of the paths Ps9 , Ps12 intersects paths of K on the
column yj . But this implies that s9 or s12 is comparable with one of s2 and s6, a
contradiction. So we may assume now that there is exactly one S-vertex whose
path intersects paths of K on row xi. We will distinguish two cases: this path
represents an S-vertex of degree 3, or this paths represents an S-vertex of degree
1. First assume it is an S-vertex of degree 3, say, without loss of generality, s3.
Since s1, s2 and s6 have a common neighbour with s3, their paths must intersect
paths of K on column yj . But these three vertices are pairwise incomparable, a
contradiction with Observation 4. Now assume, without loss of generality, that
the path Ps1 is the unique path representing an S-vertex which intersects paths
of K on row xi. Similar to the proof of Lemma 4, every path of K with bend

On Split B1-EPG Graphs 371

point (xi, yj) not intersecting any path of S on row xi can be transformed into a
vertical path (by deleting its horizontal part and extending it to (xi−1, yj) if it is
an �-path and to (xi+1, yj) if it is a �-path). Since s1 has degree 1, it follows that
exactly one path of K uses row xi. Hence K is represented as an edge-clique,
but this is impossible due to the above. Thus, G8 is not in [�, �, �]s.

As for G4 in the proof of Lemma 2, we can say that G5 and G8 are inclusion-
wise minimal examples to show strictness of class inclusion for Lemmas 4 and 5,
respectively. However, in both cases, we do not know whether there exist other
examples with fewer vertices.

4 Split Graphs as [�]-Graphs

In this section, we characterise those split graphs that are in [�]. As already
noticed in [7], gems and S-bulls play an important role with respect to the
characterisation of split [�]-graphs.

Theorem 2. Let G be a split graph with split partition (K,S). Then G ∈ [�] if
and only if there exist S1, S2 ⊆ S such that:

(a) each Si for i ∈ {1, 2} is a set of pairwise comparable vertices;
(b) for every gem in G with vertex set {c1, s1, c2, s2, c3} (see Fig. 2(a)), either

s1 ∈ S1 or s2 ∈ S1;
(c) for every S-bull in G with vertex set {s1, c1, s2, c2, s3} (see Fig. 2(b)), at least

one of s1, s2, s3 belongs to S1 or s2 ∈ S2.

Proof. Let G be a split graph with split partition (K,S). Assume that G ∈ [�],
and consider an [�]-representation of G. We define S1 and S2 as follows:

• S1 is the set of vertices whose corresponding paths belong to the crown;
• S2 is the set of vertices whose corresponding paths belong to the trunk.

It immediately follows from Observation 1 that each Si, i ∈ {1, 2} as defined
above is a set of pairwise comparable vertices. Furthermore, it follows from
Observation 2 that (b) is satisfied. Finally, (c) is an immediate consequence of
Observation 3.

Conversely, let G = (V,E) be a split graph with split partition (K,S), and
assume that there exist S1, S2 ⊆ S satisfying (a), (b) and (c). In addition, let us
assume that we choose S2 maximal with these properties. Let S′ = S \ (S1 ∪S2).
Consider a partition S′

1, S
′
2, ..., S

′
k of S′ into non-empty sets such that ∀ i �=

j,N(S′
i) ∩ N(S′

j) = ∅ and k is maximal.

Claim 1: The vertices in S′
i, i ∈ {1, ..., k}, are pairwise comparable.

Let s, s′ ∈ S′
i, for some i ∈ {1, ..., k}. Suppose that s, s′ are not comparable.

Denote by S′′
i the vertices in S′

i that have a common neighbour with s. Then
each vertex in S′′

i is comparable to s. Indeed, let u ∈ S′′
i . If u and s are not

comparable, then there exist c, c′ ∈ K such that sc, uc′ ∈ E and sc′, uc �∈ E.

372 Z. Deniz et al.

Since u ∈ S′′
i , it follows that there exists c′′ such that sc′′, uc′′ ∈ E. But then,

{u, s, c, c′, c′′} induces a gem, and hence (b) is not satisfied, a contradiction. So
we conclude that s′ �∈ S′′

i , since s, s′ are incomparable. Now, assume there exist
a vertex u ∈ S′′

i and a vertex v ∈ S′
i \ S′′

i , v �= s, that have a common neighbour
c1. Since v �∈ S′′

i , it follows that sc1 �∈ E. Then {s, u, v, c1, c2} induces an S-bull,
where c2 is a common neighbour of s and u, and hence (c) is not satisfied, a
contradiction. It follows from the above that we may partition S′

i into two sets,
S′′

i ∪ {s} and S′
i \ (S′′

i ∪ {s}) such that N(S′′
i ∪ {s}) ∩ N(S′

i \ (S′′
i ∪ {s})) = ∅.

But this contradicts the maximality of k. Therefore, s, s′ are comparable. This
proves Claim 1.

Let S2 = {u1, ..., u�} such that N(u�) ⊆ N(u�−1) ⊆ ... ⊆ N(u2) ⊆ N(u1).
Furthermore, let A0 = K \ N(u1), for all i ∈ {1, ..., � − 1} Ai = N(ui) \ N(ui+1)
and A� = N(u�).

Claim 2: There exists no set S′
i, i ∈ {1, ..., k}, such that N(S′

i) ∩ Aj1 �= ∅ and
N(S′

i) ∩ Aj2 �= ∅, for j1 �= j2 and j1, j2 ∈ {0, 1, . . . , �}.

Let S′
i be such that x ∈ N(S′

i) ∩ Aj1 and y ∈ N(S′
i) ∩ Aj2 , for j1 �= j2 and

j1, j2 ∈ {0, 1, . . . , �}. Without loss of generality, we may assume that j1 < j2 and
that j1 is chosen smallest with the property that N(S′

i) ∩ Aj1 �= ∅. Let u be a
dominant vertex in S′

i, i.e. N(u) = N(S′
i). Consider vertex uj1+1 ∈ S2. Notice

that x and uj1+1 are not adjacent. Hence, if there exists a vertex z ∈ K which is
adjacent to uj1+1 and non-adjacent to u, then {u, uj1+1, x, y, z} induces a gem,
and hence (b) is not satisfied, a contradiction. Thus, u dominates uj1+1. Since
uj1+1 dominates uj , for j = j1 +2, . . . , �, we conclude that u actually dominates
uj , for j = j1 + 1, . . . , �. If j1 = 0, we obtain that u dominates all vertices in S2,
and thus we may add u to S2 (and (a), (b), (c) would still be satisfied), which
contradicts the maximality of S2. So we may assume that j1 > 0. Notice that u
is dominated by every vertex uj , with j ∈ {1, . . . , j1}, since j1 is chosen smallest
with the property that N(S′

i) ∩ Aj1 �= ∅. Hence, we may again add u to S2 (and
(a), (b), (c) would still be satisfied), which contradicts the maximality of S2.
This proves Claim 2.

We will construct an [�]-representation of G as follows. We start with the base,
which, without loss of generality, we may assume vertical. Next, we extend the
paths of the base and add all vertices of S1 in the crown and all vertices of
S2 in the trunk (see Fig. 9(a)). This is possible since the vertices in S1 (resp.
S2) are pairwise comparable. Notice that currently each path Pc, for c ∈ Aj ,
j ∈ {1, . . . , �}, has its lower endpoint below Puj

and above Puj+1 , and each
path Pc, for c ∈ A0, has its lower endpoint above Pu1 . Consider a set Aj , j ∈
{0, 1, . . . , �} as well as all sets among S′

1, . . . , S
′
k which have neighbours in Aj ,

say S′
i1

, . . . , S′
ir

. It follows from Claim 2 and the fact that N(S′
i) ∩ N(S′

l) = ∅
for all i, l ∈ {1, . . . , k}, i �= l, that we may partition the vertices of Aj into sets
Ai1

j , . . . , Air
j , A′

l such that N(S′
is

) = Ais
j , for s = 1, . . . , r and the vertices of A′

j

have no neighbours in S′. Since each set S′
i for i ∈ {1, ..., k} contains pairwise

comparable vertices (see Claim 1), we may now represent the vertices of each set

On Split B1-EPG Graphs 373

Fig. 9. Illustration of Theorem 2.

S′
is

on a separate branch formed by the horizontal parts of the paths Pc, with
c ∈ Ais

j , for s = 1, . . . , r (see Fig. 9(b)).
Notice that the previous characterisation does not imply that graphs in [�]s

can be recognised in polynomial time. This still remains open.
In [7], the authors state a conjecture concerning the characterisation of the

class [�]s by a family of forbidden induced subgraphs. Here, we will show that
the conjecture is wrong by presenting an additional forbidden induced subgraph
that was not mentioned in their list (and which is not contained in any of their
forbidden graphs as induced subgraph), using Theorem 2. Consider the graph
H shown in Fig. 10. We obtain the following.

c1 c2

c3c4

s1

s2 s3 s4

s5

Fig. 10. The graph H.

Lemma 6. The graph H is not in [�]s.

Proof. Suppose by contradiction that H ∈ [�]s. Since {c1, c3, c4, s1, s3} induces
a gem, it follows from Theorem 2, that either s1 or s3 belong to S1.

First assume that s1 ∈ S1. Hence s3 �∈ S1. Now {c2, c3, c4, s3, s5} also induces
a gem. It follows again from Theorem 2 and the fact that s3 �∈ S1 that s5 ∈ S1.
So both s1, s5 belong to S1. But they are incomparable, a contradiction.

374 Z. Deniz et al.

So we may assume now that s3 ∈ S1 and s1 �∈ S1. The vertex set
{c1, c3, c4, s1, s4} induces a gem. Thus, it follows from Theorem 2 and the fact
that s1 �∈ S1 that s4 ∈ S1. Similarly, the vertices {c2, c3, c4, s2, s5} induces a
gem. So according to Theorem 2, either s2 or s5 belongs to S1. But s2, s4 are
incomparable and s5, s3 are incomparable. Thus, we obtain again a contradiction
since S1 is a set of pairwise comparable vertices.

Note that one can easily check that the graph H is a minimal forbidden induced
subgraph by removing each vertex separately and applying Theorem 2.

5 Conclusion

In this paper, we were interested in split graphs as edge intersection graphs of
single bend paths on a grid. We presented a characterisation of this graph class
using the notions of gems and S-bulls. Our characterisation allowed us to dis-
prove a conjecture by Cameron et al. stating that this class can be characterised
by a list of 9 forbidden induced subgraphs [7]. Notice that, even though we only
gave here a single additional forbidden induced subgraph, we actually managed
to detect 20 new ones so far. Furthermore, we investigated some subclasses of
split B1-EPG graphs for which only a subset of the four possible shapes are
allowed. We presented the complete set of inclusion relationships between these
graph families.

Our characterisation mentioned above does not immediately lead to a
polynomial-time recognition algorithm. Thus, it is still open whether split B1-
EPG graphs can be recognised in polynomial time or not. Furthermore, it would
be interesting to obtain a characterisation of chordal B1-EPG graphs.

In [7], the authors present a characterisation of gem-free (resp. S-bull-free)
graphs that are in [�]s. We managed to generalise these results to gem-free (resp.
S-bull-free) graphs that are in [P]s, for any subset P of {�, �, �, �}. All these
graph classes can be recognised in polynomial time. Due to space constraints,
we were not able to include these results in the present paper.

Acknowledgements. The first author has been supported by the Scientific and Tech-
nological Research Council of Turkey (TÜBİTAK) under 2214-A Doctoral Research
Program Grant during his stay in Switzerland. This work was done while the first
and second authors visited the University of Fribourg, Switzerland. The support of the
institution is gratefully acknowledged.

References

1. Alcón, L., Bonomo, F., Durán, G., Gutierrez, M., Mazzoleni, M.P., Ries, B.,
Valencia-Pabon, M.: On the bend number of circular-arc graphs as edge intersec-
tion graphs of paths on a grid. Discrete Appl. Math. 234, 12–21 (2017). https://
doi.org/10.1016/j.dam.2016.08.004

2. Asinowski, A., Ries, B.: Some properties of edge intersection graphs of single-bend
paths on a grid. Discrete Math. 312, 427–440 (2012)

https://doi.org/10.1016/j.dam.2016.08.004
https://doi.org/10.1016/j.dam.2016.08.004

On Split B1-EPG Graphs 375

3. Asinowski, A., Suk, A.: Edge intersection graphs of systems of paths on a grid with
a bounded number of bends. Discrete Appl. Math. 157(14), 3174–3180 (2009)

4. Bield, T., Stern, M.: Edge-intersection graphs of k-bend paths in grids. Discrete
Math. Theor. Comput. Sci. 12:1, 1–12 (2010)

5. Bonomo, F., Mazzoleni, M.P., Stein, M.: Clique coloring B1-EPG graphs. Discrete
Math. 340(5), 1008–1011 (2017)

6. Bougeret, M., Bessy, S., Gonçalves, D., Paul, C.: On independent set on B1-EPG
graphs. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 158–
169. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6 14

7. Cameron, K., Chaplick, S., Hoang, C.T.: Edge intersection graphs of L-shaped
paths in grids. Discrete Appl. Math. 210, 185–194 (2016)

8. Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection
graphs of paths on a grid. Discrete Appl. Math. 178, 46–57 (2014)

9. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)
10. Epstein, D., Golumbic, M.C., Morgenstern, G.: Approximation algorithms for B1-

EPG graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 328–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 29

11. Francis, M.C., Lahiri, A.: VPG and EPG bend-numbers of halin graphs. Discrete
Appl. Math. 215, 95–105 (2016)

12. Golumbic, M., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54, 130–138 (2009)

13. Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: the
bend-number. Discrete Appl. Math. 167, 144–162 (2014)

14. Heldt, D., Knauer, K., Ueckerdt, T.: On the bend-number of planar and outerpla-
nar graphs. Discrete Appl. Math. 179, 109–119 (2014)

15. Pergel, M., Rz ↪ażewski, P.: On edge intersection graphs of paths with 2 bends. In:
Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 207–219. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53536-3 18

16. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River
(1996)

https://doi.org/10.1007/978-3-319-28684-6_14
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-662-53536-3_18

Efficient Algorithms for Computing
a Minimal Homology Basis

Tamal K. Dey, Tianqi Li(B), and Yusu Wang

Department of Computer Science and Engineering,
The Ohio State University, Columbus, USA

{tamaldey,yusu}@cse.ohio-state.edu, li.6108@osu.edu

Abstract. Efficient computation of shortest cycles which form a homol-
ogy basis under Z2-additions in a given simplicial complex K has been
researched actively in recent years. When the complex K is a weighted
graph with n vertices and m edges, the problem of computing a shortest
(homology) cycle basis is known to be solvable in O(m2n/ log n + n2m)-
time. Several works [1,2] have addressed the case when the complex K
is a 2-manifold. The complexity of these algorithms depends on the rank
g of the one-dimensional homology group of K. This rank g has a lower
bound of Θ(n), where n denotes the number of simplices in K, giving
an O(n4) worst-case time complexity for the algorithms in [1,2]. This
worst-case complexity is improved in [3] to O(nω + n2gω−1) for general
simplicial complexes where ω < 2.3728639 [4] is the matrix multiplica-
tion exponent. Taking g = Θ(n), this provides an O(nω+1) worst-case
algorithm. In this paper, we improve this time complexity. Combining
the divide and conquer technique from [5] with the use of annotations
from [3], we present an algorithm that runs in O(nω + n2g) time giving
the first O(n3) worst-case algorithm for general complexes. If instead
of minimal basis, we settle for an approximate basis, we can improve
the running time even further. We show that a 2-approximate minimal
homology basis can be computed in O(nω√

n log n) expected time. We
also study more general measures for defining the minimal basis and
identify reasonable conditions on these measures that allow computing
a minimal basis efficiently.

1 Introduction

Many applications in science and engineering require computing “features” in a
shape that is finitely represented by a simplicial complex. These features some-
times include topological features such as “holes” and “tunnels” present in the
shape. A concise definition of these otherwise vague notions can be obtained
by considering homology groups and their representative cycles. In particular,
a one-dimensional homology basis, that is, a set of independent cycles in the
1-skeleton of the input simplicial complex whose homology classes form a basis
for the first homology group, can be taken as a representative of the “holes” and
“tunnels” present in the shape. However, instead of any basis, one would like to
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 376–398, 2018.
https://doi.org/10.1007/978-3-319-77404-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_28&domain=pdf

Efficient Algorithms for Computing a Minimal Homology Basis 377

have a homology basis whose representative cycles are small under some suitable
metric, thus bringing the ‘geometry’ into picture along with topology.

When the input complex is a graph with n vertices and m edges, the homology
basis coincides with what is called the cycle basis and its minimality is measured
with respect to the total weights of the cycles assuming non-negative weights on
the edges. A number of efficient algorithms have been designed to compute such
a minimal cycle basis for a weighted graph [1,5–8]. The best known algorithm
for this case runs in O(m2n/ log n + n2m) [8].

When the input is a simplicial complex, one dimensional homology basis is
determined by the simplices of dimension up to 2. Thus, without loss of gen-
erality, we can assume that the complex has dimension at most 2, that is, it
consists of vertices, edges, and triangles. The 1-skeleton of the complex is a
graph (weighted if the edges are). Therefore, one can consider a minimal cycle
basis in the 1-skeleton. However, the presence of triangles makes some of these
basis elements to be trivial in the homology basis. Therefore, the computation
of the minimal homology basis in a simplicial complex differs from the minimal
cycle basis in a graph. In this paper, we show that the efficient algorithms of [5]
for computing a minimal cycle basis can be adapted to computing a minimal
homology basis in a simplicial complex (by combining with an algorithm [3] to
compute the so-called annotations). In the process we improve the current best
time complexity bound for computing a minimal homology basis and also extend
these results to more generalized measures.

More specifically, for the special case of a combinatorial 2-manifold with
weights on the edges, Erickson and Whittlesey [2] gave an O(n2 log n+gn2+g3n)-
time algorithm to compute a minimal homology basis where n is the total number
of simplices and g is the rank of the first homology group. Dey et al. [9] and
Chen and Friedman [10] generalized the results above to arbitrary simplicial
complexes. Busaryev et al. [3] improved the running time of this generaliza-
tion from O(n4) [9] to O(nω + n2gω−1) where ω < 2.3728639 [4] is the matrix
multiplication exponent. This gives the best known O(n1+ω) worst-case time
algorithm when g = Θ(n). In Sect. 3, combining the divide and conquer app-
roach of [5] with the use of annotations [3], we develop an improved algorithm
to compute a minimal 1-dimensional homology basis for an arbitrary simplicial
complex in only O(n2g + nω) time. Considering g = Θ(n), this gives the first
O(n3) worst-case time algorithm for the problem.

We can further improve the time complexity if we allow for approximation.
An algorithm to compute a 2-approximate minimal homology basis is given in
Sect. 4 running in O(nω

√
n log n) expected time.

All of the above algorithms operate by computing a set of candidate cycles
that necessarily includes at least one minimal homology basis and then selecting
one of these minimal bases. The standard proof [2] of the fact that the candidate
set includes a minimal basis uses the specific distance function based on the
shortest path metric and a size function that assigns total weight of the edges in a
cycle as its size. In Sect. 5, we identify general conditions for the distance and size
function so that the divide and conquer algorithm still works without degrading

378 T. K. Dey et al.

in time complexity. This allows us to consider distance function beyond the
shortest path metric and the size function beyond the total weight of edges as
we illustrate with two examples. Specifically, we can now compute a minimal
homology basis whose size is induced by a general map F : K → Z for any
metric space Z.

2 Background and Notations

In this paper, we are interested in computing a minimal basis for the 1-
dimensional homology group of a simplicial complex over the field Z2. In this
section we briefly introduce some relevant concepts here; the details appear in
standard books on algebraic topology such as [11].

Homology. Let K be a connected simplicial complex. A d-chain c is a formal
sum, c =

∑
aiσi where the σis are the d-simplices of K and the ais are the

coefficients with ai ∈ Z2. We use Cd to denote the group of d-chains which is
formed by the set of d-chains together with the addition. Note that there is a
one-to-one correspondence between the chain group Cd and the family of subsets
of Kd where Kd is the set of all d-simplices. Thus Cd is isomorphic to the space
(Z2)nd where nd is the number of d-simplices in K. Naturally all d-simplices in
K form a basis of Cd in which the i-th bit of the coordinate vector of a d-chain
indicates whether the corresponding d-simplex appears in the chain.

The boundary of a d-simplex is the sum of all its (d − 1)-faces. This can be
interpreted and extended to a d-chain as a boundary map ∂d : Cd → Cd−1, where
the boundary of a chain is defined as the sum of the boundaries of its simplices.
A d-cycle c is a d-chain with empty boundary, ∂dc = 0. Since ∂d commutes with
addition, we have the group of d-cycles, Zd, which is the kernel of ∂d, Zd := ker∂d.
A d-boundary c is a d-chain that is the boundary of a (d + 1)-chain, c = ∂d+1b
for some b ∈ Cd+1. The group of d-boundaries Bd is the image of ∂d+1, that is,
Bd := im∂d+1. Notice that Bd is a subgroup of Zd. Hence we can consider the
quotient Zd/Bd which constitutes the d-dimensional homology group denoted
as Hd. Each element in Hd, called a homology class, is an equivalence class of
d-cycles whose difference is always in Bd. Two cycles are said to be homologous
if they are in the same homology class.

Under Z2 coefficients, the groups Cd, Zd, Bd and Hd are all vector spaces. A
basis of a vector space is a set of vectors of minimal cardinality that generates
the entire vector space. We are concerned with the homology bases of Hd and
particularly in H1 (more formally below). We use L = rank(Z1) to denote the
dimension of vector space Z1 and use g = rank(H1) to denote the 1-st Betti
number of K, which is the dimension of vector space H1.

– A set of cycles C1, · · · , CL, with L = rank(Z1), that generates the cycle space
Z1 is called its cycle basis.

– For any 1-cycle c, let [c] denote its homology class. A set of homology classes
{[C1], . . . , [Cg]} that constitutes a basis of H1 is called a homology basis. For
simplicity, we also say a set of cycles {C1, C2, · · · , Cg} is a homology basis

Efficient Algorithms for Computing a Minimal Homology Basis 379

if their corresponding homology classes [C1], [C2], · · · , [Cg] form a basis for
H1(K).

– Let μ : Z1 → R
+ ∪ {0} be a size function that assigns a non-negative weight

to each cycle C ∈ Z1. A cycle or homology basis C1, · · · , Cl is called minimal
if

∑l
i=1 μ(Ci) is minimal among all bases of Z1 (l = L) or H1(K) (l = g)

respectively.

Annotation. To compute a minimal homology basis of a simplicial complex K,
it is necessary to have a way to represent and distinguish homology classes of
cycles. Annotated simplices have been used for this purpose in earlier works:
For example, Erickson and Wittlesey [2] and Borradaile et al. [1] used them for
computing optimal homology cycles in surface embedded graphs. Here we use a
version termed as annotation from [3] which gives an algorithm to compute them
in matrix multiplication time for general simplicial complexes. An annotation for
a d-simplex is a g-bit binary vector, where g = rank(Hd(K)). The annotation
of a cycle z, which is the sum of annotations of all simplices in z, provides the
coordinate vector of the homology class of z in a pre-determined homology basis.
More formally,

Definition 2.1 (Annotation). Let K be a simplicial complex and Kd be the set
of d-simplices in K. An annotation for d-simplices is a function a : Kd → (Z2)g

with the following property: any two d-cycles z and z′ are homologous if and
only if

∑

σ∈z

a(σ) =
∑

σ∈z′
a(σ)

Given an annotation a, the annotation of any d-cycle z is defined by a(z) =∑
σ∈z a(σ).

Proposition 2.1 ([3]). There is an algorithm that annotates the d-simplices in
a simplicial complex with n simplices in O(nω) time.

3 Minimal Homology Basis

In this section, we describe an efficient algorithm to compute a minimal homology
basis of the 1-dimensional homology group H1(K). The algorithm uses the divide
and conquer technique from [5] where they compute a minimal cycle basis in a
weighted graph. The authors in [1] adapted it for computing optimal homology
basis in surface embedded graphs. We adapt it here to simplicial complexes using
edge annotations [3].

More specifically, let K be a simplicial complex with n simplices – Since
we are only interested in 1-dimensional homology basis, it is sufficient to con-
sider all simplices with dimension up to 2, namely vertices, edges, and triangles.
Hence we assume that K contains only simplices of dimension at most 2. Assume
that the edges in K are weighted with non-negative weights. Given any homol-
ogy basis {C1, . . . , Cg} where g = rank(H1(K)), we define the size μ(C) of a

380 T. K. Dey et al.

cycle C ∈ Z1(K) as the total weights of its edges. As defined in Sect. 2, the
problem of computing a minimal homology basis of H1 is now to find a basis
C = {C1, C2, · · · , Cg} such that the sum of

∑g
i=1 μ(Ci) is the smallest.

The high-level algorithm to compute such a minimal homology basis of H1

group proceeds as follows. First, we need to annotate all 1-simplices implemented
by the algorithm of [3]. Then we compute a candidate set of cycles which includes
a minimal homology basis. At last, we extract such a minimal homology basis
from the candidate set.

Candidate set. We now describe the step to compute a candidate set G of cycles
that contains a minimal homology basis. We use the shortest path tree app-
roach which dates back to Horton’s algorithm for a minimal cycle basis of a
graph [7]. It was also applied in other earlier works, e.g. [2,9]. We first gener-
ate a candidate set G(p) for every vertex p ∈ vert(K), where vert(K) is the
set of vertices of K. Then we take the union of all G(p) and denote as G, i.e.
G = ∪p∈vert(K)G(p). To compute G(p), first we construct a shortest path tree Tp

rooted at p. Let Πp(u, v) denote the unique path connecting two vertices u and v
in Tp. Then each nontree edge e = (u, v) generates a cycle C(p, e) = e◦Πp(u, v).
The union of all such cycles constitutes the candidate set of the vertex p, i.e.
G(p) = ∪e∈edge(K)\Ep

C(p, e) where Ep is the set of tree edges in Tp. Note that
the number of cycles in G(p) is O(n) for each vertex p ∈ vert(K). Hence there
are O(n2) candidate cycles in G in total. They, together with their sizes, can be
computed in O(n2 log n) time.

Proposition 3.1 ([2,9]). The candidate set G has O(n2) cycles and admits a
minimal homology basis.

3.1 Computing a Minimal Homology Basis

What remains is to compute a minimal homology basis from the candidate set
G. To achieve it, we modify the divide and conquer approach from [5] which
improved the algorithm of [6] for computing a minimal cycle basis of a graph
with non-negative weights.

This approach uses an auxiliary set of support vectors [5] that helps select a
minimal homology basis from a larger set containing at least one minimal basis;
in our case, this larger set is G.

A support vector S is a vector in the space of g-dimensional binary vectors
S = {0, 1}g. The use of support vectors along with annotations requires us to
perform more operations without increasing the complexity of the divide and
conquer approach. Let a(C) denote the annotation of a cycle C. First, we define
the function:

m : S × G → {0, 1} with m(S,C) = 〈S, a(C)〉
where 〈·, ·〉 is the inner product over Z2.

We say a cycle C is orthogonal to a support vector Si if m(Si, C) = 0 and is
non-orthogonal if m(Si, C) = 1. We would choose cycles C1, · · · , Cg iteratively

Efficient Algorithms for Computing a Minimal Homology Basis 381

from a set guaranteed to contain a minimal homology basis and add them to the
minimal homology basis. During the procedure, the algorithm always maintains
a set of support vectors S1, S2, · · · , Sg with the following properties:

(1) S1, S2, · · · , Sg form a basis of {0, 1}g.
(2) If C1, C2, · · · , Ci−1 have already been computed, m(Si, Cj) = 0, j < i.

Suppose that in addition to properties (1) and (2), we have the following
additional condition to choose Cis, then the set C1, C2, . . . , Cg constitutes a
minimal homology basis.

(3) If C1, C2, · · · , Ci−1 have already been computed, Ci is chosen so that Ci is
the shortest cycle with m(Si, Ci) = 1.

If we keep the same support vectors, after we select a new cycle Ci,
m(Si+1, Ci) = 0 may not hold which means the property (2) may not hold.
Therefore, we update the support vectors Si+1, · · · , Sg after computing Ci so
that the orthogonality condition (2) holds. If chosen with condition (3), the
cycle Ci becomes independent of the cycles previously chosen as stated below:

Claim 3.1. For any i ≤ g, if property (1) and (2) hold, then for any cycle C
with m(Si, C) = 1, [C] is independent of [C1], [C2], · · · , [Ci−1].

Proof. By property (2), ∀j < i,m(Si, Cj) = 0. If [C] is not independent of
[C1], [C2], · · · , [Ci−1], then the annotation a(C) of the cycle C can be written as
a(C) =

∑
j<i αja(Cj), where αj ∈ {0, 1} and at least one αj = 1, j < i. Since

m(Si, Ci) = 1, we have
∑

j<i αjm(Si, Cj) = 1. It follows that there exists at
least one Cj , j < i, with m(Si, Cj) = 1, which contradicts with property (2).
Therefore, [C] is independent of [C1], [C2], · · · , [Ci−1]. ��
The following theorem guarantees that the above three conditions suffice for
a minimal homology basis. Its proof is almost the same as the proof of
[5, Theorem 1] (which draws upon the idea of [6]).

Theorem 3.1. The set {C1, C2, · · · , Cg} computed by maintaining properties
(1), (2) and (3) is a minimal homology basis.

Taking advantage of the above theorem, we aim to compute a homology basis
iteratively while maintaining conditions (1), (2), and (3).

Maintaining support vectors and computing shortest cycles. Now we
describe the algorithm CycleBasis(G) (given in Algorithm 1) that computes a
minimal homology basis. In this algorithm, we first initialize each support vector
Si so that only the i-th bit is set to 1. Then the main computation is done by
calling the procedure ExtendBasis(1, g).

Here the procedure ExtendBasis(i, k) (Algorithm 2) is recursive which
extends the current partial basis {C1, · · · , Ci−1} by adding k new cycles. It mod-
ifies a divide and conquer approach of [5] to maintain properties (1), (2), and (3).

382 T. K. Dey et al.

Algorithm 1. Computing a minimal Basis
1: procedure CycleBasis(G)
2: for i ← 1 to g do
3: Initialize Si ← {ei}, which means that the i-th bit of Si is 1 while others

are 0
4: end for
5: ExtendBasis(1, g) to get a minimal homology basis {C1, · · · , Cg}
6: end procedure

It calls a routine Update to maintain orthogonality using annotations. For
choosing the shortest cycle satisfying condition (3), it calls ShortestCycle(Si)
in the base case (k = 1)(See line 3 of Algorithm 2). We describe the recursion
and the base case below.

Algorithm 2. Extend the Basis by k elements
1: procedure ExtendBasis(i, k)
2: if k = 1 then
3: Call ShortestCycle(Si) to compute the shortest cycle Ci which is non-

orthogonal to Si

4: else
5: Call ExtendBasis(i, �k/2�) to extend the homology basis by �k/2� ele-

ments. After calling, Si, . . . , Si+�k/2�−1 will be updated.
6: Call Update(i, k) to update the support vectors {Si+�k/2�, . . . , Si+k−1}

using {Si, . . . , Si+�k/2�−1} and update the value m(Sj , e) for i+�k/2� ≤ j ≤ i+k−1
and every edge e.

7: Call ExtendBasis(i + �k/2�, �k/2�) to extend the cycle basis by �k/2�
elements

8: end if
9: end procedure

Recursion. At the high level, the procedure ExtendBasis(i, k) recurses on k
by first calling itself to obtain the next k/2� cycles in the minimal homol-
ogy basis in which the support vectors Si, Si+1, · · · , Si+�k/2�−1 are updated.
Then it calls the procedure Update(i, k) to maintain the orthogonality prop-
erty (2). It uses the already updated support vectors Si, · · · , Si+�k/2�−1 to
update {Si+�k/2�, . . . , Si+k−1} so that m(Sl, Cj) = 0,∀j < i + k/2�, i +
k/2� ≤ l ≤ i + k − 1. At last the procedure ExtendBasis(i, k) calls itself
ExtendBasis(i + k/2�, �k/2�) to extend the basis by �k/2� elements.

We describe Update(i, k) and spare giving its pseudocode. Let
{Ŝi+�k/2�, . . . , Ŝi+k−1} denote the desired output vectors after the update. To
ensure the property (1) and (2), we will enforce that the vector Ŝj is of the
form Ŝj = Sj +

∑�k/2�
t=1 αjtSi+t−1 where i + k/2� ≤ j ≤ i + k − 1. We just

need to determine the coefficients αj1, . . . , αj�k/2� so that m(Ŝj , Ct) = 0 where
i+k/2� ≤ j ≤ i+k−1 and i ≤ t ≤ i+k/2�−1. We will also compute m(Sj , e)

Efficient Algorithms for Computing a Minimal Homology Basis 383

for i + k/2� ≤ j ≤ i + k − 1 and every edge e where m(Sj , e) is defined as the
standard inner product of Sj and a(e) under Z2, which is important later when
we compute the shortest cycle orthogonal to a support vector S in the procedure
ShortestCycle(S).

Now let

X =

⎛

⎜
⎜
⎜
⎝

Si

Si+1

...
Si+�k/2�−1

⎞

⎟
⎟
⎟
⎠

· (
a(Ci)T a(Ci+1)T · · · a(Ci+�k/2�−1)T

)

Y =

⎛

⎜
⎜
⎜
⎝

Si+�k/2�
Si+�k/2�+1

...
Si+k−1

⎞

⎟
⎟
⎟
⎠

· (
a(Ci)T a(Ci+1)T · · · a(Ci+�k/2�−1)T

)
,

where recall that g-bit vector a(C) is the annotation of a cycle C.
Let A denote a �k/2� × k/2� matrix where row j contains the bit
αj+i+�k/2�−1,1, · · · , αj+i+�k/2�−1,�k/2�. It is not difficult to see that AX +Y = 0,
and that X is invertible, which means that A = −Y X−1 = Y X−1 since the
computations are under Z2.

The next step is to update the value m(Sj , e) to m(Ŝj , e) for every edge e in
K, and i+k/2� ≤ j ≤ i+k−1. Note that the coefficients αjt are now known and
the updated vectors are Ŝj = Sj +

∑�k/2�
t=1 αjtSi+t−1, i + k/2� ≤ j ≤ i + k − 1.

Thus for every edge e, m(Ŝj , e) = m(Sj +
∑�k/2�

t=1 αjtSi+t−1, e) = m(Sj , e) +
∑�k/2�

t=1 αjtm(Si+t−1, e), i+k/2� ≤ j ≤ i+k−1. Let n1 be the number of edges
in K and U be the �k/2�×n1 matrix where its (t, j) entry is m(Ŝi+�k/2�+t−1, ej).
Set W = [A|I] where I is the �k/2� × �k/2� identity matrix. Let Z be a k × n1

matrix whose (s, t) entry is m(Si+s−1, et). Thus we have U = WZ. Since the
�k/2� × k matrix W and k × n1 matrix Z are already known, the matrix U
can be computed in O(nkω−1) time by chopping Z to n1/k number of k × k
submatrices and performing O(n1/k) matrix multiplications of two O(k)×O(k)
size matrices. After that, m(Ŝj , e) can be easily retrieved from the matrix U in
constant time.

Base case for selecting a shortest cycle. We now implement the procedure
ShortestCycle(Si) for the base case to compute the shortest cycle Ci non-
orthogonal to Si, i.e. the shortest cycle Ci satisfying m(Si, Ci) = 1. We assign a
label lp(u) to each vertex u and p. Labeling has been used to solve many graph
related problems previously [2,3,8].

Given a vertex p and the shortest path tree Tp rooted at p, let Πp(u) for any
vertex u ∈ vert(K) denote the unique tree path in Tp from p to u, and let lp(u)
denote the value m(Si,Πp(u)). Let w denote the parent of u in tree Tp and euw

denote the edge between u and w. Then lp(u) = lp(w) + m(Si, euw). Thus for a
fixed p ∈ vert(K), we can traverse the tree Tp from the root to the leaves and

384 T. K. Dey et al.

compute the label lp(u) for all vertices u in O(n) time as m(Si, e) for every edge
is already precomputed earlier in the procedure Update and can be queried in
O(1) time. Thus the total time to compute labels lp(u) for all p, u ∈ vert(K) is
O(n2).

Now given a fixed vertex p and the shortest path tree Tp, we consider every
cycle C(p, e), where e = (u, v) is a non-tree edge. We partition the cycle into
three parts: the tree path Πp(u), the tree path Πp(v) and the edge e. Thus
m(Si, C(p, e)) = m(Si,Πp(u)) + m(Si,Πp(v))) + m(Si, e) = lp(u) + lp(v) +
m(Si, e), which can be computed in O(1) time as all labels are precomputed.
Note that there are O(n2) cycles in the candidate set G to be computed. It
results that in O(n2) total time, one can compute m(Si, C) for all cycles C ∈ G
and find the smallest one.

3.2 Correctness and Time Complexity

To prove the correctness of Algorithm 1, it is crucial to guarantee that the sup-
port vectors Sis and the cycles Cis satisfy the desirable properties. First, the set
of support vectors {S1, S2, · · · , Sg} is a basis of {0, 1}g because of the construc-
tion of Ŝis in the procedure Update. The property that ∀j < i, m(Si, Cj) = 0
holds, because the procedure Update ensures that Si is taken as a non-trivial
solution to a set of linear equations m(x,Cj) = 0, 1 ≤ j ≤ i − 1, which always
admits at least one solution. Similarly, for any i ≤ g, there exists at least one
cycle C such that the equation m(Si, C) = 1 holds since both S1, . . . , Si and
C1, . . . , Ci−1 at this point only form partial basis of a space with dimension g.
In the base case, ShortestCycle computes this cycle C satisfying exactly this
property. Then, Theorem 3.1 ensures the correctness of the algorithm.

The total running time of our algorithm is O(n2g+nω) and the analysis is as
follows. The time to annotate edges and construct the candidate set is O(nω +
n2 log n) = O(nω) from Propositions 2.1 and 3.1. When computing the basis, the
time of the procedure CycleBasis is dominated by the time of ExtendBasis.
For each i ≤ g, the time complexity of ExtendBasis(i, k) is bounded by the
following recurrence:

T (i, k) =
{

the time of ShortestCycle(Si) k = 1
2T (·, k/2) + O(kω−1n) k > 1

Note that in the recursion, only the second parameter k counts for the time
complexity. Actually for each i ≤ g, the time complexity of ShortestCycle(Si)
in the base case is only O(n2) as we argued earlier, that is, T (·, 1) = O(n2).
Then the recurrence solves to T (·, k) = O(k(n2) + kω−1n). It follows that
T (1, g) = O(n2g + gω−1n). Combined with the time for computing annotations
and constructing the candidate set, the time complexity is O(n2g + nω).

4 An Approximate Minimal Homology Basis of H1(K)

In this section, we present an algorithm to compute an approximate minimal
1-dimensional homology basis, where the approximation is defined as follows.

Efficient Algorithms for Computing a Minimal Homology Basis 385

Definition 4.1 (Approximate minimal homology basis). Suppose C∗ is
a minimal homology basis for H1(K), and let �∗

1 ≤ �∗
2 ≤ · · · ≤ �∗

g denote the
sequence of sizes of cycles in C∗ sorted in non-decreasing order. A set of g cycles
C′ is a c-approximate minimal homology basis for H1(K) if (i) {[C], C ∈ C′}
form a basis for H1(K); and (ii) let �1, . . . , �g denote the sequence of sizes of
cycles in C′ in non-decreasing order, then for any i ∈ [1, g], �∗

i ≤ �i ≤ c · �∗
i .

In what follows, we provide a 2-approximation algorithm running in
O(nω

√
n log n) time. At the high level, we first compute a candidate set G′ of

cycles that guarantees to contain a 2-approximate minimal homology basis. We
then extract a 2-approximate basis from the candidate set G′.

First, we explain the construction of a candidate set of cycles. Recall that
in Sect. 3.1, we compute O(n2) candidate cycles, each of which has the form
C(p, e), formed by e together with the two tree-paths from root p to each of
the endpoint of e within the shortest path tree Tp. We now apply the algo-
rithm by Kavitha et al. [12] which can compute a smaller candidate set G′ of
O(n

√
n log n) cycles which is guaranteed to contain a 2-approximate minimal

cycle basis (not homology basis) for graph K(1) (i.e., 1-skeleton of the complex
K) in O(n

√
n log3/2 n) expected time. Here, a cycle basis Γ = {γ1, . . . , γL} of the

graph G = K(1) where L = rank(Z1) is simply a set of cycles such that any other
cycle from G can be represented uniquely as a linear combination of cycles in
Γ . A minimal cycle basis is a cycle basis Γ ∗ whose total weight

∑
γ∈Γ ∗ μ(γ) is

smallest among all cycle basis. A cycle basis Γ is a c-approximate minimal cycle
basis if its total weight is at most c times that of the minimal cycle basis, i.e.,
at most c · ∑γ∈Γ ∗ μ(γ).

Now let the size μ(γ) of a cycle be the total weight of all edges in γ. Then, it
turns out that, G′ not only contains a 2-approximate minimal cycle basis w.r.t.
this size, it also satisfies the following stronger property as proven in [12].

Proposition 4.1 ([12, Lemma 6.3]). There exists a minimal cycle basis Γ ∗ =
{γ∗

1 , . . . , γ∗
L} such that, for any 1 ≤ i ≤ L, there is a subset Γi ⊆ G′ of the

computed candidate set G′ so that (i) γ∗
i =

∑
γ∈Γi

γ and (ii) each cycle in Γi has
size at most 2μ(γ∗

i).

Next, we prove that a candidate set G′ satisfying conditions in Proposition 4.1
is guaranteed to also contain a 2-approximate minimal homology basis. We
remark that if Proposition 4.1 does not hold, then the sole condition that G′

contains a c-approximate minimal cycle basis is not sufficient to guarantee that
it also contains a c-approximate minimal homology basis for any constant c. A
counter-example is given at the end of this section.

Lemma 4.1. Given a set G′ of cycles satisfying Proposition 4.1, there exists
a minimal homology basis C∗ = {C∗

1 , . . . , C∗
g } such that G′ contains g cycles

A1, · · · , Ag with (i) [A1], · · · , [Ag] form a homology basis, and (ii) μ(Ai) ≤
2μ(C∗

i), for i = 1, · · · , g.

Proof. Let Γ ∗ be a minimal homology basis which satisfies Proposition 4.1. It
is known that it contains a minimal homology basis, which we set as C∗ =

386 T. K. Dey et al.

{C∗
1 , . . . , C∗

g }. Now by Proposition 4.1, for each C∗
i , there exists a subset Γi ⊆ G′

such that C∗
i =

∑
γ∈Γi

γ and μ(γ) ≤ 2μ(C∗
i), ∀γ ∈ Γi. Assume w.l.o.g. that

cycles in C∗ are in non-decreasing order of their sizes. We now prove the lemma
inductively. In particular,

Claim-A: For any k, we show that there exists A1, . . . , Ak ∈ ⋃
r≤k Γr such

that for each i ∈ [1, k], (Cond-1) μ(Ai) ≤ 2μ(C∗
i); and (Cond-2) [A1], . . . , [Ak]

are independent.
The base case is straightforward: We can simply take A1 as any cycle from

Γ1 that is not null-homologous (which must exist as C∗
1 =

∑
γ∈Γ1

γ is not null-
homologous).

Now suppose the claim holds for k. Consider the case for k +1. By induction
hypothesis, there exists A1, . . . Ak ∈ ⋃

r≤k Γr such that (Cond-1) and (Cond-2)
hold. Now consider cycles in

⋃
r≤k+1 Γr. Let Hk+1 denote the subgroup of H1(K)

generated by the homology classes of all cycles in
⋃

r≤k+1 Γr. Note that Hk+1

spans {[C∗
1], . . . , [C∗

k+1]}, then the rank of Hk+1 is at least k + 1, which means
there always exists a cycle Ak+1 ∈ ⋃

r≤k+1 Γr such that [Ak+1] is independent of
[A1], . . . [Ak]. By definition of

⋃
r≤k+1 Γr, there is an index j ≤ k + 1 such that

μ(Ak+1) ≤ μ(C∗
j) ≤ μ(C∗

k+1) which satisfies both (Cond-1) and (Cond-2). Thus
Claim-A holds for k + 1 as well.

The lemma then follows when k = g. ��
So far we have proved that the new candidate set G′ always contains a 2-
approximate minimal homology basis. What remains is to describe how to
compute such an approximate basis from the candidate set G′. First, we com-
pute the annotation of all edges in O(nω) time. Let a(e) denote the annota-
tion of an edge e ∈ K(1) in the complex K; recall that a(e) is a g-bit vec-
tor with g = rank(H1(K)). Also recall that given a cycle γ, its annotation
a(γ) =

∑
e∈γ a(e) represents the homology class of this cycle, and two cycles

are homologous if and only if they have the same annotation vectors.
Now order the cycles in G′ = {γ1, . . . , γm}, where m = |G′| = O(n

√
n log n),

in non-decreasing order of their sizes. We will compute the annotation of all
cycles in G′ and put them in the g × m matrix M , whose i-th column M [i]
represents the annotation vector for the cycle γi. Since G′ contains a homology
basis of H1(K) (Lemma 4.1), rank(M) = g.

First, we explain how to compute annotation matrix M efficiently. Let
edge(K) = {e1, . . . , eL} denote all edges from K. Let A denote the L×m matrix
where γi =

∑
j∈[1,L] A[i][j]ej ; that is, non-zero entries of the i-th column A[i]

encode all edges in the cycle γi. Let B denote the g×L matrix where the i-th col-
umn B[i] encodes the annotation of edge ei. It is easy to see that M = AT · BT .
Instead of computing the multiplication directly, we partition the matrix AT

top-down into m/L submatrices each of size at most L × L. For each of this
submatrix, its multiplication with BT can be done in O(Lω) matrix multipli-
cation time. Thus the total time to compute the multiplication M = AT · BT

takes O(m
L Lω) = O(mnω−1) time as L ≤ n. In other words, we can compute the

annotation matrix M in O(nω
√

n log n) as m = O(n
√

n log n).

Efficient Algorithms for Computing a Minimal Homology Basis 387

We now compute a 2-approximate minimal homology basis from G′. Here we
use so-called earliest basis. Specifically, in general, given a matrix D with rank
r, the set of column vectors {D[i1], · · · ,D[ir]} is called an earliest basis for
the vector space spanned by all columns in D (or simply, for D), if the column
indices {i1, . . . , ir} are the lexicographically smallest index set such that the
corresponding columns of D have full rank.

Proposition 4.2 ([3]). Let D be an m×n matrix of rank r with entries over Z2

where n ≤ m, then there is an O(mnω−1) time algorithm to compute the earliest
basis of D.

Let {i1, . . . , ig} be the indices of columns in the earliest basis of M . This can
be done in O(mgω−1) = O(n

√
n log n · gω−1) time by the above proposition as

m = O(n
√

n log n). The cycles corresponding to these columns form a homology
basis by the properties of annotations [3].

Finally, we note that the earliest basis of M has the smallest (lexicograph-
ically) sequence of size sequence. Hence its total size is at most the size of the
2-approximate minimal homology basis A1, . . . , Ag as specified in Lemma 4.1.
Hence putting everything together, we conclude with the following theorem.

Theorem 4.1. The algorithm above computes a 2-approximate minimal homol-
ogy basis of the 1-dimensional homology group H1(K) of a simplicial complex
with non-negative weights in O(nω

√
n log n) expected time.

Remark. Since an approximate minimal homology basis still forms a basis for
H1(K), it means that computing it is at least as hard as computing the rank
of H1(K). Currently the best algorithm for the rank computation for general
simplicial complex K is O(nω) (the matrix multiplication time). Hence the best
we can expect for computing an approximate minimal homology basis is perhaps
O(nω) (versus the O(n2g + nω) time complexity of the exact algorithm from
Sect. 3.1). We remark that we can also develop an algorithm that computes a
(2k − 1)-approximate minimal homology basis in time O(kn1+1/kg polylog n +
nω), where k ≥ 1 is an integer – indeed, as the approximation factor reaches
log n, the time complexity becomes O(nω) (which is the best time known for
rank computation). The framework of this algorithm follows closely from an
approach by Kavitha et al. in [12], and we thus omit the details here.

A counter-example. Figure 1 gives an example which shows that, with-
out Proposition 4.1, it is not guaranteed that a candidate set containing a c-
approximate minimal cycle basis includes a 2-approximate minimal homology
basis. Let the size of a 1-cycle in K shown in the figure be the sum of all
edges in the cycle. There is only one minimal cycle basis in this figure, namely
C1, C2, C3 and C4, as shown in Fig. 1b. The minimal homology basis of K should
be {C1, C2, C3}. However, consider the candidate set G which contains 4 cycles
as shown in Fig. 1c: C2, C3, C4 and C ′

4 = C1 + C2 + C3. It is easy to check
that these 4 cycles in G form a 2-approximate minimal cycle basis. However, the

388 T. K. Dey et al.

smallest homology basis contained in G, namely C2, C3, C
′
4(= C1 + C2 + C3) is

not a 2-approximate minimal homology basis.
We can make this example into a counter-example for any constant factor

approximation, by adding more C ′
i’s (triangles) to the sequence, each of which

is larger than the previous one and is also filled in. In other words, the optimal
homology basis remains {C1, C2, C3}, while the smallest-size homology basis
from the c-approximate minimal cycle basis is {C2, C3,

∑
i>1 Ci}.

Fig. 1. An example where an approximate minimal cycle basis does not contain an
approximate minimal homology basis.

5 Generalizing the Size Measure

The 1-skeleton K(1) of the simplicial complex K is the set of vertices and edges
in K. If there are non-negative weights defined on edges in K(1), it is natural
to use the induced shortest path distance in K(1) (viewed as a weighted graph)
as a metric for vertices V in K. One can then measure the “size” of a cycle
to be the sum of edge weights. Indeed, this is the distance and the size mea-
sure considered in Sects. 3 and 4. In this section, we show that the algorithmic
framework in Algorithm1 can in fact be applied to a more general family of
size measures. Specifically, first, we introduce what we call the path-dominated
distance between vertices of K (which is not necessarily a metric). Based on such
distance function, we then define a family of “size-functions” under which mea-
sure we can always compute a minimal homology basis using Algorithm1. The
shortest-path distance/size measure used in Sect. 3, and the geodesic ball-based
measure proposed in [10] are both special cases of our more general concepts.
We also present another natural path-dominated distance function induced by
a (potentially complex) map F : vert(K) → Z defined on the vertex set vert(K)
of K (where Z is another metric space, say R

d). As a result, we can use Algo-
rithm1 to compute the shortest 1-st homology basis of K induced by a map
F : vert(K) → Z.

Efficient Algorithms for Computing a Minimal Homology Basis 389

5.1 Path-Dominated Distance

Given a connected simplicial complex K, suppose we are given a distance func-
tion d : vert(K) × vert(K) → R

+ ∪ {0}. We now introduce the following path-
dominated distance function.

Definition 5.1 (Path-dominated distance). A function d : vert(K) ×
vert(K) → R

+ ∪ {0} is a path-dominated distance function (w.r.t. (K)) if

(i) d(x, y) ≥ 0 and d(x, x) = 0 for any x, y ∈ vert(K);
(ii) given any two vertices x, y ∈ vert(K), there exists a path π∗ connecting x to

y in the 1-skeleton K(1) such that d(x, y) = maxu∈vert(π∗) d(x, u).

If edges in the 1-skeleton K(1) have positive weights, then, it is easy to verify
that the standard shortest path distance metric induced by K(1) (viewed as
a weighted graph) is path-dominated. However, note that a path-dominated
distance may not be a metric. Indeed, we will shortly present a function-induced
distance which is not symmetric.

We now define “shortest path” in K(1) induced by a path-dominated distance
function.

Definition 5.2 (Path-dominated shortest path). Given any x, y ∈
vert(K), a path π∗ = 〈u0 = x, u1, . . . , uk = y connecting x to y via edges in
K is a path-dominated shortest path in K if for each i ∈ [1, k], d(x, ui) =
maxj≤i d(x, uj).

Note that this implies that any prefix of a path-dominated shortest path is
also a path-dominated shortest path. The proof of the following statement is
reasonably simple and can be found in AppendixB.

Claim 5.1. A path-dominated shortest path always exists for any two vertices
x, y ∈ vert(K).

Fig. 2. The left is the original simplicial
complex. There are two paths, π1 and π2,
connecting vertices x and y. The right figure
is their image under the map F with Z =
R

2 (i.e., dZ(·, ·) = ‖ · − · ‖). The path π2 is
a path-dominated shortest path from x to
y.

Function-induced distance. Very often,
the domain K may come with addi-
tional data modeled by a function
F : vert(K) → Z defined on vertices
of K, where the co-domain (Z, dZ) is
a metric space. For example, imagine
that K represents the triangulation of
a region on earth, and at each vertex,
we have collected d sensor measure-
ments (e.g. temperature, wind speed,
sun-light strength, etc.), which can be
modeled by a function F : vert(K) →
R

d. It is then natural to define a dis-
tance, as well as a size measure later, that depends on this function F . We
introduce the following function-induced distance dF : vert(K) × vert(K) → R:

390 T. K. Dey et al.

Definition 5.3. Given any function F : vert(K) → Z, we define the F -induced
distance dF (x, y) as follows:

dF (x, y) = min
path π(x,y)⊆K(1)

max
u∈π(x,y)

dZ(F (x), F (u)), (1)

where the minimum ranges over all path π(x, y) from K(1) connecting x to y.

Intuitively, given a path π from x to y, maxu∈π dZ(F (x), F (u)) measures the
maximum distance in terms of the function value F between the starting point
x to any point in the path π, i.e., the maximum function distortion from x to π.
dF (x, y) is the smallest function distortion (w.r.t. x) needed to connect from x to
y. For example, in Fig. 2, the path π2 is a path-dominated shortest path from x
to y, as its image F (π2) has a smaller maximum distance (in terms of dZ = ‖ · ‖)
than the image of F (π1). By the definition of function-induced distance, we have:

Claim 5.2. Given F : vert(K) → Z, the F -induced distance dF is path-
dominated.

5.2 Size-Measure for 1-Cycles

Previously, the most popular way to measure the “size” of a 1-cycle is the sum
of weights of edges in the cycle. Another natural measure formulated by Chen
and Freedman [10] uses the minimum radius of any metric ball (centered at some
vertex in K) containing a cycle as its size. Intuitively, given a homology class,
a smallest cycle of this class under this radius-measure corresponds to a cycle
which is most “localized” (contained within a smallest possible metric ball).
Using the shortest-path metric induced by weights on edges in K, Chen and
Freedman showed that a minimal homology basis under this radius-measure can
be computed in polynomial time for any fixed-dimensional homology group. In
what follows, we introduce a family size measures, which we refer to as tight-size
functions, which generalize the radius-measure of Chen and Freedman as well
as the general sum-of-weights measure. We then show that the algorithm from
Sect. 3 can be used to compute a minimal homology basis for H1(K) w.r.t. such
tight-size functions.

We use the concept of edge-short cycles introduced in e.g. [13], whose origin
traces back to [7].

Definition 5.4. A 1-cycle C in a complex K is called edge-short, if K contains
a vertex w, an edge e = (u, v), a shortest path from w to u and a shortest path
from w to v such that C is the edge disjoint union of e and the two paths.

In our case, instead of using the shortest path metric induced by weights
on the 1-skeleton K(1) of K, we use any path-dominated distance function d,
and the “shortest paths” in the above definition will be replaced by path-
dominated shortest paths in K w.r.t. d. To emphasize the dependency on the
path-dominated distance function d, we say that a cycle C is edge-short w.r.t.
d if the condition in Definition 5.4 holds w.r.t. path-dominated shortest paths
w.r.t. d.

Efficient Algorithms for Computing a Minimal Homology Basis 391

Definition 5.5 (Tight-size function). Suppose vert(K) is equipped with a
path-dominated distance function d. Let Z1(K) represent the 1-dimensional cycle
group of K. A function μ : Z1(K) → R is a tight-size function (w.r.t. d) if
under this function, there exists a minimal homology basis for H1(K) in which
all cycles are edge-short w.r.t. the path-dominated distance d.

We may omit the reference to the path-dominated distance d when its choice
is fixed or clear.

We now prove that if a function is a tight-size function, the Algorithm1
can be used to compute a minimal homology basis. First, observe the following,
which is implied by Theorem 3.1.

Claim 5.3. If the candidate set G contains a minimal homology basis, then the
framework Algorithm1 will compute a minimal homology basis from the candi-
date set.

What remains is to show how to compute a candidate set containing a mini-
mal homology basis. For simplicity, from now we fix a path-dominated distance
function d, and simply use shortest paths to refer to the path-dominated shortest
paths w.r.t. d. We assume that the shortest paths are unique – In AppendixC, we
describe how to guarantee this uniqueness condition (by assigning certain order
to the shortest paths), and show that the shortest path tree Tp encoding all
unique path-dominated shortest paths to any root p ∈ vert(K) can be computed
in O(n log n) time (with n = |K(1)|) by the standard approach.

We now construct a candidate set G in the same manner as in Sect. 3.
First for every vertex p, we build a candidate set Gp. Let Πp(u, v) denote
the unique tree path between two vertices u and v. For every nontree edge
e = (u, v), C(p, e) = e ◦ Πp(u, v) is a cycle. We add all such C(p, e) into Gp, i.e.
Gp = ∪e∈E\edge(Tp)C(p, e). Taking the union of all such candidate sets, G can be
constructed as G = ∪p∈vert(K)Gp.

Lemma 5.1. The candidate set G contains a minimal homology basis when the
size of a cycle is measured by a tight-size function w.r.t. some path-dominated
distance function d.

Proof. By results from AppendixC, we can assume that there is only a unique
path-dominated shortest path between any two vertices u, v ∈ vert(K), which
we denote as SP (u, v). Now take any edge-short cycle C. As it is edge-short, we
can find a vertex w and an edge e = (u, v) such that the cycle C is the disjoint
union of SP (w, u), SP (w, v) and e. On the other hand, the unique shortest paths
SP (w, u) and SP (w, v) are in the shortest path tree Tw. This means that e /∈ Tw.
Hence the cycle C is a candidate cycle C(w, e) from the set Gw. It then follows
that the collection G contains all edge-short cycles. The lemma then follows from
the definition of tight-size functions and Claim5.3. ��
Now that we have a candidate set that contains a minimal homology basis, we
can apply the divide and conquer algorithm (Algorithm1) from Sect. 3, and by
Claim 5.3, this will output a minimal homology basis. We conclude with the
following main result.

392 T. K. Dey et al.

Theorem 5.1. Suppose sizes of 1-cycles are measured by a tight-size function
w.r.t. a path-dominated distance function d. Then, we can compute a minimal
homology basis for H1(K) in O(nω + n2g) time, where n is the size of 2-skeleton
of K and g is rank(H1(K)).

5.3 Examples of Tight-Size Functions

Sum-of-weights size function. As mentioned earlier in Sect. 5.1, given a weight
function w : edge(K) → R

+, the shortest path distance dK induced by the 1-
skeleton K(1) (viewed as a weighted graph) is a path-dominated function. Now
given weights w : edge(K) → R

+, the size measure μw : Z1(K) → R
+ assign-

ing μw(C) =
∑

e∈C w(e) is a tight-size function w.r.t. the shortest path dis-
tance function dK. Hence we can obtain the main result of Sect. 3 by applying
Theorem 5.1 to the tight-size function μw.

Radius-size function. Alternatively, we now consider the radius-based size func-
tion used e.g. in [10,14,15]. More specifically, suppose we are given a simpli-
cial complex K, and a path-dominated distance function d (which may not
be a metric) on vert(K). Define the ball Br

p centered at p of radius r to be
Br

p = {σ ∈ K : ∀x ∈ vert(σ), d(p, x) ≤ r}. We can then define radius-size func-
tion μR : Z1(K) → R

+ such that μR(C) of a 1-cycle C is the smallest r such
that C ⊆ Br

p for some p ∈ vert(K).

Proposition 5.1. μR is a tight-size function w.r.t. any path-dominated distance
function d.

Proof. We need to prove that there exists a minimal homology basis where each
cycle inside is edge-short. Assume this is not the case. Then given any minimal
homology basis B, there exists a cycle C which is not edge-short. Suppose cycles
B = {C1, . . . , Cg} are sorted in nondecreasing order of their radius-size, and
Ci is the first cycle in B that is not edge-short. Let Br

p be the smallest ball
containing Ci with p ∈ vert(K); that is, μR(Ci) = r. Let Tp denote the shortest
path tree rooted at p, and Q denote the set of edges in Ci which are not in
Tp. Note that Q cannot be empty; otherwise, Ci cannot be a cycle as all edges
in it are tree edges. For every edge e = (u, v) in Q, we can construct a cycle
C(p, e) as SP (p, u) + SP (p, v) + e, where SP (x, y) denote the tree path in Tp

from x to y. It is easy to see that for each such cycle C(p, e) with e ∈ Q, its
radius-size μR(C(p, e)) ≤ r as it is completely contained within Br

p. Note that Ci

can be represented as the sum of all such C(p, e), i.e. Ci =
∑

e∈Q C(p, e). This
is because that Ci =

∑
e∈Ci

C(p, e). However, for an edge e ∈ Ci ∩ Tp, C(p, e) is
the empty set. Hence only edges from Ci \ Tp(= Q) contribute to this sum.

Now consider the set of cycles Q = {C(p, e) | e ∈ Q}. As Ci is in a minimal
homology basis B, its homology class [Ci] is independent of those generated
by cycles in B \ {Ci}. Hence there exists at least a cycle C ′ ∈ Q such that
[C ′] is independent of the homology class of all cycles in B \ {Ci}. Now let
B′ = B ∪ {C ′} \ {Ci} which is also a homology basis. Recall that any cycle in Q
has radius-size at most r. We have two cases: (i) If μR(C ′) < r(= μR(Ci), then

Efficient Algorithms for Computing a Minimal Homology Basis 393

B′ has a smaller size sequence than B, and thus B cannot be a minimal homology
basis. Thus we have a contradiction, meaning that all cycles in B must be edge-
short. (ii) If μR(C ′) = r, then B′ is also a minimal homology basis. If B′ contains
only edge-short cycles, then we are done. If not, then we identify the next cycle
that is not edge-short Cj , and it is necessary that j > i. We then repeat the
above argument with Cj . In the end, either we find a contradiction, meaning that
the edge-short cycle cannot exist in the basis we are inspecting, or we manage to
replace all non-edge-short cycles to be edge-short ones of equal size, and maintain
a homology basis. In the latter case, we construct a minimal homology basis with
only edge-short cycles. In either case, the proposition follows. ��
It then follows from the above proposition that Algorithm1 computes a min-
imal homology basis under the radius-size function w.r.t. any path-dominated
distances in time O(nω + n2g). In particular, combining with the two path-
dominated distance functions examples we have:

Example 1: d = dK, the shortest path distance induced by the weighted graph
K(1). Under this path-dominated distance, the minimal homology basis prob-
lem under the radius-size function w.r.t. dK is exactly the 1-dimensional case of
the problem studied in [10]. An O(n4g) time algorithm was presented to solve
this problem in any dimension in [10]. However, by Theorem 5.1, we can com-
pute a minimal homology basis of in O(nω + n2g) time, which is a significant
improvement when focusing on H1 group.

Example 2: Given a function F : vert(K) → Z defined on K, recall that the
F -induced distance dF as introduced in Sect. 5.1 is a path-dominated function.
Now set d = dF . Intuitively, the radius-size function μR(C) w.r.t. dF measures
the radius of the smallest metric ball in the co-domain Z that contains the
image F (C) of the cycle C under map F . That is, μR(C) measures the “size”
of C w.r.t. the variation in the function F . Hence we also refer to the radius-
size function w.r.t. dF as the F -induced radius-size function. We believe that
the F -induced distance function and F -induced radius-size function are useful
objects of independent interests. The minimal homology basis of K under such
a F -induced radius-size function can also be computed in O(nω + n2g) time.

6 Conclusions

In this paper we have given improved algorithms for computing a minimal homol-
ogy basis for 1-dimensional homology group of a simplicial complex. What about
higher dimensional homology? For high dimensions, it is known from [16] that
computing a minimum homology basis under volume measure is NP-hard. But
it follows from [10] that one can extend the radius-size measure (See Sect. 5.3)
to high dimensions under which an algorithm to compute a minimum homology
basis in polynomial time exists. It runs in time O(gn4) where g is the rank of
d-dimensional homology group Hd. We can improve this algorithm, using persis-
tence algorithm [17] as well as annotations for d-simplices [3], so that the time
complexity improves to O(nω+1) which is better when g = Θ(n). The details are
presented in the AppendixA.

394 T. K. Dey et al.

Acknowledgements. This works is partially supported by National Science Founda-
tion (NSF) under grants CCF-1526513, 1740761 and 1733798.

A Computing a Minimal Homology Basis for Hd(K)

Let K be a simplicial complex with n simplices and let g be the d-dimensional
Betti number, i.e. g = rank(Hd(K)). The discrete geodesic distance dp :
vert(K) → R from a vertex p is given by q �→ dist(p, q) where dist(p, q) is
the length of the shortest path from p to q. Extending this definition to general
simplices, we have ∀σ ∈ K, dp(σ) = maxq∈vert(σ)dp(q). Then the geodesic ball
Br

p of radius r centered at p is defined as Br
p = {σ ∈ K : dp(σ) ≤ r}. Clearly,

Br
p ⊆ K, and it is a subcomplex of K. This is because for all faces σ′ of σ,

dp(σ′) ≤ dp(σ), which implies that all faces of a simplex in Br
p are also in Br

p.
The size of a cycle C is defined as μ(C) = min{r : ∃p ∈ vert(K), s.t. C ⊂ Br

p}
[18]. In words, it is the radius of the smallest ball centered at some vertex p of
C, which contains C. The definition of a minimal homology basis becomes:

Definition A.1. Given a simplicial complex K, a set of cycles {C1, C2, · · · , Cg}
with g = rank(Hd(K)) is a d-dimensional minimal homology basis if (1) the
homology classes {[C1], [C2], · · · , [Cg]} constitute a homology basis and (2) the
sizes {μ(C1), μ(C2), . . . , μ(Cg)} are lexicographically smallest among all such
bases.

A.1 Algorithm

In this section, we describe an algorithm to compute a minimal d-dimensional
homology basis where d ≥ 1. There are two steps in the algorithm: First comput-
ing a candidate set which contains a minimal homology basis and then computing
a minimal homology basis from the candidate set. All computations are over Z2.

Computing a candidate set. We now describe how to compute a candidate set
of cycles including a minimal homology basis. We apply the persistent homology
algorithm to generate the candidate set C(p) for a vertex p with the following
filtration: Simplices are sequenced in non-decreasing order of geodesic distances
dp(·) while placing a simplex before all its cofaces that have the same geodesic
distance. We focus on the essential homology classes computed by persistent
algorithm. There are g of them. For each essential homology class h, we denote
its birth time as rp(h). For any vertex p, the number of candidate cycles in C(p)
is g. Thus, the number of cycles of the candidate set C is O(gn).

Claim A.1 The candidate set C includes a minimal homology basis.

Proof. Suppose not. Let B be any minimal homology basis and the elements
in B are sorted in nondecreasing order of their sizes. Let class Ci be the first
member in B which is not in the candidate set and let p be the vertex such

Efficient Algorithms for Computing a Minimal Homology Basis 395

that Ci ⊂ B
μ(Ci)
p where μ(Ci) is the size of the cycle Ci. First we claim that

there exists a d-simplex σ such that dp(σ) = μ(Ci) and σ is a creator of Ci. If
not, there is another cycle C ′ such that [C ′] = [Ci] and μ(C ′) < μ(Ci). Note
that the cycles generated by creators in B

μ(Ci)
p form a homology basis of B

μ(Ci)
p .

We prove that the geodesic ball B
μ(Ci)
p must include a cycle C∗ ∈ C such that

the following two conditions hold: (1) μ(C∗) ≤ μ(Ci). (2) B \ {Ci} ∪ {C∗} is a
homology basis. Condition (1) holds because μ(C) ≤ μ(Ci) for every cycle C in
B

μ(Ci)
p .

For (2), observe that there exists a homology class [C∗] generated by one
creator that is independent of homology classes generated by B \ {Ci}. If no
such cycle exists, any homology class generated by one creator of B

μ(Ci)
p can be

written as a linear combination of homology classes generated by B \ {Ci}. The
homology classes generated by creators form a homology basis of B

μ(Ci)
p and

Ci ∈ B
μ(Ci)
p . It means that [Ci] is not independent of B \{Ci}, contradicting the

assumption that B is a homology basis. Therefore, B\{Ci}∪{C∗} is a homology
basis.

Combining condition (1) with (2), the homology basis B′ = B \ {Ci} ∪ {C∗}
is a minimal homology basis. What is more, if we sort the cycles in B′ in non-
decreasing order of sizes, then the first i cycles in B′ are in the candidate set C.
This is because the cycle C∗ is generated by a creator of B

μ(Ci)
p , which means

that C∗ ∈ C. Therefore, we find a minimal homology basis all of whose cycles
are in the candidate set. ��

Computing a minimal homology basis. In this section we discuss an
algorithm to find a minimal homology basis from the candidate set. We use
annotation, denoted by a(·), to represent and distinguish each cycle. Recall
that annotation of a cycle is a g-bit vector where g = rank(Hd), and that
two cycles are homologous if and only if their annotations are equal. We first
compute the annotations for all d-simplices in K [3] and give them a fixed
order σ1, σ2, · · · , σnd

where nd is the number of d-simplices in K. Suppose we
sort the cycles in the candidate set in nondecreasing order of their sizes as
C1, C2, · · · , Cgn0 where n0 is the number of vertices in K. Then, every d-cycle
Ci in K can be denoted as Ci =

∑nd

j=1 γijσj where γij ∈ {0, 1} and 1 ≤ i ≤ gn0.
Thus, we have a(Ci) =

∑nd

j=1 γija(σj), 1 ≤ i ≤ gn0. We compute the annota-
tions a(C1), a(C2), · · · , a(Cgn0) for all cycles C1, C2, · · · , Cgn0 in the candidate
set simultaneously.

Let X = (a(C1)T , a(C2)T , · · · , a(Cgn0)
T)T and

Y = (a(σ1)T , a(σ2)T , · · · , a(σnd
)T)T . The goal is to compute X that satisfies

the following equation: X = ΓY where Γ = (γij)gn0×nd
. The computation of

the matrix X takes time O(nωg) using the fast matrix multiplication algorithm
where Γ is a gn0 × nd matrix and Y is an nd × g matrix.

Let X ′ be the transposed matrix of X. The problem of computing a minimal
homology basis from the candidate set C is equivalent to computing the earliest
basis of the matrix X ′ [3]. According to Proposition 4.2, computing the earliest

396 T. K. Dey et al.

basis of X ′ costs us O(ngω) time. Combining the time O(nω+1) in building the
candidate set C and the time O(nωg) in computing X, we conclude that the
total running time is O(nω+1).

Theorem A.1. Given a simplicial complex K with n simplices, there is an algo-
rithm to compute a minimal homology basis as defined in DefinitionA.1 in any
dimension in time O(nω+1).

B Proof of Claim 5.1

We prove this claim by induction. First, fix any source node x ∈ vert(K). We
sort all other vertices in vert(K) in non-decreasing order of d(x, y); that is,
d(x, y1) ≤ d(x, y2) ≤ . . . ,≤ d(x, ys) with s = |vert(K)| − 1. We carry out an
induction based on this order. For the base case, any path in (ii) of Definition 5.1
is necessarily a path-dominated shortest path from x to y1: Indeed, if there is
any other vertex y (other than x and y1) in such a path, it is necessary that
d(x, y) = d(x, y1) as d(x, y1) has the smallest distance to x.

Now suppose there exists a path-dominated shortest path from x to yi for 1 ≤
i ≤ s. Consider yi+1 and assume that there is no path-dominated shortest path
from x to yi+1. By Definition 5.1, there exists a path Π = (u0 = x, u1, . . . , uk =
yi+1) such that for every vertex ui ∈ Π, d(x, ui) ≤ d(x, yi+1). As this path
violates the conditions in Definition 5.2, there must exist a pair of vertices uj , ul ∈
Π with j < l such that d(x, yi+1) ≥ d(x, uj) > d(x, ul). Let l be the maximal
value with which such a pair (j, l) exists. It follows that we have d(x, ul) ≤
d(x, ul+1) ≤ . . . ≤ d(x, uk). By inductive hypothesis, we know that there is a
path-dominated shortest path Π∗ from x to ul since d(x, ul) < d(x, yi+1). Hence,
the path Π∗ concatenated with the sub-path of Π from ul to uk = yi+1 gives
a path-dominated shortest path from x to yi+1. The claim thus follows from
induction.

C Ensuring Uniqueness of Shortest Paths

a1
a4

a5a3

a2

Fig. 3. Path π1 = a1a4a5a3a4a2

and π2 = a1a4a3a5a2 are two
path-dominated shortest paths
from a1 to a2. Consider a
new path π = a1a4a2 which
is a path-dominated shortest
path from a1 and a2. However
len(π) = 2 < 5 = len(π1) =
len(π2).

In Sect. 5, we require that the path-dominated
shortest path (in this section, we use shortest
path for short) in K between any two vertices is
unique. Now we show how to avoid this restric-
tion using an idea from [19] (Fig. 3).

Lemma C.1. Let K be a simplicial complex
with a path-dominated distance d(·, ·). For every
pair of nodes, there exists a unique shortest path
π from u to v that satisfies exactly one of the
following two conditions w.r.t. any other path π′

from u to v:

(1) len(π) < len(π′)

Efficient Algorithms for Computing a Minimal Homology Basis 397

(2) len(π) = len(π′),min(vert(π) \ vert(π′)) < min(vert(π′) \ vert(π))

Here len(π) denotes the number of edges in a path π and min(U) denotes the
minimum index of the vertices in a subset U of vert(K). We say π < π′ if the
above two conditions hold (See Fig. 3).

The proof follows from [19, Proposition 4.1].
We now describe the algorithm to compute a shortest path tree Tp w.r.t. a

path-dominated distance d(·, ·) rooted at p under the uniqueness condition. Let
πp(q) be the tree path from p to q in the current partial tree. Let lenp(q) denote
the number of edges in the tree path from p to q, initially set to infinity except
lenp(p) = 0. Initially we set a priority queue Q the vertex set vert(K). Every time
we delete a vertex q in the queue Q with the least distance d(p, q), least value
lenp(q) and least index. We iterate for all neighbors w of q: If πp(q)◦e, e = (q, w),
is a shortest path from p to w, and is smaller than πp(w) as in Lemma C.1 we
will update the tree path πp(w) in Tp as πp(q) ◦ e and set lenp(w) = lenp(q)+1.
Note that those vertices not in Q will not be updated. Hence there are O(n)
iterations. What remains is to compute the minimum index of vert(π)\ vert(π′)
given two tree paths π and π′ from p to any vertex v. This can be achieved
in time O(log n) adapting the algorithm from [20] for path-dominated shortest
path.

Thus we conclude the above analysis with the following theorem.

Theorem C.1. The shortest path tree in a simplicial complex K can be com-
puted in O(n log n) time.

References

1. Borradaile, G., Chambers, E.W., Fox, K., Nayyeri, A.: Minimum cycle and homol-
ogy bases of surface-embedded graphs. J. Comput. Geom. 8(2), 58–79 (2017)

2. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1038–1046. Society for Industrial and Applied Mathematics (2005)

3. Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices
with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT
2012. LNCS, vol. 7357, pp. 189–200. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31155-0 17

4. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM (2014)

5. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for minimum
cycle basis of graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27836-8 71

6. de Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of
Amsterdam (1995)

7. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM J. Comput. 16(2), 358–366 (1987)

https://doi.org/10.1007/978-3-642-31155-0_17
https://doi.org/10.1007/978-3-642-31155-0_17
https://doi.org/10.1007/978-3-540-27836-8_71
https://doi.org/10.1007/978-3-540-27836-8_71

398 T. K. Dey et al.

8. Mehlhorn, K., Michail, D.: Minimum cycle bases: faster and simpler. ACM Trans.
Algorithms (TALG) 6(1), 8 (2009)

9. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis
from point data. In: Proceedings of the Twenty-Sixth Annual Symposium on Com-
putational Geometry, pp. 166–175. ACM (2010)

10. Chen, C., Freedman, D.: Measuring and computing natural generators for homol-
ogy groups. Comput. Geom. 43(2), 169–181 (2010)

11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
12. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for mini-

mum cycle bases of graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 512–523. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70918-3 44

13. Gleiss, P.M.: Short cycles: minimum cycle bases of graphs from chemistry and
biochemistry. Ph.D. thesis, Universität Wien, Austria (2001)

14. Guskov, I., Wood, Z.J.: Topological noise removal. In: 2001 Graphics Interface
Proceedings, Ottawa, Canada, p. 19 (2001)

15. Wood, Z., Hoppe, H., Desbrun, M., Schröder, P.: Removing excess topology from
isosurfaces. ACM Trans. Graph. (TOG) 23(2), 190–208 (2004)

16. Chen, C., Freedman, D.: Hardness results for homology localization. In: Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1594–1604. Society for Industrial and Applied Mathematics (2010)

17. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453,
257–282 (2008)

18. Chen, C., Freedman, D.: Quantifying homology classes. In: LIPIcs-Leibniz Inter-
national Proceedings in Informatics, vol. 1. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2008)

19. Hartvigsen, D., Mardon, R.: The all-pairs min cut problem and the minimum cycle
basis problem on planar graphs. SIAM J. Discret. Math. 7(3), 403–418 (1994)

20. Wulff-Nilsen, C.: Minimum cycle basis and all-pairs min cut of a planar graph in
subquadratic time. arXiv preprint arXiv:0912.1208 (2009)

https://doi.org/10.1007/978-3-540-70918-3_44
https://doi.org/10.1007/978-3-540-70918-3_44
http://arxiv.org/abs/0912.1208

Shifting the Phase Transition Threshold
for Random Graphs Using Degree

Set Constraints

Sergey Dovgal1,2,3(B) and Vlady Ravelomanana2

1 LIPN – UMR CNRS 7030. Université Paris 13,
99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

dovgal@lipn.univ-paris13.fr
2 IRIF – UMR CNRS 8243. Université Paris 7,
8 place Aurélie Nemours, 75013 Paris, France

vlad@irif.fr
3 Moscow Institute of Physics and Technology,

Institutskiy per. 9, Dolgoprudny 141700, Russia

Abstract. We show that by restricting the degrees of the vertices of a
graph to an arbitrary set Δ, the threshold point α(Δ) of the phase tran-
sition for a random graph with n vertices and m = α(Δ)n edges can be
either accelerated (e.g., α(Δ) ≈ 0.381 for Δ = {0, 1, 4, 5}) or postponed
(e.g., α({20, 21, · · · , 2k, · · · }) ≈ 0.795) compared to a classical Erdős–
Rényi random graph with α(Z≥0) = 1

2
. In particular, we prove that the

probability of graph being nonplanar and the probability of having a
complex component, goes from 0 to 1 as m passes α(Δ)n. We inves-
tigate these probabilities and also different graph statistics inside the
critical window of transition (diameter, longest path and circumference
of a complex component).

1 Introduction

1.1 Shifting the Phase Transition

Consider a random Erdős–Rényi graph G(n,m) [4], that is a graph chosen uni-
formly at random among all simple graphs built with n vertices labeled with dis-
tinct numbers from {1, 2, . . . , n}, and m edges. The range m = 1

2n(1 + μn−1/3)
where n → ∞, and μ depends on n, is of particular interest since there are three
distinct regimes, according to how the crucial parameter μ grows as n is large:
(i) as μ → −∞, the size of the largest component is of order Θ(log n), and the
connected components are almost surely trees and unicyclic components; (ii)
next, inside what is known as the critical window |μ| = O(1), the largest compo-
nent size is of order Θ(n2/3) and complex structures (unempty set of connected

This work is partially supported by the French project MetACOnc, ANR-15-CE40-
0014 and by the French project CNRS-PICS-22479.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 399–412, 2018.
https://doi.org/10.1007/978-3-319-77404-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_29&domain=pdf

400 S. Dovgal and V. Ravelomanana

components having strictly more edges than vertices) start to appear with sig-
nificant probabilities; (iii) finally, as μ → +∞ with n, there is typically a unique
component of size Θ(n) called the giant component. Since the article of Erdős
and Rényi [4], various researchers have studied in depth the phase transition of
the Erdős–Rényi random graph model culminating with the masterful work of
Janson et al. [8] who used enumerative approach to analyze the fine structure of
the components inside the critical window of G(n, m).

The last decades have seen a growth of interest in delaying or advancing the
phase transitions of random graphs. Mainly, two kinds of processes have been
introduced and studied: (a) the Achlioptas process where models of random
graph are obtained by adding edge one by one but according to a given rule
which allows to choose the next edge from a set of candidate edges [1,16]; (b)
the given degree sequence models where a sequence (d1, · · · , dn) of degrees is
given and a simple graph built on n vertices is uniformly chosen from the set of
all graphs whose degrees match with the sequence di (see [7,9,11,14]).

In [1,15,16], the authors studied the Achlioptas process. Bohman and
Frieze [1] were able to show that there is a random graph process such that after
adding m = 0.535n > 0.5n edges the size of the largest component is (still)
polylogarithmic in n which contrasts with the classical Erdős–Rényi random
graphs. Initially, this process was conjectured to have a different local geom-
etry of transition compared to classical Erdős–Rényi model, but Riordan and
Warnke [15,16] were able to show that this is not the case. Next, in the model
of random graphs with a fixed degree sequence D = (d1, · · · , dn), Joos et al. [9]
proved that a simple condition that a graph with degree sequence D has a con-
nected component of linear size, is that the sum of the degrees in D which are
not 2 is at least λ(n) for some function λ(n) that goes to infinity with n. Very
recently, Liebenau and Wormald [10] studied the asymptotic number of graphs
with given degree sequence in a very wide range of possible degrees.

In the current work, our approach is rather different. We study random graphs
with degree constraints that are graphs drawn uniformly at random from the set
of all graphs with given number of vertices and edges with all vertices having
degrees from a given set Δ ⊆ Z≥0, with the only restriction 1 ∈ Δ, which we
discuss below. De Panafieu and Ramos [3] calculated the asymptotic number
of such graphs using the methods from analytic combinatorics. We prove that
random graphs with degrees from the set Δ have their phase transition shifted
from the density of edges m

n = 1
2 to m

n = α for an explicit and computable
constant α = α(Δ) and the new critical window of transition becomes m =
αn(1 ± μn−1/3).

In addition, we also prove that the structure of such graphs inside this crucial
window behaves as in the Erdős–Rényi case. For instance, we prove that extremal
parameters such as the diameter, the circumference or the longest path are of
order Θ(n1/3) around m = αn. The size of complex components of our graphs are
of order Θ(n2/3) as μ is bounded. A very similar result but about the diameter
of the largest component of G(n, p = 1

n + μ
n4/3) has been obtained by Nachmias

and Peres [12] (using very different methods).

Shifting the Phase Transition Threshold for Random Graphs 401

In the seminal paper of Erdős and Rényi, they discussed the planarity of
random graphs with various edge densities [4]. The probabilities of planarity
inside their window of transition have been computed in [13]. In the current
work, we extend this study by showing that the planarity threshold shifts from
n
2 for classical random graphs to αn for graphs with degrees from Δ. More
precisely, first we show that such objects are almost surely planar as μ goes to
−∞ and non-planar as μ tends to +∞. Next, as function of μ, we compute the
limiting probability that random graphs of degrees in Δ are planar as μ = O(1).

Our work is motivated by the following research questions: (i) what can be
the contributions of analytic combinatorics to study constrained random graphs?
(ii) the birth of the giant component often corresponds to drastic changes in the
complexities of several algorithmic optimization/decision problems on random
graphs, so by tuning the thresholds one can shift the location of hard random
instances.

1.2 Preliminaries

The excess of a connected graph is the number of its edges minus the number
of its vertices. For example, connected graphs with excess −1 are trees, with
excess 0—graphs with one cycle (also known as unicycles or unicyclic graphs),
connected bicycles have excess 2, and so on (see Fig. 1). A connected graph
always has excess at least −1. A connected component with excess at least 1 is
called a complex component. The complex part of a random graph is the union
of its complex components.

Fig. 1. Examples of connected labeled graphs with different excess. As a whole, can
be considered as a graph with total excess −1 + 0 + 1 + 2 = 2

Next, we introduce the notion of a 2 -core (the core) and a 3 -core (the kernel)
of a graph. The 2-core is obtained by repeatedly removing all vertices of degree
1 (smoothing). The 3-core is obtained from the 2-core by repeatedly replacing
vertices of degree two and their adjacent edges by a single edge connecting the
neighbors of the deleted vertex (we call this a reduction procedure). A 3-core can
be a multigraph, i.e. there can be loops and multiple edges. There is only a finite
number of connected 3-cores with a given excess [8]. Moreover, the set of 3-cores

402 S. Dovgal and V. Ravelomanana

of graphs with set degree constraints (provided that 1 ∈ Δ) is the same as the
set of 3-cores of classical Erdős–Rényi graphs.

The inverse images of vertices of 3-core under the reduction procedure, are
called corner vertices (cf. Fig. 3). A 2-path is an inverse image of an edge in a
3-core, i.e. a path connecting two corner vertices. The circumference of a graph
is the length of its longest cycle. A diameter of a graph is the maximal length
of the shortest path taken over all distinct pairs of vertices. It is known that the
problems of finding the longest path and the circumference are NP-hard.

Random graph with degree constraints is a graph sampled uniformly at ran-
dom from the set of all possible graphs Gn,m,Δ having m edges and n vertices
all of degrees from the set Δ = {δ1, δ2, . . .} ⊆ {0, 1, 2, . . .}, see Fig. 2. The set Δ
can be finite or infinite. In this work, we require that 1 ∈ Δ. This technical
condition allows the existence of trees and tree-like structures in the random
objects under consideration. We don’t know what happens when 1 /∈ Δ.

1

2

3

4

5

6

78

9 10

11
12

13

14

1516

17

18

19

20

21

22

23 24

25

26

Fig. 2. Random labeled graph from G26,30,Δ with the set of degree constraints Δ =
{1, 2, 3, 5, 7}

The set Gn,m,Δ is (asymptotically) nonempty if and only if the following
condition is satisfied [3]:

(C) Denote gcd(d1−d2 : d1, d2 ∈ Δ) by periodicity p. Assume that the number m
of edges grows linearly with the number n of vertices, with 2m/n staying in a
fixed compact interval of]min(Δ),max(Δ)[, and p divides 2m − n · min(Δ).

To a given arbitrary set Δ ⊆ {0, 1, 2, . . .}, we associate the exponential gen-
erating function (egf) ω(z):

SETΔ(z) = ω(z) =
∑

d∈Δ

zd

d!
. (1)

The domain of the argument z of this function can be either considered a subset
[0, R) of the real axis or some subset of the complex plane, depending on the
context. The function φ0(z) = zω′(z)

ω(z) , which is called the characteristic function
of ω(z), is non-decreasing along real axis [6, Proposition IV.5], as well as the
characteristic function φ1(z) = zω′′(z)

ω′(z) of the derivative ω′(z).

Shifting the Phase Transition Threshold for Random Graphs 403

The value of the threshold α, which is used in all our theorems, is a unique
solution of the system of equations

{
φ1(ẑ) = 1,
φ0(ẑ) = 2α.

(2)

A unique solution ẑ of φ1(z) = 1, z > 0 always exists provided that 1 ∈ Δ. This
solution is computable.

Structure of the Article. In Sect. 2 we state our main results and give proofs
which rely on technical statements from Sect. 3. Sections 3 and 4 contain the
tools from analytic combinatorics. In Sect. 5, we give the results of simulations
using the recursive method from [3].

2 Phase Transition for Random Graphs

2.1 Structure of Connected Components

Recall that given a set Δ, its egf is defined as ω(z) =
∑

d∈Δ zd/d!, and character-
istic function of ω(z) and its derivative ω′(z) are given by φ0(z) = zω′(z)/ω(z),
φ1(z) = zω′′(z)/ω′(z).

Theorem 1. Given a set Δ with 1 ∈ Δ, let α be a unique positive solution of
(2). Assume that m = αn(1 + μn−1/3). Suppose that Condition (C) is satisfied
and Gn,m,Δ is a random graph from Gn,m,Δ.

Then, as n → ∞, we have

1. if μ → −∞, |μ| = O(n1/12), then

P(Gn,m,Δ has only trees and unicycles) = 1 − Θ(|μ|−3); (3)

2. if |μ| = O(1), i.e. μ is fixed, then

P(Gn,m,Δ has only trees and unicycles) → constant ∈ (0, 1), (4)
P(Gn,m,Δ has a complex part with total excess q) → constant ∈ (0, 1), (5)

and the constants are computable functions of μ;
3. if μ → +∞, |μ| = O(n1/12), then

P(Gn,m,Δ has only trees and unicycles) = Θ(e−μ3/6μ−3/4), (6)

P(Gn,m,Δ has a complex part with excess q) = Θ(e−μ3/6μ3q/2−3/4). (7)

Proof (Sketched). Consider a graph composed of trees, unicycles and a collection
of complex connected components. Fix the total excess of complex components
q. Then, there are exactly (n−m+ q) trees, because each tree has an excess −1.

Generating functions for each of these components are given by Lemmas 4
and 6: we enumerate all possible kernels and then enumerate graphs that reduce

404 S. Dovgal and V. Ravelomanana

to them under pruning and smoothing. Let U(z) be the generating function for
unrooted trees, V (z) be the generating function for unicycles, Ej(z) be the gener-
ating functions for connected graphs with excess j. We calculate the probability
for each collection (q1, . . . , qk), while the total excess is

∑k
j=1 jqj = q. Accord-

ingly, the probability that the process generates a graph with the described
property can be expressed as the ratio

n! · |Gn,m,Δ|−1

(n − m + q)!
[zn]U(z)n−m+qeV (z)E

q1
1 (z)
q1!

. . .
Eqk

k (z)
qk!

. (8)

Then we use an approximation of Ej(z) from Corollary 7, Lemma 6 and apply
Corollary 9 with y = 1

2 + 3q in order to extract the coefficients. Note that our
approach is derived from the methods from [8] but due to the place limitation,
most of our proofs are sketched.

2.2 Shifting the Planarity Threshold

Theorem 2. Under the same conditions as in Theorem1 with a number of edges
m = αn(1 + μn−1/3), let p(μ) be the probability that Gn,m,Δ is planar.

Then, as n → ∞, we have uniformly for |μ| = O(n1/12):

1. p(μ) = 1 − Θ(|μ|−3), as μ → −∞;
2. p(μ) → constant ∈ (0, 1), as |μ| = O(1), and p(μ) is computable;
3. p(μ) → 0, as μ → +∞.

Proof. The graph is planar if and only if all the 3-cores (multigraphs) of con-
nected complex components are planar. As |μ| = O(n1/12), Corollary 7 implies
that for asymptotic purposes it is enough to consider only cubic regular kernels
among all possible planar 3-cores. Let G1(z) be an egf of connected planar
cubic kernels. The function G1(z) is determined by the system of equations
given in [13], and is computable. An egf for sets of such components is given
by G(z) = eG1(z). We give several first terms of G(z) according to [13]:

G(z) =
∑

q≥0

gq
z2q

(2q)!2
= 1 +

5
24

z2 +
385
1152

z4 +
83933
82944

z6 +
35002561
7962624

z8 + . . . (9)

Thus, the number of planar cubic kernels with total excess q is given by
(2q)![z2q]eG1(z) = (2q)![z2q]G(z) =

gq

(2q)!
. In order to calculate p(μ), we sum

over all possible q ≥ 0 and multiply the probabilities that the 3-core is a planar
cubic graph with excess q by the conditional probability that a random graph
has planar cubic kernel of excess q.

The probability that Gn,m,Δ is planar on condition that the excess of the
complex component is q, is equal to

n!|Gn,m,Δ|−1

(n − m + q)!
[zn]U(z)n−m+qeV (z) gq

(2q)!
(T3(z))2r

(1 − T2(z))3r
. (10)

Shifting the Phase Transition Threshold for Random Graphs 405

We can apply Corollary 9 and sum over all q ≥ 0 in order to obtain the result:

p(μ) ∼
√

2π
∑

q≥0

gqt
2q
3 AΔ(3q + 1

2 , μ), (11)

where AΔ(3q + 1
2 , μ) and the constant t3 are from Corollary 9. The probabilities

on the borders of the transition window, i.e. |μ| → ∞ can be obtained from the
properties of the function AΔ(y, μ).

2.3 Statistics of the Complex Component Inside the Critical
Window

Theorem 3. Under the same conditions as in Theorem1, suppose that
|μ| = O(1), m = αn(1 + μn−1/3). Then, the longest path, diameter and cir-
cumference of the complex part are of order Θ(n1/3) in probability, i.e. for each
mentioned random parameter there exist computable (see Lemma 10) constants
A,B > 0 depending on Δ such that the corresponding random variable Xn sat-
isfies ∀λ > 0

P

(
Xn /∈ n1/3(A ± Bλ)

)
= O(λ−2). (12)

Fig. 3. Diameter, longest path and circumference of a complex component. The large

vertices like are the corner vertices

Proof. Recall that a 2-path is a path connecting two corner vertices inside a
complex component, see Fig. 3. In Lemma 10 we prove that the length of a ran-
domly uniformly chosen 2-path is Θ(n1/3) in probability. This lemma also gives
the explicit expressions for A and B.

From Lemma 12 we obtain that the maximum height of sprouting tree over
the complex part is also Θ(n1/3) in probability. Since the total excess of the
complex component is bounded in probability as μ stays bounded, and the sizes
of the kernels are finite, we can combine these two results to obtain the statement
of the theorem, because all the three parameters come from adding/stitching
several 2-paths and tree heights.

406 S. Dovgal and V. Ravelomanana

3 Saddle-Point Analysis

The crucial tool that we use in our work is the analytic lemma, Lemma 8, or
equivalently, Corollary 9. Before, we develop the construction of the connected
components of the graphs with set degree constraints, in the following subsection.

3.1 Symbolic Tools

For each r ≥ 0, let us define r -sprouted trees: rooted trees whose vertex degrees
belong to the set Δ, except the root (see Fig. 4), whose degree belongs to the set
Δ −
 = {δ ≥ 0: δ +
 ∈ Δ}. Their egf T�(z) can be defined recursively

T�(z) = zω(�)(T1(z)), T1(z) = zω′(T1(z)),
 ≥ 0. (13)

T0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩T1

{

Δ

Δ−1Δ−1 Δ−1

Fig. 4. Recursive construction of T0(z): the degree of the root of each subtree should
belong to the set Δ − 1

Lemma 4. Let U(z) be the egf for unrooted trees and V (z) the egf of unicycles
whose vertices have degrees ∈ Δ (Fig. 5). Then

U(z) = T0(z) − T1(z)2

2
, V (z) =

1
2

[
log

1
1 − T2(z)

− T2(z) − T 2
2 (z)
2

]
, (14)

where T0(z), T1(z), and T2(z) are by (13).

(Δ)
=

•
•

+◦1
•

•

◦1 +

•1

Fig. 5. Variant of dissymetry theorem for unrooted trees with degree constraints

Shifting the Phase Transition Threshold for Random Graphs 407

Remark 5. Any multigraph M on n labeled vertices can be defined by a symmet-
ric n × n matrix of nonnegative integers mxy, where mxy = myx is the number
of edges x − y in M . The compensation factor κ(M) is defined by

κ(M) = 1

/
n∏

x=1

(
2mxx

n∏

y=x

mxy!

)
. (15)

A multigraph process is a sequence of 2m independent random vertices

(v1, v2, . . . , v2m), vk ∈ {1, 2, . . . , n},

and output multigraph with the set of vertices {1, 2, . . . , n} and the set of edges
{{v2i−1, v2i} : 1 ≤ i ≤ m}. The number of sequences that lead to the same
multigraph M is exactly 2mm!κ(M) (Fig. 6).

Lemma 6. Let M be some 3-core multigraph with a vertex set V , |V | = n,
having μ edges, and compensation factor κ(M). Let μxy be the number of edges
between vertices x and y for 1 ≤ x ≤ y ≤ n. The generating function for all
graphs G that lead to M under reduction is

κ(M)
∏

v∈V

Tdeg(v)(z)

n!
· P (M,T2(z))
(1 − T2(z))μ

; (16)

P (M, z) =
n∏

x=1

(
z2μxx

n∏

y=x+1

zμxy−1(μxy − (μxy − 1)z)
)
. (17)

1

1
4

1 2

1
4

1 2

1
6

Fig. 6. All possible 3-core multigraphs of excess 1 and their compensation factors. The
first one has negligible contribution because it is non-cubic

Corollary 7. Assume that φ1(ẑ) = 1. Near the singularity z ∼ ẑ, i.e. T2(z) ≈
1, some of the summands from Lemma6 are negligible. Dominant summands
correspond to graphs M with maximal number of edges, i.e. graphs with 3r edges
and 2r vertices. The vertices of degree greater than 3 can be splitted into more
vertices with additional edges. Due to [8, Sect. 7, Eq. (7.2)], the sum of the
compensation factors is expressed as

er0 =
(6r)!

25r32r(3r)!(2r)!
. (18)

408 S. Dovgal and V. Ravelomanana

Lemma 8. Let m = rn = αn(1 + μν), where ν = n−1/3, |μ| = O(n1/12),
n → ∞, and ẑ be a unique real positive solution of φ1(ẑ) = 1. Let

C2 =
t3αẑ

2(1 − α)
, C3 =

2t3αẑ

3
, t3 =

ẑω′′′(ẑ)
ω′(ẑ)

.

Then for any function τ(z) analytic in |z| ≤ ẑ the contour integral encircling
complex zero, admits asymptotic representation

1
2πi

∮
(1−φ1(z))1−yenh(z;r)τ(z)

dz

z
∼ ν2−y(zt3)1−yτ(z)enh(z;α) × BΔ(y, μ)

∣∣∣
z=ẑ

,

(19)

BΔ(y, μ) =
1
3
C

(y−2)/3
3

∑

k≥0

(
C2C

−2/3
3 μ

)k

k!Γ
(

y+1−2k
3

)

h(z; r) = log ω′ − r log z + (1 − r) log
(
2

ω

ω′ − z
)

(20)

Corollary 9. If m = αn(1 + μn−1/3) and y ∈ R, y ≥ 1
2 , then for any Ψ(t)

analytic at t = 1 we have

n!
(n − m)!|Gn,m,Δ| [z

n]
U(z)n−mΨ(T2(z))

(1 − T2(z))y
=

√
2πΨ(1)AΔ(y, μ)ny/3−1/6 + O(R),

(21)
BΔ(y, μ) is from Lemma8 and the error term R is given by R = (1 +
|μ|4)ny/3−1/2. This function AΔ(y, μ) can be expressed in terms of A(y, μ) =
AZ≥0(y, μ) introduced in [8]:

1. AΔ(y, μ) = (t3ẑ)1−y(3C3)
y−2
3 A

(
y,

2C2

1
√

(3C3)2
μ

)
= e−μ3/6(ẑt3)1−yBΔ(y, μ);

2. As μ → −∞, we have A(y, μ)=
1√

2π|μ|y−1/2

(
1 − 3y2 + 3y − 1

6|μ|3 + O(μ−6)
)

;

3. As μ → +∞, we have

A(y, μ) =
e−μ3/6

2y/2μ1−y/2

(
1

Γ (y/2)
+

4μ−3/2

3
√

2Γ (y/2 − 3/2)
+ O(μ−2)

)
.

4 Method of Moments

In order to study the parameters of random structures, we apply the marking
procedure introduced in [6]. We say that the variable u marks the parameter of
random structure in bivariate egf F (z, u) if n![znuk]F (z, u) is equal to number
of structures of size n and parameter equal to k. In this section we consider such
parameters of a random graph as the length of 2-path, which corresponds to
some edge of the 3-core, and the height of random “sprouting” tree.

Shifting the Phase Transition Threshold for Random Graphs 409

4.1 Length of a Random 2-Path

Let us fix the excess vector q = (q1, q2, . . . , qk). There are in total q = q1 +2q2 +
. . . + kqk connected complex components and each component has one of the
finite possible number of 3-cores (see [8]). We can choose any 2-path, which is a
sequence of trees, and replace it with of sequence of marked trees, see Fig. 7. Let
random variable Pn be the length of this 2-path. Since an egf for sequence of
trees is 1

1−T2(z)
, the corresponding moment-generating function E[uPn] becomes

E[uPn] =
n![zn]

U(z)n−m+q

(n − m + q)!
eV (z)Eq(z)

1 − T2(z)
1 − uT2(z)

n![zn]
U(z)n−m+q

(n − m + q)!
eV (z)Eq(z)

. (22)

Fig. 7. Marked 2-path inside complex component of some graph

Lemma 10. Suppose that conditions of Theorem1 are satisfied. Suppose that
there are qj connected components of excess j for each j from 1 to k. Denote
by excess vector a vector q = (q1, q2, . . . , qk). Inside the critical window m =
αn(1+μn−1/3), |μ| = O(1), the length Pn of a random (uniformly chosen) 2-path
is Θ(n1/3) in probability, i.e.

P

(
Pn /∈ n1/3t3(B1 ± λB2)

)
≤ 1

(λ + o(1))2
, t3 = ẑ

ω′′′(ẑ)
ω′(ẑ)

, (23)

B1 =
BΔ(3q + 3

2 , μ)
BΔ(3q + 1

2 , μ)
, B2

2 =
BΔ(3q + 5

2 , μ)BΔ(3q + 1
2 , μ) − B2

Δ(3q + 3
2 , μ)

B2
Δ(3q + 1

2 , μ)
,

with function BΔ(y, μ) from Lemma8, q = q1 + 2q2 + . . . + kqk.

4.2 Height of a Random Sprouting Tree

Let κ(z) = ω′(z). Consider recursive definition for the generating function of
simple trees whose height doesn’t exceed h:

T [h+1](z) = zκ(T [h](z)), T [0](z) = 0. (24)

The framework of multivariate generating functions allows to mark height with
a separate variable u so that the function

F (z, u) =
∞∑

n=0

zn

n!

n∑

h=0

A[h]
n uh (25)

410 S. Dovgal and V. Ravelomanana

is the bgf for trees, where A
[h]
n stands for the number of simple labelled rooted

trees with n vertices, whose height equals h.
Flajolet and Odlyzko [5] consider the following expressions:

H(z) =
d

du
F (z, u)

∣∣∣∣
u=1

, Ds(z) =
ds

dus
F (z, u)

∣∣∣∣
u=1

. (26)

Generally speaking, H(z) = D1(z) is a particular case of Ds(z), but their analytic
behaviour is different for s = 1 and s ≥ 2.

Lemma 11 ([5, pp. 42–50]). The functions H(z) and Ds(z), s ≥ 2 satisfy

H(z) ∼ α log ε(z), Ds(z) ∼ (ẑ)−1sΓ (s)ζ(s)ε−s+1(z), (27)

α = 2
κ

′(ẑ)
κ′′(ẑ)

, ε(z) = ẑ

(
1 − z

ρ

)1/2 (
2κ

′′(ẑ)
κ(ẑ)

)1/2

, ρ = ẑκ
−1(ẑ) = (κ′(ẑ))−1.

Here, Γ (s) is a gamma-function, and ζ(s) is Riemann zeta-funciton.

It is possible to adapt this statement for the case of two kinds of sprouting
trees that we have to distinguish: the first ones are attached to the vertices with
degree from Δ − 2, and the second — to the vertices with degree from Δ − 3,
we will treat these cases separately.

Lemma 12. Inside the critical window m = αn(1 + μn−1/3), |μ| = O(1), the
maximal height Hn of a sprouting tree, is of O(n1/3) in probability, i.e.

P

(
max Hn > λn1/3

)
= O(λ−2). (28)

5 Simulations

We considered random graphs with n = 1000 vertices, and various degree con-
straints. The random generation procedure of such graphs has been explained
by de Panafieu and Ramos in [3] and for our experiments, we implemented the
recursive method.

The generator first draws a sequence of degrees and then performs a random
pairing on half-edges, as in configuration model [2]. We reject the pairing until
the multigraph is simple, i.e. until there are no loops and multiple edges. As |μ| =
O(1), expected number of rejections is asymptotically exp

(− 1
2φ1(ẑ) − 1

4φ2
1(ẑ)

)
,

which is exp(−3/4) in the critical window, and in the subcritical phase it is less.
Each sequence (d1, . . . , dn) is drawn with weight

∏n
v=1 1/(dv)!. First, we use

dynamic programming to precompute the sums of the weights (Si,j) : i ∈ [0, n],
j ∈ [0, 2m] using initial conditions and the recursive expression:

Si,j =
∑

d1+...+di=j

d1,...,di∈Δ

i∏

v=1

1
dv!

, Si,j =

⎧
⎪⎪⎨

⎪⎪⎩

1, (i, j) = (0, 0),
0, i = 0 or j < 0,
∑

d∈Δ

Si−1,j−d

d!
, otherwise.

(29)

Shifting the Phase Transition Threshold for Random Graphs 411

Then the sequence of degrees is generated according to the distribution

P(dn = d) =
Sn−1,2m−d

d!Sn,2m
. (30)

We made plots for distributions of different parameters for Δ = {1, 3, 5, 7},
see Fig. 8.

(a) Largest excess (b) Largest component size (c) Graph diameter

Fig. 8. Results of experiments

Conclusion. We studied how to shift the phase transition of random graphs when
the degrees of the nodes are constrained by means of analytic combinatorics [3,6].
We have shown that the planarity threshold of those constrained graphs can
be shifted generalizing the results in [13]. We have also shown that when our
random constrained graphs are inside their critical window of transition, the size
of complex components are typically of order n2/3 and all distances inside the
complex components are of order n1/3, thus our results about these parameters
complement those of Nachmias and Peres [12].

A few open questions are left open: for given threshold value α can we find a
set {1} ⊂ Δ ⊂ Z≥0 delivering the desired α? What happens if 1 /∈ Δ, for example
what is the structure of random Eulerian graphs? What happens when the gen-
erating function ω itself depends on the number of vertices? Given a sequence of
degrees d1, . . . , dn that allows the construction of a forest of an unbounded size,
a first approach to study possible relationship between the models can be the

computation of the generating function ω(z) =
∑

i≥0 weight(i)
zi

i!
for a suitable

weight function corresponding to d1, . . . , dn.

Acknowledgements. We would like to thank Fedor Petrov for his help with a proof
of technical condition for saddle-point analysis, Élie de Panafieu, Lutz Warnke, and
several anonymous referees for their valuable remarks.

References

1. Bohman, T., Freize, A.: Avoiding a giant component. Random Struct. Algorithms
19(1), 75–85 (2001)

2. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980)

412 S. Dovgal and V. Ravelomanana

3. de Panafieu, É., Ramos, L.: Enumeration of graphs with degree constraints. In:
Proceedings of the Meeting on Analytic Algorithmics and Combinatorics (2016)

4. Erdős, P., Rényi, A.: On the evolution of random graphs. A Magyar Tudományos
Akadémia Matematikai Kutató Intézetének Közleményei 5, 17–61 (1960)

5. Flajolet, P., Odlyzko, A.M.: The average height of binary trees and other simple
trees. J. Comput. Syst. Sci. 25, 171–213 (1982)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Press, Cambridge
(2009)

7. Hatami, H., Molloy, M.: The scaling window for a random graph with a given
degree sequence. Random Struct. Algorithms 41(1), 99–123 (2012)

8. Janson, S., Knuth, D.E., �Luczak, T., Pittel, B.: The birth of the giant component.
Random Struct. Algorithms 4(3), 231–358 (1993)

9. Joos, F., Perarnau, G., Rautenbach, D., Reed, B.: How to determine if a random
graph with a fixed degree sequence has a giant component. In: 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 695–703
(2016)

10. Liebenau, A., Wormald, N.: Asymptotic enumeration of graphs by degree sequence,
and the degree sequence of a random graph. arXiv preprint arXiv:1702.08373
(2017)

11. Molloy, M., Reed, B.A.: A critical point for random graphs with a given degree
sequence. Random Struct. Algorithms 6(2/3), 161–180 (1995)

12. Nachmias, A., Peres, Y.: Critical random graphs: diameter and mixing time. Ann.
Probab. 36(4), 1267–1286 (2008)

13. Noy, M., Ravelomanana, V., Rué, J.: On the probability of planarity of a random
graph near the critical point. Proc. Am. Math. Soc. 143(3), 925–936 (2015)

14. Riordan, O.: The phase transition in the configuration model. Comb. Probab.
Comput. 21(1–2), 265–299 (2012)

15. Riordan, O., Warnke, L.: Achlioptas process phase transitions are continuous. Ann.
Appl. Probab. 22(4), 1450–1464 (2012)

16. Riordan, O., Warnke, L.: The phase transition in bounded-size Achlioptas pro-
cesses. arXiv preprint arXiv:1704.08714 (2017)

http://arxiv.org/abs/1702.08373
http://arxiv.org/abs/1704.08714

On the Biased Partial Word Collector
Problem

Philippe Duchon1,2 and Cyril Nicaud3(B)

1 University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
2 CNRS, LaBRI, UMR 5800, 33400 Talence, France

3 Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
77454 Marne-la-Vallée, France

cyril.nicaud@u-pem.fr

Abstract. In this article we consider the following question: N words
of length L are generated using a biased memoryless source, i.e. each
letter is taken independently according to some fixed distribution on
the alphabet, and collected in a set (duplicates are removed); what are
the frequencies of the letters in a typical element of this random set?
We prove that the typical frequency distribution of such a word can be
characterized by considering the parameter � = L/ logN . We exhibit two
thresholds �0 < �1 that only depend on the source, such that if � ≤ �0,
the distribution resembles the uniform distribution; if � ≥ �1 it resembles
the distribution of the source; and for �0 ≤ � ≤ �1 we characterize the
distribution as an interpolation of the two extremal distributions.

1 Introduction

The coupon collector problem is a classical topic in discrete probability; in its
most basic form, the question is to determine how many independent draws
from a uniform distribution on some fixed finite set E (say, of cardinality n) are
needed, in expectation, to obtain each possible value at least once. The answer
turns out to be exactly nHn, where Hn = 1 + 1/2 + · · · + 1/n denotes the n-th
harmonic number.

It is natural to consider non-uniform versions of the problem, where values
have different probabilities. Typically, some structure is needed on the set of pos-
sible values to make the problem tractable. The weighted word collector problem,
as studied in [1], corresponds to the case where E is a set of words of a fixed
length L (possibly, all words over some finite alphabet A, i.e. AL, but more
generally for some language L ⊆ AL), each word has a probability proportional
to its weight, and this weight is defined as a product of individual letter weights.

In this paper, we consider a process related to the weighted word collector
process when L = AL. In this case, words are drawn according to a memoryless
source: each letter ai has a specific a priori probability p(ai), and words are
composed of L independent letters drawn from this probability distribution.
Instead of waiting for all possible words to appear, we consider a partial word

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 413–426, 2018.
https://doi.org/10.1007/978-3-319-77404-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_30&domain=pdf

414 P. Duchon and C. Nicaud

collector : we repeatedly draw random words from the memoryless model, keeping
track of the set of distinct words “collected”.
In this setting, we try to answer the following somewhat informal question:

When N independent draws have been made from the random word model,
what does a “typical” member of the set of already-seen words look like?

More precisely, we study the likely composition of collected words; that is, the
number of occurrences of each letter in a word drawn uniformly at random from
the set of already collected words. At this point, it is only for convenience that
we describe the process in terms of picking a random word from those already
collected; our interest is in identifying what a typical collected word looks like.

This question is related to the subword complexity of a long random word in
the memoryless model. The subword complexity function of a (finite or infinite)
word w is the function that maps each integer L to the number of different
factors of length L that appear in w; as shown in [4], the (random) subword
complexity for factors of length L of a random word of length N + L − 1 in the
memoryless model, is very close (in expectation, and in distribution) to the size
of our partial word collection.

Our initial motivation for studying this problem follows the work of
Rubinchik and Shur on the expected number of distinct palindromic factors
in a uniform random word [6], which we extended to α-gapped patterns [3] (an
α-gapped pattern is a factor uvu with |uv| ≤ α|u| for given α ≥ 1). When trying
to extend these results to words generated by a memoryless source, a problem
very similar to the one investigated in this paper arises: typical palindromic fac-
tors have length in Θ(log n), and a promising way to count them is to identify
those who contribute the most, using (and extending) the methods presented in
this paper.

Special cases of our question can be answered easily, at least informally. If
all words have the same probability (i.e., p(ai) = 1/k for each of the k letters),
then drawing a uniform word from the set of collected words is equivalent to
drawing a uniform word; by the law of large numbers, each letter is extremely
likely (at least for large L) to have an observed frequency close to its a priori
probability 1/k.

When the letter probabilities are not uniform, the asymptotic regimes (with
fixed L and variable N) are intuitively clear. For very small N , all N collected
words are likely to be different, so the two-step sampling process is equivalent to
drawing a single random word from the memoryless model; i.e. letter frequencies
are likely to be close to the letter probabilities p(ai). At the other end of the
spectrum, if N is large enough, with high probability all words have been col-
lected, so that drawing a uniform word from the set of collected words is almost
equivalent to drawing a uniform random word; letter frequencies should be close
to the uniform 1/k.

The interesting case lies in the intermediate regime. In the present paper,
we exhibit an evolution for the likely composition of typical collected words;
the precise statement is given by Theorem 1. The significant parameter is the
ratio � = L/ log(N). Informally, as N grows (as � decreases), the composition

On the Biased Partial Word Collector Problem 415

goes continuously from the a priori composition to the uniform composition
along a predetermined curve: at all times, each letter ai has typical frequency
proportional to p(ai)c for some constant c that depends on the ratio �; as N
grows from 1 to infinity (as � decreases from infinity to 0), c decreases from 1 to
0. Our main theorem also gives explicit thresholds, one until which the typical
letter frequencies fit the a priori frequencies, and one after which they fit the
uniform frequencies. Unsurprisingly, the latter is significantly smaller than the
time to a full collection: typical collected words “look like” uniform words long
before all words have been collected.

2 Definitions and Notations

If k is a positive integer, let [k] = {1, . . . , k}. For x = (x1, . . . , xk) ∈ R
k, let

‖x‖ =
√∑

i∈[k] x
2
i and if d > 0, let B(x, d) be the closed ball of all vectors y

such that ‖y − x‖ ≤ d.
Let A = {a1, . . . , ak} be an alphabet with k ≥ 2 letters, which we fix from now

on. For any word w ∈ A∗, let comp(w) = (|w|1, . . . , |w|k) denote its composition
vector, where |w|i is the number of occurrences of ai in w. If w is not empty, let
freq(w) = (|w|1

|w| , . . . , |w|k
|w|) denote its frequency vector.

The (natural-based) entropy function on k positive variables is defined by

Hk(x) = Hk(x1, . . . , xk) = −
∑
i∈[k]

xi log xi.

We will omit the index k in the sequel, as it is fixed in our settings, and write
H(x) instead of Hk(x).

Throughout the article, we assume some probability vector p = (p1, . . . , pk)
to be fixed, with pi �= 0 for every i ∈ [k], and we consider statistics in the
memoryless model where each letter ai has probability pi. We denote by PL

this probability measure on AL. We also assume that p is not the uniform
distribution, i.e. there exists i ∈ [k] such that pi �= 1

k . Let pmin = mini∈[k] pi and
pmax = maxi∈[k] pi be the minimal and maximal values of p.

Remark that since the number of letters k ≥ 2 and the probability distri-
bution p are fixed throughout the article, the constants we use may implicitly
depend on p and k.

In our statements and proofs below, we mainly work on frequency vectors of
words of length L, which are very specific vectors of Rk. Depending on our needs,
we will see them as frequency vectors, probability vectors (going from discrete to
continuous), or even just vectors. We therefore introduce the following notations:

– For given positive integer L, let FL denote the set of frequency vectors of
words of length L, defined by

FL =

⎧⎨
⎩(x1, . . . , xk) ∈ R

k :
∑
i∈[k]

xi = 1 and ∀i ∈ [k], xiL ∈ Z>0

⎫⎬
⎭ .

416 P. Duchon and C. Nicaud

– Let P denote the set of probability vectors, defined by

P =

⎧
⎨
⎩(x1, . . . , xk) ∈ R

k :
∑
i∈[k]

xi = 1 and ∀i ∈ [k], 0 ≤ xi ≤ 1

⎫
⎬
⎭ .

– We will also need a restriction of P to probability vectors that are not close
to the border. Let P̃ be the subset of P defined by

P̃ =

⎧⎨
⎩(x1, . . . , xk) ∈ R

k :
∑
i∈[k]

xi = 1 and ∀i ∈ [k],
pmin

2
≤ xi ≤ 1

⎫⎬
⎭ .

3 Main Result and Proof Sketch

In this section we define the problem that is studied in this paper, state our
main result and provide a very informal proof sketch.

3.1 The Biased Partial Coupon Collector Problem

For any two positive integers N and L, we are interested in the following two-
steps process:

1. Generate, independently, N words of length L following the memoryless dis-
tribution of parameter p and collect them in a set SN,L, disregarding multi-
plicities; if a given word is generated several times, it contributes only once
to SN,L (consequently, the number of elements in SN,L is itself random).

2. Draw uniformly at random an element of SN,L, which we call UN,L.

More formally, let X1, . . . , XN be N i.i.d. random words, each of length L
and chosen using the memoryless source of parameter p. If u = (u1, . . . , uN) is
a tuple of elements, of AL, let Set(u) be the set defined by

Set(u) =
{
u ∈ AL : ∃i ∈ [N], ui = u

}
.

The random set SN,L is defined by SN,L = Set(X1, . . . , Xn), and UN,L consists
in choosing uniformly at random an element of SN,L (which cannot be empty in
our settings).

We mainly focus on the typical composition of letters within the result of
our random process, i.e. we are interested in the random vector freq(UN,L).

Intuitively, our main theorem states that when (a) L is small compared to
log N , almost all words have been collected, hence our process is almost the same
as selecting uniformly at random a word of AL: the frequency vector resembles
the uniform distribution. On the other hand, when (c) log N is small compared
to L, only a few number of words have been collected, there are few duplicates,
hence our process is almost the same as just generating one word with the
source. The intermediate range (b) corresponds to an interpolation between the

On the Biased Partial Word Collector Problem 417

two distributions. Also, note that, seeing the process as incrementally collecting
words, regime (a) occurs well before a majority of possible words have been
collected, and that regime (c) lasts well after duplicates have become numerous;
the precise description of the regions for the various regimes is also a part of our
results.

The statement is the following.

Theorem 1. Consider a memoryless source for a fixed alphabet of size k, of
probability vector p that is not the uniform distribution, and define

Φ(t) =
∑
i∈[k]

pt
i, ∀t ∈ R.

Let �0 = −k∑
i∈[k] log pi

and �1 = 1
H(p) . There exist a positive integer L0 and a

positive real λ such that for every integers L ≥ L0 and N ≥ 2, if we set � = L
log N

then the following results hold:

(a) If � ≤ �0, then

P

(
‖freq(UN,L) − x‖ ≥ log L√

L

)
≤ L−λ log L, with x =

(
1
k

, . . . ,
1
k

)
.

(b) If �0 ≤ � ≤ �1, then

P

(
‖freq(UN,L) − xc‖ ≥ log L√

L

)
≤ L−λ log L, with xc =

(
pc
1

Φ(c)
, . . . ,

pc
k

Φ(c)

)
,

where c is the unique solution in [0, 1] of the equation �Φ′(c) + Φ(c) = 0.
(c) If � ≥ �1, then

P

(
‖freq(UN,L) − p‖ ≥ log L√

L

)
≤ L−λ log L, with p = (p1, . . . , pk) .

Remark 1. Observe that if � = �0, then xc = x and that if � = �1, then xc = p.
Observe also that if we allow p = x, then �0 = �1 and everything collapses; in
this case our random process, for any value of N , is just a complicated way to
produce a uniform random word of length L.

Remark 2. A reviewer suggested a change of parameterization that looks promis-
ing, by setting N = (kL)α, for α ∈ R

+. This way the parameter is α and not
�, and they are related by α = 1

� log k . Thus, as N increases for fixed L, α
also increases; notice that the case α = 1 corresponds to the situation where
one draws just enough words to possibly get each existing word exactly once
(though this would happen with extremely small probability). In this param-
eterization, the first threshold α0, corresponding to �1, is α0 = Hk(p), where
Hk(x) = 1

log kH(x) is the entropy in base k of x. The second threshold α1,
corresponding to �0, is α1 = − 1

k
∑

i logk pi
. The reviewer also observed that α1

can be written α1 = 1 + 1
log kDKL(u|p), using the Kullback-Leibler divergence

418 P. Duchon and C. Nicaud

[5, p. 38], which is a classical notion in information theory defined for two positive
vectors x and y of size k by

DKL(x|y) =
∑
i∈[k]

xi log
xi

yi
.

Here the 1 term in the expression for α1 comes from the (base k) entropy of
the uniform distribution vector u. In this form, it is more readily apparent that
α0 < 1 < α1 holds as soon as p is not the uniform vector, since the Kullback-
Leibler divergence is positive.

3.2 Main Steps of the Proof

For this proof sketch, the reader must be aware that we do not mention some
technical conditions that are necessary for some statements to be correct. Our
aim here is only to present an informal guide to the technical sections where
Theorem 1 is proved.

It is convenient to introduce the parameter � defined by L = � log N , as the
main phase transitions appear when the number of words is exponential in their
lengths1. The proof consists in identifying the frequency vectors corresponding
to compositions of words that contribute the more to SN,L.

For a given x ∈ FL, we first prove that there are roughly2 N �H(x) words of
length L whose frequency vector is x. Let WL(x) denote this set of words.

Observe that words that share the same frequency vector x have the same
probability pL(x) = N �

∑
i∈[k] xi log pi of being generated by the memoryless

source. Hence, the probability that a word of WL(x) appears in SN,L is exactly
qN,L(x) := 1 − (1 − pL(x))N . There are two cases: If 1 + �

∑
i∈[k] xi log pi < 0

then qN,L(x) ≈ N1+�
∑

i∈[k] xi log pi ; otherwise qN,L(x) ≈ Θ(1). For w ∈ WL(x),
this can be summarized as follows:

P(w ∈ SN,L) = qN,L(x) ≈ Nmin(0,1+�
∑

i∈[k] xi log pi).

By linearity of expectation, we can thus estimate the expected contribution to
SN,L of WL(x) for a given frequency vector x:

E |SN,L ∩ WL(x)| ≈ N �min(H(x),K�(x)), with K�(x) = H(x) +
1
�

+
∑
i∈[k]

xi log pi.

To find the frequency vectors that contribute the most, we have to study the
function G�(x) = min(H(x),K�(x)). This is the minimum of two strictly concave
functions on P, each of which has a maximum. There are two main situations
for the location of the maximum of such a function, as depicted in Fig. 1 (for
functions of a single variable).
1 It is a more natural view of the process to consider L as fixed and N as varying;
this, however, leads to the somewhat artificial parameterization N = exp(L/�).

2 By “roughly” we mean up to some multiplicative power of L, with L = Θ(logN) at
our scale.

On the Biased Partial Word Collector Problem 419

• •

Fig. 1. The two possibilities for the location of the maximum value of g defined as
the minimum of two concave functions g1 and g2 that both have a maximum. On the
left, the situation where the maximum of g1 (resp. g2) is reached for some x0 with
g2(x0) ≥ g1(x0) (resp. g1(x0) ≥ g2(x0)); in this case, the maximum of g = min(g1, g2)
is g(x0) = g1(x0). On the right, the case were the maxima of both g1 and g2 do not
satisfy the previous condition; the maximum of g is then located at the intersection of
both curves. Note that when dealing with concave functions of several variables, this
intersection is not reduced to a single point, but it still contains the maximum.

It is well known [5] that H(x), the classical entropy function on P, has its
maximum for the uniform distribution x = (1

k , . . . , 1
k), with H(x) = log k. More-

over, by Gibbs’ inequality [5], K�(x) reaches its maximum on P at p. Hence
x and p are two candidates for the first case of Fig. 1, corresponding to cases
(a) and (c) of Theorem 1, respectively. Case (b) corresponds to the second case
of Fig. 1, when K�(x) < H(x) and H(p) < K�(p): the maximum of G�(x) is
reached for a value x such that H(x) = K�(x), i.e. on the hyperplane of equa-
tion

∑
i∈[k] xi log pi = − 1

� . Standard techniques for multivariate differentiable
functions yield that the maximum is located at xc given in Theorem 1.

To turn these informal steps into a full proof of our main statement, we
also need to prove that UN,L resemble the frequency vector that contributes the
most in expectation, to |SN,L ∩ WL(x)|, i.e. that the distribution of freq(UN,L)
is concentrated around xc.

4 Proof of Theorem 1

4.1 Preliminary Results

The following lemma establishes some simple bounds for the cardinality of
WL(x), justifying the rough estimate of N �H(x) discussed in Sect. 3.2.

Lemma 1. There exists a positive real constant α such that for all x ∈ P,

|WL(x)| ≤ αeL H(x) = αN � H(x). (1)

There exists a positive real constant β such that for all x ∈ P̃, such that for all
y ∈ B(x, k

L) ∩ FL we have

|WL(y)| ≥ βL− k−1
2 eL H(x) = βL

k−1
2 N � H(x). (2)

Moreover B(x, k
L) ∩ FL is not empty.

Lemma 2 below will be used to prove that sufficiently many words of SN,L

have a (well chosen) frequency vector y. It is proved using the study of negatively
associated random variables by Dubhashi and Ranjan [2].

420 P. Duchon and C. Nicaud

Lemma 2. Let y ∈ FL such that qN,L(y) ≥ γ, for some γ > 0. Then the
following inequality holds:

P

(
|WL(y) ∩ SN,L| ≤ γ

2
|WL(y)|

)
≤ exp

(
−γ2|WL(y)|

2

)
.

For x ∈ P, let BL(x) be the set of probability vectors that are far from x:

BL(x) =
{
y ∈ P : ‖y − x‖ ≥ log L√

L

}
.

Proposition 1 is our main tool for proving Theorem 1. The technical condi-
tions can be seen as follows. Condition (1) is used to obtain an upper bound on
the number of elements of SN,L whose frequency vectors are in BL, which holds
with very high probability (using the Markov inequality from the bound on the
expectation). Condition (2) ensures that with high probability we have a lot of
elements of SN,L whose frequency vectors are not in BL; the precise statement
of the condition is chosen to fit the formula within the exponential in Lemma 2.

Proposition 1. Let �− and �+ in R ∪ {−∞,+∞} such that �− < �+. Let L0

be a sufficiently large integer, and x ∈ P̃. Assume that there exist two positive
constants λ1 and λ2, such that, for any L ≥ L0 and N ≥ 2 for which � =
L/ log(N) satisfies �− ≤ � ≤ �+; then for any y ∈ B(x, k/L) the following two
conditions hold:

(1) E|WL(BL(x)) ∩ SN,L| ≤ L−λ1 log LN �H(x)qN,L(y);
(2) N �H(x)qN,L(y)2 ≥ Lλ2 log L.

Then, there exists λ > 0 such that P
(
‖UN,L − x‖ ≥ log L√

L

)
≤ L−λ log L holds for

any (L,N) satisfying the same conditions.

Lemma 3 will be used to prove that Condition (1) of Proposition 1 holds
in certain cases. Its proof heavily relies on concavity in order to extend a local
bound globally.

Lemma 3. Let f be a concave continuous function on a convex domain C ⊆ R
k

that has a maximum on C at y. Assume furthermore that there exist two positive
real constants ρ and η such that for every x ∈ B(y, ρ)∩C the following inequality
holds:

f(x) ≤ f(y) − η‖x − y‖2.
Then for every positive real r ≤ ρ, for every x ∈ C such that ‖x − y‖ > r we
have f(x) ≤ f(y) − η r2.

Finally, we will use the following bounds for pL(y) and qN,L(y) in terms of
pL(x), which are obtained using basic computations.

Lemma 4. Let x ∈ P̃ and let y ∈ B(x, k/L) ∩ P. There exist two positive
constants κ1 and κ2 such that κ1pL(x) ≤ pL(y) ≤ 2κ2pL(x) and

1 − exp(−κ1N pL(x)) ≤ qN,L(y) ≤ 1 − exp(−κ2N pL(x)).

On the Biased Partial Word Collector Problem 421

4.2 Proof for Range (a): � ≤ �0

In this section, we are in the case where � ≤ �0 = −k∑
i∈[k] log pi

. Our goal is to apply

Proposition 1 for x = x = (1
k , . . . , 1

k), with �− = −∞ and �+ = �0. Observe that
N �H(x) = kL and that, by Lemma 4, for any y ∈ B(x, k/L) we have

qN,L(y) ≥ 1 − exp(−κ1NpL(x)) = 1 − exp
(
−κ1N

1+ �
k

∑
i∈[k] log pi

)
.

As � ≤ �0, we have 1 + �
k

∑
i∈[k] log pi ≥ 0 and thus qN,L(y) ≥ 1 − e−κ1 .

To verify Condition (1) of Proposition 1, we rely on the following result on the
entropy function H, which can be obtained by standard techniques of analysis
in several variables:

Lemma 5. The exists a neighborhood Vx of x = (1
k , . . . , 1

k) such that, for every
x ∈ P ∩ Vx the following inequalities hold:

log k − k‖x − x‖2 ≤ H(x) ≤ log k − k‖x − x‖2
3

. (3)

When L is sufficiently large, B(x, log L/
√

L) ⊆ Vx of Lemma 5. So we can
apply Lemma 3 with y = x and r = log L/

√
L, to obtain that for every x ∈ BL(x)

we have

H(x) ≤ H(x) − η log2 L

L
= log k − k log2 L

3L
.

By Lemma 1, we can bound the number of words in WL(x) for x ∈ BL(x):

|WL(x)| ≤ αN � H(x) ≤ αN � log k−� k log2 L
3L = αkL L−k log L/3.

Observe that |BL ∩ FL| ≤ |FL| ≤ Lk, since there are at most Lk compositions
of letters for words of AL. Therefore,

E|WL(BL(x)) ∩ SN,L| ≤ |WL(BL(x)) ∩ FL| ≤ αLk kL L−k log L/3.

This proves that Condition (1) holds in our case, since for any λ1 < k
3 , the right

term is at most qN,L(y)kLL−λ1 log L, as we saw that qN,L(y) ≥ 1 − e−κ1 at the
beginning of the section.

Condition (2) trivially holds as we have, for any λ2 > 0:

N �H(x)qN,L(y)2 ≥ (1 − e−κ1)2kL ≥ Lλ2 log L.

We can therefore apply Proposition 1, concluding the proof for range (a).

4.3 Proof for Range (b): �0 ≤ � ≤ �1

In this section, we are in the case where −k∑
i∈[k] log pi

≤ � ≤ 1
H(p) . Our goal is still

to apply Proposition 1, but we first need to find the vector x that concentrates
the frequency vectors of the output of our process.

422 P. Duchon and C. Nicaud

Recall that K�(x) = H(x)+ 1
� +

∑
i∈[k] xi log pi. We have the following bound

on the expected number of words of given frequency vectors that appear in SN,L.
It is obtained by linearity of the expectation, and by obtaining bounds on qN,L(x)
as in Lemma 4.

Lemma 6. Let x ∈ P. The expected cardinality of SN,L ∩ WL(x) satisfies

E |SN,L ∩ WL(x)| ≤ 2αN �min(H(x),K�(x)),

with the same α as in Lemma 1.

Recall that G�(x) = min(H(x),K�(x)), so we can rewrite the bound in
Lemma 6 into 2αNG�(x). We now study G�(x) for the range corresponding
to case (b), i.e. �0 ≤ � ≤ �1. Recall also that Φ is the mapping defined by
Φ(t) =

∑
i∈[k] p

t
i.

Lemma 7. For any � such that �0 ≤ � ≤ �1, as a function on P, the function
G�(x) admits a unique maximum at xc = 1

Φ(c) (p
c
1, . . . , p

c
k), where c ∈ [0, 1] is the

unique solution of �Φ′(c) + Φ(c) = 0. Moreover, xc is in the hyperplane defined
by the equation H(x) = K�(x).

Now that the maximum xc is located, we want to provide an upper bound
the expect cardinality of BL(xc)∩SN,L, to fulfill Condition (1) of Proposition 1.
For this, we want to use Lemma 3, and therefore need an upper bound of G�(x)
around its maximum G�(xc). This is the purpose of Lemma 8 below, whose proof
relies on classical analysis of functions of several variables.

Lemma 8. Let c be the unique solution of �Φ′(c)+Φ(c) = 0. There exists a real
constant ρ > 0 such that for every x ∈ B(xc, ρ)∩P, G�(x) ≤ G�(xc)−‖x−xc‖2.

We will also need the following technical lemma, to prove that the cardinality
of WL(xc), which is roughly N �H(xc), is at least some power of N . Its proof
consists in studying � �→ �H(xc), where c is viewed as a function of � given by
the implicit solution of �Φ′(c) + Φ(c) = 0.

Lemma 9. For � within range (b), let c be the solution of �Φ′(c)+Φ(c) = 0, the
quantity �H(xc) satisfies the following inequalities:

0 < d ≤ �H(xc) ≤ 1, with d =
k log k

−∑
i∈[k] log pi

.

Since H(xc) = K�(xc), we have N �H(xc) = N �G�(xc). Moreover, by Lemma 4,
for any y ∈ B(xc, k/L) we have

qN,L(y) ≥ 1 − exp(−κ1NpL(xc)) = 1 − exp
(

−κ1N
1+�

∑
i∈[k]

pc
i

Φ(c) log pi

)
.

But �
∑

i∈[k]
pc

i

Φ(c) log pi = �Φ′(c)
Φ(c) = −1. Therefore, qN,L(y) ≥ 1 − e−κ1 .

On the Biased Partial Word Collector Problem 423

We can now prove that Condition (1) holds. By Lemmas 8 and 3, when L is
sufficiently large, for all x ∈ BL(xc) we have G�(x) ≤ G�(xc) − log2 L/L. Thus,
by Lemma 6 we have

E|WL(x) ∩ SN,L| ≤ 2αN �G�(x) ≤ 2αN �G�(xc)−� log2 L/L = 2αN �H(xc)L− log L.

Since |BL(xc) ∩ SN,L| ≤ |FL| ≤ Lk, by linearity of the expectation we have

E|WL(BL(xc)) ∩ SN,L| ≤ 2αLkN �H(xc)L− log L.

As qN,L(y) ≥ 1 − e−κ1 , Condition (1) holds since

E|WL(BL(xc)) ∩ SN,L| ≤ N �H(xc)qN,L(y)L− 1
2 log L.

Condition (2) also holds: by Lemma 9, we have

N �H(xc)qN,L(y)2 ≥ Nd(1 − e−κ1)2 ≤ L− log L,

since the condition � ≤ �1 implies that N grows exponentially in L. Therefore,
we can apply Proposition 1, concluding the proof for range (b).

4.4 Proof for Range (c): � ≥ �1

For this range we cannot only rely on Proposition 1, as when � is very large, N is
small towards log L, or even towards L, and the conditions do not hold anymore.
We therefore split the proof into several subranges for �.

To provide an upper bound for the expected cardinality of |BL(p) ∩ SN,L|,
we use the classical large deviation results for the multinomial distribution [7,
p. 462] to obtain the following lemma:

Lemma 10. The following inequality holds: PL (BL(p)) ≤ 2k L− 1
2 log L.

As a consequence, since we generate N random words with the source,

E|BL(p) ∩ SN,L| ≤ 2kN L− 1
2 log L.

Observe also that pL(p) = N−�H(p), thus by Lemma 4, for y ∈ BL(p, k/L),

qN,L(y) ≥ 1 − exp(−κ1NpL(p)) = 1 − exp
(
−κ1N

1−�H(p)
)

.

As e−t ≤ 1 − t
2 for t ∈ [0, 1], we have qN,L(y) ≥ κ1

2 N1−�H(p). Thus we have
N �H(p)qN,L(y) ≥ κ1

2 N and Condition (1) of Proposition 1 holds for any λ1 ∈
(0, 1

2). Unfortunately, Condition (2) does not always hold, and we have to change
the proof when � is too large.

� case 1
H (p) ≤ � ≤ 3

2H (p) : in this case, Condition (2) holds. Indeed,

N �H(p)qN,L(y)2 ≥ κ1

2
N2−�H(p) ≥ κ1

2

√
N.

424 P. Duchon and C. Nicaud

But the condition � ≤ 3
2H(p) implies that N grows exponentially in N . Hence,

Proposition 1 applies and the result holds for this subrange.

� case 3
2H (p) ≤ � ≤ �2: where �2 = 2

− log λ , for some λ ∈ (pmax, 1). To complete
the proof, we have to establish that |SN,L| is large with very high probability.
By Lemma 1, there exists y ∈ B(p, 1

L) such that |WL(y)| ≥ βL(1−k)/2N �H(p).
By Lemma 4, pL(y) ≥ κ1N

�H(p) and therefore PL(WL(y)) ≥ κL(1−k)/2, with
κ = κ1β.

We now consider the process from the start, when the N words of length
L are repeatedly generated by the source. Let YN,L be the random variable
that counts the number of words of WL(y) generated during this process. The
random variable YN,L is distributed as a binomial distribution of coefficients N
and PL(WL(y)): E[YN,L] = NPL(WL(y)) and there is concentration around the
mean, by Chernoff-Hoeffding inequality:

P

(
YN,L ≤ κ

2
L(1−k)/2N

)
≤ exp

(−κ2

2
L1−kN

)
≤ L− log L, (4)

for L sufficiently large, since N is exponential in L when � ≤ �2. In the process of
repeatedly generating N words, a word u is called a y-duplicate if freq(u) = y
and u has already been generated. Let DN,L be the random variable that counts
the number of y-duplicates. We have |SN,L ∩ WL(y)| = YN,L − DN,L. If we only
look at what happens inside WL(y), we are considering the process of choosing
YN,L times an element of WL(y) uniformly at random, as they all have the same
probability of being generated. We will use the following classical lemma.

Lemma 11. Let E be a set of cardinality n ≥ 1. Let DE(n) denote the number
of duplicates obtained when generating m times an element of E uniformly at
random. Then

E[DE(n)] ≤ m2

2n
.

Since YN,L ≤ N , the expected number of duplicates in SN,L satisfies

E[DN,L] ≤ N2

2|WL(y)| ≤ L(k−1)/2

2β
N2−�H(p) ≤ L(k−1)/2

2β

√
N.

By Markov inequality, as N is exponential in L, we get that for any positive ν

P

(
DN,L ≥ L2ν log L

√
N

)
≤ P

(
DN,L ≥ L(k−1)/2

2β
Lν log L

√
N

)
≤ L−ν log L. (5)

Equations 4 and 5 ensure by the union bound that

P

(
YN,L − DN,L ≤ κ

2
L(1−k)/2N − L2ν log L

√
N

)
≤ L− log L + L−ν log L.

On the Biased Partial Word Collector Problem 425

Recall that YN,L − DN,L = |W(y) ∩ SN,L|. As N is exponential in L, for any
positive constant μ we have

P
(|W(y) ∩ SN,L| ≤ L−μ log LN

) ≤ 2L−ν log L.

Such a precise estimation of the cardinality of W(y) ∩ SN,L can be used as
a substitute for Condition (2) of Proposition 1, concluding the proof for this
subrange.

� case � ≥ �2: In this case, we simply rely on this classical result deduced from
the Birthday Paradox problem, to establish that with very high probability, there
are no duplicates in SN,L.

Lemma 12. If � ≥ �2, then the probability that |SN,L| < N is exponentially
small in L.

As a consequence, this proves our result for � ≥ �2: if the N elements generated
by the source are pairwise distinct, then UN,L is distributed as a random element
of the source. By Lemma 12, this happen with probability at least 1 − L− log L.

5 Conclusions

In this article, we exhibited two thresholds for the typical frequency vector of a
word in the partial word collector problem, for a memoryless source of parame-
ter p. We were able to establish that with high probability, it resembles either
the uniform distribution, or a word generated by the source, or some vector in
between, which we fully characterize.

We want to make the observation that, though two words with the same
frequency vector have the same probability to be the result UN,L of our process,
UN,L is not distributed as the output of a memoryless source: the computations
for 3 words of length 2 on {a, b} show that the probability that UN,L ends by a
is not the same if we condition by starting by a or by b.

A natural continuation of this work, is to study the case where the N words
are not independent anymore, but are the factors of length L of a random word
of length N + L − 1. As shown for instance in [4], the correlation between the
factors is small, so we expect a similar result, even if it is still ongoing work.

Another possible extension would be to study a similar word collection pro-
cess when words are not produced by a memoryless source; say, using a Markov
source instead. One would expect at least equivalents of regimes (a) and (c) in
our theorem, though regime (c) could have asymptotic frequencies that are not
uniform (as the support of the distribution may not be AL); and any intermedi-
ate regime(s) could be much more difficult to determine.

Acknowledgments. The authors are grateful to Arnaud Carayol for his precious help
when preparing this article, and an anonymous reviewer for suggesting the promising
alternative α-parametrization of the problem.

426 P. Duchon and C. Nicaud

References

1. Du Boisberranger, J., Gardy, D., Ponty, Y.: The weighted words collector. In: AOFA
- 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Meth-
ods for the Analysis of Algorithms - 2012, pp. 243–264. DMTCS (2012)

2. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random
Struct. Algorithms 13(2), 99–124 (1998)

3. Duchon, P., Nicaud, C., Pivoteau, C.: Gapped pattern statistics. In: Kärkkäinen,
J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial
Pattern Matching, CPM 2017, 4–6 July 2017, Warsaw, Poland. LIPIcs, vol. 78, pp.
21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

4. Gheorghiciuc, I., Ward, M.D.: On correlation polynomials and subword complexity.
In: Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings,
vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), January 2007

5. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge (2003)

6. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random
words. Fundam. Inform. 145(3), 371–384 (2016)

7. Van Der Vaart, A.W., Wellner, J.A.: Weak convergence. In: Van Der Vaart,
A.W., Wellner, J.A. (eds.) Weak Convergence and Empirical Processes, pp. 16–28.
Springer, New York (1996). https://doi.org/10.1007/978-1-4757-2545-2 3

https://doi.org/10.1007/978-1-4757-2545-2_3

Constructive Ramsey Numbers for Loose
Hyperpaths

Andrzej Dudek1(B) and Andrzej Ruciński2

1 Department of Mathematics, Western Michigan University, Kalamazoo, MI, USA
andrzej.dudek@wmich.edu

2 Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland
rucinski@amu.edu.pl

Abstract. For positive integers k and �, a k-uniform hypergraph is
called a loose path of length �, and denoted by P

(k)
� , if its vertex set

is {v1, v2, . . . , v(k−1)�+1} and the edge set is {ei = {v(i−1)(k−1)+q : 1 ≤
q ≤ k}, i = 1, . . . , �}, that is, each pair of consecutive edges intersects

on a single vertex. Let R(P
(k)
� ; r) be the multicolor Ramsey number of

a loose path that is the minimum n such that every r-edge-coloring of
the complete k-uniform hypergraph K

(k)
n yields a monochromatic copy

of P
(k)
� . In this note we are interested in constructive upper bounds on

R(P
(k)
� ; r) which means that on the cost of possibly enlarging the order

of the complete hypergraph, we would like to efficiently find a monochro-
matic copy of P

(k)
� in every coloring. In particular, we show that there

is a constant c > 0 such that for all k ≥ 2, � ≥ 3, 2 ≤ r ≤ k − 1,
and n ≥ k(� + 1)r(1 + ln(r)), there is an algorithm such that for every

r-edge-coloring of the edges of K
(k)
n , it finds a monochromatic copy of

P
(k)
� in time at most cnk.

1 Introduction

For positive integers k ≥ 2 and � ≥ 0, a k-uniform hypergraph is called a loose
path of length �, and denoted by P

(k)
� , if its vertex set is {v1, v2, . . . , v(k−1)�+1}

and the edge set is {ei = {v(i−1)(k−1)+q : 1 ≤ q ≤ k}, i = 1, . . . , �}, that is, for
� ≥ 2, each pair of consecutive edges intersects on a single vertex (see Fig. 1),
while for � = 0 and � = 1 it is, respectively, a single vertex and an edge. For
k = 2 the loose path P

(2)
� is just a (graph) path on � + 1 vertices.

Let H be a k-uniform hypergraph and r ≥ 2 be an integer. The multicolor
Ramsey number R(H; r) is the minimum n such that every r-edge-coloring of
the complete k-uniform hypergraph K

(k)
n yields a monochromatic copy of H.

A. Dudek—supported in part by Simons Foundation Grant #522400.
A. Ruciński—supported in part by the Polish NSC grant 2014/15/B/ST1/01688.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 427–436, 2018.
https://doi.org/10.1007/978-3-319-77404-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_31&domain=pdf

428 A. Dudek and A. Ruciński

Fig. 1. A 4-uniform loose path P
(4)
3 .

For graphs, determining the Ramsey number R(P (2)
� , r) is a well-known prob-

lem that attracted a lot of attention. It was shown by Gerencsér and Gyárfás [6]
that

R(P (2)
� , 2) =

⌊
3� + 1

2

⌋
. (1)

For three colors Figaj and �Luczak [5] proved that R(P (2)
� , 3) ≈ 2�. Soon after,

Gyárfás et al. [7,8] determined this number exactly, showing that for all suffi-
ciently large �

R(P (2)
� , 3) =

{
2� + 1 for even �,

2� for odd �,
(2)

as conjectured earlier by Faudree and Schelp [4]. For r ≥ 4 much less is known.
A celebrated Turán-type result of Erdős and Gallai [3] implies that

R(P (2)
� , r) ≤ r�. (3)

Recently, this was slightly improved by Sárközy [9] and, subsequently, by Davies
et al. [1] who showed that for all sufficiently large �,

R(P (2)
� ; r) ≤ (r − 1/4)(� + 1). (4)

In this note we are mostly interested in constructive bounds which means
that on the cost of possibly enlarging the order of the complete hypergraph, we
would like to efficiently find a monochromatic copy of a target hypergraph F in
every coloring. Clearly, by examining all copies of F in K

(k)
n for n ≥ R(F ; r),

we can always find a monochromatic one in time O(n|V (F)|). Hence, we are
interested in complexity not depending on F , preferably O(nk). Given a k-graph
F , a constant c > 0 and integers r and n, we say that a property R(F, r, c, n)
holds if there is an algorithm such that for every r-edge-coloring of the edges of
K

(k)
n , it finds a monochromatic copy of F in time at most cnk. For graphs, a

constructive result of this type can be deduced from the proof of Lemma 3.5 in
Dudek and Pra�lat [2].

Theorem 1 ([2]). There is a constant c > 0 such that for all � ≥ 3, r ≥ 2, and
n ≥ 2r+1�, property R(P (2)

� , r, c, n) holds.

Our goal is to obtain similar constructive results for loose hyperpaths. How-
ever, to have a reference point we first state, without proof, a general (non-
constructive) upper bound, obtained iteratively for all k ≥ 2, starting from the
Erdős-Gallai bound (3).

Constructive Ramsey Numbers for Loose Hyperpaths 429

Theorem 2. For all k ≥ 2, � ≥ 3, and r ≥ 2 we have R(P (k)
� ; r) ≤ (k − 1)�r.

One can show that Theorem 2 can be improved for r = 2 or for large �. For
r = 2, using (1) instead of (3) at the base step, one gets, for k ≥ 3,

R(P (k)
� ; 2) ≤ (2k − 5/2)�. (5)

For large �, using (2) instead of (3), we obtain for r = 3 that

R(P (k)
� ; 3) ≤ (3k − 4)�,

and for r ≥ 4, by (4),

R(P (k)
� ; r) ≤ (k − 1)�r − �/4.

By replacing the Erdős-Gallai bound (3) with the assumption on n given in
Theorem 1, the proof of Theorem 2 can be adapted to yield a constructive result.

Theorem 3. There is a constant c > 0 such that for all k ≥ 2, � ≥ 3, r ≥ 2,
and n ≥ 2r+1� + (k − 2)�r, property R(P (k)

� , r, c, n) holds.

Our main constructive bound (valid only for r ≤ k) utilizes a more sophisti-
cated algorithm.

Theorem 4. There is a constant c > 0 such that for all k ≥ 2, � ≥ 3, 2 ≤ r ≤ k,
and n ≥ k(�+1)r

(
1 + 1

k−r+1 + ln
(
1 + r−2

k−r+1

))
, property R(P (k)

� , r, c, n) holds.
For r = 2, the bound on n can be improved to n ≥ (2k − 2)� + k.

Note that for r = 2 the lower bound on n in Theorem 4 is very close to that
in (5). For r = k ≥ 3 the bound assumes a simple form

n ≥ k2(� + 1)(2 + ln(k − 1)).

Furthermore, for r ≤ k − 1, one can show that

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

)
≤ ln

(
1 +

r − 1
k − r

)

which yields the following corollary.

Corollary 1. There is a constant c > 0 such that for all k ≥ 3, � ≥ 3, 3 ≤ r ≤
k − 1, and n ≥ k(� + 1)r

(
1 + ln

(
1 + r−1

k−r

))
, property R(P (k)

� , r, c, n) holds.

We can further replace the lower bound on n by (slightly weaker but simpler)
n ≥ k(� + 1)r(1 + ln r).

Observe that in several instances the lower bound on n in Theorem 4 (and
also in Corollary 1) is significantly better (that means smaller) than the one
in Theorem 3 (for example for large k and k/2 ≤ r ≤ k). On the other hand,
for some instances the bounds in Theorems 3 and 4 are basically the same. For
example, for fixed r, large k and � ≥ k the lower bound is k�r + o(k�). This also
matches asymptotically the bound in Theorem 2.

In this note we only present the proof of Theorem 4.

430 A. Dudek and A. Ruciński

2 Proof of Theorem 4

Given integers k and 2 ≤ m ≤ k, and disjoint sets of vertices W1, . . . ,Wm−1, Vm,
an m-partite complete k-graph K(k)(W1, . . . ,Wm−1, Vm) consists of all k-tuples
of vertices with exactly one element in each Wi, i = 1, . . . , m − 1, and k − m + 1
elements in Vm. Note that if |Wi| ≥ �, i = 1, . . . ,m−1, and |Vm| ≥ �(k−m)+1 for
m ≤ k−1 (or |Vm| ≥ � for m = k), then K(k)(W1, . . . ,Wm−1, Vm) contains P

(k)
� .

We now give a description of the algorithm. As an input there is an r-coloring
of the edges of the complete k-graph K

(k)
n . The algorithm consists of r − 1

implementations of the depth first search (DFS) subroutine, each round exploring
the edges of one color only and either finding a monochromatic copy of P

(k)
� or

decreasing the number of colors present on a large subset of vertices, until after
the (r−1)st round we end up with a monochromatic complete r-partite subgraph,
large enough to contain a copy of P

(k)
� .

During the ith round, while trying to build a copy of the path P
(k)
� in the

ith color, the algorithm selects a subset Wi,i from a set of still available vertices
Vi ⊆ V and, by the end of the round, creates trash bins Si and Ti. The search
for P

(k)
� is realized by a DFS process which maintains a working path P (in the

form of a sequence of vertices) whose endpoints are either extended to a longer
path or otherwise put into Wi,i. The round is terminated whenever P becomes a
copy of P

(k)
� or the size of Wi,i reaches certain threshold, whatever comes first.

In the latter case we set Si = V (P).
To better depict the extension process, we introduce the following terminol-

ogy. An edge of P
(k)
� is called pendant if it contains at most one vertex of degree

two. The vertices of degree one, belonging to the pendant edges of P
(k)
� are called

pendant. In particular, in P
(k)
1 all its k vertices are pendant. For convenience, the

unique vertex of the path P
(k)
0 is also considered to be pendant. Observe that

for t ≥ 0, to extend a copy P of P
(k)
t to a copy of P

(k)
t+1 one needs to add a new

edge which shares exactly one vertex with P and that vertex has to be pendant
in P . Our algorithm may also come across a situation when P = ∅, that is, P
has no vertices at all. Then by an extension of P we mean any edge whatsoever.

The sets Wi,i have a double subscript, because they are updated in the later
rounds to Wi,i+1, Wi,i+2, and so on, until at the end of the (r−1)st round (unless
a monochromatic P

(k)
� has been found) one obtains sets Wi := Wi,r−1, i =

1, . . . , r − 1, a final trash set T =
⋃r−1

i=1 Ti ∪ ⋃r−1
i=1 Si and the remainder set Vr =

V \ (
⋃r−1

i=1 Wi ∪ T) such that all k-tuples of vertices in K(k)(W1, . . . ,Wr−1, Vr)
are of color r. As an input of the ith round we take sets Wj,i−1, j = 1, . . . , i − 1,
and Vi−1, inherited from the previous round, and rename them to Wj,i, j =
1, . . . , i − 1, and Vi. We also set Ti = ∅ and P = ∅, and update all these sets
dynamically until the round ends.

Constructive Ramsey Numbers for Loose Hyperpaths 431

Now come the details. For 1 ≤ i ≤ r − 1, let

τi =

⎧⎨
⎩

(i − 1)
(

�
k−r+1 + �+1

k−r+2 + · · · + �+1
k−i

)
if 1 ≤ i ≤ r − 2,

(r − 2) �
k−r+1 if i = r − 1,

(6)

and
ti = τi + 2(i − 1).

Note that τi is generally not an integer. It can be easily shown that for all
2 ≤ r ≤ k and 1 ≤ i ≤ r − 1

τi ≤ (i − 1)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
. (7)

Before giving a general description of the ith round, we deal separately with
the 1st and 2nd round.

Round 1. Set V1 = V , W1,1 = ∅, and P = ∅. Select an arbitrary edge e of
color one (say, red), add its vertices to P (in any order), reset V1 := V1\e, and
try to extend P to a red copy of P

(k)
2 . If successful, we appropriately enlarge P ,

diminish V1, and try to further extend P to a red copy of P
(k)
3 . This procedure

is repeated until finally we either find a red copy of P
(k)
� or, otherwise, end up

with a red copy P of P
(k)
t , for some 1 ≤ t ≤ � − 1, which cannot be extended

any more. In the latter case we shorten P by moving all its pendant vertices to
W1,1 and try to extend the remaining red path again. When t ≥ 2, the new path
has t − 2 edges. If t = 2, P becomes a single vertex path P

(k)
0 , while if t = 1, it

becomes empty.
Let us first consider the simplest but instructive case r = 2 in which only

one round is performed. If at some point P = ∅ and cannot be extended (which
means there are no red edges within V1), then we move � − |W1,1| arbitrary
vertices from V1 = V \W1,1 to W1,1 and stop. Otherwise, we terminate Round 1
as soon as

|W1,1| ≥ �.

At that moment, no edge of K(k)(W1,1, V1) is red (so, all of them must be, say,
blue). Moreover, since the size of W1,1 increases by increments of at most 2(k−1),
we have

� ≤ |W1,1| ≤ � + 2(k − 1) − 1,

and, consequently,

|V1| = n − |W1,1| − |V (P)| ≥ n − � − 2(k − 1) + 1 − |V (P (k)
�−1)| ≥ �(k − 2) + 1

by our bound on n. This means that the completely blue copy of K(k)(W1,1, V1)
is large enough to contain a copy of P

(k)
� .

When r ≥ 3, there are still more rounds ahead during which the set W1,1 will
be cut down, so we need to ensure it is large enough to survive the entire process.

432 A. Dudek and A. Ruciński

To this end we alter the stopping rule as follows. If at some point P = ∅ and
cannot be extended, we move �(k − 1)τ2	+ �+1− |W1,1| arbitrary vertices from
V1 = V \W1,1 to W1,1 and stop. Otherwise, we terminate Round 1 as soon as

|W1,1| ≥ (k − 1)τ2 + � + 1. (8)

Since the size of W1,1 increases by increments of at most 2(k −1) and the R-H-S
of (8) is not necessarily integer, we also have

|W1,1| ≤ (k − 1)τ2 + � + 1 + 2(k − 1). (9)

Finally, we set S1 := P , T1 = ∅ for mere convenience, and V1 := V \ (W1,1 ∪
S1 ∪ T1). Note that |S1| ≤ |V (P (k)

�−1)| = (� − 1)(k − 1) + 1. Also, it is important
to realize that no edge of K(k)(W1,1, V1) is colored red.

Round 2. We begin with resetting W1,2 := W1,1 and V2 := V1, and setting
P := ∅, W2,2 = ∅, and T2 := ∅. In this round only the edges of color two (say,
blue) belonging to K(k)(W1,2, V2) are considered. Let us denote the set of these
edges by E2. We choose an arbitrary edge e ∈ E2, set P = e, and try to extend
P to a copy of P

(k)
2 in E2 but only in such a way that the vertex of e belonging

to W1,2 remains of degree one on the path. Then, we try to extend P to a copy
of P

(k)
3 in E2, etc., always making sure that the vertices in W1,2 are of degree

one. Eventually, either we find a blue copy of P
(k)
� or end up with a blue copy P

of P
(k)
t , for some 1 ≤ t ≤ � − 1, which cannot be further extended. We move the

pendant vertices of P belonging to W1,2 to the trash set T2, while the remaining
pendant vertices of P go to W2,2. Then we try to extend the shortened path
again.

We terminate Round 2 as soon as P = ∅ cannot be extended or

|W2,2| ≥ (k − 2)τ2.

In the former case we move �(k − 2)τ2	 − |W2,2| arbitrary vertices from V2 to
W2,2. Note that at the end of this round

|W2,2| ≤ (k − 2)τ2 + 2(k − 2). (10)

We set S2 := V (P) and V2 := V \(W1,2 ∪ W2,2 ∪ S2 ∪ T2). Observe that no edge
of K(k)(W1,2,W2,2, V2) is red or blue. We will now show that

|T2| ≤ t2 and |W1,2| ≥ (k − 2)τ2. (11)

First observe that

|W1,1| ≤ |W1,2| + |T2| + � − 1. (12)

Indeed, at the end of this round W1,1 is the union of W1,2 ∪ T2 and the vertices
in V (P) ∩ W1,2 that were moved to S2. Since |V (P) ∩ W1,2| ≤ � − 1, (12) holds.

Constructive Ramsey Numbers for Loose Hyperpaths 433

Also note that each vertex in T2 can be matched with a set of k − 2 or k − 1
vertices in W2,2, and all these sets are disjoint. Consequently,

|W2,2| ≥ (k − 2)|T2|. (13)

Inequality (13) immediately implies that

|T2|
(13)

≤ 1
k − 2

|W2,2|
(10)

≤ τ2 + 2 = t2.

Furthermore,

(k − 1)τ2 + � + 1
(8)

≤ |W1,1|
(12)

≤ |W1,2| + |T2| + � − 1 ≤ |W1,2| + τ2 + � + 1,

completing the proof of (11).
From now on we proceed inductively. Assume that i ≥ 3 and we have just

finished round i − 1 constructing so far, for each 1 ≤ j ≤ i − 1, sets Sj , Tj , and
Wj,i−1, satisfying

|Wj,i−1| ≥ k − i + 1
i − 2

τi−1, (14)

|Si−1| ≤ |V (P (k)
�−1)|, and |Ti−1| ≤ ti−1, and the residual set

Vi−1 = V \
i−1⋃
j=1

(Wj,i−1 ∪ Sj ∪ Tj)

such that K(k)(W1,i−1, . . . ,Wi−1,i−1, Vi−1) contains no edge of color 1, 2, . . . , or
i − 1.

Round i, 3 ≤ i ≤ r − 1. We begin the ith round by resetting W1,i :=
W1,i−1, . . . ,Wi−1,i := Wi−1,i−1, and Vi := Vi−1, and setting P := ∅, Wi,i := ∅,
and Ti := ∅. We consider only edges of color i in K(k)(W1,i, . . . ,Wi−1,i, Vi). Let
us denote the set of such edges by Ei.

As in the previous steps we are trying to extend the current path P using
the edges of Ei, but only in such a way that the vertices of degree two in P
belong to Vi. When an extension is no longer possible and P �= ∅, we move
the pendant vertices of P belonging to

⋃i−1
j=1 Wj,i to the trash set Ti, while the

remaining pendant vertices of P go to Wi,i (see Fig. 2). Then we try to extend
the shortened path. We terminate the ith round as soon as P = ∅ cannot be
extended or

|Wi,i| ≥ k − i

i − 1
τi.

In the former case we move �k−i
i−1 τi	−|Wi,i| vertices from Vi to Wi,i. In the latter

case, set Si := V (P). This yields that

|Wi,i| ≤ k − i

i − 1
τi + 2(k − i). (15)

434 A. Dudek and A. Ruciński

Fig. 2. Applying the algorithm to a 7-uniform hypergraph. Here i = 4 and path P ,
which consists of edges e1, e2, and e3, cannot be extended. Therefore, the vertices in
V (P) ∩ (W1,4 ∪ W2,4 ∪ W3,4) are moved to the trash bin T4 and the pendant vertices
in V4 ∩ (e1 ∪ e3) are moved to W4,4.

Similarly as in (12) and (13) notice that for all 1 ≤ j ≤ i − 1

|Wj,i−1| ≤ |Wj,i| +
|Ti|
i − 1

+ � − 1 (16)

and
|Ti| ≤ i − 1

k − i
|Wi,i| ≤ τi + 2(i − 1) = ti. (17)

Thus,

k − i + 1
i − 2

τi−1

(14)

≤ |Wj,i−1|
(16),(17)

≤ |Wj,i|+ τi

i − 1
+2+�−1 = |Wj,i|+ τi

i − 1
+�+1

and, since also
k − i + 1

i − 2
τi−1

(6)
=

k − i + 1
i − 1

τi + � + 1,

we get

|Wj,i| ≥ k − i

i − 1
τi. (18)

Consequently, when the ith round ends, we have (18) for all 1 ≤ j ≤ i. We also
have |Si| ≤ |V (P (k)

�−1)|, |Ti| ≤ ti, and Vi = V \ ⋃i
j=1(Wj,i ∪ Sj ∪ Tj) such that

K(k)(W1,i, . . . ,Wi−1,i,Wi,i, Vi) has no edges of color 1, 2, . . . , or i.
In particular, when the (r − 1)st round is finished, we have, for each 1 ≤ j ≤

r − 1,

|Wj,r−1| ≥ k − r + 1
r − 2

τr−1, (19)

|Sr−1| ≤ |V (P (k)
�−1)| and |Tr−1| ≤ tr−1. Set Wj := Wj,r−1, j = 1, . . . , r − 1, and

Vr := V \⋃r−1
j=1(Wj ∪Sj ∪Tj) and observe that K(k)(W1, . . . ,Wr−1, Vr) has only

edges of color r.

Constructive Ramsey Numbers for Loose Hyperpaths 435

By (19), for each 1 ≤ j ≤ r − 1

|Wj |
(19)

≥ k − r + 1
r − 2

τr−1
(6)
= �.

Now we are going to show that |Vr| ≥ �(k − r + 1) which will com-
plete the proof as this bound yields a monochromatic copy of P

(k)
� inside

K(k)(W1, . . . ,Wr−1, Vr). (Actually for r ≤ k − 1 it suffices to show that
|Vr| ≥ �(k − r) + 1.)

First observe that

|W1,1| + · · · + |Wr−2,r−2| ≥ |W1| + · · · + |Wr−2| + |T1| + · · · + |Tr−1|. (20)

This is easy to see, since during the process

Wi,i ⊇ Wi,r−1 ∪ (Wi,i ∩ (Ti+1 ∪ · · · ∪ Tr−1)) .

Also,

|W1,1|
(9)

≤ (k − 1)τ2 + 2(k − 1) + � + 1
(7)

≤ (k − 1)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
+ 2(k − 1) + � + 1

and, for 2 ≤ i ≤ r − 1,

|Wi,i|
(15)

≤ k − i

i − 1
τi + 2(k − i)

(7)

≤ (k − i)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
+ 2(k − i).

Since
r−1∑
i=1

(k − i) = (k − r/2)(r − 1),

we have by (20) that

|W1| + . . . + |Wr−1| + |T2| + · · · + |Tr−1|

≤ (� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
(k − r/2)(r − 1)

+ (2k − r)(r − 1) + � + 1

≤ k(� + 1)r
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))

+ (2k − r)(r − 1) + � + 1.

As also |Si| ≤ |V (P (k)
�−1)| = (k − 1)(� − 1) + 1 for each 1 ≤ i ≤ r − 1 and

|Vr| = |V | −
r−1∑
i=1

(|Wi| + |Ti| + |Si|),

436 A. Dudek and A. Ruciński

we finally obtain, using the lower bound on n = |V |, that

|Vr| ≥ k(� + 1)r − (2k − r)(r − 1) − � − 1 − (r − 1) [(k − 1)(� − 1) + 1]
= �(2r − 3) + (r − 1)(r − 2) + (k − 1) + �(k − r + 1) ≥ �(k − r + 1),

since the first three terms in the last line are nonnegative.
To prove the O(nk) complexity time, observe that in the worst-case scenario

we need to go over all edges colored by the first r−1 colors and no edge is visited
more than once.

References

1. Davies, E., Jenssen, M., Roberts, B.: Multicolour Ramsey numbers of paths and
even cycles. Eur. J. Comb. 63, 124–133 (2017)

2. Dudek, A., Pra�lat, P.: On some multicolor Ramsey properties of random graphs.
SIAM J. Discrete Math. 31(3), 2079–2092 (2017)

3. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad.
Sci. Hungar 10, 337–356 (1959)

4. Faudree, R.J., Schelp, R.H.: Path Ramsey numbers in multicolorings. J. Comb.
Theory Ser. B 19(2), 150–160 (1975)

5. Figaj, A., �Luczak, T.: The Ramsey number for a triple of long even cycles. J. Comb.
Theory Ser. B 97(4), 584–596 (2007)

6. Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Ann. Univ. Sci. Budapest.
Eötvös Sect. Math. 10, 167–170 (1967)

7. Gyárfás, A., Ruszinkó, M., Sárközy, G., Szemerédi, E.: Three-color Ramsey numbers
for paths. Combinatorica 27(1), 35–69 (2007)

8. Gyárfás, A., Ruszinkó, M., Sárközy, G., Szemerédi, E.: Corrigendum: three-color
Ramsey numbers for paths. Combinatorica 28(4), 499–502 (2008)

9. Sárközy, G.N.: On the multi-colored Ramsey numbers of paths and even cycles.
Electron. J. Comb. 23(3), 3–53 (2016)

Cache Oblivious Sparse Matrix
Multiplication

Matteo Dusefante(B) and Riko Jacob

IT University of Copenhagen, Copenhagen, Denmark
{madu,rikj}@itu.dk

Abstract. We study the problem of sparse matrix multiplication in the
Random Access Machine and in the Ideal Cache-Oblivious model. We
present a simple algorithm that exploits randomization to compute the
product of two sparse matrices with elements over an arbitrary field. Let
A ∈ F

n×n and C ∈ F
n×n be matrices with h nonzero entries in total

from a field F. In the RAM model, we are able to compute all the k
nonzero entries of the product matrix AC ∈ F

n×n using Õ(h + kn)
time and O(h) space, where the notation Õ(·) suppresses logarithmic
factors. In the External Memory model, we are able to compute cache
obliviously all the k nonzero entries of the product matrix AC ∈ F

n×n

using Õ(h/B + kn/B) I/Os and O(h) space. In the Parallel External
Memory model, we are able to compute all the k nonzero entries of
the product matrix AC ∈ F

n×n using Õ(h/PB + kn/PB) time and
O(h) space, which makes the analysis in the External Memory model a
special case of Parallel External Memory for P = 1. The guarantees are
given in terms of the size of the field and by bounding the size of F as
|F| > kn log(n2/k) we guarantee an error probability of at most 1/n for
computing the matrix product.

1 Introduction

Matrix multiplication is a fundamental operation in computer science and math-
ematics. Despite the effort, the computational complexity is still not settled, and
it is not clear whether O(n2) operations are sufficient to multiply two dense n×n
matrices.

Given matrices A ∈ F
n×n and C ∈ F

n×n, we define h as the number of
nonzero entries in the input, i.e. h = nnz(A) + nnz(C), k as the number of
nonzero entries in the output, i.e. k = nnz(AC), where nnz(A) denotes the
number of nonzero entries in matrix A. Let Ai,j be the value of the entry in
the matrix A with coordinates (i, j). We denote with A∗,j and Ci,∗ the j-th
column of A and the i-th row of C respectively. Note that we can easily detect,
by scanning the input matrices, null vectors. Hence, without loss of generality,
we consider only the case where h ≥ 2n and the rows of A (resp. columns
of C) are not n-dimensional null vectors. Observe that, in contrast cancellations

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 437–447, 2018.
https://doi.org/10.1007/978-3-319-77404-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_32&domain=pdf

438 M. Dusefante and R. Jacob

can lead to situations where k ≤ n.1 The algorithms presented in this paper
can compute the product of matrices of arbitrary size and the bounds can be
straightforwardly extended to rectangular matrices. However, for the ease of
exposition, we restrict our analysis to square matrices. We denote with column
major layout the lexicographic order where the entries of A are sorted by column
first, and by row index within a column. Analogously, we denote with row major
layout the order where the entries of A are sorted row-wise first, and column-
wise within a row. Note that a row major layout can be obtained from column
major layout by transposing A, and vice versa. Throughout this paper we use
f(n) = Õ(g(n)) as shorthand for f(n) = O(g(n) logc g(n)) for some constant c.
The memory hierarchy we refer to is modeled by the I/O model by Aggarwal and
Vitter [1], the Ideal Cache-Oblivious model by Frigo et al. [2] and the Parallel
External Memory model by Arge et al. [3]. We denote with M the number
of elements that can fit into internal memory, B the number of elements that
can be transferred in a single block and P as the number of processors. The
parameters M , and B are referred as the memory size and block size respectively.
The Ideal Cache-Oblivious model resembles the I/O model except for memory
and block size are unknown to the algorithm. Unless otherwise stated, it holds
1 ≤ B ≤ M � h. Note that, for our parallel algorithm, we consider a cache aware
model since concurrency is nontrivial in external memory models whenever the
block size B is unknown [4].

1.1 Contributions

We study the problem of matrix multiplication in the Random Access Machine
and in external memory over an arbitrary field (F,+, ·), where (+, ·) are atomic
operations over elements of F in the computational models. We present a
randomized algorithm for multiplying matrices A ∈ F

n×n, C ∈ F
n×n that,

after O(h) time for preprocessing using deterministic O(h) space, computes,
using O(nk log(n2/k)) time all the k nonzero entries of the product matrix
AC ∈ F

n×n, with high probability. We present a cache oblivious algorithm for
multiplying matrices A ∈ F

n×n and C ∈ F
n×n. After O((h/B) logM/B h/B)

I/Os for preprocessing, using deterministic O(h) space, we are able to com-
pute, using O((n/B)k log(n2/k)) I/Os, all the k nonzero entries of the prod-
uct matrix AC ∈ F

n×n, with high probability, under a tall cache assump-
tion, i.e. M ≥ B1+ε for some ε > 0. Similarly, in the Parallel External
Memory model, we present an algorithm for multiplying matrices A ∈ F

n×n,
C ∈ F

n×n that, after O((h/PB) logd(h/B)) I/Os for preprocessing, with d =
max{2,min{M/B,H/PB}}, using deterministic O(h) space, computes, using
O((n/PB + log P)k log(n2/k)) I/Os, all the k nonzero entries of the product
matrix AC ∈ F

n×n, with high probability. Note that, for the External Mem-
ory model and the Parallel External Memory model, preprocessing is domi-
nated by O(sort(h)) I/Os which stems from layout transposition. Although faster

1 A cancellation occurs when (AC)i,j = 0 while elementary products do not evaluate
to zero, i.e. Ai,κ · Cκ,j �= 0, for some κ ∈ [n].

Cache Oblivious Sparse Matrix Multiplication 439

algorithms for transposing sparse matrices exist, for the ease of exposition, we
consider O(sort(h)) I/Os as an upper bound for preprocessing which weakens
the bounds only in the parameters of the logarithmic factors. We give rigorous
guarantees on the probability of detecting all the nonzero entries of the output
matrix by studying how the process of generating random elements from the
field affects the process of locating entries. The guarantees are given in terms
of the size of the field. If the algorithms generate random variables from an
arbitrary field F then we are able to detect a nonzero entry in the matrix with
probability at least 1 − 2/|F| + 1/|F|2. On the other hand, given an arbitrary
field F, if the random variables are generated from F

∗ = F\{0} then we detect
a nonzero entry with probability at least 1 − 1/|F∗|. By bounding the size of F
as |F| ≥ ckn log(n2/k), for some constant c, we guarantee an error probability
of at most 1/n. Conversely, if |F| < ckn log(n2/k) we can improve the error
probability by repeating the random process an arbitrary number of time, say
log n times, thus sacrificing a log n factor in space and time with the effect of
decreasing the error probability by a factor of n.

1.2 Related Work

Given two n × n matrices A and C, the matrix product AC can be trivially
computed with O(n3) arithmetic operations. Strassen [5], in 1969, provided a
recursive algorithm able to multiply two matrices in O(nω) with ω = 2.8073549
by exploiting cancellations. The last known result is due to Le Gall [6] who holds
the current record of ω < 2.3728639. Yuster and Zwick [7] presented an algo-
rithm that multiplies two n × n matrices over a ring using Õ(h0.7n1.2 + n2+o(1))
arithmetic operations. Iwen and Spencer [8] proved that if each column of AC
contains at most n0.29462 nonzero entries, then A and C can be multiplied with
O(n2+ε) operations. Our algorithms improve over Yuster and Zwick [7] as well
as Iwen and Spencer [8] when k < n and h � n2. In addition, we do not
require a balanced assumption of the output matrix, e.g. the number of nonzero
entries per column, as in [8]. Amossen and Pagh [9] provided a sparse, output-
sensitive matrix multiplication that incurs in Õ(h2/3k2/3 + h0.862k0.408) oper-
ations and Õ(h

√
k/(BM1/8)) I/Os. Lingas [10] presented an output-sensitive,

randomized algorithm for computing the product of two n × n boolean matrices
using Õ(n2kω/2−1) operations. Compared to Amossen and Pagh and Lingas, we
allow cancellations of terms and we do not restrict our analysis to boolean matri-
ces. In addition, Amossen and Pagh’s I/O algorithm is not cache oblivious, i.e.
it requires knowledge of of the memory size. Pagh [11] presented a randomized
algorithm that computes an unbiased estimator of AC in time Õ(h + nk), with
guarantees given in terms of the Frobenius norm. Pagh’s compressed algorithm
achieves the same time bounds as our algorithms. However, we improve over
space complexity whenever k < h/ log n, i.e. when cancellations account for a
1/ log n factor compared to the number of input entries. Besides this, Pagh’s
result is algorithmically more involved, since it makes use of hash functions and
Fast Fourier Transform. Williams and Yu [12] provided an output-sensitive, ran-
domized algorithm for matrix multiplication with elements over any field, that,

440 M. Dusefante and R. Jacob

after O(n2) preprocessing, computes each nonzero entry of the matrix product in
Õ(n) time. We extend their techniques to the sparse input case and we improve
whenever h � n2, i.e. when the input matrices are sparse, both in time and
space complexity. Jacob and Stöckel [13] presented a Monte Carlo algorithm
that uses Õ(n2(k/n)ω−2 + h) operations and, with high probability, outputs the
nonzero elements of the matrix product. In addition, they state an I/O complex-
ity of Õ(n2(k/n)ω−2/(Mω/2−1B) + n2/B). Their analysis is focused specifically
on dense matrices and we improve over their results, both in time and I/O com-
plexity, whenever k is asymptotically smaller than n in the general case while
we achieve the same bounds when k = n. In addition, we do not require knowl-
edge of the memory size as opposed to [13]. Van Gucht et al. [14] presented a
randomized algorithm for multiplying two boolean matrices in Õ(k + h

√
k + h)

time. In contrast to their results, our algorithms are not restricted to the boolean
case and we are able to compute the product of matrices from an arbitrary field.
Matrix multiplication has been widely studied in external memory as well. In a
restricted setting, i.e. the semiring model, Hong and Kung [15] provided a lower
bound of Ω(n3/

√
M) I/Os for multiplying two n×n matrices using n3 operations

and a memory of size M . Frigo et al. [2] provided a cache oblivious algorithm
for multiplying two n×n matrices cache obliviously using O(n3) operations and
O(n2/B + n3/(B

√
M)) I/Os. In the I/O model, Pagh and Stöckel [16] provided

a randomized, I/O optimal algorithm for matrix multiplication that incurs in
Õ((h/B)min{√k/

√
M,h/M}) I/Os. However, their algorithm does not allow

cancellation of terms and it requires knowledge of the memory size in order to
partition the input matrices. In relation to this, we require no knowledge on
the size of M and our algorithm run cache obliviously. To the knowledge of the
authors, there are no previously known cache oblivious algorithms for sparse
matrix multiplication that exploit cancellations.

2 Algorithms

Williams and Yu [12] provided a simple output-sensitive algorithm for matrix
multiplication. The intuition behind [12] is that nonzero entries in a submatrix of
AC with indices in [i1, i2]× [j1, j2] can be detected by testing whether 〈a, c〉 = 0,
where a =

∑i2
k=i1

ukAk,∗ and c =
∑j2

k=j1
vkC∗,k are random (w.r.t uk and vk)

linear combinations, i.e. sketches, of rows of A and columns of C respectively. A
preprocessing phase, where prefix sums are involved, allows to compute sketches
a and c of arbitrary size in linear time during the query process. When the input
matrices are sparse, the prefix sums densify the matrices thus having to compute
and store n2 elements. In addition, sparse matrices make nontrivial to compute
linear combinations since row/column vectors are not explicitly stored.

We refine the analysis of [12] as follows. In order to detect the k positions
(i, j) such that (AC)i,j 	= 0, using binary search among the n2 feasible locations,
we need at most k log n2 comparisons. We note that the algorithms do not yield
false positives when querying submatrices. That is, given an all-zero submatrix
with related sketches a and c, it holds 〈a, c〉 = 0 always. This leads to the
following lemma.

Cache Oblivious Sparse Matrix Multiplication 441

Lemma 1. Let F be an arbitrary field and let A = {a1, . . . , an} and C =
{c1, . . . , cn} be two sets of d-dimensional vectors such that ai, cj ∈ F

d, for all
i, j ∈ [n]. In addition, let u1, . . . , un, v1, . . . , vn be 2n random variables chosen
uniformly at random from F and let a, c be vectors computed as a =

∑n
k=1 ukak,

c =
∑n

k=1 vkck. If 〈ai, cj〉 = 0, for all i, j ∈ [n], then 〈a, c〉 = 0.

As a consequence, at most k queries produce a positive answer, i.e. 〈a, c〉 	= 0.
Via a level-by-level top-down analysis, we note that at most min{2i, 2k} nodes
are explored at each recursive level, with i ∈ [log n2]. Hence, we deduce the
following.

log n2
∑

i=1

min{2i, 2k} =
log k∑

i=1

2i +
log n2
∑

i=log k

k ≤ 2k + 2k log(n2/k). (1)

Accordingly, we recursively split AC into two evenly divided submatrices, which
resembles the splitting phase of a k-d tree. We query each submatrix and after at
most log(n2/k) queries we isolate each nonzero entry. In the following theorem
we show how to compute linear combinations of sparse matrices. The intuition
is to preserve the sparseness of the input matrices while computing prefix sums
and generate sketches via predecessor queries, which can be efficiently computed
using fractional cascading [17].

Theorem 1 (RAM). Let F be an arbitrary field, let A ∈ F
n×n, C ∈ F

n×n

and assume A and C have h nonzero entries. After O(h) time for preprocessing
and using deterministic O(h) space, it is possible to compute all the k nonzero
entries of AC ∈ F

n×n w.h.p, using O(kn log(n2/k)) time.

Proof. We assume that the input matrices A and C are stored in column major
and row major layout respectively. If not, we can transpose A and C using O(h)
time and O(h) additional space.

Preprocessing : We generate vectors u = (u1, . . . , un) ∈ F
n and v = (v1, . . . , vn) ∈

F
n uniformly at random and we initialize the data structures A and C as follows:

for each Ai,j 	= 0 and Ci,j 	= 0 then

Ai,j =
i∑

k=1

ukAk,j Ci,j =
j∑

k=1

vkCi,k Ak,j , Ci,k 	= 0, i, j ∈ [n]. (2)

Intuitively, Ai,j (resp. Ci,j) denotes the prefix sum of the nonzero entries of
the column vector A∗,j up to row i (row vector Ci,∗ up to column j). After
this phase, A and C maintain the same sparse structure, as well as the same
layout, of the original input matrices. Computing A and C requires O(h) time
and O(h) space.2 Starting from column j = n − 1, every column vector A∗,j

is augmented with every element in even position from the sparse column vec-
tor A∗,j+1. After the augmentation, the vector A∗,j contains entries native to
2 Initializing A and C corresponds to computing prefix sums of each row and column

vector of A and C respectively, which requires a linear scan of the input matrices.

442 M. Dusefante and R. Jacob

A∗,j and entries inherited from A∗,j+1. For each inherited entry, we add pointers
to its native-predecessor and its native-successor. If A1,j is undefined, every col-
umn vector stores a dummy entry in first position with value 0. For each entry
in A∗,j , we add a bridge to the entry with the same row index in A∗,j+1 or, if
it is undefined, we add a bridge to the predecessor. Dummy entries ensure that
every element in A∗,j has at least a bridge towards A∗,j+1. The augmentation,
together with bridging, requires a linear scan of the column vectors. The space
required by the augmented vectors is T (j) = nnz(A∗,j) + T (j + 1)/2 + 1, with
T (n) = nnz(A∗,n) and j ∈ [n − 1], which is a geometric series bounded by 2h.
The data structure A is further augmented with a dense vector A∗,0 where every
Ai,0 has a bridge to either the entry with the same row index or its predecessor
in A∗,1. The total space required is 2h + n ≤ 3h. Analogous considerations hold
for data structure C.

Computing AC : We recursively divide AC into two evenly divided submatrices
(which resembles the splitting of a k-d tree) and query each submatrix in order to
detect nonzero entries. Each query is answered via an inner product 〈a, c〉 where
sketches a and c are constructed using fractional cascading. Given a generic
submatrix of AC with indices in [i1, i2] × [j1, j2] we compute sketches of matrix
A with rows in [i1, i2] and of matrix C with columns in [j1, j2] respectively. We
start by indexing Ai1,0 which redirects to an entry Ai,1. We probe the data
structure for the native-predecessor, call it Aip,1, and the native-successor, call
it Ais,1, of Ai,1. Recall i2 ≥ i1 and i ≤ i1.

1. If Ai,1 is native then: (a) if is < i1 then we emit Ais,1, (b) if i = i1 then we
emit Aip,1, (c) otherwise we emit Ai,1.

2. If Ai,1 is inherited then: (a) if is < i1 then we emit Ais,1, (b) otherwise we
emit Aip,1.

Note that, if the predecessor or the successor of Ai,j is not defined in the j-th
column vector we simply output 0 or Ai,j respectively. Accordingly, we correct
the following lookup by redirecting the search from either the successor Ais,1,
if is < i1, or to Ai,1, otherwise, and following its bridge to Ai,2. We iterate
the process up to the n-th column and we produce a n-dimensional vector ai1 .
The process for i2 is analogous. Note that, for i2, the case (1b) is omitted and
inequalities become non-strict as we want to capture the elements with row
index i2. After cascading through the n columns we have vectors ai1 and ai2 . The
sketch of the submatrix A with row indices in [i1, i2] stems from a = ai2 −ai1 , i.e.
the element-wise difference. We repeat the same process for C thus computing
c and we query the submatrix of AC by performing the inner product 〈a, c〉.
The construction of sketches a and c requires to probe the data structure a
constant number of times per column and per row respectively. Hence, O(n) time
is required per query. By Formula (1) at most k log(n2/k) queries are required
to isolate the k nonzero entries of AC. The claim follows.
�
The algorithm from Theorem 1 computes k locations (i, j) to as many nonzero
entries in AC ∈ F

n×n. In order to compute (AC)i,j we can retrieve, using

Cache Oblivious Sparse Matrix Multiplication 443

Formula (2), the entry value as follows (AC)i,j = 〈Ai,∗, C∗,j〉 =
∑

k

[
(Ai,k −

Ai−1,k)(Ck,j − Ck,j−1)
]
/uivj while querying unit length matrices.

2.1 External Memory and Parallel External Memory

Fractional cascading relies on random memory accesses for cascading through
A∗,j , with j > 1. In the worst case, O(n) blocks must be loaded in memory.
Instead, we use a data structure which is close in spirit to the range coalescing
data structure by Demaine et al. [18].

Theorem 2 (Ideal Cache-Oblivious). Let F be an arbitrary field, let A ∈
F

n×n, C ∈ F
n×n and assume A and C have h nonzero entries. Let M ≥ B1+ε

for some ε > 0. After O((h/B) logM/B(h/B)) I/Os for preprocessing and using
deterministic O(h) space, it is possible to compute all the k nonzero entries of
AC ∈ F

n×n w.h.p., using O((kn/B) log(n2/k)) I/Os.

Proof. We describe the procedure for preprocessing matrix A and generating
the sketch a. We transpose the input matrix A in column major layout using
O((h/B) logM/B(h/B)) I/Os with a cache oblivious sorting algorithm [19] (this
requires the tall cache assumption M ≥ B1+ε) and we compute column-wise
prefix sums using O(h/B) I/Os. Given the matrix A, we generate a sparse 0–1
representation A′ of A, where A′

i,j = 1 if and only if Ai,j 	= 0, A′
i,j = 0 otherwise,

using O(h/B) I/Os. We compute a counting vector H = A′1, where 1 ∈ 1n and
Hi =

∑
i nnz(Ai,∗), using a cache oblivious Sparse Matrix Vector Multiplication

algorithm [20] and O((h/B) logM/B(n/M)) I/Os. After a prefix sum over H we
are able to emit h/n index positions rl ∈ [n] such that

∑rl+1
i=rl

nnz(Ai,∗) ≤ 3n. As
a consequence, we build h/n buckets Al of size O(n) where the elements of Al

are the entries Ai,j such that i ∈ [rl, rl+1). Starting from A2, we incrementally
augment the bucket Al with elements from Al−1 such that, after the augmenta-
tion, for every column index j, there is an entry with value equal to the prefix
sum up to bucket l. As in Theorem 1, we augment the data structure with a
column vector A∗,0 of size n, where Ai,0 indices the l-th bucket if and only if
i ∈ [rl, rl+1), with l ∈ [h/n]. A query on the data structure A probes Ai1,0

using a single I/O and it incurs in O(n/B) I/Os for scanning the bucket, thus
generating the sketch a. Analogously, we generate the sketch c and we compute
the inner product 〈a, c〉 by scanning the vectors using O(n/B) I/Os.
�
Corollary 1 (Parallel External Memory). Let F be an arbitrary field,
let A ∈ F

n×n, C ∈ F
n×n, assume A and C have h nonzero entries and

let P ≤ n/B. After O((h/PB) logd(h/B)) I/Os for preprocessing, with d =
max{2,min{M/B,H/PB}}, and using deterministic O(h) space, it is possible
to compute all the k nonzero entries of AC ∈ F

n×n w.h.p., using O((n/PB +
log P)k log(n2/k)) I/Os.

3 Probabilistic Error Analysis

We proceed to give guarantees on the probability of detecting non-zero entries in
the output matrix and we study how altering the process of random generation

444 M. Dusefante and R. Jacob

alters the probability of detection. The guarantees are given in terms of the field
size and not on the size of the matrix as, e.g., in [11]. Throughout the paper we
gave no restriction on the field F. Nevertheless, when F is infinite and countable,
we require to sample from a finite subset of F. This constraint is justified since
random variables cannot be uniformly distributed among infinite and countable
sets. Fields, in contrast with other algebraic structures, guarantee the existence
of the multiplicative inverse for elements of F, a property we use for proving the
following lemmas.

Lemma 2. Let A ∈ F
n×n, C ∈ F

n×n and let AC ∈ F
n×n have at most k nonzero

entries. Consider a submatrix of AC with indices [i1, i2] × [j1, j2] and assume to
query the submatrix with sketches a, c as in Theorem 1. (i) The matrix has a
nonzero entry if and only if 〈a, c〉 	= 0 with probability at least 1− 2/|F|+1/|F|2.
(ii) The submatrix is all zero if and only if 〈a, c〉 = 0 with probability at least
1 − 2k log(n2/k)/|F| + k log(n2/k)/|F|2.
Pr(〈a, c〉 = 〈uiai, vjcj〉 = 0), with 〈ai, cj〉 	= 0, is given by the probability
of choosing either ui or vj zero uniformly at random from F. By altering the
algorithm, such that random entries are now generated from F

∗ = F\{0}, we
derive the following lemma.

Lemma 3. Let A ∈ F
n×n, C ∈ F

n×n and let AC ∈ F
n×n have at most k

nonzero entries. Let F
∗ = F\{0}, consider the submatrix of AC with indices

[i1, i2] × [j1, j2] and assume to query the submatrix with sketches a, c as in
Theorem 1 where the entries of the vectors u and v are chosen uniformly at
random from F

∗. (i) The submatrix has a nonzero entry if and only if 〈a, c〉 	= 0
with probability at least 1 − 1/|F∗|. (ii) The submatrix is all zero if and only if
〈a, c〉 = 0 with probability at least 1 − k log((n2/k) − 1)/|F∗|.

A Omitted Proofs

Proof (Lemma 2). (i) If 〈a, c〉 	= 0, then there exist i, j ∈ [n] such that ui, vj 	= 0
and 〈ai, cj〉 	= 0, hence, (AC)i,j 	= 0. If there is a nonzero entry then 〈a, c〉 	= 0
with probability at least 1−2/|F|+1/|F|2. This is equivalent of saying that if there
is a nonzero entry then 〈a, c〉 = 0 with probability at most 2/|F|−1/|F|2. Without
loss of generality, let i1 = i2 = i and j1 = j2 = j. Considering a bigger sub-
matrix with exactly one nonzero entry leaves the probability unchanged, while
considering more nonzero entries will only increase the probability of 〈a, c〉 	= 0.
Therefore, we consider the case where we want to isolate, with high probability,
the location of a single nonzero entry in a submatrix of unit size. It follows that,
in order to query the submatrix we have to perform the following inner product
〈a, c〉 = 〈uiai, vjcj〉, where u, v are chosen uniformly at random from F. Since
〈ai, cj〉 	= 0 by hypothesis, we have that Pr(〈a, c〉 = 0) ≥ 2/|F| − 1/|F|2.

(ii) If the submatrix of AC with indices [i1, i2]×[j1, j2] is all zero then 〈a, c〉 =
0 with probability at least 1 − 2k log(n2/k)/|F| + k log(n2/k)/|F|2. By Lemma 1
this is true. If 〈a, c〉 = 0 then the submatrix of AC with indices [i1, i2] × [j1, j2]

Cache Oblivious Sparse Matrix Multiplication 445

is all zero with probability at least 1− 2k log(n2/k)/|F|+k log(n2/k)/|F|2. That
is, if 〈a, c〉 = 0 then the submatrix has a nonzero entry with probability at most
2k log(n2/k)/|F| − k log(n2/k))/|F|2. Without loss of generality, let i1 = i2 = i
and j1 = j2 = j. We have that 〈a, c〉 = 〈uai, vcj〉 = 0, where u, v are chosen
uniformly at random from F. Therefore, Pr(〈ai, cj〉 	= 0) ≥ 2/|F| − 1/|F|2. The
latter is a lower bound on the probability to not detect a nonzero entry in the
output matrix. A union bound over the k log(n2/k) queries needed to isolate the
k nonzero entries, gives us the probability to incur in at least one false negative.
By considering its complement, the claim follows.
�
Proof (Lemma 3). (i) If 〈a, c〉 	= 0, then there exist i, j ∈ [m] such that ui, vj 	= 0
and 〈ai, cj〉 	= 0, hence, (AC)i,j 	= 0. If there is a nonzero entry then 〈a, c〉 	= 0
with probability at least 1 − 1/|F∗|. This is equivalent of saying that if there is
a nonzero entry then 〈a, c〉 = 0 with probability at most 1/|F∗|. If i1 = i2 = i,
j1 = j2 = j and 〈ai, cj〉 	= 0 then 〈a, c〉 	= 0 since scaling vectors with random
elements from F

∗ preserves non orthogonality. If i1 < i2 and j1 < j2 and the
submatrix contains exactly one nonzero entry, the same reasoning applies. If the
submatrix has � > 1 nonzero entries, then, without loss of generality, there exist
a1, . . . , a�, c1, . . . , c� such that 〈u1a1, v1c1〉+· · ·+〈u�a�, v�c�〉 = 0 and 〈ai, cj〉 	= 0,
for all i, j ∈ [�]. That is, � inner products that generate as many nonzero entries
and produce a false negative when the submatrix is queried. By the linearity of
the inner product, we have that 〈u1a1, v1c1〉 + · · · + 〈u�a�, v�c�〉 = u1v1〈a1, c1〉 +
· · · + u�v�〈a�, c�〉. Hence, the sum cancels whenever ui = −(u1v1〈a1, c1〉 + · · · +
u�v�〈a�, c�〉)/vi〈ai, ci〉 for a generic i ∈ [�]. Note that, such a ui is in F since fields
guarantee the existence of additive and multiplicative inverses. The probability
to choose ui such that it cancels the other inner products is the same as choosing
an element from F

∗ uniformly at random, i.e. 1/|F∗|.
(ii) If the submatrix of AC with indices [i1, i2] × [j1, j2] is all zero then

〈a, c〉 = 0 with probability at least 1 − k log((n2/k) − 1)/|F∗|. By Lemma 1 this
is true. If 〈a, c〉 = 0 then the submatrix of AC with indices [i1, i2] × [j1, j2] is all
zero with probability at least 1−k log((n2/k)−1)/|F∗|. That is, if 〈a, c〉 = 0 then
the submatrix of AC has a nonzero entry with probability at most k log((n2/k)−
1)/|F∗|. If 〈a, c〉 = 0 and i1 = i2 = i, j1 = j2 = j then 〈ai, cj〉 = 0. The same
reasoning applies for i1 < i2, j1 < j2 and exactly one nonzero entry in the
submatrix. Let 〈a, c〉 = 0 and suppose there exist a1, . . . , a�, c1, . . . , c� such that
〈u1a1, v1c1〉 + · · · + 〈u�a�, v�c�〉 = 0 and 〈ai, cj〉 	= 0, for all i, j ∈ [�]. Hence,
as in (i), the sum cancels with probability 1/|F∗|. The latter is a lower bound
on the probability to not detect a nonzero entry in the output matrix. A union
bound over the k log((n2/k)− 1) queries needed to isolate the k nonzero entries,
gives us the probability to incur in at least one false negative.3 By considering
its complement, the claim follows.
�

3 We do not consider the last layer, i.e. log(n2/k), as it does not involve any stochastic
process.

446 M. Dusefante and R. Jacob

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious Algo-
rithms. In: 40th Annual Symposium on Foundations of Computer Science, pp.
285–297. IEEE (1999)

3. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: Proceedings of the 20th Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA 2008, pp. 197–
206. ACM, New York (2008)

4. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concurrent cache-
oblivious B-trees. In: Proceedings of the 17th Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 228–237. ACM (2005)

5. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356
(1969)

6. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM (2014)

7. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms
(TALG) 1(1), 2–13 (2005)

8. Iwen, M.A., Spencer, C.V.: A note on compressed sensing and the complexity of
matrix multiplication. Inf. Process. Lett. 109(10), 468–471 (2009)

9. Amossen, R.R., Pagh, R.: Faster join-projects and sparse matrix multiplications.
In: Proceedings of the 12th International Conference on Database Theory, ICDT
2009, pp. 121–126. ACM, New York (2009)

10. Lingas, A.: A fast output-sensitive algorithm for Boolean matrix multiplication.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 408–419. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0 37

11. Pagh, R.: Compressed matrix multiplication. In: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pp. 442–451. ACM (2012)

12. Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures. In: Proceed-
ings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Philadelphia, PA, USA, pp. 1867–1877 (2014)

13. Jacob, R., Stöckel, M.: Fast output-sensitive matrix multiplication. In: Bansal, N.,
Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 766–778. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48350-3 64

14. Van Gucht, D., Williams, R., Woodruff, D.P., Zhang, Q.: The communication com-
plexity of distributed set-joins with applications to matrix multiplication. In: Pro-
ceedings of the 34th ACM Symposium on Principles of Database Systems, PODS
2015, pp. 199–212. ACM, New York (2015)

15. Hong, J.W., Kung, H.T.: I/O complexity: the red-blue pebble game. In: Proceed-
ings of the 13th Annual ACM Symposium on Theory of Computing, STOC 1981,
pp. 326–333. ACM, New York (1981)

16. Pagh, R., Stöckel, M.: The input/output complexity of sparse matrix multiplica-
tion. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 750–761.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2 62

17. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.
Algorithmica 1(1), 133–162 (1986)

https://doi.org/10.1007/978-3-642-04128-0_37
https://doi.org/10.1007/978-3-662-48350-3_64
https://doi.org/10.1007/978-3-662-44777-2_62

Cache Oblivious Sparse Matrix Multiplication 447

18. Demaine, E.D., Gopal, V., Hasenplaugh, W.: Cache-oblivious iterated predecessor
queries via range coalescing. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS
2015. LNCS, vol. 9214, pp. 249–262. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21840-3 21

19. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Widmayer,
P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 426–438. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45465-9 37

20. Bender, M.A., Brodal, G.S., Fagerberg, R., Jacob, R., Vicari, E.: Optimal sparse
matrix dense vector multiplication in the I/O-model. Theory Comput. Syst. 47(4),
934–962 (2010)

https://doi.org/10.1007/978-3-319-21840-3_21
https://doi.org/10.1007/978-3-319-21840-3_21
https://doi.org/10.1007/3-540-45465-9_37
https://doi.org/10.1007/3-540-45465-9_37

Don’t Rock the Boat: Algorithms
for Balanced Dynamic Loading

and Unloading

Sándor P. Fekete1(B) , Sven von Höveling1, Joseph S. B. Mitchell2 ,
Christian Rieck1 , Christian Scheffer1 , Arne Schmidt1 ,

and James R. Zuber2

1 Department of Computer Science, TU Braunschweig,
38106 Braunschweig, Germany

{s.fekete,v.sven,c.rieck,c.scheffer,arne.schmidt}@tu-bs.de
2 Department of Applied Mathematics and Statistics,
Stony Brook University, Stony Brook, NY 11794, USA

joseph.mitchell@stonybrook.edu, zuber139@gmail.com

Abstract. We consider dynamic loading and unloading problems for
heavy geometric objects. The challenge is to maintain balanced configu-
rations at all times: minimize the maximal motion of the overall center
of gravity. While this problem has been studied from an algorithmic
point of view, previous work only focuses on balancing the final center
of gravity; we give a variety of results for computing balanced loading
and unloading schemes that minimize the maximal motion of the center
of gravity during the entire process.

In particular, we consider the one-dimensional case and distinguish
between loading and unloading. In the unloading variant, the positions
of the intervals are given, and we search for an optimal unloading order
of the intervals. We prove that the unloading variant is NP-complete and
give a 2.7-approximation algorithm. In the loading variant, we have to
compute both the positions of the intervals and their loading order. We
give optimal approaches for several variants that model different loading
scenarios that may arise, e.g., in the loading of a transport ship with
containers.

1 Introduction

Packing a set of objects is a classic challenge that has been studied extensively,
from a variety of perspectives. The basic question is: how can the objects be
arranged to fit into a container? Packing problems are important for a large
spectrum of practical applications, such as loading items into a storage space, or
containers onto a ship. They are also closely related to problems of scheduling and
sequencing, in which issues of limited space are amplified by including temporal
considerations.

Due to space constraints, several technical details are omitted from this extended
abstract. A full version with all proofs can be found at [7].

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 448–460, 2018.
https://doi.org/10.1007/978-3-319-77404-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_33&domain=pdf
http://orcid.org/0000-0002-9062-4241
http://orcid.org/0000-0002-0152-2279
http://orcid.org/0000-0003-0846-5163
http://orcid.org/0000-0002-3471-2706
http://orcid.org/0000-0001-8950-3963
http://orcid.org/0000-0002-2861-8959

Don’t Rock the Boat 449

Packing and scheduling are closely intertwined in loading and unloading prob-
lems, where the challenge is not just to compute an acceptable final configura-
tion, but also the process of dynamically building this configuration, such that
intermediate states are both achievable and stable. This is highly relavant in the
scenario of loading and unloading container ships, for which maintaining balance
throughout the process is crucial (Fig. 1).

Balancedness of packing also plays an important role for other forms of ship-
ping: Mongeau and Bes [14] showed that displacing the center of gravity by
less than 75 cm in a long-range aircraft may cause, over a 10,000 km flight, an
additional consumption of 4,000 kg of fuel.

Fig. 1. Loading and unloading container ships.

In this paper, we consider algorithmic problems of balanced loading and
unloading. For unloading, this means planning an optimal sequence for removing
a given set of objects, one at a time; for loading, this requires planning both
position and order of the objects.

450 S. P. Fekete et al.

The practical constraints of loading and unloading motivate a spectrum of
relevant scenarios. As ships are symmetric around their main axis, we focus on
one-dimensional settings, in which the objects correspond to intervals. Contain-
ers may be of uniform size, but stackable up to a certain limited height; because
sliding objects on a moving ship are major safety hazards, stability considera-
tions may prohibit gaps between containers. On the other hand, containers of
extremely different size pose particularly problematic scenarios, which is why we
also provide results for sets of containers whose sizes are exponentially growing.

1.1 Our Contributions

Our results are as follows; throughout the paper, items are the objects that need
to be loaded (also sometimes called placed) or unloaded, while container refers
to the space that accomodates them. Furthermore, we assume all objects to have
unit density, i.e., their weights correspond to their lengths. In most cases, items
correspond to geometric intervals.

– For unloading, we show that it is NP-complete to compute an optimal
sequence. More formally, given a set of placed intervals {I1, . . . , In}, it is
NP-complete to compute an order 〈Iπ(1), . . . , Iπ(n)〉, in which intervals are
removed one at a time, such that the maximal deviation of the gravity’s
center is minimized.

– We provide a corresponding polynomial-time 2.7-approximation algorithm. In
particular, we give an algorithm that computes an order of the input intervals
such that removing the intervals in that order results in a maximal deviation
which is no larger than 2.7 times the maximal deviation induced by an optimal
order.

– For loading, we give a polynomial-time algorithm for the setting in which
gaps are not allowed. In particular, given a set of lengths values �1, . . . , �n ∈
R>0, we require a sequence 〈Iπ(1), . . . , Iπ(n)〉 of pairwise disjoint intervals
with |Iπ(i)| = �π(i) for i = 1, . . . , n such that the following holds: Placing the
interval Iπ(i) in the i-th step results in an n-stepped loading process such that
the union of the loaded intervals is connected for all points in time during
the loading process. Among these connected placements, we compute one for
which the maximal deviation of the center of gravity is minimized.

– We give a polynomial-time algorithm for the case of stackable unit intervals.
More formally, given an input integer μ ≥ 1, in the context of the previous
variant, we relax the requirement that the union of the placed intervals has to
be connected and additionally allow that the placed intervals may be stacked
up to a height of μ in a stable manner, defined as follows. We say that layer
0 is completely covered. An interval I can be placed, i.e., covered, in layer
k ≥ 1 if the interval I is covered in all layers 0, . . . , k − 1 and if I does not
overlap with another interval already placed in layer k.

– We give a polynomial-time algorithm for the case of exponentially growing
lengths. More formally, in the context of the previous variant, we require that
all intervals are placed in layer 1 and assume that the lengths of the input

Don’t Rock the Boat 451

intervals’ lengths are exponentially increasing, i.e., there is an x ≥ 2 such
that x · �i = �i+1 holds for all i ∈ {1, . . . , n − 1}.

1.2 Related Work

Previous work on cargo loading covers a wide range of specific aspects, con-
straints and objectives. The general Cargo Loading Problem (CLP) asks for
an optimal packing of (possibly heterogeneous) rectangular boxes into a given
bin, equivalent to the Cutting Stock Problem [10]. Most of the proposed
methods are heuristics based on (mixed) integer programming and have been
studied both for heterogeneous or homogeneous items. Bischoff and Marriott [2]
show that the performances of some heuristics may depend on the kind of cargo.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional
boxes of different weight and different length into a flat bin (so they are not
allowed to stack these boxes), in such a way that after placing the last box, the
center of gravity is as close as possible to a fixed target point. They prove strong
NP-completeness by a reduction from 3-Partition and give a heuristic with a
guaranteed accuracy within �max/2 of a given target point, where �max is the
largest box, w.r.t. length. A similar heuristic is given by Mathur [13].

Gehring et al. [9] consider the general CLP, for which (rectangular) items
may be stacked, and place them in any possible position. They construct non-
intersecting walls, i.e. packings made from similar items for slices of the original
container, to generate the overall packing. They also show that this achieves a
good final balancing of the loaded items. Mongeau and Bes [14] consider a simi-
lar variant for which the objective is to maximize the loaded weight. In addition,
there may be other parameters, e.g., each item may have a different priority [22]. A
mixed integer programming approach on this variant is given by Vancroonenburg
et al. [23]. Limbourg et al. [11] consider the CLP based on the moment of inertia.
Gehring and Bortfeldt [8] give a genetic algorithm for stable packings. Fasano [6]
considers packing problems of three-dimensional tetris-like items in combination
with balancing constraints. His work is done within the context of the Automated
Transfer Vehicle, which was the European Space Agency’s transportation system
supporting the International Space Station (ISS).

Another variant is to consider multiple drops, for which loaded items have
to be available at each drop-off point in such a way that a rearrangement of
the other items is not required; see e.g. [3,4,12]. Davies and Bischoff [5] propose
an approach that produces a high space utilization for even weight distribu-
tion. These scenarios often occur in container loading for trucks, for which the
objective is to achieve an even weight distribution between the axles. For a
state-of-the-art survey of vehicle routing with different loading constraints and
a spectrum of scenarios, see Pollaris et al. [19].

In the context of distributing cargo by sea, two different kind of ships are
distinguished: Ro-Ro and Lo-Lo ships. Ro-Ro (for roll on–roll off) ships carry
wheeled cargo, such as cars and trucks, which are driven on and off the ship. Some
approaches and problem variants such as multiple drops, additional loading, and
optional cargo as well as routing and scheduling considering Ro-Ro ships are

452 S. P. Fekete et al.

considered by Øvstebø et al. [15,16]. On the other hand, Lo-Lo (load on–load
off) ships are cargo ships that are loaded and unloaded by cranes, so any feasible
position can be directly reached from above.

While all this work is related to our problem, it differs by not requiring the
center of gravity to be under control for each step of the loading or unload-
ing process. A problem in which such a constraint is required and permanently
checked is Compact Vector Summation (CVS), which asks for permutation
to sum a number of k-dimensional vectors in a way that keeps each partial sum
within a bounded k-dimensional ball. See Sevastianov [20,21] for a summary
of results in CVS and its application in job scheduling. A different (and some-
what less serious) angle is considered by Paterson and Zwick [18] and Paterson
et al. [17], who consider maximizing the reach beyond the edge of a table by stack-
ing n identical, homogeneous, frictionless bricks of length 1 without toppling over,
corresponding to keeping the center of gravity of subarrangements supported.

2 Preliminaries

An item is a unit interval I := [m− 1
2 ,m+ 1

2] with midpoint m. A set {I1, . . . , In}
of n items with midpoints m1, . . . ,mn is valid if mi = mj or |mi − mj | ≥ 1
holds for all i, j = 1, . . . , n. The center of gravity C (I1, . . . , In) of a valid set
{I1, . . . , In} of items is defined as 1

n

∑n
i=1 mi.

For given a valid set {I1, . . . , In} of items we seek orderings in which each
item Ij is removed or placed such that the maximal deviation for all points in
time j = 1, . . . , n is minimized. More formally, for j = 1, . . . , n and a permutation
π : j �→ πj , let Cj := C

(
Iπj

, . . . , Iπn

)
.

The Unloading Problem (Unload) seeks to minimize the maximal devi-
ation during an unloading process of I1, . . . , In. In particular, given an input set
{I1, . . . , In} of items, we seek a permutation π such that maxi,j=1,...,n |Ci − Cj |
is minimized.

In the Loading Problem (Load) we relax the constraint that the positions
of the considered items are part of the input. In particular, we seek an ordering
and a set of midpoints for the containers such that the containers are disjoint and
the maximal deviation for all points in time of the loading process is minimized;
see Sect. 4 for a formal definition.

3 Unloading

We show that the problem Unload is NP-complete and give a polynomial-
time 2.7-approximation algorithm for Unload. We first show that there
is a polynomial- time reduction from the discrete version of Unload, the
Discrete Unloading Problem (dUnload), to Unload; this leads to a proof
that Unload is NP-complete, followed by a 2.7-approximation algorithm for
Unload.

In the Discrete Unloading Problem (dUnload), we do not consider a
set of items, i.e., unit intervals, but a discrete set X := {x1, . . . , xn} of points.

Don’t Rock the Boat 453

The center of gravity C (X) of X is defined as 1
n

∑n
i=1 xi. For j = 1, . . . , n and a

permutation π : j �→ πj , let Cj = C
(
xπj

, . . . , xπn

)
. Again, we seek a permutation

such that maxi,j=1,...,n |Ci − Cj | is minimized.

Corollary 1. Unload and dUnload are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case

We can establish NP-completeness of the discrete problem dUnload.

Theorem 1. dUnload is NP-complete.

The proof is based on a reduction of 3-Partition and omitted for lack of
space; see the full version of this paper [7]. Because of the polynomial-time
equivalance of dUnload and Unload, we conclude the following.

Corollary 2. Unload is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm

When unloading a set of items, their positions are fixed, so (after reversing time)
unloading is equivalent to a loading problem with predetermined positions. For
easier and uniform notation throughout the paper, we use this latter description.

In order to develop and prove an approximation algorithm for dUnload, we
begin by examining lower bounds on the span, R − L, of a minimal interval,
[L,R], containing the centers of gravity at all stages in an optimal solution.

Without loss of generality, we assume that the input points xi sum to 0 (i.e.,∑
i xi = 0), so that the center of gravity, Cn, of all n input points is at the

origin. We let R = maxi Ci and L = mini Ci. Our first simple lemma leads to a
first (fairly weak) bound on the span.

Lemma 1. Let (x1, x2, x3, . . .) be any sequence of real numbers, with
∑

i xi = 0.
Let Cj = (

∑j
i=1 xi)/j be the center of gravity of the first j numbers, and let

R = maxi Ci and L = mini Ci. Then, |R − L| ≥ |xi|
i , for all i = 1, 2,

Due to space constraints, the proof of Lemma 1 is omitted; it can be found
in the full version of this paper [7].

Corollary 3. For any valid solution to dUnload, the minimal interval [L,R]
containing the center of gravity at every stage must have length |R − L| ≥ |ui|

i
where ui is the input point with the i-th smallest magnitude.

We note that the naive lower bound given by Corollary 3 can be far from tight:
Consider the sequence 1, 2, 3, 4, 5, 6, 7,−7,−7,−7,−7. In the optimal order, the
first −7 is placed fourth, after 2, 1, 3. The optimal third and fourth centers,
{2,−1

4} are the largest magnitude positive and negative centers seen, and show
a span 2.25 times greater than the naive bound of 1. By placing the first −7

454 S. P. Fekete et al.

in the third position, R ≥ 3
2 , and L ≤ − 4

3 . By placing it fifth, R ≥ 5
2 . Our

observation was that failing to place our first −7 if the cumulative sum is > 7
would needlessly increase the span.

This generalizes to the sequence (x1 = 1, x2 = 2, . . . , xk−1 = k − 1, xk =
−k, xk+1 = −(k + 1), . . . , xN), with an appropriate xN to make

∑
xi = 0. If we

place positive weights in increasing order until cl ≥ k
l , placing −k instead of a

positive at position l would decrease the center of gravity well below k
l . The first

negative should be placed when minl
l2−l
2 ≥ k, which is when l ≈ √

2k. In this

example, our optimal center of gravity span is at least k
l ≈

√
k
2 , not the 1 from

the naive bound of Corollary 3.
We now describe our heuristic, H, which leads to a provable approximation

algorithm. It is convenient to relabel and reindex the input points as follows. Let
(P1, P2, . . .) denote the positive input points, ordered (and indexed) by increasing
value. Similarly, let (N1, N2, . . .) denote the negative input points, orders (and
indexed) by increasing magnitude |Ni| (i.e., ordered by decreasing value).

The heuristic H orders the input points as follows. The first point is simply
the one closest to the origin (i.e., of smallest absolute value). Then, at each
step of the algorithm, we select the next point in the order by examining three
numbers: the partial sum, S, of all points placed in the sequence so far, the
smallest magnitude point, α, not yet placed that has the same sign as S, and
the smallest magnitude point, β, not yet placed that has the opposite sign of S.
If S + α + β is of the same sign as S, then we place β next in the sequence;
otherwise, if S + α + β has the opposite sign as S, then we place α next in the
sequence. The intuition is that we seek to avoid the partial sum from drifting in
one direction; we switch to the opposite sign sequence of input points in order to
control the drift, when it becomes expedient to do so, measured by comparing
the sign of S with the sign of S+α+β, where α and β are the smallest magnitude
points available in each of the two directions. We call the resulting ordering the
H-permutation. The H-permutation puts the j-th largest positive point, Pj , in
position π+

j in the order, and puts the j-th largest in magnitude negative point,
Nj , in position π−

j in the order, where

π+
j = j +max

k
{k :

k∑

i=1

|Ni| ≤
j∑

l=1

Pl} and π−
j = j +max

k
{k :

k∑

i=1

Pi <

j∑

l=1

|Nl|}.

We obtain an improved lower bound based on our heuristic, H, which orders
the input points according to the H-permutation.

Lemma 2. A lower bound on the optimal span of dUnload is given by |R −
L| ≥ Pi

π+
i

and |R − L| ≥ |Ni|
π−
i

.

To prove the lemma, we begin with a claim.

Claim. For any input set to the discrete unloading problem, where si are all
terms with the same sign sorted by magnitude, a permutation π that minimizes
the maximum value of the ratio |si|

πi
must satisfy πk < πi, for all k < i.

Don’t Rock the Boat 455

Proof. By contradiction, assume that the minimizing permutation π has the
maximum value of the ratio |si|

πi
occur at an i for which there exists a k < i for

which πi ≤ πk, which means that πi < πk (because πi cannot equal πk for a
permutation π, and k �= i).

Because the terms si are indexed in order sorted by magnitude, |sk| ≤ |si|.
Exchanging the order of si and sk in the permutation would lead to two new
ratios in our sequence: |si|

πk
and |sk|

πi
. Because πk > πi, we get |si|

πk
< |si|

πi
. Because

|sk| ≤ |si|, we get |sk|
πi

≤ |si|
πi

. Because these new ratios are smaller than |si|
πi

, we
get a contradiction to the fact that π minimizes the maximum ratio.

The following claim is an immediate consequence of Lemma 1.

Claim. For the i maximizing Pi

π+
i

, any ordering placing this element earlier than

π+
i in the sequence has a span |R − L| > Pi

π+
i

. Similarly, for the i maximizing
|Ni|
π+
i

, any ordering placing this element earlier than π−
i in the sequence has a

span |R − L| > |Ni|
π−
i

.

On the other hand, the following holds.

Claim. For the i maximizing Pi

π+
i

, any ordering placing this element later than

π+
i in the sequence has a span |R − L| > Pi

π+
i

. A similar statement holds for |Ni|
π−
i

.

Proof. The proof is by contradiction. The index into the H permutation maxi-
mizing the ratio |xk|

k is i. We assume (wlog) xi = PJ > 0, and we let K = i − J .
If PJ is not placed in position i, we suppose another element, x, can be placed

in its stead and results in a span that is less than PJ

i .
When placing any positive x > PJ in the initial i position, the lowest possible

observed span from Lemma 1 is at least x
i > PJ

i , which would contradict our
assumption. Similarly, all positive points placed before or at position i must be
less than or equal to PJ .

All permutations of these J − 1 positive elements and the first K + 1
negative elements have a large negative center of gravity at position i. From
K = maxk{k :

∑k
i=1 |Ni| ≤ ∑J

l=1 Pl}, we get
∑K+1

i=1 |Ni| ≥ ∑J
l=1 Pl, and hence

∑K+1
i=1 Ni +

∑J
l=1 Pl ≤ 0, implying

∑K+1
i=1 Ni +

∑J−1
l=1 Pl ≤ −PJ . Therefore, the

maximizing value satisfies

|c∗| =
|∑K+1

i=1 Ni +
∑J−1

l=1 Pl|
i

≥ PJ

i

Because the center of gravity is at a location greater than the H-bound, and
R ≥ 0 ≥ L, this span is also greater than the H-bound and we can neither place
an element greater than PJ nor one less than PJ in place of PJ while lowering
the span beneath the H-bound.

Theorem 2. The H-permutation minimizes the maximum (over i) value of the
ratio |xi|

πi
, and thus yields a lower bound on |R − L|.

456 S. P. Fekete et al.

For the worst-case ratio, we get the following.

Theorem 3. The H heuristic yields an ordering having span R−L at most 2.7
times larger than the H-lower bound.

Due to space constraints, the proof of Theorem3 is omitted; it can be found
in the full version of this paper [7].

Corollary 4. There is a polynomial-time 2.7-approximation algorithm for
Unload.

4 Loading

We proceed to loading problems, which requires a wider range of definitions: The
positions of the objects are part of the optimization and for some loading vari-
ants, the items may have different lengths. Consider the following more general
definitions:

An item is given by a real number �. By assigning a position m ∈ R to an
item, we obtain an interval I with length � and midpoint m. For n ≥ 1, we
consider a set {�1, . . . , �n} of n items and assume �1 ≥ · · · ≥ �n. Furthermore,
{�1, . . . , �n} is uniform if � := �1 = ... = �n.

A state is a set {(I1, h1), . . . , (In, hn)} of pairs, each one consisting of an
interval Ij and an integer hj ≥ 1, the layer in which Ij lies. A state satisfies the
following: (1) Two different intervals that lie in the same layer do not overlap
and (2) for j = 2, . . . , n, an interval in layer j is a subset of the union of the
intervals in layer j − 1.

A state {(I1, h1), . . . , (In, hn)} is plane if all intervals lie in the first layer.
To simplify the following notations, we denote for j = {1, . . . , n} the

midpoint of the interval Ij by mj . The center of gravity C (s) of a state
s = {(I1, h1), . . . , (In, hn)} is defined as 1

M

∑n
j=1 �jmj , where M is defined as

∑n
j=1 �j .
A placement p of an n-system S is a sequence 〈I1, . . . , In〉 such that {(I1, h1),

. . . , (Ij , hj)} is a state, the j-th state sj , for each j = 1, . . . , n. The 0-th state s0
is defined as ∅ and its center of gravity C (s0) is defined as 0.

Definition 1. The loading problem (Load) is defined as follows: Given a
set of n items, we are searching for a placement p such that the n + 1 centers of
gravity of the n+1 states of p lie close to 0. In particular, the deviation Δ(p) of
a placement p is defined as maxj=0,...,n |C (sj) |. We seek a placement of S with
minimal deviation among all possible placements for S.

We say that stacking is not allowed if we require that all intervals are placed
in layer 1. Otherwise, we say that stacking is allowed. For a given integer μ ≥ 1
we say that μ is the maximal stackable height if we require that all used layers
are no larger than μ.

Note that in the loading case, minimizing the deviation is equivalent to mini-
mizing the diameter, i.e., minimizing the maximal distance between the smallest
and largest extent of the centers.

Don’t Rock the Boat 457

4.1 Optimally Loading of Unit Items with Stacking

Now we consider the case of unit items for which stacking is allowed. We give
an algorithm that optimally loads a set of unit items with stacking.

Theorem 4. There is a polynomial-time algorithm for loading a set of unit
items so that the deviation of the center of gravity is in [0, 1

1+μ], where μ is the
maximum stackable height.

Proof. Let mi be the midpoint of item �i. Because we are allowed to stack items
up to height μ, the strategy is the following: set m1 = m2 = · · · = mμ = 1

1+μ ,
i.e., the first μ items are placed at the very same position. Call these first μ items
the starting stack S0. Subsequently, we place the following items on alternating
sides of S0, i.e., the item �μ+1 is placed as close as possible on the left side of
S0, �μ+2 is placed as close as possible on the right side, �μ+3 is placed on top of
�μ+1 (if we did not already reach the maximum stackable height of μ), or next
to �μ+1 (if �μ+1 is on the μ-th layer), etc.

After each placement of �i, 1 ≤ i ≤ μ, we have C (�i) = 1
1+μ . After two

more placed items, the center of gravity is again at 1
1+μ , because these items

neutralize each other. Thus, the critical part is a placement on the left side of
S0. We proceed to show that after placing an item on the left side, the center of
gravity is at position at least 0.

The midpoint mμ+1 of the item �μ+1 is −μ
1+μ , thus C (�μ+1) = μ

1+μ − μ
1+μ = 0.

Now assume that we have already placed c = (2k+1) ·μ+ζ items, where ζ < 2μ
and odd, i.e., we have already placed the starting stack S0 and k additional
stacks of height μ on each side of S0. Let z := (2k + 1) · μ. Then the center of
gravity is at position C (c), where

C (c) =
z · 1

1+μ +
z+ζ∑

i=z+1

mi

z + ζ
=

(z + ζ − 1) · 1
1+μ + −kμ−k−μ

1+μ

z + ζ
=

kμ + ζ − 1 − k

(1 + μ) · (z + ζ)

=
k(μ − 1) + ζ − 1
(1 + μ) · (z + ζ)

≥ ζ − 1
(1 + μ) · (z + ζ)

≥ 0
(1 + μ) · (z + ζ)

≥ 0.

In the following we show that there is no strategy that can guarantee a
smaller deviation of the center of gravity than the strategy described in the last
theorem.

Theorem 5. The strategy given in Theorem4 is optimal for n > μ, i.e., there
is no strategy such that the center of gravity deviates in [0, 1

1+μ).

Proof. Because n > μ, we must use at least two stacks. Now assume that we
first place k items on one stack S0, before we start another one. Without loss of
generality, we place this first k items at position 1

1+μ − ε. We proceed to show
that for any ε > 0, we need k to be at least μ+1, to get the new center of gravity
to position > −ε and therefore a smaller deviation as the strategy in Theorem4.

458 S. P. Fekete et al.

If we place the item �k+1 on the right side of S0, the new center of gravity
gets to a position larger than 1

1+μ − ε, a contradiction. Thus, it must be placed
on the left of S0. The position of this item has to be − μ

1+μ − ε. This yields the
new center of gravity of (k · (1

1+μ − ε) − μ
1+μ − ε)/k + 1. This center of gravity

must be located to the right of −ε. Thus, we have

k · (
1

1 + μ
− ε) − μ

1 + μ
− ε + (k + 1) · ε > 0 ⇔ k − μ > 0 ⇔ k > μ

Because we cannot stack μ + 1 items, we cannot have any strategy achieving a
deviation of [0, 1

1+μ −ε]. We conclude that our strategy given in Theorem4 must
be optimal.

Corollary 5. With the given strategy for a uniform system where each item has
length �, the center of gravity deviates in [0, �

1+μ], which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space

Assume that the height of the ship to be loaded does not allow stacking items.
This makes it necessary to ensure that the space consumption of the packing
is minimal. We restrict ourselves to plane placements such that each state is
connected. For simplicity, we assume w.l.o.g. that �1 ≥ · · · ≥ �n holds. First we
argue that Δ(p) ≥ �2

4 holds for an arbitrary connected plane placement p of S.
Subsequently we give an algorithm that realizes this lower bound.

A fundamental key for this subcase is that the center of gravity of a connected
plane state is the midpoint of the induced overall interval.

Observation 1. Let s be a plane state such that the union of the corresponding
intervals is an interval [a, b] ⊂ R. Then C (s) = a+b

2 .

Lemma 3. For each plane placement p of S, we have Δ(p) ≥ �2
4 .

Proof. Let p be an arbitrary plane placement of S = 〈(I1, 1), . . . , (In, 1)〉, let
〈s0, s1, . . . , sn〉 be the sequence of states that are induced by p, and let i, j ∈
{1, . . . , n} be such that Ii = |�1| and Ij = |�1| hold. Observation 1 implies that
|C (si−1) − C (si) | = �1

4 ≥ �2
4 and |C (sj−1) − C (sj) | = �2

4 . Let mi and mj be
the midpoints of Ii and Ij . As the intervals Ii and Ij do not overlap, we conclude
that |mi| ≥ �2

2 or |mj | ≥ �2
2 holds. W.l.o.g. assume that |mi| ≥ �2

2 holds. This
implies that |C (si−1) | ≥ �2

4 or |C (si) | ≥ �2
4 holds. In both cases, we obtain

Δ(p) ≥ �2
4 , concluding the proof.

Lemma 4. We can compute a placement p of S such that Δ(p) ≤ �2
4 .

Proof. The main idea is as follows. We remember �1 ≥ · · · ≥ �n and place the
items in that order. In particular, we choose the positions of the items such that
C (s1) := − �2

4 and C (s2) := �2
4 . The remaining intervals are placed alternating,

adjacent to the left and to the right side of the previously placed intervals.

Don’t Rock the Boat 459

In order to show that C (si) ∈ [− �2
4 , �2

4] holds for all i ∈ {0, . . . , n}, we
prove by induction that C (si) ∈ [C (si−2) , C (si−1)] holds for all odd i ≥ 3
and C (si) ∈ [C (si−1) , C (si−2)] for all even i ≥ 4. As Observation 1 implies
C (s1) = − �2

4 and C (s2) = �2
4 , this concludes the proof.

Let i ≥ 3 be odd. We have |C (si−2)−C (si−1) | = �i−1
2 . This is lower bounded

by �i
2 because �i ≤ �i−1. Furthermore, we know that |C (si−1) − C (si) | = �i

2 .
This implies C (si) ∈ [C (si−2) , C (si−1)]. The argument for the case of even
i ≥ 4 is analogous.

The combination of Lemmas 3 and 4 implies that our approach for connected
placements is optimal.

Corollary 6. Given an arbitrary system, there is a polynomial-time algorithm
for optimally loading a general set of items without stacking and under the con-
straint of minimal space consumption for all intermediate stages.

4.3 Optimally Loading Exponentially Growing Items

Similar to the previous section, we consider plane placements. Now we consider
the case in which the items have exponentially rising lengths. This case highlights
the challenges of uneven lengths, in particular when the sizes are growing very
rapidly; without special care, this can easily lead to strong deviation during the
loading process. We show how the deviation can be minimized.

Theorem 6. There is a polynomial-time algorithm for optimally loading a set
of items with lengths growing exponentially by a factor x ≥ 2 in increasing order
w.r.t. to their lengths.

Details can be found in the full version of this paper [7].

5 Conclusion

We have introduced a new family of problems that aim for balancing objects
w.r.t. their center of gravity during loading and unloading these objects, and
have provided hardness results and optimal or constant-factor approximation
algorithms.

There are various related challenges. These include sequencing problems with
multiple loading and unloading stops (which arise in vehicle routing or tour plan-
ning for container ships); variants in which items can be shifted in a continuous
fashion; batch scenarios in which multiple items are loaded or unloaded at once
(making it possible to maintain better balance, but also increasing the space of
possible choices); and higher-dimensional variants, possibly with inhomogeneous
space constraints. All these are left for future work.

Acknowledgements. We would like to thank anonymous reviewers for providing
helpful comments and suggestions improving the presentation of this paper. J. Mitchell
is partially supported by the National Science Foundation (CCF-1526406).

460 S. P. Fekete et al.

References

1. Amiouny, S.V., Bartholdi, J.J., Vate, J.H.V., Zhang, J.: Balanced loading. Oper.
Res. 40(2), 238–246 (1992)

2. Bischoff, E.E., Marriott, M.D.: A comparative evaluation of heuristics for container
loading. Eur. J. Oper. Res. 44(2), 267–276 (1990)

3. Bischoff, E.E., Ratcliff, M.: Issues in the development of approaches to container
loading. Omega 23(4), 377–390 (1995)

4. Christensen, S.G., Rousøe, D.M.: Container loading with multi-drop constraints.
Int. Trans. Oper. Res. 16(6), 727–743 (2009)

5. Davies, A.P., Bischoff, E.E.: Weight distribution considerations in container load-
ing. Eur. J. Oper. Res. 114(3), 509–527 (1999)

6. Fasano, G.: A MIP approach for some practical packing problems: balancing con-
straints and tetris-like items. 4OR 2(2), 161–174 (2004)

7. Fekete, S.P., von Höveling, S., Mitchell, J.S.B., Rieck, C., Scheffer, C., Schmidt,
A., Zuber, J.R.: Don’t rock the boat: algorithms for balanced dynamic loading and
unloading. CoRR, abs/1712.06498 (2017). http://arxiv.org/abs/1712.06498

8. Gehring, H., Bortfeldt, A.: A genetic algorithm for solving the container loading
problem. Int. Trans. Oper. Res. 4(5–6), 401–418 (1997)

9. Gehring, H., Menschner, K., Meyer, M.: A computer-based heuristic for packing
pooled shipment containers. Eur. J. Oper. Res. 44(2), 277–288 (1990)

10. Gilmore, P., Gomory, R.E.: Multistage cutting stock problems of two and more
dimensions. Oper. Res. 13(1), 94–120 (1965)

11. Limbourg, S., Schyns, M., Laporte, G.: Automatic aircraft cargo load planning.
JORS 63(9), 1271–1283 (2012)

12. Lurkin, V., Schyns, M.: The airline container loading problem with pickup and
delivery. Eur. J. Oper. Res. 244(3), 955–965 (2015)

13. Mathur, K.: An integer-programming-based heuristic for the balanced loading
problem. Oper. Res. Lett. 22(1), 19–25 (1998)

14. Mongeau, M., Bes, C.: Optimization of aircraft container loading. IEEE Trans.
Aerosp. Electron. Syst. 39(1), 140–150 (2003)

15. Øvstebø, B.O., Hvattum, L.M., Fagerholt, K.: Optimization of stowage plans for
roro ships. Comput. Oper. Res. 38(10), 1425–1434 (2011)

16. Øvstebø, B.O., Hvattum, L.M., Fagerholt, K.: Routing and scheduling of roro ships
with stowage constraints. Transp. Res. Part C: Emerg. Technol. 19(6), 1225–1242
(2011)

17. Paterson, M., Peres, Y., Thorup, M., Winkler, P., Zwick, U.: Maximum overhang.
Am. Math. Mon. 116(9), 763–787 (2009)

18. Paterson, M., Zwick, U.: Overhang. Am. Math. Mon. 116(1), 19–44 (2009)
19. Pollaris, H., Braekers, K., Caris, A., Janssens, G.K., Limbourg, S.: Vehicle rout-

ing problems with loading constraints: state-of-the-art and future directions. OR
Spectr. 37(2), 297–330 (2015)

20. Sevastianov, S.: On some geometric methods in scheduling theory: a survey. Discret.
Appl. Math. 55(1), 59–82 (1994)

21. Sevastianov, S.: Nonstrict vector summationin multi-operation scheduling. Ann.
Oper. Res. 83, 179–212 (1998)

22. Souffriau, W., Demeester, P., Berghe, G.V., De Causmaecker, P.: The aircraft
weight and balance problem. Proc. ORBEL 22, 44–45 (1992)

23. Vancroonenburg, W., Verstichel, J., Tavernier, K., Berghe, G.V.: Automatic air
cargo selection and weight balancing: a mixed integer programming approach.
Transp. Res. Part E: Logist. Transp. Rev. 65, 70–83 (2014)

http://arxiv.org/abs/1712.06498

Probabilistic Analysis of Online
(Class-Constrained) Bin Packing

and Bin Covering

Carsten Fischer(B) and Heiko Röglin

Department of Computer Science, University of Bonn, Bonn, Germany
carsten.fischer@uni-bonn.de, roeglin@cs.uni-bonn.de

Abstract. We study online algorithms for bin packing and bin cover-
ing in two different probabilistic settings in which the item sizes are
drawn randomly or the items are adversarial but arrive in random order.
We prove several results on the expected performance of well-known
online algorithms in these settings. In particular, we prove that the sim-
ple greedy algorithm Dual Next-Fit for bin covering performs in the
random-order setting strictly better than in the worst case, proving a
conjecture by Christ et al. (Theoret Comput Sci 556:71–84, 2014).

Additionally we also study class-constrained bin packing and bin cov-
ering. In these problems, each item has not only a size but also a color and
there are constraints on the number of different colors in each bin. These
problems have been studied before in the classical worst-case model and
we provide the first probabilistic analysis of these problems. We prove
for several simple online algorithms bounds on their expected perfor-
mance in the two probabilistic models discussed above. We observe that
in the case of class constrained bin packing for several algorithms their
performance differs with respect to the two probabilistic performance
measures.

1 Introduction

Bin packing and bin covering are classical optimization problems, which have
been studied extensively both as offline and online problems. In these problems,
the input consists of a set of n items with sizes s1, . . . , sn ∈ [0, 1] and one seeks
for a partition of the items into bins. In the bin packing problem the goal is to
partition the items into as few bins as possible such that each bin contains items
with a total size of at most 1, whereas in the bin covering problem the goal is
to partition the items into as many bins as possible such that each bin contains
items with a total size of at least 1.

In addition to these pure versions, also several variations of bin packing and
bin covering with additional constraints are of interest. One particular line of
research is concerned with class constrained versions in which an additional

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 461–474, 2018.
https://doi.org/10.1007/978-3-319-77404-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_34&domain=pdf

462 C. Fischer and H. Röglin

parameter k is given and each item i has not only a size si ∈ [0, 1] but also a
color ci ∈ N. In the class constrained bin packing problem the goal is to partition
the items into as few bins as possible such that each bin contains items with a
total size of at most 1 and of at most k different colors. In the class constrained
bin covering problem the goal is to find a partition into as many bins as possible
such that each bin contains items with a total size of at least 1 and of at least k
different colors.

The class constrained bin packing problem has been introduced in [13] and
studied in a sequence of papers [7,14,16]. Its theoretical importance stems from
the fact that it generalizes the classical bin packing problem and the cardinality
constrained bin packing problem (see e.g. [1,3,11]). In cardinality constrained
bin packing there is a parameter k ∈ N given and a bin must contain at most
k items. From a practical point of view there are applications in production
planning and video-on-demand systems [16]. Given the class constrained bin
packing problem, it is natural to also study the class constrained bin covering
problem, which has been introduced by Epstein et al. [6] with applications in
fault-tolerant communication networks.

In this article, we focus on the online setting, in which the items arrive
one after another and an algorithm has to assign each item immediately and
irrevocably upon its arrival to one of the bins without knowing the items that
come afterwards. We are particularly interested in probabilistic performance
measures. We study the setting where the items are drawn independently and
identically distributed (i.i.d.) from an adversarial distribution and the random-
order model, in which an adversary chooses the set of items, but the items arrive
in random order.

Up to now, it is not fully understood when the performance of algorithms
coincide or differs in these two probabilistic settings. We prove several new upper
and lower bounds on the competitive ratio of online algorithms in these prob-
abilistic models both for the classical and the class constrained versions of bin
packing and bin covering. For special cases we observe that even heuristics behave
asymptotically optimal on random input. In the case of class constrained bin
packing we observe different behaviors of the considered algorithms w.r.t. the
two performance measures. Our analysis sheds new light on the nature of these
two probabilistic performance measures in the context of bin packing and bin
covering and its variants.

1.1 Probabilistic Performance Measures

In all problems considered in this article, an instance I is given by a sequence
(a1, . . . , an) of items, and we assume that the items arrive in the order specified
by their indices. We denote by OPT(I) the value of the optimal offline solution,
i.e., the minimum number of bins needed to pack the items in the (class con-
strained) bin packing problem and the maximum number of bins that can be
covered by the items in the (class constrained) bin covering problem. Similarly,
for an algorithm A we denote by A(I) the value of the solution computed by A
on instance I. Furthermore, we denote by |I| the number of items in instance I.

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 463

The usual performance measure for an online algorithm A is its (asymptotic)
competitive ratio, which essentially measures by which factor the solutions com-
puted by A can be worse than the optimal offline solution. Since competitive
analysis is based on the worst-case behavior of algorithms, it often yields too
pessimistic results and, in many cases, it is not fine-grained enough to differ-
entiate meaningfully between different algorithms. Worst-case analysis can be
viewed as a game between the algorithm designer and an adversary whose goal
is to select an input on which the designed algorithm performs as poorly as
possible. For the reasons discussed above, we weaken the adversary by studying
inputs that are to some extent random.

We first describe the probabilistic measures in terms of (class constrained)
bin packing and discuss later how they can be adapted to (class constrained)
bin covering. The first probabilistic model we consider is i.i.d. sampling. Let I
denote a (possibly infinite) multiset of items and p : I → [0, 1] a probability
measure on the set of items. Observe that in the case of class constrained bin
packing an item is a tuple (s, c) consisting of a size s and a color c whereas
in the normal bin packing problem p is simply a probability measure on item
sizes. We will often denote the pair (I, p) by F . Then, IF

n denotes a random
instance (A1, . . . , An), where n items are drawn independently according to F .
The asymptotic average performance ratio of an algorithm A is defined as

AAPR(A) = sup
F

lim sup
n→∞

E

[
A(IF

n)
OPT(IF

n)

]
.

We prove that for the distributions and algorithms we consider, the asymptotic
average performance ratio can usually also be expressed as

sup
F

lim sup
n→∞

E
[
A(IF

n)
]

E [OPT(IF
n)]

.

In the case of (class constrained) bin covering we have to replace sup lim sup
by inf lim inf.

Often, we can reduce the analysis of the asymptotic average performance
ratio to a restricted class P of distributions, the so-called perfect-packing distri-
butions. We say that F is a perfect-packing distribution if we can represent F
in the following way: We assume that there are m ∈ N bins that are perfectly
packed in the sense that the total size of the items in each bin is exactly 1 and
the number of colors in each bin is at most k or at least k for class constrained
bin packing or class constrained bin covering, respectively. We denote by � the
total number of items and the items are numbered consecutively from 1 to �.
The distribution F is obtained by drawing an index i uniformly at random from
{1, . . . , �} =: [�] and choosing the item with the corresponding index. Analo-
gously, a perfect-packing instance in the random-order model is an instance in
which in the optimal solution all bins are perfectly packed in the above sense.

Now we introduce the second performance measure. For an instance I, we
denote by Iσ a random instance, where the items in I are randomly permuted.

464 C. Fischer and H. Röglin

Let A be an algorithm for the (class constrained) bin packing problem. Then
the asymptotic random-order ratio RR(A) of A is defined as

RR(A) = lim sup
OPT(I)→∞

E [A(Iσ)]
OPT(I)

.

In the case of (class constrained) bin covering we have to replace lim sup
by lim inf.

For all considered problems, the asymptotic average performance ratio cannot
be worse than the random-order ratio, i.e., for any algorithm A we have 1 ≤
AAPR(A) ≤ RR(A) and 1 ≥ AAPR(A) ≥ RR(A) for the (class constrained)
bin packing problem and the (class constrained) bin covering covering problem,
respectively (see [8] or the full version of the paper).

We also study the special cases of class constrained bin packing and covering,
where we have unit sized items. In this special case, we are given a parameter B ∈
N, and all items have size 1/B. For convenience, we will scale the item sizes to
1 and the bin capacity to B in this case.

1.2 Related Work

There is vast body of literature on the classical versions of bin packing and
bin covering. We discuss only the results that are most relevant for our arti-
cle. Kenyon [10] introduced the notion of asymptotic random-order ratio for bin
packing and proved that the asymptotic random-order ratio of the best-fit algo-
rithm (BF) lies between 1.08 and 1.5, while its (worst-case) competitive ratio
is well-known to be 1.7 [5,15]. In contrast to this, Coffman et al. [9] showed
that the random-order ratio of the next-fit algorithm (NF) equals its (worst-
case) competitive ratio 2. Christ et al. [4] adapted the asymptotic random-order
ratio to bin covering and proved that the random-order ratio of the dual next-fit
algorithm (DNF) is at most 0.8, which was later improved to 2/3 [8]. In [8], we
proved that the asymptotic average performance ratio of DNF is 0.5 + ε for a
small constant ε > 0 for every discrete distribution F . However, this lower bound
does not carry over to the random-order ratio of DNF and no lower bound except
for the trivial bound of 0.5 is known for this.

The class constrained bin packing problem has been introduced in [13] and
studied in a sequence of papers [7,14,16]. All results so far concern the competi-
tive ratio in the classical worst-case model. In the case of unit sized items there is
a lower bound of 2 for the asymptotic competitive ratio that can be achieved and
this bound is achieved by the first-fit algorithm (FF) and the algorithm CS [NF]
(also called ColorSets) introduced in [14]. In the general case, for all values
of k, there exists an online algorithm for class constrained bin packing with a
competitive ratio of at most 2.63492 [7]. Also the competitive ratios of several
other online algorithms have been analyzed [7,16] and approximation schemes
for the offline problem have been obtained [7].

The class constrained bin covering problem has been introduced by Epstein
et al. [6]. Also this problem has not been studied in a probabilistic setting before.

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 465

Epstein et al. consider only the case of unit sized items and they prove several
results. They obtain a polynomial-time algorithm for the offline problem and an

upper bound of
(

(B−1)(B−k+1)
B(B−k)+B−1 · (B−k

B−1 + Hk−1)
)−1

for the competitive ratio of
any online algorithm. Furthermore, they prove that DNF is not competitive for
class constrained bin covering and they introduce the algorithm Color&Size

and prove that it is Ω(1/k)-competitive. They also introduce the algorithm FF2
and prove that its competitive ratio is exactly 1/B.

1.3 Our Contributions

All mentioned algorithms are described in detail in Sect. 1.4.

Classical Bin Packing and Covering. We prove that for bin covering the
simple greedy algorithm DNF achieves a random-order ratio of at least 0.501.
While this is only a small improvement over the trivial bound of 0.5, it is the
first bound that shows that DNF performs better in the random-order setting
than in the worst case. This has already been conjectured in [4] and posed as
an open problem. The conclusions in [4] also discuss the challenges in proving
such a result. While the different bins covered by DNF are not independent in
the random-order model, one main observation in our proof is that they are
identically distributed. Given this observation, the proof relies on analyzing the
expected overshoot of the first filled bin, where the overshoot is defined as the
total size of the items assigned to that bin minus its capacity 1. We show that
the expected overshoot is strictly less than 1. This proof strategy is analogous
to our analysis of the asymptotic average performance ratio [8] but the technical
details are quite different because instead of sampling with replacement the
harder setting of sampling without replacement has to be analyzed.

Since the random-order ratio of the dual harmonic algorithm DHk is 0.5 [4],
this result separates DNF from DHk in the random-order model, while their
performance cannot be distinguished in a worst-case analysis. This is interesting
because DHk was designed to guard against pathological worst-case inputs and
it is already discussed in [4] that one would expect DNF to perform better
than DHk on more realistic inputs. As an additional minor result, we prove
that DNF and DHk are also separated in terms of their asymptotic average
performance ratio by showing that this ratio is 0.5 for DHk while our lower
bound of 0.501 for DNF also carries over to this setting.

In contrast to this, we show for bin packing that next-fit, worst-fit, and smart-
next-fit do not perform better in the random-order setting and not even in the
i.i.d. setting than in the worst case. (For the random-order ratio of next-fit this
result was already known [9]).

Class Constrained Bin Packing and Covering. We mention only the most
interesting results. For class constrained bin packing we can show that there
exists a sequence of algorithms whose asymptotic average performance ratios

466 C. Fischer and H. Röglin

tend to h∞ ≈ 1.691. h∞ is known in classical bin packing as the lower bound
for bounded-space online-algorithms shown by Lee and Lee [12]. This is far
better than the competitive ratio of the best known algorithm 2.635 for class
constrained bin packing [7] and also beats the known lower bound for arbitrary
deterministic algorithms of 1.717 shown in [2] for the special case k = 2.

When we consider the random-order model, we find out that several algo-
rithms behave worse than in the case of i.i.d. sampling. Especially, we establish
a lower bound of 10/9 for the random-order ratio of all deterministic online-
algorithms. As far as we know, this is the first lower bound for arbitrary algo-
rithms w.r.t. to a probabilistic performance measure in the area of bin packing
and bin covering and its variants.

Furthermore, we consider the special case of unit sized items. We observe
again different behaviors of heuristics w.r.t. to the two considered performance
measures. Especially, a large class of “natural” algorithms performs asymptoti-
cally optimal, if the items are drawn i.i.d.

For class constrained bin covering we investigate the behavior of DNF and
FF2. We observe that the algorithms benefit a lot from random input – indepen-
dently of the considered probabilistic performance measure. We provide bounds,
which are logarithmic in k, for the performance of DNF w.r.t. both models. In
the case of unit sized items we show that FF2 behaves asymptotically optimal
in the random-order model, and therefore also for i.i.d. sampling. We use this
result to establish a 1/3-competitive algorithm in the random-order model for
general item sizes.

The main tools for proving these results are

– Markov chain arguments (e.g. estimates for the stationary distribution and
growth bounds for trajectories);

– couplings to compare stochastic processes and relating i.i.d. sampling with
the random-order model;

– concentration inequalities for – possibly dependent – random variables.

An overview on the used concentration bounds will be given in the full version
of the paper.

Intuitively one main reason why the two probabilistic measures lead to dif-
ferent results in the case of class constrained bin packing is that in the random-
order model the number of different colors can grow with the length of the input
sequence while it cannot grow arbitrarily with the input length if the items are
drawn i.i.d. with respect to some fixed distribution.

1.4 Algorithms

Let us describe the algorithms that we analyze in more detail. We start with
the (class constrained) bin packing problem. For this problem, the following
algorithms are relevant for our results.

– Next-Fit (NF): At each point of time one bin is open. NF assigns each arriving
item to the currently open bin if it can accommodate the item. Otherwise it

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 467

closes the currently open bin and opens a new bin to which the item is added.
Here closing a bin means that no item will be assigned to this bin in the future
anymore.

– First-Fit (FF): FF never closes a bin, i.e., it keeps all bins open and assigns
each arriving item to the first bin that can accommodate it if such a bin
exists. Otherwise it opens a new bin and adds the item to it.

– Best-Fit (BF): BF never closes a bin, i.e., it keeps all bins open and assigns
each arriving item to the fullest bin that can accommodate it if such a bin
exists. Otherwise it opens a new bin and adds the item to it.

– Worst-Fit (WF): WF never closes a bin, i.e., it keeps all bins open and assigns
each arriving item to the bin with the most space remaining if this bin can
accommodate it. Otherwise it opens a new bin and adds the item to it.

– Smart-Next-Fit (SNF): SNF works similarly to NF. It assigns each arriving
item to the currently open bin Z if this bin can accommodate the item.
Otherwise it opens a new bin Z ′ and adds the item to it. It retains as new
current bin whichever of Z and Z ′ has the most space remaining.

– HARMONICM : HARMONICM is an algorithm designed for classical bin
packing. It partitions the interval (0, 1] into the subintervals

(0, 1/M], (1/M, 1/(M − 1)], . . . , (1/2, 1].

This partition induces also a partition of the set of items into M classes.
HARMONICM packs items from different classes into different bins and it
runs NF independently for each class. That is, it packs exactly j items from
the interval (1/(j + 1), 1/j] into a bin.

– CS [A]: A technique often used to generate algorithms for class constrained bin
packing is the ColorSets-approach. The ColorSets-approach wants to apply an
algorithm A, which is designed for classical bin packing, to class constrained
bin packing. In order to do this, it groups the colors according to their first
arrival in groups of size k and then applies A separately to each group. Popular
examples are CS [NF], CS [FF] and CS [BF] (see e.g. [14,16]).

While in NF there is only one and in HARMONICM only M open bins at each
point of time, in FF, BF, and WF all bins are kept open during the whole input
sequence. We say that an algorithm is an �-bounded space algorithm if on any
input and at each point of time it has at most � open bins.

Now we describe the relevant algorithms for the (class constrained) bin cov-
ering problem.

– Dual Next-Fit (DNF): DNF packs all arriving items into the same bin until
the bin is filled. Then the next items are packed into a new bin until this bin
is filled, and so on.

– FF2: The algorithm FF2 is for the class constrained bin covering problem with
unit sized items only. It adds each arriving item to the first bin for which it is
suitable. To define the notion of suitable, consider a bin that contains already
items with k − t different colors. If this bin contains fewer than B − t items,
every item is suitable. Otherwise, if the number of items is exactly B − t, an
item is only suitable if it has a color that is not yet contained in the bin.

468 C. Fischer and H. Röglin

– Dual Harmonic DHM : The algorithm DHM is the adaption of HARMONICM

to classical bin covering. The interval (0, 1] is partitioned into the subinter-
vals (0, 1/M), [1/M, 1/(M −1)), . . . , [1/2, 1). This partition again induces also
a partition of the set of items into M classes. DHM packs items from different
classes into different bins and it runs DNF independently for each class. That
is, it uses exactly j items from the interval [1/j, 1/(j − 1)) to cover a bin.

In Sect. 2 we discuss our results on classical bin packing and bin covering
in detail, followed by Sects. 3 and 4 on class constrained bin packing and bin
covering, respectively.

2 Classical Bin Packing and Covering

We start by showing that the trivial greedy algorithm for the classical bin cov-
ering problem performs strictly better in the random-order model than in the
worst case. This statement confirms the conjecture given in [4]. Furthermore, to
the best of our knowledge this is the first positive result on the random-order
ratio of bin packing and covering (and its variations) since the celebrated result
of Kenyon [10].

Theorem 1. We have RR(DNF) ≥ 1/2 + 1/1000.

DNF is a monotone algorithm in the sense that decreasing the size of items
or deleting them only does harm to the algorithm. We see this as follows: Let I =
(a1, . . . , an) and I ′ = (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) with a′

i < ai. We simulate
deleting an item by setting a′

i equal to zero. Let f(aj) denote the number of the
bin aj is assigned to if DNF performs on I and f ′(aj) if DNF performs on I ′,
respectively. If j ≤ i it is obvious that we have f(aj) = f ′(aj). If j > i we can
show via induction that f(aj) ≥ f ′(aj). Therefore, we have DNF(I ′) ≤ DNF(I).

It follows from the monotonicity of DNF that we can assume without loss
of generality that we deal with instances I that can be packed perfectly into
OPT(I) bins. Especially, we have OPT(I) = S(I), where S(I) denotes the total
size of all items in I.

Since DNF is 1/2-competitive, we know that the algorithm covers, indepen-
dently of Iσ, at least �OPT(I)/2� many bins. For i ∈ [1 : �OPT(I)/2�] let Si(Iσ)
denote the total size of items in the i-th covered bin if we apply DNF to Iσ. We
define the overshoot for the i-th bin as Ri(Iσ) := Si(Iσ) − 1.

Then, the proof of the theorem is based on two pillars. At first, we show that
the overshoot is identically distributed:

Lemma 2. The random variables Ri(Iσ), where 1 ≤ i ≤ �OPT(I)/2�, are iden-
tically distributed.

Then, we can express the random-order ratio in terms of the overshoot. Let
W (Iσ) denote the total size of the items in the last bin, which is not covered.
We have

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 469

OPT(I) = DNF(Iσ) · 1 +
DNF(Iσ)∑

i=1

Ri(Iσ) + W (Iσ)

= DNF(Iσ) +
�OPT(I)/2�∑

i=1

Ri(Iσ) +
DNF(Iσ)∑

i=�OPT(I)/2�+1

Ri(Iσ) + W (Iσ)

≤ DNF(Iσ) +
�OPT(I)/2�∑

i=1

Ri(Iσ) + (DNF(Iσ) − �OPT(I)/2�) + 1

≤ 2DNF(Iσ) − OPT(I)/2 + 2 +
�OPT(I)/2�∑

i=1

Ri(Iσ).

Applying expectation values to both sides and using the previous lemma, we
obtain

OPT(I) ≤ 2E [DNF(Iσ)] − OPT(I)/2 + 2 +
1
2

OPT(I)E [R1(Iσ)] .

It follows that

E [DNF(Iσ)]
OPT(I)

≥ 3
4

− 1
4

· E [R1(Iσ)] − 1
OPT(I)

. (1)

The second pillar is to give an upper bound for the overshoot. A similar
statement in case of items that are drawn i.i.d. was shown in our paper [8]. At
that time we used elementary counting and covering arguments. This time we
apply concentration inequalities that lead to a simplified proof with a stronger
bound – even if the resulting bound is still close to the worst case.

Lemma 3. Let (Ij)j be an arbitrary sequence of instances with

lim
j→∞

OPT(Ij) = ∞ and RR(DNF) = lim inf
j→∞

E
[
DNF(Iσ

j)
]

OPT (Ij)
.

Then, if j is sufficiently large we have

E
[
R1(Iσ

j)
] ≤ 1 − 34

100e3
·
(

1 − exp
(

−121
420

))
≈ 0.99576.

Combining this upper bound with (1) yields a lower bound of approximately
0.501 for DNF if the items arrive in random order. The lower bound is comple-
mented by an upper bound of 2/3 for the random-order ratio in [8].

The behavior of DNF in the random-order model is in contrast to the behav-
ior of NF in classical bin packing: Coffman et al. [9] showed in 2008 that
RR(NF) = 2, which is equal to its worst-case performance. We will refine this
statement and show that the algorithms NF, SNF and WF for classical bin pack-
ing do not behave better than in the worst case even if the items are sampled in
an i.i.d. manner.

470 C. Fischer and H. Röglin

Proposition 4. For A ∈ {NF,SNF,WF} we have AAPR(A) = RR(A) = 2.

Furthermore, also the dual harmonic algorithm DHk for bin covering does
not improve on the worst case if the items are drawn i.i.d.

Proposition 5. We have AAPR(DHk) = 1/2.

3 Class Constrained Bin Packing

3.1 Results for General Item Sizes

As already mentioned in the introduction a popular approach to deal with
class constrained bin packing is the ColorSets-approach. We show that there
are algorithms based on this approach, that behave remarkably well in the
case of items that are drawn i.i.d. Let t1 = 1 and ti+1 = ti(ti + 1). We set∑∞

i=1
1
ti

=: h∞ ≈ 1.691. h∞ is known in bin packing as the famous lower bound
for bounded-space online algorithms for the classical bin packing problem proved
by Lee and Lee in [12]. The following statement shows that there is a sequence
of ColorSets-based algorithms whose performance tends to h∞. Furthermore, no
algorithm based on this idea could behave better.

Theorem 6. Let ε > 0 be arbitrary. Choosing M sufficiently large, we have

AAPR(CS [HARMONICM]) ≤ h∞ + ε.

Furthermore, let A be an arbitrary algorithm for classical bin packing, then we
have

AAPR(CS [A]) ≥ h∞.

To show the upper bound we want to compare the performance of the algo-
rithm CS [HARMONICM] with the performance of the algorithm HARMONICM

in the case we ignore the colors. Lee and Lee proved in [12] that the asymptotic
competitive ratio of HARMONICM for classical bin packing is upper bounded
by h∞ + ε for ε > 0 arbitrary, if we choose M sufficiently large.

We observe that the number of opened bins differs by at most M · QF (n)
many bins. Here, QF (n) denotes the number of different drawn colors among
the first n drawn items. But QF (n) grows sublinearly in expectation. There-
fore, asymptotically the performance of CS [HARMONICM] coincides with the
performance of HARMONICM in classical bin packing.

For the lower bound we construct a distribution F as follows: The multiset
of items I contains large items and small items. The large items are as follows:
For each (i, j) ∈ [k]2 there will be an item of size 1

ti+1 + β of color (i − 1)k + j,
where β > 0 is sufficiently small. Furthermore, I contains lots of small items
of different colors. Choosing the small items appropriately the order of the first
arrival of the colors is 1, . . . , k2 with high probability. Then, CS [A] will pack the
items of size 1

ti+1 + β separately. The statement then follows from the work of
Lee and Lee.

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 471

In the random-order model things are more complicated: We can show that it
is not possible for ColorSets-based algorithms and FF to achieve a performance
of h∞.

Proposition 7. Let A be an arbitrary algorithm for classical bin packing. Then
we have RR(CS [A]) ≥ 2, even in the special case k = 2. Furthermore, we show
that RR(FF) ≥ 2.

Furthermore, we are able to establish a non-trivial lower bound for the per-
formance of an arbitrary online-algorithm in the random-order model. As far as
we know this is the first asymptotic lower bound for a probabilistic performance
measure in the field of bin packing/bin covering and its variants.

Theorem 8. Let A be an arbitrary online-algorithm for class constrained bin
packing. Then we have RR(A) ≥ 10/9.

The idea of the proof is to construct an instance I that contains items of
colors of the two types small and large. The total size of all items of a small
color is close to zero, while the total size of all items of a large color is close to
1. Furthermore, for each color there are lots of tiny items. If the items arrive in
random order, there will be lots of tiny items in the beginning. This forces the
algorithm to decide which colors to put in the same bin without the possibility to
learn, which color is small and large. Therefore, there will be a constant fraction
of bins opened by the algorithm that are nearly empty.

3.2 The Special Case of Unit Sized Items

Now we want to consider the case of unit sized items. We observe the same
behavior of algorithms as in the case of general item sizes. If the items are
drawn i.i.d. a large class of natural algorithms performs asymptotically optimal,
but in the random-order model their performance is worse.

Proposition 9. CS [NF] and every algorithm that opens a new bin only if it is
forced, is optimal if the items are drawn i.i.d.

Proposition 10. We have RR(CS [NF]) = 2.

Proposition 11. We have RR(FF) ≥ 1.5.

Finally, we want to mention that bounded-space algorithms perform poorly
for class constrained bin packing, even on random input with unit sized items.
This is in contrast to classical bin packing.

Proposition 12. Consider class constrained bin packing with unit sized items
and parameters B and k. Let A be an arbitrary bounded-space online-algorithm.
Then we have RR(A),AAPR(A) ∈ Ω(B/k).

472 C. Fischer and H. Röglin

4 Class Constrained Bin Covering

We start with a simple result on bounded-space algorithms for the class con-
strained bin covering problem. While in the classical bin covering problem, even
the trivial 1-bounded space algorithm is best possible w.r.t. the competitive
ratio, in the class constrained variant those algorithms behave poorly.

Proposition 13. Let A be a bounded-space algorithm. Then A is not competitive
w.r.t. the competitive ratio.

In general, there is a logarithmic upper bound in k for the performance of
online algorithms. That is, the online version of this problem is strictly more
difficult than the classical problem. The following statement is a slight improve-
ment on the corresponding result in [6]. The proof uses the same technique, but
adjusts the choice of scenarios.

Proposition 14. The competitive ratio of any deterministic online algorithm
is at most

(
Hk−1 + 1 − k−1

B

)−1
. If B = k this yields an upper bound of H−1

k .

Now we begin to investigate the performance of heuristics w.r.t. probabilistic
performance measures. We start with the simple 1-bounded space algorithm
DNF.

Theorem 15. For unit sized items we have RR(DNF) ∈ Θ(log(k)−1). For gen-
eral item sizes we have AAPR(DNF) ∈ Θ(log(k)−1).

We see that in class constrained bin covering DNF benefits a lot from prob-
abilistic input. We have seen that bounded-space algorithms cannot be com-
petitive in the worst case and that there exists a logarithmic upper bound in
k for the performance of arbitrary online algorithms. If unit sized items arrive
in random order, even the simple 1-bounded-space algorithm DNF achieves a
competitive ratio that matches this bound.

Surprisingly it turns out that a FirstFit-approach is even optimal if unit sized
items arrive in random order:

Theorem 16. We have RR(FF2) = 1.

To prove the theorem at first we observe that the algorithm is monotone. There-
fore, we can assume that we deal with instances I that cover OPT(I) bins per-
fectly. Furthermore, the monotonicity of FF2 allows us to restart the algorithm
several times starting again with a single empty bin. Using this technique, we
divide the input I into |I|2/3 many sub-inputs containing each |I|1/3 many items.
Then we show that we can assume that the items in the sub-input are drawn
i.i.d. So we reduce the analysis in the random-order model to the case of i.i.d.
sampling.

Then, we construct a comparison Markov chain, which lower bounds the
number of covered bins of FF2 on the sub-inputs. The idea of the comparison
chain is as follows: We simulate the behavior of a modified FF2-algorithm on

Probabilistic Analysis of (Class-constrained) Bin Packing and Bin Covering 473

a special distribution F . We obtain F from drawing an item with color 1 with
probability (B − k + 1)/B and an item with color i with probability 1/B, where
i ∈ {2, . . . , k}. The modified FF2-algorithm treats the first B − k + 1 items in a
bin as items of color 1. We can show that FF2 on an arbitrary (perfect-packing)
distribution F covers in expectation at least as many bins as the modified algo-
rithm in our comparison chain.

Finally, we use tools from the field of Markov chains to show that the growth
of open bins in the comparison chain is only sublinear in the number of items.
Plugging the pieces together we obtain that RR(FF2) = 1.

Theorem 16 allows us to give a simple online algorithm, which is 1/3-
competitive for general item sizes if the items arrive in random-order.

Corollary 17. There exists an 1/3-competitive algorithm in the random-order
model for the class constrained bin covering problem with general item sizes.

This also gives us an easy randomized algorithm for the offline case. To the
best of our knowledge this is the first offline algorithm presented for this problem.

Corollary 18. There is a randomized asymptotic 1/3-competitive algorithm for
class constrained bin covering in the offline case.

5 Conclusion and Further Research

We showed that the DNF algorithm for bin covering performs better in the
random-order model than in the worst case by providing a lower bound of 0.501
on its random-order ratio. This is the first bound better than the trivial bound
of 0.5. We think that it is an interesting open problem to close the gap between
the lower and upper bounds and we conjecture that the random-order ratio of
DNF equals the upper bound 2/3.

Furthermore, we studied class constrained bin packing and class constrained
bin covering in the random-order model and i.i.d. sampling. We saw that in
many cases heuristics benefit from the probabilistic input and can beat sev-
eral worst-case bounds. In class constrained bin packing we observed different
performances of algorithms in the two probabilistic models. The random-order
model allows us to restrict the number of similar items and to force a linear
number of different item types, while in the i.i.d. model the number of differ-
ent item types grows only sublinearly. This difference plays an important role
in class constrained bin packing, while it is not relevant in class constrained
bin covering. As far as we know in bin packing and bin covering there are no
other results known, where the performance of algorithms differ with respect to
the investigated performance measures. It would be interesting to find further
examples in this area, where algorithms perform differently, and to give formal
explanations why both performance measures coincide in other bin packing/bin
covering variants.

474 C. Fischer and H. Röglin

References

1. Babel, L., Chen, B., Kellerer, H., Kotov, V.: Algorithms for on-line bin-packing
problems with cardinality constraints. Discrete Appl. Math. 143, 238–251 (2004)

2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: Lower bounds for several
online variants of bin packing. CoRR, abs/1708.03228 (2017)

3. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: Online bin packing with
cardinality constraints resolved. In: Proceedings of the 25th European Symposium
on Algorithms (ESA), vol. 87, pp. 10:1–10:14 (2017)

4. Christ, M.G., Favrholdt, L.M., Larsen, K.S.: Online bin covering: expectations vs.
guarantees. Theoret. Comput. Sci. 556, 71–84 (2014)

5. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp.
429–441. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-
7 36

6. Epstein, L., Imreh, C., Levin, A.: Class constrained bin covering. Theory Comput.
Syst. 46(2), 246–260 (2010)

7. Epstein, L., Imreh, C., Levin, A.: Class constrained bin packing revisited. Theoret.
Comput. Sci. 411(34–36), 3073–3089 (2010)

8. Fischer, C., Röglin, H.: Probabilistic analysis of the dual next-fit algorithm for
bin covering. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS,
vol. 9644, pp. 469–482. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49529-2 35

9. Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing.
Discrete Appl. Math. 156(14), 2810–2816 (2008)

10. Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 359–364 (1996)

11. Krause, K.L., Shen, V., Schwetman, H.D.: Analysis of several task-scheduling algo-
rithms for a model of multiprogramming computer systems. J. ACM 22(4), 522–550
(1975)

12. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32(3), 562–
572 (1985)

13. Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-
constrained packing problems. J. Sched. 4(6), 313–338 (2001)

14. Shachnai, H., Tamir, T.: Tight bounds for online class-constrained packing. Theo-
ret. Comput. Sci. 321(1), 103–123 (2004)

15. Ullman, J.D.: The Performance of a Memory Allocation Algorithm. Technical
report 100 (Princeton University, Department of Electrical Engineering, Computer
Sciences Laboratory). Princeton University (1971)

16. Xavier, E.C., Miyazawa, F.K.: The class constrained bin packing problem with
applications to video-on-demand. Theoret. Comput. Sci. 393(1–3), 240–259 (2008)

https://doi.org/10.1007/978-3-662-43948-7_36
https://doi.org/10.1007/978-3-662-43948-7_36
https://doi.org/10.1007/978-3-662-49529-2_35
https://doi.org/10.1007/978-3-662-49529-2_35

Locating the Eigenvalues for Graphs
of Small Clique-Width

Martin Fürer1(B), Carlos Hoppen2, David P. Jacobs3, and Vilmar Trevisan2

1 Department of Computer Science and Engineering,
Pennsylvania State University, State College, USA

furer@cse.psu.edu
2 Instituto de Matemática, Universidade Federal do Rio Grande do Sul,

Alegre, Brazil
choppen@ufrgs.br, trevisan@mat.ufrgs.br

3 School of Computing, Clemson University, Clemson, USA
dpj@clemson.edu

Abstract. It is shown that if G has clique-width k, and a corresponding
tree decomposition is known, then a diagonal matrix congruent to A−cI
for constants c, where A is the adjacency matrix of the graph G of order n,
can be computed in time O(k2n). This allows to quickly tell the number
of eigenvalues in a given interval.

Keywords: Eigenvalues · Clique-width · Congruent matrices
Efficient algorithms · Parameterized algorithms

1 Introduction

Throughout this paper we use standard terminology for graph theory and linear
algebra. The main concern of spectral graph theory is to determine properties of
a graph through the eigenvalues of matrices associated with it. An obvious step
in any such application is to calculate the spectrum of the input graph, or at
least to accurately estimate a subset of its eigenvalues. We say that an algorithm
locates eigenvalues if, for any graph G and any real interval I, it finds the number
of eigenvalues of G in the interval I. In recent years, efficient algorithms have
been developed for the location of eigenvalues in trees [8], unicyclic graphs [3],
threshold graphs [9] (also called nested split graphs), and chain graphs [1]. A
slightly richer class of graphs which contain threshold graphs are the graphs with
no induced subgraph isomorphic to P4, which are often called P4-free graphs or
cographs. Eigenvalue location in cographs and threshold graphs has been widely
studied [2,10,16,19–21].

A powerful concept for parameterized algorithms is clique-width [4–6]. Its
motivation has been to extend the concept of tree-width introduced by Robertson

M. Fürer—Research supported in part by NSF Grant CCF-1320814.
D. P. Jacobs and V. Trevisan—Work supported by Science without Borders CNPq -
Grant 400122/2014-6, Brazil.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 475–489, 2018.
https://doi.org/10.1007/978-3-319-77404-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_35&domain=pdf

476 M. Fürer et al.

and Seymour [18] (e.g., see [17]) to include dense graphs as well. A k-expression
is an expression formed from atoms i(v), two types of unary operations ηi,j and
ρi→j , and a binary operation ⊕ as follows.

– i(v) creates a vertex v with label i, where i is from the set [k] = {1, . . . , k}.
– ηi,j creates all edges which are not already present between the vertices with

labels i and the vertices with labels j for i �= j.
– ρi→j changes all labels i to j.
– ⊕ produces the disjoint union of two labeled graphs.

Finally, the graph generated by a k-expression is obtained by deleting the
labels. The clique-width cw(G) of a graph G is the smallest k such that the graph
can be defined by a k-expression [5,6].

Any graph can be constructed in this way, provided k is large enough. For
instance, cographs are exactly the graphs for which cw(G) ≤ 2, and one can
show that cw(T) ≤ 3 for any tree T . See [14] for a discussion of the clique-width
of many classical classes of graphs. Computing the clique-width is NP-hard [7].
Thus, one usually assumes that a graph is given together with a k-expression.
For most practical applications, including ours, a constant factor approximation
would be sufficient to obtain efficient algorithms. The complexity of finding such
an approximation is still unknown. This will hopefully improve in the future,
but one should note that even the tree-width is NP-hard to compute, and no
polynomial time approximation algorithm is known.

While tree-width has always been related to symmetric Gaussian elimination
(a polynomial time algorithm), the main application area for graph widths has
been the design of efficient algorithms for NP-complete or even harder problems.
The goal there is to show problems fixed parameter tractable (FPT), by provid-
ing an algorithm with a running time of O(f(k)nc) for an arbitrary computable
function f . Typically, f is at least exponential. But for small values of k, such
algorithms are often very practical.

Here, we return to a polynomial time solvable problem. Nevertheless, the
parameterized complexity view is very useful. For bounded clique-width, we
turn a cubic time solution (or at least more than quadratic time solution when
using known fast matrix multiplication) into a linear time solution, a drastic
improvement for graphs of small clique-width, even though the transformation
is not at all straightforward.

Recall that two matrices R and S are congruent, which we write R ∼= S, if
there exists a nonsingular matrix P for which R = PT SP . It turns out that
there is a strong connection between congruence of symmetric matrices and
eigenvalue location, which we now describe. Let G be a graph with adjacency
matrix A, and consider real numbers c and d with c < d. If we can construct a
diagonal matrix Dc

∼= B = A − cI, then Sylvester’s Law of Inertia [15, p. 568]
implies that the number n1 of eigenvalues of A greater than c (counted with
their multiplicities) equals the number of positive entries in Dc. Similarly, the
number n2 of eigenvalues of A greater than d is the number of positive entries
in a diagonal matrix Dd

∼= A − dI. Thus n1 − n2 is the number of eigenvalues

Locating the Eigenvalues for Graphs of Small Clique-Width 477

(counted with their multiplicities) in (c, d]. This is why we want to design a fast
algorithm to find a diagonal matrix that is congruent to A − cI.

The purpose of this paper is to give an O(k2n) time diagonalization algorithm
for graphs having clique-width k. This is remarkable because adjacency matrices
of graphs with clique-width k often have Ω(n2) nonzero entries. In particular,
graphs of bounded clique-width are often not of bounded tree-width. The new
clique-width based algorithm can be much more efficient than a tree-width based
algorithm, because the tree-width can be linear in n, even when the clique-width
is a small constant.

Closely related to clique-width is the lesser known NLC-width, due to Wanke
[22], and initiated by node label controlled (NLC) graph grammars [11,12].
Graphs of NLC-width at most k are defined by NLC k-expressions. These expres-
sions contain the operators i(v) and ρi→j for vertex creation and relabeling. But
new edges are created in combination with the join operation, using a binary
operation ⊕S (instead of ⊕ and ηi,j), where S ⊆ [k] × [k]. When G ⊕S H is
applied, then, for each (i, j) ∈ S, edges are introduced between vertices labeled
i in G and vertices labeled j in H. This has the effect that a subgraph generated
by a subexpression is always an induced subgraph, a property important to us.
This is different from k-expressions defining clique-width, where an edge creating
operation applied after a join of G and H typically introduces edges within G
and within H too.

In representing graphs, we will actually use a minor modification of NLC-
width, which is much more convenient than clique-width for our purposes. We
call it slick clique-width. Here a single operator performs the join, edge creation
and relabeling. It also has the property that subgraphs generated by subexpres-
sions are induced subgraphs.

The remainder of this paper is organized as follows. In Sect. 2 we define
slick k-expressions and slick clique-width, denoted scw(G). We also show that
scw(G) ≤ cw(G) ≤ 2scw(G) and observe that there are linear-time transforma-
tions to translate a k-expression to a slick k-expression, and a slick k-expression
to a 2k-expression. In Sect. 3 we describe our O(k2n) time diagonalization algo-
rithm for graphs of slick clique-width k. Concluding remarks appear in Sect. 4.

2 Slick Clique-Width

In the following definition a single operator is used for performing the union,
creating edges and relabeling. A slick k-expression is an expression formed from
atoms i(v) and a binary operation ⊕S,L,R, where L, R are functions from [k] to
[k] and S is a binary relation on [k] × [k], as follows.

(a) i(v) creates a vertex v with label i, where i ∈ [k].
(b) Given two graphs G and H whose vertices have labels in [k], the labeled

graph G ⊕S,L,R H is obtained by the following operations. Starting with
the disjoint union of G and H, add edges from every vertex labeled i in G
to every vertex labeled j in H for all (i, j) ∈ S. Afterwards, every label i

478 M. Fürer et al.

of the left component G is replaced by L(i), and every label i of the right
component H is replaced by R(i).

Two (slick) clique-width expressions are said to be equivalent if they produce the
same labeled graph. Finally, the graph generated by a slick clique-width expres-
sion is obtained by deleting the labels of the labeled graph produced by it. The
slick clique-width scw(G) of a graph G is the smallest k such that the graph can
be defined by a slick k-expression.

Note that the definition of a slick k-expression implies that edges can only
be placed between different components, so if two vertices are in the same com-
ponent after some steps in the above construction, but are not adjacent, they
will never become adjacent. A slick k-expression can also be represented as a
parse tree T where the leaves contain the operators i(v) and the internal nodes
contain the ⊕S,L,R operations. Two vertices v and w are adjacent if and only if
their least common ancestor ⊕S,L,R in T connects them, similar to the cotree
representation for cographs in [2]. Note that cographs are precisely the graphs
with slick clique-width equal to 1. Indeed, recall that G is a cograph if and only
if either G is a single vertex or the union G1 ∪G2 or join G1 ⊗G2 of cographs G1

and G2 (see [2]). On the other hand, when there is a single label available, the
functions L and R are trivial identities, so that ⊕S,L,R either creates a disjoint
union (if S = ∅) or adds all possible edges with ends in the two operands (if
S = {(1, 1)}). Another simple argument shows that scw(T) ≤ 2 for any tree T .

We can define the depth d(r) of a slick k-expression r recursively. The expres-
sion i(v) has depth 0, and d(A ⊕S,L,R B) = 1 + max{d(A), d(B)}. This is equiv-
alent to the depth of the parse tree for r. In a similar way, we can define the
depth of a k-expression.

The next result shows that the concept of clique-width and slick clique-width
are closely related. See [13] for the corresponding inequalities for clique-width
and NLC-width.

Theorem 1. If G is a graph then scw(G) ≤ cw(G) ≤ 2scw(G).

Proof. This follows from Lemmas 1 and 3 below. ��
Lemma 1. If G is a graph then scw(G) ≤ cw(G).

Proof. As an auxiliary tool to transform k-expressions into slick k-expressions,
we introduce a new unary operator oS,L that works similar to an ⊕S,L,R, except
that there is no join operation. We assume, S is a symmetric irreflexive binary
relation, L : [k] → [k] is a function, and s is a k-expression generating a graph
G. Then, for all i, j with (i, j) ∈ S, oS,L(s) adds edges from all vertices labeled
i to all vertices labeled j in G. Thereafter every label i is replaced by L(i).

We show that for every k-expression s the expression oS,L(s) is equivalent to
a slick k-expression. The proof is by induction on the depth of s. The basis is
trivial, because oS,L(i(v)) is equivalent to L(i)v. For the induction step, we do
a case distinction according to the outermost operation in s.

– Let s = ηi,j(s′). The expression oS,L(ηi,j(s′)) transforms into the equivalent
expression oS′,L′(s′) with S′ = S ∪ {(i, j)} and L′ = L.

Locating the Eigenvalues for Graphs of Small Clique-Width 479

– Let s = ρi→j(s′). For

ρ(i′) =

{
j if i′ = i

i′ otherwise,

the expression oS,L(ρi→j(s′)) transforms into the equivalent expression
oS′,L′(s′) with

(i′, j′) ∈ S′ iff (ρ(i′), ρ(j′)) ∈ S,

and

L′(i′) = L(ρ(i′)) =

{
L(j) if i′ = i

L(i′) otherwise.

Note that if the relations S and S′ are represented by symmetric 0–1-matrices,
then S′ is obtained from S by copying the j-th row into its i-th row, and the
j-th column into the i-th column. The order of the two copying operations
does not matter. In any case, we obtain S′

jj = S′
ij = S′

ji = S′
ii = Sjj .

– Let s = s′ ⊕ s′′. The expression oS,L(s′ ⊕ s′′) transforms into the equivalent
expression (oS′,L′s′) ⊕S,L,L (oS′,L′s′′), where S′ = S and L′ is the identity
function.

In all cases, the k-expressions s′, and also s′′ in the last case, are of smaller depth
than s. Hence, by the induction hypothesis, oS′,L′s′ and oS′,L′s′′ are equivalent
to slick k-expressions.

We obtain the complete transformation of a k-expression s into a slick k-
expression s′ by transforming the expression oS,L(s) for a dummy operation
oS,L with S the empty relation and L the identity function. ��
Lemma 2. A transformation of a k-expression s into a slick k-expression s′

can be obtained in time O(k2n + |s|).
Proof. The procedure described in the proof of Lemma 1 runs in time O(k2|s|).
It spends time O(k2) in every node of the parse tree. This is not good, if we have
a large number of nodes.

First, we observe that the number of leaves in the parse tree of s is n, and the
number of branching nodes is n−1. Between them there could be arbitrary long
sequences of ηi,j and ρi→j operations, even though only O(k2) of them would
be meaningful in each sequence. We would obtain the desired running time of
O(k2n+ |s|) if we only spent time O(1) in the ηi,j and ρi→j nodes. This is easily
achieved for the ηi,j operations, as they only require to change one entry in a
k×k matrix representing S. A ρi→j operation asks for an O(1) change in L, and
also for a row and column operation in the matrix representing S. We can afford
O(k) such operations in each sequence t of ηi,j and ρi→j operations between
branching and leaf operations.

If the length of the given k-expression s is more than O(kn), then we need
a better algorithm to transform a k-expression s into a slick k-expression s′. In
a first phase, we preprocess every sequence t between nodes p and q where p is
leaf or a branching node and q is the next branching node. While walking up

480 M. Fürer et al.

from p to q towards the root, we determine a set of unused labels. In p, we might
assume that all labels are used. After seeing a ρi→j , we record label i as unused.
We put all the ρi→j operations into 3 classes.

– If label i is already unused when we reach a ρi→j operation, then this opera-
tion is useless and is immediately discarded. It would have no effect, because
there are no vertices labeled i.

– If label i is used, but j is unused, then we classify a ρi→j operation as a
relabeling.

– If both labels i and j are used, then we classify a ρi→j operation as a proper
merge.

Between p and q there is an arbitrary number of relabeling operations. In order
to handle each in time O(1) instead of O(k), we access the matrix S via an
index function ρ : [k] → [k]. An ηi,j operation sets Sρ(i)ρ(j) and Sρ(j)ρ(i) to 1
instead of Sij and Sji. A relabeling operation ρi→j now just redefines ρ(i) to
ρ(j), instead of copying the ρ(j)-th row and column into the ρ(i)-th row and
column. The effect is the same, because before the ρi→j operation, there were
no vertices labeled j.

Between p and q there are at most k − 1 proper merge operations. Each is
handled in time O(k) by copying a row and column of S.

Now we show that the new algorithm is correct. We extend oS,L to oρ,S,L.

– For all k-expressions s, oρ,S,L ηi,j s is equivalent to oρ,S′,L s, where S′ = S ∪
{(ρ(i), ρ(j)), (ρ(j), ρ(i))}. In both cases, the only difference to oρ,S,L s is that
the edges between vertices labeled i and j are added.

– Equally straightforward is the fact that for all k-expressions s′ and s′′,
oS,L(s′ ⊕ s′′) is equivalent to (oS′,L′ s′) ⊕S,L,L (oS′,L′ s′′).

– For all k-expressions s, if the first ρi→j in oρ,S,L ρi→j s is a relabeling opera-
tion, then oρ,S,L ρi→j s is equivalent to oρ′,S,L′ s, where ρ′(i′) = ρ(i′) except
for ρ′(i) = ρ(j), and L′(i′) = L(i′) except for L′(i) = L(j). In both cases,
the only difference to oρ,S,L s is that label i is changed to label j. Edges
not involving label i are still created the same way. oρ,S,L ρi→j creates edges
between label i and some label i′ �= i if and only if (ρ(j), ρ(i′)) ∈ S. Noting
that ρ(j) = ρ′(i) and ρ(i′) = ρ′(i′) for i′ �= i, we see that oρ′,S,L′ s creates the
same edges. As oρ,S,L ρi→j s and oρ′,S,L′ s also create the same labels, they
are equivalent.

– For all k-expressions s, if the first ρi→j in oρ,S,L ρi→j s is a proper merge,
then it is equivalent to oρ,S′,L′ s, where S′ is obtained from S by copying the
j-th row and column into the i-th row and column, and L′(i′) = L(i′) except
for L′(i) = L(j). In both cases, edges between labels i′ and j′ are created if
(ρ(i′), ρ(j′)) ∈ S′. Furthermore, the label replacements are the same in both
cases. ��

Locating the Eigenvalues for Graphs of Small Clique-Width 481

Lemma 3. If G is a graph then cw(G) ≤ 2scw(G).

Proof. Suppose k = scw(G), and s is a slick k-expression for G. It suffices to
construct an equivalent 2k-expression r. We will show this by induction on the
depth of s. This is clear when s = i(v). Otherwise, let s = s1 ⊕S,L,R s2, for
slick k-expressions s1 and s2. By the induction hypothesis, we can assume that
each slick k-expression si has an equivalent 2k-expression ri, producing the same
labeled graph. So we have

s = r1 ⊕S,L,R r2.

Note that, even though r1 and r2 may involve labels between k + 1 and 2k,
they produce labeled graphs with labels in [k]. To complete the induction we
translate the behavior of ⊕S,L,R into the operators ρi→j , ηi,j and ⊕. We relabel
the vertices on the left side mapping each label i ∈ [k] to i + k, and then form
the union. Suppressing parentheses, we obtain a subexpression

w = (ρ1→k+1 ρ2→k+2 . . . ρk→2k r1) ⊕ r2. (1)

To obtain edges, for each (i, j) ∈ S we apply the operators ηi+k,j to w, obtaining
a new expression w′. The relabeling in (1) ensures that new edges are placed only
between the left and right sides. Depending on the functions L and R, we finally
relabel the left and right sides back to their desired values in [k].

We need to relabel according to the function f : [2k] → [2k] defined by

f(i) =

{
L(i − k) if i > k

R(i) if i ≤ k.

We do this relabeling in three rounds.
First, we reduce the number of labels to at most k, using the 2k-expression

w′ = ρ1→g(1) . . . ρ2k→g(2k)w

where
g(i) = max{j | f(i) = f(j)}.

Note that the set {j | f(i) = f(j)} is not empty, as it contains the label i.
Now, we move the set of current labels I = {i1, . . . , iq} with i1 < i2 < · · · < iq

and q ≤ k up into the interval [2k − q + 1, 2k] using the 2k-expression

w′′ = ρi1→h(i1) . . . ρiq→h(iq)w
′

where h : I → [2k − q + 1, 2k] is given by h(ij) = 2k − q + j. Note that the
break down into the previous 2 rounds is just to simplify the description. These
relabelings could have been combined into one round.

In the third round, we choose the proper new labels with the 2k-expression

w′′′ = ρ2k−q+1→f(h−1(2k−q+1)) ρ2k−q+2→f(h−1(2k−q+2)) . . . ρ2k→f(h−1(2k)) w′′

Finally, we delete all the ρi→i operations, or declare them as having no effect.
��

482 M. Fürer et al.

The cograph diagonalization algorithm in [10] exploited the fact that in any
cograph of order n ≥ 2, there exist two vertices u and v for which N(u) = N(v)
or N [u] = N [v], so-called siblings. (N(v) is the set of neighbors of v, and N [v] =
N(v)∪{v} is the closed neighborhood of v.) This means that their corresponding
rows and columns in the adjacency matrix can differ by at most two positions.
By subtracting say, the row (column) of u from the row (column) of v, the row
and column of v is annihilated except in one off diagonal position. The following
analog is crucial to our algorithm.

Remark 1. Let TG be a parse tree for a graph G with adjacency matrix A, and
Q a node in TG. If two vertices u and v have the same label at Q, then their
rows (columns) will agree outside of the matrix for the subtree rooted at Q.

Two symmetric matrices are congruent if one can be obtained by the other
by a sequence of pairs of elementary operations, each pair consisting of a row
operation followed by the same column operation. In our algorithm we only
use congruence operations that add a multiple of a row or column to another
row or column respectively. To achieve linear-time we must operate on a sparse
representation of the graph, rather than the adjacency matrix.

3 The Algorithm

We are given a graph G = (V,E) of slick clique-width k given by a slick k-
expression Q0. The generated graph G has n = |V | vertices, and the slick k-
expression Q0 has length O(k2n). The expression Q0 defines its parse tree, a
rooted binary tree whose nodes are the subexpressions of Q0, and whose edges
are the pairs of nodes {Q′, Q} and {Q′′, Q} for some subexpression Q of Q0 with
Q = Q′ ⊕L,R,S Q′′ for some L, R, and S.

The algorithm A works bottom-up in the parse tree T of the slick k-expression
Q0. In other words, it does a depth-first search of the parse tree and operates
on the node Q when it returns from the right child Q′′ of Q, i.e., it handles Q
during the post-visit of Q (i.e., when returning from the search of the last child).
At that time also the left child Q′ has already been handled.

Let Q1, . . . , Q2n−1 be the postorder of the vertices of T . This is the order
in which the algorithm visits the nodes. To best understand the real algorithm
A, one should imagine a virtual algorithm Ã. It visits the nodes in the same
order as the real algorithm. It starts with the matrix B0 = B. In node j, Ã
does some congruence operation on the matrix Bj−1 to obtain the matrix Bj .
At the end, B2n−1 is a diagonal matrix. The matrix Bj is an n × n matrix. For
some j, it might contain Ω(n2) nonzero entries, and it might differ from Bj−1 at
Ω(n2) places. That’s why the real algorithm A cannot operate directly on the
matrices Bj .

Instead, at Qj the real algorithm A operates on a small O(k) × O(k) sub-
matrix. It has to know where this submatrix is located in the full matrix, and it
has to know the labels of the currently involved vertices. The algorithm searches
through the input expression to simulate a depth-first search through the parse

Locating the Eigenvalues for Graphs of Small Clique-Width 483

tree of the expression. The algorithm outputs the sequence of diagonal element
as it detects them.

Recall that if Q is a slick k-expression which is a subexpression of Q0, then it
is also a node in the parse tree T of Q0. For a node Q of T , let nQ be the number
of vertices of the graph G(Q) generated by the expression Q. Note that G(Q)
is the subgraph of G induced by the vertices of G(Q). Let AQ be the adjacency
matrix of G(Q), and let IQ be the nQ × nQ identity matrix.

With Q, we associate a matrix B̃Q which is obtained from BQ = AQ − cIQ

by some sequence of congruence operations. We will show that such a matrix
B̃Q with only O(k2) nonzero entries can be computed efficiently. Up to simulta-
neous permutations of rows and columns, B̃Q looks as follows. Of course, such
permutations are also congruence operations. Nevertheless, the algorithm does
not have to do them, they are just done here to visualize the structure.

B̃Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0
. . . 0

0 d�

0
M (0) M (1)

M (1)T M (2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, M (1) is a k′×k′′ matrix with k′ ≤ k′′ ≤ k, where k is the slick clique-width.
The partition of the matrix

M =
(

M (0) M (1)

M (1)T M (2)

)

is explained in the next picture. The crucial property of B̃Q is its relationship to

the matrix B̃+
Q . This is the matrix obtained from B by doing the same congruence

operations as for obtaining B̃Q from BQ. Thus the picture of B̃+
Q also shows how

the remainder of the large matrix B is transformed as a side effect of transforming
the small submatrix B̃Q.

The βj are some vectors of the original entries of B. It is important to notice
the locations of the zero vectors 0. In particular, not only is D a diagonal matrix,
but all its rows and columns extend with zero vectors. Also the rows and columns
of M (0) extend with zero vectors, defining the boundary between M (0) and M (2).

484 M. Fürer et al.

B̃+
Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D 0 0
0
...
0

0 M (0) M (1)
0
...
0

0 M (1)T M (2)
β1

...
βk′′

0T · · ·0T 0T · · ·0T βT
1 · · · βT

k′′ M ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Before we show how to obtain a matrix of the form B̃Q, we show how to
enforce some additional properties. We use very simple congruence operations.
Besides simultaneous permutations of rows and columns, we only add multiples
of some row i to some other row j, followed by adding the same multiple of
column i to column j. In other words, we produce PT BP , where P is a product
of matrices which are either permutation matrices or matrices obtained from the
unit matrix by adding a single nonzero off diagonal entry.

We say M (0) = 0, if we mean M (0) is an all 0 matrix.

Lemma 4. If the form B̃+
Q can be obtained, then M (0) = 0 can be obtained.

Proof. Let Ri be the i-th row and Ci be the i-th column of M .
If some diagonal element mii of M (0) is nonzero, then subtract mij/mii times

the � + i-th row of B̃+
Q from the � + j-th row. Do likewise for the columns. In

other words, operate on M as follows for all j �= i.

Rj ← Rj − mij

mii
Ri

Note that due to the 0 extension of the i-th row, the shape of B̃+
Q does not

change, and all the work is restricted to the small matrix M . Now D has one
more diagonal element mii.

If the diagonal of M (0) is 0, but some of its off diagonal elements mij is
nonzero, then do the operations

Rj ← Rj +
1
2
Ri

Cj ← Cj +
1
2
Ci

followed by

Ri ← Ri − Rj

Ci ← Ci − Cj .

The relevant entries of M (0) transform as follows.(
0 mij

mij 0

)
→

(
0 mij

mij mij

)
→

(−mij 0
0 mij

)

Locating the Eigenvalues for Graphs of Small Clique-Width 485

Again, note that due to the surrounding zero pattern, only M (0) and M (1) are
modified with the form of B̃+

Q remaining intact. Now the diagonalized part has
grown by two. ��

Recall that k′ and k′′ are defined by M (1) being a k′ × k′′ matrix.

Lemma 5. If the form B̃+
Q can be obtained with M (0) = 0, then k′ ≤ k′′ can be

enforced.

Proof. Assume M (0) = 0. With simple row operations (subtracting multiples of
one row from another one, and doing permutations of rows) M (1) can be made
upper triangular. Doing the same operations on the columns of M (1)T , the matrix
B̃+

Q remains symmetric. If k′ was greater than k′′, then at least k′ − k′′ rows of

M (1) have become 0. Thus the diagonal part of B̃+
Q has grown by k′ − k′′ with

zeros in the diagonal. The new k′ is at most k′′ meaning that M (1) is at most as
high as wide. ��

Lemma 6. If the form B̃+
Q can be obtained, then k′′ ≤ k can be achieved.

Proof. The βj are original rows of input matrix B. Consider the labeling of
the graph generated by Q. The vertices are labeled with at most k labels. As
the labels determine the edges being added later, any two vertices j, j′ with the
same label have the same neighborhood outside G(Q). This means that βj = βj′ .
Thus, if k′′ > k, then there are at least two such vertices j, j′ with βj = βj′ .

Subtracting row j (column j) from row j′ (column j′ respectively) decreases
k′′ and increases k′ by 1. ��

Now we show how to obtain a matrix of the form B̃+
Q from B by a sequence

of simple congruence operations. This is proved by induction on the structure of
the expression Q, or equivalently on the height of the node Q in the parse tree
T of the given expression Q0.

Lemma 7. Form B̃+
Q can be obtained by congruence operations from B.

Proof. If Q is a leaf of T , then Q generates a 1 vertex graph with BQ = (−c).
There is nothing to do, because B̃Q = Q is just fine.

Assume Q is a join node with children Q′ and Q′′, i.e., Q = Q′ ⊕S,L,R Q′′. We
are given B̃Q′ and B̃Q′′ with the insurance that their production by congruence

operations produces B̃+
Q′ and B̃+

Q′′ of the right forms.

First we form the direct sum of B̃Q′ and B̃Q′′ . We obtain

B̃
(1)
Q =

(
B̃Q′ 0
0 B̃Q′′

)

486 M. Fürer et al.

B̃Q′ is congruent to BQ′ and B̃Q′′ is congruent to BQ′′ . Therefore, B̃
(1)
Q is

congruent to BQ′ × BQ′′ , the adjacency matrix of Q′ ×(∅,id,id) Q′′, where id is
the identity function.

This is so, because

B̃Q′ = P ′T BQ′P ′ and B̃Q′′ = P ′′T BQ′P ′′

implies (
B̃Q′ 0
0 B̃Q′′

)
=

(
P ′T 0
0 I

)(
I 0
0 P ′′T

)(
BQ′ 0
0 BQ′′

) (
I 0
0 P ′′

)(
P ′ 0
0 I

)

=
(

I 0
0 P ′′T

) (
P ′T 0
0 I

)(
BQ′ 0
0 BQ′′

) (
P ′ 0
0 I

)(
I 0
0 P ′′

)

These congruency operators act on independent subspaces. They commute and
don’t interfere. That’s why on the two matrices BQ′ and BQ′′ can be partially
diagonalized independently. All areas of the matrix affected by both operations
are 0 anyway.

The next step is to introduce the new edges associated with the relation S.
As we keep just one vertex, say u(i) of G(Q′) labeled i and one vertex, say v(j)
of G(Q′′) labeled j, we have to just insert a 1 at the two symmetric positions
corresponding the vertex u(i) of G(Q′) and the vertex v(j) of G(Q′′) in the

matrix B̃
(1)
Q .

Finally, the vertices are relabeled according to the functions L and R, result-
ing in O(k) multiple labels. We have already seen in Lemma 6 how to bring k′′,
down to a maximum of k. During the direct sum operation k′′ had temporarily
increased to as much as 2k. ��
Theorem 2. The matrix B = A − cI, where A is the adjacency matrix of a
graph G (with slick clique-width at most k) given by a slick k-expression Q0 can
be diagonalized in time O(k2n).

Proof. The diagonalization is done bottom-up in the parse tree T of Q0 according
to the previous lemmas. W.l.o.g., we can assume that at the end of the construc-
tion all vertices have the same label, as labels are no longer needed. Thus the
matrix B̃Q is almost diagonal, because M (0),M (1),M (2) are 1 × 1 matrices. A
last step as in Lemma 4 makes it fully diagonal.

The computation can be organized as a depth-first search of the parse tree
T . The join operation at node Q is done on postvisit of Q, i.e., when returning
from its second child. The interesting part of the data, the matrix M of size
O(k2) can be returned by the recursive calls executing the depth-first search.
The diagonal of the already diagonalized part appended to a global array as it
is produced. It cannot be passed as a parameter, because this would at least
incur a cost of Ω(n log n) or even Ω(n2) when done carelessly without insuring
to copy the smaller piece into the larger.

Locating the Eigenvalues for Graphs of Small Clique-Width 487

A time bound of O(k3n) is straight forward, because the parse tree has O(n)
nodes (2n−1 to be precise, n = |V | leaves and n−1 internal nodes with 2 children
each). At each node O(k2) numbers are handled. But there is an expensive
Gaussian elimination happening in the procedure handled by Lemma 5. Here a
matrix of size up to 2k is put into upper triangular form. This could be handled
theoretically in time kω+o(1), where ω is the exponent of matrix multiplication,
but this is not necessary.

The bound of O(k2n) is obtained by a better accounting for the time and
making sure that no time is wasted in the implementation of Lemma 5. The
matrix M (1) is always maintained as an upper triangular matrix. Eliminating
one row vector (and thus increasing the diagonalized part by 1) incurs a cost
of O(k2). It does not matter that up to k row vectors are inserted in one node,
because every row vector is eliminated only once, and there are only n rows, one
for every vertex. ��

Having avoided fast matrix multiplication, it is worth stating that the whole
algorithm is very fast, as there are no large constants hidden in the O-notation.

Now, we can apply Sylvester’s Law of Inertia. Symmetric matrices over the
reals have n real eigenvalues (with multiplicities). The inertia of a symmetric real
matrix B is the triple (n+, n0, n−) giving the number of eigenvalues of B that
are positive, zero, and negative respectively. Sylvester’s law says that congruent
matrices have the same inertia.

Corollary 1. The number of eigenvalues of A in a given interval can be com-
puted in time O(k2n) for graphs of clique-width k.

Proof. The eigenvalues of B = A − cI are obtained by subtracting c from the
eigenvalues of A. To compute the number of eigenvalues of A in the interval [a, b],
we run our algorithm with c = a and c = b. From the output, we see the numbers
of positive, zero, and negative diagonal elements. Let them be (na

+, na
0 , n

a
−) and

(nb
+, nb

0, n
b
−). Then, obviously the number of eigenvalues in [a, b] is nb

0+nb
− −na

−.
��

Remark 2. Another important width parameter is rank-width. With its help,
an exponential approximation to the clique-width (and slick clique-width) and
the corresponding clique decompositions can be computed by FPT algorithms.
Unfortunately, such algorithms are not fast enough yet to serve for our purpose of
providing a good clique decomposition. We would want a linear time algorithm.

4 Concluding Remarks

For undirected graphs of bounded clique-width, we are able to diagonalize adja-
cency matrices with congruence operations extremely efficiently, if a slick clique-
width expression of width k or O(k) is given. The algorithm is fairly elegant
when either our slick clique-width parameter or the NLC-width is used. In par-
ticular, the time is much faster than the time to read an explicitly given matrix.

488 M. Fürer et al.

It is worth stating that the whole algorithm is very fast, as there are no large
constants hidden in the O-notation.

A main question is about extensions to other width parameters, as well as the
computation of other related matrix tasks. It would be interesting if theoretical
results about the location of eigenvalues for special classes of graphs could be
derived from analyzing the behavior of our algorithm on these graphs, as it has
been done for cographs [10].

References

1. Alazemi, A., Andelić, M., Simić, S.K.: Eigenvalue location for chain graphs. Linear
Algebra Appl. 505, 194–210 (2016)

2. Bıyıkoğlu, T., Simić, S.K., Stanić, Z.: Some notes on spectra of cographs. Ars
Combin. 100, 421–434 (2011)

3. Braga, R.O., Rodrigues, V.M., Trevisan, V.: Locating eigenvalues of unicyclic
graphs. Appl. Anal. Discrete Math. 11(2), 273–298 (2017)

4. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 1: Foundations, pp. 313–400.
World Scientific (1997)

5. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

6. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1–3), 77–114 (2000)

7. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimiza-
tion is NP-hard (extended abstract). In: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, STOC 2006, pp. 354–362. ACM, New York
(2006)

8. Jacobs, D.P., Trevisan, V.: Locating the eigenvalues of trees. Linear Algebra Appl.
434(1), 81–88 (2011)

9. Jacobs, D.P., Trevisan, V., Tura, F.: Eigenvalue location in threshold graphs. Lin-
ear Algebra Appl. 439(10), 2762–2773 (2013)

10. Jacobs, D.P., Trevisan, V., Tura, F.C.: Eigenvalue location in cographs. Discrete
Appl. Math. (2017)

11. Janssens, D., Rozenberg, G.: On the structure of node-label-controlled graph lan-
guages. Inf. Sci. 20(3), 191–216 (1980)

12. Janssens, D., Rozenberg, G.: Restrictions, extensions, and variations of NLC gram-
mars. Inf. Sci. 20(3), 217–244 (1980)

13. Johansson, Ö.: Clique-decomposition, NLC-decomposition, and modular decom-
position - relationships and results for random graphs. Congr. Numer. 132, 39–60
(1998)

14. Kaminski, M., Lozin, V.V., Milanic, M.: Recent developments on graphs of
bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

15. Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (2000). With 1 CD-ROM (Windows,
Macintosh and UNIX) and a solutions manual (iv+171 pp.)

16. Mohammadian, A., Trevisan, V.: Some spectral properties of cographs. Discrete
Math. 339(4), 1261–1264 (2016)

Locating the Eigenvalues for Graphs of Small Clique-Width 489

17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

18. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

19. Royle, G.F.: The rank of a cograph. Electron. J. Combin. 10, Note 11, 7 pp.
(electronic) (2003)

20. Sander, T.: On certain eigenspaces of cographs. Electron. J. Comb. 15(1), 8 (2008)
21. Stanić, Z.: On nested split graphs whose second largest eigenvalue is less than 1.

Linear Algebra Appl. 430(8–9), 2200–2211 (2009)
22. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54(2),

251–266 (1994)

On the Approximation Ratio
of Lempel-Ziv Parsing

Travis Gagie1,2, Gonzalo Navarro2,3(B), and Nicola Prezza4

1 EIT, Diego Portales University, Santiago, Chile
2 Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile

gnavarro@dcc.uchile.cl
3 Department of Computer Science, University of Chile, Santiago, Chile

4 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. Shannon’s entropy is a clear lower bound for statistical com-
pression. The situation is not so well understood for dictionary-based
compression. A plausible lower bound is b, the least number of phrases
of a general bidirectional parse of a text, where phrases can be copied
from anywhere else in the text. Since computing b is NP-complete, a
popular gold standard is z, the number of phrases in the Lempel-Ziv
parse of the text, where phrases can be copied only from the left. While
z can be computed in linear time, almost nothing has been known for
decades about its approximation ratio with respect to b. In this paper
we prove that z = O(b log(n/b)), where n is the text length. We also
show that the bound is tight as a function of n, by exhibiting a string
family where z = Ω(b log n). Our upper bound is obtained by building a
run-length context-free grammar based on a locally consistent parsing of
the text. Our lower bound is obtained by relating b with r, the number of
equal-letter runs in the Burrows-Wheeler transform of the text. On our
way, we prove other relevant bounds between compressibility measures.

1 Introduction

Shannon [33] defined a measure of entropy that serves as a lower bound to
the attainable compression ratio on any source that emits symbols according
to a certain probabilistic model. An attempt to measure the compressibility of
finite texts T [1 . . . n], other than the non-computable Kolmogorov complexity
[21], is the notion of empirical entropy [7], where some probabilistic model is
assumed and its parameters are estimated from the frequencies observed in the
text. Other measures that, if the text is generated from a probabilistic source,
converge to its Shannon entropy, are derived from the Lempel-Ziv parsing [23]
or the grammar-compression [20] of the text.

Some text families, however, are not well modeled as coming from a proba-
bilistic source. A very current case is that of highly repetitive texts, where most

Partially funded by Basal Funds FB0001, Conicyt, by Fondecyt Grants 1-171058
and 1-170048, Chile, and by the Danish Research Council DFF-4005-00267.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 490–503, 2018.
https://doi.org/10.1007/978-3-319-77404-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_36&domain=pdf

On the Approximation Ratio of Lempel-Ziv Parsing 491

of the text can be obtained by copying long blocks from elsewhere in the same
text. Huge highly repetitive text collections are arising from the sequencing of
myriads of genomes of the same species, from versioned document repositories
like Wikipedia, from source code repositories like GitHub, etc. Their growth is
outpacing Moore’s Law by a wide margin [34]. Understanding the compress-
ibility of highly repetitive texts is important to properly compress those huge
collections.

Lempel-Ziv and grammar compression are particular cases of so-called dic-
tionary techniques, where a set of strings is defined and the text is parsed as a
concatenation of those strings. On repetitive collections, the empirical entropy
ceases to be a relevant compressibility measure; for example the kth order per-
symbol entropy of TT is the same as that of T , if k � n [22, Lemma 2.6], whereas
this entropy measure is generally meaningless for k > log n [12]. Some dictionary
measures, instead, capture much better the compressibility of repetitive texts.
For example, while an individual genome can rarely be compressed to much less
than 2 bits per symbol, Lempel-Ziv has been reported to compress collections
of human genomes to less than 1% [11]. Similar compression ratios are reported
in Wikipedia.1

Despite the obvious practical relevance of these compressibility measures,
there is not a clear entropy measure useful for highly repetitive texts. The num-
ber z of phrases generated by the Lempel-Ziv parse [23] is often used as a gold
standard, possibly because it can be implemented in linear time [30] and is never
larger than g, the size of the smallest context-free grammar that generates the
text [6,31]. However, z is not so satisfactory as an entropy measure: the value
changes if we reverse the text, for example. A much more robust lower bound
on compressibility is b, the size of the smallest bidirectional (macro) scheme
[35]. Such a scheme parses the text into phrases such that each phrase appears
somewhere else in the text (or it is a single explicit symbol), so that it is possi-
ble to recover the text by copying source to target positions in an appropriate
order. This is arguably the strongest possible dictionary method, but finding the
smallest bidirectional scheme is NP-complete [13]. A relevant question is then
how good is the Lempel-Ziv parse as an efficiently implementable approximation
to the smallest bidirectional scheme. Almost nothing is known in this respect,
except that there are string families where z is nearly 2b [35].

In this paper we finally give a tight approximation ratio for z, show-
ing that the gap is larger than what was previously known. We prove that
z = O(b log(n/b)), and that this bound is tight as a function of n, by exhibiting
a string family where z = Ω(b log n). To prove the upper bound, we show how
to build a run-length context-free grammar [28] (i.e., allowing rules of the form
X → Y t that count as size 1) of size grl = O(b log(n/b)). This is done by carrying
out several rounds of locally consistent parsing [17] on top of T , reducing the
resulting blocks to nonterminals in each round, and showing that new nontermi-
nals appear only in the boundaries of the phrases of the bidirectional scheme. We
then further prove that z ≤ 2grl, by extending a classical proof [6] that relates

1 https://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia.

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

492 T. Gagie et al.

grammar with Lempel-Ziv compression. To prove the lower bound, we consider
another plausible compressibility measure: the number r of equal-symbol runs in
the Burrows-Wheeler transform (BWT) of the text [5]. We prove that the BWT
induces a valid bidirectional scheme, and thus r = Ω(b). Then the bound follows
from known string families where z = Ω(r log n) [29].

2 Basic Concepts

A string is a sequence S[1 . . . �] = S[1]S[2] . . . S[�] of symbols. A substring
S[i] . . . S[j] of S is denoted S[i . . . j]. A suffix of S is a substring of the form
S[i . . . �]. The juxtaposition of strings and/or symbols represents their concate-
nation. We will consider compressing a string T [1 . . . n], called the text.

2.1 Bidirectional Schemes

A bidirectional scheme [35] partitions T [1 . . . n] into b chunks B1, . . . , Bb, such
that each Bi = T [ti . . . ti + �i − 1] (called a target) is either (1) copied from
another substring T [si . . . si + �i − 1] (called a source) with si �= ti, which may
overlap T [ti . . . ti + �i − 1], or (2) formed by �i = 1 explicit symbol.

We define the function f : [1 . . . n] → [1 . . . n] so that, in case (1), f(ti + j) =
si + j for all 0 ≤ j < �i, and in case (2), f(ti) = −1. Then, the bidirectional
scheme is valid if there is an order in which the sources si + j can be copied onto
the targets ti + j so that all the positions of T can be inferred.

Being a valid scheme is equivalent to saying that f has no cycles, that is,
there is no k > 0 and p such that fk(p) = p: Initially we can set all the explicit
positions (type (2)), and then copy sources with known values to their targets.
If f has no cycles, we will eventually complete all the positions in T because, for
every T [p], there is a k > 0 such that fk(p) = −1, so we can obtain T [p] from
the symbol explicitly stored for T [fk−1(p)].

We use b to denote the smallest bidirectional scheme, which is NP-complete
to compute [13].

2.2 Lempel-Ziv Parsing

Lempel and Ziv [23] define a parsing of T into the fewest possible phrases T =
Z1 . . . Zz, so that each phrase Zi is a substring (but not a suffix) of Z1 . . . Zi,
or a single symbol. This means that the source T [si . . . si + �i − 1] of the target
Zi = T [ti . . . ti +�i −1] must satisfy si < ti, but sources and targets may overlap.
It turns out that the greedy left-to-right parsing indeed produces the optimal
number z of phrases [23, Theorem 1]. Further, the parsing can be obtained in
O(n) time [30,35].

If we disallow that a phrase overlaps its source, that is, Zi must be a substring
of Z1 . . . Zi−1 or a single symbol, then we call zno the number of phrases obtained.
In this case it is also true that the greedy left-to-right parsing produces the

On the Approximation Ratio of Lempel-Ziv Parsing 493

optimal number zno of phrases [35, Theorem 10 with p = 1]. Since the Lempel-
Ziv parsing allowing overlaps is optimal among all left-to-right parsings, we also
have that zno ≥ z. This parsing can also be computed in O(n) time [8]. Note
that, on a text family like T = an, it holds that zno = Ω(z log n).

Little is known about the relation between b and z except that z ≥ b by
definition (z is the smallest unidirectional parsing) and that, for any constant
ε > 0, there is an infinite family of strings for which b < (12 + ε) · min(z, zR) [35,
Correlation 7.1], where zR is the z of the reversed string.

2.3 Grammar Compression

Consider a context-free grammar (CFG) that generates T and only T [20]. Each
nonterminal must be the left-hand side in exactly one rule, and the size g of the
grammar is the sum of the right-hand sides of the rules. In general, we will use
g to denote the minimum possible size of a grammar that generates T , which is
NP-complete to compute [6,31].

If we allow, in addition, rules of the form X → Y t, of size 1, the result is a
run-length context-free grammar (RLCFG) [28]. We will use grl to denote the
size of the smallest RLCFG that generates T . Thus, it is clear that grl ≤ g.
Further, on the string family T = an it holds that g = Ω(grl log n).

A well-known relation between zno and g is zno ≤ g = O(zno log(n/zno))
[6,31]. Further, it is known that g = O(z log(n/z)) [14, Lemma 8]. Those
papers exhibit O(log n)-approximations to the smallest grammar, as well as
several others [17,18,32]. A negative result about the approximation are
string families where g = Ω(zno log n/ log log n) [6,15] and, recently, grl =
Ω(zno log n/ log log n) [3].

2.4 Runs in the Burrows-Wheeler Transform

Assume that T is terminated by the special symbol T [n] = $, which is lexico-
graphically smaller than all the others. This makes any lexicographic comparison
between suffixes well defined.

The suffix array [25] of T [1 . . . n] is an array SA[1 . . . n] storing a permutation
of [1 . . . n] so that, for all 1 ≤ i < n, the suffix T [SA[i] . . .] is lexicographically
smaller than the suffix T [SA[i + 1] . . .]. Thus SA[i] is the starting position in T
of the ith smallest suffix of T in lexicographic order.

The inverse permutation of SA, ISA[1 . . . n], is called the inverse suffix array,
so that ISA[j] is the lexicographical position of the suffix T [j . . . n] among the
suffixes of T .

The Burrows-Wheeler Transform of T [1 . . . n], BWT [1 . . . n] [5], is a string
defined as BWT [i] = T [SA[i] − 1] if SA[i] > 1, and BWT [i] = T [n] = $ if
SA[i] = 1. That is, BWT has the same symbols of T in a different order, and is
a reversible transform.

The array BWT can be easily obtained from T and SA, which can be built in
O(n) time [19]. To obtain T from BWT [5], one considers two arrays, L[1 . . . n] =

494 T. Gagie et al.

BWT and F [1 . . . n], which contains all the symbols of L (or T) in ascending
order. Alternatively, F [i] = T [SA[i]], so F [i] follows L[i] in T . We need a function
that maps any L[i] to the position j of that same symbol in F . The formula is
LF (i) = C[c] + rank[i], where c = L[i], C[c] is the number of occurrences of
symbols less than c in L, and rank[i] is the number of occurrences of symbol
L[i] in L[1 . . . i]. Once C and rank are computed, we reconstruct T [n] = $ and
T [n − k] ← L[LF k−1(1)] for k = 1, . . . , n − 1.

The number of equal-symbol runs r in the BWT of T can be bounded in
terms of the empirical entropy [24]. However, the measure is also interesting
on highly repetitive collections (where, in particular, z and zno are small). For
example, there are string families where z = Ω(r log n) [29], and others where
r = Ω(zno log n) [2,29].

2.5 Locally Consistent Parsing

A string can be parsed in a locally consistent way, in the sense that equal sub-
strings are largely parsed in the same form. We use a variant of locally consistent
parsing called recompression [16,17].

Definition 1. A repetitive area in a string is a maximal run of the same symbol,
of length 2 or more.

Definition 2. Two segments contained in [1 . . . n] overlap if they are not dis-
joint nor one contained in the other.

Lemma 1 ([17]). We can partition a string S[1 . . . �] into at most (3/4)� blocks
so that, for every pair of identical substrings S[i . . . j] = S[i′ . . . j′], if neither
S[i + 1 . . . j − 1] or S[i′ + 1 . . . j′ − 1] overlap a repetitive area, then the sequence
of blocks covering S[i + 1 . . . j − 1] and S[i′ + 1 . . . j′ − 1] are identical.

Proof. The parsing is obtained by, first, creating new symbols that represent
the repetitive areas. On the resulting sequence, the alphabet (which contains
original symbols and created ones) is partitioned into two subsets, left-symbols
and right-symbols. Then, every left-symbol followed by a right-symbol are paired
in a block. It is then clear that, if S[i + 1 . . . j − 1] and S[i′ + 1 . . . j′ − 1] do not
overlap repetitive areas, then the parsing of S[i . . . j] and S[i′ . . . j′] may differ
only in their first position (if it is part of a repetitive area ending there, or if it
is a right-symbol that becomes paired with the preceding one) and in their last
position (if it is part of a repetitive area starting there, or if it is a left-symbol
that becomes paired with the following one). Jez [17] shows how to choose the
pairs so that S contains at most (3/4)� blocks. �	

The lemma ensures a locally consistent parsing into blocks as long as the sub-
strings do not overlap repetitive areas, though the substrings may fully contain
repetitive areas.

On the Approximation Ratio of Lempel-Ziv Parsing 495

3 Upper Bounds

In this section we obtain our main upper bound, z = O(b log(n/b)), along with
other byproducts. To this end, we first prove that grl = O(b log(n/b)), and
then that z ≤ 2grl. To prove the first bound, we build a RLCFG on top of a
bidirectional scheme. The grammar is built in several rounds of locally consistent
parsing on the text. In each round, the blocks of the locally consistent parsing
are converted into nonterminals and fed to the next round. The key is to prove
that distinct nonterminals are produced only at the boundaries of the phrases of
the bidirectional scheme. The second bound is an easy extension to the known
result zno ≤ g.

Theorem 1. Let T [1 . . . n] have a bidirectional scheme of size b. Then there
exists a run-length context-free grammar of size grl = O(b log(n/b)) that gener-
ates T .

Proof. Recalling Lemma 1, consider a locally consistent parsing of W = T into
blocks. We will count the number of different blocks we form, as this corresponds
to the number of nonterminals produced in the first round.

Recall from Sect. 2.1 that our bidirectional scheme represents T as a sequence
of chunks, by means of a function f . To count the number of different blocks
produced, we will pessimistically assume that the first two and the last two
blocks intersecting each chunk are all different. The number of such bordering
blocks is at most 4b. On the other hand, we will show that non-bordering blocks
do not need to be considered, because they will be counted somewhere else, when
they appear near the extreme of a chunk.

We show that this is true in both types of non-bordering blocks resulting
from Lemma 1:

1. The block is a pair of left- and right-alphabet symbols.2 As these symbols
can be an original symbol or a maximal area, let us write the pair generically
as X = a�ab�b , for some �a, �b ≥ 1, and let � = �a + �b be the length of
the block X. If W [p . . . p + � − 1] = X is not bordering, then it is strictly
contained in a chunk. Thus, by the definition of a chunk, it holds that [f(p −
1) . . . f(p + �)] = [f(p) − 1 . . . f(p) + �], and that W [f(p) − 1 . . . f(p) + �] =
W [p − 1 . . . p + �]. That is, the block appears again at [f(p) . . . f(p) + � − 1],
surrounded by the same symbols. Since, by the way Lemma 1 works, it must
be W [f(p) − 1] = W [p − 1] �= a and W [f(p) + �] = W [p + �] �= b, and a�a is a
left-symbol and b�b is a right-symbol, the locally consistent parsing must also
form a block W [f(p) . . . f(p) + � − 1] = X. If this block is bordering, then it
will be counted. Otherwise, by the same argument, W [f(p) − 1 . . . f(p) + �]
will be equal to W [f2(p) − 1 . . . f2(p) + �] and a block will be formed with
W [f2(p) . . . f2(p) + � − 1]. Since f has no cycles, there is a k > 0 for which
fk(p) = −1. Thus for some l < k it must be that X = W [f l(p) . . . f l(p)+�−1]

2 For this case, we could have defined bordering in a stricter way, as the first or last
block of a chunk.

496 T. Gagie et al.

is not bordering. At the smallest such l, the block W [f l(p) . . . f l(p)+�−1] will
be counted. Therefore, X = W [p . . . p + � − 1] is already counted somewhere
else and we do not need to count it at W [p . . . p + � − 1].

2. The block is a single (original or maximal-run) symbol W [p . . . p+�−1] = a�,
for some � ≥ 1. It also holds that [f(p−1) . . . f(p+ �)] = [f(p)−1 . . . f(p)+ �]
and W [f(p) − 1..f(p) + �] = W [p − 1 . . . p + �], because a� is strictly inside
a chunk. Since W [f(p) − 1] = W [p − 1] �= a and W [f(p) + �] = W [p + �] �=
a, the parsing forms the same maximal run a� = W [f(p) . . . f(p) + � − 1].
Moreover, since W [p . . . p + � − 1] is not bordering, the previous and next
blocks produced by the parsing, X = W [p′ . . . p−1] and Y = [p+� . . . p′′], are
also strictly inside the same chunk, and therefore they also appear preceding
and following W [f(p) . . . f(p) + � − 1], at X = W [f(p′) . . . f(p) − 1] and Y =
[f(p)+� . . . f(p′′)]. Since a� was not paired with X nor Y at W [p . . . p+�−1],
the parsing will also not pair them at W [f(p) . . . f(p) + � − 1]. Therefore, the
parsing will leave a� as a block also in [f(p) . . . f(p)+�−1]. If W [f(p) . . . f(p+
� − 1)] is bordering, then it will be counted, otherwise we can repeat the
argument with W [f2(p) − 1 . . . f2(p) + �] and so on, as in the previous item.

Therefore, we produce at most 4b distinct blocks, and the RLCFG has at
most 12b nonterminals (for X = a�ab�b we may need 3 nonterminals, A → a�a ,
B → b�b , and C → AB).

For the second round, we create a reduced sequence W ′ from W by replacing
all the blocks of length 2 or more by their corresponding nonterminals. The new
sequence is guaranteed to have length at most (3/4)n by Lemma 1.

We define a new bidirectional scheme (recall Sect. 2.1) on W ′, as follows:

1. For each bordering block in W , its nonterminal symbol position in W ′ is made
explicit in the bidirectional scheme of W ′. Note that this includes the blocks
covering the explicit symbols in the bidirectional scheme of W .

2. For the chunks Bi = W [ti . . . ti +�i −1] of W containing non-bordering blocks
(note Bi cannot be an explicit chunk), let B′

i be obtained by trimming from
Bi the bordering blocks near the extremes of Bi. Then B′

i appears inside
W [si . . . si + �i − 1] (with si = f(ti)), where the same sequence of blocks is
formed by our arguments above. We then form a chunk in W ′ with sequence of
nonterminals associated with the blocks of B′

i (all of which are non-bordering),
pointing to the identical sequence of nonterminals that appear as blocks inside
W [si . . . si + �i − 1].

To bound the total number of nonterminals generated, let us call Wk the
sequence W after k iterations (so T = W0) and Nk the number of distinct
blocks created when converting Wk into Wk+1.

In the first iteration, since there may be up to 4 bordering blocks around
each chunk limit, we may create N1 ≤ 4b distinct blocks. Those blocks become
new explicit chunks in the bidirectional scheme of W ′ = W1. Note that those
explicit chunks are grouped into b regions of up to 4 consecutive chunks. In each
new iteration, Wk is parsed into blocks again. We have shown that the blocks
formed outside regions (i.e., non-bordering blocks) are not distinct, so we can

On the Approximation Ratio of Lempel-Ziv Parsing 497

focus on the number of new blocks produced to parse each of the b regions. The
parsing produces at most 4 new distinct blocks extending each region. However,
the parsing of the regions themselves may also produce new distinct blocks. Our
aim is to show that the number of those blocks is also bounded because they
decrease the length of the regions, which only grow by 4b per iteration.

.

.....

.

.

Fig. 1. Illustration of Theorem 1. On top we see the limit between two long chunks of
W0. In this example, the blocking always pairs two symbols. We show below W0 the 4
bordering blocks formed with the symbols nearby the limit. Below, in W1, those blocks
are converted into 4 explicit chunks (of length 1). This region of 4 symbols is then
parsed into 2 blocks. The parsing also creates 4 new bordering blocks from the ends of
the long chunks. In W2, below, we have now a region of 6 explicit chunks. They could
have been 8, but we created 2 distinct blocks that reduced their number to 6.

Let nk be the number of new distinct blocks produced when parsing the
regions themselves. Therefore it holds that the number of distinct blocks Nk

produced in the kth iteration is at most 4b+nk, and the total number of distinct
blocks created up to building Wk is

∑k−1
i=0 Ni ≤ 4bk +

∑k−1
i=0 ni.

On the other hand, for each of the nk blocks created when parsing a region,
the length of the region decreases at least by 1 in Wk+1. Let us call Ck the
number of explicit chunks in Wk. Since only the 4 new bordering blocks at each
region are converted into explicit chunks, it holds that Ck ≤ 4bk for all k > 0.
Moreover, it holds Ck+1 ≤ Ck + 4b − nk, and thus 0 ≤ Ck ≤ 4bk − ∑k−1

i=0 ni.
Therefore,

∑k−1
i=0 ni ≤ 4bk and thus

∑k−1
i=0 Ni ≤ 8bk. Since each nonterminal

may need 3 rules to represent a block, a bound on the number of nonterminals
created is 24bk.

After k rounds, the sequence is of length at most (3/4)kn and we have
generated at most 24bk nonterminals. Therefore, if we choose to perform k =
log4/3(n/b) rounds, the sequence will be of length at most b and the grammar
size will be O(b log(n/b)). To complete the process, we add O(b) nonterminals
to reduce the sequence to a single initial symbol.

The idea is illustrated in Fig. 1. �	
With Theorem 1, we can also bound the size z of the Lempel-Ziv parse [23]

that allows overlaps. The size without allowing overlaps is known to be bounded
by the size of the smallest CFG, zno ≤ g [6,31]. We can easily see that z ≤ 2grl

also holds by extending an existing proof [6, Lemma 9] to handle the run-length

498 T. Gagie et al.

rules. We call left-to-right parse of T any parsing in which each new phrase is a
symbol or it occurs previously in T .

Theorem 2. Let a RLCFG of size grl expand to a text T . Then the Lempel-Ziv
parse (allowing overlaps) of T produces z ≤ 2grl phrases.

Proof. Consider the parse tree of T , where all internal nodes representing any
but the leftmost occurrence of a nonterminal are pruned and left as leaves. The
number of nodes in this tree is precisely grl. We say that the internal node of
nonterminal X is its definition. Our left-to-right parse of T is a sequence Z[1 . . . z]
obtained by traversing the leaves of the pruned parse tree left to right. For a
terminal leaf, we append the symbol to Z. For a leaf representing nonterminal
X, we append to Z a reference to the area T [x . . . y] expanded by the leftmost
occurrence of X.

Rules X → Y t are handled as follows. First, we expand them to X → Y ·Y t−1,
that is, the node for X has two children for Y , and it is annotated with t−1. Since
the right child of X is not the first occurrence of Y , it must be a leaf. The left
child of X may or may not be a leaf, depending on whether Y occurred before or
not. Now, when our leaf traversal reaches the right child Y of a node X indicating
t − 1 repetitions, we append to Z a reference to T [x . . . y + (t − 2)(y − x + 1)],
where T [x . . . y] is the area expanded by the first child of X. Note that source
and target overlap if t > 2. Thus a left-to-right parse of size 2grl exists, and
Lempel-Ziv is the optimal left-to-right parse [23, Theorem 1]. �	

By combining Theorems 1 and 2, we obtain a result on the long-standing
open problem of finding the approximation ratio of Lempel-Ziv compared to the
smallest bidirectional scheme.

Theorem 3. Let T [1 . . . n] have a bidirectional scheme of size b. Then the
Lempel-Ziv parsing of T allowing overlaps has z = O(b log(n/b)) phrases.

We can also derive upper bounds for g, the size of the smallest CFG, and
for zno, the size of the Lempel-Ziv parse that does not allow overlaps. It is
sufficient to combine the previous results with the facts that g = O(z log(n/z))
[14, Lemma 8] and zno ≤ g [6,31].

Theorem 4. Let T [1 . . . n] have a bidirectional scheme of size b. Then there
exists a context-free grammar of size g = O(b log2(n/b)) that generates T .

Theorem 5. Let T [1 . . . n] have a bidirectional scheme of size b. Then the
Lempel-Ziv parsing of T without allowing overlaps has zno = O(b log2(n/b))
phrases.

4 Lower Bounds

In this section we prove that the upper bound of Theorem3 is tight as a function
of n, by exhibiting a family of strings for which z = Ω(b log n). This confirms that

On the Approximation Ratio of Lempel-Ziv Parsing 499

ISA

SA

j

x

x

j

j−1

y

y
j−1

x−1

i

i

x−1

y−1

i−1

i−1

y−1

LF

φ

Fig. 2. Illustration of Lemma 2.

the gap between bidirectionality and unidirectionality is significantly larger than
what was previously known. The idea is to define phrases in T accordingly to the
r runs in the BWT, and to show that these phrases induce a valid bidirectional
macro scheme of size 2r. This proves that r = Ω(b). Then we use a well-known
family of strings where z = Ω(r log n).

Definition 3. Let p1, p2, . . . , pr be the positions that start runs in the BWT, and
let s1 < s2 < . . . < sr be the corresponding positions in T , {SA[pi], 1 ≤ i ≤ r},
in increasing order. Note that s1 = 1 because BWT [ISA[1]] = $ is a size-1 run,
and assume sr+1 = n+1, so that T is partitioned into phrases T [si . . . si+1 − 1].
Let also φ(i) = SA[ISA[i] − 1] if ISA[i] > 1 and φ(i) = SA[n] otherwise. Then
we define the bidirectional scheme of the BWT:

1. For each 1 ≤ i ≤ r, T [φ(si) . . . φ(si+1 − 2)] is copied from T [si . . . si+1 − 2].
2. For each 1 ≤ i ≤ r, T [φ(si+1 − 1)] is stored explicitly.

We build on the following lemma, illustrated in Fig. 2.

Lemma 2. Let [j−1 . . . j] be within a phrase of T . Then it holds that φ(j−1) =
φ(j) − 1 and T [j − 1] = T [φ(j) − 1].

Proof. Consider the pair of positions T [j − 1 . . . j] within a phrase. Let them be
pointed from SA[x] = j and SA[y] = j − 1, therefore ISA[j] = x, ISA[j − 1] = y,
and LF (x) = y. Now, since j is not a position at the beginning of a phrase, x is
not the first position in a BWT run. Therefore, BWT [x − 1] = BWT [x], from
which it follows that LF (x−1) = LF (x)−1 = y −1. Now let SA[x−1] = i, that
is, i = φ(j). Then φ(j − 1) = SA[ISA[j − 1] − 1] = SA[y − 1] = SA[LF (x − 1)] =
SA[x − 1] − 1 = i − 1 = φ(j) − 1. It also follows that T [j − 1] = BWT [x] =
BWT [x − 1] = T [i − 1] = T [φ(j) − 1]. �	
Lemma 3. The bidirectional scheme of the BWT is a valid bidirectional scheme,
thus 2r ≥ b.

Proof. By Lemma 2, it holds that φ(j − 1) = φ(j) − 1 if [j − 1 . . . j] is within a
phrase, and that T [j − 1] = T [φ(j) − 1]. Therefore, we have that φ(si + k) =
φ(si)+k for 0 ≤ k < si+1 − si − 1, and then T [φ(si), . . . , φ(si+1 − 2)] is indeed a

500 T. Gagie et al.

Fig. 3. Known and new asymptotic bounds between repetitiveness measures. The
bounds on the left hold for every string family: an edge means that the lower mea-
sure is of the order of the upper. The thicker lines were proved in this paper. The
dashed lines on the right are lower bounds that hold for some string family. The solid
lines are inherited from the left, and since they always hold, they permit propagating
the lower bounds. Note that r appears twice.

contiguous range. We also have that T [φ(si) . . . φ(si+1 − 2)] = T [si . . . si+1 − 2],
and therefore it is correct to make the copy. Since φ is a permutation, every
position of T is mentioned exactly once as a target in points 1 and 2.

Finally, it is easy to see that we can recover the whole T from those 2r
directives. We can, for example, follow the cycle φk(n), k = 0, . . . , n − 1 (note
that T [φ0(n)] = T [n] is stored explicitly), and copy T [φk(n)] to T [φk+1(n)] unless
the latter is explicitly stored.

Since the bidirectional scheme of the BWT is of size 2r, it follows by definition
that 2r ≥ b. �	

We are now ready to obtain the lower bound on bidirectional versus unidi-
rectional parsings.

Theorem 6. There is an infinite family of strings over an alphabet of size 2 for
which z = Ω(b log n).

Proof. Consider the family of the Fibonacci stings, F1 = a, F2 = b, and Fk =
Fk−1Fk−2 for all k > 2. As observed by Prezza [29, Theorem 25], for Fk we have
r = O(1) [26] and z = Θ(log n) [10]. By Lemma 3, it also holds that b = O(1),
and therefore z = Ω(b log n). �	

5 Conclusions

We have essentially closed the question of which is the approximation ratio of
the (unidirectional) Lempel-Ziv parse with respect to the optimal bidirectional

On the Approximation Ratio of Lempel-Ziv Parsing 501

parse, therefore contributing to the understanding of the quality of this popular
heuristic that can be computed in linear time, whereas computing the optimal
bidirectional parse is NP-complete. Our bounds, which are shown to be tight,
show that the gap is in fact wider than what was previously known.

Figure 3(left) illustrates the known asymptotic bounds that relate the repet-
itiveness measures we have studied: b, z, zno, g, grl, and r. We also include e,
the size of the CDAWG [4] of T (i.e., the smallest compact automaton that rec-
ognizes the substrings of T), which has received some attention recently [2]. It
is known that e ≥ max(z, r) [2] and e = Ω(g) [1].

Figure 3(right) shows known lower bounds that hold for specific string fam-
ilies. Apart from the lower bounds mentioned in Sect. 2, there are text fam-
ilies for which e = Ω(max(r, z) · n) [2] and thus e = Ω(g · n/ log n) since
g = O(z log n); and r = Ω(g log n/ log log n) (since on a de Bruijn sequence
of order k on a binary alphabet we have r = Θ(n) [2], z = O(n/ log n), and thus
g = O(z log(n/z)) = O(n log log n/ log n)). From the upper bounds that hold for
every string family, we can also deduce that, for example, there are string fam-
ilies where r = Ω(z log n) and thus r = Ω(b log n) (since r = Ω(zno log n));
{g, grl, zno} = Ω(r log n) (since z = Ω(r log n)) and z = Ω(b log n) (since
r = Ω(b), Theorem 6). We nevertheless included explicitly the most important
of these in the figure.

There are various interesting avenues of future work. For example, it is
unknown if r can be more than O(log n) times larger than z or g. It might also
be that our Theorem 1 can be proved without using run-length rules, yielding
g = O(b log(n/b)). These are questions of theoretical and also practical relevance,
since for example there exist compressed indexes for highly repetitive collections
that obtain different search performance depending on which compressibility
measure their space is bounded by [27, Sect. 13.2].

Another relevant research avenue is to look for alternatives to Lempel-Ziv
compression with a better approximation ratio. For example, a recent bidirec-
tional scheme, lcpcomp, seems to always perform better than Lempel-Ziv in prac-
tice [9]. It would be interesting to research its approximation ratio with respect
to the optimal bidirectional parsing.

Acknowledgements. We thank the reviewers for their insightful comments, which
helped us improve the presentation significantly.

References

1. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In: Pro-
ceedings of 28th Annual Symposium on Combinatorial Pattern Matching (CPM).
LIPIcs, vol. 78, pp. 7:1–7:13 (2017)

2. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3

502 T. Gagie et al.

3. Bille, P., Gagie, T., Li Gørtz, I., Prezza, N.: A separation between run-length SLPs
and LZ77. CoRR, abs/1711.07270 (2017)

4. Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

5. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

6. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–
2576 (2005)

7. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, Hoboken
(2006)

8. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: Efficient
algorithms for three variants of the LPF table. J. Discrete Algorithms 11, 51–61
(2012)

9. Dinklage, P., Fischer, J., Köppl, D., Löbel, M., Sadakane, K.: Compression with
the tudocomp framework. CoRR, abs/1702.07577 (2017)

10. Fici, G.: Factorizations of the Fibonacci infinite word. J. Integer Sequences, 18(9),
Article 3 (2015)

11. Fritz, M.H.-Y., Leinonen, R., Cochrane, G., Birney, E.: Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.
21, 734–740 (2011)

12. Gagie, T.: Large alphabets and incompressibility. Inf. Process. Lett. 99(6), 246–251
(2006)

13. Gallant, J.K.: String Compression Algorithms. Ph.D thesis. Princeton University
(1982)

14. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. CoRR, abs/1104.4203 (2011)

15. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9 4

16. I, T.: Longest common extensions with recompression. In: Proceedings of 28th
Annual Symposium on Combinatorial Pattern Matching (CPM). LIPIcs, vol. 78,
pp. 18:1–18:15 (2017)

17. Jez, A.: Approximation of grammar-based compression via recompression. Theor.
Comput. Sci. 592, 115–134 (2015)

18. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016)

19. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

20. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

21. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Prob. Inf. Transm. 1(1), 1–7 (1965)

22. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

23. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

24. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nord. J. Comput. 12(1), 40–66 (2005)

25. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

https://doi.org/10.1007/978-3-319-46049-9_4

On the Approximation Ratio of Lempel-Ziv Parsing 503

26. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian
words. Inf. Process. Lett. 86(5), 241–246 (2003)

27. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, Cambridge (2016)

28. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data
structure for LCE queries in compressed space. In: Proceedings of 41st Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS),
pp. 72:1–72:15 (2016)

29. Prezza, N.: Compressed Computation for Text Indexing. Ph.D thesis. University
of Udine (2016)

30. Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. J. ACM 28(1), 16–24 (1981)

31. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

32. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(24), 416–430 (2005)

33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
398–403 (1948)

34. Sthephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Chenxiang, Z., Efron,
M.J., Iyer, R., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical?
PLoS Biol. 17(7), e1002195 (2015)

35. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

Kernelization for Maximum Happy
Vertices Problem

Hang Gao1(B) and Wenyu Gao2

1 School of Transportation, Jilin University, Changchun, China
gaohang1998@163.com

2 School of Information Science, Guangdong University of Finance and Economics,
Guangzhou, China
gwy@gdufe.edu.cn

Abstract. The homophyly phenomenon is very common in social net-
works. The Maximum Happy Vertices (MHV) is a newly proposed prob-
lem related to homophyly phenomenon. Given a graph G = (V,E) and
a vertex coloring of G, we say that a vertex v is happy if v shares the
same color with all its neighbors, and unhappy, otherwise, and that an
edge e is happy, if its two endpoints have the same color, and unhappy,
otherwise. Given a partial vertex coloring of G with k number of differ-
ent colors, the k-MHV problem is to color all the remaining vertices such
that the number of happy vertices is at least l. We study k-MHV from
the parameterized algorithm perspective; we prove that k-MHV has an
exponential kernel of 2kl+l + kl + k + l on general graph. For planar
graph, we get a much better polynomial kernel of 7(kl + l) + k − 10.

Keywords: Maximum happy vertices · Happy coloring
Parameterized complexity · Kernelization · Planar graph

1 Introduction

Social networks attract more and more researchers. It is believed that homophyly
is one of the most basic notions governing the structure of social networks. It
is a common sense principle that people are more likely to connect with people
they like.

Li and Peng [1] showed that many real networks satisfy exactly the homo-
phyly law. Based on this, Zhang and Li [2] proposed a new problem that, given
a network in which some vertices have their attributes unfixed, how to assign
attributes to these vertices such that the resulting network reflects the homo-
phyly law in the most degree? Suppose in a company there are many employ-
ees which constitutes a friendship network. Some employees have been assigned
to work in some departments of the company, while the remaining employees
are waiting to be assigned. An employee is happy, if she/he works in the same
department with all of her/his friends; otherwise she/he is unhappy. Similarly,
a friendship is happy if the two related friends work in the same department;
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 504–514, 2018.
https://doi.org/10.1007/978-3-319-77404-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_37&domain=pdf

Kernelization for Maximum Happy Vertices Problem 505

otherwise the friendship is unhappy. The goal is to achieve the greatest social
benefits, that is, to maximize the number of happy vertices (similarly, happy
edges) in the network.

The aforementioned problem can be formally expressed as follows. Consider
a vertex-colored graph G = (V,E), an edge is happy if its two endpoints have
the same color (otherwise, the edge is unhappy). Similarly, a vertex is happy if
it and all its neighbors have the same color (otherwise, the vertex is unhappy).
Equivalently, a vertex is happy when all of its incident edges are happy. Let
S ⊆ V , and let c : S → [k] be a partial vertex-coloring of G. A full coloring
c′ : V → [k] is an extended full coloring of c if c(v) = c′(v) for all v ∈ S. In this
paper, we consider the following coloring problems.

Definition 1. k-Maximum Happy Vertices (k-MHV)
Instance: A graph G = (V,E), a partial vertex-coloring c : S → [k], an integer l.
Question: Is there an extended full coloring c′ of c such that the number of the
happy vertices is at least l?

Definition 2. k-Maximum Happy Edges (k-MHE)
Instance: A graph G = (V,E), a partial vertex-coloring c : S → [k], an integer l.
Question: Is there an extended full coloring c′ of c such that the number of the
happy edges is at least l?

Though they are newly proposed algorithmic problems, both MHV and MHE
problems are natural and fundamental algorithmic problems. The concept of
homophyly reflected by it makes it important in social network application. The-
oretical analysis of the problems helps to understand the nature of the problems,
and hence is very welcome.

Zhang and Li [2] proved that for every k ≥ 3, the problems k-MHE
and k-MHV are NP-complete. However, when k = 2, they gave algorithms
running in time O(min{n2/3m;m3/2}) and O(mn7logn) for 2-MHE and 2-
MHV, respectively. Towards this end, the authors used max-flow algorithms
(2-MHE) and minimization of submodular functions (2-MHV). Moreover, the
authors presented approximation algorithms with approximation ratios 1/2 and
max{1/k,Ω(Δ−3)} for k-MHE and k-MHV, respectively, where Δ is the max-
imum degree of the graph. Later on, Zhang et al. [3] gave improved algo-
rithms with approximation ratios 0.8535 and 1/(Δ+1) for k-MHE and k-MHV,
respectively.

Aravind et al. [4] proved that both k-MHE and k-MHV are solvable in poly-
nomial time for trees, and they proposed an interesting problem of studying
the hardness of the k-MHV problem for planar graphs. Furthermore, Aravind
et al. [5] proved an polynomial kernel for k-MHE problem from the parameter-
ized algorithm perspective, they also proposed an open question that whether
k-MHV admits a polynomial kernel.

Though the polynomial kernel for k-MHE problem proved by Aravind
et al. [5] seems quite well, there is no kernelization algorithm for k-MHV problem
currently, which inspires us to conduct a further study for k-MHV problem from
the parameterized algorithm perspective.

506 H. Gao and W. Gao

2 Preliminaries

Throughout, we consider graphs that are finite, undirected and simple. For a
graph G = (V,E), let V (G) denote its vertex set and E(G) its set of edges. For
S ⊆ V , the subgraph induced by S, denote G[S], is the subgraph of G with vertex
set S and edge set {(u, v)|u, v ∈ S, (u, v) ∈ E}. For each vertex v ∈ V (G), let
N(v) be the set of vertices adjacent to v in G, i.e., N(v) = {u ∈ V |(u, v) ∈ E},
let NS(v) denote the set of vertices adjacent to v in S, where S is a subset of
V (G), i.e., NS(v) = {x|x ∈ N(v) and x ∈ S}.

The degree deg(v) of v is the size of N(v). A vertex of degree exactly (at
most, at least) d is called a d-vertex ((d)-vertex, (d)-vertex). Let Δ(G) denote
the maximum degree over all vertices in G.

If u, v ∈ V are two vertices of graph G, the operation of contracting u and
v is to combine u and v into a new vertex w, which becomes adjacent to all the
former neighbors of u and of v.

A planar graph is a graph that can be embedded in the plane. For a given
planar graph G = (V,E), the following condition holds for |V | ≥ 3, |E| ≤
3|V | − 6. The subdivision of an edge e = (u, v) with endpoints u and v yields a
graph containing one new vertex w, and with an edge set replacing e by two new
edges, (w, u) and (w, v). For a planar graph, the subdivision of arbitrary edge
will not change the planarity of the graph.

The theory of parameterized computation and complexity mainly considers
decision problems (i.e., problems whose instances only require a yes/no answer).
A parameterized problem Q is a decision problem (i.e., a language) that is a
subset of Σ∗ × N , where Σ is a fixed alphabet and N is the set of all nonneg-
ative integers. Thus, each element of Q is of the form (x, k), where the second
component, i.e., the integer k, is the parameter. We say that an algorithm A
solves the parameterized problem Q if on each input (x, k), the algorithm A can
determine whether (x, k) is a yes-instance of Q (i.e., whether (x, k) is an element
of Q). We call the algorithm A a parameterized algorithm if its computational
complexity is measured in terms of both the input length |x| and the parameter
value k. The parameterized problem Q is fixed parameter tractable if it can be
solved by a parameterized algorithm of running time bounded by f(k)|x|c, where
f is a recursive function and c is a constant independent of both k and |x|.

Kernelization is one of the most important techniques used in the develop-
ment of efficient parameterized algorithm. Let Q be a parameterized problem
and (x, k) be an instance of Q. An algorithm K is called a kernelization algo-
rithm for Q if K satisfies the following conditions: (1) K transforms (x, k) into
the reduced instance (x′, k′) in polynomial time; (2) (x, k) is a yes-instance of
Q if and only if (x′, k′) is a yes-instance of Q; and (3) |x′| ≤ g(k) and k′ ≤ k,
where g(k) is a computable function. Correspondingly, the problem Q is called
kernelizable and the reduced instance (x′, k′) is called a kernel. In particular, Q
is said to admit a polynomial kernel if g(k) is a polynomial function on k. One
of the most important theorems of parameterized computation is that a param-
eterized problem is fixed parameter tractable if and only if it is kernelizable [6].

Kernelization for Maximum Happy Vertices Problem 507

The reduced kernel is not only helpful for parameterized algorithm, but also
helpful for approximation algorithm. For more on parameterized complexity, we
refer the interested reader to [7,8].

3 Kernelization for k-MHV Problem

According to the description of k-MHV, the difficulty is that since the original
graph is a partial-colored graph, it is very hard to determine whether an colored
or uncolored vertex is a happy vertex of the final optimal solution. If the graph
is dense enough (for instance, complete graph), only two pre-colored vertices
with different colors will make all the rest vertices be unhappy vertices. On the
contrary, given a sparse graph, it is easier to process.

From the perspective of parameterized algorithm, kernelization is to reduce
the original graph G to a “small” kernel. In the following, we prove k-MHV
has a exponential kernel of 2kl+l + kl + k + l, thus k-MHV is fixed parameter
tractable. Furthermore, in planar graph, k-MHV has a much better kernel of
7(kl + l) + k − 10. Our strategy to obtain the kernels consists of three parts:
firstly, we partition the vertices of the partial-colored graph into six disjoint
sets, secondly, we introduce four reduction rules to reduce the graph; thirdly, we
introduce a strategy to analyze the size of each disjoint set of vertices.

3.1 Partition of Vertices

Given a partial-colored graph G = (V,E), we can partition the vertices of G into
six disjoint sets.

(1) Set of colored happy vertices, denoted by V1, i.e., v ∈ V1 if v is colored and
all the vertices in N(v) have been colored with the same color as that of v.

(2) Set of colored unhappy vertices, denoted by V2, i.e., v ∈ V2 if v is colored and
destined to be unhappy. That is to say, there is at least one vertex u ∈ N(v),
which has been colored with the color different from that of v.

(3) Set of colored potential happy vertices, denoted by V3, i.e., v ∈ V3 if v is
colored and v has the same color as all of its colored neighbors, but v also
has some uncolored neighbors.

(4) Set of uncolored unhappy vertices, denoted by V4, i.e., v ∈ V4 if v is uncolored
and v has at least two colored neighbors with different colors.

(5) Set of uncolored potential happy vertices, denoted by V5, i.e., v ∈ V5 if v is
uncolored and all the colored neighbors of v have the same color, but v also
has some uncolored neighbors.

(6) Set of uncolored free vertices, denoted by V6, i.e., v ∈ V6 if v is uncolored
and v has no colored neighbors.

The partition of the vertices is shown in Fig. 1. Black vertices are colored
vertices; the numbers beside those colored vertices represent their color numbers.
White vertices are uncolored vertices.

508 H. Gao and W. Gao

32

32

V2

V3

V4

V5

V6

1 1 2 3

1

V1

Fig. 1. Partition of vertices of G. V1 is the set of colored happy vertices, V2 is the set
of colored unhappy vertices, V3 is the set of colored potential happy vertices, V4 is the
set of uncolored unhappy vertices, V5 is the set of uncolored potential happy vertices,
V6 is the set of uncolored free vertices.

3.2 Reduction Rules

Now we present the following four reduction rules.
Rule 1: Remove all the happy edges, because the happy edges will never

further affect the coloring of the remaining vertices. By removing the happy
edges, all the colored happy vertices (vertices in V1) in graph G become isolated
vertices. Then remove all the isolated vertices and decrease l by the number
of removed vertices. By doing so, the set of V1 no longer exists in the reduced
graph.

Rule 2: Considering the colored unhappy vertices in V2, contract all the
vertices with the same color into a single vertex and remove all but one of
the parallel edges.

Proof. According to the partition of the vertices, vertices in V2 are unhappy
vertices; they will never further contribute to the value of the optimal solution.
How many colored vertices are adjacent to an uncolored vertex is not serious,
but what colored vertices are adjacent to an uncolored vertex is the key problem.
Moreover, after applying of Rule 1, all the vertices with the same color in V2

forms an independent set. Therefore, we can contract all the vertices with the
same color into a single vertex and remove the parallel edges safely.

Rule 3: If there are some vertices in V4 only adjacent to vertices in V2, remove
them from G.

Proof. The vertices in V4 only adjacent to vertices in V2 will never affect the
colored vertices in V3, the uncolored vertices in V5, and the free vertices in V6.
So they can be removed in advance.

Kernelization for Maximum Happy Vertices Problem 509

Rule 4: For the rest of uncolored unhappy vertices in V4, they are all adjacent
to vertices in V3 or V5, or vertices in V6. That is to say, they are adjacent to
at least one vertex in V3 ∪ V5 ∪ V6. If there are two vertices u, v ∈ V4, and
NV3∪V5∪V6(u) ⊆ NV3∪V5∪V6(v), then remove vertex u.

Proof. Vertices in V4 are destined to be unhappy vertices, so in the optimal
solution, they can be colored with the same color as one of its neighbors in
V3 ∪ V5 ∪ V6 safely. Suppose in the optimal solution, vertex u is colored with
color c1, and vertex v is colored with color c2, thus all the neighbors of u are
unhappy vertices. So it is safe to change the color of u from c1 to c2, which will
not decrease the number of happy vertices. Thus if there are two vertices u and
v in V4 such that NV3∪V5∪V6(u) ⊆ NV3∪V5∪V6(v), the best choice is to color them
with the same color. Because u and v will be colored with the same color in the
end, and NV3∪V5∪V6(u) ⊆ NV3∪V5∪V6(v), then u can be removed in advance.

Therefore, after applying of Rule 4, for each pair of vertices u, v ∈ V4, the
following two forms are satisfied.

NV3∪V5∪V6(u) � NV3∪V5∪V6(v)
NV3∪V5∪V6(u) � NV3∪V5∪V6(v) (1)

The reduced graph G′ by applying Rule 1 to Rule 4 is shown in Fig. 2. It
is worth noting that the happy edges and the colored happy vertices have been
removed from the graph.

32

32

V2

V3

V4

V5

V6

1

Fig. 2. The reduced graph G′. Black vertices are colored vertices; the numbers beside
these colored vertices are the colors of them. White vertices are uncolored vertices.

3.3 Analyzing Size of Vertex Set

After applying the aforementioned four reduction rules, we are ready to conclude
the kernel of k-MHV.

510 H. Gao and W. Gao

Theorem 3. The problem k-MHV admits a kernel of 2(k+l) + kl + k + l vertices.
Thus, k-MHV is fixed parameter tractable.

Proof. Let (G′, k, l) be a reduced instance of k-MHV. We claim that if G′ has
more than 2(k+l) + kl + k + l vertices, then we have YES-instance. The proof
follows by the claims below.

Claim 1.1. The number of vertices in V1 is 0, i.e.,

|V1| = 0 (2)

It is obvious according to Rule 1.

Claim 1.2. The number of vertices in V2 is at most k, i.e.,

|V2| ≤ k (3)

Proof. By applying Rule 2, all the vertices with the same color are contracted
into a single vertex, so there are at most k vertices with different colors in V2.

Claim 1.3. The number of free vertices in V6 is at most l − 1, i.e.,

|V6| < l (4)

Proof. For the uncolored free vertices in V6, if there are at least l uncolored free
vertices, we can conclude that there is a solution that contains at least l happy
vertices. Because in that case, we can color all the uncolored vertices of graph
G′ with the same color, which makes all the uncolored free vertices in V6 become
happy vertices. So |V6| < l.

Claim 1.4. The number of vertices in V3 ∪ V5 is at most kl − 1, i.e.,

|V3 ∪ V5| < kl (5)

Proof. For arbitrary uncolored potential happy vertex u, u ∈ V5, if the color
number of its colored neighbors is c1, then we call c1 as the potential color number
of vertex u. If there are at least kl potential happy vertices (colored or uncolored)
in V3 ∪ V5, we can choose at least kl/k = l vertices whose color number or
potential color number are the same, because there are at most k different color
numbers. Then we can make these l vertices become happy vertices. This is
feasible because we can color all of them and their neighbors with their original
color number or potential color number. Thus, |V3 ∪ V5| < kl.

Claim 1.5. The number of vertices in V4 is at most 2kl+l, i.e.,

|V4| < 2kl+l (6)

Kernelization for Maximum Happy Vertices Problem 511

Proof. By applying Rules 3 and 4, each vertex in V4 is adjacent to at least one
vertex in V3 ∪ V5 ∪ V6, and for each pair of vertices u, v ∈ V4, NV3∪V5∪V6(u) �

NV3∪V5∪V6(v), and NV3∪V5∪V6(u) � NV3∪V5∪V6(v). According to Claims 1.3 and
1.4, |V3 ∪ V5 ∪ V6| < kl + l. Because the set of V3 ∪ V5 ∪ V6 has at most

(
kl+l

(kl+l)/2

)

number of subsets that do not contain each other. Thus, |V4| <
(

kl+l
(kl+l)/2

)
< 2kl+l.

Therefore, the number of vertices after applying reduction rules is,

|V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6| < 0 + k + kl + 2kl+l + l = 2kl+l + kl + k + l (7)

This is an exponential kernel of k-MHV problem. Furthermore, all of the
reduction rules can be implemented to run in polynomial time. Thus, the claimed
kernel follows. �	

According to Rule 1 to Rule 4 and Theorem 3, we can easily design a kernel-
ization algorithm for k-MHV problem, the kernelization algorithm just need to
include the four reduction rules.

3.4 A k-approximation Algorithm

It is worth noting that the strategy used to bound |V3 ∪V5| in proof of Theorem
3 (Claim 1.4) can be extended to an approximation algorithm. The main idea is
that we can choose at least |V3 ∪ V5|/k vertices whose color number or potential
color number are the same, and make these vertices become happy vertices by
coloring all of them and their neighbors with their original color number or
potential color number.

So we can change at least |V3 ∪V5|/k vertices into happy vertices every time.
If V3 ∪ V5 is null, we only need to color all the vertices in V6 and all their
neighbors in V4 with the same color, which lead to the end of the approximation
algorithm.

Given a partial-colored graph G, the vertices in V2 and V4 will never become
happy vertices, the vertices in V1 will not affect the rest coloring procedure. So in
the best case, we can assume that the vertices in V3, V5, and V6 will all become
happy vertices in the end. But by our approximation algorithm, we can make at
least |V3 ∪ V5|/k vertices into happy vertices every time, till the end. Thus this
is a k-approximation algorithm.

4 Maximum Happy Vertices on Planar Graph

It is obvious that the graph is more dense, there are fewer happy vertices. Thus,
it is natural to ask what the parameterized complexity of k-MHV on planar
graph is. For a planar graph G = (V,E), |E| ≤ 3|V | − 6.

Zhang and Li [2] proved the NP-hardness of k-MHE by reducing multiway
cut problem to k-MHE, and they also proved the NP-hardness of k-MHV by
reducing k-MHE to k-MHV. Dahlhaus et al. [9] proved that the multiway cut
problem is NP-hard even on planar graphs. Thus, it is obvious that k-MHV on

512 H. Gao and W. Gao

planar graphs is also NP-hard. To bound the kernel of k-MHV on planar graph,
we use a method proposed by Wang et al. [10] to count the vertices on planar
graph.

The proof of Theorem 3 shows that the cardinalities of V3, V5, and V6 are
bounded to polynomial functions of k or l, but the cardinality of V4 is related
to an exponential function of k and l. Thus, our main idea is to bound the
cardinality of V4 by taking advantage of the properties of planar graph.

Let’s consider the subgraph containing Vertex set V4 and V3 ∪ V5 ∪ V6, and
the edges between them. It is a bipartite graph, we denote it by B = (V4 ∪
V3−5−6, E), where V3−5−6 = V3 ∪V5 ∪V6. At the beginning, if the given graph G
is a planar graph, during the reduction of graph G, applying reduction Rule 1 will
not change the planarity of graph G, applying reduction Rule 2 may change the
planarity of graph G, but it will not affect the planarity of the induced subgraph
G[V4 ∪ V3 ∪ V5 ∪ V6]. The aforementioned bipartite graph B = (V4 ∪ V3−5−6, E)
is a subgraph of G[V4 ∪ V3 ∪ V5 ∪ V6], so B = (V4 ∪ V3−5−6, E) is a bipartite
planar graph. Clearly, applying of Rules 3 and 4 will remove some vertices in V4,
which will not change the planarity of B = (V4 ∪ V3−5−6, E).

Therefore, given a planar graph G, after applying reduction rules, the reduced
graph G′ may be a non-planar graph, but the subgraph B = (V4 ∪V3−5−6, E) of
G′ is a bipartite planar graph.

Based on this condition, we arrive at the kernel size of k-MHV on planar
graph.

Theorem 4. The problem k-MHV on planar graph admits a linear kernel of
7(kl + l) + k − 10 vertices.

Proof. In Theorem 3, we prove that |V2| ≤ k, |V3 ∪ V5| < kl, |V6| < l after
using four reduction rules. Now let us count V4 on the condition of the subgraph
B = (V4 ∪ V3−5−6, E) is a planar graph.

Firstly, we partition V4 into three disjoint sets, V 1
4 denotes the set of vertices

which have only one neighbor in V3−5−6, V 2
4 denotes the set of vertices which

have exact two neighbors in V3−5−6, and V 3
4 denotes the set of vertices which

have at least three neighbors in V3−5−6.
Secondly, let’s bound the number of vertices in V 1

4 . Because of each vertex
in V4 is adjacent to at least one vertex of V3−5−6, and for each pair of vertices
u, v ∈ V4, NV3∪V5∪V6(u) � NV3∪V5∪V6(v), and NV3∪V5∪V6(u) � NV3∪V5∪V6(v).
Thus, we have

|V 1
4 | ≤ |V3−5−6| = kl + l (8)

Thirdly, let’s bound the number of vertices in V 2
4 . Each vertex in V 2

4 is
adjacent to different pair of vertices in V3−5−6, and B = (V4 ∪ V3−5−6, E) is a
bipartite planar graph. Let’s consider the subgraph of B formed by V 2

4 , V3−5−6,
and the edges between V 2

4 and V3−5−6. We denote it by B2, a example is shown in
Fig. 3(a). It is clear that this subgraph B2 is also a bipartite planar graph, and for
each pair of vertices u, v ∈ V3−5−6, there is at most one vertex w ∈ V 2

4 adjacent
to both u and v (because NV3∪V5∪V6(u) � NV3∪V5∪V6(v), and NV3∪V5∪V6(u) �

NV3∪V5∪V6(v)). Assuming we replace every vertex w ∈ V 2
4 and its two incident

Kernelization for Maximum Happy Vertices Problem 513

edges (w, u) and (w, v) by a single edge (u, v) (this is a reverse operation of
subdivision), let B′

2 denote the new graph by replacing operation, a example is
shown in Fig. 3(b). Clearly, B′

2 is a planar graph whose vertex set is V3−5−6.
Moreover, there is a one-to-one correspondence between the edge set of B′

2 and
the replaced vertices in V 2

4 . Since every planar graph with |V | vertices and |E|
edges satisfies |E| ≤ 3|V | − 6, therefore,

|V 2
4 | ≤ 3|V2−4−5| − 6 = 3(kl + l) − 6 (9)

V42
V3-5-6 V42

V3-5-6

w
u

v
V4

3

V3-5-6
u

v

(a) B2 (b) B2' (c) B3

Fig. 3. Examples of bipartite planar graphs, (a) B2 is a bipartite planar graph formed
by V 2

4 , V3−5−6, and the edges between V 2
4 and V3−5−6, (b) B′

2 is transformed from B2

by replacing every vertex w,w ∈ V 2
4 and its two incident edges (w, u) and (w, v) by a

single edge (u, v), (c) B3 is a bipartite planar graph formed by V 3
4 , V3−5−6, and the

edges between V 3
4 and V3−5−6.

Fourthly, let’s bound the number of vertices in V 3
4 . Each vertex in V 3

4 is
adjacent to at least three vertices in V3−5−6, and B = (V4 ∪ V3−5−6, E) is a
bipartite planar graph. Considering the subgraph of B formed by V 3

4 , V3−5−6,
and the edges between V 3

4 and V3−5−6, denoted by B3, shown in Fig. 3(c). Clearly,
this subgraph is also a bipartite planar graph, which is a triangle-free planar
graph. Since triangle-free planar graph with |V | vertices and |E| edges satisfies
|E| ≤ 2|V | − 4, let’s consider the edges between V 3

4 and V3−5−6, we have

3|V 3
4 | ≤ |E| ≤ 2(|V 3

4 | + |V3−5−6|) − 4
⇒ |V 3

4 | ≤ 2|V3−5−6| − 4
⇒ |V 3

4 | ≤ 2(kl + l) − 4
(10)

Therefore,
|V4| = |V 1

4 ∪ V 2
4 ∪ V 3

4 |
= |V 1

4 | + |V 2
4 | + |V 3

4 |
≤ 6(kl + l) − 10

(11)

After reduction, the number of vertices is,

|V1∪V2∪V3∪V4∪V5∪V6| < 0+k+kl+l+6(kl+l)−10 = 7(kl+l)+k−10 (12)

So k-MHV on planar graph admits a kernel of 7(kl + l) + k − 10. �	

514 H. Gao and W. Gao

5 Conclusions

The k-MHV problem is a natural graph coloring problem arising in the homo-
phyly phenomenon of networks. By vertex partition, we prove an exponential
kernel of 2kl+l + kl + k + l for this problem. For planar graph, we can achieve a
much better polynomial kernel of 7(kl + l) + k − 10.

In general, many NP-hard problems are less difficult in some special graphs,
and studying of NP-hard problems in special graphs can be very helpful for
solving these problems in general graphs. Considering MHV is a newly proposed
problem, it is necessary to investigate the complexity of MHV in more special
classes of graphs.

Acknowledgments. We would like to thank the anonymous reviewers for their
detailed reviews and suggestions.

References

1. Li, A., Peng, P.: The small-community phenomenon in networks. Math. Struct.
Comput. Sci. 22(3), 373–407 (2012)

2. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593(C), 117–131 (2015)

3. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21398-9 13

4. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

5. Aravind, N.R., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hard-
ness results for happy coloring problems. CoRR abs/1705.08282 (2017)

6. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2002)

7. Chen, J.E.: Parameterized computation and complexity: a new approach dealing
with np-hardness. J. Comput. Sci. Technol. 20(1), 18–37 (2005)

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International Pub-
lishing, Heidelberg (2015)

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

10. Wang, J., Yang, Y., Guo, J., Chen, J.: Planar graph vertex partition for linear
problem kernels. J. Comput. Syst. Sci. 79(5), 609–621 (2013)

https://doi.org/10.1007/978-3-319-21398-9_13
https://doi.org/10.1007/978-3-319-21398-9_13
https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22

When is Red-Blue Nonblocker
Fixed-Parameter Tractable?

Serge Gaspers1,2(B) , Joachim Gudmundsson3, Michael Horton3 ,
and Stefan Rümmele1,3

1 UNSW, Sydney, Australia
{sergeg,stefanr}@cse.unsw.edu.au

2 Data61, CSIRO, Canberra, Australia
3 University of Sydney, Sydney, Australia

joachim.gudmundsson@gmail.com, michael.horton@sydney.edu.au

Abstract. In the Red-Blue Nonblocker problem, the input is a
bipartite graph G = (R � B, E) and an integer k, and the question
is whether one can select at least k vertices from R so that every vertex
in B has a neighbor in R that was not selected. While the problem is
W[1]-complete for parameter k, a related problem, Nonblocker, is FPT
for parameter k. In the Nonblocker problem, we are given a graph H
and an integer k, and the question is whether one can select at least
k vertices so that every selected vertex has a neighbor that was not
selected. There is also a simple reduction from Nonblocker to Red-

Blue Nonblocker, creating two copies of the vertex set and adding an
edge between two vertices in different copies if they correspond to the
same vertex or to adjacent vertices. We give FPT algorithms for Red-

Blue Nonblocker instances that are the result of this transformation –
we call these instances symmetric. This is not achieved by playing back
the entire transformation, since this problem is NP-complete, but by a
kernelization argument that is inspired by playing back the transforma-
tion only for certain well-structured parts of the instance. We also give
an FPT algorithm for almost symmetric instances, where we assume the
symmetry relation is part of the input.

Next, we augment the parameter by � = |B| / |R|. Somewhat surpris-
ingly, Red-Blue Nonblocker is W[1]-hard for the parameter k+�, but
becomes FPT if no vertex in B has degree 1. The FPT algorithm relies
on a structural argument where we show that when |R| is large with
respect to k and �, we can greedily compute a red-blue nonblocker of size
at least k. The same results also hold if we augment the parameter by
dR instead of �, where dR is the average degree of the vertices in R.

1 Introduction

In this paper, we study the Red-Blue Nonblocker problem.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 515–528, 2018.
https://doi.org/10.1007/978-3-319-77404-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_38&domain=pdf
http://orcid.org/0000-0002-6947-9238
http://orcid.org/0000-0001-6388-9634

516 S. Gaspers et al.

R B

S

Fig. 1. Example of a red-blue nonblocker S. Each vertex in B has an escape to a vertex
in R \ S, denoted by the thick edges. (Color figure online)

Red-Blue Nonblocker Parameter: k
Input: Bipartite graph G = (R � B,E), integer k
Question: Is there a set S ⊆ R with |S| ≥ k such that for each vertex v ∈ B,

N(v) �⊆ S?

We call such a set S a red-blue nonblocker or simply a nonblocker. See Fig. 1 for
a simple example of a red-blue nonblocker. We also refer to vertices in R as red
vertices and to vertices in B as blue vertices. For a red-blue nonblocker S, we
have that each blue vertex v has a red neighbor u /∈ S, and we refer to such a
neighbor as an escape for v.

The problem can be viewed as an alternative parameterization of the Set

Cover problem and of the Red-Blue Dominating Set problem: a set S ⊆ R
is a red-blue nonblocker if and only if R \ S is a red-blue dominating set; if we
view the set B as elements and the set R as sets containing their neighboring
vertices as elements, then S ⊆ R is a red-blue nonblocker if and only if R \ S is
a set cover.

The Red-Blue Nonblocker problem is W[1]-complete [6], but it is closely
related to the following problem, which is FPT [3].

Nonblocker Parameter: k
Input: Graph H = (V,E), integer k
Question: Is there a set S ⊆ V with |S| ≥ k such that for each vertex v ∈ V ,

N [v] �⊆ S?

Here, N [v] denotes the closed neighborhood of v.
There is a simple reduction transforming instances of Nonblocker into

equivalent instances of Red-Blue Nonblocker (see, e.g., [9] where the reduc-
tion is formulated in terms of dominating sets and set covers): for each vertex
v ∈ V , create a vertex vr ∈ R and a vertex vb ∈ B; two vertices vr, ub are
adjacent in G if u ∈ NH [v]; the value of k is the same in both instances. We call
graphs resulting from this transformation symmetric graphs.

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 517

Definition 1. A bipartite graph G = (R � B,E) is symmetric if there are per-
mutations (r1, . . . , rn/2) and (b1, . . . , bn/2) of R and B, respectively, such that
ribi ∈ E for each i ∈ {1, . . . , n/2} and ribj ∈ E if and only if rjbi ∈ E. A
symmetry relation of G maps ri to bi and bi to ri, for all i ∈ {1, . . . , n/2}, in
such permutations.

We note that this definition is slightly different from the one in [2], where it
is not necessary that ribi ∈ E.

When we ask the question for which kinds of graphs Red-Blue Non-

blocker could be FPT, symmetric graphs immediately come to mind. In fact,
if the input graph G is symmetric, and we have as additional input a symmetry
relation for G, we can rewind the above transformation and reduce the problem
to Nonblocker to get an FPT algorithm. But what if we do not have this
additional input? We could try and compute a symmetry relation for G. How-
ever, this turns out to be a difficult problem. In fact, even deciding whether a
bipartite graph is symmetric is NP-complete (Theorem 1).

Nevertheless, a closer inspection of the FPT algorithm for Nonblocker from
[3] reveals that we only need to be able to detect symmetries for vertices of small
degree, and we can adapt their algorithm to show that Red-Blue Nonblocker

is FPT if the input graph is symmetric (Theorem2). We can go even further and
consider almost symmetric graphs. These are bipartite graphs that can be turned
into symmetric graphs by deleting a small number of vertices. Parameterizing
by k plus the number of deletions, we obtain an FPT algorithm for this variant
if we are also given the symmetry relation of the resulting symmetric graph
as additional input (Theorem3). The problem is akin to an annotated variant
of Nonblocker. If, in the above transformation, we omit the red copy of a
vertex, this means that we have already decided that the corresponding vertex
is in the nonblocker. If, instead, we omit the blue copy, this means that we omit
the requirement that the corresponding vertex needs a neighbor that is not in
the nonblocker. We also observe that [3] already handled the annotation where
a vertex is not allowed to be added to the nonblocker, without any significant
overhead in running time (all such annotations can be removed by increasing
the parameter by 3).

Next, we consider an additional parameter, the ratio � = |B|/|R|. The Red-

Blue Nonblocker problem remains W[1]-hard for parameter k + �. But we
also present an FPT algorithm for the case where no vertex in B has degree
1. For this, we define an auxiliary graph that captures only some of the neigh-
borhood relations of the original graph, but enough of them so that when |R|
is large with respect to k and �, we are sure to have a Yes-instance. When |R|
is small with respect to k and �, we use a brute-force approach. This results
in an FPT algorithm for Red-Blue Nonblocker on instances with no blue
vertices of degree 1 for the parameter k+�. The running time of this algorithm is(
(2�+1)k

k

)
nO(1) (see Theorem 4). As a by-product we also obtain the same results

for the parameter k + dR, where dR denotes the average degree of the vertices
in R (Corollary 2).

518 S. Gaspers et al.

1.1 Related Work

For each constant s ≥ 2, the variant of Red-Blue Nonblocker where the
degree of each vertex in B is upper bounded by s remains W[1]-complete [6,
Theorem 21.2.5], but when all vertices have degree at most s, the problem is
FPT [6, Exercise 21.3.1].1 The problem played a major role in establishing the
initial theory around the complexity class W[1] [4]. Kanj and Xia [12] showed that
Red-Blue Nonblocker is FPT when G has genus |R|o(1) but remains W[1]-
complete on graphs of genus |R|Ω(1). For parameter |R|, the problem is trivially
FPT; for parameter |B|, the problem has a dynamic programming algorithm
with running time 2|B|nO(1) [8]; for the parameter |R| − k, the problem is W[2]-
complete [6]; and for the parameter treewidth the problem can be solved in time
3�nO(1) if a tree decomposition of width � is provided as part of the input [1].

Ore [15] proved that for a minimal dominating set S ⊆ V of a graph G =
(V,E) with no isolated vertices, the set V \ S is a dominating set. Given that
isolated vertices can never be added to a nonblocker, and Ore’s result implies
that a graph G = (V,E) with minimum degree at least one has a dominating set
of size at most |V |/2, we have that Nonblocker has a kernel with 2k vertices.
This observation was made by [3] who improved the kernel size to 5k/3+3 vertices
and gave an FPT algorithm with running time 2.5154knO(1). The kernel is based
on a result by McCuaig and Shepherd [14] that every connected graph with
n ≥ 8 vertices has a dominating set of size at most 2n/5. Their kernel combined
with the currently fastest algorithm for Nonblocker (or Dominating Set)
measured in terms of the number of vertices by Iwata [11] gives an algorithm for
Nonblocker with running time 1.8982kkO(1) + nO(1).

2 Symmetric Bipartite Graphs

We first show that we cannot simply reverse the transformation from Non-

blocker to Red-Blue Nonblocker without being provided the symmetry
relation, since even checking whether a bipartite graph is symmetric is NP-
complete. The proof is by a reduction from the NP-complete problem List

Restricted Graph Isomorphism [13].

Theorem 1. Deciding whether a bipartite graph is symmetric is NP-complete.

Proof. Membership in NP follows by a guess-and-check algorithm.
For hardness, we reduce from the NP-complete problem List Restricted

Graph Isomorphism [13]. An instance of this problem consists of two graphs
H1 = (V1, E1) and H2 = (V2, E2) and each vertex v ∈ V1 has a list L(v) ⊆ V2.
The question is whether there exists an isomorphism mapping H1 to H2 such
that v ∈ V1 is mapped to one its list entries L(v). We transform an instance of

1 Actually, the variant where all vertices have degree at most s was thought to be
W[1]-complete for a long time [5], and Downey and Fellows [6] report that Alexander
Vardy spotted a flaw in their initial proof.

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 519

V1 V2.

VE2 VE1
.

xm+n

x2
x1
x0

ym+n

y2
y1
y0

Fig. 2. Example of reduction of instance of Graph Isomorphism to instance of sym-
metry detection. The induced graph is bipartite and symmetric if H1 and H2 are
isomorphic, as is the case here.

this problem to an instance G = (R � B,E) of our symmetry detection problem
as follows. Let VE1 and VE2 be sets of new vertices corresponding to edges in
the original graphs, that is VE1 = {ve | e ∈ E1} and VE2 = {ve | e ∈ E2}. Let
X = {x0, . . . , xm+n} and Y = {y0, . . . , ym+n} be two sets of m + n + 1 new
vertices, where n = |V1| = |V2| and m = |E1| = |E2|. Each side of G consists of
the vertices of one of the original graphs together with vertices corresponding to
edges of the other original graph and one of the two sets of fresh vertices, that is
R = V1 ∪ VE2 ∪ X and B = V2 ∪ VE1 ∪ Y . The edge set E contains the following
edges:

1. {v1, v2} ∈ E for all v1 ∈ V1 and v2 ∈ L(v1),
2. {ve1 , ve2} ∈ E for all e1 ∈ E1 and e2 ∈ E2,
3. {u, ve} ∈ E and {v, ve} ∈ E for all e = {u, v} ∈ E1 ∪ E2,
4. {x, y} ∈ E for all x ∈ X and y ∈ Y ,
5. {x0, v} ∈ E for all v ∈ V2, and
6. {y0, v} ∈ E for all v ∈ V1.

See Fig. 2 for an example of this construction. This reduction can be done in
polynomial time.

For correctness, assume that G is symmetric, that is, there exists a symmetry
relation φ of G. We will show that there is an isomorphism from H1 to H2

satisfying the constraints expressed in the lists L(v). A symmetry relation can
map vertices only if they have the same degree. By construction that means
that vertices in X can only be mapped to vertices in Y . Specifically, x0 has to
be mapped to y0. Since x0 is connected to V2 and y0 is connected to V1, we know
that vertices in V1 can only be mapped to vertices in V2 and vice versa. Hence,

520 S. Gaspers et al.

the remaining vertices in VE1 are mapped to vertices in VE2 and vice versa. We
can define a bijection f : V1 → V2 by setting f(v) = u for v ∈ V1 with {v, u} ∈ φ.
Hence, f satisfies the constraints expressed by lists L(v). We will show that f is
edge-preserving. Let u, v ∈ V1 with e = {u, v} ∈ E1. Let f(u), f(v) ∈ V2 be the
corresponding vertices in V2 and let e′ ∈ E2 be the edge such that {ve, ve′} ∈ φ.
Since φ is a symmetry relation, we know that ve′ is connected to f(u) and f(v).
Hence, by construction, e′ is the edge between f(u) and f(v) in H2. Therefore,
f is a witness for our List Restricted Graph Isomorphism problem.

For the other direction, assume that H1 and H2 are isomorphic. Let f : V1 →
V2 be the corresponding edge-preserving bijection that satisfies the lists L(v). We
can construct the symmetry relation φ of G as follows:

1. {xi, yi} ∈ φ for 0 ≤ i ≤ n + m.
2. {v, f(v)} ∈ φ for all v ∈ V1.
3. {e1, e2} ∈ φ where e1 = {u, v} ∈ E1 and e2 = {f(u), f(v)}.

Hence, G is symmetric and the reduction is correct.
�
In our FPT results we will make use of preprocessing using some of the

reduction rules below. While not all of them are needed to achieve our time
bounds, we nevertheless list them here. In practice, one would want to simplify
the instance as much as possible before running the respective FPT algorithms.
In what follows, we denote the degree of a vertex v by d(v). Figure 3 illustrates
each of the reduction rules.

Reduction rule 1 (degree 0 blue vertex). If there exists v ∈ B with d(v) =
0, then answer No.

Reduction rule 2 (degree 0 red vertex). If there exists v ∈ R with d(v) = 0,
then return (G \ {v}, k − 1).

Reduction rule 3 (degree 1 blue vertex). If there exists v ∈ B with d(v) =
1, then return (G \ N [N [v]], k).

Proof (Soundness). Since vertex v ∈ B has degree 1, its neighborhood N(v)
contains exactly one red vertex, say u. Vertex u cannot be part of the nonblocker.
Hence, all its blue neighbors N(u) will have an escape via u and we can remove
them together with u from G.
�
Reduction rule 4 (subset-neighborhood for blue vertices). If there
exists u, v ∈ B with N(v) ⊆ N(u), then return (G \ {u}, k).

Proof (Soundness). Let S be a solution for (G \ {u}, k). Then there exists x ∈
N(v) with x /∈ S. Since, x ∈ N(u), we have that S is a solution for (G, k) as
well.
�
Reduction rule 5 (subset-neighborhood for red vertices). If there exists
u, v ∈ R with N(u) ⊆ N(v), then return (G \ {u}, k − 1).

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 521

R B

S

. . .

. . .

. . .

=⇒ No-instancev

(a) degree 0 blue vertex

R B

S

. . .

. . .

. . .

v

R B

S

. . .

. . .

. . .

=⇒

(b) degree 0 red vertex
R B

S

. . .

. . .

. . .

v

R B

S

. . .

. . .

. . .

=⇒

N [N [v]]

(c) degree 1 blue vertex

R B

S

. . .

. . .

. . .
v

R B

S

. . .

. . .

. . .

=⇒u

N(v)N(u)

v

(d) subset-neighborhood for blue vertices
R B

S

. . .

. . .

. . .
v

R B

S

. . .

. . .

. . .

=⇒
u

N(v)N(u)

v

(e) subset-neighborhood for red vertices

R B

S

. . .

. . .

. . .

R B

S

. . .

. . .

. . .

=⇒v

d(v) > k

(f) high-degree blue vertex

R B

S

. . .

=⇒ Yes-instance

(g) few blue vertices
R B

S

. . .

. . .

. . .

R B

S

. . .

. . .

. . .

=⇒
. . .
v

. . .

. . .

.

. . .

(h) degree-2 blue vertex with
degree-2 neighbors

R B

S

R B

S

. . .

=⇒

uu′

cR cB

vv′

. . .

cR cB

(i) degree-2 blue vertex with
one degree-2 neighbor

Fig. 3. Simple example of each reduction rule. (Color figure online)

Proof (Soundness). Let S be a size k solution for G. If neither u nor v are in S
we are done. If u ∈ S, then S \ {u} is a size k − 1 solution for G \ {u}. If v ∈ S,
then (S \ {v}) ∪ {u} is a size k solution for G as well.
�
Reduction rule 6 (high-degree blue vertex). If every blue vertex has
degree at least 2 and there exists v ∈ B with d(v) > k, then return (G \ {v}, k).

Reduction rule 7 (few blue vertices). If |B| ≤ |R| − k, then return Yes.

522 S. Gaspers et al.

Proof (Soundness). For each blue vertex select an arbitrary red neighbor and
add it to a set D. Then R \ D is a red-blue nonblocker and |B| ≤ |R| − k
guarantees that |R \ D| ≥ k.
�

We now consider the Red-Blue Nonblocker variant where we are guar-
anteed that the input graph is symmetric and show that this problem is FPT.

Symmetric Red-Blue Nonblocker Parameter: k
Input: Symmetric bipartite graph G = (R � B,E), integer k
Question: Is there a set S ⊆ R with |S| ≥ k such that for each vertex v ∈ B,

N(v) �⊆ S?

Theorem 2. Symmetric Red-Blue Nonblocker is FPT and has a kernel
with at most 10(k + 2)/3 vertices.

Proof. Let (G = (R � B,E), k) be an instance of Symmetric Red-Blue Non-

blocker. The algorithm works as follows. First, the algorithm adds a connected
component Gcat that is a complete bipartite graph with 3 vertices in B and 3
vertices in R. Denote by cR ∈ R and cB ∈ B two arbitrary distinguished vertices
from this new component. The parameter k is increased by 2. The algorithm
then exhaustively applies Reduction rule 3, as well as two new reduction rules
specific to the symmetric case:

Reduction rule 8 (degree 2 blue vertex with degree-2 neighbors). If
(G = (R � B,E), k) is an instance of Symmetric Red-Blue Nonblocker,
such that there exists a vertex v ∈ B with degree 2 and both neighbors of v have
degree 2, then return (G − N [N [v]], k − 1).

Reduction rule 9 (degree 2 blue vertex with one degree-2 neighbor).
If (G = (R � B,E), k) is an instance of Symmetric Red-Blue Nonblocker,
and there is a vertex v ∈ B with degree 2 and a neighbor u′ with degree at least
3, then return (G′, k − 1), where G′ is obtained from G by deleting v and its
neighbor v′ �= u′, merging u′ with cR and merging the vertex u ∈ N(v′) \ {v}
with cB.

If, in the resulting instance, there is a connected component C on at most 14
vertices, compute the size kC of a largest red-blue nonblocker in this component,
remove C and decrease k by kC . If |R| > 5k/3, then answer Yes. Otherwise, we
have a kernel with at most 10k/3 vertices.

We will now argue the correctness of this algorithm. The first step of the
algorithm adds Gcat, a complete bipartite graph K3,3, as a new component and
increases k by 2. It contains two distinguished vertices, cR ∈ R and cB ∈ B.
We observe that Gcat is symmetric and its largest red-blue nonblocker has size
2. We also observe that cR and cB are the only vertices in Gcat that may get
additional neighbors due to reduction rules. Therefore, there exists a largest red-
blue nonblocker that does not contain cR but both of the other new vertices that

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 523

were added to R. We remark that the pair (cR, cB) plays the same role here as
the catalyst vertex in [3], i.e., a vertex that will not be added to the nonblocker
and whenever we decide for some other pair of vertices that they will not be
added to the nonblocker, we merge them with (cR, cB). We have already argued
the correctness of Reduction rule 3. Moreover, it preserves symmetry since it
removes the degree-1 blue vertex and its degree-1 red neighbor. We will now
argue the correctness of the additional reduction rules.

Proof (Soundness of Reduction rule 8). Since G is symmetric, N [N [v]] is a con-
nected component isomorphic to a cycle of length 4, whose largest red-blue
nonblocker has size 1.
�
Proof (Soundness of Reduction rule 9). First, observe that every symmetry rela-
tion maps v ∈ B to v′ ∈ R and u ∈ B to u′ ∈ R. Therefore, deleting v and v′

and merging u′ with cR and merging u with cB gives a symmetric graph.
Let S be a red-blue nonblocker for G of size at least k. W.l.o.g., we may

assume that cR /∈ S, otherwise modify S by removing cR from S and adding the
other two red vertices from Gcat to S. We observe that |S ∩ {v′, u′}| ≤ 1 since v
needs an escape. Therefore, S \ {v′, u′} is a red-blue nonblocker for G′ of size at
least k − 1. On the other hand, assume G′ has a red-blue nonblocker S′ of size
at least k − 1. W.l.o.g., assume cR /∈ S′. Then, S′ ∪{v′} is a red-blue nonblocker
for G of size at least k since v can escape through u′.
�
If no reduction rule applies any more, then G is a symmetric graph with mini-
mum degree at least 3. Assume it does not have a connected component on at
most 14 vertices. Let φ be a symmetry relation for G. Given φ, one can reverse
the transformation from Nonblocker into equivalent instances of Red-Blue

Nonblocker that was described in Sect. 1. We can construct an equivalent
instance H = (V, F) of Nonblocker as follows. For every vR ∈ R we create a
new vertex v ∈ V . Vertices u, v ∈ V are adjacent in H if there exists (uR, uB) ∈ φ
such that vRuB ∈ E. Since G had minimum degree ≥ 3, the obtained graph H
has minimum degree ≥ 2. Moreover, (H, k) is a yes-instance for Nonblocker

iff (G, k) is a yes-instance for Red-Blue Nonblocker.
We now use the same strategy as Dehne et al. [3]. Namely, McCuaig and

Shepherd [14] showed that, every connected graph with n > 7 vertices has a
dominating set of size at most 2n/5, and therefore a nonblocker of size at least
3n/5. Now, if |R| > 5k/3, then the number of vertices of H is |V | > 5k/3 and
it has a nonblocker of size at least 3|V |/5 > k. Therefore, G has a red-blue
nonblocker of size at least k and we have a yes-instance.
�
Corollary 1. Red-Blue Nonblocker can be solved in time 1.8982kkO(1) +
nO(1).

Proof. An algorithm by Iwata [11] solves red-blue nonblocker in time
O(1.4689|R|) for symmetric instances, and it does not need access to a sym-
metry relation. Our polynomial-time kernelization algorithm from Theorem2
gives an equivalent instance with |R| ≤ 5(k + 2)/3. Using Iwata’s algorithm for
this instance gives the desired running time.
�

524 S. Gaspers et al.

Almost Symmetric Red-Blue Nonblocker Parameter: k + |DR| + |DB |
Input: Bipartite graph G = (R � B,E), integer k, vertex sets DR ⊆ R

and DB ⊆ B such that H = G − (DR ∪ DB) is symmetric, and
symmetry relation φ of H

Question: Is there a set S ⊆ R with |S| ≥ k such that for each vertex v ∈ B,
N(v) �⊆ S?

Theorem 3. Almost Symmetric Red-Blue Nonblocker is FPT and can
be solved in time O∗(1.8982k+|DR| · k|DB |).

Proof. Let (G = (R � B,E), k,DR,DB , φ) be an instance of Almost Symmet-

ric Red-Blue Nonblocker. In a first step we will extend the graph in order
to amend the asymmetry caused by the additional red vertices DR. For every
x ∈ DR we add a copy of the following subgraph to G resulting in a new graph
G′ = (R′ � B′, E′). Let x′, rx, r′

x, bx, b′
x �∈ R � B be new vertices, where rx and

r′
x are added to R′ and x′, bx, and b′

x are added to B′. Additionally, we add the
following new edges to E′: xx′, xbx, rxx′, rxbx, rxb′

x, r′
xbx, and r′

xb′
x.

Now G′ has a size k+|DR| nonblocker if and only if G has a size k nonblocker.
To prove this, we show that this holds for |DR| = 1, say DR = {x}. Using the
same argument inductively results in the above statement. Assume S is a size
k nonblocker of G. Then S ∪ {r′

x} is a size k + 1 nonblocker of G, since the
neighborhood of B remained the same and the new blue vertices x′, bx, b′

x have
neighbor rx �∈ S. For the other direction, assume S is a size k + 1 nonblocker
of G′. Then either rx or r′

x (or both) is not part of S, since otherwise b′
x does

not have a neighbor outside S. Hence, |S ∩ R| ≥ k and S ∩ R is a nonblocker
of G since the neighborhood of B remained unchanged by our transformation.
This concludes, that searching for a size k + |DR| nonblocker of G′ leads to
an equivalent instance where the only asymmetry left is due to additional blue
vertices DB . We extend the symmetry relation φ to φ′ which accounts for the
newly introduced vertices.

For the second step, let x be an arbitrary vertex in DB . If |N(x)| > k we can
use Reduction rule 6 to remove x from G′. Hence, assume |N(x)| ≤ k. Since at
least one of its neighbors has to be outside of the nonblocker, we will brute force
over all ≤ k candidates y ∈ N(x) and successively mark them as not belonging
to the nonblocker as well as remove x from G′. In total we have k|DB | possible
combinations of marked red vertices and G′ is symmetric in all cases. Hence, we
can use the symmetry relation φ′ to transform our instance (G′, k + |DR|) into
an equivalent instance (H ′, k + |DR| of Nonblocker while preserving the fact
that some of the vertices are marked as not belonging to the nonblocker. Now
we can use the algorithm by Dehne et al. [3], which is capable of dealing with
marked vertices and decides Nonblocker in time 1.8982knO(1) for parameter
value k if the search algorithm is replaced with Iwata’s algorithm [11]. Hence,
in total we can solve Almost Symmetric Red-Blue Nonblocker in time
1.8982k+|DR| · k|DB |nO(1).
�

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 525

3 Not Too Many Blue Vertices

As stated in the introduction it is known that the Red-Blue Nonblocker

problem is W [1]-hard [6]. But what if the number of blue vertices is linear in the
number of red vertices, or even upper bounded by � · |R| for an additional param-
eter �? That is, we consider the Red-Blue Nonblocker problem augmented
with the parameter � = |B|/|R|. Somewhat surprisingly we will show that the
problem is FPT if the instance has no blue vertices of degree 1, otherwise it is
W [1]-hard for the parameter � + k.

First consider the parameterization of Red-Blue Nonblocker by � + k,
and there is no restriction on the degree of the vertices. We can easily show
that this version is W [1]-hard by a reduction from the Red-Blue Nonblocker

problem with parameter k. Given an instance (G = (R�B,E), k), simply add |B|
vertices r1, . . . , r|B| to R and |B| vertices b1, . . . , b|B| to B and add the |B| edges
(r1, b1), . . . , (r|B|, b|B|) to E. This does not change the size of the nonblocker but
gives � ≤ 2. Thus, we have the following result.

Proposition 1. The Red-Blue Nonblocker is W [1]-hard for parameter �+k.

The above hardness proof relies heavily on the fact that there are a large number
of vertices with degree 1. What if G has no blue vertex of degree 1? We next show
that the Red-Blue Nonblocker problem is FPT if we augment the parameter
by � and do not allow any vertex in B to have degree 1.

Consider the following algorithm for the Red-Blue Nonblocker problem
parameterized by k+� when no vertex in B has degree 1. Given such an instance
(G = (R � B,E), k) with |B| = � · |R|, the algorithm first invokes Reduction rule
1. If |R| ≥ (2�+1)k then report (G = (R�B,E), k) as a yes-instance. Otherwise,
if |R| < (2� + 1)k, solve the Red-Blue Nonblocker problem by brute-force,
by checking for each size-k subset of R whether it is a red-blue nonblocker.

For the correctness of the algorithm, we start with an important definition.

Definition 2. A red graph of a bipartite graph G = (R � B,E), where each
vertex in B has degree at least 2, is a graph obtained from the hypergraph
(R, {NG(v) : v ∈ B}) by shrinking each hyperedge to size 2 in an arbitrary
way.

Figure 4 shows an example of a bipartite graph and a red graph that it induces.
Before proving the final theorem we need the following two lemmas.

Lemma 1. If |R| ≥ (2�+1)k then any red graph H = (R,F) of G = (R�B,E)
has an independent set of size at least k.

Proof. Consider a red graph H = (R,F) of G = (R � B,E). Since |B| = � · |R|
the average degree of H is at most 2�. Turán [16] (see, e.g., [10] for a proof in
English) showed that for any graph G, an independent set of size n

d+1
can be

found in linear time, where n is the number of vertices and d the average degree
of G. Applying Turán’s [16] bound on H gives that H has an independent set of
size at least |R|/(2� + 1). The statement of the lemma immediately follows.
�

526 S. Gaspers et al.

R B
r1

r2

r3

r4

r5

r6

b1

b2

b3

(a)

r1

r2

r6

r3

r4

r5

NG(b1)

NG(b3)

NG(b2)

(b)

Fig. 4. Example of (a) bipartite graph G and (b) its corresponding red graph. For
each hyperedge, an arbitrary edge is selected, e.g. the hyperedge induced by NG(b2) =
{r3, r4, r5} is shrunk to the edge {r4, r5} in the red graph. (Color figure online)

Lemma 2. If S is an independent set of a red graph H = (R,F) of the bipartite
graph G = (R � B,E), then S is a red-blue nonblocker for G.

Proof. Let S ⊆ R be an independent set of H. To show that S is a red-blue
nonblocker for G, it suffices to show that every blue vertex v ∈ B has an escape,
i.e., a neighbor in R\S. We observe that R\S is a vertex cover of H. Recall, from
the definition of red graphs, that there is a bijection between vertices in B and
edges in H, and each edge in H is incident to two vertices that its corresponding
blue vertex is adjacent to. Since each edge in H has an incident vertex in the
vertex cover R \ S, its corresponding blue vertex has an escape in R \ S.
�
Theorem 4. Red-Blue Nonblocker is FPT for the parameter k + � when
no blue vertex has degree 1, where � = |B|/|R|.

Proof. The running time of the algorithm is
(
(2�+1)k

k

) · nO(1).
For the correctness, first observe that Reduction rule 1 returns No if there is

a blue vertex with degree 0. Thus, red graphs are well-defined in what follows.
Let H = (R,F) be a red graph for G. For the case where |R| ≥ (2� + 1)k, by
Lemma 1, H has an independent set S of size at least k. By Lemma 2, S is a
red-blue nonblocker for G. Therefore, the algorithm correctly reports that G is a
Yes-instance. For the case where |R| < (2�+1)k, the correctness follows because
the search is exhaustive.
�
We observe that degree-1 blue vertices can be handled by Reduction rule 3, and
if their number is bounded by a function of the parameter, the application of
this reduction rule does not change the value of � significantly. We also observe
that fast Set Cover algorithms [7,11] can be used instead of the brute-force
approach when |R| < (2�+1)k. For example, we could use the polynomial-space
algorithm of [11] solving the instance in time 1.48640.6359|R|+0.3642|B|nO(1).

When is Red-Blue Nonblocker Fixed-Parameter Tractable? 527

Note that if the average degree of the vertices in R is at most dR then the
number of vertices in B is at most dR · |R|. Hence, as a corollary, we get:

Corollary 2. Red-Blue Nonblocker is FPT for the parameter k + dR on
instances where no vertex in B has degree 1, where dR denotes the average degree
of the vertices in R.

We note that Red-Blue Nonblocker is W[1]-hard for the parameter k + dR

when we allow blue vertices of degree 1, since we can again add a large enough
set of isolated edges to the instance to reduce dR to a constant value.

Acknowledgments. Serge Gaspers is the recipient of an Australian Research Council
(ARC) Future Fellowship (FT140100048). This work received support under the ARC’s
Discovery Projects funding scheme (DP150101134).

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for DOMINATING SET and related problems on planar graphs.
Algorithmica 33(4), 461–493 (2002). https://doi.org/10.1007/s00453-001-0116-5

2. Cairns, G., Mendan, S.: Symmetric bipartite graphs and graphs with loops. Dis-
crete Math. Theor. Comput. Sci. 17(1), 97–102 (2015). http://dmtcs.episciences.
org/2119

3. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: nonblocker: param-
eterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
237–245. Springer, Heidelberg (2006). https://doi.org/10.1007/11611257 21

4. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on
completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995). https://
doi.org/10.1016/0304-3975(94)00097-3

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.
1145/1552285.1552286

8. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30559-0 21

9. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete
Algorithms 4(2), 209–214 (2006). https://doi.org/10.1016/j.jda.2005.03.002

10. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997).
https://doi.org/10.1007/BF02523693

11. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 4

https://doi.org/10.1007/s00453-001-0116-5
http://dmtcs.episciences.org/2119
http://dmtcs.episciences.org/2119
https://doi.org/10.1007/11611257_21
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1016/j.jda.2005.03.002
https://doi.org/10.1007/BF02523693
https://doi.org/10.1007/978-3-642-28050-4_4

528 S. Gaspers et al.

12. Kanj, I.A., Xia, G.: When is weighted satisfiability FPT? In: Dehne, F., Solis-
Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 451–462. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6 39

13. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J.
Comput. 10(1), 11–21 (1981). https://doi.org/10.1137/0210002

14. McCuaig, W., Shepherd, F.B.: Domination in graphs with minimum degree two. J.
Graph Theory 13(6), 749–762 (1989). https://doi.org/10.1002/jgt.3190130610

15. Ore, O.: Theory of Graphs. American Mathematical Society Colloquium Publica-
tions. American Mathematical Society, Providence (1962)

16. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok
48, 436–452 (1941). In Hungarian

https://doi.org/10.1007/978-3-642-40104-6_39
https://doi.org/10.1137/0210002
https://doi.org/10.1002/jgt.3190130610

Incremental Strong Connectivity
and 2-Connectivity in Directed Graphs

Loukas Georgiadis1 , Giuseppe F. Italiano2 , and Nikos Parotsidis2(B)

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 University of Rome Tor Vergata, Rome, Italy
{giuseppe.italiano,nikos.parotsidis}@uniroma2.it

Abstract. In this paper, we present new incremental algorithms for
maintaining data structures that represent all connectivity cuts of size
one in directed graphs (digraphs), and the strongly connected compo-
nents that result by the removal of each of those cuts. We give a condi-
tional lower bound that provides evidence that our algorithms may be
tight up to a sub-polynomial factors. As an additional result, with our
approach we can also maintain dynamically the 2-vertex-connected com-
ponents of a digraph during any sequence of edge insertions in a total of
O(mn) time. This matches the bounds for the incremental maintenance
of the 2-edge-connected components of a digraph.

1 Introduction

A dynamic graph algorithm aims at updating efficiently the solution of a graph
problem after an update, faster than recomputing it from scratch. A dynamic
graph problem is said to be fully dynamic if the update operations include both
insertions and deletions of edges, and it is said to be incremental (resp., decre-
mental) if only insertions (resp., deletions) are allowed. In this paper, we present
new incremental algorithms for some basic connectivity problems on directed
graphs (digraphs), which were recently considered in the literature [12]. Before
defining the problems and stating our bounds, we need some definitions.

Let G = (V,E) be a digraph. G is strongly connected if there is a directed
path from each vertex to every other vertex. The strongly connected components
(in short SCCs) of G are its maximal strongly connected subgraphs. Two vertices
u, v ∈ V are strongly connected if they belong to the same SCC of G. An edge
(resp., a vertex) of G is a strong bridge (resp., a strong articulation point) if
its removal increases the number of SCCs in the remaining graph. Let G be
strongly connected: G is 2-edge-connected (resp., 2-vertex-connected) if it has
no strong bridges (resp., no strong articulation points). Two vertices u, v ∈ V
are said to be 2-edge-connected (resp., 2-vertex-connected), denoted by u ↔2e v
(resp., u ↔2v v), if there are two edge-disjoint (resp., internally vertex-disjoint)
directed paths from u to v and two edge-disjoint (resp., internally vertex-disjoint)

Full version of this paper is available in https://arxiv.org/abs/1802.10189.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 529–543, 2018.
https://doi.org/10.1007/978-3-319-77404-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_39&domain=pdf
http://orcid.org/0000-0002-9706-7409
http://orcid.org/0000-0002-9492-9894
http://orcid.org/0000-0003-3888-7391
https://arxiv.org/abs/1802.10189

530 L. Georgiadis et al.

directed paths from v to u. (Note that a path from u to v and a path from v
to u need not be edge-disjoint or internally vertex-disjoint). A 2-edge-connected
component (resp., a 2-vertex-connected component) of a digraph G = (V,E) is
defined as a maximal subset B ⊆ V such that u ↔2e v (resp., u ↔2v v) for all
u, v ∈ B. Given a digraph G, we denote by G \ e (resp., G \ v) be the digraph
obtained after deleting edge e (resp., vertex v) from G.

Let G = (V,E) be a strongly connected graph. In very recent work [12], we
presented an O(n)-space data structure that, after a linear-time preprocessing,
is able to answer in asymptotically optimal (worst-case) time all the following
queries on a static digraph:

– Report in O(1) time the total number of SCCs in G \ e (resp., G \ v), for any
query edge e (resp., vertex v) in G.

– Report in O(1) time the size of the largest and of the smallest SCCs in G \ e
(resp., G \ v), for any query edge e (resp., vertex v) in G.

– Report in O(n) time all the SCCs of G \ e (resp., G \ v), for any query edge
e (resp., vertex v).

– Test in O(1) time whether two query vertices u and v are strongly connected
in G \ e (resp., G \ w), for any query edge e (resp., vertex w).

– For any two query vertices u and v that are strongly connected in G, report
all edges e (resp., vertices w) such that u and v are not strongly connected
in G \ e (resp., G \ w) in time O(k + 1), where k is the number of reported
edges (resp., reported vertices).

As pointed out in [12,21], this data structure finds applications in many areas,
including computational biology [13,20], social network analysis [18,25], network
resilience [23] and network immunization [3,5,19]. A dynamic version of this
data structure can be used to monitor critical edges and vertices, i.e., edges and
vertices whose removal disrupts an underlying graph which evolves over time.

Our Results. We show a conditional lower bound for the fully dynamic version
of this problem. More specifically, let G = (V,E) be a digraph with n vertices
that undergoes m edge updates from an initially empty graph. We prove that
any fully dynamic algorithm that can answer all of the queries considered here
requires either Ω(m1−o(1)) amortized update time, or Ω(m1−o(1)) query time,
unless the Strong Exponential Time Hypothesis [15,16] is false.

Motivated by this hardness result, we focus on the incremental version of this
problem. We present an incremental version of the data structure introduced
in [12], which can be maintained throughout a sequence of edge insertions. In
particular, we show how to maintain a digraph G undergoing edge insertions in
a total of O(mn) time, where n is the number of vertices and m the number of
edges after all insertions, so that all the queries we consider can be answered in
asymptotically optimal (worst-case) time after each insertion. As an additional
result, with our approach we can also maintain the 2-vertex-connected compo-
nents of a digraph during any sequence of edge insertions in a total of O(mn)
time. After every insertion we can test whether two query vertices are 2-vertex-
connected and, whenever the answer is negative, produce a separating vertex (or

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 531

an edge) for the two query vertices. This matches the bounds for the incremental
maintenance of the 2-edge-connected components of a digraph [11].

Before our work, no algorithm for all those problems was faster than recom-
puting the solution from scratch after each edge insertion, which yields a total
of O(m2) update time. Our algorithms improve substantially over those bounds.
In addition, we show a conditional lower bound for the total update time of an
incremental data structure that can answer queries of the form “are u and v
strongly connected in G\ e”, where u, v ∈ V , e ∈ E. In particular, we prove that
the existence of a data structure that supports those queries with total update
time O((mn)1−ε) (for some constant ε > 0) refutes the online Matrix-vector mul-
tiplication conjecture [14]. Therefore, a polynomial improvement of our bound
would lead to a breakthrough.

Related Work. Many efficient algorithms for several dynamic graph problems
have been proposed in the literature (see, e.g., the survey in [7]). Dynamic prob-
lems on digraphs are known to be harder than on undirected graphs [1]: indeed,
most of the dynamic algorithms on undirected graphs have polylog update
bounds, while dynamic algorithms on digraphs have higher polynomial update
bounds. In [9], the decremental version of the data structure considered in this
paper is presented. The total time and space required to maintain decremen-
tally the data structure is O(mn log n) and O(n2 log n), respectively: here m is
the number of edges in the initial graph. In [11] we presented an incremental
algorithm that maintains the 2-edge-connected components of a directed graph
with n vertices through any sequence of edge insertions in a total of O(mn)
time, where m is the number of edges after all insertions. We remark that our
incremental algorithms and techniques are substantially different from the decre-
mental ones in [9], and that 2-vertex connectivity in digraphs is much more diffi-
cult than 2-edge connectivity, since it is plagued with several degenerate special
cases, which are more cumbersome to deal with.

Our Technical Contributions. Our main contribution is to dynamize the
recent data structure in [12], which hinges on two main building blocks: dom-
inator trees and loop nesting trees (which will be reviewed in Sect. 2). While
it is known how to maintain efficiently dominator trees in the incremental set-
ting [10], the incremental maintenance of loop nesting trees is a challenging task.
Indeed, loop nesting trees are heavily based on depth-first search, and maintain-
ing efficiently a dfs tree of a digraph under edge insertions has been an elusive
goal: no efficient solutions are known up to date, and incremental algorithms
are available only in the restricted case of DAGs [8]. To overcome these inherent
difficulties, we manage to define a new notion of strongly connected subgraphs
of a digraph, which is still relevant for our problem and is independent of depth
first search. This new notion is based on some specific nesting loops, which define
a laminar family. One of the technical contributions of this paper is to show how
to maintain efficiently this family of nesting loops during edge insertions. We
believe that this result might be of independent interest, and perhaps it might
shed further light to the incremental dfs problem on general digraphs.

532 L. Georgiadis et al.

2 Dominators and Loops

We assume that the reader is familiar with standard graph terminology, as con-
tained for instance in [6]. Given a rooted tree, we denote by T (v) the set of
descendants of v in T . Given a digraph G = (V,E), and a set of vertices S ⊆ V ,
we denote by G[S] the subgraph induced by S. Moreover, we use V (S) and E(S)
to refer to the vertices of S and to the edges adjacent to S, respectively. The
reverse digraph of G, denoted by GR = (V,ER), is obtained by reversing the
direction of all edges. A flow graph F is a directed graph (digraph) with a dis-
tinguished start vertex s ∈ V (F), where all vertices in V (F) are reachable from
s in F . We denote by Gs the subgraphs of G induced by the vertices that are
reachable from s; that is, Gs is a flow graph with start vertex s. Respectively, we
denote by GR

s the subgraphs of GR induced by the vertices that are reachable
from s. If G is strongly connected, all vertices are reachable from s and reach s,
so we can view both G and GR as flow graphs with start vertex s.

Dominator trees. A vertex v is a dominator of a vertex w (v dominates w)
if every path from s to w contains v. The dominator relation in G can be rep-
resented by a tree rooted at s, the dominator tree D, such that v dominates
w if and only if v is an ancestor of w in D. See Fig. 1. We denote by dom(w)
the set of vertices that dominate w. Also, we let d(w) denote the parent of a
vertex w in D. Similarly, we can define the dominator relation in the flow graph
GR

s , and let DR denote the dominator tree of GR
s , and dR(v) the parent of v in

DR. The dominator tree of a flow graph can be computed in linear time, see,
e.g., [2,4]. An edge (u, v) is a bridge of a flow graph Gs if all paths from s to
v include (u, v).1 Let s be an arbitrary start vertex of G. As shown in [17], an
edge e = (u, v) is strong bridge of G if and only if it is either a bridge of Gs or
a bridge of GR

s . As a consequence, all the strong bridges of G can be obtained
from the bridges of the flow graphs Gs and GR

s , and thus there can be at most
2(n − 1) strong bridges overall. After deleting from the dominator trees D and
DR respectively the bridges of Gs and GR

s , we obtain the bridge decomposition
of D and DR into forests D and DR. Throughout the paper, we denote by Du

(resp., DR
u) the tree in D (resp., DR) containing vertex u, and by ru (resp., rR

u)
the root of Du (resp., DR

u).

Updating the dominator tree after an edge insertion. We briefly review
the algorithm from [10] that updates the dominator tree of a flow graph Gs after
an edge insertion. Let Gs be a flow graph with start vertex s. Let (x, y) be the
edge to be inserted. Let D be the dominator tree of Gs before the insertion; we let
D′ be the dominator tree of G′

s. In general, for any function f on V , we let f ′ be
the function after the update. We say that vertex v is D-affected by the update
if d(v) (its parent in D) changes, i.e., d′(v) �= d(v). We let ncaD(x, y) denote the
nearest common ancestor of x and y in the dominator tree D. Then, every D-
affected vertex v becomes a child of ncaD(x, y) in D′, i.e., d′(v) = ncaD(x, y) [22].

1 Throughout the paper, we use the term bridge to refer to a bridge of a flow graph
and the term strong bridge to refer to a strong bridge in the original graph.

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 533

ℎ ℎ

Fig. 1. A flow graph Gs and its dominator tree D and hyperloop nesting tree L. The
grouped vertices in both Gs and L represent the auxiliary components of Gs.

Hence, for any vertex u that is not a descendant of ncaD(x, y) in D′ we have
dom(u) = dom′(u) and D′(u) = D(u). Moreover, if (d(u), u) was a bridge in
Gs, then it remains a bridge in G′

s. We say that a vertex is D-scanned if it is
a descendant of a D-affected vertex after an edge insertion. There are two key
ideas behind the incremental dominators algorithm that result to an O(mn) total
update time. First, the algorithm updates D′ in time proportional to number
of the edges incident to D-scanned vertices. Second, after an edge insertion, all
D-scanned vertices decrease their depth in D′ by at least one.

Loop nesting forests. Let G be a digraph, and Gs the flow graph with arbitrary
start vertex s. A loop nesting forest represents a hierarchy of strongly connected
subgraphs of Gs [24], defined with respect to a dfs tree T of Gs, rooted at s:
for any vertex u, loop(u) is the set of all descendants x of u in T such that
there is a path from x to u in G containing only descendants of u in T . Any
two vertices in loop(u) reach each other, therefore loop(u) induces a strongly
connected subgraph of G. In the loop nesting forest H of Gs, with respect to T ,
the parent of any vertex v, denoted by h(v), is the nearest proper ancestor u of
v in T such that v ∈ loop(u) if there is such a vertex u, and null otherwise. Then
loop(u) is the set of all descendants of vertex u in H, which we will also denote
as H(u). A loop nesting forest can be computed in linear time [4,24]. When G
is strongly connected, each vertex is contained in a loop, and H is a tree, rooted
at s. Therefore, we refer to H as the loop nesting tree of Gs.

Auxiliary components. Let Gs be a flow graph and D and D be the dominator
tree and the bridge decomposition of Gs, respectively. Let e = (u, v) be a bridge
of the flow graph Gs. We say that an SCC C in G[D(v)] is an e-dominated
component of G. We also say that C ⊆ V is a bridge-dominated component if it
is an e-dominated component for some bridge e: bridge-dominated components
form a laminar family [11]. An auxiliary component of Gs is a maximal subset

534 L. Georgiadis et al.

of vertices C ∩Dv such that C is a subset of a (d(rv), rv)-dominated component.
Each auxiliary component C is represented by an arbitrarily chosen vertex u ∈ C,
which we call the canonical vertex of C. For each vertex v ∈ C, we refer to the
canonical vertex of C by cv (cv = v if v is a canonical vertex).

3 Hyperloop Nesting Forest

We now introduce the new notion of hyperloop nesting forest, which, differently
from loop nesting forest, can be maintained efficiently during edge insertions.
Given a canonical vertex v �= cs, we define the hyperloop of v, and denote it
by hloop(v), as the set of canonical vertices that are in the same (d(rv), rv)-
dominated component as v. As a special case, all canonical vertices that are
strongly connected to s are in the hyperloop hloop(cs). It can be shown that
hyperloops form a laminar family of subsets of V , with respect to the start
vertex s: for any two canonical vertices u and v, hloop(u) and hloop(v) are
either disjoint or nested (i.e., one contains the other). This allows us to define
the hyperloop nesting forest L of Gs as follows. The parent �(v) of a canonical
vertex v in L is the (unique) canonical vertex u, u /∈ D(rv), with the largest
depth in D, such that v ∈ hloop(u). If there is no vertex u /∈ D(rv), such that
v ∈ hloop(u), then �(v) = ∅; note that in this case v is not strongly connected to
s as well. See Fig. 1. Then, hloop(u) is the set of all descendants of a canonical
vertex u in L, which we will also denote as L(u). Similarly to the loop nesting
forest, the hyperloop nesting forest of a strongly connected digraph is a tree.

Consider a fixed choice of the canonical vertices of the auxiliary components
in Gs. Then, the hyperloop nesting forest L of Gs is unique. Moreover, all the
ancestors of a canonical vertex in L have distinct levels. We can show that
hyperloop nesting forest L can be obtained from the loop nesting forest H by
contracting all the vertices of each auxiliary component into their canonical ver-
tex. This yields immediately a linear-time algorithm to compute the hyperloop
nesting forest of a flow graph Gs: we first compute a loop nesting forest H of Gs

[4,24] and then contract each vertex v to cv in H.

3.1 Updating the Hyperloop Nesting Forest After an Edge
Insertion

Let G be a directed graph and let Gs be the flow graph of G with start vertex s,
so D and L are rooted at s and cs, respectively. For simplicity, we assume that
all vertices of G are reachable from s. If this is not true, then we can simply
recompute D and L from scratch, in linear time, every time a vertex becomes
reachable from s after an edge insertion. Since there can be at most n − 1 such
events, the total running time for these recomputations is O(mn). Throughout
the sequence of edge insertions, we maintain as additional data structures only
the dominator tree D (with the algorithm in [10]), the bridge decomposition and
the auxiliary components of Gs (with the algorithm in [11]).

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 535

Initialization and restarts. To initialize the algorithm, we compute the dom-
inator tree D, bridge decomposition and auxiliary components, and also the
hyperloop nesting forest L of Gs in linear time. After the first initialization,
in some special cases we initialize our algorithm again, in order to simplify the
analysis. We call this a restart. We restart our algorithm whenever a bridge
e = (u, v) of Gs is canceled after the insertion of a new edge (x, y) but we still
have d′(v) = u, i.e., (u, v) is no longer a strong bridge in G but the parent of u
in the dominator tree D does not change. In this case, we say that the bridge
e = (u, v) is locally canceled. This is a difficult case to analyze: the incremental
dominators algorithm does not spend any time, since there are no D-affected
vertices, while the bridge decomposition and the auxiliary components of Gs

might change. Fortunately, there can be at most O(n) locally canceled bridges
throughout a sequence of edge insertions [11]. Hence, we restart our algorithm
at most O(n) times. Consequently, the total time spent in restarts is O(mn).

High-level overview of the update. Let (x, y) be the new edge to be inserted.
As in Sect. 2, for any function f , we let f ′ denote the function after the update,
e.g., we denote by �′(v), the parent of a canonical vertex v in the hyperloop
nesting forest, after the insertion of (x, y), and by L′ the resulting hyperloop
nesting forest. We say that a canonical vertex v is L-affected if �′(v′) �= c′

�(v),
i.e., when the parent of v′ in L′ is not in the same auxiliary component as �(v)
(the parent of v in L). After the insertion of a new edge (x, y), if not involved
in a restart, our algorithm performs the following updates:

(1) Compute the new dominator tree D′, the corresponding bridge decomposi-
tion D′, and the new auxiliary components.

(2) Compute �′(v) for the D-scanned canonical vertices v ∈ D′
y.

(3) Compute �′(v) for the D-scanned canonical vertices v /∈ D′
y.

(4) Compute �′(v) for the L-affected canonical vertices v that are not D-scanned.

As already mentioned, we compute (1) within our claimed bounds [10,11]. To
complete the algorithm, it remains to show how to update efficiently the parents
in the hyperloop nesting forest of the D-scanned and the L-affected vertices,
which is a non-trivial task. Before giving the details of our algorithm, we observe
that no canonical vertex v /∈ D′(r′

y) is L-affected.

Updating the D-scanned vertices. Let S be the set of D-scanned vertices
containing also the D-affected vertices. After the insertion of the edge (x, y), all
the D-affected vertices become children of ncaD(x, y) in D′ [22]. In this section
we deal with the update of the parent in the hyperloop nesting forest �′(v′), for
all canonical vertices v ∈ S. Given a vertex u, we define its level, denoted by
level(u), to be the number of bridges (v, w) of Gs such that w is an ancestor of
u in D. In other words, the level of u equals the number of bridges that appear
in all paths from s to u in Gs. From now on, in order to simplify the notation,
we assume without loss of generality that v = cv for any vertex of interest v;
we also denote c′

v by v′. After the insertion of the edge (x, y) only a subset of
the ancestors in L′ of an L-affected canonical vertex v changes. In particular, we

536 L. Georgiadis et al.

can show that the ancestors w of v in L such that w /∈ D′(r′
y) remain ancestors

of v′ in L′. However, the insertion of (x, y) might create a new path from v to
a canonical vertex z such that v ∈ D′(r′

z), containing only vertices in D′(r′
z). In

such a case, z′ becomes an ancestor of v′ in L′. We now compute �′(v′) for each
D-scanned vertex v that is in the same tree of the canonical decomposition of
D′ with y, including y′.

Lemma 1. For every D-scanned vertex v ∈ D′
y it holds �′(v′) = w′, where w is

the nearest ancestor of v in L such that w /∈ D′(r′
y). If there is no such vertex

w, then �′(v′) = ∅.
Next, we deal with the canonical vertices v ∈ S \ D′

y. We begin with the
computation of �′(v′), for the canonical vertices v′ in S for which level′(�′(v′)) >
level′(r′

y), that is, their new parent in L is in D′(r′
y) \ D′

y. Let Gscanned be the
graph induced by the D-scanned vertices, and let Hscanned be the loop nesting
forest rooted at y of Gscanned. (Note that y reaches all vertices in Gscanned.)
By contracting every vertex v into c′

v in Hscanned, we obtain a forest H̃. Let
h̃(v) be the parent in H̃ of a canonical vertex v ∈ S \ D′

y. We can show that if
h̃(v) ∈ S \ D′

y, then h̃(v) is the parent of v′ in L′, i.e., �′(v′) = h̃(v). Finally, for
the vertices v ∈ S \ D′

y for which level′(�′(v′)) ≤ level′(r′
y), we compute �′(v′)

according to the following lemma.

Lemma 2. Let v /∈ D′
y be a D-scanned vertex such that level′(�′(v′)) ≤ level′(r′

y).
If v has a path to y in G′[D′(r′

y)], then �′(v′) = y′ in L′. Otherwise, �′(v′) = w′,
where w is the nearest ancestor of v in L such that level′(w) ≤ level′(r′

y). If there
is no such vertex w, then �′(v′) = ∅.

Using the above lemmas, we update the parent in L′ of the D-scanned vertices
S in time that is linear in the size of V (S) and E(S). Note that in Lemma 2 we
need to determine whether a D-scanned vertex v has a path to y in G′[D′(r′

y)].
We compute this information in time O(|E(S)|) for all D-scanned vertices.

Updating the L-affected vertices that are not D-scanned. The next
lemma suggests that we can find all the L-affected vertices via a backward
traversal from y visiting all vertices in G′[D′(r′

y)] that have a path to y. A
straightforward execution of this traversal, however, requires O(m) time which
we cannot afford. Later, we show how to speed up this process by exploiting
some key properties of the L-affected vertices.

Lemma 3. For every L-affected vertex v that is not D-scanned, every path from
v to �′(v′) in G′[D′(r′

�′(v′))] contains (x, y). Moreover, v has a path to x in
G[D′(r′

y)] = G′[D′(r′
y)] \ (x, y).

Recall that only vertices in D′(r′
y) can be L-affected. Hence, we only need to

consider the vertices that are in D′(r′
y) and are not D-scanned.

Lemma 4. Let (x, y) be the newly inserted edge. The canonical vertex v′ of
a vertex v ∈ D′(r′

y) such that v is not D-scanned and v has a path to x in
G′[D′(r′

y)], changes its parent �′(v′) as follows: (see Fig. 2 for an illustration of
the different cases)

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 537

Fig. 2. A demonstration of the different cases in Lemma 4. (i) Case (1) where v ∈ D′
y

and level′(�(v)) < level′(�′(y′)). Here we have �′(v′) = �′(y′). (ii) Case (2.1) where
v /∈ D′

y, c′
p = y′ and level′(�(v)) < level′(c′

p). Now we have �′(v′) = c′
p. (iii) Case (2.2)

where v /∈ D′
y, c′

p �= y′ and level′(�(v)) < level′(�′(y′)). In this case �′(v′) = �′(y′).

(1) Case v ∈ D′
y: if level′(�(v)) < level′(�′(y′)) or �(v) = ∅ then �′(v′) = �′(y′).

Otherwise, �′(v′) = c�(v).
(2) Case v /∈ D′

y: let (p, q) the strong bridge such that p ∈ D′
y and q is an

ancestor of v in D′.
(2.1) Case c′

p = y′: if level′(�(v)) < level′(c′
p) or �(v) = ∅, then �′(v′) = c′

p.
Otherwise, �′(v′) = c′

�(v).
(2.2) Case c′

p �= y′: if level′(�(v)) < level′(�′(y′)) or �(v) = ∅, then �′(v′) =
�′(y′). Otherwise, �′(v′) = c′

�(v).

Lemma 4 shows how to determine the new parent in L′ of each canonical
vertex v ∈ D′(r′

y) that is L-affected but not D-scanned. The most challenging
computation is to determine which vertices have a path to x in G′[D′(r′

y)]. We
show how to compute efficiently those vertices by executing a backward traversal:
this runs in time proportional to the sum of the degrees of the L-affected vertices.
We start with the following definition of loop cover of a vertex, which we use to
speed up our backward search.

Definition 1. Let w ∈ D′(r′
y) \ S be a canonical vertex, and let �min be the

ancestor of w in L with the lowest level such that �min ∈ D′(r′
y). Moreover, let

(p, q) be the bridge such that p ∈ D′
�min

and q is an ancestor of w. We call q the
loop cover lcover(w) = q of w in D. If �(w) �∈ D′(r′

y), then lcover(w) = ∅.
We use the loop cover of vertices that are neither D-scanned nor L-affected

in order to avoid unnecessary visits to vertices during the search for L-affected
vertices. More specifically, whenever we visit a vertex w ∈ D′(r′

y) \ D′
y that is

538 L. Georgiadis et al.

not L-affected, then we do not need to visit any of the vertices in D′(lcover(w)).
Formally, we have the following lemma.

Lemma 5. Let w ∈ D′(r′
y) \ D′

y be a canonical vertex that is not D-scanned
and has a path to x in G′[D′(r′

y)] and �′(w′) = c′
�(w). If lcover(w) �= ∅,

for every canonical vertex v ∈ D′(lcover(w)) such that v has a path to w in
G′[D′(lcover(w))], we have that �′(v′) = c′

�(v). If lcover(w) = ∅, for all vertices
v ∈ D′(r′

y) that have a path to w in G′[D′(r′
y)], it holds that �′(v′) = c′

�(v).

Lemma 5 allows us to traverse only the edges of L-affected vertices, and spend
O(1) time for each vertex that is not L-affected. As a result, assuming that a
bridge is not locally canceled by the edge insertion, the set S′ of L-affected
vertices can be identified and L′ can be correctly updated in time O(V (S′) +
E(S′)+n). Let v be a canonical vertex, and let t be the number of bridges on all
paths from s to v. Then, we can show that �′(v′) can change at most t ≤ n − 1
times. Thus, we obtain the following result.

Theorem 1. Let Gs be a flow graph with n vertices. We can maintain the hyper-
loop nesting forest L of Gs through a sequence of edge insertions in O(mn) total
time, where m is the number of edges after all insertions.

4 Strong Connectivity Queries and 2-Vertex-Connected
Components Under Edge Insertions

The data structure from [12] computes the strong bridges of G plus four trees:
the dominator tree D and the loop nesting tree H of the flow graph Gs, and
the dominator tree DR and the loop nesting tree HR of the reverse flow graph
GR

s . This information is sufficient to answer in optimal time all the queries
considered in this paper. In particular, the crux of the method is the following
theorem, which shows that the information relevant for our queries can indeed
be extracted from the strong bridge of G and the four trees D, DR, H and HR:

Theorem 2 ([12]). Let G = (V,E) be a strongly connected digraph, s be an
arbitrary start vertex in G, and let e = (u, v) be a strong bridge of G. Let C be
a SCC of G \ e. Then one of the following cases holds:

(a) If e is a bridge in Gs but not in GR
s then either C ⊆ D(v) or C = V \ D(v).

(b) If e is a bridge in GR
s but not in Gs then either C ⊆ DR(u) or C = V \DR(u).

(c) If e is a common bridge of Gs and GR
s then either C ⊆ D(v) \ DR(u), or

C ⊆ DR(u) \ D(v), or C ⊆ D(v) ∩ DR(u), or C = V \ (
D(v) ∪ DR(u)

)
.

Moreover, if C ⊆ D(v) (resp., C ⊆ DR(u)) then C = H(w) (resp., C = HR(w))
where w is a vertex in D(v) (resp., DR(u)) such that h(w) �∈ D(v) (resp.,
hR(w) �∈ DR(u)).

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 539

In this section, we show that exactly the same information can be extracted if
we replace the loop nesting trees H and HR with two new trees Ĥ and ĤR, which
(differently from loop nesting trees) can be maintained efficiently throughout any
sequence of edge insertions. As a result, the strong bridges of G plus D, DR, Ĥ
and ĤR will allows us to answer all our queries in optimal time throughout any
sequence of edge insertions.

We next define the new trees Ĥ and ĤR. Without loss of generality, we
restrict our attention to Ĥ, as ĤR is defined analogously in GR. We construct
Ĥ starting from L, as follows. For every vertex u such that cu �= u we set
ĥ(u) = cu, and for every vertex u where cu = u, u �= s we set ĥ(u) = �(u). Note
that, once L is available, the tree Ĥ can be computed in O(n) time. We can
show that Theorem 2 still holds if we replace H by Ĥ and HR by ĤR. Thus, in
summary, our algorithm works as follows. Given a strongly connected digraph
G subject to edge insertions, we maintain in a total of O(mn) time the strong
bridges of G [11], the dominator trees D and DR [10], and the hyperloop nesting
trees L and LR, as shown by Theorem 1. After each edge insertion, we construct
in O(n) time the trees Ĥ and ĤR from L and LR, respectively. Since there can
be at most m edge insertions, we spend O(mn) time it total. By Theorem 2,
after each update we can answer all our queries in optimal time.

In addition, we can answer all of our queries under vertex failures. Further-
more, we extend our algorithms to general (not necessarily strongly connected)
digraphs: in this case, we maintain the hyperloop nesting tree in each SCC, as
shown in the following theorem.

Theorem 3. Let G be a general graph with n vertices. Both the dominator trees
D and DR, the hyperloop nesting trees L and LR of each SCC C of G, all rooted
at the same arbitrary start vertex s, can be maintained in total O(mn) time
under any sequence of edge insertions, where m is the number of edges after all
insertions.

All the details of the method will appear in the full version of the paper. The
following theorem summarizes our results.

Theorem 4. We can maintain a digraph G through any sequence of edge inser-
tions in a total of O(mn) time, where m is the number of edges after all inser-
tions, and answer the following queries in asymptotically optimal (worst-case)
time after each insertion:

(i) Report in O(1) time the total number of SCCs in G \ e (resp., in G \ v), for
a query edge e (resp., vertex v).

(ii) Report in O(1) time the size of the largest and of the smallest SCCs in G\e
(resp., in G \ v), for a query edge e (resp., vertex v).

(iii) Report in O(n) time all the SCCs of G\ e (resp., in G\v), for a query edge
e (resp., vertex v).

(iv) Test in O(1) time if two query vertices u and w are strongly connected in
G \ e (resp., G \ v), for a query edge e (resp., vertex v).

540 L. Georgiadis et al.

(v) For query vertices u and w that are strongly connected in G, report all edges
e (resp., vertices v) such that u and w are not strongly connected in G \ e
(resp., G\v), in time O(k), where k is the number of separating edges (resp.,
vertices).

Maintaining the 2-vertex-connected components under edge insertions.
Using the incremental algorithm for maintaining the hyperloop nesting tree we are
able to devise an incremental algorithm for maintaining the 2-vertex-connected
components of a directed graph with n vertices in a total of O(mn) time, where
m is the number of edges after all insertions, and linear space. Our algorithm uses
the high-level approach of the algorithm from [12], where the 2-vertex-connected
components are computed in O(n) time once the strong bridges, the dominator
trees D and DR, and the loop nesting trees H and HR are given. The details of
the algorithm are quite involved and different from Sect. 4, and are spelled out in
the full version of the paper.

Theorem 5. We can maintain the 2-vertex-connected components of a directed
graph G through any sequence of edge insertions in a total of O(mn) time, where
m is the number of edges after all insertions, and linear space.

5 Conditional Lower Bounds

In this section we present conditional lower bounds which imply that a polyno-
mial improvement over our bounds would have interesting consequences, as such
an improvement would disprove widely believed conjectures.

Conditional lower bound for the total update time in the partially
dynamic version. We show that there is no partially dynamic algorithm that
maintains a data structure that can answer the queries “are u and v strongly con-
nected in G\ e?”, where u, v ∈ V , e ∈ E, and has total update time O((mn)1−ε)
(for some constant ε > 0) and sub-polynomial query time unless the OMv Con-
jecture [14] fails. Under this conditional lower bound, the running time of our
algorithm is asymptotically optimal up to sub-polynomial factors.

Theorem 6. For any constant δ ∈ (0, 1/2] and any n and m = Θ(n1/(1−δ)),
there is no algorithm for maintaining a data structure under edge deletions or
edge insertions allowing queries of the form “are u and v strongly connected in
G \ e”, where u, v ∈ V , e ∈ E, that uses polynomial preprocessing time, total
update time u(m,n) = (mn)1−ε and query time q(m) = mδ−ε for some constant
ε > 0, unless the OMv conjecture fails.

Conditional lower bounds for the amortized/worst-case update time
in the fully/partially dynamic setting. We prove conditional lower bounds
for the problem of maintaining a data structure that can answer any query of
Theorem 4. We base our bounds on the Strong Exponential Time Hypothesis
(SETH) that was first stated in [15,16]. More specifically, under the SETH, we

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 541

show that the trivial algorithm that recomputes the solution from scratch, using
the static algorithm from [12], is asymptotically optimal up to sub-polynomial
factors.

Theorem 7. Let G be a digraph with n vertices that undergoes m edge updates
from an initially empty graph (until the graph is empty in the decremental case).
If for some ε > 0, there exists an algorithm that can answer the following queries:

(i) Report in O(m1−ε) time the total number of SCCs in G \ e (resp., G \ v),
for any query edge e (resp., vertex v) in G.

(ii) Report in O(m1−ε) time the size of the largest SCC in G \ e (resp., G \ v),
for any query edge e (resp., vertex v) in G.

(iii) Report in O(m1−ε) time all the SCCs of G \ e (resp., G \ v), for any query
edge e (resp., vertex v).

while maintaining G fully dynamically with O(m1−ε) amortized update time and
amortized query time after polynomial time preprocessing, or partially dynami-
cally with O(m1−ε) worst-case update time and worst-case query time after poly-
nomial time preprocessing, then the SETH is false.

We prove similar results of the last two query types of Theorem4, in graphs
where the number of edges is superlinear to the number of vertices.

Theorem 8. Let ε > 0 and δ > ε/(1 − ε). Let G be a digraph with n vertices
that undergoes m > n1+δ edge updates from an initially empty graph (until the
graph is empty in the decremental case). If there exists an algorithm that can
answer the following queries:

(iv) Test in O(m1−ε/n) time whether two query vertices u and v are strongly
connected in G \ e (resp., G \ v), for any query edge e (resp., vertex v).

(v) For any two query vertices u and v that are strongly connected in G, test
whether there exists an edge e (resp., vertex v) such that u and v are not
strongly connected in G \ e (resp., G \ v) in time O(m1−ε/n).

while maintaining G fully dynamically with O(m1−ε) amortized update time and
amortized query time, or partially dynamically with O(m1−ε) worst-case update
time and worst-case query time, after arbitrary polynomial time preprocessing,
then the SETH is false.

References

1. Abboud, A., Vassilevska Williams, V.: Popular conjectures imply strong lower
bounds for dynamic problems. In: FOCS, pp. 434–443 (2014)

2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM J. Comput. 28(6), 2117–2132 (1999)

3. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093
(2006)

542 L. Georgiadis et al.

4. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533–1573 (2008)

5. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for com-
puter networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms
and Theory of Computation Handbook, 2nd edn, vol. 1, pp. 9:1–9:28. CRC Press
(2009)

8. Franciosa, P.G., Gambosi, G., Nanni, U.: The incremental maintenance of a depth-
first-search tree in directed acyclic graphs. Inf. Process. Lett. 61(2), 113–120 (1997)

9. Georgiadis, L., Hansen, T.D., Italiano, G.F., Krinninger, S., Parotsidis, N.: Decre-
mental data structures for connectivity and dominators in directed graphs. In:
ICALP, pp. 42:1–42:15 (2017)

10. Georgiadis, L., Italiano, G.F., Laura, L., Santaroni, F.: An experimental study
of dynamic dominators. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS,
vol. 7501, pp. 491–502. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33090-2 43

11. Georgiadis, L., Italiano, G.F., Parotsidis, N.: Incremental 2-edge-connectivity in
directed graphs. In: ICALP, pp. 49:1–49:15 (2016)

12. Georgiadis, L., Italiano, G.F., Parotsidis, N.: Strong connectivity in directed graphs
under failures, with applications. In: SODA, pp. 1880–1899 (2017)

13. Gunawardena, J.: A linear framework for time-scale separation in nonlinear bio-
chemical systems. PLoS ONE 7(5), e36321 (2012)

14. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and
strengthening hardness for dynamic problems via the online matrix-vector mul-
tiplication conjecture. In: STOC, pp. 21–30 (2015)

15. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

17. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articu-
lation points in linear time. Theor. Comput. Sci. 447, 74–84 (2012)

18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

19. Kuhlman, C.J., Anil Kumar, V.S., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.:
Finding critical nodes for inhibiting diffusion of complex contagions in social net-
works. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010. LNCS (LNAI), vol. 6322, pp. 111–127. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15883-4 8

20. Mihalák, M., Uznański, P., Yordanov, P.: Prime factorization of the Kirchhoff poly-
nomial: compact enumeration of arborescences. In: ANALCO, pp. 93–105 (2016)

21. Paudel, N., Georgiadis, L., Italiano, G.F.: Computing critical nodes in directed
graphs. In: ALENEX, pp. 43–57 (2017)

22. Ramalingam, G., Reps, T.: An incremental algorithm for maintaining the domina-
tor tree of a reducible flowgraph. In: POPL, pp. 287–296 (1994)

https://doi.org/10.1007/978-3-642-33090-2_43
https://doi.org/10.1007/978-3-642-33090-2_43
https://doi.org/10.1007/978-3-642-15883-4_8
https://doi.org/10.1007/978-3-642-15883-4_8

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs 543

23. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links
and nodes for assessing network vulnerability. IEEE/ACM Trans. Netw. 21(3),
963–973 (2013)

24. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica
6(2), 171–85 (1976)

25. Ventresca, M., Aleman, D.: Efficiently identifying critical nodes in large complex
networks. Comput. Soc. Netw. 2(1), 1–16 (2015)

Efficient Algorithms for Listing k Disjoint
st-Paths in Graphs

Roberto Grossi(B), Andrea Marino(B), and Luca Versari(B)

Università di Pisa, Pisa, Italy
{grossi,marino,versari}@di.unipi.it

Abstract. Given a connected graph G of m edges and n vertices, we
consider the basic problem of listing all the choices of k vertex-disjoint
st-paths, for any two input vertices s, t of G and a positive integer k. Our
algorithm takes O(m) time per solution, using O(m) space and requiring
O(Fk(G)) setup time, where Fk(G) = O(m min{k, n2/3 log n,

√
m log n})

is the cost of running a max-flow algorithm on G to compute a flow of
size k. The proposed techniques are simple and apply to other related
listing problems discussed in the paper.

1 Introduction

Listing paths of various kinds is a classical problem in graphs [7,13,17,18], as it
models problems in several contexts. The survey in [4], for instance, provides sev-
eral bibliographical references to applications in biological sequence alignment,
natural language processing, speech recognition, reconstruction of metabolic
path-ways, gene regulation networks, motion tracking, message routing in com-
munications networks, power line placement, vehicle and transportation routing,
building evacuation planning, timing analysis of circuits, task scheduling, VLSI
layout, communications and transportation network design.

In this paper we consider the basic problem of listing all choices of k disjoint
st-paths for a given connected graph G of m edges and n vertices, where s, t are
two vertices of G and k is a positive integer. In other words, we want to list all
the possible ways of connecting s and t using k vertex-disjoint paths, for both
directed and undirected graphs. We propose an algorithm that takes O(m) time
per listed solution, using O(m) space and requiring O(Fk(G)) setup time, where
Fk(G) = O(m min{k, n2/3 log n,

√
m log n}) is the cost of running a max-flow

algorithm on G to compute a flow of size k.
Our algorithm can be seen as an example where the textbook algorithms

for computing strongly connected components (SCCs) and maximum flows are
applied in a simple way. For this, we reduce the problem on k vertex-disjoint
paths to the one on k edge-disjoint trails. A trail is a walk, possibly containing
cycles, but with no repeated arc (see Sect. 2). We list the k edge-disjoint trails
from s to t, considering just the trails for which there exist other (recursively
checkable) k − 1 edge-disjoint trails reaching t. The existence of the latter trails
is guaranteed by the existence of a flow of size k. We exploit the fact that
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 544–557, 2018.
https://doi.org/10.1007/978-3-319-77404-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_40&domain=pdf

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 545

Table 1. Cost per solution when listing the k vertex-disjoint (unbounded or bounded)
paths originating from any given vertex s, whether the target t is given or not.

Unbounded length Bounded length

Target given Target not given Target given Target not given

k = 1 [7] and this paper (directed): O(m) [14]: O(nm) (directed) and O(m) (undirected)

[2] (undirected): optimal This paper: O(m)

k = 2 This paper: O(m) [1] and this paper: O(m) [11]: hard [15]: O(nm)

This paper: O(m)

k ≥ 3 This paper: O(m) [11]: hard [15]: hard

recomputing the flow for the next set of edge-disjoint trails takes O(m) time
instead of O(Fk(G)).

It is worth noting that some previous results, listed below, can be seen as vari-
ations of our problem. Our algorithm provides solutions within the same bounds
as those reported in Table 1, and later discussed in Sect. 3, for the following ones:

– st-paths of a directed or undirected graph [7],
– shortest st-paths [8], a special case of bounded length st-paths [14],
– bubbles, i.e. pairs of vertex-disjoint directed st-paths, of fixed length [1],
– bubbles starting from a given vertex s [15],
– k-disjoint shortest paths with k given pairs of sources and targets [3].

Looking at the literature we also observe that the problem of finding k disjoint
paths has been intensively studied. For k = 1, it is the classical problem of listing
paths [2,7,13,17]. For k > 1, it is related to graph connectivity (e.g. Menger’s
theorem [12] and its extensions) and the papers [1,3,8,14,15] in the above list
present some variations. When k ordered pairs (si, ti) of vertices are specified,
and siti-paths are sought for, the problem of finding these k disjoint paths is
NP-hard for arbitrary k in undirected graph [9], and even for k = 2 in directed
graphs [5]. When k is fixed, an O(n3)-time algorithm for undirected graphs can
be obtained as a byproduct of the Robertson-Seymour papers on graph minors,
and the bound has been recently improved to O(n2) time [10]. Note that the
problem becomes polynomial when the k disjoint paths start from a source set
S = {s1, . . . , sk} and reach a destination set T = {t1, . . . , tk}, as the k disjoint
paths can mix their sources and destinations (e.g. an sitj-path with j �= i is
allowed).1 Still, listing the latter paths is interesting in applications.

Preliminaries. Given a directed graph G = (V, E), we refer to its number of
vertices as n and to its number of arcs as m. We refer to a walk as a sequence
of adjacent vertices and arcs. In the following we distinguish between trails and
paths: the former ones correspond to walks where the arcs are all distinct, while
the latter ones are loopless trails, i.e. walks where both arcs and vertices are all
distinct. Given s, t ∈ V , a st-trail, also denoted as s � t, (respectively st-path)
is a trail (respectively a path) which starts in s and ends in t. Let τ be a s � u
trail, we denote as G \ τ as the graph G without the arcs in τ . For an arc (u, v),
we denote as s � u · (u, v) the extension of τ with the new arc.
1 Connect a dummy source s to each si, and each ti to a dummy target t; then, run

a max flow algorithm from s to t.

546 R. Grossi et al.

2 Edge-Disjoint Trails to a Single Target in Directed
Graphs

Given a directed graph G = (V,E) and some vertices s1, . . . , sk, t, we first
describe how to list all the sets of k edge-disjoint trails τ1, . . . , τk such that τi is
a sit-trail. After that, for vertices s, t, we will describe how to list edge-disjoint
trails τ1, . . . , τk such that τi is a st-trail.

Let us first focus on the well-known case k = 1. To generate all the s1t-trails,
we can adopt a recursive algorithm that starts out with u = s1 and considers
the current trail s1 � u (seen as a sequence of arcs or a set of arcs with a little
abuse of notation). It then explores in a recursive fashion, one at a time, each
good neighbor v of u: namely, v is good iff v can reach t in the reduced graph
G′ ≡ G \ (s1 � u). For each good neighbor v, the recursion proceeds with the
extended trail s1 � v ≡ (s1 � u) · (u, v).

For k > 1, we observe that not all choices of τ1 are fruitful, as some of them
could lead to dead ends for the remaining k − 1 trails. During the generation of
each trail τ1, we say that v is a good neighbor of u iff v reaches t in the reduced
graph G′ ≡ G \ (s1 � u), and there are also k − 1 disjoint trails from s2, . . . , sk

to t: these two conditions can be equivalently seen as recursively checking the
existence of k disjoint trails from v, s2, . . . , sk to t in G′.

We can therefore see the above generation of k disjoint trails as a recursive
scheme, where the current s1u-trail (s1 � u) has been already explored (initially,
u = s1). The main two cases are handled as follows.

– If u = t, the currently found trail s1 � u is τ1. Moreover, if k > 1, recursively
proceed with the k − 1 disjoint trails from vertices s2, . . . , sk, setting u := s2
and G := G \ τ1 (and noting that all these solutions will have this τ1 fixed).

– If u �= t, continue to generate the feasible trails τ1 extending s1 � u (as prefix)
in G. For this, extend u with its good neighbors: for each good neighbor v
of u, proceed recursively with the extended trail s1 � v ≡ (s1 � u) · (u, v),
traversing arc (u, v) and setting u := v.

The resulting recursion tree is illustrated in Fig. 1(a). It is made up by a
top tree for all the feasible choices of τ1, where its leaves on the first dashed
level are in one-to-one correspondence with these choices. Each such leaf is the
root of the recursion tree for τ2, where the leaves on the second dashed level
are in one-to-one correspondence with these choices. Each such leaf is the root
of the recursion tree for τ3, and so on. In the specific case of Fig. 1(a), nodes
a, b, c, d, e indicate the possible choices for τ1, while nodes f, g, h (respectively
j, l,m) indicate the possible choices for τ2 when τ1 = b (respectively τ1 = e).
Finally, nodes u, v, x, y correspond to k-sets of disjoint trails τ1, . . . , τk where τi

is the trail traversed at the i-th dashed line in the trail towards r in this tree.
In the following, we will call nodes the ones in the recursion tree to distinguish

them from the vertices in the input graph.

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 547

τ1

τ2

τk

τk−1

r

b

b′

a edc

g if h

n o p q

j ml

u v x y

(a)

s2

t

s3 sks1

u

v3

v2

v1

(b)

s2

t

s3 sks1

u

v3

v2

v1

1

2
3

2

3

k
31

2

2 k

(c)

Fig. 1. (a) Recursion tree. (b) The paths π1, . . . , πk in gray with the dashed trail s1 � u
and (c) the corresponding certificate C.

Introducing the certificate. In order to make this recursion efficient within our
claimed bounds, we introduce a certificate for each node in the recursion tree,
remarking the difference between trails and paths. We observe that the partial
trail s1 � u uniquely identifies a node in the recursion tree where branching
occurs by considering vertex u and its good neighbors. We want to keep track of
a choice of k disjoint trails τ1, τ2, . . . , τk from s1, . . . , sk to t, so that s1 � u is a
prefix of τ1. We observe that there exist k disjoint trails from u, s2, . . . , sk to t
iff there exist k disjoint paths from u, s2, . . . , sk to t. Hence let π1, π2, . . . , πk be
the latter paths, and G′ ≡ G \ (s1 � u) be the reduced graph, with the arcs in
the partial trail removed.

Definition 1. The certificate is an augmented graph C = (VC , EC) defined in
terms of the partial trail s1 � u and the paths π1, π2, . . . , πk, where the arcs
belonging to the latter paths are reversed2 and labeled to keep track of their mem-
bership to the paths, namely,
2 Note that the certificate can be seen as the residual network in max-flow on arcs

with 0−1 capacities.

548 R. Grossi et al.

– VC = V is equal to the vertex set of G, and
– EC = {(x, y) : (y, x) ∈ E(G′) ∩ Π(G) or (x, y) ∈ E(G′) \ Π(G)}, where

G′ ≡ G \ (s1 � u) and Π(G) = ∪k
i=1πi denotes the set of arcs belonging to

the paths.
– Each arc (x, y) in EC such that (y, x) ∈ πi (1 ≤ i ≤ k) is endowed with the

label i.

An example of certificate for the paths π1, . . . , πk and the trail s � u in
Fig. 1(b) is shown in Fig. 1(c), where each arc with label i belongs to a path πi

from si to t reversed.

Lemma 1. Given a trail s1 � u, the certificate C can be built in O(Fk(G))
time.

Proof. Given s1, . . . , sk and t, we modify G by connecting s1, . . . , sk to a dummy
vertex s. We can apply the Ford Fulkerson algorithm to get in O(km) time k
disjoint paths from s, and hence from s1, . . . , sk, to t. In order to use a faster
max-flow algorithm, like [6], we can do the following. Run the max-flow algorithm
to find all the edges E′ used by a flow from s to t of size k, then add k arcs
from t to s to E′. In order to build our certificate, we need to find out k disjoint
paths using the edges in E′. To this aim, we notice that all the vertices in the
graph induced by the edges in E′ have the in-degree equal to their out-degree. As
this graph is an Eulerian multidigraph, we can find an Eulerian cycle involving
s which by deleting the k arcs (t, s) splits into k disjoint st-trails. By deleting
possible cycles in these trails, we get k disjoint st-paths. 	

As discussed next, we employ the certificate to

– guarantee that there is at least one good neighbor of u, i.e., no dead ends for
the current node in the recursion tree;

– locate the next good neighbor of u and save space (by avoiding to keep lists
of good neighbors at each node in the recursion stack);

– quickly skip unary nodes in the recursion tree, i.e. when u has just a single
good neighbor.

In this way the recursion tree in Fig. 1(a) is actually flattened as a single tree
where each node has at least two children. The benefit is clear by allocating a
budget of O(m) time on each child for every node, since we obtain an O(m) cost
per listed solution as a result. On the downside, since C extends the partial trail
s1 � u to a specific choice of k disjoint trails, we have to characterize how to
explore the other choices and, for each such choice, how to update C without
computing it from scratch each time (hence, with a lower cost than that stated
in Lemma 1).

At least one good neighbor of u. This part follows immediately from the definition
of certificate, as the vertex v following u in the trail τ1 can be characterized as
the only vertex in G′ that is neighbor of u and has a reverse arc in C. For this,
we call v the favorite neighbor of u.

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 549

Next good neighbor of u. Apart from the favorite neighbor of u, mentioned above,
we want to identify all the remaining good neighbors v of u. Also, the identifi-
cation of the good neighbors should rely on a property that holds for any choice
of the certificate C, so that the underlying C does not really matter to perform
this task correctly, as shown below.

Lemma 2. Given trail s1 � u, for any certificate C and for any arc (u, v), we
have that v is a good neighbor of u iff either v is the favorite neighbor of u in C
or there is a cycle in C going through (u, v).

Proof. If v is the favorite neighbor of u in C, we have nothing to prove. Otherwise,
we want to prove that there is another certificate C ′ in which v is the favorite
neighbor of u if and only if (u, v) is involved in a cycle in C. Consider the flow
f that corresponds to certificate C and suppose that there is another flow d′ on
the same network that goes through (u, v). Then, it is well known that there
will be a cycle in the residual network (i.e. in C) that contains the symmetric
difference of the edges in the two flows. Moreover, the converse also holds. So we
have another flow (and so another certificate) in which v follows u if and only if
there is a cycle in C that uses (u, v). 	

As an example, consider Fig. 1(c). The good neighbors of u are v2 (favorite
neighbor) and v1 (since it creates a cycle in C). On the other hand, v3 is not a
good neighbor for u as it does not satisfy both these conditions.

An immediate application of Lemma 2 to the nodes in the recursion tree has
an excessive cost in terms of space and time.

Let us start with space. Rather than storing the list of good neighbors at
each node in the recursive stack, which may take Ω(m) space since the same
vertex can appear several times in the partial trail s1 � u, we want to find
the next good neighbor v′ (if any) starting from the knowledge that the current
good neighbor is v. Since vertices are numbered, it suffices to produce the list of
good neighbors on the fly each time, and then select v′ as the smallest one that
is greater than v. This costs O(m) time and fits the O(m)-per-children budget
allocated to each node in the recursion tree.

Lemma 3. Given trail s1 � u and any certificate C for it, the sorted list of
good neighbors can be returned in O(m) time and space.

Proof. By Lemma 2, one neighbor is the favorite one that can be retrieved from
C. As for the remaining ones, we compute the strongly connected components
(SCCs) of C. Now, each arc (u, v) that is in a cycle must belong to a SCC that
contains u. Thus scanning the SCCs identifies these arcs, as required by Lemma 2.
Radix sorting these neighbors gives the wanted list. Total cost is O(m) time and
space. 	

As for the time, rather than building the certificate in each node of the
recursion tree as stated in Lemma 1, we prefer to compute the certificate from
the parent or a child, taking O(m) time instead of O(Fk(G)). In other words,
we run the max-flow algorithms mentioned in Lemma1 only once, to find one

550 R. Grossi et al.

certificate at the beginning of the recursion. After that, all the other certificates
are computed using the method based on the following lemma.

Lemma 4. Given the current node of the recursion tree and any certificate C
for its trail s1 � u, the certificate for the parent or for a child of the node can
be computed in O(m) time and space.

Proof. Let s1 � u′ be the trail in the parent node, where u is a good neighbor
of u′ and so s1 � u = (s1 � u′) · (u′, u). The new certificate is obtained from
C by just adding the reversed arc (u, u′) to C with label 1. Indeed, note that
(u′, u) was deleted in C, as C refers to G \ s1 � u, and in the new certificate we
are setting π1 := (u′, u) · π1.

We now show how the certificate modifies while going into a child node. Let
s1 � v = (s1 � u) · (u, v) be the trail in the child node, where v is a good
neighbor of u. Adding (u, v) may kill at most two paths in C: the path π1 as
we are possibly choosing another path replacing it, and a path πi with i �= 1,
which could traverse (u, v). (Note that πi is killed as we want disjoint paths,
and no other πj with j �= 1, i can traverse (u, v) for the same reason.) Observing
that C can be seen as a residual network, we use the property of augmenting
paths in Ford-Fulkerson algorithm. In particular, we have k − 2 flows (using
a dummy source connected to v, s2, . . . , sk), so we can run twice the O(m)-
time algorithm to find an augmenting path to bring back the flow to k. This
immediately translates into finding k disjoint trails.

Note that a final check is required to see if we still have paths (loop less trails)
in the reversed arcs of the resulting certificate: in that case, we just remove the
loops from the trails in O(m) time. 	

No unary nodes in the recursion tree. We need to avoid unary (i.e. single-child)
nodes in the recursion tree. We have two kinds of situations to deal with as
illustrated in Fig. 1(a). A unary node can occur when producing a trail τi (as
there is only one good neighbor), or when switching on a leaf from τi to the root
that will generate τi+1 (when for the given choice of τ1, . . . , τi, there is only one
trail τi+1 that exist). Looking at Fig. 1(a), the former case corresponds to unary
paths which are internal to a tree, as for instance the one from b′ to b, while the
second case corresponds to chains which remain unary across the trees, as for
instance the one from c to p. In particular, this latter situation can give rise to
a dependency on k in the time complexity (O(mk)) that suitably disappears by
avoiding unary nodes.

We handle both kinds of situations using a simple “fast forward” technique
that takes O(m) time to skip maximal paths of unary nodes in the recursion tree,
so that we actually obtain a compact recursion tree where each node always has
two or more children.

Lemma 5. Given the current node of the recursion tree and any certificate C
for its trail s1 � u, we can skip a unary chain starting from u in the recursion
tree in O(m) time and space.

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 551

Proof. It is an extension of what discussed in the proof of Lemma3. We compute
the SCCs in the certificate C as before. We observe that if u is unary then the
SCC containing u is trivial. Since the SCCs form a DAG, we take the sequence
S1, . . . , Sl of SCCs that are traversed by π1 (see Definition 1 for the definition
of πi), where S1 is the trivial SCC containing u and Sl is the SCC containing t.
We take the first vertex u′ along π1 (towards t) that follows u and belongs to
a non-trivial SCC Sj . Now we know that there are at least two good neighbors
for u′, which can be found in Sj as already discussed in the proof of Lemma 3.
This handles the former situation.

To handle the latter situation, we observe that when we traverse S1, . . . , Sl

we always find trivial SCCs. So we switch to π2, which we know from C, and
take the sequence S′

1, . . . , S
′
l of SCCs that are traversed by π2. We stop in the

first S′
j′ that is non-trivial. If it does not exist, we switch to π3, and iterate the

same approach. Either we stop at a non-trivial SCCs, and we proceed as in the
proof of Lemma 3, or we find all trivial SCCs till πk, so we obtain a solution to
list.

In both situations, the cumulative cost is O(m) time and space as we always
traverse distinct SCCs. 	

Theorem 1. Given a directed graph G and its distinct vertices s1, . . . , sk, t, all
the k-sets of edge-disjoint trails τ1, . . . , τk, such that τi is a sit-trail for 1 ≤ i ≤ k,
can be listed with O(m) time cost per solution. Initial setup time is O(Fk(G))
and space usage is O(m).

Proof. By definition of good neighbors, given a partial trail si � u and the
already generated trails τ1, . . . , τi−1, a simple induction shows that we generate
all the k disjoint trails having τ1, . . . , τi−1 fixed and prefix si � u for the ith
trail. There is no solution listed twice for the same reason. Also, suppose by
contradiction that there exists a solution that is not generated. Let τ1, . . . , τi−1

fixed and prefix si � u be the node in the recursion tree that fails to generate
it. By definition of good neighbor, this is a contradiction, as we identify the next
v to be taken, so that si � u can be extended to si � u · (u, v) instead, where
v is the next vertex on the missed trail. Hence, all the trails are correctly listed
once. Since we spend O(m) time in each node of the recursion tree, and there
are no unary nodes, we get O(m) time per solution. The space is O(m) as a trail
can be so long, and we use constant memory per node in the recursion stack,
which is of depth O(m). 	

We can now deal with the case where we have a single source s.

Theorem 2. Given a directed graph G and two vertices s, t ∈ V , with s �= t, all
the k-sets of edge-disjoint trails τ1, . . . , τk, such that τi is a st-trail for 1 ≤ i ≤ k,
can be listed with O(m) time cost per solution, setup time O(Fk(G)), and space
usage O(m).

Proof. Let the k-starting sets be the k-subsets of s’s neighbors, i.e. {s1, . . . , sk} ⊆
N(s), such that there are k disjoint paths π1, . . . , πk (and hence trails) where

552 R. Grossi et al.

πi is an sit path. If we apply Theorem1 to every k-starting set, we obtain our
claim.

Since we cannot explore all the possible subsets of N(s), we again use a
recursive approach to generate just the k-starting sets of s. Suppose that N(s)
is sorted by vertex numbering. At each recursive step we divide the vertices of
N(s) into three groups:

– I = those vertices that will be part of any starting set generated from the
current recursive call;

– H = those vertices that won’t be in any starting set generated from the
current recursive call;

– U = those vertices that may or may not be in a starting set.

Initially, both I and H are empty, and U = N(s).
During the recursion, we keep the invariant that U forms a contiguous suffix

of the sorted sequence N(s). At each step, we compute a flow f of cardinality
k starting from {s} ∪ I on the graph obtained from G by erasing all incoming
edges in s and all outgoing edges from s to any vertex in I ∪ H. More precisely,
we require one unit of flow to leave each vertex in I, none to leave any vertex
in H, and k − |I| to leave s.3 We observe that we are actually enforcing a flow
of cardinality k that uses first all the vertices in I. This flow is computed from
scratch once, at the beginning of the recursion. In the rest of the recursion, it is
updated through the calls using the same ideas as in the proof of Lemma4.

We compute the residual network Rf of f , and the SCCs of Rf . We can thus
build the set W of vertices v ∈ U such that (s, v) is involved in a cycle in Rf .

If W is empty, then there is exactly one k-starting set that satisfies the
constraints given by the sets I and H, so we can output I (plus any other
neighbor of s involved in the f) as k-starting set, and return from the recursive
call.

Otherwise, let v be the smallest vertex in W . Since (s, v) is involved in a
cycle in Rf (as any other vertex in W), there must exists at least two flows, both
traversing the vertices I and avoiding those in H, such that one flow traverses
(s, v) and the other does not traverse (s, v). This means that the current recursive
call generates two further calls: the former where v goes into I, and the latter
v goes into H. In both calls, all vertices in U that precede v go into either I
or H, according to their role in f : a vertex x ∈ U with x < v, goes to I if x is
traversed by the flow for the call at hand, or goes to H otherwise.

Hence, each calls returns at least one solution, and each internal call gives
raise to two further calls. Hence the cost per solution is bounded by the cost of
a single call, which is O(m). Space cost is O(m) with setup time O(Fk(G)).

It is worth observing that for each generated k-starting set, we can produce
in O(m) time the initial certificate needed (with the empty path as the current
path). In this way we do not pay each time the setup cost O(Fk(G)) when
applying Theorem1 to the k-starting set. 	

3 This flow can be achieved by creating a dummy vertex s′ connected to all the vertices

in I with capacity 1 and to s with an arc of capacity k − |I|.

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 553

3 Applications to Related Problems

In this section, we show how to use the results in Sect. 2 to solve a variety of
related problems. We firstly discuss some easy variations, including listing vertex
disjoint paths, and then we focus on the problem of listing bounded-length fixed-
source k-disjoint-paths with k = 2, since for k ≥ 3 (as summarized in Table 1)
the latter problem is hard.

3.1 Vertex-Disjoint Paths and Other Variations

Undirected graphs and vertex disjoint paths. Since we are interested in edge dis-
joint trails, in the case of undirected graphs, it is not sufficient to consider two
opposite arcs in place of an undirected edge, as we want to avoid to traverse one
arc in the solution if the other has been used. To this aim, well-known reduc-
tions [16] allow to easily extend our Theorem 2 to undirected graphs. Moreover,
by transforming each vertex v into an arc (vin, vout), putting arcs (wout, vin)
and (vout, zin) for each in-neighbor w and each out-neighbor z of v, vertex dis-
joint paths reduce to edge disjoint trails: as each of the k edge disjoint trails
composing a solution do not use the same arc twice, we get the following.

Theorem 3. Given a directed or undirected graph G and two vertices s, t ∈ V ,
with s �= t, all the k-sets of vertex disjoint paths π1, . . . , πk, such that πi is a
st-path for 1 ≤ i ≤ k, can be listed with O(m) time cost per solution, setup time
O(Fk(G)), and space usage O(m).

It is worth observing, that Theorem 3 generalizes the result in [1] for any k,
getting the same bounds for k = 2, as O(F2(G)) is O(m).

Cycles involving two vertices. Given an undirected graph, Theorem3 easily
extends to enumerating all the simple cycles that contain two given vertices
s, t: it is enough to enumerate all the pairs of vertex-disjoint paths that connect
s to t. As for directed graphs, we recall that finding even one directed cycle
involving two vertices is NP-hard [5].

Multiple Sources vs Multiple Targets. Further variations can be considered. For
instance, listing all the k-sets of edge disjoint trails (or vertex disjoint paths)
from any subset of x ≥ k sources {s1, . . . , sx} to any subset of y ≥ k targets
{t1, . . . , ty}. This can be easily solved in the same bounds claimed by Theorems 2
and 3, by simply attaching s1, . . . , sx to a dummy source s and t1, . . . , ty to a
dummy target t. We remark that this problem is different from the one considered
by Robertson and Seymour and Kawarabayashi et al. [10] concerning the so
called disjoint paths problem, since in their case, as said in the introduction, the
sources and targets are paired and any algorithm is forced to find a k-set of
vertex disjoint paths respecting this pairing.

554 R. Grossi et al.

Fixed source vs Variable Target. Let us now consider the following: given a
directed graph G = (V,E) and s ∈ V , list all the k-sets of edge disjoint st-trails
(or vertex disjoint st-paths) for any t ∈ V . In order to solve this problem, we
need to compute for which t there is at least a solution. By applying the results
in Theorems 2 and 3, we get a total time cost of O(nFk(G) + αm) with O(m)
space, where α is the number of solutions. In undirected graphs, for k = 1, 2, 3
the total time cost becomes simply O(αm) as the n flow computations can be
replaced by the computation of k-connected components.

3.2 Bounded-Length Fixed-Source Two-Disjoint-Paths

In this section we discuss the following problem which deals with st-paths of
bounded lengths.

Problem 1. Let G = (V,E) be a directed graph, s ∈ V and � ∈ N. List all the
k-sets of vertex disjoint st-paths of length at most �, simultaneously for any
t ∈ V .

State-of-art results are summarized in the last two columns of Table 1. If
target t is given a priori along with source s, the only case which can be solved
with output-sensitive bounds is for k = 1. Hence we focus on the case k = 2 with
t not given a priori (Problem1), showing how to apply similar ideas to Sect. 2.
As this will make use of a subroutine to list all the st-paths of length at most �,
we will also focus on the case k = 1 where both s and t are given a priori.

Given s, we will make use of ball B�(G), which is defined as the graph induced
by the vertices at distance at most � from s in G. For the sake of simplicity, we
assume wlog that s has zero indegree in G. Similarly to Sect. 2, we build first a
st-path π1 for some t and then the second vertex disjoint st-path π2. Once the
st-path π1 is fixed, the suitable choices for π2 are all the st-paths of length at
most � in G where vertices in π1 except s and t have been deleted.

Let us now focus on the building process for π1. Recall that while building π1

we have to guarantee that π1 can be completed in a solution, i.e. there is at least
a suitable π2 which can be paired with π1. Let u be the current vertex explored
during the recursion (at the beginning u = s) and let π′

1 be the su-path of length
h with h ≤ � built until that point. As in the previous section we have to explore
all the good neighbors of u. To discover them, we will employ an auxiliary graph
G′, obtained from G by removing all the vertices in π′

1 except s. A neighbor v
of u is good whether there is a way to complete the partial solution, i.e. v is in
G′ and, moreover, in G′ there is a vertex t such that there is a vt-path π′′

1 with
length at most k −h and there is also a st-path π2 of length at most �, where π′′

1

and π2 are vertex disjoint. For each good neighbor v of u we recur by deleting v
from G′. Note that this guarantees that we generate just simple paths and, by
definition of good neighbors, the path π2 does not overlap with π′

1 and π′′
1 .

Good Neighbors and Certificate. Similarly to the previous section, we maintain
a certificate in order to recognize the good neighbors v for u. It may happen

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 555

that u itself may be reached in at most � steps from s without using any nodes
used in π1. In this case, we know that u is a valid target and so we proceed
with generating all possible π2. Moreover, it is also possible that π′

1 is a prefix
of a valid path (this must be true if u is not a valid target, as we want to avoid
dead-ends). In this case the certificate C is simply a ut-path from u to some
vertex t in B�(G′), such that t is the only vertex of the path in B�(G′). Let v be
the neighbor of u in C, where v corresponds to the favorite neighbor defined in
Sect. 2. The other good neighbors are the vertices in G′ that are in N(u) and can
reach at least a vertex in B�(G′) using at most � − h arcs. These can be easily
computed in O(m) by collapsing the vertices in B�(G′) into a single vertex b
and then running a backward BFS from b in G′ truncated at distance � − h.
Let R be the vertices reached by this BFS: the good neighbors for u are all the
vertices in N(u) ∩ R and a certificate for each of them is their path to b. Hence,
for any good neighbor, we have a child node in the recursion tree and for each of
them we can build the certificate in O(m). When backtracking from a child to
its parent we can rebuild the certificate in the same way in O(m) thus avoiding
to store the past certificates in the recursion stack as in Sect. 2.

Fast Forward. We now show how to guarantee that in each recursion node we
always have at least two children, we spend O(m) time in each recursion node.
We want to skip unary chains in the recursion tree in O(m) time as in Lemma 5.
Let u be the current vertex, let π′

1 be the su-path of length h with h ≤ � built
until that point, and let π′′

1 be the ut-path (for some t) in the current certificate
C. There is a unary chain for instance if the neighbor v of u in π′′

1 is its only good
neighbor or if the path in π′′

1 is the only feasible completion for π′
1, that is for

each vertex in π′′
1 except t, which is in B�(G′), there is only one good neighbor.

Precisely, we want to find the first vertex w in the path π′′
1 that has at least two

neighbors in O(m) in order to skip all the intermediate vertices and continue
the recursion from that one. This task can be easily addressed by modifying the
certificate update as shown next.

1. Scan the vertices in the path π′′
1 in their order checking whether there are at

least two good neighbors as follows: let b be the vertex obtained by collapsing
the vertices in B�(G′), for each vertex w in the path π′′

1 check whether there
is an arc (w, z) not in π′′

1 such that z is at distance at most � − h from b.
2. Let w be the first vertex satisfying this condition. We directly add all the edges

on the uw-path in π′′
1 to π′

1 going directly to the recursion node corresponding
to w.

With respect to Sect. 2, we are ignoring fast-forwarding across the recursion
trees for the different values of k, as since k = 2, linear dependencies on k do
not afflict here our asymptotic time costs per solutions.

Generating π2. Once a st-path π1 has been generated, we have to generate all
the st-paths of length at most � in the graph G′ which is obtained by deleting
from G all the vertices in π1 except s and t. We show next that this can be done
with a slight modification of the process for generating π1 shown above. As in

556 R. Grossi et al.

the above case, when recurring at u and enlarging the su-path π′
2 with length

h, the certificate C is a path towards t of length at most � − h. Each recursive
node explores all the good neighbors of u, i.e. the ones leading to t with at most
� − h arcs. The certificate update and the computation of the good neighbors
can be done exactly as in the above case by simply replacing B�(G), and hence
b, with the given target t. Hence, in order to understand which are the good
neighbors, it suffices to do a backward BFS from t truncated at distance � − h.
The good neighbors are the ones in N(u) reached by this BFS and the certificate
for them is their path to t. By replacing B�(G) with t in the π1 generation, we
get also fast-forward which allows to skip unary chains in the recursion tree in
O(m) time: as before, in O(m) time we can scan the vertices w of the su-path
in C looking for arcs (w, z) with z at distance at most � − h from t.

Since both the trees generating π1 and π2 have no unary nodes and each
internal node costs O(m) time, we get a O(m) cost per solution. Concerning
space, we observe that certificates, as in Sect. 2, are updated not only while going
from a parent node to a child, but also while backtracking. For this reason, the
recursion stack for both π1 and π2 trees is just made by good neighbors lists
whose cardinalities sum up to O(m) since each vertex appears just once in each
root to leaf path.

As a result, we get the following, which holds also for undirected graphs by
simply replacing each edge with a pair of opposite arcs.

Theorem 4. Let G = (V,E) be a directed or undirected graph and � ∈ N and
consider Problem 1.

– Given s, t ∈ V , there is an algorithm which lists all the st-paths of length at
most � with O(m) time costs per solution (case k = 1).

– Given s ∈ V , there is an algorithm which lists all pairs of disjoint st-paths
of length at most � for any t ∈ V with O(m) time costs per solution (case
k = 2).

Setup time and space usage are O(m) in both cases.

As a final remark, Theorem 4 also extends to the problem of listing all the
cycles with bounded length involving a given vertex.

References

1. Birmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A., Pisanti,
N., Sacomoto, G., Sagot, M.-F.: Efficient bubble enumeration in directed graphs.
In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.)
SPIRE 2012. LNCS, vol. 7608, pp. 118–129. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34109-0 13

2. Birmelé, E., Ferreira, R.A., Grossi, R., Marino, A., Pisanti, N., Rizzi, R., Sacomoto,
G.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings of
the SODA, pp. 1884–1896 (2013)

3. Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math.
85(2), 113–138 (1998)

https://doi.org/10.1007/978-3-642-34109-0_13
https://doi.org/10.1007/978-3-642-34109-0_13

Efficient Algorithms for Listing k Disjoint st-Paths in Graphs 557

4. Eppstein, D.: k-best enumeration. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms,
pp. 1003–1006. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-
27848-8

5. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980)

6. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM (JACM)
45(5), 783–797 (1998)

7. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

8. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM
24(1), 1–13 (1977)

9. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

10. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102(2), 424–435 (2012)

11. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two dis-
joint paths with min-max objective function. Discrete Appl. Math. 26(1), 105–115
(1990)

12. Menger, K.: Zur allgemeinen kurventheorie. Fundam. Math. 10(1), 96–115 (1927)
13. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,

and spanning trees. Networks 5(3), 237–252 (1975)
14. Rizzi, R., Sacomoto, G., Sagot, M.-F.: Efficiently listing bounded length st-paths.

In: Jan, K., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp.
318–329. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19315-1 28

15. Sacomoto, G., Lacroix, V., Sagot, M.-F.: A polynomial delay algorithm for the enu-
meration of bubbles with length constraints in directed graphs and its application
to the detection of alternative splicing in RNA-seq data. In: Darling, A., Stoye,
J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 99–111. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40453-5 9

16. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer Sci-
ence & Business Media, Heidelberg (2003)

17. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2(3), 211–216 (1973)

18. Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a
graph. Commun. ACM 13, 722–726 (1970)

https://doi.org/10.1007/978-3-642-27848-8
https://doi.org/10.1007/978-3-642-27848-8
https://doi.org/10.1007/978-3-319-19315-1_28
https://doi.org/10.1007/978-3-642-40453-5_9

Transversals of Longest Cycles in Chordal
and Bounded Tree-Width Graphs

Juan Gutiérrez(B)

Departamento de Ciência da Computação, Universidade de São Paulo,
Rua do Matão 1010, São Paulo, SP 05508–090, Brazil

juanguti@ime.usp.br

Abstract. Let lct(G) be the minimum size of a set of vertices that
intersects every longest cycle of a 2-connected graph G. Let tw(G) be the
tree-width of G and ω(G) be the size of a maximum clique in G. We show
that lct(G) ≤ tw(G)−1 for every G, and that lct(G) ≤ max{1, ω(G)−3}
if G is chordal. Those results imply as corollaries that all longest cycles
intersect in 2-connected series-parallel graphs and in 3-trees. We also
strengthen the latter result and show that all longest cycles intersect in
2-connected graphs of tree-width at most 3, also known as partial 3-trees.

1 Introduction

It is known that, in a 2-connected graph, every pair of longest cycles intersect
each other in at least two vertices [1]. A natural question asks whether all longest
cycles have a vertex in common. This has in general a negative answer, as the
Petersen graph shows. However, there are some graph classes for which this
question has a positive answer. As a common vertex of all longest cycles does
not always exist, it is interesting to look for a set of vertices such that every
longest cycle has at least one vertex in that set. Such a set is called a longest
cycle transversal, or just a transversal. The minimum size of a transversal is
denoted by lct(G). When we cannot determine lct(G) exactly, it is interesting
to search for a good upper bound for it.

In what follows we consider a 2-connected graph G with n vertices.
Thomassen [2] showed that lct(G) ≤ �n/3�. This bound was improved by Raut-
enbach and Sereni [3], who proved that lct(G) ≤ �n

3 − n2/3

36 �. Jobson et al. [4]
showed that all longest cycles have a common intersection in dually chordal
graphs, which includes doubly chordal, strongly chordal, and interval graphs.
They also mention that their proof can be applied to show that all longest
cycles intersect in split graphs. van Aardt et al. [5] showed that lct(G) ≤ n/L
for graphs whose longest cycles have length L ≤ 8. Fernandes and the author [6]
showed that lct(G) = 1 if G is a 3-tree, and that lct(G) ≤ 2 if G is a par-
tial 3-tree. To our knowledge, no results for general chordal graphs and graphs
of bounded tree-width have been published. In this paper, we give results for

J. Gutiérrez—Research supported by FAPESP (Proc. 2015/08538-5).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 558–571, 2018.
https://doi.org/10.1007/978-3-319-77404-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_41&domain=pdf

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 559

lct(G) when G is chordal and when G has bounded tree-width. Moreover, we
give a self-contained proof of the result mentioned by Jobson et al. [4] that all
longest cycles intersect in 2-connected split graphs.

Similar results about transversals of longest paths have also been studied
in the literature [7–14]. Particularly, Cerioli et al. [15,16] showed similar, but
weaker, results for chordal and bounded tree-width graphs for paths instead of
cycles. Other questions about intersection of longest cycles have also been raised
by several authors [17–20].

In this paper, we prove the following:

– lct(G) ≤ max{1, ω(G)−3} for every 2-connected chordal graph G, where ω(G)
is the size of a maximum clique in G (Sect. 3).

– lct(G) ≤ tw(G) − 1 for every 2-connected graph G, where tw(G) is the tree-
width of G (Sect. 4).

– lct(G) = 1 for every 2-connected partial 3-tree G (Sect. 5).
– lct(G) = 1 for every 2-connected split graph G (Sect. 5).

In the next sections, we present these results in detail.

2 Preliminaries

In this section we introduce notations and previous results to be used in the rest
of the paper. We also give an intuitive idea of our main technique. Some of the
definitions given here are very similar to the ones used by Cerioli et al. [8,16].

2.1 Basic Concepts

All graphs considered in this paper are simple and 2-connected. (The later prop-
erty is necessary to the fact that, when the graph is not 2-connected, two longest
cycles may not intersect each other, and a minimum transversal can be arbitrary
large.) Let C be a cycle in a graph G. We denote by |C| the length of C, that
is, the number of edges in C. Given a path C ′, we sometimes write C ′ to denote
the vertices of C ′. Given two paths C ′ and D′ that share only at least one of
their endpoints, we denote by C ′ · D′ the union of C ′ and D′. For a pair of
vertices {a, b} in a cycle C, let C ′ and C ′′ be the paths such that C = C ′ · C ′′

with C ′ ∩ C ′′ = {a, b}. We refer to these two paths as the ab-parts of C. Given
a cycle C that contains vertices a, b and c, and when the context is clear, we
denote by Cab the ab-part of C that does not contain c, by Cbc the bc-part of C
that does not contain a, and by Cac the ac-part of C that does not contain b.

Let S be a set of vertices in a graph G. Let C be a cycle or a path in G that
does not contain all vertices of S and with a vertex not in S. We say that S
fences C if all the vertices of C −S are in a single component of G−S, otherwise
we say that C crosses S. We say that C k-intersects S if |C ∩S| = k. Moreover,
we also say that C k-intersects S at C ∩ S. If C k-intersects S and is fenced
by S, then we say that C is k-fenced by S. If C k-intersects S and crosses S,
then we say that C k-crosses S. Similarly, we also can say that C k-crosses S

560 J. Gutiérrez

at C ∩ S. If two cycles C and D are such that C ∩ S = D ∩ S, then we say they
are S-equivalent, otherwise they are S-nonequivalent.

For a cycle or a path C, we denote by CompS(C) the set of vertices of the
components of G − S where C − S lies. Two fenced cycles or paths C and D
are S-component-disjoint if CompS(C) ∩ CompS(D) = ∅. If S is clear from the
context, we just say they are component-disjoint. Given a cycle C that 3-crosses S
at {a, b, c}, we say that a breaks C if Cab and Cac are component-disjoint. Also,
we say that a is a C-breaking vertex. If the context is clear, we just say it is a
breaking vertex.

Let Vt be a set of vertices in G, and let C be a longest cycle in G. We say
that Vt is pulled by C if all longest cycles that intersect Vt at Vt∩C (including C)
are fenced by Vt. Given an integer k ≥ 0, we say that Vt is k-pulled if Vt is pulled
by a longest cycle C that k-intersects Vt. (Observe that k = 0 means that there
exists at least one longest cycle that does not intersect Vt.) Finally, we say that Vt

is at most k-pulled if it is k′-pulled for some k′ ∈ {0, 1, . . . , k}. Sometimes, we also
say that Vt is k-pulled by C or at most k-pulled by C, where C is a corresponding
cycle.

We use L = L(G) for the length of a longest cycle in G. Also, we denote
by ω(G) the size of a maximum clique in G.

2.2 Tree-Decomposition and Chordal Graphs

A tree-decomposition [21, p. 337] of a graph G is a pair (T,V), conformed by a
tree T and a collection V = {Vt : t ∈ V (T)} of bags Vt ⊆ V (G), that satisfies the
following three conditions:

(T1)
⋃

t∈V (T) Vt = V (G);
(T2) for every uv ∈ E(G), there exists a bag Vt such that u, v ∈ Vt;
(T3) if a vertex v is in two different bags Vt1 , Vt2 , then v is also in any bag Vt

such that t is on the (unique) path from t1 to t2 in T .

The width of (T,V) is the number

max{|Vt| − 1 : t ∈ V (T)},

and the tree-width tw(G) of G is the minimum width of any tree-decomposition
of G.

A graph is called chordal if every induced cycle has length three. Next we
present some basic properties of tree decompositions for general and chordal
graphs. We fix a 2-connected graph G and a tree-decomposition (T,V) of G.
Proposition 1 is due to Bodlaender [22]. The tree-decomposition mentioned in
Proposition 2 is also called clique tree and it was introduced by Gavril [23].

Proposition 1. If k is the tree-width of a graph G, then G has a tree-
decomposition (T,V) of width k such that |Vt| = k + 1 for every t ∈ T , and
|Vt ∩ Vt′ | = k for every tt′ ∈ T .

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 561

Proposition 2. Every chordal graph has a tree-decomposition (T,V) such that
the bags of V are the maximal cliques of G.

Given two different nodes t, t′ of T , we denote by Brt(t′) the component of
T −t where t′ lies. We say that such component is a branch of T at t and that the
components of T −t are the branches of T at t [24]. Similarly, for a vertex v /∈ Vt,
we denote by Brt(v) the branch Brt(t′) of T at t such that v ∈ Vt′ . Moreover, we
can extend the notation and say that, if C is a path or a cycle fenced by Vt for
some t ∈ T , then Brt(C) = Brt(v), where v is a vertex of C − Vt. Propositions 3
to 5 are used to justify that the previous two definitions are coherent. The first
two of them appear in the work of Heinz [24].

Proposition 3. Let t be a node of T and v be a vertex of G such that v /∈ Vt.
Let t′ and t′′ be nodes of T . If v ∈ Vt′ ∩ Vt′′ , then t′ and t′′ are in the same
branch of T at t.

Proposition 4. Let u and v be two vertices of G, and let t be a node of T . If
u, v /∈ Vt, and u and v are not separated by Vt, then Brt(u) = Brt(v).

Proposition 5. Let t be a node of T and C be a path or cycle fenced by Vt. For
every two vertices u and v in C − Vt, Brt(u) = Brt(v).

2.3 Proof Techniques

Our main technique resembles the Helly Property on trees. It is known that, in a
tree, a collection of pairwise intersecting subtrees have a vertex in common. (As a
corollary of that property, all longest paths intersect in trees.) There are several
proofs of that fact, we focus on the following one. If we suppose by contradiction
that it is not the case that there exists such a vertex in common, then it means
that, for every vertex, there exists a subtree that does not contain that particular
vertex. That subtree fits in exactly one component of the forest that remains
when we remove such a vertex. Thus, we can add an arc from that vertex to the
corresponding neighbor of it. In this way, by analyzing a maximal directed path,
we find a contradiction by observing the last arc of this path.

So, our main task is to resemble this idea with the help of a tree-
decomposition of the graph. It is not the first time this idea is used. Accord-
ing to Diestel [21], a bramble is a set of sets of vertices in a graph such that
every pair of such sets either intersect each other or the graph contains an edge
between them. (Observe that the set of longest cycles of a 2-connected graph
is a bramble.) Theorem 12.3.9 of the same book [21] directly implies that, if
a graph has tree-width tw, then there exists a longest cycle transversal of size
tw + 1. (This was observed by Rautenbach and Sereni [3] in Proposition 2.6 but
for paths instead of cycles.) As chordal graphs have tree-width ω − 1, we can
easily conclude that chordal graphs have a longest cycle transversal of size ω.
(This was also observed before, by Balister et al. [7], for paths instead of cycles.)

Our main target in this paper is to improve these bounds. For that, as we
said, we try to resemble the idea for trees as follows. First, we focus on an

562 J. Gutiérrez

arbitrary bag of the tree-decomposition (if the graph is chordal, we are focusing
on a maximal clique). Then, we try to direct the corresponding node of this bag
towards a neighbor of the node in the tree-decomposition. To do that, we need a
longest cycle that lies into the corresponding branch (in fact, we will need a little
more, that is why we introduced the definition of pulled). The main difficulty
is to prove that such a cycle exists. And, as we will see in our next lemmas,
it is very unlikely that a set of longest cycles that crosses a bag at the same
time, and intersect the bag in a little quantity of vertices, can coexist. Hence,
we will obtain at least one fenced cycle in order to do the orientation. In the
next sections we will see the details of how this cycle is obtained. After that, it
remains to analyze the last arc of this orientation to obtain a final contradiction.
That will happen in the proof of our main theorems.

3 Chordal Graphs

The purpose of this section is to prove an upper bound for lct in any 2-connected
chordal graph. We start by proving a property and a lemma valid for all
2-connected graphs.

Proposition 6. Let G be a 2-connected graph with a clique Vt. Then every two
longest cycles that 2-cross Vt are Vt-equivalent.

Proof. Suppose by contradiction that there exists two longest cycles C and D
that 2-cross Vt and C ∩Vt
= D ∩Vt. Let C ∩Vt = {a, b} and D ∩Vt = {c, d}. We
may assume that either {a, b} and {c, d} are disjoint or a
= b = d
= c. Let C ′

and C ′′ be the two ab-parts of C. Let D′ and D′′ be the two cd-parts of D. As
both C and D cross Vt, we have that any of {C ′, C ′′} is component-disjoint from
at least one of {D′,D′′}, and that any of {D′,D′′} is component-disjoint from at
least one of {C ′, C ′′}. Hence, we may assume, without loss of generality, that C ′

is component-disjoint from D′, and that C ′′ is component-disjoint from D′′.
Hence, C ′ · ac · D′ · db and C ′′ · ac · D′′ · db are cycles, one of them longer than L,
a contradiction. ��
Lemma 1. Let G be a 2-connected graph with a clique Vt such that |Vt| ≥ 5. If
there exists a longest cycle that 2-crosses Vt, then either lct(G) ≤ |Vt| − 3 or Vt

is at most 3-pulled.

Proof. Let C be a longest cycle that 2-crosses Vt. Suppose that C ∩ Vt = {a, b}.
Let S be a subset of vertices of Vt of size |Vt|−3 that contains {a, b}. Such a subset
exists, because we are assuming that |Vt| ≥ 5. Suppose that lct(G) > |Vt| − 3.
Hence, there exists a longest cycle D̄ that does not contain any vertex of S. This
implies that D̄ intersects Vt at most three times, and that D̄ does not contain
any of {a, b}. If D̄ intersects Vt at most once, it is fenced by Vt, hence Vt is 0-
pulled or 1-pulled and we are done. Thus, we may assume that D̄ intersects Vt at
least twice. Suppose that D̄ 2-intersects Vt. Recall that C 2-crosses Vt at {a, b}.
Hence, by Proposition 6, all longest cycles that 2-cross Vt, intersect Vt at {a, b}.

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 563

Thus, all longest cycles that intersect Vt at Vt ∩ D̄, particularly D̄, are fenced
by Vt. Hence, Vt is 2-pulled by D̄ and we are done.

Now suppose that D̄ 3-intersects Vt. Let D̄ ∩ Vt = {c, d, f}. Suppose for
a moment that there exists a longest cycle D that crosses Vt at {c, d, f}.
As C and D cross Vt, any of {Dcd,Ddf ,Dcf} is component-disjoint with at
least one of {C ′, C ′′}, and any of {C ′, C ′′} is component-disjoint with at least
one {Dcd,Ddf ,Dcf}. Thus, we may assume, without loss of generality, that C ′

is component-disjoint from Dcd and Dcf , and that C ′′ is component-disjoint
from Ddf . But then, C ′ · ad · Ddc · Dcf · fb and C ′′ · ad · Ddf · fb are both cycles,
one of them longer than L, a contradiction. Hence, every cycle that intersect Vt

at {c, d, f} = D̄ ∩ Vt is fenced by Vt. We conclude that Vt is 3-pulled by D̄. ��
We can extend the previous lemma, but just for chordal graphs. Before that,

we state some useful properties. Proposition 7 appears in the book of Diestel [21]
as Lemma 12.3.1.

Proposition 7. Let tt′ ∈ E(T). Then Vt∩Vt′ separates, in G, a vertex in Brt(t′)
from a vertex in Brt′(t).

Proposition 8. Let t ∈ V (T). Let C ′ be a path 2-fenced by Vt such that
Brt(C ′) = Brt(t′), where tt′ ∈ E(T). Then Vt ∩ C ′ ⊆ Vt′ .

Proposition 9. Let t ∈ V (T). Let C and D be two paths or cycles fenced by Vt.
If CompVt

(C) = CompVt
(D), then Brt(C) = Brt(D).

Proposition 10. Let t ∈ V (T). Let C be a collection of paths 2-fenced by Vt.
If

⋃
C′∈C C ′ ∩ Vt = Vt, then there exists two paths C ′ and D′ in C, such that

Brt(C ′)
= Brt(D′) and CompVt
(C ′)
= CompVt

(D′),

Proof. Suppose that
⋃

C′∈C C ′∩Vt = Vt. By Proposition 9, it suffices to show that
there exists two paths C ′ and D′ in C such that Brt(C ′)
= Brt(D′). Suppose
by contradiction that for every pair of paths C ′ and D′ in C, we have that
Brt(C ′) = Brt(D′). Let tt′ ∈ E(T) such that Brt(C ′) = Brt(t′). By Proposition 8,
Vt ∩ C ′ ⊆ Vt′ for every C ′ ∈ C. Hence, Vt ⊆ Vt′ . As Vt
= Vt′ , we have a
contradiction to the maximality of Vt. ��
Lemma 2. Let G be a 2-connected chordal graph with a maximal clique Vt

such that |Vt| ≤ 4. If there exists a longest cycle that 2-crosses Vt, then either
lct(G)= 1 or Vt is at most 3-pulled.

Proof. Let (T,V) be a tree-decomposition of G as in Proposition 2. We consider
the following two cases.

Case 1: |Vt| = 4. Let Vt = {a, b, c, d}. Let C be a longest cycle that 2-crosses Vt

at ab. Let {C ′, C ′′} be the two ab-parts of C. Suppose that lct(G) > 1. Then,
there exists a longest cycle D̄ that does not contain a. If D̄ intersects Vt at
most once, then we are done. Hence, we may assume that D̄ intersects Vt at
least twice. Suppose that D̄ 2-intersects Vt. Recall that C 2-crosses Vt at {a, b}.
Hence, by Proposition 6, all longest cycles that 2-cross Vt, intersect Vt at {a, b}.

564 J. Gutiérrez

Thus, all longest cycles that intersect Vt at Vt ∩ D̄, particularly D̄, are fenced
by Vt. Hence, Vt is 2-pulled by D̄ and we are done.

Thus, D̄ 3-intersects Vt. Let D̄ ∩ Vt = {b, c, d}. Suppose for a moment that
there exists a longest cycle, called it D, that crosses Vt at {b, c, d}. Suppose also
for a moment that b breaks D. That is, Dbc and Dbd are component-disjoint.
Then, as C ′ is also component-disjoint from C ′′, we may assume, without loss of
generality, that C ′ is component-disjoint from Dbc and that C ′′ is component-
disjoint from Dbd. Also, Dcd is component-disjoint with at least one of {C ′, C ′′},
suppose it is C ′. Then C ′ ·Dbc ·Dcd ·da and C ′′ ·Dbd ·da are cycles, a contradiction.
Thus, b does not break D. That is, CompVt

(Dbc) = CompVt
(Dbd), and, by

Proposition 9,

Brt(Dbc) = Brt(Dbd). (1)

Observe also that, by Proposition 10,

Brt(Dcd)
= Brt(C ′), (2)

and
Brt(Dcd)
= Brt(C ′′). (3)

Suppose for a moment that Brt(Dbc) = Brt(C ′). Then, by (1), Brt(Dbc) =
Brt(Dbd) = Brt(C ′). Let tt′ ∈ E(T) such that Brt(C ′) = Brt(t′). By Proposi-
tion 8, we have that Vt ∩ C ′ = {a, b} ⊆ Vt′ , that Vt ∩ Dcd = {c, d} ⊆ Vt′ , and
that Vt ∩ Dbd = {b, d} ⊆ Vt′ . So, Vt = {a, b, c, d} ⊆ Vt′ , a contradiction to the
maximality of Vt. Hence, by (1),

Brt(Dbc) = Brt(Dbd)
= Brt(C ′). (4)

And, by a similar argument,

Brt(Dbc) = Brt(Dbd)
= Brt(C ′′). (5)

But then, by (2), (3), (4) and (5), C and D only intersect at b, a contradic-
tion to the fact that G is 2-connected. Hence, every cycle that intersects Vt at
{b, c, d} = D̄ ∩ Vt is fenced by Vt. We conclude that Vt is 3-pulled by D̄.

Case 2: |Vt| ≤ 3. Let Vt = {a, b, c}. Let C be a longest cycle that 2-crosses Vt

at ab. Suppose that lct(G) > 1. Then, there exists a longest cycle D̄ that does
not contain a. If D̄ intersects Vt at most once, then we are done. Hence, we
may assume that D̄ 2-intersects Vt. Recall that C 2-crosses Vt at {a, b}. Hence,
by Proposition 6, all longest cycles that 2-cross Vt, intersect Vt at {a, b}. Thus,
all longest cycles that intersect Vt at Vt ∩ D̄, particularly D̄, are fenced by Vt.
Hence, Vt is 2-pulled by D̄ and we are done. ��

Now we study how longest cycles that 3-cross Vt behave. Remember that,
given a longest cycle C that 3-crosses Vt at {a, b, c}, we say a is a C-breaking
vertex if Cab and Cac are Vt-component-disjoint.

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 565

Proposition 11. Let G be a graph. Let C be a cycle in G. Let Vt be a set of
vertices of G. Let Δ be a triangle in Vt. If C 3-crosses Vt at Δ, then Δ has at
least two C-breaking vertices.

Lemma 3. Let G be a 2-connected graph with a clique Vt such that |Vt| ≥ 5. If
for every triangle Δ in Vt there exists a longest cycle that 3-intersects Vt at Δ,
then Vt is pulled by at least one of such cycles.

Proof. Suppose by contradiction that Vt is not pulled by any of such cycles. Then,
for every triangle Δ in Vt there exists a longest cycle that 3-crosses Vt at Δ. By
Proposition 11, for every Δ in Vt, Δ have at least two breaking vertices. As there
are

(|Vt|
3

)
triangles in Vt, by pigeonhole principle, there exists a vertex v ∈ Vt such

that v is a breaking vertex for at least (|Vt|−1)(|Vt|−2)
3 of the triangles incident

to v. As |Vt| ≥ 5, there exists two edge-disjoint triangles incident to v such that v
is a breaking vertex for both of them. Let vab and vcd be such triangles, and let C
and D be the corresponding cycles respectively. As v breaks both C and D, with-
out loss of generality we may assume that Cva and Dvc are component-disjoint
and that Cvb and Dvd are component-disjoint. Also, Cab is component-disjoint
with at least one of {Dvc,Dvd}, and Dcd is component-disjoint with at least one
of {Cva, Cvb}. Without loss of generality, we may suppose that Cab is component-
disjoint from Dvd. If Dcd is component-disjoint from Cva then Dvc ·Dcd ·da ·Cav

and Ddv·Cvb·Cba·ad are cycles, a contradiction. So CompVt
(Dcd) = CompVt

(Cva)
and Dcd is component-disjoint from Cvb. If Cab is component-disjoint from Dcd

then Cva · ac · Dca and Cvb · Cba · ac · Dcd · Ddv are cycles, a contradiction. So,
CompVt

(Cab) = CompVt
(Dcd). As CompVt

(Dcd) = CompVt
(Cva), we conclude

that CompVt
(Cab) = CompVt

(Cva). And as Cva and Dvc are component-disjoint,
we conclude that Cab and Dvc are component-disjoint. Then, Cva · Cab · bc · Dcv

and Cvb · bc · Dcd · Ddv are both cycles, one of them longer than L, again a
contradiction. ��

We can extend the previous lemma, but just for chordal graphs.

Lemma 4. Let G be a 2-connected chordal graph with a maximal clique Vt such
that |Vt| = 4. If for every triangle Δ in Vt there exists a longest cycle that
3-intersects Vt at Δ, then either lct(G) = 1 or Vt is at most 3-pulled.

Proof. Let (T,V) be a tree-decomposition of G as in Proposition 2. Suppose that
Vt is not at most 3-pulled. Then, for every triangle Δ in Vt there exists a longest
cycle that 3-crosses Vt at Δ. By Proposition 11, for every Δ in Vt, Δ has at least
two breaking vertices. As |Vt| = 4, there are four such triangles. By pigeonhole
principle, there exists a vertex a ∈ Vt such that a is a breaking vertex for at
least two of the triangles incident to a. Let abd and acd be these two triangles.
Let C and D be the corresponding longest cycles respectively. Hence,

CompVt
(Cab)
= CompVt

(Cad) (6)

and
CompVt

(Dac)
= CompVt
(Dad). (7)

566 J. Gutiérrez

Also, by Proposition 10,

CompVt
(Cab)
= CompVt

(Dcd) (8)

and
CompVt

(Cbd)
= CompVt
(Dac). (9)

By (6) and (7), either CompVt
(Cab)
= CompVt

(Dad) and CompVt
(Cad)
=

CompVt
(Dac), or CompVt

(Cab)
= CompVt
(Dac) and CompVt

(Cad)
=
CompVt

(Dad). If the first case is true, then Cba ·Dad ·Ddc ·cb and Dac ·cb·Cbd ·Cda

are cycles, one of them longer than L, a contradiction. If the second case
is true, then CompVt

(Cbd)
= CompVt
(Dcd). Indeed, suppose for a moment

that CompVt
(Cbd) = CompVt

(Dcd). Then, by Proposition 10, CompVt
(Cad)
=

CompVt
(Dcd) and CompVt

(Cbd)
= CompVt
(Dad), so Cba · Cad · Ddc · cb and

Dca ·Cad ·Ddb · bc are cycles, one of them longer than L, a contradiction. Hence,
CompVt

(Cbd)
= CompVt
(Dcd). Thus, Cad ·Dad and Cab ·Cbd ·Ddc ·Dca are cycles.

But then, Cad ·Dad is a longest cycle that 2-crosses Vt, and we conclude the proof
by applying Lemma2. ��

The following lemma synthesizes the previous four lemmas.

Lemma 5. Let G be a 2-connected chordal graph with a maximal clique Vt.
Either lct(G) ≤ max{1, |Vt| − 3} or Vt is at most 3-pulled.

Proof. Suppose that lct(G) > max{1, |Vt| − 3}. Then, for every set of
max{1, |Vt|−3} vertices in Vt, there exists a longest cycle that does not con-
tain any vertex of that set. If one of these cycles intersects Vt at most once,
then we are done. Hence, we may assume that every such cycle intersects Vt

at least twice. Suppose for a moment that one of these cycles, called it C, 2-
intersects Vt. If C, or any longest cycle equivalent to C, 2-crosses Vt, then we
finish by Lemmas 1 and 2. So, all longest cycles equivalent to C are fenced by Vt

and Vt is 2-pulled by C. Thus, as |Vt| − max{1, |Vt| − 3} ≤ 3, every such cycle
3-intersects Vt and we finish by Lemmas 3 and 4. ��
Proposition 12. If C is a cycle fenced by Vt for some t ∈ T , then there exists
a neighbor t′ of t in T such that Brt(C) = Brt(t′).

Proposition 13. If every clique Vt in G is at most k-pulled, then there exist
two longest cycles C and D fenced by Vt, and an edge tt′ of T such that Brt(C) =
Brt(t′), Brt′(D) = Brt′(t), Vt is at most k-pulled by C, and Vt′ is at most k-pulled
by D.

Proof. We define a digraph T ′ as follows. (i) V (T) = V (T ′) and (ii) tt′ ∈ E(T ′)
if and only if tt′ ∈ E(T) and there exists a longest cycle C in G fenced by Vt

such that Brt(C) = Brt(t′) and Vt is at most k-pulled by C. Let t be an arbitrary
node of T . As Vt is at most k-pulled, there exists a longest cycle C fenced by Vt

such that Vt is at most k-pulled by C. By Proposition 12, there exists a neighbor
t′ of t in T such that Brt(C) = Brt(t′). Hence, every node in T ′ has outdegree

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 567

at least one. Let tt′ be the last arc of a maximal directed path in T ′. As T is a
tree, t′t is also an arc in T ′, which implies that there exist two longest cycles C
and D in G such that Brt(C) = Brt(t′), Brt′(D) = Brt′(t), Vt is at most k-pulled
by C, and Vt′ is at most k-pulled by D.

Proposition 14. Let tt′ be an edge of T and let u and v be two vertices of G
with v /∈ Vt. If Brt(v) = Brt(t′) and u ∈ Vt \ Vt′ , then u and v are not adjacent.

Finally, we obtain our main result.

Theorem 1. For every 2-connected chordal graph G, lct(G)≤max{1, ω(G)−3}.

Proof. Suppose by contradiction that lct(G) > max{1, ω(G) − 3}. Let (T,V) be
a tree-decomposition of G as in Proposition 2. By Lemma 5, every clique Vt in G
is at most 3-pulled. Thus, by Proposition 13, there exist two longest cycles C
and D in G such that Brt(C) = Brt(t′), Brt′(D) = Brt′(t), Vt is at most 3-pulled
by C, and Vt′ is at most 3-pulled by D.

Note that the bags containing vertices of C are only in Brt(t′) ∪ {t}, and the
bags containing vertices of D are only in Brt′(t)∪{t′}. As Brt(t′) and Brt′(t) are
disjoint, C ∩D ⊆ Vt ∪Vt′ . Let u be a vertex such that u ∈ Vt \Vt′ . Suppose for a
moment that C contains u and let v be a neighbor of u in C. By Proposition 14,
Brt(v)
= Brt(t′) so v ∈ Vt. This implies that uv is an edge in Vt and, as Vt is
a clique, C contains all vertices of Vt, contradicting the fact that C is fenced.
So C does not contain vertices in Vt \ Vt′ . By a similar argument, D does not
contain vertices in Vt′ \ Vt. Thus C ∩ D ⊆ Vt ∩ Vt′ . As G is 2-connected, both C
and D intersects Vt and Vt′ at least twice, respectively.

Suppose for a moment that |Vt ∩ Vt′ | ≤ ω(G) − 2. Then, as
lct(G) >max{1, ω(G)−3}, there exists a longest cycle R that contains at most
one vertex of Vt∩Vt′ . But then R intersect with one of {C,D} at most once, a con-
tradiction to the fact that G is 2-connected. Hence, |Vt∩Vt′ | ≥ ω(G)−1. Thus, as
both Vt and Vt′ are maximal (and different), we conclude that |Vt| = |Vt′ | = ω(G)
and that |Vt ∩Vt′ | = ω(G)−1. Moreover, if ω(G) ≤ 3, then lct(G) > 1 and there
exists a longest cycle R that contains at most one vertex of Vt ∩Vt′ , again a con-
tradiction. We conclude that ω(G) ≥ 4 and that lct(G) > ω(G) − 3. Remember
that C and D intersect, respectively Vt and Vt′ , at least twice and at most three
times. Let {u} = Vt \ Vt′ and {w} = Vt′ \ Vt. We divide the rest of the proof in
three cases.

Case 1: Both C and D 3-intersect Vt and Vt′ , respectively. Let C ∩ Vt =
{x, y, z}. Consider the case when D ∩ Vt = {x, y, z}. By pigeonhole principle,
we may assume, without loss of generality, that u /∈ Cxy and that w /∈ Dxy.
As (C − Cxy) · Dxy and (D − Dxy) · Cxy are cycles, |Cxy| = |Dxy| and both
are longest cycles. Hence, (C − Cxy) · Dxy is a longest cycle that 3-crosses Vt

at C ∩ Vt, a contradiction to the fact that Vt is pulled by C. Now suppose that
D∩Vt = {y, z, w}, with w
= x. Then, Cyz ·Czx ·xw ·Dwy and Dyz ·Dzw ·wx ·Cxy

are cycles, one of them longer than L, a contradiction.

Case 2: Both C and D 2-intersect Vt and Vt′ , respectively. As G is 2-
connected, we may assume that C ∩ Vt = D ∩ Vt = {x, y}. Let C ′ and C ′′ be

568 J. Gutiérrez

the two xy-parts of C. Let D′ and D′′ be the two xy-parts of D. As (C − C ′) ·
D′, (C −C ′) ·D′′, (D−D′) ·C ′ and (D−D′) ·C ′′ are cycles, |C ′| = |C ′′| = |D′| =
|D′′| = L/2. Without loss of generality we may assume that u /∈ D′. Hence,
D′ · C ′ is a longest cycle that 2-crosses Vt at C ∩ Vt, a contradiction to the fact
that Vt is pulled by C.

Case 3: C 3-intersects Vt and D 2-intersects Vt′ As G is 2-connected, we
may assume that C ∩ Vt = {x, y, z} and that D ∩ Vt = {x, y}. Let D′ and D′′ be
the two xy-parts of D. Without loss of generality, we may assume that u /∈ D′.
Hence, (C−Cxy)·D′ is a longest cycle that 3-crosses Vt at C∩Vt, a contradiction
to the fact that Vt is pulled by C. ��

The previous theorem implies the following results.

Corollary 1. All longest cycles intersect in 2-trees, 3-trees, and in 2-connected
chordal planar graphs.

4 Graphs of Bounded Tree-Width

In this section, we prove an upper bound for lct(G) when G has bounded tree-
width.

Lemma 6. Let G be a 2-connected graph with tree-width at least two. Let (T,V)
be a tree-decomposition of G as in Proposition 1. Let Vt ∈ V. If lct(G) > |Vt|−2,
then Vt is at most 2-pulled.

Proof. Suppose that lct(G) > |Vt| − 2. This implies that no subset of Vt of
size |Vt| − 2 is a longest cycle transversal in G. Thus, for every such subset,
there exists a longest cycle that does not contain any vertex of it. If any of
these cycles intersects Vt at most once, we are done. Hence, every such cycle
2-intersects Vt. That is, for every pair of vertices in Vt, there exists a longest
cycle that 2-intersects Vt at such pair. If Vt is pulled by any such cycle, we are
done. Hence, for every pair of vertices in Vt, there exists a longest cycle that
2-crosses Vt at such pair. Let {a, b} ⊂ Vt and let C be a longest cycle that 2-
crosses Vt at {a, b}. Let C ′ and C ′′ be the two ab-parts of C. By Proposition 12,
there exists two nodes t′, t′′, neighbors of t in T , such that Brt(C ′) = Brt(t′) and
Brt(C ′′) = Brt(t′′), where possibly t′ = t′′.

Case 1: Vt ∩ Vt′ = Vt ∩ Vt′′ . As |Vt ∩ Vt′ | = |Vt| − 1, there exists a vertex
x ∈ Vt \ Vt′ = Vt \ Vt′′ . Let y be an arbitrary vertex in Vt different from x.
Let D be a longest cycle that 2-crosses Vt at {x, y}. Then, as C and D intersect
each other in at least two vertices, there exists a xy-part of D, called it D′,
such that either Brt(D′) = Brt(t′) or Brt(D′) = Brt(t′′). If the former is true,
then, by Proposition 8, {x, y} = Vt ∩ D′ ⊆ Vt′ , a contradiction to the fact that
x ∈ Vt \ Vt′ . If the later is true, then, by Proposition 8, {x, y} = Vt ∩ D′ ⊆ Vt′′ ,
a contradiction to the fact that x ∈ Vt \ Vt′′ .

Case 2: Vt ∩ Vt′
= Vt ∩ Vt′′ . As |Vt ∩ Vt′ | = |Vt ∩ Vt′′ |, there exists a vertex
x ∈ (Vt ∩ Vt′) \ Vt′′ and a vertex y ∈ (Vt ∩ Vt′′) \ Vt′ . Let D be a longest

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 569

cycle that 2-crosses Vt at {x, y}. Then, as C and D intersect in at least two
vertices, there exists a xy-part of D, called it D′, such that Brt(D′) = Brt(t′)
or Brt(D′) = Brt(t′′). If the former is true, then by Proposition 8, {x, y} =
Vt ∩ D′ ⊆ Vt′ , a contradiction to the fact that y ∈ (Vt ∩ Vt′′) \ Vt′ . If the later is
true, then by Proposition 8, {x, y} = Vt ∩ D′ ⊆ Vt′′ , a contradiction to the fact
that x ∈ (Vt ∩ Vt′) \ Vt′′ . ��
Proposition 15. Let tt′ be an edge of T and let C be a cycle in G. If C has a
vertex in Vt \ Vt′ and a vertex in Brt(t′), then |C ∩ Vt| ≥ 3.

Theorem 2. For every 2-connected graph G, lct(G) ≤ tw(G) − 1.

Proof. As G is 2-connected, it is not a forest, so tw(G) ≥ 2. Let (T,V) be a tree-
decomposition of G as in Proposition 1. Suppose by contradiction that lct(G) >
tw(G) − 1. Let t ∈ V (T). Then, as |Vt| = tw(G) + 1, by Lemma 6, Vt is at most
2-pulled. Thus, by Proposition 13, there exist two longest cycles C and D in G
such that Brt(C) = Brt(t′), Brt′(D) = Brt′(t), Vt is at most 2-pulled by C, and
Vt′ is at most 2-pulled by D.

Note that the bags containing vertices of C are only in Brt(t′)∪{t}, and that
the bags containing vertices of D are only in Brt′(t)∪{t′}. As Brt(t′) and Brt′(t)
are disjoint, C ∩ D ⊆ Vt ∪ Vt′ . Let u be the vertex such that {u} = Vt \Vt′ . As C
is fenced, by definition, there exists a vertex v in C such that v is not in Vt.
Suppose for a moment that C contains u. By Proposition 15, |C ∩ Vt| ≥ 3. But,
as Vt is at most 2-pulled by C, C intersects Vt at most twice, a contradiction.

So C does not contain the only vertex in Vt \ Vt′ . By a similar argument, D
does not contain the only vertex in Vt′ \ Vt. Thus C ∩ D ⊆ Vt ∩ Vt′ . As G is
2-connected,

2 ≤ |C ∩ D| = |C ∩ D ∩ Vt ∩ Vt′ |.
This implies that |C ∩Vt| ≥ 2 and |D ∩Vt′ | ≥ 2, therefore, as C and D are given
by Lemma 6, C 2-intersects Vt and D 2-intersects Vt′ . As G is 2-connected, we
may assume that C ∩ Vt = D ∩ Vt = {x, y}. Let C ′ and C ′′ be the two xy-parts
of C. Let D′ and D′′ be the two xy-parts of D. As |C ∩D| = 2, we can conclude
that |C ′| = |C ′′| = |D′| = |D′′|. And, as |Vt ∩ Vt′ | = |Vt′ | − 1, at least one of
{D′,D′′}, suppose it is D′, does not contain the only vertex of Vt′ \ Vt. Hence,
C ′ · D′ is a longest cycle that 2-crosses Vt at {x, y} = C ∩ Vt, a contradiction to
the fact that Vt is pulled by C. ��

The previous theorem implies the following results.

Corollary 2. All longest cycles intersect in 2-connected series-parallel graphs.

Planar graphs do not have bounded tree-width. However, Fomin and Thi-
likos [25] showed that a planar graph G on n vertices has tree-width at most
3.182

√
n. More generally, Alon, Seymour, and Thomas [26] showed that any Kr-

minor free graph on n vertices has tree-width at most r1.5
√

n. Hence, we have
the following corollaries.

570 J. Gutiérrez

Corollary 3. For every 2-connected planar graph G on n vertices, lct(G) <
3.182

√
n.

Corollary 4. For every 2-connected Kr-minor free graph G, lct(G) < r1.5
√

n.

5 Partial 3-Trees and Split Graphs

By Theorem 2 (Sect. 4), every partial 3-tree has a longest cycle transversal of
size at most 2. We show that in fact there is a transversal of size one, that is,
all longest cycles intersect in 2-connected partial 3-trees. As the proof is longer
than the others, we choose to omit it. The difficulty arises when trying to analyze
longest cycles that 3-intersects a bag. But generally speaking, the main idea of
the other proofs is maintained. We also give a a self-contained proof of the result
given by Jobson et al. [4] that all longest cycles intersect in split graphs.

Theorem 3. If G be a 2-connected partial 3-tree, then lct(G) = 1.

Theorem 4. If G is a 2-connected split graph then lct(G) = 1.

Proof sketch: We say that a graph G is minimal-lct if lct(G) > 1 but for every
proper subgraph H of G, lct(H) = 1. It is easy to show that If G = (V,E) is
a minimal-lct split graph with a splitting (K,S), then, for every edge uv ∈ E
such that u ∈ K and v ∈ S, there is a longest cycle in G that contains uv. By
analyzing such a minimal counterexample we can obtain the contradiction we
want. ��

6 Final Remarks

In this paper we showed upper bounds for the minimum size of a set of vertices
that intersects all longest cycles in a 2-connected graph. A natural question asks
for lower instead of upper bounds. It is known that it is not always the case that
all longest cycles intersect in general 2-connected graphs, so lct(G) > 1 if G is
arbitrary. The question of whether lct(G) = 1 when G is chordal is still open.
For bounded tree-width graphs, there exists a 2-connected graph G given by
Thomassen on 15 vertices [27], with tree-width four and lct(G) = 2. Hence, by
Theorem 2, we conclude that lct(G) ∈ {2, 3} in partial 4-trees.

References

1. Grötschel, M.: On intersections of longest cycles. In: Bollobás, B. (ed.) Graph
Theory and Combinatorics, pp. 171–189 (1984)

2. Thomassen, C.: Hypohamiltonian graphs and digraphs. In: Alavi, Y., Lick, D.R.
(eds.) Theory and Applications of Graphs. LNM, vol. 642, pp. 557–571. Springer,
Heidelberg (1978). https://doi.org/10.1007/BFb0070410

3. Rautenbach, D., Sereni, J.S.: Transversals of longest paths and cycles. SIAM J.
Discret. Math. 28(1), 335–341 (2014)

https://doi.org/10.1007/BFb0070410

Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs 571

4. Jobson, A., Kzdy, A., Lehel, J., White, S.: Detour trees. Discret. Appl. Math. 206,
73–80 (2016)

5. van Aardt, S.A., Burger, A.P., Dunbar, J.E., Frick, M., Llano, B., Thomassen, C.,
Zuazua, R.: Destroying longest cycles in graphs and digraphs. Discret. Appl. Math.
186(Suppl. C), 251–259 (2015)

6. Fernandes, C., Gutiérrez, J.: Hitting all longest cycles in a graph. In: Anais do
XXXVII congresso da sociedade brasileira de computação, pp. 87–90 (2017)

7. Balister, P., Győri, E., Lehel, J., Schelp, R.: Longest paths in circular arc graphs.
Comb. Probab. Comput. 13(3), 311–317 (2004)

8. Cerioli, M., Lima, P.: Intersection of longest paths in graph classes. Electron. Notes
Discret. Math. 55, 139–142 (2016)

9. Chen, F.: Nonempty intersection of longest paths in a graph with a small matching
number. Czechoslov. Math. J. 65(140), 545–553 (2015)

10. Chen, G., Ehrenmüller, J., Fernandes, C., Heise, C., Shan, S., Yang, P., Yates,
A.: Nonempty intersection of longest paths in seriesparallel graphs. Discret. Math.
340(3), 287–304 (2017)

11. de Rezende, S., Fernandes, C., Martin, D., Wakabayashi, Y.: Intersecting longest
paths. Discret. Math. 313, 1401–1408 (2013)

12. Golan, G., Shan, S.: Nonempty intersection of longest paths in 2K2-free graphs.
https://arxiv.org/abs/1611.05967 (2016)

13. Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths.
Ars Comb. 29, 43–52 (1990)

14. Zamfirescu, T.: On longest paths and circuits in graphs. Math. Scand. 38(2), 211–
239 (1976)

15. Cerioli, M.R., Fernandes, C.G., Gómez, R., Gutiérrez, J., Lima, P.T.: Transversals
of longest paths. Electron. Notes Discret. Math. 62(Suppl. C), 135–140 (2017). IX
Latin and American Algorithms, Graphs and Optimization, LAGOS 2017

16. Cerioli, M.R., Fernandes, C.G., Gómez, R., Gutiérrez, J., Lima, P.T.: Transversals
of longest paths (2017). https://arxiv.org/abs/1712.07086

17. Chen, G., Faudree, R.J., Gould, R.J.: Intersections of longest cycles in k-connected
graphs. J. Comb. Theory Ser. B 72(1), 143–149 (1998)

18. Hippchen, T.: Intersections of longest paths and cycles. Ph.D. thesis, Georgia State
University (2008)

19. Jendrol, S., Skupień, Z.: Exact numbers of longest cycles with empty intersection.
Eur. J. Comb. 18(5), 575–578 (1997)

20. Stewart, I.A., Thompson, B.: On the intersections of longest cycles in a graph.
Exp. Math. 4(1), 41–48 (1995)

21. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2017)
22. Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theor.

Comput. Sci. 209(1), 1–45 (1998)
23. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal

graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)
24. Heinz, M.: Tree-decomposition: graph minor theory and algorithmic implications.

Master’s thesis, Technischen Universität Wien (2013)
25. Fomin, F., Thilikos, D.: New upper bounds on the decomposability of planar

graphs. J. Graph Theory 51(1), 53–81 (2006)
26. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J.

Am. Math. Soc. 3, 801–808 (1990)
27. Shabbir, A., Zamfirescu, C., Zamfirescu, T.: Intersecting longest paths and longest

cycles: a survey. Electron. J. Graph Theory Appl. 1, 56–76 (2013)

https://arxiv.org/abs/1611.05967
https://arxiv.org/abs/1712.07086

Majority Model on Random Regular
Graphs

Bernd Gärtner and Ahad N. Zehmakan(B)

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{gaertner,abdolahad.noori}@inf.ethz.ch

Abstract. Consider a graph G = (V, E) and an initial random coloring
where each vertex v ∈ V is blue with probability Pb and red otherwise,
independently from all other vertices. In each round, all vertices simul-
taneously switch their color to the most frequent color in their neigh-
borhood and in case of a tie, a vertex keeps its current color. The main
goal of the present paper is to analyze the behavior of this basic and
natural process on the random d-regular graph Gn,d. It is shown that
for ε > 0, Pb ≤ 1/2 − ε results in final complete occupancy by red in
O(logd log n) rounds with high probability, provided that d ≥ c/ε2 for
a sufficiently large constant c. We argue that the bound O(logd log n) is
asymptomatically tight. Furthermore, we show that with high probabil-
ity, Gn,d is immune; i.e., the smallest dynamic monopoly is of linear size.
A dynamic monopoly is a subset of vertices that can “take over” in the
sense that a commonly chosen initial color eventually spreads throughout
the whole graph, irrespective of the colors of other vertices. This answers
an open question of Peleg [22].

Keywords: Majority model · Random regular graph
Bootstrap percolation · Density classification · Threshold behavior
Dynamic monopoly

1 Introduction

Consider a graph G = (V,E) with an initial coloring where each vertex is red or
blue. Each red/blue vertex could correspond to an infected/uninfected cell in a
brain, a burning/non-burning tree in a forest, a positive/negative individual in
a community regarding a reform proposal, or an informed/uninformed processor
in a distributed system. Starting from an initial coloring, and in discrete-time
rounds, all vertices synchronously update their current color based on a prede-
fined rule as a function of the current coloring of their neighbors. By defining a
sufficiently large updating rule, this process can model different basic dynamic
phenomena, like infection spreading among cells, fire propagation in a forest,
opinion forming regarding an election in a community, or information distribu-
tion among processors. As two simple examples, a tree starts burning if at least
one of its neighbors is on fire, or a person adopts the most frequent opinion
among his/her friends.
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 572–583, 2018.
https://doi.org/10.1007/978-3-319-77404-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_42&domain=pdf

Majority Model on Random Regular Graphs 573

Researchers from a wide spectrum of fields, from biology to physics, and with
various motivations, have extensively investigated the behavior of such processes.
One of the most natural updating rules, whose different variants have attracted
a substantial amount of attention, is the majority rule where a vertex updates
its current color to the most frequent color in its neighborhood.

Here, one of the most studied variants is majority bootstrap percolation in
which by starting from a random coloring, where each vertex is blue with prob-
ability Pb and red with probability Pr = 1 − Pb independently, in each round a
blue vertex switches to red if at least half of its neighbors are red, and a red vertex
stays red forever. A considerable amount of effort has been put into the inves-
tigation and analysis of majority bootstrap percolation, both theoretically and
experimentally, from results by Balogh et al. [3] to the recent paper by Stefánsson
and Vallier [26]. Typical graphs are the d-dimensional lattice, the d-dimensional
hypercube, the binomial random graph, and the random regular graph.

The main motivation behind majority bootstrap percolation is to model
monotone dynamic processes like rumor spreading, where an informed individ-
ual will always stay informed of the rumor (corresponding to red color, say).
However, it does not model non-monotone processes like opinion forming in
a community, distributed fault-local mending, and diffusion of two competing
technologies over a social network. For this, the following majority model is
considered: we are given a graph G = (V,E) and an initial random coloring,
where each vertex is blue with probability Pb and red otherwise, independently
of other vertices. In each round, all vertices simultaneously update their color
to the most frequent color in their neighborhood; in case of a tie, a vertex keeps
its current color. Since the majority model is a deterministic process on a finite
state space, the process must reach a cycle of states after a finite number of
rounds. The number of rounds that the process needs to reach the cycle is called
the consensus time of the process.

Even though different aspects of the majority model like the consensus time
and its threshold behavior have been studied both experimentally and theoreti-
cally (see Sect. 1.2 for more details), there is not much known about the behavior
of the majority model on the random d-regular graph. Majority bootstrap perco-
lation [4], rumor spreading [11,20], and flooding process [2] have been studied on
random regular graphs, but this graph class is not easy to handle. Even though
the behavior of majority bootstrap percolation on the random regular graph had
been discussed in several prior works, it took almost two decades until Balogh
and Pittel [4] could analyze the behavior of the process partially. They proved
(under some limitations on the size of d) that there are two values P1 and P2

such that Pr � P1 results in the coexistence of both colors and P2 � Pr results
in a fully red configuration with high probability1; however, P1 �= P2 which
leaves a gap in the desired threshold behavior of the process. We shortly write
f(n) � g(n) for f(n) = o(g(n)).

1 For an n-node graph G = (V, E), we say an event happens with high probability
(w.h.p.) if its probability is at least 1 − o(1) as a function of n. Notice we do not
require the probability 1− 1/nc, for a constant c > 0, as it is done in some contexts.

574 B. Gärtner and A. N. Zehmakan

In the present paper, we prove that in the majority model on the random
d-regular graph, and for ε > 0, Pb ≤ 1/2 − ε results in final complete occu-
pancy by red color in O(logd log n) rounds w.h.p. if d ≥ c/ε2 for a sufficiently
large constant c. In words, even a narrow majority takes over the whole graph
extremely fast. We should point out that the result probably holds for d ≥ 3, but
our proof techniques do not yield this, since they require sufficient edge density
in the underlying graph. We also show that the upper bound of O(logd log n) is
best possible.

A natural context of this result is the density classification problem; coming
from the theory of cellular automata, this is the problem of finding an updating
rule for a given graph G such that for any initial 2-coloring the process reaches
a monochromatic configuration by the initial majority color. It turned out that
the problem is hard in the sense that even for a cycle, there is no rule which
can do the density classification task perfectly [19]. Our result shows that the
majority rule does the density classification task acceptably for almost every
d-regular graph with d sufficiently large (see Theorem 2 for the precise meaning
of acceptably and sufficiently large).

It is an interesting (and currently unanswered question) which properties of
a graph are chiefly responsible for the majority rule being able to almost classify
density - or failing to do so. For example, we know that on a torus T√

n,
√

n (a√
n × √

n lattice with “wrap-around”), already a very small initial blue density
of Pb � 1/n1/4 prevents red color from taking over, w.h.p. [13,14]. A plausible
explanation is that the torus T√

n,
√

n has a very low vertex/edge expansion in
comparison to the random regular graph; however, we do not know whether
expansion is indeed the right parameter to look at here.

As a concrete application of our main Theorem 2, we improve a result and
answer an open question by Peleg [22]. Motivated by the problem of fault-local
mending in distributed systems, he introduced the concept of immunity. An n-
vertex graph G is (α, β)-immune if a set of m ≤ βn vertices with a common color
can take over at most αm vertices in the next round in the majority model. Peleg
proved that there exists a d-regular graph that is (c2 log n

d , β)-immune, for suitable
constants c1, c2, β > 0 and d ≥ c1. He also showed that this result is tight up to
a logarithmic factor. We close this logarithmic gap. Peleg also asked whether
there exist regular graphs that are immune in the sense that no sub-linear size
set of a common color can eventually take over the whole graph. We answer his
question positively: with probability the random d-regular graph is immune.

The outline of the paper is as follows. After presenting basic definitions and
prior research in Sects. 1.1 and 1.2, the behavior of the majority model on the
random d-regular graph is analyzed in Sect. 2; the application to immunity is
presented in Sect. 2.2.

1.1 Notation and Preliminaries

For a vertex v in graph G = (V,E) the neighborhood of v is defined as N(v) :=
{u ∈ V : (v, u) ∈ E}. Furthermore for u, v ∈ V , let d(u, v) denote the length of
the shortest path between v, u in terms of the number of edges, which is called

Majority Model on Random Regular Graphs 575

the distance between v and u (for a vertex v, we define d(v, v) = 0). For v ∈ V ,
Ni(v) := {u ∈ V : d(v, u) ≤ i} is the set of vertices in distance at most i from v.

A generation is a function g : V → {b, r} where b and r stand for blue and
red, respectively. In addition to g(v) = c for a vertex v ∈ V and c ∈ {b, r}, we
also write g|S = c for a set S ⊆ V which means ∀v ∈ S, g(v) = c. For a graph
G = (V,E) and a random initial generation g0, where ∀v ∈ V Pr[g0(v) = b] = Pb

and Pr[g0(v) = r] = Pr = 1−Pb independently, assume ∀i ≥ 1 and v ∈ V , gi(v)
is equal to the color that occurs most frequently in v’s neighborhood in gi−1,
and in case of a tie gi(v) = gi−1(v). This model is called the majority model.
Without loss of generality, we always assume that Pb ≤ Pr.

The random d-regular graph Gn,d is the random graph with a uniform distri-
bution over all d-regular graphs on n vertices, say [n] (in this paper, we assume
whenever talking about Gn,d, dn is even). The definition of the random regular
graph is conceptually simple, but it is not easy to use. However, there is an
efficient way to generate Gn,d which is called the configuration model [5].

In the configuration model for V = [n], which is to be the vertex set of the
graph, we associate the d-element set Wi = {i} × [d] = {(i, i′) : 1 ≤ i′ ≤ d} to
vertex 1 ≤ i ≤ n. Let W = [n] × [d] be the union of Wis; then a configuration is
a partition of W into dn/2 pairs. These pairs are called the edges of the config-
uration. The natural projection of the set W onto V = [n] (ignoring the second
coordinate) projects each configuration F to a multigraph π(F) on V . Note that
π(F) might contain loops and multiple edges. Thus, π(F) is not necessarily a
simple graph. We define the random d-regular multigraph G

∗
n,d to be the multi-

graph π(F) obtained from a configuration F chosen uniformly at random among
all configurations on W . Bender and Canfield [5] proved that if we consider G∗

n,d

and condition on it being a simple graph, we obtain a random d-regular graph on
V with uniform distribution over all such graphs. Furthermore, it is known [16]
that if Pr(G∗

n,d ∈ An) → 0 as n → ∞ then also Pr(Gn,d ∈ An) → 0, where An is
a subset of d-regular multigraphs on V . This allows us to work with G

∗
n,d instead

of Gn,d itself in our context. To generate a random configuration, it suffices to
define an arbitrary ordering on the elements of W and repeatedly match the first
unmatched element in this order with another unmatched element uniformly at
random. In Lemma 1, we utilize a slightly different construction from [7].

1.2 Prior Work

Even though a substantial amount of effort has been put into the study of a
wide spectrum of the majority-based dynamic processes, our attention here is
mostly devoted to the prior work concerning the majority model. However, let us
briefly point out a couple of remarkable accomplishments regarding the majority
bootstrap percolation, which is arguably the closest model to ours. Aizenmann
and Lebowitz [1] proved that in the d-dimensional lattice there is a threshold
value Pc so that Pr � Pc and Pc � Pr respectively result in the stable coexis-
tence of both colors and fully red configuration with high probability Balogh and
Bollobás [3] investigated the model on the d-dimensional hypercube and proved
that the process has a phase transition with a sharp threshold. As discussed, the
case of the random regular graph was also studied by Balogh and Pittel [4].

576 B. Gärtner and A. N. Zehmakan

The majority model was introduced by Spitzer [25] in 1970. Afterwards, the
model’s behavior was investigated mostly by computer simulations (i.e., Monte-
Carlo methods). These computer simulations (see for instance [8]) suggested that
the model shows a threshold behavior on the two-dimensional torus T√

n,
√

n. To
address this observation, it was proven [14] that Pb � n−1/4 and Pb � n−1/4

respectively result in red monochromatic generation and the stable coexistence
of both colors w.h.p. Furthermore Schonmann [24] proved in the biased variant
of the majority model, where in case of a tie always red is chosen, and torus
T√

n,
√

n, for 1/ log n � Pr w.h.p. the process reaches fully red generation.
Since the updating rule is deterministic and there are 2|V | possible color-

ings, the majority process must always reach a cycle of generations. Poljak and
Turźık [23] showed that the number of rounds needed to reach the cycle (i.e.,
the consensus time) is O(|V |2), and Goles and Olivos [15] proved the length of
the cycle is always one or two. Frischknecht et al. [12] showed there exists graph
G = (V,E) which needs Ω(|V |2/ log2 |V |) rounds to stabilize for some initial
coloring in the majority model, which thus leaves only a poly-logarithmic gap.
Kasser et al. [17] studied a decision variant of the problem; they proved for a
given graph G = (V,E) and an integer k, it is NP-complete to decide whether
there exists an initial coloring for which the consensus time is at least k.

Kempe et al. [18], motivated from viral marketing, and independently
Peleg [21], motivated from fault-local mending in distributed systems, introduced
the concept of dynamic monopoly, a subset of vertices that can take over the
whole graph. Afterwards, lots of studies regarding the size of dynamic monop-
olies and their behavior have been done. To name a few, even though it was
conjectured [21] that the size of the smallest dynamic monopoly in the major-
ity model is Ω(

√|V |) for a graph G = (V,E), Berger [6], surprisingly, proved
there exist graphs with dynamic monopolies of constant size. Furthermore,
Flocchini et al. [10] studied the size of the smallest dynamic monopoly in the
two dimensional torus. For more related results regarding dynamic monopolies,
the interested reader is referred to a more recent work by Peleg [22].

2 Majority Model on Random Regular Graphs

The three special cases of d = 0, 1, 2 are exceptions to many properties of the
random d-regular graph Gn,d. For instance, Gn,d is d-connected for d ≥ 3, but
disconnected for d ≤ 2 w.h.p. [16]. In the majority model also these three spe-
cial cases show a different sort of behavior, which intuitively comes from their
disconnectivity. We shortly discuss these cases following two purposes. Firstly,
their threshold behavior sounds interesting by its own sake. Secondly, as a warm-
up it probably helps the reader to have a better understanding of the majority
model before going through our main results and proof techniques concerning
the density classification in Sect. 2.1 and dynamic monopolies in Sect. 2.2.

A 0-regular graph is an empty graph with n vertices, and a 1-regular graph
is the same as a perfect matching. We argue that in both cases Pb � 1/n results
in red monochromatic generation and Pb � 1/n results in the coexistence of
both colors w.h.p. (recall we assume Pb ≤ Pr). Let random variable X denote

Majority Model on Random Regular Graphs 577

the number of blue vertices in the initial generation. E[X] = nPb = o(1) for
Pb � 1/n, and by Markov’s inequality [9] w.h.p. g0|V = r. If 1/n � Pb, then
E[X] = ω(1). Since X is the sum of n independent Bernoulli random variables,
Chernoff bound [9] implies that w.h.p. there exists a blue vertex in the initial
generation, which guarantees the survival of blue color in both cases.

We show the random 2-regular graph Gn,2 also has a phase transition, but
at 1/

√
n instead of 1/n. Actually more strongly, we prove that for any n-vertex

2-regular graph, Pb � 1/
√

n and 1/
√

n � Pb w.h.p. result in fully red generation
and the stable coexistence of both colors, respectively. Notice a 2-regular graph
is the union of cycles of length at least 3.

Theorem 1. In the majority model and an n-vertex 2-regular graph G = (V,E),
Pb � 1/

√
n results in red monochromatic generation and 1/

√
n � Pb outputs

the stable coexistence of both colors w.h.p.

Proof. In a generation g, define a blue (red) edge to be an edge whose both
endpoints are blue (red). Consider an arbitrary edge set E′ ⊂ E which con-
tains linearly many disjoint edges (a maximum matching, say), and let random
variable X1 denote the number of blue edges of E′ in g0. For 1/

√
n � Pb,

E[X1] = ω(1); thus, by Chernoff bound there is a blue edge in g0 w.h.p. which
guarantees the survival of blue color.

If Pb � 1/
√

n, then E[X2] = o(1), where the random variable X2 denotes
the number of blue edges in g0, which by Markov’s inequality implies there is no
blue edge in g0 w.h.p. If in a cycle there is no blue edge and there is at least a red
edge, then the cycle gets red monochromatic after at most n/2 rounds because
the red edge grows from both sides in each round until it covers the whole cycle.
Thus, it only remains to show that each cycle contains a red edge w.h.p. An
odd cycle always contains a monochromatic edge (red in our case). Then, let X3

denote the number of even cycles which contain no monochromatic edge; i.e.,
the vertices are red and blue one by one. Define ni to be the number of cycles
of length i. We have

E[X3] ≤
∑

2≤i≤�n/2�
n2i · 2P i

b (1 − Pb)i ≤ 2P 2
b

∑

2≤i≤�n/2�
n2i = o(1)

where we used Pb � 1/
√

n and the fact that there are at most linearly many
cycles. Therefore, w.h.p. there is no cycle without a red edge. ��

2.1 Density Classification

In this section, it is shown that in the d-regular random graph Gn,d and the
majority model, Pb ≤ 1/2 − ε, for ε > 0, results in fully red generation in
O(logd log n) rounds w.h.p. provided that d ≥ c/ε2 for a sufficiently large con-
stant c. To prove that, first we need to provide Lemmas 1 and 2 as the ingre-
dients, which are also interesting and important by their own sake. Specifically,
the results in Sect. 2.2 concerning dynamic monopolies and immunity are built
on Lemma 2.

578 B. Gärtner and A. N. Zehmakan

We say the k-neighborhood of a vertex v in a graph G is a tree if the induced
subgraph by vertex set Nk(v) is a tree. Roughly speaking, Lemma 1 explains
that for small d and k the expected number of vertices whose k-neighborhood
is not a tree in Gn,d is small. This local tree-like structure turns out to be very
useful in bounding the consensus time of the process.

Lemma 1. In Gn,d, the expected number of vertices whose k-neighborhood is
not a tree is at most 4d2k.

Proof. Firstly, we assume k < logd(n/2) because otherwise the statement is
clearly true. Furthermore as discussed in Sect. 1.1, we work with the random d-
regular multigraph G

∗
n,d instead of the random d-regular graph Gn,d, on vertex

set V = [n]. We generate a uniformly at random configuration by partitioning
W =

⋃
1≤i≤n Wi into dn/2 pairs as follows, where the d-element set Wi =

{i} × [d] corresponds to the vertex 1 ≤ i ≤ n. In step 1, we start from an
arbitrary class (we utilize the terms of d-element set and class interchangeably),
say W1, and match its elements one by one based on an arbitrary predefined order
with an unmatched element (from W1 or other classes) uniformly at random. We
say a class has been reached in step j ≥ 1 if for the first time in step j one of its
elements has been matched. In step j ≥ 2, we match the unmatched elements
of the classes reached in step j − 1 one by one based on a predefined ordering,
say lexicographical order, with unmatched elements uniformly at random. It is
possible in some step, no new class is reached. In this case, if all elements are
matched, the process is over; otherwise we continue the process from one of the
unreached classes, say the one with the smallest index.2

Assume in step j ≥ 1 we match element x with an element y, chosen uniformly
at random among all yet unmatched elements. We say xy is a cycle-maker if y is
not the first element matched in its class. The probability that an edge selected
in the j-th step is a cycle-maker is at most dj/(n−dj). Thus, the probability that
there is a cycle-maker edge in the first k steps is at most 2dk · max1≤j≤k

dj

n−dj

which is smaller than 2d2k

n−dk . Let X denote the number of vertices whose k-
neighborhood is not a tree. Then, we have E[X] ≤ (2nd2k)/(n − dk) which is
smaller than 4d2k for k < logd(n/2) because n − dk > n − dlogd(n/2) = n/2. ��
Corollary 1. In Gn,d, the number of vertices whose (c′ logd log2 n)-neighborhood
is not a tree is at most log2c′+1

2 n w.h.p., for constant c′ > 0.

Proof. Let X denote the number of vertices whose (c′ logd log2 n)-neighborhood
is not a tree. By Lemma 1, E[X] ≤ 4d2c′ logd log2 n = 4 log2c′

2 n. By Markov’s
inequality Pr[X ≥ log2c′+1

2 n] ≤ 4/ log2 n = o(1). ��
In a graph G = (V,E) for two (not necessarily disjoint) vertex sets S and S′, we
say that S controls S′ if S being monochromatic in some generation implies S′

being monochromatic (of the same color) in the next generation in the majority
2 For a more formal description of the construction, please see [7], and notice since the

second element always is chosen randomly, the generated configuration is random.

Majority Model on Random Regular Graphs 579

model, irrespective of the colors of other vertices. Clearly in Gn,d, S controls S′

implies that for every v ∈ S′ at least �d/2� of its neighbors are in S.

Lemma 2. In Gn,d on vertex set V = [n] with d ≥ c1, w.h.p. there do not exist
two vertex sets S, S′ such that S controls S′, |S| ≤ n

c′′ , |S′| = � 10|S|
d �, where

c1, c
′′ are sufficiently large constants.

This immediately implies that in Gn,d and the majority model, less than n
c′′ blue

(red) vertices will die out in O(logd n) rounds w.h.p.

Proof. We fix two sets S, S′ of the given sizes s and s′. We show that the prob-
ability for S controlling S′ is so small that a union bound over all pairs (S, S′)
yields the desired high probability result. We equivalently work in G

∗
n,d the rele-

vant “initial” part of which we generate as follows: we iterate through the pairs
in S′ × [d] in some fixed order and match each yet unmatched pair with a ran-
dom unmatched pair in V × [d]. In order for S to control S′, at least �d/2� of the
d pairs (v, i) must get matched with pairs in S × [d], for every v ∈ S′. Overall,
at least �d/2�s′ of the ds′ pairs S′ × [d] get matched with pairs in S × [d]. Such
a match is established only when the randomly chosen partner happens to be in
(S∪S′) × [d], and this may actually yield two of the required �d/2�s′ pairs. Hence,
for S to control S′, at least � := �d/2�s′/2 of the L := ds′ iterations must be
active, meaning that they match a yet unmatched pair with a pair in (S∪S′) × [d].
For a bit vector b of length at most L, let A(b) denote the event that iteration
i is active for exactly the indices where bi = 1. Then Pr[A(b1, b2 . . . , bL)] =∏L

i=1 Pr[iteration i is active if bi = 1|A(b1, . . . , bi−1)] (the right-hand side is a
telescoping product). Now, irrespective of b1, . . . , bi−1, an iteration is active with
probability at most d(s + s′)/(nd − 2ds′) = (s + s′)/(n − 2s′) ≤ 2s/n. Hence,
for a vector b with at least � ones, Pr[A(b1, b2 . . . , bL)] ≤ (2s/n)�. As there are
at most 2L such vectors, the probability that at least � iterations are active is
at most 2L(2s/n)� ≤ 210s(2s/n)

5
2 s. Hence by a union bound, the probability

P that there exist such sets S and S′ in a random configuration is at most
∑ n

c′′
s=1

(
n
s

)(
n

	 10s
d

)
210s(2s

n)
5
2 s. Since d ≥ c1 for a large constant c1,

(
n

	 10s
d

) ≤ (
n
s

)
;

thus, applying Stirling’s approximation [9] (i.e.,
(
n
k

) ≤ (ne/k)k) yields P ≤
∑ n

c′′
s=1(

ne
s)2s210s(2s

n)
5
2 s. Furthermore, since e2s · 210s · 2

5
2 s ≤ (c′′)s/4 ≤ (n/s)s/4

for sufficiently large c′′, we have P ≤ ∑ n
c′′
s=1(

n
s)2s(s

n)
9
4 s =

∑ n
c′′
s=1(

s
n)

s
4 = o(1). ��

As will be discussed in the proof of Theorem2, for the majority model on Gn,d

with Pb = 1/2 − ε and d ≥ c/ε2 there is a simple argument which shows
that the expected density of the blue vertices drops from 1/2 − ε in g0 to an
arbitrarily small constant in g1 if we select the constant c sufficiently large.
Therefore, one might want to apply Lemma 2 to show the process w.h.p. gets
red monochromatic in O(logd n) rounds. However, in Theorem2 we show actually
O(logd log n) rounds suffice to get red monochromatic w.h.p. To prove that, we
need the tree structure argued in Lemma 1.

Theorem 2. In the majority model and Gn,d, by starting from Pb ≤ 1/2 − ε,
for ε > 0, the process gets red monochromatic in O(logd log n) rounds w.h.p.
provided that d ≥ c/ε2 for sufficiently large constant c.

580 B. Gärtner and A. N. Zehmakan

Proof. We say a vertex is in the j-th level of a rooted tree if its distance to the
root is j. Now, consider a tree T rooted at vertex v and of height k so that except
the vertices in the k-th level (i.e., leaves), all vertices are of degree d. We consider
the following process on T , which we call the propagation process, where in the
initial configuration all the internal vertices are inactive and each leaf is blue with
probability Pb and red with probability 1 − Pb independently. Assume in each
round an inactive vertex whose children are colored adopts color blue if at least
�(d − 1)/2� of its children are blue and red otherwise. Clearly after k rounds,
the root (vertex v) is colored with blue or red. Let Pi for 0 ≤ i ≤ k denote the
probability that a vertex in the (k−i)-th level is blue after round i; specifically, Pk

is the probability that vertex v is blue at the end of the process. More accurately,
P0 = Pb and for 1 ≤ i ≤ k Pi =

∑d−1
j=�(d−1)/2�

(
d−1

j

)
P j

i−1(1 − Pi−1)d−1−j .
Now, let us get back to the majority model and the random d-regular graph

Gn,d. Consider a vertex v so that the induced subgraph by Nk(v) is a tree T .
Clearly in T , except the vertices in the k-th level, all vertices are of degree d. Now,
we claim the probability that vertex v is blue in generation gk in the majority
model is at most Pk, which is equivalent to the probability that the root of T is
blue in the propagation process after k rounds, with the same Pb. This is true
because by starting with the same coloring for the leaves of T (the vertices in
distance k from root v) if in the k-th round in the propagation process the root
is red, it is also red in the majority model and generation gk, irrespective of the
colors of other vertices. For k = 1 this is trivially true. Now, we do the induction
on k; if the root is red in the propagation process after k-th round, it means that
there exist less than �(d − 1)/2� blue vertices among root’s children in round
k − 1 which implies by the induction hypothesis there are less than �(d − 1)/2�
blue vertices in v’s neighborhood in gk−1 in the majority model; then gk(v) = r.

So far, we showed the probability of being blue in gk for a vertex, whose
k-neighborhood is a tree, is at most Pk with P0 = Pb. Now, we upper-bound
the probability Pk. Without loss of generality, assume d is odd, and suppose
d′ = d−1. First, let us bound P1; clearly, P1 ≤ ∑d′

j=d′/2

(
d′

j

)
(1/2−ε)j(1/2+ε)d′−j

which is smaller than

(1/2 − ε)d′/2(1/2 + ε)d′/2
d′

∑

j=d′/2

(
d′

j

)
≤ (1/4 − ε2)d′/22d′

= (1 − 4ε2)d′/2.

By applying the estimate 1 − x ≤ e−x, we have P1 ≤ e−2d′ε2 . For d ≥ c′
1 log n,

where c′
1 is a large constant, clearly P1 ≤ 1/n2 which implies the expected num-

ber of blue vertices in g1 is at most 1/n; i.e., the process gets red monochromatic
in one round w.h.p. Thus, it only remains to discuss the case of d ≤ c′

1 log n for
an arbitrarily large constant c′

1; in this case, since P1 ≤ e−2d′ε2 , selecting suit-
able constant c, for d ≥ c/ε2, results in P1 ≤ 1/16. Now, we show Pi ≤ P

d′/4
i−1 for

Pi−1 ≤ 1/16, which yields Pk ≤ 1/n2 for k = c′ logd log2 n by selecting constant
c′ large enough. We know Pi ≤ P

d′/2
i−1

∑d′

j=d′/2

(
d′

j

) ≤ P
d′/2
i−1 2d′

. Thus, by utilizing

Pi−1 ≤ 1/16, one has Pi ≤ P
d′/4
i−1 . Now, let random variable X1 (X2) denote the

Majority Model on Random Regular Graphs 581

number of vertices whose k-neighborhood for k = c′ logd log2 n, is (not) a tree
and are blue in gk. We know E[X1] ≤ nPk ≤ 1/n, which implies X1 = 0 w.h.p. by
Markov’s inequality. Furthermore, by using Corollary 1 w.h.p. X2 ≤ log2c′+1

2 n.
Hence, w.h.p. the number of blue vertices in gk is upper bounded by log2c′+1

2 n.
However based on Lemma 2, poly-logarithmically many blue vertices die out in
O(logd log n) rounds w.h.p. which finishes the proof. ��
Now, we argue that the bound of O(logd log n) is tight. We prove in Gn,d and
for a constant small initial density Pb, say Pb = 1/4, after k′ = logd log2 n

2 rounds
w.h.p. there exist some blue vertices. We claim in Gn,d there are

√
n vertices, say

u1, · · · , u√
n, whose k′-neighborhood is pairwise disjoint. Define indicator random

variable xi to be 1 if g0|Nk′ (ui) = b. Clearly, Pr[xi = 1] ≥ (1/4)2dk′
= 1/24

√
log2 n.

Let X =
∑√

n
i=1 xi; then E[X] ≥ √

n/24
√

log2 n = ω(1). By using Chernoff bound,
there exists a vertex v so that g0|Nk′ (v) = b, which implies gk′(v) = b. Now, we
prove that there exist

√
n vertices whose k′-neighborhood is pairwise disjoint in

every d-regular graph. For a d-regular graph G by starting from the state that
all vertices are unmarked, recursively we choose an arbitrary unmarked vertex u
and add u to set U , which is initially empty, and mark all vertices in N2k′(u).
Clearly, the vertices in set U have our required disjointness property, and set U
will be of size larger than

√
n at the end because in each step we mark at most

poly-logarithmically many vertices while we start with linearly many unmarked
vertices.

2.2 Dynamic Monopoly and Immunity

In distributed systems, the resolution of inconsistencies by the majority rule is
a common tool; the idea is to keep redundant copies of data and perform the
majority rule to overcome the damage caused by failures. Motivated from this
application, one might be interested in the networks in which no small subset of
malicious/failed processors can take over a large part of the network. To address
this issue, Peleg [22] suggested the concept of immunity. An n-vertex graph G is
(α, β)-immune if a set of m ≤ βn vertices with a common color can take over at
most αm vertices in the next round. One is interested in graphs which are (α, β)-
immune for constant β and small α because roughly speaking these graphs are
acceptably tolerant of malicious/failed vertices (processors). Peleg [22] proved
the following theorem regarding the existence of such graphs.

Theorem 3. [22] There exist constants c1, c2, β > 0 such that for every d ≥ c1,
there exists a d-regular graph G which is (c2 log n

d , β)-immune.

Peleg also argued that this result is tight up to a logarithmic factor, meaning
there is a constant c2 > 0 such that for any constant β > 0, there exist no
(c2

d , β)-immune d-regular graph. Now as an immediate implication of Lemma2,
we present Corollary 2 which improves upon Peleg’s results by removing the
extra logarithmic term. Hence, this result is tight up to a constant.

582 B. Gärtner and A. N. Zehmakan

Corollary 2. There exist constants c1, c2, β > 0 such that for every d ≥ c1,
there exists a d-regular graph G which is (c2

d , β)-immune.

Furthermore, we say a graph is immune if the smallest dynamic monopoly is
of linear size, in terms of the number of vertices. We recall that for a graph
G = (V,E), a set D ⊆ V is called a dynamic monopoly whenever the following
holds: if in the initial generation all vertices of D are blue (red) then the process
reaches the blue (red) monochromatic generation, irrespective of the colors of
other vertices. As an open problem, Peleg [22] asked that whether there exist
regular immune graphs. The existence of immune d-regular graphs for d � log n
is straightforward from Theorem3, but, the question is unanswered for small d,
while one is more interested in sparse immune regular graphs from a practical,
or even a theoretical, perspective. Again, as an immediate result of Lemma 2,
we have Corollary 3 which actually represents a stronger statement.

Corollary 3. Gn,d with d ≥ c1 is immune w.h.p. for large constant c1.

3 Conclusion

We claim our techniques can be applied to analyze the behavior of the majority
model on the binomial random graph Gn,p. For p � log n/n, one can show
Pb ≤ 1/2 − ε results in fully blue generation in one round w.h.p. by using the
argument regarding the case of d ≥ c′

1 log n in the proof of Theorem 2. For
p � log n/n the graph contains a red and a blue isolated vertex in g0 w.h.p. for
a fixed Pb > 0 which result in the coexistence of both colors.

Exploring the relation between the behavior of the majority model and the
expansion level of the underlying graph can be a prospective research direction.
Specifically, it would be interesting to prove that graphs with some certain level
of expansion have a density classification behavior similar to Gn,d.

Acknowledgments. The authors would like to thank Mohsen Ghaffari for several
stimulating conversations and Jozsef Balogh and Nick Wormald for referring to some
relevant prior results.

References

1. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J.
Phys. A: Math. Gen. 21(19), 3801 (1988)

2. Amini, H., Draief, M., Lelarge, M.: Flooding in weighted sparse random graphs.
SIAM J. Discrete Math. 27(1), 1–26 (2013)

3. Balogh, J., Bollobás, B., Morris, R.: Majority bootstrap percolation on the hyper-
cube. Comb. Probab. Comput. 18(1–2), 17–51 (2009)

4. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Ran-
dom Struct. Algorithms 30(1–2), 257–286 (2007)

5. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given
degree sequences. J. Comb. Theory Ser. A 24(3), 296–307 (1978)

Majority Model on Random Regular Graphs 583

6. Berger, E.: Dynamic monopolies of constant size. J. Comb. Theory Ser. B 83(2),
191–200 (2001)

7. Bollobás, B., Fernandez de la Vega, W.: The diameter of random regular graphs.
Combinatorica 2(2), 125–134 (1982)

8. de Oliveira, M.J.: Isotropic majority-vote model on a square lattice. J. Stat. Phys.
66(1), 273–281 (1992)

9. Feller, W.: An Introduction to Probability Theory and Its Applications: Volume I,
vol. 3. Wiley, New York (1968)

10. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discrete Appl. Math. 137(2), 197–212 (2004)

11. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs
and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX/RANDOM-2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15369-3 42

12. Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (social) influence
networks. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 433–446. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2 30

13. Gärtner, B., Zehmakan, A.N.: (Biased) majority rule cellular automata. arXiv
preprint arXiv:1711.10920 (2017)

14. Gärtner, B., Zehmakan, A.N.: Color war: cellular automata with majority-rule. In:
Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp.
393–404. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7 29

15. Goles, E., Olivos, J.: Comportement périodique des fonctions à seuil binaires et
applications. Discrete Appl. Math. 3(2), 93–105 (1981)

16. Janson, S., Luczak, T., Rucinski, A.: Random Graphs, vol. 45. Wiley, Hoboken
(2011)

17. Kaaser, D., Mallmann-Trenn, F., Natale, E.: On the voting time of the determin-
istic majority process. arXiv preprint arXiv:1508.03519 (2015)

18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

19. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classi-
fication exists. Phys. Rev. Lett. 74(25), 5148 (1995)

20. Mourrat, J.-C., Valesin, D., et al.: Phase transition of the contact process on ran-
dom regular graphs. Electron. J. Probab. 21 (2016)

21. Peleg, D.: Local majority voting, small coalitions and controlling monopolies in
graphs: a review. In: Proceedings of 3rd Colloquium on Structural Information
and Communication Complexity, pp. 152–169 (1997)

22. Peleg, D.: Immunity against local influence. In: Dershowitz, N., Nissan, E. (eds.)
Language, Culture, Computation. Computing - Theory and Technology. LNCS,
vol. 8001, pp. 168–179. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-45321-2 8

23. Poljak, S., Turźık, D.: On pre-periods of discrete influence systems. Discrete Appl.
Math. 13(1), 33–39 (1986)

24. Schonmann, R.H.: Finite size scaling behavior of a biased majority rule cellular
automaton. Phys. A: Stat. Mech. Appl. 167(3), 619–627 (1990)

25. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)
26. Stefánsson, S.Ö., Vallier, T.: Majority bootstrap percolation on the random graph

G(n, p). arXiv preprint arXiv:1503.07029 (2015)

https://doi.org/10.1007/978-3-642-15369-3_42
https://doi.org/10.1007/978-3-642-41527-2_30
http://arxiv.org/abs/1711.10920
https://doi.org/10.1007/978-3-319-53733-7_29
http://arxiv.org/abs/1508.03519
https://doi.org/10.1007/978-3-642-45321-2_8
https://doi.org/10.1007/978-3-642-45321-2_8
http://arxiv.org/abs/1503.07029

Property Testing for Point Sets
on the Plane

Jie Han , Yoshiharu Kohayakawa , Marcelo Tadeu Sales,
and Henrique Stagni(B)

Institute of Mathematics and Statistics, University of São Paulo,
Rua do Matão 1010, São Paulo 05508-090, Brazil

{jhan,yoshi,mtsales,stagni}@ime.usp.br

Abstract. A configuration is a point set on the plane, with no three
points collinear. Given three non-collinear points p, q and r ∈ R

2, let
χ(p, q, r) ∈ {−1, 1}, with χ(p, q, r) = 1 if and only if, when we traverse
the circle defined by those points in the counterclockwise direction, we
encounter the points in the cyclic order p, q, r, p, q, r, For simplicity,
extend χ by setting χ(p, q, r) = 0 if p, q and r are not pairwise distinct.
Two configurations A and B ⊂ R

2 are said to have the same order type
if there is a bijection ι : A → B such that χ(p, q, r) = χ(ι(p), ι(q), ι(r))
for all (p, q, r) ∈ A3. We say that a configuration C contains a copy of a
configuration A if there is B ⊂ C with A and B of the same order type.
Given a configuration F , let Forb(F) be the set of configurations that
do not contain a copy of F . The distance between two configurations A
and B with |A| = |B| = n is given by

dist(A, B) = min
ι

1

2n3

∑

(p,q,r)∈A3

|χ(p, q, r) − χ(ι(p), ι(q), ι(r))|,

where the minimum is taken over all bijections ι : A → B. Roughly
speaking, we prove the following property testing result: being free of
a given configuration is efficiently testable. Our result also holds in the
general case of hereditary properties P = Forb(F), defined by possibly
infinite families F of forbidden configurations. Our results complement
previous results by Czumaj, Sohler and Ziegler and others, in that we
use a different notion of distance between configurations. Our proofs are
heavily inspired on recent work of Fox and Wei on testing permutations
and also make use of the regularity lemma for semi-algebraic hypergraphs
of Fox, Pach and Suk. An extremal function involving order types, which
may be of independent interest, plays an important rôle in our arguments.

1 Introduction

The decision problem associated with a property P consists in, given an instance
I, distinguishing between the cases I ∈ P and I /∈ P. In property testing, as
introduced by Rubinfeld and Sudan [16], one considers a relaxed version of this
problem: one requires that one should distinguish, with a randomized algorithm,
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 584–596, 2018.
https://doi.org/10.1007/978-3-319-77404-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_43&domain=pdf
http://orcid.org/0000-0002-2013-2962
http://orcid.org/0000-0001-7841-157X

Property Testing for Point Sets on the Plane 585

between the case in which I ∈ P and the case in which I is ‘far’ from P. In return,
one is interested in doing this very fast: one usually requires sublinear algorithms
or algorithms with small ‘query complexity’, that is, algorithms that examine the
given instance in a limited number of random spots, with ‘limited’ often meaning
that the number of spot-checks should be independent of the size of the instance.
In property testing, we also require a notion of distance for the objects involved
(recall that we wish to distinguish objects in the given property P and ‘far’ from
P). In fact, the choice of distance may lead to quite different results. Property
testing has become a very lively area of research, with important developments on
the testing of graph and hypergraph properties, algebraic properties, properties
of functions, properties of distributions, and geometric properties. The reader is
referred to [11] for an overview of this area.

Our focus in this paper is on geometric problems. Our perspective comple-
ments the approaches in [4,5,8], in that we use a different notion of distance for
the geometric objects in question. We consider problems involving finite point
sets in general position, which we call configurations, and, for simplicity, we
restrict ourselves to the 2-dimensional case. Furthermore, we work in the cate-
gory of order types [13] (that is, realizable oriented matroids [1] or chirotopes [2];
see also [15]). A basic problem that can be cast in this framework is that of test-
ing whether a point set S is in convex position, that is, whether every element
of S is a vertex of the convex hull conv(S) of S (that is, an extreme point of
conv(S)). This problem was investigated in the seminal papers [4,5,8], with dif-
ferent notions of distance (see also [3] for a recent study of the high-dimensional
case). Our point of view makes it natural to consider the property of being convex
as a certain hereditary property of order types (a property that is closed under
taking subsets), and it also suggests an arguably ‘natural’ notion of distance.

We present two results on testing general hereditary properties of configu-
rations, Theorems 1 and 2, and we present a result on a certain extremal func-
tion k∗

F involving configurations, Theorem3, that implies that certain numerical
parameters appearing in Theorems 1 and 2 can be much improved for certain
hereditary properties (namely, those defined as the configurations that avoid a
fixed ‘forbidden’ configuration F that satisfies the so-called Erdős–Hajnal prop-
erty (see Corollary 1 in Sect. 4)).

Our general approach is heavily inspired on recent work of Fox and Wei [9]
addressing property testing problems for permutations under different notions
of distance. Another tool that is useful in our context is the regularity lemma
for semi-algebraic hypergraphs of Fox et al. [10].

This paper is organized as follows. In Sect. 2, we state Theorems 1 and 2,
after introducing the required definitions. The extremal function k∗

F mentioned
above is introduced in Sect. 3 and Theorem 3 is stated and proved in Sect. 4.
Section 5 contains the proofs of Theorems 1 and 2.

2 Formal Set-Up and Main Results

We define a configuration of points as a finite set C ⊂ R
2 with no three of

them collinear. The orientation χ(p1, p2, p3) of a triple of points (p1, p2, p3) in
the plane is given by

586 J. Han et al.

χ(p1, p2, p3) = sign

∣
∣
∣
∣
∣
∣

x1 x2 x3

y1 y2 y3
1 1 1

∣
∣
∣
∣
∣
∣

, (1)

where the xi and yi are the coordinates of the pi (1 ≤ i ≤ 3). Thus χ(p1, p2, p3) ∈
{−1, 0, 1}. We say that two configurations C and C ′ ⊂ R

2 are isomorphic
(denoted by C � C ′) or that they have the same order-type if there is a bijec-
tion ι : C → C ′ satisfying χ(u, v, w) = χ(ι(u), ι(v), ι(w)) for all (u, v, w) ∈ C3.
We say that a configuration C contains a copy of a configuration F if there is
F ′ ⊂ C such that F ′ is isomorphic to F . In such cases, when there is no danger
of confusion, we simply write F ⊂ C.

For every (possibly infinite) family F of configurations, we are interested in
the property Forb(F) of all F-free configurations, i.e., all configurations having
no copy of members F ∈ F . If F = {F}, we denote the property of all F -free
configurations simply by Forb(F).

It is easy to see that every hereditary property P can be written as
P = Forb(F) for some F — in fact, one can take F as the set of all (mini-
mal) configurations not in P. As an example, let Conv be the set of all point
configurations in convex position, i.e., the set of all configurations C = {vi}n

i=1

for which χ(vi, v(i+1) mod n, v) = 1 for every v /∈ {vi, v(i+1) mod n}. Then Conv
can be written as Conv = Forb(N4), where N4 is the unique four vertex config-
uration not in Conv shown in Fig. 2.

2

1

n

6

5

4

3

A

2

1

n

6

5

4

3

B

2
1

n

6
5

4

3

F

Fig. 1. Configuration B is a perturbation of a configuration A of 4n points in convex
position. (Color figure online)

Czumaj et al. [5] studied property testing of point configurations with respect
to the Hamming distance. A configuration C is said to be ε-far from a property
P in the Hamming distance if, for every P ∈ P, the Hamming distance between
C and P is at least ε|C|. In a later work, Czumaj and Sohler [4] argued that
this notion of distance tells very little about the geometry behind the object.
Indeed, although configuration B from Fig. 1 is obtained by applying a small
perturbation to each of the red points of a convex configuration A, it is still 1

4 -
far from Conv in the Hamming distance — in particular, B is as far from Conv
as the configuration F in Fig. 1. By taking into account the Euclidian distance

Property Testing for Point Sets on the Plane 587

between points, the authors of [4] considered a distance measure between point
configuration that is not sensitive to small perturbations.

In this work, we consider another distance between point configurations dif-
ferent from the Hamming distance. Unlike the distance defined in [4], our dis-
tance here is purely combinatorial.

Definition 1 (dist). The distance between two point configurations C and C ′

of the same size is defined as

dist(C,C ′) = min
ι

1
2n3

∑

(u,v,w)∈C3

|χ(u, v, w) − χ(ι(u), ι(v), ι(w))|, (2)

where the minimum is taken over all bijections ι : C → C ′.

Despite the fact that dist(·, ·) is oblivious to the Euclidean distances between
the considered points, it is interesting to note that it bears some resemblance to
the geometric distance defined by Czumaj and Sohler [4] in the sense that it is
also not sensitive to small perturbation on the point set. In our case, a perturba-
tion is small if it flips the orientation of a small number of triples of points. For
instance, for A and B as in Fig. 1, we have dist(B,Conv) ≤ dist(B,A) = O(1),
since only the triple that intersects some group of four points more than twice
may have its orientation in A different from the one in B. As another example,
note that configuration F from Fig. 1 is such that dist(F,A) = Ω(1).

2.1 Property Testing for Configurations

An ε-tester T for a property P of configurations is a decision probabilistic algo-
rithm that, when given a configuration C as input, can query the orientation
χ(u, v, w) of triple of points (u, v, w) ∈ C3. Moreover, the ε-tester T must satisfy
the following conditions:

1. if C ∈ P, then P(T accepts C) ≥ 1 − ε,
2. if dist(C,P) > ε, then P(T rejects C) ≥ 1 − ε.

If T accepts inputs C ∈ P with probability 1 we say T has one-sided error.
Otherwise, we say T has two-sided error.

A property P is testable with query complexity q : (0, 1] → N if for every
ε ∈ (0, 1] there is an ε-tester for P that queries the orientation of at most q(ε)
triples.

The testers considered here will perform its decision after sampling uniformly
at random a set of s = s(ε) vertices and querying the orientation of every triple
of points in the sample. In that case we say that the tester has sample complex-
ity s(ε).

2.2 Testing Results

A configuration property P is hereditary if it is closed under taking subsets. The
first result below states that every hereditary property P is testable (with two-
sided error) with sample complexity polynomial on the error parameter ε−1.

588 J. Han et al.

Moreover, this sample complexity is universal, that is, it does not depend on
the property P being tested. However, the testers given by this result need to
assume that the input configuration is larger than some n0, which depends on the
property P. More precisely, n0 depends on the so-called blow-up parameter k∗

P of
P (see Sect. 3). For now, it will be enough to keep in mind that k∗

P : N\{0} → N

is a well-defined function for every hereditary property P.

Theorem 1. For every ε > 0, there is q = poly(ε−1) such that every hereditary
property P admits an ε-tester with sample complexity q for input configurations
of size at least n0 = poly(ε−1)k∗

P (poly(ε−1)).

As usual, we write poly(t) for a quantity of the form tO(1). We are also able
to prove a result stating that every hereditary property is testable with one-sided
error. In that case, the sample complexity depends on the parameter k∗

P .

Theorem 2. For every ε > 0, every hereditary property P admits an ε-tester
with one-sided error with sample complexity q′ = poly(ε−1)k∗

P(poly(ε−1)).
Moreover, we can assume that this ε-tester is canonical, i.e., that when given an
input C, the tester simply samples a set S ⊂ C of size q′ and accepts C if and
only if S ∈ P.

3 The Blow-Up Parameter

We define the concept of blow-ups of configurations, which is analogous to its
counterpart in [9] for permutations.

Definition 2 (k-blow-up). Let C ⊂ R
2 be a configuration and k a positive inte-

ger. A configuration C ′ is a k-blow-up of C if there is a function π : C ′ → C sat-
isfying (i) |π−1(v)| = k for every v ∈ C and (ii) χ(x, y, z) = χ(π(x), π(y), π(z))
for every x, y and z ∈ C ′ with π(x), π(y) and π(z) pairwise distinct. The sets
π−1(v) with v ∈ C are called the blocks of the blow-up C ′.

In Fig. 2 we show a 4-blow-up of the configuration N4. We also note that both
configurations A and B are 4-blow-ups of the n-point convex configuration.

For every hereditary property P, we define the blow-up parameter of P as
the function k∗

P : N \ {0} → N such that, for every m > 0, the integer k∗
P(m) is

the least k∗ satisfying the following: if a configuration C of size |C| = m admits
a k∗-blow-up in P, then C admits an �-blow-up in P for every integer � > 0.

Definition 3 (k∗
F , k∗

P). Let P be a hereditary property. For every configuration
C we let

k∗
P(C) =

{

∞, if ∀ k ∃ k-blow-up of C inP,

min{k : k > 0 and � k-blow-up of C inP}, otherwise.

The blow-up parameter k∗
P : N \ {0} → N of P is given by

k∗
P(m) =

{

1, if k∗
P(C) = ∞ for every C of size m,

max{k∗
P(C) : |C| = m and k∗

P(C) < ∞}, otherwise.
(3)

If P = Forb(F) we denote k∗
P by k∗

F .

Property Testing for Point Sets on the Plane 589

N4 N5 A 4-blow-up of N4

Fig. 2. The configuration N4 and a blow-up

Example 1. Let F = N4, where N4 is as in Fig. 2. Then Forb(N4) is the set
Conv of all convex configurations. We have k∗

F (m) = 1 for every m > 0. Indeed,
one can check that, for any k > 0 and any C ∈ Conv, it is always possible to
construct a convex k-blow-up of C. Thus k∗

F (C) = ∞ for every C ∈ Conv. On
the other hand, it is trivial that k∗

F (C) = 1 for any non-convex C.

Example 2. Let F = N5, where N5 is as in Fig. 2. Note that N5 is isomorphic
to any five point configuration in which two of them is contained in the convex
hull of the other three. We claim that k∗

F (m) ≤ 2 for every m > 0. Indeed, since
Conv ⊂ Forb(N5), we must have k∗

F (C) = ∞ for every C ∈ Conv, by the
reasoning in Example 1. On the other hand, if C /∈ Conv, then C ⊃ N4. But
since every 2-blow-up of N4 contains, in particular, two points inside the convex
hull of other three points, every 2-blow-up of C must contain a copy of N5. Thus
k∗

F (C) ≤ 2 for every C /∈ Conv.

4 The Erdős–Hajnal Property and Upper Bounds
for the Blow-Up Parameter k∗

F

For every configuration F , let ESF (r) be the least n such that every configura-
tion C ∈ Forb(F) with |C| = n contains r points in convex position. Clearly,
ESF (r) ≤ ES(r), where ES(r) is the least n such that every C with |C| = n
contains r points in convex position. By a well-known theorem of Erdős and
Szekeres [6], we have that ES(r) is at most exponential in r. If ESF (r) = poly(r),
then F is said to satisfy the Erdős–Hajnal property. In [14], Károyi and Solymosi
exhibited some configurations that satisfy the Erdős–Hajnal property. We prove
the following result on the blow-up parameter k∗

F .

Theorem 3. For every configuration F of f points, k∗
F (m) ≤ exp(f poly(m)).

In addition, if F satisfies the Erdős–Hajnal property, then k∗
F (m) = poly(m, f).

We write exp(t) for a quantity of the form 2O(t). Theorem 3 gives the following
corollary of Theorems 1 and 2.

590 J. Han et al.

Corollary 1. Assume the configuration F satisfies the Erdős–Hajnal property
and let P = Forb(F). For every ε > 0, property P admits an ε-tester with
sample complexity q = poly(ε−1) for input configurations of size at least
n0 = poly(ε−1); moreover, P admits a one-sided canonical ε-tester with sample
complexity q = poly(ε−1).

In order to prove Theorem 3 we need the following lemma, which states that
every large enough blow-up of a configuration is such that we can find ‘line
segments’ Ai within each block of the blow-up, where a ‘line segment’ Ai is,
roughly speaking, a collection of points in convex position for which every line
defined by two of its points divides the plane in the same way.

Lemma 1. For any integer m and configuration F with |F | = f , there is k =
k1(m,F) ≤ ESF (f poly(m)) satisfying the following. Let C be a configuration
with |C| = m and C ′ be a k-blow-up of C with blocks B1, . . . , Bm. Assume that
C ′ ∈ Forb(F). Then there are subsets Ai ⊂ Bi (i ∈ [m]) such that, for every
i ∈ [m],

(a) Ai is a set {v
(i)
1 , . . . , v

(i)
f } of f points in convex position and

(b) for every j ∈ [m] \ {i}, there is σ ∈ {−1, 1} such that χ(v(i)a , v
(i)
b , w) = σ

for every 1 ≤ a < b ≤ f and every w ∈ Aj. In particular,
⋃m

i=1 Ai is an
f-blow-up of C.

The proof of Lemma 1 gives the bound k1(m,F) ≤ ESF (f poly(m)) ≤
exp(f poly(m)) for general F and, in addition, if F satisfies the Erdős–Hajnal
property, then one obtains k1(m,F) ≤ poly(m, f). Thus to prove Theorem 3 it
suffices to prove the following theorem.

Theorem 4. For every configuration F of f points, k∗
F (m) ≤ k1(m,F).

Proof. Let k = k1(m,F). By the definition of k∗
F , we need to show that, for any

configuration C with |C| = m, either there is no k-blow-up of C in Forb(F) or,
for every � > 0, there is an �-blow-up of C in Forb(F). If C /∈ Forb(F), then
clearly the former holds. We therefore consider the case in which C ∈ Forb(F).

Suppose C ∈ Forb(F) admits a k-blow-up Ck with Ck ∈ Forb(F). Fix an
arbitrary � > k. We show that there is an �-blow-up C� of C with C� ∈ Forb(F).

We apply Lemma 1 with C ′ = Ck and obtain sets A1, . . . , Am ⊂ Ck each of
size f satisfying Lemma 1(a) and (b). Let Ai = {v

(i)
1 , . . . , v

(i)
f } for all i ∈ [m].

One can add � − f points to each Ai in order to obtain sets L1, . . . , Lm such
that (A) Li is a set {u

(i)
1 , . . . , u

(i)
� } of � points in convex position, (B) for every

j ∈ [m] \ {i}, there is σ ∈ {−1, 1} such that χ(u(i)
a , u

(i)
b , w) = σ for every

1 ≤ a < b ≤ � and every w ∈ Lj , and (C) the configuration C� :=
⋃m

i=1 Li is an
�-blow-up of C, with blocks L1, . . . , Lm.

We claim that C� ∈ Forb(F). Indeed, for a contradiction, suppose that there
is a copy F ′ of F in C�. Let F ′ =

⋃m
i=1{w

(i)
1 , . . . , w

(i)
fi

}, where {w
(i)
1 , . . . , w

(i)
fi

} ⊂
Li (0 ≤ fi ≤ f). We show that F ′′ :=

⋃m
i=1{v

(i)
1 , . . . , v

(i)
fi

} is isomorphic to

Property Testing for Point Sets on the Plane 591

F ′ =
⋃m

i=1{w
(i)
1 , . . . , w

(i)
fi

}, whence F � F ′′ ⊂ Ck ∈ Forb(F), which is a con-
tradiction. To prove that F ′′ and F ′ are isomorphic, define the bijection ι by
ι(v(i)

j) = w
(i)
j for any i ∈ [m] and j ∈ [fi]. We now prove that

χ(v(i1)
j1

, v
(i2)
j2

, v
(i3)
j3

) = χ(w(i1)
j1

, w
(i2)
j2

, w
(i3)
j3

). (4)

First, since both F ′ and F ′′ are subsets of blow-ups of C, if i1, i2 and i3 are
pairwise distinct, (4) holds. Secondly, since for any i ∈ [m] both {w

(i)
1 , . . . , w

(i)
fi

}
and {v

(i)
1 , . . . , v

(i)
fi

} are in convex position, we can make (4) hold if i1= i2= i3= i
by choosing a suitable labelling of the points. Finally, without loss of generality,
assume that i1 = i2 and i2 �= i3. In this case (4) holds because of (B) above and
the fact that Ai ⊂ Li. The claim is therefore proved. Theorem 4 follows. �

5 Proofs of Theorems 1 and 2

The main argument used to prove Theorem 1 resembles the one used by Fox
and Wei [9] to show that, under a certain notion of distance, hereditary permu-
tation properties are testable with polynomial (on the error parameter) sample
complexity. It also applies the Fox–Pach–Suk Regularity Lemma for uniform
semi-algebraic hypergraphs [10] to get a regular partition of configurations of
points.

Definition 4. We say that a triple (X,Y,Z) ⊂ R
2 × R

2 × R
2 is homogeneous

if there is σ ∈ {1,−1} such that χ(x, y, z) = σ for every (x, y, z) ∈ (X,Y,Z).

A partition V = {Vi}m
i=1 is called equitable if

∣
∣|Vi|−|Vj |

∣
∣ ≤ 1 for any i, j ∈ [m].

Lemma 2 ([10, Theorem 4.3]). For every γ > 0, there exists M = M2(γ) =
poly(1/γ) such that every configuration P , |P | = n ≥ 1/γ, admits an equitable
partition V = {Vi}m

i=1 satisfying the following

(1) 1/γ ≤ m ≤ M ,
(2) At most γn3 triples of points lie on non-homogeneous triples (Vi, Vj , V�).

Such a partition is called a γ-homogeneous partition of P . �

One consequence of Lemma 2 is that (for simplicity, say n/m ∈ N) if one
considers a γ-homogeneous partition {Vi}m

i=1 of a configuration P of n points
and an arbitrary set of points C = {vi}m

i=1 (with vi ∈ Vi), then P is γ-close
to every n/m-blow-up of C. Hence, if P is far from a hereditary property P, it
follows that every n/m-blow-up of C is not in P. Since a large enough sample of
P will contain such a set C with high probability, we get the following result.

Lemma 3. For every ε > 0, there exists M = M2(ε/2), k = k∗
P(M) and q =

2M log(M/ε) satisfying the following. Let P be an order type of size n ≥ M and
let Q be a set of q points in P chosen uniformly at random. If dist(P,P) > ε,
then, with probability at least 1 − ε, no k-blow-up of Q is in P.

592 J. Han et al.

Proof. Let V = {V1, . . . , Vm} be an ε/2-homogeneous partition of P . Note that
for any i ∈ [m], P(Q ∩ Vi = ∅) ≤ (1 − 1/(2m))q ≤ (1 − 1/(2M))q. Then

P(Q ∩ Vi = ∅ for some i ∈ [m]) ≤ M (1 − 1/(2M))q ≤ Me−q/(2M) ≤ ε.

Suppose the event [Q ∩ Vi = ∅ for some i ∈ [m]] does not happen and let C =
{v1, . . . , vm} ⊂ Q, where vi ∈ Vi for i ∈ [m]. Write t := �n/m�. Assume that
dist(P,P) > ε, we claim that every t-blow-up of C is not in P. Indeed, let C ′ be
an arbitrary t-blow-up of C and let ι : P → C ′ be an injection that (arbitrarily)
maps each point u ∈ Vi to some point u′ ∈ C ′ belonging to the vi-block —
i.e., some point u′ ∈ π−1(vi) where π : C ′ → C is a function as in Definition 2
that witnesses C ′ as an t-blow-up of C. Let Cn = ι(P) be the image of ι and
thus we can view ι : P → Cn as a bijection. For every triple (ui, uj , u�) that
belongs to a homogeneous triple (Vi, Vj , V�) we have χ(ui, uj , u�) = χ(vi, vj , v�) =
χ(ι(ui), ι(uj), ι(u�)). Hence, the triples that contribute to the distance between
P and Cn (see Definition 2) are those that belong to non-homogeneous triples.
Since V is an ε/2-homogeneous partition, it follows that

dist(P,Cn) ≤ 2(ε/2)n3

2n3
= ε/2.

Now, since dist(P,P) > ε, we get that dist(Cn,P) > ε/2, i.e., Cn is not in P.
Since P is hereditary, C ′ ⊃ Cn is not in P either. Thus, it follows that no t-
blow-up of C is in P. If t ≥ k, then by Definition 3, no k-blow-up of C is in P;
otherwise t < k, then because P is hereditary, no k-blow-up of C is in P. Since
C ⊂ Q and P is hereditary, we conclude that no k-blow-up of Q is in P. �

The previous lemma shows that if P is far from P then (w.h.p.) a large enough
sample Q of P is such that every k-blow-up of Q is not in P. Next, we show that if
P ∈ P, then (w.h.p.) a sample Q admits a k-blow-up in P. This is a consequence
of the fact that, given k and q, every large enough configuration P contains
(w.h.p.) a k-blow-up of a sample Q of size q. An analogous statement is true
when considering other combinatorial objects, like graphs [7], permutation [9,
Lemma 3.2], etc.

Lemma 4. For every positive integers q and k and ε > 0, there exists n0 =
M2(ε/q3) · k satisfying the following. If P ∈ P, |P | ≥ n0, and Q is a set of q
points in P chosen uniformly at random, then, with probability at least 1−ε, the
configuration Q admits a k-blow-up in P.

Proof. Let W = {Wi}m
i=1 be an ε/q3-homogeneous partition of P . The prob-

ability that Q contains a triple (wi, wj , w�) ∈ Wi × Wj × W�, for some non-
homogeneous (Wi,Wj ,W�) is at most

∑

Wi,Wj ,W�

q3
|Wi|
n

|Wj |
n

|W�|
n

=
q3

n3

∑

Wi,Wj ,W�

|Wi||Wj ||W�| ≤ q3

n3
· ε

q3
n3 = ε.

Property Testing for Point Sets on the Plane 593

Hence, with probability at least 1 − ε every triple of points of Q lies in a homo-
geneous triple. Moreover |Wi| ≥ n/m ≥ k. Therefore, one can find a k-blow-up
Q′ of Q such that Q′ ⊂ P , by arbitrarily picking k vertices from each Wi ∈ W
that satisfies |Wi ∩ Q| �= ∅. Since Q′ ⊂ P and P ∈ P, we must have Q′ ∈ P. �

Algorithm 1. Two-sided ε-tester
1 Let q and k be defined as in Lemma 3 and n0 as in Lemma 4. Given an input

configuration P of size at least n0, we pick a subconfiguration Q of q points
uniformly at random. The ε-tester accepts P if and only if there exists a
k-blow-up of Q in P (note that this decision can be performed in constant time,
since the set of graphs of size q that admit a k-blow-up in P can be hardcoded
into the ε-tester).

Proof of Theorem 1. We use the tester as described in Algorithm 1, whose cor-
rectness is guaranteed by Lemmas 3 and 4. �

Once Theorem 1 is proved, Theorem 2 follows from a double sampling argu-
ment, analogous to the one used in [12, Proposition D.2] for graphs.

Algorithm 2. One-sided ε-Tester
1 Let q and q′ = n0 be returned by Theorem 1 with input ε′ = ε/2. Given an

input configuration P of size at least n0, we pick a subconfiguration Q of n0

points uniformly at random. The tester accepts P if and only if Q ∈ P.

Proof of Theorem 2. Let P be a hereditary configuration property and ε ∈ (0, 1]
be fixed. We use the tester as described in Algorithm 2. Let q and q′ = n0 be
returned by Theorem1 with input ε′ = ε/2 and let Acc be the set of configura-
tions Q of size q that makes the tester from Theorem 1 accept the input when
Q is sampled.

Now we show the correctness of the algorithm. If P ∈ P, then it is clear that
Q ∈ P. We will show that if dist(P,P) > ε, then P(Q ∈ P) < ε. In fact, let Q′

be a subconfiguration of Q of size q picked uniformly at random. Then

P(Q′ ∈ Acc) ≥ P(Q′ ∈ Acc | Q ∈ P) · P(Q ∈ P) ≥ (1 − ε′) · P(Q ∈ P),

since otherwise the ε′-tester given by Theorem 1 would fail when given Q as
input. On the other hand, since dist(P,P) > ε′ and since Q′ has exactly the
same distribution of a subconfiguration of size q picked uniformly at random
from P , Theorem 1 (with input P) implies P(Q′ ∈ Acc) < ε′. It follows that

P(Q ∈ P) <
ε′

1 − ε′ ≤ 2ε′ = ε,

as desired. �

594 J. Han et al.

6 Concluding Remark

Theorem 3 can be generalized to hereditary properties of the form Forb(F) with
F finite. We hope to address the case in which F is infinite elsewhere.

Acknowledgments. The first author was supported by FAPESP (2014/18641-5).
The second author was partially supported by FAPESP (2013/03447-6, 2013/07699-
0), CNPq (310974/2013-5, 459335/2014-6) and NUMEC/USP (Project MaCLinC).
The third author was supported by CNPq(130483/2016-8). The fourth author was
supported by FAPESP (2015/15986-4), CNPq (459335/2014-6) and NUMEC/USP
(Project MaCLinC).

A Proof Sketch for Lemma1

We write by l(x, y) as the line defined by two points x, y in the plane. Let l be
a line and B be a set of points. Then we say l crosses B if there exist b1, b2 ∈ B
such that they are at the different sides of l, or, equivalently, the line segment
defined by b1, b2 intersects l. Our key claim is the following.

Claim. Let b ∈ Bi, then any line l � b crosses at most one other block Bj .

Proof. Assume that l � b crosses both Bj and Bj′ . Pick the points u, u′ ∈ Bj ,
v, v′ ∈ Bj′ such that u and v are at the same side of l, and u′, v′ are at the
other side of l. Consider two lines l(u, b) and l(u′, b). These two lines partition
the plane into four regions. By the definition of the blow-up, we know that
χ(b, u, v) = χ(b, u, v′) and χ(b, u′, v) = χ(b, u′, v′). Thus, v and v′ must be in
the same region. Moreover, since v and v′ must be at the different sides of l,
they must be both in one of the two regions that intersect l. Then note that
χ(b, u, v) �= χ(b, u′, v′) holds, which is a contradiction.

Now we start the sketch of the proof. For any i ∈ [m], we find a largest
subset Ci ⊂ Bi in convex position. By the definition of ESF , each Ci has size at
least fpoly(m). Let Ci = {v

(i)
1 , . . . , v

(i)
p } where the points are ordered along the

convex polygon under clockwise order. We now color each line segment v
(i)
j v

(i)
j+1

as follows:

– if l(v(i)
j , v

(i)
j+1) crosses Cp for some c ∈ [m], c �= i, then give v

(i)
j v

(i)
j+1 color p;

– otherwise, we rotate the line l(v(i)
j , v

(i)
j+1) around v

(i)
j+1 clock-wise. Give v

(i)
j v

(i)
j+1

color p if Cp is the first block that the line crosses.

Note that the coloring is well-defined because of the claim. In total this defines
a coloring with m colors, and note that each color class consists of two (possibly
empty) sets of consecutive line segments of the convex polygon Ci. Thus by
the Pigeonhole principle, there is a subset C ′

i = {u
(i)
1 , . . . , u

(i)
q } ⊂ Ci such that

|C ′
i| ≥ fpoly(m), and all (u(i)

r , u
(i)
r+1) for 1 ≤ r < q have the same color. We

repeat this process for all i ∈ [m].

Property Testing for Point Sets on the Plane 595

Next we consider C ′
1 and all lines (u(i)

q/2, u
(i)
q/2+1) for every index i such that

C ′
i received color 1. These lines divide C ′

1 in at most poly(m) regions. Hence, by
averaging, we can find a subset D′

1 ⊂ C ′
1 of 2f points such that for every such i,

either {u
(i)
1 , . . . , u

(i)
q/2} or {u

(i)
q/2+1, . . . , u

(i)
q } are entirely on the same side of D′

1.

Thus, abusing the notation, we pick either {u
(i)
1 , . . . , u

(i)
q/2} or {u

(i)
q/2+1, . . . , u

(i)
q }

as our new C ′
i, and we still have |C ′

i| ≥ f poly(m).
We can continue the operation for every C ′

r (1 ≤ r ≤ m) (but considering
only the points survived from previous iterations). This gives sets A1, . . . , Am

each of size f satisfying Lemma 1(a) and (b), because during the whole process,
a set C ′

r is shrunk at most twice: by a factor of poly(m) when it plays the role
of C ′

j , or by a factor of 2 when it plays the role of C ′
i. �

References

1. Bland, R.G., Las Vergnas, M.: Orientability of matroids. J. Comb. Theory Ser. B
24(1), 94–123 (1978)

2. Bokowski, J., Sturmfels, B.: Computational Synthetic Geometry. Lecture Notes in
Mathematics. Springer, Berlin (1989). https://doi.org/10.1007/BFb0089253

3. Chen, X., Freilich, A., Servedio, R.A., Sun, T.: Sample-based high-dimensional
convexity testing (June 2017). arXiv:1706.09362

4. Czumaj, A., Sohler, C.: Property testing with geometric queries (extended
abstract). In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1 22

5. Czumaj, A., Sohler, C., Ziegler, M.: Property testing in computational geometry
(extended abstract). In: Paterson, M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–
166. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45253-2 15

6. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

7. Erdős, P., Simonovits, M.: Supersaturated graphs and hypergraphs. Combinatorica
3(2), 181–192 (1983). https://doi.org/10.1007/BF02579292

8. Ergün, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-
checkers. J. Comput. Syst. Sci. 60(3), 717–751 (2000). https://doi.org/10.1006/
jcss.1999.1692. 30th Annual ACM Symposium on Theory of Computing (Dallas,
TX 1998)

9. Fox, J., Wei, F.: Fast property testing and metrics for permutations (2016).
arXiv:161101270

10. Fox, J., Pach, J., Suk, A.: A polynomial regularity lemma for semialgebraic hyper-
graphs and its applications in geometry and property testing. SIAM J. Comput.
45(6), 2199–2223 (2016). https://doi.org/10.1137/15M1007355

11. Goldreich, O. (ed.): Property Testing: Current Research and Surveys. LNCS, vol.
6390. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16367-8

12. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.
Random Struct. Algorithms 23(1), 23–57 (2003). https://doi.org/10.1002/rsa.
10078

13. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3),
484–507 (1983). https://doi.org/10.1137/0212032

https://doi.org/10.1007/BFb0089253
http://arxiv.org/abs/1706.09362
https://doi.org/10.1007/3-540-44676-1_22
https://doi.org/10.1007/3-540-45253-2_15
https://doi.org/10.1007/BF02579292
https://doi.org/10.1006/jcss.1999.1692
https://doi.org/10.1006/jcss.1999.1692
http://arxiv.org/abs/161101270
https://doi.org/10.1137/15M1007355
https://doi.org/10.1007/978-3-642-16367-8
https://doi.org/10.1002/rsa.10078
https://doi.org/10.1002/rsa.10078
https://doi.org/10.1137/0212032

596 J. Han et al.

14. Károlyi, G., Solymosi, J.: Erdős-Szekeres theorem with forbidden order types. J.
Combin. Theory Ser. A 113(3), 455–465 (2006). https://doi.org/10.1016/j.jcta.
2005.04.006

15. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete and
Computational Geometry, CRC Press Series Discrete Mathematics Application,
pp. 111–132. CRC, Boca Raton (1997)

16. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

https://doi.org/10.1016/j.jcta.2005.04.006
https://doi.org/10.1016/j.jcta.2005.04.006

Maximal and Convex Layers of Random
Point Sets

Meng He(B), Cuong P. Nguyen, and Norbert Zeh

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
{mhe,nzeh}@cs.dal.ca, cn536386@dal.ca

Abstract. We study two problems concerning the maximal and con-
vex layers of a point set in d dimensions. The first is the average-case
complexity of computing the first k layers of a point set drawn from
a uniform or component-independent (CI) distribution. We show that,
for d ∈ {2, 3}, the first n1/d−ε maximal layers can be computed using
dn + o(n) scalar comparisons with high probability. For d ≥ 4, the first
n1/2d−ε maximal layers can be computed within this bound with high
probability. The first n1/d−ε convex layers in 2D, the first n1/2d−ε convex

layers in 3D, and the first n1/(d2+2) convex layers in d ≥ 4 dimensions can
be computed using 2dn+ o(n) scalar comparisons with high probability.
Since the expected number of maximal layers in 2D is 2

√
n, our result

for 2D maximal layers shows that it takes dn + o(n) scalar comparisons
to compute a 1/nε-fraction of all layers in the average case. The second
problem is bounding the expected size of the kth maximal and convex
layer. We show that the kth maximal and convex layer of a point set
drawn from a continuous CI distribution in d dimensions has expected
size O(kd logd−1(n/kd)).

Keywords: Maximal layers · Skyline · Convex layers
Average-case analysis

1 Introduction

Maximal and convex layers are fundamental geometric structures with applica-
tions for example in data mining [5], pattern recognition and statistics [8,15]. A
point p dominates another point q if p is no less than q in any dimension and p
is greater than q in at least one dimension. The skyline (first maximal layer) of
a d-dimensional point set S is the set of all points in S not dominated by any
other point in S. A point p ∈ S belongs to the convex hull (first convex layer) of
S if there exists a (d − 1)-dimensional hyperplane through p that has all points
of S on the same side. For k > 1, the kth maximal or convex layer is the skyline
or convex hull of the subset of S obtained by removing the first k − 1 maximal
or convex layers, respectively.

Computing maximal and convex layers are problems that have been studied
extensively. A classical result of Kung et al. [12] shows that the skyline of a point
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 597–610, 2018.
https://doi.org/10.1007/978-3-319-77404-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_44&domain=pdf

598 M. He et al.

set in 2D or 3D can be found in O(n log n) time; for any constant d ≥ 4, the cost
in d dimensions is O(n logd−2 n). The convex hull of a 2D or 3D point set can also
be found in O(n log n) time [3], while the cost of finding the convex hull in d ≥ 4
dimensions is Θ(n�d/2�) in the worst case [7]. A simple adversary argument shows
that, in the worst case, Ω(n log n) comparisons between scalars are necessary to
compute the skyline or convex hull in d dimensions for any d ≥ 2. For component-
independent (CI) point distributions, on the other hand, expected linear-time
algorithms exist, where a point distribution is component-independent if it is
continuous and the coordinates of each point are chosen independently. The
algorithm of Bentley et al. [1] uses dn + o(n) scalar comparisons in expectation
to find the skyline of a point set in d dimensions. For the convex hull, they
presented an algorithm that uses 2dn + o(n) expected scalar comparisons for
d ∈ {2, 3}. For d ≥ 4, they presented an algorithm that finds a superset of
the convex hull of expected size O(logd−1 n) using 2dn + o(n) expected scalar
comparisons. They also proved that dn scalar comparisons is a lower bound for
computing either the skyline or convex hull.

All maximal layers of a point set can be computed in O(n log n) time in 2D
[4] and 3D [6]. For d ≥ 4, no optimal algorithm for computing multiple maximal
layers is known. The convex layers of a point set in 2D can be computed in
O(n log n) time [8]. For d ≥ 3, no optimal algorithm for computing multiple
convex layers is known. Nielsen [15] presented an output-sensitive algorithm for
finding the first k convex or maximal layers of a 2D point set in O(n log hk) time,
where hk is the number of points in these layers.

One of the key ingredients of Bentley et al.’s skyline and convex hull algo-
rithms [1] is the ability to quickly identify a small subset of points that is likely
to contain all skyline or convex hull points. The skyline or convex hull can then
be computed by applying one of the algorithms above to this subset of points.
Such a small subset can exist only if the skyline or convex hull is small. Bentley
et al. [2] proved that the expected size of the skyline or the expected number
of vertices of the convex hull over an arbitrary CI distribution is O(logd−1 n).
Note that the work on the expected complexity of geometric structures, includ-
ing that of Bentley et al. [2], is of independent interest. Many other problems
have also been defined and studied under similar assumptions. For instance,
Dalal [9] shows that the expected number of convex layers is Θ(n2/(d+1)) for
a set of n points independently chosen from a uniform distribution inside any
bounded, nonempty region in R

d. We refer to Okabe et al. [16] for a review of
many problems in this area.

Our results. We extend Bentley et al.’s results [1] to multiple layers and
strengthen the algorithm analysis by proving high-probability bounds on the
number of scalar comparisons. Our first main result is a reduction that allows
us to obtain an algorithm that computes the first k maximal or convex layers
using dn + o(n) or 2dn + o(n) expected scalar comparisons, respectively, given
an algorithm that computes these layers using O(kcn1+ε) scalar comparisons in
the worst case. The exact bound on k is given in the following theorem.

Maximal and Convex Layers of Random Point Sets 599

Theorem 1. Let S be a set of n points drawn from an arbitrary CI distribution
in d dimensions. Suppose there is an algorithm M that can compute the first
k maximal (or convex) layers of S using O(kcn1+ε) scalar comparisons in the
worst case, where c and ε are constants with c ≥ 0 and 0 < ε < 1

(c+1)d . Then

the first κ = n
1

(c+1)d −ε maximal (or convex) layers of S can be computed using
dn + o(n) (or 2dn + o(n)) expected scalar comparisons, and the actual number
of comparisons is within the same bounds with probability 1 − o(n−nε′

) for any
ε′ ∈ (0, (cε + ε2

2(ε+1))d).

To achieve this result, our main strategy is to generalize the algorithms of
Bentley et al. [1] to compute more than one maximal or convex layer. While it
is not difficult to generalize the algorithms themselves, it is more challenging
to analyze their running times. To perform the analysis, our key strategy is to
further conceptually subdivide some objects defined by these algorithms into
even smaller objects, such that a layer must contain a point inside a particular
smaller object with high probability. These constructs may be of general interest,
as they may be useful to the tasks of performing some other similar analysis over
multiple layers of the given point set.

The existing algorithms discussed previously allow us to find the first k max-
imal layers using O(n1+ε) comparisons for d ∈ {2, 3} and using O(kn1+ε) com-
parisons for d ≥ 4. The first k convex layers can be computed using O(n1+ε)
comparisons in 2D and using O(kn1+ε) comparisons in 3D. Thus, we obtain the
following corollary of Theorem1:

Corollary 1. Let S be a set of n points drawn from an arbitrary CI distribution
in d dimensions. If d ∈ {2, 3}, the first n

1
d −ε maximal layers of S can be computed

using dn + o(n) expected scalar comparisons. If d ≥ 4, the first n
1
2d −ε maximal

layers can be computed using this expected number of scalar comparisons. If
d = 2, the first n

1
d −ε convex layers of S can be computed using 2dn+o(n) expected

scalar comparisons. If d = 3, the first n
1
2d −ε convex layers can be computed

using this number of expected scalar comparisons. In all these cases, the actual
number of comparisons is within the same upper bounds on the expected number
of comparisons with probability 1 − o(n−nε′

).

Our results are the first that show that more than one maximal or convex
layer can be computed using the optimal number of scalar comparisons on ran-
dom point sets up to lower order terms and, in the case of convex hull, up to
a constant factor of 2. With the exception of a high-probability analysis of an
alternative skyline algorithm by Bentley et al. [1] provided by Golin [11], only
expected bounds on the number of scalar comparisons were known even for
computing only the first convex or maximal layer.

The number of maximal layers of a point set S is the length of a longest
monotonically increasing subsequence (LMIS) of the sequence of y-coordinates
of the points in S sorted by their x-coordinates. If S is drawn from a CI dis-
tribution, this sequence of y-coordinates is a uniform random permutation of

600 M. He et al.

the y-coordinates. Thus, by a result of [10], the expected length of an LMIS of
this sequence, and thus the number of maximal layers of S approaches 2

√
n as

n approaches infinity. Therefore, for d = 2, our algorithm finds a 1/nε-fraction
of all maximal layers in the average case using the optimal number of scalar
comparisons up to lower-order terms.

For d ≥ 4 dimensions, no convex hull algorithm using expected 2dn + o(n)
comparisons on random point sets was known, and we cannot satisfy the condi-
tion of Theorem1 even for k = 1 since computing the convex hull takes Θ(n�d/2�)
time in the worst case. However, the construction that proves Theorem 1 can be
combined with the Θ(n�d/2�)-time convex hull algorithm to obtain the following
theorem:

Theorem 2. Let S be a set of n points in d ≥ 4 dimensions drawn from an
arbitrary CI distribution. For any k ≤ n1/(d2+2), the first k convex layers of S
can be found using 2dn+o(n) scalar comparisons with probability 1−O(1

n1/d−ε),
for any ε > 0.

This result is the first that computes multiple convex layers in four or higher
dimension in linear time with high probability.

Our second main result bounds the size of the kth maximal or convex layer
of a d-dimensional point set. Previously, only bounds on the expected size of the
first maximal or convex layer were known.

Theorem 3. For any point set S drawn from a continuous CI distribu-
tion in d dimensions, the kth maximal or convex layer has expected size
O(kd logd−1(n/kd)).

2 Algorithm Overview

Bentley et al.’s algorithms [1] for computing the skyline or convex hull of a point
set S using expected dn+o(n) or 2dn+o(n) comparisons uses the following simple
idea: Find a rectangular inner region I that is expected to contain almost all
points in S and is likely to be completely below the skyline of S or inside the
convex hull of S. See Fig. 1. In particular, with high probability, the points in
S that belong to the skyline or convex hull are all contained in the outer region
O = R

d \ I. The algorithm partitions the point set S into two subsets SI = S ∩ I
and SO = S ∩ O and computes the skyline or convex hull LO of SO using some
standard skyline or convex hull algorithm, which takes o(n) time in expectation
because SO is small. Finally, the algorithm checks whether certain subregions of
O (C and C1, . . . , C4, respectively, in Fig. 1) each contain at least one point of
SO. If so, I is completely below or inside LO, which implies that LO is also the
skyline or convex hull of S because no point in S \ SO = SI ⊆ I can be on the
maximal layer or convex hull of S. Thus, the algorithm terminates in this case.
Otherwise, the algorithm runs a standard skyline or convex hull algorithm on
S to compute the skyline or convex hull of S. While this is costly, this happens

Maximal and Convex Layers of Random Point Sets 601

I

O C

p

(a) Maximal layers

I

O C1C2

C3 C4

p+

p−

(b) Convex layers

Fig. 1. The inner and outer regions used in Bentley et al.’s [1] and our algorithm
illustrated for the 2D case. I is shaded blue. O is shaded pink, including the darker
regions, which are the corners that are tested by the algorithm whether they contain
a point not on the first k maximal or convex layers. As illustrated in red, any point in
C dominates I in the case of maximal layers; in the case of convex layers, the convex
hull of any four points in C1, . . . , C4 encloses I. (Color figure online)

infrequently because I is likely to be below the skyline or inside the convex hull
of S, so the expected cost of this final step is again o(n).

For the skyline algorithm, I = (−∞, x1(p)]×(−∞, x2(p)]×· · ·×(−∞, xd(p)],
where p is an appropriate point and xi(p) denotes the ith coordinate of p, so
the partition into SI and SO can be obtained using dn scalar comparisons.
For the convex hull algorithm, I = [x1(p−), x1(p+)] × [x2(p−), x2(p+)] × · · · ×
[xd(p−), xd(p+)] for an appropriate pair of corner points (p−, p+), so the partition
can be performed using 2dn scalar comparisons. The corner points of I can
be found without comparisons by setting xi(p−) = ε and xi(p) = xi(p+) =
1 − ε for all 1 ≤ i ≤ d and some appropriate value ε > 0. At least this is
the case for points distributed uniformly at random in the unit hypercube. For
an arbitrary CI distribution, p, p−, and p+ can each be found using dn + o(n)
scalar comparisons using randomized linear-time selection. The partitioning of
S into SI and SO can be done as part of the selection process without incurring
any additional comparisons. We discuss this in more detail as part of our high-
probability analysis and extension to multiple layers (Lemmas 1 and 4). Overall,
the expected cost of the algorithm is dn + o(n) or 2dn + o(n) comparisons for
finding p or p− and p+ and computing the partition of S into SI and SO plus
o(n) expected comparisons for computing the maximal layer or convex hull.

To extend Bentley et al.’s result [1] to multiple maximal or convex layers, we
need to show that there exists a point p or a pair of points (p−, p+) that defines
inner and outer regions I and O as above such that, again, almost all points
in S are inside I and the first k layers are unlikely to intersect I. To achieve a
running time of dn + o(n) or 2dn + o(n) with high probability, we also need to
strengthen the analysis of Bentley et al. [1] to (a) show that these points can be

602 M. He et al.

found using dn + o(n) or 2dn + o(n) scalar comparisons with high probability
and (b) with high probability, I does not intersect the first k layers.

Since the proofs are slightly simpler, we present our result for maximal layers
first. Then, in Sect. 4, we argue that the same approach, with minor modifica-
tions, can also be used to compute convex layers.

3 Maximal Layers

Throughout this section, we use p ↗ q to indicate that q dominates p. Given
a point set S drawn from a CI distribution D and some value τ ∈ [0, 1], we
call a point p a τ -pivot of S if, for all 1 ≤ i ≤ d and any point p′ chosen
uniformly at random from S, P [xi(p′) ≥ xi(p)] = τ ; recall that xi(p) denotes
the ith coordinate of point p. Point p is not necessarily in S. We first prove the
following lemma on locating p.

Lemma 1. Let S be a point set drawn from a CI distribution. For any value
t > 0, any value τ ∈ (0, n−t]∪ [1−n−t, 1), and any constant ε′ ∈ (0, 1), a τ -pivot
p and a partition of S into two subsets SI = S ∩ I and SO = S ∩ (Rd \ I) can be
computed using dn+ o(n) scalar comparisons in expectation and with probability
at least 1 − o

(
n−nε′)

, where I is the region dominated by p.

Proof. If S is drawn uniformly at random from the unit hypercube, then p =
(1 − τ, . . . , 1 − τ) is a τ -pivot and can be found without any comparisons. The
partition of S into SI and SO can be computed by deciding for each point whether
it is dominated by p (and thus belongs to SI) or not (and thus belongs to SO).
This takes d comparisons per point in S, incurring dn comparisons in total, that
is, the lemma holds in the worst case for a uniform random distribution. For
an arbitrary CI distribution, set xi(p) to be the (τn)th largest coordinate in
dimension i among the points in S. Then p is a τ -pivot. Each value xi(p) can
be found using n + o(n) scalar comparisons in expectation and with probability
at least 1 − o

(
n−nε′)

using a simplified version of LazySelect [14]; we omit the
details due to page constraints. In the process, every point in S is tagged as
having ith coordinate less than or equal to, or greater than xi(p). Doing this for
all d dimensions produces p and takes dn+o(n) scalar comparisons in expectation
and with probability at least 1 − o

(
n−nε′)

. The partition of S into SI and SO

is then obtained without additional scalar comparisons by collecting all points
tagged as greater than p in at least one dimension into SO, and the remaining
points into SI . ��

The following observation and lemmas are needed for our proof of Theorem1.

Observation 4. Let p be a τ -pivot of S and consider the corresponding par-
tition of S into subsets SI and SO as in Lemma 1. If there exist k + 1 points
p1, p2, . . . , pk+1 in SO such that p ↗ pk+1 ↗ · · · ↗ p1, then the first k maximal
layers of S and SO are identical and pk+1 is not part of these layers.

Maximal and Convex Layers of Random Point Sets 603

Lemma 2. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ

k+1 ≥ n(ε2−1)/d, and let h0, h1, . . . , hk+1 be k + 2 points such
that hj is a

(
j

k+1τ
)
-pivot of S for all 0 ≤ j ≤ k + 1. Then with probability at

least 1 − o
(
n−nε1)

, each hyperrectangle Hj defined by points hj−1 and hj, for
1 ≤ j ≤ k+1, contains a point pj ∈S. These points satisfy pk+1 ↗ pk ↗· · ·↗ p1.

Proof. Consider an arbitrary hyperrectangle Hj . Since hj−1 is a
(

j−1
k+1τ

)
-pivot

and hj is a
(

j
k+1τ

)
-pivot, each point p ∈ S satisfies xi(hj−1) ≤ xi(p) ≤ xi(hj)

with probability τ
k+1 for each 1 ≤ i ≤ d. Since the coordinates are chosen

independently, p ∈ Hj with probability
(

τ
k+1

)d. Thus, E(|Hj ∩ S|) =
(

τ
k+1

)d
n.

Since |Hj ∩ S| is the sum of independent Bernoulli random variables, the Cher-
noff bound states that P (Hj ∩ S = ∅) < e−(τ/(k+1))dn/4 and the probability
that there exists an index 1 ≤ j ≤ k + 1 such that Hj ∩ S = ∅ is less than
(k + 1)e−(τ/(k+1))dn/4. For τ

k+1 ≥ n(ε2−1)/d, this is bounded by (k + 1)e−nε2/4 ≤
n1−nε2/(4 lnn) = o

(
n−nε1)

for any ε1 < ε2 because k + 1 ≤ n. ��
Lemma 3. Let S be a point set drawn from a CI distribution, let 0 < ε1 <
ε2 < 1 be constants, let τ ≥ nε2−1, let p be a τ -pivot of S, let SI ⊆ S be the
set of points dominated by p, and let SO = S \ SI . Then E(|SO|) ≤ dτn and
P (|SO| > 2dτn) = o

(
n−nε1)

.

Proof. We can cover the outer region O with d halfspaces B1, B2, . . . , Bd, where
Bi = {p′ ∈ R

d | xi(p′) ≥ xi(p)}. Since a point p′ ∈ S satisfies xi(p′) ≥ xi(p) with
probability τ , we have E(|Bi ∩S|) = τn and E(|SO|) ≤ ∑d

i=1 E(|Bi ∩S|) = dτn.
Since |Bi∩S| is the sum of independent Bernoulli random variables, the Chernoff
bound states that P (|Bi∩S| > 2τn) < e−τn/3 ≤ n−nε2/(3 lnn) = o

(
n−nε1)

. Thus,
P (|SO| > 2dτn) ≤ ∑d

i=1 P (|Bi| > 2τn) = o
(
dn−nε1)

= o
(
n−nε1)

. ��
Proof (Proof of Theorem 1 (Maximal Layers)). Our algorithm finds a τ -pivot p of
S, partitions S into SI and SO, computes the first k maximal layers of SO using
M , and checks whether there exists a point in SO that is not on the computed
maximal layers but dominates p. If this test succeeds, then the maximal layers of
S and SO are the same, so the algorithm reports the computed maximal layers.
Otherwise, it runs M on S to compute the first k maximal layers of S.

We prove that this algorithm uses dn + o(n) scalar comparisons with high
probability. The analysis of the expected number of comparisons is analogous.
The number of comparisons the algorithm performs is dn+o(n) if (a) computing
p and partitioning S into SI and SO takes dn + o(n) comparisons, (b) running
algorithm M on SO incurs o(n) comparisons, and (c) there exists a point in SO

that is not on the first k maximal layers and dominates p, that is, the fallback
option of running M on the entire point set S is not invoked. Thus, it suffices
to bound the probability that any of these three conditions fails.

By Lemma 1, (a) fails with probability o
(
n−nε′)

, for any ε′ ∈ (0, 1), as long

as τ = n−t for some t > 0. Running algorithm M on SO incurs o(n) scalar com-
parisons if |SO| = o

(
n1/(1+ε)

)
/kc. By Lemma 3, |SO| ≤ 2dτn with probability

604 M. He et al.

1−o
(
n−nε′)

as long as τ ≥ nε2−1 for some ε2 > ε′. Therefore, (b) fails with prob-

ability o
(
n−nε′)

as long as τn = o
(
n1/(1+ε)

)
/kc and τ ≥ nε2−1. By Observation 4

and Lemma 2, (c) fails with probability o
(
n−nε′)

as long as τ
k+1 ≥ n(ε2−1)/d for

some ε2 > ε′. Thus, the probability that any of these three conditions fails is
o(n−nε′

), provided we can choose τ so that the above constraints are satisfied.
First observe that ε2 − 1 < 0. Thus, τ ≥ nε2−1 if τ

k+1 ≥ n(ε2−1)/d, so we have
to choose a value of τ = n−t, for some t > 0, such that τ

k+1 ≥ n(ε2−1)/d and τn =
o
(
n1/(1+ε)

)
/kc. The last two constraints imply that kc+1 = o(n−ε/(ε+1)+(1−ε2)/d)

or k = o(n
1

(c+1)d −ε+δ) where δ = ε − ε2
(c+1)d − ε

(ε+1)(c+1) . For any ε2 <
(
cε +

ε2

2(ε+1)

)
d, we have δ > 0, that is, we can compute up to n

1
(c+1)d −ε maximal

layers and, since (cε + ε2

2(ε+1)) > 0, we can choose values ε′ and ε2 such that

0 < ε′ < ε2 < (cε+ ε2

2(ε+1))d. It remains to choose τ . We have τn = o
(
n1/(1+ε)

)
/kc

if t > ε
1+ε + c

(c+1)d − εc. To satisfy τ
k+1 ≥ n(ε2−1)/d, we need t = − logn τ ≤

− logn(k + 1) − ε2−1
d . To compute the first n

1
(c+1)d −ε maximal layers, we replace

k by n
1

(c+1)d −ε in this inequality, and it holds for large enough n if t is a constant
and t < ε − 1

(c+1)d − ε2−1
d , which is true as long as t is a constant satisfying

t < ε − 1
(c+1)d − εc − ε2

2(1+ε) + 1
d because ε2 < (cε + ε2

2(ε+1))d. It is easy to verify

that ε
1+ε + c

(c+1)d − εc < ε− 1
(c+1)d − εc− ε2

2(1+ε) + 1
d . Thus, we can choose a value

of t that satisfies both constraints and set τ = n−t. In addition, since ε < 1
(c+1)d ,

we have ε
1+ε + c

(c+1)d − εc > 0, that is, t > 0. ��

4 Convex Layers

Convex Layers in Two and Three Dimensions: To apply the framework
from Sect. 3 to compute convex layers, we need to extend the notion of dominance
to the 2d possible quadrants of a point in R

d. We identify each quadrant using
a sign vector σ ∈ {+1,−1}d. We say a point q ∈ R

d σ-dominates another
point p ∈ R

d, written as p ↗σ q if σ ◦ q dominates σ ◦ p, where p ◦ q is the
Hadamard product: p ◦ q = (x1(p), x2(p), . . . , xd(p)) ◦ (x1(q), x2(q), . . . , xd(q)) =
(x1(p)x1(q), x2(p)x2(q), . . . , xd(p)xd(q)). We call a point p a (τ, σ)-pivot of S
if, for all 1 ≤ i ≤ d and any point p′ chosen uniformly at random from S,
P (xi(σ)xi(p′) ≥ xi(σ)xp(p)) = τ . Note that 1-dominance is the same as normal
dominance, a (τ,1)-pivot is just a τ -pivot, and a (τ,−1)-pivot is a (1 − τ)-
pivot, where 1 = (1, . . . , 1) and −1 = (−1, . . . ,−1). A pair of points (p−, p+),
where 0 < τ < 1/2, p−1 is a (τ,−1)-pivot, and p+ is a (τ,1)-pivot, divides R

d

into an inner region I containing all points in R
d that dominate p− and are

dominated by p+, and an outer region O = R
d \I; see Fig. 1. Similar to maximal

layers, we define SI = S ∩ I and SO = S ∩ O. The corners of I are the points
{pσ | σ ∈ {+1,−1}d}, where pσ = 1

2 ((1 + σ) ◦ p+ + (1 − σ) ◦ p−). Since S is
drawn from a CI distribution, each such corner pσ is a (τ, σ)-pivot of S.

Maximal and Convex Layers of Random Point Sets 605

Our algorithm finds (p−, p+), partitions S into SI and SO, computes the first
k convex layers of SO using M , and checks whether, for every σ ∈ {+1,−1}d,
there exists a point in SO that is not on the computed convex layers but σ-
dominates pσ. If this test succeeds, then the convex layers of S and SO are the
same, so the algorithm reports the computed convex layers. Otherwise, it runs
M on S to compute the first k convex layers of S. To analyze this algorithm, we
first prove the following lemmas and observation.

Lemma 4. Let S be a point set drawn from a CI distribution. For any value
t > 0, any value τ ∈ (0, n−t], and any constant ε′ ∈ (0, 1), a pair of points
(p−, p+) such that p− is a (τ,−1)-pivot of S and p+ is a (τ,1)-pivot of S and
a partition of S into two subsets SI = S ∩ I and SO = S ∩ O can be computed
using 2dn + o(n) scalar comparisons in expectation and with probability at least
1 − o

(
n−nε′)

.

Proof. Since p+ is a τ -pivot and p− is a (1 − τ)-pivot of S, we can find these
two points using the claimed number of scalar comparisons by applying Lemma1
twice. In the case of an arbitrary CI distribution, the selection of the coordinates
of p− and p+ also tags each point as having ith coordinate less than xi(p−),
between xi(p−) and xi(p+) or greater than xi(p+), for each 1 ≤ i ≤ d. Thus, SI

and SO can be produced without any additional scalar comparisons by placing
each point that has at least one coordinate less than p− or at least one coordinate
greater than p+ into SO and all remaining points into SI . ��
Observation 5. Let h−

0 , h−
1 , . . . , h−

k+1 and h+
0 , h+

1 , . . . , h+
k+1 be points such that

h−
0 ↗ h−

1 ↗ . . . ↗ h−
k+1 ↗ h+

k+1 ↗ h+
k ↗ · · · ↗ h+

0 and consider the regions
I and O defined by the pair of points p− = h−

k+1 and p+ = h+
k+1. Each pair of

points (h−
j , h+

j) defines a hyperrectangle with corner set {hσ
i | σ ∈ {+1,−1}d}

similar to the corner set {pσ | σ ∈ {+1,−1}d} of I defined by (p−, p+). If, for
every sign vector σ ∈ {+1,−1}d, there exist k + 1 points pσ

1 , pσ
2 , . . . , pσ

k+1 in SO

such that hσ
j ↗σ pσ

j ↗σ hσ
j−1 for all 1 ≤ j ≤ k + 1, then the first k convex

layers of S and SO are identical and pσ
k+1 is not part of these layers for any

σ ∈ {+1,−1}d.

Lemma 5. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ

k+1 ≥ n(ε2−1)/d, and let h−
0 , h−

1 , . . . , h−
k+1, h

+
0 , h+

1 , . . . , h+
k+1 be

points such that h−
j is a

(
j

k+1τ,−1
)
-pivot and h+

j is a
(

j
k+1τ,1

)
-pivot for all

0 ≤ j ≤ k + 1. Then with probability at least 1 − o
(
n−nε1)

, every hyperrectangle
Hσ

j defined by the points hσ
j−1 and hσ

j , for 1 ≤ j ≤ k + 1 and every sign vector
σ ∈ {+1,−1}d, contains a point pσ

j ∈ S.

Proof. Analogous to the proof of Lemma2, P (Hσ
j ∩S = ∅) < e−(τ/(k+1))dn/4, so

the probability that there exists a pair (j, σ) such that Hσ
j ∩ S = ∅ is less than

(k+1)2de−(τ/(k+1))dn/4. As shown in the proof of Lemma2, (k+1)e−(τ/(k+1))dn/4

= o
(
n−nε1)

. Since d is a constant, this implies that (k + 1)2de−(τ/(k+1))dn/4 =
o
(
n−nε1)

. ��

606 M. He et al.

Lemma 6. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ ≥ nε2−1, let p− be a (τ,−1)-pivot of S, let p+ be a (τ,1)-
pivot of S, let I be the hyperrectangle defined by (p−, p+), let SI = S ∩ I, and
let SO = S \ SI . Then E(|SO|) ≤ 2dτn and P (|SO| > 4dτn) = o

(
n−nε1)

.

Proof. The proof is identical to the proof of Lemma3 after observing that SO can
be covered with 2d halfspaces B−

1 , B−
2 , . . . , B−

d , B+
1 , B+

2 , . . . , B+
d , where B−

i =
{p′ ∈ R

d | xi(p′) ≤ xi(p−)} and B+
i = {p′ ∈ R

d | xi(p′) ≥ xi(p+)} for all
1 ≤ i ≤ d. ��

With these lemmas and observation, we claim that the analysis of the algo-
rithm in Sect. 4 that computes the first k convex layers in two or three dimen-
sions is identical to the proof of Theorem1 for maximal layers, using Lemmas 4,
5, and 6 and Observation 5 in place of Lemmas 1, 2, and 3 and Observation 4.
This completes the proof of Theorem 1.

Convex Layers in Four or Higher Dimensions: We now consider the prob-
lem of computing the first k convex layers of a point set S drawn from an
arbitrary CI distribution in four or higher dimensions, for k ≤ n1/(d2+2). The
framework of Theorem 1 cannot be applied directly to this problem because the
best known algorithm for computing even the convex hull in d ≥ 4 dimensions [7]
takes O(n�d/2�) comparisons.

Bentley et al. [2] showed how to use 2d skyline computations to produce a
superset Q′ of the convex hull Q of S of small expected size. Matoušek [13] later
called this structure the quadrant hull of S. We opt for orthant hull here because
an orthant is the generalization of quadrants to higher dimensions. We will show
later in this section that, with high probability, the size of Q′ is small enough so
that applying Chazelle’s convex hull algorithm to Q′ takes O(n) comparisons.
Combined with Kung et al.’s algorithm for computing the skyline in d dimensions
in O(n logd−2 n) time [12], this gives an algorithm M that computes the convex
hull of S using O(n logd−2 n) comparisons with high probability. To compute
k > 1 convex layers, M repeats this process k times: the ith iteration computes
the convex hull of the point set left after removing the first i − 1 convex layers.
With high probability, this will take O(kn logd−2 n) time because, as we show
below, the size not only of the orthant hull but in fact of the first k orthant
layers is small enough to apply Chazelle’s algorithm k times.

To prove Theorem 2, we use M in conjunction with Theorem1 where c = 1.
Theorem 1 requires M to achieve a running time of O(kn1+ε) in the worst case.
However, it is easily verified that the proof of Theorem1 continues to hold if M
achieves this running time with some probability p > 0, in which case Theorem 1
produces a convex hull algorithm that uses 2dn + o(n) scalar comparisons with
probability Θ

(
min

(
p, 1 − o

(
n−nε′)))

. Since we prove below that M achieves a

running time of O(n logd−2 n) with probability 1−O
(

1
n1/d−ε

)
, Theorem 2 follows

by setting ε = 1/(2d) − 1/(d2 + 2) in Theorem 1.
Let σ ∈ {+1,−1}d be a sign vector, let σ ◦ S = {σ ◦ p | p ∈ S}, and let

Lσ be the set of points p ∈ S such that σ ◦ p belongs to the skyline of σ ◦ S.

Maximal and Convex Layers of Random Point Sets 607

We call Lσ the σ-skyline of S. The orthant hull of S is Q′ =
⋃

σ∈{+1,−1}d Lσ,
and Bentley et al. proved that Q ⊆ Q′. To define the orthant layers of S, let Q′

be the first orthant layer of S and, for i > 1, let the ith orthant layer of S be the
orthant hull of the subset of S obtained after removing the first i − 1 orthant
layers from S.

Let Q1, Q2, . . . , Qk be the first k convex layers of S, let Si = S \ ⋃i−1
j=1 Qj ,

and let Q′
i be the orthant hull of Si for all 1 ≤ i ≤ k. Since Qi is the convex

hull of Si, Bentley et al.’s result shows that Qi ⊆ Q′
i and it is not hard to

see that
⋃k

i=1 Q′
i is a subset of the points on the first k orthant layers1 of S.

Computing Q′
i in the ith iteration takes O(2dn logd−2 n) = O(n logd−2 n) time

by applying Kung et al.’s algorithm once for each sign vector σ. Summing over
all k iterations, we get an upper bound O(kn logd−2 n). To compute Qi, we
apply Chazelle’s algorithm to Q′

i, which takes O(|Q′
i|�d/2�) time. Summing over

all k layers, we obtain that computing the first k convex layers using M takes
O(kn logd−2 n +

∑k
i=1 |Q′

i|�d/2�) = O(kn logd−2 n + k|Q′′|�d/2�) time, where Q′′

is the set of points on the first k orthant layers of S. As we show in Sect. 5.2,
E(k2/d|Q′′|) = O(k2/dkd logd−1 n) = O(n1/d logd−1 n) because k ≤ n1/(d2+2).
Thus, by Markov’s inequality, P (k2/d|Q′′| > n2/d) ≤ n−1/d+ε, that is, M takes
O(kn logd−2 n) time with probability at least 1 − n−1/d+ε, as claimed.

5 Expected Size of the First k Layers

Bentley et al. [2] proved that the expected size of the skyline of a point set
drawn from a CI distribution in d dimensions is O(logd−1 n). They also used
this result to give a bound of O(logd−1 n) on the expected number of vertices on
the convex hull. It seems difficult to extend their technique to subsequent layers.
In Sect. 5.1, we show that, for continuous CI distributions, the kth maximal layer
has expected size O(kd logd−1(n/kd)). The proof is based on a proof sketch for
2D suggested by an anonymous reviewer of an earlier draft of this paper. In
Sect. 5.2, we show how to extend the argument to obtain the same bound (up to
a factor of 4d) for convex and orthant layers. This proves Theorem3.

5.1 Maximal Layers

First consider a point set S drawn uniformly at random from the unit hypercube.
To simplify the discussion, we bound the size of the kth minimal layer of S, which
is equivalent to the kth maximal layer via the transformation (x1, x2, . . . , xd) �→
(1 − x1, 1 − x2, . . . , 1 − xd). For every point p ∈ R

d, let Dp be the set of points
dominated by p, and let |Dp| be the volume of Dp. For every integer t ≥ 0,
let Bt be the set of all points p ∈ [0, 1]d with |Dp| = (2k)dt

n , that is, a point

(x1, x2, . . . , xd) belongs to Bt if and only if x1x2 · · · xd = (2k)dt
n and 0 ≤ xi ≤ 1

1 Note that
⋃k

i=1 Q′
i is not a subset of the first k σ-skyline of S. A counterexample

will be given in the full version of this paper.

608 M. He et al.

0

1

1

B2

B3

L2

p

Fig. 2. Bound on the probability that a point in Lt belongs to the first k minimal
layers in 2D. Here, k = 2 and n = 160. The region L2 is shaded. Each of the grey
grid cells contains two points of S in expectation. Any point in such a grid cell (red) is
dominated by p and all points in grid cells to its top right. Thus, unless more than two
of these grid cells are empty, p does not belong to the first two minimal layers. (Color
figure online)

for all 1 ≤ i ≤ d. Bt splits the unit hypercube into two regions: L−
t includes

(0, . . . , 0) and L+
t includes (1, . . . , 1). For t ≥ 0, let Lt = L+

t ∩ L−
t+1 be the

region between by Bt and Bt+1. See Fig. 2 for an example. The volume of L−
t is

bounded by

∫ 1

(2k)dt/n

∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(2k)dt

nx1x2 · · · xd−1
dx1dx2 · · · dxd−1 +

d(2k)dt

n

= O

(
kdt logd−1(n/kd)

n

)
.

Since Lt ⊆ L−
t+1, this implies that |Lt| = O

(
kdt logd−1(n/kd)

n

)
. Next consider a

point p ∈ Lt and divide Dp into a uniform grid with (2k)d cells by dividing
each side of Dp into 2k equal intervals. Each cell of this grid has volume at least
t/n and thus contains at least t points in expectation. Thus, using the Chernoff
bound, any of these grid cells is empty with probability less than e−t/4. For p to
be on one of the first k minimal layers, at least k of the 2k cells on the diagonal
of the grid must be empty, which happens with probability less than 2e−t/4, by
Markov’s inequality. Thus, any point in S belongs to Lt and to one of the first
k layers with probability O(kdt logd−1(n/kd)

net/4). The expected number of points in

S that belong to Lt and to one of the first k layers is thus O(kdt logd−1(n/kd)
et/4).

Since
∑∞

t=0
t

et/4 = O(1), the expected number of points on the first k minimal
layers is thus O(kd logd−1(n/kd)).

For an arbitrary continuous CI distribution D, let Pi be the cumulative dis-
tribution function of the probability distribution of the ith coordinate. Then,

Maximal and Convex Layers of Random Point Sets 609

for any point set S drawn from D, the mapping φ : (x1, x2, . . . , xd) �→
(P1(x1), P2(x2), . . . , Pd(xd)) produces a point set S′ drawn uniformly at ran-
dom from the unit hypercube and p ∈ S dominates q ∈ S if and only if φ(p)
dominates φ(q). Thus, the total expected size of the first k maximal layers, and
thus the expected size of the kth maximal layer, of S is O(kd logd−1(n/kd)).

5.2 Convex Layers

By the argument in the previous paragraph, it suffices to prove that the first
k convex layers of a point set S drawn uniformly at random from the unit
hypercube have expected size O(kd logd−1(n/kd)). Let o be the center point
of the unit hypercube. Point o splits the unit hypercube into 2d orthants Oσ

with side length 1/2 for σ ∈ {+1,−1}d. More precisely, Oσ is the set of all
points in the unit hypercube that σ-dominate o. We prove that the expected
number of points in each orthant Oσ that belong to the first k convex layers
is O((2k)d logd−1(n/kd)). Summing over all 2d orthants, we obtain a bound of
O((4k)d logd−1(n/kd)) = O(kd logd−1(n/kd)) on the expected size of the first
k convex layers of S. W.l.o.g. consider the orthant O−1; the argument for any
other orthant Oσ is analogous after negating the point coordinates of S in all
dimensions where σ and −1 differ.

We define sets L1, L2, . . . as in Sect. 5.1. The key of our proof is to show that
any point in Lt ∩O−1 belongs to one of the first k convex layers with probability
at most 2d+1e−t/4. Since Lt∩O−1 ⊆ Lt, the exact same calculation as in Sect. 5.1
then shows that the expected number of points in Lt ∩ O−1 that belong to the
first k convex layers is O

(
(2k)dt logd−1(n/kd)

et/4

)
and again, since

∑∞
t=0

t
et/4 = O(1),

the expected number of points in O−1 that belong to the first k convex layers
is O((2k)d logd−1(n/kd)), as claimed.

So consider a point p ∈ Lt ∩ O−1. Let Dσ
p be the part of the unit hypercube

σ-dominated by p. We divide each hyperrectangle Dσ
p into a uniform grid with

(2k)d cells by dividing each side of Dσ
p into 2k equal intervals. Consider the diago-

nal of Dσ
p connecting p with the opposite corner of Dσ

p and let Hσ
1 ,Hσ

2 , . . . , Hσ
2k

be the grid cells intersected by this diagonal, ordered by increasing distance
from p. The argument in Sect. 5.1 shows that P (S ∩ H1

i = ∅) < e−t/4 for all
1 ≤ i ≤ 2k, since Dp = D1

p . Since p ∈ O−1, we have |Hσ
i | ≥ |H1

i | for all i and
all σ. Thus, P (S ∩ Hσ

i = ∅) ≤ P (S ∩ H1
i) < e−t/4. Now, if there exist k indices

1 ≤ i1 < i2 < · · · < ik ≤ 2k such that, for all 1 ≤ j ≤ k and all σ ∈ {−1,+1}d,
Hσ

ij
∩ S �= ∅, then p is not on the kth convex layer. Thus, for p to be on the kth

convex layer, there have to be at least k indices 1 ≤ i′1 < i′2 < · · · < i′k ≤ 2k and
sign vectors σ1, σ2, . . . , σk such that S ∩H

σj

i′
j

= ∅ for all 1 ≤ j ≤ k. For any fixed
index 1 ≤ i ≤ 2k, the probability that there exists a sign vector σi such that
S ∩ Hσi

i = ∅ is less than 2de−t/4, since P (S ∩ Hσ
i = ∅) < e−t/4 for any fixed i

and σ. Thus, the expected number of indices i such that S ∩ Hσi
i = ∅ for some

sign vector σi is less than 2d+1ke−t/4. By Markov’s inequality, the probability
that there are at least k such indices is thus less than 2d+1e−t/4. Since this is an

610 M. He et al.

upper bound on the probability that p belongs to the first k convex layers, this
finishes the proof of Theorem 3 for convex layers.

To obtain the same bound for the expected size of the first k orthant layers,
observe that point p does not belong to the first k orthant layers if there exist
k indices 1 ≤ i1 < i2 < · · · < ik ≤ 2k such that, for all 1 ≤ j ≤ k and all
σ ∈ {−1,+1}d, Hσ

ij
∩ S �= ∅. Since this is the same condition we used to bound

the size of the first k convex layers, the above argument also shows that the first
k orthant layers of S have expected size O(kd logd−1(n/kd)).

References

1. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms
for computing maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)

2. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

4. Blunck, H., Vahrenhold, J.: In-place algorithms for computing (layers of) max-
ima. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 363–374.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785293 34

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the 17th International Conference on Data Engineering, pp. 421–430 (2001)

6. Buchsbaum, A.L., Goodrich, M.T.: Three-dimensional layers of maxima. Algorith-
mica 39(4), 275–286 (2004)

7. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discret.
Comput. Geom. 10(4), 377–409 (1993)

8. Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theor. 31(4),
509–517 (2006)

9. Dalal, K.: Counting the onion. Random Struct. Algorithms 24(2), 155–165 (2004)
10. Frieze, A.: On the length of the longest monotone subsequence in a random per-

mutation. Ann. Appl. Probab. 1(2), 301–305 (1991)
11. Golin, M.J.: A provably fast linear-expected-time maxima-finding algorithm. Algo-

rithmica 11(6), 501–524 (1994)
12. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.

J. ACM 22(4), 469–476 (1975)
13. Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discret. Comput.

Geom. 19(1), 105–130 (1998)
14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,

New York (1995)
15. Nielsen, F.: Output-sensitive peeling of convex and maximal layers. Inf. Process.

Lett. 59(5), 255–259 (1996)
16. Okabe, A., Boots, B., Sugihara, K., Chiu, S., Kendall, D.G.: Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. Wiley, Hoboken (2008)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/11785293_34

Plane Gossip: Approximating Rumor
Spread in Planar Graphs

Jennifer Iglesias1(B), Rajmohan Rajaraman2, R. Ravi1 , and Ravi Sundaram2

1 Carnegie Mellon University, Pittsburgh, PA, USA
{jiglesia,ravi}@andrew.cmu.edu

2 Northeastern University, Boston, MA, USA
{rraj,koods}@ccs.neu.edu

Abstract. We study the design of schedules for multi-commodity
multicast. In this problem, we are given an undirected graph G and
a collection of source-destination pairs, and the goal is to schedule a
minimum-length sequence of matchings that connects every source with
its respective destination. The primary communication constraint of the
multi-commodity multicast model is the number of connections that a
given node can make, not link bandwidth. Multi-commodity multicast
and its special cases, (single-commodity) broadcast and multicast, are all
NP-complete. Multi-commodity multicast is closely related to the prob-
lem of finding a subgraph of optimal poise, where the poise is defined as
the sum of the maximum degree and the maximum distance between any
source-destination pair. We show that for any instance of the multicast
problem, the minimum poise subgraph can be approximated to within a
factor of O(log k) with respect to the value of a natural LP relaxation
in a graph with k source-destination pairs. This is the first upper bound
on the integrality gap of the natural LP; all previous algorithms yielded
approximations with respect to the integer optimum. Using this inte-
grality gap upper bound and shortest-path separators in planar graphs,
we obtain our main result: an O(log3 k log n

log log n
)-approximation for multi-

commodity multicast for planar graphs which improves on the 2
˜O(

√
log n)-

approximation for general graphs.
We also study the minimum-time radio gossip problem in planar

graphs where a message from each node must be transmitted to all other
nodes under a model where nodes can broadcast to all neighbors and
only nodes with a single broadcasting neighbor get a non-interfered mes-
sage. In earlier work Iglesias et al. (FSTTCS 2015), we showed a strong

Ω(n
1
2 −ε)-hardness of approximation for computing a minimum gossip

schedule in general graphs. Using our techniques for the telephone model,
we give an O(log2 n)-approximation for radio gossip in planar graphs
breaking this barrier. Moreover, this is the first bound for radio gossip
given that doesn’t rely on the maximum degree of the graph.

This material is based upon research supported in part by the U. S. Office of Naval
Research under award number N00014-12-1-1001 and National Science Foundation
under award number CCF-1527032.
J. Iglesias—Now at Waymo. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship Program under Grant
No. 2013170941.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 611–624, 2018.
https://doi.org/10.1007/978-3-319-77404-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_45&domain=pdf
http://orcid.org/0000-0001-7603-1207

612 J. Iglesias et al.

1 Introduction

Rumor spreading in networks has been an active research area with questions
ranging from finding the minimum possible number of messages to spread gossip
around the network [3,17,33] to finding graphs with minimum number of edges
that are able to spread rumors in the minimum possible time in the network [16].
There is also considerable work in the distributed computing literature on pro-
tocols for rumor spreading and gossip based on simple push and pull paradigms
(e.g., see [10,11,15,20]).

The focus of this paper is the class of problems seeking to minimize the time
to complete the rumor spread, the prototypical example being the minimum
broadcast time problem where a message at a root node must be sent to
all nodes via connections represented by an undirected graph in the minimum
number of rounds. Under the popular “telephone” model, every node can par-
ticipate in a telephone call with at most one other neighbor in each round to
transmit the message, and the goal is to minimize the number of rounds. This
problem has seen active work in designing approximation algorithms [4,9,22,30].
One generalization of broadcast is the minimum multicast time problem:
We are given an undirected graph G = (V,E) representing a telephone network
on V , where two adjacent nodes can place a telephone call to each other. We
are given a source vertex r and a set of terminals R ⊆ V . The source vertex has
a message and it wants to inform all the terminals of the message. To do this,
the vertices of the graph can communicate in rounds using the telephone model.
The goal is to deliver the message to all terminals in the minimum number of
rounds.

Recently, a more general demand model called the multicommodity multicast
was introduced in [28]. In the minimum multicommodity multicast time
problem, a graph G(V,E) is given along with a set of pairs of nodes P =
{(si, ti)|1 ≤ i ≤ k}, known as demand pairs. Each vertex si has a message mi

which needs be delivered to ti. The vertices communicate similar to the multicast
problem. The goal is to deliver the message from each source to its corresponding
sink in the minimum number of rounds. Note that there is no bound on the
number of messages that can be exchanged in a telephone call. In this sense,
the telephone model captures a classic information dissemination problem where
the primary communication constraint is the number of connections that a given
node can make in each round, not link bandwidth.

1.1 Poly-logarithmic Approximation for Planar Multicommodity
Multicast

While even sub-logarithmic ratio approximations have been known for the min-
imum time multicast problem [4,9,22,30], the best known approximation guar-
antees for the multicommodity case [28] is Õ(2

√
log k) where k is the number of

different source-sink pairs.

Plane Gossip: Approximating Rumor Spread in Planar Graphs 613

Theorem 1. There is a polynomial time algorithm for minimum time multicom-
modity multicast with k source-sink pairs in a n-node undirected planar graphs
that constructs a schedule of length O(OPT log3 k log n

log log n) where OPT is the
length of the optimal schedule.

This result extends in a natural way to bounded genus graphs. Our results
make critical use of the fact that planar graphs admit small-size balanced vertex
separators that are a combination of three shortest paths starting from any given
node [32]. We aggregate messages at the paths, move them along the path and
then move them onto their destinations using a local multicast. To break the
overall multi-commodity multicast problem into recursive subproblems, we solve
an LP relaxation for the overall problem and for those pairs for which the LP uses
the separator path nodes in sending messages by a “large” amount, we aggregate
them to the separator paths and move them along the paths. However, to define
this aggregation automatically we need to use a linear program which requires
us to relate another lower bound for the schedule length that we describe next.

1.2 Poise and a New LP Rounding Algorithm

Suppose that the (single-commodity) multicast problem in a graph G with root r
and terminals R admits a multicast schedule of length L. Consider all the nodes
I ⊆ V in the graph that are informed of the message from the root in the course
of the schedule. For every node v ∈ I consider the edge through which v first
heard the message and direct this edge into v. It is easy to verify that this set
of arcs forms an out-arborescence T rooted at r and spanning I. In particular,
every node in I except r has in-degree exactly one and there is a directed path
from r to every vertex in I.

Definition 1. Define the poise of an undirected tree T to be the sum of the
diameter of the tree and the maximum degree of any node in it. Define the poise
of a directed tree to be that of its undirected version (ignoring directions).

The discussion above of constructing a directed tree from a multicast schedule
implies that the poise of the tree constructed from a multicast schedule of length
L is at most 3L (see also [30]). The following lemma gives the relation in the
other direction.

Lemma 1. [30] Given a tree on n nodes of poise L, there is a polynomial time
algorithm to construct a broadcast scheme of length O(L · log n

log log n) from any root.

Note that a complete d-ary regular tree of depth d requires time d2 to finish
multicast from the root; If the size of the tree is n, then d = O(log n

log log n). For
this tree L = O(log n

log log n) while any broadcast scheme takes Ω((log n
log log n)2) steps

showing that the multiplicative factor is necessary.
Even though approximation algorithms for minimum poise trees connecting

a root to a set of terminals were known from earlier work [4,9,30], their guaran-
tees are with respect to an optimal (integral) solution and not any specific LP

614 J. Iglesias et al.

relaxation. In particular, the LP-based algorithm of [30] rounds a solution to the
poise LP in phases without preserving the relation of the residual LPs that arise
in the phases to the LP for the poise of the whole graph. Similarly, the LP-based
algorithm of [4] solves a series of LPs determining how to hierarchically pair
terminals and form the desired broadcast tree with cost within a logarithmic
factor of the integral optimum poise, but without relating the resulting tree to
the LP value of the poise of the original graph. It is not straightforward to use
these methods to derive an integrality gap for the minimum poise LP, and this
has remained an open problem. Deriving an approximation algorithm for min-
imum poise subgraphs for the single-commodity multicast version with a small
integrality gap is a critical ingredient in our approximation algorithm for multi-
commodity multicast problem in planar graphs (Theorem 1). We derive the first
such result.

Theorem 2. Given a fractional feasible solution of value L to a natural linear
programming relaxation of the minimum poise of a tree connecting a root r to
terminals R (POISE-L LP, see Sect. 2), there is a polynomial time algorithm to
construct a tree spanning r ∪ R of poise O(L log k) where k = |R| and n = |V |.

Our LP rounding for minimum poise are based on exploiting a connection
to the theory of multiflows [5,12,25]; this is an interesting technique in its own
right that we hope will be useful in obtaining other LP rounding results for
connectivity structures while preserving degrees and distances.

1.3 Radio Gossip in Planar Graphs

Our techniques for addressing multicommodity multicast are also applicable to
radio gossip in planar graphs. In the radio model, communication also occurs
in rounds; a transmitting node may broadcast to multiple nodes in a round but
a node may receive successfully in a given time step only if exactly one of its
neighbors transmits. The gossip problem is a special case of the multicommod-
ity multicast problem where the demand pairs include all possible pairs of nodes
(alternately, every node’s message must be transmitted to every other node).
The minimum gossip problem in the radio model has been widely studied [14],
but all known upper bounds involve both the diameter and degree of the net-
work. In particular, for general n-node graphs, there is an Ω(n

1
2−ε)-hardness of

approximation result for computing a minimum gossip schedule [18]. Our next
result breaks this barrier for planar graphs.

Theorem 3. There is a polynomial time algorithm for minimum time radio
gossip in an n-node undirected planar graph that constructs a schedule of length
O(OPT · log2 n) where OPT is the length of the optimal gossip schedule.

Since radio broadcast from any node can already be achieved with additive
poly-logarithmic time overhead above the optimum [26], our algorithm for radio
gossip focuses on gathering all the messages to a single node. For this, we use
the path-separator decomposition in planar graphs to recursively decompose

Plane Gossip: Approximating Rumor Spread in Planar Graphs 615

the graph and gather messages bottom up. However, the diameter of subgraphs
formed by the decomposition are not guaranteed to be bounded so we use a
carefully constructed degree-bounded matching subproblem to accomplish the
recursive gathering: these techniques adapt and extend the methods used for
constructing telephone multicast schedules [28] but apply them for the first time
to the radio gathering case.

Both our results on planar graphs also naturally extend to minor-free graphs;
details on the extentsion are in the full version of our paper [19].

1.4 Previous Work

Minimum time multicast in the telephone model. Finding optimal broad-
cast schedules for trees was one of the first theoretical problems in this setting
and was solved using dynamic programming [29]. For general graphs, Kortsarz
and Peleg [22] developed an additive approximation algorithm which uses at
most c · OPT + O(

√
n) rounds for some constant c in an n-node graph. They

also present algorithms for graphs with small balanced vertex separators with
approximation ratio O(log n · S(n)) where S(n) is the size of the minimum bal-
anced separator on graphs of size n from the class. The first poly-logarithmic
approximation for minimum broadcast time was achieved by Ravi [30] and
the current best known approximation ratio is O(log n

log log n) due to Elkin and
Korsartz [9]. The best known lower bound on the approximation ratio for tele-
phone broadcast is 3 − ε [6].

In his study of the telephone broadcast problem, Ravi [30] introduced the
idea of finding low poise spanning trees to accomplish broadcast. In the course
of deriving a poly-logarithmic approximation, Ravi also showed how a tree of
poise P in an n-node graph can be used to complete broadcast starting from
any node in O(P · log n

log log n) steps. His result provided an approximation guarantee
with respect to the optimal poise of a tree but not its natural LP relaxation that
we investigate.

Guha et al. [4] improved the approximation factor for multicasting in gen-
eral graphs to O(log k) where k is the number of terminals. The best known
approximation factor for the multicast problem is O(log k

log log k) [9]. Both of [4,9]
present a recursive algorithm which reduces the total number of uninformed ter-
minals in each step of the recursion, while using O(OPT) number of rounds in
that step. In [4], they reduce the number of uninformed terminals by a constant
factor in each step and so they obtain a O(log k)-approximation, but in [9], the
number of uninformed terminals is reduced by a factor of OPT which gives a
O(log k

log log k)-approximation due to the fact that OPT = Ω(log k). These papers
also imply an approximation algorithm with factors O(log k) and O(log k

log log k) for
the Steiner minimum poise subgraph problem; however, these guarantees are
again with respect to the optimum integral value for this problem and not any
fractional relaxation.

For the multicommodity multicast problem, Nikzad and Ravi [28] adapt the
methods of [8,9] to present an algorithm with approximation ratio Õ(2

√
log k)

616 J. Iglesias et al.

where k is the number of different source-sink pairs. They also show that there
is a poly-logarithmic approximation inter-reducibility between the problem of
finding a minimum multicommodity multicast schedule and that of finding a
subgraph of minimum generalized Steiner poise (i.e., a subgraph that connect
all source-sink pairs, but is not necessarily connected overall, and has minimum
sum of maximum degree and maximum distance in the subgraph between any
source-sink pair).

Radio Gossip. The radio broadcast and gossip problems have been extensively
studied (see the work reviewed in the survey [13]). The best-known scheme for
radio broadcast is by Kowalski and Pelc [23] which completes in time O(D +
log2 n), where n is the number of nodes, and D is the diameter of the graph and is
a lower bound to get the message across the graph from any root. The O(log2 n)
term is also unavoidable as demonstrated by Alon et al. [2] in an example with
constant diameter that takes Ω(log2 n) rounds for an optimal broadcast scheme
to complete. Elkin and Korsartz [7] also show that achieving a bound better than
additive log-squared is not possible unless NP ⊆ DTIME(nlog log n). For planar
graphs, the best upper bound for radio broadcast time is D + O(log n) given
by [26]. The best bound for radio gossip known so far, however, is O(D+Δ log n)
steps in an n-node graph with diameter D and maximum degree Δ [14], even
though there is no relation in general between the optimum radio gossip time
and the maximum degree. Indeed, for general graphs, there is a polynomial
inapproximability lower-bound for the minimum time radio gossip problem [18].

Planar path separators. For our results on planar graphs, we rely on the
structure of path-separators. Lipton and Tarjan first found small O(

√
n)-sized

separators for n-node undirected planar graphs [24]. More recently, planar sep-
arators based on any spanning tree of a planar graph were found [32] with the
following key property: these balanced vertex separators can be formed by start-
ing at any vertex and taking the union of three shortest paths from this vertex.
Minor-free graphs also admit small path-separators as found by [1]; in this case,
the number of paths used depends on the graphs which are excluded minors, but
stays constant for constant-sized excluded minors.

2 LP Rounding for Multicast in General Graphs

In this section we present an approximation algorithm for finding a minimum
poise Steiner subgraph, and establish an LP integrality gap upper bound,
thus proving Theorem 2. We begin by presenting a linear program for a multi-
commodity generalization of minimum poise Steiner subgraph, which is useful
for the multicommodity multicast problem. This linear program, when special-
ized to the case where we need to connect a root r to a subset R of terminals, is
our LP for the minimum poise Steiner subgraph problem.

2.1 Linear Program for Poise

The generalized Steiner poise problem is to determine the existence of a subgraph
containing paths for every demand pair in K = {(si, ti)|1 ≤ i ≤ k} of poise at

Plane Gossip: Approximating Rumor Spread in Planar Graphs 617

most L, i.e. every demand pair is connected by a path of length at most L and
every node in the subgraph has degree at most L.

We use indicator variables x(e) to denote the inclusion of edge e in the
subgraph. Since the poise is at most L, this is also an upper bound on the length
of the path from any terminal to the root. For every terminal (si, ti) ∈ K, define
Pi to be the set of all (simple) paths from si to ti. We use a variable yt(P) for
each path P ∈ Pi that indicates whether this is the path used by si to reach ti
in the subgraph. For a path P , let �(P) denote the number of hops in P . The
integer linear program for finding a subgraph of minimum poise is given below.

minimize L = L1 + L2 (POISE − L)
subject to

∑
e∈δ(v) x(e) ≤ L1 ∀v ∈ V

∑
P∈P(i) yi(P) = 1 ∀i ∈ K

∑
P∈P(i) �(P)yi(P) ≤ L2 ∀i ∈ K

∑
P∈P(i):e∈P yi(P) ≤ x(e) ∀e ∈ E, i ∈ K

x(e) ∈ {0, 1} for e ∈ E,
yi(P) ∈ {0, 1} for i ∈ K,P ∈ PL(i).

The first set of constraints specifies that the maximum degree of any node using
the edges in the subgraph is at most L1. The second set insists that there is
exactly one path chosen between every pair (si, ti) ∈ K. The third set ensures
that the length of the path thus selected is at most L2. The fourth set requires
that if the path P ∈ Pi is chosen to connect si to ti, all the edges in the path
must be included in the subgraph.

We will solve the LP obtained by relaxing the integrality constraints to non-
negativity constraints1, and get an optimal solution x, y ≥ 0.

For the remainder of this section, we will focus on the rooted version of this
problem. In particular, there will be a root r and set of terminals R, then we
will make K = {(r, t)|t ∈ R}. It still remains to round a solution to POISE-
LP to prove Theorem 2. Before presenting the rounding algorithm in Sect. 2.3,
we describe a result on multiflows that will be useful in decomposing our LP
solution into a set of paths that match terminals with each other.

2.2 Preliminaries

Given an undirected multigraph G with terminal set T ⊂ V of nodes, a multiflow
is an edge-disjoint collection of paths each of which start and end in two distinct
terminals in T . The value of the multiflow is the number of paths in the collection.
Such a path between two distinct terminals is called a T -path and a multiflow
is called a T -path packing. For any terminal t ∈ T , let λ(t, T \ t) denote the
minimum cardinality of an edge cut separating t from T \ t in G. Note that in
any multiflow, the maximum number of paths with t as an endpoint is at most

1 Even though the number of path variables is exponential, it is not hard to convert
this to a compact formulation on the edge variables that can be solved in polynomial
time. See e.g., [30].

618 J. Iglesias et al.

λ(t, T \ t). Furthermore, since every path in a multiflow has to end in distinct
vertices in T , the maximum value of any multiflow for T is upper bounded by
∑

t∈T
λ(t,T\t)

2 , by summing over the maximum number of possible paths from
each terminal and dividing by two to compensate for counting each path from
both sides. This upper bound can be achieved if a simple condition is met.

Theorem 4. [5,25] If every vertex in V \ T has even degree, then there exists
a multiflow for T of value

∑
t∈T

λ(t,T\t)
2 .

The following simple construction will be useful in the rounding algorithm to
identify good paths to merge clusters. It is based on a lemma from [30], and is
in the full version [19].

Lemma 2. Let G be a digraph where every node has at most one outgoing edge
(and no self loops). In polynomial time, one can find an edge-induced subgraph
H of G such that H is a partition of the nodes of G into a forest of directed trees
each being an inward arborescence, and with |E(H)| ≥ |E(G)|/2.

2.3 The Rounding Algorithm

The main idea of Algorithm 1 is to work in O(log k) phases, reducing the number
of terminal-containing components in the subgraph being built by a constant
fraction at each stage [31]. We begin with an empty tree containing only the
terminals R, each in a cluster by themselves. In each phase, we will merge a
constant fraction of the clusters together carefully so that the diameter of any
cluster increases by at most an additive O(L) per phase: for this, we choose
a terminal as a center of each cluster. When we merge clusters, we partition
the clusters into stars where we have paths of length O(L) from the centers of
the star leaf clusters to the center of the star center-cluster. These steps closely
follow those in [30]. The crux of the new analysis is to extract a set of stars
that merge a constant fraction of the current cluster centers using a solution to
POISE-L LP.

The key subroutine to determine paths to merge centers is presented in
Algorithm 2. This uses the multiflow packing theorem of [5,25].

Algorithm 1. LP Rounding for Poise-L tree
1: Clusters C ← R; Centers C∗ ← R; Solution graph H ← ∅; Iteration i ← 1.
2: while |C| > 1 do
3: Use Algorithm Merge-Centers(C∗) to identify a subgraph Fi whose addition

reduce the number of clusters by a constant fraction;
4: H ← H∪Fi; Update C to be the set of clusters after adding the subgraph Fi, and

update C∗ to be the centers of the updated clusters based on the star structure
from Algorithm Merge-Centers(C∗). Increment i.

5: end while
6: Add a path of length at most L from r to the center of the final cluster in H. Find

a shortest path tree in H rooted at r reaching all the terminals in R and output it.

Plane Gossip: Approximating Rumor Spread in Planar Graphs 619

Algorithm 2. Merge-Centers(C∗) using LP solution x

1: Multiply the POISE-LP solution x by the least common multiple M of the denom-
inators in the nonzero values of x to get a multigraph.

2: For every terminal t ∈ C∗, retain the edges in the paths corresponding to the paths
in its LP-solution with nonzero value (i.e., paths P with nonzero yt(P)), for a total
of M connectivity from t to r. Note that the union of all the retained edges gives
connectivity M from every t ∈ C∗ to r and hence by transitivity, between each
other.

3: Double each edge in the multigraph to make it even degree, and use Theorem 4 to
find a multiflow of value

∑
t∈C∗

λ(t,C∗\t)
2

≥ ∑
t∈C∗

2M
2

= |C∗| · M . Note that each
terminal in C∗ has at least M paths in the multiflow.

4: For every terminal t, pick one of the M paths incident on it uniformly at random
and set this path to be Pt. If the chosen path has length longer than 4L, then
eliminate it from further consideration and set Pt ← ∅.

5: Let H be an auxiliary graph on vertex set C∗ with at most one arc coming out of
each t ∈ C∗ pointing to the other endpoint of Pt (or add no edge if Pt = ∅).

6: Apply Lemma 2 to the subgraph of H made of nodes, to get a collection H ′ of
in-trees. For each in-tree, partition the arcs into those in odd and even levels of
the tree and pick the set with the larger number of arcs. Note that these sets form
stars originating from a set of centers and going to a single center. Let H ′′ denote
the set of these stars.

7: For each arc of the stars in H ′′, include the path Pt originating at the leaf of the
star corresponding to the arc in H ′′, and output the collection of paths.

2.4 Performance Ratio

In this section, we prove Theorem 2. The performance ratio of the rounding
algorithm in the theorem is a consequence of the following claims, the first of
which follows directly from the path pruning in Algorithm 2. The proof of the
second is left to the full version [19].

Lemma 3. The length of each path output by Merge-Centers(C∗) is at most 4L.

Lemma 4. The expected number of paths output by Merge-Centers(C∗) is
Ω(|C∗|).
Lemma 5. The distance of any node in a cluster to its center increases by at
most 4L in the newly formed cluster by merging paths corresponding to stars in
H ′′. Thus, the diameter of any cluster in iteration i is at most 8iL.

Proof. The proof is by induction over i, and is immediate by observing that any
node can reach the new merged cluster center say c by first following the path
to its old center, say t and then following the path Pt corresponding to the arc
in H ′′ from t to c. By Lemma 3 above, the length of Pt is at most 4L and the
claim follows.

Lemma 6. The maximum degree at any node of G induced by the union of paths
output by Merge-Centers(C∗) is O(L).

620 J. Iglesias et al.

Proof. This is a simple consequence of the performance guarantee of rounding
the LP solution obtained for the collection of paths. Since the paths we found
pack into the LP solution 2x (from the property of the multiflow packing), the
expected congestion due to the chosen random paths on any edge e is at most
2x(e). From the first constraint in the LP, the expected congestion at any node
due to paths incident on it is at most 2L1 ≤ 2L, by linearity of expectation.

We apply the classic rounding algorithm of [21]. Since the length of each path
in the collection is at most 4L and the expected congestion is at most 2L, we
obtain that there is a rounding, which can be determined in polynomial time,
such that the node congestion (degree) in the rounded solution of at most 6L.

By Lemma 4, the number of iterations of the main Algorithm 1 is O(log k)
where k is the number of terminals. Lemma 5 guarantees that the subgraph of
the final cluster containing all the terminals has distance O(log k ·L) between any
pair of terminals. Since the final output is a shortest path tree of this subgraph
rooted at r, its diameter is also of the same order. Lemma 6 ensures that the total
degree of any node in the subgraph of the final cluster is O(log k ·L), and this is
also true for the tree finally output. This completes the proof of Theorem 2. We
can derandomize the above randomized algorithm using the standard method of
pessimistic estimators [27].

3 Approximating Multicommodity Multicast on Planar
Graphs

In this section we prove Theorem 1. Let G = (V,E) be the given planar graph,
with n = |V |, and let K = {(si, ti) : 1 ≤ i ≤ k} be the set of the k source-
destination pairs that need to be connected. Let γ = 1/ log k. We given a
brief overview of our algorithm PlanarMCMulticast, which is fully described in
Algorithm 3.

PlanarMCMulticast is a recursive algorithm, breaking the original problem
into smaller problems each with at most a constant fraction of the demand pairs
in K in each recursive call, thus having O(log k) depth in the recursion. For a
given graph, the algorithm proceeds as follows.

– Find a node separator composed of three shortest paths from an arbitrary
vertex [32] to break the graph into pieces each with a constant fraction of the
original nodes.

– Solve a generalized Steiner poise LP on the given pairs to identify demand
pairs that cross the separator nodes to an extent at least Ω(γ).

– Satisfy these demand pairs by routing their messages from the sources to the
separator, moving the messages along the separator (since they are shortest
paths, so this movement takes minimal time) and back to the destinations,
by scaling the LP values by a factor of O(1

γ) and using Theorem 2 to find a
low poise tree to route to/from the separator.

– For the remaining demand pairs (which are mainly routed within the com-
ponents after removing the separators), PlanarMCMulticast recurses on the
pieces.

Plane Gossip: Approximating Rumor Spread in Planar Graphs 621

Algorithm 3. PlanarMCMulticast(G,K)
1: Base case: When K = {(s1, t1)} has one demand pair, schedule the message on

the shortest path between the source, s1, and destination, t1.
2: Separate the graph: Define the weight of a node as the number of source-

destination pairs it is part of, and the weight of a subset of nodes as the sum
of their weights. Find a 3-path separator P of G, given by shortest paths P1, P2,
and P3, whose removal partitions the graph into connected components each of
which has weight at most half that of the graph [32].

3: Partition the terminal pairs: Partition the set K into two subsets, by solving
the POISE-LP.

• Let K1 consist of pairs (si, ti) such that in POISE-LP, the fraction of the unit
flow from si to ti that intersects P is at least γ.

• Let K2 = K − K1 consist of the remaining pairs, i.e. pairs (si, ti) such that in
the LP, the fraction of the unit flow from si to ti that intersects P is less than γ

4: Scale flow for pairs in K1: For each pair (si, ti) in K1, scale the flow between
si and ti in the POISE-LP by 3

γ
so there exists a path Pj which intersects a unit

of this scaled si-ti flow; remove other si-ti flows that does not intersect Pj up to a
unit. Assign (si, ti) to a set Sj .

5: Create 3 minimum poise Steiner tree problems for K1: For each path Pj ,
create a minimum Steiner poise problem as follows: (i) attach, to the graph, an
auxiliary binary tree Tj with nodes of Pj forming the leaves, and adding new
dummy internal nodes (This step is similar to [28]); (ii) set the root of the binary
tree to be the root for the Steiner poise problem, and the terminals to be all the
si and ti in Sj .

6: Round the POISE-LP solution: For each Pj , round the LP to obtain a Steiner
tree Tj of small poise connecting all the terminals in Sj with the root using the
algorithm from Theorem 2.

7: Construct schedule for K1: Use Lemma 1 on the tree Tj to perform a multi-
cast between all terminals in it as follows: use the multicast schedule to move the
messages, from the sources, till they hit the path Pj , then move messages along
the path followed by the multicast schedule in reverse to move them towards the
destinations. (Moving messages along a path can be achieved by a schedule that
alternates between the even and odd matchings in the path for as many steps as
the target length of the schedule)

8: Scale flow for K2: For each pair (si, ti) in K2, remove any flow that intersects P
and scale the remaining flow (by a factor of at most 1

1−γ
) so as to continue to have

unit total flow between the pair.
9: Recurse for K2: For each connected component Cj , let Kj

2 denote the subset of
K2 with both terminals in Cj . Run PlanarMCMulticast(Cj , K

j
2) in parallel.

The key aspect of planarity that is used here is the structure theorem that planar
graphs contain [32] small-size balanced vertex separators that are a combination
of three shortest paths starting from any given node.

The analysis of the algorithm are in the full version [19]. Here, we crucially
use the fact that the separator paths are shortest paths - for a demand pair (si, ti)
let fi denote the first vertex on the separator path that the message arrives at

622 J. Iglesias et al.

Algorithm 4. A gathering procedure for radio gossip in planar graphs.
1: Clusters C0 ← {V }; Vertices V0 ← V ; Graph G0 ← G; Iteration i ← 1.
2: while Vi−1 �= ∅ do
3: for all connected component C ∈ Ci−1 do
4: Choose some v ∈ C. Find shortest paths p1, p2, p3 from v that form a 3-path

separator in C using [32]; Add these to Pi, the paths found in the ith iteration.
5: Add v and every (2L + 1)st vertex along paths p1, p2, p3 to Ni

6: end for
7: Remove the vertices in Pi from Vi−1 to get Vi; Let Gi be G[Vi] and Ci denote

the connected components of Gi; Increment i.
8: end while
9: while i > 0 do

10: Do 2L rounds of radio broadcasts in series on nodes that are 2L + 1 apart from
each other along the paths in Pi to gather all the messages on Pi at the nodes
Ni.

11: Form G′
i a bipartite graph from Ni to Ui = ∪i−1

j=1Pj . Add an edge uv ∈ E′
i if

there is a path from u ∈ Ni to v in G[Ci−1 ∪ {v}] of length at most L. Find a
3L-matching in G′ where every vertex of Ui has degree at most 3L.

12: Do up to L rounds of radio broadcast to get the messages from Ni to within
one node of Ui, along the paths in the 3L-matching found above. Note that the
messages stay within the component in Ci−1 containing u for this part.

13: Move the messages from the last nodes in Ci−1 to their destination nodes in Ui

in the 3L-matching using at most 9L rounds for each of the paths (27L log n
total).

14: Decrement i
15: end while

after leaving source si and let li denote the last vertex (on the separator path)
that the message departs from, on its way to the destination ti; then fi and li
must be at most an additive O(OPT) of the sum of the lengths of the paths
from si to fi and li to ti along the separator path, since every demand pair has
a path of length O(OPT) between them in the LP solution in this subgraph.
Thus in Step 7, we can wait to aggregate all messages from the sources at the
separator path, then move all the messages one way along the path and then the
opposite way, for as many time steps as the poise of the integral tree, without
more than tripling the total schedule.

4 A Polylogarithmic Approximation for Radio Gossip
on Planar Graphs

In this section, we present the main ideas for an O(log2 n)-approximation algo-
rithm for finding a radio gossip schedule on planar graphs. The details of the
algorithm are given below and the proof of Theorem 3 is in the full version of
the paper [19].

Let G = (V,E) be a given planar graph. Once the messages from all nodes
have all been gathered together at a node we can easily broadcast them back

Plane Gossip: Approximating Rumor Spread in Planar Graphs 623

out in O(OPT + log2 n) rounds using [23]. We focus on gathering the messages
together at one node. To do this, we recursively find 3-path separators in the
graph [32] to decompose it into connected components. Then, working back-
wards, we gather messages from the 3-path separators found in an iteration at
the nodes of the 3-path separators found in previous iterations, using techniques
from telephone multicast [28]. The key properties used in the recursive algorithm
are that the number of paths in the separator is a constant 3 and the paths are
all shortest paths in the component they separate from some vertex.

References

1. Abraham, I., Gavoille, C.: Object location using path separators. In: PODC, pp.
188–197 (2006)

2. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43, 290–298 (1991)

3. Baker, B., Shostak, R.: Gossips and telephones. Discret. Math. 2(3), 191–193 (1972)
4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Message multicasting in heteroge-

neous networks. SIAM J. Comput. 30(2), 347–358 (2000)
5. Cherkassky, B.: Mnogopolyusnye dvukhproduktovye zadachi [Russian: Multitermi-

nal two commodity problems]. Issledovaniya po Diskretnoi Optimizatsii [Russian:
Studies in discrete optimization], pp. 261–289 (1976)

6. Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for
the directed telephone broadcast problem. SIAM J. Comput. 35(3), 672–689 (2005)

7. Elkin, M., Kortsarz, G.: Polylogarithmic additive inapproximability of the radio
broadcast problem. SIAM J. Discret. Math. 19(4), 881–899 (2005)

8. Elkin, M., Kortsarz, G.: An approximation algorithm for the directed telephone
multicast problem. Algorithmica 45(4), 569–583 (2006)

9. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J.
Comput. Syst. Sci. 72(4), 648–659 (2006)

10. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Struct. Algorithms 1(4), 447–460 (1990)

11. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
social networks. In: SODA 2012, pp. 1642–1660. SIAM (2012)

12. Frank, A.: Connections in Combinatorial Optimization. Oxford Lecture Series in
Mathematics and Its Applications. OUP Oxford, Oxford (2011)

13. G ↪asieniec, L.: On efficient gossiping in radio networks. In: Kutten, S., Žerovnik,
J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11476-2 2

14. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. Distrib. Comput. 19(4), 289–300 (2007)

15. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conduc-
tance. In: STACS 2011, vol. 9, pp. 57–68 (2011)

16. Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J.
Discret. Math. 4(2), 207–222 (1991)

17. Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canad.
Math. Bull 15(3), 447–450 (1972)

18. Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Rumors across radio, wireless,
telephone. In: FSTTCS, pp. 517–528 (2015)

https://doi.org/10.1007/978-3-642-11476-2_2

624 J. Iglesias et al.

19. Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Plane gossip: Approximating
rumor spread in planar graphs. CoRR, abs/1612.01492 (2016)

20. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: FOCS 2000, Washington, DC, USA, pp. 565–574. IEEE (2000)

21. Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazi-
rani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2(1), 113–
129 (1987)

22. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast.
SIAM J. Discret. Math. 8(3), 401–427 (1995)

23. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distrib. Comput. 19(3), 185–195 (2007)

24. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

25. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Acad.
Sci. Hung. 28, 129–138 (1976)

26. Manne, F., Wang, S., Xin, Q.: Faster radio broadcast in planar graphs. In: WONS,
pp. 9–13 (2008)

27. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge International
Series on Parallel Computation. Cambridge University Press, Cambridge (1995)

28. Nikzad, A., Ravi, R.: Sending secrets swiftly: approximation algorithms for general-
ized multicast problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias,
E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 568–607. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43951-7 48

29. Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. 30(5), 363–366
(1981)

30. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: FOCS, pp. 202–213. IEEE (1994)

31. Ravi, R.: Matching based augmentations for approximating connectivity problems.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 13–
24. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 4

32. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993–1024 (2004)

33. Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–
192 (1971)

https://doi.org/10.1007/978-3-662-43951-7_48
https://doi.org/10.1007/11682462_4

Algorithms and Bounds for Very Strong
Rainbow Coloring

L. Sunil Chandran1, Anita Das2, Davis Issac3(B) , and Erik Jan van Leeuwen4

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

sunil@csa.iisc.ernet.in
2 Infosys Ltd., Bangalore, India

anita das01@infosys.com
3 MPI für Informatik, Saarland Informatics Campus,

Saarbrücken, Germany
dissac@mpi-inf.mpg.de

4 Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

e.j.vanleeuwen@uu.nl

Abstract. A well-studied coloring problem is to assign colors to the
edges of a graph G so that, for every pair of vertices, all edges of at least
one shortest path between them receive different colors. The minimum
number of colors necessary in such a coloring is the strong rainbow con-
nection number (src(G)) of the graph. When proving upper bounds on
src(G), it is natural to prove that a coloring exists where, for every short-
est path between every pair of vertices in the graph, all edges of the path
receive different colors. Therefore, we introduce and formally define this
more restricted edge coloring number, which we call very strong rainbow
connection number (vsrc(G)).

In this paper, we give upper bounds on vsrc(G) for several graph
classes, some of which are tight. These immediately imply new upper
bounds on src(G) for these classes, showing that the study of vsrc(G)
enables meaningful progress on bounding src(G). Then we study the
complexity of the problem to compute vsrc(G), particularly for graphs
of bounded treewidth, and show this is an interesting problem in its own
right. We prove that vsrc(G) can be computed in polynomial time on
cactus graphs; in contrast, this question is still open for src(G). We also
observe that deciding whether vsrc(G) = k is fixed-parameter tractable
in k and the treewidth of G. Finally, on general graphs, we prove that
there is no polynomial-time algorithm to decide whether vsrc(G) ≤ 3
nor to approximate vsrc(G) within a factor n1−ε, unless P = NP.

1 Introduction

The chromatic number is one of the most widely studied properties in graph
theory. It has inspired a wealth of combinatorial and algorithmic results, as well
as a host of variants. A variant that has recently attracted much interest is
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 625–639, 2018.
https://doi.org/10.1007/978-3-319-77404-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_46&domain=pdf
http://orcid.org/0000-0001-5559-7471

626 L. S. Chandran et al.

the rainbow connection number of a graph, which is an edge coloring property
introduced by Chartrand et al. [8] in 2008. Formally, the rainbow connection
number rc(G) of a graph G is the smallest number of colors needed such that
there exists a coloring of E(G) with these colors such that, for every pair of
vertices, there exists at least one path P between them, such that all edges
of P receive different colors. We also say that this path P is rainbow colored.
The rainbow connection number has attracted much attention, and the exact
number is known for a variety of simple graph classes [5,6,8] and the complexity
of computing this number was broadly investigated [1,2,4,6,7]. See also the
surveys by Li et al. [17–19]. Most recently, in ESA 2016, it was shown that for
any k ≥ 2, deciding whether rc(G) ≤ k (k-Rc) cannot be solved in 2o(n3/2) or
2o(m/ log m) time, where n = |V (G)| and m = |E(G)|, unless ETH fails [15].

To prove an upper bound on rc(G), the choice of the path P that is rainbow
colored is crucial. The analysis would seem simpler when we are able to choose
P as a shortest path between its two endpoints. This leads to the definition of
the strong rainbow connection number of a graph. Formally, the strong rainbow
connection number src(G) of a graph G is the smallest number of colors needed
such that there exists a coloring of E(G) with these colors such that, for every pair
of vertices, there exists at least one shortest path P between them, such that all
edges of P receive different colors. Clearly, src(G) ≥ rc(G), and both parameters
are at least the diameter of G. Moreover, rc(G) = 2 if and only if src(G) = 2 [4].
Nontrivial upper bounds on src(G) are known for several simple graph classes
such as cycles, wheels, and complete bipartite graphs [8] and block graphs [16].
It is also known that deciding whether src(G) ≤ k (k-Src) is NP-hard even for
k = 2 [4]. The problem of deciding whether src(G) ≤ k remains NP-complete
even for bipartite graphs and split graphs [1,14]. In fact, src(G) cannot be approx-
imated in polynomial time within a factor n1/2−ε for any ε > 0, unless P = NP,
even for split and bipartite graphs [1,14].1

The lack of combinatorial bounds on src(G) for specific graph classes G
(the recent survey by Li and Sun [19] cites only three papers) is somewhat
surprising compared to the vast literature for rc(G) (see the surveys [17–19]).
Li and Sun [19] explain this by the fact that src(G) is not a monotone graph
property, and thus investigating src(G) is much harder than investigating rc(G).
Hence, it is a major open question to prove upper bounds on src(G).

In this paper, we make significant progress on this question. We observe that
to prove upper bounds on src(G), it suffices to prove the existence of a coloring
where all edges of not just one, but of all shortest paths between two vertices
receive different colors. Therefore, we define the very strong rainbow connection
number vsrc(G) of a graph G, which is the smallest number of colors for which
there exists a coloring of E(G) such that, for every pair of vertices and every
shortest path P between them, all edges of P receive different colors. We call a
coloring that achieves this property a very strong rainbow coloring of the graph.
We also call the problem of deciding whether vsrc(G) ≤ k the k-Vsrc problem.

1 [1,14] mention NP �= ZPP as the complexity assumption but one can use P �= NP
because of [23].

Algorithms and Bounds for Very Strong Rainbow Coloring 627

Our Results. We prove the first combinatorial upper bounds on vsrc(G) for
several graph classes. These immediately imply upper bounds on src(G) for the
same graph classes. In particular, we show upper bounds that are linear in |V (G)|
(improving from the trivial bound of |E(G)|) if G is a chordal graph, a circular
arc graph, or a disk graph. We also make progress on the following conjecture:

Conjecture 1.1 ([16]). For any connected graph G, src(G) ≤ |V (G)| − χ(G) + 1
where χ(G) denotes the chromatic number of G.

We show that the conjecture holds for the class of chordal graphs in
Corollary 2.4.

Conversely, we prove that a bound on vsrc(G) implies that G should be
highly structured: the neighborhood of every vertex can be partitioned into
vsrc(G) cliques. For further details, we refer to Sect. 2.

In the second part of the paper, we address the computational complexity of
k-Vsrc. To start our investigation, we prove hardness results on general graphs.

Theorem 1.2. 3-V src is NP-complete. Moreover, there is no polynomial-time
algorithm that approximates vsrc(G) within a factor |V (G)|1−ε for any ε > 0,
unless P=NP.

This result implies that k-Vsrc is not fixed-parameter tractable when parame-
terized by k, unless P = NP. In order to prove the theorem, we show a nontrivial
connection to the clique partition number of a graph.

We remark that, in contrast to the NP-complete 2-Rc and 2-Src problems,
2-Vsrc can be solved in polynomial time (see Sect. 5 for the proof). Together
with Theorem 1.2, this gives a dichotomy result for the complexity of k-Vsrc.

Proposition 1.3. Let G be any graph. Then 2-Vsrc can be decided in polyno-
mial time.

We then study the complexity of determining vsrc(G) for graphs of bounded
treewidth. This is a major open question also for src(G) and rc(G) [16], which
are only known to be solvable in polynomial time on graphs of treewidth 1.
We mention that no results for graphs of higher treewidth are known, even
for outerplanar or cactus graphs. However, for the slightly different problem of
deciding whether an already given coloring forms a (strong) rainbow coloring
of a given graph, a polynomial-time algorithm for cactus graphs and an NP-
hardness result for outerplanar graphs are known [22]. With this in mind, we
focus on cactus graphs and make the first progress towards understanding the
complexity of rainbow coloring problems, in particular of computing vsrc(G),
on graphs of treewidth 2 with the following result.

Theorem 1.4. Let G be any cactus graph. Then vsrc(G) can be computed in
polynomial time.

Our algorithm relies on an extensive characterization result for the behavior of
very strong rainbow colorings on cactus graphs. Since a cactus graph consists of

628 L. S. Chandran et al.

bridges, even cycles, and odd cycles, we analyze the behavior of any very strong
rainbow coloring of the graph with respect to these structures. We show that
color repetition can mostly occur only within an odd cycle or even cycle. Odd
cycles can repeat some colors from outside but we characterize how they can
be repeated. However, our arguments are not sufficient to derive a completely
combinatorial bound. Instead, we must find a maximum matching in a well-
chosen auxiliary graph to compute the very strong rainbow connection number.

We also observe that vsrc(G) can be computed efficiently for graphs having
bounded treewidth, when vsrc(G) itself is small. In contrast to known results
for the (strong) rainbow connection number [9], we present an algorithm that
does not rely on Courcelle’s theorem. (See Sect. 5 for details.)

Theorem 1.5. k-Vsrc is fixed-parameter tractable when parameterized by k+t,
where t − 1 is the treewidth of the input graph.

Preliminaries. We consider simple, undirected graphs and use standard nota-
tion for graphs. Given a universe U = {x1, x2, . . . , xn} and a family F = {S1,
S2, . . . , St} of subsets of U , the intersection graph G(F) of F has vertex set
{v1, . . . , vt}, and there is an edge between two vertices vi, vj if and only if
Si ∩ Sj �= ∅. We call F a representation of G(F). An interval graph is an inter-
section graph of intervals on the real line. The interval graph is proper if it has
a representation by intervals where no interval is properly contained in another.
A circular arc graph is an intersection graph of arcs of a circle. A chordal graph
is an intersection graph of subtrees of a tree. A block of a graph is a maximal
2-connected component. In a cactus graph, each block of the graph is a cycle or
an edge; equivalently, every edge belongs to at most one cycle.

For a graph G, let Ĝ denote the graph obtained by adding a new vertex û to
G such that û is adjacent to all vertices of G, i.e., û is a universal vertex in Ĝ.

Finally, we use ω(G) to denote the maximum size of any clique in graph G.
We use d(u, v) to denote the length of a shortest path between vertices u and v.

2 Combinatorial Results

We show several upper and lower bounds on vsrc(G), both for general graphs
and for graphs G that belong to a specific graph class. Crucial in our analysis
are connections between very strong rainbow colorings and decompositions of the
input graph into cliques. We use cp(G) to denote the clique partition number
(or clique cover number) of G, the smallest number of subsets of V (G) that each
induce a clique in G and whose union is V (G). Ĝ used in the following lemma
(defined in the preliminaries) is important for our hardness reductions.

Lemma 2.1. Let G be any graph. Then

1. src(G) ≤ vsrc(G) ≤ cp(G)(cp(G) + 1)/2.
2. src(Ĝ) ≤ vsrc(Ĝ) ≤ cp(G)(cp(G) + 1)/2.

Algorithms and Bounds for Very Strong Rainbow Coloring 629

Proof. Let C = C1, . . . , Cr be the set of cliques in an optimal clique partition of
G; that is, r = cp(G). For a vertex v, let c(v) denote the clique in C that contains
v. We define the set of colors as P≤2(C)\{∅}, the set of subsets of C of size 1 or 2.
We then color any edge uv ∈ E(G) by {c(u), c(v)}. For sake of contradiction,
suppose that this does not constitute a very strong rainbow coloring of G. Then
there exist two vertices s, t ∈ V (G), a shortest path P between s and t, and
two edges uv,wx ∈ E(P) that received the same color. If c(u) = c(v), then
c(w) = c(x), meaning that P uses two edges of the same clique. Then P can
be shortcut, contradicting that P is a shortest path between s and t. Hence,
c(u) �= c(v) and thus c(w) �= c(x). Without loss of generality, c(u) = c(w) and
thus c(v) = c(x). Then either the edge uw or the edge vx will shortcut P , a
contradiction. Hence, vsrc(G) ≤ cp(G)(cp(G) + 1)/2 by the set of colors used.
To see the second part of the lemma, color edges ûv incident on the universal
vertex û in Ĝ by c(v) in addition to the above coloring. Suppose this was not a
very strong rainbow coloring of Ĝ. Then there exists vertices u, v such that uûv
is a shortest path and uû and vû are colored the same. But then u and v are in
the same clique Ci in C. But then uv can shortcut uûv, a contradiction. �	
The following lemma is more consequential for our upper bounds. We use is(G) to
denote the smallest size of the universe in any intersection graph representation
of G, and ecc(G) to denote the smallest number of cliques needed to cover all
edges of G. It is known that is(G) = ecc(G) [20].

Lemma 2.2. Let G be any graph. Then vsrc(G) ≤ is(G) = ecc(G).

Proof. Let U = {x1, x2, . . . , xn} be a universe and let F = {S1, S2, . . . , Sm} be a
family of subsets of U , such that G is the intersection graph of F and |U| = is(G).
Let vi be the vertex of G corresponding to the set Si. We consider x1, x2, . . . , xn

as colors, and color an edge between vertices vi and vj with any x ∈ Si ∩Sj (note
that this intersection is nonempty by the presence of the edge). Suppose for sake
of contradiction that this is not a very strong rainbow coloring of G. Then there
exist two vertices s, t ∈ V (G), a shortest path P between s and t, and two edges
vivj and vavb in P that received the same color x. By the construction of the
coloring, this implies that x ∈ Si ∩ Sj ∩ Sa ∩ Sb. Hence, vi, vj , va, vb induce a
clique in G. But then the path P can be shortcut, a contradiction. �	
A similar lemma for src(G) was proved independently by Lauri [16, Proposi-
tion 5.3].

Corollary 2.3. Let G be any graph. Then vsrc(G) ≤ min{
|V (G)|2/4�, |E(G)|}.
Proof. Directly from ecc(G) ≤ min{
|V (G)|2/4�, |E(G)|} for any graph [10]. �	
Corollary 2.4. Let G be any graph.

1. If G is chordal, then src(G) ≤ vsrc(G) ≤ |V (G)| − ω(G) + 1.
2. If G is circular-arc, then src(G) ≤ vsrc(G) ≤ |V (G)|.
3. src(L(G)) ≤ vsrc(L(G)) ≤ |V (G)|, where L(G) is the line graph of G.

630 L. S. Chandran et al.

These bounds are (almost) tight in general.

Proof. In each of the three cases, we express the graph as an intersection graph
over a suitable universe, and then by Lemma2.2, we get that the size of the
universe is an upper bound on vsrc of the graph.

Every chordal graph is the intersection graph of subtrees of a tree [12]. It
is also known that the number of vertices of this tree only needs to be at most
|V (G)| − ω(G) + 1. (For completeness, we provide a proof of this in the full
version.)

For a circular arc graph G, consider any set of arcs whose intersection graph
is G. We now construct a different intersection representation. Take the set of
second (considering a clockwise ordering of points) endpoints of all arcs as the
universe U . Take Si ⊆ U as the set of clockwise endpoints contained in the i-th
arc. It is easy to see that G is the intersection graph of F = {S1, S2, . . . , Sn}.

Finally, consider L(G). We construct an intersection representation with uni-
verse V (G). For each uv ∈ E(G), let Suv = {u, v}. Then L(G) is the intersection
graph of F = {Se : e ∈ E(G)}.

The (almost) tightness follows from vsrc(G) = |V (G)|−1 and vsrc(L(G)) =
|V (G)| − 2 for any path G. Paths are both chordal and circular-arc. �	

In the remainder, we consider a natural generalization of line graphs. A graph
is k-perfectly groupable if the neighborhood of each vertex can be partitioned into
k or fewer cliques. It is well known that line graphs are 2-perfectly groupable. A
graph is k-perfectly orientable if there exists an orientation of its edges such that
the outgoing neighbors of each vertex can be partitioned into k or fewer cliques.
Clearly, any k-perfectly groupable graph is also k-perfectly orientable. Many
geometric intersection graphs, such as disk graphs, are known to be k-perfectly
orientable for small k [13].

Corollary 2.5. Let G be any k-perfectly orientable graph. Then, src(G) ≤
vsrc(G) ≤ k|V (G)|.
Proof. Consider any orientation of the edges of G such that the outgoing neigh-
bors of each vertex can be partitioned into k or fewer cliques. For a given vertex
v, let C(v) denote the set of cliques induced by its outgoing neighbors, where v
is added to each of those cliques. Observe that

⋃
v∈V (G) C(v) is an edge clique

cover of G, because every edge is outgoing from some vertex v and will thus be
covered by a clique in C(v). Hence, vsrc(G) ≤ ecc(G) ≤ k|V (G)|. �	

Since any k-perfectly groupable graph is also k-perfectly orientable, the above
bound also applies to k-perfectly groupable graphs. In this context, we prove an
interesting converse of the above bound.

Lemma 2.6. Let G be any graph. If vsrc(G) ≤ k, then G is k-perfectly
groupable.

Algorithms and Bounds for Very Strong Rainbow Coloring 631

Proof. Consider an optimal very strong rainbow coloring μ of G. Consider an
arbitrary vertex v of G and let c be any color used in μ. Define the set Q(c) =
{u ∈ N(v) : μ(vu) = c}. Suppose there exist two non-adjacent vertices u,w in
Q(c). Then uvw is a shortest path between u and w, and thus uv and vw cannot
have the same color, a contradiction. Hence, for each color c used in μ, Q(c) is
a clique. Since the number of colors is at most k, the edges incident on v can be
covered with at most k cliques. Hence, G is k-perfectly groupable. �	

3 Hardness Results

The hardness results lean heavily on the combinatorial bounds of the previ-
ous section. In this section, we use Ĝ (see the preliminaries for the definition)
extensively. We need the following bound, which strengthens Lemma2.1.

Lemma 3.1. Let G be any graph. If cp(G) ≤ 3, then vsrc(Ĝ) ≤ 3.

Proof. Let C1, C2, and C3 be three cliques into which V (G) is partitioned. We
will color Ĝ with three colors, say c1, c2, and c3, as follows. For each edge with
both endpoints in Ci for 1 ≤ i ≤ 3, color it with ci. For each edge vw with v ∈ Ci,
w ∈ Cj such that 1 ≤ i < j ≤ 3, color it with ck, where k ∈ {1, 2, 3} \ {i, j}.
Finally, for each edge ûv with v ∈ Ci for 1 ≤ i ≤ 3, color it with ci.

Suppose this is not a very strong rainbow coloring of Ĝ. Since the diameter
of Ĝ is at most 2, there exists a shortest path xyz with xy and yz having the
same color. However, if xy and yz have the same color, at least two of x, y and
z are in the same Ci for 1 ≤ i ≤ 3 and the third one is either û or in Ci itself.
Then, we can shortcut xyz by xz, a contradiction. Hence vsrc(Ĝ) ≤ 3. �	
Proof (of Theorem 1.2). We first prove that 3-Vsrc is NP-complete. We reduce
from the NP-hard 3-Coloring problem [11]. Let G be an instance of 3-
Coloring. Let H be the complement of G. We claim that vsrc(Ĥ) = 3 if and
only if G is 3-colorable. Indeed, if vsrc(Ĥ) ≤ 3, then Ĥ is 3-perfectly groupable
by Lemma 2.6. In particular, the neighborhood of û (the universal vertex in Ĥ)
can be partitioned into at most 3 cliques. These cliques induce disjoint inde-
pendent sets in G that cover V (G), and thus G is 3-colorable. For the other
direction, note that if G is 3-colorable, then cp(H) ≤ 3, and by Lemma 3.1,
vsrc(Ĥ) ≤ 3.

To prove the hardness of approximation, we recall that there exists a
polynomial-time algorithm that takes a Sat formula ψ as input and produces
a graph G as output such that if ψ is not satisfiable, then cp(G) ≥ |V (G)|1−ε,
and if ψ is satisfiable, then cp(G) ≤ |V (G)|ε [23, Proof of Theorem 2]. Consider
the graph Ĝ and let n denote the number of its vertices. Then

ψ not satisfiable ⇒ cp(G) ≥ (n − 1)1−ε ⇒ vsrc(Ĝ) ≥ (n − 1)1−ε

ψ satisfiable ⇒ cp(G) ≤ (n − 1)ε ⇒ vsrc(Ĝ) ≤ (n − 1)2ε

because Lemma 2.6 implies that vsrc(Ĝ) ≥ cp(G), and by Lemma 2.1. The
result follows by rescaling ε. �	

632 L. S. Chandran et al.

4 Algorithm for Cactus Graphs

Let G be the input cactus graph. We first prove several structural properties of
cactus graphs, before presenting the actual algorithm.

4.1 Definitions and Structural Properties of Cactus Graphs

We make several structural observations related to cycles. For a vertex v and a
cycle C containing v, we define S (v, C) as the vertices of G that are reachable
from v without using any edge of C.

Observation 4.1. For any cycle C in G, {S(v, C) : v ∈ V (C)} is a partition of
V (G).

From Observation 4.1, we have that for any fixed u ∈ V (G) and any fixed cycle
C of G, there exists a unique vertex v ∈ V (C) such that u ∈ S(v, C). We denote
that unique vertex v by g(u,C).

Observation 4.2. Let u ∈ V (G) and let C be a cycle in G. Let w ∈ V (C) and
let x1x2 . . . xr be a path from u to w where x1 = u and xr = w. Let i∗ be the
smallest i such that xi ∈ V (C). Then, xi∗ = g(u,C). In simpler words, any path
from u to any vertex in C enters C through g(u,C).

Observation 4.3. For any cycle C in G and for any uv ∈ E(G) \ E(C),
g(u,C) = g(v, C).

We now consider even cycles. For an edge uv in an even cycle C, we define its
opposite edge, denoted by eopp(uv), as the unique edge xy ∈ E(C) such that
d(u, x) = d(v, y). Note that eopp(eopp(e)) = e. Call the pair of edges e and
eopp(e) an opposite pair. Each even cycle C has exactly |C|

2 opposite pairs.

Lemma 4.4. Let C be an even cycle. For any vertex x ∈ V (G) and edge uv ∈
E(C), either there is a shortest path between x and u that contains uv or there
is a shortest path between x and v that contains uv.

Proof. Let w = g(x,C). Then, w cannot be equidistant from u and v, because
otherwise C is an odd cycle. Suppose that d(w, u) < d(w, v). Then a shortest
path from w to u appended with the edge uv gives a shortest path between w
and v. Now, due to Observation 4.2, if we append a shortest path between x
and w with a shortest path between w and v, we get a shortest path between
x and v. Thus there is a shortest path between x and v that contains uv. If
d(w, u) > d(w, v), then we get the other conclusion of the lemma. �	
We then consider odd cycles in more detail. For any edge e in an odd cycle C,
there is a unique vertex in C, which is equidistant from both endpoints of e.
We call this vertex the opposite vertex of e and denote it as vopp(e). We call
OS(e) = G[S(vopp(e), C)] the opposite subgraph of e. See Fig. 1.

Algorithms and Bounds for Very Strong Rainbow Coloring 633

Lemma 4.5. Let C be an odd cycle and uv ∈ E(C). For any vertex x ∈ V (G) \
V (OS(uv)), either there is a shortest path between x and u that contains uv or
there is a shortest path between x and v that contains uv.

Proof. Let w = g(x,C). Since x /∈ V (OS(uv)), w �= vopp(uv). Hence, w cannot
be equidistant from u and v. So, the same arguments as in Lemma 4.4 complete
the proof. �	
Lemma 4.6. Let e be any edge in an odd cycle of G for which vopp(e) has degree
more than 2. Then OS(e) contains a bridge, or an even cycle, or an edge e′ in an
odd cycle for which vopp(e′) has degree 2.

Proof. Suppose this is not the case. We define a sequence e1, e2, . . . of edges
by the following procedure. Let e1 = e. Given ei, we define ei+1 as follows.
By assumption and the definition of cactus graphs, ei is contained in an odd
cycle, which we denote by Ci, and vopp(ei) has degree more than 2. Choose
ei+1 as any edge incident on vopp(ei) that is not in Ci. However, observe that
OS(ei+1) ⊂ OS(ei) by the choice of ei+1. Hence, this is an infinite sequence,
which contradicts the finiteness of E(G). �	

4.2 Properties of Very Strong Rainbow Colorings of Cactus Graphs

We initially partition the edges of G into three sets: Ebridge, Eeven, and Eodd. The
set Ebridge consists of those edges that are not in any cycle. In other words, Ebridge

is the set of bridges in G. By definition, each of the remaining edges is part of
exactly one cycle. We define Eeven as the set of all edges that belong to an even
cycle, and Eodd as the set of all edges that belong to an odd cycle. Note that
Ebridge, Eeven, and Eodd indeed induce a partition of E(G). We then partition
Eodd into two sets: Eopp and Erem. An edge e ∈ Eodd is in Eopp if vopp(e) is not a
degree-2 vertex and in Erem otherwise. See Fig. 1. We analyze each of these sets
in turn, and argue how an optimal VSRC might color them.

Fig. 1. An example of a cactus graph and related definitions.

634 L. S. Chandran et al.

Two edges e1 and e2 are called conflicting if there is a shortest path in the
graph which contains both e1 and e2. Two conflicting edges must have different
colors in any VSRC. We now exhibit several classes of conflicting pairs of edges.

Lemma 4.7. 2Any VSRC of G colors the edges of Ebridge with distinct colors.

Proof. Consider uv, xy ∈ Ebridge. We prove that uv and xy are conflicting, i.e.
there is a shortest path in G which contains both uv and xy. Since uv is a bridge,
we can assume without loss of generality that any path between u and y uses the
edge uv. Similarly, since xy is a bridge, we can assume without loss of generality
that any path between y and u uses the edge xy. Hence, the shortest path from
u to y uses both uv and xy. Hence, uv and xy are conflicting. �	
Lemma 4.8. Let e1 ∈ Ebridge and e2 ∈ Eeven. Then any VSRC of G colors e1
and e2 with different colors.

Proof. Let C be the cycle containing e2. Let e1 = xy and e2 = uv. Since xy is a
bridge, we can assume w.l.o.g. that any path from x to any vertex in C contains
xy. Due to Lemma 4.4, we can assume w.l.o.g. that there is a shortest path from
x to v that contains uv. Thus we have a shortest path which contains both uv
and xy, which means that uv and xy are conflicting. �	
Observation 4.9. Let e1 and e2 be edges in an even cycle C of G such that
e1 �= eopp(e2). Then any VSRC of G colors e1 and e2 with different colors.

Lemma 4.10. Let e1 and e2 be edges in two different even cycles C1 and C2 of
G. Then any VSRC of G colors uv and xy with different colors.

Proof. Let e1 = uv and e2 = xy. Let z = g(u,C2) and w = g(x,C1). By
Observation 4.3, g(v, C2) = z and g(y, C1) = w. Due to Lemma 4.4, we can
assume w.l.o.g. that there is a shortest path P1 between z and x containing xy
and that there is a shortest path P2 between w and u containing uv. Let P3 be a
shortest path between w and z. Then P1 ∪P3 ∪P2 gives a shortest path between
u and x that contains both uv and xy. Hence, e1 and e2 are conflicting. �	
Lemma 4.11. Let e1 ∈ Ebridge ∪ Eeven and e2 ∈ Erem. Then any VSRC of G
colors e1 and e2 with different colors.

Proof. Let e1 = xy and e2 = uv, let C be the odd cycle containing e2, and let
w = g(x,C). By Observation 4.3, w = g(y, C). In other words, x, y ∈ S(w,C).
Note that w is not a degree-2 vertex, because there are at least two vertices in
S(w,C). Hence, w �= vopp(uv) by the definition of Erem. Hence, by Lemma 4.5,
w.l.o.g. there is a shortest path P1 from w to u that contains uv.

We now consider two cases, depending on whether e1 ∈ Ebridge or e1 ∈ Eeven.
First, suppose that e1 ∈ Ebridge. Since xy is a bridge, we can assume w.l.o.g. that
any shortest path from x to w contains xy. Let P2 be such a shortest path. By
Observation 4.2, if we append a shortest path from x to w with a shortest path
2 This lemma holds for any graph, not necessarily cactus.

Algorithms and Bounds for Very Strong Rainbow Coloring 635

from w to u, we get a shortest path from x to u. Thus, P1 ∪P2 is a shortest path
from x to u containing xy and uv. Hence, e1 and e2 are conflicting.

Suppose that e1 ∈ Eeven. Let C ′ be the even cycle containing e1. Let z =
g(v, C ′). From Lemma 4.4, we can assume w.l.o.g. that there is a shortest path
from z to x that contains xy. Let this shortest path be P3. Let P4 be a shortest
path between w and z. By Observation 4.2, P3∪P4∪P1 is a shortest path between
x and u that contains xy and uv. Hence, e1 and e2 are conflicting. �	
Lemma 4.12. Let C1 and C2 be two distinct odd cycles and let e1 ∈ E(C1) ∩
Erem and e2 ∈ E(C2)∩Erem. Then any VSRC of G colors e1 and e2 with different
colors.

Proof. Let e1 = xy and e2 = uv, and let w = g(x,C2). By Observation 4.3,
w = g(y, C2). Let z = g(u,C1). By Observation 4.3, z = g(v, C1). That is, x, y ∈
S(w,C2) and u, v ∈ S(z, C1). Note that w and z are not degree-2 vertices, because
there are at least two vertices in S(w,C2) and S(z, C1). Hence, w �= vopp(uv)
and z �= vopp(xy) by the definition of Erem. Hence, by Lemma 4.5, we can assume
w.l.o.g. that there is a shortest path P1 from u to w that contains uv and there
is a shortest path P2 from z to x that contains xy. Let P3 be a shortest path
from w to z. By Observation 4.2, P1 ∪ P2 ∪ P3 is a shortest path from x to u
containing xy and uv. Hence, e1 and e2 are conflicting. �	

Finally, we prove the existence of some non-conflicting pairs of edges.

Lemma 4.13. For any e1 ∈ Eopp and e2 ∈ OS (e1), e1 and e2 are not conflicting.

Proof. Let e1 = uv, e2 = xy, and let C be the odd cycle containing e1. For
sake of contradiction, suppose that uv and xy are conflicting. Assume w.l.o.g.
that there is a shortest path P from x to v which contains uv and xy. From
Observation 4.2, P contains a subpath P ′ from g(x,C) to v. Clearly, P ′ contains
uv. Also, g(x,C) = vopp(uv), because x ∈ OS(uv). However, recall that vopp(uv)
is equidistant from u and v. Hence, any shortest path from vopp(uv) to v does
not contain uv, which contradicts the existence of P ′. �	

4.3 Algorithm

Based on the results of the previous two subsections, we now describe the algo-
rithm for cactus graphs. First, we color the edges of Ebridge with unique colors.
By Lemma 4.7, no VSRC can use less colors to color Ebridge.

Next, we color the edges in Eeven using colors that are distinct from those
we used before. This will not harm the optimality of the constructed coloring,
because of Lemma 4.8. Moreover, we use different colors for different even cycles,
which does not harm optimality by Lemma 4.10. We then introduce a set of |C|

2
new colors for each even cycle C. For an opposite pair, we use the same color,
and we color each opposite pair with a different color. Thus we use |C|

2 colors for
each even cycle C. By Observation 4.9, no VSRC can use less colors to color C.

636 L. S. Chandran et al.

Next, we will color the edges in Erem using colors that are distinct from those
we used before. This will not harm the optimality of the constructed coloring,
because of Lemma 4.11. For each odd cycle, we use a different set of colors. This
will not harm the optimality of the constructed coloring, because of Lemma4.12.

For each odd cycle C, we construct an auxiliary graph HC for Erem ∩ C
as follows. Let V (HC) = Erem ∩ C and let E(HC) = {e1e2 : e1, e2 ∈
V (HC); e1 and e2 are not conflicting in G}.

Lemma 4.14. Δ(HC) ≤ 2.

Proof. It is easy to observe that in any odd cycle C, for any e ∈ E(C), there are
only two other edges in C that are not conflicting with e. �	

Let MC be a maximum matching of HC . We can compute MC in linear time,
since Δ(HC) ≤ 2. For an e1e2 ∈ MC , color e1 and e2 with the same, new color.
Then color each e ∈ Erem ∩ C that is unmatched in MC , each using a new color.

Lemma 4.15. The procedure for coloring Erem ∩C gives a coloring of the edges
in Erem ∩ C such that no conflicting edges are colored the same. Moreover, no
VSRC of G can use less colors to color Erem∩C than used by the above procedure.

Proof. Suppose two conflicting edges e1, e2 ∈ Erem ∩ C were colored the same.
Then the corresponding vertices e1 and e2 were matched to each other in MC .
Hence, e1 and e2 are adjacent in HC , meaning that e1 and e2 did not conflict each
other in G, which is a contradiction. Hence, we have proved that no conflicting
edges were given the same color by the procedure.

Now, consider any VSRC μ of G which colored Erem ∩ C with fewer colors
than by our procedure. Observe that for any edge e in an odd cycle, there are
only two other edges (say ea and eb) that are not conflicting with e. Moreover,
ea and eb are conflicting with each other. This means that μ can use each color
for at most two edges of Erem ∩ C. Suppose there are k1 colors that are assigned
to two edges in Erem ∩ C by μ. Each pair of edges colored the same should be
non-conflicting and hence have an edge between them in HC . So, taking all pairs
colored the same induces a matching of size k1 of HC . Then k1 ≤ |MC |, because
MC is a maximum matching of HC . But then the number of colors used by μ is
equal to k1 +(|Erem ∩C| − 2k1) = |Erem ∩C| − k1. The number of colors used by
our procedure is |MC |+ |Erem∩C|−2|MC | = |Erem∩C|−|MC | ≤ |Erem∩C|−k1.
Hence, we use at most the number of colors used by μ. �	

Finally, we color the edges of Eopp without introducing new colors. Indeed,
for every e ∈ Eopp, it follows from Lemma 4.6 that there exists an edge e′ ∈
E(OS(e))∩(Ebridge ∪ Eeven ∪ Erem), which does not conflict with e by Lemma 4.13.
Since e′ is already colored, say by color c, then we can simply re-use that color
c for e. Indeed, suppose for sake of contradiction that there is a shortest path P
between two vertices x, y that contains e and that contains another edge e′′ using
the color c. By Lemma 4.13, e′′ �∈ OS(e). This implies that e′′ �∈ Ebridge ∪ Eeven ∪
Erem by the choice of c and the construction of the coloring. Hence, e′′ ∈ Eopp.
However, by a similar argument, e′′ can only receive color c if e′ ∈ OS(e′′).

Algorithms and Bounds for Very Strong Rainbow Coloring 637

But then OS(e) ⊆ OS(e′′) or OS(e′′) ⊆ OS(e), and thus e and e′′ are not con-
flicting by Lemma 4.13, a contradiction to the existence of P .

Proof (of Theorem 1.4). It follows from the above discussion that the constructed
coloring is a very strong rainbow coloring of G. Moreover, it uses vsrc(G) colors.
Clearly, the coloring can be computed in polynomial time. �	

5 Other Algorithmic Results

In this section, we first show that 2-Vsrc can be solved in polynomial time.
Then we show that for k-Vsrc is fixed parameter tractable when parameterized
by k + tw(G), where tw(G) denotes the treewidth of G.

For proving both the results, we use an auxiliary graph G′ defined as follows:
add a vertex ve to G′ for each edge e in G; add an edge between vertices ve1 and
ve2 in G′ if and only if edges e1 and e2 appear together in some shortest path of
G. The latter condition can be easily checked in polynomial time. Observe that
vsrc(G) ≤ k if and only if G′ admits a proper k-coloring. Since 2-Coloring is
solvable in polynomial time, this implies that 2-Vsrc is polynomial time solvable
and hence we have proved Proposition 1.3.

It is worth noting that the chromatic number of the auxiliary graph G′ con-
structed in the above proof always corresponds to the very strong rainbow con-
nection number of G. However, in the transformation from G to G′, we lose a
significant amount of structural information. For example, if G is a path or a
star (tw(G) = 1), then G′ is a clique (tw(G′) = |V (G′|−1 = |V (G)|−2), where
we use tw(G) to denote the treewidth of G. However, if vsrc(G) ≤ k, then we
can prove that |V (G′)| ≤ k(k+1) · (tw(G) + 1)(k+1) as shown below.

Lemma 5.1. Let G be any connected graph and let vsrc(G) ≤ k and tw(G) ≤
t − 1. Then Δ(G) ≤ kt and |V (G)| ≤ (kt)k.

Proof. By Lemma 2.6, the fact vsrc(G) ≤ k implies that G is k-perfectly
groupable. Hence, the neighborhood of each vertex can be partitioned into k
or fewer cliques. Since tw(G) ≤ t − 1, each clique of G has size at most t [21].
Hence, Δ(G) ≤ kt. Now observe that vsrc(G) ≤ k implies that the diameter of
G is at most k. Combined, these two facts imply that |V (G)| ≤ (kt)k. �	
Proof (of Theorem 1.5). Again, let vsrc(G) ≤ k and tw(G) ≤ t − 1. We now
construct the auxiliary graph G′ as above. Now, we only need to compute the
chromatic number of G′. We aim to use the algorithm by Björklund et al. [3]
which computes the chromatic number of a graph on n vertices in 2nnO(1) time.
To bound |V (G′)|, we observe that by Lemma 5.1, |V (G)| ≤ (kt)k and Δ(G) ≤
kt. Hence, |V (G′)| = |E(G)| ≤ (kt)(k+1). Therefore, the chromatic number of
G′, and thereby vsrc(G), can be determined in O(2(kt)(k+1)

(kt)O(k+1)) time. �	

638 L. S. Chandran et al.

References

1. Ananth, P., Nasre, M., Sarpatwar, K.K.: Rainbow connectivity: Hardness and
tractability. In: Chakraborty, S., Kumar, A. (eds.) Proceedings of FSTTCS 2011.
LIPIcs, vol. 13, pp. 241–251. Schloss Dagstuhl (2011)

2. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow
connection number and radius. Graphs Comb. 30(2), 275–285 (2014)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39, 546–563 (2009)

4. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms
for rainbow connection. J. Comb. Optim. 21(3), 330–347 (2011)

5. Chandran, L.S., Das, A., Rajendraprasad, D., Varma, N.M.: Rainbow connection
number and connected dominating sets. J. Graph Theory 71(2), 206–218 (2012)

6. Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold
graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS,
vol. 7434, pp. 181–192. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32241-9 16

7. Chandran, L.S., Rajendraprasad, D.: Inapproximability of rainbow colouring. In:
Seth, A., Vishnoi, N.K. (eds.) Proceedings of FSTTCS 2013. LIPIcs, vol. 24, pp.
153–162. Schloss Dagstuhl (2013)

8. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in
graphs. Math. Bohem. 133(1), 85–98 (2008)

9. Eiben, E., Ganian, R., Lauri, J.: On the complexity of rainbow coloring problems.
Discret. Appl. Math. (2016, in press). https://doi.org/10.1016/j.dam.2016.10.021

10. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Canad. J. Math 18(106–112), 86 (1966)

11. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

12. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. JCTB 16(1), 47–56 (1974)

13. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algo-
rithmica 68(2), 312–336 (2014)

14. Keranen, M., Lauri, J.: Computing minimum rainbow and strong rainbow colorings
of block graphs. arXiv preprint arXiv:1405.6893 (2014)

15. Kowalik, �L., Lauri, J., Socala, A.: On the fine-grained complexity of rainbow col-
oring. In: Sankowski, P., Zaroliagis, C.D. (eds.) Proceedings of ESA 2016. LIPIcs,
vol. 57, pp. 58:1–58:16. Schloss Dagstuhl (2016)

16. Lauri, J.: Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds,
vol. 1428. Tampere University of Technology Publication, Tampere (2016)

17. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb.
29(1), 1–38 (2013)

18. Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer Science & Business
Media, Boston (2012). https://doi.org/10.1007/978-1-4614-3119-0

19. Li, X., Sun, Y.: An updated survey on rainbow connections of graphs - a dynamic
survey. Theory Appl. Graphs 0, 3 (2017)

20. Roberts, F.S.: Applications of edge coverings by cliques. Discret. Appl. Math.
10(1), 93–109 (1985)

21. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
JCTB 7, 309–322 (1986)

https://doi.org/10.1007/978-3-642-32241-9_16
https://doi.org/10.1007/978-3-642-32241-9_16
https://doi.org/10.1016/j.dam.2016.10.021
http://arxiv.org/abs/1405.6893
https://doi.org/10.1007/978-1-4614-3119-0

Algorithms and Bounds for Very Strong Rainbow Coloring 639

22. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connectivity
of graphs: complexity and FPT algorithms. Algorithmica 67(2), 161–179 (2013)

23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of STOC 2006, pp. 681–690. ACM (2006)

New Integer Linear Programming Models
for the Vertex Coloring Problem

Adalat Jabrayilov(B) and Petra Mutzel

Department of Computer Science, TU Dortmund University,
Dortmund, Germany

{adalat.jabrayilov,petra.mutzel}@tu-dortmund.de

Abstract. The vertex coloring problem asks for the minimum num-
ber of colors that can be assigned to the vertices of a given graph such
that each two neighbors have different colors. The problem is NP-hard.
Here, we introduce new integer linear programming formulations based
on partial-ordering. They have the advantage that they are as simple to
work with as the classical assignment formulation, since they can be fed
directly into a standard integer linear programming solver. We evaluate
our new models using Gurobi and show that our new simple approach
is a good alternative to the best state-of-the-art approaches for the ver-
tex coloring problem. In our computational experiments, we compare
our formulations with the classical assignment formulation and the rep-
resentatives formulation on a large set of benchmark graphs as well as
randomly generated graphs of varying size and density. The evaluation
shows that the partial-ordering based models dominate both formula-
tions for sparse graphs, while the representatives formulation is the best
for dense graphs.

Keywords: Graph coloring · Vertex coloring
Integer linear programming

1 Introduction

The vertex coloring problem (VCP) belongs to the classical optimization prob-
lems. This problem asks for the minimum number of colors, which are assigned
to the vertices of a graph such that no two adjacent vertices get the same color.
The minimum number of colors is called chromatic number and denoted by χ.
Computing the chromatic number of a graph is NP-hard [9]. Since the vertex
coloring problem has many applications, e.g., register allocation, scheduling, fre-
quency assignment and timetabling, there is a vast amount of literature on this
problem (see, e.g., [18] for a survey). However, in contrast to other classical
combinatorial optimization problems such as the Travelling Salesman Problem,
where large instances can be solved to optimality, this is not true for the VCP.

There are two main lines of research based on integer linear programming
(ILP) formulations for VCP. The natural formulation introduces binary variables
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 640–652, 2018.
https://doi.org/10.1007/978-3-319-77404-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_47&domain=pdf
http://orcid.org/0000-0002-1098-6358
http://orcid.org/0000-0001-7621-971X

New Integer Linear Programming Models for the Vertex Coloring Problem 641

that assign colors to vertices. A vertex v in the graph G = (V,E) is assigned
color i iff the corresponding binary variable xv,i gets value 1. This assignment
formulation has the advantage that it is simple and easy to use. Since the num-
ber of variables and constraints of this ILP model is polynomial in |V |, it can be
fed directly into a (commercial) integer linear programming solver such as SCIP
[1], LP Solve, Cplex, or Gurobi. Due to the inherent symmetry in the model (the
colors are not distinguishable) only small instances can be solved to optimal-
ity. However, additional constraints can be added by which the symmetry can
be reduced. The second approach has been suggested by Mehrotra and Trick
[19] and is based on the observation that each color class defines an indepen-
dent set (no two vertices in the set are adjacent) in the graph. The variables
correspond to independent sets and the ILP model searches for the minimum
number of these independent sets that cover the graph. Since the number of
independent sets can be of exponential size, the solution approach is based on
column generation. Solution algorithms based on this Set Covering Formulation
are of complex nature. Mehrotra and Trick [19] suggest a branch-and-price algo-
rithm for solving the ILP model. Both ILP formulations have been studied and
improved by additional ideas in the literature leading to complex branch-and-
cut algorithms using additional classes of constraints, special branching schemes,
separation procedures, and special procedures for providing good upper bounds.
The computational studies in the literature show that none of the ILP models
dominates the other one.

ILP formulations based on partial-ordering have shown to be practically suc-
cessful in the area of graph drawing [14]. Here, we suggest a new ILP formulation
based on partial-ordering for the vertex coloring problem. It has the advantage
that it is as simple to work with as the assignment formulation, since it is of poly-
nomial size and can be fed directly into a standard integer linear programming
solver. We further suggest a hybrid ILP formulation which combines the advan-
tages of the assignment formulation with those of the partial-ordering model.

We evaluate the new models using the ILP solver Gurobi and show that
our new simple approaches dominate the assignment formulation on the tested
benchmark sets and are a good alternative to the best state-of-the-art approaches
for the vertex coloring problem. We also present the first experimental compari-
son with the representatives formulation which has been suggested by Campelo
et al. [3,4]. Since it introduces variables for every pair of non-adjacent vertices,
this formulation seems to be advantageous for dense graphs. Our computational
results support this observation.

2 State-of-the-Art

Eppstein [8] has shown that it is possible to solve the vertex coloring problem
by enumerating all maximal independent sets in the graph in time O((4/3 +
34/3/4)|V |) which is about 2.4150|V |. In practice, the successful approaches are
much faster than that. There are two main directions followed by exact algo-
rithms based on ILP models for the problem: the ILP-based assignment model

642 A. Jabrayilov and P. Mutzel

(Sect. 2), and the ILP-based set covering formulation. There are also a lot of
experimental evaluations of these methods. Altogether they have not shown a
superiority of one of these lines of research. From those, the assignment model is
the simplest one, since it can directly be fed into a standard ILP-solver. Another
simple ILP formulation is the so-called representatives ILP model. It seems that
there is no experimental evaluation concerning this model. In the literature there
also exist alternative ILP models and alternative approaches (e.g., based on
Constraint Programming [11]). However, the aim of this work is to concentrate
on simple ILP formulations that are competitive with the best state-of-the-art
approaches. There is also a vast literature on heuristic approaches. For a detailed
overview of heuristic and exact approaches, see the survey by Malaguti and Toth
[18] and Burke et al. [2].

Assignment-Based ILP Model. The classical ILP model for a graph G =
(V,E) is based on assigning color i to vertex v ∈ V . For this, the assignment
variables xv,i are defined for each vertex v and color i ∈ {1, . . . , H} with xv,i = 1
if vertex v is assigned to color i and xv,i = 0 otherwise. H is an upper bound
of the number of colors (e.g., the result of a heuristic) and is at most |V |. For
modelling the objective function, an additional binary variable wi for each i ∈
{1, . . . , H} is needed which gets value 1 iff color i is used in the coloring. The
model is given by:

(ASS-S) min
∑

1≤i≤H wi (1)

s.t.
∑H

i=1 xv,i = 1 ∀v ∈ V (2)
xu,i + xv,i ≤ wi ∀(u, v) ∈ E, i = 1, . . . , H (3)
xv,i, wi ∈ {0, 1} ∀v ∈ V, i = 1, . . . , H (4)

The objective function minimizes the number of used colors. Equations (2)
ensure that each vertex receives exactly one color. For each edge there is a con-
straint (3) making sure that adjacent vertices receive different colors. This model
has the advantage that it is simple and easy to use. It can be easily extended to
generalizations and/or restricted variants of the graph coloring problem. Since
the number of variables is quadratic in |V | (bounded by H(|V | + 1)) and the
number of constraints is cubic in |V | (exactly |V | + H|E| = O(|V ||E|) con-
straints of type 2 and 3), it can directly be used as input for a standard ILP
solver. The main drawback of this model is the inherent symmetry, since there
are

(
H
χ

)
possibilities to select χ from H colors thus leading to exponentially (in

the number of colors) many equivalent solutions. In order to remove this type of
symmetry, Mendez-Diaz and Zabala [20,21] suggest to extend (ASS-S) through
the following set of constraints:

wi ≤
∑

v∈V

xv,i i = 1, . . . , H (5)

wi ≤ wi−1 i = 2, . . . , H (6)

New Integer Linear Programming Models for the Vertex Coloring Problem 643

We call this extended model (ASS). These constraints ensure that the color i is
only assigned to some vertex, if color i − 1 is already assigned to another one.
Moreover, they present several sets of constraints that arose from their studies
of the associated polytope. In order to solve the new strengthened ILP model,
they developed a branch-and-cut algorithm.

Representatives ILP Model. A vertex coloring divides the vertices into dis-
joint color classes. Campêlo et al. [3,4] suggested a model in which each color
class is represented by exactly one vertex. For this, they suggest to introduce
a binary variable xuv for each non-adjacent pair of vertices u, v ∈ V which is
1 if and only if the color of v is represented by u. Additional binary variables
xuu indicate if u is the representative of its color class. Let N̄(u) be the set of
non-adjacent vertices to u. The constraints are as follows:

(REP) min
∑

u∈V xuu (7)
∑

u∈N̄(v)∪v xuv ≥ 1 ∀v ∈ V (8)

xuv + xuw ≤ xuu ∀u ∈ V, ∀e = (v, w) ∈ G[N̄(u)] (9)
xuv ∈ {0, 1} ∀ non-adjacent vertex pairs u, v or u = v (10)

Inequalities (8) require that for any vertex v ∈ V , there must exist a repre-
sentative which can be v itself or some vertex from N̄(v). Inequalities (9) state
that a vertex u cannot be the representative for both endpoints of an edge (v, w)
and that in the case that xuv = 1 (u is the representative of vertex v) also the
variable xuu must take value 1. The advantage of this model is its simplicity and
its compactness. It has exactly |Ē| + |V | variables and up to |V | + |V ||E| many
constraints, where Ē is the set of non-adjacent vertex pairs of G = (V,E), i.e.,
Ē = (V ×V)\E. With growing density of the graphs, the number of constraints
increases but the number of variables decreases and converges towards |V |. In
[3], Campelo et al. mention that the symmetry in this model may lead to prob-
lems with branch-and-bound based solvers. The reason for this lies in the fact
that within a color class any of the vertices in this class can be the representa-
tive. In order to circumvent this, the authors define an ordering on the vertices
and require that in each color class only the vertex with the smallest number
is allowed to be the representative of this class. The ILP model arising from
this requirement is called the asymmetric representatives formulation (AREP).
The authors [3] study the polytopes associated with both representative formu-
lations. They suggest to add constraints based on cliques, odd-holes, anti-holes,
wheels, and independent sets in order to strengthen the model. Moreover, they
provide a comparison with the set covering based formulation. In [5], Campos
et al. study the asymmetric representatives formulation and the corresponding
polytope. Their results lead to complete characterizations of the associated poly-
topes for some specific graph classes. Up to our knowledge, no computational
experiments have been published in the literature.

644 A. Jabrayilov and P. Mutzel

3 Partial-Ordering Based ILP Models

3.1 A Pure Partial-Ordering Based ILP Model: POP

Our new binary model considers the vertex coloring problem as a partial-ordering
problem (POP). We assume that the H colors (1, . . . , H) are linearly ordered.
Instead of directly assigning a color to the vertices, we determine a partial order
of the union of the vertex set and the set of ordered colors. For this, we determine
the relative order of each vertex with respect to each color in the color ordering.
More specific: for every color i and every vertex v ∈ V our variables provide the
information if v is smaller or larger than i. We denote these relations by v ≺ i or
v � i, resp. In other words, the colors and the vertices build a partially ordered
set in which all pairs of the form (v, i) with v ∈ V, i = 1, . . . , H are comparable.
We define the following POP variables:

∀v ∈ V, i = 1, . . . , H : yi,v =
{

1 v � i
0 otherwise.

∀v ∈ V, i = 1, . . . , H : zv,i =
{

1 v ≺ i
0 otherwise.

If vertex v has been assigned to color i, then v is neither smaller nor larger
than i and we have yi,v = zv,i = 0. The connection with the assignment variables
x from the (ASS) model is as follows:

xv,i = 1 − (yi,v + zv,i) ∀v ∈ V, i = 1, . . . , H (11)

We select an arbitrary vertex q ∈ V and formulate our new binary program:

(POP) min 1 +
∑

1≤i≤H yi,q (12)
s.t. zv,1 = 0 ∀v ∈ V (13)

yH,v = 0 ∀v ∈ V (14)
yi,v − yi+1,v ≥ 0 ∀v ∈ V, i = 1, . . . , H − 1 (15)
yi,v + zv,i+1 = 1 ∀v ∈ V, i = 1, . . . , H − 1 (16)

yi,u + zu,i + yi,v + zv,i ≥ 1 ∀(u, v) ∈ E, i = 1, . . . , H (17)
yi,q − yi,v ≥ 0 ∀v ∈ V, i = 1, . . . , H − 1 (18)

yi,v, zv,i ∈ {0, 1} ∀v ∈ V, i = 1, . . . , H (19)

Lemma 1. The integer linear programming formulation (POP) is correct: Any
feasible solution of the ILP corresponds to a feasible vertex coloring and the value
of the objective function corresponds to the chromatic number of G.

Proof. All original vertices need to be embedded between the colors 1 and H.
Constraints (13) and (14) take care of this. By transitivity, a vertex that is larger
than color i + 1 is also larger than i (constraints (15)). Constraints (16) express
that each vertex v is either larger than i (i.e. yi,v = 1) or smaller than i + 1
and not both. These constraints jointly with constraints (15) ensure that each

New Integer Linear Programming Models for the Vertex Coloring Problem 645

vertex will be assigned to exactly one color, i.e. there is no color pair i �= j
with yi,v = zv,i = 0 and yj,v = zv,j = 0. We show this by contradiction. Let
yi,v = zv,i = 0. In the case j < i, as zv,i = 0 we have yi−1,v = 1 by (16).
Therefore we have yj,v = 1 for each j ≤ i − 1 by (15) which is a contradiction
to yj,v = 0. In the case j > i, as yi,v = 0 we have yk,v = 0 for each k ≥ i by
(15). Therefore we have zv,k+1 = 1 by (16) leading to zv,j = 1 for each j ≥ i + 1
which is a contradiction to zv,j = 0. Constraints (17) prevent assigning the same
color i to two adjacent vertices u and v. Constraints (18) take care of the fact
that our chosen vertex q will be assigned to the largest chosen color. So if q is
not larger than color i then this will be true for all other vertices v ∈ V \ {q}.
Because of this constraint, the objective function indeed minimizes the number
of assigned colors since it sums up the number of colors smaller than q. In order
to get the number of chosen colors, we need to add one for the color assigned to
q. We say that q represents the chromatic number of G.

Comparison with the assignment model (POP) has 2 · H|V | binary vari-
ables and about 4|V |H + 2|V | + |E|H constraints. Notice that the Eqs. (13),
(14) and (16) can be used to eliminate (H + 1)|V | variables. Hence the reduced
model has (H − 1) · |V | variables, and thus H + V variables less than (ASS),
which has H(|V | + 1) variables.

Mendez-Diaz and Zabala [20] mention that the classical branching rule (to
branch on fractional assignment variables by setting them to 1 in one subproblem
and to 0 in another subproblem) produces quite unbalanced enumeration trees.
This is the case because of setting xv,i = 1 implies xv,j = 0 for all j �= i, while
setting xv,i = 0 does not provide any further information. The model (POP) does
not have this problem, since setting a POP-variable yi,v = 0 implies yj,v = 0 for
all j with j > i and setting yi,v = 1 implies yj,v = 1 for all j with j < i because
of (15).

As already discussed, the original (ASS-S) model has inherent symmetries,
which can be resolved by additional constraints leading to the (ASS) model. In
the new (POP) model, this type of symmetry does not occur.

3.2 A Hybrid Partial-Ordering Based ILP Model: POP2

Our second ILP formulation is a slight modification of the first model and can
be seen as a hybrid of the models (POP) and (ASS). It is the consequence of
the observation that with growing density the (POP) constraint matrix contains
more nonzero elements than the (ASS) constraint matrix. This is due to the
constraints (17), which are responsible for the valid coloring of adjacent vertices,
and contain twice as many nonzero coefficients as the corresponding (ASS) con-
straints (3). Therefore, we substitute (17) by (11) and the following constraints:

xu,i + xv,i ≤ 1 ∀(u, v) ∈ E, i = 1, . . . , H. (20)

This reduces the number of nonzero coefficients from 4|E|H to 2|E|H + 3|V |H
giving a reduction ratio of about two in dense graphs. Although we added |V |H

646 A. Jabrayilov and P. Mutzel

new assignment variables, the dimension of the problem remains unchanged,
since the new variables directly depend on the POP-variables by equality (11).

4 Computational Experiments

In our experiments we are interested in answering the following questions:

– (H1): Do our new partial-ordering based ILP formulations dominate the clas-
sical assignment ILP model (ASS) on a set of benchmark instances?

– (H2): Does one of the two partial-ordering models dominate the other one?
– (H3): How do the simple models behave compared to the state-of-the-art

algorithms on a benchmark set of graphs?
– (H4): Does (AREP) dominate the other approaches on dense instances?

4.1 Implementation

The preprocessing techniques (a)–(d) are widely used (e.g., [11,12,17,18,20,21]):

(a) A vertex u is dominated by vertex v, v �= u, if the neighborhood of u is a
subset of the neighborhood of v. In this case, the vertex u can be deleted,
the remaining graph can be colored, and at the end u can get the color of v.

(b) To reduce the number of variables we are interested in getting a small upper
bound H for the number of needed colors.

(c) Since any clique represents a valid lower bound for the vertex coloring prob-
lem one can select any maximal clique and precolor it.

(d) In the case of equal lower and upper bounds the optimal value has been
found, hence no ILP needs to be solved.

We extended (c) as follows:

(e) In (ASS), (POP), and (POP2) we can fix more variables if we try to find the
clique Q with max(|Q|H + |δ(Q)|), where δ(Q) := {(u, v) ∈ E : |{u, v}∩Q| =
1}. The first term |Q|H is due to the fact that we can fix H variables for
each vertex in Q. After precoloring of some vertex u ∈ Q, the neighbors v of
u cannot receive the same color as u, e.g. if the assignment variable xu,i = 1
then xv,i = 0. Hence we can fix one variable for each edge (u, v) ∈ δ(Q).

To represent the chromatic number in (POP) and (POP2), we pick any vertex
q from the clique Q found in the preprocessing. The remaining vertices from the
clique are precolored with colors 1, · · · , |Q| − 1.

We have implemented the simple models (ASS), (POP), (POP2), (REP) and
(AREP) using the Gurobi-python API. To find large maximal cliques in (c) and
(e), we used a heuristic from the python library http://networkx.readthedocs.io.
The source codes are available on our benchmark site1. As mentioned in Sub-
sect. 3.1, in our implementation of (POP) and (POP2) we used (13), (14) and
(16) and eliminated all z variables.
1 https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks.

http://networkx.readthedocs.io
https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks

New Integer Linear Programming Models for the Vertex Coloring Problem 647

4.2 Test Setup and Benchmark Set of Graphs

To solve the models, we used the Gurobi 6.5 single-threadedly on Intel Xeon
E5-2640, 2.60 GHz, with 64 GB of memory and running Ubuntu Linux 14.04.
The dfmax benchmark [7], which is used in the DIMACS challenge to compare
the results obtained with different machines, needs on our machine 5.54 s for
r500.5.

We considered two benchmark sets, which are available at [15]. To compare
the new approach with the state-of-the-art algorithms from the literature, we
used subsets of the DIMACS [24] benchmark sets. From 119 DIMACS graphs
we have chosen the hard instances according to the Google benchmark site [10]
and the GPIA graphs, which are obtained from a matrix partitioning problem to
determine sparse Jacobian matrices. The second benchmark set consists of 340
randomly generated graphs G(n, p), which have n vertices and an edge between
each vertex pair with probability p. This set contains also two subsets:

set70: 100 instances: 20 graphs with n = 70 and p = 0.1, 0.3, 0.5, 0.7, 0.9.
sparse100: 240 instances: 20 graphs for each n = 80, 90, 100 and for each

p = 0.1, 0.15, 0.2, 0.25.

4.3 Experimental Evaluation

Table 1 shows the results for the DIMACS benchmark set. The new approach is
compared with the assignment and the representatives models and with other
state-of-the-art algorithms [6,17,20,21] from the literature. The table contains
37 of the 68 hard instances, which can be solved by at least one of the considered
algorithms. Columns 1–3 show the instance names and sizes. Column 4 describes
the hardness of the instances according to the Google site [10]. Columns 5–16
display the lower and upper bounds as well as the running times of the simple
models (AREP), (POP), (POP2) and (ASS) that have been obtained within a
time limit of one hour by the ILP-solver. An entry tl indicates that the time limit
is reached. The times are provided in seconds for solving the reduced ILPs after
prepocessing. The preprocessing is done with python and took a few seconds for
most instances and not more than one minute. Columns 5–7 show the results
of (AREP) with preprocessings (a)–(d). (AREP) does not need (b) directly, but
indirectly due to (d). Columns 8–16 show appropriate results for (POP), (POP2)
and (ASS). Since (e) can reduce the number of assignment and POP variables, we
implemented (ASS), (POP) and (POP2) also with (e) instead of (c). While both
versions (ASS)+(c) and (ASS)+(e) solved 21 instances, the average runtime of
solved instances by (ASS)+(e) (171.42 s) was smaller than (ASS)+(c) (405.02 s).
Also for (POP) and (POP2) it turned out that (e) is better than (c). Table 1
displays the results of (POP), (POP2), (ASS) corresponding to (e) only (due
to space restrictions). Since all the solved instances in the recent paper [6] and
by (REP) can be solved by (AREP), the table displays the results of the latter
only. Note, that the instance 4-Insertions 3 (taking 8 h by [6]) exceeds the 1 h
time limit taking 3641 s by (AREP).

648 A. Jabrayilov and P. Mutzel

Table 1. Results for the hard instances from DIMACS benchmark set

instance |V | |E| class AREP POP POP2 ASS+(e) [20] [21] [17]
lb ub time lb ub time lb ub time lb ub time

1-FullIns 4 93 593 NP-m 5.0 5.0 0.57 5.0 5.0 0.01 5.0 5.0 0.02 5.0 5.0 0.01 0.1 tl
1-FullIns 5 282 3247 NP-? 6.0 6.0 279.46 6.0 6.0 7.42 6.0 6.0 2.04 6.0 6.0 2.71 tl tl
2-FullIns 4 212 1621 NP-m 6.0 6.0 0.64 6.0 6.0 0.04 6.0 6.0 0.03 6.0 6.0 0.02 tl 4 tl
2-FullIns 5 852 12201 NP-? 6.0 7.0 tl 7.0 7.0 6.19 7.0 7.0 86.48 7.0 7.0 17.66 tl tl
3-FullIns 3 80 346 NP-m 6.0 6.0 0.01 6.0 6.0 0.00 6.0 6.0 0.00 6.0 6.0 0.00 0.1 2.9
3-FullIns 4 405 3524 NP-? 7.0 7.0 2.07 7.0 7.0 0.05 7.0 7.0 0.04 7.0 7.0 0.05 tl tl
3-FullIns 5 2030 33751 7.0 8.0 tl 8.0 8.0 15.19 8.0 8.0 39.31 8.0 8.0 32.15 tl tl
4-FullIns 3 114 541 NP-m 7.0 7.0 0.01 7.0 7.0 0.01 7.0 7.0 0.01 7.0 7.0 0.00 3 3.4
4-FullIns 4 690 6650 NP-? 8.0 8.0 1.27 8.0 8.0 0.08 8.0 8.0 0.04 8.0 8.0 0.04 tl tl
4-FullIns 5 4146 77305 7.0 9.0 tl 9.0 9.0 11.65 9.0 9.0 19.22 9.0 9.0 93.98 tl tl
4-Insertions 3 79 156 NP-m 3.0 4.0 tl 4.0 4.0 11.71 4.0 4.0 19.18 4.0 4.0 64.10 4204 tl
5-FullIns 3 154 792 NP-m 8.0 8.0 0.01 8.0 8.0 0.01 8.0 8.0 0.01 8.0 8.0 0.00 20 4.6
5-FullIns 4 1085 11395 NP-? 9.0 9.0 3.73 9.0 9.0 0.08 9.0 9.0 0.08 9.0 9.0 0.06 tl tl
ash608GPIA 1216 7844 NP-m -∞ +∞ tl 4.0 4.0 42.50 4.0 4.0 62.42 4.0 4.0 854.60 692 2814.8
ash958GPIA 1916 12506 NP-m -∞ +∞ tl 4.0 4.0 109.15 4.0 4.0 122.92 4.0 6.0 tl tl 4236 tl
DSJC125.5 125 3891 NP-h 14.0 20.0 tl 11.0 20.0 tl 13.0 22.0 tl 13.0 21.0 tl tl 18050.8
DSJC125.9 125 6961 NP-h 44.0 44.0 1.13 35.0 50.0 tl 42.0 44.0 tl 42.0 45.0 tl tl 3896.9
DSJC250.9 250 27897 NP-h 72.0 72.0 1367.70 39.0 +∞ tl 45.0 +∞ tl 40.0 89.0 tl tl tl
DSJR500.1c 500 121275 NP-h 85.0 85.0 0.10 77.0 +∞ tl 83.0 86.0 tl 78.0 +∞ tl tl 288.5
DSJR500.5 500 58862 NP-h -∞ +∞ tl 115.0 +∞ tl 122.0 122.0 551.92 115.0 +∞ tl tl 342.2
le450 15a 450 8168 NP-m 15.0 21.0 tl 15.0 16.0 tl 15.0 15.0 690.84 15.0 15.0 963.46 tl 0.4
le450 15b 450 8169 NP-? 15.0 19.0 tl 15.0 15.0 3473.07 15.0 15.0 827.73 15.0 15.0 1283.05 tl 0.2
le450 15c 450 16680 NP-? -∞ 450.0 tl 15.0 +∞ tl 15.0 +∞ tl 15.0 25.0 tl tl 3.1
le450 15d 450 16750 NP-? -∞ 450.0 tl 15.0 26.0 tl 15.0 26.0 tl 15.0 +∞ tl tl 3.8
le450 25c 450 17343 NP-? -∞ 450.0 tl 25.0 30.0 tl 25.0 31.0 tl 25.0 +∞ tl tl 1356.6
le450 25d 450 17425 NP-? 25.0 450.0 tl 25.0 30.0 tl 25.0 31.0 tl 25.0 +∞ tl tl 66.6
le450 5a 450 5714 NP-? -∞ 450.0 tl 5.0 9.0 tl 5.0 5.0 25.65 5.0 5.0 62.12 tl 0.3
le450 5b 450 5734 NP-? -∞ 450.0 tl 5.0 8.0 tl 5.0 5.0 171.03 5.0 5.0 194.73 tl 0.2
mug100 1 100 166 NP-m 4.0 4.0 0.62 4.0 4.0 0.38 4.0 4.0 0.13 4.0 4.0 0.20 60 14.4
mug100 25 100 166 NP-m 4.0 4.0 0.71 4.0 4.0 0.72 4.0 4.0 0.48 4.0 4.0 0.49 60 12
qg.order40 1600 62400 NP-m -∞ +∞ tl 40.0 45.0 tl 40.0 40.0 594.96 40.0 46.0 tl tl 2.9
qg.order60 3600 212400 NP-? -∞ +∞ tl 60.0 68.0 tl 60.0 62.0 tl -∞ 68.0 tl tl 3.8
queen10 10 100 1470 NP-h 10.0 12.0 tl 10.0 12.0 tl 10.0 12.0 tl 10.0 12.0 tl tl 686.9
queen11 11 121 1980 NP-h 11.0 13.0 tl 11.0 13.0 tl 11.0 13.0 tl 11.0 13.0 tl tl 1865.7
school1 nsh 352 14612 NP-m 14.0 14.0 891.92 14.0 14.0 24.66 14.0 14.0 13.25 14.0 14.0 30.38 0 17
wap05a 905 43081 NP-m -∞ +∞ tl 40.0 +∞ tl 50.0 50.0 1317.36 41.0 +∞ tl tl 293.2
wap06a 947 43571 NP-? -∞ +∞ tl 40.0 +∞ tl 40.0 +∞ tl 40.0 +∞ tl tl 175
solved: 15 19 25 21 9+2 25
avg. time 170.00 194.89 182.36 171.42 843.6 1196.3

Columns 17 and 18 are taken from [20,21] and show the running times of two
(ASS)-based branch-and-cut algorithms suggested by Mendez-Diaz and Zabala.
Column 18 ([21]) contains only the additional solved instances, i.e. the instances
which have not been solved in [20]. Column 19 is taken from [17] and shows the
running times of a set-covering-based branch-and-price algorithm suggested by
Malaguti et al. [17]. Notice that the comparison of running times is not quite
fair, since [21] and [17] report that their machines need 24 s and 7 s, respectively,
for the benchmark [7] instance r500.5, while our machine needs 5.54 s. However,
[20,21] and [17] used 2 h and 10 h as time limit respectively, while we only used
1 h. Nevertheless, it is interesting to see the number of optimal solved instances
by each algorithm. This is displayed in the row “solved”. The table shows the
average time for optimally solved instances in the last row.

We can see that the model (POP2) as well as the set-covering-based approach
[17] have solved the highest number of instances (25 out of 68) to provable opti-
mality. Although (POP2) was run on an approximately 1.26 (= 7s/5.54 s) times
faster machine its average runtime is about 6.56 (= 1196.3 s/182.36 s) times
faster than that described in [17]. The models (ASS)+(e), (POP), (AREP),
(REP) have solved 21, 19, 15, 13 instances respectively, while the algorithms
[20,21] only solved 11 (= 9 + 2) instances. It seems that the hybrid model (POP2)

New Integer Linear Programming Models for the Vertex Coloring Problem 649

Table 2. Results of the simple models for the GPIA graphs from DIMACS set

Time AREP POP POP2 ASS+(c) ASS+(e)
instance |V | |E| class limit lb ub time lb ub time lb ub time lb ub time lb ub time old lb old ub
will199GPIA 701 6772 NP-s 1h -∞ +∞ tl 7 7 6.68 7 7 11.35 7 7 6.98 7 7 7.24
ash331GPIA 662 4181 NP-s 1h -∞ +∞ tl 4 4 11.94 4 4 16.07 4 4 3.45 4 4 74.46
ash608GPIA 1216 7844 NP-m 1h -∞ 1215 tl 4 4 43.06 4 4 62.98 4 4 607.82 4 4 855.11
ash958GPIA 1916 12506 NP-m 1h -∞ +∞ tl 4 4 108.57 4 4 124.75 4 6 tl 4 6 tl
abb313GPIA 1555 53356 NP-? 3h -∞ 853 tl 8 10 tl 9 10 tl 8 12 tl 8 11 tl 8[20] 9[17]

combines the advantages of the pure (POP) model and assignment models.
A closer look at the single instances shows that it solved all instances which are
solved by (POP) or (ASS). As indicated in our theoretical analysis in Sect. 3.2
the hybrid model dominates the pure model for denser instances.

Table 2 shows the results for the simple models for all five DIMACS GPIA
graphs as well as old lower and upper bounds for the instance abb313GPIA.
Since (POP) and (POP2) solved all GPIA graphs except abb313GPIA within a
time limit of 1 h, we decided to increase the time limit for this graph to 3 h.
(POP2) achieved a lower bound of 9 in 7769 sec thus improving the best lower
bound found. To our knowledge, this new model is the first one solving all of the
remaining four GPIA graphs.

In order to study the behaviour of the implemented simple models for
instances with varying size and density, we first used the benchmark set70, for
which the results are displayed in Fig. 1. Figure 1(a) shows the average runtime
for each set G(70, p) for each density p = 10, 30, 50, 70, 90, while Fig. 1(b) shows
the number of unsolved instances for each set. (POP) and (ASS)+(e) were able
to solve all instances of densities 10 and 30, where the average runtime of (POP)
is about 2 times smaller than that of (ASS)+(e). Also here the model (ASS)
with the new preprocessing technique (e) is significantly faster than with (c).
From density 50 on, the (POP) model seems to have more problems than the
other models. The (ASS)+(c), (ASS)+(e) and the (POP2) model deliver similar
quality with similar running times for the denser graphs. From density 50 on,
the (AREP) model clearly dominates all other models. Since (POP) was the
fastest model on the sparse graphs of set70, we decided to evaluate larger sparse
graphs and generated the set sparse100. The corresponding results are shown
in Fig. 2. For the larger instances, both partial-ordering based models (POP)
and (POP2) dominate the other models. The representative model already gets
problems with the smallest instances in the set.

We conclude our work with answering our questions from the beginning:

– (H1): (POP2) is able to solve more DIMACS instances to provable optimal-
ity than the assignment model. This is not true for the (POP) model. On
the random graphs the models (POP) and (POP2) dominate the assignment
model on graphs with density p ≤ 30 and p ≤ 50, respectively.

– (H2): The (POP2) model dominates the original model (POP) on the harder
DIMACS instances as well as on the tested dense random graphs. The expla-
nation lies in the fact discussed in Sect. 3.2. It seems that the (POP2) model
combines the advantages of (POP) which is better for sparse graphs and
(ASS) which is better for dense graphs.

650 A. Jabrayilov and P. Mutzel

F
ig
.
1
.
C

o
m

p
a
ri

so
n

o
f
th

e
si

m
p
le

m
o
d
el

s
o
n

th
e

b
en

ch
m

a
rk

se
t7
0

F
ig
.
2
.
C

o
m

p
a
ri

so
n

o
f
th

e
si

m
p
le

m
o
d
el

s
o
n

th
e

b
en

ch
m

a
rk

sp
a
rs
e1
0
0

New Integer Linear Programming Models for the Vertex Coloring Problem 651

– (H3): The simple models are able to solve very hard instances from the
DIMACS benchmark set. A comparison with the computational results of
the state-of-the-art algorithms (such as [12,13,16–23]) shows that the quality
of the suggested algorithms is about the same (also see Tables 1 and 2). Some
of the approaches are able to solve some of the instances faster, but they are
slower on other instances.

– (H4): The representatives model does clearly dominate the other models on
dense instances. This can be seen on the denser instances of the DIMACS
graphs and on the series of random graphs with increasing density.

Acknowledgements. This work was partially supported by DFG, RTG 1855.

References

1. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-
ming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68155-7 4

2. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: A supernodal formulation of
vertex colouring with applications in course timetabling. Ann. Oper. Res. 179(1),
105–130 (2010)

3. Campêlo, M.B., Campos, V.A., Corrêa, R.C.: On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Appl. Math. 156(7), 1097–
1111 (2008)

4. Campêlo, M.B., Corrêa, R.C., Frota, Y.: Cliques, holes and the vertex coloring
polytope. Inf. Process. Lett. 89(4), 159–164 (2004)

5. Campos, V., Corrêa, R.C., Delle Donne, D., Marenco, J., Wagler, A.: Polyhedral
studies of vertex coloring problems: The asymmetric representatives formulation.
ArXiv e-prints, August 2015

6. Cornaz, D., Furini, F., Malaguti, E.: Solving vertex coloring problems as maximum
weight stable set problems. Disc. Appl. Math. 217(Part 2), 151–162 (2017)

7. Benchmarking machines and testing solutions (2002). http://mat.gsia.cmu.edu/
COLOR02/BENCHMARK/benchmark.tar

8. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms Appl. 7(2), 131–140 (2003)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. Freeman, San Francisco, CA, USA (1979)

10. Gualandi, S. Chiarandini, M.: Graph coloring instances (2017). https://sites.
google.com/site/graphcoloring/vertex-coloring

11. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)

12. Hansen, P., Labbé, M., Schindl, D.: Set covering and packing formulations of graph
coloring: algorithms and first polyhedral results. Discrete Optim. 6(2), 135–147
(2009)

13. Held, S., Cook, W., Sewell, E.: Maximum-weight stable sets and safe lower bounds
for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012)

14. Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact
layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD
2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50106-2 17

https://doi.org/10.1007/978-3-540-68155-7_4
https://doi.org/10.1007/978-3-540-68155-7_4
http://mat.gsia.cmu.edu/COLOR02/BENCHMARK/benchmark.tar
http://mat.gsia.cmu.edu/COLOR02/BENCHMARK/benchmark.tar
https://sites.google.com/site/graphcoloring/vertex-coloring
https://sites.google.com/site/graphcoloring/vertex-coloring
https://doi.org/10.1007/978-3-319-50106-2_17
https://doi.org/10.1007/978-3-319-50106-2_17

652 A. Jabrayilov and P. Mutzel

15. Jabrayilov, A., Mutzel, P. (2017). https://ls11-www.cs.tu-dortmund.de/mutzel/
colorbenchmarks

16. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, 1993. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 26. AMS, Providence (1996)

17. Malaguti, E., Monaci, M., Toth, P.: An exact approach for the vertex coloring
problem. Discrete Optim. 8(2), 174–190 (2011)

18. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper.
Res. 17, 1–34 (2010)

19. Mehrotra, A., Trick, M.: A column generation approach for graph coloring.
INFORMS J. Comput. 8(4), 344–354 (1996)

20. Méndez-Dı́az, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Dis-
crete Appl. Math. 154(5), 826–847 (2006)

21. Méndez-Dı́az, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete
Appl. Math. 156(2), 159–179 (2008)

22. Segundo, P.S.: A new DSATUR-based algorithm for exact vertex coloring. Comput.
Oper. Res. 39(7), 1724–1733 (2012)

23. Sewell, E.: An improved algorithm for exact graph coloring. In: Johnson and Trick
[16], pp. 359–373

24. Trick, M.: DIMACS graph coloring instances (2002). http://mat.gsia.cmu.edu/
COLOR02/

https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks
https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks
http://mat.gsia.cmu.edu/COLOR02/
http://mat.gsia.cmu.edu/COLOR02/

Submodular Maximization
with Uncertain Knapsack Capacity

Yasushi Kawase1(B), Hanna Sumita2, and Takuro Fukunaga3

1 Tokyo Institute of Technology, Tokyo, Japan
kawase.y.ab@m.titech.ac.jp

2 JST, ERATO, Kawarabayashi Large Graph Project,
National Institute of Informatics, Tokyo, Japan

sumita@nii.ac.jp
3 Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

takuro.fukunaga@riken.jp

Abstract. We consider the maximization problem of monotone sub-
modular functions under an uncertain knapsack constraint. Specifically,
the problem is discussed in the situation that the knapsack capacity is
not given explicitly and can be accessed only through an oracle that
answers whether or not the current solution is feasible when an item is
added to the solution. Assuming that cancellation of an item is allowed
when it overflows the knapsack capacity, we discuss the robustness ratios
of adaptive policies for this problem, which are the worst case ratios of
the objective values achieved by the output solutions to the optimal
objective values. We present a randomized policy of robustness ratio
(1−1/e)/2, and a deterministic policy of robustness ratio 2(1−1/e)/21.
We also consider a universal policy that chooses items following a pre-
computed sequence. We present a randomized universal policy of robust-
ness ratio (1 − 1/ 4

√
e)/2. When the cancellation is not allowed, no ran-

domized adaptive policy achieves a constant robustness ratio. Because
of this hardness, we assume that a probability distribution of the knap-
sack capacity is given, and consider computing a sequence of items that
maximizes the expected objective value. We present a polynomial-time
randomized algorithm of approximation ratio (1 − 1/ 4

√
e)/4 − ε for any

small constant ε > 0.

1 Introduction

The submodular maximization is one of the most well-studied combinatorial
optimization problems. Since it captures an essential part of decision-making sit-
uations, it has a huge number of applications in diverse areas of computer science.
Nevertheless, the standard setting of the submodular maximization problem fails
to capture several realistic situations. For example, let us consider choosing sev-
eral items to maximize a reward represented by a submodular function subject
to a resource limitation. When the amount of the available resource is exactly
known, this problem is formulated as the submodular maximization problem
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 653–668, 2018.
https://doi.org/10.1007/978-3-319-77404-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_48&domain=pdf

654 Y. Kawase et al.

with a knapsack constraint. However, in many practical cases, precise informa-
tion on the available resource is not given. Thus, algorithms for the standard
submodular maximization problem cannot be applied to this situation. Moti-
vated by this fact, we study robust maximization of submodular functions with
an uncertain knapsack capacity. Besides the practical applications, it is interest-
ing to study this problem because it shows how much robustness can be achieved
for an uncertain knapsack capacity in submodular maximization.

More specifically, we study the submodular maximization problem with an
unknown knapsack capacity (SMPUC). In this problem, we are given a set I of
items, and a monotone nonnegative submodular function f : 2I → R+ such that
f(∅) = 0, where each item i ∈ I is associated with a size s(i). The objective
is to find a set of items that maximizes the submodular function subject to a
knapsack constraint, but we assume that the knapsack capacity is unknown. We
have access to the knapsack capacity through an oracle; we add items to the
knapsack one by one, and we see whether or not the selected items violates the
knapsack constraint only after the addition. If a selected item fits the knapsack,
the selection of this item is irrevocable. When the total size of the selected items
exceeds the capacity, there are two settings according to whether or not the
selection can be canceled. If cancellation is allowed, then we remove the last
selected item from the knapsack, and continue adding the remaining items to
the knapsack. In the other setting, we stop the selection, and the final output is
defined as the one before adding the last item.

For the setting where the cancellation is allowed, we consider an adaptive
policy, which is defined as a decision tree to decide which item to pack into the
knapsack next. Performance of an adaptive policy is evaluated by the robustness
ratio defined as follows. For any number C ∈ R+, let OPTC denote the optimal
item set when the capacity is C, and let ALGC denote an output of the policy.
Note that if the policy is a randomized one, then ALGC is a random variable.
We call the adaptive policy α-robust, for some α ≤ 1, if for any C ∈ R+, the
expected objective value of the policy’s output is within a ratio α of the optimal
value, i.e., E[f(ALGC)]/f(OPTC) ≥ α. We also call the ratio α the robustness
ratio of the policy.

One main purpose of this paper is to present algorithms that produce adap-
tive policies of constant robustness ratios for SMPUC. Moreover, we discuss a
special type of adaptive policy called a universal policy. Such a policy selects
items following a precomputed order of items regardless of the observations made
while packing. This is in contrast to general adaptive policies, where the next
item to try can vary with the observations made up to that point. We present an
algorithm that produces a randomized universal policy that achieves a constant
robustness ratio.

If cancellation is not allowed, then there is no difference between adaptive
and universal policies because the selection terminates once a selected item does
not fit the knapsack. In this case, we observe that no randomized adaptive pol-
icy achieves a constant robustness ratio. Due to this hardness, we consider a
stochastic knapsack capacity when cancellation is not allowed. In this situation,

Submodular Maximization with Uncertain Knapsack Capacity 655

we assume that the knapsack capacity is determined according to some prob-
ability distribution and the information of the distribution is available. Based
on this assumption, we compute a sequence of the given items as a solution.
When the knapsack capacity is realized, the items in the prefix of the sequence
are selected so that their total size does not exceed the realized capacity. The
objective of the problem is to maximize the expected value of the submodular
function f for the selected items. We address this problem as the submodular
maximization problem with a stochastic knapsack capacity (SMPSC). We say
that the approximation ratio of a sequence is α (≤1) if its expected objective
value is at least α times the maximum expected value of f for any instance. The
sequence computed in an α-robust policy for SMPUC achieves α-approximation
ratio for SMPSC. However, the opposite does not hold, and an algorithm of a
constant approximation ratio may exist for SMPSC even though no randomized
adaptive policy achieves a constant robustness ratio. Indeed, we present such an
algorithm.

Related studies: There are a huge number of studies on the submodular maxi-
mization problems (e.g., [18]), but we are aware of no previous work on SMPUC
or SMPSC. Regarding studies on the stochastic setting of the problem, sev-
eral papers proposed concepts of submodularity for random set functions and
discussed adaptive policies to maximize those functions [2,10]. There are also
studies on the submodular maximization over an item set in which each item is
activated stochastically [1,9,12]. However, as far as we know, there is no study
on the problem with stochastic constraints.

When the objective function is modular (i.e., the function returns the sum of
the weights associated with the selected items), the submodular maximization
problem with a knapsack constraint is equivalent to the classic knapsack problem.
For the knapsack problem, there are numerous studies on the stochastic sizes
and rewards of items [5,11,15]. This problem is called the stochastic knapsack
problem. Note that this is different from the knapsack problem with a stochastic
capacity (KPSC), and there is no direct relationship between them.

The covering version of KPSC is studied in a context of single machine
scheduling with nonuniform processing speed. This problem is known to be
strongly NP-hard [13], which implies that pseudo-polynomial time algorithms
are unlikely to exist. This is in contrast to the fact that the classic knapsack prob-
lem and its covering version admit pseudo-polynomial time algorithms. Megow
and Verschae [17] gave a PTAS for the covering version of KPSC.

To the best of our knowledge, KPSC itself has not been studied well. The
only previous study we are aware of is the thesis of Dabney [4], wherein a PTAS
is presented for the problem. Since the knapsack problem and its covering version
are equivalent in the existence of exact algorithms, the strongly NP-hardness of
the covering version implies the same hardness for the knapsack problem.

Regarding the knapsack problem with an unknown capacity (KPUC), Megow
and Mestre [16] mentioned that no deterministic policy achieves a constant
robustness ratio when cancellation is not allowed. They presented an algorithm
that constructs for each instance a policy whose robustness ratio is arbitrarily

656 Y. Kawase et al.

close to the one of an optimal policy that achieves the largest robustness ratio for
the instance. When cancellation is allowed, Disser et al. [6] provided a determin-
istic 1/2-robust universal policy for KPUC. They also proved that no determin-
istic adaptive policy achieves a robustness ratio better than 1/2, which means
that the robustness ratio of their deterministic universal policy is best possible
even for any deterministic adaptive policy.

Contributions: For the case where cancellation is allowed, we present three
polynomial-time algorithms for SMPUC. These algorithms produce
– a randomized adaptive policy of robustness ratio (1 − 1/e)/2 (Sect. 3);
– a deterministic adaptive policy of robustness ratio 2(1 − 1/e)/21 (Sect. 4);
– a randomized universal policy of robustness ratio (1 − 1/ 4

√
e)/2 (Sect. 5).

Our algorithms are based on a simple greedy algorithm [14] for the monotone
submodular maximization problem with a knapsack constraint. The greedy algo-
rithm outputs a better solution among two candidates, one of which is con-
structed greedily based on the increase in the objective function value per unit
of size, and the other of which is based on the increase in the objective func-
tion value. In our randomized adaptive policy, we achieve the robustness ratio
(1 − 1/e)/2 by guaranteeing that each of the two candidate solutions is output
by our policy with probability 1/2.

We convert this randomized policy into a deterministic one by mixing the
two strategies which correspond to the two candidate solutions. We remark that
the same approach is taken for KPUC to construct a deterministic 1/2-robust
universal policy by Disser et al. [6]. They call an item swap item if it corresponds
to a single-item solution for some knapsack capacity. A key idea in their policy is
to pack swap items earlier than the others. However, their technique fully relies
on the property that the objective function is modular, and their choice of swap
items is not suitable for SMPUC. In this paper, we introduce a new notion of
single-valuable items. This enables us to design a deterministic 2(1 − 1/e)/21-
robust policy. We remark that our proof technique is also different from the
standard one used in related work. Moreover, we modify the randomized adaptive
policy to obtain the randomized universal policy. A key idea here is to guess a
capacity by a doubling strategy.

We also show that no randomized adaptive policy achieves a robustness ratio
better than 8/9 for KPUC. It is known that the robustness ratio achieved by
deterministic policies for this problem is at most 1/2 [6], but there was no upper
bound on the robustness ratio for randomized policies.

When cancellation is not allowed, it has been already known that KPUC
admits no deterministic universal policy of a constant robustness ratio [16]. We
can observe that this hardness result by showing that no randomized adaptive
policy achieves a constant robustness ratio.

Because of this hardness, we consider SMPSC without cancellation. We
present a polynomial-time randomized algorithm of approximation ratio (1 −
1/ 4

√
e)/4 − ε for any small constant ε > 0 (Sect. 6). This algorithm is

based on the idea of Gupta et al. [11] for the stochastic knapsack problem.

Submodular Maximization with Uncertain Knapsack Capacity 657

Gupta et al. regarded the knapsack capacity as a time limit, and showed that a
rounding algorithm for a time-index linear program (LP) gives an adaptive policy
for the stochastic knapsack problem. Although the formulation size of the time-
index LP is not polynomial, a simple doubling technique reduces the formulation
size to polynomial with a loss of the approximation ratio. In our algorithm for
SMPSC, we first introduce a time-index convex relaxation of the problem using
the multilinear extension of the objective function, and show that the rounding
algorithm of Gupta et al. is a monotone contention resolution scheme for any
realization of the knapsack capacity. This observation gives a pseudo-polynomial
time (1 − 1/ 4

√
e)/2-approximation algorithm for SMPSC. We then transform it

into a polynomial-time algorithm. This transformation requires a careful sketch-
ing of knapsack capacity, which was not necessary for the stochastic knapsack
problem.

Organization: The rest of this paper is organized as follows. Section 2 gives
notations and preliminary facts used in this paper. Sections 3, 4, and 5 present
the adaptive policies for SMPUC with cancellation. Section 6 presents the
polynomial-time approximation algorithm for SMPSC without cancellation.
Due to the space limitation, we omit several proofs and supplementary results
including the above-mentioned upper-bound and hardness results; see the
upcoming full version for these.

2 Preliminaries

In this section, we define terminologies used in this paper, and introduce existing
results which we will use.

Maximization of monotone submodular functions: The inputs of the prob-
lem are a set I of n items and a nonnegative set function f : 2I → R+. In
this paper, we assume that (i) f satisfies f(∅) = 0, (ii) f is submodular (i.e.,
f(X)+ f(Y) ≥ f(X ∪Y)+ f(X ∩Y) for any X,Y ⊆ I), and (iii) f is monotone
(i.e., f(X) ≤ f(Y) for any X,Y ⊆ I with X ⊆ Y). Function f is given as an
oracle that returns the value of f(X) for any query X ⊆ I. Let I ⊆ 2I be any
family such that X ⊆ Y ∈ I implies X ∈ I. The I-constrained submodular
maximization problem seeks finding X ∈ I that maximizes f(X).

We focus on the case where I corresponds to a knapsack constraint. Namely,
each item i ∈ I is associated with a size s(i), and I is defined as {X ⊆
I :

∑
i∈X s(i) ≤ C} for some knapsack capacity C > 0. We assume that the

item size s(i) (i ∈ I) and the knapsack capacity C are positive integers. We
denote

∑
i∈X s(i) by s(X) for any X ⊆ I.

Problem SMPUC: In SMPUC, the knapsack capacity C is unknown. We see
whether items in the knapsack fits the knapsack only when adding an item to
the knapsack.

A solution for SMPUC is an adaptive policy P, which is represented as a
binary decision tree that contains every item at most once along each path from
the root to a leaf. Each node of the decision tree is an item to try packing

658 Y. Kawase et al.

into the knapsack. A randomized policy is a probability distribution over binary
decision trees. One of the decision trees is selected according to the probability
distribution. For a fixed capacity C, the output of a policy P is an item set
denoted by P(C) ⊆ I obtained as follows. We start with P(C) = ∅ and check
whether the item r at the root of P fits the knapsack, i.e., whether s(r) +
s(P(C)) ≤ C. If the item fits, then we add r to P(C) and continue packing
recursively with the left subtree of r. Otherwise, we have two options: when
cancellation is allowed, we discard r and continue packing recursively with the
right subtree of r; when cancellation is not allowed, we discard r and output
P(C) to terminate the process.

When a policy does not depend on the observation made while packing,
we call such a policy universal. Since every path from the root to a leaf in a
universal policy is identical, we can identify a universal policy with a sequence
Π = (Π1, . . . ,Πn) of items in I. For a fixed capacity C, the output of a universal
policy, denoted by Π(C), is constructed as follows. We start with Π(C) = ∅. For
each i = 1, . . . , n, we check whether s(Π(C)) + s(Πi) ≤ C holds or not. If true,
then Πi is added to X. Otherwise, Πi is discarded, and we proceed to the next
i when cancellation is allowed, and we terminate the process when cancellation
is not allowed.

Problem SMPSC: In SMPSC, the knapsack capacity C is given accord-
ing to some probability distribution. Let T =

∑
i∈I s(i). For each t ∈ [T] :=

{0, 1, . . . , T}, we denote by p(t) the probability that the knapsack capacity is t.
We assume that the probability is given to an algorithm through an oracle that
returns the value of

∑T
t′=t p(t′) for any query t ∈ [T]. Hence, the input size of a

problem instance is O(n log T) and an algorithm runs in pseudo-polynomial time
if its running time depends on T linearly. A solution for SMPSC is a universal
policy, i.e., a sequence Π = (Π1, . . . ,Πn) of the items in I. When a capacity C
is decided, the output Π(C) of Π is constructed in the same way as universal
policies for SMPUC. The objective of SMPSC is to find a sequence Π that
maximizes E[f(Π(C))].

Multilinear extension, continuous greedy, and contention resolution
scheme: From any vector x ∈ [0, 1]I , we define a random subset Rx of I so
that each i ∈ I is included in Rx with probability xi, where the inclusion of i
is independent from the inclusion of the other items. For a submodular function
f : 2I → R+, its multilinear extension F : [0, 1]I → R+ is defined by F (x) =
E[f(Rx)] =

∑
X⊆I f(X)

∏
i∈X xi

∏
i′∈I\X(1−xi′) for all x ∈ [0, 1]I . This function

F satisfies the smooth monotone submodularity, that is, ∂F (x)
∂xi

≥ 0 for any i ∈ I

and ∂2F (x)
∂xi∂xj

≥ 0 for any i, j ∈ I.
A popular approach for solving the I-constrained submodular maximization

problem is to use a continuous relaxation of the problem. Let P ⊆ [0, 1]I be a
polytope in which each integer solution is the incidence vector of a member of
I. Then, maxx∈P F (x) ≥ maxX∈I f(X) holds. In this approach, it is usually
assumed that P is downward-closed (i.e., if x, y ∈ [0, 1]I satisfies y ≤ x ∈ P ,
then y ∈ P), and solvable (i.e., the maximization problem maxx∈P

∑
i∈I wixi

can be solved in polynomial time for any w ∈ R
I
+).

Submodular Maximization with Uncertain Knapsack Capacity 659

Calinescu et al. [3] gave an algorithm called continuous greedy for a con-
tinuous maximization problem maxx∈P F (x) over a solvable downward-closed
polytope P . They proved that the continuous greedy outputs a solution x ∈ P
such that F (x) ≥ (1 − 1/e − o(1))maxx′∈P F (x′). Feldman [7] extended its
analysis by observing that the continuous greedy algorithm with stopping
time b ≥ 0 outputs a solution x ∈ [0, 1]I such that x/b ∈ P and F (x) ≥
(1 − e−b − o(1))maxX∈I f(X). (The performance guarantee depending on the
stopping time is originally given for the measured continuous greedy algorithm
proposed by [8].) It is easy to see that his analysis can be modified to prove a
slightly stronger result F (x) ≥ (1 − e−b − o(1))maxx′∈P F (x′). In addition, this
analysis requires only the smooth monotone submodularity as a property of F .

A fractional solution x ∈ P can be rounded into an integer solution by
a contention resolution scheme. Let b, c ∈ [0, 1]. For a vector x, we denote
supp(x) = {i ∈ I : xi > 0}. We consider an algorithm that receives x ∈ bP
and A ⊆ I as input and returns a random subset πx(A) ⊆ A ∩ supp(x). Such an
algorithm is called (b, c)- balanced contention resolution scheme if πx(A) ∈ I in
probability 1 for all x and A, and Pr[i ∈ πx(Rx) : i ∈ Rx] ≥ c holds for all x and
i ∈ supp(x) (recall that Rx is the random subset of I determined from x). It is
also called monotone if Pr[i ∈ πx(A)] ≥ Pr[i ∈ πx(A′)] for any i ∈ A ⊆ A′ ⊆ I. If
a monotone (b, c)-balanced contention resolution scheme is available, then we can
achieve the approximation ratio claimed in the following theorem by applying it
to a fractional solution computed by the measured continuous greedy algorithm
with stopping time b. This fact is summarized as in the following theorem.

Theorem 1 ([8]). If there exists a monotone (b, c)-balanced contention reso-
lution scheme for I, then the I-constrained submodular maximization problem
admits an approximation algorithm of ratio (1−e−b)c−o(1) for any nonnegative
monotone submodular function.

3 Randomized (1 − 1/e)/2-Robust Adaptive Policy
for SMPUC

In this section, we present a randomized adaptive policy for SMPUC in the
situation that cancellation is allowed. The idea of our algorithm is based on a
simple greedy algorithm [14] for the submodular maximization problem with a
knapsack constraint. The greedy algorithm generates two candidate item sets.
One set is obtained greedily by repeatedly inserting an item maximizing the
increase in the objective function value per unit of size. The other is obtained
similarly by packing an item maximizing the increase in the objective function
value. Then the algorithm returns the set with the larger total value, which leads
to a (1 − 1/e)/2-approximation solution.

The idea of choosing a better solution is not suitable for SMPUC, where we
cannot remove items from the knapsack. We resolve this issue by generating at
random one of two policies P1 and P2 which are analogous to the above two
greedy methods. One policy P1 corresponds to the greedy algorithm based on

660 Y. Kawase et al.

Algorithm 1. Greedy algorithm P1 for (I, U)
1 X ← U , R ← I \ U ;
2 foreach j = 1, . . . , |I \ U | do
3 let ij ∈ arg max {(f(X ∪ {i}) − f(X))/s(i) : i ∈ R};
4 if ij fits the knapsack (i.e., s(X) + s(ij) ≤ C) then // left subtree

5 X ← X ∪ {ij}
6 else // right subtree

7 discard ij

8 R ← R \ {ij};

Algorithm 2. Randomized (1 − 1/e)/2-robust adaptive policy
1 flip a coin;
2 if head then execute Algorithm 1 for (I, ∅);
3 else
4 X ← ∅, R ← I;
5 foreach j = 1, . . . , |I| do
6 let ij ∈ arg max {f(X ∪ {i}) − f(X) : i ∈ R};
7 if ij fits the knapsack (i.e., s(X) + s(ij) ≤ C) then // left subtree

8 X ← X ∪ {ij}
9 else // right subtree

10 discard ij

11 R ← R \ {ij};

the increase in the objective function value per unit of size. We formally present
this policy as Algorithm 1. The item ij corresponds to a node of depth j−1 in P1.
We remark that Algorithm 1 chooses ij independently of the knapsack capacity,
but the choice depends on the observations which items fit the knapsack and
which items did not fit so far. For generality of the algorithm, we assume that
the algorithm receives an initial state U of the knapsack, which is defined as a
subset of I (this will be used in Sect. 4).

The policy P2 tries to pack items based on the increase in the objective
function value. Our algorithm is summarized in Algorithm2. We remark that
Algorithm 2 chooses the item ij for each iteration j in polynomial time with
respect to the cardinality of I.

We analyze the robustness ratio of Algorithm 2. In execution of Algorithm 1
for (I, U) under some capacity, we call the order (i1, . . . , i|I\U |) of items in I \U
the greedy order for (I, U), where ij is the jth selected item at line 3. Note
that the greedy order depends on the capacity. A key concept in the analysis of
Algorithm 2 is to focus on the first item in the greedy order that is a member of
OPTC but is spilled from P1(C). The following lemma is useful in analysis of
Algorithm 2 and also algorithms given in subsequent sections.

Submodular Maximization with Uncertain Knapsack Capacity 661

Lemma 1. Let C,C ′ be any positive numbers. Let q be the smallest index such
that iq ∈ OPTC′ and iq �∈ P1(C) (let q = ∞ if there is no such index). When
Algorithm 2 is executed for (I, U) with capacity C, it holds for any index j that

f(((P1(C) ∪ OPTC′) ∩ {i1, . . . , ij}) ∪ U)

≥ (
1 − exp

(−s((P1(C) ∪ OPTC′) ∩ {i1, . . . , ij})/C ′)) · f(OPTC′).

Moreover, (P1(C) ∪ OPTC′) ∩ {i1, . . . , ij} = P1(C) ∩ {i1, . . . , ij} holds for
any j < q.

Theorem 2. Algorithm 2 is a randomized (1 − 1/e)/2 > 0.316-robust adaptive
policy.

4 Deterministic 2(1 − 1/e)/21-Robust Adaptive Policy
for SMPUC

In this section, we present a deterministic adaptive policy for SMPUC by mod-
ifying Algorithm 2. To this end, let us review the result of Disser et al. [6] for
KPUC, which is identical to SMPUC with modular objective functions. They
obtained a deterministic 1/2-robust universal policy for KPUC based on the
greedy order for (I, ∅). Their policy first tries to insert items with large values,
which are called swap items. For a greedy order (i1, . . . , in), an item ij is called
a swap item if f({ij}) ≥ f(P1(C)) for some capacity C such that ij is the first
item that overflows the knapsack when the items are packed in the greedy order.
The key property is that the greedy order does not depend on the capacity C
when f is modular. This enables them to determine swap items from the unique
greedy order, and to obtain a deterministic universal policy.

On the other hand, it is hard to apply their idea to our purpose. The diffi-
culty is that the greedy order depends on the capacity when f is submodular.
Thus the notion of swap items is not suitable for choosing the items that should
be tried first. In this paper, we introduce single-valuable items, which are items
i satisfying f({i}) ≥ 2 · f(OPTs(i)/2) (= 2 · max{f(X) : s(X) ≤ s(i)/2}). In
the design of our algorithm, we use a polynomial-time γ-approximation algo-
rithm that computes f(OPTs(i)/2); for example, γ = 1−1/e [18]. Our algorithm
calculates the set S of the single-valuable items in a sense of γ-approximation.
To be precise, it holds that f({i}) ≥ 2γ · f(OPTs(i)/2) for any item i ∈ S and
f({i}) ≤ 2 · f(OPTs(i)/2) for any item i �∈ S.

Our algorithm tries to insert items in S first until one of these items fits the
knapsack (or all the items have been canceled) and then it executes Algorithm 1
with the remaining items. We remark that, unlike the algorithm for KPUC, our
algorithm executes Algorithm 1 once a single-valuable item fits the knapsack.
We summarize our algorithm in Algorithm3.

Note that our algorithm constructs S and decides which item to try in polyno-
mial time. Let R and U be the sets at the beginning of line 10. Then U is empty if
S ∩IC = ∅, and U consists of exactly one item i∗ ∈ arg max{f({i}) : i ∈ IC ∩S}
otherwise. The following theorem is the main result of this section.

662 Y. Kawase et al.

Algorithm 3. Deterministic 2γ/21-robust policy
1 U ← ∅, R ← I, S ← ∅;
2 foreach i ∈ I do
3 Let L be a γ-approximate solution to max{f(X) : s(X) ≤ s(i)/2, X ⊆ I};
4 if f({i}) ≥ 2f(L) then S ← S ∪ {i};

5 while U = ∅ and S ∩ R �= ∅ do
6 let i ∈ arg max{f({i}) : i ∈ S ∩ R};
7 if i fits the knapsack (i.e., s(i) ≤ C) then U ← {i};// left subtree

8 else discard i;// right subtree

9 R ← R \ {i};

10 execute Algorithm 1 for (R ∪ U, U);

Theorem 3. Algorithm3 using a γ-approximation algorithm in line 3 is a
min{2γ/21, (1 − 1/ 3

√
e)/3}-robust universal policy. In particular, it is 2(1 −

1/e)/21 > 0.060-robust when γ = 1 − 1/e, and it is (1 − 1/ 3
√

e)/3 > 0.094-
robust when γ = 1.

We describe the proof idea. Suppose that the given capacity is C. Since the
output of Algorithm 3 is P1(C) for (R ∪ U,U), one can think of a similar proof
to the one of Theorem 2. However, we may not be able to use the value f({iq})
in the evaluation of f(P1(C)) here, because P1(C) may not contain some items
that bound f({iq}). We show the theorem using a different approach. A basic
idea is to divide OPTC into several subsets A1, . . . , Ak and derive a bound
f(OPTC) ≤ f(A1) + · · · + f(Ak) by the submodularity of f . A key idea is to
evaluate each f(Ai) using properties of single-valuable items, which are shown
as the following two lemmas.

Lemma 2. We have f({i}) ≤ max{f(U), 2f(OPTs(i)/2)} for any item i ∈ IC .

Proof. The lemma follows because f({i}) ≤ f(U) if i ∈ S and f({i}) ≤
2f(OPTs(i)/2) if i �∈ S. �
Lemma 3. Let C be any positive number. Denote s∗ = s(U). Then for any
number x ∈ [s∗, C/2], it holds that f(OPT2x) ≤ 3 · f(OPTx).

Proof of Theorem 3. Let P be the deterministic policy described as Algorithm 3.
Suppose that the given capacity is C. We remark that P(C) = P1(C) for
(R ∪ U,U). We may assume that OPTC �⊆ P(C) since otherwise f(P(C)) =
f(OPTC). Let s∗ = s(U). Let i∗ denote the unique item of U when IC ∩ S �= ∅.
We branch the analysis into two cases: (a) s∗ < C/3 and (b) s∗ ≥ C/3.

Case (a): We claim that f(P(C)) ≥ (1 − 1/ 3
√

e) · f(OPTC)/3. Since s∗ <
C/3 < C/2, Lemma 3 indicates that f(OPTC/2) ≥ f(OPTC)/3. We evaluate
f(OPTC/2) by using Lemma 1 with C ′ = C/2. We may assume that OPTC/2 �⊆
P(C); otherwise f(P(C)) ≥ f(OPTC/2) holds, which implies that f(P(C)) ≥
f(OPTC)/3. Let (i1, . . . , i|R∪U |) be the greedy order for (R ∪ U,U). Let q′ be

Submodular Maximization with Uncertain Knapsack Capacity 663

Algorithm 4. Randomized (1 − 1/ 4
√

e)/2-robust universal policy
1 Π ← ();
2 flip a coin;
3 if head then
4 l ← 1, smin ← mini∈I s(i);
5 for k ← 0 to �log2(

∑
i∈I s(i)/smin) do

6 let Y (k) be the output P1(2k · smin) of the policy given in Algorithm 1
for (I, ∅);

7 foreach i ∈ Y (k) \ ⋃k−1
j=1 Y (j) do Πl ← i, l ← l + 1;

8 else let Π be the decreasing order of items i ∈ I in value f({i}) ;

the smallest index such that iq′ ∈ OPTC/2 and iq′ �∈ P1(C). We denote Z =
P1(C)∩{i1, . . . , iq′−1}. As s(iq′) ≤ C/2, we see that s(Z) > C−s∗−s(iq′) ≥ C/6.
Then Lemma 1 implies that f(P(C)) ≥ f(Z ∪ U) ≥ (1 − 1/ 3

√
e) · f(OPTC/2),

and hence the claim follows.

Case (b): By the following claim, we obtain f(P(C)) ≥ (2γ/21) · f(OPTC).

Claim. It holds that f(OPTC) ≤ 7f(OPTs∗) and f(OPTs∗) ≤ 3
2γ · f({i∗}). �

5 Randomized (1 − 1/ 4
√

e)/2-Robust Universal Policy
for SMPUC

In this section, we devise a randomized (1 − 1/ 4
√

e)/2-robust universal policy by
modifying Algorithm2. Note that we cannot use directly Algorithm 1 in universal
policies, because the greedy order depends on the capacity. Instead we guess the
capacity by the doubling strategy and emulate the execution of Algorithm1. In
each iteration of our algorithm, it finds an item set X maximizing f(X) under a
bound C ′ on the total size s(X), and then appends items of X to the sequence.
The bound C ′ is set by the algorithm according to the input items. To compute
the set X, we use Algorithm 1 where the capacity is set to be C ′. We double the
bound after each iteration. Our algorithm is summarized in Algorithm4.

We remark that Algorithm 4 constructs a sequence of items in polynomial
time with respect to the input size. We can prove the following result by using
Lemma 1.

Theorem 4. Algorithm 4 is a (1 − 1/ 4
√

e)/2 > 0.110-robust randomized univer-
sal policy.

6 Polynomial-Time ((1 − 1/ 4
√

e)/4 − ε)-Approximation
Algorithm for SMPSC

In this section, we consider SMPSC in the situation where cancellation is
not allowed. We present a polynomial-time algorithm of approximation ratio

664 Y. Kawase et al.

(1 − 1/ 4
√

e)/4 − ε for any small constant ε > 0. This algorithm is based on the
idea of Gupta et al. [11] for the stochastic knapsack problem. We first give a
pseudo-polynomial time (1 − 1/ 4

√
e)/2-approximation algorithm, and then we

transform it into a polynomial-time algorithm.
Our algorithm relies on a continuous relaxation of the problem. The relax-

ation is formulated based on an idea of using time-indexed variables; we regard
the knapsack capacity as a time limit while considering that picking an item
i spends time s(i). In the relaxation, we have a variable xti ∈ [0, 1] for each
t ∈ [T − 1] and i ∈ I, and xti = 1 represents that item i is picked at time t.
Recall that T =

∑
i∈I s(i) and [T ′] = {0, 1, . . . , T ′}. For each t ∈ [T] and i ∈ I,

let x̄ti =
∑

t′∈[t−s(i)] xt′i, where we define the right-hand side as 0 if t < s(i).
For each t ∈ [T], let x̄t be the |I|-dimensional vector whose component corre-
sponding to i ∈ I is x̄ti. Let F : [0, 1]I → R+ be the multilinear extension of the
submodular function f . Then, the relaxation is described as

maximize F̄ (x) :=
∑T

t=1 p(t)F (x̄t)
subject to

∑
t∈[T−1] xti ≤ 1, ∀i ∈ I,

∑
i∈I

∑
t′∈[t] xt′i min{s(i), t} ≤ 2t, ∀t = 1, . . . , T,

xti ≥ 0, ∀t ∈ [T − 1],∀i ∈ I.

(1)

Let us see that (1) relaxes the problem. It is not difficult to see that the
first and the third constants are valid. We prove that the second constraint is
valid. Suppose that x is an integer solution that corresponds to a sequence of
items. Let It be the set of items picked at time t or earlier in this solution.
Notice that

∑
i∈I

∑
t′∈[t] xt′i min{s(i), t} =

∑
i∈It

min{s(i), t} holds. Let j be
the item picked latest in It. Then, since the process of all items in It \ {j}
terminates by time t, we have

∑
i∈It\{j} s(i) ≤ t. Therefore,

∑
i∈It

min{s(i), t} =
min{s(j), t} +

∑
i∈It\{j} s(i) ≤ 2t.

Note also that F̄ is a smooth monotone submodular function; i.e.,
∂F̄ (x)/∂xti ≥ 0 for any t ∈ [T − 1] and i ∈ I, and ∂2F̄ (x)

∂xti∂xt′i′ ≤ 0 for any
t, t′ ∈ [T − 1] and i, i′ ∈ I. Hence, we can apply the continuous greedy algorithm
for solving (1). Let x∗ be an obtained feasible solution for (1). We first present a
rounding algorithm for this solution. Since the formulation size of this relaxation
is not polynomial, this algorithm does not run in polynomial time. We convert
the algorithm into a polynomial-time one later.

The algorithm consists of two rounds. In the first round, each item i chooses
an integer t from [T − 1] with probability x∗

ti/4, and chooses no integer with
probability 1− ∑

t∈[T−1] x
∗
ti/4. An item is discarded if it chooses no integer. Let

I1 be the set of remaining items. For each i ∈ I1, let ti denote the integer chosen
by i.

Then, the algorithm proceeds to the second round. Let i ∈ I1, and let Ji

denote {j ∈ I1 : tj ≤ ti}. In the second round, item i is discarded if
∑

j∈Ji
s(j) ≥

ti. Let I2 denote the set of items remaining after the second round. The algorithm
outputs a sequence obtained by sorting the items i ∈ I2 in the non-decreasing
order of ti, where ties are broken arbitrarily while the other items follow those
in I2 in an arbitrary order.

Submodular Maximization with Uncertain Knapsack Capacity 665

For t ∈ [T], let It = {i ∈ I2 : ti ≤ t − s(i) − 1}. If i ∈ It, then i contributes to
the objective value of the solution when the knapsack capacity is at least t.

Lemma 4. For any t ∈ [T], It is the output of a monotone (1/4, 1/2)-balanced
contention resolution scheme for the maximization problem of f under the knap-
sack capacity t and the fractional solution x̄∗

t . Hence, the sequence output by the
algorithm achieves an objective value of at least F̄ (x∗/4)/2 in expectation.

By Theorem 1 and Lemma 4, our algorithm achieves (1 − 1/ 4
√

e)/2-
approximation if it is combined with the continuous greedy algorithm with stop-
ping time 1/4.

Lemma 4 also implies that the integrality gap of (1) is at least 1/8. On the
other hand, there exist some instances indicating that the integrality gap is at
most 1/3 + ε for any ε > 0 even when the objective function is modular; see the
upcoming full version for its detail.

Conversion into a polynomial-time algorithm: Let W = f(I) and w =
mini∈I f({i}). We assume w > 0 without loss of generality; if f({i}) = 0 for an
item i ∈ I, we can safely remove i from I because the submodularity implies
f(S) = 0 for any S ⊆ I with i ∈ S. We assume that the input size of an instance
is Ω(log(W/w)), and hence we say that an algorithm runs in polynomial time if
its running time is expressed as a polynomial on log(W/w). Let ε be a positive
constant smaller than 1.

For t ∈ [T − 1], we define p̄(t) as
∑T

t′=t+1 p(t′). Let η =
�log1−ε(εw/(W log T))�. For j ∈ {1, . . . , η + 1}, let τ ′

j be the minimum inte-
ger t ∈ [T − 1] such that p̄(t) < (1 − ε)j−1. We assume without loss of generality
that p̄(mini∈I s(i)) = 1, which means τ ′

1 ≥ mini∈I s(i). We denote the set of pos-
itive integers in {τ ′

j : j = 1, . . . , η + 1} ∪ {2j : j ∈ [�log T � − 1]} by {τ1, . . . , τq},
and assume without loss of generality that 1 = τ1 < τ2 < · · · < τq. We also
let τ0 = 0 and τq+1 = T . We also define qη so that τqη

= τ ′
η+1. Because of the

definition, integers τ0, . . . , τq+1 satisfy the following conditions:

– p̄(τj) ≥ p̄(τj+1 − 1) ≥ (1 − ε)p̄(τj) holds for any j ∈ [qη];
– p̄(τj) < εw/(W log T) for any j ∈ {qη + 1, . . . , q};
– τj < τj+1 ≤ 2τj holds for any j = 1, . . . , q.

Moreover, q = O(log T + log(W/(wε))).
In addition, we define the set of integers in {τ0, . . . , τq+1}∪{τj −s(i)+1: j ∈

{1, . . . , q+1}, i ∈ I} as {ξ0, . . . , ξr+1}, where 0 = ξ0 < ξ1 < . . . < ξr < ξr+1 = T .
Notice that r = O(n log T + n log(W/(wε))).

Instead of (1), our polynomial-time algorithm is based on a more compact
relaxation, which has a variable yki for each k ∈ [r] and i ∈ I. Roughly speaking,
yki corresponds to variables xξk,i, . . . , xξk+1−1,i in (1). For j = 1, . . . , q + 1 and
i ∈ I, we define an auxiliary variable zji as

∑
ξk+1−1≤τj−s(i) yki, and define zj as

666 Y. Kawase et al.

Algorithm 5. Randomized (1−ε)(1−ε−1/ 4
√

e)/4-approximation algorithm
1 for ∀j ∈ {1, . . . , η + 1} do

2 compute τ ′
j = arg min{t ∈ [T − 1] : p̄(t) < (1 − ε)j−1} by the binary search

3 compute τ0, . . . , τq+1, qη , and ξ0, . . . , ξr+1;
4 y ← output of the continuous greedy with stopping time 1/4 applied to (2);

5 I′ ← ∅;

6 for i ∈ I do
7 choose a number k from [q] with probability yki or I′ ← I′ ∪ {i} with probability

1 − ∑
k∈[q] yki;

8 if i �∈ I′ then choose an integer ti from [τk, τk+1) uniformly at random;

9 Π′ ← sequence obtained by sorting the items i ∈ I \ I′ in a non-decreasing order of ti;
10 Π ← (Π′

1), l ← 2;
11 for i = 2, . . . , |Π′| do
12 if

∑
j∈[i−1] s(Π′

j) < tΠ′
i
then Πl ← Π′

i, l ← l + 1 ;

13 else I′ ← I′ ∪ {Π′
i} ;

14 append the items in I′ to the suffix of Π arbitrarily, and return Π;

the |I|-dimensional vector the component of which corresponding to i ∈ I is zji.
Then, the compact relaxation is described as follows.

maximize
∑q

j=0 p̄(τj)(F (zj+1) − F (zj))
subject to

∑
k∈[r] yki ≤ 1, ∀i ∈ I,

∑
i∈I

∑
ξk<τj

yki min{s(i), τj} ≤ 2τj , ∀j ∈ {1, . . . , q},

zji =
∑

ξk+1−1≤τj−s(i) yki ∀j ∈ [q],
yki ≥ 0, ∀i ∈ I,∀k ∈ [r].

(2)

Lemma 5. The optimal objective value of (2) is not smaller than that of (1).

Lemma 6. From a feasible solution to (2) achieving the objective value θ, we
can construct a feasible solution to (1) achieving the objective value of at least
(1 − ε)(θ − εw)/2.

We now wrap up our algorithm. Our algorithm first applies the continuous
greedy algorithm with stopping time 1/4 to compute a solution y such that 4y is
feasible for (2) and the objective value of y in (2) is 1 − 1/ 4

√
e times that of any

feasible solution, particularly the optimal value OPT of (2). From y, we compute
a solution x for (1) by Lemma 6. 4x is feasible for (1), and the objective value
of x in (1) is at least (1 − ε)((1 − 1/ 4

√
e)OPT − εw)/2. Since we are assuming

p̄(mini∈I s(i)) ≥ 1, picking the item of the smallest size at time 0 achieves
objective value w. This means OPT ≥ w, and hence the objective value of x is
at least (1 − ε)(1 − ε − 1/ 4

√
e)/2 · OPT . Then, applying the rounding algorithm

to 4x, we obtain a sequence of objective value (1 − ε)(1 − 1/ 4
√

e − ε)/4 · OPT .
To make this algorithm run in polynomial-time, we do not explicitly write

down x. In the rounding algorithm, values of x are used for deciding ti for each
i ∈ I in the first round of the rounding algorithm. This is possible without writing

Submodular Maximization with Uncertain Knapsack Capacity 667

down x as follows. Notice that xti takes the same value for any t ∈ [τj , τj+1)
by the construction of x. Hence each i chooses ti as follows. First, it chooses
k ∈ [q] with probability yki, and is discarded with probability 1 − ∑

k∈[r] yki.
Then, it chooses ti from [τk, τk+1) uniformly at random. This algorithm runs in
polynomial time with respect to 1/ε and the input size of the instance. We give
a pseudo-code of the algorithm in Algorithm 5.

With the conversion given above, we obtain the following theorem.

Theorem 5. For any constant ε ∈ (0, 1), there exists a randomized approxima-
tion algorithm of approximation ratio (1− ε)(1− ε−1/ 4

√
e)/4 ≈ 0.055− ε for the

stochastic capacity and no cancellation setting, which runs in polynomial time
with respect to 1/ε and the input size of the instance.

Acknowledgement. The first author is supported by JSPS KAKENHI Grant Num-
ber JP16K16005. The second author is supported by JSPS KAKENHI Grant Number
JP17K12646 and JST ERATO Grant Number JPMJER1201, Japan. The third author
is supported by JSPS KAKENHI Grant Number JP17K00040 and JST ERATO Grant
Number JPMJER1201, Japan.

References

1. Adamczyk, M., Sviridenko, M., Ward, J.: Submodular stochastic probing on
matroids. Math. Oper. Res. 41(3), 1022–1038 (2016)

2. Asadpour, A., Nazerzadeh, H., Saberi, A.: Stochastic submodular maximization.
In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 477–489.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1 53

3. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

4. Dabney, M.: A PTAS for the uncertain capacity knapsack problem. Master’s thesis,
Clemson University (2010)

5. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

6. Disser, Y., Klimm, M., Megow, N., Stiller, S.: Packing a knapsack of unknown
capacity. SIAM J. Discrete Math. 31(3), 1477–1497 (2017)

7. Feldman, M.: Maximization problems with submodular objective functions. Ph.D.
thesis, Technion - Israel Institute of Technology, July 2013

8. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: FOCS, pp. 570–579 (2011)

9. Feldman, M., Svensson, O., Zenklusen, R.L.: Online contention resolution schemes.
In: SODA, pp. 1014–1033 (2016)

10. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

11. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms
for correlated knapsacks and non-martingale bandits. In: FOCS, 827–836 (2011)

12. Gupta, A., Nagarajan, V., Singla, S.: Adaptivity gaps for stochastic probing: sub-
modular and XOS functions. In: SODA, pp. 1688–1702 (2017)

13. Höhn, W., Jacobs, T.: On the performance of Smith’s rule in single-machine
scheduling with nonlinear cost. ACM Trans. Algorithms 11(4), 25:1–25:30 (2015)

https://doi.org/10.1007/978-3-540-92185-1_53

668 Y. Kawase et al.

14. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: KDD, pp. 420–429 (2007)

15. Ma, W.: Improvements and generalizations of stochastic knapsack and multi-armed
bandit approximation algorithms: extended abstract. In: SODA, pp. 1154–1163
(2014)

16. Megow, N., Mestre, J.: Instance-sensitive robustness guarantees for sequencing
with unknown packing and covering constraints. In: ITCS, pp. 495–504 (2013)

17. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39206-1 63

18. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

https://doi.org/10.1007/978-3-642-39206-1_63
https://doi.org/10.1007/978-3-642-39206-1_63

Select and Permute: An Improved Online
Framework for Scheduling to Minimize

Weighted Completion Time

Samir Khuller1, Jingling Li1, Pascal Sturmfels2, Kevin Sun3,
and Prayaag Venkat1(B)

1 University of Maryland, College Park, MD 20742, USA
samir@cs.umd.edu, jinglingli1024@gmail.com, pkvasv@gmail.com

2 University of Michigan, Ann Arbor, MI 48109, USA
psturm@umich.edu

3 Duke University, Durham, NC 27708, USA
ksun@cs.duke.edu

Abstract. In this paper, we introduce a new online scheduling frame-
work for minimizing total weighted completion time in a general set-
ting. The framework is inspired by the work of Hall et al. [10] and Garg
et al. [8], who show how to convert an offline approximation to an online
scheme. Our framework uses two offline approximation algorithms—one
for the simpler problem of scheduling without release times, and another
for the minimum unscheduled weight problem—to create an online algo-
rithm with provably good competitive ratios.

We illustrate multiple applications of this method that yield improved
competitive ratios. Our framework gives algorithms with the best or
only-known competitive ratios for the concurrent open shop, coflow, and
concurrent cluster models. We also introduce a randomized variant of
our framework based on the ideas of Chakrabarti et al. [3] and use it to
achieve improved competitive ratios for these same problems.

Keywords: Coflow scheduling · Concurrent clusters
Concurrent open shop · Online algorithms

1 Introduction

Modern computing frameworks such as MapReduce, Spark, and Dataflow have
emerged as essential tools for big data processing and cloud computing. In order
to exploit large-scale parallelism, these frameworks act in several computation
stages, which are interspersed with intermediate data transfer stages. During
data transfer, results from computations must be efficiently scheduled for transfer
across clusters so that the next computation stage can begin.

All authors performed this work at the University of Maryland, College Park, under
the support of NSF REU Grant CNS 156019. We would also like to thank An Zhu
and Google for their support, and the LILAC program at Bryn Mawr College.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 669–682, 2018.
https://doi.org/10.1007/978-3-319-77404-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_49&domain=pdf

670 S. Khuller et al.

The coflow model [5,6] and the concurrent cluster model [11,19] were intro-
duced to capture the distributed processing requirements of jobs across many
machines. In these models, the objective of primary theoretical and practical
interest is to minimize average job completion time [1,5,6,14,19,20]. The con-
current open shop problem, a special case of the above models, has emerged as
a key subroutine for designing better approximation algorithms [1,14,19].

There has been a lot of work studying offline algorithms for these problems
(see [1,14,20] for the coflow model, [19] for the concurrent cluster model, and [4,
8,18,23] for the concurrent open shop model), but in real-world applications,
jobs often arrive in an online fashion, so studying online algorithms is critical
for accurate modeling of data centers.

Hall et al. [10] proposed a general framework which converts offline schedul-
ing algorithms to online ones. Inspired by this result, we introduce a new online
framework that improves upon the online algorithms of Garg et al. [8] for con-
current open shop and also gives the first algorithms with constant competitive
ratios for other multiple-machine scheduling settings.

1.1 Formal Problem Statement

In the concurrent open shop setting, the problem is to schedule a set of jobs
with machine-dependent components on a set of machines. Let J = {1, . . . , n}
denote the set of jobs and M = {1, . . . , m} denote the set of machines. Each
job j has one component for each of the m machines. For each job j, we denote
the processing time of the component on machine i as pij , its release time as
rj , and its weight as wj . The different components of each job can be processed
concurrently and in any order, as long as no component of job j is processed
before rj . Job j is complete when all of its components have been processed; we
denote its completion time by Cj . Our goal is to specify a schedule of the jobs
on the machines that minimizes

∑
j∈J wjCj ; see Fig. 1 for an example.

Fig. 1. All jobs are released at the same time, and the processing requirement for each
job-machine combination is specified inside the blocks.

We follow the 3-field α |β| γ notation (see [9]) for scheduling problems, where
α denotes the scheduling environment, β denotes the job characteristics, and
γ denotes the objective function. As stated above, we focus on the case where
γ =

∑
j wjCj . In accordance with the notation of [10,18,19], we let α = PD

Select and Permute: An Improved Online Framework 671

denote the concurrent open shop setting and α = CC denote the concurrent
cluster setting, see below for definitions.

1.2 Related Work

The concurrent open shop model is a relaxation of the well-known open shop
model that allows components of the same job to be processed in parallel on
different machines. Roemer [21] showed that PD ||

∑
j wjCj is NP-hard and after

several successive approximation hardness results [2,18], Sachdeva and Saket [22]
showed that it is not approximable within a factor less than 2 unless P = NP, even
when job release times are identical. For this model, Wang and Cheng [23] gave
a 16

3 -approximation algorithm. This was later improved to a 2-approximation for
identical job release times [4,8,15,18], matching the above lower bound, and a 3-
approximation for arbitrary job release times [1,8,15]. In the preemptive setting,
Im and Purohit [12] gave a (2+ ε)-approximation for arbitrary job release times.

In the online setting, Hall et al. [10] introduced a general framework that
improved the best-known approximation guarantees for several well-studied
scheduling environments. They showed that the existence of an offline dual ρ-
approximation yields an online 4ρ-approximation, where a dual ρ-approximation
is an algorithm that packs as much weight of jobs into a time interval of length
ρD as the optimal algorithm does into an interval of length D. Furthermore,
they showed that when m = 1, a local greedy ordering of jobs yields further
improvements.

While the framework of Hall et al. [10] is entirely deterministic, Chakrabarti
et al. [3] gave a randomized variant with an improved competitive ratio guaran-
tee. Specifically, they showed a dual-ρ approximation algorithm can be converted
to an expected 2.89ρ-competitive online scheduling algorithm in the same set-
ting, improving upon the 4ρ competitive ratio of Hall et al. [10].

The online version of PD ||
∑

j wjCj was first studied by Garg et al. [8].
They noted that applying the framework of [10] was not straightforward, so they
focused on minimizing the weight of unscheduled jobs rather than maximizing
the weight of scheduled jobs. Using a similar approach to that of Hall et al. [10],
they gave an exponential-time 4-competitive algorithm and a polynomial-time
16-competitive algorithm for the online version of PD ||

∑
j wjCj .

The coflow scheduling model was first introduced as a networking abstraction
to model communications in datacenters [5,6]. In the coflow scheduling problem,
the goal is to schedule a set of coflows on a non-blocking switch with m input
ports and m output ports, where any unused input-output ports can be con-
nected via a path through unused nodes regardless of other existing paths. Each
coflow is a collection of parallel flow demands that specify the amount of data
that needs to be transferred from an input port to an output port.

For Coflow |rj = 0|
∑

j wjCj , Qiu et al. [20] gave deterministic 64
3 and

randomized (8 + 16
√
2

3) approximation algorithms. For arbitrary release times,
they gave deterministic 67

3 and randomized 9 + 16
√
2

3 approximation algorithms.
Khuller and Purohit [14] later improved these deterministic approximations to 8

672 S. Khuller et al.

and 12 for identical and arbitrary release times respectively, and also gave a ran-
domized (3+2

√
2)-approximation algorithm for identical release times. Ahmadi

et al. [1] gave a deterministic 4-approximation and 5-approximation for identical
and arbitrary release times, respectively. Recently, Im and Purohit [12] achieved
a tight approximation ratio of 2+ε for arbitrary release times. To the best of our
knowledge, there are no known constant-factor competitive algorithms for online
coflow scheduling, although Li et al. [16] give a O(m ln n)-competitive algorithm
when all coflow weights are equal to 1, where m is the number of coflows and n
is the number of nodes in the network.

Finally, we mention the concurrent cluster model recently introduced by
Murray et al. [19]. The concurrent cluster model generalizes the concurrent open
shop model by replacing each machine by a cluster of machines, where differ-
ent machines in the same cluster may have different processing speeds. Each
job still has m processing requirements, but this requirement can be fulfilled
by any machine in the corresponding cluster. Murray et al. [19] give the first
constant-factor approximations for minimizing total weighted completion time
via a reduction to concurrent open shop and a list-scheduling subroutine.

1.3 Paper Outline and Results

In Sect. 2, we introduce a general framework for designing online scheduling algo-
rithms for minimizing total weighted completion time. The framework divides
time into intervals of geometrically-increasing size, and greedily “packs” jobs
into each interval, and then imposes a locally-determined ordering of the jobs
within each interval. It is inspired by the framework of Hall et al. [10] and an
adaptation by Garg et al. [8].

In Sect. 3, we apply our framework to PD ||
∑

j wjCj . We show that an
offline exponential-time algorithm that optimally solves PD |rj = 0|

∑
j wjCj

yields an exponential-time 3-competitive algorithm for PD ||
∑

j wjCj . We also
combine the algorithms given by Garg et al. [8] and Mastrolilli et al. [18] to
create a polynomial-time 10-competitive algorithm for PD ||

∑
j wjCj . We con-

clude Sect. 3 by giving a polynomial-time (3+ε)-competitive algorithm when the
number of machines m is fixed. Details on the subroutines used in this section
are provided in the full version of this paper [13].

In Sect. 4, extending the ideas of Sect. 3, we apply our framework to online
coflow scheduling to design an exponential-time (4 + ε)-competitive algorithm,
and a polynomial-time (10 + ε)-competitive algorithm.

Section 5 describes an extension of the techniques of Chakrabarti et al. [3]
that produces a randomized variant of our framework that yields better com-
petitive ratio guarantees than the deterministic version. The full version of this
paper [13] describes the concurrent cluster model of Murray et al. [19]; we show
that extending subroutines used for the concurrent open shop setting yields an
online 19-competitive algorithm via our framework.

Select and Permute: An Improved Online Framework 673

Table 1. A summary of online approximation guarantees and the best-known previ-
ous results, where m denotes the number of machines, ε is arbitrarily small, and “-”
indicates the absence of a relevant result. The two numbers in each entry of the “Our
ratios” column denote the competitive and expected ratio of our deterministic and
randomized algorithms, respectively.

Problem Running time Our ratios Previous ratio

PD || ∑
j wjCj Polynomial 10, 7.78 16 [8]

PD || ∑
j wjCj Exponential 3, 2.45 4 [8]

PD || ∑
j wjCj Polynomial, fixed m 3 + ε, 2.45 + ε -

Coflow || ∑
j wjCj Polynomial 10 + ε, 7.78 + ε -

Coflow || ∑
j wjCj Exponential 4 + ε, 3.45 + ε -

CC || ∑
j wjCj Polynomial 19, 14.55 -

2 A Minimization Framework for Online Scheduling

In this section, we introduce our framework for online scheduling problems. To
motivate the key ideas of this section, we begin by briefly reviewing the work of
Hall et al. [10] and Garg et al. [8].

2.1 The Maximization Framework of Hall et al. [10]

The framework of Hall et al. [10] divides the online problem into a sequence of
offline maximum scheduled weight problems, each of which is solved using an
offline dual approximation algorithm.

Definition 1 (Maximum scheduled weight problem (MSWP) [10]).
Given a set of jobs, a non-negative weight for each job, and a deadline D, con-
struct a schedule that maximizes the total weight of jobs completed by time D.

Definition 2 (Dual ρ-approximation algorithm [10]). An algorithm for the
MSWP is a dual ρ-approximation algorithm if it constructs a schedule of length
at most ρD and has total weight at least that of the schedule which maximizes
the weight of jobs completed by D.

Fix a scheduling environment and suppose we have a dual ρ-approximation
for the MSWP. We divide time into intervals of geometrically-increasing size
by letting t0 = 0 and tk = 2k−1 for k = 1, . . . , L where L is large enough to
cover the entire time horizon. At each time tk, let R(tk) denote the set of jobs
that have arrived by tk but have not yet been scheduled. We run the dual ρ-
approximation algorithm on R(tk) with deadline D = tk+1 − tk = tk. In the
output schedule, we take only jobs which complete by ρD and schedule them
in the interval starting at time ρtk. Hall et al. [10] show that this framework
produces an online 4ρ-competitive algorithm.

674 S. Khuller et al.

2.2 The Minimum Unscheduled Weight Problem of Garg et al. [8]

Garg et al. [8] sought to apply the framework of Hall et al. [10] to the concurrent
open shop setting. They noted that devising a dual-ρ approximation algorithm
for concurrent open shop was difficult, so they instead proposed a variant of
the MSWP. The definitions below generalize those used by Garg et al. [8] to
arbitrary scheduling problems.

Definition 3 (Minimum unscheduled weight problem (MUWP)).
Given a set of jobs, a non-negative weight for each job, and a deadline D, find
a subset of jobs S which can be completed by time D and minimizes the total
weight of jobs not in S. We call this quantity the unscheduled weight.

Definition 4 ((α, β)-approximation algorithm). An algorithm for the
MUWP is an (α, β)-approximation if it finds a subset of jobs which can be com-
pleted by αD and has unscheduled weight at most β times that of the subset of
jobs with minimum unscheduled weight that completes by D.

Note that a dual ρ-approximation for the MSWP is a (ρ, 1)-approximation
for the MUWP. With these definitions, Garg et al. [8] established constant-factor
approximations for PD ||

∑
j wjCj .

2.3 A Minimization Framework

We now describe a new framework inspired by the ideas of Hall et al. [10] and
Garg et al. [8]. For the settings we consider, previous online algorithms do not
impose any particular ordering of jobs within each interval, which can lead to
schedules with poor local performance. In our framework, we make use of a γ-
approximation to the offline version of the scheduling problem with identical
release times to address this issue.

As in the works of Hall et al. [10] and Garg et al. [8], we assume that all
processing times are at least 1. This is to avoid the extreme scenario that a
single job of size ε � 1 arrives just after time 0, and our framework waits until
time 1 to schedule, thus leading to arbitrarily large competitive ratio.

Let W denote the total weight of all the jobs in J , and let WA
τ (WOPT

τ)
denote the total weight of jobs that complete after time τ by our algorithm A
(by the optimal algorithm OPT). Note that WA

τ ,WOPT
τ include the weight of

jobs not yet released at time τ . Let τ0 = 0, and for k ≥ 1, let τk = 2k−1, Ik

denote the kth interval [τk, τk+1), αIk denote [ατk, ατk+1), and R(τk) denote the
set of jobs released but not yet scheduled before τk by A.

Select and Permute: An Improved Online Framework 675

Our online algorithm A works as follows. At each τk, run an (α, β)-
approximation algorithm on R(τk) with deadline D = τk+1 − τk. Schedule the
output set of jobs in αIk using the offline γ-approximation algorithm.1

Theorem 1. Algorithm A is (2αβ +γ)-competitive, with an additive αW term.

To prove Theorem 1, we first show that at each time step, A remains com-
petitive with the optimal schedule by incurring a time delay.

Lemma 1. For any k ≥ 0, we have WA
ατk+1

≤ βWOPT
τk

.

Proof. Every job completed by OPT by τk must have been released before τk.
For each such job j, either our algorithm completed it before time τk or j ∈ R(τk).
The set of jobs completed by OPT by time τk gives a feasible solution to the
MUWP with deadline D = τk+1 − τk = τk and its total unscheduled weight is
WOPT

τk
. Therefore, the optimal total unscheduled weight value for the MUWP

when considering all j ∈ R(τk) with deadline D is at most WOPT
τk

. By the
definition of (α, β)-approximation, the claim follows. ��

The next lemma states that ordering jobs within each interval further approx-
imates the optimal schedule closely. For a fixed subset S of jobs, let OPT (S)
denote the optimal schedule for S and C

OPT (S)
j denote the completion time of

job j in OPT (S). Also, let OPT 0(S) denote an optimal schedule that starts at
time 0 and ignores all job release times, and let C

OPT 0(S)
j denote the completion

time of job j in OPT 0(S).

Lemma 2. The weighted completion time for schedule OPT 0(S) is at most that
of schedule OPT (S); i.e.,

∑

j∈S

wjC
OPT 0(S)
j ≤

∑

j∈S

wjC
OPT (S)
j .

Proof. The optimal schedule of S with release times defines a valid schedule for
S without release times, so the claim follows. ��

Recall that at each τk, A uses an (α, β)-approximation on the MUWP to
select a subset Sk of R(τk) to schedule within αIk using a γ-approximation that
ignores release times. Let CA

j denote the completion time of job j in the schedule
produced by A, t(j) denote the largest index such that job j begins processing

1 We make the critical assumption that the offline γ-approximation algorithm does not
increase the makespan of the given subset of jobs, so as to ensure that the schedule
fits inside of αIk. For the scheduling models studied in this paper, this assumption
will indeed hold. In fact, if it can be shown that the γ-approximation algorithm
also approximates the makespan criteria within some factor μ, then it is straight-
forward to incorporate this into the model, at the expense of an additional μ factor
in the approximation guarantee. For example, Chakrabarti et al. [3] provide bicrite-
ria approximation algorithms for the total weighted completion time and makespan
objective functions.

676 S. Khuller et al.

Fig. 2. We let δj denote the distance between CA
j and the beginning of the interval in

which job j completes.

after time τt(j), and δj = CA
j − ατt(j) for each job j ∈ J (see Fig. 2). Let L be

the smallest time index such that the optimal schedule finishes by time τL, and
let Sk denote the set of jobs scheduled independently by A in the interval αIk.
Then Lemma 2 implies

∑

j∈Sk

wjδj ≤ γ
∑

j∈Sk

wjC
OPT 0(Sk)
j ≤ γ

∑

j∈Sk

wjC
OPT (Sk)
j . (1)

Lemma 3. The weighted sum of the δj is at most γ times the optimal weighted
completion time; i.e., ∑

j∈J

wjδj ≤ γ
∑

j∈J

wjC
OPT
j .

Proof. Recall that S1, . . . , SL partition J , and notice that due to (1), we have

L∑

k=1

∑

j∈Sk

wjδj ≤ γ

L∑

k=1

∑

j∈Sk

wjC
OPT (Sk)
j ≤ γ

∑

j∈J

wjC
OPT
j , (2)

thus proving the lemma. ��

Proof (of Theorem 1). We rewrite the total weighted completion time of the
schedule produced by A to obtain the following.

∑

j∈J

wjC
A
j = α

L∑

k=1

(τk − τk−1)WA
ατk

+
∑

j∈J

wjδj

= α
L∑

k=2

(τk − τk−1)WA
ατk

+ αWA
ατ1 +

∑

j∈J

wjδj

≤ 2α

L∑

k=1

(τk − τk−1)WA
ατk+1

+ αW +
∑

j∈J

wjδj

Select and Permute: An Improved Online Framework 677

≤ 2αβ

L∑

k=1

(τk − τk−1)WOPT
τk

+ αW +
∑

j∈J

wjδj

≤ (2αβ + γ)
∑

j∈J

wjC
OPT
j + αW,

where the last two inequalities follow from Lemmas 1 and 3, respectively. ��

3 Applications to Concurrent Open Shop

Now we apply our minimization framework to PD ||
∑

j wjCj . In the full version
of this paper [13], we give an offline dynamic program that optimally solves
PD |rj = 0|

∑
j wjCj in exponential time, giving γ = 1 in our framework.

For the MUWP, in exponential time, we can iterate over every subset of jobs
to find a feasible schedule that minimizes the total weight of unscheduled jobs,
so this is a (1, 1)-approximation, giving α = β = 1. Thus, Theorem 1 yields the
following, which improves upon the competitive ratio of 4 from Garg et al. [8].

Corollary 1. There exists an exponential time 3-competitive algorithm for the
concurrent open shop setting.

In polynomial time, Garg et al. [8] provide a (2, 2)-approximation for the
MUWP, and Mastrolilli et al. [18] provide a 2-approximation for offline version
of PD |rj = 0|

∑
j wjCj . These results with Theorem 1 improve the ratio of 16

by Garg et al. [8]. We note that the additional additive term of αW in Theorem 1
is smaller than the additive 3W term in the guarantees of Garg et al. [8], for
both the exponential-time and polynomial-time cases.

Corollary 2. There exists a polynomial-time 10-competitive algorithm for the
concurrent open shop setting.

When the number of machines m is constant, there exists a polynomial-
time (1 + ε, 1)-approximation algorithm for the MUWP (see full version of this
paper [13]) by a reduction to the multidimesional knapsack problem. Further-
more, when m is fixed, Edwin Cheng et al. [7] gave a PTAS for the offline
PD |rj = 0|

∑
j wjCj . Combining these results with Theorem 1 yields the

following.

Corollary 3. There exists a polynomial time, (3 + ε)-competitive algorithm for
PD ||

∑
wjCj when the number of machines is fixed.

4 Applications to Coflow Scheduling

We now apply our framework to coflow scheduling, introduced by Chowdhury
and Stoica [5]. We are given a non-blocking network with m input ports and m
output ports. A coflow is a collection of parallel flows processed by the network.

678 S. Khuller et al.

We represent a coflow j by an m×m matrix Dj = (dj
io)i,o∈[m], where dj

io denotes
the integer amount of data to be transferred from input port i to output port o
for coflow j. Each port can process at most one unit of data per time unit, and
we assume that the transfer of data within the network is instantaneous.

The problem is to schedule a set of n coflows, each with a non-negative weight
wj and release time rj , that minimizes the sum of weighted completion times,
where the completion time of a coflow is the earliest time at which all of its flows
have been processed. We denote this problem by Coflow ||

∑
j wjCj .

As in Sect. 3, in exponential time, we can iterate over all subsets of coflows
to optimally solve the MUWP, giving a (1, 1)-approximation. Moreover, Im and
Purohit [12] proposed a (2 + ε)-approximation for offline coflow scheduling2.

Corollary 4. There exists an exponential-time (4+ε)-competitive algorithm for
online coflow scheduling.

Furthermore, we can show that the polynomial-time (2, 2)-approximation
for the MUWP for PD ||

∑
j wjCj of Garg et al. [8] can be applied to coflow

scheduling with the same approximation guarantees. Combined with the 4-
approximation of Ahmadi et al. [1], our framework yields the following.

Corollary 5. There exists a polynomial-time (10+ ε)-competitive algorithm for
online coflow scheduling.

To show that the (2, 2)-approximation for the MUWP for PD ||
∑

j wjCj of
Garg et al. [8] can be applied to coflow scheduling with the same approximation
guarantees, we recall the reduction from Coflow ||

∑
j wjCj to PD ||

∑
j wjCj

given by Khuller and Purohit [14]. Given an instance of coflow scheduling I, let
Lj

i =
∑m

o=1 dj
io denote the total amount of data that co-flow j needs to transmit

through input port i, and similarly, we let Lj
o =

∑m
i=1 dj

io or output port o. From
this, create a concurrent open shop instance I ′ with a set M of 2m machines
(one for each port) and a set J of n jobs (one for each coflow), with processing
times psj set equal to Lj

s for job j on machine s.
Now, the MUWP on I ′ can be formulated by the following integer program

of Garg et al. [8].

minimize
∑

j∈J

wj(1 − xj)

subject to
∑

j∈J

pijxj ≤ D ∀i ∈ M

xj ∈ {0, 1} ∀j ∈ J.

Let W ′ denote the optimal unscheduled weight for the MUWP on I ′, and
define W similarly. The algorithm of Garg et al. [8] solves the linear relaxation

2 Since permutation schedules are not necessarily optimal for coflow scheduling [6],
even finding a factorial-time optimal algorithm is nontrivial. For simplicity, we have
chosen to use a polynomial-time algorithm to achieve Corollary 4.

Select and Permute: An Improved Online Framework 679

of this integer program to obtain an optimal fractional solution x̄, and outputs
the set of jobs S′ = {j ∈ J | x̄j ≥ 1

2}. Letting W ∗ denote the objective function
value of an optimal solution of the LP relaxation, it is straightforward to check
that the total processing time of S′ on any machine is at most 2D, the total
unscheduled weight is at most 2W ∗, and W ∗ ≤ W ′. Hence, the algorithm of
Garg et al. [8] is indeed a (2, 2)-approximation for the MUWP in the concurrent
open shop environment.

Lemma 4. The optimal unscheduled weight for the MUWP on I ′ is at most
that for the MUWP on I; i.e., W ′ ≤ W.

Proof. The proof is essentially identical to that of Lemma 1 in [14]. Let S be the
optimal solution to the MUWP for I. Then there exists a schedule of the coflows
in S such that every coflow completes by the deadline D. Now consider the set
S′ of corresponding jobs in I ′. Processing job j ∈ S′ on machine s whenever
data is being processed for coflow j ∈ S on port s in the schedule for S gives
a schedule for S′ in which every job also completes by deadline D. Thus S′ is
a feasible solution to the MUWP for I ′ with objective function value equal to
that of the optimal solution S to the MUWP for I, and the claim follows. ��

Let S be the set of coflows in I corresponding to the jobs S′ defined above.

Lemma 5. In polynomial time, we can find a schedule for S that completes by
time 2D, and whose total unscheduled weight is at most 2W .

Proof. We know that for any machine s in I ′,
∑

j∈S′ psj =
∑

j∈S Lj
s ≤ 2D.

Thus, if we take any schedule for the coflows S without idle time, every port s
finishes processing data by time

∑
j∈S Lj

s ≤ 2D. Since all coflows complete at
the same time when all ports have finished processing the data, we get a schedule
in which all coflows in S will complete without idle time by time 2D.

The total unscheduled weight in I is the same as the total unscheduled weight
in I ′. By Lemma 4, the total unscheduled weight in I is at most 2W ′ ≤ 2W . ��

Hence, the (2, 2)-approximation for the MUWP for PD ||
∑

j wjCj of Garg
et al. [8] can be applied to Coflow ||

∑
j wjCj with the same guarantees.

5 A Randomized Online Scheduling Framework

In this section, we show how our ideas can be combined with the randomized
framework of Chakrabarti et al. [3] to develop an analogue of the deterministic
framework of Sect. 2.

The framework of Chakrabarti et al. [3] modify that of Hall et al. [10] (see
Sect. 2.1) by setting τk = η2k, where η ∈ [12 , 1) is a randomly chosen parameter.
After making this choice, the online algorithm proceeds exactly as before, by
applying the dual ρ-approximation to the MSWP at each interval.

Let COPT
j denote the completion time of job j in an optimal schedule,

and let Bj denote the start of the interval (τk−1, τk] in which job j completes.
Chakrabarti et al. [3] show that if one takes η = 2−X , where X is chosen uni-
formly at random from (0, 1], then the following holds.

680 S. Khuller et al.

Lemma 6 ([3]). E[Bj] = 1
2 ln 2COPT

j .

Hall et al. [10] showed how to produce a schedule of total weighted com-
pletion time at most 4ρ

∑
j wjBj . By linearity of expectation, one can apply

Lemma 6, so that the schedule produced has total weighted completion at most
2

ln 2ρ
∑

j wjC
OPT
j , resulting in a randomized 2

ln 2ρ ≤ 2.89ρ-competitive algo-
rithm.

We can directly adapt this idea of randomly choosing the interval end points
in our minimization framework to develop a randomized version of Theorem1.
Specifically, we take τk = η2k, using the same η above, and run the framework
described in Sect. 2.3 using this new choice of interval end points. Note that
Lemmas 1, 2, and 3 still hold with our new choice of τk.

Let A′ denote this randomized algorithm and using the same notation as in
Sect. 2.3, we can achieve the following result.

Theorem 2. Algorithm A′ is (1
ln 2αβ + γ)-competitive in expectation, with an

additive αW term.

Proof. The same steps as in the proof of Theorem 1 yield

∑

j∈J

wjC
A′
j ≤ 2αβ

L∑

k=1

(τk − τk−1)WOPT
τk

+ αW +
∑

j∈J

wjδj .

By definition of Bj , we notice that

L∑

k=1

(τk − τk−1)WOPT
τk

=
∑

j∈J

wjBj .

By linearity of expectation and Lemma6, we conclude that

E[
∑

j∈J

wjC
A′
j] ≤ (

1
ln 2

αβ + γ)
∑

j∈J

wjC
OPT
j + αW.

��

Using the guarantee of Theorem 2, we can instantiate this framework in var-
ious scheduling settings and find values for α, β, γ to achieve improved competi-
tive ratios over our deterministic framework. The results obtained when applying
the same subroutines as we did for the framework of Sect. 2.3 are in Table 1.

Acknowledgements. We would like to thank Sungjin Im and Clifford Stein for direct-
ing us to [3,17], and William Gasarch for organizing the REU program.

Select and Permute: An Improved Online Framework 681

References

1. Ahmadi, S., Khuller, S., Purohit, M., Yang, S.: On scheduling coflows. In: Eisen-
brand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 13–24. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 2

2. Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and applica-
tions to scheduling problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2 22

3. Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.:
Improved scheduling algorithms for minsum criteria. In: Meyer, F., Monien, B.
(eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61440-0 166

4. Chen, Z.L., Hall, N.G.: Supply chain scheduling: assembly systems. Technical
report. University of Pennsylvania (2000)

5. Chowdhury, M., Stoica, I.: Coflow: a networking abstraction for cluster applica-
tions. In: HotNets, pp. 31–36 (2012)

6. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with Varys. In:
ACM SIGCOMM CCR, vol. 44, pp. 443–454. ACM (2014)

7. Edwin Cheng, T., Nong, Q., Ng, C.T.: Polynomial-time approximation scheme for
concurrent open shop scheduling with a fixed number of machines to minimize the
total weighted completion time. Nav. Res. Logist. 58(8), 763–770 (2011)

8. Garg, N., Kumar, A., Pandit, V.: Order scheduling models: hardness and algo-
rithms. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 96–
107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77050-3 8

9. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–
326 (1979)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: off-line and on-line approximation algorithms. Math. Oper. Res.
22(3), 513–544 (1997)

11. Hung, C.C., Golubchik, L., Yu, M.: Scheduling jobs across geo-distributed data-
centers. In: SoCC, pp. 111–124. ACM (2015)

12. Im, S., Purohit, M.: A tight approximation for co-flow scheduling for minimizing
total weighted completion time. arXiv preprint arXiv:1707.04331 (2017)

13. Khuller, S., Li, J., Sturmfels, P., Sun, K., Venkat, P.: Select and permute: an
improved online framework for scheduling to minimize weighted completion time.
arXiv preprint arXiv:1704.06677 (2017)

14. Khuller, S., Purohit, M.: Brief announcement: improved approximation algorithms
for scheduling co-flows. In: SPAA, pp. 239–240. ACM (2016)

15. Leung, J.Y.T., Li, H., Pinedo, M.: Scheduling orders for multiple product types to
minimize total weighted completion time. Discret. Appl. Math. 155(8), 945–970
(2007)

16. Li, Y., Jiang, S.H.C., Tan, H., Zhang, C., Chen, G., Zhou, J., Lau, F.: Efficient
online coflow routing and scheduling. In: Proceedings of the 17th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, pp. 161–170.
ACM (2016)

17. Lübbecke, E., Maurer, O., Megow, N., Wiese, A.: A new approach to online schedul-
ing: approximating the optimal competitive ratio. ACM Trans. Algorithms (TALG)
13(1), 15 (2016)

https://doi.org/10.1007/978-3-319-59250-3_2
https://doi.org/10.1007/978-3-642-14165-2_22
https://doi.org/10.1007/3-540-61440-0_166
https://doi.org/10.1007/978-3-540-77050-3_8
http://arxiv.org/abs/1707.04331
http://arxiv.org/abs/1704.06677

682 S. Khuller et al.

18. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimizing
the sum of weighted completion times in a concurrent open shop. Oper. Res. Lett.
38(5), 390–395 (2010)

19. Murray, R., Chao, M., Khuller, S.: Scheduling distributed clusters of parallel
machines: primal-dual and LP-based approximation algorithms. In: ESA (2016)

20. Qiu, Z., Stein, C., Zhong, Y.: Minimizing the total weighted completion time of
coflows in datacenter networks. In: SPAA, pp. 294–303. ACM (2015)

21. Roemer, T.A.: A note on the complexity of the concurrent open shop problem. J.
Sched. 9(4), 389–396 (2006)

22. Sachdeva, S., Saket, R.: Optimal inapproximability for scheduling problems via
structural hardness for hypergraph vertex cover. In: CCC, pp. 219–229. IEEE
(2013)

23. Wang, G., Cheng, T.E.: Customer order scheduling to minimize total weighted
completion time. Omega 35(5), 623–626 (2007)

Recognizing Generalized Transmission
Graphs of Line Segments and Circular

Sectors

Katharina Klost(B) and Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, Berlin, Germany
{kathklost,mulzer}@inf.fu-berlin.de

Abstract. Suppose we have an arrangement A of n geometric objects
x1, . . . , xn ⊆ R

2 in the plane, with a distinguished point pi in each object
xi. The generalized transmission graph of A has vertex set {x1, . . . , xn}
and a directed edge xixj if and only if pj ∈ xi. Generalized transmission
graphs provide a generalized model of the connectivity in networks of
directional antennas.

The complexity class ∃R contains all problems that can be reduced
in polynomial time to an existential sentence of the form ∃x1, . . . , xn :
φ(x1, . . . , xn), where x1, . . . , xn range over R and φ is a propositional
formula with signature (+, −, ·, 0, 1). The class ∃R aims to capture the
complexity of the existential theory of the reals. It lies between NP and
PSPACE.

Many geometric decision problems, such as recognition of disk graphs
and of intersection graphs of lines, are complete for ∃R. Continuing this line
of research, we show that the recognition problem of generalized transmis-
sion graphs of line segments and of circular sectors is hard for ∃R. As far as
we know, this constitutes the first such result for a class of directed graphs.

1 Introduction

Let A be an arrangement of n geometric objects x1, . . . , xn in the plane. The
intersection graph of A has one vertex for each object and an undirected edge
between two objects xi and xj if and only if xi and xj intersect. In particular, if
the objects are (unit) disks, we speak of (unit) disk graphs. These are often used
as a symmetric model for antenna reachability. In some cases, however, this
symmetry is not desired, since it does not accurately model the properties of
the network. For omnidirectional antennas, there is an asymmetric model called
transmission graphs [2]. Transmission graphs are also defined on disks: as in disk
graphs, there is one vertex per disk, and the edges indicate directed reachability.
There is a directed edge between two disks if the first disk contains the center
of the second disk.

Here, we present a new class of generalized transmission graphs. Now, the
objects may be arbitrary sets in R

2, and the points that decide about the exis-
tence of an edge can be arbitrary points in the objects.

Supported in part by ERC StG 757609.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 683–696, 2018.
https://doi.org/10.1007/978-3-319-77404-6_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_50&domain=pdf
http://orcid.org/0000-0002-1948-5840

684 K. Klost and W. Mulzer

For a given graph class, the recognition problem is as follows: given a com-
binatorial graph G = (V,E), decide whether G belongs to this class. For the
recognition of geometrically defined graphs, it turned out that the complexity
class ∃R plays a major role. The class ∃R was formally introduced by Schaefer [7].
It consists of all problems that are polynomial-time reducible to the set of all
true sentences of the form ∃x1, . . . , xn : Φ(x1, . . . , xn). Here, Φ is a quantifier-free
formula with signature (+,−, ·, 0, 1) additional to the standard boolean signa-
ture. The variables range over the reals. Hardness for this class is defined via
polynomial reduction.

There are multiple classes of intersection graphs for which the recognition
problem is ∃R-complete. Kang and Müller showed this for intersection graphs of
k-spheres [1], and Schaefer proved a similar result for intersection graphs of line
segments and convex sets [7].

One prototypical ∃R-complete problem that serves as the starting point of
many reductions is Stretchability, which was among the first known ∃R-hard
problems. The original hardness-proof is due to Mnëv [6], and it was restated in
terms of ∃R by Matoušek [5].

Here, we show that the recognition of generalized transmission graphs of line
segments and of a certain type of arrangements of circular sectors is hard for
∃R. For this, we need to extend the known proofs significantly, and we need
to develop new tools to reason about geometric realizations of directed graphs.
With some further work the inclusion of these problems in ∃R could be shown.
For details see the master thesis of the first author [3].

2 Preliminaries

2.1 Graph Classes

Let x1, . . . , xn ⊆ R
2 be a set of n objects, and suppose that there is a distin-

guished point p(xi) ∈ xi, in every object xi. The generalized transmission graph
of these objects is a directed graph G = (V,E) with

V = {x1, . . . , xn} and E = {(xi, xj) | p(xj) ∈ xi, 1 ≤ i, j ≤ n}.

We will consider generalized transmission graphs for line segments and circu-
lar sectors. In these cases, the distinguished points p(xi) are defined as follows:
for line segments, we choose one fixed endpoint; for circular sectors, we choose
the apex.

When constructing arrangements of line segments and of circular sectors
below, in Sects. 3 and 4, we need some notation. A line segment � is described
by an endpoint p(�), a length r(�), and a direction u(�). A circular sector c is
presented by an apex p(c), a radius r(c), an opening angle α(c), and a direction
u(c). The direction is a vector in R

2, and it indicates the direction of the bisector.
We will call the bounding line segments the outer line segments of c. Let B(c)
be the smallest rectangle with two sides parallel to u(c) that contains c, the
bounding box of c.

Recognizing Generalized Transmission Graphs of Line Segments 685

2.2 Stretchability and Combinatorial Descriptions

Let L be an arrangement of n non-vertical lines, such that no two lines in L are
parallel. We define the combinatorial description D(L) of L as follows:

Let g be a vertical line that lies to the left of all intersection points of L.
We number the lines �1, . . . , �n in the order in which they intersect g, from top
to bottom. This ordering corresponds to the ascending order of the slopes. For
each line �i, i = 1, . . . , n, we have a list Oi of the following form:

Oi = (oi1, . . . , , o
i
k) oij ⊆ {1, . . . , , n}

k⋃

j=1

oij = {1, ..., n} oij ∩ oij′ = ∅, for j �= j′.

For i = 1, . . . , n, the order of the indices in Oi indicates the order in which
the lines �j cross �i, as we travel along �i from left to right. The lists Oi, for
i = 1, . . . , n, form the combinatorial description of the arrangement L. If L is
simple, each oij is a singleton.

Given a combinatorial description D as above, it is relatively easy to detect
whether it comes from an arrangement of pseudo-lines. This can be done by
checking a few simple axioms [4]. However, the decision problem Stretcha-

bility of deciding if D originates from an actual arrangement of lines turns
out to be significantly harder. If all sets oij are singletons, the same problem is
called Simple-Stretchability. Both variants of the problem are complete for
∃R [5,6].

3 Line Segments

We now present our first result on the recognition of intersection graphs of line
segments.

Theorem 3.1. Recognizing a generalized transmission graph of line segments is
∃R-hard.
Proof. The proof proceeds by a reduction from Simple-Stretchability. Given
an alleged description D of a simple arrangement of lines, we construct a graph
GL = (VL, EL) such that D is realizable as a line arrangement if and only if GL

is the generalized transmission graph of an arrangement of line segments. We
set VL = A ∪ B ∪ C with

A = {a{i,k} | 1 ≤ i �= k ≤ n},
B = {bik | 1 ≤ i ≤ n, 1 ≤ k ≤ n − 1},
C = {ci | 1 ≤ i ≤ n},

where the ci are numbered in order given by D. The { } in the indices of the
a{i,k} indicates that a{i,k} = a{k,i}.

686 K. Klost and W. Mulzer

Before defining the edges, we describe the intuitive meaning of the differ-
ent vertices. The line segments associated with C correspond to the lines �i
of the arrangement. The endpoints of the line segment associated with a{i,k}
will enforce that there is an intersection of the line segments for ci and ck, for
1 ≤ i �= k ≤ n. The endpoints of the line segments for the bik, k = 1, . . . , n − 1,
will be placed between the a{i,k} on ci and thus enforce the order of the intersec-
tion. When it is clear from the context, we will not explicitly distinguish between
a vertex of the graph and the associated line segment. Now we define the edges:

EL = {(ci, a{i,k}), (ci, bik), (b
i
k, ci) | 1 ≤ i �= k ≤ n}

∪ {(bioik , bioil
), (bioik , a{i,oil}) | 1 ≤ i ≤ n, 1 ≤ l < k ≤ n − 1}

Given D, the sets VL and EL can be constructed in polynomial time. It remains
to show correctness. Suppose first that D is realizable, and let L = (�1, . . . , �n)
be a simple line arrangement with D = D(L). We show that there exists an
arrangement C of line segments that realizes GL. Let D be a disk that contains
all vertices of L, with ∂D having a positive distance from each vertex.

The circular order of the intersections between �1, . . . , �n and ∂D is �1, . . . , �n,
�1, . . . , �n. There is no vertical line in L, so we can add a virtual vertical
line �′ that divides the intersection points along ∂D into a “left” set Dl =
{ql1, q

l
2, . . . , q

l
n} and a “right” set Dr = {qr1, q

r
2, . . . , q

r
n} such that each set con-

tains exactly one intersection with each line �i, i = 1, . . . , n.
For i = 1, . . . , n, we set ci to �i∩D, with p(ci) = qli. The a{i,k} are constructed

such that p(a{i,k}) is the intersection point of �i and �k. The direction and length
are chosen in such a way that a{i,k} intersects no other lines. Now we place the
line segments bi

oik
. They are positioned such that p(bi

oik
) lies between p(a{i,oik})

and p(a{i,oik+1}), for k = 1, . . . , n − 2. Furthermore, we place p(bon−1) to the
right of a{i,oin−1}. The line segments lie on the lines �i such that p(ci) lies in the
relative interior of bik. For an example of this construction, see Fig. 1. It follows
from the construction that the generalized transmission graph of C is indeed GL.

Now consider an arrangement C of line segments realizing GL. Let L′ =
(�′

1, . . . , �
′
n) be the arrangement of lines where �′

i is the supporting line of ci, for
i = 1, . . . , n. We claim that D = D(L′).

We first consider the role of the line segments a{i,k}. Since p(a{i,k}) lies
on ci and ck, we have p(a{i,k}) = ci ∩ ck, and therefore �′

i and �′
k intersect in

p(a{i,k}). This ensures that all pairs of lines have an intersection point that is
also the endpoint of an a{i,k}. Next, we have to show that the order of the
intersections along each line �′

i, for i = 1, . . . , n, is in the order as given by D.
This is guaranteed by the line segments bik as follows: By the definition of EL,
namely by the edges (ci, bik) and (bik, ci), it is ensured that all p(bik) lie on the
same line as ci. The definition also enforces the order of the p(a{i,k}) and p(bik)
along the line. Since p(a{i,ok}) lies on biok+1

but not on biok and since all lie on
the same line ci, it has to lie between the corresponding endpoints. This enforces
the correct order of the intersections.

Recognizing Generalized Transmission Graphs of Line Segments 687

Fig. 1. Construction of the line segments.

4 Circular Sectors

We now consider the problem of recognizing generalized transmission graphs of
circular sectors. The reduction extends the proof for Theorem3.1, but we need
to be more careful in order to enforce the correct order of intersection.

We will only consider circular sectors with opening angle α ≤ π/4. If x and
y are circular sectors with p(x) ∈ y and p(y) ∈ x, we call x and y a mutual
couple of circular sectors. We write γ(u(x), u(y)) for the counter-clockwise angle
between the vectors u(x) and u(y).

Observation 4.1. Let x and y be a mutual couple of circular sectors, then

|π − γ(u(x), u(y))| ≤ (α(x) + α(y))/2.

The argument is visualized in Fig. 2a.

Observation 4.2. Let x and y be circular sectors whose bisectors intersect at
an acute angle of β > max{α(x), α(y)}/2. Then, the acute angle between the
outer line segments of x and the bisector of y is at least β − max{α(x), α(y)}/2.

Lemma 4.3. Let l be a circular sector and let a1, . . . , an be circular sectors with

p(ai) ∈ l, 1 ≤ i ≤ n,

p(ai) ∈ aj , 1 ≤ i < j ≤ n, and
p(l) ∈ aj , 1 ≤ j ≤ n.

Then, the projection of the p(ai) onto the directed line � defined by u(l) has the
order

O = o1, . . . , on = a1, . . . , an.

688 K. Klost and W. Mulzer

Fig. 2. Illustration of Observation 4.1 and Lemma 4.3

Proof. Each ai forms a mutual couple with l. Thus, with Observation 4.1, we get

|π − γ (u(ai), u(l)) | ≤ π/4. (1)

Assume that the order of the projection differs from O. Let O′ = o′
1, . . . , o

′
n be

the actual order of the projection of the p(ai) onto �. Let j be the first index with
o′
j �= oj and o′

j = ak. Then, there is an o′
i, i > j, with o′

i = ak−1. By definition,
p(ak−1) has to be included in ak, while still being projected on � to the right of
pk. This is only possible if

|π − γ(u(aj), �)| >
π

2
− α(ak)

2
≥ π

2
− π

8
=

3π

8
>

π

4
This is a contradiction to (1), and consequently the order of the projection is as
claimed. The possible ranges of the angles are illustrated in Fig. 2b.

An arrangement C of circular sectors is called equiangular if α(c) = α(c′) for
all circular sectors c, c′ ∈ C.

Let c, c′ be two circular sectors of C, and assume that d ∈ C is a circular
sector with p(d) ∈ c and p(d) ∈ c′, such that c and c′ do not form both a mutual
couple with the same circular sector. Moreover let βmin be the smallest acute
angle between the bisector of any pair c, c′ with this property. We will call the
arrangement wide spread if

βmin ≥ 2 · max
c∈C

(α(c))

The possible situations are depicted in Fig. 3.

Definition 4.4. The recognition problem of the generalized transmission graphs
of equiangular, wide spread circular sectors is called Sector.

Now we want to show that Sector is hard for ∃R. This is done in three steps.
First, we give a polynomial-time construction that creates an arrangement of
circular sectors from an alleged combinatorial description of a line arrangement.
Then we show that this construction is indeed a reduction and therefore show
the ∃R-hardness of Sector.

Recognizing Generalized Transmission Graphs of Line Segments 689

c
c′ d

β

(a) Constraint on the angle.

c

c′ d

(b) No constraint on the angle.

Fig. 3. The wide spread condition.

Construction 4.5. Given a description D where all oi are singletons, we con-
struct a graph GL = (VL, EL). For this construction, let 1 ≤ i, k, l ≤ n,
1 ≤ m,m′,m′′ ≤ 3. The set of vertices is defined as follows:

VL = {cim} ∪ {aim
km′ | i �= k} ∪ {bimkm′ | i �= k}

As for the line segments, we do not distinguish between the vertices and the
circular sectors. For the vertices aim

km′ and bimkm′ , the upper index indicates the
cim with whom aim

km′ and bimkm′ form a mutual couple. The lower index hints at
a relation to ckm′ . In most cases, the upper index is im and the lower index
differs. For better readability, the indices are marked bold (akm′

im), if im is the
lower index.

The bisectors of the circular sectors ci2 will later define the lines of the
arrangement. The circular sectors aim

km′ and akm′
im have a similar role as the a{i,k}

in the construction for the line segments. They enforce the intersection of cim
and ckm′ . Similar to the bik, the bimkm′ help enforcing the intersection order.

We describe EL on a high level. For a detailed technical description, refer
to AppendixA.1. We divide the edges of the graph into categories. The first
category, EI , contains the edges that enforce an intersection between two circular
sectors cim and ckm′ , for k < l. The edges of the next category EC enforce that
each aim

km′ and each bimkm′ forms a mutual couple with cim.

EI = {(cim, aim
km′) | i �= k}

∪{(cim, akm′
im) | i �= k}

EC = {(aim
km′ , cim) | i �= k}

∪{(cim, bimkm′) | i �= k}
∪{(bimkm′ , cim) | i �= k}

The edges in the next categories enforce the local order. The first category, called
EGO, enforces a global order in the sense that the apexes of all aim

ojm′ and bimojm′

will be projected to the left of any aim
okm′ and bimokm′ with k > j. Additionally,

all a
ojm

′

im will be included in aim
okm′ and bimokm′ . The projection order is enforced

by the construction described in Lemma4.3, the inclusion is enforced by adding
the appropriate edges.

It remains to consider the local order of the six circular sectors (aim
j1 , . . . , aim

j3 ,

bimj1 , . . . , bimj3) that are associated with cim for each intersecting circular sector

690 K. Klost and W. Mulzer

cj2. The projection order of these is either “1, 2, 3” or “3, 2, 1”, depending on
the order of li and lj on the vertical line. If lj is below li, the order on cim is
“1, 2, 3”; in the other case, it is “3, 2, 1”. This is again enforced by adding the
edges as defined in Lemma 4.3. For a possible realization of this graph, see Figs. 4
and 5. This construction can be carried out in polynomial time.

Now we show that Construction 4.5 gives us indeed a reduction:

l3

l1

l2

p(v31)
p(v32)
p(v33)

p(v12)
p(v11)

p(v13)

p(v22)
p(v21)

p(v23)

Fig. 4. Construction of the circular sectors cim based on a given line arrangement

Lemma 4.6. Suppose there is a line arrangement L = {�1, . . . , �n} realizing
D, then there is an equiangular, wide spread arrangement C of circular sectors
realizing GL as defined in Construction 4.5.

Proof. We construct the containing disk D, and the sets of intersection points
Dl and Dr as in the proof of Theorem3.1. By �im, we denote the directed line
through the bisector of the circular sector cim. Let αmin be the smallest acute
angle between any two lines of L. The angle α for C will be set depending on
αmin and the placement of the constructed circular sectors cim.

In the first step, we place the circular sectors ci2. They are constructed such
that their apexes are on qli and their bisectors are exactly the line segments
�i ∩ D. We place p(ci1) in clockwise direction next to p(ci2) onto the boundary
of D. The distance between p(ci1) and p(ci2) on ∂D is some small τ > 0. The
point p(ci3) is placed in the same way, but in counter-clockwise direction from
p(ci2). The bisectors of all cim are parallel. The radii for ci1 and ci3 are chosen
to be the length of the line segments �i1 ∩ D and �i3 ∩ D.

The distance τ must be small enough so that no intersection of any two
original lines lies between �i1 and �i3. Let β be the largest angle such that if the
angle of all cim is set to β, there is always at least one point in cim between
the bounding boxes B of two circular sectors with consecutively intersecting
bisectors. Since L is a simple line arrangement, this is always possible. The
angle α for the construction is now set to min {αmin/2, β}. This first part of the
construction is illustrated in Fig. 4.

Recognizing Generalized Transmission Graphs of Line Segments 691

Now we place the remaining circular sectors. Their placement can be seen
in Fig. 5. The points p(aim

km′) all lie on �im with a distance of δ to the left of
the intersection of �im and �km′ . By “to the left”, we mean that the point lies
closer to p(cim) on the line �im than the intersection point. The distance δ is
chosen small enough such that p(aim

km′) lies inside of all akm′
im that have a larger

distance to p(ckm′) than p(aim
km′). The direction of the circular sector aim

km′ is
set to −u(cim), and its radius is set to r(aim

okm′) = dist(p(aim
km′), p(cim)) + ε, for

ε > 0. This lets p(cim) lie on the bisecting line segment of every circular sector
aim
km′ . The directions and radii for the bimkm′ are chosen in the same way as for the

aim
km′ . The apexes of bimkm′ are placed such that they lie between the corresponding

bounding boxes B(ckm′). For α small enough, this is always possible.

cim

ck

cj akim

ajim

bimk

aimk

bimjaimj

Fig. 5. Detailed construction inside of one circular sector cim.

It follows directly from the construction that the generalized transmis-
sion graph of this arrangement is GL. A detailed argument can be found in
AppendixA.2.

Lemma 4.7. Suppose there is an equiangular, wide spread arrangement C of
circular sectors realizing GL as defined in Construction 4.5, then there is an
arrangement of lines realizing D.

Proof. From C, we construct an arrangement L = (�1, . . . , �n) of lines such that
D(L) = D by setting �i to the line spanned by u(ci2). Now, we show that this
line arrangement indeed satisfies the description, e.g., that the intersection order
of the lines is as indicated by the description.

All aim
km′ and bimkm′ form mutual couples with cim. Thus, Lemma 4.3 can be

applied to them. It follows that the order of the projections of the apexes of the
circular sectors is known. In particular, the order of projections of the p(ai2

j2)
onto �i is the order given by D and p(bi2oj2) is projected between p(ai2

oj2) and
p(ai2

oj+12).
Now, we have to show that the order of intersections of the lines corresponds

to the order of the projections of the p(ai2
j2). This will be done through a con-

tradiction. We consider two circular sectors cj2 and ck2. Assume that the order
of the projection of the apexes of ai2

j2 and ai2
k2 onto �i is p(ai2

j2), p(ai2
k2), while the

order of intersection of the lines is �k, �j .

692 K. Klost and W. Mulzer

Note that by the definition of the edges of GL, cj2 and ck2 share the apexes
of ak2

j2 and aj2
k2, but there is no circular sector they both form a mutual couple

with and thus the angle between their bisecting line segments is large.
There are two main cases to consider, based on the position of the intersection

point p of �j and �k relative to ci2:

Case one p /∈ ci2: If p does not lie in ci2, then �j and �k divide ci2 into three
parts. Let sj , sk be the outer line segments of cj2 and ck2 that lie in the middle
part of this decomposition. A schematic of this situation can be seen in Fig. 6a.

ai2k2

ai2j2

sk

sj

(a) Case one, ai2
k2 cannot reach ai2

j2.

F1
F2

F3

F4

bi2j2

ai2j2

bi2j2

ai2k2

(b) Case two, bi2j2 cannot lie in F1 or F3.

Fig. 6. Position of p relative to ci2

From Observation 4.2 and since C is an equiangular, wide spread arrangement
it follows that |π − γ(sj , u(ci))| > 3α/2 and |π − γ(sk, u(ci))| > 3α/2.

In order to have an intersection order that differs from the projection order,
the circular sector ai2

k2 has to reach p(ai2
j2). The latter point is projected to the

left of ai2
k2 but lies right of sk. The directed line segment d from p(ai2

k2) to p(aj2
k2)

has to intersect sj and sk, and thus it has to hold that |π −γ(d, u(ci2))| ≥ 3α/2.
The line segment d has to lie inside of ai2

k2, which is only possible if |π − γ
(u(ai2

k2), u(ci))| > α. However, this is a contradiction to |π−γ(u(ai
k), u(ci))| ≤ α,

which follows from Observation 4.1.

Case two p ∈ ci2: W.l.o.g., let u(ci2) = λ · (1, 0), λ > 0, and let F =
{F1, F2, F3, F4} be the decomposition of the plane into faces induced by �j and �k.
Here, F1 is the face with p(ci2), and the faces are numbered in counter-clockwise
order.

We consider the possible placements of p(bi2j2) in one of the face. First, we
show that p(bi2j2) cannot lie in F1 or in F3. From the form of EGO, we know that
p(ai2

j2) has to be projected left of p(bi2j2) and p(ai2
j2) has to lie inside of bi2j2; see

Fig. 6b for a schematic of the situation. If p(bi2j2) lies in F1, the line segment in
bi2j2 that connects p(bi2j2) and p(ai2

j2) has to cross an outer line segment of cj2.
This yields the same contradiction as in the first case. If p(bi2j2) were in F3, an
analogous argument holds for p(bi2j2), which has to lie inside of ai2

k2.

Recognizing Generalized Transmission Graphs of Line Segments 693

This leaves F2 and F4 as possible positions for bi2j2. W.l.o.g., let bi2j2 be located
in F4. We divide cj2 and ck2 by �k or �j , respectively, into two parts, and denote
the parts containing the line segments that are incident to F4 by J and K.
Then, again by using that the arrangement is wide spread, it can be seen that
p(ai2

j2) and p(ai2
k2) are located in J and K. The possible placement is visualized

in Fig. 7a.

Fig. 7. Case two and relative order

The argument so far yields that if p ∈ ci2, then the intersection order of �j
and �k with �i is the same as the order of projection if �i lies above p, and is the
inverse order if �i lies below p. The uncertainty of this situation is not desirable.
By considering the circular sectors ci1 and ci3, we will now show that such a
situation cannot occur.

First, we show that ci1 and ci3 cannot contain the intersection point of �j and
�k. W.l.o.g., assume that the intersection point lies in ci1. Then, bi1j2 is included
in either F2 or F4. Consider the case that bi1j2 lies in F4. Since u(ci2) = λ · (1, 0)
and since one of the outer line segments of ci2 has to lie beneath p, there is only
one outer line segment of ci2 that intersects F4 \ (J ∪K), J and K. There are at
most two intersection points of this outer line segment with ∂ci1. This implies
that there is no intersection point of ∂ci2 and ∂ci1 in at least one of J , K, and
F4 \ (J ∪ K). If there is no intersection point, then ci1 and ci2 overlap in this
interval. W.l.o.g., let this area be J , and let ci1 ∩ J be fully contained in ci2 ∩ J .
Then, p(aim

j1) cannot be placed. Consequently, this situation is not possible. The
argument is depicted in Fig. 7b.

If p(bi1j2) was included in F2, then the order of projection of p(ai2
k2) and p(ai2

j2)
would be the same order as the order of intersections of �j and �k with a parallel
line to �i that lies below �i. This order is the inverse order of the order of
projection in ci2. Since the order of the projection as defined by EGO depends
only on k and i, the order of projection of p(aim

j2) and p(aim
k2) has to be the same

in all cim. This implies that p(bi1k2) is not included in F2.
Now, we know that ci1 and ci3 do not contain the intersection point. This

implies that the argument from the case p /∈ ci2 can be applied to them and the
order of intersection in ci1 and ci3 is the same as the order of the projections of
p(ai1

j2) and p(ai1
k2). This order is the same in all three cim, and thus the bisectors

694 K. Klost and W. Mulzer

of ci1 and ci3 have to lie on the same side of the intersection point. Furthermore,
the points p(ai1

j2) and p(ai3
j2) have to lie in J but outside of ci2. This implies that

�i1 and �i3 both intersect �j and �k either before �i or after �i, while p(bi2j2) lies
in F4.

The edges for the local order define that the order of projection onto �j is
p(ai1

j2), p(ai2
j2), p(ai3

j2) (or the reverse), and the analogous statement holds for
�k. This order is not possible with ci1 and ci3, both lying above or below ci2,
which implies that the intersection point cannot lie in ci2. Since the order of
intersection is the same as the order of the projection, if p /∈ ci2 and a situation
with p ∈ ci2 is not possible, we have shown that D(L) = D.

With the tools from above, we can now give the proof of the main result of
this section:

Theorem 4.8. Sector is hard for ∃R.
Proof. The theorem follows from Construction 4.5 and Lemmas 4.6 and 4.7.

5 Conclusion

We have defined the new graph class of generalized transmission graphs as a
model for directed antennas with arbitrary shapes. We showed that the recog-
nition of generalized transmission graphs of line segments and a special form of
circular sectors is ∃R-hard.

For the case of circular sectors, we needed to impose certain conditions on
the underlying arrangements. The wide spread condition in particular seems to
be rather restrictive. We assume that this condition can be weakened, if not
dropped, while the problem remains ∃R-hard.

Ours are the first ∃R-hardness results on directed graphs that we are aware
of. We believe that this work could serve as a starting point for a broader inves-
tigation into the recognition problem for geometrically defined directed graph
models, and to understand further what makes these problems hard.

Acknowledgments. We would like to thank an anonymous reviewer for pointing out
a mistake in Observation 4.1.

A Missing Proofs and Constructions

A.1 Full Construction for SECTOR

Let the vertices of the construction be defined as in Construction 4.5. We divide
the edges of the graph into categories. The first category EI contains the edges
that enforce an intersection of two circular sectors cim and ckm′ for k < l.

EI =
{(

cim, aim
km′

)
,
(
cim, akm′

im

) ∣∣∣ i �= k
}

.

Recognizing Generalized Transmission Graphs of Line Segments 695

The edges EC enforce that each aim
km′ and each bimkm′ forms a mutual couple

with cim.
EC =

{(
aim
km′ , cim

)
,
(
cim, bimkm′

)
,
(
bimkm′ , cim

) ∣∣∣ i �= k
}

.

The edges of EGO will enforce the order of the projection of the apexes of aim
okm′ ,

aim
olm′′ , bimokm′ , and bimolm′′ for k > l onto the bisector of cim. They are chosen such

that p(aim
okm′) will be projected closer to p(cim) than p(aim

olm′′), for k < l. Also
included in EGO are edges that enforce that all p(aokm

′
im) are included in the

circular sectors aim
olm′′ and bimolm′′ .

EGO =
{

(aim
okm′ , aim

olm′′), (aim
okm′ , aolm

′′
im), (aim

okm′ , bimolm′′),

(bimokm′ , aim
olm′′), (bimokm′ , aolm

′′
im)

∣∣∣ i �= k, k > l
}

.

The last two categories of edges will enforce the projection order of the apexes
of aim

ok1
, aim

ok2
, aim

ok3
, and bimok1, bimok2, bimok3 onto the bisector of cim. This order is

aim
ok1

, bimok1, aim
ok2

, bimok2, aim
ok3

bimok3, if ok > i, and the inverse order, otherwise. The
edges for the first case are ELOI, and the edges for the second case are ELOD.
We set

ELOI =
{

(aim
okm′ , aim

okm′′), (aim
okm′ , aokm

′′
im),

(aim
okm′ , bimokm′′), (bimokm′ , bimokm′′)

∣∣∣ i �= k,m′′ < m′, ok > i
}

∪
{

(bimokm′ , aim
okm′′), (bimokm′ , aokm

′′
im)

∣∣∣ i �= k,m′′ ≤ m′, ok > i
}

and

ELOD =
{

(aim
okm′ , aim

okm′′), (aim
okm′ , aokm

′′
im),

(aim
okm′ , bimokm′′), (bimokm′ , bimokm′′)

∣∣∣ i �= k,m′′ > m′, ok < i
}

∪
{

(bimokm′ , aim
okm′′), (bimokm′ , aokm

′′
im)

∣∣∣ i �= k,m′′ ≥ m′, ok < i
}

.

The set of all edges is defined as

EL = EI ∪ EC ∪ EGO ∪ ELOI ∪ ELOD.

A.2 Remaining Proof for Lemma 4.6

Lemma A.1. The generalized transmission graph of the arrangement C of cir-
cular sectors constructed in Lemma 4.6 is GL.

Proof. As δ is chosen small enough that aim
km′ and akm′

im lie in cim, the edges of
EI are created. Since bimkm′ and aim

km′ have the inverse direction of cim and the
radii are large enough, p(cim) is included in aim

km′ and in bimkm′ . Hence all edges
in EC are created.

696 K. Klost and W. Mulzer

By the choice of the radii and the direction, aim
okm′ includes all apexes of

circular sectors that lie on �im and closer to p(cm) than p(aim
okm′). Furthermore,

δ is small enough such that all aolm
′′

im , l < k, are included in aim
okm′ . This implies

that edges from EGO are present in the generalized transmission graph of C.
The only edges that have not been considered yet are the edges in ELOI and

ELOD. For a circular sector aim
okm′ with ok > i, the slope of �ok is larger than

the slope of �i. By the counter-clockwise construction, �ok1 lies above �ok2. This
implies that the intersection point of �ok1 and �im lies closer to p(cim) than the
intersection points with �ok2 or �ok3. The presence of the edges can now be seen
by the same argument as for the edges of EGO. Symmetrical considerations can
be made for the edges of ELOD.

It remains to show that no additional edges are created. Note that all apexes
of the circular sectors lie inside of D and that all aim

km′ ∩ D and bimkm′ ∩ D are
included in the boxes B(cim).

Since only the apexes of aim
km′ , akm′

im , and bimkm′ lie in cim, there are no addi-
tional edges starting at cim. The rectangles B(cim) are disjoint on the boundary
of D and all aim

km′ ∩ D and bimkm′ ∩ D lie inside of B(cim). This implies that there
are no additional edges ending at cim. Now, we have to consider additional edges
starting at aim

km′ and bimkm′ . Note that α ≤ π/4 enforces that no circular sector
aim
km′ or bimkm′ can reach an apex having a larger distance to p(cim). Also, note

that there are edges for all circular sectors with smaller distances in EGO, ELOD

or ELOI. This covers all possible additional edges.

References

1. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discret.
Comput. Geom. 47(3), 548–568 (2012)

2. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Spanners and reachability Oracles
for directed transmission graphs. In: Proceedings of the 34th International Sympo-
sium on Computational Geometry (SoCG), pp. 156–170 (2015)

3. Klost, K.: Complexity of recognizing generalized transmission graphs, March 2017.
http://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Klost17.pdf

4. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55611-7

5. Matoušek, J.: Intersection graphs of segments and ∃R (2014). arXiv:1406.2636
6. Mnëv, N.E.: Realizability of combinatorial types of convex polyhedra over fields. J.

Sov. Math. 28(4), 606–609 (1985)
7. Schaefer, M.: Complexity of some geometric and topological problems. In: Proceed-

ing of the 17th International Symposium on Graph Drawing (GD), pp. 334–344
(2009)

http://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Klost17.pdf
https://doi.org/10.1007/3-540-55611-7
http://arxiv.org/abs/1406.2636

A Tight Lower Bound for an Online
Hypercube Packing Problem and Bounds
for Prices of Anarchy of a Related Game

Yoshiharu Kohayakawa1 , Flávio Keidi Miyazawa2 ,
and Yoshiko Wakabayashi1(B)

1 Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
{yoshi,yw}@ime.usp.br

2 Institute of Computing, University of Campinas, Campinas, Brazil
fkm@ic.unicamp.br

Abstract. We prove a tight lower bound on the asymptotic performance
ratio ρ of the bounded space online d-hypercube bin packing problem, solv-
ing an open question raised in 2005. In the classic d-hypercube bin pack-
ing problem, we are given a sequence of d-dimensional hypercubes and we
have an unlimited number of bins, each of which is a d-dimensional unit
hypercube. The goal is to pack (orthogonally) the given hypercubes into
the minimum possible number of bins, in such a way that no two hyper-
cubes in the same bin overlap. The bounded space online d-hypercube bin
packing problem is a variant of the d-hypercube bin packing problem, in
which the hypercubes arrive online and each one must be packed in an
open bin without the knowledge of the next hypercubes. Moreover, at
each moment, only a constant number of open bins are allowed (when-
ever a new bin is used, it is considered open, and it remains so until it is
considered closed, in which case, it is not allowed to accept new hyper-
cubes). Epstein and van Stee (SIAM J Comput 35(2):431–448, 2005)
showed that ρ is Ω(log d) and O(d/ log d), and conjectured that it is
Θ(log d). We show that ρ is in fact Θ(d/ log d). To obtain this result,
we elaborate on some ideas presented by those authors, and go one step
further showing how to obtain better (offline) packings of certain spe-
cial instances for which one knows how many bins any bounded space
algorithm has to use. Our main contribution establishes the existence of
such packings, for large enough d, using probabilistic arguments. Such
packings also lead to lower bounds for the prices of anarchy of the selfish
d-hypercube bin packing game. We present a lower bound of Ω(d/ log d)
for the pure price of anarchy of this game, and we also give a lower bound
of Ω(log d) for its strong price of anarchy.

The first author was partially supported by FAPESP (2013/03447-6, 2013/07699-0),
CNPq (310974/2013-5, 459335/2014-6) and NUMEC/USP (Project MaCLinC). The
second author was partially supported by CNPq (311499/2014-7, 425340/2016-3)
and FAPESP (2015/11937-9, 2016/01860-1, 2016/23552-7). The third author
was partially supported by CNPq (456792/2014-7, 306464/2016-0) and FAPESP
(2015/11937-9).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 697–711, 2018.
https://doi.org/10.1007/978-3-319-77404-6_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_51&domain=pdf
http://orcid.org/0000-0001-7841-157X
http://orcid.org/0000-0002-1067-6421
http://orcid.org/0000-0002-8229-3139

698 Y. Kohayakawa et al.

1 Introduction and Main Results

The bin packing problem is an iconic problem in combinatorial optimization that
has been largely investigated from many different viewpoints. In special, it has
served as a proving ground for new approaches to the analysis of approximation
algorithms. It is one of the first problems for which approximation algorithms
were proposed in the beginning of seventies, and also ideas to prove lower bounds
for online algorithms and probabilistic analysis first appeared [5]. We believe that
the technique we present in this paper is novel and contributes with new ideas
that may possibly be incorporated into this area of research.

We prove bounds for two variants of the bin packing problem, in which the
items to be packed are d-dimensional cubes (also referred to as d-hypercubes or
simply hypercubes, when the dimension is clear). More precisely, we show results
for the online bounded space d-hypercube bin packing problem and the selfish
hypercube bin packing game. Before we state our results in the next section, we
define these problems and mention some known results.

The d-hypercube bin packing problem (d-CPP) is defined as follows. We are
given a list L of items, where each item h ∈ L is a d-hypercube of side length
s(h) ≤ 1, and an unlimited number of bins, each of which is a unit d-hypercube.
The goal is to find a packing P of the items of L into a minimum number of
bins. More precisely, we have to assign each item h to a bin, and specify its
position (x1(h), . . . , xd(h)) in this bin. As usual, we consider that each bin is
defined by the region [0, 1]d, and thus, we must have 0 ≤ xi(h) ≤ 1 − s(h), for
i = 1, . . . , d. Additionally, we must place the items parallel to the axes of the
bin and guarantee that items in the same bin do not overlap. The size of the
packing P is the number of used bins (those with at least one item assigned to
it). Throughout this paper, the bins are always assumed to be unit hypercubes
of the same dimension of the items that have to be packed.

The d-CPP is in fact a special case of the d-dimensional bin packing prob-
lem (d-BPP), in which one has to pack d-dimensional parallelepipeds into d-
dimensional unit bins. For d = 1, both problems reduce to the well known bin
packing problem.

In the online variant of d-CPP, the hypercubes arrive online and must be
packed in an open bin (without the knowledge of the next hypercubes). The
online bounded space variant of the d-CPP is a more restricted variant of the
online d-CPP. Whenever a new empty bin is used, it is considered an open bin
and it remains so until it is considered closed, after which it is not allowed to
accept other hypercubes. In this variant, during the packing process, only a con-
stant number of open bins is allowed. The corresponding problem or algorithm
in which the whole list of items is known beforehand is called offline.

As it is usual, for bin packing problems, we consider the asymptotic perfor-
mance ratio to measure the quality of the algorithms. For an algorithm A, and
an input list L, let A(L) be the number of bins used by the solution produced
by algorithm A for the list L, and let OPT(L) be the minimum number of bins
needed to pack L. The asymptotic performance ratio of algorithm A is defined as

A Tight Lower Bound for an Online Hypercube Packing Problem 699

R∞
A = lim sup

n→∞
sup

L

{
A(L)

OPT(L)
: OPT(L) = n

}
. (1)

Given a packing problem Π, the optimal asymptotic performance ratio for Π
is defined as

R∞
Π = inf {R∞

A : A is an algorithm for Π} . (2)

Many results have been obtained for the online d-BPP and d-CPP problems
(see [2,3,15,16,22,23]). Owing to space limitation, we mention only results for
the online bounded space versions of these problems. For the online bounded
space 1-BPP, Csirik [6] presented an algorithm with asymptotic performance
ratio at most Π∞ ≈ 1.69103, shown to be an optimal online bounded space
algorithm by Seiden [21]. For the online bounded space d-BPP, d ≥ 2, a lower
bound of (Π∞)d follows from [7]; Epstein and van Stee [12] showed that this
bound is tight.

For the online bounded space d-CPP, Epstein and van Stee [12] showed that
its asymptotic performance ratio is Ω(log d) and O(d/ log d), and conjectured
that it is Θ(log d). They also showed an optimal algorithm for this problem,
but left as an interesting open problem to determine its asymptotic performance
ratio. One of our main results builds upon their work and shows a lower bound
that matches the known upper bound.

Theorem 1. The asymptotic performance ratio of the online bounded space d-
hypercube bin packing problem is Ω(d/ log d).

In view of the previous results [12], we have that the asymptotic perfor-
mance ratio of the online bounded space d-hypercube bin packing problem is
Θ(d/ log d). Results on lower and upper bounds for d ∈ {2, . . . , 7} have also
been obtained by Epstein and van Stee [10].

The technique that we use to prove the above theorem can also be used to
obtain lower bounds for a game theoretic version of the d-CPP problem, called
selfish d-hypercube bin packing game.

This game starts with a set of d-hypercubes arbitrarily packed into unit bins.
Each of these hypercubes is (controlled by) a player. For simplicity, in the game
context, we will use the terms hypercube, item and player in an interchangeable
manner. For a game with n items, a configuration is a vector p = (p1, . . . , pn),
where pi indicates in which bin item i is packed. (Equivalently, a configuration
is a packing of the items into bins.) The cost of an item is defined as the ratio
between its volume and the total occupied volume of the respective bin. In this
game, an item can migrate to another bin only when its cost decreases. Players
may act selfishly by changing their strategy (that is, moving to another bin) to
minimize their costs. For a given game configuration p, its social cost, denoted
by SC(p), is the total cost paid by the players (which is precisely the number of
used bins). The optimal social goal is a game configuration of minimum social
cost, which we denote by OPT(L).

An important concept in game theory is the Nash equilibrium [20]. In the
selfish hypercube bin packing game, a (pure) Nash equilibrium is a stable pack-
ing where no player can reduce his cost by unilaterally changing his strategy

700 Y. Kohayakawa et al.

(that is, moving to another bin), while the strategies of all other players remain
unchanged. The pure Nash equilibrium may not be resilient to the action of
coalitions, as it does not assume that players negotiate and cooperate with each
other. Aumann [1] introduced the concept of strong Nash equilibrium in coali-
tional game theory; in this case, a group of players may agree to coordinate their
actions in a mutually beneficial way. A strong Nash equilibrium is a game con-
figuration where no group of players can reduce the cost of each of its members
by changing strategies together, while non-members maintain their strategies.

Throughout the paper, the Nash equilibrium is considered only in the setting
of pure strategies (for pure strategies, a player chooses only one strategy at a
time, while for mixed strategies, a player chooses an assignment of probabilities
to each pure strategy). Given a game G, we denote by N (G) (resp. SN (G)) the
set of configurations in Nash equilibrium (resp. strong Nash equilibrium).

To measure the quality of an equilibrium, Koutsoupias and Papadim-
itriou [18] proposed a measure in a game-theoretic framework that nowadays
is known as the price of anarchy (resp. strong price of anarchy), which is the
ratio between the worst social cost of a Nash equilibrium (resp. strong Nash
equilibrium) and the optimal social cost. The price of anarchy measures the loss
of the overall performance due to the decentralized environment and the self-
ish behavior of the players. As it is common for bin packing problems, for bin
packing games one also considers asymptotic price of anarchy. The (asymptotic)
price of anarchy of a class G of games is defined as

PoA(G) := lim sup
m→∞

sup
G∈G, OPT(G)=m

max
p∈N (G)

SC(p)
m

. (3)

The (asymptotic) strong price of anarchy of a class G of games, denoted
SPoA(G), is defined analogously, considering only configurations that are strong
Nash equilibria.

We are interested in the case G is the class of the selfish d-hypercube bin
packing games, with the natural cost function (proportional model) we have
defined. (Note that, other cost functions can also be defined for bin packing
games.) We will prove bounds for the asymptotic prices of anarchy of this class
of games. The corresponding measures will be denoted by PoA(d) and SPoA(d),
where d indicates the dimension of the items in the game. Although we may not
mention explicitly, the prices of anarchy considered are always asymptotic.

The case d = 1 of this game was first investigated by Bilò [4], who referred
to it as selfish bin packing game. He proved that this game always converges
to a pure Nash equilibrium and proved that PoA(1) ∈ [1.6, 1.666]. Yu and
Zhang [24] improved this result to PoA(1) ∈ [1.6416, 1.6575]. Epstein and
Kleiman [9] obtained (independently) the same lower bound and improved the
upper bound to 1.6428; they also proved that SPoA(1) ∈ [1.6067, 1.6210].
Very recently, Epstein et al. [11] showed that SPoA(1) ≈ 1.6067. For d = 1,
Ma et al. [19], obtained results considering another cost function. The case
d = 2 was first investigated by Fernandes et al. [13]. They showed in [14] that

A Tight Lower Bound for an Online Hypercube Packing Problem 701

PoA(2) ∈ [2.3634, 2.6875] and SPoA(2) ∈ [2.0747, 2.3605]. For a survey on bin
packing games with selfish items, we refer the reader to Epstein [8].

Our second set of results concern lower and upper bounds for PoA(d) and
SPoA(d).

Theorem 2. Let PoA(d) be the price of anarchy of the selfish d-hypercube bin
packing game. There is an absolute constant d0 such that, for all d ≥ d0, we
have

PoA(d) ≥ d

5 log d
. (4)

We remark that our proof of Theorem2, presented in Sect. 3, may be adapted
to prove the following statement: for any ε > 0 there is d0 = d0(ε) such that,
for any d ≥ d0, we have PoA(d) ≥ (1/4 − ε)d/ log d.

Theorem 3. Let SPoA(d) be the strong price of anarchy of the selfish d-
hypercube bin packing game. There is an absolute constant d0 such that, for
all d ≥ d0, we have

SPoA(d) ≥ log d. (5)

The proof of Theorem3 uses arguments similar to those used in the proof of
Theorem 2 and is therefore omitted. We also prove that the price of anarchy of
the selfish d-hypercube bin packing game is at most 2d. (For the proofs omitted
here the reader may refer to [17]). We believe the probabilistic technique used
to obtain the lower bounds in Theorems 1, 2 and 3 is novel and promising for
obtaining lower bounds for other packing problems and games.

2 Notation, Special Packings and Central Lemmas

The open d-hypercubes Qd
k(ε) defined below will be crucial in what follows.

Definition 1. Let d ≥ 2 be an integer. For all integer k ≥ 2 and 0 < ε ≤ 1, let

Qd
k(ε) = (1 + ε)

(
0,

1
k

)d

=
(

0,
1 + ε

k

)d

=
{

x ∈ R : 0 < x <
1 + ε

k

}d

⊂ [0, 1]d

(6)
be the open d-hypercube of side length (1 + ε)/k ‘based’ at the origin.

For convenience, given ε > 0 and a positive integer q, we write q−ε for q/(1+ε).
The quantity ε will often be clear from the context, and in those cases we simply
write q− for q−ε. Note that, for instance, we have

Qd
k(ε) =

(
0,

1
k−

)d

. (7)

In what follows, we are interested in certain types of packings U of hypercubes
into a unit bin. If a packing P of hypercubes is made up of packings U1, . . . ,UN ,
with each Ui being a packing into a unit bin, then we write P = (U1, . . . ,UN),
and denote by |P| the number of bins N in P.

702 Y. Kohayakawa et al.

Definition 2 (Packings of type Hd
k(ε) and Hd(ε)). Let d ≥ 2 be fixed. For

any integer k ≥ 2 and 0 < ε ≤ 1/(k −1), a packing U of (k −1)d copies of Qd
k(ε)

into a unit bin is said to be a packing of type Hd
k(ε). A packing P = (U1,U2, . . .)

is said to be of type Hd(ε) if for each i there is some k such that Ui is a packing
of type Hd

k(ε).

In the definition above, the upper bound on ε guarantees that (k−1)d copies
of Qd

k(ε) can be packed into a unit bin (and hence Hd
k(ε) exists): it suffices to

notice that, under that assumption on ε, we have (k − 1)(1 + ε)/k ≤ 1.
Packings of type Hd

k(ε) and Hd(ε) are called homogeneous packings. They
will be important for us because they are Nash equilibria (see Lemma 3), and
also because they can be used to create instances for which any bounded space
algorithm performs badly (following ideas of Epstein and van Stee [10,12]).

Two packing lemmas. For the next definition, suppose D is a given set of
integers, and ε is a positive real number.

Definition 3 (Packings of type (1 + ε)D−1). A packing U of d-hypercubes
into a unit bin is of type (1 + ε)D−1 if, for every member Q of U , there is some
integer k ∈ D such that Q is a copy of Qd

k(ε).

In what follows, we shall restrict to packings U of type (1 + ε)D−1, where
D is one of the following sets: (a) D = Z≥2 = {k ∈ Z : k ≥ 2} or (b) D = Z2+ ,
where Z2+ denotes the set {2i : i ≥ 1}. Following [9,11], we consider D = Z2+ to
deal with strong Nash equilibria.

Let U be a packing of type (1 + ε)D−1 for some D ⊂ Z≥2 and ε > 0. Let

K(U) = {k ∈ D : U contains a copy of Qd
k(ε)} (8)

and
kmax(U) = max{k : k ∈ K(U)}. (9)

For every k ∈ K(U), let

νk(U) be the total number of copies of Qd
k(ε) in U . (10)

Clearly, we have 0 ≤ νk(U) ≤ (k − 1)d for every k (recall that we suppose ε > 0).
Finally, we define the weight of U as

w(U) =
∑

k∈K(U)

(k − 1)−dνk(U). (11)

We shall be interested in packings U with large weight. In that direction, we prove
the following two technical results that are the core of our contribution. The first
is essential to derive the lower bound for the online bounded space d-hypercube
bin packing problem (Theorem1) and a lower bound for PoA (Theorem2); the
second is essential to derive a lower bound for SPoA (Theorem3). We remark
that the technique of using weight functions in the analysis of packing algorithms
dates back to the seventies (see [12] and the references therein).

A Tight Lower Bound for an Online Hypercube Packing Problem 703

Lemma 1 (Packing Lemma A). There is an absolute constant d0 for which
the following holds for any d ≥ d0. Let

S =
⌈

2d

9 log d

⌉
. (12)

The unit bin admits a packing U of type (1 + S−2)Z−1
≥2 with kmax(U) = S and

with
w(U) ≥ d

5 log d
. (13)

Lemma 2 (Packing Lemma B). There is an absolute constant d0 for which
the following holds for any d ≥ d0. Let

S′ = �log2 d − log2 log d − 3� (14)

and ε = 2−2(S′−1). The unit bin admits a packing U of type (1 + ε)Z−1
2+

with kmax(U) = 2S′−1 and with w(U) ≥ log d.

The two lemmas stated in this section are central to the proofs of Theorems 1,
2 and 3, which depend on further auxiliary results as shown in Fig. 1.

Fig. 1. A diagram illustrating the flow of the proofs of our main results

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. Let A be any algorithm for the online bounded space d-
hypercube bin packing problem. Let M be the maximum number of bins that A
is allowed to leave open during its execution. To prove that A has asymptotic
performance ratio Ω(d/ log d), we construct a suitable instance I for A.

Let a packing U as in the statement of Lemma 1 be fixed. The instance I
will be constructed by choosing a suitable integer N and then arranging the
hypercubes in 2MN copies of U in a linear order, with all the hypercubes of the
same size appearing together. Let us now formally describe I.

704 Y. Kohayakawa et al.

Let
N =

∏
k∈K(U)

(k − 1)d (15)

and, for every k ∈ K(U), let

N
̂k =

N

(k − 1)d
=

∏
k′∈K(U)�{k}

(k′ − 1)d. (16)

Recall that U contains νk(U) copies of Qd
k(ε) for every k ∈ K(U). Let K = |K(U)|

and suppose K(U) = {k1, . . . , kK}. The instance I that we shall construct is the
concatenation of K segments, say I = I1 . . . IK , with each segment I� (1 ≤ �
≤ K) composed of a certain number of copies of Qd

k�
(ε). For every 1 ≤ � ≤ K, set

f(�) = 2MNνk�
(U), (17)

and
I� = (Qd

k�
(ε), . . . , Qd

k�
(ε)) = Qd

k�
(ε)f(�). (18)

That is, I� is composed of a sequence of f(�) copies of Qd
k�

(ε). This completes
the definition of our instance I.

Let us first state the following fact concerning the offline packing of the hyper-
cubes in I. This fact is clear, as we obtained I by rearranging the hypercubes
in 2MN copies of U .

Fact 4. The hypercubes in I can be packed into at most 2MN unit bins.

We now prove that, when A is given the instance I above, it will have per-
formance ratio at least as bad as w(U)/2. In view of (13) in Lemma 1, this will
complete the proof of Theorem 1.

Let us examine the behaviour of A when given input I. Fix 1 ≤ � ≤ K and
suppose A has already seen the hypercubes in I1 . . . I�−1 and it has already
packed them somehow. We now consider what happens when A examines
the f(�) hypercubes in I�, which are all copies of Qd

k�
(ε).

Clearly, since ε > 0, the f(�) copies of Qd
k�

(ε) in I� cannot be packed into
fewer than

f(�)
(k� − 1)d

=
2MNνk�

(U)
(k� − 1)d

= 2MN
̂kνk�

(U) ≥ MN
̂kνk�

(U) + M (19)

unit bins. Therefore, even if some hypercubes in I� are placed in bins still
left open after the processing of I1 . . . I�−1, the hypercubes in I� will add at
least MN

̂kνk�
(U) new bins to the output of A. Thus, the total number of bins

that A will use when processing I is at least
∑

k∈K(U)

MN
̂kνk(U) = MN

∑
k∈K(U)

(k − 1)−dνk(U) = MN w(U). (20)

A Tight Lower Bound for an Online Hypercube Packing Problem 705

In view of Fact 4, it follows that the asymptotic performance ratio of A is at
least

MN w(U)
2MN

=
1
2

w(U), (21)

as required. This completes the proof of Theorem 1.

Proof of Theorem 2. Besides Lemma 1, we shall use the next two lemmas,
the proofs of which are presented in [17].

Lemma 3. Let d ≥ 2 and ε > 0 be given. Any packing P = (U1,U2, . . .) of
type Hd(ε) is a Nash equilibrium.

Lemma 4. If U is a packing of d-hypercubes into a unit bin of type (1 + ε)Z−1
≥2,

where
0 < ε ≤ 1

kmax(U) − 1
, (22)

then PoA(d) ≥ w(U).

Let d0 be as in Lemma 1 and suppose d ≥ d0. Moreover, let U be as given in
that lemma. We now invoke Lemma 4 with ε = S−2. Note that condition (22)
does hold, as ε = S−2 ≤ 1/(S −1) = 1/(kmax(U)−1). Combining Lemmas 1 and
4, we conclude that PoA(d) ≥ w(U) ≥ d/5 log d.

4 Proof of Lemma1

We shall describe packings in terms of words of certain languages. For that, we
define the languages we are interested in, show the properties we require, and
then prove their existence. Owing to space limitation, we present only an outline
of the proof of Lemma 1.

4.1 Separated Families of Languages

Let an integer d ≥ 2 be fixed. We consider sets of words Lk ⊂ [k]d = {1, . . . , k}d

for k ≥ 2. We refer to such Lk as languages or k-languages. Such languages Lk

will specify ‘positions’ where we shall place Qd
k(ε) in certain packings (roughly

speaking, for each w ∈ Lk, we put a certain copy Q(w) of Qd
k(ε) in our packings

(see (25)–(31) for the definition of Q(w))).
We now introduce some conditions on the Lk that will help us make sure

that we have a packing when we consider the Q(w) (w ∈ Lk) all together.

Definition 4 (Gapped languages). Suppose k ≥ 2 and let a k-language
Lk ⊂ [k]d be given. We say that Lk misses j at coordinate i0 if every word w =
(wi)1≤i≤d in Lk is such that wi0 	= j. Furthermore, Lk is said to be gapped if,
for each 1 ≤ i ≤ d, either Lk misses k − 1 at i or Lk misses k at i.

706 Y. Kohayakawa et al.

The reason we are interested in gapped languages is as follows. Suppose Lk

is a gapped language as in Definition 4, and suppose w = (wi)1≤i≤d and w′ =
(w′

i)1≤i≤d are distinct words in Lk. Then Q(w) and Q(w′) do not overlap (this
can be checked from (30) and Fact 5(ii); see Lemma 6(i)). Thus, if we let Pk be
the collection of the Q(w) (w ∈ Lk), then Pk is a packing. We now introduce a
certain notion of ‘compatibility’ between two languages Lk and Lk′ , so that Pk

and Pk′ can be put together to obtain a packing if they come from ‘compatible’
languages Lk and Lk′ .

Definition 5 (Separated languages). Suppose 2 ≤ k < k′ and Lk ⊂ [k]d

and Lk′ ⊂ [k′]d are given. We say that Lk and Lk′ are separated if, for any w =
(wi)1≤i≤d ∈ Lk and any w′ = (w′

i)1≤i≤d ∈ Lk′ , there is some i such that wi <
k < k′ = w′

i.

Suppose Lk and Lk′ are gapped and separated. Consider the corresponding
packings Pk and Pk′ as above. Fact 5(i) and (30) imply that Pk∪Pk′ is a packing.
To check this, let w = (wi)1≤i≤d ∈ Lk and any w′ = (w′

i)1≤i≤d ∈ Lk′ be given.
Then, by definition, there is some i such that wi < k < k′ = w′

i. This implies
that Q(w) = Q(k)(w) and Q(w′) = Q(k′)(w′) are disjoint ‘in the ith dimension’
(see Fact 5(i) and Lemma 6(i)).

Definition 6 (Separated families). Let L = (Lk)2≤k≤S be a family of k-lan-
guages Lk ⊂ [k]d. If, for every 2 ≤ k < k′ ≤ S, the languages Lk and Lk′ are
separated, then we say that L is a separated family of languages.

Remark 1. For 2 ≤ k ≤ d, let Lk =
{
w = (wi)1≤i≤k ∈ [k]d : wk = k and wi <

k for all i 	= k
}
. One can then check that L = (Lk)2≤k≤d is a family of gapped,

separated languages. Consider the packing P =
⋃

2≤k≤d Pk with the Pk defined
by the Lk as above. We have νk(P) = |Lk| = (k−1)d−1 (recall (10)) and w(P) =∑

2≤k≤d 1/(k − 1) ∼ log d (recall (11)). The existence of P implies a weak form
of Theorem 1 (namely, a lower bound of Ω(log d) instead of Ω(d/ log d)).

Remark 1 above illustrates the use we wish to make of families of gapped,
separated languages. Our focus will soon shift onto producing much ‘better’
families than the one explicitly defined in Remark 1. Indeed, the main result in
this section is the following lemma, for which we give a probabilistic proof (see
Sect. 5 and [17]).

Lemma 5 (Many large, separated gapped languages). There is an
absolute constant d0 such that, for any d ≥ d0, there is a separated fam-
ily L = (Lk)2≤k≤S of gapped k-languages Lk ⊂ [k]d such that

|Lk| ≥ 10
11

(k − 1)d, (23)

for every 2 ≤ k ≤ S, where

S =
⌈

2d

9 log d

⌉
. (24)

A Tight Lower Bound for an Online Hypercube Packing Problem 707

Fix L = (Lk)2≤k≤S a family of separated, gapped k-languages Lk ⊂ [k]d.
We shall now give, for every sufficiently small ε > 0, the construction of a
packing Uε = Uε(L) of d-hypercubes into the unit bin [0, 1]d using L. Choosing L
suitably, we shall be able to prove Lemma7 below, which takes us very close to
the proof of Lemma 1.

The packing Uε . The packing Uε = Uε(L) contains copies of the hyper-
cubes Qd

k(ε) for 2 ≤ k ≤ S. In fact, for each w ∈ Lk (2 ≤ k ≤ S), we place
a copy Q(w) of Qd

k(ε) in Uε. To specify the location of the copy Q(w) of Qd
k(ε)

in Uε, we need a definition.

Definition 7 (Base point coordinates of the Q(w)). For every k ≥ 2
and 0 < ε < 1/(k − 1), let

x(k)(j) = x(k)
ε (j) =

⎧⎪⎨
⎪⎩

j − 1
k−

=
(j − 1)(1 + ε)

k
, if 1 ≤ j < k

1 − 1
k−

= 1 − 1 + ε

k
, if j = k.

(25)

Moreover, for 1 ≤ j ≤ k, let

y(k)(j) = x(k)(j) +
1

k−
= x(k)(j) +

1 + ε

k
. (26)

Note that, for each 2 ≤ k ≤ S, we have

0 = x(k)(1) < y(k)(1) = x(k)(2) < y(k)(2) = x(k)(3) < · · · < y(k)(k − 2)

= x(k)(k − 1) < x(k)(k) < y(k)(k − 1) < y(k)(k) = 1. (27)

For convenience, for every k ≥ 2 and every 1 ≤ j ≤ k, let

I(k)(j) = (x(k)(j), y(k)(j)) ⊂ [0, 1]. (28)

Now, for each word w = (wi)1≤i≤d ∈ Lk (2 ≤ k ≤ S), let

x[w] = x(k)[w] = (x(k)(w1), . . . , x(k)(wd)) ∈ R
d, and (29)

Q(w) = Q(k)(w) = x(k)[w] + Qd
k(ε) ⊂ [0, 1]d. (30)

Putting together the definitions, one checks that

Q(w) = Q(k)(w) = I(k)(w1) × · · · × I(k)(wd)

=
(
x(k)(w1), y(k)(w1)

) × · · · × (
x(k)(wd), y(k)(wd)

) ⊂ [0, 1]d. (31)

Definition 8 (Packing Uε = Uε(L)). Suppose L = (Lk)2≤k≤S is a family of
separated, gapped k-languages Lk ⊂ [k]d. Let 0 < ε ≤ S−2. Define the pack-
ing Uε = Uε(L) as follows. For each 2 ≤ k ≤ S and each w ∈ Lk, place the
copy Q(w) = Q(k)(w) ⊂ [0, 1]d of Qd

k(ε) in Uε.

708 Y. Kohayakawa et al.

To prove that Uε is indeed a packing, that is, that the hypercubes in Uε are
pairwise disjoint, we use the following fact (see [17]).

Fact 5. The following assertions hold.

(i) Suppose 2 ≤ k < k′ ≤ S and 0 < ε ≤ S−2. Then

y(k)(k − 1) < x(k′)(k′). (32)

In particular, the intervals I(k)(j) (1 ≤ j < k) are disjoint from I(k
′)(k′).

(ii) For any 2 ≤ k ≤ S, the intervals I(k)(j) (1 ≤ j ≤ k) are pairwise disjoint,
except for the single pair formed by I(k)(k − 1) and I(k)(k).

For the next lemma, recall (8) and (10), and Definition 3.

Lemma 6. Suppose L = (Lk)2≤k≤S is a family of separated, non-empty gapped
k-languages Lk ⊂ [k]d. Suppose 0 < ε ≤ S−2. Let Uε = Uε(L) be the family of all
the hypercubes Q(w) = Q(k)(w) ⊂ [0, 1]d with w ∈ Lk and 2 ≤ k ≤ S. Then the
following assertions hold: (i) the hypercubes in Uε are pairwise disjoint and form
a packing of type (1 + ε)Z−1

≥2; (ii) for every 2 ≤ k ≤ S, we have νk(Uε) = |Lk|;
(iii) |K(Uε)| = S − 1.

Lemma 7. There is an absolute constant d0 for which the following holds for
any d ≥ d0. Let S = �2d/(9 log d)�. The unit bin admits a packing U of type
(1 + S−2)Z−1

≥2 and with kmax(U) = S such that w(U) ≥ (10/11)(S − 1).

Lemma 7 is an immediate corollary of Lemmas 5 and 6. From it, the proof of
Lemma 1 follows easily: taking the packing U given in this lemma, we have that
w(U) ≥ (10/11)(S − 1) ≥ d/(5 log d), as long as d is large enough.

5 Proof of Lemma5

We need the following auxiliary fact, which follows from standard Chernoff
bounds for the hypergeometric distribution.

Fact 6. There is an absolute constant d0 such that, for any d ≥ d0, there are
sets F1, . . . , Fd ⊂ [d] such that (i) for every 1 ≤ k ≤ d, we have |Fk| = �d/2�
and (ii) for every 1 ≤ k < k′ ≤ d, we have |Fk ∩ Fk′ | < 7d/26.

We now proceed to prove Lemma 5. Let S = �2d/9 log d� and let F1, . . . , Fd be
as in Fact 6. In what follows, we only use Fk for 2 ≤ k ≤ S. For each 2 ≤ k ≤ S,
we shall construct Lk ⊂ [k]d in two parts. First, let

L′
k ⊂ ([k]�{k −1})Fk = {w = (wi)i∈Fk

: wi ∈ [k]�{k −1} for all i ∈ Fk} (33)

and then set

Lk = L′
k × [k − 1][d]�Fk

= {w = (wi)1≤i≤d : ∃w′ = (w′
i)i∈Fk

∈ L′
k such that wi = w′

i for all i ∈ Fk

and wi ∈ [k − 1] for all i ∈ [d] � Fk}.
(34)

A Tight Lower Bound for an Online Hypercube Packing Problem 709

Note that, by (33) and (34), the k-language Lk will be gapped (k − 1 is missed
at every i ∈ Fk and k is missed at every i ∈ [d] � Fk). We shall prove that there
is a suitable choice for the L′

k with |L′
k| ≥ (10/11)(k − 1)d ensuring that L =

(Lk)2≤k≤S is separated. Since we shall then have

|Lk| = |L′
k|(k − 1)d−|Fk| ≥ 10

11
(k − 1)d, (35)

condition (23) will be satisfied. We now proceed with the construction of the L′
k.

Fix 2 ≤ k ≤ S. For 2 ≤ � < k, let

J(�, k) = Fk � F�, (36)

and note that

|J(�, k)| >

⌈
d

2

⌉
− 7

26
d ≥ 3

13
d. (37)

Let v = (vi)i∈Fk
be an element of ([k] � {k − 1})Fk chosen uniformly at random.

For every 2 ≤ � < k, we say that v is �-bad if vi 	= k for every i ∈ J(�, k).
Moreover, we say that v is bad if it is �-bad for some 2 ≤ � < k. It is clear that

P(v is �-bad) =

(
1 − 1

k − 1

)|J(�,k)|
≤ e−|J(�,k)|/S ≤ exp

(
− 3d

13�2d/9 log d�
)

≤ d−1,

(38)
for every large enough d, whence

P(v is bad) ≤ Sd−1 ≤ 1
4 log d

≤ 1
11

(39)

if d is large enough. Therefore, at least (10/11)(k − 1)|Fk| words v ∈ ([k] � {k −
1})Fk are not bad, as long as d is large enough. We let L′

k ⊂ ([k]� {k − 1})Fk be
the set of such good words. The following claim completes the proof of Lemma 5.

Claim. With the above choice of L′
k (2 ≤ k ≤ S), the family L = (Lk)2≤k≤S of

the languages Lk as defined in (34) is separated.

Proof. Fix 2 ≤ � < k ≤ S. We show that L� and Lk are separated. Let u =
(ui)1≤i≤d ∈ L� and w = (wi)1≤i≤d ∈ Lk be given. By the definition of Lk, there
is v = (vi)i∈Fk

∈ L′
k such that wi = vi for all i ∈ Fk. Furthermore, since v ∈ L′

k

is not a bad word, it is not �-bad. Therefore, there is i0 ∈ J(�, k) = Fk � F� for
which we have vi0 = k. Observing that i0 /∈ F� and recalling the definition of L�,
we see that ui0 < � < k = vi0 = wi0 , as required.

Acknowledgements. We thank the referees for helpful suggestions.

710 Y. Kohayakawa et al.

References

1. Aumann, R.J.: Acceptable points in general cooperative n-person games. In: Luce,
R.D., Tucker, A.W. (eds.) Contribution to the Theory of Game IV, Annals of
Mathematical Study, vol. 40, pp. 287–324. University Press (1959)

2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: Lower bounds for several
online variants of bin packing. http://arxiv.org/abs/1708.03228 (2017)

3. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol.
6534, pp. 25–36. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
18318-8 3

4. Bilò, V.: On the packing of selfish items. In: Proceedings of the 20th International
Parallel and Distributed Processing Symposium, pp. 9–18. IEEE (2006)

5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey, chap. 2. In: Hochbaum, D. (ed.) Approximation Algorithms for
NP-hard Problems, pp. 46–93. PWS (1997)

6. Csirik, J.: An on-line algorithm for variable-sized bin packing. Acta Inform. 26(8),
697–709 (1989)

7. Csirik, J., van Vliet, A.: An on-line algorithm for multidimensional bin packing.
Oper. Res. Lett. 13, 149–158 (1993)

8. Epstein, L.: Bin packing games with selfish items. In: Chatterjee, K., Sgall, J. (eds.)
MFCS 2013. LNCS, vol. 8087, pp. 8–21. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40313-2 2

9. Epstein, L., Kleiman, E.: Selfish bin packing. Algorithmica 60(2), 368–394 (2011)
10. Epstein, L., van Stee, R.: Bounds for online bounded space hypercube packing.

Discrete Optim. 4(2), 185–197 (2007)
11. Epstein, L., Kleiman, E., Mestre, J.: Parametric packing of selfish items and the

subset sum algorithm. Algorithmica 74(1), 177–207 (2016)
12. Epstein, L., van Stee, R.: Optimal online algorithms for multidimensional packing

problems. SIAM J. Comput. 35(2), 431–448 (2005)
13. Fernandes, C.G., Ferreira, C.E., Miyazawa, F.K., Wakabayashi, Y.: Selfish square

packing. In: Proceedings of the VI Latin-American Algorithms, Graphs and Opti-
mization Symposium. Electronic Notes in Discrete Mathematics, vol. 37, pp. 369–
374 (2011)

14. Fernandes, C.G., Ferreira, C.E., Miyazawa, F.K., Wakabayashi, Y.: Prices of anar-
chy of selfish 2D bin packing games. http://arxiv.org/abs/1707.07882 (2017)

15. Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin pack-
ing. In: ICALP 2016. LIPIcs, vol. 55, pp. 41:1–41:14. Dagstuhl, Germany (2016).
http://arxiv.org/abs/1511.00876v5

16. Heydrich, S., van Stee, R.: Improved lower bounds for online hypercube packing.
http://arxiv.org/abs/1607.01229 (2016)

17. Kohayakawa, Y., Miyazawa, F.K., Wakabayashi, Y.: A tight lower bound for an
online hypercube packing problem and bounds for prices of anarchy of a related
game. http://arxiv.org/abs/1712.06763 (2017)

18. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

19. Ma, R., Dósa, G., Han, X., Ting, H.F., Ye, D., Zhang, Y.: A note on a selfish bin
packing problem. J. Glob. Optim. 56(4), 1457–1462 (2013)

20. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

http://arxiv.org/abs/1708.03228
https://doi.org/10.1007/978-3-642-18318-8_3
https://doi.org/10.1007/978-3-642-18318-8_3
https://doi.org/10.1007/978-3-642-40313-2_2
https://doi.org/10.1007/978-3-642-40313-2_2
http://arxiv.org/abs/1707.07882
http://arxiv.org/abs/1511.00876v5
http://arxiv.org/abs/1607.01229
http://arxiv.org/abs/1712.06763
https://doi.org/10.1007/3-540-49116-3_38

A Tight Lower Bound for an Online Hypercube Packing Problem 711

21. Seiden, S.S.: An optimal online algorithm for bounded space variable-sized bin
packing. SIAM J. Discrete Math. 14, 458–470 (2001)

22. Seiden, S.S.: On the online bin packing problem. J. Assoc. Comput. Mach. 49(5),
640–671 (2002)

23. van Vliet, A.: An improved lower bound for online bin packing algorithms. Inf.
Process. Lett. 43, 277–284 (1992)

24. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S.
(eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-92185-1 50

https://doi.org/10.1007/978-3-540-92185-1_50

The Parameterized Complexity of Cycle
Packing: Indifference is Not an Issue

R. Krithika1,2, Abhishek Sahu1,2(B), Saket Saurabh1,2,3, and Meirav Zehavi4

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{rkrithika,asahu,saket}@imsc.res.in

2 UMI ReLax, Chennai, India
3 University of Bergen, Bergen, Norway

4 Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

Abstract. In the Cycle Packing problem, we are given an undirected
graph G, a positive integer r, and the task is to check whether there exist
r vertex-disjoint cycles. In this paper, we study Cycle Packing with
respect to a structural parameter, namely, distance to proper interval
graphs (indifference graphs). In particular, we show that Cycle Packing
is fixed-parameter tractable (FPT) when parameterized by t, the size of
a proper interval deletion set. For this purpose, we design an algorithm
with O(2O(t log t)nO(1)) running time. Several structural parameteriza-
tions for Cycle Packing have been studied in the literature and our
FPT algorithm fills a gap in the ecology of such parameterizations. We
combine color coding, greedy strategy and dynamic programming based
on structural properties of proper interval graphs in a non-trivial fashion
to obtain the FPT algorithm.

1 Introduction

Packing problems form a fundamental class of optimization problems in com-
puter science. They involve finding a collection of objects with certain properties
– examples include Bin Packing, Knapsack, Independent Set and Cycle

Packing. Here, we focus on the Cycle Packing problem in the realm of param-
eterized complexity. In the Cycle Packing problem, we are given an undirected
graph G and a positive integer r, and the task is to check whether there exist r
vertex-disjoint cycles. Since the publication of the classic Erdös-Pósa theorem in
1965 [13], this problem has received significant scientific attention in the fields of
Graph Theory and Algorithm Design. In particular, Cycle Packing is one of
the first problems studied in the framework of parameterized complexity. In this
framework, each problem instance is associated with a non-negative integer k
called parameter, and a problem is said to be fixed-parameter tractable (FPT) if
it can be solved in f(k)nO(1) time for some function f , where n is the input size.

Due to space limitations, most proofs have been omitted.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 712–726, 2018.
https://doi.org/10.1007/978-3-319-77404-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_52&domain=pdf

The Parameterized Complexity of Cycle Packing 713

For convenience, the running time f(k)nO(1) where f grows superpolynomially
with k is denoted as O∗(f(k)). Further details on parameterized algorithms can
be found in [9,12,16].

In the standard parameterization of Cycle Packing, the parameter is the
number r of vertex-disjoint cycles. The non-uniform fixed-parameter tractabil-
ity of Cycle Packing follows from the Robertson-Seymour theorem [33], a fact
observed by Fellows and Langston in the 1980s [14]. In 1994, Bodlaender showed
that Cycle Packing can be solved in O∗(2O(r2)) time [2]. A feedback vertex
set is a set of vertices whose deletion results in a forest. The Erdös-Pósa the-
orem states that there exists a function f(r) = O(r log r) such that for each
non-negative integer r, every undirected graph either contains r vertex-disjoint
cycles or has a feedback vertex set consisting of f(r) vertices [13]. It is well known
that the treewidth (tw) of a graph is not larger than the size of its feedback ver-
tex set, and that a naive dynamic programming scheme solves Cycle Packing
in O∗(2O(tw log tw)) time (see, e.g., [9]). Thus, the existence of an O∗(2O(r log2 r))
time algorithm can be viewed as a direct consequence of the Erdös-Pósa theo-
rem. Recently, Lokshtanov et al. [27] obtained an algorithm with running time

O∗(2O(r log2 r
log log r)) for Cycle Packing, improving upon the classical consequence

of the Erdös-Pósa theorem. However, the focus of this paper is to study Cycle

Packing with respect to structural parameters rather than solution size.
Structural Parameterizations. In the early years of parameterized complex-
ity and algorithms, problems were almost always parameterized by the solution
size. Recent research has focused on other parameterizations based on struc-
tural parameters in the input [23], or above or below some guaranteed optimum
values [20,21,28]. Such ‘non-standard’ parameters are more likely to be small
in practice. Also, once a problem is shown to be FPT or to have a polynomial
sized kernel by a parameterization, it is natural to ask whether the problem
is FPT (and admits a polynomial kernel) when parameterized by a provably
smaller parameter. In the same vein, if we show that a problem is W-hard under
a parameterization, it is natural to ask whether it is FPT when parameterized
by a provably larger parameter.

Apart from solution size, treewidth is one of the most well studied parameters.
However, in the context of Cycle Packing, our understanding of treewidth is
complete in the following sense: While Cycle Packing is known to be solv-
able in time O∗(2O(tw log tw)), it cannot be solved in time O∗(2o(tw log tw)) unless
the Exponential Time Hypothesis fails [10]. Another parameter that has gained
significant attention recently is the size of a modulator to a family of graphs.
Let F be a family of graphs. Given a graph G and a set S ⊆ V (G), we say
that S is an F-modulator if G − S is in F . For example, if F is the family of
independent sets, forests, bipartite graphs, interval graphs and chordal graphs,
then the modulator corresponds to a vertex cover, feedback vertex set, odd cycle
transversal, interval deletion set and chordal deletion set, respectively. The size
of S is also called the vertex-deletion distance to F . One of the earliest studies in
the realm of alternate parameterizations is by Cai [6]. Cai [6] studied Coloring

714 R. Krithika et al.

problems parameterized by the vertex-deletion distance to various graph classes
including bipartite graphs and split graphs. Fellows et al. [15] studied alternate
parameterizations for problems that were proven to be intractable with respect
to the standard parameterization. This led to a whole new ecology program and
opened up a floodgate of new and exciting research. Structural parameteriza-
tions of the classical Vertex Cover ([3,23]) and Feedback Vertex Set [24]
have also been explored. We refer to [23] for a detailed introduction to the whole
program as well as the thesis of Jansen [22].

Focusing on structural parameters for Cycle Packing, the main topic of
this paper, Bodlaender et al. [4] obtained polynomial kernels with respect to
the size of a vertex cover, the vertex-deletion distance to a cluster graph and
the maximum leaf number (see [4] or [22] for definitions). There is also a kernel
lower bound result known for parameterization with respect to solution size [5]
leading to several other lower bounds.
Our Choice of Parameter and Our Result. In order for an FPT algorithm
to exist for a parameterized problem, it is necessary that it must be solvable in
polynomial time when the parameter is a constant (in particular, zero). Since
Cycle Packing is solvable in O∗(2O(tw log tw)) time on graphs of treewidth
tw, we have that Cycle Packing is FPT parameterized by vertex cover size,
feedback vertex set size, pathwidth, and vertex-deletion distance to graphs of
constant treewidth. However, the status of the problem when parameterized by
the vertex-deletion distance to interval graphs or chordal graphs has not yet
been studied. Cycle Packing is NP-complete on chordal graphs [19] and thus
we cannot hope to have an algorithm with running time nf(t), where t is the
size of the modulator to chordal graphs, unless P=NP. On the other hand, the
classical complexity status of Cycle Packing on interval graphs is not known.
That is, we do not know whether Cycle Packing admits a polynomial time
algorithm on interval graphs.1 A natural graph class that is a subset of the class
of interval graphs is the one of proper interval graphs (also known as indifference
graphs and unit interval graphs in the literature). A graph is a proper interval
graph if its vertices can be assigned to intervals such that there is an edge
between two vertices if and only if their corresponding intervals have non-empty
intersection. Further, this set of intervals should satisfy the property that no
interval properly contains another. It is well known that Cycle Packing can
be solved in polynomial time on proper interval graphs [31]. This is the starting
point of our work.

We consider Cycle Packing parameterized by the size of an F-modulator
where F is the set of all proper interval graphs. Cycle Packing is simply
Triangle Packing in proper interval graphs (and more generally in chordal
graphs). Interval graphs and proper interval graphs have a rich geometric struc-
ture which makes them amenable to efficient algorithms for most classical prob-
lems [18]. They have applications in several fields like scheduling, archaeology,

1 The algorithm described in [26] does not seem to be correct as it does not produce
the correct answer for a family of input instances.

The Parameterized Complexity of Cycle Packing 715

developmental psychology and DNA sequencing [18]. Also, interval graphs and
proper interval graphs are well studied in the framework of parameterized algo-
rithms in the context of vertex-deletion problems [7,8,17,25,34,35]. A set of
vertices is called a proper interval deletion set if its deletion results in a proper
interval graph. By parameterizing Cycle Packing with respect to the size of
such a set as parameter, we attempt to understand the complexity of the problem
on almost proper interval graphs. The main result of the paper is the following
theorem.

Theorem 1. Cycle Packing parameterized by the size t of a proper interval
deletion set can be solved in O∗(2O(t log t)) time.

We assume that the proper interval deletion set T is part of the input. This
assumption is reasonable as given a graph G and an integer t, there is an algo-
rithm that, in O∗(6t) time, outputs a proper interval deletion set of size at most
t (if one exists) [7,35].
Overview of Our Technique. Our FPT algorithm combines various ingredi-
ents like color coding, greedy strategy and a multi-layered dynamic programming
routine. It crucially uses the properties of a proper interval ordering and a clique
partition of a proper interval graph. Essentially, we reduce the problem of finding
cycles in G to finding appropriate paths in the proper interval graph H = G−T .
Our approach consists of (i) a guessing phase, where we determine important
relations between the T and H. This allows us to replace the vertices in T by vari-
ables that capture precisely the roles of those vertices; (ii) a coloring phase, which
allows us to separate the tasks associated with individual variables, that later
enables us to employ a greedy strategy; (iii) a dynamic programming routine over
the clique partition of H that incorporates a greedy strategy to find an assign-
ment to these variables. In the first phase, we reduce Cycle Packing to mul-
tiple instances of a constraint satisfaction problem which we call Constrained

Path Assignment using the existence of a solution with nice properties. In
the second phase, we reduce Constrained Path Assignment to a ‘colored’
variant called Colorful Constrained Path Assignment using color coding.
By looking for only colorful solutions, we not only reduce the search space of
solutions but also make the assignment to two variables independent of each
other. This independence allows us to use a greedy strategy in the next phase
where we only look for a canonical solution. Informally, a canonical solution is
a colorful solution that is aligned to the left or to the right with respect to the
proper interval ordering of H. The third and final phase is an algorithm to find a
canonical solution, if it exists, thereby solving Colorful Constrained Path
Assignment. This is indubitably the most technical part of the FPT algorithm
that employs a dynamic programming routine incorporating a greedy strategy
over the clique partition of H. The greedy strategy is of the flavour “choose the
leftmost/rightmost vertex from the vertices belonging to some specific restriction
of a color set”. This choice follows from the definition of a canonical solution.

716 R. Krithika et al.

Kernelization Complexity. The kernel lower bound result known for Cycle

Packing with respect to the solution size r is by a reduction from Disjoint

Factors [5]. This reduction produces instances where the underlying graph has
a proper interval vertex deletion set of size r. Therefore, it follows that Cycle

Packing parameterized by the size of a proper interval vertex deletion set does
not admit a polynomial kernel unless NP ⊆ coNP/poly.
Preliminaries. For graph theoretic terms not defined here, refer to [11,18].
The set {1, 2, . . . , n} is denoted by [n]. The length of a path is defined as the
number of vertices in it. For a collection of paths P, V (P) denotes

⋃
P∈P V (P).

The vertices of a proper interval graph H can be ordered by a permutation π :
V (H) → [|V (H)|], called proper interval ordering, with the following property.

Proposition 1 ([30]). Let H be a proper interval graph with proper interval
ordering π. For every pair u, v of vertices with π(u) < π(v), if uv ∈ E(H), then
{w ∈ V (H) | π(u) ≤ π(w) ≤ π(v)} is a clique in H.

Proposition 2 ([25]). Given a proper interval graph H with proper interval
ordering π, there is a linear-time algorithm that outputs a partition of V (H) into
an ordered set {Q1, . . . , Qq} of (pairwise disjoint) cliques (called clique partition)
such that for each pair of vertices u ∈ Qi, v ∈ Qj with 1 ≤ i < j ≤ q, π(v) >
π(u). Further, for all uv ∈ E(H), there is an index i ∈ [q] such that either
u, v ∈ Qi or u ∈ Qi and v ∈ Qi+1.

2 Phases 1 and 2: Reducing to Colorful Constrained Path
Assignment

Let I = (G,T, r) denote the input instance of Cycle Packing. First, we define
the notion of a nice set of cycles.

Definition 1 (Nice set of cycles). Let T ⊆ V (G) be a proper interval deletion
set of a graph G. Let Q = {Q1, . . . , Qq} be a clique partition of H = G − T . A
set C = {C1, . . . , Cr} of vertex-disjoint cycles in G is a nice set of cycles if,

– For each i ∈ [r], if V (Ci) ⊆ V (H), then Ci is a triangle.
– For each i ∈ [r] with V (Ci) ∩ T �= ∅, if Ci has a path P with V (P) ⊆ V (H),

then for each j ∈ [q], |V (P) ∩ Qj | ≤ 2.
– For each j ∈ [q], the number of maximal paths P of length at least 3 that are

contained in some cycle in C such that V (P) ⊆ V (H) and V (P) ∩ Qj �= ∅ is
at most 14.

Lemma 1. Let T ⊆ V (G) be a proper interval deletion set of a graph G. Let
H be the proper interval graph G − T with clique partition Q = {Q1, . . . , Qq}.
Given a set C of r vertex-disjoint cycles, a nice set C∗ of r vertex-disjoint cycles
can be obtained in polynomial time.

The Parameterized Complexity of Cycle Packing 717

Proof. The first two properties are easy to achieve by a simple exchange argu-
ment as every induced cycle in H is a triangle and every Q ∈ Q is a clique.
For the third property, consider a clique Qj where j ∈ [q]. Let P be the set of
maximal paths of length at least 3 that are contained in some cycle in C such
that for each P ∈ P, V (P) ⊆ V (H) and V (P) ∩ Qj �= ∅. From Proposition 2,
each path in P is in at least one of the following subsets.

– P1 = {P ∈ P : |V (P) ∩ Qj | = 1, |V (P) ∩ Qj−1| ≥ 1, |V (P) ∩ Qj+1| ≥ 1}.
– P2 = {P ∈ P : |V (P) ∩ Qj | = 1, |V (P) ∩ Qj−1| ≥ 1, |V (P) ∩ Qj−2| ≥ 1}.
– P3 = {P ∈ P : |V (P) ∩ Qj | = 1, |V (P) ∩ Qj+1| ≥ 1, |V (P) ∩ Qj+2| ≥ 1}.
– P4 = {P ∈ P : |V (P) ∩ Qj | = 2, |V (P) ∩ Qj−1| ≥ 1}.
– P5 = {P ∈ P : |V (P) ∩ Qj | = 2, |V (P) ∩ Qj+1| ≥ 1}.
– P6 = {P ∈ P : |V (P) ∩ Qj | = 1, |V (P) ∩ Qj−1| = 2}.
– P7 = {P ∈ P : |V (P) ∩ Qj | = 1, |V (P) ∩ Qj+1| = 2}.

By the pigeonhole principle, if |P| > 14, then there is an index i ∈ [7] such
that |Pi| ≥ 3. Let P1, P2 and P3 be three distinct paths in Pi. Let C1, C2

and C3 be the cycles (not necessarily distinct) in C that contain P1, P2 and P3,
respectively. Then, C1, C2 and C3 can be replaced by three triangles in C. This
procedure can be applied for each j ∈ [q]. When this replacement can no longer
be made, we have a set C∗ of r vertex-disjoint cycles that satisfies the third
property. Further, if C satisfies the first two properties, then C∗ also satisfies
them. Repeatedly applying this procedure for each j ∈ [q], we obtain a set C∗ of
at least r vertex-disjoint cycles that is a nice set of cycles.
�

Phase 1. Next, we guess how T interacts with a solution that is a nice set of
cycles. Any solution consists of cycles of two types; those cycles that are entirely
contained in H and those cycles that have a vertex from T . The number of
cycles that contain a vertex from T is at most |T |. We first guess this number
�. Then, for each of the � cycles Ci, we guess the vertices Ti from T that it
contains and also the order in which they appear. This information is captured
as a partition of T into � ordered sets, T1 to T�. Any cycle Ci that has Ti ⊆ T
contains a path between every pair of consecutive vertices of Ti with internal
vertices from H. The total number of such paths in these � cycles is O(|T |). We
guess the number of internal vertices of each such path as being 0,1, 2 or at
least 3. Paths of length at least 3 can be assumed to satisfy a certain condition
(given by Definition 1) regarding their intersections, which we explicitly encode
as a constraint. In practice, we only demand such paths to be of length at least
2, but still retain the intersections-related constraint. As these paths are all
completely contained in H, we can delete T from G once the constraints to be
satisfied are encoded.

For this encoding, we introduce 4 sets W , X, Y and Z of variables corre-
sponding to placeholders for paths that we wish to find in H. For each path
of length 1, there is a variable in Z, and for each path of length 2, there is a

718 R. Krithika et al.

variable in X and a variable in Y . Finally, for each path of length at least 2 with
intersection constraints, there is a variable in W . The variables in X ∪ Y ∪ Z
have to be assigned to vertices and the variables in W have to be assigned to
paths of length at least 2. Apart from the length constraints (specified as variable
types), the endpoints of solution paths need to satisfy the adjacency relation-
ship with respect to T so that we get the desired cycles in G. These constraints
are captured using functions Γ , Λ1, Λ2, Ω from the variables to a collection of
subsets of V (H). Furthermore, we have to make additional guesses concerning
orientations of paths with respect to the clique partition Q of H. For example,
if we need to find a path between t1 ∈ T and t2 ∈ T with exactly 2 internal
vertices both of which are from H, then we have a variable x ∈ X and a variable
y ∈ Y corresponding to this constraint. Further, Γ (x) is N(t1)∩V (H) and Γ (y)
is N(t2) ∩ V (H). We also require the vertex assigned to x to be adjacent to the
vertex assigned to y. To encode this constraint, we set Ω(x) = y to imply that
in any valid assignment g of vertices to X ∪ Y , g(x) and g(Ω(x)) are adjacent.
Similarly, if we need to find a path between t1 ∈ T and t2 ∈ T with exactly 1
internal vertex which is from H, then we have a variable z ∈ Z and set Γ (z) to
be N(t1) ∩ N(t2) ∩ V (H). Finally, if we seek a path between t1 ∈ T and t2 ∈ T
with at least 2 internal vertices all of which are from H, then we have a variable
w ∈ W corresponding to this constraint. Further, Λ1(w) is N(t1) ∩ V (H) and
Λ2(w) is N(t2) ∩ V (H). The interpretation is that the path assigned to w has
to start at a vertex in Λ1(w) and end at a vertex in Λ2(w). Note that the notion
of start and end vertices of a path are derived from a proper interval ordering π
of H. It might be the case that w can only be assigned to a path that starts at
a vertex in Λ2(w) and ends at a vertex in Λ1(w). To handle this technicality, we
create multiple instances of Constrained Path Assignment considering all
such possibilities. Thus, by using functions Γ , Ω, Λ1 and Λ2, we ensure that the
paths obtained by solving the Constrained Path Assignment instance indeed
form cycles (when combined with T) with the required properties specified by
the constraints enforced on a solution for I.

Constrained Path Assignment is an optimization problem with an objec-
tive to find an assignment (expressed as a pair (h, g) of functions) to W , X, Y
and Z such that the maximum number of vertex disjoint triangles in a specific
subgraph of H is maximized. Let paths(H) denote the set of paths of length at
least 2 that have at most two vertices from Qi for each i ∈ [q] (individually).
The function g assigns X ∪ Y ∪ Z to vertices of H such that the assignment
restricted to X ∪ Y is a valid assignment of length 2 paths. The function h is an
assignment of the variables in W to paths in paths(H) satisfying certain inter-
section constraints propagated from the additional constraints on a solution for
I. As we only need to find a nice set of cycles, it suffices to assign each variable
in W to a path from this set. Further, we do require h and g to be injective as
our interest is in finding vertex-disjoint paths. We also need the images of g and
h to be disjoint in the sense that for each pair of elements w ∈ W , s ∈ X ∪Y ∪Z,
g(s) /∈ V (h(w)).

The Parameterized Complexity of Cycle Packing 719

Constrained Path Assignment Parameter: |X| + |Y | + |Z| + |W |
Instance: A proper interval graph H with clique partition Q and proper
interval ordering π, sets X, Y , Z, W of variables, functions Γ : X∪Y ∪Z → R,
Λ1 : W → S, Λ2 : W → T where R, S, T are collections of subsets of V (H)
and a bijection Ω : X → Y .
Feasible Solution: A pair (h, g) of injective functions h : W → paths(H)
and g : X ∪ Y ∪ Z → V (H) with disjoint images such that
(i) For each s ∈ X∪Y ∪Z, g(s) ∈ Γ (s); for each x ∈ X, g(x)g(Ω(x)) ∈ E(H).
(ii) For each w ∈ W , h(w) is a path between u ∈ Λ1(w) and v ∈ Λ2(w).
(iii) For each pair of distinct variables w,w′ ∈ W , V (h(w)) ∩ V (h(w′)) = ∅.
(iv) For each i ∈ [q], |{w ∈ W : V (h(w)) ∩ Qi �= ∅}| ≤ 14.
Optimum Solution: Feasible solution (h, g) that maximizes the number of
vertex-disjoint triangles in H − (V (img(h)) ∪ img(g)).

For an instance J of Constrained Path Assignment with (h, g) as a
feasible solution, the value of (h, g), denoted by valJ ((h, g)), is defined as the
maximum number of vertex-disjoint triangles in H − (V (img(h)) ∪ img(g)). The
value valJ ((h, g)) of an optimum solution (h, g) is denoted by opt(J). We omit
the subscript in the notation for value of an optimum solution for an instance of
Constrained Path Assignment if the instance under consideration is implicit.
Thus, we reduce the problem of finding cycles in G to the task of finding a
collection of vertex-disjoint paths that satisfies certain constraints in H. This
completes the first phase of the algorithm.

Lemma 2. There is an algorithm that, given an instance I = (G,T, r) of
Cycle Packing, runs in O∗(2O(|T | log |T |)) time and returns a set of 2O(|T | log |T |)

instances of Constrained Path Assignment such that I is a yes-instance if
and only if at least one of the returned instances J satisfies opt(J) ≥ r − � for
some � ≤ |T |. Further, the parameter of each of the returned instances is a linear
function of the parameter of I.

Phase 2. Consider an instance J = (H,Q, π,X, Y, Z,W, Γ,Λ1, Λ2, Ω) of
Constrained Path Assignment. Let X = {x1, . . . , xrX

}, Y = {y1, . . . , yrY
},

Z = {z1, . . . , zrZ
} and W = {w1, . . . , wrW

}. Recall that each variable in X∪Y ∪Z
has to be assigned to a vertex of H and each variable in W has to be assigned to
a path of length at least 2 in H. We color the vertices of H uniformly at random
from the color set [r̂] where r̂ = rX + rY + rZ . Let χ : V (H) → [r̂] denote this
coloring.

Definition 2 (Colorful solution). A feasible solution (h, g) of J is a colorful
solution if for any two distinct variables s, t ∈ X ∪ Y ∪ Z, χ(g(s)) �= χ(g(t)).

Observe that the characteristic of a solution being colorful does not depend
on the assignment to the variables in W . We define an optimum colorful solution
of J as a colorful solution maximizing valJ ((h, g)) over all colorful solutions
(h, g). We focus on finding an optimum colorful solution of J . Having reduced

720 R. Krithika et al.

our search space from the set of all feasible solutions to the set of all colorful
solutions, we simplify the instance accordingly. For each i ∈ [r̂], let Vi denote
the set {v ∈ V (H) | χ(v) = i} of vertices of H that were colored i by χ. Let δ be
a permutation of [r̂]. We use δ to specify the exact color of the vertex that is to
be assigned to each s ∈ X ∪Y ∪Z. Define Γ̂ : X ∪Y ∪Z → 2V (H) as follows: for
each i ∈ [rX], Γ̂ (xi) = Γ (xi) ∩ Vδ(i); for each i ∈ [rY], Γ̂ (yi) = Γ (yi) ∩ Vδ(rX+i);
for each i ∈ [rZ], Γ̂ (zi) = Γ (zi) ∩ Vδ(rX+rY +i). For example, if δ specifies that a
variable s is to be assigned to a vertex that has color i, then we restrict the set of
vertices that can possibly be assigned to s to those that are colored i. Let J (χ, δ)
denote the instance (H,Q, π,X, Y, Z,W, Γ̂ , Λ1, Λ2, Ω) of Constrained Path
Assignment. Observe that for each pair of distinct variables s, t ∈ X ∪ Y ∪ Z,
we have Γ̂ (s) ∩ Γ̂ (t) = ∅.

Observation 1. Any feasible solution (h, g) of J (χ, δ) is also a colorful solu-
tion. Further, if (h, g) is a colorful solution of J , then there exists a permutation
δ of [r̂] such that (h, g) is a feasible solution of J (χ, δ).

For the sake of clarity, we subsequently call the Constrained Path
Assignment problem in which, for each pair of variables s, t ∈ X ∪ Y ∪ Z,
Γ (s) ∩ Γ (t) = ∅ holds, as the Colorful Constrained Path Assignment

problem. The standard technique of derandomization of color coding based algo-
rithms [1,9,32] leads to the following result.

Lemma 3. There is an algorithm that, given an instance J of Constrained

Path Assignment, runs in O∗(2O(r̂ log r̂)) time where r̂ = |X| + |Y | + |Z| and
returns a set of at most O∗(r̂!er̂ r̂O(log r̂)) instances of Colorful Constrained

Path Assignment such that at least one of the returned instances Ĵ satisfies
opt(J) = opt(Ĵ).

3 Phase 3: Solving Colorful Constrained Path Assignment

Now, we describe an algorithm that uses a dynamic programming routine and
a greedy strategy to solve Colorful Constrained Path Assignment in
O∗(2O(k log k)) time where k = |X| + |Y | + |Z| + |W |. Consider an instance
J = (G,Q, π,X, Y, Z,W, Γ, Λ1, Λ2, Ω). Let Q be the given clique partition
{Q1, . . . , Qq} of G. First, we observe some properties of a feasible solution which
follow from the structure of Q.

Observation 2. If (h, g) is a feasible solution of J , then there is another
feasible solution (h′, g) such that val((h, g)) ≤ val((h′, g)) and for each vari-
able w ∈ W , the paths h′(w) and h(w) have the same set of endpoints and
V (h′(w)) ⊆ V (h(w)). Further, for each variable w ∈ W and for each i, j ∈ [q]
with i < j, every vertex in V (h′(w))∩Qi occurs before any vertex in V (h′(w))∩Qj

in h′(w).

The Parameterized Complexity of Cycle Packing 721

Fig. 1. Illustration of the partition of Qi into sets Di
j for each j ∈ [6]

We next define (in Definition 3) the notion of a feasible solution with more
special properties. Let (h∗, g∗) be a feasible solution of J . Let T be a maximum
size set of vertex-disjoint triangles in G − (V (img(h∗)) ∪ img(g∗)). Consider the
clique Qi for some i ∈ [q]. Then, Qi can be partitioned into the following subsets.
(1) Di

1 - the set of vertices of Qi that are neither in V (T) nor in a path assigned
to some variable in W nor assigned to any variable in X ∪ Y ∪ Z. (2) Di

2 is
the set of vertices of Qi in a path assigned to a variable in W . (3) Di

3 is the
set of vertices of Qi present in triangles having vertices from both Qi and Qi+1.
(4) Di

4 is the set of vertices of Qi present in triangles having vertices from both
Qi and Qi−1. (5) Di

5 is the set of vertices of Qi that are assigned to variables
in X ∪ Y ∪ Z. (6) Di

6 is the set of vertices of Qi that are present in triangles
contained in Qi. An example is given in Fig. 1.

Clearly, |Di
2| ≤ 28 and by the property of π and Q, it suffices to assume that

|Di
1|, |Di

3|, |Di
4| ≤ 2. Consider a pair u, v of vertices such that u ∈ Di

5 and v ∈ Di
6.

Let s ∈ X ∪Y ∪Z be the variable such that g∗(s) = u. Then, u ∈ Γ (s). Suppose
v ∈ Γ (s). Let (h∗, g�) denote the pair of functions obtained from (h∗, g∗) by
setting g�(s) = v. Consider the following cases. If s ∈ Z, then (h∗, g�) is also a
feasible solution of J . Suppose s ∈ X ∪ Y and g∗(Ω(s)) ∈ Qi ∪ Qi+1. Then, if
π(v) > π(u), then (h∗, g�) is also a feasible solution of J since v and g�(Ω(s))
are adjacent by Proposition 1. Similarly, if s ∈ X ∪ Y , g∗(Ω(s)) ∈ Qi−1 and
π(v) < π(u), then (h∗, g�) is also a feasible solution of J since v and g�(Ω(s))
are adjacent. Informally, in each of the cases, we obtain an aligned (to the left or
to the right with respect to π) solution (h∗, g�) with val((h∗, g∗)) = val((h∗, g�)).
This leads us to the notion of a canonical solution of J . Observe that for any
feasible solution (h′, g′) of J , there is no variable t ∈ X ∪ Y ∪ Z distinct from s
with g′(t) = v. This crucially uses the fact that for each pair of distinct variables
s, t ∈ X ∪Y ∪Z, we have Γ (s)∩Γ (t) = ∅ – a property achieved by color coding.

722 R. Krithika et al.

Definition 3 (Canonical solution). Let (h, g) be a feasible solution of J . Let
T be a maximum size set of vertex-disjoint triangles in G−(V (img(h))∪img(g)).
Let T ′ denote the set of triangles in T that are contained in Qi for some i ∈ [q].
Let V ′ = V (T ′) ∪ img(g) and Di = V ′ ∩ Qi. (h, g) is a canonical solution if

– For each i ∈ [q] and s ∈ X ∪ Y with g(s) ∈ Qi and g(Ω(s)) ∈ Qi+1 ∪ Qi, g(s)
is the vertex that maximizes π(g(s)) over all vertices in Di ∩ Γ (s).

– For each i ∈ [q] and s ∈ X ∪ Y with g(s) ∈ Qi and g(Ω(s)) ∈ Qi−1, g(s) is
the vertex that minimizes π(g(s)) over all vertices in Di ∩ Γ (s).

– For each i ∈ [q] and s ∈ Z with g(s) ∈ Qi, g(s) is the vertex that maximizes
π(g(s)) over all vertices in Di ∩ Γ (s).

Note that the function h plays no role in deciding if (h, g) is indeed a canonical
solution or not. Next, we prove the existence of canonical solutions.

Lemma 4. If (h, g) is a feasible solution of J , then there is a canonical solution
(h, g∗) of J with val((h, g)) = val((h, g∗)).

Proof. Let Q0 = ∅. For an integer i ∈ [q]∪{0}, we say that (h, g) is an i-canonical
solution if it satisfies the properties in Definition 3 for cliques the Q0, Q1, . . . , Qi.
In this context, a q-canonical solution is a canonical solution. We show the
existence of a q-canonical solution by induction on q. For q = 0, observe that
(h, g) is a q-canonical solution. Suppose (h, g) is an (i−1)-canonical solution for
some i ≥ 1. We show that there is another feasible solution (h, g∗) that is an
i-canonical solution. Let T be a maximum size set of vertex-disjoint triangles in
G − (V (img(h)) ∪ img(g)). Initialize (h, g∗) to (h, g). Let V ′ denote the vertices
of Qi that are present in triangles that are completely contained in some clique
Qj , j ∈ [q]. Let Di = V ′ ∩ Qi.

Let s be a variable in X ∪ Y such that g(s) ∈ Qi. Then, either g(Ω(s)) ∈
Qi−1 or g(Ω(s)) ∈ Qi+1 ∪ Qi. In the former case, update g∗(s) to the vertex v
in Di ∩ Γ (s) that minimizes π(v). From Proposition 2, as π(g∗(s)) ≤ π(g(s)),
π(g(Ω(s))) < π(g∗(s)) and (g(s), g(Ω(s))) ∈ E(G), we have (g∗(s), g∗(Ω(s))) ∈
E(G). In the latter case, update g∗(s) to the vertex v in Di∩Γ (s) that maximizes
π(v). From Proposition 2, as π(g∗(s)) ≥ π(g(s)), π(g(Ω(s))) > π(g∗(s)) and
(g(s), g(Ω(s))) ∈ E(G), we have (g∗(s), g∗(Ω(s))) ∈ E(G). In any case, v is
either g(s) or v is in a triangle T of T with vertices only from Qi. Therefore,
the set T ∗ of triangles obtained from T from replacing v by g(s) is a set of same
size as T . Execute this replacement procedure for all variables in X ∪ Y that
are assigned to vertices in Qi by g. At the end of this reassignment, we have the
desired i-canonical solution.
�

By Lemma 4, it suffices to find an optimum solution of J that is canonical.
We describe a dynamic programming algorithm finding such a solution (if one
exists) by processing the cliques in Q = {Q1, . . . , Qq} in the increasing order
of their indices. Let Qq+1 = ∅. For each i ∈ [q + 1], let Gi be the subgraph
of G induced by

⋃i
j=1 Qj . For each i ∈ [q + 1], we maintain a table Ti. Before

describing the entries in Ti, we give an overview of what we would ideally like

The Parameterized Complexity of Cycle Packing 723

them to store. Let (h∗, g∗) be an optimum canonical solution of J . Let T be
a maximum size set of vertex-disjoint triangles in G − (V (img(h∗)) ∪ img(g∗)).
As each of the graphs in the sequence G1, G2, . . . , Gq, Gq+1 is a subgraph of
the graph succeeding it, we like to process the cliques Q1, . . . , Qq, Qq+1 from
“left-to-right”, that is, from Q1 to Qq+1, in order to compute (h∗, g∗) (or a
feasible solution (h�, g�) with val((h�, g�)) = val((h∗, g∗))). We would first like
to understand how (h∗, g∗) and T look like when they are restricted to Gi for
a fixed i ∈ [q + 1]. This could shed insight into the subproblem that we want
to solve on Gi and the (partial) solution that we want to store for Gi. Ideally,
we want to store the number (or set) of triangles in T that are contained in Gi.
Let us call this set T ′. Any triangle T in T \ T ′ has a vertex from Qj for some
j ≥ i+1. We cannot see this triangle until we look at Gj . Our subproblem on Gi

can afford to forget such triangles provided it remembers the vertices from Qi

that are present in these triangles. That is, we need to remember the set Next∗

of vertices in Qi that are present in triangles in T that have a vertex from both
Qi and Qi+1. Note that no vertex in Qi can be in a triangle that has a vertex
from Qi+2 by Proposition 2. Let Not∗ be the set of vertices of Qi that are not
in the set V (T) ∪V (img(h∗)) ∪ img(g∗). Let us partition T ′ into T1 and T2 such
that T1 is the set of triangles contained in Gi−1 and T2 = T ′ \ T1. Suppose we
have computed |T1| by solving the subproblem on Gi−1. Then, |T1| can be used
to compute |T ′| provided we know the set Qi ∩V (T2). That is, we need to know
the set Prev∗ of vertices in Qi that are present in triangles in T ′ that have
vertices from both Qi and Qi−1. So far, we have identified two types of vertices
(those in Prev∗ and those in Next∗) in Qi with respect to (h∗, g∗). In order to
understand the role of other vertices in Qi, we partition Qi into 6 sets Di

1 to Di
6

as defined earlier.
Note that Di

1 = Not∗, Di
3 = Next∗ and Di

4 = Prev∗. When we process
Qi (to solve the problem on Gi), we guess Di

j for each j ∈ [4]. The number
of such guesses is bounded by a polynomial (in |Qi|). We guess (at most 2k

choices) the set S∗
i ⊆ X ∪ Y ∪ Z of variables assigned to vertices from Qi by g∗.

Similarly, we guess the set L∗
i ⊆ W of variables assigned to paths containing a

vertex from Qi by h∗. We also map these variables to vertices in Di
2 as there

are only a polynomial number of choices. Further, we guess the set L∗
new ⊆ L∗

i

of variables assigned to paths that start at a vertex in Qi by h∗. Using the
properties of a canonical solution, we greedily map the variables in S∗

i to vertices
in Qi \ (Di

1 ∪Di
2 ∪Di

3 ∪Di
4). These vertices form the set Di

5. Each vertex in Di
6 is

in a triangle contained in Qi. As Qi is a clique, once Di
5 is determined, any set of

(|Qi|−
∑5

j=1 |Di
j |)/3 triangles consisting of the remaining vertices is good enough

for our solution. To solve the subproblem on Gi using the previously computed
solution on Gi−1, we need information regarding the solution contained in Gi−1.
Let S∗ be the set of variables in X ∪ Y ∪ Z assigned to vertices in Gi−1 by
g∗ and L∗ be the set of variables in W assigned to paths in Gi−1 by h∗. As
the number of choices for S∗ and L∗ is O(2k), we can guess S∗ and L∗ while
processing Qi. In Ti, for each choice of Prev,Next,Not ⊆ Qi, S, Si ⊆ X∪Y ∪Z,
L,Li, Lnew ⊆ W , we store the possibility of the existence of an optimum solution

724 R. Krithika et al.

(h∗, g∗) to J such that S = S∗, L = L∗, Si = S∗
i and Li = L∗

i . Further, for
each w ∈ Li, h1(w) is the first vertex in h∗(w) that is from Qi and h2(w) is
the second vertex (if it exists) in h∗(w) that is from Qi. Moreover, Lnew =
L∗

new. Ti stores the information relating to a maximum size set T of vertex-
disjoint triangles in G − (V (img(h∗)) ∪ img(g∗)) such that Not = Not∗ and
|Qi| − (|Prev| + |Next| + |Not| + | img(h1)| + | img(h2)| + |Si|)/3 is the number
of triangles in T that are contained in Qi. Also, for each v ∈ Prev, there is a
triangle in T containing v and a vertex from Qi−1. Finally, for each v ∈ Next,
there is a triangle in T containing v and a vertex from Qi+1. Computing the
tables Ti (of size O∗(2k)) in the increasing order of i leads to the following.

Lemma 5. There is an algorithm that solves Colorful Constrained Path
Assignment in O∗(2O(|X|+|Y |+|Z|+|W |)) time.

Combining Lemma 5 with the reductions described establishes Theorem 1.

4 Concluding Remarks

We described an FPT algorithm for Cycle Packing parameterized by the size
of a proper interval deletion set. The starting point of our algorithm is identifying
the structure of cycles in the input graph. Using this structure, we transformed
the problem of finding cycles into the problem of finding paths in the proper
interval subgraph. Our approach essentially consists of a guessing phase, a col-
oring phase and a dynamic programming routine using a greedy strategy. Our
belief is that this approach is quite general and can be useful in solving many
other problems with the same parameterization. Exploring the applicability of
the same for other problems is a natural direction of research.

As mentioned earlier, Cycle Packing parameterized by the size of a proper
interval vertex deletion set does not admit a polynomial kernel unless NP ⊆
coNP/poly. Recently, a kernelization framework (called lossy kernelization) that
is less stringent than the notion of polynomial kernels was introduced in [29]. It
was shown that there are many problems (including Cycle Packing parameter-
ized by the solution size) without classical polynomial kernels that admit lossy
polynomial kernels. It is interesting to explore the possibility of such a kernel
for our problem. Finally, the status of Cycle Packing on interval graphs is an
inevitable line of study.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
3. Bodlaender, H.L., Jansen, B.M.P.: Vertex cover kernelization revisited: upper and

lower bounds for a refined parameter. Theory Comput. Syst. 63(2), 263–299 (2013)
4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle

problems. Theor. Comput. Sci. 511, 117–136 (2013)

The Parameterized Complexity of Cycle Packing 725

5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

6. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math.
127(3), 415–429 (2003)

7. Cao, Y.: Unit interval editing is fixed-parameter tractable. Inf. Comput. 253(Part
1), 109–126 (2017)

8. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms 11(3), 21:1–21:35 (2015)

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

10. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 150–159 (2011)

11. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

13. Erdös, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math.
17, 347–352 (1965)

14. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time
decidability. J. ACM 35(3), 727–739 (1988)

15. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The complexity ecology of parameters: an illustration using bounded max leaf
number. Theory Comput. Syst. 45(4), 822–848 (2009)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

17. Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval
vertex deletion. SIAM J. Discrete Math. 27(4), 1964–1976 (2013)

18. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)

19. Guruswami, V., Pandu Rangan, C., Chang, M.S., Chang, G.J., Wong, C.K.: The
Kr-packing problem. Computing 66(1), 79–89 (2001)

20. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized
above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

21. Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below
tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D.
(eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp.
257–286. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30891-
8 14

22. Jansen, B.M.P.: The power of data reduction: kernels for fundamental graph prob-
lems. Ph.D. thesis, Utrecht University, The Netherlands (2013)

23. Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Comb. 34(3), 541–566 (2013)

24. Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex
set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

25. Ke, Y., Cao, Y., Ouyang, X., Wang, J.: Unit interval vertex deletion: fewer vertices
are relevant (2016). arXiv:arXiv:1607.01162

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-30891-8_14
https://doi.org/10.1007/978-3-642-30891-8_14
http://arxiv.org/abs/arXiv:1607.01162

726 R. Krithika et al.

26. Kloks, T.: Packing interval graphs with vertex-disjoint triangles. CoRR,
abs/1202.1041 (2012)

27. Lokshtanov, D., Mouawad, A., Saurabh, S., Zehavi, M.: Packing cycles faster than
Erdös-Pósa. In: 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pp. 71:1–71:15 (2017)

28. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014)

29. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC), pp. 224–237 (2017)

30. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-
put. Math. Appli. 25(7), 15–25 (1993)

31. Manić, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indiffer-
ence graphs. Discrete Math. 308(8), 1455–1471 (2008)

32. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: IEEE 36th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 182–191 (1995)

33. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

34. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indif-
ference: unit interval vertex deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS,
vol. 6410, pp. 232–243. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16926-7 22

35. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4),
845–867 (2013)

https://doi.org/10.1007/978-3-642-16926-7_22
https://doi.org/10.1007/978-3-642-16926-7_22

Satisfying Neighbor Preferences
on a Circle

Danny Krizanc1, Manuel Lafond2, Lata Narayanan3, Jaroslav Opatrny3(B),
and Sunil Shende4

1 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT, USA
dkrizanc@wesleyan.edu

2 Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
mlafond2@uOttawa.ca.com

3 Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC, Canada

{lata,opatrny}@cs.concordia.ca
4 Department of Computer Science, Rutgers University, Camden, USA

sunil.shende@rutgers.edu

Abstract. We study the problem of satisfying seating preferences on a
circle. We assume we are given a collection of n agents to be arranged on
a circle. Each agent is colored either blue or red, and there are exactly
b blue agents and r red agents. The w-neighborhood of an agent A is
the sequence of 2w + 1 agents at distance ≤w from A in the clockwise
circular ordering. Agents have preferences for the colors of other agents
in their w-neighborhood. We consider three ways in which agents can
express their preferences: each agent can specify (1) a preference list: the
sequence of colors of agents in the neighborhood, (2) a preference type:
the exact number of neighbors of its own color in its neighborhood, or
(3) a preference threshold: the minimum number of agents of its own
color in its neighborhood. Our main result is that satisfying seating pref-
erences is fixed-parameter tractable (FPT) with respect to parameter w
for preference types and thresholds, while it can be solved in O(n) time
for preference lists. For some cases of preference types and thresholds,
we give O(n) algorithms whose running time is independent of w.

Keywords: Seating arrangement · Linear algorithm · FPT algorithm

1 Introduction

Alice has invited a large group of people to a dinner party, just before a most
contentious election between the Red and Blue political parties. The guests are
to be seated at a large circular table. She has now started receiving urgent
requests from her guests about the seating arrangements. Some guests want
to be assured that they won’t be seated close to anyone from the other party.
Other guests are more tolerant; they would be happy so long as a majority of
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 727–740, 2018.
https://doi.org/10.1007/978-3-319-77404-6_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_53&domain=pdf
http://orcid.org/0000-0003-4336-5336

728 D. Krizanc et al.

their neighbors belong to their own party. There are also argumentative guests
who insist on being seated near people mostly from the other party; they want to
have a chance to argue with their neighbors all evening. Can Alice satisfy all the
guests’ preferences? How can she figure out a seating arrangement acceptable to
all her guests?

In this paper, we study the problem of satisfying seating preferences on a
circle. We assume we are given a collection of n agents to be arranged on a circle.
Each agent is colored either blue (B) or red (R), and there are exactly b blue
agents and r = n − b red agents in all. Any specific clockwise ordering of these
n colored agents around the circle is called a configuration or n-configuration;
we are interested in exploring questions about the existence of configurations
that, for each agent, satisfy a given constraint on the colors of agents in its
neighborhood. For a fixed value w, called half-window size, 1 ≤ w ≤ (n−1)/2, we
define the neighborhood of an agent as the w agents preceding it, the agent itself,
and the w agents following it, in the clockwise ordering. The agents preceding
and following it are called the proper neighbors of the agent.

Agents can express preferences for the colors of agents in their neighbor-
hood in several possible ways. We consider three ways in which color specifica-
tions can be expressed. For every agent, we specify its:

Preference list: the exact sequence of colors desired in its neighborhood. Each
preference list is a string over {B,R} of length 2w + 1.

Preference type: the desired number of proper neighbors with the same color
as the agent. Furthermore, the number of red (resp. blue) nodes with prefer-
ence type i is denoted ri (resp. bi).

Preference threshold: the minimum number of proper neighbors with the
same color as the agent. Furthermore, the number of red (resp. blue) nodes
with threshold i is denoted ρi (resp. βi).

We assume that all agents specify their preferences in the same manner,
e.g., they all specify (possibly different) preference thresholds. For any one of
the three preference specification methods, a given configuration of agents is
said to be valid if and only if all the agents have their preferences satisfied in
their respective neighborhoods within the configuration. For example, the 10-
configuration in Fig. 1 specified by the string RRBRRRBRRR, is valid for the
following preference specifications with half-window size w = 2:

R

R B
R

R

R
BR

R

R

Fig. 1. An example of a seating configuration of agents (Color figure online)

Satisfying Neighbor Preferences on a Circle 729

– Preference lists: Two blue agents with lists RRBRR; two red agents with lists
RBRRR; two red agents with lists RRRBR; one red agent for lists BRRRB,
BRRRR, RRRRR, and RRRRB.

– Preference types: Two blue agents with types 0, one red agent with type 2,
six red agents with type 3 and one red agent with type 4.

– Preference thresholds: Two blue agents with threshold 0; two red agents with
threshold 2 and six red agents with threshold 3. Note that this configuration
also satisfies many other preference thresholds, for example, two blue agents
with threshold 0, and eight red agents with threshold 1.

We are interested in the following problem: For a given preference speci-
fication with n agents with a given half-window size w, construct a valid n-
configuration, or determine that it does not exist.

In the sequel, we consider the above problem for each of the three kinds of
preference specifications. We consider the cases when all nodes have the same
preference (homogeneous preferences), when the nodes of the same color have
the same preference (homogeneous within type), and the general (heterogeneous
preference) case.

1.1 Related Work

Our problem was largely motivated by the influential work of Schelling [19,20] on
how the preferences of individuals can potentially lead to the undesirable effect
of global segregation. In the Schelling’s model, we imagine people of two different
types (Red and Blue in our example) who are placed on a line (or later on a
grid). Each person would like at least a fraction τ of their size w neighborhood
to be of their type. Consider a process whereby a randomly chosen pair of people
(of different type) who are both unhappy in their current location are allowed
to switch positions. Schelling showed via simulations that this would eventually
lead to segregation by type even in the case where τ ≤ 1

2 . His observations led
to a great deal of research in both the sociological and mathematics literature in
attempts to verify his conclusions [2,3,8,10,16,21,22]. Recently, this analysis has
been taken up in the theoretical computer science literature [4,11]. In that work,
the model is analyzed as a random process and it is shown that the expected
size of the resulting segregated neighborhoods is polynomial in w on the line [4]
and exponential in w on the grid [11] but that in both cases it is independent of
the overall number of participants.

Our work may be thought of as a first attempt to analyze this model from
a worst-case deterministic perspective rather than on average. Given the pref-
erences of the individuals, we ask whether there is a configuration under which
they may all be satisfied. As far as we can determine, we are the first to consider
this question. However, as might be expected, related problems have been stud-
ied in the graph coloring literature. In particular, a perfect 2-coloring of a graph
is a 2-coloring of the graph where nodes of a given color are required to have
a given number of neighbors of the same color. Parshina [17] characterized the
perfect 2-colorings of infinite circulant graphs with a continuous set of distances

730 D. Krizanc et al.

which corresponds to the infinite line with each node connected to all of its
neighbors within a fixed distance. We rely upon this characterization in order to
solve the version of our problem when all nodes of the same color have the same
preference type (see Sect. 4.1). Somewhat less related but of a similar flavor are
(m, k)-defective colorings whereby the nodes of a graph are colored by m colors
in such a way that each vertex is adjacent to at most k vertices of the same color.
This concept was introduced in [1,5] and continues to be studied [6,7,13]. Since
we are interested in colorings with at least some number of vertices of the same
color in each vertex’s neighborhood, these results do not appear to be directly
applicable to our problems.

1.2 Our Results

We assume that the input for a seating arrangement problem is a sequence of
preference specifications for all n agents, all of the same kind.

1. For preference lists, we give in Sect. 3 an O(n) algorithm to construct a valid
configuration.

2. In Sect. 4.1 we give an algorithm to construct a valid configuration for homo-
geneous preference types in O(n) time.

3. For heterogeneous preference types and for preference thresholds we show in
Sects. 4.2 and 5 that satisfying seating preferences is FPT for parameter w.
In particular, for each of the two cases, we give an algorithm to construct a
valid configuration that has time complexity
O(n + 22

2w+1
w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n).

2 Notation

We use strings to represent configurations of agents, taken circularly. Following
standard terminology, for any string u, we denote by |u| the length of u and by uk

the string u repeated k times. We denote by u+ the infinite set of strings consist-
ing of one or more repetitions of the string u, and u denotes the complementary
string obtained by replacing each color symbol in u by its complementary color,
i.e., replacing B with R and vice-versa. An n-configuration is a specific clockwise
ordering of n agents around the circle, i.e., a cyclic string s[0] s[1] . . . s[n − 1],
denoted by s[0 : n], where the ith agent has color s[i] ∈ {B,R}. For i < j, let
s[i : j] denote the contiguous substring of agents s[i] s[i + 1] . . . s[j − 1] in the
configuration. Thus s[i : i + 1] = s[i]. We follow the convention that sequence
indices: (a) always start from reference position 0; (b) are interpreted modulo n;
and (c) increase in clockwise order around the circle. Thus given a half-window
size w, the neighborhood of agent s[i] consists of s[i − w : i], its left neigh-
bors, s[i] itself, and s[i + 1 : i + w + 1], its right neighbors. Since we assume
that n ≥ 2w + 1, each agent has 2w distinct neighbors. A maximal contiguous
sequence of agents of the same color is called a run of that color and is denoted
as a string, e.g. Bk is a blue run of length k.

Satisfying Neighbor Preferences on a Circle 731

3 Preference Lists

When given the preference lists of agents, the feasibility problem is solvable
in polynomial time: this can be done by constructing an appropriate directed
graph representation of the preferences, and finding an Euler tour in the graph.
The technique was originally proposed for DNA fragment assembly in [18]. Let
S = {s0, s1, . . . , sn−1} be the set of preference lists given by the n agents (recall
that each si is a string of length 2w + 1 over the color alphabet {B,R}). Define
S′ to be the set of 2w-length strings obtained by dropping either the first or the
last symbol from a preference list in S. That is, s′ ∈ S′ if and only if there exists
a preference list s ∈ S so that either s′ = s[0 : 2w] or s′ = s[1 : 2w + 1].

We now construct a digraph G = (V,E) as follows. We set V = S′, so
that each vertex is uniquely labeled with a string in S′. Since the ith agent
has preference list si, we create a directed edge labeled i from the node labeled
si[0 : 2w] to the node labeled si[1 : 2w + 1]. As an example, let w = 2, and
suppose that the preference list for the ith agent is si = RRBBR. Then i is the
edge-label of an edge from the node labeled RRBB to the node labeled RBBR.
Notice that if there are two agents with the same preference list, then there will
be two edges between the same two vertices in the graph G.

Suppose i and j are two consecutive edge-labels along a path in G. Then,
notice that agent j can be placed to the right of agent i in a configuration. In
the example above, the path

RRBB
i−→ RBBR

j−→ BBRR

indicates that agent j with preference list sj = RBBRR can follow agent i in a
configuration. Clearly, there is an Euler tour in the graph G iff there is a valid n-
configuration of the agents. Since the graph G has at most 2n nodes and exactly
n edges, we get:

Theorem 1. For a preference list specification, a valid configuration, if one
exists, can be found in time O(n).

4 Preference Types

4.1 Homogeneous Preference Types

We first consider the situation where all the blue agents have homogeneous pref-
erences for exactly i blue neighbors each and likewise, all the red agents have
homogeneous preferences for exactly j red neighbors each. Such configurations
were studied by Parshina [17] where some characterizations were provided for
infinite valid strings. In particular, the paper does not consider the values of n,
r and b, the actual number of red and blue agents present.

In what follows, we will consider that w, i and j are fixed. A string s over
alphabet {R,B} is valid if each blue agent in s has i blue neighbors, and each
red agent has j red neighbors.

732 D. Krizanc et al.

The analysis of homogeneous preference types is divided into two parts. We
first paraphrase the results from Parshina [17] that establish various conditions
under which valid strings exists, regardless of the values of r and b. Then we use
these results to decide, for given values of r and b, if a valid configuration exists.

The following result, stated without proof, is paraphrased from the paper
by Parshina [17]. It characterizes the valid strings for a given w, i (the blue
preference type) and j (the red preference type).

Lemma 1 ([17]). Let s be a string over alphabet {R,B}. Then s is valid if and
only if one of the following statements holds:

1. i + j = 2w − 2 and
– both i and j are even and s ∈ u+ for some string u of length w + 1

containing 1 + i/2 Bs and 1 + j/2 Rs, or
– i = j and s ∈ (uū)+ for some string u of length w.

2. i+ j = 2w − 1 and s ∈ u+ for some string u of length 2w +1 containing i+1
Bs and j + 1 Rs.

3. i + j = 2w and
– both i and j are even and s ∈ u+ for some string u of length w containing

i/2 Bs and j/2 Rs, or
– i = j and s ∈ (uū)+ for some string of length w + 1.

Lemma 1 immediately allows us to construct valid configurations for some
values of r, b, n, but not for all values for which a valid configuration exists. In
the remainder of this section, we find necessary and sufficient conditions for the
existence of all valid configurations. To do this, we need to identify appropriate
periods of the valid strings described in Lemma1.

Characterizing the Periods of Valid Strings. For a string s, we call p a
period of s if s ∈ p+. We say that s is aperiodic if the only period of s is itself.
A period p of s is minimal if p itself is aperiodic. We start with the next simple
result that allows us to search for “good” minimal periods of valid strings.

Proposition 1. There exists a valid configuration s[0 : n] for given r and b and
n = r + b if and only if there exists a valid string s′ ∈ p+ with minimal period
p such that n = k · |p| for some integer k, and p has r/k red colors and b/k blue
colors.

Proof. If s[0 : n] is valid for r and b, then s′ = s along with any minimal period
p of s′ must satisfy the statement. Conversely, it is clear that pk as described is
a valid configuration for r and b. ��

For any integer k, we define t(k) to be the largest power of two that divides k
(with t(k) = 1 if k is odd). We first need the two following intermediate results.

Satisfying Neighbor Preferences on a Circle 733

Lemma 2. Suppose that i + j = 2w. Then there exists a valid configuration
s ∈ (uu)+ such that |u| = w + 1 and uu has a period p if and only if i = j, |p|
divides 2w + 2, |p| is a multiple of t(2w + 2) and p = qq for some string q.

Proof. (⇒) The necessity of i = j is due to Lemma 1(c). The fact that |p| divides
2w + 2 is immediate, since |uu| = 2w + 2 and p is a period of uu. Let k be the
integer such that uu = pk. We claim that |p| does not divide w + 1. Assume on
the contrary that |p| also divides w + 1, say |p| = (w + 1)/h for some integer h.
Then |phph| = 2w +2 = |pk|, implying uu = phph, which is a contradiction since
it implies u = u.

Given the above claims, suppose now that |p| is not a multiple of t(2w + 2).
Then t(|p|) < t(2w + 2). As |pk| = 2w + 2, we have t(k|p|) = t(2w + 2), and so
t(k) > 1 and k must be even, say k = 2k′. But 2k′|p| = 2w + 2 implies that
k′|p| = w + 1, a contradiction since |p| does not divide w + 1.

Finally to see that p = qq for some q, first note that this trivially holds if p =
uu. Otherwise, |p| < 2w+2. Write p = p1p2, where |p1| = |p2| = |p|/2 (note that
given the above, |p| must be even). Since (uu)+ = (p1p2)k, we either have u =
(p1p2)k/2 or u = (p1p2)(k−1)/2p1. The former is not possible, as it would imply
u = u. The latter implies u = p2(p1p2)(k−1)/2, which in turn implies p1 = p2.

(⇐) Let k be such that |p| = (2w + 2)/k. Because |p| contains all the even
prime factors of 2w+2 and |p| divides 2w+2, k must be a product of odd factors
and hence must be odd. Write u = (qq)(k−1)/2q and u = q(qq)(k−1)/2. One can
check that uu = pk and, by Lemma 1, s ∈ u+ is a valid configuration. ��

We now give the analogous statement for the case i + j = 2w − 2. Since its
proof is essentially identical to the above, it is omitted.

Lemma 3. Suppose that i + j = 2w − 2. Then there exists a valid configuration
s ∈ (uu)+ such that |u| = w and uu has period p if and only if i = j, p divides
2w, |p| is a multiple of t(2w) and p = qq for some string q.

We are now ready to give the characterization of minimal periods of s.

Theorem 2. There exists a valid configuration s ∈ p+ with minimal period p if
and only if one of the following conditions holds:

1. i + j = 2w − 2, |p| = (w + 1)/k for some integer k and p has (i + 2)/(2k) B’s
and (j + 2)/(2k) R’s;

2. i + j = 2w − 1, |p| = (2w + 1)/k for some integer k and p has (i + 1)/k B’s
and (j + 1)/k R’s;

3. i + j = 2w, |p| = w/k for some integer k, and p has i/(2k) B’s and j/(2k)
R’s;

4. i = j = w, |p| divides 2w + 2, |p| is a multiple of t(2w + 2) and p = qq for
some string q.

5. i = j = w − 1, |p| divides 2w, |p| is a multiple of t(2w) and p = qq for some
string q.

734 D. Krizanc et al.

Proof. Let us first show that any of the conditions of statement is sufficient. For
(1) and (3), s ∈ p+ is valid by Lemma 1 parts 1 and 3, respectively. For (2),
s ∈ p+ is valid by Lemma 1 part 2. Condition (4) is sufficient by Lemma2 and
(5) by Lemma 3.

We now show that one of these conditions must hold for s ∈ p+ to be valid.
Suppose first that i + j = 2w − 2. By Lemma 1, either s ∈ u+ for some u with
|u| = w + 1, or s ∈ (uu)+ for some u with |u| = w. If s ∈ u+ with |u| = w + 1,
let p be the minimal period of u, with u = pk. Then u must have i/2 + 1 B’s
and j/2 + 1 R’s, from which it follows that (1) holds. If instead s ∈ (uu)+ with
|u| = w, then by Lemma 3, we have that (5) holds.

Suppose that i + j = 2w. Again, we handle the two possible cases prescribed
by Lemma 1. If s ∈ u+ with |u| = w, let p be the minimal period of u, with
u = pk. Then (3) must hold. If s ∈ (uu)+ with |u| = w + 1, by Lemma 2, it is
(4) that holds.

Finally suppose that i + j = 2w − 1. By Lemma 1, if s ∈ u+ and p is a
period of u, u = pk, then p must have (i + 1)/k blue characters and (j + 1)/k
red characters, and (2) holds. ��

The problem of constructing a configuration therefore amounts to building a
string p such that |p| divides r + b and that satisfies one of the above conditions.
Proposition 1 combined with Theorem 2 can be used to derive when such a string
p can be constructed. It is not hard to check that each case enumerated in the
following corollary corresponds to one of the cases of Theorem2.

Corollary 1. For given w, i, j, r and b, there exists a valid configuration if and
only if one of the following conditions holds:

1. i+ j = 2w −2, w +1 and r + b have a common divisor d such that (2w +2)/d
divides both i + 2 and j + 2;

2. i+j = 2w−1, 2w+1 and r+b have a common divisor d such that (2w+1)/d
divides both i + 1 and j + 1;

3. i+ j = 2w, w and r + b have a common divisor d such that 2w/d divides both
i and j;

4. i = j = w, 2w+2 and r+b have a common divisor d such that d is a multiple
of t(2w + 2);

5. i = j = w−1, 2w and r+b have a common divisor d such that d is a multiple
of t(2w).

Theorem 3. If all red agents have preference type i and all blue agents have
preference type j, a valid configuration, if one exists, can be constructed in O(n)
time.

Proof. To determine the existence of a valid configuration, it suffices to find a
divisor d that satisfies one of the cases in Corollary 1. As d must be a divisor of
one of {w,w +1, 2w, 2w +1, 2w +2}, one can simply try every integer between 2
and 2w+2 and verify whether it meets one of the above requirements. Assuming
that division can be done in constant time, this procedure takes time at most

Satisfying Neighbor Preferences on a Circle 735

O(w). As for the construction problem, once a suitable d is found, is it easy to
construct a minimal period p satisfying Theorem 2. The main bottleneck here is
to construct the output, which can be done in time O(n). ��

4.2 Heterogeneous Preference Types

We begin with a straightforward result about the case w = 1.

Theorem 4. For half-window size w = 1, given the number of agents of each
preference type, a valid configuration, if one exists, can be found in Θ(n) time.

Proof. We will develop necessary and sufficient conditions for a valid configura-
tion to exist for a given collection of agents with given preference types. In any
configuration of agents, the agents must occur in an even number of runs, with
each run consisting of some number of agents of the same color: we will refer to
them as blue or red runs. If there are k runs, then starting from a fixed point at
the boundary of two runs we can number the runs around the circle as S0, S1,
. . . , Sk−1 with the odd-numbered runs being blue and the even numbered ones
being red.

Consider a valid configuration. We note that that a blue run in the configu-
ration consists of a single agent if and only if it is of type 0. Consider a blue run
containing k ≥ 2 agents: the (k − 2) agents in the interior of the run must all be
of type 2 and the two agents at the run boundary are or type 1. Thus,

b2 > 0 =⇒ b1 ≥ 2 and r2 > 0 =⇒ r1 ≥ 2 (1)

and since the agents of type 1 occur in pairs of the same color, b1 and r1 are
even and the following necessary conditions hold:

b0 +
b1
2

=
K

2
= r0 +

r1
2

(2)

Together, these conditions are necessary to guarantee a valid configuration. In
fact, they are also sufficient: given a collection of agents that satisfies the above
constraints, we can construct a configuration of interleaved blue and red runs as
follows. Starting at a reference point on the circle, the first b0 blue runs (resp. r0
red runs) consist of singleton blue agents of type 0 (resp. red agents of type 0).
The first non-singleton blue (or red run) is special: it has two blue agents of type
1 (resp. red agents of type 1) at the ends of the run and all the blue agents of
type 2 (resp. red agents of type 2) in its interior. Now, the remaining blue (or
red) runs are each configured to have exactly two blue agents of type 1 (resp.
two red agents of type 1). ��

Next we consider the case when agents have heterogeneous preference types
for arbitrary window sizes. Recall that bi (resp. ri) is the number of blue (resp.
red) agents that have preference i. The neighborhood of a blue agent with pref-
erence i must be a string of length 2w + 1 with the (w + 1)th symbol being B
and with exactly i + 1 occurrences of B (that is i occurrences other than the

736 D. Krizanc et al.

middle symbol). Similarly, the neighborhood of a red agent with preference i is
a string of length 2w + 1 with the (w + 1)th symbol being R and with exactly
i + 1 occurrences of R.

Given a valid configuration C, that is, one that satisfies all the agents’ pref-
erences, let S be the set of all substrings (interpreted circularly as usual) of C
of length 2w + 1. Furthermore, let Pi ⊆ S and Qi ⊆ S denote the set of strings
denoting neighborhoods of blue and red agents (resp.) of preference type i in the
given configuration. Finally, for every y ∈ S, let Xy be the number of occurrences
of y in C, that is, the number of agents in the configuration whose neighborhood
is represented by the string y.

We now present a set of inequalities and equalities concerning the quantities
Xy. First, by definition,

Xy > 0 for every y ∈ S. (3)

Next, observe that since C is a valid configuration, for every i = 0, 1, . . . 2w
with bi �= 0, ∑

y∈Pi

Xy = bi. (4)

Similarly for every i = 0, 1, . . . 2w with ri �= 0
∑

y∈Qi

Xy = ri. (5)

Let T be the set of all substrings of length 2w of C (substrings interpreted
circularly). Equivalently, T is the set of the strings obtained by deleting either
the first or the last symbol of a string in S. Consider z ∈ T . Since the string z
can be preceded and succeeded by an R or a B, it follows that for each z ∈ T

XRz + XBz = XzR + XzB. (6)

Note that if any of the strings Rz,Bz, zR, zB do not exist in S, we simply
remove the corresponding X quantity from the above equality, thereby preserv-
ing (3).

We define a De Bruijn multi-digraph GS with respect to the set S, as
described below. For every string z in T , we have a corresponding node in G.
For every string y ∈ S, we create Xy directed edges in GS all labeled y, from
the node s to the node t where s and t are the strings obtained by dropping the
first and the last symbols of y respectively. Now observe that the out-degree of
a node z is XzR + XzB (if either zR or zB is not in S, simply replace the corre-
sponding term by 0), and its in-degree is XRz +XBz. By Eq. 6, for every node z,
its indegree equals its outdegree. In fact, it is easy to see that the configuration
C corresponds to an Euler tour in the graph GS .

Thus we have shown the following lemma:

Lemma 4. If C is a valid configuration, and S is the set of its substrings of
length 2w + 1, then Eqs. 3, 4, 5, and 6 hold, and furthermore, C corresponds to
an Euler tour in the associated De Bruijn multigraph.

Satisfying Neighbor Preferences on a Circle 737

We now describe our algorithm to construct a valid configuration, if it exists.
We repeat the following steps for every subset S of strings of length 2w+1, until
a valid configuration is found.

Step 1: Fix a subset S of strings of length 2w + 1. Set up and solve the ILP
described by Eqs. 3, 4, 5, and 6, with respect to the set S.

Step 2: If the ILP has a feasible solution, construct the De Bruijn multi-digraph
GS , using the values of the variables Xy in the solution of the ILP.

Step 3: If the digraph GS is connected, find an Euler tour in GS , and build a
configuration by traversing the Euler tour and appending the middle symbol
of each arc’s label.

To analyze the complexity of our algorithm, we use the following result of
Lokshtanov [15] derived from Lenstra [14] with improvements by Kannan [12]
and Frank and Tardos [9] (see [15], Theorem 2.8.2):

Theorem 5 [15]. A solution to an ILP may be found in time O(p2.5pL log(N))
where p is the number of variables in the ILP, L is a bound on the number of
bits required to describe the ILP and N is the maximum of the absolute values
any variable can take.

We are ready to prove the main result of this section:

Theorem 6. For agents with heterogeneous preference types, a valid configura-
tion can be found in O(n + 22

2w+1
w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n) time,
if one exists. Therefore the problem is FPT for parameter w.

Proof. The correctness of the algorithm above can be seen as follows. Suppose
for a particular subset S of strings, the corresponding ILP has a feasible solution,
and the multi-digraph GS is connected. Since Eq. 6 are satisfied, for every node
in the graph GS , its indegree equals its outdegree. Therefore HS admits an Euler
tour; clearly the Euler tour corresponds to a valid configuration.

If for every set S, either the graph GS is not connected, or there is no feasible
solution to the ILP, then it follows from Lemma4 that there is no feasible config-
uration. To see this, it is enough to observe that if C is a feasible configuration,
then for S the set of all substrings of C of length 2w + 1, GS is connected and
the number of occurrences of each y ∈ S in the configuration C form a feasible
solution to the ILP.

To analyze the running time, observe that the main cost is in solving the
ILP generated for each of the possible subsets of strings of length 2w + 1, i.e.,
solving 22

2w+1
ILPs. The ILPs have at most 22w+1 variables. They contain 22w+1

equations of type 3 each requiring O(w) bits to describe. There are 2(2w + 1)
equations of type 4 and 5 each requiring O(w22w+1 + log n) bits and there
are 22w equations of type 6 each requiring O(w) bits. The total length of an
ILP is then O(w(w22w+1 + log n)) and thus by Theorem5, it can be decided in
O(w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n). Constructing the graph and decid-
ing if it is connected takes only an additional O(22w) time so that the overall
runtime is O(22

2w+1
w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n). ��

738 D. Krizanc et al.

5 Preference Thresholds

Recall that βi and ρi are the number of blue and red agents respectively with
threshold i. We start with a simple result about the case when all agents have
the same threshold.

Theorem 7. Suppose all nodes have the same threshold t. Then there exists a
valid configuration if and only if one of the following is true:

1. r = 0 or b = 0.
2. t ≤ w and r, b ≥ t + 1

Therefore, a valid configuration, if one exists, can be found in O(n) time.

Proof. If r = 0 (resp. b = 0), then clearly any permutation of blue (resp. red)
agents satisfies all their preferences. Therefore we assume r, b > 0 (there are
both red and blue agents). Since each agent requires t or more neighbors of its
own color, it is necessary that r, b ≥ t + 1. Suppose t > w and there is a valid
configuration. There must be at least one run of each color. Consider a pair of
adjacent agents A and B such that A is red and B is blue. Since A has at least
t other red neighbors, at most one of which is not a neighbor of B, and A is
an additional red neighbor of B, it follows that B has at least t red neighbors.
But then B can have at most 2w − t < w < t blue neighbors, a contradiction.
We conclude that t ≤ w. It is easy to see that a single run each of red and blue
agents provides a valid configuration. ��

Next we consider the special case of heterogeneous thresholds with w = 1.
This means only three different values of thresholds are possible: 0, 1, 2.

Theorem 8. For w = 1, and heterogeneous preference threshold specifications,
a valid configuration can be constructed, if one exists, in Θ(n) time.

Proof. If either b = 0 or r = 0, clearly any permutation of all blue agents satisfies
all their preferences. So assume r, b > 0. Then we must have at least one run of
each color. The endpoints of each run must be agents of threshold either 0 or 1.
That is, we need:

ρ0 + ρ1 ≥ 2 and β0 + β1 ≥ 2

If this condition is satisfied, the following configuration is valid: create one run
of each color, the endpoints of the runs are agents with threshold 0 or 1, the
other agents are placed inside the runs in an arbitrary fashion. ��

Finally, we consider the general case when agents have heterogeneous pref-
erence thresholds, for arbitrary values of w. Any blue agent with preference
threshold B≥i (resp. any red agent with preference threshold R≥i), for some
i : 0 ≤ i ≤ 2w, requires at least i blue (resp. red) agents in its neighborhood.
Any such blue (resp. red) agent has its neighborhood constrained to be a string
in Pk (respectively Qk) where i ≤ k ≤ 2w (recall that Pk and Qk respectively
denote all possible neighborhoods of blue and red agents containing exactly k

Satisfying Neighbor Preferences on a Circle 739

proper neighbors of their own color in a given configuration). This suggests mod-
ifying the ILP above by replacing the equalities in (4) with inequalities, one for
each 0 ≤ i ≤ 2w:

∑

y∈∪i≤k≤2wPk

Xy ≥
∑

i≤k≤2w

βk (4-i)

and replacing (5) likewise with:
∑

y∈∪i≤k≤2wQk

Xy ≥
∑

i≤k≤2w

ρk (5-i)

with Eqs. (4-i) and (5-i) above being satisfied with equality . It is straightforward
to see that the complexity of solving the problem is exactly the same as for
heterogeneous preference types, as it involves solving a different ILP with the
same number of variables and constraints. The theorem below follows:

Theorem 9. For agents with heterogeneous threshold types, a valid configura-
tion can be found in O(n + 22

2w+1
w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n) time,
if one exists. Therefore it is FPT for parameter w.

6 Discussion

We considered three ways of specifying seating preferences and for each of these
three kinds of specifications, we gave algorithms to construct such an arrange-
ment when possible. Our main result is that satisfying seating preferences is
fixed-parameter tractable (FPT) with respect to half-window size parameter w
for preference types and thresholds, while it can be solved in linear time for
preference lists. We also gave linear time algorithms for some special cases. We
remark that if the input is given simply as a set of distinct preference speci-
fications, and the number of agents that desire them, the existence of a valid
configuration can be determined in O(w) time for homogeneous preference types
and in O(22

2w+1
w(w22w+1 + log n)2(2w+1)2.5·22w+1

log n) time for heterogeneous
preference types and thresholds.

The existence of a polynomial algorithm in both w and n for heterogeneous
preference types and thresholds remains open, as does the construction of valid
configurations for grids. It would be interesting to solve the general case when
each agent independently decides the manner of expressing its preference. Another
direction of interest would be to start with a given configuration, and move the
agents in an efficient manner to final positions satisfying their preferences.

References

1. Andrews, J.A., Jacobson, M.S.: On a generalization of chromatic number. Congr.
Numer. 47, 33–48 (1985)

2. Benard, S., Willer, R.: A wealth and status-based model of residential segregation.
Math. Sociol. 31(2), 149–174 (2007)

740 D. Krizanc et al.

3. Benenson, I., Hatna, E., Or, E.: From schelling to spatially explicit modeling of
urban ethnic and economic residential dynamics. Sociol. Methods Res. 37(4), 463–
497 (2009)

4. Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-
dimensional Schelling segregation. In: Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, pp. 789–804. ACM (2012)

5. Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in surfaces:
partitions into subgraphs of bounded valency. J. Gr. Theory 10(2), 187–195 (1986)

6. Cowen, L.J., Goddard, W., Jesurum, C.E.: Coloring with defect. In: SODA, pp.
548–557 (1997)

7. Cowen, L.J., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Gr.
Theory 24(3), 205–219 (1997)

8. Dall’Asta, L., Castellano, C., Marsili, M.: Statistical physics of the schelling model
of segregation. J. Stat. Mech: Theory Exp. 2008(07), L07002 (2008)

9. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

10. Henry, A.D., Pralat, P., Zhang, C.-Q.: Emergence of segregation in evolving social
networks. Proc. Natl. Acad. Sci. 108(21), 8605–8610 (2011)

11. Immorlica, N., Kleinberg, R., Lucier, B., Zadomighaddam, M.: Exponential seg-
regation in a two-dimensional schelling model with tolerant individuals. In: Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 984–993. SIAM (2017)

12. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

13. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Pro-
ceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms and
Architectures, pp. 138–144. ACM (2009)

14. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

15. Lokshtanov, D.: New methods in parameterized algorithms and complexity. Ph.D.
thesis. University of Bergen, Norway (2009)

16. Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited.
J. Public Econ. 91(1), 1–24 (2007)

17. Parshina, O.G.: Perfect 2-colorings of infinite circulant graphs with continuous set
of distances. J. Appl. Ind. Math. 8(3), 357–361 (2014)

18. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

19. Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)
20. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186

(1971)
21. Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory

of Institutions. Princeton University Press, Princeton (2001)
22. Zhang, J.: A dynamic model of residential segregation. J. Math. Sociol. 28(3),

147–170 (2004)

Two-Dimensional Knapsack for Circles

Carla Negri Lintzmayer1(B) , Flávio Keidi Miyazawa2 ,
and Eduardo Candido Xavier2

1 Center for Mathematics, Computer, and Cognition, Federal University of ABC,
Santo André, Brazil

carla.negri@ufabc.edu.br
2 Institute of Computing, University of Campinas, Campinas, Brazil

{fkm,eduardo}@ic.unicamp.br

Abstract. In this paper we consider the Two-dimensional Knapsack for
Circles problem, in which we are given a set C of circles and want to pack
a subset C′ ⊆ C of them into a rectangular bin of dimensions w and h
such that the sum of the area of circles in C′ is maximum. By packing we
mean that the circles do not overlap and they are fully contained inside
the bin. We present a polynomial-time approximation scheme that, for
any ε > 0, gives an approximation algorithm that packs a subset of the
input circles into an augmented bin of dimensions w and (1 + O(ε))h
such that the area packed is at least (1 − O(ε)) times the area packed
by an optimal solution into the regular bin of dimensions w and h. This
result also extends to the multiple knapsack version of this problem.

Keywords: Circle packing · Two-dimensional Knapsack
Polynomial-time approximation scheme

1 Introduction

In the Two-dimensional Knapsack problem, we are given a set of 2D items with
profits and we want to pack some of the items into one 2D recipient such that
the sum of their profits is maximum. By packing we mean that the items do
not overlap and they are fully contained inside the recipient. We consider the
variation where the items are circles, the item profit is the circle’s area, and the
recipient is a rectangle.

The Two-dimensional Knapsack is a generalization of the famous Knapsack
problem in one dimension, where we have a set of items with profits and weights
and want to find a subset of items of maximum profit whose total weight is at
most the capacity of the given knapsack. As such, it is also NP-hard [6]. This
problem is also related to the likewise famous Two-dimensional Bin Packing

This work was supported by São Paulo Research Foundation (grants 2016/14132-4,
2015/11937-9, 2016/23552-7, 2016/01860-1) and National Counsel of Technologi-
cal and Scientific Development (grants 306358/2014-0, 311499/2014-7, and 425340/
2016-3).

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 741–754, 2018.
https://doi.org/10.1007/978-3-319-77404-6_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_54&domain=pdf
http://orcid.org/0000-0003-0602-6298
http://orcid.org/0000-0002-1067-6421

742 C. N. Lintzmayer et al.

problem, in which we are given a set of 2D items and we want to pack them all
into the minimum number of given 2D bins.

Problems in which we have to pack circles have applications in crystallogra-
phy, error-correcting codes, coverage of a geographical area with cell transmit-
ters, storage of cylindrical barrels, packaging bottles or cans [15], and origami
design [3]. Unfortunately, Demaine et al. [3] showed that it is NP-hard to decide
whether a given set of circles can be packed into a rectangle, an equilateral
triangle, or a unit square.

There are a number of results in the literature for the Two-dimensional Bin
Packing [2,12]. When the items are circles, several results involve packing circles
of same radii into squares [15], but when the circles have different radii there are
not that many [7]. Miyazawa et al. [14] showed an asymptotic PTAS for packing
circles into rectangles when one can augment one direction of the bin by a small
constant. Hokama et al. [8] gave a 2.439-competitive algorithm for the online
circle packing into squares, in which one circle is given at a time.

Regarding Two-dimensional Knapsack problems, there are also several results
in the literature, but, to the best of our knowledge, none of them considers that
the items are circles. Fishkin et al. [4] showed a PTAS for packing squares into
a unit square bin that is augmented in both dimensions by a factor of ε. The
same authors [5] showed later two PTASs for packing rectangles into a unit
square bin. One of them considers the area of the rectangles as profits and the
other considers general profits, but the bin is augmented in both dimensions by
a factor of ε. Then Jansen and Solis-Oba [9] showed a PTAS for packing squares
into a rectangular bin. For packing rectangles with profits the best-known results
are a 1/(2 + ε)-approximation algorithm due to Jansen and Zhang [10] and a
1/(1 + ε)-approximation algorithm that runs in quasi-polynomial time due to
Adamaszek and Wiese [1].

Our contributions. We consider the Two-dimensional Knapsack for Circles
(2DK) when items profits are equal to their areas. We use the structure of
solutions presented by Miyazawa et al. [14] combined with new ideas to obtain a
PTAS for this problem such that, for any given 0 < ε ≤ 1, there is a (1 − O(ε))-
approximation algorithm that packs a subset of circles of the input into a bin of
augmented height (an extra factor of O(ε)).

The rest of the paper is divided as follows. Section 2 presents the main defini-
tions that we will need. Section 3 gives an overview of an algorithm for 2DK and
how the analysis will be performed. Such algorithm, which has exponential-time,
is presented in Sect. 4. Section 5 shows how to transform an optimal solution for
2DK so that it has the same structure of the one built by the algorithm. The
profit of such transformed optimal solution is then related to the profit of the
algorithm’s solution in Sect. 6. Section 7 shows an algorithm for a generalized
problem, which is needed to improve the time complexity of the previous algo-
rithm for 2DK. We finally show in Sect. 8 that such algorithm is a PTAS for
2DK.

Two-Dimensional Knapsack for Circles 743

2 Definitions

Let C = {c1, c2, . . . , cn} be a set of n circles. The radius of ci ∈ C is denoted as
ri, with ri ∈ Q+, while its profit, denoted as p(ci), is defined as its area πr2i . For
any object X (a set of circles, a bin, or a set of bins), we denote as p(X) the sum
of the profit of circles contained in X. We denote a bin B (knapsack) of width
w ∈ Q+ and height h ∈ Q+ as Bw×h and say it has size w × h. We may omit
the dimensions from the notation when they are clear from the context.

A packing of a set C of circles into a bin Bw×h is a sequence of pairs (xi, yi) ∈
R

2
+, one for each ci ∈ C, which describe the center coordinates of the circles and

satisfy the constraints: (1) two circles cannot overlap, that is, for any ci, cj ∈ C,
with i �= j, (xi − xj)2 + (yi − yj)2 ≥ (ri + rj)2, and (2) all circles must be fully
inside the bin, that is, for all ci ∈ C, ri ≤ xi ≤ w − ri and ri ≤ yi ≤ h − ri.

An instance for the Two-dimensional Knapsack for Circles (2DK) is a triple
(C, w, h), where C is a set of n circles, w ≤ h, and for each ci ∈ C, 2ri ≤ w. The
objective of this problem is to pack a subset C′ ⊆ C of circles into a bin Bw×h

such that the profit p(C′) is maximum. The profit of an optimal solution for the
2DK, given an input (C, w, h), is denoted by OPTw×h(C). For the rest of the
paper, we consider that p(C) > πwh/8 in any instance of 2DK. Lemma1 shows
what to do when p(C) ≤ πwh/8.

Lemma 1. Let (C, w, h) be an instance for 2DK. If p(C) ≤ πwh/8, all circles
of C can be packed into one bin Bw×h.

Proof. Place each ci ∈ C∗ into a square of side 2ri. If the total area of such
squares is at most wh/2, they can all be packed into Bw×h, according to Meir
and Moser [13]. Since π/4 of the area of each square is filled with a circle, we
have that if p(C) ≤ π

4 × wh
2 = πwh

8 , then all circles can be packed into the bin. ��
We also consider a generalized problem, called Two-dimensional Multiple

Knapsack for Circles (2DMK), whose instances are quadruples (C, w, h, f), where
C, w, and h are as in 2DK, and f ∈ Z+. The objective is to pack C′ ⊆ C into f
bins of size w ×h such that p(C′) is maximum. The profit of an optimal solution
for the 2DMK, given an input (C, w, h, f), is denoted by OPT2DMK

w×h (C, f).

3 Overview of the Algorithm for 2DK and its Analysis

Our algorithm for 2DK will receive as input a tuple (C, w, h, ε), where (C, w, h)
is an input for 2DK, ε ∈ R+ is a constant such that 0 < ε < 1, r = 1/ε is
integer multiple of 2, and h/(wε) is integer. From now on, C, w, h, and ε always
have such meanings. Also, all other notations defined in this section will be used
along the text.

We first need to partition C into a sequence of sets such that the ith set has
circles with radii much larger than the circles of the (i + 1)th set. Formally, let
C∗ ⊆ C be the set of circles of an optimal solution for input (C, w, h) of 2DK. For
every integer i ≥ 0, let Gi = {cj ∈ C : ε2iw ≥ 2rj > ε2(i+1)w} and G∗

i = Gi ∩ C∗.

744 C. N. Lintzmayer et al.

Now for each integer j such that 0 ≤ j < r, let Hj = {c� ∈ Gi : i ≡ j (mod r)}
and H∗

j = Hj ∩ C∗. Let t be an integer such that p(H∗
t) ≤ εp(C∗). Note that this

is possible because there are r = 1/ε such sets. Now remove Ht from C and H∗
t

from C∗. For every integer j ≥ 0, let Sj =
⋃t+jr−1

i=t+(j−1)r+1 Gi and S∗
j = Sj ∩ C∗.

Note that the minimum diameter of a circle in Sj is ε2(t+jr)w while the maximum
diameter of a circle in Sj+1 is ε2(t+jr+1)w, so their sizes are different by a factor
of ε2. Thus, S0,S1, . . . is the partition we needed. Because of this, let w0 = w,
h0 = h, and wj = hj = ε2(t+(j−1)r)+1w for every j ≥ 11. This means that there
is a gap between the sets: any circle in Sj is at most a factor of ε smaller than a
(squared) bin of size wj × hj , and such bin is also smaller than any circle of the
set Sj−1 by a factor of ε.

The main idea of our algorithm (given Sect. 4) is to pack circles of set Sj

into bins of size wj × hj . In the first iteration, circles of S0 are packed into one
Bw×h, as w = w0 and h = h0. The remaining space not used by these circles
will be used to pack smaller circles from other sets Sj , starting with j = 1 and
considering one set per iteration. For that, we create a grid over the bins that
packed circles from Sj−1 that divides them into subbins of size wj × hj and we
check which subbins do not intersect previously packed circles of Sj−1 so that
they can be used to pack circles of Sj . Note that wj = wj+1/ε2r, and since both
1/ε and h/(wε) are integers, a bin of size wj × hj can be perfectly divided into
bins of size wj+1 × hj+1, for any j ≥ 0. We will say “grid of size a × b” when we
mean “grid that divides the bin into subbins of size a × b”. Also, we denote by
Gj(B) the subbins in the grid of size wj × hj over some bin B or set B of bins.

Thus, the solution has a well-behaved structure: if we consider a grid of
size wj × hj , for all j ≥ 1, over the input bin Bw×h, then the circles of set
Sj that belong to the solution are fully contained inside elements of such grid.
In our analysis, we first show how to transform a given optimal solution by
discarding some circles such that, in the end, all circles of set S∗

j that belong
to the transformed solution are fully contained inside elements of a grid of size
wj × hj over the input bin (Sect. 5). Then we show that in the end of this
transformation, the total area of discarded circles is at most O(ε). The final part
of the analysis shows that the profit of the solution created by our algorithm is
not so far from the profit of the transformed optimal solution (Sect. 6).

4 Algorithm for Two-Dimensional Knapsack for Circles

We call our algorithm CircleKnapsack and its pseudocode is given below,
followed by an explanation of its behavior.
1: function CircleKnapsack(C, w, h, ε)
2: Create sets Gi, i ≥ 0, and Hj , 0 ≤ j < r, as described in Section 3
3: for each t between 0 and r − 1 such that p(Ht) ≤ εp(C) do
4: Create sets Sj , j ≥ 0, as described in Section 3

1 Note that wj = hj for all j ≥ 1, but w0 is not necessarily equal to h0. This is the
only reason we keep using wj and hj throughout the rest of the text.

Two-Dimensional Knapsack for Circles 745

5: F t
0 ← {Bw×h}

6: for all j ≥ 0 do
7: F t

j ← an optimal solution for 2DMK with input (Sj , wj , hj , |F t
j |)

8: F t
j+1 ← bins of Gj+1(F t

j) that do not intersect circles of Sj

9: Choose t such that p(
⋃

j≥0 F t
j) is maximum

10: return Packing of F t
0 , F

t
1 , . . . into Bw×h

CircleKnapsack receives the input (C, w, h, ε). In Sect. 3, we removed set
Ht such that p(H∗

t) ≤ εp(C∗), which is necessary to create sets Sj , for j ≥ 0. Since
we do not know the value of an optimal solution, in line 3 we try all possible
values for t, which eventually reach the one related to the optimal solution
(because εp(C∗) ≤ εp(C)). In line 10, therefore, we return the best solution
found (created between lines 4 and 8) among all iterations. We thus describe
now how our algorithm generates one solution given a fixed value of t.

For each integer j ≥ 0, our algorithm keeps a set F t
j of free bins of size

wj ×hj , which are used to pack circles of set Sj . These are subbins of the initial
bin. When j = 0 the only free bin is Bw×h (line 5). In line 7 we choose the circles
of Sj that will be packed into the |F t

j | available bins. Our wish is to do a greedy
choice, which is to pack in the bins of size wj × hj of F t

j a subset of circles of Sj

such that p(F t
j) is maximum. Note that this is the definition of the generalized

problem 2DMK, and so we use an optimal solution for the same.
It remains to find some space to pack circles of the next set, Sj+1. This is

done in line 8, in which we create a grid of size wj+1 × hj+1 over each of the
current bins of set F t

j . Any element of this grid that does not intersect a packed
circle of Sj is then placed into set F t

j+1 so it can be used in the next iteration.

5 Modifying an Optimal Solution

Consider input (C, w, h) for 2DK, let C∗ ⊆ C be a set of circles of an optimal
solution, i.e., p(C∗) = OPTw×h(C), and let B∗

w×h be the bin where C∗ is packed.
Recall that in Sect. 3 we defined sets G∗

i for i ≥ 0, H∗
j for 0 ≤ j < r, and, after

finding and removing H∗
t such that p(H∗

t) ≤ εp(C∗), we defined sets S∗
j for j ≥ 0.

In this section we describe how to transform a packing of C∗ into B∗
w×h into a

structured packing where circles of set S∗
j , for j ≥ 0, are fully contained inside

bins of Gj(B∗
w×h). This algorithm is called TransformOptimal. It has two

phases, as we will see next, and it maintains a set C�, initially equal to C∗, which
keeps the circles that remain in the transformed solution.

We say that grid j over Bwk×hk
is a grid of size wj ×hj over bin Bwk×hk

. The
lines of grid j over Bwk×hk

are the wk/wj vertical lines and hk/hj horizontal
lines that define the subbins of the grid. For any bin Y (or set Y of bins), we
will denote as Area(Y) the area of Y (or the sum of the areas of the bins in Y).

The first phase of the algorithm deals with the main problem of the initial
packing of C∗, which is the fact that for any grid j over B∗

w×h, circles of S∗
j may

intersect the grid lines. Note that we only have to consider j ≥ 1, because in the
initial packing circles of S∗

0 are already fully contained into the bin B∗
w×h.

746 C. N. Lintzmayer et al.

Fig. 1. Circles from Wj that intersect the borders of bin Qwj×hj are removed from
their current positions and placed into three temporary bins of size 2εwj × hj .

Let Wj be the set of circles of S∗
j that intersect the lines of grid j over B∗

w×h.
In the end of the first phase, each circle of Wj will either be reallocated inside
B∗

w×h or discarded. We start by temporarily removing such circles from B∗
w×h

and placing them into a set Lj of bins in the following way. For each subbin
Qwj×hj

of Gj(B∗
w×h), we only need to care for removing circles that intersect its

superior and right borders (doing this for all subbins of the grid will collectively
free the grid lines). See Fig. 1 for a visual depiction of the following discussion.

Since all circles of Wj have diameter at most εwj , two bins of size 2εwj × hj

comprise almost all circles that intersect the two mentioned borders of Qwj×hj
.

A third bin of size 2εwj × 2εwj is needed to comprise circles from the top right
corner. Thus, all circles from these borders can fit into three bins of size 2εwj ×hj

each, so we remove them from the current packing, place them into these bins
preserving the relative positions, and add all these bins to Lj . Lemma 2 shows
the total area of the bins in Lj .

Lemma 2. For each j ≥ 1, Area(Lj) = 6εwh.

Proof. There are w
wj

h
hj

subbins in Gj(Bw×h) and each of them contributes to Lj

with three rectangles of area 2εwjhj each. ��
Now we create a new bin D of size w × 6εh. Note that since both w and

6εh are multiple of wj , any grid j over D perfectly divides D into bins of size
wj ×hj . Also note that every 1/(2ε) bins of Lj form a bin of size wj ×hj . Thus,
by Lemma 2, all bins of size wj × hj formed from Lj can be packed into D. The
idea now for each of these bins is to (i) move it to D, (ii) move it back to B∗

w×h,
or (iii) discard it.

Suppose we pack all bins of size wj ×hj formed from Lj into D and consider
grid j + 1 over B∗

w×h and over D. Since 2εwj is a multiple of wj+1 = ε2rwj ,
we can make a bijection φ between the subbins of Gj+1(D) and the subbins of
Gj+1(B∗

w×h) that are in the rectangles of size wj ×2εwj around the superior and
right borders of each Qwj×hj

∈ Gj(B∗
w×h) (the same ones considered to build

Lj). So, for all subbin Rwj+1×hj+1 in D there exists a corresponding subbin

Two-Dimensional Knapsack for Circles 747

φ(Rwj+1×hj+1) in B∗
w×h. See Fig. 1. More importantly, if Rwj+1×hj+1 is a subbin

of D fully contained in a circle of Wj , then φ(Rwj+1×hj+1) is empty in B∗
w×h.

During the process described next, consider the following notation. Suppose
we pack all bins from Lj into D. A subbin R ∈ Gj(D) and the circles packed in
it are real if they are indeed packed in D, they are φ-virtual if they were moved
to φ(R), or they are virtual if they were removed from D.

The process starts by moving each bin of L1 to D, which is initially empty.
These bins and W1 are real. The following steps are repeated for each j ≥ 2.
Pack all bins of Lj into D, possibly generating overlaps of circles. For each bin
R = Rwj×hj

∈ Gj(D), we have three possibilities. If R is completely inside a
(virtual or real) circle of Wj−1, then move the packing in R to φ(R) and keep it
as φ-virtual in D. If R intersects the borders of (virtual or real) circles of Wj−1,
then remove it and keep it as virtual in D. Otherwise, R does not intersect circles
of Wj−1 and so we have three subcases; let S = Swj−1×hj−1 ∈ Gj−1(D) be the
bin that contains R: (i) if S is real in D, then R can be kept in D because it
does not overlap any circle, (ii) if S is φ-virtual, then move the packing in R to
φ(R), which does not intersect any circle in φ(S), and keep R as φ-virtual in D,
(iii) otherwise S is virtual, so remove R and keep it as virtual (note that the
removal of R was already accounted in the removal of S).

At the end of the first phase of the algorithm, we simply discard all circles
that are contained in D from C�. At this point, we have that the remaining circles
are in such way that for every j ≥ 0, S∗

j is packed into a subset of Gj(B∗
w×h).

We can still have the case, though, that bins from a grid j′ over B∗
w×h intersect

larger circles, from an S∗
j with j′ ≥ j. Phase two of the algorithm deals with this

problem2. It just removes from C� the circles contained into bins of the grid j
over B∗

w×h that intersect the borders of circles of S∗
j−1, for all j ≥ 1.

The following is the pseudocode for TransformOptimal.
1: function TransformOptimal(C∗, w, h, ε)
2: C� ← C∗

3: Create sets G∗
i , i ≥ 0, and H∗

j , 0 ≤ j < r, as described in Section 3
4: Find integer t such that p(H∗

t) ≤ εOPTw×h(C)
5: Remove all circles of H∗

t from C�

6: Create sets S∗
j , j ≥ 0, as described in Section 3

7: Let D be a bin of size w × 6εh
8: for all j ≥ 1 do
9: Lj ← ∅

10: for each Qwj×hj
∈ Gj(B∗

w×h) do
11: Let Wj ⊆ S∗

j be the set of circles that intersect the superior and
right borders of Qwj×hj

12: Create three bins T1, T2, and T3 of size 2εwj × hj and place the
circles of Wj in them, preserving positions and removing them from B∗

w×h

13: For all R ∈ Gj+1(Ti), for 1 ≤ i ≤ 3, let φ(R) be the corresponding
cell in Gj+1(Q)

2 Recall that this is a problem because this situation does not happen in a solution
created by CircleKnapsack.

748 C. N. Lintzmayer et al.

14: Add T1, T2, and T3 to Lj

15: Make groups of 1/(2ε) bins of L1 forming new bins of size w1 × h1 and
put each of them in one subbin of G1(D) as real

16: for all j ≥ 2 do
17: Make groups of 1/(2ε) bins of Lj forming new bins of size wj × hj

and put each of them in one subbin of Gj(D)
18: for each R ∈ Gj(D) do
19: if R is completely inside a (virtual/real) circle of Wj−1 then
20: Move the packing in R to φ(R) and keep it as φ-virtual in D
21: else if R intersects borders of (virtual/real) circles of Wj−1 then
22: Remove R and keep it as virtual in D
23: else
24: Let S ∈ Gj−1(D) be the bin that contains R
25: if S is φ-virtual then
26: Move the packing in R to φ(R) and keep it as φ-virtual
27: else if S is virtual then
28: Remove R and keep it as virtual in D

29: Remove all real circles of D from C�

30: for all j ≥ 1 do
31: Let V ⊆ Gj(B∗

w×h) be a set of bins that intersect but are not contained
in circles of S∗

j−1

32: Remove all circles of V from C�

33: return Structured packing of C� into B∗
w×h

We can demonstrate by simple inductions that at the end of
TransformOptimal, for all j ≥ 0, no circle in C� ∩ S∗

j intersects lines of
grid j over B∗

w×h, all circles of S∗
j ∩ C� are packed into subbins of Gj(B∗

w×h),
and none of these subbins intersect larger circles from other S∗

k where k < j.
Theorem 1 shows that the profit loss due to all removals of circles is at most
O(ε)OPTw×h(C). Lemmas 3 and 4 are used by this theorem.

Lemma 3. When p(C) > πwh/8, OPTw×h(C) ≥ πwh/16.

Proof. Place each ci ∈ C into a square of side 2ri. Now use NFDH [13] to pack
all these squares into bins of size w × h. NFDH guarantees that the density of
this square packing is 1/4 for each bin, except maybe for the last one. We choose
one bin of density 1/4 as a feasible solution for 2DK. Since π/4 of the area of
each square is filled with a circle, an area of at least πwh/16 of such bin is filled
with circles. If no bin has density 1/4, then NFDH packed C into one bin. Thus
the total area of all squares is at most wh/4, indicating that the area of the
circles is at most πwh/16, which is a contradiction because p(C) > πwh/8. ��
Lemma 4. (Miyazawa et al. [14]). For j ≥ 0, let ci ∈ Sj be a circle packed
into a bin B and let R ⊆ Gj+1(B) be the subset of bins that intersect the border
of ci. We have Area(R) ≤ 16εp(ci).

Two-Dimensional Knapsack for Circles 749

Theorem 1. TransformOptimal transforms a packing of C∗ ⊆ C into bin
B∗

w×h, where p(C∗) = OPTw×h(C), into a structured packing of C� ⊆ C∗ into the
same bin such that p(C�) ≥ (1 − 64ε)OPTw×h(C).

Proof (Sketch). We account the profit loss when removing circles from H∗
t (at

most εOPTw×h(C)), from D (at most 96ε/πOPTw×h(C) < 31εOPTw×h(C), by
Lemma 3), from virtual bins in D (at most 16ε

∑
j≥1 p(S∗

j−1) ≤ 16εOPTw×h(C),
by Lemma 4), and from bins of grid j over B∗

w×h that intersect the borders of
circles of S∗

j−1 for all j ≥ 1 (at most 16εOPTw×h(C), by Lemma 4). ��

6 Analysis of the Algorithm

Recall that during the execution of CircleKnapsack we create sets F t
j ⊆

Gj(Bw×h) of bins, for all j ≥ 0, which pack a subset of circles of Sj using an
optimal solution for 2DMK. Thus, by construction,

p(CircleKnapsack(C, w, h, ε)) =
∑

j≥0

OPT2DMK
wj×hj

(Sj , |F t
j |). (1)

On the other hand, TransformOptimal receives a packing of C∗ ⊆ C into
B∗

w×h such that p(C∗) = OPTw×h(C) and modify it into a structured pack-
ing containing circles from C� ⊆ C∗. For every j ≥ 0, let P �

j be the subset of
Gj(B∗

w×h) that is used to pack circles from S∗
j ∩ C�. Thus,

∑
j≥0 p(P �

j) = p(C�).
We showed in Theorem 1 that p(C�) ≥ (1 − 64ε)OPTw×h(C). We also have

∑

j≥0

p(P �
j) ≥ (1 − 64ε)OPTw×h(C). (2)

Lemma 5 thus shows a relation, for j ≥ 0, between OPT2DMK
wj×hj

(Sj , |F t
j |) and

p(P �
j). Theorem 2 at last shows a bound on the total profit of circles packed by

CircleKnapsack.

Lemma 5. For any j ≥ 0,

j∑

k=0

OPT2DMK
wk×hk

(Sk, |F t
k|) ≥ (1 − 16ε)

j∑

k=0

p(P �
k). (3)

Proof. We will show, by induction on j, that (3) is valid. When j = 0, P �
0 is a

solution for 2DMK for input (S0, w, h, 1), so OPT2DMK
w×h (S0, 1) ≥ p(P �

0), and the
result follows.

Suppose now that j ≥ 1. If |F t
j | ≥ |P �

j |, then we have OPT2DMK
wj×hj

(Sj , |F t
j |) ≥

OPT2DMK
wj×hj

(Sj , |P �
j |) ≥ p(P �

j). By the induction hypothesis, we have (3) valid for
j − 1 and so the result follows.

Therefore, consider |F t
j | < |P �

j |. As simplification, let us call B the bin of
size w ×h returned by CircleKnapsack and B∗ the bin of size w ×h returned
by TransformOptimal.

750 C. N. Lintzmayer et al.

Note that a bin R ∈ Gj(B) is not in F t
j if one of these cases happen: (i) R is

contained in a circle from some set among S0,S1, . . . ,Sj−1; (ii) R intersects the
border of a circle of Sj−1; or (iii) R is contained in a bin Twk×hk

that intersects
the border of a circle from Sk−1, for the largest value of k such that k < j.

Let X ⊆ Gj(B) the bins of case (i). Let Y ⊆ Gj(B) be the bins of cases
(ii) and (iii). Thus, X, Y , and F t

j is a partition of Gj(B). Let Z ⊆ P �
j be such

that |Z| = |F t
j |. Clearly, OPT2DMK

wj×hj
(Sj , |F t

j |) = p(F t
j) ≥ p(Z). Let W ⊆ Gj(B∗)

be such that W ∩ Z = ∅ and |W | = |X|. Clearly, p(X) ≥ p(W). At last, let
V = Gj(B∗)\(Z∪W). Note that |V | = |Y |, which means that p(V) ≤ Area(V) =
Area(Y) ≤ 16ε

∑j
k=0 p(F t

k), where the last inequality follows from Lemma 4.
By the definitions above, we have

∑j
k=0 OPT2DMK

wk×hk
(Sk, |F t

k|) = p(X)+p(Y)+
p(F t

j),
∑j

k=0 p(P �
k) = p(Z) + p(W) + p(V), and p(X) + p(F t

j) + p(V) ≥ p(W) +
p(Z) + p(V).

Putting it all together, we have (1 + 16ε)
∑j

k=0 OPT2DMK
wk×hk

(Sk, |F t
k|) ≥

p(X) + p(Y) + p(F t
j) + p(V) ≥ p(X) + p(F t

j) + p(V) ≥ p(W) + p(Z) +
p(V) =

∑j
k=0 p(P �

k). Since 1/(1 + 16ε) ≥ (1 − 16ε) whenever ε > 0, we have
∑j

k=0 OPT2DMK
wk×hk

(Sk, |F t
k|) ≥ (1 − 16ε)

∑j
k=0 p(P �

k), and the result follows. ��
Theorem 2. CircleKnapsack packs circles from C into a bin of size w × h
such that their total profit is at least (1 − O(ε))OPTw×h(C).

Proof (Sketch). This follows from Eqs. (1), (2), and (3) from Lemma 5. ��

7 Algorithm for 2DMK

A careful reader noticed that algorithm CircleKnapsack asks for an optimal
solution for 2DMK in each of its iterations, which is an NP-hard problem. On
the other hand, we only need solutions for instances (Sj , wj , hj , |F t

j |), for each
j ≥ 0, where the circles of Sj have restricted radii. In this section we show
how to obtain good solutions for these instances of 2DMK in order to provide a
polynomial-time algorithm for 2DK.

Following the work of Miyazawa et al. [14], we will also need that the center
coordinates of a solution are rational numbers. Since we cannot guarantee that
every instance has a rational solution, our solution is in fact a packing of a subset
of C into an augmented bin, of size w × (1 + 3ε)h. This happens because the
packing algorithms given by Miyazawa et al. [14] actually obtain coordinates
that are roots of polynomial equations, which are possibly irrational, and so
they approximate these coordinates and slightly increase the height of the bin.
Two important results given by Miyazawa et al. [14] will be notably used in this
section and are summarized in the next two lemmas. First we need the following
definition. A ξ-packing of a set C of circles into a bin Bw×h is a sequence of pairs
(xi, yi) ∈ R

2
+ for each ci ∈ C which describe the center coordinates of the circles

and satisfy the constraints: (1) two circles may overlap by at most ξ, that is, for
any ci ∈ C and cj ∈ C, with i �= j,

√
(xi − xj)2 + (yi − yj)2 ≥ ri +rj −ξ, and (2)

the circles can surpass the border of the bin by at most ξ, that is, for all ci ∈ C,
ri − ξ ≤ xi ≤ w − ri + ξ and ri − ξ ≤ yi ≤ h − ri + ξ.

Two-Dimensional Knapsack for Circles 751

Lemma 6 (Miyazawa et al. [14]). There exists an algorithm that decides if a
set of circles can be packed into a bin and its result is a set of polynomials which
can give a 4α-packing for any given rational α > 0. If the maximum number of
circles that fit into a bin is constant, then this algorithm runs in constant time.

Lemma 7 (Miyazawa et al. [14]). Given a set C of n circles and its corre-
sponding εh-packing into a bin of size w × h, for some ε ∈ R+, we can find a
feasible packing of C into a bin of size w × (1 + n

√
6ε)h in linear time.

Let us call the new algorithm for 2DK as VCircleKnapsack. There are two
differences between it and CircleKnapsack. The first one is that circles from
each set Sj , for j ≥ 0, will be packed into augmented bins of size wj × (1+3ε)hj

because of the previous discussion. Thus, the grid used by VCircleKnapsack

is also augmented, i.e., its subbins have size wj ×(1+3ε)hj . A consequence of this
difference is that the final packing will be into an augmented bin Bw×(1+3ε)h.
The second difference is that instead of asking for an optimal solution for an
instance of 2DMK, we will use an approximate solution for it, which will be
given by an algorithm called MKGreedyPacking. This means that free bins
generated during the execution of CircleKnapsack are not the same as the
ones generated by VCircleKnapsack. We will call the set of free bins of this
viable algorithm as Gt

j , for each j ≥ 0 and some t.
Formally, MKGreedyPacking will receive as input (Sj , wj , hj , g, ε), where,

to simplify notation, g = |Gt
j |. It will return a packing of some circles of Sj into g

bins of augmented size wj ×(1+3ε)hj . The general idea of MKGreedyPacking

is to create a new set Rj of circles that correspond to the circles of Sj with
rounded radii, such that it is possible to find an optimal solution for 2DMK for
input (Rj , wj , hj , g). This solution for Rj is then used to build a solution for
Sj and we show that the profit decrease during this process is not so big. We
formally describe this idea in the following.

First note that, by definition, the radii of the circles in Sj vary between
I = wjε

2r−1/2 and E = wjε/2. Thus, at most M =
⌈
(wjhj)/(π((wjε

2r−1)/2)2)
⌉

=
⌈
(4ε2)/(πε4r)

⌉
circles of Sj can be packed into a bin of type Bwj×hj

, a con-
stant. Let ε′ = ε2/(6M2). We divide the interval between I and E into K

subintervals such that the �th subinterval starts at I (1 + ε′/ε)�−1 and ends at
I (1 + ε′/ε)�. This means that I (1 + ε′/ε)K−1 ≤ E, from where we find that
K ≤ log(1+ε′/ε)

(
ε/ε2r−1

)
+ 1, a constant. Let ρ� = I (1 + ε′/ε)� for all integer �

such that 0 ≤ � < K and ρK = E.
We now build a set Rj of rounded circles of Sj in the following way. For

each ci ∈ Sj , add to Rj a corresponding circle of radius ρ� if ρ� < ri ≤ ρ�+1.
We denote by η� the amount of circles of radius ρ� that Rj contains. We call
κ = (κ1, κ2, . . . , κK) a configuration if

∑K
�=1 κ� ≤ M where κ� indicates how

many circles of radius ρ� there are in κ. We say a configuration κ is feasible if
there is a packing of all its circles into a bin of size wj × hj . We then enumerate
all configurations of Rj , which are at most MK , and decide, with the algorithm
of Lemma 6, which ones are feasible using α = ε′hj/4. Now for each feasible

752 C. N. Lintzmayer et al.

configuration, we have a packing of its circles into a bin of size wj × (1 +
M

√
6ε′)hj , which is in fact a bin of size wj × (1 + ε)hj .

Let χ be the set of all feasible configurations of Rj and xκ be a variable
which indicates the amount of a given configuration κ ∈ χ is to be used in a
solution for 2DMK. The integer program that maximizes

∑
κ∈χ p(κ)xκ subject

to constraints
∑

κ∈χ κ�xκ ≤ η�, for each 0 ≤ � < K, and
∑

κ∈χ xκ ≤ g, finds a
set Pj of g feasible configurations of total profit OPT2DMK

wj×hj
(Rj , g). We see Pj as

a set of g bins of size wj × (1 + ε)hj .
We describe next how to build a set Qj of g bins containing circles of Sj

based on Pj , which contains circles of Rj . Temporarily, we just copy the packing
of Pj to Qj by replacing each circle of Rj with the corresponding circle in Sj .
Note that, since the circles in Sj are bigger, they can overlap in Qj or surpass
the borders of the bins (which are of size wj × (1 + ε)hj). However, the circles
will overlap by at most twice the size of the Kth (and largest) subinterval, that
is, at most 2 ε′

ε I (1 + ε′/ε)K−1 ≤ ε′wj = ε′hj . Thus, by definition, Qj is an ε′hj-
packing and, according to Lemma7, we can transform it into a valid packing
into bins of size wj × (1+M

√
6ε′)(1+ ε)hj , or wj × (1+ ε)2hj , which are in fact

bins of size at most wj × (1 + 3ε)hj when ε ≤ 1. Next claim follows directly.

Claim 3. p(Qj) ≥ p(Pj) = OPT2DMK
wj×hj

(Rj , g).

Lemma 8 shows the relation between an optimal solution for 2DMK over
input (Sj , wj , hj , g) and an optimal solution for 2DMK over input (Rj , wj , hj , g).

Lemma 8. Given a set Sj, a number g of bins of size wj ×hj, and a set Rj cre-
ated from Sj as described above, OPT2DMK

wj×hj
(Rj , g) ≥ (1 − 2ε)OPT2DMK

wj×hj
(Sj , g).

Proof (Sketch). We use an optimal solution for 2DMK over input (Sj , wj , hj , g)
to build a solution of smaller cost for 2DMK over input (Rj , wj , hj , g), which in
its turn costs less than OPT2DMK

wj×hj
(Rj , g). The result follows using the relation

among the radii of circles of these two sets (each circle ci ∈ Sj has a correspond-
ing circle cR

i ∈ Rj of radius ρ�, where ρ� < ri ≤ ρ�+1 = ρ� (1 + ε′/ε)).
��

Theorem 4 follows from Claim 3 and Lemma 8. Lemmas 9 and 10 analyse the
time complexity of MKGreedyPacking and VCircleKnapsack.

Theorem 4. For an input (Sj , wj , hj , |Gt
j |, ε), the solution given by

MKGreedyPacking has cost at least (1 − 2ε)OPT2DMK
wj×hj

(Sj , |Gt
j |).

Lemma 9. MKGreedyPacking packs a subset of circles of Sj into f bins of size
wj × (1 + 3ε)hj in O(|Sj |M + MK + TILP) time, where M =

⌈
(4ε2)/(πε4r)

⌉
=

O((1/ε)(1/ε)),K = log(1+ε′/ε)

(
ε/ε2r−1

)
+1 = O((1/ε) logε(1/ε)(1/ε)), and TILP is

the polynomial-time to solve the integer program, which has at most K + 1 restric-
tions and at most MK variables.

Two-Dimensional Knapsack for Circles 753

Proof. Creating Rj takes time O(|Sj |) because we have to check each circle of
Sj . Enumerating all configurations of Rj takes time O(MK) because we have at
most K different radii and at most M circles can be placed into a bin. Verifying
if one given configuration is valid takes constant time because M is constant
(Lemma 6). Solving the integer program with at most MK variables and at most
K + MK restrictions takes polynomial time TILP, according to Lenstra [11].
Creating and fixing Pj takes time O(Mf), which is an upper bound on the
amount of circles in PR

j . Considering that f ≤ |Sj |, O(Mf) = O(M |Sj |). ��
Lemma 10. VCircleKnapsack packs a subset of circles of C into a bin of
size w×(1+3ε)h in O((n+MK +TILP)n/ε) time, where M =

⌈
(4ε2)/(πε4r)

⌉
=

O((1/ε)(1/ε)), K = log(1+ε′/ε)

(
ε/ε2r−1

)
+ 1 = O((1/ε) logε(1/ε)(1/ε)), and

TILP is the polynomial-time to solve the integer program in each call of
MKGreedyPacking, which has at most K + 1 restrictions and at most MK

variables.

Proof. The external for loop of VCircleKnapsack executes 1/ε times.
Each iteration of such for has the running time dominated by the calls to
MKGreedyPacking and the time to find new free bins.

By Lemma 9, the total time used for all the calls to MKGreedyPacking is∑
j≥0 O(|Sj |M + Mk + TILP) = O(n(MK + TILP)).
Given some j ≥ 0, we need to find each subbin of G̃j+1(Bw×(1+3ε)h) that does

not intersect already packed circles from S ′ = S0∪S1∪. . .∪Sj−1. Equivalently, for
each circle ci ∈ S ′ already packed we can find the subbins of G̃j+1(Bw×(1+3ε)h)
that intersect its borders, which are a constant amount. Since |S ′| ≤ n, after
O(n) time, for each j ≥ 0, we can find the free bins. The result follows because
we bound the total of different values for j by n. ��

8 PTAS for the Two-Dimensional Knapsack for Circles

The only remaining step is to show a relation between the solutions produced
by VCircleKnapcask and CircleKnapsack. This is done by Lemma 11 and
Theorem 5. Theorem 6 shows our main result. Recall that the free bins kept by
VCircleKnapsack are denoted as Gt

j , for each j ≥ 0 and some t.

Lemma 11. For all j ≥ 0,

j∑

k=0

p(Gt
k) ≥ (1 − 16ε)

j∑

k=0

OPT2DMK
wk×hk

(Sk, |F t
k|).

Proof. This proof is similar to the proof of Lemma5 and, thus, omitted. ��
Theorem 5. VCircleKnapsack packs circles from C into a bin of size w ×
(1 + 3ε)h such that their total profit is at least (1 − O(ε))OPTw×h(C).

Proof. This follows directly from Theorem 2 and Lemma 11. ��

754 C. N. Lintzmayer et al.

Theorem 6. Let (C,W,H) be an instance of the Two-dimensional Knapsack
for Circles such that H/W ∈ O(1) and C contains n circles. For any constant
0 < ε ≤ 1, we can obtain, in time polynomial in n, a packing of a subset of
circles from C into an augmented bin of size W × (1+7ε)H such that their total
profit is at least (1 − O(ε))OPTW×H(C).

Proof (Sketch). We write w, h, and ε as functions of W , H, and ε, respec-
tively, such that 1/ε is integer multiple of 2 and h/(wε) is integer. Then we use
VCircleKnapsack and analyse its result considering the original input. ��

References

1. Adamaszek, A., Wiese, A.: A quasi-PTAS for the two-dimensional geometric Knap-
sack problem. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2015), pp. 1491–1505. Society for Industrial and Applied
Mathematics, Philadelphia (2015)

2. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online
algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–
79 (2017)

3. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle Packing for Origami Design Is Hard.
A K Peters/CRC Press, Singapore (2010). pp. 609–626

4. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: On packing squares with
resource augmentation: maximizing the profit. In: Proceedings of the 2005 Aus-
tralasian Symposium on Theory of Computing (CATS 2005), pp. 61–67. Australian
Computer Society Inc., Darlinghurst (2005)

5. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rect-
angles into a square. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005.
LNCS, vol. 3618, pp. 352–363. Springer, Heidelberg (2005). https://doi.org/10.
1007/11549345 31

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

7. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems:
models and methodologies. Adv. Oper. Res. 2009, 1–22 (2009)

8. Hokama, P., Miyazawa, F.K., Schouery, R.C.S.: A bounded space algorithm for
online circle packing. Inf. Process. Lett. 116(5), 337–342 (2016)

9. Jansen, K., Solis-Oba, R.: Packing squares with profits. SIAM J. Discret. Math.
26(1), 263–279 (2012)

10. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica 47(3), 323–342 (2007)

11. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

12. Lodi, A., Martello, S., Monaci, M., Vigo, D.: Two-Dimensional Bin Packing Prob-
lems, pp. 107–129. Wiley, Hoboken (2013)

13. Meir, A., Moser, L.: On packing of squares and cubes. J. Comb. Theory 5(2),
126–134 (1968)

14. Miyazawa, F.K., Pedrosa, L.L.C., Schouery, R.C.S., Sviridenko, M., Wakabayashi,
Y.: Polynomial-time approximation schemes for circle and other packing problems.
Algorithmica 76(2), 536–568 (2016)

15. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., Garćıa, I.: New
Approaches to Circle Packing in a Square. Springer Optimization and its Applica-
tions. Springer, New York (2007). https://doi.org/10.1007/978-0-387-45676-8

https://doi.org/10.1007/11549345_31
https://doi.org/10.1007/11549345_31
https://doi.org/10.1007/978-0-387-45676-8

Scheduling Parallelizable Jobs Online
to Maximize Throughput

Kunal Agrawal1, Jing Li2, Kefu Lu1(B), and Benjamin Moseley3

1 Washington University in St. Louis, St. Louis, MO 63130, USA
kefulu@wustl.edu

2 New Jersey Institute of Technology, Newark, NJ 07102, USA
3 Carnegie Mellon University, Forbes Avenue, Pittsburgh, PA 15213, USA

moseleyb@andrew.cmu.edu

Abstract. In this paper, we consider scheduling parallelizable jobs
online to maximize the throughput or profit of the schedule. In par-
ticular, a set of n jobs arrive online and each job Ji arriving at time ri

has an associated function pi(t) which is the profit obtained for finishing
job Ji at time t + ri. Each job can have its own arbitrary non-increasing
profit function. We consider the case where each job is a parallel job that
can be represented as a directed acyclic graph (DAG). We give the first
non-trivial results for the profit scheduling problem for DAG jobs and
show O(1)-competitive algorithms using resource augmentation.

1 Introduction

Scheduling preemptive jobs online to meet deadlines is a fundamental problem
and, consequently, the area has been extensively studied. In a typical setting,
there are n jobs that arrive over time. Each job Ji arrives at time ri, has a
deadline di, relative deadline Di = di − ri and a profit or weight pi that is
obtained if the job is completed by its deadline. The throughput of a schedule is
the total profit of the jobs completed by their deadlines and a popular scheduling
objective is to maximize the total throughput of the schedule.

In a generalization of the throughput problem, each job Ji is associated with
a function pi(t) which specifies the profit obtained for finishing job Ji at ri + t.
It is assumed that pi can be different for each job Ji and that the functions
are arbitrary non-increasing functions. We call this problem the general profit
scheduling problem.

In this work, we consider the throughput and general profit scheduling prob-
lems in the preemptive online setting for parallel jobs. In this setting, the online
scheduler is only aware of the job at the time it arrives in the system, and a
job is preemptive if it can be started, stopped, and resumed from the previous
position later. We model parallel jobs as a directed acyclic graph (DAG) where
each job Ji is represented as an independent DAG. Each node in the DAG is a
sequence of instructions that are to be executed and the edges in DAG represent
dependencies. A node can be executed if and only if all of its predecessors have
been completed. Therefore, two nodes can potentially be executed in parallel
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 755–776, 2018.
https://doi.org/10.1007/978-3-319-77404-6_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_55&domain=pdf

756 K. Agrawal et al.

if neither precedes the other in the DAG. In this setting, each job Ji arrives
as a single independent DAG and a profit of pi is obtained if all nodes of the
DAG are completed by job Ji’s deadline. The DAG model can represent parallel
programs written in many widely used parallel languages and libraries, such as
OpenMP [1], Cilk Plus [2], Intel TBB [3] and Microsoft Parallel Programming
Library [4].

Both the throughput and general profit scheduling problem have been studied
extensively for sequential jobs. In the simplest setting, each job Ji has work or
processing time Wi to be processed on a single machine (processor). It is known
that there exists a deterministic algorithm which is O(δ)-competitive, where δ is
the ratio of the maximum to minimum density of a job [5–8]. The density of job
Ji is pi

Wi
(the ratio of its profit to its work). In addition, this is the best possible

result for any deterministic online algorithm even in the case where all jobs have
unit profit and the goal is to complete as many jobs as possible by their deadline.
In the case where the algorithm can be randomized, Θ(min{log δ, log Δ}) is the
optimal competitive ratio [9,10]. Here Δ is the ratio of the maximum to minimum
job processing time.

These strong lower bounds on the competitive ratio on any online algorithm
makes it difficult to differentiate between algorithms and to discover the key
algorithmic ideas that work well in practice. To overcome this challenge, the
now standard form of analysis in scheduling theory is a resource augmentation
analysis [11,12]. In a resource augmentation analysis, the algorithm is given extra
resources over the adversary and the competitive ratio is bounded. A s-speed
c-competitive algorithm is given a processor s times faster than the optimal
solution and achieves a competitive ratio of c. The seminal scheduling resource
augmentation paper considered the throughput scheduling problem and gave the
best possible (1 + ε)-speed O(1ε)-competitive algorithm for any fixed ε > 0 [12].

Since this work, there has been an effort to understand and develop algo-
rithms for more general scheduling environments and objectives. In the identical
machine setting where the jobs can be scheduled on m identical parallel machines
(processors), a (1+ε)-speed O(1)-competitive algorithm is known for fixed ε > 0
[13]. This has been extended to the case where the machines have speed scalable
processors and the scheduler is energy aware [14]. In the related machines and
unrelated machines settings, similar results have been obtained as well [15]. In
[16] similar results were obtained in a distributed model.

None of this prior work consider parallel jobs. Parallel jobs modeled as DAGs
have been widely considered in scheduling theory for other objectives [17–24].
There has been an extensive study in the real-time system community on how
to schedule parallelizable DAG jobs by their deadlines. See [17,18,25–31] for
pointers to relevant work. These works consider different (yet similar) objec-
tives, focusing on tests to determine if a given set of reoccurring jobs can all be
completed by their deadline, in contrast to optimizing throughput or profit.

Results: In this paper, we give the first non-trivial results for scheduling paral-
lelizable DAG jobs online to maximize throughput and then we generalize these
results to the general profit problem. Two important parameters in the DAG

Scheduling Parallelizable Jobs Online to Maximize Throughput 757

setting are the critical-path length Li of job Ji (its execution time on an infinite
number of processors) and its total work Wi (its uninterrupted execution time
on a single processor). The value of max{Li,Wi/m} is a lower bound on the
amount of time any 1-speed scheduler takes to complete job Ji on m cores. We
will focus on schedulers that are aware of the values of Li and Wi when the
job arrives, but are unaware of the internal structure of the job’s DAG. That is,
besides Li and Wi, the only other information a scheduler has on a job’s DAG
is which nodes are currently available to execute. We call such an algorithm
semi-non-clairvoyant—for DAG tasks, this is a reasonable model for the real
world programs written in languages mentioned above since the DAG generally
unfolds dynamically as the program executes. We first state a simple theorem
about these schedulers.

Theorem 1. There exists inputs where any semi-non-clairvoyant scheduler
requires speed augmentation of 2 − 1/m to be O(1)-competitive for maximizing
throughput.

Roughly speaking, scheduling even a single DAG job in time smaller than
Wi−Li

m +Li is a hard problem even offline when the entire job structure is known
in advance. This is captured by the classic problem of scheduling a precedence
constrained jobs to minimize the makespan. For this problem, there is no 2 − ε
approximation assuming a variant of the unique games conjecture [32]. In par-
ticular, in Sect. 4, we will give an example DAG where any semi-non-clairvoyant
scheduler will take roughly Wi−Li

m + Li time to complete, while a fully clair-
voyant scheduler can finish in time Wi/m. By setting the relative deadline to
be Di = Wi/m = Li, every semi-non-clairvoyant scheduler will require a speed
augmentation of 2 − 1/m to have bounded competitiveness.

With the previous theorem in place, we cannot hope for a (1+ε)-speed O(1)-
competitive algorithm. To circumvent this hurdle, one could hope to show O(1)-
competitiveness by either using more resource augmentation or by making an
assumption on the input. Intuitively, the hardness comes from having a relative
deadline Di close to max{Li,Wi/m}. In practice, this is unlikely to be the case.
We show that so long as Di ≥ (1 + ε)(Wi−Li

m + Li) then there is a O(1
ε6)-

competitive algorithm.

Theorem 2. If for every job Ji it is the case that (1 + ε)(Wi−Li

m + Li) ≤ Di,
then there is a O(1

ε6)-competitive algorithm for maximizing throughput.

We note that this immediately implies the following corollary without any
assumptions on the input.

Corollary 1. There is a (2+ε)-speed O(1
ε6)-competitive algorithm for maximiz-

ing throughput.

Proof. No schedule can finish a job Ji if its relative deadline is smaller than
max{Li,

Wi

m } and we may assume that no such job exists. Using this, we have
that (Wi

m + Li) ≤ 2Di. Consider transforming the problem instance giving the

758 K. Agrawal et al.

algorithm and the optimal solution together 2+ ε speed. In this case, the condi-
tion of Theorem 2 is met since we can view this as scaling the work in each node
of the jobs by 2 + ε. This scales the work and critical-path length by 2 + ε. The
corollary follows by observing that in this case we are comparing to an optimal
solution with 2 + ε speed which is only stronger than comparing to an optimal
solution with 1 speed. ��

We note that the theorem also immediately implies the following corollary
for “reasonable jobs.”

Corollary 2. There is a (1+ε)-speed O(1
ε6)-competitive for maximizing through-

put if (Wi − Li)/m + Li ≤ Di for all jobs Ji.

This assumption on the deadlines is reasonable since, as we show in Sect. 4,
there exists inputs for which even the optimal semi-non-clairvoyant scheduler
has unbounded performance if the deadline is smaller.

We go on to consider the general profit scheduling problem. We first make
the following assumption, which is that for all jobs Ji its general profit function
satisfies pi(d) = pi(x∗

i), where 0 < d ≤ x∗
i for some x∗

i ≥ (1 + ε)(Wi−Li

m + Li).
This assumption states that there is no additional benefit for completing a job
Ji before time x∗

i , which is the natural generalization of our assumption in the
throughput case. The function is arbitrarily decreasing otherwise. Using this, we
show the following.

Theorem 3. If for every job Ji it is the case that pi(d) = pi(x∗
i), where 0 < d ≤ x∗

i

for some value of x∗
i ≥ (1 + ε)(Wi−Li

m + Li) then there is a O(1
ε6)-competitive

algorithm for the general profit objective.

This gives the following corollary, just as for throughput.

Corollary 3. There is a (2+ε)-speed O(1
ε6)-competitive algorithm for maximiz-

ing general profit.

2 Preliminaries

In the problem considered, there is a set J of n jobs {J1, J2, . . . , Jn} which arrive
online. The jobs are scheduled on m identical processors. Job Ji arrives at time
ri. Let pi(t) be an arbitrary non-negative non-increasing function for job Ji. The
value of pi(t) is the profit obtained by completing job i at time ri + t. Under
some schedule, let ti be the time it takes to complete Ji after its arrival. The
goal is for the scheduler to maximize

∑
i∈[n] pi(ti).

A special case of this problem is scheduling jobs with deadlines. In this prob-
lem, each job Ji has a deadline di and obtains a profit of pi if it is completed by
this time. In this case, we let Di = di − ri be the relative deadline of the job. To
make the underlying ideas of our approach clear, we will first focus on proving
this case and the more general problem can be found in the Sect. 5.

Each job is represented by a Directed-Acyclic-Graph (DAG). A node in the
DAG is ready to execute if all its predecessors have completed. A job is completed

Scheduling Parallelizable Jobs Online to Maximize Throughput 759

only when all nodes in the job’s DAG have been processed. We assume the
scheduler knows the ready nodes for a job at any point in time, but does not
know the entire DAG structure a priori. Any set of ready nodes can be processed
at once, but each processor can only execute one node at a time.

A DAG job has two important parameters. The total work Wi is the sum of
the processing time of the nodes in job i’s DAG. The span or critical-path-length
Li is the length of the longest path in job i’s DAG, where the length of the path
is the sum of the processing time of nodes on the path. To show Theorem 2 we
assume that (1 + ε)(Wi−Li

m + Li) ≤ Di for all jobs Ji throughout the remainder
of the paper.

3 Jobs with Deadlines

First, we give an algorithm and analysis proving Theorem2 when jobs have dead-
lines and profits. To aid the reader, a list of notation can be found in Tables 1, 2
and 3. Throughout the proof, we let CO denote the jobs that the optimal solu-
tion completes by their deadline and let

∥
∥CO

∥
∥ denote the total profit obtained

by the optimal solution. Our goal is to design a scheduler that achieves profit
close to

∥
∥CO

∥
∥. Throughout the proof, it will be useful to discuss the aggregate

number of processors assigned to a job over all time. We define a processor step
to be a unit of time on a single processor.

Table 1. Notations and definitions throughout the paper

Notation Definition

OPT Optimal schedule and also optimal objective

m The number of processors

Wi The total work of job Ji

Li The span of job Ji

Di Relative deadline of job Ji

ri The arrival time of Ji

di The absolute deadline of Ji (that is, ri + Di)

A(T, v1, v2) All jobs in T with density within the range [v1, v2)

N(T, v1, v2) =
∑

Ji∈A(T,v1,v2)
ni, the total number of processors required

by A(T, v1, v2)

v-dense If Job Ji has density vi ≥ v

δ < ε/2

c ≥ 1 + 1
εδ

b = (1+2δ
1+ε

)1/2 < 1

a = 1 + 1+2δ
ε−2δ

760 K. Agrawal et al.

Table 2. Notations and definitions specific to jobs with deadlines

Notation Definition

pi The profit of job Ji

ni = (Wi−Li)
Di

1+2δ
−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi
xini

the density of Ji

δ-good Job Ji has Di ≥ (1 + 2δ)xi

δ-fresh At time t, job Ji has di − t ≥ (1 + δ)xi

R The set of jobs started by S

C The set of jobs completed by S

U Unfinished jobs by S (that is, R \ C)

CO The set of jobs completed by OPT

J The set of all jobs

TO(v, E) The total work processed by the optimal schedule for the
jobs in E that are v-dense

TS(v, E) The total number of processors steps S used for executing
jobs in E that are v-dense

Table 3. Notations and definitions specific to jobs with general profit functions

Notation Definition

pi(t) The profit of job Ji if the job with arrival time ri completes by ri + t

ni = (Wi−Li)
x∗

i
1+2δ

−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi(Di)
xini

the density of Ji

3.1 Algorithm

In this section, we introduce our algorithm S. On every time step, S must decide
which jobs to schedule and which ready nodes of each job to schedule. When a
job Ji arrives, S calculates ni—the number of processors “allocated” to Ji. On
any time step when S decides to run Ji, it will always allocate ni processors to Ji.
In addition, since S is semi-non-clairvoyant, it is unable to distinguish between
ready nodes of Ji; when it decides to allocate ni nodes to Ji, it arbitrarily picks
ni ready nodes to execute if more than ni nodes are ready.

We first state some observations regarding work and critical-path length.

Observation 1. If a job Ji has all of its r ready nodes being executed by a
schedule with speed s on m processors, where r ≤ m, then the remaining critical-
path length of Ji decreases at a rate of s.

Scheduling Parallelizable Jobs Online to Maximize Throughput 761

As mentioned earlier, we assume that the deadline for each job follows the
condition that (1 + ε)(Wi−Li

m + Li) ≤ Di for some positive constant ε.
We define the following constants. Let δ < ε/2, c ≥ 1 + 1

δε and b =
(1+2δ

1+ε)1/2 < 1 be fixed constants. For each job Ji, the algorithm calculates ni as
(Wi−Li)

Di
1+2δ −Li

. The value of ni is the number of processors our algorithm will give to

job Ji if we decide to execute Ji on some time step.
Let xi := Wi−Li

ni
+Li. By Observation 1 it is the case that if ni processors are

given to job i for xi units of time then the job will be completed regardless of
the order the nodes are executed in. We will consider this to be Observation 2.

Observation 2. Job Ji can meet its deadline if it is given ni dedicated proces-
sors for xi time steps in the interval [ri, di].

We define the density of a job as vi = pi

xini
. Note that this is a non-standard

definition of density. We define the density as pi

xini
instead of pi

Wi
, because we

will think of job i requiring xini processor steps to complete by Scheduler S.
Thus, this definition of density indicates the potential profit per processor step
that S can obtain by executing Ji.

The scheduler S maintains jobs that have arrived but are unfinished in two
priority queues. A priority queue Q stores all the jobs that have been started
by S. In the priority queue, the jobs are sorted according to the density from
high to low. Another priority queue P stores all the jobs that have arrived but
have not been started by S. Jobs in P are also sorted according to their densities
from high to low.

Job Execution: At each time step t, S picks a set of jobs in Q to execute,
in order from highest to lowest density. If a job Ji has been completed or if
its absolute deadline di has passed (di > t), S removes the job from Q. When
considering job Ji, if the number of unallocated processors is at least ni the
scheduler assigns ni processors to Ji for execution. Otherwise, it continues on to
the next job. S stops this procedure when either all jobs have been considered
or when there are no remaining processors to allocate.

We introduce some notations to describe how jobs are moved from queue
P to Q. A job Ji is δ-good if Di ≥ (1 + 2δ)xi. A job is δ-fresh at time t
if di − t ≥ (1 + δ)xi. For any set T of jobs, let the set A(T, v1, v2) contains
all jobs in T with density within the range [v1, v2). We define N(T, v1, v2) =∑

Ji∈A(T,v1,v2)
ni. This is the total number of processors that S allocates to jobs

in A(T, v1, v2). We will say that the set of job A(T, v1, v2) requires N(T, v1, v2)
processors.

Adding Jobs to Q: There are two types of events that may cause S to add
a job to Q. These events occur when either a job arrives or S completes a job.
When a job Ji arrives, S adds it to queue Q if it satisfies the following conditions:

(1) Ji is δ-good;
(2) For all job Jj ∈ Q ∪ {Ji} it is the case that N (Q ∪ {Ji}, vj , cvj) ≤ bm.

In words, the total number of processors required by jobs in Q ∪ {Ji} with
density in the range [vj , cvj) is no more than bm.

762 K. Agrawal et al.

If these conditions are met, then Ji is inserted into queue Q; otherwise, job
Ji is inserted into queue P . When a job is added to Q, we say that the job is
started by S.

At the completion of a job, S considers the jobs in P from highest to lowest
density. S first removes all jobs with absolute deadlines that have already passed.
Then S checks if a job Ji in P can be moved to queue Q by checking whether
job Ji is δ-fresh and condition (2) from above. If both the conditions are met,
then Ji is moved from queue P to queue Q.

Remark: Note that the Scheduler S pre-computes a fixed number of processors
ni assigned to each job, which may seem strange at first glance. This is because
that ni is approximately the minimum number of dedicated cores job Ji requires
to complete by Di

1+2δ → Di, without knowing Ji’s DAG structure. In addition, as
long as Ji can complete by its deadline, it obtains the same profit pi. Therefore,
there is no need to complete Ji earlier by executing Ji on more dedicated cores.
Moreover, by carefully assigning ni, we are able to bound the number of processor
steps spent on job Ji as shown in Lemma 3, which is critical for bounding the
profit obtained by the optimal solution.

Outline of the Analysis of S: Our goal is to bound the total profit that S
obtains. We first discuss some basic properties of S in Sect. 3.2. In Sect. 3.3 be
bound the total profit of all the jobs S starts by the total profit of jobs that S
completes. Then in Sect. 3.4 we bound the total profit of the jobs the optimal
solution completes by the total profit of jobs that S starts. Putting these two
together, we are able to bound the performance of S.

3.2 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in
the proof. We first bound the number of processors ni that S will allocate to
job Ji.

Lemma 1. For every job Ji we have that ni ≤ b2m.

Proof. By assumption we know that Di ≥ (1 + ε)(Wi−Li

m + Li). The definition
of ni gives the following.

ni =
Wi − Li

Di

1+2δ − Li

≤ Wi − Li

1+ε
1+2δ (Wi−Li

m + Li) − Li

≤ 1 + 2δ

1 + ε
m = b2m

��
Lemma 2. Every job Ji is δ-good, i.e. xi(1 + 2δ) ≤ Di.

Proof. Note that Li ≤ 1
1+εDi by definition. Since ni = Wi−Li

D
1+2δ −Li

, we have xi(1 +

2δ) = (Wi−Li

ni
+ Li)(1 + 2δ) = (Di

1+2δ − Li + Li)(1 + 2δ) ≤ Di. ��

Scheduling Parallelizable Jobs Online to Maximize Throughput 763

The next lemma bounds the total number of processor steps occupied by a
job.

Lemma 3. xini ≤ aWi, where a is 1 + 1+2δ
ε−2δ .

Proof. By definition we have

xini = Wi − Li + niLi ≤ Wi +
Wi − Li

Di

1+2δ − Li

Li ≤ Wi +
Wi − Li

Di

1+2δ − Di

1+ε

(Di

1 + ε

)

≤ Wi +
(Wi − Li)Di(1 + 2δ)

Di(ε − 2δ)
≤ Wi +

Wi(1 + 2δ)
ε − 2δ

≤ Wi

(
1 +

1 + 2δ

ε − 2δ

)

��
Observation 3. At any time and for any v > 0, the total number of processors
required by all the jobs Ji that are in queue Q and have density v ≤ vi < cv is
no more than bm, i.e. N(Q, vi, cvi) ≤ bm.

Proof. Jobs are only added to queue Q when a new job arrives or a job completes.
According to algorithm S, at both times, a job is only added to Q when this
condition is satisfied. ��

3.3 Bounding the Profit of Jobs S Completes by All Jobs Started
by S

In this section, we bound the profit of jobs completed by S compared to the
profit of all jobs it ever starts (adds to Q). Let R denote the set of jobs S starts
(that is, the set of jobs added to queue Q). Among the jobs in R, let C be the
set of jobs it completes and U be the set of jobs that are unfinished. We say job
Ji (and its assigned processors) is v-dense, if its density vi ≥ v. For any set A
of jobs, define ‖A‖ as

∑
i∈A pi, the sum of the profits of jobs in the set.

Lemma 4. For a job Ji ∈ U = R \ C that was added to queue Q but does not
complete by its deadline, S must have run cvi-dense jobs for at least δxi time
steps where Ji is in Q using at least (1 − b)m processors at each such time.

Proof. Since Ji is at least δ-fresh when added to Q and it does not complete
by its deadline, there are at least δxi time steps where S is not executing Ji by
Observation 2. In each of these the time steps, all the m processors are executing
vi-dense jobs.

By Observation 3, jobs in Q with density in range [vi, cvi) require at most
N(Q, vi, cvi) ≤ bm processors to execute. Therefore, for each of the δxi time
steps, there are at least (1 − b)m processors executing cvi-dense jobs. So the
total number processor steps where cvi-dense jobs are executing is at least
δxi(1 − b)m. ��

We now bound the profit of the jobs completed by their deadline under S by
those started.

764 K. Agrawal et al.

Lemma 5. ‖C‖ ≥ (ε − 1
(c−1)δ) ‖R‖.

Proof. We use a charging scheme with credit transfers between the jobs. We give
each job Ji ∈ R a bank account Bi. Initially, all completed jobs (in C) are given
pi credits and other jobs (in U) have 0 credit. We will transfer credits between
jobs in C and jobs in U . We want to show that after the credit transfer, every
job Ji in R will have Bi ≥ (ε − 1

(c−1)δ)pi. This implies ‖C‖ ≥ (ε − 1
(c−1)δ) ‖R‖.

Now we explain how credits are transferred. For each time step, a processor
executing Ji will transfer vjnj

δbm credits from Bi to every job Jj in queue Q that
has density vj ≤ vi

c .
For every job Jj ∈ U , Lemma 4 implies that there are at least δxj time steps

where at least (1 − b)m processors are executing cvj-dense jobs. By our credit
transfer strategy Jj will receive at least vjnj

δbm credits from each processor in a
time step. Therefore, the total credits Jj receives is at least

δxj(1 − b)m(
vjnj

δbm
) = vjxjnj(

1 − b

b
) = pi(

1 − b

b
).

This bounds the total amount of credit each job receives. We now show that
not too much credit is transferred out of each job’s account. We bound this on a
job by job basis. Fix a job Ji ∈ R and consider how many credits it transfers to
other jobs during its execution. By Observation 2, we know that Ji can execute
for at most xi time steps on ni dedicated processors before its completion.

The job Ji will transfer credit to all jobs in Q with density less than vi

c at
any point in time where Ji is being processed. These are the jobs in A(Q, 0, vi

c).
Fix an integer l ≥ 1 and consider the set of jobs A(Q, vi

cl+1 , vi

cl) in Q that have
density within the range [vi

cl+1 , vi

cl). Note that the total number of processors
required by them is N(Q, vi

cl+1 , vi

cl) ≤ bm by Observation 3. Knowing that a job
Jj in A(Q, vi

cl+1 , vi

cl) has density vj ≤ vi

cl by definition it is the case that the total
credits that Ji gives to jobs in A(Q, vi

cl+1 , vi

cl) per processor assigned to Ji during
any time step is at most

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl)

vjnj

δbm
≤

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl)

vi

cl nj

δbm
=

vi

δbmcl

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl)

nj

=
vi

δbmcl
N(Q,

vi

cl+1
,
vi

cl
) ≤ vi

δbmcl
bm =

vi

δcl
.

This bounds the total credit transferred to jobs in A(Q, vi

cl+1 , vi

cl) during a
time step for each processor assigned to Ji. We sum this quantity over all l ≥ 1
and all ni processors assigned to i to bound the total credit transferred from job
Ji during a time step. Recall that c > 1 by definition.

nivi

δ

∞∑

l=1

1
cl

=
(nivi

δ

) 1
c

1 − 1
c

=
(nivi

δ

) 1
c − 1

Therefore, the total credits Ji transfers to all the jobs in A(Q, 0, vi

c) over all
times it is executed is at most (xinivi

δ) 1
c−1 = pi

(c−1)δ due to the fact that a job
will be executed for at most xi time steps in S’s schedule.

Scheduling Parallelizable Jobs Online to Maximize Throughput 765

Now we put these two observations together. Each job receives at least pi
1−b

b
credit and pays at most pi

(c−1)δ . After the credit transfer, the credits that a job
Ji has is at least

pi
1 − b

b
− pi

(c − 1)δ
= pi(ε − 1

(c − 1)δ
)

By our setting of c, this quantity is always positive. Therefore, we conclude
that ‖C‖ ≥ (ε − 1

(c−1)δ) ‖R‖. ��

3.4 Bounding the Profit of Jobs OPT Completes by All Jobs
Started by S

In this section, we bound the profit of the jobs OPT completes by all of the
jobs that S starts. Our high level goal is to first bound the total amount of time
OPT spends processing jobs that S does not complete by the time S spends
processing jobs. Then using this and properties of S we will be able to bound
the total profit of jobs OPT completes. At a high level, this follows since S
focuses on processing high density jobs and OPT and S spend a similar amount
of time processing jobs. We begin by showing that if not too many processors
are executing vi

c -dense jobs then all such jobs must be currently executing.

Lemma 6. For any density vi and time, if there are less than b(1 − b)m pro-
cessors executing vi

c -dense jobs, then all vi

c -dense jobs in queue Q are executing
and N(Q, vi

c ,∞) < b(1 − b)m.

Proof. By definition, there are at least m − b(1 − b)m > bm − b(1 − b)m = b2m
processors executing jobs with density less than vi

c . For the sake of contradiction,
suppose there is a vi

c -dense job Jj that is not executing by S. By Lemma 1 we
know that nj ≤ b2m. Therefore, Jj would have been executed by S on the b2m
processors that are executing lower density jobs, a contradiction.

Now we know all vi

c -dense jobs in queue Q are executing. By assumption
they are using less than b(1 − b)m processors and the lemma follows. ��

In the next lemma, we show that if not too many processors are running
vi

c -dense jobs then when a job arrives or completes, the schedule S will start
processing a vi-dense job that is δ-fresh, for any density vi (if such a job exists).
In particular, the job Jj will pass condition (2) of for adding jobs to Q in the
definition of S.

Lemma 7. Fix a density vi. At a time where a new job arrives or a job com-
pletes if there are less than b(1 − b)m processors executing vi

c -dense jobs, then a
δ-fresh vi-dense job Jj (arriving or in queue P) will be added to Q by S assuming
such a job Jj exists.

Proof. By Lemma 6, we know that all vi

c -dense jobs in queue Q are executing on
less than b(1− b)m processors. By Lemma 1, we know that nj ≤ b2m. Therefore,

N(Q ∪ {Jj},
vi

c
,∞) < b(1 − b)m + b2m = bm

766 K. Agrawal et al.

Consider any δ-fresh job Jj that is also vi-dense. Consider any job Jk where
Jj ∈ A(Q ∪ {Ji}, vk, cvk). By definition of Jj being vi-dense it must be the
case that A(Q ∪ {Ji}, vk, cvk) ⊆ A(Q ∪ {Jj}, vi

c ,∞). The above implies that
N(Q ∪ {Ji}, vk, cvk) ≤ N(Q ∪ {Jj}, vi

c ,∞) ≤ bm. Thus, the condition (2) in our
algorithm is satisfied. ��

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total
work processed by the optimal schedule for the jobs in E that are v-dense. We
similarly let TS(v, E) be the total number of processors steps S used for executing
jobs in E that are v-dense over all time. Now we are ready to bound the time
that OPT spends on jobs that S never adds to Q.

Lemma 8. Consider the jobs in J \ R, the jobs that are never added to Q. For
all v > 0, TO(v,J \ R) ≤ 1+2δ

δb(1−b)TS(v
c ,J).

Proof. Let {Ik = [sk, ek]} be the set of maximal time intervals where at least
b(1 − b)m processors are running v

c -dense jobs in S’s schedule. Notice that by
definition

∑∞
k=1(ek − sk)b(1 − b)m ≤ TS(v

c ,J).
Consider a job in Ji ∈ J \R that is both δ-good and v-dense and additionally

arrives during [sk, sk+1). Note that during the intervals [ek, sk+1], less than b(1−
b)m processors are executing v

c -dense jobs. Lemma 7 implies that if Ji arrives
during [ek, sk+1] it will be added to Q. This contradicts the assumption that
Ji ∈ J \ R. Therefore, Ji must arrive during [sk, ek) and is in queue P at
time ek.

Note that at time ek, the number of processors executing v
c -dense jobs

decreases, so there must be a job that completes at time ek. Again, by Lemma 7
if Ji is δ-fresh at time ek then it will be added to Q at this time. Again, this
contradicts Ji ∈ J \ R. Thus, the only reason that S does not add Ji to Q is
because Ji is not δ-fresh at time ek. Knowing that Ji is δ-good at ri and is not
δ-fresh at ek, we have ek − sk ≥ ek − ri ≥ δxi.

At time ek, Ji is not δ-fresh, so di − ek < (1 + δ)xi < 1+δ
δ (ek − sk).

Let Kk be the set of v-dense jobs that arrive during [sk, sk+1) but are not
completed by S. Because OPT can only execute all jobs in Kk during [sk, di] on
at most m processors, we get

TO(v,Kk) ≤(di − sk)m = ((di − ek) + (ek − sk))m ≤ 1 + 2δ

δ
(ek − sk)m

This completes the proof, as

TO(v, U) =
∞∑

k=1

TO(v,Kk) ≤
∞∑

k=1

(
1 + 2δ

δ
)m(ek − sk) ≤ 1 + 2δ

δ

1
b(1 − b)

TS(
v

c
,J)

��
Using the previous lemma, we can bound the profit of jobs completed by

OPT by the profit of jobs started by S.

Scheduling Parallelizable Jobs Online to Maximize Throughput 767

Lemma 9.

∥
∥CO

∥
∥ ≤

(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
1 + 2δ

δb(1 − b)

)

‖R‖ .

Proof. We may assume WLOG that the adversary completes all jobs it starts.
First we partition CO, the jobs that the adversary completes, into CO

R and CO
S

where CO
S = CO ∩ R, that is, our algorithm started the job at some point.

The remaining jobs are placed in CO
R . Clearly

∥
∥CO

S

∥
∥ ≤ ‖R‖. Now it remains to

bound
∥
∥CO

R

∥
∥.

Consider every job in CO
R and let the set of densities of these jobs be

{μ1, μ2, . . . , μm} from high to low and for notational simplicity let μ0 = ∞
and μm+1 = 0. Recall the adversary completed all jobs it started. Thus for each
job with density μi, the adversary ran the job for a corresponding Wi processor
steps. Let βi denote the number of processor steps our algorithm takes to run
jobs with densities within (μi−1

c , μi

c].
We have TO(v,J \ R) ≤ 1+2δ

δb(1−b)TS(v
c ,J) from Lemma 8 for all densities v.

Equivalently for any given density v:

TO(v,J \ R) =
v∑

i=1

Wi ≤ 1 + 2δ

δb(1 − b)

v∑

i=1

βi =
1 + 2δ

δb(1 − b)
TS(

v

c
,J)

We then sum over all densities. The subtraction of densities is necessary to
insure that each density is only counted a single time.

m∑

v=1

(

(μv − μv+1)
v∑

i=1

Wi

)

≤
m∑

v=1

(

(μv − μv+1)
1 + 2δ

δb(1 − b)

v∑

i=1

βi

)

The LHS can be simplified:

m∑

v=1

(

(μv − μv+1)

v∑

i=1

Wi

)

=

m∑

i=1

Wi

m∑

v=i

(μv − μv+1) =

m∑

i=1

Wi(μi − μm+1) =

m∑

i=1

Wiμi

The RHS similarly simplifies to 1+2δ
δb(1−b)

∑m
i=1 βiμi, leading to the inequality

that
∑m

i=1 Wiμi ≤ 1+2δ
δb(1−b)

∑m
i=1 βiμi. Recall that densities such as μi are defined

by μi = pi

xini
and xini ≤ aWi. Therefore:

m∑

i=1

Wiμi =
m∑

i=1

Wipi

xini
≥

m∑

i=1

Wipi

aWi
≥

m∑

i=1

pi

(1 + 1+2δ
ε−2δ)

=
1

(1 + 1+2δ
ε−2δ)

∥
∥CO

R

∥
∥

And also, by the definition of βi, we know that
∑m

i=1 βi
μi

c ≤ ‖R‖.

768 K. Agrawal et al.

Combining these results, we get:

1
(1 + 1+2δ

ε−2δ)

∥
∥CO

R

∥
∥ ≤

m∑

i=1

Wiμi ≤ 1 + 2δ

δb(1 − b)

m∑

i=1

βiμi ≤ 1 + 2δ

δb(1 − b)
c ‖R‖

⇒∥
∥CO

R

∥
∥ ≤

(

1 +
1 + 2δ

ε − 2δ

)(
1 + 2δ

δb(1 − b)

)

c ‖R‖

⇒∥
∥CO

∥
∥ =

∥
∥CO

R

∥
∥ +

∥
∥CO

S

∥
∥ ≤

(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
1 + 2δ

δb(1 − b)

)

‖R‖
��

Finally we are ready to complete the proof, bounding the profit OPT obtains
by the total profit the algorithm obtains for jobs it completed.
Lemma 10.

∥
∥CO

∥
∥ ≤ (1+(1+ 1+2δ

ε−2δ)(1+
1
εδ)

1+2δ
δb(1−b))

ε− 1
(c−1)δ

‖C‖
Proof. This is just by combination of Lemmas 5 and 9. ��

Therefore, we prove Theorem 2 by showing that scheduler S is O(1
ε6)-

competitive for jobs with deadlines and profits, when (1 + ε)(Wi−Li

m + Li) ≤ Di.

4 Examples

In this section, we will give some example DAGs to show why Theorem 2 is close
to the best theorem we can hope for using two examples. The first example,
shown in Fig. 1, shows the limitations of semi-non-clairvoyance. In particular,
a semi-non-clairvoyant scheduler does not know the structure of the DAG in
advance since the DAG unfolds dynamically. At any time step, the scheduler only
knows the ready nodes available for execution. Given this limitation, consider
the DAG shown in Fig. 1. This job has one sequential chain with length L = W

m ,
where W is the total work of the job and m is the number of processors. The
remaining W − W/m work are fully parallelizable in a block and can also be
done in parallel with the chain. Therefore, L is the span of the jobs.

Since a semi-non-clairvoyant scheduler cannot distinguish between ready
nodes, it may make unlucky choices and execute the entire block of W −W/m =
W − L ready nodes first in (W − L)/m time steps and then execute the chain
of L nodes sequentially—leading to a total time of (W − L)/m + L. On the
other hand, a fully clairvoyant scheduler can execute the entire DAG in W /m
time. Therefore, a semi-non-clairvoyant scheduler needs at least 2 − 1/m speed
augmentation to ensure that it can complete the DAG at the same time as OPT.

We now show another example DAG indicating that it would be reasonable
to always set deadlines as D ≥ (W − L)/m + L if we do not know the structure
of the DAG a priori. Figure 2 shows an example DAG, which consists of a chain
of L − ε nodes followed by W − L + ε nodes that can run in parallel. Each
node in the DAG takes ε time to run, so the total work of the DAG is W
and the span is L. For such a DAG, even a fully clairvoyant scheduler needs
L−ε+ W−L+ε

m = W−L
m +L−ε(1− 1

m), which approaches to W−L
m +L when ε → 0.

Scheduling Parallelizable Jobs Online to Maximize Throughput 769

Fig. 1. Example 1 Fig. 2. Example 2

5 Jobs with General Profit Functions

In this section, we focus on a more general case. In particular, each job Ji has a
non-negative non-increasing profit function pi(t) indicating its profit if the job
with arrival time ri completes by ri + t. Our goal is to design a scheduler that
maximizes the profit to make it close to what the optimal solution can obtain,
denoted as ‖O‖.

First, we present our scheduler S parameterized using a fixed constant 0 <
ε < 1. Similar to Sect. 3.1, let δ < ε/2, c ≥ 1+ 1

δε and b = (1+2δ
1+ε)1/2 < 1 be fixed

constants.
Upon the arrival of a job Ji, the scheduler S assigns a number of allocated

cores ni, a relative deadline Di and a set of time steps Ii to Ji (according to
the assignment procedure described below). In each time step t in Ii, we say
that Ji is assigned to t. Scheduler S always executes the highest density jobs
that is assigned to t. If S decides to execute Ji in a time step, it will give ni

processors to Ji. Let xi := Wi−Li

ni
+ Li. We define the density of a job as

vi = pi(Di)
xini

= pi(Di)
Wi+(ni−1)Li

. We now formally specify the algorithm of scheduler
S for job assignment and execution.

Assigning cores, deadlines and slots to jobs: When a job Ji arrives, the
scheduler will assign a relative deadline Di and a set of time steps Ii with ni

processors. These time steps are the only time steps in which Ji is allowed to run.
Recall (from Theorem 3) that we assume that the profit function stays the

same until some value x∗
i ≥ (Wi−Li

m + Li)(1 + ε). The number of assigned pro-
cessors ni is calculated as ni = Wi−Li

x∗
i

1+2δ −Li

. The assignment for Di is determined

by searching all the potential deadlines D to find the minimum valid deadline.
The set of time steps Ii is determined using the chosen deadline Di.

For each potential relative deadline D > (1 + ε)Li, scheduler S checks
whether it is a valid deadline by the following steps. First, it selects a set of time
steps I. Assuming D is assigned to Ji, then the density of Ji is v = pi(D)

Wi+(ni−1)Li
.

For each time step t from ri to ri+D, let ‖I(t)‖ be the number of time steps that
have already been added to I before considering time step t. Let J(t) denote the
set of jobs that are currently has time t among its assignments. We only add t to
the set I if it satisfies the following condition: For every job Jj ∈ J(t), it is the
case that N (J(t) ∪ {Ji}, vj , cvj) ≤ bm. In words, the total number of processors

770 K. Agrawal et al.

required by jobs in J(t) ∪ {Ji} with density in the range [vj , cvj) is no more
than bm.

I contains all the time steps during [ri, ri + Di) that can be assigned to Ji.
If ‖I‖ ≥ (1 + δ)

(
Wi−Li

ni
+ Li

)
, which is at least δ times longer than the time Ji

required to run on ni processors, then the deadline D is said to be valid. Note
that a valid assignment always exists by setting the deadline large enough.

Among all the valid assignments, S chooses the smallest valid deadline for
Ji, which results in the highest profit. Given this deadline Di, Ji will be assigned
with the corresponding set Ii. Because Di is the minimum valid deadline, the
corresponding set Ii must satisfy ‖Ii‖ = (1 + δ)

(
Wi−Li

ni
+ Li

)
; otherwise, there

must exist a shorter deadline D that is also valid. Intuitively, with this assign-
ment, Ji can complete by its deadline if no other jobs interfere. Note that Ji

may not be completed by its deadline as we will allow higher density jobs that
arrive after Ji to be scheduled during Ii.

Executing jobs: At each time step t, S picks a set of jobs in J(t) to execute
in order from highest to lowest density, where J(t) are the set of jobs that have
been assigned to time step t. That is, jobs Ji where t ∈ Ii. When considering
job Ji, if the number of unallocated processors is at least ni, then the scheduler
allocates ni processors to Ji. Otherwise, it continues on to the next job in J(t).
S stops this procedure when either all jobs have been considered or when there
are no remaining processors to allocate.

Remark: Unlike the scheduler for jobs with deadlines, here we try to complete
a job Ji by a calculated deadline Di that is as close to x∗

i as possible. This
is because the obtained profit decreases as the completion time increases but
there is no additional benefit for completing a job Ji before time x∗

i . With a
carefully designed deadline Di, we are able to prove the performance bound of
the scheduler. Similarly to Sect. 3, we start by stating the basic properties of the
scheduler S, followed by bounding the total profit obtained by S. However, the
proofs that bound the profit of jobs that are completed by OPT differ greatly
from that for jobs with deadlines. This is because in addition to losing the profit
of jobs that do not complete by their assigned deadlines, scheduler S can also
loses profit compared to OPT if the completion time of a job under S is later
than under OPT. By taking into account all these jobs, we are able to bound
the performance of S for jobs with general profit functions.

5.1 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in
the proof and can be obtained directly from the algorithm of scheduler S. Note
that these lemmas are similar to the lemmas shown in Sect. 3.2 if we replace xi∗
with Di. We state them here again for completeness.

Scheduling Parallelizable Jobs Online to Maximize Throughput 771

Lemma 11. For every job Ji we have that ni ≤ b2m, where b = (1+2δ
1+ε)1/2.

Proof. By definition, we know that x∗
i ≥ (1+ε)(Wi−Li

m +Li). Therefore, we have

ni =
Wi − Li

x∗
i

1+2δ − Li

≤ Wi − Li

1+ε
1+2δ (Wi−Li

m + Li) − Li

≤ 1 + 2δ

1 + ε
m = b2m

��
Lemma 12. Under scheduler S, we have xini ≤ aWi and vi ≥ pi(Di)

aWi
, where

a = 1 + 1+2δ
ε−2δ .

Proof. By definition, x∗
i > Li(1 + ε). Therefore, we have

xini = Wi − Li + niLi = Wi +
Wi − Li

x∗
i

1+2δ − Li

Li ≤ Wi +
Wi − Li

x∗
i

1+2δ − x∗
i

1+ε

(x∗
i

1 + ε

)

≤ Wi +
(Wi − Li)x∗

i (1 + 2δ)
x∗

i (ε − 2δ)
≤ Wi

(
1 +

1 + 2δ

ε − 2δ

)

Therefore, we have vi = pi(Di)
xini

≥ pi(Di)
aWi

. ��
Lemma 13. For every job Ji with the assignment ni, Di and Ii, Job Ji can
meet its deadline Di, if it is executed by S for at least xi time steps in Ii (on ni

dedicated processors).

Lemma 14. For every job Ji, xi(1 + 2δ) ≤ x∗
i .

Proof. Note that Li ≤ 1
1+εDi by requirement of potential assignment. Since

ni = Wi−Li
x∗

i
1+ε −Li

, we have xi(1+2δ) = (Wi−Li

ni
+Li)(1+2δ) ≤ (x∗

i

1+ε−Li+Li)(1+2δ) =

x∗
i

1+ε (1 + 2δ) ≤ x∗
i . ��

Lemma 15. At any time step t during the execution and for any density range
[v, cv), the total number of cores required by all the jobs Ji ∈ J(t) (that have been
assigned to t) with density v ≤ vi < cv is no more than bm, i.e. N (J(t), vi, cvi) ≤
bm.

5.2 Bounding the Profit of Jobs S Completes

Similar to Sect. 3.3, we bound the profit of jobs completed by scheduler S com-
pared to the profit of all jobs. Let J denote the set of jobs arrived during the
execution, C denote the set of jobs that actually complete before their deadlines
assigned by S, and U = J \ C be the set of jobs that didn’t finish by their
deadlines assigned by S. We say job Ji (and its assigned processors during exe-
cution) is v-dense, if its density vi ≥ v. For any set A of jobs, define ‖A‖ as∑

Ji∈A pi(Di), the sum of the profits of jobs in the set under S.

Lemma 16. For a job Ji ∈ J \ C that does not complete by its deadline, the
number of time steps in Ii where S runs cvi-dense jobs using at least (1 − b)m
processors is at least δxi.

772 K. Agrawal et al.

Proof. From Lemma 13, we know that job Ji can complete if it can execute
for xi time steps by S. Also note that according to the assignment process
(1 + δ)xi = ‖Ii‖, where ‖Ii‖ is the number of time steps assigned to Ji during
[ri, ri + Di]. Since it does not complete by its deadline, there are at least δxi

time steps in Ii where S does not execute Ji. Consider each of these time steps
t. According to Lemma 15, jobs in J(t) with density in range [vi, cvi) require at
most N (J(t), vi, cvi) ≤ bm processors to execute. Therefore, there must be at
least (1 − b)m processors executing cvi-dense jobs. Otherwise, S would execute
all jobs in A (J(t), vi, cvi), which includes job Ji. ��
Lemma 17. ‖C‖ ≥ (ε − 1

(c−1)δ) ‖J ‖.
The proof is similar to that of Lemma 5 and is omitted for brevity.

5.3 Bounding the Profit of Jobs OPT Completes

Similar to Sect. 3.4, we will now bound the profit of the jobs OPT completes.
We are first going to consider the number of processor steps OPT spends on
jobs that S finishes later than OPT. For these jobs, we assume that S makes no
profit since the profit function may become 0 as soon as OPT finishes it. Our
high level goal is to first bound the total number of processor steps OPT spends
on these jobs, which will allow us to bound OPT’s profit. This section of the
proof differ greatly from the throughput case.

We begin by showing that if not too many processors are executing vi

c -dense
jobs then all such jobs must be currently processed under S.

Lemma 18. Consider a job Ji and a time t∗ < Di. For any time step t ∈ [ri, ri+
t∗]\Ii (that is not added to Ii by S), the total number of processors required by vi

c -
dense jobs in J(t) must be more than b(1−b)m, i.e., N(J(t), vi

c ,∞) > b(1−b)m.

Proof. Because t ∈ [ri, ri + t∗] \ Ii and t∗ < Di, we know that time step t is
before Di.

Since t is not added to Ii, it must be the case that for some density vj ∈
(vi

c , vi], the required condition is not true, i.e., N (J(t) ∪ {Ji}, vj , cvj) > bm.
Note that vj must be in the range (vi

c , vi]. This is because without assigning Ji

to time step t it is true that N (J(t), vj , cvj) ≤ bm according to S, therefore Ji

must have a density within the range of [vj , cvj) in order to make impact.
By Lemma 11, we know that ni ≤ b2m. Thus, we have

N (J(t), vj , cvj) = N (J(t) ∪ {Ji}, vj , cvj) − ni > bm − b2m = b(1 − b)m

Therefore, we obtain N(J(t), vi

c ,∞) ≥ N (J(t), vj , cvj) > b(1 − b)m. ��
Let O be the set of jobs completed by OPT. For each job Ji ∈ O, let d be

the difference between Ji’s completion time and arrival time under OPT; the
profit of Ji under OPT is pi(d). According to the assumption in Theorem3, we
know that if d ≤ x∗

i , then pi(d) = pi(x∗
i) for some x∗

i ≥ (Wi−Li

m + Li)(1 + ε).
Therefore, we can assume that OPT assigns a relative deadline D∗

i to Ji, where
D∗

i = max{d, x∗
i }. Thus, OPT obtains a profit of pi(d) = pi(D∗

i).

Scheduling Parallelizable Jobs Online to Maximize Throughput 773

Lemma 19. Consider a job Ji such that Di assigned by scheduler S is larger
than the deadline D∗

i assigned by OPT, i.e., Di > D∗
i , the number of time steps

during [ri, ri + D∗
i) where scheduler S is actively executing vi

c -dense jobs on at
least b(1 − b)m cores is at least δ

1+2δ D∗
i .

Proof. By definition of D∗
i and Lemma 14, we know that D∗

i ≥ x∗
i .

Consider the number of time steps in time interval [ri, ri+D∗
i] that are added

to Ii, it must be less than (1+δ)
(

Wi−Li

ni
+ Li

)
= (1+δ)xi; otherwise, D∗

i would
be a valid deadline under scheduler S with higher profit. Therefore, the number
of time steps in [ri, ri + D∗

i] \ Ii is more than D∗
i − (1 + δ)xi ≥ D∗

i − 1+δ
1+2δ x∗

i ≥
D∗

i − 1+δ
1+2δ D∗

i = δ
1+2δ D∗

i .
By Lemma 18, we know that for each time step t ∈ [ri, ri + D∗

i] \ Ii, the
total number of processors required by vi

c -dense jobs in J(t) must be more than
b(1 − b)m. Therefore, there must be at least b(1 − b)m cores executing vi

c -dense
jobs under scheduler S at time step t and the number of such steps is at least

δ
1+2δ D∗

i . ��
Among the jobs in O, let O1 be the set of jobs that the deadline Di assigned

by scheduler S is no larger than that assigned by OPT, i.e., Di ≤ D∗
i < ∞.

In other words, the obtained profit of these jobs under scheduler S is no less
than that under OPT, i.e., pi(Di) ≥ pi(D∗

i), since the profit function pi(t) is
non-increasing. Let O2 be the remaining jobs O2 = O \ O1. Let ‖X‖∗ be the
total profit that OPT obtains from jobs in X and ‖X‖ be the total profit that
S obtains from jobs in X. For jobs in O1, we have ‖O1‖∗ ≤ ‖O1‖.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total
work processed by the optimal schedule for the jobs in E that are v-dense. Let
βi denote the total number of time steps where S is actively processing job Ji.
By definition, we have βi ≤ xi

1+ε . We similarly let TS(v, E) be the summation of
βini over all jobs i in E that are v-dense. Note that this counts the total number
of processor steps S executes jobs in E that are v-dense over all time.

Now we are ready to bound the time that OPT spends on jobs O2 that
scheduler S obtains less profit than OPT.

Lemma 20. Consider a job Ji in O2, the deadline Di assigned by scheduler
S is longer than deadline D∗

i assigned by OPT. For all v > 0, TO(v,O2) ≤
2(1+2δ)
δb(1−b)TS(v

c ,J).

Proof. For any job Ji ∈ O2, we denote the lifetime of Ji under OPT as the time
interval [ri, ri+D∗

i), where D∗
i is the deadline assigned by OPT. For any density

v > 0, let l be the number of time steps of the union of the lifetimes of all jobs
in A(O2, v,∞). By definition, TO(v,O2) ≤ lm, since OPT can execute them on
at most m processors.

Let M ⊆ O2 be the minimum subset of O2 that the union of the lifetimes
of jobs in M covers the same time intervals of jobs in O2. By the minimality
of M , we know that at any time t, there are at most two jobs in M that cover
time t. Therefore, we can further partition M into two sets M1 and M2, where

774 K. Agrawal et al.

for any two jobs in M1 or any two jobs in M2, their lifetimes do not overlap.
By definition, either M1 or M2 has a union lifetime that is at least l/2 and we
assume WLOG it is M1.

Consider Ji ∈ M1 and let ki be the number of time steps during its lifetime
[ri, ri + D∗

i) where scheduler S is actively executing vi

c -dense jobs on at least
b(1− b)m cores. By Lemma 19, we know k ≥ δ

1+2δ D∗
i . Therefore, during [ri, ri +

D∗
i) the number of processor steps where S is processing vi

c -dense jobs is at least
b(1 − b)m δ

1+2δ D∗
i .

Let K =
∑

M1
ki, be the total number of processor steps where S is processing

v
c -dense jobs (since vi ≥ v) during the intervals in M1. Thus, by definition,

K ≥ δb(1 − b)
1 + 2δ

m
∑

Ji∈M1

D∗
i >

δb(1 − b)
1 + 2δ

m × l

2
≥ δb(1 − b)

2(1 + 2δ)
TO(v,O2)

Clearly, by adding additional intervals that are not in M1, we have
TS(v

c ,J) ≥ K > δb(1−b)
2(1+2δ)TO(v,O2), which gives us the bound. ��

Lemma 21.

‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ ≤
(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
2(1 + 2δ)
δb(1 − b)

)

‖J ‖

Proof. First, by the definition of O1 and O2, we have ‖O‖∗ = ‖O1‖∗ + ‖O2‖∗

and ‖O1‖∗ ≤ ‖O1‖ ≤ ‖J ‖. Now it remains to bound ‖O2‖.
We have TO(v,O2) ≤ 2(1+2δ)

δb(1−b)TS(v
c ,J) from Lemma 20 for all densities v.

The remaining proof for the lemma is similar to that in Lemma 9, except for
a different constant. Therefore, ‖O2‖∗ ≤ (1 + 1+2δ

ε−2δ)c 2(1+2δ)
δb(1−b) ‖J ‖. Taking the

summation of ‖O1‖∗ + ‖O2‖∗ completes the proof. ��
Finally we are ready to complete the proof, bounding the profit OPT obtains

by the total profit the algorithm obtains for jobs it completed.

Lemma 22.
∥
∥CO

∥
∥ ≤ 1+ac

2(1+2δ)
δb(1−b)

ε− 1
(c−1)δ

‖C‖.

Proof. This is just by combination of Lemmas 17 and 21. ��

6 Conclusion

Scheduling jobs online to maximize throughput is a fundamental problem, yet
there has been little study of this topic when jobs are parallelizable and repre-
sented as DAGs. We give the first non-trivial result showing that a scheduling
algorithm is provably good for maximizing throughput. In addition, we extend
the result and give an algorithm for the general profit scheduling problem with
DAG jobs.

There are several directions for future work. First, we want to design and
implement more practical schedulers that have similar theoretical performance

Scheduling Parallelizable Jobs Online to Maximize Throughput 775

but are work-conserving and require fewer preemptions. Second, in this paper
we focus on semi-non-clairvoyant algorithms that do not have any knowledge of
the internal structure of the DAG. This lets us to provide very general results.
However, it is possible that by using the internal structure one could design
algorithms with better performance for some special DAG structures. Finally,
we are also interested in exploring whether fully non-clairvoyant algorithms can
have comparable performance for throughput.

References

1. OpenMP: OpenMP Application Program Interface v4.0, July 2013. http://www.
openmp.org/mp-documents/OpenMP4.0.0.pdf

2. Intel: Intel CilkPlus, September 2013. https://www.cilkplus.org/
3. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-

cessor Parallelism. O’Reilly Media, Inc., Sebastopol (2010)
4. Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++:

Design Patterns for Decomposition and Coordination on Multicore Architectures.
Microsoft Press, Redmond (2011)

5. Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E.,
Shasha, D., Wang, F.: On the competitiveness of on-line real-time task scheduling.
Real-Time Syst. 4(2), 125–144 (1992)

6. Baruah, S.K., Koren, G., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D.,
Wang, F.: On-line scheduling in the presence of overload. In: Symposium on Foun-
dations of Computer Science, pp. 100–110 (1991)

7. Koren, G., Shasha, D.: Dover: an optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

8. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5–16 (1994)

9. Kalyanasundaram, B., Pruhs, K.: Fault-tolerant real-time scheduling. Algorithmica
28(1), 125–144 (2000)

10. Koren, G., Shasha, D.: MOCA: a multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci. 128(1&2), 75–97 (1994)

11. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

12. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000)

13. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date schedul-
ing. Algorithmica 59(4), 569–582 (2011)

14. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Serna,
M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM 2010. LNCS,
vol. 6302, pp. 352–365. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15369-3 27

15. Im, S., Moseley, B.: General profit scheduling and the power of migration on hetero-
geneous machines. In: Symposium on Parallelism in Algorithms and Architectures
(2016)

16. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs: extended abstract. In: 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2013, pp. 305–314 (2013)

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://www.cilkplus.org/
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27

776 K. Agrawal et al.

17. Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.D.: Parallel real-time
scheduling of dags. IEEE Trans. Parallel Distrib. Syst. 25(12), 3242–3252 (2014)

18. Li, J., Chen, J.-J., Agrawal, K., Lu, C., Gill, C.D., Saifullah, A.: Analysis of feder-
ated and global scheduling for parallel real-time tasks. In: ECRTS 2014, pp. 85–96
(2014)

19. Agrawal, K., He, Y., Hsu, W.J., Leiserson, C.E.: Adaptive task scheduling with
parallelism feedback. In: Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP) (2006)

20. Agrawal, K., He, Y., Leiserson, C.E.: Adaptive work stealing with parallelism feed-
back. In: Proceedings of the Annual ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), March 2007

21. He, Y., Hsu, W.-J., Leiserson, C.E.: Provably efficient online non-clairvoyant adap-
tive scheduling. In: IPDPS (2007)

22. Ma, L., Chamberlain, R.D., Agrawal, K.: Performance modeling for highly-
threaded many-core GPUs. In: Proceedings of the International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 84–91,
June 2014

23. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallel DAG jobs online
to minimize average flow time. In: Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, pp. 176–189 (2016)

24. Robert, J., Schabanel, N.: Non-clairvoyant scheduling with precedence constraints.
In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, pp. 491–500 (2008)

25. Baruah, S.: Improved multiprocessor global schedulability analysis of sporadic
DAG task systems. In: 26th Euromicro Conference on Real-Time Systems, ECRTS
2014, Madrid, Spain, 8–11 July 2014, pp. 97–105 (2014)

26. Baruah, S.: Federated scheduling of sporadic DAG task systems. In: 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyder-
abad, India, 25–29 May 2015, pp. 179–186 (2015)

27. Baruah, S.: The federated scheduling of systems of conditional sporadic DAG tasks.
In: 2015 International Conference on Embedded Software, EMSOFT 2015, Ams-
terdam, Netherlands, 4–9 October 2015, pp. 1–10 (2015)

28. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling
of systems of conditional sporadic DAG tasks. In: 27th Euromicro Conference on
Real-Time Systems, ECRTS 2015, pp. 222–231 (2015)

29. Baruah, S.: The federated scheduling of constrained-deadline sporadic DAG task
systems. In: Proceedings of the 2015 Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2015, pp. 1323–1328 (2015)

30. Li, J., Agrawal, K., Lu, C., Gill, C.: Analysis of global EDF for parallel tasks. In:
ECRTS (2013)

31. Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., Wiese, A.: Feasibility analysis
in the sporadic DAG task model. In: ECRTS (2013)

32. Svensson, O.: Conditional hardness of precedence constrained scheduling on iden-
tical machines. In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, pp. 745–754 (2010)

Reactive Proximity Data Structures
for Graphs

David Eppstein, Michael T. Goodrich, and Nil Mamano(B)

Department of Computer Science, University of California, Irvine, USA
{eppstein,goodrich,nmamano}@uci.edu

Abstract. We consider data structures for graphs where we maintain
a subset of the nodes called sites, and allow proximity queries, such as
asking for the closest site to a query node, and update operations that
enable or disable nodes as sites. We refer to a data structure that can
efficiently react to such updates as reactive. We present novel reactive
proximity data structures for graphs of polynomial expansion, i.e., the
class of graphs with small separators, such as planar graphs and road
networks. Our data structures can be used directly in several logisti-
cal problems and geographic information systems dealing with real-time
data, such as emergency dispatching. We experimentally compare our
data structure to Dijkstra’s algorithm in a system emulating random
queries in a real road network.

1 Introduction

Proximity data structures are well-known in computational geometry [10], where
sites are points in the plane and distance is measured, e.g., by the Euclidean
metric. In this paper, we are interested in proximity data structures for graphs,
where sites are defined by a distinguished subset of the vertices and distance is
measured by shortest-path distance in the graph. That is, we assume a graph,
G, is given and fixed (like a road network for a geographic region) and that
distance is measured by shortest paths in this graph. With respect to updates,
a non-distinguished vertex in G can be enabled to become a site or an existing
site can be disabled to no longer be a site, and we want our data structure to
react to such updates so as to be able to quickly answer proximity queries, such
as nearest-neighbor or closest-pair queries for sites.

Definition 1 (Reactive proximity). Given a set, U , known as the universe,
and a distance function, d(∗), for elements in U , maintain a subset, P ⊆ U , of
sites, allowing the following operations:

– Proximity Queries. nearest-neighbor: given a query element q ∈ U ,
return a site p in P minimizing d(q, p); closest-pair: return a pair, p, q ∈ P ,
minimizing d(p, q); bichromatic-closest-pair: suppose we have P = R ∪ B,
where R ∩ B = ∅. Then, return a pair, p, q ∈ P , minimizing d(p, q), such that
p ∈ R and q ∈ B.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 777–789, 2018.
https://doi.org/10.1007/978-3-319-77404-6_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_56&domain=pdf

778 D. Eppstein et al.

– Updates. enable: add an element from U to P ; disable: remove an element
from P .

We refer to data structures that can support such queries and updates as
reactive data structures,1 in that we have a fixed universe of objects which can
be enabled or disabled, and we need to quickly react to such events as updates.
In this paper, we study the case where the set U is the set of nodes of a graph,
and d is the shortest-path distance.

1.1 Applications

There are a number of interesting applications for reactive proximity data struc-
tures for graphs, including several logistical problems in geographic information
systems dealing with real-time data. Consider, for instance, an application to
connect drivers and clients in a private-car service, such as Uber or Lyft, or
even a future driverless car service. The data structure could maintain the set of
cars waiting at various locations in a city to be put into service. When a client
requires a driver, she queries the data structure to find the car nearest to her.
This car is then disabled (i.e., it is no longer available) until it completes the trip
for this client, at which point the car is then enabled (i.e., it is available) at this
new location. Alternatively, we could consider a similar application in the con-
text of police or emergency dispatching, where the data structure maintains the
locations of a set of available first responder vehicles. In Sect. 3, we experiment
with this type of system emulating random queries in a real road network.

As another example dealing with geo-spatial data, which the authors explore
in a companion paper [22], suppose we are given a set of sites representing
the locations of certain facilities, such as post offices or voting locations. We
wish to partition the vertices of the graph into geographic regions, one for each
facility, such that each region has a specified size (in number of nodes) and the
shapes of the regions satisfy certain compactness criteria. As we show in the
companion paper, a greedy matching algorithm can exploit an efficient reactive
data structure to quickly build such a partitioning of the graph.

Reactive proximity data structures can also be useful in other domains,
such as content distribution networks, like the one maintained by Akamai. For
instance, the data structure could maintain the set of nodes that contain a cer-
tain file of interest, like a movie. When another node in the network needs this
information, the data structure could be used to find the closest node that can
transfer it. Updates allow us to model how copies of such a file migrate in the
network, e.g., for load balancing, so that we enable a node when it gets a copy
of the file and disable a node when it passes it to another server.

1 We also call such data structures reactive to distinguish the kinds of updates we
allow (changes to the subset of distinguished vertices) from dynamic data structures
in which the structure of the graph itself can change, e.g., by vertex or edge insertions
or deletions.

Reactive Proximity Data Structures for Graphs 779

Moreover, having a reactive proximity data structure for graphs could allow
us to design interesting algorithms that rely on the existence of such data struc-
tures. For instance, we discuss how to use them to solve the geometric stable
roommates problem [2] in Sect. 2.

1.2 Our Results

In this paper we present a family of reactive data structures for answering prox-
imity problems in graphs. The data structures we present all use a technique
based on graph separator hierarchies and they apply to any graphs for which
such hierarchies can be built. A separator in a given n-vertex graph is a subset
of nodes such that removing it partitions the remaining graph into two disjoint
subgraphs, each of size at most 2n/3. The size of a separator is the number of
nodes in this subset. A separator hierarchy is the result of recursively subdi-
viding a graph by using separators. It has been shown recently that classes of
graphs with separators of size O(nc), for any c < 1, coincide with the classes of
graphs of polynomial expansion [15]. Thus, any graph in this family is suitable
for our data structures.

Graphs of polynomial expansion are sparse, but some sparse graphs (such
as bounded degree expanders) do not have polynomial expansion. Nonethe-
less, many important sparse graph families have polynomial expansion. One
of the first classes that was shown to have sublinear separators is the class of
planar graphs, which have O(n0.5)-size separators [36]. Separators of the same
asymptotic size have also been proven to exist in k-planar graphs [14], bounded-
genus graphs [29], minor-closed graph families [34], graphs with sparse crossing
graphs [25], and the graphs of certain four-dimensional polyhedra [20].

While road networks are not quite planar because of bridges and underpasses,
experimental results show that they can be modeled by graphs with sparse cross-
ing graphs. These graphs, like planar graphs, have O(n0.5)-size separators [25].
This is fortunate, because it allows our data structures to be used in geographic
information systems, e.g., for real-world road networks, as we explore experi-
mentally in this paper.

Not surprisingly, the main technical challenge faced in designing efficient
reactive proximity data structures for graphs lies in their reactive nature. In a
variant where the sites (i.e., the nodes in P) are fixed, there is a well known
solution: the graph-based Voronoi diagram, which maintains the closest site to
each node in the graph [26]. With this information, queries can be answered in
constant time. However, the Voronoi diagram is not easy to update, requiring
O(n log n) time in sparse graphs with n nodes, which is the same time as for
creating the diagram from scratch. If we optimize for update time instead, we
could avoid maintaining any information and answer queries directly using a
shortest-path algorithm from the query node. Updates would take constant time;
queries could be answered using Dijkstra’s algorithm [9], which runs in O(n log n)
time in sparse graphs and in O(n) time for graphs with a known separator
hierarchy [32]. However, this is clearly not a good solution either if we want fast
query times.

780 D. Eppstein et al.

Our solutions amount to finding a “sweet spot” between these two extremes.
Our novel data structure for the reactive nearest-neighbor problem supports
queries in O(n0.5) time and updates in O(n0.5 log log n) time when the underlying
graph is a planar graph or a road network. More generally, if the graph belongs
to a family with separators of size S(n) = O(nc), for some 0 < c < 1, queries
and updates run in O(S(n)) and O(S(n) log log n) time, respectively. Moreover,
since forests have separators of size one, the data structure can be shown to
have O(log n) query time and O(log n log log n) update time when the underlying
graph is a forest or, more generally, when it has bounded treewidth.

1.3 Prior Related Work

Knuth’s discussion of the classic post office problem has given rise to a long line
of research on structures for spatial partitioning for answering nearest-neighbor
queries, including an entire literature on the topic of Voronoi diagrams [3,8].
Given a collection of sites, these diagrams partition a space into regions such that
the points in each region have a particular site as their nearest. Furthermore,
Erwig [26] shows that Voronoi diagrams can be extended to graphs and that
such structures can be constructed using Dijkstra’s shortest-path algorithm (e.g.,
see [9,31]). These Voronoi diagram structures are efficient for instances when
the set of sites is fixed, but they tend to perform poorly for cases in which
sites can be inserted or removed. Such dynamic nearest neighbor problems have
been addressed in geometric settings. For exact two-dimensional dynamic nearest
neighbors, a data structure with O(nε) update and query time was given by
Agarwal et al. [1], and improved to O(log6 n) by Chan [6], and to O(log5 n) by
Kaplan et al. [33]. Because of the high complexities of these methods, researchers
have also looked at finding approximate nearest neighbors in dynamic point sets.
For example, dynamic versions of quadtrees and k-d trees are known [38], and the
skip-quadtree data structure can answer approximate nearest neighbor queries
and updates in logarithmic time [23].

The graph-based variant of the dynamic nearest neighbor problem that we
study falls into the area of dynamic graph algorithms, the subject of extensive
study [21]. There has been much research on shortest paths in dynamic graphs,
e.g., see [4,5,12,13,35,37]. However, previous work has primarily focused on edge
insertion and deletion updates rather than the vertex enable/disable updates
that we study. Exceptions are the work of Eppstein on maintaining a dynamic
subset of vertices in a sparse graph and keeping track of whether it is a dominat-
ing set [19], and the work of Italiano and Frigioni on dynamic connectivity for
subsets of vertices in a planar graph [28], but these are very different problems
from the proximity problems that we study here. To the best of our knowledge,
no one has considered maintaining nearest-neighbor data structures for graphs
subject to enabling and disabling of sites.

Separator hierarchies, the main technique used in this paper, have proven
useful for solving many graph problems [27,30]. Of these, the most related to
our problem is the O(n)-time single-source shortest path problem for planar
graphs when edge weights are non-negative [32]. The same algorithm applies

Reactive Proximity Data Structures for Graphs 781

more generally to graphs that have O(n0.5)-size separators and for which the
separator hierarchy can be built in O(n) time.

2 Reactive Nearest-Neighbor Data Structure for Graphs

We consider undirected graphs with nonnegative edge weights. We begin by
describing the concept of a separator hierarchy.

Recall that a separator in a given n-vertex graph is a subset S of nodes such
that the removal of S (and its incident edges) partitions the remaining graph
into two disjoint subgraphs (with no edges from one to the other), each of size at
most 2n/3. It is allowed for these subgraphs to be disconnected; that is, removing
S can partition the remaining graph into more than two connected components,
as long as those components can be grouped into two subgraphs that are each of
size at most 2n/3. A separator hierarchy is the result of recursively subdividing
a graph by using separators. Note that since children have size at most 2/3 the
size of the parent, the separator hierarchy is a binary tree of O(log n) height.

Small separators are necessary for the efficiency of our data structure. As we
mentioned, the analysis will depend on the size of the separators for a particular
graph family, which we denote by S(n), and which we assume to be of the form
nc with 0 < c < 1 (because, e.g., forests have separators of size one, and that
changes the analysis).

The reactive nearest-neighbor data structure that we describe in this section
yields the following theorem.

Theorem 1. Given an n-node graph from a graph family with separators of size
S(n) = nc, with 0 < c < 1, which can be constructed in O(n) time, it is possible
to initialize a reactive data structure that uses O(nS(n)) space, in O(nS(n))
time, that answers nearest-neighbor queries in O(S(n)) time and updates in
O(S(n) log n) time. Alternatively, the data structure could have O(nS(n) log n)
initialization time, O(S(n)) query time, and O(S(n) log log n) update time.

2.1 Preprocessing

Initially, we are given the graph G = (V,E) and the subset P ⊆ V of sites. The
creation of our data structure consists of two phases. The first phase does not
depend on the choice of the subset P of sites, while the second phase incorporates
our knowledge of P into the data structure. Note that there are two kinds of
nodes of interest: separator nodes and sites. The two sets may intersect, but
should not be confused.

Site-independent phase. First, we build a separator hierarchy of the graph.
This hierarchy can be constructed in O(n) time and space in planar
graphs [30] and road networks [25].
Second, we compute, for each graph in the hierarchy, the distance from each
separator node to every other node. This computation can be represented as a
collection of single-source shortest-path problems, one for each separator node.

782 D. Eppstein et al.

As we already mentioned, each single-source shortest path problem can be
solved in O(n) time in graphs with O(n0.5)-size separators and for which we
can build a separator hierarchy in linear time [32]. Therefore, in such graphs
the time to compute shortest-path distances at the top level of the hierarchy
is O(nS(n)). We can analyze the time to compute these distances at all levels
of the hierarchy by the recurrence

T (n) = T (x) + T (y) + O(nS(n)),

where x and y are the sizes of two subgraphs, chosen so that x + y ≤ n,
max(x, y) ≤ 2n/3, and (among x and y obeying these constraints) so that
T (x) + T (y) is maximum. The recurrence is dominated by its top-level
O(nS(n)) term, and has a solution that is also O(nS(n)).

Site-dependent phase. For each graph H in the separator hierarchy, and each
separator node s in H, we initialize a priority queue Qs. The elements stored
in Qs are the sites that belong to H, and their priorities are their distances
from s. If we implement the priority queue as a binary heap, constructing each
queue Qs takes linear time. Thus, the time at the top level of the hierarchy is
linear per separator node, and the total time analysis of this phase is O(nS(n))
as before.

Adding the space and time for the two phases together gives O(nS(n)) for
planar graphs, or for other graphs on which we can use the linear-time separator-
hierarchy-based shortest path algorithm. If we instead use the simpler Dijkstra’s
algorithm to compute shortest paths, the running time becomes the slightly
slower bound of O(nS(n) log n), plus the time to build the separator hierarchy.

2.2 Queries

Given a node q, we find two sites: the closest site to q with (a) paths restricted
to the same side of the partition as q, and with (b) paths containing at least one
separator node. The paths considered in both cases cover all possible paths, so
one of the two found sites will be the overall closest site to q.

– To find the site satisfying condition (a), we can relay the query to the subgraph of
the separator hierarchy containing q. This satisfies the invariant that the query
node is a node of the graph. This case does not arise if q is a separator node.

– To find the site satisfying condition (b), we need the shortest path from q
to any site, but only among paths containing separator nodes. Note that if a
shortest path goes through a separator s, it should end at the site closest to
s. Therefore, the length of the shortest path starting at q, going through s,
and ending at any site, is d(q, s) + d(s,min(Qs)), where min(Qs) denotes the
element with the smallest key in Qs. We can find the site satisfying condition
(b) by considering all the separator nodes and retaining the one minimizing
this sum.

Reactive Proximity Data Structures for Graphs 783

The time to find paths of type (b) is O(S(n)), since there are O(S(n)) sep-
arator nodes to check and each takes constant time, as we precomputed all the
needed distances. Therefore, the time to find all paths of types (a) and (b) can
be analyzed by the recurrence

T (n) ≤ T (2n/3) + O(S(n)),

where the T (2n/3) bound dominates the actual time for recursing in a single
subgraph of the separator hierarchy. The solution to this recurrence is O(S(n)),
when S(n) is polynomial, and therefore the time per query is O(S(n)) in this
case. If S(n) is constant or polylogarithmic, then the query time is O(S(n) log n).

We can also implement a heuristic optimization for queries so that we do
not need to check every separator node to find a node satisfying condition (b).
At each graph of the separator hierarchy, we can sort, for each node, all the
separators by distance. This increases the space used by the data structure by a
constant factor. Then, after obtaining the recursive candidate satisfying condi-
tion (a), to find the second candidate, we consider the separator nodes in order
by distance to the query node q. Suppose p is the closest site we have found so
far. As soon as we reach a separator node s such that d(q, s) ≥ d(q, p), we can
stop and ignore the rest of separator nodes, since any site reached through them
would be further from q than p. In our experiments (Sect. 3), this optimization
reduced the average query runtime by a factor between 1.5 and 9.5, depending
on the number of sites. It is more effective when there are many sites, as then
the closest site will tend to be closer than many separators at the upper levels
of the hierarchy.

2.3 Updates

Suppose that we wish to enable or disable a node p from the set of sites P . Note
that, when we perform such an update, the structures computed during the site-
independent preprocessing phase (the separator hierarchy and the computation
of distances) do not change, as they do not depend on the choice of P . However,
we will need to update Qs for every separator node s in the top-level separator
S, by adding or removing p (according to whether we are adding or removing it
from P).

Moreover, if p is not a separator node, it will belong to one of the two recursive
subgraphs in the separator hierarchy. In this case, we also need to update the
data structure for the subgraph containing p recursively, since p will appear in
the priority queues of the separator nodes in that subgraph.

The time to add or remove p in all top-level priority queues is O(log n) per
priority queue, for a total time of O(S(n) log n) at the top level. Again, if we
formulate and solve a recurrence for the running time at all levels of the separator
hierarchy, this time will be dominated by the top level time, giving a total time
of O(S(n) log n) per update.

We can also obtain an asymptotically faster update time of O(S(n) log log n)
by, for each separator vertex s, replacing the distances from s to all other nodes

784 D. Eppstein et al.

by the ranks of these distances in the sorted list of distances. That is, if the set
of distances in sorted order from s to the other nodes are

d1, d2, d3, . . .

with d1 < d2 < d3 < · · · , we could replace these numbers by the numbers

1, 2, 3, . . .

without changing the comparison between any two distances. This replacement
would allow us to use a faster integer priority queue, such as a van Emde Boas
tree [16], in place of the binary heap representation of each priority queue Q.
However, in order to use this optimization, we need to add the time to sort the
distances in the preprocessing time, which increases to O(nS(n) log n) (assuming
a comparison sort is used).

2.4 Additional Applications

We remark that our dynamic nearest neighbor data structure can be extended
to directed graphs. The only required change is to compute distances from and
to every separator node. To obtain the latter, we can use Dijkstra’s algorithm
in the reverse graph.

In addition, the conga line data structure of Eppstein [18] solves the dynamic
closest-pair problem with O(log n) query time, O(T (n) log n) insertion time, and
O(T (n) log2 n) deletion time, where T (n) is the time per operation (query or
update) of a dynamic nearest-neighbor data structure. Therefore, by combining
the data structure in this paper with the conga line data structure, we obtain
a data structure for the reactive closest pair problem in graphs with separators
of size S(n) = O(nc), with 0 < c < 1, that achieves O(log n) query time,
O(S(n) log n log log n) enable time, and O(S(n) log2 n log log n) disable time.

Furthermore, by combining the data structure in this paperwith the data struc-
ture from [17], we obtain the same running times for the reactive bichromatic
closest-pair problem as for the reactive closest-pair problem. Not using our data
structure would result in linear or super-linear times for either queries or updates.

The nearest-neighbor data structure can also be used for the metric stable
roommates problem, extending the work of Arkin et al. [2] to graphs. In the orig-
inal problem, we wish to match a set of points in a geometric space so that there
is no unmatched pair, (p, q), such that p and q are both closer to each other than
the points they are matched to. For points in general position, they show that a
simple greedy algorithm, which repeatedly matches and removes a closest-pair of
points, will produce a solution to the geometric stable roommates problem. An
efficient algorithm for this problem is the nearest-neighbor chain algorithm, which
solves it in O(|P |) queries and updates of a reactive nearest-neighbor data struc-
ture [22]. Hence, combined with our data structure, we can solve the greedy match-
ing problem (for metric stable roommates in graphs) in O(nS(n) + |P |S(n) log n)
time. Without our data structure, using a shortest-path algorithm in the nearest-
neighbor chain algorithm increases this time to Ω(|P |n).

Reactive Proximity Data Structures for Graphs 785

Finally, note that forests and graphswith bounded treewidth have separators of
sizeO(1), e.g., see [7]. If we reformulate and solve the recurrence equations account-
ing for the fact that there is constant number of separator nodes, we obtain an
O(n log n) preprocessing time, O(log n) query time, and O(log2 n) update time (or
O(log n log log n) using an integer priority queue as discussed above).

3 Experiments

In this section, we evaluate our data structure empirically on real-world road
network data, the Delaware road network from the DIMACS dataset [11]. We
consider the biggest connected component of the network, which has 48812 nodes
and 60027 edges. This dataset has been planarized: overpasses and underpasses
have been replaced by artificial intersection nodes. Each trial in our experiment
begins with a number of uniformly distributed random sites, and then performs
1000 operations. We consider the cases of only queries, only updates, and a
mixture of both (see Fig. 1). The updates alternate between enables and disables,
whereas the operations in the mixed case alternate between queries and updates.
We compare the performance of our data structure against a basic data structure
that simply uses Dijkstra’s algorithm for the queries.

3.1 Implementation Details

We implemented the algorithms in Java 8.2 We then executed them and timed
them as run on an Intel Core CPU i7-3537U 2.00 GHz with 4 GB of RAM, under
Windows 10.

We implemented the optimization for queries described in Sect. 2.2, and com-
pared it with the unoptimized version in order to evaluate if its worth the extra
space. For updates, we used a normal binary heap, as these tend to perform
better in practice than more sophisticated data structures.

A factor that affects the efficiency of the data structure is the size and balance
of the separators. Our hierarchy for the Delaware road network had a total of
504639 nodes across 8960 graphs up to 13 levels deep. Among these graphs, the
biggest separator had 81 nodes. Rather than implementing a full planar separa-
tor algorithm to find the separators (recall that the data had been planarized),
we choose the smallest of two simply-determined separators: the vertical and
horizontal lines partitioning the nodes into two equal subsets. While these are
not guaranteed to have size O(

√
n), past experiments on the transversal com-

plexity in road networks [24] indicate that straight-line traversals of road net-
works should provide separators with low complexity, making it unnecessary to
incorporate the extra complexity of a full planar graph separator algorithm.

When a separator partitions a graph in more than two connected components,
we made one child per component. Thus, our hierarchy is not necessarily a binary
tree, and may be shallower. We set the base case size to 20. At the base case,
we perform Dijkstra’s algorithm. Experiments with different base-case sizes did
not affect the performance significantly.
2 The source code is available at github.com/nmamano/NearestNeighborInGraphs.

https://github.com/nmamano/NearestNeighborInGraphs

786 D. Eppstein et al.

Fig. 1. Time needed by the data structures to complete 1000 operations in the Delaware
road network [11] for a range of number of sites (in a logarithmic scale). Each data
point is the average of 5 runs with different sets of random sites (the same sets for all
the algorithms).

3.2 Results

Figure 1 depicts the results. Table 1 shows the corresponding data for the case
of mixed operations, which is the case of interest in a reactive model.

– The runtime of Dijkstra’s algorithm is roughly proportional to the number of
sites, because with more sites it requires less exploration to find the closest
one. Moreover, initialization and updates require virtually no time. Thus, this
choice is superior for large numbers of sites, while being orders of magnitude
slower when the number of sites is low (see Table 1).

– The data structure based on a separator hierarchy is not affected as much by
the number of sites. The update runtime only increases slightly with more
sites because of the operations with bigger heaps. This is consistent with
its asymptotic runtime, which is O(S(n) log n) for any number of sites. The
optimization, which reduces the number of separators needed to be checked,
can be seen to have a significant effect on queries, especially as the number of
sites increases: it is up to 9.5 times faster on average with 2048 sites. However,
since it has no effect in updates, in the mixed model with the same number
of updates and queries the improvement is less significant.

– The data structure requires a significant amount of time to construct the
hierarchy. Our code constructed the hierarchy for the Delaware road network
in around 15 s. Fortunately, this hierarchy only needs to be built once per
road network. The limiting factor is the space requirement of O(n

√
n), which

caused us to run out of memory for other road networks from the DIMACS
dataset with over 105 nodes.

Reactive Proximity Data Structures for Graphs 787

Table 1. Time in milliseconds needed by the data structures to complete 1000 opera-
tions (mixed queries and updates) in the Delaware road network for a range of number
of sites (in a logarithmic scale). Each data point is the average, minimum, and maxi-
mum, of 5 runs with different sets of random sites (the same sets for all the algorithms).

sites Dijkstra Separator Separator (with opt.)

2 3797 (3672 – 3906) 63 (47 – 94) 53 (31 – 94)

4 2303 (2203 – 2359) 66 (63 – 78) 53 (47 – 63)

8 1272 (1250 – 1297) 66 (47 – 78) 50 (47 – 63)

16 694 (641 – 781) 56 (47 – 63) 44 (31 – 47)

32 384 (359 – 406) 75 (63 – 94) 50 (47 – 63)

64 200 (172 – 219) 81 (63 – 94) 56 (47 – 63)

128 94 (94 – 94) 97 (94 – 109) 50 (47 – 63)

256 47 (47 – 47) 88 (78 – 94) 84 (78 – 109)

512 16 (16 – 16) 94 (94 – 94) 75 (63 – 78)

1024 13 (0 – 16) 94 (94 – 94) 75 (63 – 78)

2048 3 (0 – 16) 113 (94 – 125) 88 (78 – 94)

4096 3 (0 – 16) 125 (109 – 156) 88 (78 – 94)

8192 3 (0 – 16) 163 (125 – 188) 125 (94 – 156)

16384 0 (0 – 0) 116 (109 – 125) 113 (94 – 156)

4 Conclusion

We have studied reactive proximity problems in graphs, giving a family of data
structures for such problems. While we have focused on applications in geo-
graphic systems dealing with real-time data, the problem is primitive enough
that it seems likely that it will arise in other domains of graph theory, such as
network protocols. We would like to explore other applications in the future.

As we discussed in Sect. 3.1, a big factor in the runtime of any data structure
based on separator hierarchies is the choice of separators. It may be of interest
to compare the benefits of a simpler but lower-quality separator construction
algorithm versus a slower and more complicated but higher-quality separator
construction algorithm in future experiments.

References

1. Agarwal, P.K., Eppstein, D., Matoušek, J.: Dynamic half-space reporting, geomet-
ric optimization, and minimum spanning trees. In: 33rd Symposium Foundations
of Computer Science (FOCS), pp. 80–89 (1992)

2. Arkin, E.M., Bae, S.W., Efrat, A., Okamoto, K., Mitchell, J.S., Polishchuk,
V.: Geometric stable roommates. Inf. Process. Lett. 109(4), 219–224 (2009).
http://www.sciencedirect.com/science/article/pii/S0020019008003098

http://www.sciencedirect.com/science/article/pii/S0020019008003098

788 D. Eppstein et al.

3. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

4. Buriol, L.S., Resende, M.G.C., Thorup, M.: Speeding up dynamic shortest-path
algorithms. INFORMS J. Comput. 20(2), 191–204 (2008)

5. Chan, E.P.F., Yang, Y.: Shortest path tree computation in dynamic graphs. IEEE
Trans. Comput. 58(4), 541–557 (2009)

6. Chan, T.M.: A dynamic data structure for 3-D convex hulls and 2-D nearest neigh-
bor queries. J. ACM 57(3), 16:1–16:15 (2010)

7. Chung, F.R.K.: Separator theorems and their applications. In: Paths, flows, and
VLSI-layout (Bonn, 1988), Algorithms Combin. vol. 9, pp. 17–34. Springer, Berlin
(1990)

8. Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In:
Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice, pp. 15–59. MIT Press (2006). Chapter 2

9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York City (2001)

10. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geome-
try: Introduction. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
77974-2

11. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: 9th DIMACS implementation chal-
lenge: shortest paths (2006). http://www.dis.uniroma1.it/∼challenge9/

12. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968–992 (2004)

13. Djidjev, H.N., Pantziou, G.E., Zaroliagis, C.D.: On-line and dynamic algorithms
for shortest path problems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS,
vol. 900, pp. 193–204. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
59042-0 73

14. Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted
crossings. SIAM J. Discrete Math. 31(2), 805–824 (2017)

15. Dvořák, Z., Norin, S.: Strongly sublinear separators and polynomial expansion.
SIAM J. Discrete Math. 30(2), 1095–1101 (2016)

16. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
16th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 75–84
(1975)

17. Eppstein, D.: Dynamic Euclidean minimum spanning trees and extrema of binary
functions. Discrete Comput. Geom. 13(1), 111–122 (1995)

18. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest
pairs. J. Exp. Algorithmics 5 (2000)

19. Eppstein, D.: All maximal independent sets and dynamic dominance for sparse
graphs. ACM Trans. Algorithms 5(4), Article No. 38 (2009)

20. Eppstein, D.: Treetopes and their graphs. In: 27th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 969–984 (2016). http://dl.acm.org/citation.cfm?
id=2884435.2884504

21. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J.
(ed.) Algorithms and Theory of Computation Handbook, pp. 9.1–9.28, 2nd edn. CRC
Press(2010). http://www.info.uniroma2.it/∼italiano/Papers/dyn-survey.ps.Z

22. Eppstein, D., Goodrich, M.T., Korkmaz, D., Mamano, N.: Defining equitable geo-
graphic districts in road networks via stable matching. In: 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (2017)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
http://www.dis.uniroma1.it/~challenge9/
https://doi.org/10.1007/3-540-59042-0_73
https://doi.org/10.1007/3-540-59042-0_73
http://dl.acm.org/citation.cfm?id=2884435.2884504
http://dl.acm.org/citation.cfm?id=2884435.2884504
http://www.info.uniroma2.it/~italiano/Papers/dyn-survey.ps.Z

Reactive Proximity Data Structures for Graphs 789

23. Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: dynamic data structures
for multidimensional point sets. Int. J. Comput. Geom. Appl. 18(1–2), 131–160
(2008)

24. Eppstein, D., Goodrich, M.T., Trott, L.: Going off-road: transversal complexity in
road networks. In: 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 23–32 (2009)

25. Eppstein, D., Gupta, S.: Crossing patterns in nonplanar road networks. In: 25th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, September 2017

26. Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163
(2000)

27. Frieze, A.M., Miller, G.L., Teng, S.H.: Separator based parallel divide and conquer
in computational geometry. In: 4th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 420–429 (1992). http://doi.acm.org/10.1145/140901.
141934

28. Frigioni, D., Italiano, G.F.: Dynamically switching vertices in planar graphs. Algo-
rithmica 28(1), 76–103 (2000)

29. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of
bounded genus. J. Algorithms 5(3), 391–407 (1984)

30. Goodrich, M.T.: Planar separators and parallel polygon triangulation. J. Comput.
Syst. Sci. 51(3), 374–389 (1995)

31. Goodrich, M.T., Tamassia, R.: Algorithm Design and Applications, 1st edn. Wiley,
Hoboken (2014)

32. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)

33. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
In: 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2495–2504
(2017)

34. Kawarabayashi, K., Reed, B.: A separator theorem in minor-closed classes. In:
51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 153–162
(2010)

35. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In: 40th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 81–89 (1999)

36. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

37. Roditty, L., Zwick, U.: On dynamic shortest paths problems. Algorithmica 61(2),
389–401 (2011)

38. Samet, H.: The design and analysis of spatial data structures. Addison-Wesley
Series in Computer Science. Addison-Wesley, Reading (1990)

http://doi.acm.org/10.1145/140901.141934
http://doi.acm.org/10.1145/140901.141934

Mutants and Residents with Different
Connection Graphs in the Moran Process

Themistoklis Melissourgos1(B) , Sotiris Nikoletseas2,3,
Christoforos Raptopoulos2,3, and Paul Spirakis1,2,3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{T.Melissourgos,P.Spirakis}@liverpool.ac.uk

2 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
Nikole@cti.gr

3 Computer Engineering and Informatics Department,
University of Patras, Patras, Greece

Raptopox@ceid.upatras.gr

Abstract. The Moran process, as studied by Lieberman et al. [10], is
a stochastic process modeling the spread of genetic mutations in pop-
ulations. In this process, agents of a two-type population (i.e. mutants
and residents) are associated with the vertices of a graph. Initially, only
one vertex chosen uniformly at random (u.a.r.) is a mutant, with fit-
ness r > 0, while all other individuals are residents, with fitness 1. In
every step, an individual is chosen with probability proportional to its
fitness, and its state (mutant or resident) is passed on to a neighbor
which is chosen u.a.r. In this paper, we introduce and study for the
first time a generalization of the model of [10] by assuming that differ-
ent types of individuals perceive the population through different graphs
defined on the same vertex set, namely GR = (V, ER) for residents and
GM = (V, EM) for mutants. In this model, we study the fixation prob-
ability, namely the probability that eventually only mutants remain in
the population, for various pairs of graphs.

In particular, in the first part of the paper, we examine how known
results from the original single-graph model of [10] can be transferred to
our 2-graph model. In that direction, by using a Markov chain abstrac-
tion, we provide a generalization of the Isothermal Theorem of [10], that
gives sufficient conditions for a pair of graphs to have fixation probability
equal to the fixation probability of a pair of cliques; this corresponds to
the absorption probability of a birth-death process with forward bias r.

In the second part of the paper, we give a 2-player strategic game view
of the process where player payoffs correspond to fixation and/or extinc-
tion probabilities. In this setting, we attempt to identify best responses
for each player. We give evidence that the clique is the most beneficial
graph for both players, by proving bounds on the fixation probability
when one of the two graphs is complete and the other graph belongs to
various natural graph classes.

P. Spirakis—The work of this author was partially supported by the ERC Project
ALGAME and the EPSRC Project EP/P020372/1 “Algorithmic Aspects of Tempo-
ral Graphs”.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 790–804, 2018.
https://doi.org/10.1007/978-3-319-77404-6_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_57&domain=pdf
http://orcid.org/0000-0002-9867-6257
http://orcid.org/0000-0001-5396-3749

Mutants and Residents with Different Connection Graphs - Moran Process 791

In the final part of the paper, we examine the possibility of efficient
approximation of the fixation probability. Interestingly, we show that
there is a pair of graphs for which the fixation probability is exponentially
small. This implies that the fixation probability in the general case of an
arbitrary pair of graphs cannot be approximated via a method similar
to [2]. Nevertheless, we prove that, in the special case when the mutant
graph is complete, an efficient approximation of the fixation probability
is possible through an FPRAS which we describe.

Keywords: Moran process · Fixation probability
Evolutionary dynamics

1 Introduction

The Moran process [14] models antagonism between two species whose critical
difference in terms of adaptation is their relative fitness. A resident has relative
fitness 1 and a mutant relative fitness r > 0. Many settings in Evolutionary Game
Theory consider fitness as a measure of reproductive success; for examples see [3,
7,15]. A generalization of the Moran process by Lieberman et al. [10] considered
the situation where the replication of an individual’s fitness depends on some
given structure, i.e. a directed graph. This model gave rise to an extensive line
of works in Computer Science, initiated by Mertzios and Spirakis in [12].

In this work we further extend the model of [10] to capture the situation
where, instead of one given underlying graph, each species has its own graph that
determines their way of spreading their offsprings. As we will show, due to the
process’ restrictions only one species will remain in the population eventually.
Our setting is by definition an interaction between two players (species) that
want to maximize their probability of occupying the whole population.

This strategic interaction is described by an 1-sum bimatrix game, where
each player (resident or mutant) has all the strongly connected digraphs on n
nodes as her pure strategies. The resident’s payoff is the extinction probability
and the mutant’s payoff is the fixation probability. The general question that
interests us is: what are the pure Nash equilibria of this game (if any)? To gain
a better understanding of the behaviour of the competing graphs, we investigate
the best responses of the resident to the clique graph of the mutant.

This model and question is motivated by many interesting problems from var-
ious, seemingly unrelated scientific areas. Some of them are: idea/rumor spread-
ing, where the probability of spreading depends on the kind of idea/rumor;
computer networks, where the probability that a message/malware will cover
a set of terminals depends on the message/malware; and also spread of muta-
tions, where the probability of a mutation occupying the whole population of
cells depends on the mutation. Using the latter application as an analogue for
the rest, we give the following example to elaborate on the natural meaning of
this process.

Imagine a population of identical somatic resident cells (e.g. biological tissue)
that carry out a specific function (e.g. an organ). The cells connect with each

792 T. Melissourgos et al.

other in a certain way; i.e., when a cell reproduces it replaces another from a
specified set of candidates, that is, the set of cells connected to it. Reproduction
here is the replication of the genetic code to the descendant, i.e. the hardwired
commands which determine how well the cell will adapt to its environment,
what its chances of reproduction are and which candidate cells it will be able to
reproduce on.

The changes in the information carried by the genetic code, i.e. mutations,
give or take away survival or reproductive abilities. A bad case of mutation
is a cancer cell whose genes force it to reproduce relentlessly, whereas a good
one could be a cell with enhanced functionality. A mutation can affect the cell’s
ability to adapt to the environment, which translates to chances of reproduction,
or/and change the set of candidates in the population that should pay the price
for its reproduction.

Now back to our population of resident cells which, as we said, connect with
each other in a particular way. After lots of reproductions a mutant version of it
shows up due to replication mistakes, environmental conditions, etc. This mutant
has the ability to reproduce in a different rate, and also, to be connected with a
set of cells different than the one of its resident version. For the sake of argument,
we study the most pessimistic case, i.e. our mutant is an extremely aggressive
type of cancer with increased reproduction rate and maximum unpredictability;
it can replicate on any other cell and do that faster than a resident cell. We
consider the following motivating question: Supposing this single mutant will
appear at some point in time on a random cell equiprobably, what is the best
structure (network) of our resident cells such that the probability of the mutant
taking over the whole population is minimized?

The above process that we informally described captures the real-life process
remarkably well. As a matter of fact, a mutation that affects the aforementioned
characteristics in a real population of somatic cells occurs rarely compared to
the time it needs to conquer the population or get extinct. Therefore, a second
mutation is extremely rare to happen before the first one has reached one of
those two outcomes and this allows us to study only one type of mutant per
process. In addition, apart from the different reproduction rate, a mutation can
lead to a different “expansionary policy” of the cell, something that has been
overlooked so far.

2 Definitions

Each of the population’s individuals is represented by a label i ∈ {1, 2, . . . , n}
and can have one of two possible types: R (resident) and M (mutant). We
denote the set of nodes by V , with n = |V |, and the set of resident (mutant)
edges by ER(EM). The node connections are represented by directed edges;
A node i has a type R(M) directed edge (ij)R((ij)M) towards node j if and
only if when i is chosen and is of type R(M) then it can reproduce on j with
positive probability. The aforementioned components define two directed graphs;
the resident graph GR = (V,ER) and the mutant graph GM = (V,EM). A node’s

Mutants and Residents with Different Connection Graphs - Moran Process 793

type determines its fitness; residents have relative fitness 1, while mutants have
relative fitness r > 0.

Our process works as follows: We start with the whole population as residents,
except for one node which is selected uniformly at random to be mutant. We
consider discrete time, and in each time-step an individual is picked with proba-
bility proportional to its fitness, and copies itself on an individual connected to
it in the corresponding graph (GR or GM) with probability determined by the
(weight of the) connection. The probability of i (given that it is chosen) repro-
ducing on j when i is resident (mutant) is by definition equal to some weight
wR

ij(w
M
ij), thus

∑n
j=1 wR

ij =
∑n

j=1 wM
ij = 1 for every i ∈ V . For GR, every edge

(ij)R has weight wR
ij > 0 if (ij)R ∈ ER, and wR

ij = 0 otherwise. Similarly for GM .
For each graph we then define weight matrices WR =

[
wR

ij

]
and WM =

[
wM

ij

]

which contain all the information of the two graphs’ structure. After each time-
step three outcomes can occur: (i) a node is added to the mutant set S ⊆ V , (ii)
a node is deleted from S, or (iii) S remains the same. If both graphs are strongly
connected the process ends with probability 1 when either S = ∅ (extinction)
or S = V (fixation). An example is shown in Fig. 1.

1 3

2

WR =

⎡
⎣
0 1 0
1
2
0 1

2

0 1 0

⎤
⎦ WM =

⎡
⎣
0 1

2
1
2

1
2
0 1

2
1
2

1
2
0

⎤
⎦

Fig. 1. The 2 graphs combined; the edges of the resident graph are blue and the edges
of the mutant graph are red. The respective weight matrices capture all the structure’s
information, including the weights to each edge. For example, the resident behaviour
for node 1 (if chosen) is to reproduce only on node 2, while its mutant behaviour is to
reproduce equiprobably on either 2 or 3. (Color figure online)

We denote by f(S) the probability of fixation given that we start with the
mutant set S. We define the fixation probability to be f = 1

n

∑
u∈V f ({u}) for

a fixed relative fitness r. We also define the extinction probability to be equal to
1 − f . In the case of only one graph G (i.e. GR = GM = G), which has been
the standard setting so far, the point of reference for a graph’s behaviour is the
fixation probability of the complete graph (called Moran fixation probability)
fMoran =

(
1 − 1

r

)
/
(
1 − 1

rn

)
. G is an amplifier of selection if f > fMoran and

r > 1 or f < fMoran and r < 1 because it favors advantageous mutants and
discourages disadvantageous ones. G is a suppressor of selection if f < fMoran

and r > 1 or f > fMoran and r < 1 because it discourages advantageous mutants
and favors disadvantageous ones.

An undirected graph is a graph G for which wij ∈ E if and only if wji ∈ E. An
unweighted graph is a graph with the property that for every i ∈ V : wij = 1

deg(i)

for every j with incoming edge from i, where deg(i) is the outdegree of node i.

794 T. Melissourgos et al.

In the sequel we will abuse the term undirected graph to refer to an undirected
unweighted graph.

In what follows we will use special names to refer to some specific graph
classes. The following graphs have n vertices which we omit from the notation
for simplicity.

– CL as a shorthand for the Clique or complete graph Kn.
– UST as a shorthand for the Undirected Star graph K1,n−1.
– UCY as a shorthand for the Undirected Cycle or 2-regular graph Cn.
– CId: as a shorthand for the Circulant graph Cin(1, 2, . . . , d/2) for even d.

Briefly this subclass of circulant graphs is defined as follows. For even degree
d, the graph CId (see Fig. 2 in the full paper [11]) has vertex set {1, 2, · · · , n},
and each vertex i is connected to vertices {(i − 1 ± k) mod n + 1 : k =
1, . . . , d/2}.

By “Resident Graph vs Mutant Graph” we refer to the process with GR =
Resident Graph and GM = Mutant Graph and by fGR,GM

we refer to the fixation
probability of that process.

We note that in this paper, we are interested in the asymptotic behavior of
the fixation probability in the case where the population size n is large. There-
fore, we employ the standard asymptotic notation with respect to n; in partic-
ular, r is almost always treated as a variable independent of n. Furthermore, in
the rest of the paper, by GR and GM we mean graph classes {(GR)n}n≥3 and
{(GM)n}n≥3 respectively, and we will omit the n since we only care about the
fixation probability when n → ∞.

3 Our Results

In this paper, we introduce and study for the first time a generalization of
the model of [10] by assuming that different types of individuals perceive the
population through different graphs defined on the same vertex set, namely
GR = (V,ER) for residents and GM = (V,EM) for mutants. In this model, we
study the fixation probability, i.e. the probability that eventually only mutants
remain in the population, for various pairs of graphs.

In particular, in Sect. 5 we initially prove a tight upper bound (Theorem1) on
the fixation probability for the general case of an arbitrary pair of digraphs. Next,
we prove a generalization of the Isothermal Theorem of [10], that provides suffi-
cient conditions for a pair of graphs to have fixation probability equal to the fixa-
tion probability of a clique pair, namely fMoran

def
= fCL,CL =

(
1 − 1

r

)
/
(
1 − 1

rn

)
;

this corresponds to the absorption probability of a simple birth-death process
with forward bias r. It is worth noting that it is easy to find small counterexam-
ples of pairs of graphs for which at least one of the two conditions of Theorem
2 does not hold and yet the fixation probability is equal to fMoran; hence we do
not prove necessity.

In Sect. 6 we give a 2-player strategic game view of the process where player
payoffs correspond to fixation and/or extinction probabilities. In this setting, we

Mutants and Residents with Different Connection Graphs - Moran Process 795

give an extensive study of the fixation probability when one of the two under-
lying graphs is complete, providing several insightful results. In particular, we
prove that, the fixation probability fUST,CL when the mutant graph is the clique
on n vertices (i.e. GM = CL) and the resident graph is the undirected star on n
vertices (i.e. GR = UST) is 1−O(1/n), and thus tends to 1 as the number of ver-
tices grows, for any constant r > 0. By using a translation result (Lemma 1), we
can show that, when the two graphs are exchanged, then fCL,UST → 0. However,

using a direct proof, in Theorem4 we show that in fact fCL,UST ∈ O
(

rn−1

(n−2)!

)
,

i.e. it is exponentially small in n, for any constant r > 0. In Theorem 6, we also
provide a lower bound on the fixation probability in the special case where the
resident graph is any undirected graph and the mutant graph is a clique.

Furthermore, in Subsect. 6.3, we find bounds on the fixation probability when
the mutant graph is the clique and the resident graph belongs to various classes of
regular graphs. In particular, we show that when the mutant graph is the clique
and the resident graph is the undirected cycle, then 1 − 1

r − o(1) ≤ fUCY,CL ≤
1

e1/r−o(1)
, for any constant r > 2. A looser lower bound holds for smaller values

of r. This in particular implies that the undirected cycle is quite resistant to
the clique. Then, we analyze the fixation probability by replacing the undirected
cycle by 3 increasingly denser circulant graphs and find that, the denser the
graph, the smaller r is required to achieve a 1 − 1/r asymptotic lower bound.
We also find that the asymptotic upper bound stays the same when the resident
graphs become denser with constant degree, but it goes to 1 − 1/r when the
degree is ω(1). In addition, by running simulations (which we do not analyse
here) for the case where the resident graph is the strongest known suppressor,
i.e. the one in [5], and the mutant graph is the clique, we get fixation probability
significantly greater than fMoran for up to 336 nodes and values of fitness r > 2.
All of our results seem to indicate that the clique is the most beneficial graph
(in terms of player payoff in the game theoretic formulation). However, we leave
this fact as an open problem for future research.

Finally, in Sect. 7 we consider the problem of efficiently approximating the
fixation probability in our model. We point out that Theorem4 implies that the
fixation probability cannot be approximated via a method similar to [2]. How-
ever, when we restrict the mutant graph to be complete, we prove a polynomial
(in n) upper bound for the absorption time of the generalized Moran process
when r > 2c (1 + o(1)), where c is the maximum ratio of degrees of adjacent
nodes in the resident graph. The latter allows us to give a fully polynomial
randomized approximation scheme (FPRAS) for the problem of computing the
fixation probability in this case.

Some proofs are omitted due to lack of space, and can be found in the full
version of the paper [11].

4 Previous Work

So far the bibliography consists of works that consider the same structure for
both residents and mutants. This 1-graph setting was initiated by Moran [14]

796 T. Melissourgos et al.

where the case of the complete graph was examined. Many years later, the setting
was extended to structured populations on general directed graphs by Lieberman
et al. [10]. They introduced the notions of amplifiers and suppressors of selection,
a categorization of graphs based on the comparison of their fixation probabilities
with that of the complete graph. They also found a sufficient condition (in fact
[4] corrects the claim in [10] that the condition is also necessary) for a digraph
to have the fixation probability of the complete graph, but a necessary condition
is yet to be found.

Since the generalized 1-graph model in [10] was proposed, a great number
of works have tried to answer some very intriguing questions in this framework.
One of them is the following: which are the best unweighted amplifiers and
suppressors that exist? Dı́az et al. [2] give the following bounds on the fixation
probability of strongly connected digraphs: an upper bound of 1− 1

r+n for r > 0,
a lower bound of 1

n for r > 1 and they show that there is no positive polynomial
lower bound when 0 < r < 1. An interesting problem that was set in [10] is
whether there are graph families that are strong amplifiers or strong suppressors
of selection, i.e. families of graphs with fixation probability tending to 1 or to 0
respectively as the order of the graph tends to infinity and for r > 1. Galanis
et al. [4] find an infinite family of strongly-amplifying directed graphs, namely
the “megastar” with fixation probability 1 − O(n−1/2 log23 n), which was later
proved to be optimal up to logarithmic factors [6].

While the search for optimal directed strong amplifiers was still on, a
restricted version of the problem had been drawing a lot of attention: which
are the tight bounds on the fixation probability of undirected graphs? The lower
bound in the undirected case remained 1

n , but the upper bound was significantly
improved by Mertzios and Spirakis [13] to 1−Ω(n−3/4), when r is independent of
n. It was again improved by Giakkoupis [5] to 1−Ω

(
1
ε n−1/3 log n

)
for r ≥ 1+ ε

where 0 < ε ≤ 1, and finally by Goldberg et al. [6] to 1 − Ω(n−1/3) where they
also find a graph which shows that this is tight. While the general belief was that
there are no undirected strong suppressors, Giakkoupis [5] showed that there is
a class of graphs with fixation probability O(r2n−1/4 log n), opening the way for
a potentially optimal strong suppressor to be discovered.

Extensions of [10] where the interaction between individuals includes a bima-
trix game have also been studied. Ohtsuki et al. in [16] considered the gener-
alized Moran process with two distinct graphs, where one of them determines
possible pairs that will play a bimatrix game and yield a total payoff for each
individual, and the other determines which individual will be replaced by the
process in each step. Two similar settings, where a bimatrix game determines
the individuals’ fitness, were studied by Ibsen-Jensen et al. in [8]. In that work
they prove NP-completeness and #P-completeness on the computation of the
fixation probabilities for each setting.

Mutants and Residents with Different Connection Graphs - Moran Process 797

5 Markov Chain Abstraction and the Generalized
Isothermal Theorem

This generalized process with two graphs we propose can be modelled as an
absorbing Markov chain [15]. The states of the chain are the possible mutant
sets S ⊆ V (2n different mutant sets) and there are two absorbing states, namely
〈∅〉 and 〈V 〉. In this setting, the fixation probability is the average absorption
probability to 〈V 〉, starting from a state with one mutant. Since our Markov
chain contains only two absorbing states, the sum of the fixation and extinction
probabilities is equal to 1.

Transition probabilities. In the sequel we will denote by X+y the set X∪{y}
and by X − y the set X \ {y}. We can easily deduce the boundary conditions
from the definition: f(∅) = 0 and f(V) = 1. For any other arbitrary state 〈S〉
of the process we have:

f(S) =
∑

i∈S,j /∈S

r

F (S)
wM

ij · f(S + j) +
∑

j /∈S,i∈S

1
F (S)

wR
ji·f(S − i)

+

⎛

⎝
∑

i∈S,j∈S

r

F (S)
wM

ij +
∑

i/∈S,j /∈S

1
F (S)

wR
ij

⎞

⎠ ·f(S), (1)

where F (S) = |S|r + |V | − |S| is the total fitness of the population in state 〈S〉.
By eliminating self-loops, we get

f(S) =

∑
i∈S,j /∈S r · wM

ij · f(S + j) +
∑

j /∈S,i∈S wR
ji · f(S − i)

∑
i∈S,j /∈S r · wM

ij +
∑

j /∈S,i∈S wR
ji

. (2)

We should note here that, in the general case, the fixation probability can be
computed by solving a system of 2n linear equations using this latter relation.
However, bounds are usually easier to be found and special cases of resident and
mutant graphs may have efficient exact solutions.

Using the above Markov chain abstraction and stochastic domination
arguments we can prove the following general upper bound on the fixation
probability:

Theorem 1. For any pair of digraphs GR and GM with n = |V |, the fixation
probability fGR,GM

is upper bounded by 1 − 1
r+n , for r > 0. This bound is tight

for r independent of n.

We now prove a generalization of the Isothermal Theorem of [10].

Theorem 2 (Generalized Isothermal Theorem). Let GR(V,ER), GM (V,
EM) be two directed graphs with vertex set V and edge sets ER and EM respec-
tively. The generalized Moran process with 2 graphs as described above has the
Moran fixation probability if:

798 T. Melissourgos et al.

1.
∑

j �=i wR
ji =

∑
j �=i wM

ji = 1, ∀i ∈ V , that is, WR and WM are doubly stochas-
tic, i.e. GR and GM are isothermal (actually one of them being isothermal is
redundant as it follows from the second condition), and

2. for every pair of nodes i, j ∈ V : wR
ij + wR

ji = wM
ij + wM

ji .

Observe that when GR = GM we have the isothermal theorem of the special
case of the generalized Moran process that has been studied so far.

6 A Strategic Game View

In this section we study the aforementioned process from a game-theoretic point
of view. Consider the strategic game with 2 players; residents (type R) and
mutants (type M), so the player set is N = {R,M}. The action set of a player
k ∈ N consists of all possible strongly connected graphs1 Gk(V,Ek) that she can
construct with the available vertex set V . The payoff for the residents (player
R) is the probability of extinction, and the payoff for the mutants (player M) is
the probability of fixation. Of course, the sum of payoffs equals 1, so the game
can be reduced to a zero-sum game.

The natural question that emerges is: what are the pure Nash equilibria of
this game (if any)? For example, for fixed r > 1, if we only consider two actions
for every player, namely the graphs CL and UST , then from our results from
Subsect. 6.1, when n → ∞, we get fCL,UST → 0, fUST,CL → 1 and from [1,15],
fCL,CL → 1 − 1/r and fUST,UST → 1 − 1/r2. Therefore, we get the following
bimatrix game:

Player M
CL UST

Player R
CL 1/r, 1 − 1/r 1, 0
UST 0, 1 1/r2, 1 − 1/r2

which has a pure Nash equilibrium, namely (CL,CL). Trying to understand
better the behaviour of the two conflicting graphs, we put some pairs of them
to the test. The main question we ask in this work is: what is the best response
graph GR of the residents to the Clique graph of the mutants? In the sequel,
we will use the abbreviations pl-R and pl-M for the resident and the mutant
population, respectively.

6.1 Star vs Clique

The following result implies (since (n − 4)!−1/(n−2) → 0 as n → ∞) that when
the mutant graph is complete and the resident graph is the undirected star, the
fixation probability tends to 1 as n goes to infinity.
1 We assume strong connectivity in order to avoid problematic cases where there is

neither fixation nor extinction.

Mutants and Residents with Different Connection Graphs - Moran Process 799

Theorem 3. If pl-R has the UST graph and pl-M has the CL graph for r >
(n − 4)!−1/(n−2), then the payoff of pl-M (fixation probability) is lower bounded
by 1− 1

n

1+ 1
r(n−2)+

1
r2(n−3)

> 1 − 1
n − 1

r(n−2) − 1
r2(n−3) .

It is worth noting that, since the game we defined in Subsect. 6 is 1-sum,
we immediately can get upper (resp. lower) bounds on the payoff of pl-R, given
lower (resp. upper) bounds on the payoff of pl-M.

Now we give the following lemma that connects the fixation probability of a
process with given relative fitness, resident and mutant graphs, with the fixation
probability of a “mirror” process where the roles between residents and mutants
are exchanged.

Lemma 1. fGR,GM
(r) ≤ 1 − fGM ,GR

(1r).

This result provides easily an upper bound on the fixation probability of a
given process when a lower bound on the fixation probability is known for its
“mirror” process. For example, using Theorem3 and Lemma 1 we get an upper
bound 1

n + 1
r(n−2) + 1

r2(n−3) for r > 0 on the fixation probability of CL vs UST ;
this immediately implies that the probability of fixation in this case tends to 0.
However, as we subsequently explain, a more precise lower bound is necessary
to reveal the approximation restrictions of the particular process.

Theorem 4. If pl-R has the CL graph and pl-M has the UST graph for r > 0,
then the payoff of pl-M (fixation probability) is upper bounded by rn−1

(n−2)! .

This bound shows that, not only there exists a graph that suppresses selection
against the UST (which is an amplifier in the 1-graph setting), but it also does
that with great success. In fact for any mutant with constant r arbitrarily large,
its fixation probability is less than exponentially small.

In view of the above, the following result implies that the fixation probability
in our model cannot be approximated via a method similar to [2].

Theorem 5 (Bounds on the 2-graphs Moran process). There is a pair
of graphs GR, GM such that the fixation probability fGR,GM

is o
(

1
an

)
, for some

constant a > 1, when the relative fitness r is constant. Furthermore, there is
a pair of graphs G′

R, G′
M such that the fixation probability fG′

R,G′
M

is at least
1 − O

(
1
n

)
, for constant r > 0.

6.2 Arbitrary Undirected Graphs vs Clique

The following result is a lower bound on the fixation probability.

Theorem 6. When pl-R has an undirected graph for which wR
xy/wR

yx ≤ c for
every (xy) ∈ ER and pl-M has the CL graph, the payoff of pl-M (fixation proba-

bility) is lower bounded by
[
1−(c

r)
log n

1− c
r

(1 + o(1)) + (2c
r)log n−(2c

r)n
1− 2c

r

]−1

, for r > 0.

In particular, for r > 2c the lower bound tends to 1 − c
r as n → ∞.

800 T. Melissourgos et al.

Proof. Notice that, given the number of mutants at a time-step is i := |S|,
the probability that a resident becomes mutant is pi+1

i = ir
ir+n−i · n−i

n−1 ,
and the probability that a mutant becomes resident pi−1

i is upper bounded

by min{i,n−i}
ir+n−i max

(xy)∈ER

wR
xy

wR
yx

. That is because the maximum possible number of

resident-to-mutant edges in GR at a step with i mutants is achieved when either
every mutant has edges in GR only towards residents, or every resident has edges
in GR only towards mutants; and the most extreme case is when every one of the
min{i, n− i} nodes has sum of weights of incoming edges equal to the maximum

ratio of degrees of adjacent nodes in GR, i.e. c := max
(xy)∈ER

wR
xy

wR
yx

.

This means that the number of mutants in our given process P of an undi-
rected graph vs Clique stochastically dominates a birth-death process P ′ that is
described by the following Markov chain: A state 〈i〉, where i ∈ {0, 1, 2, . . . , n}
is the number of mutants on the vertex set and the only absorbing states are 〈0〉
and 〈n〉. At this point we state the following fact from [15]:

Fact 1. In a birth-death process with state space {0, 1, . . . , n}, absorbing states
0, n and backward bias at state k equal to γk, the probability of absorption at n,
given that we start at i is fi = (1 +

∑i−1
j=1

∏j
k=1 γk)/(1 +

∑n−1
j=1

∏j
k=1 γk).

Using Fact 1 in our process we get: f1 = 1/
(
1 +

∑n−1
j=1

∏j
k=1 γk

)
, where γi =

pi−1
i /pi+1

i . From the aforementioned transition probabilities of our Markov chain
we have:

γk ≤
{

c
r · n−1

n−k , for k ∈ {1, 2, . . . ,
⌊

n
2

⌋}
c
r · n−1

k , for k ∈ {⌊n
2

⌋
+ 1, . . . , n − 1}

Now we can calculate a lower bound on the fixation probability of P ′ using the
fact that n−1

n−2 = 1 + 1
n−2 , n−1

n−3 = 1 + 2
n−3 , · · · , n−1

n−log n+1 = 1 + log n−2
n−log n+1 :

f1 =
1

[∑log n−1
j=0

(
c
r

)j
]
(1 + o(1)) + (c

r)
log n

(n−1)log n

(n−1)···(n−log n) + · · · + (c
r)

n−1
(n−1)n−1

[(n−1)·····(n
2 +1)]2·(n

2)

≥ 1
1−(c

r)
log n

1− c
r

(1 + o(1)) +
(
2c
r

)log n ∑n−log n−1
j=0

(
2c
r

)j
, (since γk ≤ 2c

r
)

=
1

1−(c
r)

log n

1− c
r

(1 + o(1)) +
(
2c
r

)log n 1−(2c
r)n−log n

1− 2c
r

.

�
From the theorem above it follows that if GR is undirected regular then the

fixation probability of GR vs CL is lower bounded by 1 − 1/r for r > 2 and
n → ∞, which equals fMoran (defined in Sect. 2).

We also note that, by Lemma 1 and the above theorem, when GR = CL,
GM is an undirected graph with wM

xy/wM
yx ≤ c for every (xy) ∈ EM , and relative

fitness r < 1
2c , then the upper bound of the fixation probability tends to cr as

n → ∞.

Mutants and Residents with Different Connection Graphs - Moran Process 801

6.3 Circulant Graphs vs Clique

In this subsection we give bounds for the fixation probability of CId vs CL.
We first prove the following result that gives an upper bound on the fixation
probability when GR is the CId graph as described in Sect. 2 and GM is the
complete graph on n vertices.

Theorem 7. When mutants have the CL graph, if residents have a CId graph
and d ∈ Θ(1), then the payoff of pl-M (fixation probability) is upper bounded by
[
e

1
r − 1

rn
1
n!

1
1− 1

r

]−1

for r > 1 and
[
e

1
r − 1

rn
1
n! − o(1)

]−1

for r ≤ 1. In particular,

for constant r > 0 the upper bound tends to e− 1
r . If d ∈ ω(1), then the upper

bound is
(
1 − 1

r

) [
1 − 1

rg(n) − o(1)
]−1, for r > 0, where g(n) is a function of n

such that g(n) ∈ ω(1) and g(n) ∈ o(d). The bound improves as g(n) is picked
closer to Θ(d) and, in particular, for r > 1 it tends to 1 − 1

r .

We also show that our upper bound becomes tighter as d increases. In par-
ticular, we prove the following lower bounds:

Theorem 8. When mutants have the CL graph, if residents have the
UCY (degree d=2) or a graph of the class CId for degree d= 4, 6
or 8, then the payoff of pl-M (fixation probability) is lower bounded by
[
1−(1

r)
log n

1− 1
r

(1 + o(1)) + (c
r)

log n−(c
r)

n

1− c
r

]−1

, where c = d+2
d for r > 0. In partic-

ular, for r > c the lower bound tends to 1 − 1
r as n → ∞.

By the above two theorems, we get the following:

Corollary 1. If GR = UCY (or GR is one of CI4, CI6 and CI8), GM = CL,
and r > 2 (respectively r > 3

2 , r > 4
3 and r > 5

4), then fGR,GM
tends to a positive

constant smaller than 1 as n → ∞.

Finally, we note that, by Lemma 1 and the above Corollary, when the resident
graph is complete (i.e. GR = CL), the mutant graph is UCY (or one of CI4,
CI6, CI8), and the relative fitness satisfies r < 1

2 (respectively r < 2
3 , r < 3

4 and
r < 4

5), then the fixation probability is upper bounded by a constant smaller
than 1, as n → ∞.

7 An Approximation Algorithm

Here we present a fully polynomial randomized approximation scheme (FPRAS)2

for the problem UndirectedVsClique of computing the fixation probability
in the Moran process when the residents have an undirected graph and the
2 An FPRAS for a function f that maps problem instances to numbers is a randomized

algorithm with input X and parameter ε > 0, which is polynomial in |X| and ε−1 and
outputs a random variable g, such that Pr{(1− ε)f(X) ≤ g(X) ≤ (1+ ε)f(X)} ≥ 3

4

[9].

802 T. Melissourgos et al.

mutants have the clique graph with r > 2c
(
1 + 2

n−5

)
, where c is the maximum

ratio of the degrees of adjacent nodes in the resident graph. The following result
is essential for the design of a FPRAS; it gives an upper bound (which depends
on c, r and is polynomial in n) on the expected absorption time of the Moran
process in this case.

Theorem 9. Let GR(V,ER) be an undirected graph of order n, for which
wR

xy/wR
yx ≤ c for every (xy) ∈ ER. Let GM (V,EM) be the clique graph of order

n. For r ≥ 2c
(
1 + 2

n−5

)
and any S ⊆ V , the absorption time τ of the Moran

process “GR vs GM” satisfies:

E[τ |X0 = S] ≤ r

r − c
n(n − |S|).

In particular, E[τ] ≤ r
r−cn2.

For our algorithm to run in time polynomial in the length of the input, r
must be encoded in unary.

Theorem 10. There is an FPRAS for UndirectedVsClique, for r >

2c
(
1 + 2

n−5

)
.

Proof. We present the following algorithm. First, we find the constant c by
checking every edge of the resident graph and exhaustively finding the maximum
ratio of adjacent nodes’ degrees in O(n3) time. If and only if our r is greater
than 2c

(
1 + 2

n−5

)
, we simulate the Moran process where residents have some

given undirected graph and mutants have the clique graph. We compute the
proportion of simulations that reached fixation for N =

⌈
2ε−2 ln 16

⌉
simulation

runs with maximum number T =
⌈
8rn2N(r − c)−1

⌉
of steps each. In case of

simulations that do not reach absorption in the T -th step, the simulation stops
and returns an error value.

Also, each transition of the Moran process can be simulated in O(1) time.
This is possible if we keep track of the resident and mutant nodes in an array, thus
choose the reproducing node in constant time. Further, we can pick the offspring
node in constant time by running a breadth-first search for each graph before the
simulations start, storing the neighbours of each node for the possible node types
(resident and mutant) in arrays. Hence the total running time is O(n3 + NT),
which is polynomial in n and ε−1 as required by the FPRAS definition.

Now, we only have to show that the output of our algorithm computes the
fixation probability to within a factor of 1 ± ε with probability at least 3/4.
Essentially, the proof is the same as in [2] with modifications needed for our
setting. For i ∈ {1, 2, . . . , N}, let Yi be the indicator variable, where Yi = 1 if
the i-th simulation of the Moran process reaches fixation and Yi = 0 otherwise.
We first calculate the bounds on the probability of producing an output of error
ε in the event where all simulation runs reach absorption within T steps. The

Mutants and Residents with Different Connection Graphs - Moran Process 803

output of our algorithm is then g = 1
N

∑N
i=1 Yi while the required function is

the fixation probability f . Using Hoeffding’s inequality we get:

Pr{|g − f | > εf} ≤ 2e−2ε2f2N ≤ 2e−f2 ln 16/4 <
1
8

where the latter inequality is because f ≥ 1 − c/r > 1/2 due to Theorem 6.
Now, by using Theorem 9 and Markov’s inequality, the process reaches

absorption within t steps with probability at least 1−ε, for any ε ∈ (0, 1) and any
t ≥ r

r−cn2 1
ε . Therefore, the event that any individual simulation has not reached

absorption within T steps, happens with probability at most 1/(8N). By taking
the union bound, the event of a simulation run not reaching absorption within T
steps happens with probability at most 1/8. Thus, the probability of producing
an output g as required, is at least 3/4. �

References

1. Broom, M., Rychtář, J.: An analysis of the fixation probability of a mutant on
special classes of non-directed graphs. Proc. Roy. Soc. Lond. A: Math. Phys. Eng.
Sci. 464(2098), 2609–2627 (2008)

2. Dı́az, J., Goldberg, L.A., Mertzios, G.B., Richerby, D., Serna, M., Spirakis, P.G.:
Approximating fixation probabilities in the generalized Moran process. Algorith-
mica 69(1), 78–91 (2014)

3. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets, vol. 6, no. 1, pp. 1–6.
Cambridge University Press, Cambridge (2010)

4. Galanis, A., Göbel, A., Goldberg, L.A., Lapinskas, J., Richerby, D.: Amplifiers for
the Moran process. In: 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, 11–15 July 2016, Rome, Italy, pp. 62:1–62:13
(2016)

5. Giakkoupis, G.: Amplifiers and suppressors of selection for the Moran process on
undirected graphs. CoRR, abs/1611.01585 (2016)

6. Goldberg, L.A., Lapinskas, J., Lengler, J., Meier, F., Panagiotou, K., Pfister, P.:
Asymptotically optimal amplifiers for the Moran process. ArXiv e-prints, Novem-
ber 2016

7. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cam-
bridge University Press, Cambridge (1998)

8. Ibsen-Jensen, R., Chatterjee, K., Nowak, M.A.: Computational complexity of eco-
logical and evolutionary spatial dynamics. Proc. Nat. Acad. Sci. 112(51), 15636–
15641 (2015)

9. Karp, R.M., Luby, M.: Monte-Carlo algorithms for enumeration and reliability
problems. In: 24th Annual Symposium on Foundations of Computer Science, pp.
56–64. IEEE (1983)

10. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature
433(7023), 312–316 (2005)

11. Melissourgos, T., Nikoletseas, S.E., Raptopoulos, C., Spirakis, P.G.: Mutants
and residents with different connection graphs in the Moran process. CoRR,
abs/1710.07365 (2017)

804 T. Melissourgos et al.

12. Mertzios, G.B., Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Natural models
for evolution on networks. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE
2011. LNCS, vol. 7090, pp. 290–301. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25510-6 25

13. Mertzios, G.B., Spirakis, P.G.: Strong bounds for evolution in networks. In: Fomin,
F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol.
7966, pp. 669–680. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39212-2 58

14. Moran, P.A.P.: Random processes in genetics. Math. Proc. Camb. Philos. Soc.
54(1), 6071 (1958)

15. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard
University Press, Cambridge (2006)

16. Ohtsuki, H., Pacheco, J.M., Nowak, M.A.: Evolutionary graph theory: breaking the
symmetry between interaction and replacement. J. Theor. Biol. 246(4), 681–694
(2007)

https://doi.org/10.1007/978-3-642-25510-6_25
https://doi.org/10.1007/978-3-642-25510-6_25
https://doi.org/10.1007/978-3-642-39212-2_58
https://doi.org/10.1007/978-3-642-39212-2_58

A Framework for Algorithm Stability
and Its Application to Kinetic

Euclidean MSTs

Wouter Meulemans, Bettina Speckmann , Kevin Verbeek,
and Jules Wulms(B)

Department of Mathematics and Computer Science,
TU Eindhoven, Eindhoven, The Netherlands

{w.meulemans,b.speckmann,k.a.b.verbeek,j.j.h.m.wulms}@tue.nl

Abstract. We say that an algorithm is stable if small changes in the
input result in small changes in the output. This kind of algorithm stabil-
ity is particularly relevant when analyzing and visualizing time-varying
data. Stability in general plays an important role in a wide variety of
areas, such as numerical analysis, machine learning, and topology, but is
poorly understood in the context of (combinatorial) algorithms.

In this paper we present a framework for analyzing the stability of
algorithms. We focus in particular on the tradeoff between the stability
of an algorithm and the quality of the solution it computes. Our frame-
work allows for three types of stability analysis with increasing degrees
of complexity: event stability, topological stability, and Lipschitz stabil-
ity. We demonstrate the use of our stability framework by applying it to
kinetic Euclidean minimum spanning trees.

1 Introduction

With recent advances in sensing technology, vast amounts of time-varying data
are generated, processed, and analyzed on a daily basis. Hence there is a great
need for algorithms that can operate efficiently on time-varying data and that
can offer guarantees on the quality of analysis results. A specific relevant subset
of time-varying data consists of so-called motion data: geolocated, and hence
geometric, time-varying data. To deal with the challenges of motion data, Basch
et al. [3] in 1999 introduced the kinetic data structures (KDS) framework. Kinetic
data structures efficiently maintain a (combinatorial) structure on a set of mov-
ing objects. The KDS framework has sparked a significant amount of research,
resulting in many efficient algorithms for motion data.

The performance of a particular algorithm is usually judged with respect
to a variety of criteria, with the two most common being solution quality and

W. Meulemans and J. Wulms are (partially) supported by the Netherlands eScience
Center (NLeSC) under grant number 027.015.G02. B. Speckmann and K. Verbeek
are supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 639.023.208 and no. 639.021.541, respectively.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 805–819, 2018.
https://doi.org/10.1007/978-3-319-77404-6_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_58&domain=pdf
http://orcid.org/0000-0002-8514-7858

806 W. Meulemans et al.

running time. In the context of algorithms for time-varying data, a third impor-
tant criterion is stability. Whenever analysis results need to be communicated to
humans, for example via visual representations, it is important that these results
are stable: small changes in the data result in small changes in the output. These
changes in the output are continuous or discrete depending on the algorithm:
graphs usually undergo discrete changes while a convex hull of moving points
changes continuously. Sudden changes in the visual representation of data dis-
rupt the so-called mental map [16] of the user and prevent the recognition of
temporal patterns. Stability also plays a role if changing the result is costly in
practice (e.g. in physical network design), where frequent significant changes to
the network are prohibitively expensive.

The stability of algorithms or methods has been well-studied in a variety of
research areas, such as numerical analysis [14], machine learning [5], control sys-
tems [2], and topology [7]. In contrast, the stability of combinatorial algorithms
for time-varying data has received little attention in the theoretical computer
science community so far. Here it is of particular interest to understand the
tradeoffs between solution quality, running time, and stability. As an example,
consider maintaining a minimum spanning tree of a set of moving points. If the
points move, it might have to frequently change significantly. On the other hand,
if we start with an MST for the input point set and then never change it com-
binatorially as the points move, the spanning tree we maintain is very stable –
but over time it can devolve to a low quality and very long spanning tree.

Our goal, and the focus of this paper, is to understand the possible trade-
offs between solution quality and stability. This is in contrast to earlier work
on stability in other research areas, such as the ones mentioned above, where
stability is usually considered in isolation. Since there are currently no suitable
tools available to formally analyze tradeoffs involving stability, we introduce a
new analysis framework. We believe that there are many interesting and relevant
questions to be solved in the general area of algorithmic stability analysis and
we hope that our framework is a first meaningful step towards tackling them.

Results and organization. We present a framework to analyze the stability of
(combinatorial) algorithms. As a first step, we limit ourselves to analyzing the
tradeoff between stability and solution quality, omitting running time from con-
sideration. Our framework allows for three types of stability analysis of increasing
degrees of complexity: event stability, topological stability, and Lipschitz stability.
It can be applied both to motion data and to more general time-varying data.
We demonstrate the use of our stability framework by applying it to the problem
of kinetic Euclidean minimum spanning trees (EMSTs). Some of our results for
kinetic EMSTs are directly more widely applicable.

In Sect. 2 we give an overview of our framework for algorithm stability. In
Sects. 3, 4, and 5 we describe event stability, topological stability, and Lipschitz
stability, respectively. In each of these sections we first describe the respective
type of stability analysis in a generic setting, followed by specific results using
that type of stability analysis on the kinetic EMST problem. In Sect. 6 we make

A Framework for Algorithm Stability 807

some concluding remarks on our stability framework. Omitted proofs can be
found in the full version of the paper.

Related work. Stability is a natural point of concern in more visual and applied
research areas such as graph drawing, (geo-)visualization, and automated car-
tography. For example, in dynamic map labelling [4], the consistent dynamic
labelling model allows a label to appear and disappear only once, making it very
stable. There are very few theoretical results, with the noteworthy exception of
so-called simultaneous embeddings [6] in graph drawing, which can be seen as a
very restricted model of stability. However, none of these results offer any real
structural insight into the tradeoff between solution quality and stability.

In computational geometry there are a few results on the tradeoff between
solution quality and stability. Specifically, Durocher and Kirkpatrick [9] study
the stability of centers of kinetic point sets, and define the notion of κ-stable
center functions, which is closely related to our concept of Lipschitz stability.
In later work [10] they consider the tradeoff between the solution quality of
Euclidean 2-centers and a bound on the velocity with which they can move. De
Berg et al. [8] show similar results in the black-box KDS model. One can argue
that the KDS framework [13] already indirectly considers stability in a limited
form, namely as the number of external events. However, the goal of a KDS is
typically to reduce the running time of the algorithm, and rarely to sacrifice the
running time or solution quality to reduce the number of external events.

Kinetic Euclidean minimum spanning trees have been studied extensively.
Katoh et al. [15] proved an upper bound of O(n32α(n)) for the number of exter-
nal events of EMSTs of n linearly moving points, where α(n) is the inverse Ack-
ermann function. The best known lower bound for external events of EMSTs in
d dimensions is Ω(nd) [18]. There also exists a lot of related work on approxi-
mations of EMSTs and related structures like Delaunay triangulations, but the
number of external events still remains at least roughly Ω(n2). Our stability
framework allows us to reduce the number of external events even further and
to still state something meaningful about the quality of the resulting EMSTs.

2 Stability Framework

Intuitively, we can say that an algorithm is stable if small changes in the input
lead to small changes in the output. More formally, let Π be an optimization
problem that, given an input instance I from a set I, asks for a feasible solution
S from a set S that minimizes (or maximizes) some optimization function f : I×
S → R. An algorithm A for Π can be seen as a function A : I → S. Similarly,
the optimal solutions for Π can be described by a function OPT: I → S. To
define the stability of an algorithm, we need to quantify changes in the input
instances and in the solutions. We can do so by imposing a metric on I and S.
Let dI : I × I → R≥0 be a metric for I and let dS : S × S → R≥0 be a metric
for S. We can then define the stability of an algorithm A : I → S as follows.

St(A) = max
I,I′∈I

dS(A(I),A(I ′))
dI(I, I ′)

(1)

808 W. Meulemans et al.

This definition for stability is closely related to that of the multiplicative dis-
tortion of metric embeddings, where A induces a metric embedding from the
metric space (I, dI) into (S, dS). The lower the value for St(A), the more stable
we consider the algorithm A to be. There are many other ways to define the
stability of an algorithm given the metrics, but the above definition suffices for
our purpose.

For many optimization problems, the function OPT may be very unstable.
This suggests an interesting tradeoff between the stability of an algorithm and
the solution quality. Unfortunately, the generic formulation of stability provided
above is very unwieldy. It is not always clear how to define metrics dI and dS such
that meaningful results can be derived. Additionally, it is not obvious how to deal
with optimization problems with continuous input and discrete solutions, where
the algorithm is inherently discontinuous, and thus the stability is unbounded
by definition. Finally, analyses of this form are often very complex, and it is
not straightforward to formulate a simplified version of the problem. In our
framework we hence distinguish three types of stability analysis: event stability,
topological stability, and Lipschitz stability.

Event stability follows the setting of kinetic data structures (KDS). That is,
the input (a set of moving objects) changes continuously as a function over time.
However, contrary to typical KDSs where a constraint is imposed on the solution
quality, we aim to enforce the stability of the algorithm. For event stability
we simply disallow the algorithm to change the solution too rapidly. Doing so
directly is problematic, but we formalize this approach using the concept of
k-optimal solutions. As a result, we can obtain a tradeoff between stability and
quality that can be tuned by the parameter k. Note that event stability captures
only how often the solution changes, but not how much the solution changes at
each event.

Topological stability takes a first step towards the generic setup described
above. However, instead of measuring the amount of change in the solution
using a metric, we merely require the solution to behave continuously. To do
so we only need to define a topology on the solution space S that captures
stable behavior. Surprisingly, even though we ignore the amount of change in a
single time step, this type of analysis still provides meaningful information on
the tradeoff between solution quality and stability. In fact, the resulting tradeoff
can be seen as a lower bound for any analysis involving metrics that follow the
used topology.

Lipschitz stability finally captures the generic setup described above. As the
name suggests, we require the algorithm to be Lipschitz continuous and we pro-
vide an upper bound on the Lipschitz constant, which is equivalent to St(A).
We are then again interested in the quality of the solutions that can be obtained
with any Lipschitz stable algorithm. Given the complexity of this type of anal-
ysis, a complete tradeoff for any value of the Lipschitz constant is typically out
of reach, but results for sufficiently small or large values can be of interest.

A Framework for Algorithm Stability 809

Remark. Our framework makes the assumption that an algorithm is a func-
tion A : I → S. However, in a kinetic setting this is not necessarily true, since
the algorithm has history. More precisely, for some input instance I, a kinetic
algorithm may produce different solutions for I based on the instances processed
earlier. We generally allow this behavior, and for event stability this behavior
is even crucial. However, for the sake of simplicity, we will treat an algorithm
as a function. We also generally assume in our analysis that the input is time-
varying, that is, the input is a function over time, or follows a trajectory through
the input space I. Again, for the sake of simplicity, this is not always directly
reflected in our definitions. Beyond that, we operate in the black-box model, in
the sense that the algorithm does not know anything about future instances.

While these are the conditions under which we use our framework, it can be
applied in a variety of algorithmic settings, such as streaming algorithms and
algorithms with dynamic input.

3 Event Stability

The simplest form of stability is event stability. Like the number of external
events in KDSs, event stability captures only how often the solution changes.

3.1 Event Stability Analysis

Let Π be an optimization problem with a set of input instances I, a set of
solutions S, and optimization function f : I × S → R. Following the framework
of kinetic data structures, we assume that the input instances include certain
parameters that can change as a function of time. To apply the event stability
analysis, we require that all solutions have a combinatorial description, that is,
the solution description does not use the time-varying parameters of the input
instance. We further require that every solution S ∈ S is feasible for every
input instance I ∈ I. This automatically disallows any insertions or deletions
of elements. Note that an insertion or a deletion would typically force an event,
and thus including this aspect in our stability analysis does not seem useful.

For example, in the setting of kinetic EMSTs, the input instances would
consist of a fixed set of points. The coordinates of these points can then change
as a function over time. A solution of the kinetic EMST problem consists of the
combinatorial description of a tree graph on the set of input points. Note that
every tree graph describes a feasible solution for any input instance, if we do
not insist on any additional restrictions like, e.g., planarity. The minimization
function f then simply measures the total length of the tree, for which we do
need to use the time-varying parameters of the problem instance.

Rather than directly restricting the quality of the solutions, we aim to restrict
the stability of any algorithm. To that end, we introduce the concept of k-optimal
solutions. Let dI be a metric on the input instances, and let OPT: I → S
describe the optimal solutions. We say that a solution S ∈ S is k-optimal for
an instance I ∈ I if there exists an input instance I ′ ∈ I such that f(I ′, S) =

810 W. Meulemans et al.

f(I ′, OPT (I ′)) and dI(I, I ′) ≤ k. With this definition any optimal solution is
always 0-optimal. Note that this definition requires a form of normalization on
the metric dI , similar to that of e.g. smoothed analysis [19]. We therefore require
that there exists a constant c such that every solution S ∈ S is c-optimal for
every instance I ∈ I. For technical reasons we require the latter condition to hold
only for some time interval [0, T] of interest. Note that the concept of k-optimal
solutions is closely related to backward error analysis in numerical analysis.

Following the framework of kinetic data structures, we typically require the
functions of the time-varying parameters to be well-behaved (e.g., polynomial
functions), for otherwise we cannot derive meaningful bounds. The event stability
analysis then considers two aspects. First, we analyze how often the solution
needs to change to maintain a k-optimal solution for every point in time. Second,
we analyze how well a k-optimal solution approximates an optimal solution.
Typically we are not able to directly obtain good bounds on the approximation
ratio, but given certain reasonable assumptions, good approximation bounds as
a function of k can be provided.

3.2 Event Stability for EMSTs

Our input consists of a set of points P = {p1, . . . , pn} where each point pi has
a trajectory described by the function xi : [0, T] → R

d. The goal is to maintain
a combinatorial description of a short spanning tree on P that does not change
often. We assume that the functions xi are polynomials with bounded degree s.

To use the concept of k-optimal solutions, we first need to normalize the
coordinates. We simply assume that xi(t) ∈ [0, 1]d for t ∈ [0, T]. This assumption
may seem overly restrictive for kinetic point sets, but note that we are only
interested in relative positions, and thus the frame of reference may move with
the points. Next, we define the metric dI along the trajectory as follows.

dI(t, t′) = max
i

‖xi(t) − xi(t′)‖ (2)

Note that this metric, and the resulting definition of k-optimal solutions, is not
specific to EMSTs and can be used in general for problems with kinetic point
sets as input. In our case ‖a − b‖ denotes the distance between a and b in
the (Euclidean) �2 norm. Now let OPT (t) be the EMST at time t. Then, by
definition, OPT (t) is k-optimal at time t′ if dI(t, t′) ≤ k. Our approach is now
very simple: we compute the EMST and keep that solution as long as it is k-
optimal, after which we compute the new EMST, and so forth. Below we analyze
this approach.

Number of events. To bound the number of events, we first need to bound
the speed of any point with a polynomial trajectory and bounded coordinates.
For this we can use a classic result known as the Markov Brothers’ inequality.

Lemma 1 ([17]). Let h(t) be a polynomial with degree at most s such that h(t) ∈
[0, 1] for t ∈ [0, T], then |h′(t)| ≤ s2/T for all t ∈ [0, T].

A Framework for Algorithm Stability 811

Lemma 2. For a kinetic point set P with degree-s polynomial trajectories
xi(t) ∈ [0, 1]d (t ∈ [0, T]) we need only O(s2

k) changes to maintain a k-optimal
solution for constant d.

Proof. By Lemma 1 the velocity of any point is at most s2/T in one dimension,
and thus at most

√
d s2/T = O(s2/T) in d dimensions, assuming d is constant.

Now assume that we have computed an optimal solution S for some time t.
The solution S remains k-optimal until one of the points has moved at least k
units. Since the velocity of the points is bounded, this takes at least Δt = kT/s2

time, at which point we can recompute the optimal solution. Since the total time
interval is of length T , this can happen at most T/Δt = s2/k times. ��

Approximation factor. We cannot expect k-optimal solutions to be a good
approximation of an optimal EMST’s length in general: if all points are within
distance k from each other, then all solutions are k-optimal. We therefore need
to make the assumption that the points are spread out reasonably throughout
the motion. To quantify this, we use a measure inspired by the order-l spread, as
defined in [11]. Let mindistl(P) be the smallest distance in P between a point
and its l-th nearest neighbor. We assume that mindistl(P) ≥ 1/Δl throughout
the motion, for some value of Δl. We can use this assumption to give a lower
bound on the length of the EMST. Pick an arbitrary point and remove all points
from P that are within distance 1/Δl, and repeat this process until the smallest
distance is at least 1/Δl. By our assumption, we remove at most l − 1 points
for each chosen point, so we are left with at least n/l points. The length of the
EMST on P is at least the length of the EMST on the remaining n/l points,
which has length Ω(n

lΔl
).

Lemma 3. A k-optimal solution of the EMST problem on a set of n points
P is an O(1 + klΔl)-approximation of the EMST, under the assumption that
mindistl(P) ≥ 1/Δl.

Proof. Let S be a k-optimal solution of P and let OPT be an optimal solution
of P . By definition there is a point set P ′ for which the length of solution S is
at most that of OPT. Since dI(P, P ′) ≤ k, the length of each edge can grow or
shrink by at most 2k when moving from P ′ to P . Therefore we can state that
f(P, S) ≤ f(P,OPT) + 4kn. Now, using the lower bound on the length of an
EMST, we obtain the following.

f(P,OPT) + 4kn ≤ f(P,OPT) + 4kO(f(P,OPT)lΔl)
= O(1 + klΔl) · f(P,OPT) ��

Note that there is a clear tradeoff between the approximation ratio and how
restrictive the assumption on the spread is. Regardless, we can obtain a decent
approximation while only processing a small number of events. If we choose
reasonable values k = O(1/n), l = O(1), and Δl = O(n), then our results show
that, under the assumptions, a constant-factor approximation of the EMST can
be maintained while processing only O(n) events.

812 W. Meulemans et al.

4 Topological Stability

The event stability analysis has two major drawbacks: (1) it is only applicable to
problems for which the solutions are always feasible and described combinatori-
ally, and (2) it does not distinguish between small and large structural changes.
Topological stability analysis is applicable to a wide variety of problems and
enforces continuous changes to the solution.

4.1 Topological Stability Analysis

Let Π be an optimization problem with input instances I, solutions S, and
optimization function f . An algorithm A : I → S is topologically stable if, for
any (continuous) path π : [0, 1] → I in I, Aπ is a (continuous) path in S. To
properly define a (continuous) path in I and S we need to specify a topology TI
on I and a topology TS on S. Alternatively we could specify metrics dI and dS ,
but this is typically more involved. We then want to analyze the approximation
ratio of any topologically stable algorithm with respect to OPT. That is, we are
interested in the ratio

ρTS(Π, TI , TS) = inf
A

sup
I∈I

f(I,A(I))
f(I,OPT(I))

(3)

where the infimum is taken over all topologically stable algorithms. Naturally, if
OPT is already topologically stable, then this type of analysis does not provide
any insight and the ratio is simply 1. However, in many cases, OPT is not
topologically stable. The above analysis can also be applied if the solution space
(or the input space) is discrete. In such cases, continuity can often be defined
using the graph topology of so-called flip graphs, for example, based on edge flips
for triangulations or rotations in rooted binary trees. We can represent a graph
as a topological space by representing vertices by points, and representing every
edge of the graph by a copy of the unit interval [0, 1]. These intervals are glued
together at the vertices. In other words, we consider the corresponding simplicial
1-complex. Although the points in the interior of the edges of this topological
space do not represent proper spanning trees, we can still use this topological
space in Eq. 3 by extending f over the edges via linear interpolation. It is not
hard to see that we need to consider only the vertices of the flip graph (which
represent proper spanning trees) to compute the topological stability ratio.

4.2 Topological Stability of EMSTs

We use the same setting of the kinetic EMST problem as in Sect. 3.2, except
that we do not restrict the trajectories of the points and we do not normalize
the coordinates. We merely require that the trajectories are continuous. To define
this properly, we need to define a topology on the input space, but for a kinetic
point set with n points in d dimensions we can simply use the standard topology
on R

dn as TI . To apply topological stability analysis, we also need to specify

A Framework for Algorithm Stability 813

a topology on the (discrete) solution space. As the points move, the minimum
spanning tree may have to change at some point in time by removing one edge
and inserting another edge. Since these two edges may be very far apart, we do
not consider this operation to be stable or continuous. Instead we specify the
topology of S using a flip graph, where the operations are either edge slides or
edge rotations [1,12]. The optimization function f , measuring the quality of the
EMST, is naturally defined for the vertices of the flip graph as the length of the
spanning tree, and we use linear interpolation to define f on the edges of the
flip graph. For edge slides and rotations we provide upper and lower bounds on
ρTS(EMST, TI , TS).

Edge slides. An edge slide is defined as the operation of moving one endpoint of
an edge to one of its neighboring vertices along the edge to that neighbor. More
formally, an edge (u, v) in the tree can be replaced by (u,w) if w is a neighbor
of v and w
= u. Since this operation is very local, we consider it to be stable.
Note that after every edge slide the tree must still be connected.

Lemma 4. If TS is defined by edge slides, then ρTS(EMST, TI , TS) ≤ 3
2 .

Proof. Consider a time where the EMST has to be updated by removing an edge
e and inserting an edge e′, where |e| = |e′|. Note that e and e′ form a cycle
C with other edges of the EMST. We now slide edge e to edge e′ by sliding
it along the vertices of C. Let x be the longest intermediate edge when sliding
from e to e′ (see Fig. 2(a)). To allow x to be as long as possible with respect
to the length of the EMST, the EMST should be fully contained in C. By the
triangle inequality we get that 2|x| ≤ |C|. Since the length of the EMST is
OPT = |C| − |e|, we get that |x| ≤ OPT /2 + |e|/2. Thus, the length of the
intermediate tree is |C| − 2|e| + |x| = OPT−|e| + |x| ≤ 3

2 OPT. ��

Lemma 5. If TS is defined by edge slides, then ρTS(EMST, TI , TS) ≥ π+1
π .

Proof. Consider a point in time where the EMST has to be updated by removing
an edge e and inserting an edge e′, where |e| is very small. Let the remaining
points be arranged in a circle, as shown in Fig. 1(a), such that the farthest
distance between any two points is OPT /π − ε, where OPT is the length of the
EMST. We can make this construction for any ε > 0 by using enough points and
making e and e′ arbitrarily short. Simply sliding e to e′ will always grow e to be
the diameter of the circle at some point. Alternatively, e can take a shortcut by
sliding over another edge f as a chord (see Fig. 1(b)). This is only beneficial if
|e| + |f | < OPT /π − ε. However, if f helps e to avoid becoming a diameter of
the circle, then e and f , as chords, must span an angle larger than π together.
As a result, |e| + |f | ≥ OPT /π − ε by triangle inequality.

A motion of the points that forces e to slide to e′ in this particular configu-
ration looks as follows. The points start at e and move at constant speed along
the circle, half of the points clockwise and the other half counter clockwise. The
speeds are assigned in such a way that at some point all points are evenly spread
along the circle. Once all points are evenly spread, they start moving towards
e′, again along the circle. It is easy to see that, using the arguments above, any

814 W. Meulemans et al.

Fig. 1. This configuration is a (π+1
π

− ε)-approximation of the EMST. (a) While e
slides to e′ it becomes the diameter of the circle. (b) Stretching an edge f to form a
chord creates an even longer spanning tree.

additional edges inside the circle must have total length of at least the diameter
of the circle at some point throughout the motion. On the other hand, OPT is
largest when the points are evenly spread along the circle. Thus, for any ε > 0,
ρTS(EMST, TI , TS) ≥ π+1

π − ε ≈ 1.318 − ε. ��

Edge rotations. Edge rotations are a generalization of edge slides, that allow
one endpoint of an edge to move to any other vertex. These operations are clearly
not as stable as edge slides, but they are still more stable than the deletion and
insertion of arbitrary edges.

Lemma 6. If TS is defined by edge rotations, then ρTS(EMST, TI , TS) ≤ 4
3 .

Proof. Consider a time where the EMST has to be updated by removing an edge
e = (u, v) and inserting an edge e′ = (u′, v′), where |e| = |e′|. Note that e and
e′ form a cycle C with other edges of the EMST. We now rotate edge e to edge
e′ along some of the vertices of C. Let x be the longest intermediate edge when
rotating from e to e′. To allow x to be as long as possible with respect to the
length of the EMST, the EMST should be fully contained in C. We argue that
|x| ≤ OPT /3 + |e|, where OPT is the length of the EMST. Removing e and
e′ from C splits C into two parts, where we assume that u and u′ (v and v′)
are in the left (right) part. First assume that one of the two parts has length
at most OPT /3. Then we can rotate e to (u, v′), and then to e′, which implies
that |x| = |(u, v′)| ≤ OPT /3 + |e| by the triangle inequality (see Fig. 2(b)).
Now assume that both parts have length at least OPT /3. Let eL = (uL, vL)
be the edge in the left part that contains the midpoint of that part, and let
eR = (uR, vR) be the edge in the right part that contains the midpoint of that
part, where uL and uR are closest to e (see Fig. 2(c)). Furthermore, let Z be the
length of C \ {e, e′, eL, eR}. Now consider the potential edges (u, vR), (v, vL),
(u′, uR), and (v′, uL). By the triangle inequality, the sum of the lengths of these

A Framework for Algorithm Stability 815

Fig. 2. (a) Illustration for Lemma 4. (b) and (c) Illustrating the two cases for Lemma 6.

edges is at most 4|e| + 2|eL| + 2|eR| + Z. Thus, one of these potential edges has
length at most |e|+|eL|/2+|eR|/2+Z/4. Without loss of generality let (u, vR) be
that edge (the construction is fully symmetric). We can now rotate e to (u, vR),
then to (u′, vR), and finally to e′. As each part of C has length at most 2OPT /3,
we get that |(u′, vR)| ≤ OPT /3+ |e| by construction. Furthermore we have that
OPT = |e| + |eL| + |eR| + Z. Thus, |(u, vR)| ≤ |e| + |eL|/2 + |eR|/2 + Z/4 =
OPT /3+2|e|/3+ |eL|/6+ |eR|/6−Z/12. Since e needs to be removed to update
the EMST, it must be the longest edge in C. Therefore |(u, vR)| ≤ OPT /3+ |e|,
which shows that |x| ≤ OPT /3 + |e|. Since the length of the intermediate tree
is OPT −|e| + |x| ≤ 4

3 OPT, we obtain that ρTS(EMST, TI , TS) ≤ 4
3 . ��

Lemma 7. If TS is defined by edge rotations, then, ρTS(EMST, TI , TS) ≥
10−2

√
2

9−2
√
2
.

Proof. Consider a point in time where the EMST has
to be updated by removing an edge e and inserting an
edge e′. Let the remaining points be arranged in a dia-
mond shape as shown in the figure on the right, where
the side length of the diamond is 2, and |e| = |e′| = 1.
As a result, the distance between an endpoint of e and
the left or right corner of the diamond is 2 − 1

2

√
2.

Now we define a top-connector as an edge that inter-
sects the vertical diagonal of the diamond, but is com-
pletely above the horizontal diagonal of the diamond.
A bottom-connector is defined analogously, but must be completely below the
horizontal diagonal. Finally, a cross-connector is an edge that crosses or touches
both diagonals of the diamond. Note that a cross-connector has length at least
2, and a top- or bottom-connector has length at least |e| = 1. In the considered
update, we start with a top-connector and end with a bottom-connector. Since
we cannot rotate from a top-connector to a bottom-connector in one step, we
must reach a state that either has both a top-connector and a bottom-connector,

816 W. Meulemans et al.

or a single cross-connector. In both options the length of the spanning tree is
10 − 2

√
2, while the minimum spanning tree has length 9 − 2

√
2.

To force the update from e to e′ in this configuration, we can use the following
motion. The points start at the endpoints of e and move with constant speeds
to a position where the points are evenly spread around the left and right corner
of the diamond. Then the points move with constant speeds to the endpoints
of e′. The argument above still implies that we need edges of total length at
least 2 intersecting the vertical diagonal of the diamond at some point during
the motion. On the other hand, OPT ≤ 9 − 2

√
2 throughout the motion. Thus

ρTS(EMST, TI , TS) ≥ 10−2
√
2

9−2
√
2

≈ 1.162. ��

5 Lipschitz Stability

The major drawback of topological stability analysis is that it still does not
fully capture stable behavior; the algorithm must be continuous, but we can still
make many changes to the solution in an arbitrarily small time step. In Lipschitz
stability analysis we additionally limit how fast the solution can change.

5.1 Lipschitz Stability Analysis

Let Π be an optimization problem with input instances I, solutions S, and
optimization function f . To quantify how fast a solution changes as the input
changes, we need to specify metrics dI and dS on I and S, respectively. An
algorithm A : I → S is K-Lipschitz stable if for any I, I ′ ∈ I we have that
dS(A(I),A(I ′)) ≤ KdI(I, I ′). We are then again interested in the approximation
ratio of any K-Lipschitz stable algorithm with respect to OPT. That is, we are
interested in the ratio

ρLS(Π,K, dI , dS) = inf
A

sup
I∈I

f(I,A(I))
f(I,OPT(I))

(4)

where the infimum is taken over all K-Lipschitz stable algorithms. It is easy to see
that ρLS(Π,K, dI , dS) is lower bounded by ρTS(Π, TI , TS) for the corresponding
topologies TI and TS of dI and dS , respectively. As already mentioned in Sect. 2,
analyses of this type are often quite hard. First, we often need to be very careful
when choosing the metrics dI and dS , as they should behave similarly with
respect to scale. For example, let the input consist of a set of points in the
plane and let cI for I ∈ I be the instance obtained by scaling all coordinates
of the points in I by the factor c. Now assume that dI depends linearly on
scale, that is dI(cI, cI ′) ∼ cdI(I, I ′), and that dS is independent of scale. Then,
for some fixed K, we can reduce the effective speed of any K-Lipschitz stable
algorithm arbitrarily by scaling down the instances sufficiently, rendering the
analysis meaningless. We further need to be careful with discrete solution spaces.
However, using the flip graphs as mentioned in Sect. 4 we can extend a discrete
solution space to a continuous space by including the edges.

A Framework for Algorithm Stability 817

Typically it will be hard to fully describe ρLS(Π,K, dI , dS) as a function of
K. However, it may be possible to obtain interesting results for certain values
of K. One value of interest is the value of K for which the approximation ratio
equals or approaches the approximation ratio of the corresponding topological
stability analysis. Another potential value of interest is the value of K below
which any K-Lipschitz stable algorithm performs asymptotically as bad as a
constant algorithm always computing the same solution regardless of instance.

5.2 Lipschitz Stability of EMSTs

We use the same setting of the kinetic EMST problem as in Sect. 4.2, except
that, instead of topologies, we specify metrics for I and S. For dI we can simply
use the metric in Eq. 2, which implies that points move with a bounded speed.
For dS we use a metric inspired by the edge slides of Sect. 4.2. To that end, we
need to define how long a particular edge slide takes, or equivalently, how “far”
an edge slide is. To make sure that dI and dS behave similarly with respect to
scale, we let dS measure the distance the sliding endpoint has traveled during an
edge slide. However, this creates an interesting problem: the edge on which the
endpoint is sliding may be moving and stretching/shrinking during the operation.
This influences how long it takes to perform the edge slide. We need to be
more specific: (1) as the points are moving, the relative position (between 0
and 1 from starting endpoint to finishing endpoint) of a sliding endpoint is
maintained without cost in dS , and (2) dS measures the difference in relative
position multiplied by the length L(t) of the edge on which the endpoint is
sliding. More tangibly, an edge slide performed by a K-Lipschitz stable algorithm
can be performed in t∗ time such that

∫ t∗

0
K

L(t)dt = 1, where L(t) describes the
length of the edge on which the endpoint slides as a function of time. Finally,
the optimization function f simply computes a linear interpolation of the cost
on the edges of the flip graph defined by edge slides.

We now give an upper bound on K below which any K-Lipschitz stable
algorithm for kinetic EMST performs asymptotically as bad as any fixed tree.
Given the complexity of the problem, our bound is fairly crude. We state it
anyway to demonstrate the use of our framework, but we believe that a stronger
bound exists. Note that any spanning tree is an O(n)-approximation of the
EMST.

Lemma 8. Let dS be the metric for edge slides, then ρLS(EMST, c
log n , dI , dS) =

Ω(n) for a small enough constant c > 0, where n is the number of points.

6 Conclusion

We presented a framework for algorithm stability, which includes three types of
stability analysis, namely event stability, topological stability, and Lipschitz sta-
bility. We also demonstrated the use of this framework by applying the different
types of analysis to the kinetic EMST problem, deriving new interesting results.

818 W. Meulemans et al.

We believe that, by providing different types of stability analysis with increasing
degrees of complexity, we make stability analysis for algorithms more accessible,
and make it easier to formulate interesting open problems on algorithm stability.

However, the framework that we presented does not (yet) give a complete
picture: we do not consider the algorithmic aspect of stability. For example, if
we already know how the input will change over time, can we efficiently compute
a stable function of solutions over time that is optimal with regard to solution
quality? Or, in a more restricted sense, can we efficiently compute the one solu-
tion that is best for all inputs over time? Even in the black-box model we can
consider designing efficient algorithms that are K-Lipschitz stable and perform
well with regard to solution quality. We leave such problems for future work.

References

1. Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a
fixed tree theorem. Comput. Geom. Theory Appl. 21(1–2), 3–20 (2002)

2. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd
edn. Springer, Heidelberg (2006). https://doi.org/10.1007/b139028

3. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algo-
rithms 31(1), 1–28 (1999)

4. Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for
consistent dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328
(2010)

5. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2,
499–526 (2002)

6. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P.,
Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embed-
dings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)

7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
In: Proceedings of 21st Symposium on Computational Geometry, pp. 263–271
(2005)

8. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box
model. In: Proceedings of 29th Symposium on Computational Geometry, pp. 145–
154 (2013)

9. Durocher, S., Kirkpatrick, D.: The Steiner centre of a set of points: stability, eccen-
tricity, and applications to mobile facility location. Int. J. Comput. Geom. Appl.
16(04), 345–371 (2006)

10. Durocher, S., Kirkpatrick, D.: Bounded-velocity approximation of mobile
Euclidean 2-centres. Int. J. Comput. Geom. Appl. 18(03), 161–183 (2008)

11. Erickson, J.: Dense point sets have sparse Delaunay triangulations or “... but not
too nasty”. Discret. Comput. Geom. 33(1), 83–115 (2005)

12. Goddard, W., Swart, H.C.: Distances between graphs under edge operations. Dis-
cret. Math. 161(1–3), 121–132 (1996)

13. Guibas, L.J.: Kinetic data structures. In: Mehta, D.P., Sahni, S. (eds.) Handbook
of Data Structures and Applications, pp. 23.1–23.18. Chapman and Hall/CRC,
Boca Raton (2004)

14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-
phia (2002)

https://doi.org/10.1007/b139028

A Framework for Algorithm Stability 819

15. Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees
of linearly moving points. In: Proceedings of 33rd Symposium on Foundations of
Computer Science, pp. 396–405 (1992)

16. Kitchin, R.M.: Cognitive maps: what are they and why study them? J. Environ.
Psychol. 14(1), 1–19 (1994)

17. Markoff, W.: Über Polynome, die in einem gegebenen Intervalle möglichst wenig
von Null abweichen. Math. Ann. 77(2), 213–258 (1916)

18. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discret.
Comput. Geom. 8(3), 265–293 (1992)

19. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

Rapid Mixing of k-Class Biased
Permutations

Sarah Miracle1(B) and Amanda Pascoe Streib2

1 University of St. Thomas, St. Paul, MN 55105, USA
sarah.miracle@stthomas.edu

2 Center for Computing Sciences, Bowie, MD 20715, USA
ampasco@super.org

Abstract. In this paper, we study a biased version of the nearest-
neighbor transposition Markov chain on the set of permutations where
neighboring elements i and j are placed in order (i, j) with probability
pi,j . Our goal is to identify the class of parameter sets P = {pi,j} for
which this Markov chain is rapidly mixing. Specifically, we consider the
open conjecture of Jim Fill that all monotone, positively biased distri-
butions are rapidly mixing.

We resolve Fill’s conjecture in the affirmative for distributions arising
from k-class particle processes, where the elements are divided into k
classes and the probability of exchanging neighboring elements depends
on the particular classes the elements are in. We further require that k is
a constant, and all probabilities between elements in different classes are
bounded away from 1/2. These particle processes arise in the context of
self-organizing lists and our result also applies beyond permutations to
the setting where all particles in a class are indistinguishable. Our work
generalizes recent work by Haddadan and Winkler (STACS ’17) studying
3-class particle processes. Additionally we show that a broader class of
distributions based on trees is also rapidly mixing, which generalizes a
class analyzed by Bhakta et al. (SODA ’13).

Our proof involves analyzing a generalized biased exclusion process,
which is a nearest-neighbor transposition chain applied to a 2-particle
system. Biased exclusion processes are of independent interest, with
applications in self-assembly. We generalize the results of Greenberg et al.
(SODA ’09) and Benjamini et al. (Trans. AMS ’05) on biased exclusion
processes to allow the probability of swapping neighboring elements to
depend on the entire system, as long as the minimum bias is bounded
away from 1.

1 Introduction

The fundamental problem of generating a random permutation has a long his-
tory in computer science, beginning as early as 1969 [1]. One way to generate
a random permutation is to use the nearest-neighbor Markov chain Mnn which
repeatedly swaps the elements in a random pair of adjacent positions. The chain
Mnn was among the first considered in the study of the computational efficiency
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 820–834, 2018.
https://doi.org/10.1007/978-3-319-77404-6_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_59&domain=pdf

Rapid Mixing of k-Class Biased Permutations 821

of Markov chains for sampling [2–4] and has subsequently been studied exten-
sively. After a series of papers, the mixing time of Mnn (Θ(n3 log n) [5]) is now
well-understood when sampling from the uniform distribution.

The nearest-neighbor chain Mnn can also be used to sample from more gen-
eral probability distributions on the permutation group Sn by allowing non-
uniform swap probabilities. Suppose we have a set of parameters P = {pi,j} and
that Mnn puts neighboring elements i and j in order (i, j) with probability pi,j ,
where pj,i = 1−pi,j . Despite the simplicity of this natural extension, much less is
known about the mixing time of Mnn in the non-uniform case. In this paper we
look at the question for which parameter sets P is Mnn rapidly (polynomially)
mixing? We say P is positively biased if pi,j ≥ 1/2 for all i < j. Without this
condition, it is fairly straightforward to construct parameter sets for which Mnn

has exponential mixing time (see e.g., [6]). Interestingly, Bhakta et al. [6] showed
that Mnn can require exponential time to mix even for distributions with pos-
itive bias. In a widely circulated manuscript, Fill [7,8] introduced the following
monotonicity conditions: pi,j ≤ pi,j+1 and pi,j ≥ pi+1,j for all 1 ≤ i < j ≤ n.
Fill conjectured that Mnn is rapidly mixing for all monotone, positively biased
distributions and further conjectured that the smallest spectral gap for Mnn is
given by the uniform pi,j = 1/2 distribution. He confirmed these conjectures for
n ≤ 3 and gave experimental evidence for n ≤ 5.

Except for a few special classes of monotone, positively biased distributions
very little is known about the mixing time of Mnn in the non-uniform setting
and the conjecture has remained unproven for over a decade. Benjamini et al. [9]
studied the case that pi,j = p > 1/2 for all i < j. They showed that the mixing
time of Mnn is Θ(n2) for these distributions. Bhakta et al. [6] showed that if
pi,j depends on only the smaller of i and j, then Mnn mixes in polynomial time.
They extend this to distributions arising from binary trees with leaves labeled
{1, 2, . . . , n} and internal nodes labeled by probabilities, where the label of the
lowest common ancestor of i and j in the tree determines pi,j .

Recently there has been interest in a special class of monotone, positively
biased distributions highlighted by Fill [8]. These distributions are motivated by
self-organizing lists and closely related to exclusion processes arising in statistical
physics. In this setting the set [n] is partitioned into k classes C1, C2, . . . , Ck and
the probability of swapping two elements in [n] is determined by the classes con-
taining those elements. Define a k-class as a set of probabilities P where elements
from the same set are exchanged with probability 1/2 while each element from Ci

and each element from Cj (with i < j) are put in increasing order with the same
probability pi,j > 1/2. The setting of k-classes is motivated by self-organizing
lists (see [10] for a survey). Consider a set of records in a linear array, where
element i is requested with some unknown frequency wi. A self-organizing list is
a way to reduce the linear look-up time by adjusting the permutation each time
an element is requested. The Move-Ahead-One (also called Transpose) algorithm
updates the permutation by moving the element forward one position; i.e. it is
precisely the nearest neighbor transposition chain. The probability of swapping i
and j is pi,j = wi/(wi +wj). We call this set of distributions w-distributions [8],

822 S. Miracle and A. P. Streib

or more explicitly k-value w-distributions (where there are k distinct frequencies
wi). Note these are an example of k-classes.

While w-distributions are quite natural and appear to be rapidly mixing [8],
this particular simple instance of the biased permutation problem has so far
eluded a thorough analysis. Haddadan and Winkler [11] recently studied 3-value
w-distributions. They showed if w2/w3, w1/w2 ≥ 2, then Mnn has mixing time
O(n18). They also analyzed a related nearest neighbor chain Mpp over 3-particle
systems, where the elements within a class are indistinguishable, and so they are
never swapped. They showed the mixing time of this chain is at most O(n10).

Our Main Result. Here we consider bounded k-classes, where pi,j/pj,i ≥ γ
for all i < j for some constant γ > 1. We show that if P is a weakly monotone
bounded k-class then the mixing time of Mnn is O(n2k+6 log k). This gives a
polynomial bound for any constant k, and applies directly to all bounded k-
value w-distributions (i.e. wi/wi+1 > γ for all i). This improves the mixing time
bound given in [11] for k = 3. We also analyze Mpp over k-particle systems, and
find the mixing time is O(n2k+4), matching the bounds from [11] for k = 3. In
both cases, we extend their results to allow γ < 2. In addition, we extend the
work of Bhakta et al. [6] on distributions based on binary trees to include trees
with maximum degree at most k.

Biased Exclusion Processes. Simple 2-class particle systems, known as biased
exclusion processes, have been a key tool in the study of biased permutations.
Suppose there are two types of particles (say 1 and 0) on a line, with ni (indistin-
guishable) particles of type i. Define a (finite) biased exclusion process over the
linear arrangements of these particles as follows: at each step, a pair of neighbor-
ing particles of different types may swap into increasing order with probability
p or out of order with probability 1 − p. Much of the previous work on the
biased permutation problem has proceeded by mapping Mnn over permutations
to several biased exclusion processes or the related infinite asymmetric simple
exclusion processes (ASEPs). In [9], Mnn is analyzed as a cross-product of sev-
eral ASEPs, and then rapid mixing for Mnn is inferred from the mixing times
of the ASEPs. Bhakta et al. [6] discovered a different decomposition of permu-
tations into a cross-product of biased exclusion processes, which allowed them
to prove rapid mixing for more general P distributions.

Exclusion processes are of independent interest, arising in a variety of con-
texts. The infinite version known as the asymmetric simple exclusion process is
a fundamental stochastic model in statistical mechanics [9,12]. In combinatorics,
the unbiased exclusion process is known as the mountain/valley Markov chain
over monotonic lattice paths (i.e. staircase walks) (see Fig. 1 and, e.g. [13]).
Notice each linear arrangement of 1’s and 0’s can be mapped bijectively to a
lattice path in Z

2 by sending 1’s to steps down and 0’s to steps to the right.
A biased version of this chain has applications in self-assembly, where it repre-
sents reversible growth processes [14,15].

Rapid Mixing of k-Class Biased Permutations 823

Fig. 1. Staircase walks that differ by a mountain/valley move (the darkened square).

Benjamini et al. [9] bounded the mixing time of the asymmetric exclusion
process, where particles of type 0 and type 1 all interact with the same (constant)
probability p. Subsequently, Greenberg et al. [14] discovered a simpler proof.
This continues to be an active area of interest and in recent work Labbé and
Lacoin [16] determined the exact mixing rate and Levin and Peres [17] analyzed
the case that p tends to 0 as n → ∞. Greenberg et al. [15,18] considered a
heterogeneous biased exclusion process, where the probability of swapping a 1
with a 0 at positions i and i + 1 depends on the numbers of 1’s and 0’s to the
left of position i.

In this paper, we introduce a new generalized (biased) exclusion process,
where the probability of swapping a 1 with a 0 may depend on the entire sequence
of 0’s and 1’s and prove it is rapidly mixing whenever the minimum bias is at
least a constant. Analyzing these processes is a key step towards proving our
main result on permutations, and we believe it could be of interest beyond the
application to biased permutations.

Techniques. In order to analyze Mnn we introduce a new Markov chain MT

which includes all transitions of Mnn plus a carefully selected set of more gen-
eral transpositions (swaps between non-nearest neighbor pairs). We will then
infer rapid mixing of Mnn from the rapid mixing of MT. The new chain may
be viewed as a combination of multiple unbiased permutation processes (one for
each of the k classes) and a single biased k-particle process where elements in
the same class are indistinguishable. The bulk of our work is in proving that the
particle process is rapidly mixing. Here our argument relies on a novel decompo-
sition argument where we fix the location of all of the particles in a single class
and repeat this process inductively. By doing this, we can again simplify Mnn

over permutations to several 2-class particle processes as in previous work [6,9],
with two key differences. First, we reduce to our new generalized biased exclu-
sion processes mentioned above, where the probability of swapping two particles
depends on the entire state of the system. Second, we need to use a decom-
position theorem [19,20] since in general Mnn does not appear to be a simple
cross-product of a set of 2-class particle processes for monotone positively biased
distributions. In fact, we use decomposition inductively O(k) times.

2 The Markov Chains Mnn and MT

We begin by formalizing the Markov chain Mnn. Then we will formally define
a k-class and introduce an auxiliary chain MT that allows a larger set of

824 S. Miracle and A. P. Streib

transpositions. Let Ω = Sn be the set of all permutations σ = (σ(1), . . . , σ(n))
of n integers. Suppose P is a set of probabilities, consisting of pi,j ∈ [0, 1] for
each 1 ≤ i �= j ≤ n, where pj,i = 1 − pi,j .

The Nearest Neighbor Markov chain Mnn

Starting at any permutation σ0, iterate the following:

– At time t, choose a position 1 < i ≤ n uniformly at random.
– With probability pσt(i),σt(i−1)/2, exchange the elements σt(i) and σt(i−1) to

obtain σt+1.
– Otherwise, do nothing so that σt+1 = σt.

The chain Mnn connects the state space Ω and has the stationary distribution
(see e.g., [6]) π(σ) =

(∏
i<j pσ(i),σ(j)

)
Z−1, where Z is a normalizing constant.

For our main result we prove that if a set of probabilities P are weakly
monotonic and form a bounded k-class then the Markov chain Mnn is rapidly
mixing. We will require the weakly monotonic condition defined in [6] rather
than the stronger monotonic condition defined in Fill’s conjecture [7,8].

Definition 1 ([6]). The set P is weakly monotonic if properties 1 and either 2
or 3 are satisfied.

1. pi,j ≥ 1/2 for all 2 ≤ i < j ≤ n, and
2. pi,j+1 ≥ pi,j for all 1 ≤ i < j ≤ n − 1 or
3. pi−1,j ≥ pi,j for all 2 ≤ i < j ≤ n.

For simplicity, we will assume that property (2) holds. If instead property (3)
holds, the proofs are very similar and we point out distinctions as necessary.

Suppose [n] is partitioned into k particle classes {Ci}. A set of probabilities
forms a k-class if particles in the same class interact with probability 1/2 and
the probability of swapping a particle in class Ci with a (neighboring) particle
in class Cj is the same for all particles within those classes1: for all 1 ≤ i <
j ≤ k, if x1, x2 ∈ Ci and y ∈ Cj we have px1,y = px2,y. We associate each
permutation σ with a k-particle system, where particles within the same class
are indistinguishable and therefore given the same label. The k-particle system
associated to σ is a sequence of n labels from [k], where the ith label is j if
σ(i) ∈ Cj . Note that several permutations are associated with the same particle
system. For example, if C1 = 1, C2 = 2, 3, C3 = 4, 5, then both permutations
32145 and 23145 are associated with the k-particle system 22133. For any element
x, let C(x) denote the particle class that contains x (i.e. C(x) = i if and only
if x ∈ Ci). Let Ci > Cj if i > j and similarly for Ci = Cj . We say a k-class
is bounded if there exists a constant γ > 1 such that for all 1 ≤ i < j ≤ n, if
C(i) �= C(j) then pi,j/pj,i ≥ γ.

Next we define a non-nearest neighbor Markov chain MT: MT exchanges
elements σ(i) and σ(j) at locations i and j with i < j if for all i < m < j,
1 We assume, in order to ensure the distribution is positively biased, that for all i ≤ k,

Ci = {ai−1 + 1, ai−1 + 2, . . . , ai}, for some sequence 0 = a0 < a1 < a2 < . . . < ak−1.

Rapid Mixing of k-Class Biased Permutations 825

C(σ(m)) < min(C(σ(i)), C(σ(j))). That is, MT swaps elements in different
particle classes across elements in particle classes that are smaller than both.
Particles in the same class can also be exchanged across any particles in other
classes. For example, suppose you start from a permutation with associated k-
particle system 3152673. The chain MT would allow an exchange of the two 3
particles because they are in the same class and there are no other particles in
class 3 between them. An exchange of the first 3 and 5 (resulting in 5132673)
would be allowed but an exchange of 5 and 7 would not because there is an
element in class 6 between them. Let λi,j = pi,j/pj,i.

The Transposition Markov chain MT

Starting at any permutation σ0, iterate the following:

– At time t, choose 1 ≤ i ≤ n and d ∈ {L,R,N} uniformly at random.
– If d = L, find the largest j with 1 ≤ j < i and C(σt(j)) ≥ C(σt(i)) (if one

exists). If C(σt(j)) > C(σt(i)), then with probability 1/2, exchange σt(i) and
σt(j) to obtain σt+1.

– If d = R, find the smallest j with n ≥ j > i and C(σt(j)) ≥ C(σt(i)) (if one
exists). If C(σt(j)) > C(σt(i)), then with probability

1
2

λσt(j),σt(i)

∏
i<k<j

(
λσt(j),σt(k)λσt(k),σt(i)

)
,

exchange σt(i) and σt(j) to obtain σt+1.
– If d = N , find the largest j with 1 ≤ j < i and C(σt(j)) = C(σt(i)). If such

an element exists, then with probability 1/2, exchange the elements σt(i) and
σt(j) to obtain σt+1.

– Otherwise, do nothing so that σt+1 = σt.

It is a simple exercise to show that MT samples from the same distribution as
Mnn and the proof is deferred to the final version of this paper.

The time a Markov chain takes to converge to its stationary distribution, or
mixing time, is measured in terms of the distance between the distribution at
time t and the stationary distribution. The total variation distance at time t
is ‖P t, π‖tv = maxx∈Ω

1
2

∑
y∈Ω |P t(x, y) − π(y)|, where P t(x, y) is the t-step

transition probability. For all ε > 0, the mixing time τ(ε) of M is defined as
τ(ε) = min{t : ‖P t′

, π‖tv ≤ ε,∀t′ ≥ t}. We say that a Markov chain is rapidly
mixing if the mixing time is bounded above by a polynomial in n and log(ε−1),
where n is the size of each configuration in Ω.

In our proofs we will bound the eigenvalue gaps of the transition matrices
of MT and of Mnn. Let Gap(P) = 1 − |λ1| denote the spectral gap, where
λ0, λ1, . . . , λ|Ω|−1 are the eigenvalues of the transition matrix P and 1 = λ0 >
|λ1| ≥ |λi| for all i ≥ 2. The following result relates the spectral gap with the
mixing time of the chain (see, e.g., [21,22]):

826 S. Miracle and A. P. Streib

Theorem 1 [22]. Let π∗ = minx∈Ω π(x). For all ε > 0 we have

(a) τ(ε) ≤ 1
1 − |λ1| log

(
1

π∗ε

)
.

(b) τ(ε) ≥ |λ1|
2(1 − |λ1|) log

(
1
2ε

)
.

In the remainder of the paper we prove MT and Mnn are rapidly mixing if
the input probabilities P are weakly monotonic and form a bounded k-class.

3 Bounded Generalized Exclusion Processes Mix Rapidly

We begin by analyzing bounded generalized biased exclusion processes. Assume
n1 particles of type 1 and n0 particles of type 0 occupy n0 + n1 linear positions:
1, . . . , n0 + n1. Let Ωe be the set of all distinct orderings of n1 1’s and n0 0’s. In
this setting, the probabilities pσt,i depend on both the current ordering σt and
the elements being exchanged. Consider the following chain on Ωe.

The Generalized Exclusion Markov chain Mex

Starting at any configuration σ0, iterate the following:

– At time t, choose a position 1 ≤ i < n0 + n1 uniformly at random.
– If σt(i) �= σt(i+1), with probability pσt,i exchange elements σt(i) and σt(i+1)

to obtain σt+1.
– Otherwise, do nothing so that σt+1 = σt.

We say that Mex is bounded if there exists a constant γ > 1 such that for all
σ ∈ Ωe, if σ(i) = 1 and σ(i + 1) = 0 and τ is obtained from σ by swapping
elements σ(i) and σ(i + 1), then pσ,i/pτ,i ≥ γ.

Recall the bijection between Ωe and staircase walks: map 1’s to steps down
and 0’s to steps to the right. For example, the two walks in Fig. 1 map to 0100101
and 0101001 respectively. Exchanging a 1 and a 0 corresponds to adding or
removing a particular square beneath the staircase walk. Greenberg and oth-
ers [14,15,18] studied a biased version of the “mountain/valley” chain for sam-
pling staircase walks that start at (0, h) and end at (w, 0). In [15,18], they
assumed the surface has “fluctuating bias,” meaning that each square s (on the
h × w lattice) is assigned a bias λs which is essentially the ratio of the probabil-
ities of adding or removing that particular square. They showed that as long as
the minimum bias is a constant larger than 1 then the chain is rapidly mixing.
In our setting, the probability of adding or removing a particular square can
vary depending on the rest of the configuration. For example, the probability
of moving from 1010 to 1001 is not necessarily the same as the probability of
moving from 0110 to 0101. We prove the following theorem.

Theorem 2. Let Mex be a bounded generalized exclusion process on n1 1’s and
n0 0’s. Suppose without loss of generality that n1 ≤ n0. Then the mixing time
τex of Mex satisfies τex(ε) = O

(
(n0 + n1)

(
n1 + lnn0 + ln ε−1

))
.

Rapid Mixing of k-Class Biased Permutations 827

Our proof is similar to that of [18] and we defer it to the final version. The idea
is that the hitting time (time to reach the most probable configuration) yields
a bound on the mixing time, and if the minimum bias is a constant, then the
hitting time is on the order of the area of the region.

4 MT Mixes Rapidly for k-Class Biased Permutations

Next we prove that if the probabilities P form a k-class then the Markov chain
MT mixes rapidly. This will be useful when we analyze the nearest neighbor
chain Mnn in Sect. 5. We first notice that the chain MT is a product of k +
1 independent Markov chains MT

(1),MT
(2), . . . ,MT

(k) and M∗
T. The first k

chains involve moves between particles in the same class and each such MT
(i) is

an unbiased nearest-neighbor Markov chain over permutations of |Ci| particles
(i.e. moves of MT with direction N). The final chain M∗

T allows only moves
between different particle classes. We give the formal definitions of these chains
below.

The Unbiased Markov chain M(i)
T (for 1 ≤ i ≤ k)

Starting at any permutation σ0, iterate the following:

– At time t, choose a position f with C(σt(f)) = i uniformly at random.
– Find the largest g with 1 ≤ g < f and C(σt(g)) = C(σt(f)) = i. If such an

element exists, then with probability 1/2 exchange the elements σt(f) with
σt(g) to obtain σt+1.

– Otherwise, do nothing so that σt+1 = σt.

The final chain M∗
T allows moves between different particle classes. Note that

M∗
T includes all moves of MT except those with direction N .

The Markov chain M∗
T

Starting at any permutation σ0, iterate the following:

– At time t, choose a position 1 ≤ i ≤ n and direction d ∈ {L,R} uniformly at
random.

– If d = L, find the largest j with 1 ≤ j < i and C(σt(j)) ≥ C(σt(i)) (if
one exists). If C(σt(j)) > C(σt(i)), then with probability 1/2 exchange the
elements σt(i) and σt(j) to obtain σt+1.

– If d = R, find the smallest j with n ≥ j > i and C(σt(j)) ≥ C(σt(i)) (if one
exists). If C(σt(j)) > C(σt(i)), then with probability

1
2

λσt(j),σt(i)

∏
i<k<j

(
λσt(j),σt(k)λσt(k),σt(i)

)
,

exchange σt(i) and σt(j) to obtain σt+1.
– Otherwise, do nothing so that σt+1 = σt.

828 S. Miracle and A. P. Streib

Theorem 3. If the probabilities P are weakly monotonic and form a bounded
k-class for k ≥ 2, then the mixing time τT of MT satisfies τT(ε) =
O

(
n2k ln(kε−1)

)
.

To prove Theorem 3, we use a result of [6] to relate the mixing times of the
smaller chains {MT

(i)}k+1
i=1 to MT. Previous results [5] allow us to bound the

mixing times of MT
(1),MT

(2), . . . ,MT
(k). Thus, the bulk of our work is to

bound the mixing time of M∗
T, which we do next.

4.1 k-Particle Processes Mix Rapidly

Recall M∗
T allows only those moves of MT that involve elements in different

particle classes (i.e. the moves with direction L and R). We call it a k-particle
process over its state space of k-particle systems, since in this context elements
in the same class are indistinguishable. If there are only two particle classes then
this chain is a bounded generalized exclusion process. We prove the following.

Lemma 4. Assume |Ci| = ci for all i. The spectral gap Gap(P) of the chain

M∗
T satisfies Gap(P) = Ω

((
nk−1

∏k−1
i=1 (ci + lnn)

)−1)
. The mixing time τT∗ of

M∗
T satisfies τT∗(ε) ≤ O(n2k ln ε−1).

Our proof will proceed inductively, and at each step of the induction we
will apply the decomposition theorem [19,23]. We will use the following version
due to Martin and Randall [19]. Let Ω = ∪m

i=1Ωi be a partition of the state
space into m disjoint pieces. For each i = 1, . . . ,m, define Pi = P (Ωi) as the
restriction of P to Ωi which rejects moves that leave Ωi. In particular, the
restriction to Ωi is a Markov chain Mi with state space Ωi, where the transition
matrix Pi is defined as follows: If x �= y and x, y ∈ Ωi then Pi(x, y) = P (x, y);
if x ∈ Ωi then Pi(x, x) = 1 − ∑

y∈Ωi,y �=x Pi(x, y). Let πi be the normalized
restriction of π to Ωi, i.e., πi(A) = (π(A ∩ Ωi))/(π(Ωi)). Define P̂ to be the
following aggregated transition matrix on the state space {1, . . . , m}: P̂ (i, j) =

1
π(Ωi)

∑
x∈Ωi,
y∈Ωj

π(x)P (x, y).

Theorem 5 ([19]). Gap(P) ≥ 1
2Gap(P̂)mini=1,...,m Gap(Pi).

We may now prove Lemma 4. As a running example, let C1 = {1, 2}, C2 =
{3}, C3 = {4, 5}, C4 = {6}, and C5 = {7}. Since elements within a class are
indistinguishable to M∗

T, we list each element using the subscript of its class;
e.g., one 4-class particle system with these parameters is 4123315.

Proof. For i ≥ 0, let σi represent an arbitrary fixed location of the particles in
classes C1, C2, . . . , Ci (when i = 0, σi represents no restriction). For example,
σk−2 = 12 1 , where the represents an empty location which will be filled by
an element of Ck−1 or Ck. We will consider a smaller chain Mσi

whose state
space is the set of all configurations where the elements in classes C1, . . . , Ci are
in the locations given by σi: in our example, the state space of Mσ2 is

Rapid Mixing of k-Class Biased Permutations 829

{3123415, 3124315, 4123315, 3123514, 3124513, 4123513,
3125314, 3125413, 4125313, 5123314, 5123413, 5124313}.

The moves of Mσi
are a subset of the moves of M∗

T. It rejects all moves of
M∗

T involving an element of C1, C2, . . . , Ci. We prove by induction that Mσi

has spectral gap satisfying

Gap(Pi) = Ω
((

nk−1−i
k−1∏

j=i+1

(cj + lnn)
)−1)

,

for all choices of σi (given a fixed i). Since Mσ0 = M∗
T, this will prove the

first part of Lemma4. At each step of the induction, we apply decomposition
(Theorem 5). The restrictions of each decomposition will be rapidly mixing by
induction and the projection chain will be a bounded generalized exclusion pro-
cess. The base case is i = k − 2 and the final decomposition is i = 0.

Base Case. We begin with our base case, i = k − 2. Let σk−2 be any fixed
location of the particles in classes C1, . . . , Ck−2. The Markov chain Mσk−2 rejects
all moves of M∗

T unless they exchange a particle in class Ck−1 with a particle
in class Ck. Thus, its moves only involve two types of particles, with all other
particles fixed, so we can view Mσk−2 as a generalized exclusion process.

Next we show that Mσk−2 is bounded. Consider any “adjacent” particles
x ∈ Ck−1 and y ∈ Ck (they could be separated by any number of particles in
classes C1, . . . , Ck−2). We select x and the appropriate direction (either L or R)
with probability 1/(3n). This succeeds with probability 1/2 if the direction is L.
If the direction is R, it succeeds with probability pk,k−1/(2pk−1,k) if there are no
additional particles between x and y. If there are additional particles, then the
probability is even smaller since we are exchanging across elements in smaller
classes and our probabilities are weakly monotonic. For example, moving from
3124315 to 4123315 happens with probability p4,3p4,1p4,2p1,3p2,3

2p3,4p1,4p2,4p3,1p3,2
≤ p4,3

2p3,4
. Since

for i < j, C(i) �= C(j), pi,j > 1/2, the minimum bias of our generalized exclusion
process Mσk−2 satisfies λL = 1/(pk,k−1/pk−1,k) = pk−1,k/(1 − pk−1,k) > 1.
Hence Mσk−2 is bounded, so we can apply Theorem 2. We have ck−1 particles in
class Ck−1 and ck particles in class Ck, and the moves of our exclusion process
happen with probability 1/(6n) (instead of 1/(ck−1 + ck)). Thus, Theorem 2
(with ε = 1/4) implies that for any such σk−2, Mσk−2 has mixing time O(n ·
min(ck−1 + ln ck, ck + ln ck−1) = O(n(ck−1 + lnn)). Using Theorem 1(a) we have
that the spectral gap of Mσk−2 satisfies Ω(1/(n(ck−1 + lnn)).

Inductive Step. We assume by induction the mixing time bound holds for all
Mσi

for some i ≤ k−2, and we will use this result to prove that our mixing time
bound holds for all Mσi−1 , which fix the location of particles in one fewer particle
class. Let σi−1 represent any fixed choice of locations for all elements in classes
C1, C2, . . . , Ci−1. In order to bound Gap(Pi−1) we use the decomposition theo-
rem. Given any σi that is consistent with σi−1 (i.e. they agree on the locations of

830 S. Miracle and A. P. Streib

all elements in classes C1, C2, . . . , Ci−1), the Markov chain Mσi
will be a restric-

tion Markov chain of Mσi−1 , as defined in the decomposition theorem. By induc-

tion, we have Gap(Pi) satisfies Gap(Pi) = Ω
((

nk−1−i
∏k−1

j=i+1(cj + lnn)
)−1)

.
The projection chain, however, is more complicated. Recall our running

example (k = 5) and consider the second decomposition. Here each of the restric-
tions is the set of configurations consistent with a particular fixed location of
the particles in classes C1 and C2 and all restrictions agree on the location of
particles in C1. Let σ2 = 112 and β2 = 211 represent two such restrictions.
A move of the projection chain between σ2 and β2 is an aggregate of all moves
of M∗

T between configurations consistent with σ2 and configurations consistent
with β2. For example, 4112335 → 2114335 is one such move of M∗

T. Each of
these moves involve exchanging a particle in C3 or C4 with a particle in C2.
However, since these exchanges may happen across any number of particles in
C1 and involve particles in C3 or C4 they will have different probabilities, making
the analysis more challenging.

More generally, moves of the projection chain involve exchanging an element
from Ci with an element from Cj where j > i. There may be additional ele-
ments between the elements being exchanged but if there are, they are in a
smaller particle class Cs with s < i. If we view all elements in Ci as one type
and all elements in Ci+1, Ci+2, . . . , Ck as another, then the projection chain can
be viewed as a bounded generalized exclusion process. We show that because
of weak monotonicity, all moves that move a particle in Ci ahead happen with
probability 1/(6n) and all moves that move it back happen with probability
at most (1/(6n))(pi+1,i/pi,i+1). We defer the proof to the final version of this
paper. Since pi,i+1 = 1 − pi+1,i > 1/2, this implies that the minimum bias is
greater than 1 and we can apply Theorem 2. There are ci particles of type i,∑k

j=i+1 cj < n particles of the other type, and the moves are selected with prob-
ability 1/(6n). Applying Theorem2 and Theorem 1(a) shows that the spectral
gap of the projection chain satisfies Ω((n(ci + lnn))−1). Combining this with
the bound on the restriction chain, Theorem5 implies

Gap(Pi−1) = Ω
((

nk−i
k−1∏
j=i

(cj + lnn)
)−1)

. (1)

Finally, we will bound the mixing time τT∗(ε) of M∗
T for ε > 0. Let λ∗ =

maxi<j pi,j/pj,i then π∗ = minx∈Ω π(x) ≥ (λ(n
2)∗ n!)−1 (see [6] for more details), so

log(1/επ∗) = O(n2 ln ε−1) since λ is bounded from above by a positive constant.
Applying Theorem1(b) and (1), we have τT∗(ε) ≤ O(n2(k−1)n2 ln ε−1).

4.2 From k Particle Process to k-Class

Again, we can view MT as a product of k + 1 smaller Markov chains where
MT

(1),MT
(2), . . . ,MT

(k) are unbiased nearest-neighbor chains over permuta-
tions of a single particle class (moves between elements in the same particle

Rapid Mixing of k-Class Biased Permutations 831

class) and M∗
T is a k-particle process (moves between elements in different par-

ticle classes). We will use the following result of Wilson to bound the mixing
times of the k permutation processes and Lemma 4 to bound the mixing time of
M∗

T.

Theorem 6 ([5]). The chain Mnn mixes in time O(n3 log n log ε−1) when pij =
1/2 for all i < j.

Let τi be the mixing time of MT
(i) for 1 ≤ i ≤ k and τT∗ be the mixing

time of M∗
T. Each chain MT

(i) has ci particles, so Theorem 6 implies τi(ε) =
O(c3i log ci log ε−1). By Lemma 4, M∗

T has mixing time O(n2k ln ε−1). To bound
the mixing time of MT, we will use the following theorem due to Bhakta et al. [6],
which bounds the mixing time of a product of independent Markov chains.

Theorem 7 ([6]). Suppose the Markov chain M is a product of N independent
Markov chains {Mi}, which updates Mi with probability pi. If τi(ε) is the mixing
time for Mi and τi(ε) ≥ 4 ln ε for each i, then τ(ε) ≤ maxi=1,2,...,N

2
pi

τi

(
ε

2N

)
.

The chain MT updates MT
(i) for 1 ≤ i ≤ k if direction N and a particle in class

Pi are selected, which happens with probability ci/(6n). Therefore, for i ≤ k,

2
pi

τi

(
ε

2(k + 1)

)
= O(nc2i ln ci ln(kε−1)) = O(n3 ln n ln(kε−1)).

The chain M∗
T is updated when direction L or R is selected (i.e. with probability

2/3), so we have 2
pk+1

τT∗ (ε/(2(k + 1))) = O(n2k ln(kε−1)). Therefore, Theorem 7
gives that τT(ε) = O(n2k ln(k/ε)) for k ≥ 2. This proves Theorem 3.

5 Mnn Mixes Rapidly for k-Class Permutations

In the final part of our argument we will use the comparison method [24,25] to
bound the mixing time τnn of Mnn using the bound on the mixing time of MT

(Theorem 3). We defer the complete proof to the final version.

Theorem 8. If the probabilities P are weakly monotonic and form a bounded
k-class for k ≥ 2, then the mixing time τnn of Mnn satisfies

τnn(ε) = O
(
n2k+6 ln(kε−1)

)
.

Moreover, as a corollary to Lemma 4, we prove the following result on k-particle
systems. In this setting, particles in the same class are indistinguishable. The
particle process chain Mpp is identical to Mnn except exchanges are only allowed
between elements in different classes.

832 S. Miracle and A. P. Streib

Corollary 9. If the probabilities P are weakly monotonic and form a bounded k-
class with k ≥ 2, then the mixing time of Mpp satisfies τpp(ε) = O

(
n2k+4 ln ε−1

)
.

6 Trees of k-Value Permutations Mix Rapidly

Bhakta et al. [6] define a class of probabilities they call “League Hierarchies”
and show that this class mixes rapidly. A set of probabilities P is in this class if
there exists a binary tree T with n leaves labeled 1, . . . , n in sorted order where
each non-leaf node v has a value 1

2 ≤ qv < 1 associated with it and pi,j = qi∧j

where i∧j is the lowest common ancestor of the leaves labeled i and j in T . At a
high-level, they show that if the probabilities P have this type of structure, then
we can view the chain as a collection of independent biased 2-particle exclusion
processes. We extend their league hierarchies beyond binary trees to allow tree
nodes with up to a constant k children.

Let T be a labeled ordered tree (or plane tree) with n leaves labeled
1, . . . , n in sorted order. For each internal node v, the children of v are labeled
1, 2, . . . , deg(v), and if deg(v) ≥ 2, v is assigned

(
deg(v)

2

)
values 1/2 < q(v,a,b) < 1,

for 1 ≤ a < b ≤ deg(v) (here a and b correspond to the labels of the children of
v). Again let i ∧ j be the lowest common ancestor of the leaves labeled i and j.
We say that a set of probabilities P has k-league structure if there exists such a
tree T with pi,j = q(i∧j,a,b) where a and b are children of i ∧ j, i is contained in
the subtree rooted at a and j is contained in the subtree rooted at b. Figure 2
gives an example P with k-league structure. In this example, p2,6 = q(A,1,3) = .7
since 2 ∧ 6 = A and leaves 2 and 6 come from A’s subtrees labeled 1 and 3
respectively. We prove the chain Mnn is rapidly mixing for any P with k-league
structure.

Fig. 2. A set of probabilities P with k-league structure, the tree representation of the
permutation σ = 6143275 and the corresponding q values. Each node x is labelled by
the sub-permutation σx (in parentheses) of σ restricted to the elements appearing as
leaves in the subtree rooted at x. For every i ∈ σx, the bold number below i indicates
which child of x has i in its subtree.

Theorem 10. Given a set of probabilities P that is weakly monotonic with
bounded k-league structure and corresponding tree T with maximum degree k,
the mixing time τnn of Mnn(T) satisfies τnn(ε) = O

(
n2k+11 ln(nε−1)

)
.

Rapid Mixing of k-Class Biased Permutations 833

In the proof (which will appear in the final version), we first show that the
tree chain Mtree, introduced by [6], is rapidly mixing and then use comparison
techniques to relate the mixing time of Mtree to the mixing time of Mnn.

References

1. Knuth, D.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Boston (1969)

2. Aldous, D.J.: Random walks on finite groups and rapidly mixing Markov chains.
Séminaire de probabilités de Strasbourg 17, 243–297 (1983)

3. Diaconis, P., Shahshahani, M.: Generating a random permutation with random
transpositions. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 159–179 (1981)

4. Diaconis, P., Saloff-Coste, L.: Comparison techniques for random walks on finite
groups. Ann. Appl. Probab. 21, 2131–2156 (1993)

5. Wilson, D.: Mixing times of lozenge tiling and card shuffling Markov chains. Ann.
Appl. Probab. 1, 274–325 (2004)

6. Bhakta, P., Miracle, S., Randall, D., Streib, A.: Mixing times of Markov chains
for self-organizing lists and biased permutations. In: Proceedings of the 24th
ACM/SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1–15 (2013)

7. Fill, J.: An interesting spectral gap problem (2003, unpublished manuscript)
8. Fill, J.: Background on the gap problem (2003, unpublished manuscript)
9. Benjamini, I., Berger, N., Hoffman, C., Mossel, E.: Mixing times of the biased

card shuffling and the asymmetric exclusion process. Trans. Am. Math. Soc. 357,
3013–3029 (2005)

10. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. Comput. Surv. 17,
295–311 (1985)

11. Haddadan, S., Winkler, P.: Mixing of permutations by biased transposition. In:
34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, pp.
41:1–41:13 (2017)

12. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 240–290 (1970)
13. Luby, M., Randall, D., Sinclair, A.: Markov chain algorithms for planar lattice

structures. SIAM J. Comput. 31, 167–192 (2001)
14. Greenberg, S., Pascoe, A., Randall, D.: Sampling biased lattice configurations using

exponential metrics. In: Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2009 (2009)

15. Pascoe, A., Randall, D.: Self-assembly and convergence rates of heterogenous
reversible growth processes. In: Foundations of Nanoscience (2009)

16. Labbé, C., Lacoin, H.: Cutoff phenomenon for the asymmetric simple exclusion
process and the biased card shuffling. arXiv:1610.07383v1 (2016)

17. Levin, D., Peres, Y.: Mixing of the exclusion process with small bias. J. Stat. Phys.
165, 1036–1050 (2016)

18. Greenberg, S., Randall, D., Streib, A.: Sampling biased monotonic surfaces using
exponential metrics (2017)

19. Martin, R., Randall, D.: Sampling adsorbing staircase walks using a new Markov
chain decomposition method. In: Proceedings of the 41st IEEE Symposium on
Foundations of Computer Science, pp. 492–502 (2000)

20. Martin, R., Randall, D.: Disjoint decomposition of Markov chains and sampling
circuits in cayley graphs. Comb. Probab. Comput. 15, 411–448 (2006)

http://arxiv.org/abs/1610.07383v1

834 S. Miracle and A. P. Streib

21. Sinclair, A.: Algorithms for Random Generation and Counting. Progress in Theo-
retical Computer Science. Birkhäuser, Basel (1993)

22. Randall, D.: Mixing. In: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (2003)

23. Madras, N., Randall, D.: Markov chain decomposition for convergence rate analy-
sis. Ann. Appl. Probab. 12, 581–606 (2002)

24. Diaconis, P., Saloff-Coste, L.: Comparison theorems for reversible Markov chains.
Ann. Appl. Probab. 3, 696–730 (1993)

25. Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov
chains. J. Math. Phys. 41, 1598–1615 (2000)

Transition Operations over Plane Trees

Torrie L. Nichols1, Alexander Pilz2(B), Csaba D. Tóth1,
and Ahad N. Zehmakan2

1 California State University Northridge, Los Angeles, CA, USA
torrie.nichols.643@my.csun.edu, csaba.toth@csun.edu

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
{alexander.pilz,abdolahad.noori}@inf.ethz.ch

Abstract. The operation of transforming one spanning tree into
another by replacing an edge has been considered widely, both for general
and geometric graphs. For the latter, several variants have been studied
(e.g., edge slides and edge rotations). In a transition graph on the set
T (S) of noncrossing straight-line spanning trees on a finite point set S
in the plane, two spanning trees are connected by an edge if one can
be transformed into the other by such an operation. We study bounds
on the diameter of these graphs, and consider the various operations
both on general point sets and sets in convex position. In addition, we
address the problem variant where operations may be performed simul-
taneously. We prove new lower and upper bounds for the diameters of
the corresponding transition graphs and pose open problems.

1 Introduction

For a set S of n points in the plane, let T (S) denote the set of noncrossing
straight-line spanning trees on the vertex set S. Over the last 20 years, five
operations have been introduced over T (S). While all five operations are based
on a classic exchange property of graphic matroids [27], geometric conditions
yield a rich hierarchy.

Elementary Operations. Let T1 = (S,E1) and T2 = (S,E2) be two trees in
T (S). The operation that replaces T1 by T2 is

– an exchange if there are edges e1 and e2 such that E1 \ E2 = {e1} and
E2 \ E1 = {e2} (i.e., delete an edge e1 from E1 and insert a new edge e2).

– A compatible exchange is an exchange such that the graph (S,E1 ∪ E2) is
a noncrossing straight-line graph (i.e., e1 and e2 do not cross).

– A rotation is a compatible exchange such that e1 and e2 have a common
endpoint p = e1 ∩ e2.

– An empty-triangle rotation is a rotation such that the edges of neither T1

nor T2 intersect the interior of the triangle Δ(pqr) formed by the vertices of
e1 and e2.

– An edge slide is an empty-triangle rotation such that qr ∈ E1 ∩ E2.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 835–848, 2018.
https://doi.org/10.1007/978-3-319-77404-6_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_60&domain=pdf

836 T. L. Nichols et al.

Fig. 1. A straight-line spanning tree (a), in which we replace the dashed edge by
a dotted one, using an exchange (b), a compatible exchange (c), a rotation (d), an
empty-triangle rotation (e), and an edge slide (f).

See Fig. 1 for illustrations. Note that, for each of these types of operations,
the inverse of an operation (i.e., transforming T2 to T1) is also of the same type.
Each operation op defines an undirected transition graph Gop(S), whose vertex
set is T (S), and there is an edge between two trees T1, T2 ∈ T (S) if an operation
op can transform T1 into T2. The transition graphs for each of these five opera-
tions are known to be connected (see Sect. 1.2). The diameter diam(Gop(S)) of
the transition graph is thus the maximum length of a shortest transformation
sequence between two plane spanning trees in T (S). We are interested in the
asymptotic growth rate of the function fop(n) := max|S|=n diam(Gop(S)).

Simultaneous Operations. For each elementary operation op, we define a
simultaneous operation sop on T (S) as follows. For two trees T1 = (S,E1) and
T2 = (S,E2) in T (S), the operation sop replaces T1 by T2 if there is a bijection
between E1 \ E2 and E2 \ E1 (the old edges and new edges, resp.) and each
pair (e1, e2) of corresponding edges satisfies the condition of the elementary
operation op on T1. This means that there is no condition for simultaneous
exchange; and the only condition for simultaneous compatible exchange
is that the graph (S,E1 ∪ E2) is noncrossing (since each of the single opera-
tions is valid on T1, none of the new edges can cross any old edge). We define
the graph Gsop(S) and maximum diameter fsop(n) for simultaneous operations
analogously. Clearly, fsop(n) ≤ fop(n).

General Position and Convex Position. We assume that S is in general
position (i.e., no three points in S are collinear). This assumption is for con-
venience only (all diameter bounds would hold regardless but would require a
detailed discussion of special cases). Previous results (cf. Sect. 1.2) are also stated
subject to this assumption. Arguably the most important special case is that S
is in convex position. We are also interested in the asymptotic growth rate of the
function f cx

op(n), which is equal to max|S|=n diam(Gop(S)), where S is in convex
position. (Observe that, for the operations mentioned, the actual coordinates of
the points are not important as long as they are in convex position.) The function
f cx
sop(n) is defined analogously. Trivially, f cx

op(n) ≤ fop(n) and f cx
sop(n) ≤ fsop(n)

for any operation op.

1.1 Overview of Bounds

The current best diameter bounds for the five operations and their simultaneous
variants are summarized in Table 1. Bounds for points in convex position are

Transition Operations over Plane Trees 837

shown in Table 2. The operations are presented from strongest to weakest: we
say an operation op1 is stronger than operation op2 if every operation op2

is an operation op1. As Gop2
(S) is a subgraph of Gop1

(S), fop1
(n) ≤ fop2

(n)
and f cx

op1
(n) ≤ f cx

op2
(n). It is worth noting that even though we briefly review

the current best bounds for the three strongest operations, our main results
concern the two weakest operations: empty-triangle rotation (Sect. 2) and edge
slide (Sect. 3). See Tables 1 and 2, where our contributions are marked with the
according theorems and observations.

Table 1. Bounds for n points in general position.

Operation Single Oper.

Upper Bd.

Single Oper.

Lower Bd.

Simultaneous

Upper Bd.

Simultaneous

Lower Bd.

Exchange 2n − 4 � 3n
2 � − 5 [19] 1 1

Compatible Ex. 2n − 4 � 3n
2 � − 5 O(log n) [3] Ω(log n

log log n) [11]

Rotation 2n − 4 [7] � 3n
2 � − 5 O(log n) (Theorem1) Ω(log n

log log n)

Empty-Tri. Rot. O(n log n) (Theorem2) � 3n
2 � − 5 8n (Theorem3) Ω(log n) (Theorem4)

Edge Slide O(n2) [4] Ω(n2) [4] O(n2) [4] Ω(n) (Sect. 3.1)

Table 2. Bounds for n points in convex position.

Operation Single Oper.

Upper Bd.

Single Oper.

Lower Bd.

Simultaneous

Upper Bd.

Simultaneous

Lower Bd.

Exchange 2n − 5 � 3n
2 � − 5 [19] 1 1

Compatible Ex. 2n − 5 � 3n
2 � − 5 2 2

Rotation 2n − 5 � 3n
2 � − 5 4 3 (Observation 1)

Empty-Tri. Rot. 2n − 5 � 3n
2 � − 5 4 (Theorem5) 3

Edge Slide 2n − 5 (Theorem6) � 3n
2 � − 5 O(log n) (Theorem7) Ω(log n) (Theorem7)

1.2 Related Previous Work and Contribution

Exchanging edges such that both the initial and the resulting graph belong to
the same graph class is a well-studied operation in various contexts; see [9] for
a survey. Perhaps the best known operation on trees is the classic rotation on
ordered rooted binary trees, which is equivalent to the associativity rule over
n-symbol words, and to edge flips in triangulations of n + 2 points in convex
position. Sleator et al. [30] gave an upper bound of 2n − 6 for the diameter of
the transition graph for all n ≥ 11, which is tight [29].

For abstract trees on n labeled vertices, any spanning tree T1 = (S,E1)
can be transformed into any other tree T2 = (S,E2) using |E1 \ E2| exchange
operations, by the classic exchange property of graphic matroids (see, e.g., [27]).
Consequently, the diameter of the transition graph is n − 1.

There are nn−2 abstract spanning trees on n labeled vertices for n ≥ 3 [13].
In contrast, the number of noncrossing straight-line trees on n points in the

838 T. L. Nichols et al.

plane is in O(141.07n) [20] and Ω(12.54n) [21]. While the transition graph of the
exchange operation over T (S) is a subgraph of the transition graph over abstract
labeled trees (it has fewer nodes), this does not imply any relation between the
diameters of these transition graphs.

The operations of exchange, rotation, and edge slide on unlabeled abstract
spanning trees on n vertices were considered by Faudree et al. [15], and Goddard
and Swart [18]. They define transition graphs over isomorphism classes, proving
upper bounds of n − 3, 2n − 6, and 2n − 6, respectively, on their diameters. For
all three types, a lower bound of n−3 is the distance between a path and a star.

Geometric variants, where the vertex set S is a set of points in the plane,
were first considered by Avis and Fukuda [7] for the efficient enumeration of
all trees in T (S). Interestingly, the order type of S can be reconstructed from
the transition graph of the exchange operation [24]. All five operations that we
consider were defined prior to our work (see the respective paragraphs), but this
is the first comprehensive study of all five operations.

Akl et al. [5] and Chang and Wu [14] considered the exchange operation
over P(S), the set of noncrossing spanning paths on n points in convex position.
They proved that the diameter of the transition graph is 2n − 6 for n ≥ 5
and 2n − 5 for n = 3, 4. Wu et al. [31] use these operations for generating all
paths in P(S) in O(1) amortized time per path. Under weaker operations (e.g.,
compatible exchange), the transition graph of P(S) is disconnected. It remains
open whether the exchange graph of P(S) is connected for general point sets S.

Exchange. For n ≥ 4, n points in convex position admit two edge-disjoint
spanning trees in T (S). Since an elementary operation replaces only one edge,
this yields a trivial lower bound of n−1 for the diameter of the transition graph.
Hernando et al. [19] gave a lower bound of �3n/2� − 5 for n points in convex
position. An upper bound of 2n − 4 for the general case comes from the weaker
operation of rotation. In the simultaneous setting, the lower and upper bound
of 1 is clear: Given two trees T1, T2 ∈ T (S), one can remove all edges of T1 and
insert all edges of T2 simultaneously.

Compatible Exchange. For single operations, upper and lower bounds follow
from corresponding bounds for weaker and stronger operations, respectively.
However, the simultaneous compatible exchange is asymptotically weaker than
the simultaneous exchange. Buchin et al. [11] constructed a set S of n points
and a pair of trees T1, T2 ∈ T (S) such that Ω(log n/ log log n) simultaneous
compatible exchanges are required to transform T1 into T2. Aichholzer et al. [3]
proved that, for every set S of n points, every T ∈ T (S) can be transformed
into the minimum spanning tree of S using O(log n) simultaneous compatible
exchanges; moreover, each operation decreases the Euclidean weight of the tree.
Later, Aichholzer et al. [2] showed that every T ∈ T (S) can be transformed into
some canonical tree using O(log k) simultaneous compatible exchanges, where
k ≤ n

3 is the number of convex layers of S. Their upper bound leaves only
a sub-logarithmic gap on the asymptotic growth of fsce(n), where sce stands
for simultaneous compatible exchange. However, f cx

sce(n) = 2 because a plane
spanning tree T1 can be transformed into any other plane spanning tree T2 by

Transition Operations over Plane Trees 839

a

b c

d

ef

a

b c

d

ef
T1 T2

Fig. 2. Two spanning trees on 6 points in convex position. Three simultaneous rotations
are needed to transform T1 into T2. After the first rotation, ad or its image still crosses
some edge of T2. Thus, at least two more operations are needed to reach T2.

exchanging all the edges of T1 with the edges of a path T0 along the convex
hull, and then exchanging all the edges of T0 with T2. The existence of two
incompatible spanning trees implies a lower bound of 2.

Rotation. The edge rotation operation was first introduced by Chartrand et
al. [16] for abstract graphs. We consider it over T (S). For single rotations ro,
the lower bound follows from the corresponding bound for stronger operations.
An upper bound of 2n − 4 follows from a proof by Avis and Fukuda [7] (they
consider exchange operations, but all exchanges in their proof are happen to be
rotations). For simultaneous rotations, sro, we prove an O(log n) upper bound
(see Theorem 1, proven in the full version) by an algorithm that transforms
every tree T ∈ T (S) to a star, combining ideas from [3,7]. A lower bound of
Ω(log n/ log log n) derives from the stronger simultaneous compatible exchanges.

Theorem 1. fsro(n) = O(log n).

For simultaneous rotations and convex position, an algorithm for the weaker
operation of empty-triangle rotations yields an upper bound of 4, and the lower
bound is established in Fig. 2 for n = 6. For n ≥ 7, we may augment T1 and T2

with n − 6 vertices between a and b, and the same argument applies.

Observation 1. For n ≥ 6, we have f cx
sro(n) ≥ 3.

Empty-Triangle Rotation. Empty-triangle rotation is a very natural variant
of rotation; however, there is not much known about it. Cano et al. [12] showed
that a sequence of empty-triangle rotations exists that rotates one edge of a
plane spanning tree into any other edge that is not in the tree, which implies
the connectivity of Ger(S) for a point set S, where er denotes empty-triangle
rotation. For single operations, fer(n) ≥ � 3n

2 � − 5 and f cx
er (n) ≥ � 3n

2 � − 5 are
clear as before. For general point sets, we prove an upper bound of O(n log n)
(see Theorem 2). For the convex case, we provide a linear upper bound in the
weaker operation of edge slide, which yields f cx

er (n) = Θ(n). In the simultaneous
setting, we provide a tight bound of fser(n) = Θ(log n) in Theorems 3 and 4. In
the case of convex position we prove f cx

ser(n) = Θ(1) (see Theorem 5).

Edge Slide. Aichholzer et al. [3] proved that Ges(S), where es stands for edge
slide, is connected for every point set S in general position. Aichholzer and
Reinhardt [4] proved fes(n) = Θ(n2). We show f cx

es (n) = Θ(n); see Theorem 6.

840 T. L. Nichols et al.

The simultaneous variant has not been previously considered. A linear lower
bound and a quadratic upper bound can be easily derived from diameter bounds
for single operations over point sets in general position, as will be discussed in
Sect. 3.1. For points in convex position, however, we prove an asymptotically
tight bound f cx

ses(n) = Θ(log n); see Theorem 7.

2 Empty-Triangle Rotation: Upper and Lower Bound

2.1 General Point Sets

For single operations, the lower bound of � 3n
2 � − 5 follows from an analogous

bound for the stronger operation of rotation. We prove an upper bound of
O(n log n) (see Theorem 2), which leaves a logarithmic gap. We start with an
easy observation about a single triangle.

Observation 2. Let T be a spanning tree with an edge e = pq and a vertex
r such that the interior triangle Δ(pqr) does not intersect T . Then an empty-
triangle rotation can replace e with either pr or qr (but not both).

Theorem 2. fer(n) = O(n log n).

Proof. Let T be a spanning tree in T (S) for a point set S of size n and let
p ∈ S be an extremal point in S. We show that we can transform T into a star
centered at p using O(n log n) empty-triangle rotations. To this end, we use O(n)
operations to transform T into two subtrees of roughly equal size whose convex
hulls intersect in p only, and then recurse on the subtrees.

Let h be a ray emanating from p that separates the convex hull of S into two
parts, none containing more than n/2 points of S \ {p}. If h does not cross any
edge of T , we can recurse on the two subtrees. Otherwise, let e be the edge of
T whose crossing with h is farthest away from p. Compute a triangulation of S
whose edge set contains the edge set of T , and let (Δ1, . . . , Δm) be the sequence
of triangles of the triangulation, in the order in which they are visited by h, until
h crosses e. (Note that m ≤ 2n − 5, as this is an upper bound for the number of
triangles in a triangulation of S.) By Observation 2, an empty-triangle rotation
can replace e with some other edge f of Δm. This edge f either does not cross
h, or its crossing with h is closer to p than the one with e. In any case, we
obtain a tree T ′ ∈ T (S) whose edge set is contained in the same triangulation;
however, the sequence of triangles visited by h until the last crossing with an
edge in T ′ is now (Δ1, . . . , Δm′) for some m′ < m. Consequently, after at most
m ≤ 2n − 5 empty-triangle rotations, h does not cross any edge of the tree, and
we can recurse on the two subtrees, each of size at most n/2 + 1.

When every subtree contains only two vertices, then all edges are incident
to p, and their union is a star centered at p. The number a(n) of operations
needed to transform T into a star centered at p satisfies the recurrence relation
a(n) ≤ 2a(n/2 + 1) + O(n), which solves to O(n log n). Since any two trees in
T (S) can be transformed into a star centered at p using a(n) operations, we
have fer(n) = O(n log n). �

Transition Operations over Plane Trees 841

x

lo
g n
(y
)/
2

p

r

q

Fig. 3. (a) The schematic image of point set S for n = 25 + 1 = 33 and k = 5, on
a logarithmic scale. The edge pq is horizontal and vertex q = (1, n2k) = (1, 3310) has
maximal y-coordinate. (The logarithmic scale distorts the slopes.)

A simultaneous empty-triangle rotation consists of one or more empty-
triangle rotations that can be performed independently. The empty triangles
involved in such an operation are interior-disjoint, and at most one edge rotates
in every empty triangle. For the simultaneous variant, fser(n), we provide a
linear upper bound and a logarithmic lower bound.

Theorem 3. fser(n) < 8n.

Proof. Revisit the proof of Theorem 2. It takes at most 2n − 5 empty-triangle
rotations to split the initial tree into two subtrees, each of size at most n/2 + 1.
However, the set of triangles involved in the recursive calls are disjoint, and
rotations can be done simultaneously. The number of rotations to obtain a star
is therefore bounded by the recursion a(n) ≤ 2n − 5 + a(n/2 + 1) < 4n. �

Theorem 4. fser(n) = Ω(log n).

Proof. We may assume that n = 2k + 1 for some k ∈ N. We construct a point
set S and two spanning trees T1, T2 ∈ T (S) such that it takes at least k =
log2(n − 1) simultaneous empty-triangle rotations to transform T1 into T2. The
points in S have integer coordinates, and are not in general position, but a
random perturbation by a small ε > 0 would bring S to general position and
preserve all combinatorial properties in our proof.

Our point set is S = {(x, ϕ(x)) : x = 0, . . . , n}, where we define ϕ(x) :
{0, . . . , n} → N0 as follows; refer to Fig. 3. Every integer x ∈ {0, 1, . . . , n} has
a binary representation x =

∑k
i=0 xi2i with xi ∈ {0, 1}. For x = 1, . . . , n − 1,

let j(x) be the smallest index such that xj(x) = 1. For x = 1, . . . , n − 1, let
ϕ(x) = n2(k−j(x)); and let ϕ(0) = ϕ(n) = n0 = 1. This completes the definition
of S. Let T1 and T2, respectively, be a star centered at p = (0, 1) and r =
(1, ϕ(1)) = (1, n2k).

Consider a sequence of simultaneous empty-triangle operations that carry T1

to T2. Each edge of T1 has a trajectory (i.e., a sequence starting with that edge
in which each edge is followed by its replacement), and is eventually transformed
into an edge in T2 incident to q. We trace the trajectory of the edge e = pq, with
q = (n, 1) of T1, and show that it takes at least k operations to transform e into
an edge incident to q.

842 T. L. Nichols et al.

For i = 0, 1, . . . , k−1, denote by Si the set of points in S whose y-coordinate
is at most n2i, that is, Si = {(a, ϕ(a)) ∈ S : ϕ(a) ≤ n2i}. We claim that if an
empty triangle spanned by S has two vertices in Si (i = 0, . . . , k − 1), then the
third vertex must be in Si+1. To prove this claim, we make a few observations
about points in S and the slopes of line segments spanned by S.

By construction, for any two points a, b ∈ Si (i = 0, . . . , k − 1), there is
a point m ∈ Si+1 \ Si, whose x-coordinate is between that of a and b. The
slope of a segment between points a = (xa, ya) and b = (xb, yb) is defined as
slope(ab) = (ya − yb)/(xa − xb). In particular, for any two points a, b ∈ Si,
we have |slope(ab)| ≤ n2i. For a ∈ Si and b ∈ Si+1 \ Si, we have 1

2n2i+1 <
(n2i+2 − n2i)/n < |slope(ab)| < n2i+2. For a ∈ Si and b ∈ S \ Si+1, we have
1
2n2i+3 < (n2i+4 − n2i)/n < |slope(ab)|.

We are now ready to prove our claim. Consider an empty triangle Δ(abc) with
a, b ∈ Si, xa < xb, and c ∈ S \Si. If c
∈ Si+1, then there exists a point m ∈ Si+1

such that xa < xm < xb. As noted above, we have |slope(ab)| < |slope(am)| <
|slope(ac)|, and |slope(ab)| < |slope(bm)| < |slope(bc)|. Consequently, m lies in
the interior of Δ(abc), contrarily to our assumption that this triangle is empty.

It follows that a simultaneous empty-triangle rotation transforms every edge
spanned by Si to an edge spanned by Si+1, for i = 0, . . . , k − 1. In particular,
the edge e = pq is spanned by S0, and the point r is in Sk \ Sk−1. Consequently,
it takes at least k operations to transform edge e to an edge incident to r. �

2.2 Convex Position

A construction in [19] designed for the stronger exchange operation yields the
lower bound � 3n

2 �− 5 for single empty-triangle rotations for point sets in convex
position. Similarly, we can derive an upper bound of f cx

er (n) ≤ 2n − 5 from our
algorithm for edge slides (Theorem 6). In Theorem 5 below, we provide a constant
upper bound for simultaneous empty-triangle rotations.

We define the dual tree of a plane tree T ∈ T (S) for a set S of n ≥ 3 points in
convex position as follows. The edges of T subdivide the convex n-gon conv(S)
into one or more convex cells, which correspond to the nodes of the dual tree.
Two nodes of the dual tree are adjacent if the corresponding cells share an edge.
Note that the dual tree is indeed a tree. Furthermore, the boundary of each cell
contains precisely one edge that is not in T , and this edge is necessarily an edge
of conv(S); we call this edge the hull edge of the cell. The main idea of the proof
of the following theorem, given in the full version, is to rotate edges shared by
cells to hull edges.

Theorem 5. f cx
ser(n) ≤ 4.

3 Edge Slide

For simultaneous edge slides, we may also consider the following, more restricted
variant. Consider a plane spanning tree T on a point set S. Two edge slide oper-
ations that move v1u1 to v1w1 and v2u2 to v2w2, respectively, can be performed

Transition Operations over Plane Trees 843

simultaneously if the triangles Δ(u1v1w1) and Δ(u2v2w2) intersect in at most
one point. All lower bounds in this section hold for the more powerful setting
(in which the edge along we slide can be shared), and the upper bounds apply
to the more restricted setting that does not allow a shared edge.

3.1 General Point Sets

As noted above, Aichholzer and Reinhardt [4] proved that fes(n) = Θ(n2). Little
is known about the simultaneous variant. However, their results immediately
imply fses(n) = O(n2). A lower bound of fses(n) = Ω(n) can also be derived
easily from fes(n) = Ω(n2), as one simultaneous edge slide is not stronger than
�n−1

2 � sequential edge slides, and at most �n−1
2 � edges can slide at once (for

every pair of edges involved in a slide, only one changes).

3.2 Convex Position

For single edge slide operations, the lower bound � 3n
2 � − 5 is trivial, and Theo-

rem 6, building on Lemma1 below (which is proven in the full version), provides
a linear upper bound.

Lemma 1. Given a set S of n ≥ 3 points in convex position and two paths P1

and P2, both of which are paths along edges of conv(S), we can transform P1 to
P2 using n − 2 edge slides.

Theorem 6. f cx
es (n) ≤ 2n − 5.

Proof. We show that any two plane spanning trees T1, T2 ∈ T (S) on a set S
of n ≥ 3 points in convex position can be transformed into a path P with a
sequence of at most n − 3 and n − 2 edge slides, respectively.

Consider the dual tree of T1 and choose a leaf C0 of the dual tree to be the
root. Denote by e0 the hull edge of C0 (i.e., the edge of C0 that is not in T1);
and let P ∈ T (S) be the path formed by the remaining n − 1 edges of conv(S).
If the dual tree has only one node, then T1 = P . Otherwise, let C1 be a child of
C0 in the dual tree and let e1 be the edge shared by C0 and C1. Since C1 is the
convex hull of its vertices, we can apply Lemma 1 to slide e1 to the hull edge of
cell C1. As a result, cells C0 and C1 are merged to one cell. We let this cell be
the new root cell and iterate. Each edge slide increases the size of the root cell
by one, so we reach P after at most n − 3 edge slides.

If edge e0 is absent from T2, we can transform T2 to P as described above
using n − 3 edge slides. However, if e0 is an edge of T2, we apply an edge slide
to replace e0 with some other edge, followed by a sequence of n − 3 edge slides
to obtain P . The total number of operations is at most 2n − 5, as claimed. �

Now, let us consider simultaneous edge slides. In the proof of the following
result, we repeatedly apply a reduction step that “removes” a constant fraction
of the leaves; this idea was originally developed for simultaneous flip operations
in triangulations [8,17].

844 T. L. Nichols et al.

Theorem 7. f cx
ses(n) = Θ(log n).

Proof. For the lower bound, consider two different paths P1 and P2 along the
convex hull of a point set of size n in convex position where the edge uv is in
P2 but not in P1. Since P1 is a path along the convex hull, there is only one cell
C0, which is incident to all n vertices. To transform P1 into P2, one has to slide
edges of P1 until C0 vanishes (i.e., its size drops to 2). The size of C0 decreases
only if an edge of C0 slides along another edge of C0, that is, any size-decreasing
edge slide involves two consecutive edges of C0. Consequently, a simultaneous
edge slide decreases the size of C0 by at most a factor of 2; and so any sequence
of simultaneous edge slides must use at least log2(n/2) = Ω(log n) operations.

For the upper bound, let S be a set of n ≥ 3 points in convex position, let
p ∈ S and T1 ∈ T (S). It is sufficient to show that T1 can be transformed to a
star centered at p using O(log n) simultaneous edge slides.

The outline of the proof is as follows. We transform T1 into a star centered
at p via some intermediate phases where each phase uses O(log n) simultaneous
edge slide operations. The assumption that S is in convex position is crucial for
maintaining the planarity of the intermediate trees.

First, we show how to transform T1 into a spanning tree T2 in which every cell
has O(1) edges. Then, we transform T2 into a tree T3 of height O(log n). Finally,
T3 is transformed into a star centered at p. All these steps require O(log n)
simultaneous edge slides.

Constant-size cells. Pick an arbitrary convex hull edge pq and define the cell
incident to pq to be the root of the dual tree. The edge that separates a cell
from its parent is called the parent edge. The hull edge and the parent edge
split the boundary of a cell into two paths. Note that these paths are convex.
A simultaneous edge slide can decrease a convex path of k ≥ 2 edges to a chain
of �k/2� edges by sliding every other edge along the previous edge along the
path. Note that these slides can be performed simultaneously in a cell C; if an
edge e involved in a slide is incident to another cell C ′, then e is the parent
edge of C ′ and therefore there is no slide in C ′ that involves e. If the same
operation is performed on the parent cell, one new edge may also be inserted
into the cell. After O(log n) simultaneous edge slides (each modifying all convex
paths of length two or higher), we obtain a tree T2 whose cells each have at most
six edges. (If a cell has seven or more edges, then the two paths loose two or
more edges, and the cell may gain only one edge from its parent.) Let nc be the
number of nodes of the dual tree of T2. The number of incident cell-edge pairs
over all edges of conv(S) and T2 is n+2(nc −1) and this number is at most 6nc.
Therefore, nc ≥ (n − 2)/4.

Creating good leaves. A leaf of a spanning tree T (or subtree) is called good
if the edge incident to it is an edge of the convex hull of the vertices of T . Note
that if we remove a good leaf from T to obtain a tree T ′, then edge slides on the
resulting tree T ′ can also be performed in the entire tree T (that is, the edge
of a good leaf does not obstruct any edge slide in T ′). The main idea of trans-
forming T2 to a tree T3 of height O(log n) is to repeatedly create and “remove”

Transition Operations over Plane Trees 845

Fig. 4. Small cells of degree 2 are merged by one slide only involving the parent edge.

Fig. 5. For cells with a single child and a single grandchild such that the cell and its
child have at least five vertices, we can perform a constant number of edge slides to
obtain a good leaf resulting in one (left) or two (right) new cells.

a constant fraction of good leaves (meaning that these leaves are disregarded in
later iterations).

Let T2 be a spanning tree with cells of size at most six. Let n1 +n2 +n3 = nc

denote the number of nodes of the dual tree of degree 1, 2, and more, respectively.
Note that n1 ≥ n3. We show that we can always remove a constant fraction of
the good leaves of T2 by considering the leaves and the degree 2 vertices of the
dual tree.

First we perform the following “clean-up.” Consider first the nodes with a
single child in the dual tree that are at even distance from the root. If the
corresponding cell and the cell of its child jointly have at most four vertices, we
transform them to a single cell with a constant number of slides (see Fig. 4).
Then, we do the analogous transformation for the cells at odd distance from the
root in the dual tree (if they were not already altered by the previous process).

After this process, consider any cell C with a single child C ′ and a single
grandchild C ′′. Together, the cells C and C ′ have at least five vertices. The
parent edge of C and the parent edge of C ′′ are incident to at most four vertices.
Hence, we can slide the edges of C and C ′ such that there is a fifth vertex that
becomes a good leaf. Depending on the number of edges incident to C and C ′,
the cells are transformed to one or two new cells (to maintain the invariant that
each cell has at most six edges). See Fig. 5.

Let us count the number of good leaves we can obtain with these operations.
For each of the n1 leaves of the dual tree, we obtain at least one good leaf. Then,
we create at least one good leaf for every disjoint pair of adjacent nodes of degree
2 in the dual tree. There can be at most n1+n3−1 nodes of degree 2 that cannot
be paired up with one of its neighbors. (Every maximal chain of nodes of degree
2 can be considered a subdivision of a single edge in a tree of n1 + n3 vertices.)
From the remaining (paired) nodes, we extract at least (n2−n1−n3+1)/2 good
leaves. Suppose n1 < nc/6. Then, as n1 ≥ n3, we have n2 > 4nc/6 and thus
(n2 − n1 − n3 + 1)/2 ≥ nc/6. Hence, after transforming the cells of degree 2, we
have at least nc/6 ≥ (n − 2)/24 good leaves (using the bound nc ≥ (n − 2)/4
obtained above).

846 T. L. Nichols et al.

p p p

Fig. 6. One round of sliding good leaves of a subtree into a star centered at p.

We can now summarize the steps to transform T2 to T3 using O(log n) simul-
taneous edge slide operations. Starting from T2, we repeatedly create good leaves
and remove them. Denote by Li the set of good leaves removed in iteration i.
Each iteration removes at least a 1

24 -fraction of the vertices. After r ∈ O(log n)
iterations, we are left with a single vertex p. The tree T3 ∈ T (S) is the tree
obtained by these “removal” operations. In each iteration, the edges incident to
good leaves are edges of the convex hull of the current subtree, consequently at
most two such edges are incident to the same vertex in the subtree.

Creating a star. The one-vertex tree on p is a star. We re-insert the leaves
in Li for i = r, r − 1, . . . , 1 (in reverse order) in r rounds, and transform the
subtree into a star centered at p. In round j, we re-add the edges to the vertices
in Lr+1−j . They are each adjacent to the current star centered at p, and each
vertex of the current star is incident to at most two edges in Lr+1−j . Using
two simultaneous edge slides, all the edges in Lr+1−j become incident to p. See
Fig. 6. After r rounds, we obtain the star centered at p. As noted above, edge
slides performed in a subtree can also be performed in the whole tree, as the
edges incident to good leaves do not obstruct any edge slides. This completes
the proof. �

4 Conclusions

Previous work introduced five elementary operations on the space of plane span-
ning trees T (S) on a point set S in Euclidean space. All five operations are
known to define a connected transition graph. This is the first comprehensive
analysis of the diameters of these graphs. Obvious open problems are to close
the gaps between the lower and upper bounds in Tables 1 and 2. One might also
consider new variations. For example, we obtain a new variant of empty-triangle
rotation if we require Δ(pqr) to be empty of vertices (but not necessarily edges),
or a new variant of edge slide when not requiring Δ(pqr) to be empty. These
variations have not been considered and may lead to new geometric insight.

Transition graphs on other common plane geometric graphs have been consid-
ered in the literature, but they do not allow for such a rich variety of operations.
For the space of noncrossing matchings on S, a compatible exchange operation

Transition Operations over Plane Trees 847

has been defined, but the transition graph is disconnected even if S is in con-
vex position [1]; it is known that the transition graph has no isolated vertices
[22]. Connectivity is known for bipartite geometric matchings, with a tight linear
diameter bound [6]. For noncrossing Hamiltonian cycles (a.k.a. polygonizations)
it is a longstanding open problem whether the transition graph of simultaneous
compatible exchange is connected.

Transition graphs of edge flips in geometric triangulations of S have been
studied extensively. Recently, Bose et al. [10] considered the orbits of individual
edges. Lubiw et al. [25] prove that a flip sequence of length O(n7) can carry
any edge-labeled triangulation to any other (by showing that the 2-skeleton
of the flip complex is contractible). Analogous problems for edge-labeled plane
spanning trees (under all five elementary operations) remain open.

While the upper bounds on the transition graph diameter are constructive,
the problem of determining the transformation distance between two given trees
seems to be still open (or is trivial) in all settings we discussed. Similar problems
have been studied for triangulations: it is NP-hard to determine the flip distance
of two triangulations of a point set [26,28], but the problem is fixed-parameter
tractable in their distance [23]. Even though the transition graph has a small
diameter for simultaneous operations, the degree may be exponential, and the
distance between two trees thus does not seem to be a suitable parameter for the
complexity of the problem. For convex position, the complexity of the related
problem on triangulations (already posed in [30]) is still open.

Acknowledgment. Key ideas for our results on simultaneous edge slides were dis-
cussed at the GWOP 2017 workshop in Pochtenalp, Switzerland. We thank all partic-
ipants for the constructive atmosphere. Research by Nichols and Tóth was partially
supported by the NSF awards CCF-1422311 and CCF-1423615. Pilz is supported by a
Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

References

1. Aichholzer, O., Asinowski, A., Miltzow, T.: Disjoint compatibility graph of non-
crossing matchings of points in convex position. Electron. J. Comb. 22, P1 (2015)

2. Aichholzer, O., Aurenhammer, F., Huemer, C., Krasser, H.: Transforming spanning
trees and pseudo-triangulations. Inf. Process. Lett. 97(1), 19–22 (2006)

3. Aichholzer, O., Aurenhammer, F., Hurtado, F.: Sequences of spanning trees and a
fixed tree theorem. Comput. Geom. 21(1–2), 3–20 (2002)

4. Aichholzer, O., Reinhardt, K.: A quadratic distance bound on sliding between
crossing-free spanning trees. Comput. Geom. 37(3), 155–161 (2007)

5. Akl, S.G., Islam, M.K., Meijer, H.: On planar path transformation. Inf. Process.
Lett. 104(2), 59–64 (2007)

6. Aloupis, G., Barba, L., Langerman, S., Souvaine, D.L.: Bichromatic compatible
matchings. Comput. Geom. 48(8), 622–633 (2015)

7. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–
3), 21–46 (1996)

8. Bose, P., Czyzowicz, J., Gao, Z., Morin, P., Wood, D.R.: Simultaneous diagonal
flips in plane triangulations. J. Graph Theory 54(4), 307–330 (2007)

848 T. L. Nichols et al.

9. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)
10. Bose, P., Lubiw, A., Pathak, V., Verdonschot, S.: Flipping edge-labelled triangu-

lations. Comput. Geom. (2017, in Press)
11. Buchin, K., Razen, A., Uno, T., Wagner, U.: Transforming spanning trees: a lower

bound. Comput. Geom. 42(8), 724–730 (2009)
12. Cano, J., Dı́az-Báñez, J.M., Huemer, C., Urrutia, J.: The edge rotation graph.

Graphs Comb. 29(5), 1–13 (2013)
13. Cayley, A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)
14. Chang, J.M., Wu, R.Y.: On the diameter of geometric path graphs of points in

convex position. Inf. Process. Lett. 109(8), 409–413 (2009)
15. Faudree, R., Schelp, R., Lesniak, L., Gyárfás, A., Lehel, J.: On the rotation distance

of graphs. Discret. Math. 126(1), 121–135 (1994)
16. Chartrand, G., Saba, F., Zou, H.B.: Edge rotations and distance between graphs.

Cas. Pest. Math. 110, 87–91 (1985)
17. Galtier, J., Hurtado, F., Noy, M., Pérennes, S., Urrutia, J.: Simultaneous edge

flipping in triangulations. Int. J. Comput. Geom. Appl. 13(2), 113–134 (2003)
18. Goddard, W., Swart, H.C.: Distances between graphs under edge operations. Dis-

cret. Math. 161(1), 121–132 (1996)
19. Hernando, M., Hurtado, F., Márquez, A., Mora, M., Noy, M.: Geometric tree

graphs of points in convex position. Discret. Appl. Math. 93(1), 51–66 (1999)
20. Hoffmann, M., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting plane

graphs: flippability and its applications. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 524–535. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22300-6 44

21. Huemer, C., de Mier, A.: Lower bounds on the maximum number of non-crossing
acyclic graphs. Europ. J. Comb. 48, 48–62 (2015)

22. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings.
Discret. Comput. Geom. 49, 89–131 (2013)

23. Kanj, I.A., Sedgwick, E., Xia, G.: Computing the flip distance between triangula-
tions. Discret. Comput. Geom. 58(2), 313–344 (2017)

24. Keller, C., Perles, M.A.: Reconstruction of the geometric structure of a set of points
in the plane from its geometric tree graph. Discret. Comput. Geom. 55(3), 610–637
(2016)

25. Lubiw, A., Masárová, Z., Wagner, U.: A proof of the orbit conjecture for flipping
edge-labelled triangulations. In: Proceedings of the 33rd Symposium on Compu-
tational Geometry (SoCG 2017). LIPIcs, vol. 77, pp. 49:1–49:15. Schloss Dagstuhl
(2017)

26. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom. 49, 17–23 (2015)

27. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1993)
28. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard.

Comput. Geom. 47(5), 589–604 (2014)
29. Pournin, L.: A combinatorial method to find sharp lower bounds on flip distances.

In: Proceedings of the 25th International Conference on Formal Power Series and
Algebraic Combinatorics (FPSAC 2013), pp. 1–12 (2013)

30. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and
hyperbolic geometry. J. Am. Math. Soc. 1, 647–681 (1988)

31. Wu, R.Y., Chang, J.M., Pai, K.J., Wang, Y.L.: Amortized efficiency of generating
planar paths in convex position. Theor. Comput. Sci. 412(35), 4504–4512 (2011)

https://doi.org/10.1007/978-3-642-22300-6_44
https://doi.org/10.1007/978-3-642-22300-6_44

Analysis of the Continued Logarithm
Algorithm

Pablo Rotondo1,2,3, Brigitte Vallée2(B), and Alfredo Viola3

1 IRIF, CNRS and Université Paris Diderot, Paris, France
rotondo@irif.fr

2 GREYC, CNRS and Université de Caen, Caen, France
brigitte.vallee@unicaen.fr

3 Universidad de la República, Montevideo, Uruguay
viola@fing.edu.uy

Abstract. The Continued Logarithm Algorithm –CL for short– intro-
duced by Gosper in 1978 computes the gcd of two integers; it seems very
efficient, as it only performs shifts and subtractions. Shallit has studied
its worst-case complexity in 2016 and showed it to be linear. We here
perform the average-case analysis of the algorithm: we study its main
parameters (number of iterations, total number of shifts) and obtain pre-
cise asymptotics for their mean values. Our “dynamical” analysis involves
the dynamical system underlying the algorithm, that produces continued
fraction expansions whose quotients are powers of 2. Even though this
CL system has already been studied by Chan (around 2005), the pres-
ence of powers of 2 in the quotients ingrains into the central parameters a
dyadic flavour that cannot be grasped solely by studying the CL system.
We thus introduce a dyadic component and deal with a two-component
system. With this new mixed system at hand, we then provide a com-
plete average-case analysis of the CL algorithm, with explicit constants
(Thanks to the Dyna3S ANR Project and the AleaEnAmsud AmSud-STIC
Project.).

1 Introduction

In an unpublished manuscript [6], Gosper introduced the continued logarithms,
a mutation of the classical continued fractions. He writes “The primary advan-
tage is the conveniently small information parcel. The restriction to integers of
regular continued fractions makes them unsuitable for very large and very small
numbers. The continued fraction for Avogadro’s number, for example, cannot
even be determined to one term, since its integer part contains 23 digits, only
6 of which are known. (...) By contrast, the continued logarithm of Avogadro’s
number begins with its binary order of magnitude, and only then begins the
description equivalent to the leading digits – a sort of recursive version of scien-
tific notation”.

The idea of Gosper gives rise to an algorithm for computing gcd’s, described
by Shallit in [8]. This algorithm has two advantages: first, it can be calculated
starting from the most representative bits, and uses very simple operations (sub-
tractions and shifts); it does not employ divisions. Second, as the quotients which
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 849–863, 2018.
https://doi.org/10.1007/978-3-319-77404-6_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_61&domain=pdf

850 P. Rotondo et al.

intervene in the associated continued fraction are powers of two 2a, we can store
each of them with log2 a bits. Then, the algorithm seems to be of small com-
plexity, both in terms of computation and storage.

Shallit [8] performs the worst-case analysis of the algorithm, and studies the
number of steps K(p, q), and the total number of shifts S(p, q) that are performed
on an integer input (p, q) with p < q: he proves the inequalities

K(p, q) ≤ 2 log2 q + 2, S(p, q) ≤ (2 log2 q + 2) log2 q, (1)

and exhibits instances, namely the family (2n−1, 1), which show that the previ-
ous bounds are nearly optimal, K(1, 2n−1) = 2n−2, S(1, 2n−1) = n(n−1)/2+1.

In a personal communication, Shallit proposed us to perform the average-case
analysis of the algorithm. In this paper, we answer his question. We consider the
set ΩN which gathers the integer pairs (p, q) with 0 ≤ p ≤ q ≤ N , endowed
with the uniform probability, and we study the mean values EN [K] and EN [S]
as N → ∞. We prove that these mean values are asymptotically linear in the
size log N , and exhibit their precise asymptotic behaviour for N → ∞,

EN [K] ∼ 2
H

log N, EN [S] ∼ log 3 − log 2
2 log 2−log 3

EN [K].

The constant H is related to the entropy of an associated dynamical system and

H =
1

2 log 2−log 3

⎡
⎣π2

6
+ 2

∑
k≥1

(−1)k

k2 2k
− (log 2)(3 log 3−4 log 2)

⎤
⎦ . (2)

This entails numerical estimates (validated by experiments) for the mean
values

EN [K] ∼ 1.49283 log N, EN [S] ∼ 1.40942 log N.

Then, from (1), the mean number of divisions is about half the maximum.
Our initial idea was to perform a dynamical analysis along the lines described

in [10]. The CL algorithm is defined as a succession of steps, each consisting of a
pseudo-division which transforms an integer pair into a new one. This transfor-
mation may be read first on the associated rationals and gives rise to a mapping
T that is further extended to the real unit interval I. This smoothly yields a
dynamical system (I, T), the CL system, already well studied, particularly by
Chan [3] and Borwein [1]. The system has an invariant density ψ (with an explicit
expression described in (8)) and is ergodic. Thus we expected this dynamic anal-
ysis to follow general principles described in [10].

However, the analysis of the algorithm is not so straightforward. The binary
shifts, which make the algorithm so efficient, cause many problems in the analy-
sis. Even on a pair of coprime integers (p, q), the algorithm creates intermediate
pairs (qi+1, qi) which are no longer generally coprime, as their gcd is a non-trivial
power of 2. These extra gcd’s are central in the analysis of the algorithm, as they
have an influence on the evolution of the sizes of the pairs (qi+1, qi) which may
grow due these extra factors. As these extra factors may only be powers of 2,

Analysis of the Continued Logarithm Algorithm 851

they are easily expressed with the dyadic absolute value on Q, at least when
the input is rational. However, when extending the algorithm into a dynamical
system on the unit interval, we lose track of these factors.

The (natural) idea is thus to add to the usual CL dynamical system (on the
unit interval I) a new component in the dyadic field Q2. The dyadic component
is just added here to deal with the extra dyadic factors, as a sort of accumulator,
but it is the former real component that dictates the evolution of the system. As
the initial CL system has nice properties, the mixed system inherits this good
behaviour. In particular, the transfer operator of the mixed system presents a
dominant eigenvalue, and the dynamical analysis may be performed successfully.
The constant H in Eq. (2) is actually the entropy of this extended system.

After this extension, the analysis follows classical steps, with methodology
mixing tools from analytic combinatorics (generating functions, here of Dirichlet
type), Tauberian theorems (relating the singularities of these generating func-
tions to the asymptotics of their coefficients), functional analysis (which transfers
the geometry of the dynamical system into spectral properties of the transfer
operator).

Plan of the paper and notation. The paper is structured into three sec-
tions. Section 2 introduces the algorithm and its associated dynamical system,
as well as the probabilistic model, the costs of interest and their generating func-
tions. Then, Sect. 3 defines the extended dynamical system, allowing us to work
with dyadic costs; it explains how the corresponding transfer operator provides
alternative expressions for the generating functions. Finally, Sect. 4 describes the
properties of the transfer operator, namely its dominant spectral properties on
a convenient functional space. With Tauberian theorem, it provides the final
asymptotic estimates for the mean values of the main costs of interest.

For an integer q, δ(q) denotes the dyadic valuation, i.e., is the greatest integer
k for which 2k divides q. The dyadic norm | · |2 is defined on Q with the equality
|a/b|2 := 2δ(b)−δ(a). The dyadic field Q2 is the completion of Q for this norm.
See [7] for more details about the dyadic field Q2.

2 The CL Algorithm and Its Dynamical System

We kick off this section with a precise description of the CL algorithm, followed
by its extension to the whole of the unit interval I, giving rise to a dynamical
system, called the CL system, whose inverse branches capture all of our costs
of interest. Then we recall the already known features of the CL system and we
present the probabilistic model, with its generating functions.

Description of the algorithm. The algorithm, described by Shallit in [8], is
a sequence of (pseudo)–divisions: each division associates to a pair (p, q)1 with
p < q a new pair (r, p′) (where r is the “remainder”) defined as follows

q = 2ap + r, p′ = 2ap, with a = a(p, q) := max{k ≥ 0 | 2kp ≤ q}.

1 Our notations are not the same as in the paper of Shallit as we reverse the roles of
p and q.

852 P. Rotondo et al.

This transformation rewrites the old pair (p, q) in terms of the new one
(r, 2ap) in matrix form,

(
p
q

)
= Na

(
r

2ap

)
, with Na =

(
0 2−a

1 1

)
= 2−a Ma, Ma =

(
0 1
2a 2a

)
. (3)

The CL algorithm begins with the input (p, q) with p < q. It lets (q1, q0) :=
(p, q), then performs a sequence of divisions

(
qi+1, qi

)T = Nai+1

(
qi+2, 2ai+1 qi+1

)T
,

and stops after k = K(p, q) steps on a pair of the form (0, 2akqk). The complete
execution of the algorithm uses the set of matrices Na defined in (3), and writes
the input as (

p, q
)T = Na1 · Na2 · · · Nak

(
0, 2akqk

)T
.

The rational input p/q is then written as a continued fraction according
to the LFTs (linear fractional transformations) ha associated with matrices Na

or Ma,

p

q
=

2−a1

1 +
2−a2

1 +
2−a3

1 +
. . .

2−ak

1

= ha1 ◦ ha2 ◦ · · · ◦ hak
(0), with ha : x �→ 2−a

1 + x
. (4)

Moreover, it is possible to choose the last exponent ak to be 0. (and the last
quotient to be 1). This is a gcd algorithm: as qk is equal to gcd(p, q) up to a
power of 2, the CL algorithm determines the odd part of gcd(p, q) whereas the
even part is directly determined by the dyadic valuations of p and q.

Shallit [8] proves that this algorithm indeed terminates and characterizes the
worst-case complexity of the algorithm. Figure 1 describes the execution of the
algorithm on the pair (31, 75).

Dynamical system. The relations

(r, 2ap)T = N−1
a (p, q)T , (p, q)T = Na(r, 2ap)T ,

are first transformed into relations on the associated rationals p/q, r/(2ap) via
the LFT’s Ta, ha associated to matrices N−1

a , Na,

Ta(x) :=
1

2ax
− 1, ha(x) =

1
2a(1 + x)

, a ≥ 0. (5)

They are then extended to the reals of the unit interval I := [0, 1]. This
gives rise to a dynamical system (I, T), denoted CL in the sequel, defined on
the unit interval I, with fundamental intervals Ia := [2−a−1, 2−a], the surjective
branches Ta : Ia → I, and their inverses ha : I → Ia.

Analysis of the Continued Logarithm Algorithm 853

Fig. 1. Execution for the input (31, 75). Here ĝi = gcd(2aiqi, qi+1). The dyadic val-
uation δ(ĝi) seems to linearly increase with i, with δ(ĝi) ∼ δ(qi+1) ∼ i/2 (i → ∞).

The CL system (I, T) is displayed on the left of the figure below, along with
the shift S : I → I which gives rise to the CL system by induction on the first
branch. The map S is a mix of the Binary and Farey maps, as its first branch
comes from the Binary system, and the second one from the Farey system. On
the right, the usual Euclid dynamical system (defined from the Gauss map) is
derived from the Farey shift by induction on the first branch.

With each k-uple a := 〈a1, a2, . . . , ak〉 ∈ N
k we associate the matrix Ma :=

Ma1 · · · Mak
and the LFT ha := ha1 ◦ha2 ◦· · ·◦hak

. Then the set H of the inverse
branches, and the set Hk of the inverse branches of T k (of depth k) are

H := {ha | a ≥ 0}, Hk := {ha | a ∈ N
k}.

As the branches Ta are surjective, the inverse branches are defined on I and
the images ha(I) for a ≥ 0 form a topological partition of I. This will be true
at any depth, and the intervals ha(I), called fundamental intervals of depth k,
form a topological partition for a ∈ N

k.

Properties of the CL system. The Perron Frobenius operator

H[f](x) :=
∑
h∈H

|h′(x)| f(h(x)) =
(

1
1 + x

)2 ∑
a≥0

2−a f

(
2−a

1 + x

)
. (6)

describes the evolution of densities: If f is the initial density, H[f] is the density
after one iteration of the system (I, T). The invariant density ψ is a fixed point
for H and satisfies the functional equation

ψ(x) =
(

1
1 + x

)2 ∑
a≥0

2−a ψ

(
2−a

1 + x

)
. (7)

854 P. Rotondo et al.

Chan [3] obtains an explicit form for ψ

ψ(x) =
1

log(4/3)
1

(x + 1)(x + 2)
. (8)

He also proves that the system is ergodic with respect to ψ, and entropic.
However, he does not provide an explicit expression for the entropy. We obtain
here such an expression, with a precise study of the transfer operator of the
system.

We introduce two (complex) parameters t, v in (6), and deal with a pertur-
bation of the operator H, defined by

Ht,v[f](x) :=
∑
h∈H

|h′(x)|t d(h)v f(h(x)) =
(

1
1 + x

)2t∑
a≥0

2 a(v−t)f

(
2−a

1 + x

)
. (9)

Such an operator Ht,v is called a transfer operator. When (t, v) satisfies
�(t − v) > 0, we prove the following: the operator Ht,v acts nicely on the space
C1(I) endowed with the norm | · |1,1, defined by |f |1,1 := |f |0 + |f ′|0, where
| · |0 denotes the sup norm. In particular, it has a dominant eigenvalue λ(t, v)
separated from the remainder of the spectrum by a spectral gap, for (t, v) close
to (1, 0). The Taylor expansion of λ(t, v) near (1, 0)

λ(t, v) ≈ 1 − A(t − 1) + Dv

involves the two constants A = −∂λ/∂t(1, 1, 0),D = ∂λ/∂v(1, 1, 0) , that are
expressed as mean values with respect to the invariant density ψ,

A = E − D, E = Eψ[2| log x|], D = (log 2)Eψ[a], (10)

(here, the function a associates with x the integer defined with the Iverson
bracket a(x) := a · [[x ∈ ha(I)]]. The constants A is the entropy of the system,
and E,D admit explicit expressions

E =
1

log(4/3)

⎡
⎣π2

6
+ 2

∑
k≥1

(−1)k

k2 2k

⎤
⎦ , D = (log 2)

log(3/2)
log(4/3)

. (11)

Then, with (10) and (11), there is an explicit value for the entropy A, and

A
.= 1.62352 . . . , D

.= 0.97693 . . . , E
.= 2.60045

Main costs associated to a truncated expansion. Each real number of the
unit interval admits an infinite continued fraction expansion derived from the
dynamical system, which we call its CLCF expansion. When truncated at a finite
depth, its expansion becomes finite, as in (4), and defines a LFT h := ha . This
expansion gives rise to a rational p/q, (assumed to be irreducible) which is thus
written as p/q = ha(0).

Analysis of the Continued Logarithm Algorithm 855

On the other hand, the k-uple a defines a matrix Ma and an integer
pair (P,Q), called the continuant pair, defined by (P,Q)T := Ma(0, 1)T . The
equality P/Q = p/q, holds, but, as the integers P and Q are not necessar-
ily coprime, the pair (P,Q) does not coincide with the pair (p, q). The integer
R(Q) := Q/ gcd(P,Q), called the reduced continuant, is an important param-
eter that actually dictates the quality of the rational approximation given by
the truncation of the CLCF. We will see that it also plays a central role in the
analysis of the CL algorithm. As gcd(P,Q) divides |det(Ma)| that is a power of
two, it is itself a power of two. It then proves fundamental to deal with dyadic
tools.

The main interesting costs associated with a finite expansion, as in (4), are
defined via the LFT h and mainly involve the continuant pair (P,Q) together
with the absolute value of the determinant of the LFT h, denoted as d(h). The
next result describes these costs and provides alternative expressions.

Proposition 1. Consider the function G2 : Q2 → R
+ (called the gcd map)

equal to G2(y) = min(1, |y|−2
2), namely

G2(y) = 1 for |y|2 ≤ 1, G2(y) = |y|−2
2 for |y|2 > 1. (12)

The main costs associated with the CLCF expansion of a rational h(0)

Q, g(P,Q) := gcd(P,Q), R(P,Q) = Q/gcd(P,Q), |Q|2.

are all expressed in terms of the quadruple (|h′(0)|, |h′(0)|2, d(h), G2[h(0)] as

Q−2 = |h′(0)|/d(h), |Q|−2
2 = d(h) |h′(0)|2,

R−2(Q) = |h′(0)| |h′(0)|2 G2[h(0)], g2(P,Q) = d(h) |h′(0)|2 G2[h(0)].

Proof. One has (by definition)

P/Q = h(0), Q−2 = |h′(0)|/d(h), r(Q)−2 = g2(P,Q)/Q2.

As g(P,Q) is a power of 2, and using the function G2 defined in (12), one has

g2(P,Q) = min(|P |2, |Q|2)−2 = |Q|−2
2 min(1, |P/Q|−2

2) = |Q|−2
2 G2(P/Q).

We conclude with the equalities: |Q|−2
2 = |h′(0)|2/|d(h)|2, d(h) · |d(h)|2 = 1.

Any cost C of Proposition 1 admits an expression of the form

|h′(0)|t |h′(0)|u2 d(h)v G2[h(0]z.

The quadruple (t, u, v, z) associated with the cost C is denoted as γC . More-
over, as these costs C are expected to be of exponential growth with respect
to the depth of the CF, we will work with their logarithms c = log C. Figure 2
summarizes the result.

856 P. Rotondo et al.

Cost C c = logC Quadruple γC Constant M(c) Numerical value of M(c)

d(h) σ (0, 0, 1, 0) D
.= 0.97693 . . .

Q2 q (−1, 0, 1, 0) A + D
.= 2.60045 . . .

g2(P, Q) � (0, 1, 1, 1) B + D
.= 1.26071 . . .

R2(P, Q) r (−1,−1, 0,−1) A − B
.= 1.33973 . . .

|Q|−2
2 q2 (0, 1, 1, 0) B + D

.= 1.26071 . . .

Fig. 2. Main costs of interest, with their quadruple, and the constants which intervene
in the analysis of their mean values. (see Theorem 1).

Generating functions. We deal with sets of coprime2 integer pairs

Ω := {(p, q) | 0 < p < q, gcd(p, q) = 1}, ΩN := Ω ∩ {(p, q) | q ≤ N}.

The set ΩN is endowed with the uniform measure, and we wish to study
the mean values EN [c] of parameters c on ΩN . We focus on parameters which
describe the execution of the algorithm and are “read” from the CF(p/q) built
by the algorithm as in (4). They are defined in Proposition 1 and depend on the
continuant pair (P,Q); as already explained, the reduced continuant R(P,Q)
plays a fundamental role here.

We deal with analytic combinatorics methodology and work with (Dirichlet)
generating functions (dgf in short). Here is the plain Dirichlet generating function

S(s) :=
∑

(p,q)∈Ω

1
q2s

=
ζ(2s − 1)

ζ(2s)
. (13)

There are also two generating functions that are associated with a cost C : Ω →
R

+ (and its logarithm c), namely the bivariate dgf and the cumulative dgf,

SC(s, w) :=
∑

(p,q)∈Ω

ewc(p,q)

q2s
, ŜC(s) :=

∑
(p,q)∈Ω

c(p, q)
q2s

=
∂

∂w
SC(s, w)

∣∣∣∣
w=0

. (14)

The expectation EN [c] is now expressed as a ratio which involves the sums
ΦN (S), ΦN (ŜC) of the first N coefficients of the Dirichlet series S(s) and ŜC(s),

EN [c] = ΦN [ŜC]/ΦN [S] . (15)

From principles of Analytic Combinatorics, we know that the dominant sin-
gularity of a dgf (here its singularity of largest real part) provides precise infor-
mation (via notably its position and its nature) about the asymptotics of its
coefficients, here closely related to the mean value EN [c] via Eq. (15). Here, in the

2 This restriction can be easily removed and our analysis extends to the set of all
integer pairs.

Analysis of the Continued Logarithm Algorithm 857

Dirichlet framework, this transfer from the analytic behaviour of the dgf to the
asymptotics of its coefficients is provided by Delange’s Tauberian Theorem [5].

We now describe an alternative expression of these series, from which it is
possible to obtain information regarding the dominant singularity, which will be
transfered to the asymptotics of coefficients.

Proposition 2. The Dirichlet generating S(s) and its bivariate version
SC(s, w) relative to a cost C : Ω → R, admit alternative expressions3

S(s) = SC(s, 0), SC(s, w) =
∑

h∈H�·J
ewC(h) |h′(0)|s |h′(0)|s2 Gs

2 ◦ h(0).

For any cost C described in Fig. 2, the general term of SC(s, w) is of the form

|h′(0)|t |h′(0)|u2 d(h)v Gz
2 ◦ h(0),

and involves a quadruple of exponents (t, u, v, z), denoted as γC(s, w), that is
expressed with the quadruple γC defined in Fig. 2 as

γC(s, w) = s(1, 1, 0, 1) + w γC . (16)

Proof. By definition, the denominator q equals R(P,Q). With Fig. 2, the quadru-
ple relative to q−2s is then s(1, 1, 0, 1), whereas the quadruple relative to
ewc = Cw is just wγC .

We have thus described the general framework of our paper. We now look
for an alternative form for the generating functions: in dynamical analysis, one
expresses the dgf in terms of the transfer operator of the dynamical system which
underlies the algorithm. Here, it is not possible to obtain such an alternative
expressions if we stay in the real “world”. This is why we will add a compo-
nent to the CL system which allows us to express parameters with a dyadic
flavour. It will be possible to express the dgf’s in term of a (quasi-inverse) of
an (extended) transfer operator, and relate their dominant singularity to the
dominant eigenvalue of this extended transfer operator.

We then obtain our main result, precisely stated in Theorem 1, at the end of
the paper: we will prove that the mean values EN [log C] associated with our costs
of interest are all of order Θ(log N), and satisfy precise asymptotics that involve
three constants A,B,D: the constants D and A come from the real word, and
have been previously defined in (11) and (10), but there arises a new constant
B that comes from the dyadic word.

3 The Extended Dynamical System

In this section, we extend the CL dynamical system, adding a new component to
study the dyadic nature of our costs. We then introduce transfer operators, and
express the generating functions in terms of the quasi-inverses of the transfer
operators.
3 We recall that the last exponent is 0 by convention, and the last LFT is thus J = h0.

858 P. Rotondo et al.

Extension of the dynamical system. We will work with a two-component
dynamical system: its first component is the initial CL system, to which we add
a second (new) component which is used to “follow” the evolution of dyadic
phenomena during the execution of the first component.

We consider the set I := I × Q2. We define a new shift T : I → I from the
characteristics of the old shift T defined in (5). As each branch Ta, or its inverse
ha, is a LFT with rational coefficients, it is well-defined on Q2; it is moreover a
bijection from Q2 ∪ {∞} to Q2 ∪ {∞}. Then, each branch T a of the new shift T
is defined via the equality T a(x, y) := (Ta(x), Ta(y)) on the fundamental domain
Ia := Ia × Q2, and the shift T a is a bijection from Ia to I := I × Q2 whose
inverse branch ha : (x, y) �→ (ha(x), ha(y)) is a bijection from I to Ia.

Measures. We consider the three domains

B := Q2 ∩ {|y|2 < 1}, U := Q2 ∩ {|y|2 = 1}, C := Q2 ∩ {|y|2 > 1}.

There exists a Haar measure ν0 on Q2 which is finite on each compact of Q2,
and can be normalized with ν0(B) = ν0(U) = 1/3 (see [7]). We will deal with
the measure ν with density G2 wrt to ν0, for which ν(C) = 1/3. The measure
ν[2kU] equals (1/3)2−|k| for any k ∈ Z and ν is a probability measure on Q2.
On I, we deal with the probability measure ρ := μ × ν where μ is the Lebesgue
measure on I and ν is defined on Q2 as previously.

For integrals which involve a Haar measure, there is a change of variables
formula4. As ν0 is a Haar measure, and dν = G2 dν0, this leads to the following
change of variables formula, for any F ∈ L1(Q2, ν),

∫

Q2

|h′(y)|2 F (h(y))
[
G2(h(y))

G2(y)

]
dν(y) =

∫

Q2

F (y) dν(y). (17)

Density transformer and transfer operator. We now consider the operator
H defined as a “density transformer” as follows: with a function F ∈ L1(I, ρ),
it associates a new function defined by

H [F](x, y) :=
∑
h∈H

|h′(x)| |h′(y)|2 F (h(x), h(y))
[
G2(h(y))

G2(y)

]
.

When F is a density in L1(I, ρ), then H[F] is indeed the new density on I
after one iteration of the shift T . This just follows from the change of variables
formula (17) applied to each inverse branch h ∈ H.

Proposition 2 leads us to a new operator that depends on a quadruple
(t, u, v, z),

Ht,u,v,z[F](x, y) :=
∑
h∈H

|h′(x)|t |h′(y)|u2 d(h)vF (h(x), h(y))
[
G2(h(y))

G2(y)

]z

. (18)

4 This general result can be found for instance in Bourbaki [2], Chap. 10, p. 36.

Analysis of the Continued Logarithm Algorithm 859

We will focus on costs described in Fig. 2: we thus deal with operators asso-
ciated with quadruples γC(s, w) defined in Proposition 2, and in particular with
the quadruple (s, s, 0, s), and its associated operator Hs := Hs,s,0,s.

Alternative expressions of the Dirichlet generating functions. We start
with the expressions of Proposition 1, consider the three types of dgf defined in
(13) and (14), use the equality G2(0) = 1, and consider the operator Js relative
to the branch J used in the last step. For the plain dgf in (13), we obtain

S(s) =
∑

h∈H�·J
|h′(0)|s |h′(0)|s2 Gs

2 ◦ h(0) = Js ◦ (I − Hs)
−1[1](0, 0), (19)

We now consider the bivariate dgf’s defined in (14). For the depth K, one
has

SK(s, w) = ewJs ◦ (I − ewHs)
−1[1](0, 0);

For costs C of Fig. 2, the bivariate dgf involves the quasi-inverse of HγC(s,w),

SC(s, w) = JγC(s,w) ◦ (I − HγC(s,w))−1[1](0, 0),

except for C = |Q|−2
2 , where the function 1 is replaced by the function Gw

2 .
The dgf ŜC(s) defined in (14) is obtained with taking the derivative of the

bivariate dgf wrt w (at w = 0); it is thus written with a double5 quasi inverse
which involves the plain operator Hs, separated “in the middle” by the cumu-
lative operator Hs,(C), namely

ŜC(s) � Js ◦ (I − Hs)
−1 ◦ Hs,(C) ◦ (I − Hs)

−1 [1](0, 0), (20)

and the cumulative operator is itself defined by Hs,(C) := ∂
∂wHγC(s,w)

∣∣∣
w=0

.

4 Functional Analysis

This section deals with a delicate context, which mixes the specificities of each
world –the real one, and the dyadic one–. It is devoted to the study of the quasi-
inverses (I −Hs)

−1 intervening in the expressions of the generating functions of
interest. We first define an appropriate functional space on which we prove the
operators to act and admit dominant spectral properties. This entails that the
quasi-inverse (I −Hs)

−1 admits a pole at s = 1, and we study its residue, which
gives rise to the constants that appear in the expectations of our main costs.

Functional space. The delicate point of the dynamical analysis is the choice of
a good functional space, that must be a subset of L1(I, ρ). Here, we know that,
in the initial CL system, the transfer operator Hs acts in a good way on C1(I).
Then, for a function F defined on I, the main role will be played by the family

5 There is another term which involves only a quasi-inverse. It does not intervene in
the analysis.

860 P. Rotondo et al.

of “sections” F̃y : x �→ max(1, log |y|2)F (x, y) which will be asked to belong to
C1(I), under the norm | · |1,1, defined as |F̃y|1,1 := |F̃y|0 + |F̃y|1 with

|F̃y|0 := sup
x∈I

|F̃ (x, y)|, |F̃y|1 := sup
x∈I

∣∣∣∣
∂

∂x
F̃ (x, y)

∣∣∣∣ .

We work on the Banach space

F :=
{

F : I → C | Fy ∈ C1(I), y �→ F̃y bounded
}

,

endowed with the norm ||F || := ||F ||0 + ||F ||1, with

||F ||0 :=
∫

Q2

|F̃y|0 dν(y), ||F ||1 :=
∫

Q2

|F̃y|1 dν(y). (21)

The next Propositions 3, 4 and 5 will describe the behaviour of the operator
Ht,u,v,z on the functional space F . Their proofs are quite technical and are
omitted here.

The first result exhibits a subset of quadruples (t, u, v, z) which contains
(1, 1, 0, 1) for which the resulting operator Ht,u,v,z acts on F .

Proposition 3. The following holds:

(a) When the complex triple (t, u, v) satisfies the constraint �(t−v−|u−1|) > 0,
the operator Ht,u,v,u acts on F and is analytic with respect to the triple
(t, u, v).

(b) The operator Hs := Hs,s,0,s acts on F for �s > 1/2, and the norm || · ||0 of
the operator Hs satisfies ||Hs||0 < 1 for �s > 1.

Dominant spectral properties of the operator. The next result describes
some of the main spectral properties of the operator on the space F . Assertion
(a) entails that the k-th iterate of the operator behaves as a true k-th power of
its dominant eigenvalue. Then, as stated in (c), its quasi-inverse behaves as a
true quasi-inverse which involves its dominant eigenvalue.

Proposition 4. The following properties hold for the operator Ht,u,v,u, when
the triple (t, u, v) belongs to a neighborhood V of (1, 1, 0).

(a) There is a unique dominant eigenvalue, separated from the remainder of the
spectrum by a spectral gap, and denoted as λ(t, u, v), with a (normalized)
dominant eigenfunction Ψt,u,v and a dominant eigenmeasure ρt,u,v for the
dual operator.

(b) At (t, u, v, u) = (1, 1, 0, 1), the operator Ht,u,v,u coincides with the density
transformer H1. At (1, 1, 0) the dominant eigenvalue λ(t, u, v) equals 1, the
function Ψt,u,v is the invariant density Ψ and the measure ρt,u,v equals the
measure ρ.

Analysis of the Continued Logarithm Algorithm 861

(c) The estimate holds for any function F ∈ L1(I, ρ) with ρ[F] �= 0,

(I − Ht,u,v,u)−1[F](x, y) ∼ λ(t, u, v)
1 − λ(t, u, v)

Ψt,u,v(x, y) ρt,u,v[F].

(d) For �s = 1, s �= 1, the spectral radius of Hs,s,0,s is strictly less than 1.

The third result describes the Taylor expansion of λ(t, u, v) at (1, 1, 0), and
makes precise the behaviour of the quasi-inverse described in (c).

Proposition 5. The Taylor expansion of the eigenvalue λ(t, u, v) at (1, 1, 0),
written as λ(t, u, v) ∼ 1 − A(t − 1) + B(u − 1) + Dv, involves the constants

A = −∂λ/∂t(1, 1, 0), B = ∂λ/∂u(1, 1, 0), D = ∂λ/∂v(1, 1, 0)

(a) The constants A and D already appear in the context of the plain dynamical
system, and are precisely described in (11) and (10). In particular A − D is
equal to the integral E := EΨ [2| log x|];

(b) The constant B is defined with the extension of the dynamical system and
its invariant density Ψ = Ψ1,1,0. The constant B + D is equal to the dyadic
analog E2 of the integral E, namely, B + D = E2 := EΨ [2 log |y|2];

(c) The constant A − B is the entropy of the extended dynamical system.

Final result for the analysis of the CL algorithm. We then obtain our
final result:

Theorem 1. The mean values EN [c] for c ∈ {K,σ, q, �, r, q2} on the set ΩN are
all of order Θ(log N) and admit the precise following estimates,

EN [K] ∼ 2
H

log N, EN [c] ∼ M(c) · EN [K], for c ∈ {σ, q, �, r, q2}.

The constant H is the entropy of the extended system. The constants H and M(c)
are expressed with a scalar product that involves the gradient ∇λ of the dominant
eigenvalue at (1, 1, 0) and the beginning γ̂C of the quadruple γC associated with
the cost c. More precisely

H = −〈∇λ, (1, 1, 0)〉, M(c) = 〈∇λ, γ̂C〉.

The constants M(c) are exhibited in Fig. 2.

Proof. Now, the Tauberian Theorem comes into play, relating the behaviour of
a Dirichlet series F (s) near its dominant singularity with asymptotics for the
sum ΦN (F) of its first N coefficients. Delange’s Tauberian Theorem is stated as
follows (see [5]):

Consider for σ > 0 a Dirichlet series F (s) :=
∑

n≥1 ann−2s with non negative
coefficients which converges for �s > σ. Assume moreover:

(i) F (s) is analytic on {�s, s �= σ},

862 P. Rotondo et al.

(ii) near σ, F (s) satisfies F (s) ∼ A(s)(s − σ)−(k+1) for some integer k ≥ 0.

Then, as N → ∞, the sum ΦN (F) of its first N coefficients satisfies

ΦN (F) :=
∑
n≤N

an ∼ 2k A(σ) [σΓ(k + 1)]−1 N2σ logk N.

We now show that the two dgf’s S(s) and ŜC(s) satisfy the hypotheses of
the Tauberian theorem. The two expressions obtained in (19) and (20) involve
quasi-inverses (I − Hs)

−1, a simple one in (19), a double one in (20).
First, Propositions 3(b) and 4(d) prove that such quasi-inverses are analytic

on �s ≥ 1, s �= 1. Then Proposition 4(c), together with Eq. (20), shows that S(s)
and ŜC(s) have a pole at s = 1, of order 1 for S(s), of order 2 for ŜC(s).

We now evaluate the dominant constants: first, the estimate holds,

1 − λ(s, s, 0) ∼ (A − B)(s − 1) = H(s − 1), with H = −〈∇λ, (1, 1, 0)〉.
Second, with Proposition 4(c), the dgf’s S(s) and ŜC(s) admit the following

estimates which both involve the constant a = J[Ψ](0, 0), namely,

S(s) ∼ a

H(s − 1)
, ŜC(s) ∼ a

H2(s − 1)2
ρ

[
H1,(C)[Ψ]

]
.

We now explain the occurrence of the constant M(c): we use the definition
of the triple γ̂C(s, w), the definition of the cumulative operator H1,(C) as the
derivative of the bivariate operator HγC(s,w) at (s, w) = (1, 0), and the fact that
H1,1,0,1 = H1 is the density transformer. This entails the sequence of equalities,

ρ
[
H1,(C)[Ψ]

]
=

∂

∂w
λ(γ̂C(1, w))

∣∣∣
w=0

= 〈∇λ, γ̂C〉 = M(c).

About the constant B. The invariant density Ψ –more precisely the function
Ψ̂ := Ψ · G2 – satisfies a functional equation of the same type as the invariant
function ψ, (described in Eq. (7)), namely,

Ψ̂(x, y) =
(

1
1 + x

)2 ∣∣∣∣
1

1 + y

∣∣∣∣
2

2

∑
a≥0

Ψ̂

(
2−a

1 + x
,

2−a

1 + y

)
.

Comparing to Eq. (7), we “lose” the factor 2−a in the sum, and so we have not
succeed in finding an explicit formula for Ψ . We do not know how to evaluate
the integral E2 defined in Proposition 5(b).

However, we conjecture6 the equality D−B = log 2, from experiments of the
same type as those described in Fig. 1. This would entail an explicit value for
the entropy of the extended system,

1
2 log 2−log 3

⎡
⎣π2

6
+ 2

∑
k≥1

(−1)k

k2 2k
− (log 2)(3 log 3−4 log 2)

⎤
⎦ .= 1.33973 . . .

6 This will be explained in the long paper.

Analysis of the Continued Logarithm Algorithm 863

Conclusions and Extensions. We have studied the Continued Logarithm
Algorithm and analyzed in particular the number of pseudo divisions, and the
total number of shifts. It would be nice to obtain an explicit expression of the
invariant density, that should entail a proven expression of the entropy of the
dynamical system. It is also surely possible to analyze the bit complexity of the
algorithm, notably in the case when one eliminates the rightmost zeroes when are
shared by the two q′

is (as suggested by Shallit). Such a version of this algorithm
may have a competitive bit complexity that merits a further study.

There exist two other gcd algorithm that are based on binary shifts, all
involving a dyadic point of view: the Binary Algorithm, and “the Tortoise and
the Hare” algorithm, already analyzed in [4,9]; however, the role of the binary
shifts is different in each case. The strategy of the present algorithm is led by the
most significant bits, whereas the strategy of the “Tortoise and the Hare” is led
by the least significant bits. The Binary algorithm adopts a mixed strategy, as
it performs both right-shifts and subtractions. We have the project to unify the
analysis of these three algorithms, and better understand the role of the dyadic
component in each case.

References

1. Borwein, J.M., Hare, K.G., Lynch, J.G.: Generalized continued logarithms and
related continued fractions. J. Integer Seq. 20, 51 p. (2017). Article no. 17.5.7

2. Bourbaki, N.: Variétés différentielles et analytiques. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-34397-4

3. Chan, H.-C.: The asymptotic growth rate of random Fibonacci type sequences.
Fibonacci Q. 43(3), 243–255 (2005)

4. Daireaux, B., Maume-Deschamps, V., Vallée, B.: The Lyapounov tortoise and the
dyadic hare. In: Proceedings of AofA 2005, DMTCS, pp. 71–94 (2005)

5. Delange, H.: Généralisation du Théorème d’Ikehara. Ann. Sc. ENS 71, 213–242
(1954)

6. Gosper, B.: Continued fraction arithmetic (1978, unpublished manuscript)
7. Koblitz, N.: p-adic Numbers, p-adic Analysis and Zeta Functions, 2nd edn.

Springer, New York (1984). https://doi.org/10.1007/978-1-4612-1112-9
8. Shallit, J.: Length of the continued logarithm algorithm on rational inputs (2016).

https://arxiv.org/abs/1606.03881v2, arXiv:1606.03881v2
9. Vallée, B.: Dynamics of the binary Euclidean algorithm: functional analysis and

operators. Algorithmica 22(4), 660–685 (1998)
10. Vallée, B.: Euclidean dynamics. Discret. Continuous Dyn. Syst. 15(1), 281–352

(2006)

https://doi.org/10.1007/978-3-540-34397-4
https://doi.org/10.1007/978-1-4612-1112-9
https://arxiv.org/abs/1606.03881v2
http://arxiv.org/abs/1606.03881v2

Quadratic Simulations of Merlin–Arthur
Games

Thomas Watson(B)

Department of Computer Science, University of Memphis, Memphis, USA
Thomas.Watson@memphis.edu

Abstract. The known proofs of MA ⊆ PP incur a quadratic overhead in
the running time. We prove that this quadratic overhead is necessary for
black-box simulations; in particular, we obtain an oracle relative to which
MA-TIME(t) �⊆ P-TIME(o(t2)). We also show that 2-sided-error Merlin–
Arthur games can be simulated by 1-sided-error Arthur–Merlin games
with quadratic overhead. We also present a simple, query complexity
based proof (provided by Mika Göös) that there is an oracle relative to
which MA �⊆ NPBPP (which was previously known to hold by a proof
using generics).

1 Introduction

There are several complexity class inclusions for which all the known proofs con-
sist of “black-box” simulations incurring at least a quadratic overhead in the
running time. There have also been lower bounds showing that for some of these
inclusions, the quadratic overhead is necessary for black-box simulations (which
also yields corresponding oracle separations). We begin by giving an overview
of this topic. For convenience we abbreviate “quadratic-overhead black-box sim-
ulation” as “quadratic simulation”. (Some relevant complexity class definitions
can be found in the full version.)

• BPP ⊆ Σ2P [Sip83,Lau83] holds by quadratic simulations, and Viola [Vio09]
proved that the quadratic overhead is necessary. Some known strengthenings
of this inclusion include S2·BPP ⊆ S2P [RS98] and the facts that 2-sided-error
Merlin–Arthur and Arthur–Merlin games are equivalent to their 1-sided-error
counterparts: MA2 ⊆ MA1 and AM2 ⊆ AM1. Of course, the lower bound of
[Vio09] also applies to these strengthenings.

• Arthur–Merlin games can simulate Merlin–Arthur games (MA1 ⊆ AM1 and
MA2 ⊆ AM2) quadratically [Bab85]. Diehl [Die07] proved that the quadratic
overhead is necessary, even for MA1 ⊆ AM2. (As a side result, we complement
this by giving a quadratic simulation even for MA2 ⊆ AM1.)

• MA2 ⊆ PP [Ver92] holds by quadratic simulations. As our main result, we
prove that the quadratic overhead is necessary (which was stated as an open

Watson. T—Supported by NSF grant CCF-1657377.

c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 864–872, 2018.
https://doi.org/10.1007/978-3-319-77404-6_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_62&domain=pdf

Quadratic Simulations of Merlin–Arthur Games 865

problem in [Die07]), even for the weaker inclusion N·coRP ⊆ PP.1 A strength-
ening of the latter inclusion is the quadratic simulation for P·BQP ⊆ PP
[FR99].

• PP is closed under intersection by quadratic simulations [BRS95] (for all
L1,L2 ∈ P-TIME(n) we have L1∩L2 ∈ P-TIME(n2)). Sherstov [She13] proved
that the quadratic overhead is necessary.

1.1 Statement of Result

Consider the partial function FN·coR that takes a 2n × 2n boolean matrix with
the promise that each row has either all 1’s or at most half 1’s, and evaluates to
1 if there exists an all-1 row, and to 0 otherwise.

Theorem 1. Every randomized unbounded-error decision tree for FN·coR uses
either Ω(n) queries or 2Ω(n) random bits.

For our interpretation about the necessity of a quadratic overhead (see the
corollaries below), it suffices to have Ω(n2) random bits (rather than 2Ω(n)) at
the end of the theorem statement.

Corollary 1. There is an oracle relative to which N·coR-TIME(n) �⊆ P-TIME
(o(n2)).

Corollary 1 holds in the standard model of relativization where the oracle
tape is erased after each query. This forces each query to cost linear time, which
makes sense in our context since a query is intended to correspond to running
a simulation of the deterministic algorithm underlying an N·coR-TIME(n) algo-
rithm. Corollary 1 follows in a completely routine way from Theorem 1 (see
[Vio09,Die07] for examples of how such diagonalization arguments go).

Our result can also be interpreted in terms of what we call “black-box proofs
of N·coR-TIME(n) ⊆ P-TIME(t)”. Such a proof consists of a uniform randomized
algorithm that takes 1n as input, computes FN·coR with unbounded error on an
instance it has oracle access to, and runs in time O(t(n)) where each oracle query
is charged time n. All known proofs of that inclusion are indeed black-box.

Corollary 2. There is no black-box proof of N·coR-TIME(n) ⊆ P-TIME(o(n2)).

Corollary 2 follows immediately from Corollary 1 since black-box proofs rel-
ativize. Corollary 2 also follows directly from Theorem 1 since such a black-
box proof is just a uniform, time-efficient implementation of a randomized
unbounded-error decision tree for FN·coR that uses o(n) queries and o(n2) random
bits.
1 We mention that in the world of communication complexity, a nearly quadratic

separation between N·coRP-type complexity and PP-type complexity is witnessed
by the inner product mod 2 function—see [AW09] for the N·coRP upper bound and
[KN97, Sects. 3.5–3.6 and references therein] for the PP lower bound. However, this
is not directly relevant to our results since the upper bound is really specific to
communication complexity.

866 T. Watson

For convenience, we have focused on time n vs. n2, but our lower bound also
works for any time-constructible t(n) vs. t(n)2.

1.2 Relevance to Time-Space Lower Bounds

There is a line of research on time-space lower bounds for problems related to
satisfiability [vM06]. It is known that for every constant ε > 0,

(i) SAT (which is NP-complete) cannot be solved by a deterministic algorithm
running in time n2 cos(π/7)−ε ≈ n1.8019 and space no(1) [Wil08];

(ii) Σ2SAT (which is Σ2P-complete) cannot be solved by a bounded-error ran-
domized algorithm running in time n2−ε and space no(1) [Dv06];

(iii) MajMajSAT (which is P·PP-complete) cannot be solved by a bounded-
error quantum algorithm running in time n1+o(1) and space n1−ε [vW12,
AKR+01].

It is open to prove a nontrivial randomized time-space lower bound for SAT
rather than Σ2SAT (the first rather than the second level of the polynomial
hierarchy). A natural approach to prove this (following [Dv06]) would involve
“swapping Arthur and Merlin” (i.e., using MA2 ⊆ AM2); however, the quadratic
overhead is too inefficient to yield any nontrivial lower bound. Indeed, one of the
motivations for the result of [Die07] is that it implies this approach cannot be
made to work via a subquadratic black-box simulation.

Similarly, it is open to prove a nontrivial quantum time-space lower bound for
MajSAT rather than MajMajSAT (the first rather than the second level of the
counting hierarchy). A natural approach to prove this (following [vW12]) would
involve “absorbing quantumness into a majority quantifier” (i.e., using P·BQP ⊆
PP [FR99]); however, the quadratic overhead is too inefficient to yield any non-
trivial lower bound. Our result implies this approach cannot be made to work via
a subquadratic black-box simulation (since N·coR-TIME(n) ⊆ P·BQ-TIME(n)).

2 Proof of Theorem 1

Suppose for contradiction that FN·coR has a randomized unbounded-error deci-
sion tree using ≤n/6 queries and ≤2n/4 uniformly random bits. Such a decision
tree can be expressed as a polynomial threshold function (PTF) with integer
coefficients, having degree ≤n/6 and weight ≤22

n/3
(the weight is the sum of the

absolute values of the coefficients). We use a two-step argument: first, we show
that a particular approach for designing such a PTF fails; second, we essen-
tially show that if that approach fails then every approach fails (by using an
adaptation of Vereshchagin’s machinery from [Ver95]).

If there were a univariate polynomial p of degree ≤n/6 such that p(2n) > 2n

and p(i) ∈ [0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1}, then we could get a PTF of degree
≤n/6 for FN·coR by taking the sum over all rows of p applied to the sum of the
bits in that row, and using 2n as the threshold. (Moreover, if the coefficients
of p were all integer multiples of some a > 0 and p had weight ≤a22

n/4
, then

Quadratic Simulations of Merlin–Arthur Games 867

we could use p/a to get a PTF having weight ≤22
n/3

.) However, this approach
cannot work:

Lemma 1. There is no univariate polynomial p of degree ≤n/6 such that
p(2n) > 2n/2 and p(i) ∈ [0, 1] for all i ∈ {0, 1, 2, . . . , 2n−1}.
Proof. Let us modify p by transforming the input interval [0, 2n−1] to [−1, 1]
and shifting the graph down by 1/2, i.e., define the polynomial q(x) := p

(
(x+1)

2n−2
)−1/2. Then we have q(3) > 2n/2−1/2 and q(−1+i/2n−2) ∈ [−1/2, 1/2] for

all i ∈ {0, 1, 2, . . . , 2n−1}. The latter property implies, by a standard result that
has been widely used in the literature and is generally attributed to [EZ64,RC66],
that for all x ∈ [−1, 1] we have |q(x)| ≤ (1/2)/

(
1 − O(deg(q)2/2n)

)
, which is at

most 1 since deg(q) = deg(p) ≤ n/6 ≤ o(2n/2).
In summary, q(3) > 2n/2 − 1/2, |q(x)| ≤ 1 for all x ∈ [−1, 1], and

deg(q) ≤ n/6. To show that this is impossible, we appeal to a classic result
stating that Chebyshev polynomials are extremal in the following sense (see
[Riv81, Theorem 1.10] or [Car, Theorem 4.12] for a proof): If Td is the degree-d
Chebyshev polynomial of the first kind (defined by the recurrence T0(x) := 1,
T1(x) := x, and Td+1(x) := 2xTd(x) − Td−1(x) for d ≥ 1) and q is any degree-d
polynomial such that |q(x)| ≤ 1 for all x ∈ [−1, 1], then for all x ≥ 1 we have
|q(x)| ≤ Td(x). To get a contradiction, note that the recurrence trivially implies
that Td(3) ≤ 6d, and thus q(3) ≤ 6d ≤ 2n/2 − 1/2 for d ≤ n/6. 	

Now we begin the bootstrapping.

Lemma 2. There exist distributions D0 and D1 over {0, 1, 2, . . . , 2n−1} ∪ {2n}
such that PD0 [2

n] = 0, PD1 [2
n] = 2−n/2, and Ei∼D0 [i

k] = Ei∼D1 [i
k] for all

k ∈ {0, 1, 2, . . . ,n/6}.
Proof. The lemma is equivalent to the feasibility of the following system with
variables vi and wi for i ∈ {0, 1, 2, . . . , 2n−1} (representing PD0 [i] and PD1 [i]
respectively), where we define δ := 2−n/2.

∑
i vi = 1

∑
i wi = 1 − δ

∑
i vi · ik − ∑

i wi · ik = δ · (2n)k for all k ∈ {0, 1, 2, . . . ,n/6}
vi, wi ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}

By Farkas’s Lemma, this is equivalent to the infeasibility of the following system
with variables x, y, and zk for k ∈ {0, 1, 2, . . . ,n/6}.

x +
∑

k zk · ik ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}
y − ∑

k zk · ik ≥ 0 for all i ∈ {0, 1, 2, . . . , 2n−1}
x + y · (1 − δ) +

∑
k zk · δ · (2n)k < 0

868 T. Watson

Defining the polynomial Z(i) :=
∑

k zk · ik, this system can be rewritten as
follows.

Z(i) ∈ [−x, y] for all i ∈ {0, 1, 2, . . . , 2n−1} (1)
x + y · (1 − δ) + δ · Z(2n) < 0 (2)

Suppose for contradiction this system is feasible; in particular y ≥ −x. We
cannot have y = −x since then by (1), Z would either be the constant y = −x,
thus violating (2), or have degree >2n−1 > n/6. Thus we may assume x+y > 0.
If we define the polynomial Z∗(i) := (y − Z(i))/(x + y) then Z∗(i) ∈ [0, 1]
for all i ∈ {0, 1, 2, . . . , 2n−1} by (1), and Z∗(2n) > 1/δ = 2n/2 by (2); yet
deg(Z∗) = deg(Z) ≤ n/6, contradicting Lemma 1. 	

For b ∈ {0, 1}, define μb as the distribution over 2n × 2n boolean matrices
M obtained by, for each row independently, sampling i ∼ Db and then taking a
uniformly random length-2n bit string of Hamming weight i. Let “P (M) > t” be
the purported PTF for FN·coR (where t is an integer). The following two lemmas
provide a contradiction.

Lemma 3. Eμ1 [P (M)] > Eμ0 [P (M)].

Lemma 4. Eμ1 [P (M)] = Eμ0 [P (M)].

Proof (of Lemma 3). Let us abbreviate FN·coR as F . Observe that Pμ0

[
F−1(0)

]
=1

and Pμ1

[
F−1(1)

]
= 1 − (1 − 2−n/2)2

n ≥ 1 − e−2n/2
. Also, notice that |P (M)| ≤

weight(P) ≤ 22
n/3

for all M ; in particular, t < 22
n/3

. Thus,

Eμ1 [P (M)]

=Eμ1

[
P (M)

∣
∣ F−1(1)

] · Pμ1

[
F−1(1)

]
+ Eμ1

[
P (M)

∣
∣ F−1(0)

] · Pμ1

[
F−1(0)

]

≥ (t + 1) · (
1 − e−2n/2) − 22

n/3 · e−2n/2

> t

≥Eμ0 [P (M)]. 	

Proof (of Lemma 4). Define Ui to be the uniform distribution over length-2n bit
strings of Hamming weight i. For any C ⊆ [2n], we have Pu∼Ui

[
uC is all 1’s

]
=

i(i−1)···(i−|C|+1)
2n(2n−1)···(2n−|C|+1) (most easily seen by imagining that u is fixed and C is
random); this is a polynomial of degree |C| in i, which we write as Q|C|(i) :=
∑|C|

k=0 Q
|C|
k · ik. We also write P (M) :=

∑
S PS

∏
(r,c)∈S Mr,c where the sum

ranges over S ⊆ [2n] × [2n] with |S| ≤ n/6. For a row index r ∈ [2n], let
Sr :=

{
c ∈ [2n] : (r, c) ∈ S

}
. For each b ∈ {0, 1} we have

Eμb
[P (M)] =

∑
S PS Pμb

[
MS is all 1’s

]

=
∑

S PS

∏
r Ei∼Db

Pu∼Ui

[
uSr

is all 1’s
]

=
∑

S PS

∏
r Ei∼Db

[
Q|Sr|(i)

]

=
∑

S PS

∏
r

∑
k Q

|Sr|
k Ei∼Db

[ik].

By Lemma 2, this value does not depend on b (since k ≤ |Sr| ≤ |S| ≤ n/6 always
holds). 	

Quadratic Simulations of Merlin–Arthur Games 869

3 Quadratic Simulation for MA2 ⊆ AM1

Theorem 2. MA2-TIME(n) ⊆ AM1-TIME(n2).

The four diagonal arrows in the figure
represent known simulations with quad-
ratic overhead: MA2-TIME(n) ⊆ MA1-TIME
(n2 polylog n), AM2-TIME(n) ⊆ AM1-TIME
(n2 polylog n) follow by the “covering by
shifts” argument of [Lau83], while MA2-
TIME(n)⊆AM2-TIME(n2), MA1-TIME(n)⊆
AM1-TIME(n2) follow by amplification and
swapping the quantifiers, as shown in
[Bab85]. The horizontal arrow represents
Theorem 2. The dashed vertical arrow represents the lower bound of
[Die07] showing that black-box or relativizing techniques cannot even yield
MA1-TIME(n) ⊆ AM2-TIME(o(n2)).

Of course, a 4th-power simulation for MA2 ⊆ AM1 follows from the previous
results, by carrying out the two steps (swapping the quantifiers and making the
error 1-sided) in either order. To prove Theorem 2 we need a single quadratic
simulation that handles both steps at the same time. Our proof ends up resem-
bling the proof of S2·BPP ⊆ S2P in [RS98], but (similarly to [Dv06]) we start by
doing randomness-efficient amplification with very explicit expanders, and we
also set parameters differently (in particular, using constant numbers of shifts).

Proof (of Theorem 2). By randomness-efficient amplification [CW89,IZ89] using
the expander graph of [GG81], we may assume that Arthur has error probability
<2−n while using O(n) random bits and running in time O(n2). That is, for L ∈
MA2-TIME(n) there is a deterministic O(n2)-time algorithm M and a constant
c such that if x ∈ L then ∃w ∈ {0, 1}cn

Pr∈{0,1}cn [M(x,w, r) accepts]>1 − 2−n,
and if x �∈ L then ∀w ∈ {0, 1}cn

Pr∈{0,1}cn [M(x,w, r) accepts]<2−n. Consider
the O(n2)-time algorithm M ′ that, letting a := c2 + c + 1 and b := c, interprets
its input as x ∈ {0, 1}n, r′ := r1 · · · ra ∈ ({0, 1}cn)a, and w′ := ws1 · · · sb ∈
{0, 1}cn × ({0, 1}cn)b, and accepts iff ∀i ∈ [a] ∃j ∈ [b] M(x,w, ri ⊕ sj) accepts.
We claim that M ′ witnesses L ∈ AM1-TIME(n2). First suppose x ∈ L, and fix
w ∈ {0, 1}cn such that Pr[M(x,w, r) accepts]>1 − 2−n. If we pick s1 · · · sb ∈
({0, 1}cn)b uniformly at random, then for each r ∈ {0, 1}cn we have Ps1···sb[¬∃j M(x,w, r ⊕ sj) accepts

]
<(2−n)b = 2−cn. Hence by a union bound, there

exists s1 · · · sb such that for all r there exists a j such that M(x,w, r ⊕ sj)
accepts. Letting w′ := ws1 · · · sb, we have ∃w′ ∀r′ M ′(x, r′,w′) accepts, and
thus Pr′

[∃w′ M ′(x, r′,w′) accepts
]

= 1. Now suppose x �∈ L. If we pick
r′ ∈ ({0, 1}cn)a uniformly at random, then for each w′ := ws1 · · · sb we have
Pr′

[∀i ∃j M(x,w, ri ⊕sj) accepts
]
<(b2−n)a ≤ 1

2 ·2−(cn+bcn). By a union bound,
Pr′

[∃w′ M ′(x, r′,w′) accepts
] ≤1/2. 	

870 T. Watson

4 Relativized MA �⊆ NPBPP

The distinction between MA1 and N·coRP is that when Merlin sends a “wrong”
witness for a 1-input, MA1 allows Arthur to accept with arbitrary probabil-
ity, whereas N·coRP requires Arthur to accept with a “legal” probability (in
[0, 1/2]∪{1}). The distinction between MA2 and N·BPP is similar but where the
legal probabilities are [0, 1/3] ∪ [2/3, 1]. Since the relativizing polynomial-time
class equalities MA := MA2 = MA1 and NPBPP = N·BPP = N·coRP hold, the
following theorem shows that the distinction is significant.

Theorem 3. There is an oracle relative to which MA �⊆ NPBPP.

Theorem 3 was shown in [FFKL03] using the machinery of generics. In con-
trast, most oracle separations of pairs of ordinary complexity classes are known
to hold directly via separations of the corresponding query complexity (decision
tree) models. When we asked Mika Göös whether a query complexity style argu-
ment could be used to prove Theorem 3, he promptly manufactured such an
argument. He declined coauthorship but graciously gave permission to present
the argument for the sake of recording it in the literature. Furthermore, this
argument even yields an oracle relative to which MA �⊆ NPBQP (by using a
quantum rather than randomized query lower bound for the OR function in the
appropriate places), which appears to be a new result.

We define a q-query N·BPP decision tree for a partial function F : {0, 1}N →
{0, 1} to be a set of probability distributions over depth-q deterministic decision
trees, such that for every 0-input, each distribution in the set accepts with prob-
ability ≤ 1/3, and for every 1-input, each distribution in the set accepts with
probability in [0, 1/3]∪ [2/3, 1] and at least one of them accepts with probability
≥2/3.2

Consider the partial function FMA1 that takes a 2n × 2n boolean matrix and
evaluates to 1 if there exists an all-1 row, and to 0 if each row has at most half
1’s. Theorem 3 is a corollary of the following result.

Lemma 5. Every N·BPP decision tree for FMA1 uses Ω(2n) queries.

Proof. Let us abbreviate FMA1 as F . Suppose for contradiction there exists an
N·BPP decision tree for F using at most 2n−4 queries. Define M (0) to be the
2n × 2n matrix that has all 1’s in its first row and 0’s everywhere else. Since
F (M (0)) = 1, there is a distribution D (which we fix henceforth) in the set of
the N·BPP decision tree, that accepts M (0) with probability ≥2/3.

We claim that there exists a sequence of 2n × 2n matrices M (0),M (1),
. . . ,M (2n−1) such that for each i = 1, . . . , 2n−1, M (i) has 2n − i 1’s in its
first row and 0’s everywhere else, and the probability D accepts M (i) is within

2 It would also be natural to charge the log of the size of the set—i.e., the number
of nondeterministic guess bits—to the cost of the decision tree. For Theorem 3 it
would suffice to consider this more restricted model, but our lower bound holds even
for the more powerful model that does not charge for guess bits. [RTVV99] explores
this distinction in the context of MA decision trees.

Quadratic Simulations of Merlin–Arthur Games 871

1/8 of the probability D accepts M (i−1). Inductively assuming M (i−1) has
been constructed, there must be a 1-entry that gets queried with probability
≤2n−4/(2n − (i − 1)) ≤ 1/8 under D, so we can obtain M (i) by flipping this
entry to a 0. The claim is proved.

Since F (M (2n−1)) = 0, D accepts M (2n−1) with probability ≤1/3. Hence
there exists an i∗ such that D accepts M (i∗) with probability within 1/16 of
1/2. This is an illegal probability, but we do not yet have a contradiction, since
M (i∗) is not in the domain of F . Now there must be a row of M (i∗) such that the
probability (under D) that a bit in that row gets queried is ≤2n−4/2n = 1/16.
Flipping all the 0’s to 1’s in that row results in a matrix M that D accepts
with (illegal) probability within 1/16+1/16 of 1/2. This is a contradiction since
F (M) = 1 and so D is supposed to accept M with probability in [0, 1/3]∪[2/3, 1].

	

Acknowledgments. I thank Mika Göös for suggesting the proof of Lemma 5, and
anonymous reviewers for helpful comments.

References

[AKR+01] Allender, E., Koucký, M., Ronneburger, D., Roy, S., Vinay, V.: Time-space
tradeoffs in the counting hierarchy. In: Proceedings of the 16th Conference
on Computational Complexity (CCC), pp. 295–302. IEEE (2001). https://
doi.org/10.1109/CCC.2001.933896

[AW09] Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity
theory. ACM Trans. Comput. Theor. 1(1), 2:1–2:54 (2009). https://doi.
org/10.1145/1490270.1490272

[Bab85] Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Symposium on Theory of Computing (STOC), pp. 421–429. ACM (1985).
https://doi.org/10.1145/22145.22192

[BRS95] Beigel, R., Reingold, N., Spielman, D.: PP is closed under intersection.
J. Comput. Syst. Sci. 50(2), 191–202 (1995). https://doi.org/10.1006/jcss.
1995.1017

[Car] Carothers, N.: A short course on approximation theory. Lecture notes.
http://personal.bgsu.edu/∼carother/Approx.html

[CW89] Cohen, A., Wigderson, A.: Dispersers, deterministic amplification, and weak
random sources. In: Proceedings of the 30th Symposium on Foundations of
Computer Science (FOCS), pp. 14–19. IEEE (1989). https://doi.org/10.
1109/SFCS.1989.63449

[Die07] Diehl, S.: Lower bounds for swapping Arthur and Merlin. In: Charikar, M.,
Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM 2007.
LNCS, vol. 4627, pp. 449–463. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74208-1 33

[Dv06] Diehl, S., van Melkebeek, D.: Time-space lower bounds for the polynomial-
time hierarchy on randomized machines. SIAM J. Comput. 36(3), 563–594
(2006). https://doi.org/10.1137/050642228

[EZ64] Ehlich, H., Zeller, K.: Schwankung von polynomen zwischen gitterpunkten.
Mathematische Zeitschrift 86, 41–44 (1964)

https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/22145.22192
https://doi.org/10.1006/jcss.1995.1017
https://doi.org/10.1006/jcss.1995.1017
http://personal.bgsu.edu/~carother/Approx.html
https://doi.org/10.1109/SFCS.1989.63449
https://doi.org/10.1109/SFCS.1989.63449
https://doi.org/10.1007/978-3-540-74208-1_33
https://doi.org/10.1007/978-3-540-74208-1_33
https://doi.org/10.1137/050642228

872 T. Watson

[FFKL03] Fenner, S., Fortnow, L., Kurtz, S., Li, L.: An oracle builder’s toolkit.
Inf. Comput. 182(2), 95–136 (2003). https://doi.org/10.1016/S0890-
5401(03)00018-X

[FR99] Fortnow, L., Rogers, J.: Complexity limitations on quantum computation.
J. Comput. Syst. Sci. 59(2), 240–252 (1999). https://doi.org/10.1006/jcss.
1999.1651

[GG81] Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentra-
tors. J. Comput. Syst. Sci. 22(3), 407–420 (1981). https://doi.org/10.1016/
0022-0000(81)90040-4

[IZ89] Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proceed-
ings of the 30th Symposium on Foundations of Computer Science (FOCS),
pp. 248–253. IEEE (1989). https://doi.org/10.1109/SFCS.1989.63486

[KN97] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univer-
sity Press, Cambridge (1997)

[Lau83] Lautemann, C.: BPP and the polynomial hierarchy. Inf. Process. Lett.
17(4), 215–217 (1983). https://doi.org/10.1016/0020-0190(83)90044-3

[RC66] Rivlin, T., Cheney, E.W.: A comparison of uniform approximations on an
interval and a finite subset thereof. SIAM J. Numer. Anal. 3(2), 311–320
(1966)

[Riv81] Rivlin, T.: An Introduction to the Approximation of Functions. Dover, New
York City (1981)

[RS98] Russell, A., Sundaram, R.: Symmetric alternation captures BPP. Comput.
Complex. 7(2), 152–162 (1998). https://doi.org/10.1007/s000370050007

[RTVV99] Raz, R., Tardos, G., Verbitsky, O., Vereshchagin, N.: Arthur-Merlin games
in Boolean decision trees. J. Comput. Syst. Sci. 59(2), 346–372 (1999).
https://doi.org/10.1006/jcss.1999.1654

[She13] Sherstov, A.: The intersection of two halfspaces has high threshold
degree. SIAM J. Comput. 42(6), 2329–2374 (2013). https://doi.org/10.
1137/100785260

[Sip83] Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings
of the 15th Symposium on Theory of Computing (STOC), pp. 330–335.
ACM (1983). https://doi.org/10.1145/800061.808762

[Ver92] Vereshchagin, N.: On the power of PP. In: Proceedings of the 7th Structure
in Complexity Theory Conference (STRUCTURES), pp. 138–143. IEEE
(1992). https://doi.org/10.1109/SCT.1992.215389

[Ver95] Vereshchagin, N.: Lower bounds for perceptrons solving some separation
problems and oracle separation of AM from PP. In: Proceedings of the
3rd Israel Symposium on Theory of Computing and Systems (ISTCS), pp.
46–51. IEEE (1995). https://doi.org/10.1109/ISTCS.1995.377047

[Vio09] Viola, E.: On approximate majority and probabilistic time. Comput. Com-
plex. 18(3), 337–375 (2009). https://doi.org/10.1007/s00037-009-0267-3

[vM06] van Melkebeek, D.: A survey of lower bounds for satisfiability and related
problems. Found. Trends Theor. Comput. Sci. 2(3), 197–303 (2006).
https://doi.org/10.1561/0400000012

[vW12] van Melkebeek, D., Watson, T.: Time-space efficient simulations of quantum
computations. Theor. Comput. 8(1), 1–51 (2012). https://doi.org/10.4086/
toc.2012.v008a001

[Wil08] Williams, R.: Time-space tradeoffs for counting NP solutions modulo inte-
gers. Comput. Complex. 17(2), 179–219 (2008). https://doi.org/10.1007/
s00037-008-0248-y

https://doi.org/10.1016/S0890-5401(03)00018-X
https://doi.org/10.1016/S0890-5401(03)00018-X
https://doi.org/10.1006/jcss.1999.1651
https://doi.org/10.1006/jcss.1999.1651
https://doi.org/10.1016/0022-0000(81)90040-4
https://doi.org/10.1016/0022-0000(81)90040-4
https://doi.org/10.1109/SFCS.1989.63486
https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1007/s000370050007
https://doi.org/10.1006/jcss.1999.1654
https://doi.org/10.1137/100785260
https://doi.org/10.1137/100785260
https://doi.org/10.1145/800061.808762
https://doi.org/10.1109/SCT.1992.215389
https://doi.org/10.1109/ISTCS.1995.377047
https://doi.org/10.1007/s00037-009-0267-3
https://doi.org/10.1561/0400000012
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.1007/s00037-008-0248-y
https://doi.org/10.1007/s00037-008-0248-y

On Counting Perfect Matchings
in General Graphs

Daniel Štefankovič1, Eric Vigoda2, and John Wilmes2(B)

1 University of Rochester, Rochester, USA
stefanko@cs.rochester.edu

2 Georgia Institute of Technology, Atlanta, USA
{vigoda,wilmesj}@gatech.edu

Abstract. Counting perfect matchings has played a central role in the
theory of counting problems. The permanent, corresponding to bipar-
tite graphs, was shown to be #P-complete to compute exactly by
Valiant (1979), and a fully polynomial randomized approximation scheme
(FPRAS) was presented by Jerrum, Sinclair, and Vigoda (2004) using a
Markov chain Monte Carlo (MCMC) approach. However, it has remained
an open question whether there exists an FPRAS for counting perfect
matchings in general graphs. In fact, it was unresolved whether the same
Markov chain defined by JSV is rapidly mixing in general. In this paper,
we show that it is not. We prove torpid mixing for any weighting scheme
on hole patterns in the JSV chain. As a first step toward overcoming this
obstacle, we introduce a new algorithm for counting matchings based on
the Gallai−Edmonds decomposition of a graph, and give an FPRAS for
counting matchings in graphs that are sufficiently close to bipartite. In
particular, we obtain a fixed-parameter tractable algorithm for counting
matchings in general graphs, parameterized by the greatest “order” of a
factor-critical subgraph.

1 Introduction

Counting perfect matchings is a fundamental problem in the area of count-
ing/sampling problems. For an undirected graph G = (V,E), let P denote the
set of perfect matchings of G. Can we compute (or estimate) |P| in time poly-
nomial in n = |V |? For which classes of graphs?

A polynomial-time algorithm for the corresponding decision and optimization
problems of determining if a given graph contains a perfect matching or finding
a matching of maximum size was presented by Edmonds [2]. For the counting
problem, a classical algorithm of Kasteleyn [9] gives a polynomial-time algorithm
for exactly computing |P| for planar graphs.

For bipartite graphs, computing |P| is equivalent to computing the perma-
nent of n × n (0, 1)-matrices. Valiant [14] proved that the (0, 1)-Permanent is
#P-complete. Subsequently attention turned to the Markov Chain Monte Carlo
(MCMC) approach. A Markov chain where the mixing time is polynomial in n
is said to be rapidly mixing, and one where the mixing time is exponential in
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 873–885, 2018.
https://doi.org/10.1007/978-3-319-77404-6_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_63&domain=pdf

874 D. Štefankovič et al.

Ω(n) is referred to as torpidly mixing. A rapidly mixing chain yields an FPRAS
(fully polynomial-time randomized approximation scheme) for the corresponding
counting problem of estimating |P| [8].

For dense graphs, defined as those with minimum degree >n/2, Jerrum and
Sinclair [6] proved rapid mixing of a Markov chain defined by Broder [1], which
yielded an FPRAS for estimating |P|. The Broder chain walks on the collection
Ω = P ∪N of perfect matchings P and near-perfect matchings N ; a near-perfect
matching is a matching with exactly 2 holes or unmatched vertices. Jerrum and
Sinclair [6], more generally, proved rapid mixing when the number of perfect
matchings is within a poly(n) factor of the number of near-perfect matchings,
i.e., |P|/|N | ≥ 1/poly(n). A simple example, referred to as a “chain of boxes”
which is illustrated in Fig. 1, shows that the Broder chain is torpidly mixing.
This example was a useful testbed for catalyzing new approaches to solving the
general permanent problem.

Jerrum et al. [7] presented a new Markov chain on Ω = P ∪ N with a
non-trivial weighting scheme on the matchings based on the holes (unmatched
vertices). They proved rapid mixing for any bipartite graph with the requisite
weights used in the Markov chain, and they presented a polynomial-time algo-
rithm to learn these weights. This yielded an FPRAS for estimating |P| for all
bipartite graphs. That is the current state of the art (at least for polynomial-
time, or even sub-exponential-time algorithms).

Could the JSV-Markov chain be rapid mixing on non-bipartite graphs? Pre-
viously there was no example for which torpid mixing was established, it was
simply the case that the proof in [7] fails. We present a relatively simple exam-
ple where the JSV-Markov chain fails for the weighting scheme considered in [7].
More generally, the JSV-chain is torpidly mixing on our class of examples for
any weighting scheme based on the hole patterns, see Theorem 3 in Sect. 2 for a
formal statement following the precise definition of the JSV-chain.

A natural approach for non-bipartite graphs is to consider Markov chains
that exploit odd cycles or blossoms in the manner of Edmonds’ algorithm. We
observe that a Markov chain which considers all blossoms for its transitions
is intractable since sampling all blossoms is NP-hard, see Theorem 5. On the
other hand, a chain restricted to minimum blossoms is not powerful enough to
overcome our torpid mixing examples. See Sect. 3 for a discussion.

Finally we utilize the Gallai−Edmonds graph decomposition into factor-
critical graphs [2–4,12] to present new algorithmic insights that may overcome
the obstacles in our classes of counter-examples. In Sect. 4, we describe how the
Gallai−Edmonds decomposition can be used to efficiently estimate |P|, the num-
ber of perfect matchings, in graphs whose factor-critical subgraphs have bounded
order (Theorem 7), as well as in the torpid mixing example graphs (Theorem8).

Although all graphs are explicitly defined in the text below, figures depicting
these graphs are deferred to the appendix.

1.1 Markov Chains

Consider an ergodic Markov chain with transition matrix P on a finite state
space Ω, and let π denote the unique stationary distribution. We will usually

On Counting Perfect Matchings in General Graphs 875

assume the Markov chain is time reversible, i.e., that it satisfies the detailed
balance condition π(x)P (x, y) = π(y)P (x, y) for all states x, y ∈ Ω.

For a pair of distributions μ and ν on Ω we denote their total variation
distance as dTV(μ, ν) = 1

2

∑
x∈Ω |μ(x) − ν(x)|. The standard notion of mixing

time Tmix is the number of steps from the worst starting state X0 = i to reach
total variation distance ≤1/4 of the stationary distribution π, i.e., we write
Tmix = maxi∈Ω min{t : dTV(P t(i, ·), π) ≤ 1/4}.

We use conductance to obtain lower bounds on the mixing time. For a set
S ⊂ Ω its conductance is defined as:

Φ(S) =

∑
x∈S,y/∈S π(x)P (x, y)

∑
x∈S π(x)

.

Let Φ∗ = minS⊂Ω:π(S)≤1/2 Φ(S). Then (see, e.g., [10,13])

Tmix ≥ 1
4Φ∗

. (1)

1.2 Factor-Critical Graphs

A graph G = (V,E) is factor-critical if for every vertex v ∈ V , the graph
induced on V \ {v} has a perfect matching. (In particular, |V | is odd.)

Factor-critical graphs are characterized by their “ear” structure. The quo-
tient G/H of a graph G by a (not necessarily induced) subgraph H is derived
from G by deleting all edges in H and contracting all vertices in H to a sin-
gle vertex vH (possibly creating loops or multi-edges). An ear of G relative a
subgraph H of G is simply a cycle in G/H containing the vertex vH .

Theorem 1 (Lovász [11]). A graph G is factor-critical if and only if there is
a decomposition G = C0 ∪ · · · ∪ Cr such that C0 is a single vertex, and Ci is an
odd-length ear in G relative to

⋃
j<i Cj, for all 0 < i ≤ r.

Furthermore, if G is factor critical, there exists such a decomposition for
every choice of vertex C0, and the order r of the decomposition is independent
of all choices.

Since the number of ears in the ear decomposition of a factor-critical graph
depends only on the graph, and not on the choice made in the decomposition,
we say the order of the factor-critical graph G is the number r of ears in any
ear decomposition of G.

Factor-critical graphs play a central role in the Gallai−Edmonds structure
theorem for graphs. We state an abridged version of the theorem below.

Given a graph G, let D(G) be the set of vertices that remain unmatched in at
least one maximum matching of G. Let A(G) be the set of vertices not in D(G)
but adjacent to at least one vertex of D(G). And let C(G) denote the remaining
vertices of G.

876 D. Štefankovič et al.

Theorem 2 (Gallai−Edmonds Structure Theorem). The connected com-
ponents of D(G) are factor-critical. Furthermore, every maximum matching of
G induces a perfect matching on C(G), a near-perfect matching on each con-
nected component of D(G), and matches all vertices in A(G) with vertices from
distinct connected components of D(G).

2 The Jerrum−Sinclair−Vigoda Chain

We recall the definition of the original Markov chain proposed by Broder [1].
The state space of the chain is Ω = P ∪⋃

u,v N (u, v) where P is the collection of
perfect matchings and N (u, v) are near-perfect matchings with holes at u and v
(i.e., vertices u and v are the only unmatched vertices). The transition rule for
a matching M ∈ Ω is as follows:

1. If M ∈ P, randomly choose an edge e ∈ M and transition to M \ {e}.
2. If M ∈ N (u, v), randomly choose a vertex x ∈ V . If x ∈ {u, v} and u is

adjacent to v, transition to M ∪ {(u, v)}. Otherwise, let y ∈ V be the vertex
matched with x in M , and randomly choose w ∈ {u, v}. If x is adjacent to
w, transition to the matching M ∪ {(x,w)} \ {(x, y)}.

The chain XB is symmetric, so its stationary distribution is uniform. In partic-
ular, when |P|/|Ω| is at least inverse-polynomial in n, we can efficiently generate
uniform samples from P via rejection sampling, given access to samples from the
stationary distribution of XB.

In order to sample perfect matchings even when |Ω|/|P| is exponentially
large, Jerrum et al. [7] introduce a new chain XJSV that changes the stationary
distribution of XB by means of a Metropolis filter. The new stationary distri-
bution is uniform across hole patterns, and then uniform within each hole pat-
tern, i.e., for every M ∈ Ω, the stationary probability of M is proportional to
1/|N (u, v)| if M ∈ N (u, v), and proportional to 1/|P| if M ∈ P.

We define XJSV in greater detail. For M ∈ Ω, define the weight function

w(M) =

{
1

|P| if M ∈ P
1

|N (u,v)| if M ∈ N (u, v) (2)

Definition 1. The chain XJSV has the same state space as XB. The transition
rule for a matching M ∈ Ω is as follows:

1. First, choose a matching M ′ ∈ Ω to which M may transition, according to
the transition rule for XB.

2. With probability min{1, w(M ′)/w(M)}, transition to M ′. Otherwise, stay
at M .

In their paper, Jerrum et al. [7] in fact analyze a more general version of
the chain XJSV that allows for arbitrary edge weights in the graph. They show
that the chain is rapidly mixing for bipartite graphs G. (They also study the

On Counting Perfect Matchings in General Graphs 877

separate problem of estimating the weight function w, and give a “simulating
annealing” algorithm that allows the weight function w to be estimated by grad-
ually adjusting edge weights to obtain an arbitrary bipartite graph G from the
complete bipartite graph.) Their analysis of the mixing time uses a canonical
paths argument that crucially relies on the bipartite structure of the graph.
However, it remained an open question whether a different analysis of the same
chain XJSV, perhaps using different canonical paths, might generalize to non-
bipartite graphs. We rule out this approach.

In fact, we rule out a more general family of Markov chains for sampling
perfect matchings. We say a Markov chain is “of XJSV type” if it has the same
state space as XJSV, with transitions as defined in Definition 1, for some weight
function w(M) (not necessarily the same as in Eq. (2)) depending only the hole
pattern of the matching M .

Theorem 3. There exists a graph G on n vertices such that for any Markov
chain X of XJSV type on G, either the stationary probability of P is at most
exp(−Ω(n)), or the mixing time of X is at least exp(Ω(n)).

The graph G of Theorem 3 is constructed from several copies of a smaller
gadget H, which we now define.

Definition 2. The chain of boxes gadget Bk of length k is the graph on
4k vertices depicted in Fig. 1. To construct Bk, we start with a path P2k−1 =
v0, v1, . . . , v2k of length 2k − 1. Then, for every even edge {v2i, v2i+1} on the
path, we add two additional vertices ai, bi, along with edges to form a path
v2i, ai, bi, v2i+1 of length 3.

v0

a0 b0

v1 v2

a1 b1

v3
. . .

v2k

ak bk

v2k+1

Fig. 1. The “chain of boxes” gadget Bk, which has 2k perfect matchings, but only a
single matching in N (v0, v2k+1).

Observation 4. The chain of boxes gadget Bk has 2k perfect matchings, but
only one matching in N (v0, v2k+1).

Definition 3. The torpid mixing gadget Hk is the graph depicted in Fig. 2.
To construct H, first take a C12 and label two antipodal vertices as a and b. Add
an edge between a and b, and label the two vertices farthest from a and b as u
and v. Label the neighbor of u closest to a as w1, and the other neighbor of u as
w2. Label the neighbor of v closest to a as z1 and the other neighbor of v as z2.
Finally, add four chain-of-boxes gadgets Bk, identifying the vertices v0 and v2k

of the gadgets with w1 and a, with a and z1, with w2 and b, and with b and z2,
respectively.

878 D. Štefankovič et al.

Note that in Figs. 2 and 3, one “box” from each copy of Bk in the torpid
mixing gadget is left undrawn, for visual clarity.

u

w1 x1
a

x2w2

y1 z1

v

z2y2

. . .

. . .

. . .

. . .

Fig. 2. The torpid mixing gadget Hk. The unique matching M ∈ N (u, v) is depicted
with thick edges.

x1

v

. . .

. . .

. . .

. . .

Fig. 3. A matching M ′ ∈ N (x1, v). There are exponentially many matchings with the
same hole pattern, obtained by alternating the 4-cycles above x1.

Lemma 1. The torpid mixing gadget H = Hk has 16k + 4 vertices and exactly
2 perfect matchings. Furthermore, |NH(u, v)| = 1 and NH(x1, v) ≥ 2k.

The unique matching in NH(u, v) is depicted in Fig. 2, and an example of a
matching in NH(x1, v), which generalizes easily to the entire family, is depicted
in Fig. 3. The details of the proof are deferred to the full version of the paper.

The torpid mixing gadget already suffices on its own to show that the Markov
chain XXJSV defined in [7] is torpidly mixing. In particular, the conductance out
of the set NH(x1, v) ⊆ Ω(H) is 2−Ω(k). In order to prove the stronger claim
of Theorem 3, that every Markov chain of XJSV-type fails to efficiently sample
perfect matchings, we construct a slightly larger graph from copies of the torpid
mixing gadgets.

On Counting Perfect Matchings in General Graphs 879

Definition 4. The counterexample graph Gk is the graph depicted in Fig. 4.
It is defined by replacing every third edge of the twelve-cycle C12 with the gad-
get Hk defined in Fig. 2. Specifically, let {ui, vi} be the 3i-th edge of C12 for
i ∈ {1, . . . , 4}. We delete each edge {ui, vi} and replace it with a copy of H,
identifying the vertices u and v of H with vertices ui and vi of C12. The result-
ing graph is Gk. Thus, of the 12 original vertices in C12, 8 of the corresponding
vertices in Gk participate in a copy of the gadget H, and 4 do not. These 4
vertices of Gk which do not participate in any copy of the gadget H are labeled
t1, . . . , t4 in cyclic order, and the copies of the gadget H are labeled H1, . . . H4 in
cyclic order, with H1 coming between t1 and t2, and so on. Thus, t1 is adjacent
to u1 and v4, ti is adjacent to ui and vi−1 for i ∈ {2, . . . , 4}, and Hi contains
both ui and vi.

t1
u1 v1 t2

u2

v2

t3u3v3t4

u3

v3

Hk

Hk

Hk

Hk

Fig. 4. The “counterexample graph” Gk on which XJSV is torpidly mixing. The boxes
labeled Hk represent copies of the torpid mixing gadget of Definition 3.

In particular, Gk has 4|V (H)| + 4 = 64k + 8 vertices.
The perfect and near-perfect matchings of Gk are naturally divided into

four intersecting families. For i ∈ {1, . . . , 4} we define Si to be the collection of
(perfect and near-perfect) matchings M ∈ Ω(Gk) such that the restriction of M
to Hi has two holes, at ui and vi, i.e., such that the vertices ui and vi either
have holes in M or are matched outside of Hi.

Lemma 2. The counterexample graph Gk has exactly 8 perfect matchings. Of
these, 4 are in S1 ∩ S3 \ (S2 ∪ S4) and 4 are in S2 ∩ S4 \ (S1 ∪ S3).

The proof of this lemma is deferred to the full version of the paper.
In the proof below, we use the notation N (M) denote the collection of

matchings with the hole pattern as M . That is, N (M) = P if M ∈ P, and
N (M) = N (u, v) if M ∈ N (u, v).

880 D. Štefankovič et al.

Proof (Proof of Theorem 3). Let Gk be the counterexample graph of Definition 4.
We will show that the set S1 ∪ S3 ⊆ Ω(Gk) has poor conductance, unless the
stationary probability of PGk

is small. We will write A = S1 ∪ S3 and A =
Ω(Gk) \ (S1 ∪ S3).

Let M ∈ A and M ′ ∈ A be such that P (M,M ′) > 0. We claim that neither
M nor M ′ are perfect matchings. Assume without loss of generality that M ∈ S1.
If M ∈ S1 is a perfect matching, then M ∈ P2 and so M ∈ S3. The only legal
transitions from M to Ω \ S1 are those that introduce additional holes within
H1, but none of these transitions to a matching outside of S3. Hence, M cannot
be perfect. But if M ′ is perfect, then M ′ ∈ P1, and so M ′ induces a perfect
matching on S1. But then the transition from M to M ′ must simultaneously
affect u1 and v1, and no such transition exists.

We denote by ∂A the set of matchings M ′ ∈ A such that there exists a
matching M ∈ A with P (M,M ′) > 0. We claim that for every matching M ′ ∈ A,
we have

|N (M ′) ∩ ∂A| ≤ 2k−1|N (M ′)| . (3)

Let M ′ ∈ ∂A, and let M ∈ A be such that P (M,M ′) > 0. Suppose first that
M ∈ S1. Label the vertices of H1 as in Fig. 2, identifying u1 with u and v1
with v. Let N be the matching on H = H1 induced by M , and let N ′ be the
matching on H1 induced by M ′. We have N ∈ NH(u1, v1). But by Lemma 1, we
have |NH(u1, v1)| = 1, i.e., N is exactly the matching depicted in Fig. 2. The
only transitions that remove the hole at u are the two that shift the hole to x1

or x2, and the only transitions that remove the hole at v are the two that shift
the hole to y1 or y2. So, without loss of generality, by the symmetry of Gk, we
have N ′ ∈ NH(x1, v1). By Lemma 1, |NH(x1, v1)| ≥ 2k, but only one matching
in NH(x1, v1) has a legal transition to N . Therefore, if we replace the restriction
of M ′ to H1 with any other matching in NH(x1, v1), we obtain another matching
M ′′ ∈ N (M ′), but M ′′ has no legal transition to any matching in N (M). Hence,
only a 2−k-fraction of N (M ′) has a legal transition to S1, and similarly only a
2−k-fraction of N (M ′) has a legal transition to S3. In particular, we have proved
Eq. (3).

From Eq. (3), it immediately follows that the stationary probability of ∂A is

π(∂A) =
∑

M ′∈∂A

π(M ′) =
∑

M ′∈A

π(M ′)
|N (M ′) ∩ ∂A|

|N (M ′)| = 2−k+1π(A) (4)

We now compute
∑

M∈A,M ′∈A
P (M,M ′)>0

π(M)P (M,M ′) =
∑

M∈A,M ′∈A
P (M,M ′)>0

π(M ′)P (M ′,M) ≤ π(∂(A))

< 2−k+1π(A),

where we first use the detailed balance condition and then Eq. (4).

On Counting Perfect Matchings in General Graphs 881

Now by (1) and the definition of conductance, we have

1
4τX

< Φ(A) < 2−k π(A)
π(A)

.

In particular, if τX < 2k/2−2, then π(A) > 2k/2+1π(A). Suppose this is the case.
By Lemma 2, half of the perfect matchings of Gk belong to A. In particular,
π(PGk

) ≤ 2π(A) < 2−k/2+2. Hence, either the stationary probability of P is
at most 2−k/2+2 = exp(−Ω(n)), or the mixing time of X is at least 2k/2−2 =
exp(Ω(n)). 	

We remark that the earlier Markov chain studied by Broder [1] and Jer-
rum and Sinclair [6] is also torpidly mixing on the counterexample graph of
Definition 4, since the ratio of near-perfect matchings to perfect matchings is
exponential [6].

3 Chains Based on Edmonds’ Algorithm

Given that Edmonds’ classical algorithm for finding a perfect matching in a
bipartite graph requires the careful consideration of odd cycles in the graph,
it is reasonable to ask whether a Markov chain for counting perfect matchings
should also somehow track odd cycles. In this section, we briefly outline some of
the difficulties of such an approach.

A blossom of length k in a graph G equipped with a matching M is simply
an odd cycle of length 2k + 1 in which k of the edges belong to M . Edmonds’
algorithm finds augmenting paths in a graph by exploring the alternating tree
rooted at an unmatched vertex, and contracting blossoms to a vertex as they are
encountered. Given a blossom B containing an unmatched vertex u, there is an
alternating path of even length to every vertex v ∈ B. Rotating B to v means
shifting the hole at u to v by alternating the u-v path in B.

Adding rotation moves to a Markov chain in the style of XJSV is an attractive
possible solution to the obstacles presented in the previous section. Indeed, if it
were possible to rotate the 7-cycle containing u and a in the graph in Fig. 2, it
might be possible to completely avoid problematic holes at x1 or x2.

The difficulty in introducing such an additional move the Markov chain XJSV

is in defining the set of feasible blossoms that may be rotated, along with a
probability distribution over such blossoms. In order to be useful, we must be
able to efficiently sample from the feasible blossoms at a given near-perfect
matching M . Furthermore, the feasible blossoms must respect time reversibility:
if B is feasible when the hole is at u ∈ B, then it must also be feasible after
rotating the hole to v ∈ B; reversibility of the Markov chain is needed so that
we understand its stationary distribution. Finally, the feasible blossoms must be
rich enough to avoid the obstacles outlined in the previous section.

The set of “minimum length” blossoms at a given hole vertex u satisfies the
first criterion of having an efficient sampling algorithm. But it is easy to see that
if only minimum length blossoms are feasible, then the obstacles outlined in the

882 D. Štefankovič et al.

previous section will still apply (simply by adding a 3-cycle at every vertex).
Moreover, families blossoms characterized by minimality may struggle to satisfy
the second criterion of time-reversibility. In Fig. 5, there is a unique blossom
containing u, but after rotating the hole to v, it is no longer minimal.

u

v

Fig. 5. After rotating the blossom so that the hole is moved from u to v, the blossom
is no longer “minimal”.

On the other hand, the necessity of having an efficient sampling algorithm
for the feasible blossoms already rules out the simplest possibility, namely, the
uniform distribution over all blossoms containing a given hole vertex u. Indeed,
if we could efficiently sample from the uniform distribution over all blossoms con-
taining a given vertex u, then by an entropy argument we could find arbitrarily
large odd cycles in the graph, which is NP-hard.

Theorem 5. Let Sampling Blossoms problem be defined as follows. The input
is an undirected graph G and a near-perfect matching M with holes at w, r ∈
V (G). The output is a uniform sample from the uniform distribution of blossoms
containing w. Unless NP=RP there is no randomized polynomial-time sampler
for Sampling Blossoms.

The proof is deferred to the full version of the paper.

4 A Recursive Algorithm

We now explore a new recursive algorithm for counting matchings, based on
the Gallai−Edmonds decomposition. In the worst case, this algorithm may still
require exponential time. However, for graphs that have additional structural
properties, for example, those that are “sufficiently close to bipartite” in a sense
that will be made precise, our recursive algorithm runs in polynomial time. In
particular, it will run efficiently on examples similar to those used to prove torpid
mixing of Markov chains in the previous section.

We now state the algorithm. It requires as a subroutine an algorithm for
computing the permanent of the bipartite adjacency matrix of a bipartite graph
G up to accuracy ε. We denote this subroutine by Permanent(G, ε). The
Permanent subroutine requires time polynomial in |V (G)| and 1/ε using the
algorithm of Jerrum et al. [7], but we use it as a black-box.

We first argue the correctness of the algorithm.

On Counting Perfect Matchings in General Graphs 883

Algorithm 1. Recursive algorithm for approximately counting the number of
perfect matchings in a graph
1: procedure Recursive-Count(G, ε)
2: If V (G) = ∅, return 1.
3: Choose u ∈ V (G).
4: Compute the Gallai−Edmonds decomposition of G − u.
5: for all v ∈ D(G − u) do
6: Hv ← the connected component of G − u containing v
7: mv ← Recursive-Count(Hv − v, ε/(2n))
8: end for
9: mC ← Recursive-Count(C(G − u), ε/3)

10: Let X = A(G − u) ∪ {u}, and let Y be the set of connected components in
D(G − u). Let G′ be the bipartite graph on (X, Y) defined as follows: for every
x ∈ X and H ∈ Y , if x has any neighbors in H in G′, add an edge {x, H} in G′

with weight

w(x, H) =
∑

v∈N(x)∩H

mv .

11: return mC ∗ Permanent(G′, ε/3)
12: end procedure

Theorem 6. Algorithm1 computes the number of perfect matchings in G to
within accuracy ε.

Proof. We show that the algorithm is correct for graphs on n vertices, assuming
it is correct for all graphs on at most n − 1 vertices.

We claim that permanent of the incidence matrix of G′ defined on line 10
equals the number of perfect matchings in G. Indeed, every perfect matching M
of G induces a maximum matching Mu on G−u. By the Gallai−Edmonds theo-
rem, Mu matches each element of A(G′) with a vertex from a distinct component
of D(G′), leaving one component of D(G′) unmatched. Vertex u must therefore
be matched in M with a vertex from the remaining component of D(G′). There-
fore, M induces a perfect matching M ′ on G′. Now let Hx ∈ Y be the vertex of
G′ matched to x for each x ∈ X. Then the number of distinct matchings of G
inducing the same matching M ′′ on G′′ is exactly

∏

x∈X

∑

v∈N(x)∩Hx

mv =
∏

x∈X

w(x,Hx)

which is the contribution of M ′ to the permanent of G′. Similarly, from an arbi-
trary matching M ′ of G′, with Hx defined as above, we obtain

∏
x∈X w(x,Hx)

matchings of G, proving the claim.
Hence, it suffices to to compute the permanent of the incidence matrix of G′

up to accuracy ε. We know the entries of the incidence matrix up to accuracy
ε/(2n), and (1+ε/(2n))n/2 < 1+ε/3 for ε sufficiently small. Therefore, it suffices
to compute the permanent of our approximation of the incidence matrix up to
accuracy ε/3 to get overall accuracy better than ε. 	

884 D. Štefankovič et al.

The running time of Algorithm1 is sensitive to the choice of vertex u on line
3. If u can be chosen so that each component of D(G − u) is small, then the
algorithm is an efficient divide-and-conquer strategy. More generally, if u can
be chosen so that each component of D(G − u) is in some sense “tractable”,
then an efficient divide-and-conquer strategy results. In particular, since it is
possible to exactly count the number of perfect matchings in a factor-critical
graph of bounded order in polynomial time, we obtain an efficient algorithm
for approximately counting matchings in graphs whose factor-critical subgraphs
have bounded order. This is the sense in which Algorithm1 is efficient for graphs
“sufficiently close” to bipartite.

Theorem 7. Suppose every factor-critical subgraph of G has order at most k.
Then the number of perfect matchings in G can be counted to within accuracy ε
in time 2O(k)poly(n, 1/ε).

The essential idea of the proof is to first observe that a factor-critical graph
can be shrunk to a graph with O(k) edges having the same number of perfect
matchings after deleting any vertex. The number of perfect matchings can then
be counted by brute force in time 2O(k)poly(n). This procedure replaces the
recursive calls on line 6 of the algorithm. The details of the proof are deferred
to the full version of the paper.

We note that Theorem 7 is proved by eliminating recursive calls in the algo-
rithm. Although the recursive calls of Algorithm1 can be difficult to analyze,
they can also be useful, as we now demonstrate by showing that Algorithm 1
runs as-is in polynomial time on the counterexample graph of Definition 4, for
appropriate choice of the vertex u on the line 3 of the algorithm.

Theorem 8. Algorithm1 runs in polynomial time on the counterexample graph
of Definition 4, for appropriate choice of the vertex u on the line 3 of the
algorithm.

The proof is given in the full version of the paper.

Acknowledgements. This research was supported in part by NSF grants CCF-
1617306, CCF-1563838, CCF-1318374, and CCF-1717349. The authors are grateful
to Santosh Vempala for many illuminating conversations about Markov chains and the
structure of factor-critical graphs.

References

1. Broder, A.Z.: How hard is it to marry at random? (On the approximation of the
permanent). In: Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), pp. 50–58 (1986). Erratum in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, p. 551 (1988)

2. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
3. Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 8,

273–395 (1963)

On Counting Perfect Matchings in General Graphs 885

4. Gallai, T.: Maximale systeme unabhängiger kanten. Magyar Tud. Akad. Mat.
Kutató Int. Kőzl 9, 401–413 (1964)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

6. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6),
1149–1178 (1989)

7. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. J. ACM 51(4), 671–697
(2004)

8. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43(2–3), 169–188
(1986)

9. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theo-
retical Physics, pp. 43–110, Academic Press, London (1967)

10. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2009)

11. Lovász, L.: A note on factor-critical graphs. Stud. Sci. Math. Hungar 7(11), pp.
279–280 (1972)

12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
13. Sinclair, A.J.: Algorithms for Random Generation and Counting: A Markov Chain

Approach. Birkhäuser, Basel (1988)
14. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.

8(2), 189–201 (1979)

Author Index

Abreu, Alexandre 1
Agrawal, Kunal 755
Ailon, Nir 14
Akhoondian Amiri, Saeed 37
Allen, Peter 28
Antoniadis, Antonios 52
Araújo, Júlio 66

Banerjee, Sandip 80
Banik, Aritra 94
Banyassady, Bahareh 108
Barba, Luis 108
Bartal, Yair 120
Becker, Florent 134
Bhattacharya, Anup 14
Bhore, Sujoy 80
Biedl, Therese 146
Blin, Lélia 161
Boczkowski, Lucas 174
Boissonnat, Jean-Daniel 187
Bosek, Bartłomiej 201
Bosman, Thomas 217

Campos, Victor A. 66
Caraballo, Luis Evaristo 231
Carrasco, Rodrigo A. 245
Castermans, Thom 260
Chakraborty, Sourav 275
Chandran, L. Sunil 625
Charalampopoulos, Panagiotis 290
Chau, Vincent 303
Chen, Ruiwen 317
Chitnis, Rajesh 80
Choudhary, Pratibha 94
Christiansen, Anders Roy 331
Cleve, Jonas 346
Cunha, Luís 1

Das, Anita 625
de Figueiredo, Celina 1
Deniz, Zakir 361
Derka, Martin 146
Dey, Tamal K. 376
Dovgal, Sergey 399

Duchon, Philippe 413
Dudek, Andrzej 427
Dusefante, Matteo 437
Dutta, Kunal 187

Eppstein, David 777
Ettienne, Mikko Berggren 331

Fekete, Sándor P. 448
Feng, Shengzhong 303
Fernandes, Tharso 1
Fischer, Carsten 52, 461
Foerster, Klaus-Tycho 37
Fukunaga, Takuro 653
Fürer, Martin 475

Gagie, Travis 490
Gao, Hang 504
Gao, Wenyu 504
Gärtner, Bernd 572
Gaspers, Serge 515
Georgiadis, Loukas 529
Ghosh, Arijit 187
Goodrich, Michael T. 777
Gottlieb, Lee-Ad 120
Grossi, Roberto 544
Gudmundsson, Joachim 515
Guinard, Brieuc 174
Gutiérrez, Juan 558

Han, Jie 584
He, Meng 597
Hoppen, Carlos 475
Horton, Michael 515

Iglesias, Jennifer 611
Iliopoulos, Costas S. 290
Irvine, Veronika 146
Issac, Davis 625
Italiano, Giuseppe F. 529

Jabrayilov, Adalat 640
Jacob, Riko 437

Jacobs, David P. 475
Jaiswal, Ragesh 14
Jiao, Yang 217

Karmalkar, Sushrut 275
Kawase, Yasushi 653
Khuller, Samir 669
Klost, Katharina 683
Koch, Christoph 28
Kohayakawa, Yoshiharu 584, 697
Kolay, Sudeshna 187
Korman, Amos 174
Kowada, Luis 1
Krithika, R. 712
Krizanc, Danny 727
Kundu, Srijita 275

Lafond, Manuel 727
Leniowski, Dariusz 201
Li, Jing 755
Li, Jingling 669
Li, Tianqi 376
Lintzmayer, Carla Negri 741
Liu, Chang 290
Lokam, Satyanarayana V. 275
Lokshtanov, Daniel 94
Lotker, Zvi 174
Lu, Kefu 755
Lubiw, Anna 146

Maia, Ana Karolinna 66
Mamano, Nil 777
Marchetti-Spaccamela, Alberto 217
Marino, Andrea 544
Marquezino, Franklin 1
Melissourgos, Themistoklis 790
Meulemans, Wouter 805
Miracle, Sarah 820
Mitchell, Joseph S. B. 448
Miyazawa, Flávio Keidi 697, 741
Mondal, Debajyoti 146
Montealegre, Pedro 134
Moseley, Benjamin 755
Mulzer, Wolfgang 108, 346, 683
Mutzel, Petra 640

Narayanan, Lata 727
Navarro, Gonzalo 490
Nguyen, Cuong P. 597

Nicaud, Cyril 413
Nichols, Torrie L. 835
Nikoletseas, Sotiris 790
Nivelle, Simon 361

Oliveira, Igor C. 317
Opatrny, Jaroslav 727

Parczyk, Olaf 28
Parotsidis, Nikos 529
Pérez-Lantero, Pablo 231
Person, Yury 28
Pilz, Alexander 835
Pissis, Solon P. 290
Portugal, Renato 1
Posner, Daniel 1
Prezza, Nicola 490
Pruhs, Kirk 245

Rajaraman, Rajmohan 611
Raman, Venkatesh 94
Rapaport, Ivan 134
Raptopoulos, Christoforos 790
Ravelomanana, Vlady 399
Ravi, R. 217, 611
Renault, Marc 174
Rieck, Christian 448
Ries, Bernard 361
Röglin, Heiko 461
Rotondo, Pablo 849
Ruciński, Andrzej 427
Rümmele, Stefan 515

Sahu, Abhishek 712
Sales, Marcelo Tadeu 584
Sankowski, Piotr 201
Santhanam, Rahul 317
Sau, Ignasi 66
Saurabh, Nitin 275
Saurabh, Saket 94, 712
Scheffer, Christian 448
Schindl, David 361
Schmid, Stefan 37
Schmidt, Arne 448
Seara, Carlos 231
Shende, Sunil 727
Silva, Ana 66
Speckmann, Bettina 260, 805
Spirakis, Paul 790
Staals, Frank 260

888 Author Index

Stagni, Henrique 584
Štefankovič, Daniel 873
Stein, Cliff 245
Stougie, Leen 217
Streib, Amanda Pascoe 820
Sturmfels, Pascal 669
Sumita, Hanna 653
Sun, Kevin 669
Sundaram, Ravi 611

Thang, Nguyen Kim 303
Tixeuil, Sébastien 161
Todinca, Ioan 134
Tönnis, Andreas 52
Tóth, Csaba D. 835
Trevisan, Vilmar 475
Turcotte, Alexi 146

Vallée, Brigitte 849
van Ee, Martijn 217
van Leeuwen, Erik Jan 625
Venkat, Prayaag 669

Ventura, Inmaculada 231
Verbeek, Kevin 260, 805
Versari, Luca 544
Verschae, José 245
Vigoda, Eric 873
Viola, Alfredo 849
von Höveling, Sven 448

Wakabayashi, Yoshiko 697
Wang, Yusu 376
Watson, Thomas 864
Wilmes, John 873
Wulms, Jules 805

Xavier, Eduardo Candido 741

Zeh, Norbert 597
Zehavi, Meirav 712
Zehmakan, Ahad N. 572, 835
Zuber, James R. 448
Zych-Pawlewicz, Anna 201

Author Index 889

	Preface
	The Imre Simon Test-of-Time Award
	Organization
	Contents
	The Graph Tessellation Cover Number: Extremal Bounds, Efficient Algorithms and Hardness
	1 Introduction
	2 Preliminaries on the Tessellation Cover Number
	3 Extremal Tessellation Covers
	4 Computational Complexity
	4.1 NP-completeness
	4.2 2-Tessellability

	5 Concluding Remarks and Discussion
	References

	Approximate Correlation Clustering Using Same-Cluster Queries
	1 Introduction
	2 Query Lower Bounds
	3 Algorithms for MaxAgree[k] and MinDisAgree[k] in SSAC Framework
	3.1 MaxAgree[k]
	3.2 MinDisAgree[k]

	4 Conclusion and Open Problems
	References

	Finding Tight Hamilton Cycles in Random Hypergraphs Faster
	1 Introduction
	1.1 Main Result

	2 An Informal Algorithm Overview
	2.1 Notation and Inequalities
	2.2 Overview of the Algorithm

	3 Two Key Lemmas
	4 Overview Continued: More Details
	5 Conclusion
	References

	Walking Through Waypoints
	1 Introduction
	1.1 Our Contributions
	1.2 A Practical Motivation
	1.3 Related Work

	2 Walking Through Waypoints on Bounded Treewidth
	2.1 Treewidth Preliminaries
	2.2 Unified Graphs
	2.3 Signature Generation and Properties
	2.4 Programming the Nice Tree Decomposition
	2.5 Putting It All Together

	3 Walking Through Logarithmically Many Waypoints
	4 NP-Hardness
	5 Conclusion
	References

	A Collection of Lower Bounds for Online Matching on the Line
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Lower Bounds for Deterministic Algorithms
	2.1 Local and Non-Symmetric Algorithms

	3 Lower Bounds for Randomized Algorithms
	4 Discussion
	References

	On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths
	1 Introduction
	2 Complexity Dichotomy in Terms of the Path Lengths
	3 Finding Subdivisions of 2-Spindles
	3.1 Finding 2-Spindles with Large Total Size
	3.2 Finding 2-Spindles with Two Specified Lengths

	4 Conclusions
	References

	Algorithms and Hardness Results for Nearest Neighbor Problems in Bicolored Point Sets
	1 Introduction
	2 Algorithmic Results
	2.1 Polynomial Time Algorithms for MCS Problem on the Real Line
	2.2 PTAS for k-MSS(R2):

	3 Hardness Results
	3.1 NP-Hardness for MCS and MSS in Graphs
	3.2 2-MSS-R2 is Contained in W[1]
	3.3 Streaming Lower Bounds

	4 Conclusions and Open Problems
	References

	A Polynomial Sized Kernel for Tracking Paths Problem
	1 Introduction
	2 NP-Completeness
	2.1 Characterization of Tracking Set
	2.2 Tracking Set as Feedback Vertex Set
	2.3 Verification of Tracking Set

	3 Polynomial Kernel for TRACKING PATHS
	3.1 Bounding the Number of Vertices in F with at Least Two Neighbors in S
	3.2 Bounding the Number of Trees in F
	3.3 Bounding the Number of Vertices in F with Exactly One Neighbor in S
	3.4 Wrapping Up – Polynomial Kernel and FPT Algorithm

	4 Conclusions
	References

	Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees
	1 Introduction
	2 Preliminaries and Definitions
	3 The Algorithm
	References

	Approximate Nearest Neighbor Search for p-Spaces (2<p<) via Embeddings
	1 Introduction
	1.1 Related Work
	1.2 Preliminaries

	2 ANN for p-Space via Embedding into
	2.1 Embedding into
	2.2 Embedding with Distortion Dependent on the Doubling Dimension

	3 ANN for p-Space via Embedding into 2
	3.1 The Mazur Map
	3.2 Nearest Neighbor Search via the Mazur Map

	References

	The Impact of Locality on the Detection of Cycles in the Broadcast Congested Clique Model
	1 Introduction
	2 Basic Definitions and Notations
	3 Detection of Short Cycles
	4 Detection of Long Cycles
	4.1 Computing the Connected Components of G-Fx
	4.2 Deciding k-Chordality

	5 Conclusion
	References

	Partitioning Orthogonal Histograms into Rectangular Boxes
	1 Introduction
	2 Preliminaries
	3 3D-Histogram Partition is NP-Hard for Height 2
	4 3D-Histogram Partition is APX-Hard for Height 4
	5 Partitioning Using Guillotine Cuts
	6 Orthogonal Polyhedra with Bounded Dimensions
	7 Corner Polyhedra
	8 Open Problems
	References

	Compact Self-Stabilizing Leader Election for General Networks
	1 Introduction
	2 Model and Definitions
	2.1 Protocol Syntax and Semantics
	2.2 Schedulers

	3 Compact Self-stabilizing Leader Election for Networks
	3.1 Compact Memory Using Identifiers
	3.2 Silent Self-stabilizing Distance-2 Coloring
	3.3 Cleaning a Cycle or an Impostor-Rooted Spanning Tree
	3.4 Silent Self-stabilizing Algorithm for Cycle Detection
	3.5 Talkative Spanning Tree-Construction Without Distance

	4 Self-stabilizing Leader Election
	5 Conclusion
	References

	Random Walks with Multiple Step Lengths
	1 Introduction
	1.1 Background and Motivation
	1.2 Models
	1.3 Our Results
	1.4 Preliminaries

	2 Upper Bound on the Cycle
	3 Lower Bound on the Cycle
	4 Efficient Strategy for Walk or Probe
	References

	Tight Kernels for Covering and Hitting: POINT HYPERPLANE COVER and POLYNOMIAL POINT HITTING SET
	1 Introduction
	2 Preliminaries
	3 Kernelization Lower Bound for POINT HYPERPLANE COVER
	4 Covering Polynomials of Bounded Degree with Points
	5 Open Problems
	References

	A Tight Bound for Shortest Augmenting Paths on Trees
	1 Introduction
	2 Motivation and Related Work
	3 The Mini-Max Game
	4 Dead Vertices
	5 The Proof
	References

	Approximation Algorithms for Replenishment Problems with Fixed Turnover Times
	1 Introduction
	2 Complexity
	3 Approximation on Trees
	3.1 MIN-MAX
	3.2 MIN-AVG on the Line

	4 Approximation on General Graphs
	5 Conclusion
	References

	Maximum Box Problem on Stochastic Points
	1 Introduction
	2 Weighted Points in One Dimension
	2.1 Hardness
	2.2 Pseudo-Polynomial Time Algorithms

	3 Red and Blue Points in the Plane
	3.1 Hardness
	3.2 Two-Point Boxes

	4 Discussion and Open Problems
	References

	The Online Set Aggregation Problem
	1 Introduction
	2 The Lower Bound
	3 The Upper Bound
	3.1 Lower Bound on the Optimal Solution
	3.2 Algorithm Design
	3.3 Algorithm Analysis

	4 Conclusion
	A Detailed Proofs
	References

	Agglomerative Clustering of Growing Squares
	1 Introduction
	2 Geometric Properties
	3 A Kinetic Data Structure for Growing Squares
	3.1 The Data Structure
	3.2 Answering Queries
	3.3 Inserting or Deleting a Square
	3.4 Running the Simulation

	4 Efficient Representation of Dominance Relations
	References

	Fourier Entropy-Influence Conjecture for Random Linear Threshold Functions
	1 Introduction
	1.1 Our Proof Technique

	2 Lower Bounds on Influence
	2.1 Proof of Theorem6 (assuming w0 = 0)
	2.2 Fourier Entropy Influence Conjecture for a Class of Linear Threshold Functions

	3 Lower Bounds on Influence for Random Linear Threshold Functions
	3.1 Proof of Theorem12
	3.2 Fourier Entropy Conjecture for a Random Linear Threshold Function

	4 Conclusion and Open Problems
	A Reducing Non-homogeneous to Homogeneous case
	References

	Property Suffix Array with Applications
	1 Introduction
	2 Preliminaries
	2.1 Suffix Array

	3 O(n)-Space Algorithms for Computing PSA
	3.1 Sparse Table-Based O(nlog2 n)-Time Algorithm
	3.2 LCP-Based O(n logn)-Time Algorithm
	3.3 Union-Find-Based O(n)-Time Algorithm

	4 Weighted Suffix Array
	5 Experimental Results
	References

	Competitive Algorithms for Demand Response Management in Smart Grid
	1 Introduction
	1.1 Model Definition
	1.2 Related Works
	1.3 Our Contribution and Approaches

	2 A Competitive Online Algorithms
	3 An Approximation Algorithm for Unit Processing Time Jobs
	4 Concluding Remarks
	References

	An Average-Case Lower Bound Against ACC0
	1 Motivation and Background
	2 Results and Techniques
	3 Proof of Theorem 1
	3.1 Notation for Complexity Classes and Circuit Classes
	3.2 Background on ACC0 Lower Bounds
	3.3 Tools: Error Correcting Codes and Hardness Amplification
	3.4 The Proof of Theorem 1 and Its Extensions

	References

	Compressed Indexing with Signature Grammars
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	3 Signature Grammars
	3.1 Signature Grammar Construction
	3.2 Properties of the Signature Grammar

	4 Long Patterns
	4.1 Data Structure
	4.2 Searching
	4.3 Correctness
	4.4 Complexity

	5 Short Patterns
	6 Semi-short Patterns
	6.1 Data Structure
	6.2 Searching
	6.3 Analysis

	7 Randomized Solution
	References

	Combinatorics of Beacon-Based Routing in Three Dimensions
	1 Introduction
	2 Preliminary Thoughts on Tetrahedral Decompositions
	3 An Upper Bound for Beacon-Based Routing
	3.1 Preparation
	3.2 Special Cases in the Inductive Step
	3.3 Conclusion

	4 A Lower Bound for Beacon-Based Routing
	5 A Sharp Bound for Beacon-Based Routing
	6 Conclusion
	References

	On Split B1-EPG Graphs
	1 Introduction
	2 Preliminaries
	3 Subclasses of B1-EPGs
	4 Split Graphs as ["4478478]-Graphs
	5 Conclusion
	References

	Efficient Algorithms for Computing a Minimal Homology Basis
	1 Introduction
	2 Background and Notations
	3 Minimal Homology Basis
	3.1 Computing a Minimal Homology Basis
	3.2 Correctness and Time Complexity

	4 An Approximate Minimal Homology Basis of H1(K)
	5 Generalizing the Size Measure
	5.1 Path-Dominated Distance
	5.2 Size-Measure for 1-Cycles
	5.3 Examples of Tight-Size Functions

	6 Conclusions
	A Computing a Minimal Homology Basis for Hd(K)
	A.1 Algorithm

	B Proof of Claim 5.1
	C Ensuring Uniqueness of Shortest Paths
	References

	Shifting the Phase Transition Threshold for Random Graphs Using Degree Set Constraints
	1 Introduction
	1.1 Shifting the Phase Transition
	1.2 Preliminaries

	2 Phase Transition for Random Graphs
	2.1 Structure of Connected Components
	2.2 Shifting the Planarity Threshold
	2.3 Statistics of the Complex Component Inside the Critical Window

	3 Saddle-Point Analysis
	3.1 Symbolic Tools

	4 Method of Moments
	4.1 Length of a Random 2-Path
	4.2 Height of a Random Sprouting Tree

	5 Simulations
	References

	On the Biased Partial Word Collector Problem
	1 Introduction
	2 Definitions and Notations
	3 Main Result and Proof Sketch
	3.1 The Biased Partial Coupon Collector Problem
	3.2 Main Steps of the Proof

	4 Proof of Theorem 1
	4.1 Preliminary Results
	4.2 Proof for Range (a): 0
	4.3 Proof for Range (b): 01
	4.4 Proof for Range (c): 1

	5 Conclusions
	References

	Constructive Ramsey Numbers for Loose Hyperpaths
	1 Introduction
	2 Proof of Theorem 4
	References

	Cache Oblivious Sparse Matrix Multiplication
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Algorithms
	2.1 External Memory and Parallel External Memory

	3 Probabilistic Error Analysis
	A Omitted Proofs
	References

	Don't Rock the Boat: Algorithms for Balanced Dynamic Loading and Unloading
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Unloading
	3.1 NP-Completeness of the Discrete Case
	3.2 Lower Bounds and an Approximation Algorithm

	4 Loading
	4.1 Optimally Loading of Unit Items with Stacking
	4.2 Optimally Loading Without Stacking but With Minimal Space
	4.3 Optimally Loading Exponentially Growing Items

	5 Conclusion
	References

	Probabilistic Analysis of Online (Class-Constrained) Bin Packing and Bin Covering
	1 Introduction
	1.1 Probabilistic Performance Measures
	1.2 Related Work
	1.3 Our Contributions
	1.4 Algorithms

	2 Classical Bin Packing and Covering
	3 Class Constrained Bin Packing
	3.1 Results for General Item Sizes
	3.2 The Special Case of Unit Sized Items

	4 Class Constrained Bin Covering
	5 Conclusion and Further Research
	References

	Locating the Eigenvalues for Graphs of Small Clique-Width
	1 Introduction
	2 Slick Clique-Width
	3 The Algorithm
	4 Concluding Remarks
	References

	On the Approximation Ratio of Lempel-Ziv Parsing
	1 Introduction
	2 Basic Concepts
	2.1 Bidirectional Schemes
	2.2 Lempel-Ziv Parsing
	2.3 Grammar Compression
	2.4 Runs in the Burrows-Wheeler Transform
	2.5 Locally Consistent Parsing

	3 Upper Bounds
	4 Lower Bounds
	5 Conclusions
	References

	Kernelization for Maximum Happy Vertices Problem
	1 Introduction
	2 Preliminaries
	3 Kernelization for k-MHV Problem
	3.1 Partition of Vertices
	3.2 Reduction Rules
	3.3 Analyzing Size of Vertex Set
	3.4 A k-approximation Algorithm

	4 Maximum Happy Vertices on Planar Graph
	5 Conclusions
	References

	When is Red-Blue Nonblocker Fixed-Parameter Tractable?
	1 Introduction
	1.1 Related Work

	2 Symmetric Bipartite Graphs
	3 Not Too Many Blue Vertices
	References

	Incremental Strong Connectivity and 2-Connectivity in Directed Graphs
	1 Introduction
	2 Dominators and Loops
	3 Hyperloop Nesting Forest
	3.1 Updating the Hyperloop Nesting Forest After an Edge Insertion

	4 Strong Connectivity Queries and 2-Vertex-Connected Components Under Edge Insertions
	5 Conditional Lower Bounds
	References

	Efficient Algorithms for Listing k Disjoint st-Paths in Graphs
	1 Introduction
	2 Edge-Disjoint Trails to a Single Target in Directed Graphs
	3 Applications to Related Problems
	3.1 Vertex-Disjoint Paths and Other Variations
	3.2 Bounded-Length Fixed-Source Two-Disjoint-Paths

	References

	Transversals of Longest Cycles in Chordal and Bounded Tree-Width Graphs
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Tree-Decomposition and Chordal Graphs
	2.3 Proof Techniques

	3 Chordal Graphs
	4 Graphs of Bounded Tree-Width
	5 Partial 3-Trees and Split Graphs
	6 Final Remarks
	References

	Majority Model on Random Regular Graphs
	1 Introduction
	1.1 Notation and Preliminaries
	1.2 Prior Work

	2 Majority Model on Random Regular Graphs
	2.1 Density Classification
	2.2 Dynamic Monopoly and Immunity

	3 Conclusion
	References

	Property Testing for Point Sets on the Plane
	1 Introduction
	2 Formal Set-Up and Main Results
	2.1 Property Testing for Configurations
	2.2 Testing Results

	3 The Blow-Up Parameter
	4 The Erdős–Hajnal Property and Upper Bounds for the Blow-Up Parameter k*F
	5 Proofs of Theorems1 and 2
	6 Concluding Remark
	A Proof Sketch for Lemma1
	References

	Maximal and Convex Layers of Random Point Sets
	1 Introduction
	2 Algorithm Overview
	3 Maximal Layers
	4 Convex Layers
	5 Expected Size of the First k Layers
	5.1 Maximal Layers
	5.2 Convex Layers

	References

	Plane Gossip: Approximating Rumor Spread in Planar Graphs*-6pt
	1 Introduction
	1.1 Poly-logarithmic Approximation for Planar Multicommodity Multicast
	1.2 Poise and a New LP Rounding Algorithm
	1.3 Radio Gossip in Planar Graphs
	1.4 Previous Work

	2 LP Rounding for Multicast in General Graphs
	2.1 Linear Program for Poise
	2.2 Preliminaries
	2.3 The Rounding Algorithm
	2.4 Performance Ratio

	3 Approximating Multicommodity Multicast on Planar Graphs
	4 A Polylogarithmic Approximation for Radio Gossip on Planar Graphs
	References

	Algorithms and Bounds for Very Strong Rainbow Coloring
	1 Introduction
	2 Combinatorial Results
	3 Hardness Results
	4 Algorithm for Cactus Graphs
	4.1 Definitions and Structural Properties of Cactus Graphs
	4.2 Properties of Very Strong Rainbow Colorings of Cactus Graphs
	4.3 Algorithm

	5 Other Algorithmic Results
	References

	New Integer Linear Programming Models for the Vertex Coloring Problem
	1 Introduction
	2 State-of-the-Art
	3 Partial-Ordering Based ILP Models
	3.1 A Pure Partial-Ordering Based ILP Model: POP
	3.2 A Hybrid Partial-Ordering Based ILP Model: POP2

	4 Computational Experiments
	4.1 Implementation
	4.2 Test Setup and Benchmark Set of Graphs
	4.3 Experimental Evaluation

	References

	Submodular Maximization with Uncertain Knapsack Capacity
	1 Introduction
	2 Preliminaries
	3 Randomized (1-1/e)/2-Robust Adaptive Policy for SMPUC
	4 Deterministic 2(1-1/e)/21-Robust Adaptive Policy for SMPUC
	5 Randomized (1-1/[4]e)/2-Robust Universal Policy for SMPUC
	6 Polynomial-Time ((1-1/[4]e)/4-)-Approximation Algorithm for SMPSC
	References

	Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time
	1 Introduction
	1.1 Formal Problem Statement
	1.2 Related Work
	1.3 Paper Outline and Results

	2 A Minimization Framework for Online Scheduling
	2.1 The Maximization Framework of Hall et al. hall1997scheduling
	2.2 The Minimum Unscheduled Weight Problem of Garg et al.
	2.3 A Minimization Framework

	3 Applications to Concurrent Open Shop
	4 Applications to Coflow Scheduling
	5 A Randomized Online Scheduling Framework
	References

	Recognizing Generalized Transmission Graphs of Line Segments and Circular Sectors
	1 Introduction
	2 Preliminaries
	2.1 Graph Classes
	2.2 Stretchability and Combinatorial Descriptions

	3 Line Segments
	4 Circular Sectors
	5 Conclusion
	A Missing Proofs and Constructions
	A.1 Full Construction for Sector
	A.2 Remaining Proof for Lemma 8

	References

	A Tight Lower Bound for an Online Hypercube Packing Problem and Bounds for Prices of Anarchy of a Related Game
	1 Introduction and Main Results
	2 Notation, Special Packings and Central Lemmas
	3 Proofs of Theorems1 and 2
	4 Proof of Lemma1
	4.1 Separated Families of Languages

	5 Proof of Lemma5
	References

	The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue
	1 Introduction
	2 Phases 1 and 2: Reducing to Colorful Constrained Path Assignment
	3 Phase 3: Solving Colorful Constrained Path Assignment
	4 Concluding Remarks
	References

	Satisfying Neighbor Preferences on a Circle
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Notation
	3 Preference Lists
	4 Preference Types
	4.1 Homogeneous Preference Types
	4.2 Heterogeneous Preference Types

	5 Preference Thresholds
	6 Discussion
	References

	Two-Dimensional Knapsack for Circles
	1 Introduction
	2 Definitions
	3 Overview of the Algorithm for 2DK and its Analysis
	4 Algorithm for Two-Dimensional Knapsack for Circles
	5 Modifying an Optimal Solution
	6 Analysis of the Algorithm
	7 Algorithm for 2DMK
	8 PTAS for the Two-Dimensional Knapsack for Circles
	References

	Scheduling Parallelizable Jobs Online to Maximize Throughput
	1 Introduction
	2 Preliminaries
	3 Jobs with Deadlines
	3.1 Algorithm
	3.2 Properties of the Scheduler
	3.3 Bounding the Profit of Jobs S Completes by All Jobs Started by S
	3.4 Bounding the Profit of Jobs OPT Completes by All Jobs Started by S

	4 Examples
	5 Jobs with General Profit Functions
	5.1 Properties of the Scheduler
	5.2 Bounding the Profit of Jobs S Completes
	5.3 Bounding the Profit of Jobs OPT Completes

	6 Conclusion
	References

	Reactive Proximity Data Structures for Graphs
	1 Introduction
	1.1 Applications
	1.2 Our Results
	1.3 Prior Related Work

	2 Reactive Nearest-Neighbor Data Structure for Graphs
	2.1 Preprocessing
	2.2 Queries
	2.3 Updates
	2.4 Additional Applications

	3 Experiments
	3.1 Implementation Details
	3.2 Results

	4 Conclusion
	References

	Mutants and Residents with Different Connection Graphs in the Moran Process
	1 Introduction
	2 Definitions
	3 Our Results
	4 Previous Work
	5 Markov Chain Abstraction and the Generalized Isothermal Theorem
	6 A Strategic Game View
	6.1 Star vs Clique
	6.2 Arbitrary Undirected Graphs vs Clique
	6.3 Circulant Graphs vs Clique

	7 An Approximation Algorithm
	References

	A Framework for Algorithm Stability and Its Application to Kinetic Euclidean MSTs
	1 Introduction
	2 Stability Framework
	3 Event Stability
	3.1 Event Stability Analysis
	3.2 Event Stability for EMSTs

	4 Topological Stability
	4.1 Topological Stability Analysis
	4.2 Topological Stability of EMSTs

	5 Lipschitz Stability
	5.1 Lipschitz Stability Analysis
	5.2 Lipschitz Stability of EMSTs

	6 Conclusion
	References

	Rapid Mixing of k-Class Biased Permutations
	1 Introduction
	2 The Markov Chains Mnn and MT
	3 Bounded Generalized Exclusion Processes Mix Rapidly
	4 MT Mixes Rapidly for k-Class Biased Permutations
	4.1 k-Particle Processes Mix Rapidly
	4.2 From k Particle Process to k-Class

	5 Mnn Mixes Rapidly for k-Class Permutations
	6 Trees of k-Value Permutations Mix Rapidly
	References

	Transition Operations over Plane Trees
	1 Introduction
	1.1 Overview of Bounds
	1.2 Related Previous Work and Contribution

	2 Empty-Triangle Rotation: Upper and Lower Bound
	2.1 General Point Sets
	2.2 Convex Position

	3 Edge Slide
	3.1 General Point Sets
	3.2 Convex Position

	4 Conclusions
	References

	Analysis of the Continued Logarithm Algorithm
	1 Introduction
	2 The CL Algorithm and Its Dynamical System
	3 The Extended Dynamical System
	4 Functional Analysis
	References

	Quadratic Simulations of Merlin–Arthur Games
	1 Introduction
	1.1 Statement of Result
	1.2 Relevance to Time-Space Lower Bounds

	2 Proof of Theorem 1
	3 Quadratic Simulation for MA2AM1
	4 Relativized MANPBPP
	References

	On Counting Perfect Matchings in General Graphs
	1 Introduction
	1.1 Markov Chains
	1.2 Factor-Critical Graphs

	2 The Jerrum-Sinclair-Vigoda Chain
	3 Chains Based on Edmonds' Algorithm
	4 A Recursive Algorithm
	References

	Author Index

