
ScSF: A Scheduling Simulation
Framework

Gonzalo P. Rodrigo1(B), Erik Elmroth1, Per-Olov Östberg1,
and Lavanya Ramakrishnan2

1 Department of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden
{gonzalo,elmroth,p-o}@cs.umu.se

2 Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
lramakrishnan@lbl.gov

Abstract. High-throughput and data-intensive applications are increas-
ingly present, often composed as workflows, in the workloads of current
HPC systems. At the same time, trends for future HPC systems point
towards more heterogeneous systems with deeper I/O and memory hier-
archies. However, current HPC schedulers are designed to support classi-
cal large tightly coupled parallel jobs over homogeneous systems. There-
fore, there is an urgent need to investigate new scheduling algorithms
that can manage the future workloads on HPC systems. However, there
is a lack of appropriate models and frameworks to enable development,
testing, and validation of new scheduling ideas.

In this paper, we present an open-source scheduler simulation frame-
work (ScSF) that covers all the steps of scheduling research through sim-
ulation. ScSF provides capabilities for workload modeling, workload gen-
eration, system simulation, comparative workload analysis, and experi-
ment orchestration. The simulator is designed to be run over a distributed
computing infrastructure facilitating large-scale tests. We demonstrate
ScSF through a case study to develop new techniques to manage scien-
tific workflows in a batch scheduler. The evaluation consisted of 1728
experiments and equivalent to 33 years of simulated time, were run in
a deployment of ScSF over a distributed infrastructure of 17 compute
nodes over two months. Finally, the experimental results were analyzed
using the ScSF framework to demonstrate that our technique minimizes
workflow turnaround time without over-allocating resources. Finally, we
discuss lessons learned from our experiences to inform future large-scale
simulation studies using ScSF and other similar frameworks.

1 Introduction

In recent years, high-throughput and data-intensive applications are increasingly
present in the workloads at HPC centers. Current trends to build larger HPC

Source code available to download at: http://frieda.lbl.gov/download.
G. P. Rodrigo—Work performed while working at the Lawrence Berkeley National
Lab.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 152–173, 2018.
https://doi.org/10.1007/978-3-319-77398-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_9&domain=pdf
http://frieda.lbl.gov/download

ScSF: A Scheduling Simulation Framework 153

systems point towards heterogeneous systems and deeper I/O and memory hier-
archies. However, HPC systems and their schedulers were designed to support
large communication-intensive MPI jobs run over uniform systems.

The changes in workloads and underlying hardware have resulted in an urgent
need to investigate new scheduling algorithms and models. However, there is
limited availability of tools to facilitate scheduling research. Currently available
simulator frameworks do not capture the complexities of a production batch
scheduler. Also, they are not powerful enough to simulate large experiment sets,
or they do not cover all its relevant aspects, i.e., workload modeling and gener-
ation, scheduler simulation, and result analysis.

Schedulers are complex systems and their behavior is the result of the inter-
action of multiple mechanisms that rank and schedule jobs, while monitoring the
system state. Many simulators, e.g., Alea [12], include state of art implementa-
tions of some of these mechanisms, but do not capture the interaction between
the components. As a consequence, hypotheses tested on such simulators might
not hold in real systems.

Scheduling behavior depends on the configurations of the scheduler and char-
acteristics of the workload. As a consequence, the potential number of experi-
ments needed to evaluate a scheduling improvement is high. Also, experiments
have to be run for long time to be significant and have to be repeated to ensure
representative results. Unfortunately, current simulation tools do not provide
support to scale up and run large numbers of long experiments. Finally, work-
load analysis tools to correlate large scheduling result sets are not available.

In this paper, we present ScSF, a scheduling simulation framework that cap-
tures the scheduling research life-cycle. It includes a workload modeling engine,
a synthetic workload generator, an instance of Slurm wrapped in a simulator, a
results analyzer, and an orchestrator to coordinate experiments run over a dis-
tributed infrastructure. ScSF will be available as open source software1, enabling
community extensions and user customization of modules. We also present a
use case that illustrates the use of the scheduling framework for evaluating a
workflow-aware scheduling algorithm. Our case study demonstrates the mod-
eling of the workload of a peta-scale system, Edison at the National Energy
Research Scientific Computing Center (NERSC). We also describe the mechanics
of implementing a new scheduling algorithm in Slurm and running experiments
over distributed infrastructures.

Specifically, our contributions are:

– We describe the design and implementation of scalable scheduling simulator
framework (ScSF) that supports and automates workload modeling and gen-
eration, Slurm simulation, and data analysis. ScSF will be available as open
source.

– We detail a case study that works as a guideline to use the framework to
evaluate a workflow-aware scheduling algorithm.

– We discuss the lessons learned from running scheduling experiments at scale
that will inform future research in the field.

1 Available at: http://frieda.lbl.gov/download.

http://frieda.lbl.gov/download

154 G. P. Rodrigo et al.

The rest of the paper is organized as follows. In Sect. 2, we present the state of
art of scheduling research tools and the previous work supporting the framework.
The architecture of ScSF and the definition of its modules are presented in
Sect. 3. In Sect. 4, we describe the steps to use the framework to evaluate a new
scheduling algorithm. In Sect. 5, we present lessons learned while using ScSF at
scale. We present our conclusions in Sect. 6.

2 Background

In this section, we describe the state of art and challenges in scheduling research.

2.1 HPC Schedulers and Slurm

ScSF support research on HPC scheduling. The framework incorporates a full
production scheduler and is modified to include new scheduling algorithms to be
evaluated.

Different options were considered for the framework scheduler. Moab (sched-
uler) plus Torque (resource manager) [5], LSF [9], and LoadLeveler [11] are
popular in HPC centers. However, their source code is not easily available which
makes extensibility difficult. The Maui cluster scheduler is an open-source pre-
cursor of Moab [10]. However it has not been kept up to date to support current
system needs. Slurm is one of the most popular recent workload managers in
HPC. It is currently used in 5 of top 10 HPC systems [2]. It was originally
developed at Lawrence Livermore National Laboratory [20], now maintained by
SchedMD [2], and it is available as open source. Also, there are publicly available
projects that support simulation in it [19]. Hence, our simulator framework is
based on Slurm.

As illustrated in Fig. 1, Slurm is structured as a set of daemons that commu-
nicate over RPC calls:

slurmctld is the scheduling daemon. It contains the scheduling calculation func-
tions and the waiting queue. It receives batch job submissions from users and
distributes work across the instances of slurmd.

Fig. 1. Slurm is composed by three daemons: slurmctld (scheduler), slurmd (compute
nodes management and supervision), and slurmdbd (accounting). A plug-in structure
wraps the main functions in those daemons.

ScSF: A Scheduling Simulation Framework 155

slurmd is the worker daemon. There can be one instance per compute node or
a single instance (front-end mode) managing all nodes. It places and runs work
in compute nodes and reports the resources status to slurmctld. The simulator
uses front-end mode.

sbatch is a command that wraps the Slurm RPC API to submit jobs to slurm-
ctld. Most commonly used by users.

Slurm has a plug-in architecture. Many of the internal functions are wrapped
by C APIs loaded dynamically depending on the configuration files of Slurm
(slurmctld.conf, slurmd.conf).

The Slurm simulator is a wrapper around Slurm to emulate HPC resources,
emulate user’s job submission, and speed up Slurm’s execution. We extended
previous work from the Swiss Supercomputing Center (CSCS, [19]) that is based
on work by the Barcelona Supercomputing Center (BSC, [14]). Our contributions
increase Slurm’s speed up while maintaining determinism in the simulations, and
adds workflow support.

2.2 HPC Workload Analysis and Generation

ScSF includes the capacity to model system workloads and generate synthetic
ones accordingly. Workload modeling starts with elimination of flurries (i.e.,
events that are not representative and skew the model) [8]. The generator models
each job variable with the empirical distribution [13], i.e., it recreates the shape
of job variable distributions by constructing a histogram and CDF from the
observed values.

2.3 Related Work

Previous work [18] proposes three main methods of scheduling algorithms
research: theoretical analysis, execution on a real system, and simulation. The
theoretical analysis is limited to produce boundary values on the algorithm, i.e.
best and worst cases, but does not allow predicting regular performance. Also,
since continuous testing of new algorithms on large real systems is not possible,
simulation is the option chosen in our work.

Available simulation tools do not cover the full cycle of modeling, genera-
tion, simulation, and analysis. Also, public up-to-date simulators and workload
generators are scarce. As an example, our work is based on the most recent
peer reviewed work on Slurm Simulation (CSCS, [19]). We improve its synchro-
nization to speed up its execution. For more grid-like workloads, Alea [12] is an
example of a current HPC simulator. However, it does not include a production
simulator in its core and does not generate workloads.

For workload modeling, function fitting and user modeling are recognized
methods [7]. ScSF’s workload model is based on empirical distributions [13], as
it produces good enough models and does not require specific information about
system users. Also, our work modeling methods are based on the experience

156 G. P. Rodrigo et al.

of our previous work on understanding workload evolution of HPC systems life
cycle [15] and job heterogeneity in HPC workloads [16].

In workload generation, previous work compares close and open loop
approaches [21], i.e. taking into account or not the scheduling decisions to cal-
culate the job arrival time. ScSF is used in environments with reduced user
information, which is needed to create closed-loop models. Thus, ScSF uses an
open-loop workload generation model to fill and load mechanisms (Sect. 3.4) to
avoid under and over job submission.

Finally, other workloads and models [6] are available, but are less represen-
tative of current HPC systems. In our work, we use workloads from Edison, a
Cray XC30 supercomputer, deployed in 2013 with 133,824 cores and 357 TB of
RAM.

3 ScSF Architecture

Figure 2 shows ScSF’s architecture. The core of ScSF is a MySQL database
that stores the framework’s data and meta-data. Running experiments based
on a reference system requires modeling its workload first by processing the
system’s scheduling logs in the workload model engine. This model is used in the
experiments to generate synthetic workloads with similar characteristics to the
original ones.

In ScSF, the simulation process starts with the description of the experi-
mental setup in an experiment definition provided by the user. The definition
includes workload characteristics, scheduler configuration, and simulation time.
The experiment runner processes experiment definitions and orchestrates exper-
iments accordingly. First, it invokes the workload generator to produce a syn-
thetic workload of similar job characteristics (size, inter arrival time) as the real
ones in the reference system chosen. This workload may include specific jobs
(e.g., workflows) according the experiment definition. Next, the runner invokes
the simulator. The ScSF simulator is a wrapper around Slurm that increases
the execution pace and emulates the HPC system and its users. The simulator
sets Slurm’s configuration according to the experiment definition and emulates

Fig. 2. ScSF schema with green color representing components developed in this work
and purple representing modified and improved components. (Color figure online)

ScSF: A Scheduling Simulation Framework 157

the submission of the synthetic workload jobs. Slurm schedules the jobs over the
virtual resources until the last workload job is submitted. At that moment, the
simulation is considered completed.

Completed simulations are processed by the workload analyzer. The analysis
covers the characterization of jobs, workflows, and system. This module includes
tools to compare experiments to differentiate the effects of scheduling behaviors
on the workload.

3.1 Workload Model Engine

A workload model is composed of statistical data that is used to generate syn-
thetic jobs that with characteristics similar to the original ones. The workload
model engine extracts a job’s characteristics from Slurm or Moab scheduling
logs including wait time, allocated CPU cores, requested wall clock time, actual
runtime, inter-arrival time, and runtime accuracy (runtime

requestedWallClockT ime). Jobs
with missing information (e.g. start time), or individual rare and very large jobs
that would skew the model (e.g. system test jobs) are filtered out.

Next, the extracted values are used to produce the empirical distributions [13]
of each job variable as illustrated in Fig. 3. A normalized histogram is calculated
on the source values. Then, the histogram is transformed into a cumulative
histogram, i.e., each bin represents the percentage of observed values that are
less or equal to the upper boundary of the bin. Finally, the cumulative histogram
is transformed into a table that maps probability ranges on a value. For example,
in Fig. 3, bin (10−20] has a [0.3, 0.8) probability range as its value is 80% and its
left neighboring bin’s value is 30%. The probability ranges map to the mid value
of the range that they correspond to, e.g., 15 is the mid value of (10 − 20]. This
model is then ready to produce values, e.g., a random number (0.91) is mapped
on the table to obtain 25.

Each variable’s histogram is calculated with specific bin sizes adapted to its
resolution. By default, the bin size for the request job’s wall clock time is one
minute (Slurm’s resolution). The corresponding bin size for inter-arrival time
is one second as that corresponds to the resolution of timestamps in the logs.
Finally, for the job CPU core allocation, the bin size is the number of cores
per node of the reference system, as in HPC systems node sharing is usually
disabled.

Fig. 3. Empirical distribution constructions for job variables: calculating a cumulative
histogram and transforming it into a mapping table.

158 G. P. Rodrigo et al.

3.2 Experiment Definition

An experiment definition outlines the conditions in an experiment process, con-
figuring the scheduler, workload characteristics, and experiment duration. A defi-
nition is composed of a scheduler configuration file and a database entry (Table 1)
that includes:

trace type and subtraces: The tag “single” identifies the experiments that are
meant to be run in the simulator. A workload will be generated and run through
the simulator for later analysis. The experiments with trace type “grouped” are
definitions that list the experiments that are the different repetitions of the same
experimental conditions in the “subtraces” field.

system model: selects which system model is to be used to produce the work-
load in the experiment.

workflow policy: controls presence of workflows in the workload. If set to “no”,
workflows are not present. If set to “period” a workflow is submitted periodi-
cally once every workflow period s seconds. If set to “percentage”, workflows
contribute workflow share of the workload core hours.

Table 1. Experiment definition fields

trace type “single”: regular experiment. “grouped”: experiments
aggregated

subtraces list of single experiments related to this grouped one

system name of system to model workload after

workflow policy “period”: one workflow workflow period s. “percent”:
workflow share core hours are workflows. “no”: no workflows

manifest list list of workflows to appear in the workload

workflow handling workflows submission in workload. “single”: pilot job. “multi”:
chained jobs”. “manifest”: workflow-aware job

start date submit time of first job valid for analysis

preload time s time to prepend to the workload for stabilization

workload duration s workload stops at start date + workload duration s

seed string to init random number generators

1 {"tasks": [

2 {"id":"SWide", "cmd":"./W.py", "cores":480, "rtime":360.0},
3 {"id":"SLong", "cmd":"./L.py", "cores":48, "rtime":1440.0,

4 "deps": ["SWide"]}]}

Fig. 4. WideLong workflow manifest in JSON format.

ScSF: A Scheduling Simulation Framework 159

manifest list: List of pairs (share, workflow) defining the workflows present in
the workload: e.g., {(0.4 Montage.json), (0.6 Sipht.json)} indicates that 40% of
the workflows will be Montage, and 60% Sipht. The workflow field points to
a JSON file specifying the structure of the workflow (e.g., Fig. 4). It includes
two tasks, the first running for 6 min, allocating 480 cores (wide task); and
the second running for 24 min, allocating 48 cores (long task). The SLong task
requires SWide to be completed before it starts.

workflow handling: This parameter controls the method to submit workflows.
The workload generator supports workflows submitted as chained jobs (multi),
in which workflow tasks are submitted as independent jobs, expressing their
relationship as job completion dependencies. Under this method, workflow tasks
allocate exactly the resources they need, but intermediate job wait times might
be long, increasing the turnaround time. Another approach supported is the
pilot job (single), in which a workflow is submitted as a single job, allocating
the maximum resource required within the workflow for its minimum possible
runtime. The workflow tasks are run within the job, with no intermediate wait
times, and thus, producing shorter turnaround times compared to chained jobs
approach. However, it over-allocates resources, that are left idle at certain stages
of the workflow.

start date, preload time s, and workload duration s: defines the duration
of the experiment workload. The variable start date sets the submit time of the
first job in the analyzed section of the workload, which will span until (start date
+ workload duration s). Before the main section, a workload of preload time s
seconds is prepended, to cover the cold start and stabilization of the system.

random seed: The random seed is an alphanumeric string that is used to ini-
tialize the random generator within the workload generator. If two experiments
definitions have the same parameters, including the seed, their workloads will be
identical. If two experiment definitions have the same parameters, but a differ-
ent seed, their workloads will be similar in overall characteristics, but different
as individual jobs (i.e. repetitions of the same experiment). In general, repeti-
tions of the same experiment with different seeds are subtraces of a “grouped”
experiment.

3.3 Experiment Runner

The experiment runner is an orchestration component that controls the work-
load generation and scheduling simulation. It invokes the workload generator
and controls through SSH a virtual machine (VM) that contains a Slurm sim-
ulator instance. Figure 5 presents the experiment runner operations after being
invoked with a hostname or IP of a Slurm simulator VM. First, the runner
reboots the VM (step 0) to clear processes, memory, and reset the operative sys-
tem state. Next, an experiment definition is retrieved from the database (step 1)

160 G. P. Rodrigo et al.

Fig. 5. Steps to run an experiment (numbers circled indicate order) taken by the
experiment runner component. Once step seven is completed, the step sequence is
re-started.

and the workload generator produces the corresponding experiment’s workload
file (step 2). This file is transferred to the VM (step 4) together with the cor-
responding Slurm configuration files (obtained in step 3). Then, the simulation
inside the VM (step 5) is started. The main part of the simulation stops after the
last job of the workload is submitted. Additionally, some extra time in included
in the end to avoid abrupt system termination noises in the results. The exper-
iment runner monitors Slurm (step 6), and when it terminates, the resulting
scheduler logs are extracted and inserted in the central database (step 7).

Only one experiment runner can start per simulator VM. However, multiple
runners manage multiple VMs in parallel, which enables scaling such that the
experiments run concurrently.

3.4 Workload Generation

The workload generator in ScSF produces synthetic workloads representative of
real system models. The workload structure is presented in Fig. 6. All workloads
start with a fill phase, which includes a group of jobs meant to fill the system.
The fill job phase is followed by the stabilization phase, which includes 24 h of
regular jobs controlled by a job-pressure mechanism to ensure that there are
enough jobs to keep the system utilized. The stabilization phase captures the
cold start of the system, and it is ignored in later analysis. The next stage is
the experiment phase, it runs for a fixed time (72 h in the figure) and includes
regular batch jobs complemented by the experiment specific jobs (in this case
workflows). After the workload is completely submitted, the simulation runs for
extra time (drain period, configured in the simulator) to avoid the presence of
noise from the system termination.

In the rest of this section, we present all the mechanisms involved in detail.

ScSF: A Scheduling Simulation Framework 161

Fig. 6. Sections of a workload: fill, stabilization, experiment, and drain. Presented with
an the associated utilization that this workload produced in the system.

Fig. 7. Job characteristics in a year of Edison’s real workload (darker) vs. a year of
synthetic workload (lighter). Distributions are similar.

Job Generation: The workload generator produces synthetic workloads
according to an experiment definition. The system model is chosen among those
produced by the workload model engine (Sect. 3.1). Also, the random generator
is initialized with the experiment definition’s seed. The system model selected
in the definition is combined with a random number generator to produce syn-
thetic batch jobs. Finally, the workload generator also supports the inclusion of
workflows according to the experiment definition (Sect. 3.2).

The workload generator fidelity is evaluated by modeling NERSC’s Edison
and comparing one year of synthetic workload with the system jobs in 2015. The
characteristics of both workloads are presented in Fig. 7, where the histogram
and Cumulative distribution functions (CDFs) for inter arrival time, wall clock
limit and allocated number of cores are almost identical. For runtime, there are
small differences in the histogram that barely impact the CDF.

162 G. P. Rodrigo et al.

Fig. 8. No Job pressure mechanism, No
Fill: Low utilization due not enough
work.

Fig. 9. Job pressure 1.0, No Fill: Low
utilization due to no initial filling jobs.

Fig. 10. Job pressure 1.0, Fill with large
jobs: initial falling spikes.

Fig. 11. Job pressure 1.0, Fill with
small jobs: Good utilization, more sta-
ble start.

Fill and Load Mechanisms: Users of HPC systems submit a job load that fills
the systems and creates a backlog of jobs that induces an overall wait time. The
fill and load mechanisms steer the job generation to reproduce this phenomena.

The load mechanism ensures that the size of the backlog of jobs does not
change significantly. It induces a job pressure (submitted over produced work)
close to a configured value, usually 1.0. Every time a new job is added to the
workload, the load mechanism calculates the current job pressure t as P (t) =
coreHoursSubmitted
coreHoursProduced(t) where coreHoursProduced = t ∗ coresInTheSystem. If
P (t) < 1.0 new jobs are generated and also inserted in the same submit time
until P (t) ≥ 1.0. If P (t) ≥ 1.1, the submit time is maintained as reference,
but the job is discarded, to avoid overflowing the system. The effect of the load
mechanism is observed in Fig. 9, where the utilization raises to values close to
one for the same workload parameters as in Fig. 8.

Increasing the job pressure raises system utilization but does not induce the
backlog of jobs and associated overall wait time that is present in real systems.
As an example, Fig. 12a presents the median wait time of the jobs submitted in
every minute of the experiment using the load mechanism of Fig. 9. Here, the
system is utilized but the job wait time is very short, only increasing to values of
15 min for larger jobs (over 96 core hours) at the end of the stabilization period
(versus the four hours intended).

The fill mechanism inserts an initial job backlog equivalent to the experi-
ment configured overall wait time. The job filling approach guarantees that they
will not end at the same time or allocate too many cores. As a consequence, the
scheduler is able to fill gaps left when they end. Figure 10 shows an experiment
in which the fill job allocations are too big, their allocation is 33,516 cores (1/4 of
the system CPU cores count). Every time a fill job ends (t = 8, 9, 10, and 11 h),
a drop in the utilization is observed because the scheduler has to fill a large gap

ScSF: A Scheduling Simulation Framework 163

Fig. 12. Median wait time of job’s submitted in each minute. a: Job pressure 1.0,
not fill mechanism, and thus no wait time baseline is present. b: Job pressure 1.0, fill
mechanism configured to induce four hours of wait time baseline.

with multiple small jobs. To avoid this, the filling mechanism calculates a fill job
size that induces the desired overall wait time while not producing utilization
drops. Fill job size calculation is based on a fixed inter-arrival time, the capacity
of the system, and the desired wait time. Figure 11 shows the utilization of a
workload where fill jobs are calculated following such a method. They are sub-
mitted in 10 s intervals creating the soft slope in the figure. Figure 12b shows the
wait time evolution for the same workload, sustained around four hours after
the fill jobs are submitted.

Customization: The workload generator includes classes to define user job
submission patterns. Trigger classes define mechanisms to decide the insertion
times pattern, such as: periodic, alarm (at one or multiple time stamps), re-
programmable alarm), or random. The job pattern is set as a fixed jobs sequence,
or a weighted random selection between patterns. Once a generator is integrated
it is selected by setting a special string in the workflow policy field of the exper-
iment definition.

3.5 Slurm and the Simulator

ScSF uses Slurm version 14.3.8. as the scheduler of the framework. Also, as
a real scheduler, it includes the effect and interaction of mechanisms such as
priority engines, scheduling algorithms, node placement algorithms, compute
nodes management, job submissions system, and scheduling accounting. Finally,
Slurm includes a simulator to use it on top of an emulated version of an HPC
system, submitting a trace of jobs to it, and accelerating its execution. This tool
enables experimentation without requiring the use of a real HPC system.

The architecture of Slurm and its simulator is presented in Fig. 13. The Slurm
daemons (slurmctld and slurmd) are wrapped by the emulator. Both daemons are
dynamically linked with the sim func library that adds the required functions to

164 G. P. Rodrigo et al.

Fig. 13. Slurm simulator architecture.
Slurm system calls are replaced to
speed-up execution. Scheduling is syn-
chronized. Job submission is emulated.

Fig. 14. Simulated time running during
RPC communications delay resource de-
allocation compromising backfilling’s job
planning and Job B start.

support the acceleration of Slurm’s execution. Also, slurmd is compiled including
a resource and job emulator. On the simulator side, the sim mgr controls the
three core functions of the system: execution time acceleration, synchronization
of the scheduling processes, and emulation of the job submission. These functions
are described below.

Time acceleration: In order to accelerate the execution time, the simulator
decouples the Slurm binaries from the real system time. Slurm binaries are
dynamically linked with the sim func library, replacing the time, sleep, and
wait system calls. Replaced system calls use an epoch value controlled by the
time controller. For example, if the time controller sets the simulated time to
1485551988, any calls to time will return 1485551988 regardless of the system
time. This reduces the wait times within Slurm i.e., if the scheduling is config-
ured to run once every 30 simulated second, it may run once every 300 ms in
“real” time.

Scheduling and simulation synchronization: The original simulated time
pace set by CSCS produces small speed ups for large simulated systems. How-
ever, increasing the simulated time pace triggers timing problems because of the
Remote Procedure Calls (RPC) in Slurm daemon communications.

Increasing the simulation pace has different negative effects. First, timeouts
occur triggering multiple RPC re-transmissions degrading the performance of
Slurm and the simulator. Second, job timing determinism degrades. Each time a
job ends, slurmd sends an RPC notification to slurmctld, and its arrival time is
considered the job end time. This time is imprecise if the simulated time increases
during the RPC notification propagation. As a consequence, low utilization and
large job (e.g. allocating 30% of the resources) starvation occurs. Figure 14 details
this effect - a large JobB is to be executed after JobA. However, JobA resources
are not considered free until two sequential RPC calls are completed (end of job

ScSF: A Scheduling Simulation Framework 165

and epilogue), lowering the utilization as they are not producing work. The later
resource release also disables JobB from starting but does not stop the jobs that
programmed are to start after JobB . As the process repeats, the utilization loss
accumulates and JobB is delayed indefinitely.

The time controller component of the sim mgr was modified to control a
synchronization crossbar among the Slurm functions that are relevant to the
scheduling timing. This solves the described synchronization problems by con-
trolling the simulation time and avoiding its increase while RPC calls are trav-
eling between the Slurm daemons.

Job submission and simulation: The job submission component of the
sim mgr emulates the submission of jobs to slurmctld following the workload
trace of the simulation. Before submitting each job, it communicates the actual
runtime (different from the requested one) to the resource emulator in slurmd.

The daemon, slurmctld, notifies slurmd of the scheduling of a job. The emu-
lator uses the notification arrival time and job runtime (received from sim mgr)
to calculate the job end time. When the job end time is reached, the emulator
forces slurmd to communicate that the job has ended to slurmctld. This process
emulates the job execution and resource allocation.

3.6 Workload Analyzer

ScSF includes analysis tools to extract relevant information across repetitions of
the same experiment or to plot and compare results from multiple experimental
conditions.

Value Extraction and Analysis: Simulation results are processed by the
workload analyzer. The jobs in the fill, stabilization, and drain phases (Fig. 6)
are discarded to extract (1) for all jobs: wait time, runtime, requested runtime,
user accuracy (estimating the runtime), allocated CPU cores, turnaround time,
and slowdown grouped by jobs sizes. (2) for all and by type of workflow: wait
time, runtime, turnaround time, and stretch factor. (3) overall: median job wait
time and mean utilization for each minute of the experiment.

The module performs different analyses for different data types. Percentile
and histograms analyze the distribution and trend of the jobs’ and workflows’
variables. Integrated utilization (i.e., coreHoursProduced/coreHoursExecuted)
measures the impact of the scheduling behavior on the system usage.

Finally, customized analysis modules can be added to the analysis pipeline.

Repetitions and Comparisons: Experiments are repeated with different ran-
dom seeds to ensure that observed phenomena are not isolated occurrences.
The workload analysis module analyzes all the repetitions together, merging the
results to ease later analysis. Also, experiments might be grouped if they differ
only in one experimental condition. The analysis module studies these groups
together to analyze the effect of that experimental condition on the system.

166 G. P. Rodrigo et al.

For instance, some experiments are identical except for the workflow submission
method, which affects the number of workflows that get executed in each exper-
iment. The module calculates compared workflow turnaround times correcting
any possible results skew derived from the difference in the number of executed
workflows.

Result Analysis and Plotting: Analysis results are stored in the database
to allow review of visualization using the plotter component. This component
includes tools to plot histograms (Fig. 7), box plots, and bar charts on the median
of job’s and workflow’s variables for one or multiple experiments (Fig. 17). It also
includes tools to plot the per minute utilization (Figs. 8, 9, 10 and 11) and per
minute median job wait time in an experiment (Figs. 12a and b), which allows
us to observe dynamic effects within the simulation. Finally, it also include tools
to extract and compare utilization values from multiple experiments.

4 ScSF Case Study

In this section, we describe a case study that demonstrates the use of ScSF. The
case study implements and evaluates a workflow-aware scheduling algorithm [17].
In particular, we model a real HPC system, and implement a new algorithm in
the Slurm simulator. Also, we detail a distributed deployment of ScSF for our
evaluation and present examples of the results to illustrate the scalability of the
ScSF framework.

4.1 Tuning the Model

Experiments to evaluate a scheduling algorithm require workload and system
models that are representative. NERSC’s Edison is chosen as the reference sys-
tem. Its workload is modeled by processing almost four years of its jobs. In
ScSF, a Slurm configuration is defined to imitate Edison’s scheduler behavior,
including - Edison’s resource definition (number of nodes and hardware con-
figuration) FCFS, backfilling with a depth of 50 jobs once every 30s, and a
multi-factor priority model that takes into account age (older-higher) and job
geometry (smaller-higher). The workload tuning is completed by running a set of
experiments to explore different job pressure and filling configurations to induce
a stable four hour wait time baseline (observed in Edison).

4.2 Implementing a Workflow Scheduling Algorithm in Slurm

As presented in Sect. 3.2, workflows are run as pilot jobs (i.e., single job over-
allocation resources) or chained jobs (i.e., task jobs linked by dependencies sup-
porting long turnaround times). However, the workflow-aware scheduling [17] is
a third method that enables per job task resource allocation, while minimizing
the intermediate wait times.

ScSF: A Scheduling Simulation Framework 167

The algorithm integration required us to modify Slurm’s jobs submission
system, and include some actions on the job queue before and after scheduling
happens. First, sbatch, Slurm’s job submission RPC, and the internal job record
data structure are extended to support the inclusion workflow manifests in jobs.
This enables workflow-aware jobs to be present as pilot jobs attaching a workflow
description (manifest).

Second, queue transformation actions are inserted before and after FCFS and
backfilling act on it. Before they act, workflow jobs are transformed into task jobs
but keeping the original job priority. When the scheduling is completed, original
workflow jobs are restored. As a consequence, workflow task jobs are scheduled
individually, but, as they share the same priority, the workflow intermediate wait
times are minimized.

4.3 Experiment Setup

The workflow-aware scheduling approach is evaluated by comparing its effect on
workflow turnaround time and system utilization with the pilot and chained job
ones. Three versions (one per approach) of experiments are created to compare
the performance of the three approaches under different conditions.

Table 2 shows the three sets the experiments created. Workflows in set0,
exhibit different structures to study their interaction with different approaches.
Set1 studies the effect of the approaches on isolated workflows and includes four
real (Montage, Sipht, Cybershake, FloodPlain [4]) and two synthetic workflows
submitted with different intervals (0, 1/12h, 1/6h, 1/h, 2/h, 6/h). Set2 studies
the effect of the approaches on systems increasing dominated by workflows. It
includes the same workflows as set1 submitted with different workflow shares
(1%, 5%, 10%, 25%, 50%, 75%, 100%). In total, they sum 1728 experiments
equivalent to 33 years of simulated time.

Experiments are created and stored using a Python class that is initialized
with all the experiment parameters. The manifest files for the synthetic workflows
are created manually following the framework’s manifest JSON format. Real
workflow manifests are created using a workflow generator from the Pegasus
project [4] that captures the characteristics of science workflows. ScSF includes
a tool to transform the output of the workflow generator into the expected JSON
format.

Table 2. Summary of experiments run in ScSF.

Set Wf. Submit #Wfs. Wf. Pres. #Pres. Sim. t. #Reps #Exps Agg. Sim. t.

Set0 aware/single/multi 18 Period 1 per wf. 7d 6 324 2268d

Set1 aware/single/multi 6 Period 6 7d 6 648 4536d

Set2 aware/single/multi 6 Share 7 7d 6 756 5292d

168 G. P. Rodrigo et al.

4.4 Running Experiments at Scale

We run 1728 individual experiments that sum 33 years of simulated time. Esti-
mating an average speedup of 10×, experiment simulation would require more
than three years of real time. In order to reduce the real time required to com-
plete this work, simulation are parallelized to increase throughput.

As presented in Sect. 3, the minimum experiment worker unit is composed by
an instance of the experiment runner component and a VM containing the Slurm
simulator. As shown in Fig. 15, parallelization is achieved by running multiple
worker units concurrently. To configure the infrastructure, Virtualbox’s hyper-
visor is deployed on six compute nodes at the Lawrence Berkeley National Lab
(LBNL) and 17 compute nodes at Ume̊a University (UMU). 161 Slurm Simula-
tor VMs are deployed across the two sites. Each VM allocates two cores, four GB
of RAM, and 20 GB of storage. Each compute node has different configurations
and thus, the number of VMs per host and their performance is not uniform,
e.g., some compute nodes only host two VMs, and some host 15.

All the experiment runners run in a single compute node at LBNL (Ubuntu,
12 cores × 2.8 GHz, 36 GB RAM). However, VMs are not exposed directly
through their host NIC and required access from the control node over sshuttle
[3], a VPN over ssh software that does not required installation on the des-
tination host. Even if both sites are distant, the network is not a significant
source of problem since the connection between UMU and LBNL traverses two
high performance research networks, Nordunet (Sweden) and ESnet (EU and
USA). Latency is relatively low (170–200 ms), data-rate is high (firewall capped
≈100 Mbits/s per TCP flow), and stability consistent.

4.5 Experiment Performance

The experiments wall clock time is characterized as a function of the experiment
setup to understand the factors driving simulation speed-up. Figure 16 shows
the experiments median runtime of one experiment set, grouped by scheduling
method, workflow type, and workflow presence.

For the same simulated time, simulations run longer under the chained job
and workflow-aware approaches compared to pilot job. Also, for the chained

Fig. 15. Schema of the distributed execution environment: VMs containing the Slurm
Simulator are distributed in hosts at LBNL and UMU. Each VM is controlled by an
instance of the experiment runner in the controller host at LBNL.

ScSF: A Scheduling Simulation Framework 169

Fig. 16. Median wall clock time for a set of simulation. More complex workloads (more
workflows, large workflows) present longer times. Pilot job approach presents shorter
times. Simulation time is 168 h (7 days).

job and aware approaches, experiments run longer time if more workflows are
present, or the workflows include more task jobs. As individual experiments are
analyzed, longer runtimes, and thus smaller speed-ups, appear to be related to
longer runtime of the scheduling passes because of higher numbers of jobs in the
waiting queue.

In summary, simulations containing numbers of jobs similar to real system
workloads present median runtimes between 10 to 12 h for 7 days (168 h) of
simulated time, or 15× speedup. Speed-up degrades as experiments become more
complex. Speed-ups under 1 are observed for experiments whose large job count
would be hard to manage for a production scheduler (e.g., Montage-75%). The
limiting factor of the simulations speed-up is the scheduling runtime, which, in
this case study, depends on the number of jobs in the waiting queue.

Fig. 17. Comparison of median workflow runtime on different experimental conditions
as speed-up (left), and absolute numbers (right). Data of workflows in 108 experiments.

170 G. P. Rodrigo et al.

4.6 Analyzing at Scale

The analysis of the presented use case required synthesis of the results of 1278
experiments into meaningful, understandable metrics. The tools described in
Sect. 3.6 supported this task.

As an example, Fig. 17 condenses the results of 324 experiments (six repe-
titions per experiment setting): median workflow runtime speed up (left) and
value (right) observed for Cybershake, Sipht, and Montage, for different work-
flow shares and scheduling approaches. Results show that chained job workflows
support much longer runtime in all cases, while aware and pilot jobs workflows
show shorter (than chained job workflows) but similar runtimes to each other.

5 Discussion

The initial design goal of ScSF was functionality, not scale, and its first deploy-
ment included four worker VMs. As the number experiments and simulation
time expanded for our case study (33 years), the resource pool size had to be
increased (161 VMs and 24 physical hosts), even expanding to resources in dis-
tributed locations.

Loss-less experiment restart is needed: As the framework runs longer and
on more nodes, the probability for node reboots becomes higher. In the months
of experiments our resources required rebooting due to power cuts, hypervisor
failures, VM freezes, and system updates (e.g. we had to update the whole cluster
to patch the Dirty Cow exploit [1]).

Our goal in ScSF has been to keep the design light-weight and easily portable.
Thus, rebooting a worker host means that work in the VMs are lost. Also, if the
controller host is rebooted, all the experiment runners are stopped and the work
in the entire cluster is lost. For some of the longest experiments, the amount
of work lost accounts in days of real time. In the future, we need to consider
the trade-offs and ScSF should include support graceful pause and restart so
resource reboots do not imply loss of work. This would be provided by a control
mechanism to pause-restart worker VMs. Also, the experiment runner function-
ality should be hosted in the worker VM to be paused with the VM, unaffected
by any reboot.

Loaded systems network fail: In our experiments, surges of experiment
failures appeared occasionally. Multiple VMs would become temporarily un-
responsive to ssh connections when their hypervisor was heavily loaded. Sub-
sequently, the experiment runner would fail to connect to the VM, and the
experiment was considered failed. Thus, saturated resources are unreliable. All
runner-VM communications were hardened, adding re-trials, which reduced the
failure rate significantly.

Monitoring is important: Many types of failures impact experiments, such
as simulator or Slurm bugs, communication problems, resource saturation in the
VMs, or hypervisor configuration issues. Failures are expected, but early version

ScSF: A Scheduling Simulation Framework 171

of ScSF lacked the tools and information to quickly diagnose the cause of the
problems. Monitoring should register metadata that allows quick diagnosis of
problems. As a consequence, the logging levels were increased and a mechanism
to retrieve Slurm crash debug files was added.

The system is as weak as its weakest link: All ScSF’s data and metadata are
stored in a MySQL database hosted in the controller host. In a first experiment
run, at 80% of completed experiments the hard disk containing the database
crashed, and all experiment data was lost that included two months of work.
Currently, data is subject to periodic backups and the database is replicated.

6 Conclusions

We present ScSF, a scheduling simulation framework which provides tools to
support all the steps of the scheduling research cycle - modeling, generation,
simulation, and result analysis. ScSF is scalable, it is deployed over distributed
resources to run and manage multiple concurrent simulations and provides tools
to synthesize results over large experiment sets. The framework produces repre-
sentative results by relying on Slurm, which captures the behavior of real system
schedulers. ScSF is also modular and might be extended by the community to
generate customized workloads or calculate new analyses metrics over the results.
Finally, we improved the Slurm simulator which now achieves up to 15× simu-
lation over real time speed-ups while preserving its determinism and experiment
repeatability.

This work provides a foundation for future scheduling research. ScSF will be
released as open source, enabling scheduling scientists to concentrate their effort
on designing scheduling techniques and evaluating them in the framework. Also,
we share our experience of using ScSF to design a workflow scheduling algorithm
and evaluating it through the simulation of a large experiment set. Our case
study demonstrates that the framework is capable of simulating 33 years of real
system time in less than two months over a distributed infrastructure.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research
(ASCR) and uses resources at the National Energy Research Scientific Computing Cen-
ter, a DOE Office of Science User Facility, supported by the Office of Science of the
U.S. Department of Energy, both under Contract No. DE-AC02-05CH11231. Finan-
cial support has been provided in part by the Swedish Government’s strategic effort
eSSENCE and the Swedish Research Council (VR) under contract number C0590801
(Cloud Control). Special thanks to Stephen Trofinoff and Massimo Benini from the
Swiss National Supercomputing Centre, who shared with us the code base of their
Slurm Simulator. Also, we would like to thank the members of the DST department at
LBNL and the distributed systems group at Ume̊a University who administrated and
provided the compute nodes supporting our case study.

172 G. P. Rodrigo et al.

References

1. Dirty cow, January 2017. https://dirtycow.ninja/
2. SchedMD, January 2017. https://www.schedmd.com/
3. shuttle, January 2017. https://github.com/apenwarr/sshuttle
4. Workflowgenerator, January 2017. https://confluence.pegasus.isi.edu/display/

pegasus/WorkflowGenerator
5. Declerck, T.M., Sakrejda, I.: External Torque/Moab on an XC30 and fairshare.

Technical report, NERSC, Lawrence Berkeley National Lab (2013)
6. Feitelson, D.G.: Parallel workloads archive 71(86), 337–360 (2007). http://www.

cs.huji.ac.il/labs/parallel/workload
7. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-

tion. Cambridge University Press, Cambridge (2015)
8. Feitelson, D.G., Tsafrir, D.: Workload sanitation for performance evaluation. In:

2006 IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 221–230. IEEE (2006)

9. IBM: Platform computing - lsf, January 2014. http://www-03.ibm.com/systems/
technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html

10. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

11. Kannan, S., Mayes, P., Roberts, M., Brelsford, D., Skovira, J.: Workload Manage-
ment with LoadLeveler. IBM Corporation, Poughkeepsie (2001)

12. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: Proceedings of the
3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010). ICST (2010)

13. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

14. Lucero, A.: Simulation of batch scheduling using real production-ready software
tools. In: Proceedings of the 5th IBERGRID (2011)

15. Rodrigo, G., Östberg, P.O., Elmroth, E., Antypass, K., Gerber, R., Ramakrishnan,
L.: HPC system lifetime story: workload characterization and evolutionary anal-
yses on NERSC systems. In: The 24th International ACM Symposium on High-
Performance Distributed Computing (HPDC) (2015)

16. Rodrigo, G., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ramakrish-
nan, L.: Towards understanding job heterogeneity in HPC: a NERSC case study.
In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 521–526. IEEE (2016)

17. Rodrigo, G.P., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: Enabling workflow-
aware scheduling on HPC systems. In: Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing, pp. 3–14. ACM
(2017)

18. Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Cirne, W., Desai,
N. (eds.) JSSPP 2014. LNCS, vol. 8828, pp. 147–167. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15789-4 9

19. Stephen Trofinoff, M.B.: Using and modifying the BSC Slurm workload simulator.
In: Slurm User Group (2015)

https://dirtycow.ninja/
https://www.schedmd.com/
https://github.com/apenwarr/sshuttle
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/978-3-319-15789-4_9

ScSF: A Scheduling Simulation Framework 173

20. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

21. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: IEEE 22nd International Symposium on
Modelling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 51–60. IEEE (2014)

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

	ScSF: A Scheduling Simulation Framework
	1 Introduction
	2 Background
	2.1 HPC Schedulers and Slurm
	2.2 HPC Workload Analysis and Generation
	2.3 Related Work

	3 ScSF Architecture
	3.1 Workload Model Engine
	3.2 Experiment Definition
	3.3 Experiment Runner
	3.4 Workload Generation
	3.5 Slurm and the Simulator
	3.6 Workload Analyzer

	4 ScSF Case Study
	4.1 Tuning the Model
	4.2 Implementing a Workflow Scheduling Algorithm in Slurm
	4.3 Experiment Setup
	4.4 Running Experiments at Scale
	4.5 Experiment Performance
	4.6 Analyzing at Scale

	5 Discussion
	6 Conclusions
	References

