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Abstract. Computing resources in data centers are usually managed
by a Resource and Job Management System whose main objective is to
complete submitted jobs as soon as possible while maximizing resource
usage and ensuring fairness among users. However, some users might not
be as hurried as the job scheduler but only interested in their jobs to
complete before a given deadline.

In this paper, we derive from this initial hypothesis a low-complexity
scheduling algorithm, called Deadline-Based Backfilling (DBF), that dis-
tinguishes regular jobs that have to complete as early as possible from
deadline-driven jobs that come with a deadline before when they have
to finish. We also investigate a scenario in which deadline-driven jobs
are submitted and evaluate the impact of the proposed algorithm on
classical performance metrics with regard to state-of-the-art scheduling
algorithms. Experiments conducted on four different workloads show that
the proposed algorithm significantly reduces the average wait time and
average stretch when compared to Conservative Backfilling.

1 Introduction

To ensure a fair access to resources among users while maximizing resource uti-
lization, most data-centers rely on a Resource and Job and Management System
(RJMS). Many different systems exist, be they commercial or Open Source, in
the High Performance Computing (HPC) [1–3] or Big Data [4–6] worlds. How-
ever, they all follow some common principles while the specifics of the man-
aged workloads differ. For instance, they rely on simple yet efficient scheduling
algorithms to ensure scalability. Most schedulers in HPC thus adopt a First-
Come-First-Served (FCFS) policy [7], usually combined with some backfilling
techniques to minimize resource idle times. This choice to keep the complexity
of the scheduling algorithm as low as possible implies that managing fairness
and optimizing the resource utilization are usually done through external mech-
anisms such as quotas, priorities, or queues. Finally, the common goal of most
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resource and job management systems is to serve, and thus complete, the sub-
mitted jobs as soon as possible. This allow them to increase both the system
throughput and the users’ satisfaction.

In this paper, we aim at studying the impact of a simple assumption on the
management of a given workload by a resource and job management system:
“what if some users were not interested in their jobs to complete as soon as
possible, but only before a given deadline?”. For instance, some users may not
need their results before the next day. Some periodic jobs may also exist that are
important but not urgent, the only constraint being to execute them within the
defined period. Then, it makes no difference whether such jobs complete as soon
as possible, from the resource management system point of view, or just before
when the user said s/he would need his/her results. The same reasoning can
even be applied to longer time periods. Such a choice would obviously depend
on some voluntary users, but we believe that this slack given by some users for
the execution of their jobs could offer an extra degree of freedom to the scheduler.
Delaying such deadline-driven jobs would give space to more urgent jobs that
would thus start and complete earlier. Note that urgency does not necessarily
implies importance. In this work, we only consider the urgency, or absence of,
of a job as an optimization lever.

Following this initial hypothesis, we design a low-complexity scheduling algo-
rithm, called Deadline-Based Backfilling (DBF), that distinguishes regular jobs
that have to complete as early as possible from deadline-driven jobs that come
with an ultimate deadline before when they have to finish. We also propose a
generic scenario in which various proportions of deadline-driven jobs are sub-
mitted to assess the impact of the proposed strategy on the scheduling of more
urgent jobs. Experiments, conducted on four different workloads from the Paral-
lel Workloads Archive (PWA) [8] show that DBF significantly reduces the aver-
age wait time and stretch when compared to Conservative Backfilling [9,10].

The remainder of this paper is organized as follows. In Sect. 2 we recall the
principle of the most popular algorithms used in RJMS. Then in Sect. 3 we
describe the workloads and platforms used for our evaluation and how we pre-
pared data for our study. Section 4 details the principle of the proposed Deadline-
Based Backfilling scheduling algorithm. In Sect. 5, we explain how we do select
deadline-driven jobs and assign them deadlines. We evaluate the impact of the
proposed algorithm on classical performance metrics and compare it to state-
of-the-art scheduling algorithms in Sect. 6. Finally, we discuss related work in
Sect. 7 before concluding this paper in Sect. 8.

2 Background on Job Scheduling

The scheduling algorithm is not the only component of a RJMS that influences
resource utilization. Ordering policies, or priorities, are defined according to the
characteristics of the jobs, their resource requirements, or the previous usages
of the users submitting them. Another important component are queues that
define a set of constraints on jobs, resources, or user profiles, e.g., job lasting
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between a day and a week, requesting up to 16 nodes, and belonging to users
from a certain scientific collaboration. Queues can also be configured to only
have access to a certain pool of resources. The combination of ordering policies
and queues defines the final order in which jobs are presented to the scheduler. A
common setting is to a apply one or more ordering policies within each queue and
then define the browsing order of these queues. While these two components of
a RJMS can be key to performance [11], in this work we focus on the scheduling
algorithm and assume that the list of jobs has already been formed.

Most of the scheduling algorithms underlying RJMS handle jobs following
a FCFS policy. However, the different requests for resources of the jobs usually
lead to resource fragmentation and idle times. To increase resource usage this
basic policy is often completed by a backfilling mechanism. Backfilling consists
in moving jobs forward in the queue in order to fill “holes” in the schedule.

The Extensible Argonne Scheduling sYstem (EASY) [12] algorithm has been
designed for the IBM SP2 supercomputer and is a popular variant of backfilling.
In this algorithm, only the first waiting job is considered for allocation, with a
guaranteed starting time. When this first job cannot start right away because
its requested number of processors is not available, the algorithm browses the
list of waiting jobs to find candidates for backfilling. These candidates are jobs
that can start immediately, but without delaying the first job of the list.

Conservative Backfilling (CBF) is a less aggressive alternative to EASY with
similar performance. It determines an allocation for each job when it enters the
system. Then a job can be a candidate to backfilling if and only if it can begin
its execution immediately without delaying any of the other pre-allocated jobs.

These two backfilling approaches increase the utilization of the resources and
decrease the average waiting time of jobs with regard to FCFS alone, but the
order in which jobs are scheduled may differ from the submission order. These
dynamic modifications of the schedule prevent the more aggressive EASY algo-
rithm to provide users with some guaranteed upper bound on the starting (and
thus estimated completion) time of a given job. By design, the more conservative
CBF algorithm gives such an upper bound right after the submission of a job,
as backfilling can only make jobs start earlier than initially planned.

3 Workloads and Platforms

In this study, we consider different workload logs, i.e., traces of job submis-
sions, extracted from the Parallel Workloads Archive (PWA). More precisely,
we selected four workloads whose characteristics in terms of distributions of
allocations, i.e., the number of processors used to execute a given job, and execu-
tion times per job cover a broad and representative range. Unfortunately, none
of these publicly available workloads comprises information on the respective
urgency of the submitted jobs. These workloads are:

SDSC-BLUE (http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/),
in its cleaned 4.2 version, contains information on the submission of 250,440

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/
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jobs from April 2000 to January 2003 on the IBM SP Blue Horizon of the San
Diego Supercomputer Center, that is made of 144 8-way nodes.
SDSC-DS (http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc ds/) covers
a year of activity from March 2004 through March 2005 on the DataStar cluster
of the San Diego Supercomputer Center. It is composed of 96,089 jobs executed
on 184 nodes. This cluster is made of two kinds of nodes, 176 8-way and 8 32-way
SMP nodes for a total of 1,664 processors. We used the cleaned version of the
log as recommended by the maintainers of the PWA.
HPC2N (http://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/) covers
three and a half years of activity from July 2002 through January 2006 on
the Seth Cluster of the High-Performance Computing Center North in Sweden.
This cluster is composed of 120 dual processor nodes. The original log com-
prised 527,371 jobs but 324,500 jobs from a burst submission by a single user
were removed, leaving 202,871 jobs in the cleaned log.
ANL-Intrepid (http://www.cs.huji.ac.il/labs/parallel/workload/l anl int/)
accounts for the submission of 68,936 jobs on the IBM Blue Gene/P Intrepid
of the Argonne Leadership Computing Facility at Argonne National Labora-
tory from January 2009 to September 2009. This machine has 40 racks of 1,024
quad-cores nodes for a total of 163,840 cores. However, due to the specificity
of the Blue Gene/P system, nodes are grouped into partitions. Eight racks are
partitioned in groups of 64 nodes (or 256 cores) while the remaining racks group
nodes by 512 (or 2,048 cores). Note that the number of processors requested by
jobs are rounded up to the closest multiple of the partition size.

In this work, we only use a subset of the fields that describe a job in the
Standard Workload Format (SWF) as we only aim at scheduling jobs and not
optimizing their execution with regard to their memory or network usage. Then
a job can be only modeled by its submission time, the requested number of
processors, and the requested time or walltime. The selected workloads all com-
prise a certain number of anomalies that were detected and documented by the
maintainers of the PWA during their conversion to the SWF format. Table 1
summarizes the anomalies we consider relevant for our study.

The first two columns correspond to invalid entries in the workloads as the cor-
responding jobs either logged a negative execution time or were allocated a nega-
tive number of processors. Such jobs usually have a “canceled” status in the logs.

Table 1. Summary of anomalies in workloads from the Parallel Workloads Archive.

Workload Runtime< 0 CPU< 0 Used CPU> Runtime> Runtime>

Req. CPU Walltime Walltime + 1′

SDSC-BLUE 10,770 19,516 458 23,434 8,115

SDSC-DS 11,176 0 0 10,658 1,043

HPC2N 0 0 729 14,817 6,170

ANL-Intrepid 0 0 30,948 12,241 9,096

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/
http://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/
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In the experiments presented in Sect. 6, we decided to discard these jobs for all the
considered algorithms.

The third column shows that, in most workloads, there are jobs that got
more processors than requested. This is especially true for ANL-Intrepid where
requests are rounded up to fit the partition requirements. In this workload, the
number of cores allocated to jobs are rounded up to multiples of either 256
or 2,048. We adapted the descriptions of the clusters accordingly to represent
a set of the smallest allocable number of cores. We also make a simplifying
yet not impacting assumption about the platforms. We consider the clusters, or
partitions, to be fully homogeneous. This means that a job requesting four nodes
can indifferently be allocated a contiguous set of nodes (e.g., {p1, p2, p3, p4})
or a disjoint set of nodes (e.g., {p1, p6, p8, p22}).

Finally the last two columns indicate that a fair amount of jobs report an
execution time longer than the expressed walltime. For most of them, the extra
time is less than a minute and can be explained by the time needed by the system
to kill a job when it reaches its walltime. However, the last column shows that
many jobs continue their execution despite the expiration of their walltime. For
all these jobs, we chose to stop them when the walltime is reached.

The SDSC-DS and SDSC-BLUE workloads comprise a non-negligible num-
ber of interactive jobs. Such jobs correspond to submissions from users who
need a direct and immediate access to the machine. This access mode is thus
orthogonal to the idea of letting the scheduler delay jobs. Moreover these jobs
are usually scheduled on a limited and distinct subset of the available resources.
Consequently, we decided to remove these jobs from the original traces.

All these alterations of the original logs prevent us to compare simulation
results to their contents. However, in this study we compare the results of our
proposal to those achieved by state-of-the-art algorithms. As long as we use the
same input workloads for all scheduling algorithms, results remain comparable.

4 A Deadline-Based Backfilling Algorithm

Scheduling a job Ji amounts to find its place in the resource usage profile, i.e.,
a list of sets of available resources at a given time, maintained by the scheduler.
Selecting a specific slot for a job determines the starting date starti of its execu-
tion. The exact set of resources used for the execution of a job is only determined
when the job is about to start. In our deadline-based scheduling proposal, we
consider two types of jobs. A regular job is a job that once submitted, at time
submiti, will be definitely scheduled in a way to minimize its completion date
completioni. Conversely, a deadline-driven job is associated to a deadline di such
that the job can be scheduled at any time as long as its execution within a wall-
time walltimei can be completed before the deadline expires. Such jobs can be
scheduled as regular jobs but their tentative allocations can be reconsidered if
new regular jobs enter the system.

Our algorithm is an online scheduling algorithm, as CBF or EASY are. As
these algorithms do we privilege a low-complexity in our design to ensure the
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Algorithm 1. Determination of a definitive allocation for a regular job Jr.
1: for all Ji ∈ L1 do
2: Cancel current allocation of Ji

3: end for
4: Ltmp ← Jr

5: Get Allocation(Jr)
6: for all Ji ∈ L1 do
7: Get Allocation(Ji)
8: end for
9: while ∃ Ji ∈ L1 | cti > di do

10: Ltmp ← Ltmp ∪ Ji

11: L1 ← L1 \ Ji

12: for all Ji ∈ Ltmp ∪ L1 do
13: Cancel current allocation of Ji

14: end for
15: for all Jtmp ∈ Ltmp do
16: Get Allocation(Jtmp)
17: end for
18: for all Jj ∈ L1 do
19: Get Allocation(Jj)
20: end for
21: end while
22: if {Ji ∈ Ltmp | cti > di} �= ∅ then
23: Smax ← max(submitj |Jj ∈ Ltmp ∧ ctj > dj)
24: Ltmp ← Ltmp ∪ {Jj ∈ L1 | submitj < Smax}
25: L1 ← L1 \ {Jj ∈ L1 | submitj < Smax}
26: for all Ji ∈ Ltmp ∪ L1 do
27: Cancel current allocation of Ji

28: end for
29: for all Jtmp ∈ Ltmp do
30: Get Allocation(Jtmp)
31: end for
32: for all Jj ∈ L1 do
33: Get Allocation(Jj)
34: end for
35: end if
36: for all Ji ∈ Ltmp do
37: if starti = current time then
38: Start execution of Ji

39: else
40: L0 ← L0 ∪ Ji

41: end if
42: Ltmp ← Ltmp \ Ji

43: end for
44: for all Ji ∈ L1 do
45: if starti = current time then
46: Start execution of Ji

47: end if
48: end for
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applicability of the resulting algorithm in large-scale production systems. Allo-
cation decisions are taken either when some jobs complete or some new jobs
enter the system. These two kinds of events trigger a new scheduling round. The
completion of a job, especially if it happens before the expiration of its walltime,
makes nodes available that might be used by waiting jobs. New coming jobs, be
they regular or not, may also impact the currently planned schedule for different
reasons, e.g., candidate for backfilling, priority, tight deadline, . . .

From its submission to the beginning of its execution, a job is in a waiting
state. Our algorithm proposes to store the waiting jobs in two lists. The former,
L0, contains all the jobs whose allocations are definitively determined. It com-
prises regular jobs but also deadline-driven jobs that either come close to their
deadline or improve the backfilling. The latter, L1, contains only deadline-driven
jobs, whose allocations can be modified in another scheduling round.

When a deadline-driven job is submitted, we determine its allocation accord-
ing to the CBF algorithm. This allocation takes all the allocations, be they
tentative or definitive, of the other waiting jobs into account. If the deadline
associated to the job is large enough to prevent its violation from submission,
the job is inserted into L1. On the contrary, the job is considered as regular and
inserted into L0 to be scheduled as early as possible.

When a regular job Jr enters the system, we apply Algorithm 1 not only to
determine its definitive allocation, but also to reconsider the allocations of wait-
ing deadline-driven jobs. First, if such jobs exist in L1, we cancel their current
allocations (lines 1–3). Second, we build a temporary list Ltmp into which Jr is
inserted (line 4), and get an allocation for this job. Then, we fill this list with
jobs from L1 whose deadline would be violated because of the allocation of the
new regular job Jr. The algorithm proceeds as follows. A new allocation which
takes the current allocation of Jr into account is determined for all the jobs in L1

(lines 6–8). Then, while there is a job Ji in L1 that does not respect its deadline,
we move it from L1 to Ltmp (lines 10–11) and recompute the allocations of both
Ltmp (lines 15–17) and L1 (lines 18–20). Note that the allocations for the jobs in
Ltmp are determined by considering the jobs in an increasing order of submission
time. This approach allows us to ensure that if a job can respect of the deadline
when it is submitted, none of the modifications of its tentative allocation made
by Algorithm 1 would lead to a deadline violation.

At the end of this step, all the deadline-driven jobs are allocated, some of
them having been moved forward to avoid deadline violations. However, some
jobs in Ltmp may still not be able to respect their deadlines. This may come from
a different resource fragmentation that appears as we skip some deadline-driven
jobs while building Ltmp. We thus add an extra step (lines 22–35), in which we
move from L1 to Ltmp all the deadline-driven jobs submitted before the last job
in Ltmp unable to respect its deadline, before recomputing all the allocations.

The next step consists in determining which jobs in Ltmp can start their exe-
cution in this scheduling round (line 38). Those which cannot are now considered
as regular jobs and moved to L0 (line 40). Finally, our algorithm also starts the
execution of some deadline-driven jobs from L1 (lines 44–48).
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5 On the Determination of Deadlines

The main concept underlying the proposed approach is that of deadline. This
concept raises two important questions: “Which jobs are considered deadline-
driven?” and “What are the deadlines associated to these deadline-driven jobs?”.

In this section, we propose to consider a broad and generic scenario in which
deadline-driven jobs can be submitted at any time of the day, for instance by
adding an extra submission flag to indicate when a job has to be completed at
last. This scenario allows us to answer another question: “what would users in
a hurry gain if other users allowed X% of the jobs to be delayed?”. Estimating
the gain for different values of X will guide the experimental evaluation of our
approach given in Sect. 6. For the jobs randomly selected to become deadline-
driven, we define the associate deadline as a date that is a maximum between
24 h and 10 times the expressed walltime of the job after the job submission.

The rationale for a delay of at least 24 h comes from an analysis of the daily
(and weekly) job arrival pattern in number of jobs submitted every hour, for
the four studied workloads. Figure 1 shows a similar, and expected, job arrival
pattern for all workloads, with a period (gray area) during which the arrival rate
is greater than the daily average arrival rate (horizontal line).

This peak period roughly corresponds to business hours from 9AM to 6PM for
all workloads. We note that for SDSC-BLUE and SDSC-DS, this peak period
is slightly shifted and starts earlier. This might be explained by the location
of the corresponding supercomputers on the U.S. West Coast and submissions
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Fig. 1. Daily job arrival for four supercomputers. Gray area depicts a peak period
when the arrival rate is greater than the daily average (horizontal line).
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from users on the East Coast. Such a usage spanning over several time zones
may also explain why the peak period ends later on the ANL-Intrepid machine.
The sharp decrease in the arrival rate after business hours is likely to correspond
to a lower competition for resources as less jobs are submitted. Weekly arrival
shows a similar pattern with a sharp decrease of the number of job submission
over the weekend. Then, with a deadline of at least twenty four hours after the
submission, we ensure that every deadline-driven job can benefit of a period of
lower load to be scheduled earlier than its deadline.

We also propose to set the deadline to be proportional to the expressed wall-
time as a way to favor the shortest jobs. Not only they will be less delayed than
jobs with a larger walltime but they are also better candidates for backfilling.
The chosen factor of 10 comes from the observed average stretch, i.e., how much
a job is impacted by its waiting time, in the different workloads.

To favor the adoption of the proposed approach, incentives for users to submit
deadline-driven jobs have to be provided. On most platforms managed by a
RJMS, the submissions of a given user are often limited by different quotas (e.g.,
per user, group, resource type) and influenced by earlier submission pattern. A
simple incentive would be to loosen these limitations, hence giving a better
admission rate, for users accepting to see their jobs delayed by the scheduler.
On platform where users have to pay to access resources, we can easily imagine
a discount offered to users who set a deadline as part as their SLA.

6 Experimental Evaluation

6.1 Evaluation Metrics

To evaluate the impact of allowing the execution of certain jobs to be delayed
provided they end before a given deadline on the complete workload, we use
several performance metrics. First we consider the wait time of a job, defined as
the difference between the starting and submission dates of a job:

waiti = starti − submiti. (1)

A second classical metric is to compute the stretch experienced by a job. This
metric quantifies the relative impact of the wait time on the execution of a job
and is defined as:

stretchi = (waiti + walltimei)/walltimei. (2)

One of the objectives of our proposal is to reduce the average wait time and
average stretch of the regular jobs. This would indicate how much these jobs
benefit of the delayed executions of deadline-driven jobs. We also analyze these
two metrics over the whole workload to quantify the potential gain offered by
deadline-based scheduling.

We also consider performance metrics related to the deadline-driven jobs.
First we measure the number of jobs for which the proposed algorithm is not
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able to respect the deadline. Second we estimate how the deadline has effectively
been used by our algorithm. To this end we define a notion of deadline usage as:

usagei = (completioni − submiti)/(deadlinei − submiti). (3)

Analyzing the average usage over the entire set of deadline-driven jobs will
provide insight about our approach. High values will indicate that regular jobs
were scheduled uninterruptedly in the interval left by delaying deadline-driven
jobs. Conversely, smaller values will mean that deadline-driven jobs were able to
exploit period of lower load before the expiration of their deadlines.

6.2 Simulation Environment

We resort to simulation for our experimental evaluation. Instead of developing an
ad-hoc simulator, we opted for using an existing simulation framework. Several
such tools have been used in the literature to simulate the replay of workloads
from the Parallel Workloads Archive. The Alea1 job scheduling simulator [13]
is based on the GridSim toolkit and allows to compare queue-based schedul-
ing algorithms. Alea separates the implementation of the algorithms, defined as
independent Java classes, from that of the discrete event simulation itself. How-
ever, new algorithms have to be coded in this specific language and embedded
into the code base of the tool. Alea also offers an interesting dynamic scheduling
feature allowing jobs to be submitted during the simulation and support the
management of priority queues [11]. In the early stage of this work, we used the
SimBatch tool [14] for our evaluations. This framework, whose maintenance and
evolution are no longer supported, was based on the SimGrid toolkit [15]. As for
Alea, new algorithms had to be included to the code base, in C, of the tool.

In this work we decided to rely on another recent and promising SimGrid-
based tool. Batsim2 [16] is developed by the team that develops and maintains
the OAR RJMS [1]. It decouples the simulation of the resources and the exe-
cution of a schedule from the decisions that led to this schedule. Then Batsim
can leverage the different network and computing models of SimGrid to adapt
the level of realism of the simulation to the needs of the users. In our experi-
ments, we simulate jobs as simple delays defined as the minimum between the
execution time as logged in the workload and the expressed walltime. Batsim
exposes a simple message interface between the simulation engine and scheduling
algorithms written as plugins in various programming languages.

For our experiments we use the latest version of Batsim shipped in a con-
tainer as recommended by the development team. This container relies on the
latest stable version of SimGrid (3.14.159) at the time of writing. We coded
the proposed DBF algorithm as a scheduler plugin of Batsim in Python. We
also implemented two state-of-the-art algorithms, CBF and EASY, that are
used as references to evaluate the performance of our algorithm. To ensure
the reproduction and further investigation of the presented results, and thus
1 Alea web site: https://github.com/aleasimulator/alea.
2 Batsim web site: https://github.com/oar-team/batsim.

https://github.com/aleasimulator/alea
https://github.com/oar-team/batsim
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favor Open Science, these algorithm implementations, the scripts used to prepare
and convert the workloads into the Batsim input format and analyze the out-
comes of the simulations, as well as the sources of this paper are made available
online [17].

6.3 Results

We begin the evaluation of the proposed deadline-based backfilling approach by
assessing its impact on regular jobs. For each workload, we randomly select a
number of jobs to become deadline-driven and assign deadlines to these jobs as
described in Sect. 5. Table 2 summarizes the respective numbers of regular jobs
when the percentage of deadline-driven jobs varies from 20% to 80%.

In all the subsequent analyses, we filter out regular jobs whose wait time
(resp. stretch) was 0 (resp. 1) simultaneously for all the three algorithms. Such
jobs were lucky enough to obtain the requested resources right on submission
independently of the scheduling algorithm used. Keeping them would modify the
perception of the actual performance of a given algorithm.

First, we study the evolution of the average wait time experienced by the
regular jobs shown by Fig. 2. A first observation is that this average wait time
remains stable for both the CBF and EASY algorithms when we increase the
number of deadline-driven jobs. This indicates that the decreasing number of
jobs under consideration does not impact this metric. We also note that EASY
consistently leads to a smaller average wait time than CBF, which comes from its
more aggressive backfilling strategy. The proposed DBF algorithms outperforms
its two contenders in all configurations except for the SDSC-BLUE workload
with 20% of deadline-driven jobs where EASY is slightly better.

We also observe that our algorithm leads to a linear decrease of the average
wait time of regular jobs when we increase the share of deadline-driven jobs.
The best improvement is obtained for SDSC-DS where DBF already reduces
the average wait time by more than a factor of two when there are only 20% of
deadline-driven jobs. However, the results obtained by EASY in this configura-
tion indicate that CBF obtains poor performance for this workload. It may be
explained by a higher resource fragmentation for this workload that EASY can
better exploit with its more aggressive backfilling strategy. It is also interesting

Table 2. Number of regular jobs impacted by deadline-based backfilling when the
number of randomly selected deadline-driven jobs varies from 20% to 80%.

Workload Total Percentage of deadline-driven jobs

20% 40% 60% 80%

SDSC-BLUE 157,604 126,084 94,564 63,043 31,522

SDSC-DS 64,715 51,772 38,829 25,886 12,943

HPC2N 202,871 162,297 121,723 81,150 40,576

ANL-Intrepid 68,936 55,149 41,363 27,575 13,789
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Fig. 2. Evolution of the average wait time experienced by regular jobs with the per-
centage of deadline-driven jobs.

to note that, even with only 20% of deadline-driven jobs, DBF is at least on par
with EASY or reduces the average wait time up to 25% (for the HPC2N work-
load) but is also able to provide guarantees on job completion times that EASY
would not give. Indeed, the scheduling of regular jobs is based on CBF and then
the first tentative allocation of regular jobs gives them a completion time than
can only be reduced afterwards. Moreover, DBF ensures that a deadline-driven
job completes before its deadlines, which is another kind of upper bound.

Figure 3 shows a more detailed view of the wait time experienced by the regu-
lar jobs. Each line corresponds to a workload while each column corresponds to a
given percentage of deadline-driven jobs. Each panel presents the wait time as an
Empirical Cumulative Distributive Function for the three considered algorithms.

These more detailed results globally confirm the trends shown in Fig. 2 but
also give us some interesting extra information. For instance, the top-left panel
corresponds to the selection of 20% of deadline-driven jobs in the SDSC-BLUE
workload. It is the configuration in which EASY leads to a slightly better average
wait time than DBF. We observe that this comes from a greater number of jobs
(above 25%) that can start immediately with EASY thanks to the aggressive
backfilling. However, the first quartile for DBF is only of two and a half minutes.
We also note a difference of less than half an hour for the third quartile in favor of
EASY, but DBF is able to reduce the maximum wait time of about twelve hours.
Again, this is explained by the design of EASY that causes extra wait time for
jobs that cannot benefit of backfilling. We observe similar distributions for all
the workloads when there are 20% of deadline-driven jobs. When the percentage
of deadline-driven jobs increases, DBF competes with EASY with wait times
close to zero for at least 25% of the jobs (with 40% of deadline-driven jobs on
SDSC-BLUE and SDSC-DS, and 60% for ANL-Intrepid), while the performance
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Fig. 3. Wait times experienced by regular jobs.
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Fig. 4. Evolution of the average wait time experienced by all jobs with the percentage
of deadline-driven jobs.

of CBF remains unchanged. A noticeable exception is the HPC2N workload,
which is the largest in terms of number of jobs. There we observe a uniform
reduction of the wait time when the share of deadline-driven jobs increases.

Figure 4 presents similar results as Fig. 2 but for the entire workload, i.e.,
regular and deadline-driven jobs combined. Note that this figure also includes
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the jobs whose wait time is zero with the different algorithms. Moreover and for
the sake of clarity, we express the average wait time in minutes.

We can see that, in addition to reducing the average wait time of regular
jobs, the proposed DBF algorithm also globally reduces the average wait time of
the whole workload with regard to CBF. The improvement over this algorithm,
upon which DBF is based, also increases with the proportion of deadline-driven
jobs. This means that allowing the scheduler to delay some jobs (as defined in
Sect. 5) to favor some others that are more urgent does not come at the price of
a global degradation of the schedule quality but actually improves it.

The comparison with EASY does not show a clear winner, even though DBF
leads to similar or lower average wait times for most workloads with at least
40% of deadline-driven jobs. We also recall that DBF provides users with an
upper bound on job completion time, as CBF does. This valuable information
that EASY cannot give may justify a slightly larger average wait time.

We continue our evaluation with the analysis of our second performance
metric: the stretch, or slowdown, experienced by jobs when scheduled with the
different algorithms. The evolution of the average stretch with the percentage
of deadline-driven jobs and the relative performance of the three algorithms are
very similar to those in Fig. 2 for the average wait time. This means that, on
average, the respective execution time of deadline-driven does not influence this
metric which is thus mainly driven by the wait time. Then we also analyze the
maximum stretch which is a typical indicator of fairness in the literature. Indeed
a small maximum stretch, ideally close to the average stretch indicates that the
scheduling algorithm does not disfavor some jobs too much in order to reduce
the completion time of others. Figure 5 presents the evolution of the maximum
stretch for regular jobs with the percentage of deadline-driven jobs.
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Fig. 5. Evolution of the maximum stretch for regular jobs with the percentage of
deadline-driven jobs.
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There is a great difference between the maximum and average stretches for
all algorithms, which was expected as none of them aims at optimizing fairness
among jobs. We also observe important variations of the maximum stretch for
all the three algorithms when the percentage of deadline-driven jobs varies. This
indicates that this value strongly depends on the subset of jobs that have been
selected to become deadline-driven. For instance, the regular job that has the
maximum stretch for CBF with 40, 60, and 80% of deadline-driven jobs on
the SDSC-BLUE workload belongs to the set of 20% of deadline-driven jobs,
hence a smaller maximum stretch. Then we can just comment on the general
trends but not on specific values. We can however say that DBF either leads
to similar (for SDSC-DS and ANL-Intrepid) or better (for SDSC-BLUE and
HPC2N) maximum stretches than those achieved by EASY.

The DBF algorithm has been designed to ensure the respect of the deadlines
associated to the jobs. As explained in Sect. 4, deadline violations can only occur
when the first tentative allocation determined for a job already fails to respect
the deadline, due to heavy load or the occupation of most of the resources by
long lasting jobs. Figure 6 shows how many deadlines were not respected for
each workload depending on the proportion of deadline-driven jobs. For each
configuration, we distinguish short jobs whose deadline was set to 24 h from
those whose deadline is proportional to the expressed walltime.

A first comment is that the number of deadline violations is extremely small
compared to the number of deadline-driven jobs in the system and, not sur-
prisingly, higher for the two largest workloads. These results show that DBF is
able to guarantee the completion of almost all the deadline-driven jobs before
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Fig. 6. Evolution of the number of deadline violations for the DBF algorithm with the
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their deadline. Moreover the evolution with the proportion of deadline-driven
jobs does not indicate a direct correlation. For each of the presented experi-
ment, a growing set of jobs to become deadline-driven jobs is randomly selected.
However, these sets are not inclusive, e.g., all the jobs in the 20% set are not
necessarily in the 80% set. Moreover, a majority of the jobs that cannot respect
their deadlines were submitted in heavily loaded period. We also observe that
a vast majority of these violations are for jobs with a 24-h deadline, i.e., short
jobs with an expressed walltime of less than three hours, which confirms a rela-
tion with a heavy load at submission time for these jobs. The HPC2N workload
exhibits a different pattern with more violations for longer jobs. A further anal-
ysis shows that a few set of jobs experience similar deadline violations which
indicates that all these jobs had to wait for the completion of a single job.

When analyzing how the deadlines associated to the jobs were exploited
by the DBF algorithm we found that, all simulations combined, almost half
of the deadline-driven jobs were executed immediately after their submission.
These jobs are uniformly distributed over the workloads and scenarios. Figure 1
showed large periods of lower load every night. As deadline-driven jobs were
randomly selected it would not surprising that a large fraction of them were
submitted during lower load periods. We decided to removed these jobs from
the computation of the average deadline usage shown by Fig. 7.

This graph shows a very similar trend for all the workloads: the more
deadline-driven jobs are submitted the less they use their deadlines. Moreover,
the percentages of deadline usage are pretty low, with a maximum of 17.3%
for SDSC-BLUE with 20% of deadline-driven jobs. This tends to indicate that
the chosen deadlines might have been too lazy and could be shortened. Note
also that the deadlines were determined from the expressed walltime that are
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Table 3. Time to simulate the scheduling of four workloads with three algorithms.

DBF CBF EASY

20% 40% 60% 80%

SDSC-BLUE 4min 33 s 4min 34 s 04min 38 s 5min 13 s 3min 35 s 2min 18 s

SDSC-DS 2min 2min 13 s 2min 07 s 2min 02 s 1min 49 s 58 s

HPC2N 23min 03 s 29min 51 s 34min 26 s 30min 27 s 7min 21 s 3min 03 s

ANL-Intrepid 2min 20 s 2min 25 s 2min 21 s 2min 04 s 1min 52 s 1min 10 s

typically and largely overestimated by users. However, these results also show
that associating a (very) large deadline to a job does not necessarily mean that
the job will be delayed for a (very) long time. It just gives more freedom to the
scheduler which will exploit it only when needed. For instance, less than 1% of
the deadline-driven jobs used more than 80% of their deadlines.

We conclude this evaluation by discussing the time needed to simulate the
scheduling of the different workloads by the three considered algorithms, as sum-
marized in Table 3. All the simulations were run on a notebook (8-core 2.40 GHz
Intel i7-4700MQ CPU) using Batsim in a Docker container hosted by an Ubuntu
16.04 LTS Operating System.

We first observe that varying the percentage of deadline-driven jobs handled
by the proposed DBF algorithm does not have any significant impact on the
time needed to schedule a full workload. We also note that the time needed to
schedule the HPC2N workload is much larger than for the other workloads. It can
partially be explained by the greater number of jobs to execute on a relatively
small number of processors (202,871 jobs on 240 processors), but also by a large
overestimation of walltimes for a fair amount of jobs, i.e., up to 1,000 times
greater. This implies a lot of extra rescheduling steps that directly impact the
simulation time. However, the average time to schedule a job for this workload
remains reasonable in less than 10 ms, and is less than 2 ms for the three other
workloads. Compared to CBF, the management of deadline-driven jobs, and the
benefits they bring, by DBF induces an affordable overhead of 25%. Finally,
EASY that computes less tentative allocations is about twice as fast as DBF
but does not provide the same guarantees on job completion times.

7 Related Work

In the scheduling literature, deadlines usually express a Quality of Service
requirement. For instance, in (hard) real-time systems the Earliest Deadline
First (EDF) policy [18] is a preemptive scheduling algorithm that puts jobs in a
priority queue and selects the job with the closest deadline for execution when
a scheduling event occurs. Similarly on big data analytics clusters, some jobs
require guarantees on their completion time and thus can be seen as deadline-
sensitive jobs [19,20]. In these two areas, deadlines act as a constraint the sched-
uler has to respect, while in our work we primarily see the deadline as an extra
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degree of freedom for the scheduler. Another main difference is that in both
real-time and big data systems, jobs are usually executed on a single compute
node and often periodic while in HPC systems jobs are mainly parallel and inde-
pendent. The associated scheduling challenges and the definition and usage of
deadlines are then completely different.

The distinction between urgent (but necessarily important) jobs and less
latency-sensitive (but often important) jobs can also be found and characterized
in big data workloads and RJMS. For instance the Google’s Borg system [5]
distinguishes “production” services used for end-user-facing products that show
a diurnal usage pattern from “non-production” batch jobs that are less sensitive
to short-term performance fluctuations.

In [21], the authors define a concept of flexible backfilling to schedule jobs
on heterogeneous HPC resources. They use deadlines to increase the priority
of jobs when they are coming close to their deadlines and decrease it when the
deadlines expire. In this paper, we use deadlines in a different way, not to increase
the priority of a job but on the contrary to further delay its execution.

While the backfilling strategies implemented by CBF and EASY are popular
in production systems, they may cause important resource fragmentation. In [22,
23], the authors rely on meta-heuristics, i.e., tabu-search and random selection,
to periodically reorganize the schedules. While these modifications improve the
average wait time and stretch, they do not preserve one of the most interesting
feature of CBF which is to provide an upper bound of job completion time on
submission. The proposed Deadline-based backfilling algorithm also builds upon
and improves the seminal CBF algorithm, but conserves this feature for both
regular and deadline-driven jobs. Finally, in [24] the authors modify the way
candidates for backfilling are selected in the list of waiting jobs. As our proposed
solution, this approach improves CBF with regard to the performance metrics
used in Sect. 6 but differs in the selection criterion. They rely on new priority
criteria while we use the deadlines associated to the jobs.

8 Conclusion and Future Work

A common and fundamental principle of Resource and Job Management Systems
is to build schedules aiming at making jobs complete as soon as possible, hence
minimizing their response time. Backfilling approaches participate to this effort,
with a interesting side effect of improving resource usage, by moving jobs ahead
in the schedule to fill resources left idle by other jobs.

In this paper, we followed the simple hypothesis that some users may not be
willing to get their results as soon as possible to design an original algorithm
called Deadline-based Backfilling (DBF). If some job is submitted along with a
deadline for its execution, this algorithm can delay it up to the expiration of
this deadline to leave room to more urgent jobs. We design this algorithm while
aiming at keeping its complexity as low as possible to favor its adoption and
at preserving the capacity to provide an upper bound on job completion time
from the submission. We evaluate the performance of this algorithm in terms
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of average wait time and average stretch on four workloads extracted from the
Parallel Workload Archive. Experimental results shown a clear improvement on
both metrics when compared to the classical Conservative Backfilling and EASY
scheduling algorithms.

Experiments presented in Sect. 6 study the impact of the proportion of
deadline-driven jobs on the quality of the schedule using simple deadline deter-
mination rules. Our main future work will be to derive some principles to set
the most beneficial deadlines from the characterization of jobs composing the
workloads. Patterns in terms of duration, number of processors, periodicity will
be investigated. Then we will complete this study by fixing the proportion of
deadline-driven jobs and analyzing the impact of the derived deadline on the
schedule. Finally we aim at defining policies and incentives to motivate users to
be less eager to get their results and give some extra freedom to the scheduler.
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13. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: Proceedings of the
3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010), Malaga, Spain (2010)

14. Caniou, Y., Gay, J.-S.: Simbatch: an API for simulating and predicting the perfor-
mance of parallel resources managed by batch systems. In: César, E., Alexander,
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