
Dalibor Klusáček
Walfredo Cirne
Narayan Desai (Eds.)

 123

LN
CS

 1
07

73

21st International Workshop, JSSPP 2017
Orlando, FL, USA, June 2, 2017
Revised Selected Papers

Job Scheduling Strategies
for Parallel Processing

Lecture Notes in Computer Science 10773

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Dalibor Klusáček • Walfredo Cirne
Narayan Desai (Eds.)

Job Scheduling Strategies
for Parallel Processing
21st International Workshop, JSSPP 2017
Orlando, FL, USA, June 2, 2017
Revised Selected Papers

123

Editors
Dalibor Klusáček
CESNET
Prague
Czech Republic

Walfredo Cirne
Google
Mountain View, CA
USA

Narayan Desai
Google
Seattle, WA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-77397-1 ISBN 978-3-319-77398-8 (eBook)
https://doi.org/10.1007/978-3-319-77398-8

Library of Congress Control Number: 2018934363

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 21st Workshop on Job Scheduling
Strategies for Parallel Processing that was held in Orlando (FL), USA, on June 2, 2017,
in conjunction with the 31st IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2017). The proceedings of previous workshops are also available
from Springer as LNCS volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537,
2862, 3277, 3834, 4376, 4942, 5798, 6253, 7698, 8429, 8828, and 10353.

This year 20 papers were submitted to the workshop, of which we accepted ten. All
submitted papers went through a complete review process, with the full version being
read and evaluated by an average of four reviewers. We would like to especially thank
our Program Committee members and additional reviewers for their willingness to
participate in this effort and their excellent, detailed reviews.

From the very beginning, JSSPP has strived to balance practice and theory in its
program. This combination has been repeatedly shown to provide a rich environment
for technical debate about scheduling approaches. This year, building on this long
tradition, JSSPP also welcomed papers providing descriptions of open problems in
large-scale scheduling. A lack of real-world data often hampers the ability of the
research community to engage with scheduling problems in a way that has real world
impact. Our goal in this new venue was to build a bridge between the production and
research worlds, in order to facilitate direct discussions, collaborations, and impact.

It was our pleasure that out of the ten accepted papers, two directly address the novel
“open problems” track, sharing valuable insights into production systems, their
workloads, usage patterns, and corresponding scheduling challenges. In their paper,
Allcock et al. present details on job scheduling at the Argonne Leadership Computing
Facility (ALCF). The paper described the specific scheduling goals and constraints,
analyzed the workload traces from the petascale supercomputer Mira, and discussed the
upcoming challenges at ALCF. Klusáček and Parák present a detailed analysis of a
shared virtualized computing infrastructure that is used to provide grid and cloud
computing services. In their work, they analyzed the differences between cloud and
grid workloads and addressed some of the problems the infrastructure is facing, such as
(un)fairness or problematic resource reclaiming.

In 1995, JSSPP was the venue where the seminal and widely used backfilling
algorithm was presented for the first time. Now, 22 years after its introduction, many
researchers are still focusing on improving its performance. This year we had two
papers that directly focus on improving the performance of backfilling. Lelong, Reis,
and Trystram propose a framework to evaluate the impact of reordering job queues
using various policies in order to improve on average/maximum wait time. N’takpé and
Suter evaluate a model where a part of the job workload is not sensitive to waiting as
long as it is completed before a given deadline. This allowed them to perform some
interesting optimizations for regular jobs in order to decrease the average wait time and
slowdown.

Wang et al. focus on a somehow similar problem of supporting priority execution
for high-priority real-time jobs while minimizing the delays for ordinary workloads in a
classic batch scheduling scenario. Their solution investigated several techniques
starting from a plain high-priority queue to somewhat more advanced approaches
including pre-emption and application checkpointing. Friese et al. present a detailed
methodology using a genetic algorithm for cost-efficient resource selection when
scheduling complex scientific workflows with uncertainties in forecasted demands on
distributed computing platforms such as “pay-per-use” public clouds.

Lohrmann et al. focus on optimizing the execution of complex I/O critical simu-
lations that are performed using iterative workflows. To minimize I/O delays, in situ
processing is commonly used to minimize the need for time-consuming disk opera-
tions. For this purpose the authors extended the Henson cooperative multi-tasking
system that enables multiple distinct codes to run on the same node and share memory
to speed up computations. Their major extension is a scheduler for Henson, which is
used to schedule iterative trials of a complex simulation. Trials results are used as an
input into a relaxed (computationally cheap) surrogate model that generates new,
refined parameters for consecutive expensive trials. This iterative approach is used to
increase the chance that the expensive simulation converges quickly.

While the majority of batch schedulers are based on job queues, there are few
honorable mentions of pure planning systems, where each job is planned ahead upon its
arrival, i.e., a complete schedule about the future resource usage is computed and made
available to the users. In his paper, Axel Keller presents a detailed description of such a
system called OpenCCS, focusing in detail on data structures and a heuristic that are
used to plan and map arbitrary resources in complex combinations while applying
time-dependent constraints.

Two papers focus on evaluating the system performance using newly proposed
simulators and benchmarks, addressing the needs of current HPC systems, where both
the workload and the infrastructure become more complex and heterogeneous, thus
urgently requiring more advanced scheduling approaches. Rodrigo et al. propose a
novel scheduler simulation framework (ScSF) that provides capabilities for workload
modeling and generation, system simulation (using embedded Slurm simulator),
comparative workload analysis, and experiment orchestration. This simulator is
designed to be run over a distributed computing infrastructure facilitating large-scale
tests. Lopez et al. present the Dynamic Job Scheduling Benchmark (DJSB), which is a
novel tool allowing system administrators to evaluate the impact of dynamic resource
(re)allocations between running jobs on the overall system performance. They use a set
of experiments from the MareNostrum supercomputer to demonstrate how DJSB can
be used to evaluate the impact of different dynamic resource management approaches
on each job/application individually, as well as the overall dynamics of the system.

Enjoy the reading!
We hope you can join us at the next JSSPP workshop, this time in Vancouver,

Canada, on May 25, 2018.

November 2017 Walfredo Cirne
Narayan Desai

Dalibor Klusáček

VI Preface

Organization

Workshop Organizers

Walfredo Cirne Google, USA
Narayan Desai Google, USA
Dalibor Klusáček CESNET, Czech Republic

Program Committee

Henri Casanova University of Hawaii at Manoa, USA
Julita Corbalan Barcelona Supercomputing Center, Spain
Carlo Curino Microsoft, USA
Hyeonsang Eom Seoul National University, South Korea
Dick Epema Delft University of Technology, The Netherlands
Dror Feitelson Hebrew University, Israel
Liana Fong IBM T. J. Watson Research Center, USA
Eitan Frachtenberg Facebook, USA
Alfredo Goldman University of Sao Paulo, USA
Allan Gottlieb New York University, USA
Zhiling Lan Illinois Institute of Technology, USA
Bill Nitzberg Altair, USA
P-O Östberg Umeå University, Sweden
Larry Rudolph Two Sigma, USA
Uwe Schwiegelshohn TU Dortmund University, Germany
Leonel Sousa Universidade de Lisboa, Portugal
Mark Squillante IBM, USA
Wei Tang Google, USA
Ramin Yahyapour University of Göttingen, Germany

Additional Reviewers

Helder Duarte
João F. D. Guerreiro
Diogo Marques
Jiaqi Yan
Xu Yang

Contents

Experience and Practice of Batch Scheduling on Leadership
Supercomputers at Argonne . 1

William Allcock, Paul Rich, Yuping Fan, and Zhiling Lan

Analysis of Mixed Workloads from Shared Cloud Infrastructure 25
Dalibor Klusáček and Boris Parák

Tuning EASY-Backfilling Queues. 43
Jérôme Lelong, Valentin Reis, and Denis Trystram

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 62
Tchimou N’takpé and Frédéric Suter

Supporting Real-Time Jobs on the IBM Blue Gene/Q:
Simulation-Based Study . 83

Daihou Wang, Eun-Sung Jung, Rajkumar Kettimuthu, Ian Foster,
David J. Foran, and Manish Parashar

Towards Efficient Resource Allocation for Distributed Workflows
Under Demand Uncertainties . 103

Ryan D. Friese, Mahantesh Halappanavar, Arun V. Sathanur,
Malachi Schram, Darren J. Kerbyson, and Luis de la Torre

Programmable In Situ System for Iterative Workflows 122
Erich Lohrmann, Zarija Lukić, Dmitriy Morozov,
and Juliane Müller

A Data Structure for Planning Based Workload Management
of Heterogeneous HPC Systems . 132

Axel Keller

ScSF: A Scheduling Simulation Framework . 152
Gonzalo P. Rodrigo, Erik Elmroth, Per-Olov Östberg,
and Lavanya Ramakrishnan

DJSB: Dynamic Job Scheduling Benchmark. 174
Victor Lopez, Ana Jokanovic, Marco D’Amico,
Marta Garcia, Raul Sirvent, and Julita Corbalan

Author Index . 189

Experience and Practice of Batch
Scheduling on Leadership

Supercomputers at Argonne

William Allcock1 , Paul Rich1, Yuping Fan2, and Zhiling Lan2(B)

1 Argonne National Laboratory, Argonne, IL, USA
{allcock,richp}@anl.gov

2 Illinois Institute of Technology, Chicago, IL, USA
yfan22@hawk.iit.edu, lan@iit.edu

Abstract. The mission of the DOE Argonne Leadership Computing
Facility (ALCF) is to accelerate major scientific discoveries and engi-
neering breakthroughs for humanity by designing and providing world-
leading computing facilities in partnership with the computational sci-
ence community. The ALCF operates supercomputers that are generally
amongst the Top 5 fastest machines in the world. Specifically, ALCF is
looking for the science that is either too big to run anywhere else, or
it would take so long as to be impractical (i.e., “capability jobs”). At
ALCF, batch scheduling plays a critical role for achieving a set of site
goals within a set of constraints. While system utilization is an impor-
tant goal at ALCF, its largest mission constraint is to enable extreme
scale parallel jobs to take precedence. In this paper, we will describe the
specific scheduling goals and constraints, analyze the workload traces
collected in 2013–2017 from the 48-rack petascale supercomputer Mira,
and discuss the upcoming scheduling challenges at ALCF.

1 Introduction

Argonne National Laboratory [1] is a U.S. Department of Energy (DOE) general
research laboratory. Argonne performs research in a broad range of disciplines
and operates several user facilities [2] that provide access to resources that are
generally too large and expensive for universities or commercial companies to
operate. One of those facilities is the Argonne Leadership Computing Facility [3]
(ALCF). The ALCF fields supercomputers that are generally amongst the top 5
fastest machines in the world, as rated by the Top500 [4] site. From the ALCF
web site:

The Argonne Leadership Computing Facility’s (ALCF) mission is to accel-
erate major scientific discoveries and engineering breakthroughs
for humanity by designing and providing world-leading computing facilities
in partnership with the computational science community.

Unlike most divisions at Argonne, the ALCF’s primary focus is not on doing
research, though we do some, but is on enabling research by operating a super-
computer facility for researchers around the world. Specifically, our mission is
c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 1–24, 2018.
https://doi.org/10.1007/978-3-319-77398-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_1&domain=pdf
http://orcid.org/0000-0002-7984-6847

2 W. Allcock et al.

to enable the solution to the largest computational challenges, what we refer to
as “capability jobs”. We are looking for the science that is either too big to run
anywhere else, or it would take so long as to be impractical. Access to ALCF
resources is available via three different programs:

• Innovative and Novel Computational Impact on Theory and Experiment
(INCITE) Program [5] (60% of the core-hours)

• Advanced Scientific Computing Research (ASCR) Leadership Computing
Challenge (ALCC) Program [6] (30% of the core-hours)

• The Directors Discretionary (DD) program [7] (10% of the core-hours)

Note that these percentages are an allocation time constraint, but not a schedul-
ing constraint. While they do generally end up split approximately along those
lines simply because of the allocations, the scheduler does not track usage by
program, nor does it use that to influence scheduling decisions.

The rest of this paper is organized as follows. We start by introducing Mira
[14] and Cobalt at Argonne in Sect. 2. Section 3 describes the goals and con-
straints on scheduling at the ALCF. Section 4 describes the current scheduling
algorithm used at ALCF. Section 5 presents our analysis on Mira log and our key
observations. Section 6 describes the upcoming challenges at Argonne. Finally,
we conclude the paper in Sect. 7.

2 Mira: The 48-Rack Blue Gene/Q

Mira is a is a 10-petaflops IBM Blue Gene/Q system [8] installed at Argonne
National Laboratory. It is a 48-rack system, equipped with 786,432 cores
and 768 TB of memory. Every 16 cores form a node and 512 nodes in a
4× 4× 4× 4× 2 structure are grouped into a midplane. Each rack consists of two
midplanes and the system has 48 racks. Mira was ranked ninth in the Top500 list
in November 2017 [4]. It features 5D torus interconnection, which reduces the
average number of hops and latency between compute nodes and thus achieves
high efficient computation and saves the energy for transporting data across long
distance. The smallest partition size on Mira is 512 nodes. Jobs smaller than the
minimum partition run exclusively on one partition.

Mira logs record scheduling events of batch jobs on Mira including requested
and utilized resources (i.e. requested time, used time, requested nodes count,
used nodes count), timestamps of major scheduling events (i.e. submit time,
start time, end time), and job execution environment (i.e. machine partitions).
Table 1 shows the basic information about the Mira logs. There are 554 projects
and 1054 users submitted jobs on Mira. 283,385 jobs were submitted during this
period and approximately 70% of jobs exited system normally. Figure 1 shows
the number of job submitted and core hours used per month.

The information in logs are useful for data analysis and new scheduler evalu-
ation. Data analysis help administrators learn about machines’ status and iden-
tify problems in a system. To evaluate a new scheduling policy, logs can be used

Experience and Practice of Batch Scheduling on Leadership Supercomputers 3

Table 1. Basic information of the job log

Period April 9, 2013–January 31, 2017

Total number of jobs 283,385

Total number of projects 554

Total number of users 1,053

Percentage of jobs exit system normally 70.464915221342%

(a) Number of job submitted (b) Core hours used

Fig. 1. Number of jobs submitted and total core hours used in each month.

directly to generate the input workload for trace-based simulation. In simula-
tions, jobs arrive according to timestamps in a trace. In order to schedule jobs,
simulators require each job providing requested time and node.

3 ALCF Goals and Constraints

Schedulers and scheduling policies exist to achieve a set of goals within a set
of constraints. Conceptually, that seems obvious, but enumerating them is not
necessarily straightforward, accomplishing them is difficult, and because of the
goal to enable capability jobs, the ALCFs are somewhat different than most.

The most obvious constraints are the metrics a facility is required to report
on to its department, funding agency, etc. For the ALCF, the scheduling related
items are:

• Total core hours delivered: This is based on theoretical hours (number of
cores in the machine multiplied by the hours in a year) multiplied by factors
for availability and utilization.

• Core hours delivered to the INCITE program as described above.
• Capability hours: A job is considered capability if it uses ≥20% of the nodes

in the machine for a single scheduler job. Each year a minimum percentage
of our jobs that have to be capability is agreed upon with our sponsors.

• Utilization: Utilization is reported, but there is no set minimum. Where many
facilities will have utilization as the primary metric, the ALCF sacrifices some
utilization in order to prioritize capability jobs.

Until recently, ALCF has been fielding IBM Blue Gene [8] machines, though
the most recent machine is a Cray XC40 machine based on the Intel Knights

4 W. Allcock et al.

Landing many core processors. More than the processor, one could argue that
what sets high-end supercomputers apart are their networks. They generally have
proprietary, low latency, high bandwidth networks. The Blue Gene series runs
an IBM proprietary torus network. The Blue Gene/P series had a 3D torus, the
Blue Gene/Q series, including the ALCF’s current production machine named
Mira, has a 5D torus, and the new Cray has a dragonfly network topology.

This leads to our first constraint: The architecture of the machine itself.
The Blue Gene is a very unique machine. Like all things, it has its advantages
and disadvantages. The Blue Gene torus network is dynamically programmable
enabling every job to have its own dedicated, electrically isolated network. This
means practically zero performance jitter during communications, and while
not a significant concern on an open science machine, zero chance for packet
snooping for the security conscious. However, it does put constraints on node
allocations. One of those constraints is that you cannot pick any random set of
nodes for a given job. The nodes must be allocated in “partitions” which are
controlled by the torus cabling. This generally means contiguous nodes, though
4K partitions can be built as 2K nodes, skip 2K nodes, and then the other 2K
nodes. Nor can you allocate a single node. The Blue Gene has the concept of
a pset, which is a set of compute nodes, and it its associated I/O node(s). On
Mira, the ALCF’s BG/Q, due to the I/O node configuration the pset size is 128
nodes, which is physically the smallest allocation possible. Additionally, due to
the ALCF mission to run large jobs, by policy, as well as for resource isolation
considerations, nothing smaller than a midplane, which is a contiguous group of
512 nodes, is allowed. See Fig. 2.

These constraints simplify the scheduling. They effectively reduce a 49,152
node BG/Q to a “96 allocation unit” system, where each “allocation unit” is a
512 node midplane. It also makes fragmentation much less of an issue. Due to
the torus cabling design, only specific arrangements of midplanes are allowed to
from larger partitions. Additionally, due to the network partitioning and isolation
scheme, links are allocated to one and only one active partition at a time. To deal
with this, the torus connections are considered a first class resource that needs to

Fig. 2. Partitions on Mira.

Experience and Practice of Batch Scheduling on Leadership Supercomputers 5

be scheduled as well. To schedule a job, you not only needed the number of nodes,
but those nodes needed to have the appropriate torus network connections.

Another hardware constraint that was different between the BG/P and the
BG/Q was where the network hardware was at and how it could be managed. On
the BG/P there is a separate link card that has all of the midplane to midplane
network connectivity on it. The implication of this is that if a node failed, a
node board (containing 32 nodes) could be taken offline to replace the node,
and then brought back into production without affecting the network traffic of
any other job. However, on the BG/Q, the torus optics are on the node boards
and it has the concept of “pass through” such that a job not using the compute
nodes on that particular node board could be using the network optics. This
makes maintenance much more impactful. On the BG/P, when a node dies,
the job dies, and the system automatically takes that node board offline. The
scheduler would pick that up and automatically not schedule jobs on it, and
the admin could immediately go replace the node if he chose. Similarly, on the
BG/Q the node board is taken offline and the scheduler won’t schedule on it,
but the admin must wait for any job using pass through to finish before they can
change a node. This lead to the addition of an extension to reservation support,
such that you could choose to reserve only the compute nodes, or the compute
nodes and the optics links. This avoids scheduling any future jobs that use the
pass through links which could, theoretically, infinitely delay replacement of the
compute nodes.

A second constraint came from the selection of projects that ran on our
machines. We were supporting computer science projects doing operating sys-
tems research (Plan9 [9] and ZeptoOS [10]). This required us to be able to boot
the Blue Gene into an alternate operating system. As an alternative OS could
involve an IO node image as well [24], resource isolation to the IO node is also
required.

These two constraints, the Blue Gene hardware and the need to boot alter-
nate operating systems, drove the selection of scheduler software. ALCF uses an
Argonne written and maintained scheduler called Cobalt. It’s origins were from a
DOE program called the “Scalable Systems Software Project” in the late 1990s,
which later went on to become the SciDAC Scalable Systems Software ISIC [12].
When the ALCF was formed, the only scheduler that supported the Blue Gene
was IBMs LoadLeveler, but it could not support alternate OSes. As a result, the
ALCF decided to modify Cobalt [11] to support those two requirements.

3.1 Policy and Mission Constraints

For many facilities, utilization is the number one goal. While the ALCF considers
utilization, its larger mission constraint of enabling extreme scale parallel jobs
takes precedence. The ALCF prioritizes jobs that take up a significant fraction
of the machine, up to and including jobs that consume the entire machine. In
facilities that optimize purely for utilization, large jobs can be blocked for signif-
icant periods of time because smaller jobs monopolize the resources. In theory,
if utilization were the only metric, a full machine job would never run unless it

6 W. Allcock et al.

was the only job in the queue. Fair share algorithms help ameliorate “large job
starvation” delays, but given that running the larger jobs is our primary mission,
we needed a better way.

4 Description of the Current Cobalt Scheduling
Algorithm

Cobalt does not attempt to construct a time-based schedule [23], nor does ALCF
run a “fair share” algorithm. Instead, Cobalt periodically applies a scheduling
“utility function” that calculates a priority increment for each job in the queue.
The jobs are sorted into priority order and sets of resources, some of which may
be in use at that point, are selected to run the highest priority jobs. Cobalt
will then begin to “drain” those resources to make room for the jobs, backfilling
jobs where it can. This draining obviously hurts utilization, but supports the
mission to run large-scale “capability scale” jobs. When the facility first began
production operations back in 2008 the utilization was at approximately 70%.
Over time, scheduling algorithms have improved, ALCF has educated users and
helped scale the computational algorithms, and policy adjustments have been
made that have improved the utilization to approximately 90%.

Resource selection/allocation is based on network topology, heuristics based
on what resources are in use, and when various resources are scheduled to
be available. On the Blue Gene/P platform a static-partitioning scheme was
required, using site-specified predefined partitions. On the Blue Gene/Q plat-
form, a dynamic, on the fly, partition construction scheme could be used, or
a more traditional static partitioning scheme could be used. The ALCF chose
to use a hierarchical static partitioning scheme that utilized some features of
the system wiring to its advantage. For instance, because of the unique Blue
Gene Torus design, there can be a natural regular hierarchical structure to node
partitions. A 32K node partition consists of two 16K node partitions, each of
which consist of two 8K node partitions, and so forth. The implication of this
is that once a small job, say a 1K node job, is started, it not only consumes
those nodes, but it blocks all the larger partitions it is a member of. For that
reason, Cobalt will preferentially select partitions that minimize the number of
additional larger partitions that are blocked. Due to the constraints imposed
by block-exclusive wiring, fragmentation of the torus is costly in terms of the
impact on the throughput of larger jobs, which is compounded due to a need to
favor workloads involving large jobs.

Generally, all jobs that are not part of user requested reservations are sub-
mitted to the default queue. These jobs are then run through a “job router”
which applies scheduling policy to place them into one of three queues based on
size and requested wall time:

• Prod-capability: Any job that requests ≥20% of the nodes is routed to this
queue up to the maximum run time of 24 h. This queue has access to all of the
nodes on the machine. Ideally, every job would meet these criteria since these

Experience and Practice of Batch Scheduling on Leadership Supercomputers 7

“capability” jobs are the ALCFs primary mission. Capability class core-hours
is one of our reportable metrics.

• Prod-short: Any job that requests <20% of the nodes and has a requested
wall time of ≤6 h is routed to this queue. This queue has access to all of
the nodes on the machine. These are not capability jobs, but they are also
relatively short so will block larger jobs for a shorter period of time.

• Prod-long: Any job that requests <20% of the nodes and has a requested
wall time >6 h is routed to this queue. This queue only has access to 1/3 of
the nodes on the machine. These jobs are small and long and so can block
larger jobs for a significant length of time and thus are very disruptive our
desired goal of running larger capability jobs. By restricting them to 1/3 of
the machine, we guarantee that we have at least one 32K partition, and all
of its sub-partitions, available to the prod-capability queue.

There are two corner cases that the Blue Gene architecture brings to this.
First, the 20% limit for being considered capability was set when the ALCF had
a Blue Gene/P, called Intrepid [13]. Intrepid was a 40K node machine and 20%
of that was 8K nodes, which was the size of one of the torus partitions. However,
when the ALCF installed Mira, a Blue Gene/Q, it was 48 racks and 20% of
that was 9.6K, which was not a supported partition size. To deal with this, a
“split” capability metric was developed. A metric for both 8K nodes and 16K
nodes was set and the weighted average of the two is 20%. The second corner
case deals with jobs that request irregular size partitions. The partition sizes
are generally powers of two with the exceptions of 12K (25% of the machine)
and 24K (50% of the machine) partitions. In Fig. 3, a pictorial depiction of the
queues, prod-capability appears to be at 4096 rather than 8192. The line is at
4097, because if a job were to request 4097 nodes, Cobalt would have to allocate
an 8K partition in order to accommodate it. For purposes of queue routing, a
4097 node job will get routed to the prod capability queue, but for purposes of
the capability metric, only jobs that request ≥8K nodes qualify.

While the job is being routed to its queue, a site-specific “filter” script sets
an initial score for the job. This is based on the project that the job belongs
to, with INCITE and ALCC projects getting a more favorable initial score, and

Fig. 3. Mira queues by node count and walltime requested.

8 W. Allcock et al.

the project’s allocation status. Projects that have exceeded their allocation, in
addition to being routed to backfill, are given a starting score that diminishes
proportionally to how much time they have used beyond their initial allocation.
Jobs in the backfill queue have their score capped to below that of any production
queue job. After that, during each “scheduling iteration”, which is currently 15 s,
a “utility function” is executed for each job. This utility function calculates a
priority increment that is added to the current job priority. The jobs are then
ordered based on priority, and resource allocations are made to run the highest
priority job first. The heart of the current utility function in use is:

(queued time − hold time)2

score wall time3
∗ size

MAX SIZE
∗ project weight (1)

Where

• (queued time − hold time) is referred to as the eligible time; The length of
the time that job has been in the queue and it was eligible to be considered
to run.

• score wall time is the requested wall time normalized to be a minimum of
one hour and a maximum of 12 h.

• size is the number of nodes requested.
• MAX SIZE is the total number of nodes in the machine (48K or 49152 for

Mira).
• project weight is an arbitrary value that is based on the project/account

being charged that defaults to 1.0, but which the facility can adjust if there
is a reason to prefer or retard the score increment for that project.

The general concepts behind this algorithm are as follows:

• The fraction of the machine size/MAX SIZE is a multiplier, so larger jobs
will gain priority faster and will tend toward the top of the priority which
meets the goal of enabling large jobs to run. This dominates the early part
of score accrual and “stratifies” jobs.

• The longer the requested wall time, the longer the user should be willing to
wait for it to run. This is handled in the first term of the equation:

(queued time − hold time)2

score wall time3
(2)

Once the jobs eligible wait time (queued time – hold time) squared exceeds
the requested wall time cubed, the priority growth increases rapidly. The
assumption about longer wait times for longer wall times is psychology and
arbitrary, but it has worked well. This time factor also provides an anti-
starvation factor for jobs in the queue, ensuring that a job will eventually
reach the front of the line and run.

4.1 Negative Accounts and Overburn

ALCF has a variety of policies regarding what to do when an allocation reaches
zero. For Director’s Discretionary accounts, they are blocked from running.

Experience and Practice of Batch Scheduling on Leadership Supercomputers 9

If they want to continue running they must request another allocation. INCITE
and ALCC projects may continue to run, but only in backfill. There is an excep-
tion referred to as “overburn”. During the third quarter of the allocation year
(INCITE is on the calendar year; ALCC is July 1st to June 30th), ALCF allows
accounts to run in the prod-capability queue at up to 200% of their allocation
before all of their jobs are forced to backfill. Jobs that would go to prod-short
or prod-long still get routed to backfill under this policy, even in an overburn
period.

Overburn helps to smooth out the delivery time. We were finding that users
were “hoarding” their allocations, causing them to wait until later in the year to
perform their runs. As INCITE and ALCC allocations are “use or lose” at the end
of their term, this would result in a rush at the end of the year and significant
increases in user wait times. This policy incentivizes both earlier running, as
users that have not used their allocations do not benefit from the policy, as well
as the use of capability size jobs. Part of this incentive is that these capability
runs get normal capability priority, in this case. We disable overburn during the
fourth quarter of an allocation cycle so that projects that were late to start or
otherwise have large percentages of their allocations remaining do not have to
compete for priority against projects that have completed their allocations.

4.2 Big Run Mondays

The ALCF typically engages in preventative maintenance on its resources once
every two weeks on Monday. During these periods no jobs run due to highly
disruptive work that may be occurring on the resource itself, or on supporting
infrastructure of the facility. As this necessitates draining the full machine’s
resources at the beginning of maintenance, we effectively open the machine for
a full-machine job for “free”. Before the machine is released back to normal
operation, a set of capability-sized non-backfill, non-overburn jobs is selected
and has their scores altered to be at the front of the queue. Scores are set such
that the largest of the capability jobs run first, making the best use of this “free”
drain of the system’s resources.

4.3 Interactions with User Behavior

In some sense, scheduling algorithm and policy development are an ongoing
“arms race” with the users of the system. Facilities are constantly receiving
feedback from the users on issues they are seeing, new needs they might have,
etc. This feedback may be direct via surveys or trouble tickets, or it may be
indirect in how they interact with the scheduler. Everyone wants their results as
fast as possible, and some users get extremely creative when trying to achieve
that. Below we describe some of the user behaviors and how they were addressed.

4.3.1 Eligible Time vs. Queued Time
Originally the first term of the utility function was just queued time2. However,
we found that users were submitting dummy jobs and putting them on hold

10 W. Allcock et al.

to let them accrue priority until they were ready to run the jobs. They would
have all the right parameters, so the qalter fix above wouldn’t discourage this,
as exiting a hold does not cause a job to be requeued. The solution to that was
to subtract the hold time so that we were using what we now refer to as eligible
time in the first term.

4.3.2 Dependency Chaining
To actually complete the science, most science teams require many millions of
core hours. To allow all projects to make incremental progress, maximum run
times are established and the users must make their runs in pieces, writing out
restart files, usually referred to as “check points”, that the next job can use to
pick up where the previous job left off.

Another common queue parameter is the “max queued” parameter. Even if
thousands of jobs are required to complete an overall computation, only so many
can be in the queue at once. This keeps the size of the queue manageable, but also
prevents a science team from queuing up an entire years worth of work and having
them all gaining priority, which would effectively allow them to monopolize the
queue. Sometimes the jobs are independent and can run in parallel and one job
failure has no impact on the other jobs, but other times, the jobs are steps in
an overall workflow and they must proceed in sequence and the next one can
only proceed if the previous one completes successfully. For the latter situation,
we provide “dependency chaining”. When you submit a job, you can specify
another job ID that it depends on which places that job in a “dep hold” state.
The scheduler will ensure they run in sequence and if a job fails, the scheduler will
place the dependent job into a “dep fail” state until the user can fix the problem
and re-run the failed job. A scheduling issue for this is that because subsequent
jobs are in a hold state, they cannot accrue priority and it extends the total
time to solution. To ameliorate this problem, Cobalt assigns the starting score
of a dependent job to a facility configurable percentage (currently 50%) of the
priority that the preceding job had when it started running. For instance, if job
B depends on job A, and Job A had a priority of 200 when it started running,
when it completes, the starting priority of Job B will be set to 100 (50% of 200).
An exception to this is that should the jobs current priority be higher than the
newly calculated dependency priority, the current priority is maintained.

4.3.3 Using Qalter to Game the System
Early on, some users would submit a job so as to maximize its score function
and accrue priority as rapidly as possible, and then qalter it to the real job
parameters. For instance, they might submit a full machine job maximizing the
size/MAX SIZE term. Additionally, they might set a wall time of 5 min which
means that the priority would begin to grow superlinearly (quadratically) after
only 11.2 min (square root of 53 = 11.2; see the first term of the utility function
described above). Then, just before it was ready to run, they would use the qalter
command and modify the job parameters to what they really were, perhaps a 512
node job for 12 h. To discourage this type of behavior, we modified Cobalt so that

Experience and Practice of Batch Scheduling on Leadership Supercomputers 11

any qalter command that would result in a change of queue (for instance, from
prod-capability to prod-long in the example above) results in the jobs priority
being reset to the starting default as if it were a new job submission.

4.3.4 Adding a Floor and Ceiling on the Wall Time Parameters
in the Utility Function

In general, the behavior achieved with the current utility function accom-
plishes ALCF goals and usually behaves predictably. However, there were cor-
ner cases early on that required adjustments. One of them was regarding the
score wall time parameter. The algorithm had been running stably, but utiliza-
tion had dropped and ALCF began to get user complaints that the jobs start
times were not behaving as expected. Investigation into this determined that
mathematically, things were working as they should, but a recent change in max
wall time from 12 to 24 h for capability jobs had an impact we had not antici-
pated. This resulted in situations where a preferred capability job would accrue
score unusually slowly due to the very large denominator of the wait-time factor
of the score function. Placing the 12 h ceiling allowed for a good turnaround on
these longer jobs without unduly favoring them. The one-hour floor was placed
due to very similar scenarios where a large, short job would get to the front of
the queue very rapidly. In instances where a user may be debugging at scale
or running some other high node count, but short duration workload we would
end up in a pattern where a user would submit a short job, run the job, and
then submit another soon after the job ended, resulting in a very unfavorable
“sawtooth” drain pattern, causing a severe impact to utilization. The ceiling and
the floor corrected these two issues.

4.3.5 Risks of High Initial Scores
Very early in the life of Mira, there was a need to significantly increase the
throughput of some projects that had trouble initially getting started on the new
platform. A policy change was implemented such that a job’s initial score would
depend not only on the queue, but the number of core hours left in the allocation.
This would result in a very high initial score for any job in an “underburned”
project. The following scenario would then happen:

1. A large, long job is the top priority and a set of resources is selected and
begins to drain. This is hurting utilization, but that is expected and normal
so far.

2. A small job is submitted from an unburned, favored, project.
3. After several hours of draining the machine for the large job, the small job

enters ahead of, or soon passes the large job and becomes the top priority job.
Because it is small and the scheduler had been draining, there is very likely
an open resource, so the scheduler immediately starts the new top priority job
(the small job). Once the small job is started, the large job is once again top
priority, but now the partition is blocked by the small job, so a different
partition is selected and it begins to drain.

12 W. Allcock et al.

This resulted in a loss of utilization, which, at the time was considered accept-
able in light of the INCITE time delivery goal of the ALCF. This, however, had
the side effect of making large, capability-sized jobs, very unfavorable on the
system, in addition to user complaints of very unexpected scheduling behavior.
Due to these negative effects, this initial score policy was reverted after the end
of the INCITE year.

5 Mira Log Analysis and Key Observations

This section presents the results of our analysis on Mira logs from April 9,
2013 to January 31, 2017. We conduct our analysis on Mira logs from several
aspects, such as queues, users, exit codes, modes, co-analysis with RAS logs,
cycles, and account. Particularly, we provide job distribution on queues, exit
codes, modes. We find two frequent users in Mira logs and examine the effect
of their behavior on Mira. Next, we look for the correlations between exit codes
and modes. Further, we analyze the Mira job logs with RAS logs. We provide
users’ weekly and daily submission cycles. Finally, we show statistics of overburn
per month.

5.1 Queues

In this subsection, we explore jobs in prod-short, backfill, prod-capability, prod-
long, and prod-1024-torus queues. We make the following observations.

Observation 1. In Table 2, the number of jobs in prod-short queue is much
more than other queues. The total core hours consumed by jobs in prod-capability
is more than half of the core hours used by all jobs. On average, jobs in prod-
long queue ran longest time (24907 s), while jobs in prod-capability queue used
the most number of nodes (13530 nodes). In addition, jobs in prod-capability on
average consume large core hours (656480).

Observation 2. In Table 2, jobs in prod-short queue have higher priority than
jobs in backfill queue. Although jobs in backfill queue on average used less core
hours than jobs in prod-short queue, the average wait time of the jobs in backfill
queue is much higher than that of jobs in prod-short queue.

Observation 3. In Table 2, jobs in prod-capability queue have higher priority
than jobs in prod-long queue. Jobs in prod-capability queue on average used more
core hours than jobs in prod-long queue, their mean wait times are almost the
same.

Observation 4. In Fig. 4, the total number of jobs submitted in each year
decreases, whereas the total core hours used in each year increases. From Sep.
15, 2013 to Sep. 15, 2014, we observe that a large decrease in the submission of
short jobs, while the number of jobs in backfill queue increases.

Experience and Practice of Batch Scheduling on Leadership Supercomputers 13

Table 2. Statistic of queues

Prod-short Backfill Prod-capability Prod-long Prod-1024-torus

Mean used nodes 1080 1043 13530 1253 1024

Mean wait seconds 45243 61279 278510 276839 17338

Mean walltime seconds 6754 4118 20151 39734 3499

Mean runtime seconds 4361 2789 12544 24907 14652

Mean used core hours 23082 16794 656480 137328 66687

Mean requested core hours 22406 16663 651597 33966 66687

Total used core hours 4289056697 883159087 13126325662 2221830694 149446510

(a) Number of Jobs submitted (b) Total core hours used

Fig. 4. Number of jobs and total core hours used by queues in each year.

5.2 Users

In this subsection, we analyze the Mira logs based on users. We analyze two
frequent users on Mira.

5.2.1 User 15303315089691
Observation 5. User 15303315089691 submitted most jobs in Mira. In Fig. 5,
we can see from Aug. to Oct. in 2015, this user submitted more than 20,000 jobs
in Mira. All the jobs submitted in this period of time queued in backfill queue
and the job size is 512. In Fig. 6(a), the submissions of user 15303315089691
lead to large increase in the total number of jobs submitted to Mira during that
period. However, because these jobs are small jobs ran short times, they did not
affect the total core hours used in Mira too much as shown in Fig. 6(b).

Fig. 5. Number of jobs submitted by user 15303315089691 in each month.

14 W. Allcock et al.

(a) Number of jobs submitted in
each queue in each month

(b) Core hours used in each queue
in each month

(c) Average wait time of jobs in each queue
in each month

Fig. 6. The correlation between runtime, used nodes and queues.

Observation 6. In Fig. 6(c), we can see that large increase in the number of
jobs submitted to backfill queue only affect the average wait time of jobs in backfill
queue. The average wait time of jobs in backfill queue increases significantly, but
there is no evidence showing that other queues were affected by the surge.

5.2.2 User 32764951387776
Observation 7. In Fig. 7, user 32764951387776 submitted 48 capability jobs in
April 2016. As shown in Figs. 8 and 9, the large submission by this user leads to
less total number of jobs submitted in April 2016, but the total core hours used
in that month increases. Therefore, large jobs can boost system utilization.

Observation 8. In Fig. 10, increasing number of jobs queued in prod-capability
increases the average wait time of jobs in prod-capability, backfill, and prod-long
queues. The increases in the average wait time of jobs in prod-long and backfill
are more obvious. Therefore, job wait time of jobs in prod-long and backfill is
prone to be affected by the number of job submissions in prod-capability queue.

Fig. 7. Number of jobs submitted by User 32764951387776 in each month.

Experience and Practice of Batch Scheduling on Leadership Supercomputers 15

(a) Number of jobs submitted (b) Core hours used

Fig. 8. Number of jobs submitted and core hours used by User 32764951387776 in each
month during March 1. 2016 to June 1. 2016.

(a) Number of jobs submitted (b) Core hours used

Fig. 9. Number of jobs submitted and core hours used by all users in each month
during March 1. 2016 to June 1. 2016.

Fig. 10. Average job wait time of jobs in different queues in each month during March
1. 2016 to June 1. 2016.

5.3 Exit Codes

The exit codes in Mira logs follow the standard exit codes in Linux. For example,
0 means a job exits Mira normally. 1 means general errors caused by users. In
this subsection, we analyze the distribution of exit codes. Figure 11 presents the
distribution of exit codes.

Observation 9. In Fig. 12, Jobs in prod-short, backfill, and prod-torus queues
have the higher probability of exiting system normally.

Observation 10. In Fig. 13, users have different distributions of exit codes. For
example, 90% of jobs of user 8445397395848 exit system normally, whereas more
than half of jobs of user 41675626785343 exit system with code 143.

16 W. Allcock et al.

(a) Percentage of jobs (b) Percentage of used core hours

Fig. 11. Distribution of exit codes.

(a) Prod-short (b) Prod-long (c) Prod-capability

(d) Backfill (e) Prod-torus

Fig. 12. Distribution of exit codes based on queues.

(a) User 8445397395848 (b) User 41675626785343

Fig. 13. Distribution of exit codes based on users.

5.4 Modes

Mira support three types of job submission: basic job submission, script submis-
sion, and interactive job submission. Basic job submission allows users to submit
an executable. Basic job submissions are further divided into several modes (i.e.
c1, c2, c4, c8, c32, and c64) based on the number of ranks per nodes. For exam-
ple, c2 means 2 ranks per node. Script submission enables users submit a single
Cobalt job script and conduct multiple runs within a script, if jobs in a script all
require the same size partition. The script mode is more flexible and a user need
to wait only once to run all jobs in a script. Interactive submission allocates

Experience and Practice of Batch Scheduling on Leadership Supercomputers 17

(a) All years (b) 2013 (c) 2014

(d) 2015 (e) 2016

Fig. 14. Mode distribution

Fig. 15. Percentage of jobs in Combination of Exit codes and Modes.

partitions and gives a user a shell prompt when the interactive session start.
Users can submit jobs and debug jobs in interactive mode.

Observation 11. In Fig. 14, script is the most popular mode in all years. In
addition, there is a trend towards using c1 mode. A node in Mira can run at
most 64 MPI ranks. The probable reason for not fully use 64 ranks is some
resources in a node are not sufficient to run a job. For example, memory may
not be sufficient to share between 64 MPI ranks, hence users may request to use
less ranks in one node.

Observation 12. In Fig. 15, jobs in script modes have higher probability of exit-
ing system normally. 80% of jobs in script mode exit system normally, whereas
less than 50% of jobs in c16 mode exit system normally. 22% of jobs in c32 mode
exit system with code 143.

5.5 Co-analysis on RAS and Job Logs

Reliability, Availability, and Serviceability (RAS) logs are the primary source
of information that a system administrator can use to understand failures [20].
Co-analysis on RAS and job logs can reveal the job related failures.

18 W. Allcock et al.

(a) Number of Failures of Top 25 parti-
tions

(b) Number of seconds used on different
partitions

Fig. 16. Failures and jobs on partitions.

Fig. 17. CDF of Failure happened after jobs
started.

Fig. 18. Percentage of jobs having
fatal failures in different queues.

Observation 13. From Fig. 16, we can see bigger jobs and partitions have the
higher failure probability. Jobs using all the nodes have the highest failure counts.
In addition, the total failure counts (Fig. 16(a)) is related to total used node hours
of the partitions (Fig. 16(b)).

Observation 14. From Fig. 17, we can see that more than half of the failures
happened at the very beginning of job execution.

Observation 15. From Fig. 18, jobs in prod-capability have the highest proba-
bility of failures. This is probably because of jobs in this queue are bigger than
jobs in other queues, hence, they have higher probability of failure.

5.6 Cycles

In this subsection, we focus on analyzing user behavior and their submission
cycles.

Observation 16. From Figs. 19 and 20, more jobs were submitted on Wednes-
day and Thursday. More jobs were submitted in May and August. Users have
their own submission pattern. Some users are more active on weekdays, while
others are more active on weekends.

Experience and Practice of Batch Scheduling on Leadership Supercomputers 19

(a) Week cycle (b) Month Cycle

Fig. 19. Job submission cycles

(a) User 6304765029952 (b) User 23780330700697

Fig. 20. Users week cycle

5.7 Account

In this subsection, we analyze INCITE and ALCC accounts and the overburn
effects of these accounts.

Observation 17. Overburn jobs consists of 13% of the total jobs. Approxi-
mately 20% of core hours are overburn. In Fig. 21, overburn is highly utilized
from July to September.

Observation 18. In Fig. 22, project 902672531503 is the largest project in
Mira. The analysis on overburn shows that in July and August, approximate
57% of jobs of this project were overburn, which makes up 80% of total core
hours used by this project.

(a) Percentage of overburn jobs. (b) Core hours used on overburn jobs.

Fig. 21. Distribution of overburn jobs per month.

20 W. Allcock et al.

(a) Percentage of overburn jobs. (b) Core hours used on overburn jobs.

Fig. 22. Distribution of overburn jobs per month of project 902672531503.

6 Upcoming Challenges at Argonne

For many years DOE facilities have been on the bleeding edge of parallel com-
puting and managing large volumes of data. For somewhere on the order of
30 years, the basic workload has been massively parallel jobs, batch scheduled,
with relatively long run times and few jobs.

While that workload will continue to be a major part of the mission for the
foreseeable future, the science teams and DOE are asking the DOE facilities to
support a broader range of workloads which are going to raise challenges across
the board including scheduling. Here is a brief description of the workloads and
the potential scheduling challenges associated with them.

6.1 Multi-scheduling

Changes in architecture are requiring multiple resources to be considered “first
class citizens” from a scheduling perspective. One that is already appearing is
power management [21,22]. Power consumption of the largest machines may
exceed what the data center has available and the scheduler will need to con-
sider job power consumption to avoid exceeding power limits. Some architectures
can also gain performance improvements if the power is managed on the node.
Another that is already here is the “burst buffer” [25]. This is a very fast, gen-
erally very close, storage cache. In the future we will need to also consider space
available in the burst buffer. Similarly, Argonne has a research project to inves-
tigate making RAM a manageable, allocable network resource, which would also
need to be scheduled. Network bandwidth and storage space are also possibilities
that have already been explored.

6.2 On-Demand or Deadline Sensitive Computing

Many of the experimental “instruments” such as light sources like the Argonne
Advanced Photon Source [15], or fusion tokamaks like the current DIII-D [16]
or the future ITER [17] require, or at the very least could greatly benefit by
having, computational capabilities that could be available on demand (as soon
as a data acquisition is complete) that can complete in a short period of time
so that the results can be used to adjust parameters for the next run. This is

Experience and Practice of Batch Scheduling on Leadership Supercomputers 21

almost in direct conflict with the traditional workload where a single job can
consume the entire machine for long (12–24 h) periods of time. How can both
demands be accommodated? Here are some potential solutions:

• A fraction of the machine is reserved during periods when the instruments are
running, assuming they are fairly regular and scheduled. This hurts utilization
since the reserved nodes sit idle while the run is in progress.

• Pre-emption: With the right job mix and the right machine characteristics this
is a potentially very good solution. However, some machines, the Blue Gene
in particular, are not very amenable to this. The Blue Gene reboots the nodes
between every job, and for a full machine job that could take 5 min. It also
takes time to kill a job and do appropriate cleanup. If the total allowable time
is 15 min, a number often suggested for the fusion community, the overhead
to do pre-emption is approaching 50%. There is also the loss of science from
the last check point till the job was killed. This can easily be several hours
and that is a non-trivial loss on a very important and expensive resource.

• What if... we could design a hardware/system software system that enabled
rapid, efficient, and low cost “task switches”, resembling more what an oper-
ating system does on a multi-core processor? This would enable us to then
simply “suspend” the job running, task switch to the time constrained job,
possibly backfilling if the size of the suspended job is much bigger than the
needs of the time-constrained job. How would you schedule this? How would
you do the accounting for it?

6.3 High Throughput Computing (HTC) Workloads

HTC workloads tend to be the polar opposite of big parallel jobs. They tend
to require little or no communication between them. They tend to be small,
often single core, or single node. They tend to be short, a few minutes, or even
a few seconds. There tend to be many of them, potentially tens of thousands
or even millions. Typical batch scheduler may not scale well for that number
of jobs, and the startup and shutdown of some large supercomputers would fail
under that sort of load. For instance, the Blue Gene records every hardware
event that occurs in a DB2 relational database. The kind of job thrashing that
an HTC workload brings could run the database out of resources and crash the
machine. We had it happen early on until we built throttles in to prevent it, but
that means the HTC workloads cannot practically run. From a pure architecture
point of view, HTC jobs don’t fit on a big parallel machine. They have no need of
the very expensive, generally proprietary interconnect, and they are a perfect fit
for distributed computing, which is what the High Energy Physics Community
has been doing for years. So why the push for HTC jobs on supercomputers?
They represent a very sizeable investment. They can potentially provide better
time to solution.

• Deal with queue depths of millions
• Possibly batch job starter (ala Condor)

22 W. Allcock et al.

6.4 Complex Domain Specific Software Stacks

Typically, the environment on a batch compute cluster is a “take it or leave it”
affair. There is a single base OS and a set of supported packages. Your application
must either be able to run in that environment or you must be able to build any
required ancillary packages yourself in that environment. At the very least, this
can require significant effort on the part of the application scientists/developers
to build and support multiple environments. In the worst case, they simply
cannot make use of the resource because their software stack can’t run in the
environment. Perhaps there are libraries they don’t control that can’t build, or
there are vetted algorithms that cannot be altered or wont run. Perhaps you
could build your software, but it requires root access, something most facilities
are not willing to provide.

Virtual machines and particularly containerization are offering a paradigm
that can potentially support these complex software stacks. The applications sci-
entist can build complete end-to-end images of their software stack and execute
those on the system. There are projects like Shifter [18] and Singularity [19] that
are attempting to enable root access inside the container while ameliorating the
security concerns that come along with that for the facility.

6.5 Coordinated Services and Access to Remote Data

Another paradigm that is becoming more common are computational tasks that
either require the compute nodes to have internet access and/or they require
another application/service to be up and running while the computational job
is running. Many facilities, ours included, put the compute nodes on an internal
non-routable network. This is primarily done as a security measure, but it can
also have a cost factor. If there are other services required to run, there are
several options:

• Provide resources for “always on” long running services; But this brings sev-
eral issues: who installs and maintains it? If the user, what about root access?
Who deals with the issues if it goes down? What about differing hardware
and software requirements? For instance, if this service is a local database it
might require very substantial core, RAM, and I/O resources.

• Provide resources that can be co-scheduled and used “on-demand” and spin
the services up and down with the job. A virtual machine facility either inter-
nal or something like Amazon Web Services could be used for this, but those
can take several minutes to spin up. How do you avoid your computational
resource from sitting idle while that happens?

6.6 Workflows

The work required to achieve scientific output is much more than just running the
computational jobs. Much of that work is repetitive and mundane, particularly
when the science involves multiple facilities, which is becoming the norm rather

Experience and Practice of Batch Scheduling on Leadership Supercomputers 23

than the exception. You have to sequence the jobs in the right order to satisfy
data dependencies (the output of one job is the input to another), you may have
to move data from one facility to another, archive/backup results, etc. Many
science projects are moving towards using automated workflow tools to manage
this complexity. This brings at least two issues to the facility:

• Remote job launch: You may no longer have a user sitting on your login node
submitting jobs, so how do you enable your scheduler to support this and do
so in a way that avoids the application developers from having to support a
different mechanism at every facility?

• Security: Not only is the user not logged into the system, a user can’t be
sitting by ready to type their password when the workflow system decides
to submit a batch of jobs at 3AM on Sunday morning. How do we balance
supporting the science workflows with securing our facilities so we don’t end
up on the front page of the New York Times because our supercomputer
launched a Denial-Of-Service attack against the White House?

• Impacts of having the WAN as a critical component: If the data is distributed
and needs to be moved, as opposed to moving the compute to the data,
scheduling becomes much more difficult because WAN transfer times are noto-
riously difficult to predict, and if the data movement is happening while the
job is running there is a high probability that the compute resources will go
idle while waiting for data due to WAN performance variability.

7 Conclusions

In summary, we have described the specific batch scheduling goals and con-
straints at ALCF. We have also analyzed workload traces collected from the
production petascale supercomputer Mira and made eighteen key observations
at various perspectives. Finally, we have discussed the upcoming scheduling chal-
lenges at Argonne and potential solutions to some of the challenges.

Acknowledgement. This research used resources of the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC02-06CH11357. Zhiling Lan is supported in part by US National Science
Foundation grants CNS-1320125 and CCF-1422009.

References

1. Argonne National Laboratory. http://www.anl.gov/
2. Argonne National Laboratory User Facilities. http://www.anl.gov/user-facilities
3. Argonne Leadership Computing Facility. http://www.alcf.anl.gov/
4. Top500. https://www.top500.org/
5. Innovative and Novel Computational Impact on Theory and Experiment (INCITE)

Program. http://www.doeleadershipcomputing.org/incite-program/
6. Advanced Scientific Computing Research (ASCR) Leadership Computing Chal-

lenge (ALCC) Program. https://science.energy.gov/ascr/facilities/accessing-ascr-
facilities/alcc/

http://www.anl.gov/
http://www.anl.gov/user-facilities
http://www.alcf.anl.gov/
https://www.top500.org/
http://www.doeleadershipcomputing.org/incite-program/
https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/
https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/

24 W. Allcock et al.

7. The Directors Discretionary (DD) program. https://www.alcf.anl.gov/dd-program
8. IBM Blue Gene. https://en.wikipedia.org/wiki/Blue Gene
9. Plan9. https://en.wikipedia.org/wiki/Plan 9 from Bell Labs

10. ZeptoOS. http://www.mcs.anl.gov/research/projects/zeptoos/
11. Cobalt. http://trac.mcs.anl.gov/projects/cobalt/
12. SciDAC Scalable Systems Software ISIC. http://www.scidac.gov/ASCR/ASCR

SSS.html
13. Intrepid. https://www.alcf.anl.gov/intrepid
14. Mira. https://www.alcf.anl.gov/mira
15. Argonne Advanced Photon Source. https://www1.aps.anl.gov/
16. DIII-D. https://en.wikipedia.org/wiki/DIII-D (fusion reactor)
17. ITER. https://www.iter.org/
18. Shifter. https://github.com/NERSC/shifter
19. Singularity. http://singularity.lbl.gov/
20. Zheng, Z., Yu, L., Tang, W., Lan, Z.: Co-analysis of RAS log and job log on Blue

Gene/P. In: Proceedings of IPDPS (2011)
21. Yang, X., Zhou, Z., Wallace, S., Lan, Z., Tang, W., Coghlan, S., Papka, M.: Inte-

grating dynamic pricing of electricity into energy aware scheduling for HPC sys-
tems. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC) (2013)

22. Wallace, S., Yang, X., Vishwanath, V., Allcock, W., Coghlan, S., Papka, M., Lan,
Z.: A data driven scheduling approach for power management on HPC systems.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (2016)

23. Zhou, Z., Yang, X., Lan, Z., Rich, P., Tang, W., Morozov, V., Desai, N.: Improv-
ing batch scheduling on Blue Gene/Q by relaxing 5D torus network allocation
constraints. In: Proceedings of IEEE IPDPS (2015)

24. Zhou, Z., Yang, X., Zhao, D., Rich, P., Tang, W., Wang, J., Lan, Z.: I/O-aware
batch scheduling for petascale computing systems. In: Proceedings of IEEE Cluster
(2015)

25. Yan, J., Yang, X., Jin, D., Lan, Z.: Cerberus: a three-phase burst-buffer-aware
batch scheduler for high performance computing. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Poster Session (2016)

https://www.alcf.anl.gov/dd-program
https://en.wikipedia.org/wiki/Blue_Gene
https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
http://www.mcs.anl.gov/research/projects/zeptoos/
http://trac.mcs.anl.gov/projects/cobalt/
http://www.scidac.gov/ASCR/ASCR_SSS.html
http://www.scidac.gov/ASCR/ASCR_SSS.html
https://www.alcf.anl.gov/intrepid
https://www.alcf.anl.gov/mira
https://www1.aps.anl.gov/
https://en.wikipedia.org/wiki/DIII-D_(fusion_reactor)
https://www.iter.org/
https://github.com/NERSC/shifter
http://singularity.lbl.gov/

Analysis of Mixed Workloads
from Shared Cloud Infrastructure

Dalibor Klusáček(B) and Boris Parák

CESNET a.l.e., Brno, Czech Republic
{klusacek,parak}@cesnet.cz

Abstract. Modern computing environments such as clouds, grids or
HPC clusters are both complex and costly installations. Therefore, it
has always been a major challenge to utilize them properly. Work-
load scheduling is a critical process in every production system with an
unwanted potential to hamper overall performance if the given scheduler
is not adequate or properly configured. Therefore, researchers as well as
system administrators are frequently using historic workload traces to
model/analyze the behavior of real systems in order to improve existing
scheduling approaches. In this work we provide such real-life workload
traces from the CERIT-SC system. Importantly, our traces describe a
“mixed” workload consisting of both cloud VMs and grid jobs executed
over a shared computing infrastructure. Provided workloads represent
an interesting scheduling problem. First, these mixed workloads involv-
ing both “grid jobs” and cloud VMs increase the complexity of required
(co)scheduling necessary to efficiently use the underlying physical infras-
tructure. Second, we also provide a detailed description of the setup of
the system, its operational constraints and unresolved issues, putting the
observed workloads into a broader context. Last but not least, the work-
loads are made freely available to the scientific community allowing for
further independent research and analysis.

Keywords: Cloud · Grid · Workloads · Scheduling · Simulation

1 Introduction

Workload traces from various real-life systems have been used by researchers
for decades. Notable examples represent the Parallel Workloads Archive [4] and
the Grid Workloads Archive [7] that contains plethora of historic workloads,
mainly from HPC-like systems. Similarly, there are several publicly available
traces1 from large cloud/hadoop/cluster installations including, e.g., Eucalyp-
tus IaaS cloud workload [25], Facebook Hadoop traces [24] or Google cluster
workload [22].

The increasing popularity of resource virtualization introduces new schedul-
ing problems. For example, different types of applications/frameworks can now
1 Nice overview can be found at: http://bit.ly/2kLf44d.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 25–42, 2018.
https://doi.org/10.1007/978-3-319-77398-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_2&domain=pdf
http://bit.ly/2kLf44d

26 D. Klusáček and B. Parák

be hosted simultaneously in a shared physical infrastructure. This was not a
usual scenario 15 years ago. Today, applications and services can be relatively
easily encapsulated as, e.g., VMs or containers and run in an isolated fashion
within a data-center. Therefore, it is very important to collect information about
such installments, where different computing paradigms meet in a single infras-
tructure in order to understand the nature and influence of such co-existence and
its potential impact on existing scheduling approaches, both local (e.g., batch
scheduling system) and global (e.g., Mesos-like inter-application scheduling [6]).

The traces presented in this paper come from the Czech CERIT Scientific
Cloud (CERIT-SC) installation [2] and represent such mixed workloads. Simply
put, they capture a mixture of two different types of applications — standard
computational jobs and cloud VMs — that each use their own resource manager
and scheduling approaches to handle their jobs and VMs, respectively. Both
of them use the same fully virtualized infrastructure to execute the workloads.
Moreover, we present detailed information about system configuration and its
usage policies, maintenance periods and operational constraints, including details
concerning applied scheduling approaches and system performance objectives.
We also discuss current problems with existing system setup and provide several
examples of future research and development. Of course, these workload traces
are freely available to other researchers [12].

This paper is organized as follows. Section 2 describes the shared computing
environment of CERIT-SC, giving details about the hardware, middleware and
system constraints including its scheduling policies. Next, the workload traces are
presented in Sect. 3 and their major characteristics are discussed and compared.
Section 4 describes the optimization criteria that the CERIT-SC uses when opti-
mizing its performance. Existing open problems are discussed in Sect. 5 where
several unresolved issues with the current system configuration are presented.
Finally, Sect. 6 describes the formats of our workload traces, introduces some
available workload parsers and concludes the paper.

2 System Description

Workload traces described in this paper were collected during the year 2016
and come from the CERIT-SC site, which is the largest partition of the Czech
national grid and cloud infrastructure MetaCentrum [18]. MetaCentrum has
some 13,288 CPU cores out of which 5,224 belong to the CERIT-SC partition.
Within CERIT-SC, 3,912 CPU cores (75%) are fully virtualized using OpenNeb-
ula framework [19] and can be used by various applications, while the remaining
1,312 CPU cores are not virtualized and are exclusively used for “bare metal”
grid-like computations. In this paper, we will only concentrate on the mixed
workloads coming from the shared and fully virtualized partition.

The shared partition is managed by OpenNebula and allows for simultaneous
execution of two major classes of workloads. The first type is represented by
classic virtual machines (VM) that are submitted by the users of the system and
serve for various purposes, e.g., they host a database or a web server, or they

Analysis of Mixed Workloads from Shared Cloud Infrastructure 27

encapsulate some “exotic” software or operating system (OS) which cannot be
executed on the “bare metal” nodes that all use Debian 8 OS. Second, there is
a special type of VM which we call a “grid worker” VM. Once deployed and
started, this VM behaves as a “normal” node of the grid infrastructure, i.e.,
computational jobs from the CERIT-SC’s batch resource manager (RM) can be
executed within such VMs. The scheme of the current system configuration is
shown in Fig. 1.

Fig. 1. The scheme of the shared virtualized infrastructure in CERIT-SC.

The biggest advantage of this mechanism is that the actual amount of
resources available either to the grid or to the cloud can be easily and dynami-
cally adapted, simply by changing the number of running grid worker VMs. This
allows for greater flexibility and better distribution of resources compared to the
standard situation where resources are statically allocated either to the cloud or
to the grid and cannot be easily reallocated.

2.1 Physical Clusters

The physical infrastructure of CERIT-SC’s virtualized environment consists of
six major clusters that vary heavily by means of their size and per-node param-
eters. The largest cluster is zapat (1760 CPU cores, 16 cores and 128 GB RAM
per node), followed by zebra (960 CPU cores, 40 cores and 256 GB RAM per
node), zegox (576 CPU cores, 12 cores and 90 GB RAM per node), zefron (320
CPU cores, 40 cores and 1 TB RAM per node), zigur (256 CPU cores, 8 cores
and 128 GB RAM per node) and zorg (40 CPU cores, 40 cores and 512 GB RAM
per node). The availability of nodes and clusters varied slightly during 2016 as
shows Fig. 2.

2.2 Resource Managers

CERIT-SC is using two independent resource managers within its shared infras-
tructure. First, it is the OpenNebula software stack [19] which is responsible for

28 D. Klusáček and B. Parák

Fig. 2. The number of CPU cores available in CERIT-SC during 2016.

virtualization and VM life-cycle management. Using OpenNebula, both regular
users’ VMs are deployed as well as those special “grid worker” VMs that serve for
running computational batch jobs from our grid-like batch system. For this pur-
pose, we use the Torque resource manager [1] with a custom built advanced job
scheduler that has been throughly described at JSSPP 2016 [13]. While every
user of our system can run a regular VM, only the system administrator can
manipulate with those “grid worker” VMs.

2.3 Operational Constraints and Policies

In our system, most operational constraints are related to the batch scheduling
system, i.e., the Torque resource manager. This system is heavily optimized with
quite a complex set of system policies and usage constraints. For example, jobs
are automatically assigned into system queues, the amount of resources available
to a given queue or user is carefully selected while a complex job scheduling
approach based on conservative backfilling [20] is used in order to efficiently use
the available infrastructure as well as to meet several user-oriented criteria [13].
Importantly, job scheduling is subject to an advanced multi-resource aware fair-
sharing mechanism that guarantees that resources are used in a fair fashion
with respect to system users. Beside that, additional metrics like expected job
slowdown and wait time are also used when prioritizing users’ jobs. More details
about the system configuration and applied constraints can be found in [13,15].

In contrast to the batch system, the cloud-operating OpenNebula frame-
work represents a rather simple environment. We use the default VM sched-
uler in OpenNebula (mm sched), which uses a simple VM-matching approach.
No advanced methods like VM prioritization, fair-sharing or automatic VM
migrations/re-scheduling are applied because they are not currently supported.

Analysis of Mixed Workloads from Shared Cloud Infrastructure 29

The exact amount of physical resources that are delegated to the grid-like
computations using “grid worker” VMs is selected by the system administrator,
i.e., there is no automatic load-balancing feature applied in the system.

3 Workload Description

In this section we describe the main characteristics of the mixed workloads col-
lected during 2016 in CERIT-SC. During this one year period there were 11,382
running VMs. Out of these 11,147 represented normal user cloud VMs while 235
represented “grid worker” VMs. Concerning the grid workload from the Torque
resource manager, there were 472,328 jobs computed inside those 235 grid worker
VMs during 2016.

3.1 Main Characteristics of Cloud VMs and Grid Jobs

We now proceed to the analysis of the cloud and grid workload in CERIT-SC,
starting with some major characteristics of cloud VMs and grid jobs. Figure 3
shows scatter plots of all cloud VMs (left) and grid jobs (right). A “dot” repre-
sents one job/VM and its x and y coordinates represent the number of requested
CPU cores and RAM in GB, respectively. Therefore, Fig. 3 allows us to see the
differences among those two workloads by means of their resource requirements.

Fig. 3. CPU and RAM requirements for cloud VMs (left) and grid jobs (right).

Clearly, there are large differences among the two workloads. Generally speak-
ing, the grid workload is much more variable, with lots of jobs that request more
CPUs and/or larger chunks of RAM. In fact, a large amount of grid jobs is using
only few CPUs but lots of available RAM. On the other hand, cloud workloads
are less CPU and RAM demanding. Also, VMs frequently request only a fraction
of one physical CPU which never happens in the grid. When a VM is submitted
in OpenNebula, its owner can specify the amount of both physical and virtual

30 D. Klusáček and B. Parák

CPUs (vCPUs). While the minimal vCPU value is 1.0, i.e., the guest OS inside
a VM always “sees” at least 1 CPU, the user or the system administrator can
specify that this virtual CPU(s) corresponds to a fraction of physical CPU(s),
allowing for explicit CPU overcommitting.

Figure 4 shows the actual impact of such overcommitting by comparing the
number of allocated CPUs and vCPUs during 2016. Although the average over-
commitment of a VM2 was 3.6, physical CPUs in CERIT-SC were — on aver-
age — overcommitted only by the factor of 1.42 during 2016. The latter value is
lower since the dominant part of infrastructure’s physical CPUs has been utilized
by VMs having relatively low vCPUs to CPUs ratio.

Fig. 4. The level of overcommitment (allocated CPUs vs. corresponding vCPUs).

Another important parameter of the workload is the VM’s and job’s execution
time (duration) and their wait times, i.e., the time before a VM or a job is
actually started. For this purpose, we present cumulative distribution functions
(CDF) of VM and job durations and wait times. These CDFs are shown in Fig. 5,
where the duration is on the left and the wait time is on the right. In the CDF,
the y-axis represents the fraction of jobs that have duration less than or equal
to a given duration/wait time, which is shown on the x-axis.

Not surprisingly, there are significant differences between the cloud and grid
workloads. Concerning execution time, all grid jobs have some upper bound
on their maximum execution time, which is specified either by a user or by a
default queue limit. This is not the case for cloud VMs whose maximum runtime
is unbounded and unknown in general. In CERIT-SC, the maximum allowed
runtime for grid jobs is 2 months. In grid, jobs are terminated once reaching
their maximum execution time. This causes the “staircase-like” shape of the
CDF for grid jobs, where several such “stairs” can be observed (e.g., at 2, 4
and 24 h) which correlate to the most popular user-provided runtime estimates.

2 VM overcommitment factor is computed as vCPUs/CPUs.

Analysis of Mixed Workloads from Shared Cloud Infrastructure 31

Fig. 5. The CDFs of VM/job execution time (left) and wait time (right).

In cloud, the runtime is not bounded and (as can be seen in the CDF) there
are VMs that ran throughout the whole one year period (i.e., the CDF reaches
maximum as x approaches 365 days). Figure 5 (left) also reveals that several
cloud VMs and quite a few grid jobs actually terminated right after their start,
most probably due to a misconfiguration or some form of failure.

The CDFs of wait times are shown in Fig. 5 (right) and show major differences
between the workloads. In the cloud, 70% of VMs start within 30 s and 99% of all
VMs are running no later than 10 min after their submission. This is natural as
cloud is used for more interactive work and system administrators periodically
check that there are free resources available for the newly coming VMs. On the
other hand, grid job wait times are more spread with many jobs waiting more
than 10 min (52% of jobs). The nature of batch computations is different from
the cloud, as user-to-job interactions are not very common, i.e., it is natural
to have a significant backlog of waiting jobs in the system. Therefore, job wait
times may be as high as two weeks in extreme cases (≈1.2 M seconds).

3.2 Infrastructure Utilization by Cloud and Grid Workloads

Let us briefly describe how the system resources were used by these two work-
loads (cloud VMs vs. “grid worker” VMs). Figure 6 shows the distribution
of available CPU cores to the cloud and grid, respectively. It reveals that
the amount of resources available for each particular framework was changing
throughout time. Especially, the continuous increase of cloud VMs is nicely vis-
ible. While in January 2016 the cloud VMs only required 284 CPUs, by the end
of the year their total allocation was over 1,100 CPUs. This was only possible
by reducing the allocation for “grid worker” VMs, as shown in Fig. 6.

The figure also reveals some minor inconsistencies — the number of available
CPUs is sometimes smaller than the number of allocated CPUs. These anoma-
lies are caused by the imperfect accounting of OpenNebula, which only stores
timestamps when a VM was running in the past, but it does not record the

32 D. Klusáček and B. Parák

Fig. 6. The number of CPU cores allocated to the cloud VMs and “grid worker” VMs.

actual amount of resources used during the VM’s “offline” periods. It is there-
fore impossible to accurately measure the real system resource usage. Unlike a
common grid job which has a well defined start and completion time, a VM can
be launched and paused repeatedly while (sometimes) still blocking resources
during its “offline” period. This is the case for VMs in “suspend/power-off”
states while VMs that are “undeployed” or “shutdown” do not consume any
resources [21]. Since this VM state-related information is not available, we have
approximated the real resource consumption as if all VMs used their resource
allocations during their “offline” periods, which leads to the observed minor
inconsistencies.

The allocation of free CPU cores by the cloud VMs varies in time and is 72%
on average3. For better visibility, the actual allocation of “grid worker” VMs by
the grid jobs from the Torque batch system is shown in separate Fig. 7, both
for CPU (top) and RAM (bottom). As can be seen, the allocation levels vary
from high to rather low, which is quite common behavior in grid-like system and
relates to several factors including limited job runtime and daily/weekly cycles
of user submissions. The average CPU utilization in CERIT-SC’s grid partition
is 77%. Frequently, CPUs/RAM cannot be used to their full capacity due to the
fragmentation of system resources. Simply put, although the overall (theoretical)
capacity is sufficient to accommodate further workload, job requirements (e.g., its
user-defined topology) cannot be satisfied with the current placement of already
running jobs. Figure 7 also reveals that in CERIT-SC’s grid workload the most
constraining resource is usually the CPU, while plenty of free RAM is generally
available most of the time.

Unfortunately, the lack of accounting data both in the OpenNebula and the
Torque does not allow us to construct similar charts of actual CPU/RAM load

3 As discussed in Sect. 2.2, “grid worker” VMs are started/stopped by the system
administrator, so the 72% utilization of cloud VMs is computed with respect to the
remaining (i.e., available) capacity in the system (see Fig. 6).

Analysis of Mixed Workloads from Shared Cloud Infrastructure 33

Fig. 7. The allocation of “grid worker” VMs by jobs from the Torque batch system
showing CPU (top) and RAM (bottom) allocations.

neither for the cloud VMs nor the grid jobs. Therefore, we do not know exactly
to what extent the resources allocated for cloud VMs and/or grid jobs were
actually used throughout the time. For grid jobs, we only know the average
CPU load per job. Using this data, we see that the CPU load is usually quite
high (78% on average). We have no accounting data concerning real CPU/RAM
load for cloud VMs in CERIT-SC system. Fortunately, we have such data from a
separate cluster that is fully dedicated for cloud VMs4. Figure 8 shows the actual
CPU load in this cluster, suggesting that the CPU load of cloud VMs is typically
much smaller than for grid jobs, being only 5–30% in most cases. Although this
data come from a different cluster, we expect analogous behavior in CERIT-SC,
given the same user-base and similar workload.

4 It is the dukan cluster which is not part of the CERIT-SC infrastructure but it
executes similar workloads from the same user-base.

34 D. Klusáček and B. Parák

Fig. 8. The actual load of allocated CPUs by cloud VMs in dukan cluster during 2016.

3.3 User-Oriented View of the Workloads

So far, the major differences among the workloads have been discussed by focus-
ing on the characteristics of individual VMs and/or jobs. In the following text,
we provide another complementary view of the workload, which analyzes the
workload on a per-user level. For this purpose, we have prepared stacked charts
in Fig. 9 that show the amount of allocated CPU cores per-user during 2016,
both for cloud VMs (top) and grid jobs (bottom).

Figure 9 complements our previous observations concerning typical VM and
job durations in Sect. 3.1. In the cloud environment, the majority of CPU cores
is consumed by ∼15 users with long running (continuous) workloads. In the
grid, the situation is exactly opposite. Most CPU cores are consumed by many
different users that execute rather time-constrained workloads, which is natural
since every grid job has a firm runtime limit. This strict limitation combined
with typical day-to-day and weekly cycles makes the overall utilization curve of
the grid workload much more “noisy”.

3.4 Maintenance Periods

The final part of this section focuses on maintenance periods in CERIT-SC
system. It is fair to say that the following description and presented data is
not based on some advanced monitoring tool, instead we only rely on the system
administrator’s log of planned upgrades/repairs. Minor offline periods and minor
unplanned failures may not be captured here, however all major interventions
and downtimes are likely documented in this log5.

Using this data we were able to reconstruct major system upgrades and
maintenance periods that are shown in Fig. 10. As the chart shows, the overall
number of offline CPUs is quite low during the year (∼1.3% of available CPUs),
except for one event at the beginning of May, where a total of 416 CPUs (28
nodes) was switched off for a week due to the planned HDD firmware upgrade.
5 This log is available at: https://github.com/CERIT-SC/cerit-maintenance.

https://github.com/CERIT-SC/cerit-maintenance

Analysis of Mixed Workloads from Shared Cloud Infrastructure 35

Fig. 9. Users’ CPU usage over the time for cloud VMs (top) and grid jobs (bottom).

Fig. 10. Number of offline CPUs undergoing maintenance during 2016.

This was the only case, when the total number of offline CPUs exceeded 500,
causing 13.3% of the infrastructure being unusable for a week.

36 D. Klusáček and B. Parák

4 Optimization Criteria Used in the System

Those two systems operating over the CERIT-SC infrastructure have different
goals, i.e., different sets of optimization criteria. In both the cloud and the grid
partition, these goals are only enforced in a “best-effort” manner, i.e., no formal
Service Level Agreements are established, although there are various Service
Level Indicators/Objectives [10] that are optimized/targeted.

We now describe these major goals (i.e., objectives and their indicators) in
order to allow other researchers to use our workloads to analyze new/existing
scheduling approaches using realistic optimization goals. We would like to
emphasize that it is not a good idea to compare simulation-based results with
those of the original workload, since there are many unknown constraints that
influence the quality of the original schedule (as seen in the original workload).
Typically, simulation-based results tend to show much better results than those
original (real) schedulers. In reality, real schedulers employ various considera-
tions that limit their options, and lead to sub-optimal scheduling [16].

Sadly, many of these “considerations” cannot be reconstructed as they are
not recorded anywhere6. For more details please refer to [14,16]. Let us start
with the grid-related criteria system before proceeding to the cloud-related and
global criteria.

4.1 Grid Optimization Criteria

The grid partition is subject to four major optimization criteria, which we
describe in the following text.

First, we aim to minimize the avg. wait time [3] which is the mean time
that jobs spend waiting before their executions start. Second, the avg. bounded
slowdown [5] is minimized, which is the mean of jobs bounded slowdowns. The
bounded slowdown is the ratio of the actual response time of the job (the time
from its submission to its termination) to the response time if executed without
any waiting. To avoid huge slowdowns of extremely short jobs, the minimal job
runtime is bounded by some predefined time constant (e.g., 10 s), sometimes
called a “threshold of interactivity” [5].

We also focus on resource utilization, i.e., the goal is to minimize the number
of idle CPUs throughout the time. The system does not use any “green goals”,
i.e., no methods to reduce the carbon footprint/energy consumption are used or
even planned to be used in the future.

Last but not least, user-to-user fairness is considered as one of the most
important goals in CERIT-SC grid partition and is managed by a fair-sharing
approach that uses so-called Normalized User Wait Time (NUWT) metric [13].
For a given user, NUWT is the total user wait time divided by the amount

6 For example, real schedulers must limit the number of concurrently running licensed
applications (jobs using licensed SW) with respect to the number of available soft-
ware licenses, i.e., even if resources are free some jobs must wait until a license is
available. Such information is not usually recorded in the workload.

Analysis of Mixed Workloads from Shared Cloud Infrastructure 37

of previously consumed system resources by that user. Then, the user-to-user
fairness is optimized by minimizing the mean and the standard deviation of
all NUWT values. It follows the classical fair-share principles, i.e., a user with
lower resource usage and/or higher total wait time gets higher priority over more
active users and vice versa [8]. The calculation of NUWT reflects consumptions of
multiple resources (CPU and RAM utilization), representing a solution suitable
for systems having heterogeneous workloads and/or infrastructures.

4.2 Cloud Optimization Criteria

Just like in the grid, there are no “green” objectives and no formal SLAs and the
service is provided in a best-effort fashion. While the grid partition have quite
robust optimization goals, the cloud partition (currently) uses only two simple
objectives and further criteria are likely to be included/developed in the future.

First, the goal is to minimize the wait time of (newly submitted) pending
VMs, thus maximizing the number of concurrently running VMs. In other words,
the goal is to minimize the number of VMs that have to wait for their deployment.
This two criteria (number of waiting VMs and their wait time) are currently used
by the system administrators when (de)allocating physical nodes for the cloud
partition. The “algorithm” is to keep a decent part of the cloud nodes free for
newly arriving VMs. The utilization criterion is used as an auxiliary indicator,
i.e., low utilization implies that some nodes should be returned to the grid and
vice versa. No further indicators/objectives are currently (actively) measured
and optimized/enforced.

A notable difference with respect to the grid partition is the (current) absence
of any fairness-related objective and/or technique to enforce fair use of resources
which is becoming an apparent problem. This is a general problem in those
private clouds that do not use the “pay-per-use” model (or some other equivalent
of money/credit). Further details are provided in the following Sect. 5 which
discusses open scheduling problems in CERIT-SC.

4.3 Global Criteria

Except for the overall CPU utilization (total allocated CPUs throughout the
time), there are currently no global criteria used to measure the performance of
the whole system, i.e., how well the cloud and grid partitions co-exist together.

5 Open Problems

Although the CERIT-SC system is production-grade and currently operates
without any major problems, there are still several unresolved (scheduling) prob-
lems that must be addressed in the (near) future. In the following text we sum-
marize these problems and their origins.

38 D. Klusáček and B. Parák

5.1 Advanced VM-Packing and Adaptive Re-scheduling

In the cloud environment, we would like to improve the quality of VM scheduling.
Especially, we want to investigate whether VMs can be efficiently “packed” on
the physical nodes such that their combined resource requests (e.g., CPU, RAM,
disk space, disk I/O and network I/O) are reasonably balanced throughout the
time. Here we are facing the limits of the current VM scheduler used in the Open-
Nebula framework which does not provide any intelligent VM (re)scheduling
heuristic that would adapt VMs allocations in time. By default, it only sched-
ules VMs upon their deployment based on their predefined resource requests.
No further optimization — based on an actual performance of a running VM —
is done during a VM lifetime.

Clearly, this leaves an open space for improvements as currently some nodes
may be occupied by idle VMs (resource wasting) while other nodes may be
overloaded with VMs competing for resources such as CPUs, I/O, etc. As was
demonstrated in Fig. 8, there seem to be many opportunities how to improve,
e.g., the CPU load. For example, the scheduler should be able to dynamically
reschedule idle VMs, possibly migrating them to heavily overbooked nodes, thus
freeing their original hosts for more demanding or new (pending) VMs. Sim-
ilarly, when a node becomes overloaded by its VMs, some of them should be
rescheduled/migrated to decrease the host’s contention.

In order to actually enable such functionality one must however not only
develop a new advanced scheduler but also invest in the underlying infrastructure
to allow such live VM migrations. In this case, a dedicated distributed storage
facility (e.g., the Ceph [23]) is needed to allow for live migrations, which is not
currently fully operational in CERIT-SC.

5.2 Resource Reclaiming

As discussed in Sect. 2, the major benefit of resource virtualization in CERIT-
SC is that the actual amount of resources available either to the grid or to the
cloud can be easily and dynamically adapted, simply by changing the number of
running “grid worker” VMs. In practice however, this mechanism does not work
that easily due to the nature of our cloud workload. In fact, it works flawlessly
when more resources are required for the cloud VMs. In that case, several “grid
worker” nodes are first drained, i.e., all grid jobs running inside the worker are
completed and new jobs are not allowed to start there. Then the given “grid
worker” VM is terminated and its host becomes available to the classic cloud
VMs. The problem is that the same mechanism does not work so easily in the
opposite direction, i.e., it is not always easy to drain a host that is hosting
running cloud VMs. As discussed in Sect. 3.1, in CERIT-SC the runtime of a
VM is unbounded and unknown, in general. Therefore it is impossible to drain
a node by the same mechanism that works in the grid. Theoretically, VMs that
execute on a node can be migrated, but this may not be always possible, e.g.,
when the cloud infrastructure is already saturated by running VMs.

Analysis of Mixed Workloads from Shared Cloud Infrastructure 39

This is currently our major threat, since the cloud allocations in our system
are increasing very quickly (see Fig. 9 (top)), yet we do not have any “automated”
resource-reclaiming mechanism. Another problem is that CERIT-SC provides its
resources for free to anyone who is affiliated with the scientific/academia commu-
nity in the Czech Republic (university students/teachers, academic researchers,
etc.). Therefore, it does not use some form of the “pay-per-use” model which is
otherwise very suitable to motivate users to stop their VMs once they are not
needed anymore. At the same time, CERIT-SC’s budget is fixed, i.e., we can-
not just buy another cluster whenever the demand is approaching the available
capacity.

5.3 Fair-Sharing in Cloud

The absence of the “pay-per-use” model together with the rather poor resource-
reclaiming in our cloud brings another problem — the resources are allocated to
the users without considering some overall fairness. This is in great contrast with
the grid installation, where fairness is one of the major optimization goals and
is managed by the fair-sharing approach [13]. As was shown in Fig. 9 (top), the
majority of cloud resources is consumed by few users over a long time period,
yet there is no automated mechanism that would force them to decrease their
allocations, letting other users to use the system.

Apparently, we should adopt some analogy of the fair-sharing in our cloud
installation. Perhaps a good starting point would be to prioritize users (based
on their resource usage) and automatically decrease allocations for long running
VMs of low priority users (i.e., increase VMs overcommitment factor). Solving
this problem will however require major changes in the current, rather naive,
scheduler used in the OpenNebula framework.

5.4 Load-Balancing

Upon solving the problems mentioned in Sects. 5.1–5.3 we start to focus on
the global scheduling problems such as load-balancing among the applica-
tions/frameworks. Certainly, our workloads indicate that there are many oppor-
tunities to use temporarily idle resources. For example, short jobs from the grid
can probably “steal the cycles” when cloud VMs are idle, because the average
load of allocated CPU cores in the cloud is currently bellow 30% in most cases.
For this purpose a “sleeping grid worker” VM could be launched on every host
with a huge overcommitment factor during its idle phase. Then, upon the request
of the batch system, such a sleeping grid worker VM can be woken up by increas-
ing its resource allocations and used for (short) grid jobs. In this way, many short
and/or narrow grid jobs can use even very time-limited opportunities, e.g., when
cloud VMs are idle during the night.

The question is to how to actually implement such an inter-application
scheduling. One way is to try to build upon existing frameworks like Apache
Mesos [6], or use some form of a module in the existing underlying platform — in

40 D. Klusáček and B. Parák

this case inside the OpenNebula SW stack. The decision process is further com-
plicated by the fact that new frameworks like OpenStack [9] and/or Docker [17]
are currently tested and will be probably offered in the near future to our users.
Therefore we must not only focus on the “optimal result” but also keep in mind
that our development team has a limited capacity. Thus, every new framework
and/or functionality then brings not only opportunities but problems too.

6 Workload Formatting and Conclusion

In this paper we have provided a detailed analysis of the mixed workload traces
from the CERIT-SC system. Presented workloads can be freely obtained at the
JSSPP’s public workload archive [12]. Since the workload logs come from two
different systems, they are provided in two different formats.

The grid-based workload is formatted according to the well-know Standard
Workload Format (SWF) which is adopted in the Parallel Workloads Archive [4].
SWF formatting rules are described at the Parallel Workloads Archive’s web-
site7. Additional information that are not supported by the original SWF for-
mat but may be useful for some simulations are added at the end of each job
entry (i.e., at the end of a line) into newly defined fields and are separated by
whitespaces. These additional fields include the specifications of used computing
node(s) (i.e., hostname(s)), human-readable name of the queue, so-called “node-
spec” (i.e., detailed job description taken from the qsub command, including
per-node specified number of requested resources) and the number of requested
GPUs.

The cloud-based workload describing all VMs is formatted in a JSON
(JavaScript Object Notation) format [11]. Unlike the jobs in the grid work-
load that are non-preemptible, cloud VMs can be executed repeatedly and thus
require more complex data structure to describe their (repeated) executions. For
this purpose the array feature of JSON is very suitable.

Although there are many SWF and JSON parsers available [4,11], we pro-
vide a set of simple java parsers that can be used to parse the aforementioned
workload traces. Moreover, they calculate and print several statistics that were
used in this paper. These parsers are provided along with the workloads at the
JSSPP’s workload archive [12].

Acknowledgments. We kindly acknowledge the support and computational
resources provided by the MetaCentrum under the program LM2015042 and the
CERIT Scientific Cloud under the program LM2015085, provided under the programme
“Projects of Large Infrastructure for Research, Development, and Innovations” and
the project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the Ministry of
Education, Youth and Sports of the Czech Republic. We also highly appreciate the
access to CERIT Scientific Cloud workload traces.

7 SWF format: http://www.cs.huji.ac.il/labs/parallel/workload/swf.html.

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

Analysis of Mixed Workloads from Shared Cloud Infrastructure 41

References

1. Adaptive Computing Enterprises, Inc.: Torque 6.1.0 Administrator Guide, Febru-
ary 2017. http://docs.adaptivecomputing.com

2. CERIT Scientific Cloud, February 2017. http://www.cerit-sc.cz
3. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global Grid computing

for job scheduling. In: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, GRID 2004, pp. 374–379. IEEE (2004)

4. Feitelson, D.G.: Parallel workloads archive, February 2017. http://www.cs.huji.ac.
il/labs/parallel/workload/

5. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2 14

6. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,
Shenker, S., Stoica, I.: Mesos: a platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2011, pp. 295–308, Berkeley, CA, USA. USENIX
Association (2011)

7. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The Grid workloads archive. Future Gener. Comput. Syst. 24(7), 672–686 (2008)

8. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

9. Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing, Birming-
ham (2012)

10. Jones, C., Wilkes, J., Murphy, N., Smith, C., Beyer, B.: Service level objectives.
In: Beyer, B., Jones, C., Petoff, J., Murphy, N. (eds.), Site Reliability Engineering:
How Google Runs Production Systems, Chap. 4. O’Reilly Media (2016). https://
landing.google.com/sre/book.html

11. Introducing JSON, February 2017. http://www.json.org/
12. Klusáček, D.: Workload traces from CERIT Scientific Cloud, February 2017.

http://jsspp.org/workload/
13. Klusáček, D., Chlumský, V.: Planning and metaheuristic optimization in produc-

tion job scheduler. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol.
10353, pp. 198–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61756-5 11

14. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient
queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 12

15. Klusáček, D., Tóth, Š., Podolńıková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016.
LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61756-5 5

16. Krakov, D., Feitelson, D.G.: High-resolution analysis of parallel job workloads. In:
Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012.
LNCS, vol. 7698, pp. 178–195. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35867-8 10

http://docs.adaptivecomputing.com
http://www.cerit-sc.cz
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-45540-X_6
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
http://www.json.org/
http://jsspp.org/workload/
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-642-35867-8_10
https://doi.org/10.1007/978-3-642-35867-8_10

42 D. Klusáček and B. Parák

17. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

18. MetaCentrum, February 2017. http://www.metacentrum.cz/
19. Montero, R.S., Llorente, I.M., Miloji, D.: OpenNebula: a cloud management tool.

IEEE Internet Comput. 15(2), 11–14 (2011)
20. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib.Syst. 12(6), 529–543 (2001)

21. Managing virtual machines, February 2017. https://archives.opennebula.org/
documentation:rel4.4:vm guide 2

22. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+schema.
Technical report, Google Inc., Mountain View, CA, USA, November 2011. Version
2.1. Posted at https://github.com/google/cluster-data. Accessed 17 Nov 2014

23. Singh, K.: Ceph Cookbook. Packt Publishing, Birmingham (2016)
24. SWIM workload repository, February 2017. https://github.com/

SWIMProjectUCB/SWIM/wiki/Workloads-repository
25. Wolski, R., Brevik, J.: Using parametric models to represent private cloud work-

loads. IEEE Trans. Serv. Comput. 7(4), 714–725 (2014)

http://www.metacentrum.cz/
https://archives.opennebula.org/documentation:rel4.4:vm_guide_2
https://archives.opennebula.org/documentation:rel4.4:vm_guide_2
https://github.com/google/cluster-data
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

Tuning EASY-Backfilling Queues

Jérôme Lelong, Valentin Reis(B), and Denis Trystram

Univ. Grenoble Alpes, CNRS, Inria, LIG, LJK, Grenoble, France
{jerome.lelong,valentin.reis,denis.trystram}@imag.fr

Abstract. EASY-Backfilling is a popular scheduling heuristic for allo-
cating jobs in large scale High Performance Computing platforms. While
its aggressive reservation mechanism is fast and prevents job starvation,
it does not try to optimize any scheduling objective per se. We consider in
this work the problem of tuning EASY using queue reordering policies.
More precisely, we propose to tune the reordering using a simulation-
based methodology. For a given system, we choose the policy in order
to minimize the average waiting time. This methodology departs from
the First-Come, First-Serve rule and introduces a risk on the maximum
values of the waiting time, which we control using a queue thresholding
mechanism. This new approach is evaluated through a comprehensive
experimental campaign on five production logs. In particular, we show
that the behavior of the systems under study is stable enough to learn
a heuristic that generalizes in a train/test fashion. Indeed, the average
waiting time can be reduced consistently (between 11% to 42% for the
logs used) compared to EASY, with almost no increase in maximum wait-
ing times. This work departs from previous learning-based approaches
and shows that scheduling heuristics for HPC can be learned directly in
a policy space.

1 Introduction

The main challenge of the High Performance Computing community (HPC) is
to build extreme scale platforms that can be efficiently exploited. The number of
processors on such platforms will drastically increase and more processing capa-
bilities will obviously lead to more data produced [10]. Moreover, new computing
systems are expected to run more flexible workloads. Seldom supported by the
existing managing resource systems, the future schedulers should take advantage
of this flexibility to optimize the performance of the system. The extreme scale
generates a huge amount of data at run-time. Collecting relevant information is
a prerequisite for determining efficient allocations.

The resources of such platforms are usually subject to competition by many
users submitting their jobs. Parallel job scheduling is a crucial problem to address
for a better use of the resources. Efficient scheduling of parallel jobs is a chal-
lenging task which promises great improvements in various directions, includ-
ing improved machine utilization, energy efficiency, throughput and response
time. The scheduling problems are not only computationally hard, but in prac-
tice they are also plagued with uncertainty as many parameters of the problem
c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 43–61, 2018.
https://doi.org/10.1007/978-3-319-77398-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_3&domain=pdf

44 J. Lelong et al.

are unknown while taking decisions. As a consequence, the actual production
platforms currently rely on very basic heuristics based on queues of submitted
jobs ordered in various ways. The most used heuristic is the well-known EASY-
backfilling policy [20,24]. While EASY is simple, fast to execute and prevents
starvation, it does not fare especially well with respect to cumulative cost met-
rics such as the average waiting time of the jobs. Therefore, many HPC code
developers and system administrators intend to tune this heuristic by reorder-
ing either the primary queue or the backfilling queue. Since such reordering of
job queues may introduce starvation in the scheduling, this results in a dilemma
between the average and maximal costs. In order to solve this dilemma, we intro-
duce a thresholding mechanism that can effectively manage the risk of reaching
too large objective values. This issue is further complicated by the dependency
of the relative scheduling performances on system characteristics and workload
profiles. We propose in this work to use simulations in order to choose queue
reordering policies. Finally, we study the empirical generalization and stability
of this methodology and open the door for further learning-based approaches.

The rest of the paper is organized as follows: Sect. 2 reviews existing resource
management approaches from the literature. Section 3 describes the context and
states the problem. Section 4 describes an experimental setup that is essential to
the discussion. Section 5 introduce our approach, illustrating the discussion with
results from the KTH-SP2 trace. Section 6 describes the thresholding mechanism
used. Section 7 validates this approach using a comprehensive experimental cam-
paign on 5 logs from the Parallel Workload Archive [14].

2 Related Works

This section presents current solutions to the scheduling problem and the current
direction taken by the field.

2.1 Scheduling Heuristics in HPC Platforms

While parallel job scheduling is a well studied theoretical problem [19], the prac-
tical ramifications, varying hypotheses, and inherent uncertainty of the problem
in HPC have driven practitioners and researchers alike to use and study simple
heuristics. The two most popular heuristics for HPC platforms are EASY [24]
and Conservative [21] Backfilling.

While Conservative Backfilling offers many advantages [25], it has a signifi-
cant computational overhead, perhaps explaining why most of the machines of
the top500 ranking [3] still use at the time of this publication a variant of EASY
Backfilling.

2.2 EASY

There is a large body of work seeking to improve EASY. Indeed, while the heuris-
tic is used by various resource and job management softwares (most notably
SLURM [2]), this is rarely done without fine tunings by system administrators.

Tuning EASY-Backfilling Queues 45

Several works explore how to tune EASY by reordering waiting and/or back-
filling queues [29], sometimes even in a randomized manner [23], as well as some
implementations [17]. However, as successful as they may be, these works do not
address the dependency [5] of scheduling metrics on the workload. Indeed these
studies most often report post-hoc performance since they compare algorithms
after the workload is known.

The dynP scheduler [27] proposes a systematic method to tuning these
queues, although it requires simulated scheduling runs at decision time and
therefore costs much more than the natural execution of EASY.

2.3 Data-Aware Resource Management

There is a recent focus on leveraging the high amount of data available in large
scale computing systems in order to improve their behavior. Some works use col-
laborative filtering to colocate tasks in clouds by estimating application interfer-
ence [30]. Others are closer to the application level and use binary classification
to distinguish benign memory faults from application errors in order to execute
recovery algorithms (see [31] for instance).

Several works use this method in the context of HPC, in particular [16,29],
hoping that better job runtime estimations should improve the scheduling [9].
Some algorithms estimate runtime distributions model and choose jobs using
probabilistic integration procedures [22].

However, these works do not address the duality between the cumulative and
maximal scheduling costs, as mentioned in [16].

While these previous works intend to estimate uncertain parameters, we con-
sider in this paper a more pragmatic approach, which is to directly learn a good
scheduling policy from a given policy space.

3 Problem Setting

This section describes the generic platform model used in this paper. It recalls
the EASY heuristic and defines two scheduling cost metrics to be minimized.
Finally, it motivates and introduces the problem statement of this paper.

3.1 System Description

The problem addressed in this paper is the one faced by Resource and Job
Management Systems (RJMS) such as SLURM [2], PBS [1] and OAR [7] and
more recently by Flux [4].

The crucial part of these softwares is the scheduling algorithm that deter-
mines where and when the submitted jobs are executed. The process is as follows:
jobs are submitted by end-users and queued until the scheduler selects one of
them for running. Each job has a provided bound on the execution time and
some resource requirements (number and type of processing units). Then, the

46 J. Lelong et al.

RJMS drives the search for the resources required to execute this job. Finally,
the tasks of the job are assigned to the chosen nodes.

In the classical case, these softwares need to execute a set of concurrent par-
allel jobs with rigid (known and fixed) resource requirements on a HPC platform
represented by a pool of m identical resources. This is an on-line problem since
the jobs are submitted over time and their characteristics are only known when
they are released. Below is the description and the notations of the characteristics
of job j:

– Submission date rj (also called release date)
– Resource requirement qj (number of processors)
– Actual running time pj (sometimes called processing time)
– Requested running time p̃j (sometimes called walltime), which is an upper

bound of pj .

The resource requirement qj of job j is known when the job is submitted at
time rj , while the requested running time p̃j is given by the user as an estimate.
Its actual value pj is only known a posteriori when the job really completes.
Moreover, the users have incentive to over-estimate the actual values, since jobs
may be “killed” if they surpass the provided value.

3.2 EASY Backfilling

The selection of the job to run is performed according to a scheduling policy
that establishes the order in which the jobs are executed. EASY-Backfilling is
the most widely used policy due to its simple and robust implementation and
known benefits such as high system utilization [24]. This strategy has no worst
case guarantee beyond the absence of starvation (i.e. every job will be scheduled
at some moment).

The EASY heuristic uses a job queue to perform job starting/reservation
(the primary queue) and job backfilling (the backfilling queue). These queues
can be dissociated and the heuristic can be parametrized via both a primary
policy and a backfilling policy. This is typically done by ordering both queues in
an identical manner using job attributes. In the following, we denote by EASY-
PR-PB the scheduling policy that starts jobs and does the reservation according
to policy PR and backfills according to policy PB . For the sake of completeness,
Algorithm 1 describes the EASY-PR-PB heuristic.

This paper makes use of 7 classical queue reordering policies that are pre-
sented below:

– FCFS: First-Come First-Serve, which is the widely used default policy [24].
– LCFS: Last-Come First-Serve.
– LPF: Longest estimated Processing time p̃j First.
– SPF: Smallest estimated Processing time p̃j First [25].
– LQF: Largest resource requirement qj First.
– SQF: Smallest resource requirement qj First.

Tuning EASY-Backfilling Queues 47

Algorithm 1. EASY-PR-PB policy
Input: Queue Q of waiting jobs.
Output: None (calls to Start())

Starting jobs in the PR order
1: Sort Q according to PR

2: for job j do
3: Pop j from Q
4: if j can be started given the current system use. then
5: Start(j)
6: else
7: Reserve j at the earliest time possible according to the estimated running

times of the currently running jobs.
Backfill jobs in the PB order

8: L ← Q
9: Sort L according to PB

10: for job j′ in L do
11: if j′ can be started without delaying the reservation on j. then
12: Start(j′)
13: end if
14: end for
15: break
16: end if
17: end for

– EXP: Largest Expansion Factor First [25], where the expansion factor is
defined as follows:

waitj + p̃j
p̃j

(1)

where waitj is the waiting time until now of job j.

This search set is taken to maximize semantic diversity, without passing
judgement on which policy should be the best for a particular objective.

3.3 Scheduling Metric

A system administrator may use one or multiple cost metric(s). Our study of
scheduling performance relies on the waiting times of the jobs, which is one of
the more commonly used reference.

Waitj = startj − rj (2)

Like other cost metrics, the waiting time is usually considered in its cumula-
tive version, which means that one seeks to minimize the average waiting time
(AvgWait). In the following, we will also use the maximal version of this cost
metric which we denote by MaxWait, a.k.a the maximal value of the waiting
time of all the jobs from a scheduling run.

48 J. Lelong et al.

3.4 Problem Description

There are in the authors’ view two main difficulties when effectively tuning the
EASY heuristic. Each of these two issues are illustrated below by a dedicated
scheduling experiment.

First, the relative performance of EASY policies is sensitive to the context [5,
25]. Table 1 illustrates this effect by comparing the AvgWait of two different
queue ordering policies on the logs of two different workloads from the Parallel
Workload Archive. The results suggest that there is no “one size fits all” choice
of primary and backfilling queue policies. In such a situation, tuning EASY must
be done locally for each HPC system. This can be done via simulation, taking
care that the results generalize to the future.

Second, starvation may occur when changing the EASY queue policy away
from FCFS. This issue concerns the method used to measure the objective. Most
systems use a variant of the EASY- FCFS-FCFS policy, where the FCFS policy is
used both for primary and backfilling queues. The main advantage of this choice
is that it controls the starvation risk by greedily minimizing the maximum values
of the job waiting times. Indeed, a job might be indefinitely delayed when not
starting jobs in the FCFS order. This effect was pointed out in some related
works [16,29] that optimize the average cost by removing the FCFS constraint.
Table 2 illustrates this effect by reporting the AvgWait and MaxWait of the
EASY-SPF-SPF and EASY-FCFS-FCFS strategies on the CTC-SP2 trace.

In this paper, we would like to study the following question: How to lever-
age workload data in order to improve cumulative cost metrics while
controlling their maximum values?

In order to answer this question, we investigate the use of simulation to tune
EASY-PR-PB by reordering its two queues. The first conclusion is that reorder-
ing the primary queue is more beneficial than simply reordering the backfilling
queue. However, this introduces a risk on the maximum values of the objective,

Table 1. AvgWait performance of EASY-EXP-EXP and EASY-SQF-SQF on the orig-
inal CTC-SP2 and SDSC-SP2 traces, in seconds.

CTC-SP2 SDSC-SP2

EASY-EXP-EXP 3074 6765

EASY-SQF-SQF 2090 11234

Table 2. AvgWait and MaxWait performance of EASY-SPF-SPF and EASY-FCFS-
FCFS on the original CTC-SP2 trace, in seconds.

EASY-SPF-SPF EASY-FCFS-FCFS

AvgWait 2784 3974

MaxWait 661280 176090

Tuning EASY-Backfilling Queues 49

which we control by hybridizing FCFS and the reordering policy via a thresh-
olding mechanism. Finally, we show that the experimental performance of the
thresholded heuristics generalizes well to unseen data.

4 Experimental Protocol

This section motivates the statistical approach used to measure performance and
describes the simulation method.

4.1 Statistical Approach

The experimental approach used in this paper is statistical by nature. Figure 1
shows how the AvgWaits of the 7 primary policies used along with FCFS back-
filling evolves during the first 150 weeks of the “cleaned”1 KTH-SP2 trace from
the Parallel Workloads Archive. The variability [5,15] of cost metrics and their
sensitivity to small changes in the workload logs [28] have been thoroughly stud-
ied in the literature. Our approach to measuring performance without reporting
noise from workload flurries [28] is to aggregate the cost metric on a large num-
ber of generated logs. In this way, we can report the variability along with the
average values. The trace generation approach of this paper follows in part the
methodology of [12]: We design a trace resampler in order to generate week-
long workload logs from an original dataset. The resampling technique used is
simplistic in nature: for each system user, a random week of job submissions

Fig. 1. AvgWait obtained for the 7 main queue policies with FCFS backfilling for 150
generated weeks on the KTH-SP2 trace. First, in absolute value, and then normalized
with respect to EASY-FCFS-FCFS.

1 See the Parallel Workloads Archive [14] for details.

50 J. Lelong et al.

from the original trace is used. This approach is combinatorially sufficient to
generate infinitely many logs while preserving the natural dependency of the
workload on the weekly period and the variability in load. On the downside, the
seasonal effect and the dependency between users are lost. Moreover, there is
no user model or other feedback loop in the simulations. In all experiments, the
performance of every policy is evaluated by averaging the cost values over 250
generated weeks.

4.2 Simulation Method and Testbed

While high quality simulators like SimGrid [8] are available in practice, this paper
focuses on backfilling behavior and does not need to use such advanced tools.
This is motivated by the fact that one needs to use a high-performance approach
to simulation in order to perform the high number of scheduling runs necessary
for this study (the total number of week-long simulations in this paper is of the
order of 106). Therefore, experiments are run with a specially written lightweight
backfilling scheduler. Since there is a need for both speed of execution and gener-
ality of application, our scheduler simulator discards all topological information
from the original machines. Using this simulator, a week of EASY backfilling
can be replayed in under a tenth of a second for the KTH-SP2 machine, the
I/O operations (reading and writing a swf file) included. All simulations are
performed on a Dell PowerEdge T630 machine with 2x Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60 GHz/14 cores (28 cores/node), and 260 GB of RAM. We use
a minimalistic approach to reproducible research [26] and provide a snapshot
of the work that includes a build system that runs the experiments using the
zymake [6] minimalistic workflow system. The archive includes our simulator and
a nix [11] file that describes the dependencies.

5 Primary and Backfilling Queues

This section presents a dedicated experimental campaign that uses the KTH-
SP2 trace in order to illustrate the contradictory effect of average and maximum
cost.

5.1 Maximum and Average Cost

Figures 2 and 3 show a bi-objective view of the post-hoc optimization problem
of choosing a primary and backfilling policy among all 49 possible combinations
(7 policies for the primary queue and 7 for the backfilling queue). The two
objectives are the cumulative and maximal costs. In order to obtain a truthful
overview of the variability, we use a sample size of 250 weeks and all values are
recentered on the performance of EASY-FCFS-FCFS for that particular week.
Figures 2 and 3 vary in terms of y axis. In Fig. 2, the y axis is the maximum
MaxWait over simulated week, i.e. the highest waiting time of any job on all the
simulated weeks. In Fig. 3, the y axis is the average MaxWait over the 250 weeks.

Tuning EASY-Backfilling Queues 51

Fig. 2. Maximum and average waiting time cost of the 49 heuristics generated by
using the 7 possible policies as primary and backfilling ordering averaged over 250
resampled weeks. All values are relative to the value obtained by the EASY primary
queue policy with EASY backfilling. The maximum MaxWait value reported is the
maximum waiting time of all jobs in the 250weeks. The average AvgWait value is the
mean of the weekly waiting time averages, and the range indicates the first and last
decile of the samples.

The average value reported is the mean average cost over individual weeks,
which allows for displaying deciles in both directions. Note that Fig. 2 is a more
aggressive way of reporting this value. There are two main observations.

First, it seems possible to improve the AvgWait on this machine as far as
to reduce it of 30% in hindsight compared to the EASY-FCFS-FCFS baseline.
However, such AvgWait improvements seem to entail an increase in MaxWait.
Expectedly, the EASY-FCFS-FCFS heuristic has a good MaxWait behavior.

Second, there seems to be regularities in the performance’s behavior: The
main factor certainly come from the primary queue policy, while the importance
of the backfilling policy varies depending on the primary policy. It appears that
some policies such as SQF do not lead to many backfilling decisions, while others
like LQF encourage frequent backfilling. Additionally, there are some backfilling
policies, such as SPF and ExpFact that systematically outperform the others.

5.2 Comparing Backfilling Policies

It is an interesting question to ask whether some backfilling policies are
consistently better than others regardless of primary scheduling policies. As
Fig. 4 shows, the AvgWait performance of all backfilling policies relative to

52 J. Lelong et al.

Fig. 3. Maximum and average waiting time cost of the 49 heuristics generated by using
the 7 possible policies as primary and backfilling ordering averaged over 250 resampled
weeks. All values are relative to the value obtained by the EASY primary queue
policy with EASY backfilling. The average MaxWait value reported is the average of
the maximum waiting time over 250 weeks. The average AvgWait value is as in Fig. 2
the mean of the weekly waiting time averages, and the range indicates the first and
last decile of the samples, both in x and y scale.

Fig. 4. Performance improvement over EASY-FCFS-FCFS of the 7 Backfilling policies
conditioned on Primary policy.

Tuning EASY-Backfilling Queues 53

EASY-FCFS-FCFS presents roughly the same relative performance for each
primary queue policy. Namely, for this machine the SPF backfilling policy was
always the best from our search space in hindsight. We do not elaborate on this
aspect here. In the next section, we focus on the maximal costs incurred by the
tuned heuristic.

6 Queue Threshold

This section introduces control over the maximal costs using a thresholding
mechanism.

6.1 Thresholding and Risk

The future costs Waitj of a waiting job j are lower-bounded at any time t by the
value of the waiting time so far, t − rj

2. A simple way to introduce robustness

Fig. 5. Maximum and average waiting time cost of the 7 heuristics generated by using
the 7 possible thresholded primary policies with SPF backfilling averaged over 250
resampled weeks. The threshold T is chosen at a value of 20 h. All values are relative
to the value obtained by the EASY primary queue policy with EASY backfilling.
The average MaxWait value reported is the maximum waiting time of all jobs in the
250weeks. The average AvgWait value is as in Fig. 2 the mean of the weekly waiting
time averages. Semi-transparent points represent the performance of the un-thresholded
policies.

2 Note that this is also valid for the more refined Average Bounded Slowdown [13]
metric.

54 J. Lelong et al.

into the heuristic is therefore to force jobs with unusually high values of t − rj
ahead of the primary queue. One way to do this is to introduce a threshold
parameter T and push jobs with t − rj > T immediately ahead of the primary
queue after the primary queue sorting step (line 1 of Algorithm1). If more than
one job is in this situation, these jobs are ordered by submission time rj at the
head of the queue.

Figure 5 illustrates the effect on 7 possible heuristics on the KTH-SP2 system
with T = 20 h. The heuristics search space is diminished by fixing the backfilling
policy to SPF (see Subsect. 5.2) for pure visual reasons and exhaustive treat-
ment is delayed to Sect. 7. The threshold is reported as a horizontal line on the
figure. The MaxWait is greatly reduced, while all AvgWait values are (perhaps
expectedly) moved towards EASY-FCFS-FCFS. This mechanism seems to be
a hopeful candidate for tuning the queue policies while controlling the waiting
time of rogue jobs.

The next section gives a glimpse of the behavior of generalization in this
framework.

7 Experimental Validation

This section presents a systematic study of EASY-PR-PB tuning.

7.1 Generalization Protocol

The goal of the experimental campaign is to study how the performance of
different heuristics generalize empirically. That is to say, can EASY Backfilling
be tuned on specific workload data? We follow the most simple protocol for
assessing learnability:

The initial workload is split at temporal midpoint in two parts, the training
and testing logs. Each of these are used to resample weeks. For each HPC log
from the Parallel Workload archive used in the experiment, this process results
in two databases of 250 weeks each. The experimental campaign will consist in
running simulations on the training weeks, selecting the best performing policy
(tuning the heuristic), and evaluating the performance of this policy on the
testing weeks. The search space for EASY-PR-PB will be the set of dimension
49 composed by the choice of 7 policies as Primary reordering policy and 7
policies as Backfilling reordering policy.

This simple approach to measuring performance generalization corresponds
to the situation where a system administrator having retained usage logs from
a HPC center must choose a scheduling policy for the next period.

7.2 Workload Logs

Table 3 outlines the five workload logs from the Parallel Workloads Archive [14]
used in the experiments. These logs cover both older and more recent machines

Tuning EASY-Backfilling Queues 55

Table 3. Workload logs used in the simulations.

Name Year # CPUs # Jobs Duration

KTH-SP2 1996 100 28k 11 months

CTC-SP2 1996 338 77k 11 months

SDSC-SP2 2000 128 59k 24 months

SDSC-BLUE 2003 1, 152 243k 32 months

CEA-Curie 2012 80, 640 312k 3 months

Fig. 6. AvgWait and MaxWait generalization of thresholded policies as affected by
the queue threshold. The Value reported as “train” is that of the least costly heuristic
among the 49 possible policy parametrizations averaged on the training logs. The Value
reported as “test” is the averaged cost of the same heuristic on the testing logs. This
figure is continued as Fig. 7.

of varying size and length. The logs are subject to pre-filtering. The filtering
step excludes jobs with p̃j < pj and jobs whose “requested cores” and “allo-
cated cores” fields exceed the size of the machine.

7.3 Empirical Generalization Results

Figure 7 summarizes the behavior of the empirical generalization and risk of the
waiting time with respect to the value of the threshold T . There is a fortunate

56 J. Lelong et al.

Fig. 7. Follow-up from Fig. 7.

effect in that the values from the lower parts of the graphs (the AvgWait cost)
seem to decrease faster than values from the upper part (the MaxWait cost),
which increases linearly with T .

By using an aggressive approach (no threshold), the AvgWait can be reduced
until 80% to 65% compared to the EASY-FCFS-FCFS baseline. However, in that
case the values of the MaxWait can jump as high as 250% that of the baseline.

By using a conservative approach (thresholding at 20 h), the AvgWait can be
reduced until 90% to 70% in expectation, while keeping the MaxWait increase
under 175% of the baseline in all cases.

Tuning EASY-Backfilling Queues 57

Figure 8 shows how the AvgWait of the 49 combination of queue and back-
filling policies evolve from the training to the testing logs when we use this
conservative threshold of 20 h, with a higher sample size that was not permit-
ted by the previous experiment. This confirms the previous values and gives

Fig. 8. AvgWait generalization of thresholded policies obtained by using a threshold
value of 20 h. Note that each plot has a different vertical y axis. The reported AvgWait
and MaxWait values are averaged over 250 resampled weeks from the training or testing
original logs, and we report the difference with the cost of EASY-FCFS-FCFS. The
average of the baseline EASY-FCFS-FCFS is reported under the figure, along with
the average MaxWait obtained by the best training policy on the testing logs (the
“learned” policy).

58 J. Lelong et al.

visual insight into the stability of the performance. Finally, we state the fact
that while simplicity of exposure forces us to only deal with the waiting time,
the results presented in this work are also valid for the more refined Average
Bounded Slowdown [13].

7.4 Generalization with T=20 h

The final step is to study how the performance thresholded queue policies gen-
eralizes. Figure 8 shows how the performance of all various queue and backfilling
policies evolve from training to testing logs when the threshold is set to an
example value of 20 h. While the values change from training to testing logs,
the relative order of policies seems to be roughly conserved. This leaves hope for
generalization. Moreover, it is possible from this figure to measure the improve-
ment resulting from our methodology. We obtain AvgWait average diminutions
of 21%, 11%, 36%, 42% and 29% respectively for the SDSC-BLUE, SDSC-SP2,
CTC-SP2, CEA-CURIE, and KTH-SP2 machines. The approach does keep the
average MaxWait in a reasonable range, and in fact the average testing AvgWait
of the learned policy only surpasses that of EASY-FCFS-FCFS on the CEA-
Curie trace, with a minor increase, the learned strategy’s average MaxWait is of
88747 compared to a value of 86680 for the baseline.

8 Conclusion

This work leverages the fact that the performance of scheduling heuristics
depends on the workload profile of the system. More precisely, we investigated
the use of simulation to tune the EASY-Backfilling heuristic by reordering its
two queues. The first conclusion is that reordering the primary queue is more
beneficial than simply reordering the backfilling queue. However, this introduces
a risk on the maximum values of the objective, which we control by hybridiz-
ing FCFS and the reordering policy via a thresholding mechanism. Finally, we
showed that the experimental performance of the thresholded heuristics general-
izes well. Therefore, this framework allows a system administrator to tune EASY
using a simulator. Moreover, the attitude torwards risk in maximum values can
be adapted via the threshold value. With a low threshold value, the increase
in maximal cost is small but the learned policy does not take too much risk.
It is possible to gain more by increasing the threshold, but this comes with an
increase in the maximal cost. Two questions concerning the learning of EASY
policies arise from this work.

First, the stability of other EASY heuristic classes remains unknown. The
“simple” class of composed of 7 primary policies and 7 backfilling policies (cardi-
nality 49) can generalize using thresholding. It is natural to ask whether it could
be possible to learn using a larger set heuristics, such as parametrized queue
policies or mixtures of reordering criterias. One could for instance consider the
class of mixed policies that choose a job based on a linear combination of the 7
criteria. A more ambitious endeavor is to ask whether it is possible to learn a
contextual job ranking model [18] that performs well.

Tuning EASY-Backfilling Queues 59

Acknowledgements. Authors are listed in alphabetical order. We warmly thank Eric
Gaussier and Frederic Wagner for discussions as well as Pierre Neyron and Bruno
Breznik for their invaluable help with experiments. We gracefully thank the contribu-
tors of the Parallel Workloads Archive, Victor Hazlewood (SDSC SP2), Travis Earheart
and Nancy Wilkins-Diehr (SDSC Blue), Lars Malinowsky (KTH SP2), Dan Dwyer and
Steve Hotovy (CTC SP2), Joseph Emeras (CEA Curie), and of course Dror Feitelson.
This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program Investissement d’avenir. Experiments
presented in this paper were carried out using the Digitalis platform (http://digitalis.
imag.fr) of the Grid’5000 testbed. Grid’5000 is supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities as well as
other organizations (https://www.grid5000.fr).

References

1. PBS Pro 13.0 administrator’s guide. http://www.pbsworks.com/pdfs/
PBSAdminGuide13.0.pdf

2. SLURM online documentation. http://slurm.schedmd.com/sched config.html
3. TOP500 online ranking. https://www.top500.org/
4. Ahn, D.H., Garlick, J., Grondona, M., Lipari, D., Springmeyer, B., Schulz, M.:

Flux: a next-generation resource management framework for large HPC centers.
In: 2014 43rd International Conference on Parallel Processing Workshops, pp. 9–17,
September 2014

5. Aida, K.: Effect of job size characteristics on job scheduling performance.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2000. LNCS, vol. 1911,
pp. 1–17. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39997-6 1.
http://dl.acm.org/citation.cfm?id=646381.689680

6. Breck, E.: zymake: a computational workflow system for machine learning and
natural language processing. In: Software Engineering, Testing, and Quality Assur-
ance for Natural Language Processing, pp. 5–13. Association for Computational
Linguistics (2008)

7. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron,
P., Richard, O.: A batch scheduler with high level components. In: IEEE Interna-
tional Symposium on Cluster Computing and the Grid, CCGrid 2005, vol. 2, pp.
776–783. IEEE (2005)

8. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014). http://hal.inria.fr/hal-01017319

9. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4 7

10. DOE ASCAC Report: Synergistic challenges in data-intensive science and exascale
computing (2013)

http://digitalis.imag.fr
http://digitalis.imag.fr
https://www.grid5000.fr
http://www.pbsworks.com/pdfs/PBSAdminGuide13.0.pdf
http://www.pbsworks.com/pdfs/PBSAdminGuide13.0.pdf
http://slurm.schedmd.com/sched_config.html
https://www.top500.org/
https://doi.org/10.1007/3-540-39997-6_1
http://dl.acm.org/citation.cfm?id=646381.689680
http://hal.inria.fr/hal-01017319
https://doi.org/10.1007/3-540-36180-4_7

60 J. Lelong et al.

11. Dolstra, E., Visser, E., de Jonge, M.: Imposing a memory management discipline
on software deployment. In: Proceedings of the 26th International Conference on
Software Engineering, ICSE 2004, pp. 583–592. IEEE (2004)

12. Feitelson, D.G.: Resampling with feedback — a new paradigm of using workload
data for performance evaluation. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par
2016. LNCS, vol. 9833, pp. 3–21. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43659-3 1

13. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459, pp. 1–24.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053978

14. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the paral-
lel workloads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014).
http://www.sciencedirect.com/science/article/pii/S0743731514001154

15. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation.
In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 257–282. Springer, Heidelberg (2005). https://doi.org/
10.1007/11605300 13

16. Gaussier, E., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using
machine learning to predict running times. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2015, pp. 641–6410. ACM, New York (2015)

17. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

18. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 133–142. ACM (2002)

19. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press, Boca Raton (2004)

20. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph,
L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60153-8 35

21. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001). https://doi.org/10.1109/71.932708

22. Nissimov, A., Feitelson, D.G.: Probabilistic backfilling. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 102–115. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78699-3 6

23. Perkovic, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch
schedulers. In: 2000 ACM/IEEE Conference on Supercomputing, p. 7, November
2000

24. Skovira, J., Chan, W., Zhou, H., Lifka, D.: The EASY — LoadLeveler API
project. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol. 1162,
pp. 41–47. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0022286.
http://dl.acm.org/citation.cfm?id=646377.689506

25. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
backfilling strategies for parallel job scheduling. In: Proceedings of the International
Conference on Parallel Processing Workshops, pp. 514–519. IEEE (2002)

26. Stodden, V., Leisch, F., Peng, R.D.: Implementing Reproducible Research. CRC
Press, Boca Raton (2014)

https://doi.org/10.1007/978-3-319-43659-3_1
https://doi.org/10.1007/978-3-319-43659-3_1
https://doi.org/10.1007/BFb0053978
http://www.sciencedirect.com/science/article/pii/S0743731514001154
https://doi.org/10.1007/11605300_13
https://doi.org/10.1007/11605300_13
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/3-540-60153-8_35
https://doi.org/10.1109/71.932708
https://doi.org/10.1007/978-3-540-78699-3_6
https://doi.org/10.1007/BFb0022286
http://dl.acm.org/citation.cfm?id=646377.689506

Tuning EASY-Backfilling Queues 61

27. Streit, A.: The self-tuning dynP job-scheduler. In: Abstracts and CD-ROM Pro-
ceedings of International Parallel and Distributed Processing Symposium, IPDPS
2002, April 2002

28. Tsafrir, D., Feitelson, D.G.: Instability in parallel job scheduling simulation: the
role of workload flurries. In: Proceedings 20th IEEE International Parallel Dis-
tributed Processing Symposium, 10 pp., April 2006

29. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using runtime predictions rather
than user estimates. Technical report TR 5, School of Computer Science and Engi-
neering, Hebrew University of Jerusalem (2005)

30. Ukidave, Y., Li, X., Kaeli, D.: Mystic: predictive scheduling for GPU based cloud
servers using machine learning. In: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 353–362, May 2016

31. Vishnu, A., van Dam, H., Tallent, N.R., Kerbyson, D.J., Hoisie, A.: Fault modeling
of extreme scale applications using machine learning. In: 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 222–231, May 2016

Don’t Hurry Be Happy:
A Deadline-Based Backfilling Approach

Tchimou N’takpé1 and Frédéric Suter2,3(B)

1 Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
tchimou.ntakpe@gmail.com, ntakpeeul sfa@una.edu.ci

2 Centre de Calcul de l’IN2P3/CNRS, Lyon, Villeurbanne, France
frederic.suter@cc.in2p3.fr

3 Inria, Lyon, France

Abstract. Computing resources in data centers are usually managed
by a Resource and Job Management System whose main objective is to
complete submitted jobs as soon as possible while maximizing resource
usage and ensuring fairness among users. However, some users might not
be as hurried as the job scheduler but only interested in their jobs to
complete before a given deadline.

In this paper, we derive from this initial hypothesis a low-complexity
scheduling algorithm, called Deadline-Based Backfilling (DBF), that dis-
tinguishes regular jobs that have to complete as early as possible from
deadline-driven jobs that come with a deadline before when they have
to finish. We also investigate a scenario in which deadline-driven jobs
are submitted and evaluate the impact of the proposed algorithm on
classical performance metrics with regard to state-of-the-art scheduling
algorithms. Experiments conducted on four different workloads show that
the proposed algorithm significantly reduces the average wait time and
average stretch when compared to Conservative Backfilling.

1 Introduction

To ensure a fair access to resources among users while maximizing resource uti-
lization, most data-centers rely on a Resource and Job and Management System
(RJMS). Many different systems exist, be they commercial or Open Source, in
the High Performance Computing (HPC) [1–3] or Big Data [4–6] worlds. How-
ever, they all follow some common principles while the specifics of the man-
aged workloads differ. For instance, they rely on simple yet efficient scheduling
algorithms to ensure scalability. Most schedulers in HPC thus adopt a First-
Come-First-Served (FCFS) policy [7], usually combined with some backfilling
techniques to minimize resource idle times. This choice to keep the complexity
of the scheduling algorithm as low as possible implies that managing fairness
and optimizing the resource utilization are usually done through external mech-
anisms such as quotas, priorities, or queues. Finally, the common goal of most

Work partially supported by the MOEBUS ANR project (13-ANR-INFR- 01).

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 62–82, 2018.
https://doi.org/10.1007/978-3-319-77398-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_4&domain=pdf

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 63

resource and job management systems is to serve, and thus complete, the sub-
mitted jobs as soon as possible. This allow them to increase both the system
throughput and the users’ satisfaction.

In this paper, we aim at studying the impact of a simple assumption on the
management of a given workload by a resource and job management system:
“what if some users were not interested in their jobs to complete as soon as
possible, but only before a given deadline?”. For instance, some users may not
need their results before the next day. Some periodic jobs may also exist that are
important but not urgent, the only constraint being to execute them within the
defined period. Then, it makes no difference whether such jobs complete as soon
as possible, from the resource management system point of view, or just before
when the user said s/he would need his/her results. The same reasoning can
even be applied to longer time periods. Such a choice would obviously depend
on some voluntary users, but we believe that this slack given by some users for
the execution of their jobs could offer an extra degree of freedom to the scheduler.
Delaying such deadline-driven jobs would give space to more urgent jobs that
would thus start and complete earlier. Note that urgency does not necessarily
implies importance. In this work, we only consider the urgency, or absence of,
of a job as an optimization lever.

Following this initial hypothesis, we design a low-complexity scheduling algo-
rithm, called Deadline-Based Backfilling (DBF), that distinguishes regular jobs
that have to complete as early as possible from deadline-driven jobs that come
with an ultimate deadline before when they have to finish. We also propose a
generic scenario in which various proportions of deadline-driven jobs are sub-
mitted to assess the impact of the proposed strategy on the scheduling of more
urgent jobs. Experiments, conducted on four different workloads from the Paral-
lel Workloads Archive (PWA) [8] show that DBF significantly reduces the aver-
age wait time and stretch when compared to Conservative Backfilling [9,10].

The remainder of this paper is organized as follows. In Sect. 2 we recall the
principle of the most popular algorithms used in RJMS. Then in Sect. 3 we
describe the workloads and platforms used for our evaluation and how we pre-
pared data for our study. Section 4 details the principle of the proposed Deadline-
Based Backfilling scheduling algorithm. In Sect. 5, we explain how we do select
deadline-driven jobs and assign them deadlines. We evaluate the impact of the
proposed algorithm on classical performance metrics and compare it to state-
of-the-art scheduling algorithms in Sect. 6. Finally, we discuss related work in
Sect. 7 before concluding this paper in Sect. 8.

2 Background on Job Scheduling

The scheduling algorithm is not the only component of a RJMS that influences
resource utilization. Ordering policies, or priorities, are defined according to the
characteristics of the jobs, their resource requirements, or the previous usages
of the users submitting them. Another important component are queues that
define a set of constraints on jobs, resources, or user profiles, e.g., job lasting

64 T. N’takpé and F. Suter

between a day and a week, requesting up to 16 nodes, and belonging to users
from a certain scientific collaboration. Queues can also be configured to only
have access to a certain pool of resources. The combination of ordering policies
and queues defines the final order in which jobs are presented to the scheduler. A
common setting is to a apply one or more ordering policies within each queue and
then define the browsing order of these queues. While these two components of
a RJMS can be key to performance [11], in this work we focus on the scheduling
algorithm and assume that the list of jobs has already been formed.

Most of the scheduling algorithms underlying RJMS handle jobs following
a FCFS policy. However, the different requests for resources of the jobs usually
lead to resource fragmentation and idle times. To increase resource usage this
basic policy is often completed by a backfilling mechanism. Backfilling consists
in moving jobs forward in the queue in order to fill “holes” in the schedule.

The Extensible Argonne Scheduling sYstem (EASY) [12] algorithm has been
designed for the IBM SP2 supercomputer and is a popular variant of backfilling.
In this algorithm, only the first waiting job is considered for allocation, with a
guaranteed starting time. When this first job cannot start right away because
its requested number of processors is not available, the algorithm browses the
list of waiting jobs to find candidates for backfilling. These candidates are jobs
that can start immediately, but without delaying the first job of the list.

Conservative Backfilling (CBF) is a less aggressive alternative to EASY with
similar performance. It determines an allocation for each job when it enters the
system. Then a job can be a candidate to backfilling if and only if it can begin
its execution immediately without delaying any of the other pre-allocated jobs.

These two backfilling approaches increase the utilization of the resources and
decrease the average waiting time of jobs with regard to FCFS alone, but the
order in which jobs are scheduled may differ from the submission order. These
dynamic modifications of the schedule prevent the more aggressive EASY algo-
rithm to provide users with some guaranteed upper bound on the starting (and
thus estimated completion) time of a given job. By design, the more conservative
CBF algorithm gives such an upper bound right after the submission of a job,
as backfilling can only make jobs start earlier than initially planned.

3 Workloads and Platforms

In this study, we consider different workload logs, i.e., traces of job submis-
sions, extracted from the Parallel Workloads Archive (PWA). More precisely,
we selected four workloads whose characteristics in terms of distributions of
allocations, i.e., the number of processors used to execute a given job, and execu-
tion times per job cover a broad and representative range. Unfortunately, none
of these publicly available workloads comprises information on the respective
urgency of the submitted jobs. These workloads are:

SDSC-BLUE (http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/),
in its cleaned 4.2 version, contains information on the submission of 250,440

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 65

jobs from April 2000 to January 2003 on the IBM SP Blue Horizon of the San
Diego Supercomputer Center, that is made of 144 8-way nodes.
SDSC-DS (http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc ds/) covers
a year of activity from March 2004 through March 2005 on the DataStar cluster
of the San Diego Supercomputer Center. It is composed of 96,089 jobs executed
on 184 nodes. This cluster is made of two kinds of nodes, 176 8-way and 8 32-way
SMP nodes for a total of 1,664 processors. We used the cleaned version of the
log as recommended by the maintainers of the PWA.
HPC2N (http://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/) covers
three and a half years of activity from July 2002 through January 2006 on
the Seth Cluster of the High-Performance Computing Center North in Sweden.
This cluster is composed of 120 dual processor nodes. The original log com-
prised 527,371 jobs but 324,500 jobs from a burst submission by a single user
were removed, leaving 202,871 jobs in the cleaned log.
ANL-Intrepid (http://www.cs.huji.ac.il/labs/parallel/workload/l anl int/)
accounts for the submission of 68,936 jobs on the IBM Blue Gene/P Intrepid
of the Argonne Leadership Computing Facility at Argonne National Labora-
tory from January 2009 to September 2009. This machine has 40 racks of 1,024
quad-cores nodes for a total of 163,840 cores. However, due to the specificity
of the Blue Gene/P system, nodes are grouped into partitions. Eight racks are
partitioned in groups of 64 nodes (or 256 cores) while the remaining racks group
nodes by 512 (or 2,048 cores). Note that the number of processors requested by
jobs are rounded up to the closest multiple of the partition size.

In this work, we only use a subset of the fields that describe a job in the
Standard Workload Format (SWF) as we only aim at scheduling jobs and not
optimizing their execution with regard to their memory or network usage. Then
a job can be only modeled by its submission time, the requested number of
processors, and the requested time or walltime. The selected workloads all com-
prise a certain number of anomalies that were detected and documented by the
maintainers of the PWA during their conversion to the SWF format. Table 1
summarizes the anomalies we consider relevant for our study.

The first two columns correspond to invalid entries in the workloads as the cor-
responding jobs either logged a negative execution time or were allocated a nega-
tive number of processors. Such jobs usually have a “canceled” status in the logs.

Table 1. Summary of anomalies in workloads from the Parallel Workloads Archive.

Workload Runtime< 0 CPU< 0 Used CPU> Runtime> Runtime>

Req. CPU Walltime Walltime + 1′

SDSC-BLUE 10,770 19,516 458 23,434 8,115

SDSC-DS 11,176 0 0 10,658 1,043

HPC2N 0 0 729 14,817 6,170

ANL-Intrepid 0 0 30,948 12,241 9,096

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/
http://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/

66 T. N’takpé and F. Suter

In the experiments presented in Sect. 6, we decided to discard these jobs for all the
considered algorithms.

The third column shows that, in most workloads, there are jobs that got
more processors than requested. This is especially true for ANL-Intrepid where
requests are rounded up to fit the partition requirements. In this workload, the
number of cores allocated to jobs are rounded up to multiples of either 256
or 2,048. We adapted the descriptions of the clusters accordingly to represent
a set of the smallest allocable number of cores. We also make a simplifying
yet not impacting assumption about the platforms. We consider the clusters, or
partitions, to be fully homogeneous. This means that a job requesting four nodes
can indifferently be allocated a contiguous set of nodes (e.g., {p1, p2, p3, p4})
or a disjoint set of nodes (e.g., {p1, p6, p8, p22}).

Finally the last two columns indicate that a fair amount of jobs report an
execution time longer than the expressed walltime. For most of them, the extra
time is less than a minute and can be explained by the time needed by the system
to kill a job when it reaches its walltime. However, the last column shows that
many jobs continue their execution despite the expiration of their walltime. For
all these jobs, we chose to stop them when the walltime is reached.

The SDSC-DS and SDSC-BLUE workloads comprise a non-negligible num-
ber of interactive jobs. Such jobs correspond to submissions from users who
need a direct and immediate access to the machine. This access mode is thus
orthogonal to the idea of letting the scheduler delay jobs. Moreover these jobs
are usually scheduled on a limited and distinct subset of the available resources.
Consequently, we decided to remove these jobs from the original traces.

All these alterations of the original logs prevent us to compare simulation
results to their contents. However, in this study we compare the results of our
proposal to those achieved by state-of-the-art algorithms. As long as we use the
same input workloads for all scheduling algorithms, results remain comparable.

4 A Deadline-Based Backfilling Algorithm

Scheduling a job Ji amounts to find its place in the resource usage profile, i.e.,
a list of sets of available resources at a given time, maintained by the scheduler.
Selecting a specific slot for a job determines the starting date starti of its execu-
tion. The exact set of resources used for the execution of a job is only determined
when the job is about to start. In our deadline-based scheduling proposal, we
consider two types of jobs. A regular job is a job that once submitted, at time
submiti, will be definitely scheduled in a way to minimize its completion date
completioni. Conversely, a deadline-driven job is associated to a deadline di such
that the job can be scheduled at any time as long as its execution within a wall-
time walltimei can be completed before the deadline expires. Such jobs can be
scheduled as regular jobs but their tentative allocations can be reconsidered if
new regular jobs enter the system.

Our algorithm is an online scheduling algorithm, as CBF or EASY are. As
these algorithms do we privilege a low-complexity in our design to ensure the

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 67

Algorithm 1. Determination of a definitive allocation for a regular job Jr.
1: for all Ji ∈ L1 do
2: Cancel current allocation of Ji

3: end for
4: Ltmp ← Jr

5: Get Allocation(Jr)
6: for all Ji ∈ L1 do
7: Get Allocation(Ji)
8: end for
9: while ∃ Ji ∈ L1 | cti > di do

10: Ltmp ← Ltmp ∪ Ji

11: L1 ← L1 \ Ji

12: for all Ji ∈ Ltmp ∪ L1 do
13: Cancel current allocation of Ji

14: end for
15: for all Jtmp ∈ Ltmp do
16: Get Allocation(Jtmp)
17: end for
18: for all Jj ∈ L1 do
19: Get Allocation(Jj)
20: end for
21: end while
22: if {Ji ∈ Ltmp | cti > di} �= ∅ then
23: Smax ← max(submitj |Jj ∈ Ltmp ∧ ctj > dj)
24: Ltmp ← Ltmp ∪ {Jj ∈ L1 | submitj < Smax}
25: L1 ← L1 \ {Jj ∈ L1 | submitj < Smax}
26: for all Ji ∈ Ltmp ∪ L1 do
27: Cancel current allocation of Ji

28: end for
29: for all Jtmp ∈ Ltmp do
30: Get Allocation(Jtmp)
31: end for
32: for all Jj ∈ L1 do
33: Get Allocation(Jj)
34: end for
35: end if
36: for all Ji ∈ Ltmp do
37: if starti = current time then
38: Start execution of Ji

39: else
40: L0 ← L0 ∪ Ji

41: end if
42: Ltmp ← Ltmp \ Ji

43: end for
44: for all Ji ∈ L1 do
45: if starti = current time then
46: Start execution of Ji

47: end if
48: end for

68 T. N’takpé and F. Suter

applicability of the resulting algorithm in large-scale production systems. Allo-
cation decisions are taken either when some jobs complete or some new jobs
enter the system. These two kinds of events trigger a new scheduling round. The
completion of a job, especially if it happens before the expiration of its walltime,
makes nodes available that might be used by waiting jobs. New coming jobs, be
they regular or not, may also impact the currently planned schedule for different
reasons, e.g., candidate for backfilling, priority, tight deadline, . . .

From its submission to the beginning of its execution, a job is in a waiting
state. Our algorithm proposes to store the waiting jobs in two lists. The former,
L0, contains all the jobs whose allocations are definitively determined. It com-
prises regular jobs but also deadline-driven jobs that either come close to their
deadline or improve the backfilling. The latter, L1, contains only deadline-driven
jobs, whose allocations can be modified in another scheduling round.

When a deadline-driven job is submitted, we determine its allocation accord-
ing to the CBF algorithm. This allocation takes all the allocations, be they
tentative or definitive, of the other waiting jobs into account. If the deadline
associated to the job is large enough to prevent its violation from submission,
the job is inserted into L1. On the contrary, the job is considered as regular and
inserted into L0 to be scheduled as early as possible.

When a regular job Jr enters the system, we apply Algorithm 1 not only to
determine its definitive allocation, but also to reconsider the allocations of wait-
ing deadline-driven jobs. First, if such jobs exist in L1, we cancel their current
allocations (lines 1–3). Second, we build a temporary list Ltmp into which Jr is
inserted (line 4), and get an allocation for this job. Then, we fill this list with
jobs from L1 whose deadline would be violated because of the allocation of the
new regular job Jr. The algorithm proceeds as follows. A new allocation which
takes the current allocation of Jr into account is determined for all the jobs in L1

(lines 6–8). Then, while there is a job Ji in L1 that does not respect its deadline,
we move it from L1 to Ltmp (lines 10–11) and recompute the allocations of both
Ltmp (lines 15–17) and L1 (lines 18–20). Note that the allocations for the jobs in
Ltmp are determined by considering the jobs in an increasing order of submission
time. This approach allows us to ensure that if a job can respect of the deadline
when it is submitted, none of the modifications of its tentative allocation made
by Algorithm 1 would lead to a deadline violation.

At the end of this step, all the deadline-driven jobs are allocated, some of
them having been moved forward to avoid deadline violations. However, some
jobs in Ltmp may still not be able to respect their deadlines. This may come from
a different resource fragmentation that appears as we skip some deadline-driven
jobs while building Ltmp. We thus add an extra step (lines 22–35), in which we
move from L1 to Ltmp all the deadline-driven jobs submitted before the last job
in Ltmp unable to respect its deadline, before recomputing all the allocations.

The next step consists in determining which jobs in Ltmp can start their exe-
cution in this scheduling round (line 38). Those which cannot are now considered
as regular jobs and moved to L0 (line 40). Finally, our algorithm also starts the
execution of some deadline-driven jobs from L1 (lines 44–48).

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 69

5 On the Determination of Deadlines

The main concept underlying the proposed approach is that of deadline. This
concept raises two important questions: “Which jobs are considered deadline-
driven?” and “What are the deadlines associated to these deadline-driven jobs?”.

In this section, we propose to consider a broad and generic scenario in which
deadline-driven jobs can be submitted at any time of the day, for instance by
adding an extra submission flag to indicate when a job has to be completed at
last. This scenario allows us to answer another question: “what would users in
a hurry gain if other users allowed X% of the jobs to be delayed?”. Estimating
the gain for different values of X will guide the experimental evaluation of our
approach given in Sect. 6. For the jobs randomly selected to become deadline-
driven, we define the associate deadline as a date that is a maximum between
24 h and 10 times the expressed walltime of the job after the job submission.

The rationale for a delay of at least 24 h comes from an analysis of the daily
(and weekly) job arrival pattern in number of jobs submitted every hour, for
the four studied workloads. Figure 1 shows a similar, and expected, job arrival
pattern for all workloads, with a period (gray area) during which the arrival rate
is greater than the daily average arrival rate (horizontal line).

This peak period roughly corresponds to business hours from 9AM to 6PM for
all workloads. We note that for SDSC-BLUE and SDSC-DS, this peak period
is slightly shifted and starts earlier. This might be explained by the location
of the corresponding supercomputers on the U.S. West Coast and submissions

SDSC−BLUE SDSC−DS

HPC2N ANL−Intrepid

3

5

7

9

11

1

2

3

4

5

10

15

2.0

2.5

3.0

3.5

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24
Time of day

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs
 (x

10
00

)

Fig. 1. Daily job arrival for four supercomputers. Gray area depicts a peak period
when the arrival rate is greater than the daily average (horizontal line).

70 T. N’takpé and F. Suter

from users on the East Coast. Such a usage spanning over several time zones
may also explain why the peak period ends later on the ANL-Intrepid machine.
The sharp decrease in the arrival rate after business hours is likely to correspond
to a lower competition for resources as less jobs are submitted. Weekly arrival
shows a similar pattern with a sharp decrease of the number of job submission
over the weekend. Then, with a deadline of at least twenty four hours after the
submission, we ensure that every deadline-driven job can benefit of a period of
lower load to be scheduled earlier than its deadline.

We also propose to set the deadline to be proportional to the expressed wall-
time as a way to favor the shortest jobs. Not only they will be less delayed than
jobs with a larger walltime but they are also better candidates for backfilling.
The chosen factor of 10 comes from the observed average stretch, i.e., how much
a job is impacted by its waiting time, in the different workloads.

To favor the adoption of the proposed approach, incentives for users to submit
deadline-driven jobs have to be provided. On most platforms managed by a
RJMS, the submissions of a given user are often limited by different quotas (e.g.,
per user, group, resource type) and influenced by earlier submission pattern. A
simple incentive would be to loosen these limitations, hence giving a better
admission rate, for users accepting to see their jobs delayed by the scheduler.
On platform where users have to pay to access resources, we can easily imagine
a discount offered to users who set a deadline as part as their SLA.

6 Experimental Evaluation

6.1 Evaluation Metrics

To evaluate the impact of allowing the execution of certain jobs to be delayed
provided they end before a given deadline on the complete workload, we use
several performance metrics. First we consider the wait time of a job, defined as
the difference between the starting and submission dates of a job:

waiti = starti − submiti. (1)

A second classical metric is to compute the stretch experienced by a job. This
metric quantifies the relative impact of the wait time on the execution of a job
and is defined as:

stretchi = (waiti + walltimei)/walltimei. (2)

One of the objectives of our proposal is to reduce the average wait time and
average stretch of the regular jobs. This would indicate how much these jobs
benefit of the delayed executions of deadline-driven jobs. We also analyze these
two metrics over the whole workload to quantify the potential gain offered by
deadline-based scheduling.

We also consider performance metrics related to the deadline-driven jobs.
First we measure the number of jobs for which the proposed algorithm is not

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 71

able to respect the deadline. Second we estimate how the deadline has effectively
been used by our algorithm. To this end we define a notion of deadline usage as:

usagei = (completioni − submiti)/(deadlinei − submiti). (3)

Analyzing the average usage over the entire set of deadline-driven jobs will
provide insight about our approach. High values will indicate that regular jobs
were scheduled uninterruptedly in the interval left by delaying deadline-driven
jobs. Conversely, smaller values will mean that deadline-driven jobs were able to
exploit period of lower load before the expiration of their deadlines.

6.2 Simulation Environment

We resort to simulation for our experimental evaluation. Instead of developing an
ad-hoc simulator, we opted for using an existing simulation framework. Several
such tools have been used in the literature to simulate the replay of workloads
from the Parallel Workloads Archive. The Alea1 job scheduling simulator [13]
is based on the GridSim toolkit and allows to compare queue-based schedul-
ing algorithms. Alea separates the implementation of the algorithms, defined as
independent Java classes, from that of the discrete event simulation itself. How-
ever, new algorithms have to be coded in this specific language and embedded
into the code base of the tool. Alea also offers an interesting dynamic scheduling
feature allowing jobs to be submitted during the simulation and support the
management of priority queues [11]. In the early stage of this work, we used the
SimBatch tool [14] for our evaluations. This framework, whose maintenance and
evolution are no longer supported, was based on the SimGrid toolkit [15]. As for
Alea, new algorithms had to be included to the code base, in C, of the tool.

In this work we decided to rely on another recent and promising SimGrid-
based tool. Batsim2 [16] is developed by the team that develops and maintains
the OAR RJMS [1]. It decouples the simulation of the resources and the exe-
cution of a schedule from the decisions that led to this schedule. Then Batsim
can leverage the different network and computing models of SimGrid to adapt
the level of realism of the simulation to the needs of the users. In our experi-
ments, we simulate jobs as simple delays defined as the minimum between the
execution time as logged in the workload and the expressed walltime. Batsim
exposes a simple message interface between the simulation engine and scheduling
algorithms written as plugins in various programming languages.

For our experiments we use the latest version of Batsim shipped in a con-
tainer as recommended by the development team. This container relies on the
latest stable version of SimGrid (3.14.159) at the time of writing. We coded
the proposed DBF algorithm as a scheduler plugin of Batsim in Python. We
also implemented two state-of-the-art algorithms, CBF and EASY, that are
used as references to evaluate the performance of our algorithm. To ensure
the reproduction and further investigation of the presented results, and thus
1 Alea web site: https://github.com/aleasimulator/alea.
2 Batsim web site: https://github.com/oar-team/batsim.

https://github.com/aleasimulator/alea
https://github.com/oar-team/batsim

72 T. N’takpé and F. Suter

favor Open Science, these algorithm implementations, the scripts used to prepare
and convert the workloads into the Batsim input format and analyze the out-
comes of the simulations, as well as the sources of this paper are made available
online [17].

6.3 Results

We begin the evaluation of the proposed deadline-based backfilling approach by
assessing its impact on regular jobs. For each workload, we randomly select a
number of jobs to become deadline-driven and assign deadlines to these jobs as
described in Sect. 5. Table 2 summarizes the respective numbers of regular jobs
when the percentage of deadline-driven jobs varies from 20% to 80%.

In all the subsequent analyses, we filter out regular jobs whose wait time
(resp. stretch) was 0 (resp. 1) simultaneously for all the three algorithms. Such
jobs were lucky enough to obtain the requested resources right on submission
independently of the scheduling algorithm used. Keeping them would modify the
perception of the actual performance of a given algorithm.

First, we study the evolution of the average wait time experienced by the
regular jobs shown by Fig. 2. A first observation is that this average wait time
remains stable for both the CBF and EASY algorithms when we increase the
number of deadline-driven jobs. This indicates that the decreasing number of
jobs under consideration does not impact this metric. We also note that EASY
consistently leads to a smaller average wait time than CBF, which comes from its
more aggressive backfilling strategy. The proposed DBF algorithms outperforms
its two contenders in all configurations except for the SDSC-BLUE workload
with 20% of deadline-driven jobs where EASY is slightly better.

We also observe that our algorithm leads to a linear decrease of the average
wait time of regular jobs when we increase the share of deadline-driven jobs.
The best improvement is obtained for SDSC-DS where DBF already reduces
the average wait time by more than a factor of two when there are only 20% of
deadline-driven jobs. However, the results obtained by EASY in this configura-
tion indicate that CBF obtains poor performance for this workload. It may be
explained by a higher resource fragmentation for this workload that EASY can
better exploit with its more aggressive backfilling strategy. It is also interesting

Table 2. Number of regular jobs impacted by deadline-based backfilling when the
number of randomly selected deadline-driven jobs varies from 20% to 80%.

Workload Total Percentage of deadline-driven jobs

20% 40% 60% 80%

SDSC-BLUE 157,604 126,084 94,564 63,043 31,522

SDSC-DS 64,715 51,772 38,829 25,886 12,943

HPC2N 202,871 162,297 121,723 81,150 40,576

ANL-Intrepid 68,936 55,149 41,363 27,575 13,789

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 73

Fig. 2. Evolution of the average wait time experienced by regular jobs with the per-
centage of deadline-driven jobs.

to note that, even with only 20% of deadline-driven jobs, DBF is at least on par
with EASY or reduces the average wait time up to 25% (for the HPC2N work-
load) but is also able to provide guarantees on job completion times that EASY
would not give. Indeed, the scheduling of regular jobs is based on CBF and then
the first tentative allocation of regular jobs gives them a completion time than
can only be reduced afterwards. Moreover, DBF ensures that a deadline-driven
job completes before its deadlines, which is another kind of upper bound.

Figure 3 shows a more detailed view of the wait time experienced by the regu-
lar jobs. Each line corresponds to a workload while each column corresponds to a
given percentage of deadline-driven jobs. Each panel presents the wait time as an
Empirical Cumulative Distributive Function for the three considered algorithms.

These more detailed results globally confirm the trends shown in Fig. 2 but
also give us some interesting extra information. For instance, the top-left panel
corresponds to the selection of 20% of deadline-driven jobs in the SDSC-BLUE
workload. It is the configuration in which EASY leads to a slightly better average
wait time than DBF. We observe that this comes from a greater number of jobs
(above 25%) that can start immediately with EASY thanks to the aggressive
backfilling. However, the first quartile for DBF is only of two and a half minutes.
We also note a difference of less than half an hour for the third quartile in favor of
EASY, but DBF is able to reduce the maximum wait time of about twelve hours.
Again, this is explained by the design of EASY that causes extra wait time for
jobs that cannot benefit of backfilling. We observe similar distributions for all
the workloads when there are 20% of deadline-driven jobs. When the percentage
of deadline-driven jobs increases, DBF competes with EASY with wait times
close to zero for at least 25% of the jobs (with 40% of deadline-driven jobs on
SDSC-BLUE and SDSC-DS, and 60% for ANL-Intrepid), while the performance

74 T. N’takpé and F. Suter

Fig. 3. Wait times experienced by regular jobs.

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

SDSC−BLUE SDSC−DS

HPC2N ANL−Intrepid
150

160

170

180

190

120

160

200

240

170

180

190

200

210

75

80

85

90

95

20 40 60 80 20 40 60 80
Percentage of deadline−driven jobs

Av
er

ag
e

w
ai

tin
g

tim
e

(in
 m

in
ut

es
)

Algorithm CBF DBF EASY

Fig. 4. Evolution of the average wait time experienced by all jobs with the percentage
of deadline-driven jobs.

of CBF remains unchanged. A noticeable exception is the HPC2N workload,
which is the largest in terms of number of jobs. There we observe a uniform
reduction of the wait time when the share of deadline-driven jobs increases.

Figure 4 presents similar results as Fig. 2 but for the entire workload, i.e.,
regular and deadline-driven jobs combined. Note that this figure also includes

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 75

the jobs whose wait time is zero with the different algorithms. Moreover and for
the sake of clarity, we express the average wait time in minutes.

We can see that, in addition to reducing the average wait time of regular
jobs, the proposed DBF algorithm also globally reduces the average wait time of
the whole workload with regard to CBF. The improvement over this algorithm,
upon which DBF is based, also increases with the proportion of deadline-driven
jobs. This means that allowing the scheduler to delay some jobs (as defined in
Sect. 5) to favor some others that are more urgent does not come at the price of
a global degradation of the schedule quality but actually improves it.

The comparison with EASY does not show a clear winner, even though DBF
leads to similar or lower average wait times for most workloads with at least
40% of deadline-driven jobs. We also recall that DBF provides users with an
upper bound on job completion time, as CBF does. This valuable information
that EASY cannot give may justify a slightly larger average wait time.

We continue our evaluation with the analysis of our second performance
metric: the stretch, or slowdown, experienced by jobs when scheduled with the
different algorithms. The evolution of the average stretch with the percentage
of deadline-driven jobs and the relative performance of the three algorithms are
very similar to those in Fig. 2 for the average wait time. This means that, on
average, the respective execution time of deadline-driven does not influence this
metric which is thus mainly driven by the wait time. Then we also analyze the
maximum stretch which is a typical indicator of fairness in the literature. Indeed
a small maximum stretch, ideally close to the average stretch indicates that the
scheduling algorithm does not disfavor some jobs too much in order to reduce
the completion time of others. Figure 5 presents the evolution of the maximum
stretch for regular jobs with the percentage of deadline-driven jobs.

●

● ● ●

● ● ● ●

● ● ●

● ● ●

● ●

SDSC−BLUE SDSC−DS

HPC2N ANL−Intrepid

1000

2000

3000

4000

5000

0

50000

100000

150000

0

10000

20000

30000

40000

100

200

300

400

20 40 60 80 20 40 60 80
Percentage of deadline−driven jobs

M
ax

im
um

 s
tre

tc
h

Algorithm ● CBF EASY DBF

Fig. 5. Evolution of the maximum stretch for regular jobs with the percentage of
deadline-driven jobs.

76 T. N’takpé and F. Suter

There is a great difference between the maximum and average stretches for
all algorithms, which was expected as none of them aims at optimizing fairness
among jobs. We also observe important variations of the maximum stretch for
all the three algorithms when the percentage of deadline-driven jobs varies. This
indicates that this value strongly depends on the subset of jobs that have been
selected to become deadline-driven. For instance, the regular job that has the
maximum stretch for CBF with 40, 60, and 80% of deadline-driven jobs on
the SDSC-BLUE workload belongs to the set of 20% of deadline-driven jobs,
hence a smaller maximum stretch. Then we can just comment on the general
trends but not on specific values. We can however say that DBF either leads
to similar (for SDSC-DS and ANL-Intrepid) or better (for SDSC-BLUE and
HPC2N) maximum stretches than those achieved by EASY.

The DBF algorithm has been designed to ensure the respect of the deadlines
associated to the jobs. As explained in Sect. 4, deadline violations can only occur
when the first tentative allocation determined for a job already fails to respect
the deadline, due to heavy load or the occupation of most of the resources by
long lasting jobs. Figure 6 shows how many deadlines were not respected for
each workload depending on the proportion of deadline-driven jobs. For each
configuration, we distinguish short jobs whose deadline was set to 24 h from
those whose deadline is proportional to the expressed walltime.

A first comment is that the number of deadline violations is extremely small
compared to the number of deadline-driven jobs in the system and, not sur-
prisingly, higher for the two largest workloads. These results show that DBF is
able to guarantee the completion of almost all the deadline-driven jobs before

SDSC−BLUE SDSC−DS

HPC2N ANL−Intrepid

0

200

400

600

0

10

20

30

0

50

100

0

20

40

60

20 40 60 80 20 40 60 80
Percentage of deadline−driven jobs

N
um

be
r o

f d
ea

dl
in

e
vi

ol
at

io
ns

Deadline
24h

10x Walltime

Fig. 6. Evolution of the number of deadline violations for the DBF algorithm with the
percentage of deadline-driven jobs.

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 77

their deadline. Moreover the evolution with the proportion of deadline-driven
jobs does not indicate a direct correlation. For each of the presented experi-
ment, a growing set of jobs to become deadline-driven jobs is randomly selected.
However, these sets are not inclusive, e.g., all the jobs in the 20% set are not
necessarily in the 80% set. Moreover, a majority of the jobs that cannot respect
their deadlines were submitted in heavily loaded period. We also observe that
a vast majority of these violations are for jobs with a 24-h deadline, i.e., short
jobs with an expressed walltime of less than three hours, which confirms a rela-
tion with a heavy load at submission time for these jobs. The HPC2N workload
exhibits a different pattern with more violations for longer jobs. A further anal-
ysis shows that a few set of jobs experience similar deadline violations which
indicates that all these jobs had to wait for the completion of a single job.

When analyzing how the deadlines associated to the jobs were exploited
by the DBF algorithm we found that, all simulations combined, almost half
of the deadline-driven jobs were executed immediately after their submission.
These jobs are uniformly distributed over the workloads and scenarios. Figure 1
showed large periods of lower load every night. As deadline-driven jobs were
randomly selected it would not surprising that a large fraction of them were
submitted during lower load periods. We decided to removed these jobs from
the computation of the average deadline usage shown by Fig. 7.

This graph shows a very similar trend for all the workloads: the more
deadline-driven jobs are submitted the less they use their deadlines. Moreover,
the percentages of deadline usage are pretty low, with a maximum of 17.3%
for SDSC-BLUE with 20% of deadline-driven jobs. This tends to indicate that
the chosen deadlines might have been too lazy and could be shortened. Note
also that the deadlines were determined from the expressed walltime that are

●

●

●

●

5

10

15

20

20 40 60 80
Percentage of deadline−driven jobs

Av
er

ag
e

de
ad

lin
e

us
ag

e
(in

 p
er

ce
nt

)

Workload ● SDSC−BLUE SDSC−DS HPC2N ANL−Intrepid

Fig. 7. Evolution of the utilisation of the deadlines of the deadline-driven jobs by the
DBF algorithm with the percentage of deadline-driven jobs.

78 T. N’takpé and F. Suter

Table 3. Time to simulate the scheduling of four workloads with three algorithms.

DBF CBF EASY

20% 40% 60% 80%

SDSC-BLUE 4min 33 s 4min 34 s 04min 38 s 5min 13 s 3min 35 s 2min 18 s

SDSC-DS 2min 2min 13 s 2min 07 s 2min 02 s 1min 49 s 58 s

HPC2N 23min 03 s 29min 51 s 34min 26 s 30min 27 s 7min 21 s 3min 03 s

ANL-Intrepid 2min 20 s 2min 25 s 2min 21 s 2min 04 s 1min 52 s 1min 10 s

typically and largely overestimated by users. However, these results also show
that associating a (very) large deadline to a job does not necessarily mean that
the job will be delayed for a (very) long time. It just gives more freedom to the
scheduler which will exploit it only when needed. For instance, less than 1% of
the deadline-driven jobs used more than 80% of their deadlines.

We conclude this evaluation by discussing the time needed to simulate the
scheduling of the different workloads by the three considered algorithms, as sum-
marized in Table 3. All the simulations were run on a notebook (8-core 2.40 GHz
Intel i7-4700MQ CPU) using Batsim in a Docker container hosted by an Ubuntu
16.04 LTS Operating System.

We first observe that varying the percentage of deadline-driven jobs handled
by the proposed DBF algorithm does not have any significant impact on the
time needed to schedule a full workload. We also note that the time needed to
schedule the HPC2N workload is much larger than for the other workloads. It can
partially be explained by the greater number of jobs to execute on a relatively
small number of processors (202,871 jobs on 240 processors), but also by a large
overestimation of walltimes for a fair amount of jobs, i.e., up to 1,000 times
greater. This implies a lot of extra rescheduling steps that directly impact the
simulation time. However, the average time to schedule a job for this workload
remains reasonable in less than 10 ms, and is less than 2 ms for the three other
workloads. Compared to CBF, the management of deadline-driven jobs, and the
benefits they bring, by DBF induces an affordable overhead of 25%. Finally,
EASY that computes less tentative allocations is about twice as fast as DBF
but does not provide the same guarantees on job completion times.

7 Related Work

In the scheduling literature, deadlines usually express a Quality of Service
requirement. For instance, in (hard) real-time systems the Earliest Deadline
First (EDF) policy [18] is a preemptive scheduling algorithm that puts jobs in a
priority queue and selects the job with the closest deadline for execution when
a scheduling event occurs. Similarly on big data analytics clusters, some jobs
require guarantees on their completion time and thus can be seen as deadline-
sensitive jobs [19,20]. In these two areas, deadlines act as a constraint the sched-
uler has to respect, while in our work we primarily see the deadline as an extra

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 79

degree of freedom for the scheduler. Another main difference is that in both
real-time and big data systems, jobs are usually executed on a single compute
node and often periodic while in HPC systems jobs are mainly parallel and inde-
pendent. The associated scheduling challenges and the definition and usage of
deadlines are then completely different.

The distinction between urgent (but necessarily important) jobs and less
latency-sensitive (but often important) jobs can also be found and characterized
in big data workloads and RJMS. For instance the Google’s Borg system [5]
distinguishes “production” services used for end-user-facing products that show
a diurnal usage pattern from “non-production” batch jobs that are less sensitive
to short-term performance fluctuations.

In [21], the authors define a concept of flexible backfilling to schedule jobs
on heterogeneous HPC resources. They use deadlines to increase the priority
of jobs when they are coming close to their deadlines and decrease it when the
deadlines expire. In this paper, we use deadlines in a different way, not to increase
the priority of a job but on the contrary to further delay its execution.

While the backfilling strategies implemented by CBF and EASY are popular
in production systems, they may cause important resource fragmentation. In [22,
23], the authors rely on meta-heuristics, i.e., tabu-search and random selection,
to periodically reorganize the schedules. While these modifications improve the
average wait time and stretch, they do not preserve one of the most interesting
feature of CBF which is to provide an upper bound of job completion time on
submission. The proposed Deadline-based backfilling algorithm also builds upon
and improves the seminal CBF algorithm, but conserves this feature for both
regular and deadline-driven jobs. Finally, in [24] the authors modify the way
candidates for backfilling are selected in the list of waiting jobs. As our proposed
solution, this approach improves CBF with regard to the performance metrics
used in Sect. 6 but differs in the selection criterion. They rely on new priority
criteria while we use the deadlines associated to the jobs.

8 Conclusion and Future Work

A common and fundamental principle of Resource and Job Management Systems
is to build schedules aiming at making jobs complete as soon as possible, hence
minimizing their response time. Backfilling approaches participate to this effort,
with a interesting side effect of improving resource usage, by moving jobs ahead
in the schedule to fill resources left idle by other jobs.

In this paper, we followed the simple hypothesis that some users may not be
willing to get their results as soon as possible to design an original algorithm
called Deadline-based Backfilling (DBF). If some job is submitted along with a
deadline for its execution, this algorithm can delay it up to the expiration of
this deadline to leave room to more urgent jobs. We design this algorithm while
aiming at keeping its complexity as low as possible to favor its adoption and
at preserving the capacity to provide an upper bound on job completion time
from the submission. We evaluate the performance of this algorithm in terms

80 T. N’takpé and F. Suter

of average wait time and average stretch on four workloads extracted from the
Parallel Workload Archive. Experimental results shown a clear improvement on
both metrics when compared to the classical Conservative Backfilling and EASY
scheduling algorithms.

Experiments presented in Sect. 6 study the impact of the proportion of
deadline-driven jobs on the quality of the schedule using simple deadline deter-
mination rules. Our main future work will be to derive some principles to set
the most beneficial deadlines from the characterization of jobs composing the
workloads. Patterns in terms of duration, number of processors, periodicity will
be investigated. Then we will complete this study by fixing the proportion of
deadline-driven jobs and analyzing the impact of the derived deadline on the
schedule. Finally we aim at defining policies and incentives to motivate users to
be less eager to get their results and give some extra freedom to the scheduler.

References

1. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron,
P., Richard, O.: A batch scheduler with high level components. In: Proceedings of
the 5th International Symposium on Cluster Computing and the Grid (CCGrid),
Cardiff, UK, May 2005, pp. 776–783 (2005)

2. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

3. Staples, G.: TORQUE - TORQUE resource manager. In: Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Networking and Computing,
Tampa, FL, p. 8, November 2006

4. Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu, M., Zhou, L.:
Apollo: scalable and coordinated scheduling for cloud-scale computing. In: Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation, (OSDI), Broomfield, CO, pp. 285–300, October 2014

5. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the 10th
European Conference on Computer Systems (EuroSys), Bordeaux, France, April
2015

6. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H.,
Shenker, S., Stoica, I.: Mesos: a platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Boston, MA (2011)

7. Schwiegelshohn, U., Yahyapour, R.: Analysis of first-come-first-serve parallel job
scheduling. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco, CA, 629–638, January 1998

8. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads
archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

9. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM
SP2 with backfilling. In: Proceedings of the 12th International Parallel Processing
Symposium (IPPS), pp. 542–546 (1998)

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Don’t Hurry Be Happy: A Deadline-Based Backfilling Approach 81

10. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

11. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient
queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 12

12. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph,
L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60153-8 35

13. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: Proceedings of the
3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010), Malaga, Spain (2010)

14. Caniou, Y., Gay, J.-S.: Simbatch: an API for simulating and predicting the perfor-
mance of parallel resources managed by batch systems. In: César, E., Alexander,
M., Streit, A., Träff, J.L., Cérin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.)
Euro-Par 2008. LNCS, vol. 5415, pp. 223–234. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00955-6 27

15. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014)

16. Dutot, P.-F., Mercier, M., Poquet, M., Richard, O.: Batsim: a realistic language-
independent resources and jobs management systems simulator. In: Desai, N.,
Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 178–197. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61756-5 10

17. N’takpé, T., Suter, F.: Companion of the don’t hurry be happy: a deadline-based
backfilling approach article (2017). https://doi.org/10.6084/m9.figshare.4644466

18. Liu, C.L., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20(1), 46–61 (1973)

19. Jyothi, S.A., Curino, C., Menache, I., Narayanamurthy, S.M., Tumanov, A., Yaniv,
J., Mavlyutov, R., Goiri, I., Krishnan, S., Kulkarni, J., Rao, S.: Morpheus: towards
automated SLOs for enterprise clusters. In: Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), Savannah, GA,
pp. 117–134, November 2016

20. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs. In: Proceedings of the 25th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), Montreal, Canada, pp. 305–314, July 2013

21. Baraglia, R., Capannini, G., Pasquali, M., Puppin, D., Ricci, L., Techiouba, A.:
Backfilling strategies for scheduling streams of jobs on computational farms. In:
Danelutto, M., Fragopoulou, P., Getov, V. (eds.) Making Grids Work, pp. 103–115.
Springer, Boston (2008). https://doi.org/10.1007/978-0-387-78448-9 8

22. Klusác̆ek, D., Rudová, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235–252. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35867-8 13

https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/3-540-60153-8_35
https://doi.org/10.1007/978-3-642-00955-6_27
https://doi.org/10.1007/978-3-642-00955-6_27
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.6084/m9.figshare.4644466
https://doi.org/10.1007/978-0-387-78448-9_8
https://doi.org/10.1007/978-3-642-35867-8_13
https://doi.org/10.1007/978-3-642-35867-8_13

82 T. N’takpé and F. Suter

23. Klusàček, D., Chlumský, V.: Planning and metaheuristic optimization in produc-
tion job scheduler. In: Proceedings of the 20th Workshop on Job Scheduling Strate-
gies for Parallel Processing, Chicago, IL, May 2016. https://doi.org/10.1007/978-
3-319-61756-5 11

24. Lindsay, A., Galloway-Carson, M., Johnson, C., Bunde, D., Leung, V.: Backfilling
with guarantees made as jobs arrive. Concurr. Computat. Pract. Exp. 25(4), 513–
523 (2013)

https://doi.org/10.1007/978-3-319-61756-5_11
https://doi.org/10.1007/978-3-319-61756-5_11

Supporting Real-Time Jobs on the IBM
Blue Gene/Q: Simulation-Based Study

Daihou Wang1, Eun-Sung Jung2(B) , Rajkumar Kettimuthu3, Ian Foster3,4,
David J. Foran5, and Manish Parashar1

1 Rutgers Discovery Informatics Institute, Rutgers University,
Piscataway, NJ, USA

2 Hongik University, Seoul, South Korea
ejung@hongik.ac.kr

3 MCS Division, Argonne National Laboratory, Lemont, IL, USA
4 Department of Computer Science, University of Chicago, Chicago, IL, USA

5 Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Abstract. As the volume and velocity of data generated by scientific
experiments increase, the analysis of those data inevitably requires HPC
resources. Successful research in a growing number of scientific fields
depends on the ability to analyze data rapidly. In many situations, sci-
entists and engineers want quasi-instant feedback, so that results from
one experiment can guide selection of the next or even improve the course
of a single experiment. Such real-time requirements are hard to meet on
current HPC systems, which are typically batch-scheduled under poli-
cies in which an arriving job is run immediately only if enough resources
are available and is otherwise queued. Real-time jobs, in order to meet
their requirements, should sometimes have higher priority than batch
jobs that were submitted earlier. But, accommodating more real-time
jobs will negatively impact the performance of batch jobs, which may
have to be preempted. The overhead involved in preempting and restart-
ing batch jobs will, in turn, negatively impact system utilization. Here
we evaluate various scheduling schemes to support real-time jobs along
with the traditional batch jobs. We perform simulation studies using
trace logs of Mira, the IBM BG/Q system at Argonne National Labora-
tory, to quantify the impact of real-time jobs on batch job performance
for various percentages of real-time jobs in the workload. We present
new insights gained from grouping the jobs into different categories and
studying the performance of each category. Our results show that real-
time jobs in all categories can achieve an average slowdown less than 1.5
and that most categories achieve an average slowdown close to 1 with
at most 20% increase in average slowdown for some categories of batch
jobs with 20% or fewer real-time jobs.

Keywords: Real-time job scheduling · Preemptive scheduling
Scheduler simulation · Supercomputing

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 83–102, 2018.
https://doi.org/10.1007/978-3-319-77398-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_5&domain=pdf
http://orcid.org/0000-0002-1288-7521

84 D. Wang et al.

1 Introduction

Scientific instruments such as accelerators, telescopes, light sources, and colliders
generate large amounts of data. Because of advances in technology, the rate and
size of these data are rapidly increasing. Advanced instruments such as state-
of-the-art detectors at light source facilities generate tens of terabytes of data
per day, and future camera-storage bus technologies are expected to increase
data rates by an order of magnitude or more. The ability to quickly perform
computations on these data sets will improve the quality of science. A central
theme in experimental and observational science workflow research is the need
for quasi-instant feedback, so that the result of one experiment can guide selec-
tion of the next. Online analysis so far has typically been done by dedicated
compute resources available locally at the experimental facilities. With the mas-
sive increase in data volumes, however, the computational power required to do
the fast analysis of these complex data sets often exceeds the resources available
locally. Hence, many instruments are operated in a blind fashion without quick
analysis of the data to give insight into how the experiment is progressing.

Large-scale high-performance computing (HPC) platforms and supercom-
puting are required in order to do on-demand processing of experimental data.
Such processing will help detect problems in the experimental setup and opera-
tional methods early on and will allow for adjusting experimental parameters on
the fly [41]. Even slight improvements can have far-reaching benefits for many
experiments. However, building a large HPC system or having a supercomputer
dedicated for this purpose is not economical, because the computation in these
facilities typically is relatively small compared with the lengthy process of setting
up and operating the experiments.

We define real-time computing as the ability to perform on-demand execu-
tion. The real-time computation may represent either analysis or simulation.
Recently NERSC set up a “real-time” queue on its new Cori supercomputer to
address real-time analysis needs. It uses a small number of dedicated compute
nodes to serve the jobs in the real-time queue, and it allows jobs in the real-time
queue to take priority on other resources. It is also possible to preempt “killable”
jobs on these other resources.

NERSC is an exception, however. The operating policy of most supercomput-
ers and scientific HPC systems is not suitable for real-time computations. The
systems instead adopt a batch-scheduling model where a job may stay in the
queue for an indeterminate period of time. Thus, existing schedulers have to be
extended to support real-time jobs in addition to the batch jobs. The main chal-
lenge of using supercomputers to do real-time computation is that these systems
do not support preemptive scheduling. A better understanding of preemptive
scheduling mechanisms is required in order to develop appropriate policies that
support real-time jobs while maintaining the efficient use of resources.

In this paper, we present our work on evaluating various scheduling schemes
to support mixes of real-time jobs and traditional batch jobs. We perform simula-
tion studies using trace logs of Mira, the IBM BG/Q system at Argonne National
Laboratory, to quantify the impact of real-time jobs on batch job performance

Supporting Real-Time Jobs on the IBM Blue Gene/Q 85

and system utilization for various percentages of real-time jobs in the work-
load. Parallel job scheduling has been widely studied [13–15]. It includes strate-
gies such as backfilling [23,25,33,35], preemption [19,26], moldability [9,29,36]
malleability [5], techniques to use distributed resources [28,37], mechanisms to
handle fairness [30,40], and methods to handle inaccuracies in user runtime esti-
mates [39]. Sophisticated scheduling algorithms have been developed that can
optimize resource allocation while also addressing other goals such as minimiz-
ing average slowdown [16] and turnaround time. We explore several schedul-
ing strategies to make real-time jobs more likely to be scheduled in due time.
Although the techniques that we employ are not new, our context and objec-
tive are new. Using Mira trace logs, we quantify the impact of real-time jobs on
batch job performance for various percentages of real-time jobs in the workload.
We present new insights gained from studying the performance of different cat-
egories of jobs grouped based on runtime and the number of nodes used. Our
results show that real-time jobs in all categories can achieve an average slowdown
less than 1.5 (most categories achieve an average slowdown close to 1) with at
most 20% increase in average slowdown for some categories of batch jobs (aver-
age slowdown for batch jobs in other categories decreases) with 20% or fewer
real-time jobs. With 30% real-time jobs, the slowdown for real-time jobs in one
of the categories goes above 2, but the impact on batch jobs is comparable to
the case with 20% real-time jobs. With 40% or more real-time jobs, the average
slowdown of batch jobs in one of the categories increases by around 90%, and
the average slowdown of real-time jobs also goes above 3.

The rest of the paper is organized as follows. Section 2 describes the back-
ground on parallel job scheduling, checkpointing, the Mira supercomputer, and
the simulator used for our study. In Sect. 3 we discuss related work, and in Sect. 4
we give the problem statement. In Sect. 5 we present the scheduling techniques
studied, and in Sect. 6 we describe the extensions we did to enable real-time
scheduling in the Qsim simulator. Section 7 presents the experimental setup and
the simulation results of various scheduling techniques. Section 8 provides the
conclusions.

2 Background

We provide in this section some background on parallel job scheduling, Mira,
Qsim, and checkpointing.

2.1 Parallel Job Scheduling

Scheduling of parallel jobs can be viewed in terms of a 2D chart with time
along one axis and the number of processors along the other axis. Each job
can be thought of as a rectangle whose width is the user-estimated runtime
and height is the number of processors requested. The simplest way to schedule
jobs is to use the first-come, first-served (FCFS) policy. If the number of free
processors available is less than the number of processors requested by the job at

86 D. Wang et al.

the head of the queue, an FCFS scheduler leaves the free processors idle even if
waiting queued jobs require fewer than the available free processors. Backfilling
addresses this issue. It identifies ‘holes’ in the 2D schedule and smaller jobs that
fit those holes. With backfilling, users are required to provide an estimate of the
length of the jobs submitted for execution. A scheduler can use this information
to determine whether a job is sufficiently small to run without delaying any
previously reserved jobs.

2.2 Mira Supercomputer

Mira is a Blue Gene/Q system operated by the Argonne Leadership Computing
Facility (ALCF) at Argonne National Laboratory [3]. It was ranked 9th in the
2016 Top500 list, with peak performance at 10,066 TFlop/s. Mira is a 48-rack
system, with 786,432 cores. It has a hierarchical structure connected via a 5D
torus network. Nodes are grouped into midplanes, each of which contains 512
nodes; and each rack has two midplanes. Partitions on Mira are composed of
such midplanes. Thus, jobs on Mira are scheduled to run on partitions that have
integer multiples of 512 nodes. The smallest production job on Mira occupies 512
nodes, and the largest job occupies 49,152 nodes. The Cobalt [1] batch scheduler
used on Mira is an open-source, component-based resource management tool
developed at Argonne. It has been used as the job scheduler on Intrepid (the
supercomputer at ALCF before Mira) and is being used in other Blue Gene
systems such as Frost at the National Center for Atmospheric Research [2].

2.3 Qsim Simulator

We used the Qsim discrete event simulator [4] because it was designed for the
Cobalt scheduler. Job scheduling behavior is triggered by job-submit(Q)/job-
start(S)/job-end(E) events. The latest version of Qsim supports three versions
of backfilling-based job scheduling policies: first-fit (FF) backfilling, best-fit (BF)
backfilling, and shortest-job-first (SJF) backfilling [25]. By design, Qsim supports
the simulation only of batch job scheduling. In this study, we extended the Qsim
simulator to support real-time job scheduling using a high-priority queue and
preemption.

2.4 Checkpointing Applications

Checkpoint and restart mechanisms were first introduced into modern super-
computing systems to provide fault tolerance [12]. Checkpointing is the process
of saving a running application’s state to nonvolatile storage. The saved state
can be used to restart the application from when the last checkpoint was taken.
Over the years, these mechanisms have evolved along with the new generations
of supercomputing architecture and network developments. Among many varia-
tions, major checkpointing approaches can be categorized as either application
level or system level [12].

Supporting Real-Time Jobs on the IBM Blue Gene/Q 87

In the application-level approach, checkpointing is done by individual appli-
cations (the Cornell Checkpoint(pre) Compiler (C3) [31] is an example of this
approach, and such works are surveyed in [43]). It requires changes to the appli-
cation code, but it can significantly reduce the amount of data that need to be
saved for restarting.

In the system-level approach, checkpointing is done outside of applications.
Checkpointing can be implemented either in the operating systems (MOSIX [7]
and BLCR [11] are examples of this approach) or in the runtime library or
system. In this approach, checkpointing is done by copying the application’s
memory into persistent storage without specific knowledge of the application. It
does not require any changes to the application.

3 Related Work

Parallel job scheduling has been widely studied [6,17,23,25,38], and a number
of surveys [13–15] and evaluations [8,18,20,22] have been published. However,
not been much work has been done in the context of supporting on-demand jobs
on supercomputers that operate in batch-processing mode.

Although preemptive scheduling is universally used at the operating-system
level to multiplex processes on single-processor systems and shared-memory mul-
tiprocessors, it is rarely used in parallel job scheduling. Studies of preemptive
scheduling schemes have focused on their overheads and their effectiveness in
reducing average job turnaround time [8,10,19,21,24,34].

Others have studied preemptive scheduling for malleable parallel jobs [10,27,
32,44], in which the number of processors used to execute a job is permitted
to vary dynamically over time. In practice, parallel jobs submitted to super-
computer centers are generally rigid; that is, the number of processors used to
execute a job is fixed. The work most similar to ours is SPRUCE (Special Pri-
ority and Urgent Computing Environment) [42], which investigated mechanisms
for supporting urgent jobs such as hurricane analysis on HPC resources. The
authors define urgent computing jobs as having time-critical needs, such that
late results are useless. SPRUCE considered only a basic preemptive scheduling
scheme with no checkpointing and assumed that urgent jobs are infrequent. Our
work differs in terms of both its job model and the scheduling schemes consid-
ered. Our job model assumes that jobs with real-time constraints arrive more
frequently and that jobs are not total failure even if the job timing requirements
are missed. We evaluate more sophisticated preemptive scheduling schemes.

4 Problem Statement

Our goal is to study the impact of accommodating real-time jobs in (batch)
supercomputer systems. We consider two kinds of jobs: batch jobs and real-time
jobs. Real-time jobs expect to execute immediately, whereas batch jobs expect
best-effort service. We assume that all jobs are rigid: jobs are submitted to run
on a specified fixed number of processors. We assume that a certain percentage

88 D. Wang et al.

(R%) of the system workload will be real-time jobs and that the rest are batch
jobs. We study different values of R. We evaluate different scheduling schemes
that prioritize real-time jobs over batch jobs in order to meet the expectations
of real-time jobs to the extent possible. In addition to performance, we study
the impact of various scheduling schemes on system utilization.

5 Scheduling Techniques

We evaluate five scheduling schemes that accommodate real-time jobs in addition
to the traditional batch jobs. Detailed description of the schemes is given below.

5.1 High-Priority Queue-Based Scheduling

Real-time jobs are enqueued in a high-priority queue (hpQ), whereas batch jobs
are enqueued in a normal queue. The scheduler gives priority to the jobs in the
high-priority queue and blocks all the jobs in the normal queue until all the jobs
in the high-priority queue are scheduled.

5.2 Preemptive Real-Time Scheduling

In the preemptive scheduling schemes, if not enough resources are available to
schedule a real-time job, the scheduler selects a partition for the real-time job
that maximizes system utilization, preempts any batch job running on this par-
tition or its child partitions, and schedules the real-time job. It then resubmits
those batch jobs to the normal queue for later restart/resume. The overhead
introduced by preemption impacts the jobs that are preempted as well as the
system utilization. Checkpointing can help reduce the overhead of preemption,
but checkpointing does not come for free. Checkpointing’s impact on job run-
time and system utilization needs to be accounted for as well. For the preemptive
scheduling schemes, tjckpt, t

j
pre, ch

j
ckpt, ch

sys
ckpt, and chsys

pre capture these overheads.
Here tjckpt and tjpre are the additional time incurred for job j due to checkpoint-
ing overhead and preemption overhead, respectively; chsys

ckpt and chsys
pre are the

core-hours lost by the system due to checkpointing overhead and preemption
overhead, respectively; and chj

ckpt is core-hours lost by job j due to checkpoint-
ing overhead.

PRE-REST: PRE-REST corresponds to preemption and restart of batch jobs.
No system- or application-level checkpointing occurs. Thus, the preempted jobs
have to be restarted from the beginning. Equations 1 to 5 describe the overhead
associated with this scheme.

Supporting Real-Time Jobs on the IBM Blue Gene/Q 89

tjckpt = 0 (1)

tjpre =
#preemptionsj∑

i=1

tjusedi
(2)

chsys
ckpt = 0 (3)

chsys
pre =

∑

k in batch jobs

tkpre ∗ nodesk (4)

chj
ckpt = 0 (5)

Here, #preemptionsj is the number of times job j is preempted, tjusedi
is the

time job j (preempted job) has run in its ith execution, and nodesj is the number
of nodes used by job j.

PRE-CKPT-SYS: This scheme corresponds to the system-level checkpoint
support. All batch jobs are checkpointed periodically by the system (without any
application assistance), and the checkpoint data (the process memory including
the job context) are written to a parallel file system (PFS) for job restart. Batch
jobs running on partitions chosen for real-time jobs are killed immediately, and
they are resubmitted to the normal queue. When the preempted batch job gets to
run again, the system resumes it from the latest checkpoint. The system check-
point interval (ckpIntvsys) is universal for all running batch jobs. Equations 6
to 10 describe the overhead incurred by the preempted jobs (in terms of time)
and the system (in terms of core-hours).

tjckpt =

� t
j
runtime

ckpIntvsys
�∑

i=1

ckpDataji
bandwidthwrite

PFS

(6)

tjpre =
#preemptionsj∑

i=1

ckpDatajlatest
bandwidthread

PFS

+ ckpTgapji (7)

chsys
ckpt =

∑

k in batch jobs

tkckpt ∗ nodesk (8)

chsys
pre =

∑

k in batch jobs

tkpre ∗ nodesk (9)

chj
ckpt = 0 (10)

Here ckpDataji is the amount of data to be checkpointed for job j for ith
checkpoint; ckpDatajlatest is the amount of data checkpointed in the most recent
checkpoint for job j; bandwidthwrite

PFS and bandwidthread
PFS represent the write and

read bandwidth of the PFS, respectively; and ckpTgapji is the time elapsed
between the time job j was checkpointed last and the time job j gets preempted
for ith preemption.

PRE-CKPT-APP: This scheme corresponds to the application-level check-
pointing. Applications checkpoint themselves by storing their execution contexts

90 D. Wang et al.

and recover by using that data when restarted without explicit assistance from
the system. The checkpoint interval (ckpIntvjapp) and the amount of data check-
pointed (ckpDataj) change based on the application. Equations 11 to 15 describe
the overhead incurred by the preempted jobs (in terms of time and core-hours)
and the system (in terms of core-hours).

tjckpt =

� t
j
runtime

ckpIntv
j
app

�
∑

i=1

ckpDataji
bandwidthwrite

PFS

(11)

tjpre =
#preemptionsj∑

i=1

ckpDatajlatest
bandwidthread

PFS

+ ckpTgapji (12)

chsys
ckpt = 0 (13)

chsys
pre =

∑

k in batch jobs

tkpre ∗ nodesk (14)

chj
ckpt = tjckpt ∗ nodesj (15)

PRE-CKPT: In this scheme, jobs are checkpointed right before they get pre-
empted. The premise here is that there is interaction between the scheduler and
the checkpointing module. When the scheduler is about to preempt a job, it
informs the appropriate checkpointing module and waits for a checkpoint com-
pletion notification before it actually preempts the job. The checkpoint and pre-
emption overhead in this scheme is minimal since there is no need to checkpoint
at periodic intervals and there will not be any redundant computation (since
checkpoint and preemption happen in tandem). Equations 16 to 20 describe the
overhead incurred by the preempted jobs (in terms of time) and the system (in
terms of core-hours).

tjckpt =
#preemptionsj∑

i=1

ckpDataji
bandwidthwrite

PFS

(16)

tjpre =
#preemptionsj∑

i=1

ckpDataji
bandwidthread

PFS

(17)

chsys
ckpt =

∑

k in batch jobs

tkckpt ∗ nodesk (18)

chsys
pre =

∑

k in batch jobs

tkpre ∗ nodesk (19)

chj
ckpt = 0 (20)

6 Qsim Extensions

We used Qsim [4], an event-driven parallel job scheduling simulator, for our
study. We extended QSim to support preemption and accommodate real-time

Supporting Real-Time Jobs on the IBM Blue Gene/Q 91

(a) (b)

(c)

Fig. 1. Performance comparison under different real-time job (RTJ) percentages: (a)
job slowdown of PRE-REST, hpQ, and baseline; (b) job turnaround time of PRE-
REST, hpQ, and baseline; (c) system utilization of PRE-REST and hpQ under
different RTJ percentages.

jobs. We implemented in Qsim all five scheduling schemes described in the pre-
ceding section. Our extensions provide two ways to mark certain jobs in the job
log as real-time jobs: user-specified and random. In the user-specified approach,
users can provide an index list, and the jobs with the index provided in the list
are picked as real-time jobs. In the random approach, R% of the jobs are picked
randomly as real-time jobs. Our extensions also allow the users to provide inputs
as the following:

– ckpData - amount of data to be checkpointed
– bandwidthwrite

PFS - write bandwidth of parallel file system
– bandwidthread

PFS - read bandwidth of parallel file system
– ckpIntvsys - checkpoint interval for system-level checkpointing
– ckpIntvapp - checkpoint interval for application-level checkpointing (percent-

age of job wall time).

7 Experimental Evaluation

In this section we present details of the experimental setup and the workload
traces used for our experiments. We then present the simulation results.

92 D. Wang et al.

7.1 Workload Trace

For this study, we used four week-long trace logs collected from the Mira super-
computer at Argonne. The statistics of the logs are summarized in Table 1. The
logs are denoted by Wk-a, Wk-b, Wk-c, and Wk-d to anonymize the specific
week; #Job represents the number of completed jobs in the trace log; AvgNum-
Core represents the average number of cores required by completed jobs in the
trace log; AvgWallTime represents the average wall time (in minutes) required
by completed jobs in the trace log; AvgRsc represents the average amount of
resources (in core-hours) required by completed jobs in the trace log; and Avg-
WallTimeAccu represents the accuracy of average wall time (in percentage) rel-
ative to the average runtime of completed jobs.

Table 1. Statistics of Mira trace logs.

Log #Job AvgNumCore
(cores)

AvgWallTime
(min)

AvgRsc
(core hours)

AvgWallTimeAccu (%)

Wk-a 403 2650.9 206.90 7931.1 86.7

Wk-b 1217 2659.8 132.83 5043.5 85.6

Wk-c 852 2437.4 165.39 6206.2 92.3

Wk-d 943 2195.3 235.68 7021.5 81.4

7.2 Experimental Setup

To fully evaluate the performance of all the scheduling schemes under different
amounts of real-time jobs, we randomly chose R% (real-time job percentage)
of jobs in the experimental trace log and set them as real-time jobs (RTJ),
with the rest (100 − R)% as batch jobs (BJ). In our experiments we used R ∈
{5, 10, 20, 30, 40, 50}. Experimental results were averaged over 20 random sample
groups for each R value.

We analyzed the performance of the scheduling schemes in terms of the fol-
lowing performance metrics.

– Job turnaround time: time difference between job completion time and job
submission time

– Bounded job slowdown (slowdown):

Bounded slowdown = (Wait time + Max(Run time, 10))/
Max(Run time, 10)

(21)

The threshold of 10 min was used to limit the influence of very short jobs on
the metric.

– System utilization: proportion of the total available processor cycles that are
used.

System utilization =
(
∑

j runtimej · nodesj + chj
ckpt) + chsys

pre + chsys
ckpt

Makespan · nodestotal
(22)

Supporting Real-Time Jobs on the IBM Blue Gene/Q 93

– Productive utilization (productive util): proportion of the total available pro-
cessor cycles that are used for actual job execution, which excludes checkpoint
and preemption overhead.

Productive utilization =

∑
j runtimej · nodesj

Makespan · nodestotal (23)

We compare performance of scheduling schemes described in Sect. 5 with the
baseline performance. Baseline performance is obtained by running both RTJ
and BJ as batch jobs on Qsim with the default scheduling algorithm, which
is FCFS with first-fit backfilling. Although we gathered experimental results
for four week-long traces (Wk-a, Wk-b, Wk-c, Wk-d described in Table 1), we
present the results for only Wk-a because of space constraints. We note that the
trends for other three logs are similar to that for the log presented here.

7.3 High-Priority Queue and Preemption Without Checkpointing

We first evaluated the performance of the high-priority queue and preemption
with no checkpointing (PRE-REST) schemes. Figure 1 shows the average slow-
down and average turnaround time of jobs and system utilization for different
RTJ percentages. From Figs. 1(a) and (b), we can observe that both the high-
priority queue and PRE-REST schemes improve the performance of RTJ signif-
icantly without a huge impact on the batch jobs when %RTJ ≤ 30.

With the high-priority queue, RTJ achieve much lower job slowdown and job
turnaround time compared with their baseline metrics. But the absolute values
are still much higher than the desired values. For example, job slowdown ranges
from 1.72 to 3.0, significantly higher than the desired slowdown of 1. Even though
RTJ have higher priority than BJ have, they must wait for the running batch
jobs to finish if not enough free nodes are available for RTJ to start immediately.

From Fig. 1(a), we see that preemptive scheduling can achieve a slowdown
close to 1 for RTJ for workloads with up to 30% RTJ. For workloads with a higher
percentage of real-time jobs (40% and 50%), however, as more system resources
are occupied by RTJ, some RTJ have to wait for the required resources, resulting
in a higher average slowdown (∼1.5) for RTJ.

Comparing hpQ with PRE-REST, we see that PRE-REST is consistently
better than hpQ for RTJ in terms of both slowdown and turnaround time. This
result is expected because RTJ can preempt the running BJ in PRE-REST
while they cannot do that in hpQ. Regarding BJ, we note that PRE-REST is
almost always better than hpQ in terms of average slowdown, whereas hpQ is
almost always better than PRE-REST in terms of average turnaround time. We
conjecture that preemption of batch jobs to schedule RTJ in PRE-REST benefits
the shorter BJ indirectly. In other words, preemption creates opportunities for
shorter BJ to backfill. Of the batch jobs that are preempted, longer jobs will
likely have a hard time backfilling and thus will suffer the most in PRE-REST.
Since hpQ does not allow any batch job to be scheduled if an RTJ is waiting,
the shorter jobs will not be able to backfill even if they could. The average job

94 D. Wang et al.

slowdown is influenced significantly by the short jobs. In contrast, the average
job turnaround time tends to be influenced much more by the long jobs. Since
PRE-REST causes relatively more negative impact on longer BJ and indirectly
benefits shorter BJ, and since high-priority queue causes more negative impact on
shorter BJ by denying the backfill opportunities that they would have otherwise
had, PRE-REST is better in terms of average slowdown, and high-priority queue
is better in terms of average turnaround time for BJ. The PRE-REST scheme
having a lower productive utilization than hpQ has (see Fig. 1(c) and the text
below) also supports our theory.

Figure 1(c) shows overall utilization and productive utilization of PRE-REST
and high-priority queue. We note that overall utilization includes all the usage of
the system, including the redundant cycles used by the preempted jobs (if any)
and the cycles spent on checkpointing and preemption (if applicable). In contrast,
productive utilization includes only the cycles used for the productive execution
of the jobs. For high-priority queue, the overall utilization is the same as that
of productive utilization since it does not have any redundant computations or
any other additional overhead. In PRE-REST, portions of preempted jobs get
executed more than once since they have to start from the beginning after each
preemption. In Fig. 1(c), the bars on the leftmost end (0% RTJ) correspond to the
baseline utilization. We can see that the overall (productive) utilization for high-
priority queue decreases with the increasing percentage of RTJ. We also see that
High-priority queue blocks the batch jobs and prevents them from backfilling
whenever one or more real-time jobs are waiting. Thus, batch jobs suffer more
with increasing numbers of real-time jobs. Although the overall utilization of
PRE-REST is higher than that of high-priority queue, its productive utilization
is lower because of the cycles wasted by the restart of preempted jobs from
scratch. Productive utilization for high-priority queue reduces by 5% (compared
with the baseline) when there are 20% real-time jobs and by 10% when there are
50% real-time jobs. In contrast, for PRE-REST, productive utilization reduces
by 15% when there are 20% real-time jobs and by 20% when there are 50%
real-time jobs.

7.4 Performance of Checkpoint-Based Preemptive Scheduling

We compare the performance of preemptive scheduling schemes with the baseline
and hpQ schemes in Fig. 2. From Fig. 2a, we can see that for RTJ, all preemp-
tive scheduling schemes can maintain an average slowdown in the range of [1.0,
1.4], as opposed to slowdowns around 2.0 or above with hpQ and around 8.0
or above with the baseline. Even for BJ, preemptive scheduling schemes with
checkpointing (PRE-CKPT, PRE-CKPT-SYS, and PRE-CKPT-APP) perform
significantly better than hpQ and the baseline when the %RTJ ≤ 30 (see Fig. 2b).
We note that the average turnaround time results have similar trends as the
average slowdown, and we expect that the improvement for batch jobs for 30%
RTJ is modest. Based on these results, there is no reason not to support up to
30% RTJ in the workloads. The performance of RTJ is as expected, but the
performance improvement for batch jobs when %RTJ ≤ 30 is both surprising

Supporting Real-Time Jobs on the IBM Blue Gene/Q 95

and counterintuitive. We suspect that certain categories of BJ are benefiting at
the expense of certain other categories of BJ. Also, not all RTJ are getting the
same amount of benefit. To understand these results better, we divided the jobs
into four categories: two partitions for the number of nodes used (narrow and
wide) and two partitions for the runtime (short and long). The criteria used for
classification is as follows:

– Narrow: number of nodes used is in the range [512, 4096] inclusive (note that
the number of nodes allocated on Mira is a multiple of 512).

– Wide: number of nodes used is in the range [4608, 49152] inclusive.
– Short: jobs with runtime ≤ 120 min.
– Long: jobs with runtime > 120 min.

The performance of the baseline, hpQ, and preemptive scheduling schemes
for narrow-short, narrow-long, wide-short, and wide-long categories of RTJ and
BJ is shown in Figs. 3, 4, 5, and 6, respectively. We can see from Figs. 3b and
d that narrow-short batch jobs slowdown and that turnaround times with the
preemption schemes are significantly better than the baseline and hpQ for cases
where the %RTJ ≤ 30. For the same cases, however, the performance of the
preemption schemes for narrow-long BJ is comparable to that of the baseline
and hpQ, and for wide-short and wide-long BJ is (significantly) worse than
baseline and hpQ. Since 63% of the total jobs (57% of RTJ and 64% of BJ) are
narrow-short, the overall performance of all jobs shown in Fig. 2 is influenced by
the performance of narrow-short jobs much more than the performance of jobs
in other categories.

7.5 Impact of Checkpointing Implementations

In this section, we further evaluate the performance of preemptive scheduling in
terms of checkpoint data size and checkpoint interval.

First, to evaluate the performance impact of checkpoint data size, we con-
ducted experiments with different checkpoint data file size for PRE-CKPT. We
define checkpoint data file size per node as dsize, with dsize ∈ {1 GB, 4 GB, 16
GB}, which represent checkpoint data with a compress rate of {92.75%, 75%,
0%} when the system memory size is assumed to be 16 GB. Based on the I/O
performance benchmarks for Mira, we set the I/O bandwidth per node to 2
GB/s while we set the parallel file system bandwidth cap for checkpoint/restart
data write/read to 90% of the PFS bandwidth (240 GB/s). The results of the
BJ slowdown are illustrated in Fig. 7(b). From the results, we can see the gen-
eral trend: the average slowdown for BJ increases as the checkpoint data size
increases. For example, the average slowdown for BJ increases from 6.2 to 7.8
when the checkpoint data size varies from 1 GB to 16 GB for the workload with
10% RTJ. The results of the RTJ slowdown are illustrated in Fig. 7(a). No clear
trend is evident, which is expected since the checkpoint data size should not
affect RTJ.

Next, we study the impact of different checkpoint intervals for PRE-CKPT-
SYS and PRE-CKP-APP. We study the performance of PRE-CKP-SYS for

96 D. Wang et al.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

(c) Real-time jobs - turnaround time (d) Batch jobs - turnaround time

Fig. 2. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

(c) Real-time jobs - turnaround time (d) Batch jobs - turnaround time

Fig. 3. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for narrow-short jobs.

Supporting Real-Time Jobs on the IBM Blue Gene/Q 97

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

(c) Real-time jobs - turnaround time (d) Batch jobs - turnaround time

Fig. 4. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for narrow-long jobs.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

(c) Real-time jobs - turnaround time (d) Batch jobs - turnaround time

Fig. 5. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS and PRE-CKPT-APP schemes for wide-short jobs.

98 D. Wang et al.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

(c) Real-time jobs - turnaround time (d) Batch jobs - turnaround time

Fig. 6. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for wide-long jobs.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

Fig. 7. Performance of PRE-CKPT-SYS for different checkpoint data sizes.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

Fig. 8. Performance comparison of PRE-CKPT, PRE-CKPT-SYS, and PRE-CKPT-
APP for different checkpoint intervals.

Supporting Real-Time Jobs on the IBM Blue Gene/Q 99

checkpoint intervals int ∈ {15 min, 30 min, 60 min}. These interval values are
selected based on the average wall time of 207 min. We study the performance of
PRE-CKP-APP by setting checkpoint intervals to different percentages of wall
time (pcent). We use pcent ∈ {15%, 30%, 50%}. Figure 8 shows RTJ and BJ
slowdowns for PRE-CKPT and for different checkpoint intervals for PRE-CKP-
SYS and PRE-CKP-APP. These results are for checkpoint data file size per node
dsize = 4 GB (I/O bandwidth per node and the PFS bandwidth cap are set to
the same values mentioned before). No clear trend is seen from these results.
The checkpoint interval should not affect the RTJ performance since only BJ
are checkpointed. A longer checkpoint interval will result in a lower checkpoint
overhead for BJ but a potentially higher restart overhead for preempted BJ.
The amount of restart overhead is highly dependent on the schedule. From the
results in Fig. 8(b), a checkpoint interval of 30 min for PRE-CKP-SYS and 30%
wall time for PRE-CKP-APP perform better for most cases.

7.6 Summary of the Results

Even though the non-preemptive hpQ scheme can dramatically reduce the slow-
down of RTJ (4× or more) compared with the baseline scheme that treats all jobs
equally, the absolute values of average slowdown of RTJ is still around 2, which
may not be acceptable for RTJ. Preemption is required to bring the average
slowdown of RTJ close to 1. Surprisingly, both non-preemptive and preemptive
schemes that favor RTJ benefit BJ also when %RTJ ≤ 30. Further analyses
reveal that in addition to RTJ, narrow-short BJ also benefit significantly from
the schemes that favor RTJ. With preemptive schemes, preemption of wide and
long BJ can help narrow-short BJ (in addition to RTJ) through new backfilling
opportunities. With hpQ, prioritizing RTJ over BJ (and making wide BJ wait)
possibly creates additional backfilling opportunities for narrow-short BJ. When
%RTJ ≤ 20, average slowdowns for narrow-short, narrow-long, and wide-long
RTJ remain very close to 1 for all preemptive schemes; and the average slow-
down for wide-short RTJ is ≤ 1.5 at least for some of the preemptive schemes.
Checkpointing definitely helps reduce the negative impact on BJ. The BJ slow-
down increases with increasing checkpoint data size, but no clear trend is seen
with respect to the checkpoint interval (a checkpoint interval of 30 min or, when
the interval is a percentage of wall time, 30% works best).

8 Conclusions

We have presented a simulation-based study of trade-offs that arise when sup-
porting real-time jobs on a batch supercomputer. We studied both preemptive
and non-preemptive scheduling schemes to support real-time jobs using pro-
duction job logs by varying the percentage of real-time jobs in the workload.
We compared both slowdown and turnaround time of real-time and batch jobs
observed with these schemes against the ones observed with a baseline, which
is the scheduling policy used in production for the system we studied. We also

100 D. Wang et al.

analyzed the performance of different categories of jobs and provided detailed
insights. We showed that preemptive scheduling schemes can help real-time jobs
in all categories achieve an average slowdown less than 1.5 with at most a 20%
increase in average slowdown for some categories of batch jobs when the work-
load has 20% or fewer real-time jobs.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Computing Research, under Con-
tract DE-AC02-06CH11357. We thank the Argonne Leadership Computing Facility at
Argonne National Laboratory for providing the Mira trace log used in this study.

References

1. Cobalt project. http://trac.mcs.anl.gov/projects/cobalt
2. Frost, NCAR/CU BG/L System. https://wiki.ucar.edu/display/BlueGene/Frost
3. Mira. https://www.alcf.anl.gov/mira
4. Qsim. http://trac.mcs.anl.gov/projects/cobalt
5. Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E.,

Shalf, J.: The cactus worm: experiments with dynamic resource selection and allo-
cation in a grid environment. IJHPCA 15(4), 345–358 (2001)

6. Anastasiadis, S., Sevcik, K.: Parallel application scheduling on networks of work-
stations. J. Parallel Distrib. Comput. 43(2), 109–124 (1997)

7. Barak, A., Guday, S., Wheeler, R.G. (eds.): The MOSIX Distributed Operating
System: Load Balancing for UNIX. LNCS, vol. 672. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56663-5

8. Chiang, S.-H., Vernon, M.K.: Production job scheduling for parallel shared memory
systems. In: Proceedings of the 15th International Parallel & Distributed Process-
ing Symposium, Washington, DC, USA, p. 47 (2001)

9. Cirne, W., Berman, F.: Adaptive selection of partition size for supercomputer
requests. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2000. LNCS, vol. 1911, pp.
187–207. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39997-6 12

10. Deng, X., Gu, N., Brecht, T., Lu, K.: Preemptive scheduling of parallel jobs on
multiprocessors. In: Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1996, Philadelphia, PA, USA, pp. 159–167 (1996)

11. Duell, J.: The design and implementation of Berkeley Labs Linux check-
point/restart. Technical report (2003). http://www.nersc.gov/research/FTG/
checkpoint/reports.html

12. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance computing
systems. J. Supercomput. 65(8), 885–900 (2005)

13. Feitelson, D.G.: Job scheduling in multiprogrammed parallel systems. Research
Report RC 19790 (87657), IBM T. J. Watson Research Center, October 1994

14. Feitelson, D.G., Rudolph, L.: Parallel job scheduling: issues and approaches. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 1–18. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60153-8 20

15. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — a
status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005). https://doi.org/10.
1007/11407522 1

http://trac.mcs.anl.gov/projects/cobalt
https://wiki.ucar.edu/display/BlueGene/Frost
https://www.alcf.anl.gov/mira
http://trac.mcs.anl.gov/projects/cobalt
https://doi.org/10.1007/3-540-56663-5
https://doi.org/10.1007/3-540-39997-6_12
http://www.nersc.gov/research/FTG/checkpoint/reports.html
http://www.nersc.gov/research/FTG/checkpoint/reports.html
https://doi.org/10.1007/3-540-60153-8_20
https://doi.org/10.1007/11407522_1
https://doi.org/10.1007/11407522_1

Supporting Real-Time Jobs on the IBM Blue Gene/Q 101

16. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2 14

17. Jones, J.P., Nitzberg, B.: Scheduling for parallel supercomputing: a historical per-
spective of achievable utilization. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999. LNCS, vol. 1659, pp. 1–16. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-47954-6 1

18. Ward Jr., W.A., Mahood, C.L., West, J.E.: Scheduling jobs on parallel systems
using a relaxed backfill strategy. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 88–102. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36180-4 6

19. Kettimuthu, R., Subramani, V., Srinivasan, S., Gopalsamy, T., Panda, D.K.,
Sadayappan, P.: Selective preemption strategies for parallel job scheduling. IJH-
PCN 3(2/3), 122–152 (2005)

20. Lawson, B.G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and
reservations for parallel systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36180-4 5

21. Leung, V.J., Sabin, G., Sadayappan, P.: Parallel job scheduling policies to improve
fairness: a case study. In: Lee, W.-C., Yuan, X. (eds.) ICPP Workshops, pp. 346–
353. IEEE Computer Society (2010)

22. Leutenneger, L.T., Vernon, M.K.: The performance of multiprogrammed multipro-
cessor scheduling policies. In: ACM SIGMETRICS Conference on Measurement
and Modelling of Computer Systems, pp. 226–236, May 1990

23. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph,
L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60153-8 35

24. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. In: Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993,
Philadelphia, PA, USA, pp. 422–431 (1993)

25. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

26. Niu, S., Zhai, J., Ma, X., Liu, M., Zhai, Y., Chen, W., Zheng, W.: Employing
checkpoint to improve job scheduling in large-scale systems. In: Cirne, W., Desai,
N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp.
36–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35867-8 3

27. Parsons, E.W., Sevcik, K.C.: Implementing multiprocessor scheduling disciplines.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1997. LNCS, vol. 1291, pp. 166–192.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63574-2 21

28. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in dis-
tributed data-intensive applications. In: Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing, HPDC 2002, p.
352. IEEE Computer Society, Washington, DC (2002)

29. Sabin, G., Lang, M., Sadayappan, P.: Moldable parallel job scheduling using job
efficiency: an iterative approach. In: Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2006. LNCS, vol. 4376, pp. 94–114. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71035-6 5

https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-47954-6_1
https://doi.org/10.1007/3-540-47954-6_1
https://doi.org/10.1007/3-540-36180-4_6
https://doi.org/10.1007/3-540-36180-4_5
https://doi.org/10.1007/3-540-60153-8_35
https://doi.org/10.1007/978-3-642-35867-8_3
https://doi.org/10.1007/3-540-63574-2_21
https://doi.org/10.1007/978-3-540-71035-6_5
https://doi.org/10.1007/978-3-540-71035-6_5

102 D. Wang et al.

30. Sabin, G., Sadayappan, P.: Unfairness metrics for space-sharing parallel job sched-
ulers. In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834, pp. 238–256. Springer, Heidelberg (2005). https://
doi.org/10.1007/11605300 12

31. Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali, K., Stodghill, P.:
Implementation and evaluation of a scalable application-level checkpoint-recovery
scheme for MPI programs. In: Proceedings of the ACM/IEEE SC 2004 Conference
Supercomputing, pp. 38–38, November 2004

32. Sevcik, K.C.: Application scheduling and processor allocation in multiprogrammed
parallel processing systems. Perform. Eval. 19(2–3), 107–140 (1994)

33. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing of
parallel jobs. J. Parallel Distrib. Comput. 65(9), 1090–1107 (2005)

34. Snell, Q.O., Clement, M.J., Jackson, D.B.: Preemption based backfill. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp.
24–37. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4 2

35. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reser-
vation strategies for backfill job scheduling. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-36180-4 4

36. Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., Sadayappan, P.:
Effective selection of partition sizes for moldable scheduling of parallel jobs. In:
Sahni, S., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
174–183. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36265-7 17

37. Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed job
scheduling on computational grids using multiple simultaneous requests. In: Pro-
ceedings of the 11th International Symposium on High Performance Distributed
Computing, p. 359. IEEE Computer Society, Washington, DC (2002)

38. Talby, D., Feitelson, D.G.: Supporting priorities and improving utilization of the
IBM SP scheduler using slack-based backfilling. In: Proceedings of the 13th Inter-
national Parallel Processing Symposium, pp. 513–517 (1999)

39. Tang, W., Desai, N., Buettner, D., Lan, Z.: Job scheduling with adjusted runtime
estimates on production supercomputers. J. Parallel Distrib. Comput. 73(7), 926–
938 (2013)

40. Tang, W., Ren, D., Lan, Z., Desai, N.: Toward balanced and sustainable job
scheduling for production supercomputers. Parallel Comput. 39(12), 753–768
(2013)

41. Thomas, M., Dam, K., Marshall, M., Kuprat, A., Carson, J., Lansing, C., Guillen,
Z., Miller, E., Lanekoff, I., Laskin, J.: Towards adaptive, streaming analysis of
X-ray tomography data. Synchrotron Radiat. News 28(2), 10–14 (2015)

42. Trebon, N.: Enabling urgent computing within the existing distributed computing
infrastructure, Ph.D. thesis. University of Chicago (2011). AAI3472964

43. Walters, J.P., Chaudhary, V.: Application-level checkpointing techniques for par-
allel programs. In: Madria, S.K., Claypool, K.T., Kannan, R., Uppuluri, P., Gore,
M.M. (eds.) ICDCIT 2006. LNCS, vol. 4317, pp. 221–234. Springer, Heidelberg
(2006). https://doi.org/10.1007/11951957 21

44. Zahorjan, J., McCann, C.: Processor scheduling in shared memory multiprocessors.
In: ACM SIGMETRICS Conference on Measurement and Modelling of Computer
Systems, pp. 214–225, May 1990

https://doi.org/10.1007/11605300_12
https://doi.org/10.1007/11605300_12
https://doi.org/10.1007/3-540-36180-4_2
https://doi.org/10.1007/3-540-36180-4_4
https://doi.org/10.1007/3-540-36265-7_17
https://doi.org/10.1007/11951957_21

Towards Efficient Resource Allocation
for Distributed Workflows Under

Demand Uncertainties

Ryan D. Friese1(B), Mahantesh Halappanavar1, Arun V. Sathanur1,
Malachi Schram1, Darren J. Kerbyson1, and Luis de la Torre2

1 Pacific Northwest National Laboratory, Richland, WA, USA
{ryan.friese,mahantesh.halappanavar,arun.sathanur,

malachi.schram,darren.kerbyson}@pnnl.gov
2 Universidad Metropolitana, San Juan, PR, USA

delatorrel1@suagm.edu

Abstract. Scheduling of complex scientific workflows on geographically
distributed resources is a challenging problem. Selection and scheduling
of a subset of available resources to meet a given demand in a cost effi-
cient manner is the first step of this complex process. In this paper, we
develop a method to compute cost-efficient selection and scheduling of
resources under demand uncertainties. Building on the techniques of Sam-
ple Average Approximation and Genetic Algorithms, we demonstrate that
our method can lead up to 24% improvement in costs when demand uncer-
tainties are explicitly considered. We present the results from our prelimi-
nary work in the context of a high energy physics application, the Belle II
experiments, and believe that the work will equally benefit other scientific
workflows executed on distributed resources with demand uncertainties.
The proposed method can also be extended to include uncertainties related
to resource availability and network performance.

Keywords: Cost-efficient scheduling · Uncertainty quantification
Large scale workflows · Sample average approximation

1 Introduction

Efficient utilization of computing resources is an important goal for the design
and execution of complex scientific workflows. However, scheduling of these work-
flows on distributed computing resources is fraught with several uncertainties
that lead to poor utilization of resources. In this work, we introduce the notion
of uncertainties in forecasted demand and develop strategies for cost-efficient
utilization of distributed resources. The three main components of our work are:
(i) a prototypical scientific workflow from the Belle II experiments containing
aspects of data generation through experiments and simulations, and analysis of
this data; (ii) a methodology based on Sampled Average Approximation (SAA)
to generate scenarios and select efficient strategies; and (iii) a Genetic Algorithm
c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 103–121, 2018.
https://doi.org/10.1007/978-3-319-77398-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_6&domain=pdf

104 R. D. Friese et al.

(GA) based method to compute efficient strategies to meet forecasted demand
given a set of resources and their usage costs.

The Belle II experiments probe the interactions of fundamental constituents
of our universe. The experiments will generate about 25 peta bytes (a peta byte
is 1015 bytes) of raw data per year with an anticipated stored data of over 350
peta bytes at the end of the experiment (2022) [1,10]. Data is generated not
only from the physical experiments conducted through the Belle II detector, but
also from Monte Carlo simulations and user analysis. Similar to many large-scale
experiments, the users, data, storage and computational resources related to the
experiment are geographically distributed across the globe. Therefore the Belle
II experiment is an ideal case study for our work.

Intuitively, the Sample Average Approximation (SAA) provides a mechanism
to optimize functions with variables that are subject to uncertainties. Two key
ideas in SAA are the use of sampling and optimization under certainty [15].
Given a particular demand, in terms of the number of compute units, a cost-
efficient mix of resources can be chosen to meet this demand, where the cost
of using each type of resource is different. We provide a rigorous formulation of
this optimization problem in Sect. 2. However, this deterministic optimization
problem becomes hard when the demand is subject to uncertainties. Note that

Fig. 1. An illustration of our approach using the Sample Average Approximation
method. Different scenarios (represented along the rows: P 1

d − PN
d) are created by

drawing random samples from the distribution of a given base demand (PB
d). Solu-

tions (represented along the columns: FB , F1 − FN) are generated using a Genetic
Algorithm based optimizer for each scenario. The asterisks on the diagonal correspond
to the scenario used to create a solution. Each solution is used to solve every other
scenario (non-diagonal entries). The bottom row represents the mean value for each
solution over every scenario. The minimum mean value provides an optimal solution.

Towards Efficient Resource Allocation for Distributed Workflows 105

the supply (availability of resources) is also subject to uncertainties that we will
ignore in this work and note that our work can be extended to include such
uncertainties. Assuming the probability distribution functions for demands are
known apriori from the application domain, we first generate several scenarios
by drawing random samples from these distributions. We then solve each sce-
nario as a deterministic case using a Genetic Algorithm (GA) based approach.
We implement a modified version of the popular Nondominated Sorted Genetic
Algorithm II (NSGAII) [3]. We detail this method in Sect. 3.

The optimal strategy (the mix of resources to meet the demand) for a given
scenario is used to compute the cost of meeting the demand from all the other
scenarios. A mean cost for each strategy is computed, and the minimum of these
means is chosen as the optimal strategy that is robust to different scenarios.
A base case is also computed and compared against the optimal solution (in
terms of solving different scenarios). The proposed SAA based method is illus-
trated in Fig. 1. We discuss the experimental setup and results in Sects. 4 and 5,
respectively.

Contributions

We make the following contributions in this preliminary work paper:

– Present a scheduling framework for Belle II workflows under demand uncer-
tainties.

– Present a novel Genetic Algorithm based approach for computing cost-
efficient selection of resources based on the analogy of unit commitment prob-
lem in electric power grids.

– Present a Sample Average Approximation based method to develop scenarios
and compute solutions that are optimal across different scenarios. We demon-
strate the effectiveness of this approach using a prototypical workflow from
high energy physics application.

– We demonstrate a cost benefit of up to 24% relative to the optimal base case,
and thus, make a case for the utility of considering demand uncertainties in
scheduling of complex scientific workflows executed on distributed resources.

The paper is organized as follows. We provide a rigorous formulation of the cost-
efficient selection of resources to meet a given demand in Sect. 2. We present
the proposed methodology in Sect. 3 and explain the details of Sample Average
Approximation and Genetic Algorithm based methods. We provide our experi-
mental setup in Sect. 4 and experimental results in Sect. 5. We present related
work in Sect. 6, and our conclusions in Sect. 7.

2 Problem Formulation

Given that a variety of distributed resources are available to meet a certain
demand, the question we address is: What is the most cost-effective allocation of

106 R. D. Friese et al.

resources to meet the given demand? We address this question using the analogy
of Unit Commitment problem in the context of electric power grids [22]. We
first introduced this idea in our previous work [9] using linear programming
approaches to develop solutions. In this paper, we develop a genetic algorithm
based approach and introduce the notion of uncertain demand. An important
assumption we make is that only a subset of available resources is sufficient to
meet the demand for a given time period. We note that this is a fair assumption
when cloud computing resources are being utilized and when multiple dedicated
resources are used to support several scientific applications.

For Belle II experiments, several types of distributed resources including ded-
icated and opportunistic on-demand resources are available. The cost structures
(both fixed (start up) and operating) vary significantly for different kinds of
resources. As an example, while dedicated resources have a fixed operating cost,
cloud computing resources such as Amazon EC2 have a variety of resources with
different fixed and usage based costs [23]. A similar problem of resource utiliza-
tion also arises in the context of electric power grids that is popularly known as
the Unit Commitment problem. Consider a power grid operator with access to
several power generators with different start-up and operating costs, and demand
(load) that varies significantly over a period of time including seasonal fluctua-
tions. For a given period of time, generally from several hours to a few days, the
objective of unit commitment is to determine a subset of power generators that
will used and the amount of power they will generate to meet the demand at a
minimum cost. Using the notation introduced by Wright [30], we can formally
express the objective function as:

min F =
T∑

t=1

N∑

j=1

Cj(Pj(t)) + Sj(xj(t), uj(t)), (1)

subject to constraints:

N∑

j=1

Pj(t) = Pd(t) (2)

N∑

j=1

rj(xj(t), Pj(t)) ≥ Pr(t), (3)

where F is the total system cost for N power generators with operating (fuel) cost
Cj and start-up cost Sj to generate Pj units of power. The variable xj represents
the number of time units (for example, hours) that a given generator is on (positive)
or off (negative). Similarly, the variable uj represents the state of a generator at
a given time unit t + 1. It is positive (+1) if the state is up and negative (−1)
if the state is down. The constraints enforce that the demand, Pd(t) at time t, is
satisfied. Further, the system is also required to meet a certain additional (reserve)
unanticipated demand Pr, and rj is the reserve available from generator j for time
period t. The total time period under consideration is T .

Towards Efficient Resource Allocation for Distributed Workflows 107

For the purposes of this paper, we define Pj(t) as the computing power of a
resource vj for time unit t. A metric for expressing power in the context of Belle II
is HEP SPEC – a metric derived from SPEC CPU 2006 standard1. Different costs
for resources available for Belle II experiments can be potentially modeled using
machine specifications (energy and power consumption) and operation policies,
in a method described in Singer et al. [23]. Demand for computing resources
arise from several tasks including Monte Carlo simulation campaigns with given
number of events (Pd) that are simulated over a given period of time. The user
analysis jobs are generally chaotic and lead to uncertainties in demand that
need additional resources to satisfy. This situation is equivalent to the spinning
reserve (Pr) in a power grid. A key problem addressed in this paper is that we
consider demand uncertainties explicitly and solve the optimization problem.
We will discuss our proposed methodology to solve the unit commitment based
formulation using genetic algorithm in Sect. 3. An advantage of using the analogy
of unit commitment is that a large body of work is available to solve the problem
efficiently. We discussed a linear programming based approach in [9], and note
that several other approaches are available in literature [22].

3 Proposed Methodology

We formulated the cost-efficient resource selection problem using the analogy of
unit commitment problem in Sect. 2. In this section, we develop a method to
handle demand uncertainties in this formulation using Sample Average Approx-
imation (SAA), and then develop a genetic algorithm based method to compute
efficient solutions for the optimization problem.

3.1 Sample Average Approximation (SAA)

The optimization problem described in Eq. 1 cannot be computed exactly when
demand is uncertain. Therefore, we employ the SAA technique, which is based
on the ideas of sampling and deterministic optimization, to solve this problem.
Formally, the problem can be expressed as:

min f(x) = f(x, ξ), (4)

where x represents the scheduling strategy for resources (which resources to
commit and at what level to run) and ξ represents demand that is random and
independent of x. f(x, ξ) is therefore the total cost. Given a probability distri-
bution function for demand, we randomly sample different values for demand
ξ1, ξ2, . . . , ξn, and set

min fn(x) =
1
n

n∑

i=1

f(x, ξi). (5)

1 HEP SPEC is based on SPEC CPU 2006. Further information is available from
http://w3.hepix.org/benchmarks/doku.php/.

http://w3.hepix.org/benchmarks/doku.php/

108 R. D. Friese et al.

For a given value of demand, the optimization problem becomes deterministic,
which we solve using a genetic algorithm based approach (described next). We
then pick the minimum value from Eq. 4 (min f(x) = min fn(x)), as illustrated
in Fig. 1. The SAA method converges to an optimal solution as the number of
samples n increases [15]. We conduct our experiments with 5000 samples that
we detail in Sect. 4. We note that in this particular formulation of the problem,
our solution space is limited to the (n + 1) solutions corresponding to the n
scenarios and the base case. The eventual solution (commitment strategy) is
chosen to be the minimum mean solution among (n + 1) solutions. We plan to
modify our current method to account for the objective function at each step
as the expectation over (n + 1) scenarios to develop a globally optimal solution
in our future work. We also plan to explore mathematical programming based
methods to compute optimal solutions.

3.2 Genetic Algorithm

Genetic algorithms (GAs) are common evolutionary optimization techniques
useful in solving problems that contain large and complex search spaces (e.g.,
[11,18,24,27,29]). GAs try to emulate the process of natural selection; i.e., pro-
ducing better (fitter) solutions as time progresses. Typical GAs maintain a pop-
ulation of individuals called chromosomes. Each chromosome is a solution to the
problem being solved. Chromosomes are compared with one another by eval-
uating their fitness. Fitness functions are often, but not always, the objective
function to optimized (this paper presents two fitness functions, one is the direct
objective (i.e. Eq. 1), while the other is a relaxed version). Chromosomes are fur-
ther composed of genes, the base component of a solution, their representation is
highly dependent on the problem being solved. Our paper implements a popular
multi-objective GA, the NSGAII [3].

Better solutions in a GA are produced as the population evolves through
time. Evolution occurs due to three genetic-operators: selection, crossover, and
mutation. During selection, chromosomes are chosen as parents to “mate” and
produce offspring chromosomes. Typically, selection operators are biased towards
selecting more fit chromosomes. The crossover operation takes the chromosomes
chosen during selections and swaps a portion of the genes of each parent into
one another, resulting in offspring chromosomes that contain genetic informa-
tion from both parents. Finally, mutation operates on chromosomes individually,
with individual genes in a chromosome being randomly mutated to introduce
new genetic information. Selection, crossover, and mutation are applied to the
population until some stopping criteria is met, e.g., the population converges, or
a given number of iterations have been performed.

Numerous techniques can be used to speed up the process of finding fit chro-
mosomes by taking advantage of parallel systems. One approach is an island
model, which has numerous populations evolving simultaneously with occasional
migration of chromosomes from population to population [8,26]. Our GA imple-
ments a variation of the island model.

Towards Efficient Resource Allocation for Distributed Workflows 109

0
0

14
2
0

14
1
1

6
1
0

6
8
2

8
8
0

8

R1
R2
R3

chromosome

gene

resource
type

time slice

Fig. 2. Unit Commitment chromosome structure. Each gene represents the number of
resources of each type used in a given month.

Chromosome Structure for Unit Commitment: As stated previously in
Sect. 2, our goal is to select a combination of machines that meet a given demand
and minimize cost over an N-month time period. Every month has an associated
demand that must be met.

Due to the month-by-month decomposition of the problem, we can easily con-
struct chromosomes where each gene will represent a specific month within the
time period. Furthermore, for each month we indicate the number of resources
of each type to be used. As a result, each chromosome can be represented as
a M × R matrix, where M is the number of months, and R is the number of
resource types available. For this paper, we assume machines can only be used
in integer quantities, but accounting for “partial” machines is a trivial change.
Figure 2 presents the chromosome and gene structure used in our GA. In this
example we are purchasing resources for a 6 month period, and have 3 resource
types to choose from.

In the case where the computing resources specified by a given chromosome
do not meet the required demand (Eq. 2), additional on-demand resources are
“purchased” to make up the difference and produce a valid solution. Typically
on-demand resources are more expensive per unit of compute performance, thus
it is desirable to not have to purchase additional resources.

Genetic Operators: The selection operator used in our GA is a binary tourna-
ment selection [19] with replacement. Two randomly selected chromosomes are
compared against one another and the fitter chromosome is selected as a parent
for crossover.

Crossover is performed using a two-point crossover scheme [11]. In this
scheme, the indices of two genes are randomly selected, and the genes between
these two points are swapped between parent chromosomes to produce two new
offspring chromosomes.

Finally, the mutation operator we implemented operates on individual genes.
During this operation, each gene within a chromosome may mutate with a given

110 R. D. Friese et al.

probability. When a gene is selected for mutation, each resource type has a
1

Resource Types probability of having the number of allocated resources changed.
When a resource type mutates, a normal distribution with the mean equal to
the current number of resources and a standard deviation of .5 is used to create
a new value for the allocated resources of that type. We set negative allocations
to zero.

Island Model Implementation: In island model GAs there exist P multi-
ple populations that evolve concurrently. After a given number of iterations, the
populations will migrate chromosomes from one population to another, introduc-
ing new genetic material into each population. The idea is that the individual
populations will explore and optimize different areas of the search space. During
migration events, new genetic material is introduced that has been optimized
for a different sub-spaces. By combining optimized genetic material for two dif-
ferent sub-spaces, the hope is that new solutions will be created that span the
sub-spaces and result in solutions that are more fit overall.

The rate of migration can significantly impact the performance of the GA.
When a migration event occurs after every iteration, the individual populations
essentially form a single larger population. This is because the constant exchange
of genetic material from neighboring populations prevents diversity and explo-
ration within the individual populations. When migration events never occur,
no genetic material is exchanged between the populations, and the result is the
same as if P regular populations were executed and the best solution was chosen
from among them. Selecting an appropriate migration rate is generally related
to the convergence rates of the individual populations, and is thus highly depen-
dent on the problem being solved. We used an empirically determined static
migration rate.

We implement a modified island model GA, where we have a central popu-
lation, and several satellite populations. The satellite populations migrate chro-
mosomes with one another using a ring pattern and also perform an one-way
many-to-one communication with the central population (Fig. 3). The satellite
(blue) populations both send and receive chromosomes (blue arrows) while the
central (orange) population only receives chromosomes (orange arrows). During
a migration event, each population (excluding the central population) will send
copies of its most fit chromosome. When a new chromosome is received by a
population, it will replace its least fit chromosome with the new one.

The number of chromosomes are the same for every population and should
be at least equal to the number of populations themselves (this guarantees the
central population has enough space to hold a chromosome from every satellite
population). By using same sized populations, the execution time to perform
n iterations between migration events will be very similar for each population.
Thus, we have implemented the communication between populations using syn-
chronized MPI send/recvs. For our problem, idle time due to load unbalance
(from some populations finishing before others) and communication overhead is
negligible compared to the compute cost between migration events.

Towards Efficient Resource Allocation for Distributed Workflows 111

P8

P7

P1

P3

P4

P5

P6

P2

P0

Fig. 3. Illustration of GA Island Model. The ring communication pattern is represented
as the blue arrows connecting the satellite populations. The many-to-one communica-
tion between the central population and satellite populations is represented as the
orange arrows. (Color figure online)

Objective Functions (Minimize Total and Base Cost): We optimized for
two objectives simultaneously. The first objective is the total cost to purchase
the machines required to meet a given demand, while the second cost is what
we call the “base” cost. The total cost includes both the cost due to purchasing
the machines specified by a chromosome, and any cost incurred when extra on-
demand machines are required to be purchased. The base cost does not include
the cost for additional machines. Recall, chromosomes may potentially create
solutions that do not meet the required demand, thus extra machines need to be
purchased to make these chromosomes valid solutions. Minimizing total cost is
the exact objective we are trying to minimize (Eqs. 1 and 2), while minimizing
base cost is a relaxation.

We use the base cost as the second objective instead of only optimizing for
total cost for multiple reasons. First, minimizing the base cost (in addition to
total cost) allows the GA to more directly explore areas of the search space that
contain (potentially high performing) invalid solutions (i.e. compute resources
that do not meet required demand). Typically, the base cost should have a higher
contribution towards the total cost (for good solutions), by explicitly optimizing
the base cost we more directly optimize the total cost as well. Finally, any
solution that requires extra resources to be purchased can actually be represented
by a number of valid solutions, thus minimizing the base cost covers larger areas
of the search space than minimizing the total cost alone.

Algorithm 1 shows the method for calculating the costs (base and extra) of
a given chromosome, To calculate the base cost of a chromosome we iterate
over each month, summing the on-demand cost of any used resource (applies
to on-demand and hybrid cost resources) as well as the start-up cost for any
newly purchased subscription based resources. To accurately account for hybrid

112 R. D. Friese et al.

Algorithm 1. Calculating the costs (base and extra) of a chromosome
Input: machinesToPurchase[months][numResourceTypes], demand[months],

extraResource
Output: cost,extraCost
1: baseCost = 0
2: extraCost = 0
3: purchased[months][numResourceTypes]
4: for m in months do
5: availCompute = 0
6: for r in resourceTypes do
7: for t ← m..(m + r.contractLength − 1) do
8: purchased[t][r.type]+ = machinesToPurchase[m][r.type]
9: baseCost+ = purchased[m][r.type] ∗ r.onDemandCost � 0 for up-front

resources
10: baseCost+ = machinesToPurchase[m][r.type] ∗ r.upFrontCost � 0 for

on-demand resources
11: availCompute+ = purchased[m][r.type] ∗ r.compute
12: neededCompute = demand[m] − availCompute
13: if neededCompute > 0 then
14: extraCost+ = ceil(neededCompute/extraResource.compute) ∗

extraResource.onDemandCost
15: return baseCost, extraCost

resources that incur an on-demand cost when used, we keep track of previously
purchased resources for the length of their contract (line 8). Note, for purely
on-demand machines, their contract length is one month.

Calculating extra cost also iterates over each month, but the sum of compute
power supplied by each purchased resource is compared to the demand required
for that month. If the supplied compute power is greater than or equal to the
demand, no additional resources are purchased. Otherwise the supplied compute
power does not meet the required demand, and additional extra (on-demand)
resources must be purchased. Typically, this extra resource has a higher cost
than other resources. The total cost of a chromosome would simply be the sum
of the base and extra costs.

4 Experimental Setup

Computation in Belle II experiments arise from three kinds of activities: (i)
processing of raw data from the Belle II detector, (ii) Monte Carlo simulations
of physical phenomena, and (iii) physics analysis of experimental and simulation
data. Both data storage and computation span a geographically distributed set
of resources covering several continents. While the computational demand for
Monte Carlo campaigns is fairly stable, the demand for user analysis tends to be
chaotic leading to uncertainties in demand. Inspired from this setting, we use a
representative setup for demand and supply in our experiments that are detailed
in this section.

Towards Efficient Resource Allocation for Distributed Workflows 113

Table 1. Representative subscription costs for Amazon EC2 resources. The third col-
umn EC2 Compute Unit (ECU) provides the relative measure of the processing power
of an Amazon EC2 machine instance. The fourth column represents the subscription
time for a specific machine subscription plan. The fifth column Sj represents the fixed
(set up) cost (in dollars) for the period specified in the fourth column. The sixth column
represents the monthly usage cost Cj (in dollars per month).

Machine Cost type ECU Time (month) Sj ($) Cj ($/month)

1 On-demand 0.2 1 0 13.14

2 Hybrid 0.2 12 102 4.38

3 Subscription 0.2 12 151 0

4 Hybrid 0.2 36 218 2.92

5 Subscription 0.2 36 303 0

6 On-demand 0.8 1 0 26.28

7 Hybrid 0.8 12 204 8.76

8 Subscription 0.8 12 302 0

9 Hybrid 0.8 36 436 5.84

10 Subscription 0.8 36 607 0

11 On-demand 6.5 1 0 63.51

12 Hybrid 6.5 12 324 27.01

13 Subscription 6.5 12 635 0

14 Hybrid 6.5 36 657 18.25

15 Subscription 6.5 36 1235 0

16 On-demand 13 1 0 126.29

17 Hybrid 13 12 648 54.02

18 Subscription 13 12 1271 0

19 Hybrid 13 36 1314 36.5

20 Subscription 13 36 2470 0

21 On-demand 26 1 0 252.58

22 Hybrid 26 12 1296 108.04

23 Subscription 26 12 2541 0

24 Hybrid 26 36 2628 73

25 Subscription 26 36 4941 0

26 On-demand 53.5 1 0 505.89

27 Hybrid 53.5 12 2593 216.08

28 Subscription 53.5 12 5082 0

29 Hybrid 53.5 36 5256 146

30 Subscription 53.5 36 9881 0

31 On-demand 124.5 1 0 1264.36

32 Hybrid 124.5 12 6482 540.2

33 Subscription 124.5 12 12706 0

34 Hybrid 124.5 36 13150 365

35 Subscription 124.5 36 24703 0

We present two sets of simulations, the first is a small illustrative example
while the second is a larger simulation inspired from the Belle II experiment.
For the large simulations, we use models of cloud computing resources based

114 R. D. Friese et al.

Table 2. Resource costs for illustrative example.

Machine Cost typ ECU Time (month) Sj ($) Cj ($/month)

1 On-demand 1.3 1 0 10.0

2 Hybrid 1.3 4 11.5 2.9

3 Subscription 1.3 4 22.8 0

Fig. 4. Demand curves for the illustrative example. The base demand curve is shown as
the black line. The demand curve for best sample is the dark blue line, while the light
blue lines show the demand curves for all other samples. The shaded area represents
the possible demand values (dm − 7.5, dm + 10). (Color figure online)

on Amazon EC2, as shown in Table 1 (note that the prices in the table may
not reflect current Amazon EC2 prices). The resource costs for the illustrative
example are presented in Table 2. Each compute resource has an associated ECU
(compute power), contract length, and up-front (Sj) and on-demand costs (Cj).

Multiple demand curves are constructed as follows. For our illustrative exam-
ple, we simulate a 6-month workflow using 10 sampled scenarios. The base
demand curve for this example is the black line in Fig. 4. To create a new scenario,
for each month, we used the demand dm from the base curve as the seed value and
sample a new value from a uniform distribution U(dm − 7.5, dm + 10). In Fig. 4,
the sampled demand curves are the blue lines while the area of possible demands
is shown as the shaded area. For the larger experiments, we simulated a 24-month
workflow and executed two 5000-scenario campaigns. The base demand curve,
upon which all the other scenarios drew their demand curves from, is presented
as the solid line in Fig. 7. For the first campaign, the range for the uniform dis-
tribution is a = dm −15, b = dm+20. The range for the second campaign is half
that of the first, i.e., a = dm−7.5, b = dm+10. Sample demand curves and possi-
ble demand values for the higher (blue line and shaded area) and lower variation
(green line and shaded area) campaigns are presented in Fig. 7. In future work,

Towards Efficient Resource Allocation for Distributed Workflows 115

we plan to examine base curves for additional workflows, and different sampling
distributions.

All simulations were run on a 20-node cluster with an InfiniBand intercon-
nect. Each node is equipped with dual 10-core Intel IvyBridge CPUs (Intel E5-
2680 v2, 2.8 GHz) and 128 GB RAM (DDR3-1866). Each scenario fully occupied
one node (one population per core), and multiple scenarios were executed across
the cluster concurrently.

The following parameters were used in the genetic algorithm to produce solu-
tions for each scenario. The number of populations in the island model was set
to 20 (19 satellite populations and a single central population). Each popula-
tion contained 25 chromosomes. Each chromosome starts with a random initial
state. Migration events were performed every 200 generations. The probability
that an individual gene would be selected for mutation was set to 1%. If two
chromosomes were selected for crossover, they would always mate and produce
two offspring. Finally, we terminated the algorithm and took the best solution
found after 60 s. Given these parameters and our cluster configuration, each pop-
ulation performed roughly 30,000 iterations, resulting in 300 migration events.
The compute-to-communication ratio is between 10–12.

5 Experimental Results and Discussion

We now present the experimental results for the two simulations, a smaller illus-
trative example and larger simulations, as detailed in Sect. 4. We will start with a
detailed presentation of the illustrative example and then present the key details
of the larger simulations. Our goal in this section is to highlight the substan-
tial gains that can be obtained by carefully considering demand uncertainties
relative to a solution obtained without uncertainties (base case).

As an illustration, we present the cost of computing all the scenarios (repre-
sented as rows) with the most optimal strategy (represented as columns) for a
given scenario (diagonal entries) in Fig. 5 for the small illustrative example. Note
that the diagonal entry will be the best solution for a given scenario (P i

d) among
solutions computed by different strategies (Fi). The final strategy is selected by
picking a strategy that provides the minimum mean value across different sce-
narios, represented in the bottom-most row of the matrix. Further details of the
optimal strategy (F9) are provided in Fig. 6. We show the difference between the
mean values of base case (FB) and the optimal strategy as the expected benefit
of the proposed method.

We consider two variants of the larger simulation by varying the probability
distribution functions for demand relative to the base case. While one variation
is small, the other is relatively large. We capture the key results in Fig. 7. First,
we show the base demand curve (black line) and the regions of possible demand
for the high (blue shaded area) and low (green shaded area) variations. The
demand curves for the best performing solutions for the high (blue line) and
low (green line) variants show that both solutions tend to have higher demands
(per month) than the base curve. In general, the monthly demand is met by

116 R. D. Friese et al.

Fig. 5. Complete set of results for the illustrative example. Different scenarios are
represented as rows, the diagonal entries represent the best strategy (solution) for
the corresponding scenario. A column indicates the cost for each scenario for a given
strategy. The bottom-most row represents the mean cost for a given strategy. The final
strategy picked is the one that is minimum (F9) in this row.

Fig. 6. Resource allocation (and demand curve) of best solution for illustrative exam-
ple. The different hatches within a bar represent the amount of each resource cost type
(subscription, hybrid, on-demand) used.

a higher contribution of subscription and hybrid machines, using few (costly)
on-demand machines. It is cheaper to buy a subscription or hybrid resource
and let it sit idle for a couple of months, than to replace that resource with an
equivalent on-demand resource. Thus, the best performing solutions are those
that are over-provisioned when applied to other demand scenarios.

In order to highlight the main benefits of incorporating uncertainties, we
capture the benefit (difference between the mean costs of base and optimal

Towards Efficient Resource Allocation for Distributed Workflows 117

Fig. 7. Demand curves and allocations for Belle II based simulation. The base demand
curve is shown as the black line. The demand curve for high variation best sample is the
blue line, while the green line shows the demand curve for low variation best sample.
The blue shaded area represents the possible demand values for the high variation
experiment (dm − 15, dm + 20). The green shaded area represents the possible demand
values for the low variation experiment (dm − 7.5, dm + 10). The vertical bars show
resource allocations for the base (black), the best high variation (blue) and best low
variation (green). The different hatches within a bar represent the amount of each
resource cost type (subscription, hybrid, on-demand) used. (Color figure online)

strategies) in Figs. 8 and 9. We present the difference as a percentage relative to
the base case in Fig. 8. The difference is presented as a function of the number of
samples and variation in demand. We present the benefits as absolute numbers
(along Y-axis) in Fig. 9 and provide the identity of the optimal strategy for a
given number of samples plotted along X-axis.

We observe that the accuracy of the proposed method increases as the num-
ber of samples increase (plotted along X-axis), and the strategies change provid-
ing different (nonlinear) amounts of benefit relative to the base case. Further,
we note that for the small variation simulation, the optimal strategy remains
constant (Strategy 1599) after a certain number of samples (about 1700). The
difference between the base case and the optimal strategy also increases when the
amount of variation increases. We note that we are able to clearly demonstrate
the benefits of incorporating demand uncertainties by using a rather simplistic
setting with uniform distributions. Since real-world scenarios vary significantly
and have different kinds of probability distributions, we anticipate that the pro-
posed method will result in significant cost benefits for such situations.

118 R. D. Friese et al.

Fig. 8. Percentage differential costs between optimal base case and optimal strategy.
Different number of samples are used along X-axis for two different scenarios – small
variation and large variation.

Fig. 9. Expected differential costs between optimal base case and optimal strategy for
the small variation scenario with different number of samples. The numbers indicate
the identity of the strategy that was chosen as an optimal strategy.

6 Related Work

Our work is inspired from the unit commitment problem in power grids in devel-
oping a strategy for cost-efficient resource allocation for complex scientific work-
flows on distributed computing resources [9]. In this work, we introduced the
notion of demand uncertainties that arise due to several different reasons includ-
ing uncertainties in estimations and chaotic use of resources. Given the roots
of our work in unit commitment problem, a natural area of related work lies
in a large body of work on modeling and quantification of uncertainties for the
unit commitment problem [7,21,28]. We note that the underlying physics of a
power grid makes modeling uncertainties in that area a relatively challenging
problem. However, we can derive from the existing work to model uncertainties
in scheduling and resource allocation. Furthermore, the use of genetic algorithms
to solve the unit commitment problem has been presented in [14,25].

Towards Efficient Resource Allocation for Distributed Workflows 119

The notion of demand uncertainty has also been explored in the area of grid
computing by Batista et al. [2], and in resource allocation by Johansson and
Sternad [13]. Unlike the previous work, we develop cost-efficient strategies for
resource selection for distributed workflows that have access to a large set of
resources with diverse cost structures for usage. Our work becomes especially
relevant in the context of cloud computing. The notion of uncertain demand has
also been explored for cloud based resources. Johannes et al. explored the use of
fuzzy optimization for resource allocation with uncertain demand [12]. Related
work on cloud resource allocation work has been explored in [16,17,31]. Genetic
algorithms have been used extensively for resource allocation [4–6,20].

To the best of our knowledge, we believe this work is the first in exploring cost-
efficient resource allocation as the first step in an integrated approach to schedule
and manage HEP workflows, such as Belle II, under demand uncertainties.

7 Conclusions

We presented our preliminary work on incorporating demand uncertainties in
computing cost-efficient resource selection as the first step of an integrated app-
roach for efficient scheduling of complex workflows on distributed computing
platforms. Using the technique of Sample Average Approximation, we demon-
strate upto 24% improvement in costs relative to an optimal base case without
uncertainties. We also presented a Genetic Algorithm based technique to com-
pute efficient solutions for optimization problems when demands are certain. We
developed our experiments within the context of a high energy physics workflow,
the Belle II experiments, that execute on geographically distributed resources.

In our future work, we plan to extend our work through rigorous modeling of
uncertainties and develop computationally efficient techniques based on stochas-
tic programming. We believe that the benefits of our work will not only prepare
us for the forthcoming Belle II experiments but also lead to significant reduction
in costs in the utilization of available resources with varying cost structures. We
also believe that our work will benefit a large number of complex workflows that
utilize distributed computing resources in general and cloud computing resources
in particular.

Acknowledgment. This work was supported by the Integrated End-to-end Perfor-
mance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) Project.
IPPD is funded by the U. S. Department of Energy Awards FWP-66406 and DE-
SC0012630 at the Pacific Northwest National Laboratory. Pacific Northwest National
Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.
The work of Luis de la Torre was supported in part by the U.S. Department of Energy,
Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS)
under the Visiting Faculty Program (VFP).

120 R. D. Friese et al.

References

1. Asner, D.M., Dart, E., Hara, T.: Belle II experiment network and computing. arXiv
preprint arXiv:1308.0672 (2013)

2. Batista, D.M., Drummond, A.C., da Fonseca, N.L.S.: Scheduling grid tasks under
uncertain demands. In: Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC 2008, pp. 2041–2045. ACM, New York (2008)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Dogan, A., Ozguner, F.: Genetic algorithm based scheduling of meta-tasks with
stochastic execution times in heterogeneous computing systems. Cluster Comput.
7(2), 177–190 (2004)

5. Friese, R.D.: Efficient genetic algorithm encoding for large-scale multi-objective
resource allocation. In: 9th Workshop on Large-Scale Parallel Processing (LSPP
2016), in the Proceedings of the IPDPS 2016 Workshops and PhD Forum
(IPDPSW), May 2016

6. Garshasbi, M.S., Effatparvar, M.: High performance scheduling in parallel hetero-
geneous multiprocessor systems using evolutionary algorithms. Int. J. Intell. Syst.
Appl. 11, 89–95 (2013)

7. Gholami, A., Shekari, T., Aminifar, F., Shahidehpour, M.: Microgrid scheduling
with uncertainty: the quest for resilience. IEEE Trans. Smart Grid 7(6), 2849–2858
(2016)

8. Gorges-Schleuter, M.: Explicit parallelism of genetic algorithms through population
structures. In: 1st Workshop on Parallel Problem Solving from Nature (PPSN), pp.
150–159 (1990)

9. Halappanavar, M., Schram, M., de la Torre, L., Barker, K., Tallent, N.R., Kerbyson,
D.J.: Towards efficient scheduling of data intensive high energy physics workflows.
In: Proceedings of the 10th Workshop on Workflows in Support of Large-Scale
Science, WORKS 2015, pp. 3:1–3:9. ACM, New York (2015)

10. Hara, T.: Belle II: computing and network requirements. In: Proceedings of the
Asia-Pacific Advanced Network, pp. 115–122 (2014)

11. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence, 1st edn. The
University of Michigan, Ann Arbor (1975)

12. Johannes, A., Borhan, N., Liu, C., Ranjan, R., Chen, J.: A user demand uncertainty
based approach for cloud resource management. In: 2013 IEEE 16th International
Conference on Computational Science and Engineering, pp. 566–571, December
2013

13. Johansson, M., Sternad, M.: Resource allocation under uncertainty using the max-
imum entropy principle. IEEE Trans. Inf. Theor. 51(12), 4103–4117 (2005)

14. Kazarlis, S.A., Bakirtzis, A., Petridis, V.: A genetic algorithm solution to the unit
commitment problem. IEEE Trans. Power Syst. 11(1), 42–51 (1996)

15. Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation.
In: Fu, M. (ed.) Handbook of Simulation Optimization, pp. 207–243. Springer, New
York (2015)

16. Li, Z., Ierapetritou, M.: Process scheduling under uncertainty: review and chal-
lenges. Comput. Chem. Eng. 32(4–5), 715–727 (2008)

17. Medernach, E., Sanlaville, E.: Fair resource allocation for different scenarios of
demands. Eur. J. Oper. Res. 218(2), 339–350 (2012)

http://arxiv.org/abs/1308.0672

Towards Efficient Resource Allocation for Distributed Workflows 121

18. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07807-5

19. Miller, B., Goldberg, D.: Genetic algorithms, tournament selection, and the effects
of noise. Complex Syst. 9, 193–212 (1995)

20. Oxley, M., Pasricha, S., Siegel, H.J., Maciejewski, A.A., Apodaca, J., Young, D.,
Briceno, L., Smite, J., Bahirat, S., Khemka, B., Ramirez, A., Zou, Y.: Makespan
and energy robust stochastic static resource allocation of a bag-of-tasks to a hetero-
geneous computing system. IEEE Trans. Parallel Distrib. Syst. 26(10), 2791–2805
(2015)

21. Ruiz, P.A., Philbrick, C.R., Zak, E., Cheung, K.W., Sauer, P.W.: Uncertainty
management in the unit commitment problem. IEEE Trans. Power Syst. 24(2),
642–651 (2009)

22. Saravanan, B., Das, S., Sikri, S., Kothari, D.: A solution to the unit commitment
problem - a review. Front. Energy 7(2), 223–236 (2013)

23. Singer, G., Livenson, I., Dumas, M., Srirama, S.N., Norbisrath, U.: Towards a
model for cloud computing cost estimation with reserved instances. In: Proceedings
of the 2nd International ICST Conference on Cloud Computing, CloudComp 2010
(2010)

24. Singh, H., Youssef, A.: Mapping and scheduling heterogeneous task graphs using
genetic algorithms. In: 5th Heterogeneous Computing Workshop (HCW 1996), pp.
86–97, April 1996

25. Swarup, K.S., Yamashiro, S.: Unit commitment solution methodology using genetic
algorithm. IEEE Trans. Power Syst. 17(1), 87–91 (2002)

26. Tanese, R.: Distributed genetic algorithms. In: 3rd International Conference on
Genetic Algorithms, pp. 434–439 (1989)

27. Wang, L., Siegel, H.J., Roychowdhury, V.P., Maciejewski, A.A.: Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-
based approach. J. Parallel Distrib. Comput. 47(1), 8–22 (1997). Special Issue on
Parallel Evolutionary Computing

28. Wang, Q., Wang, J., Guan, Y.: Stochastic unit commitment with uncertain demand
response. IEEE Trans. Power Syst. 28(1), 562–563 (2013)

29. Whitley, D.: The genitor algorithm and selective pressure: why rank based allo-
cation of reproductive trials is best. In: 3rd International Conference on Genetic
Algorithms, pp. 116–121, June 1989

30. Wright, B.: A review of unit commitment (2013)
31. Zhang, Q., Gürses, E., Boutaba, R., Xiao, J.: Dynamic resource allocation for spot

markets in clouds. In: Proceedings of the 11th USENIX Conference on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE
2011, p. 1. USENIX Association, Berkeley (2011)

https://doi.org/10.1007/978-3-662-07807-5

Programmable In Situ System
for Iterative Workflows

Erich Lohrmann1, Zarija Lukić2, Dmitriy Morozov2(B), and Juliane Müller2

1 Georgia Institute of Technology, Atlanta, GA, USA
elohrmann3@gatech.edu

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{zarija,dmorozov,JulianeMueller}@lbl.gov

Abstract. We describe an in situ system for solving iterative problems.
We specifically target inverse problems, where expensive simulations are
approximated using a surrogate model. The model explores the parame-
ter space of the simulation through iterative trials, each of which becomes
a job managed by a parallel scheduler. Our work extends Henson [1], a
cooperative multi-tasking system for in situ execution of loosely coupled
codes.

1 Introduction

The growing gap between the speed of I/O and computation is widely recog-
nized in the HPC community. Already on today’s architectures the slow I/O is
responsible for major bottlenecks; the problem will only get worse as we move
to exascale, where data movement will dominate all design decisions.

The response to this problem is also well-known by now: in situ and in transit
processing. If two codes (e.g., simulation and analysis) need to exchange data,
they should do so directly, without going through disk. When running on the
same nodes, they should share memory and access one another’s data directly.
When the rates of processing differ, it’s logical to run different codes on different
nodes, but they should send data directly to each other, without saving it to
disk.

A number of in situ frameworks have been designed to address the I/O
problem following this principle: ADIOS [2], DataSpaces [3], GLEAN [4],
Damaris/Viz [5], ParaView’s Catalyst [6], VisIt’s libsim [7], Decaf [8], Henson [1],
to name a few — we refer the reader to a community effort comparing four of
these frameworks [9]. In all cases, the general pattern of the execution is the
same: a simulation produces data and passes it to a chain of analysis codes that
transform it, identify its salient features, visualize them, or save them to disk in
significantly reduced, scientifically meaningful summaries.

Such chained pipelines support direct simulations, which have been invaluable
tools in computational science: given a complete description of a physical system,
they let a user predict an outcome of a measurement. The aim of our paper is
to bring a different execution regime to the attention of the community and
c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 122–131, 2018.
https://doi.org/10.1007/978-3-319-77398-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_7&domain=pdf

Programmable In Situ System for Iterative Workflows 123

to describe our (partial) solution to the problems that it presents. We focus
on the class of inverse problems, where the measurement result is known, and
one tries to infer the values of parameters which characterize the underlying
physical system. For example, in experiments we present in this paper, we try
to reconstruct thermal parameters of the intergalactic gas in the universe using
Lyman α power spectrum measurement [10].

As each simulation can be expensive, it is beneficial to explore parameter
spaces by constructing surrogate models, i.e., computationally cheap approxima-
tions of the simulated phenomena. These models help identify those parameters
that are likely to produce the most scientific insight. Crucially, these models
facilitate automatic iterative parameter sweeps: the decisions about the input
parameters to the simulations can be made automatically based on the results
of the previous runs. Furthermore, the input data (either observational or finer
simulation output) is usually shared between different parameters. Together,
these features offer an opportunity for in situ automation, which we explore in
this paper.

Related work. Besides the aforementioned in situ frameworks, we briefly note
Swift/T [11], a system that allows the user to script complex workflows. It is
much more advanced than our work, and we believe can be used to implement
the kind of iterative execution described in this paper. We do emphasize one sig-
nificant difference. To include user code, implemented in C or C++, into Swift/T,
the code has to be organized and compiled into Swift modules (via SWIG wrap-
pers). Because we rely on Henson [1], described in the next section, we are able
to work with the separate executable directly.

2 Background

Henson. Our solution extends Henson [1], a cooperative multi-tasking system
that lets multiple distinct executables run on the same node and share memory,
without any changes to their memory management facilities.

Henson is built on two main ingredients: position-independent executables
and coroutines. Individual codes are compiled as position-independent executa-
bles, making them simultaneously stand-alone executables and dynamic libraries.
Henson loads multiple such codes as dynamic libraries, using libdl facilities.
This puts them in the same address space, letting them access each other’s mem-
ory directly.

The individual codes, referred by Henson as puppets, are treated as corou-
tines: each one gets its own stack. To coordinate execution, the codes call
henson yield function, which returns control to Henson (e.g., after every time
step of a simulation). Crucially, when the control returns back to the puppet,
its execution resumes exactly where it left off — all state is preserved. This way
Henson provides low-overhead context switching and lets the user coordinate
execution of multiple codes from an external script.

Henson includes facilities to help puppets exchange data. It provides a
shared map of symbolic names to memory addresses to make it easy for

124 E. Lohrmann et al.

puppets to identify important memory segments. For example, if simulation
saves an address of an array by calling henson save array("particles",
&particles, ...), an analysis code can later access this array directly by
calling henson load array("particles", ...) — the memory is shared,
so only addresses are exchanged.

Henson also provides auxiliary facilities to help users work with MPI. Dif-
ferent codes can be organized into execution groups, which are given symbolic
names (e.g., “producer” and “consumer”) and are assigned to run on different
processes. To exchange data between the two groups (e.g., to support in transit
analysis), Henson provides henson get intercomm function that returns an
MPI inter-communicator connecting the two groups.

Henson’s major limitation is the domain-specific language used to express
its scripts. It supports only while-loops and if-statements: both help express
the order in which execution should alternate between the puppets, but are too
limited in general. To support more complicated workflows, we have extended
Henson to use ChaiScript1, a general purpose scripting language, implemented
as a C++ header-only library. The interpreter, including its standard library, is
compiled directly into Henson. This offers a major benefit over Python (another
natural choice): the interpreter does not search for modules on the filesystem;
this automatically obviates a major difficulty with using Python in an HPC
environment.

Finally, the most significant addition to Henson, made as part of this work, is
the addition of a scheduler that lets the user iteratively launch multiple jobs (that
themselves can use in situ and in transit processing), depending on the decisions
made by one of the puppets, in our case a surrogate model. We describe the
scheduler in detail in the next section.

Surrogate models. Surrogate models are computationally cheap approxima-
tions of expensive simulations models [12]. They are widely used in derivative-free
optimization, when objective function values are computed based on the output
of computationally expensive black-box simulation models, and thus no analytic
description of the objective function and its derivatives are available. In general,
we use the representation f(x) = s(x)+ e(x), where f(x) is the expensive objec-
tive function, s(x) is the surrogate model, and e(x) is the difference between
the two. Surrogate model optimization algorithms start by generating an initial
experimental design of size n0, for example, using Latin hypercube sampling.
The expensive function f(x) is evaluated at the points in the initial design, and
we fit the surrogate model s(x) to the data pairs {(xi, f(xi))}n0

i=1. Then, in each
iteration of the algorithm, we use the surrogate model s(x) to select one or mul-
tiple new points x∗, at which we will do the next expensive evaluations. We
update the surrogate model with the new data (x∗, f(x∗)) and iterate until the
stopping criterion has been met. Typically used stopping criteria are a maximum
CPU time or a maximum number of allowed expensive function evaluations.

1 http://chaiscript.com/.

http://chaiscript.com/

Programmable In Situ System for Iterative Workflows 125

Different surrogate model types have been developed in the literature. We
focus here on radial basis function (RBF) models although other models may
work in our context. An RBF interpolant is defined as follows:

s(x) =
n∑

i=1

λiφ(‖x − xi‖2) + p(x), (1)

where n denotes the number of points for which we have already evaluated the
objective function, φ(·) is a radial basis function (we use the cubic, φ(r) = r3),
and p(·) denotes the polynomial tail (here, p(x) = a + bTx, a ∈ R, b ∈ R

d, d is
the number of dimensions). The model parameters are determined by solving a
linear system of equations.

Different strategies have been developed to iteratively select one or more new
sample points. For example, Gutmann [13] uses a target value for the surrogate
model and defines a merit function which he (cheaply) optimizes in order to
determine the next sample point. Regis and Shoemaker [14] use a stochastic
approach in which they create candidate points by perturbing the best point
found so far and based on scoring criteria, the best candidate is selected for
evaluation. Müller and Shoemaker [15] use a similar approach and in addition
to candidates created by perturbation, they also create candidates by uniformly
sampling points from the whole variable domain. More examples of surrogate
model algorithms and their application to engineering design problems can be
found in the literature [16].

3 Scheduler

To support iterative workflows, we have added a Scheduler class to Henson.
Scheduler takes over a given execution group (a set of MPI ranks). It dedicates
one process as a controller and the rest as workers. The controller loads a puppet
in charge of the overall execution logic (the surrogate model in our case). That
puppet generates a set of trials and, over time, receives results of expensive eval-
uations, updates the model, and generates new trials. Given the trial points from
a surrogate model, a user can schedule a new job by specifying an arbitrary
ChaiScript function to call, together with its arguments, how many processes it
needs to execute, and how those processes should be partitioned into execution
groups. The job is placed in the queue on the controller process.

The controller maintains the state of worker processes (whether they have
a job assigned to them or whether they are available). If there are jobs in the
queue and enough available workers to execute them, it sends out the job (the
previously queued function) to the workers. When the workers are done with
the job, one of them (e.g., the root) returns a value, which is sent back to
the controller. The result of the execution (in our case, expensive evaluation
f(x∗)) is placed in a results queue to be retrieved and processed by the surrogate
model. Listing 1.1 illustrates a sample ChaiScript using the scheduler. Figure 1
illustrates a possible break down of processes between execution groups within
and outside the scheduler.

126 E. Lohrmann et al.

var pm = ProcMap()
var nm = NameMap()

def world(args)
{

var sim = load("./simulation ...", pm)
var ana = load("./analysis ...", pm)

sim.proceed()
while (sim.running())
{

ana.proceed()
sim.proceed()

}

if (pm.local_rank() == 0)
{

var result = nm.get("result")
return result

}
}

var sched = Scheduler()
if (sched.is controller())
{

var surrogate = load("./surrogate-model ...", pm)
surogate.proceed()

// schedule jobs
for (/* initial trials */)
{ sched.schedule("job-${i}", "world", args,

["all" : 0], sched.workers()/2) }

while (sched.control())
{

if (!sched.results empty())
{

var x = sched.pop()
// pass x back to the surrogate
surrogate.proceed()
// get new trials and schedule new jobs

}
}
sched.finish() // signal to workers

} else { scheduler.listen() }

Listing 1.1. A sample scheduler ChaiScript.

We highlight some technical ingredients that are crucial for this system to
operate properly. When a set of processes is selected to execute a job, we need to
construct an MPI communicator on those processes — this communicator acts
as the job’s MPI COMM WORLD. Unfortunately, all (intra-)communicator creation
functions provided by MPI are collective, meaning that all the workers, even
those that are not assigned to the given job, have to execute them. In our case,
this would mean synchronizing all the workers to create a communicator for a
new job — clearly undesirable behavior.

To work around this problem, we use the algorithm of Dinan et al. [17] that
allows for non-collective communicator creation — or, more accurately, it’s col-
lective only on the processes that participate in the newly created communicator.
Unlike MPI Comm split that constructs a communicator by splitting a larger
communicator, the non-collective algorithm builds a communicator from the bot-
tom up. Starting from MPI COMM SELF, it alternates between intra- and inter-
communicators, using MPI Intercomm create and MPI Intercomm merge
functions, and merges the local communicators from the participating ranks

Programmable In Situ System for Iterative Workflows 127

Fig. 1. Schematic partition of the processes with the scheduler.

into the desired communicator. We refer the reader to the original paper [17] for
details.

Once the processes construct the communicator, they split it into sub-
communicators corresponding to the execution groups specified by the user.
Within the job, the user can access the inter-communicators between the groups
by calling henson get intercomm, mentioned in the previous section. The
advantage of this design is that the puppets become oblivious to whether they
are running in a job inside the scheduler or over all the ranks. As a result, the
user can take advantage of in transit analysis inside a job, where separate exe-
cution groups are responsible for data generation and analysis. As the earlier
work on Henson [1] illustrates, such an execution regime can be beneficial when
analysis is computationally expensive: the overhead of data movement pales in
comparison to the gains of better strong scaling.

4 Surrogate Model Experiment

In cosmology, spatial correlations of the Lyman α flux offer a promising route to
measuring the cosmological and thermal parameters at high redshifts and small
scales [18]. The measure we use is the Fourier-space analog of the two-point
correlation function — the power spectrum. Given a cosmological model and
a model for the ultraviolet background emission from galaxies, we can predict
the resulting flux power spectrum, using the Nyx code [19]. The full parameter
space of interest consist of 5 cosmological and 4 thermal parameters; to test our
computational workflow system, we work with only 3 thermal parameters, thus
significantly reducing the dimensionality of the problem. In addition, instead of
running full Nyx simulation for every function evaluation (approximately 100,000
CPU hours), we use outputs of a single run and rescale 3 thermal parameters
before calculating the power spectrum (approximately 100 CPU hours). This
rescaling is an approximation of what a full Nyx run would yield, and is ∼10%
accurate (Lukić et al. in prep.), which suffices for the purpose of this work.

We ran our experiments on NERSC’s Edison, a Cray XC30 supercomputer
with 5,576 nodes with 24 cores each. Each run requested wall clock time of thirty

128 E. Lohrmann et al.

minutes and 3585 processors (150 nodes). This allocation is just enough to run
seven simultaneous jobs of 512 processes each, with an extra process reserved
for the controller. The input data, a snapshot of a cosmological simulation, is a
193 GB HDF5 file. The individual jobs consist of two separate executables: the
power spectrum calculation for the given input parameters and comparison of the
resulting spectrum to the given target in L2-norm. The latter value is returned
to the scheduler, which passes it to the surrogate model on the controller process
to update its internal state and generate new trials.

Explicit caching. To avoid re-reading the input file, we implemented a stand-
alone puppet that reads the data and stores it in memory. It’s executed on all the
worker processes before they come under the control of the scheduler. Because
every job uses 512 processes, each process requires the same data for every job,
and we can pre-load the data, save it in memory, and let individual jobs access
it directly without re-loading it from disk. In two separate experiments, the
average I/O time was 113.47 and 116.98 s. The subsequent calculation of the
power spectrum took 322.39 and 423.16 s on average, respectively.

Implicit caching. Re-running the job without explicit caching, where each job
re-loads the data directly from disk, we identified an implicit caching mechanism:
Linux kernel’s page cache. The average I/O time for the first seven jobs was
114.70 and 105.25 s, across two experiments. However, in the subsequent batch
of jobs, executing on the same processes, the I/O time went down to 1.57 and
0.75 s. Forcing the kernel to drop its caches by allocating a sufficiently large
array brought the average I/O time up to roughly 20 s, presumably the rest of
the difference (115 vs 20 s) is due to other caching within the I/O subsystem.

Although in this case explicit caching offers virtually no benefit, it still has
advantages. First, it gives the user explicit control over which data is stored
between job invocations — the kernel is far less predictable. Second, it allows
the user to cache data coming not only from disk, but from any other source —
in the full simulation pipeline (that we ultimately aim to implement), the data
would come directly from the simulation, without being saved to disk first.

Alternatives. One could implement iterative job execution using the supercom-
puter’s workload manager directly (SLURM in case of Edison). Submitting jobs
into the queue, waiting for their execution and results, updating the surrogate
model, and iterating would incur the extra overhead of queue wait times (and,
of course, the extra I/O overhead). To get a fair comparison we consider the
difference in queue wait times, when requesting the same number of nodes for a
different amount of time.

Figure 2 shows the average and maximum queue wait times, in non-debug
queues of Edison, as a function of requested wall clock, for 100 to 200 nodes,
over the six months from February through July 2016. The salient point is that
the average time grows sub-linearly. For example, requesting the nodes for 60 min
gave an average queue wait time of 14 h, while requesting the nodes for 600 min
resulted in average wait time of 63 h. In other words, it’s advantageous to request
more time and manage the jobs within the allocation.

Programmable In Situ System for Iterative Workflows 129

100 200 300 400 500 600 700
0

100

200

300

400

Wall Clock Time Requested (minutes)

Q
ue

ue
W
ai
t
T
im

e
(h
ou

rs
)

Edison Queue Wait Times

Maximum
Average

Fig. 2. A graph of queue wait times as a function of requested wall clock. The times
tally all requests for 100 to 200 nodes, over six months (February through July 2016).

It is possible to run multiple simultaneous jobs within the allocation directly,
using MPI’s MPMD mode. Besides again incurring I/O overheads, doing so
would synchronize the jobs running simultaneously and would force all of them
to take as much time as the slowest job. In our case, although the average
calculation time was around 415 s, the fastest calculation finished in roughly
250 s, making the synchronization overhead unreasonable.

5 Conclusion

Iterative workflows — for example, for parameter search in inverse problems —
are important in computational science, and we urge the community to not
neglect them. The system presented in this paper takes the first step towards
their support. In situ processing confers multiple advantages in this context.
Besides the illustrated savings in I/O time, Henson lets us monitor the execu-
tion of the analysis codes by directly accessing their memory and thus avoiding
unnecessary overheads. Such capability can be useful for terminating the code
early. For example, if we are interested in an L∞-norm of a time-varying mea-
surement, we can stop computation once the maximum difference exceeds the
current best guess.

Our system also supports more complicated experiments than presented in
the previous section. For example, the full analysis we would like to run involves
taking snapshots of a live Nyx simulation and fitting parameters to them. To
do so, it’s essential for the jobs managed by the scheduler to interact with exe-
cution groups outside of it. The necessary ingredients are already built into the
system (henson get intercomm can access inter-communicators across exe-
cution group levels), and we plan to experiment with such more complicated
execution regimes in the near future.

130 E. Lohrmann et al.

Acknowledgements. We are grateful to Jack Deslippe for providing us the raw data
on Edison queue times. This work was supported by Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
05CH11231, and by the use of resources of the National Energy Research Scientific
Computing Center (NERSC).

References

1. Morozov, D., Lukić, Z.: Master of puppets: cooperative multitasking for in situ pro-
cessing. In: Proceedings of High-Performance Parallel and Distributed Computing,
pp. 285–288 (2016)

2. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K.,
Shoshani, A., Wolf, M., Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons of
developing leadership class I/O frameworks. Concurr. Comput. Pract. Exp. 26(7),
1453–1473 (2014)

3. Sun, Q., Jin, T., Romanus, M., Bui, H., Zhang, F., Yu, H., Kolla, H., Klasky,
S., Chen, J., Parashar, M.: Adaptive data placement for staging-based coupled
scientific workflows. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2015, pp. 65:1–65:12.
ACM, New York (2015)

4. Vishwanath, V., Hereld, M., Morozov, V., Papka, M.E.: Topology-aware data move-
ment and staging for I/O acceleration on Blue Gene/P supercomputing systems.
In: Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2011, pp. 19:1–19:11. ACM, New York
(2011)

5. Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., Semeraro, D.: Damaris/Viz: a
nonintrusive, adaptable and user-friendly in situ visualization framework. In: 2013
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp.
67–75, October 2013

6. Bauer, A.C., Geveci, B., Schroeder, W.: The ParaView Catalyst User’s Guide v2.0.
Kitware Inc., New York (2015)

7. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization, pp. 101–109 (2011)

8. Dorier, M., Dreher, M., Peterka, T., Antoniu, G., Raffin, B., Wozniak, J.M.:
Lessons learned from building in situ coupling frameworks. In: First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
Austin, United States, November 2015

9. Ayachit, U., et al.: Performance analysis, design considerations, and applications
of extreme-scale in situ infrastructures. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis (SC)
(2016)

10. Viel, M., Becker, G.D., Bolton, J.S., Haehnelt, M.G.: Warm dark matter as a
solution to the small scale crisis: new constraints from high redshift Lyman-α
forest data. Phys. Rev. D 88(4), 043502 (2013)

11. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.:
Swift/T: large-scale application composition via distributed-memory dataflow pro-
cessing. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 95–102 (2013)

Programmable In Situ System for Iterative Workflows 131

12. Booker, A.J., Dennis Jr., J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset,
M.W.: A rigorous framework for optimization of expensive functions by surrogates.
Struct. Multi. Optim. 17, 1–13 (1999)

13. Gutmann, H.-M.: A radial basis function method for global optimization. J. Global
Optim. 19, 201–227 (2001)

14. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the
global optimization of expensive functions. INFORMS J. Comput. 19, 497–509
(2007)

15. Müller, J., Shoemaker, C.A.: Influence of ensemble surrogate models and sampling
strategy on the solution quality of algorithms for computationally expensive black-
box global optimization problems. J. Global Optim. 60, 123–144 (2014)

16. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineer-
ing design optimization. J. Mech. Des. 129, 370–380 (2007)

17. Dinan, J., Krishnamoorthy, S., Balaji, P., Hammond, J.R., Krishnan, M.,
Tipparaju, V., Vishnu, A.: Noncollective communicator creation in MPI. In:
Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011.
LNCS, vol. 6960, pp. 282–291. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24449-0 32

18. Lukić, Z., Stark, C.W., Nugent, P., White, M., Meiksin, A.A., Almgren, A.: The
Lyman α forest in optically thin hydrodynamical simulations. Mon. Not. R. Astron.
Soc. 446, 3697–3724 (2015)

19. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively
parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013)

https://doi.org/10.1007/978-3-642-24449-0_32
https://doi.org/10.1007/978-3-642-24449-0_32

A Data Structure for Planning Based
Workload Management of Heterogeneous

HPC Systems

Axel Keller(B)

Paderborn Center for Parallel Computing,
Paderborn University, 33098 Paderborn, Germany

axel.keller@uni-paderborn.de

Abstract. This paper describes a data structure and a heuristic to plan
and map arbitrary resources in complex combinations while applying
time dependent constraints. The approach is used in the planning based
workload manager OpenCCS at the Paderborn Center for Parallel Com-
puting (PC2) to operate heterogeneous clusters with up to 10000 cores.
We also show performance results derived from four years of operation.

Keywords: Scheduling · Planning · Mapping · Workload management

1 Introduction

Today’s HPC systems are heterogeneous, they consist of different node types
and accelerators (e.g., GPUs or FPGAs) are used to increase the application
performance. Disk storage, software licenses, virtual machines, or software con-
tainers are additional resources to be scheduled by a workload management
system (WLM). In the past Grid and Cloud computing brought challenges in
form of inter system applications, running on more than one system at the same
time or consecutively steered by a workflow-manager. The merge of HPC and
Big-Data already started and more complex workflows will arise and enhance
the complexity of scheduling. Keywords are for example: data aware scheduling,
co-allocations, provisional reservations, or SLAs.

Planning based WLMs are well prepared for such environments. In 2003, we
published a paper [6] which compared queueing and planning based WLMs on a
high level and introduced OpenCCS as a completely planning based WLM. Since
then, OpenCCS implemented some features mentioned in [6], like for example,
job-migration using Globus, or SLA negotiation and compliance. This work was
primarily done in the EU funded projects HPC4U [1] and AssessGrid [1].

However, all work done there was based on scheduling only entire nodes, all of
the same type. At that time, we used a generic scheduler and a system-specific
mapping instance which verified the schedule. We learned, that planning and
mapping has to be done in the scheduler because the mapper had no info about

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 132–151, 2018.
https://doi.org/10.1007/978-3-319-77398-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_8&domain=pdf

A Data Structure for Planning Based Workload Management 133

limits or fairness and the scheduler did not consider the requested topology in
a satisfying manner (e.g., a 2× 4 grid on a system with a 2D-torus topology).
Additionally, the scheduler performance collapsed if managing several hundreds
of nodes and thousands of jobs.

In 2009, we redesigned OpenCCS. We aimed on supporting time shared
operation (i.e., more than one job on a node) on large heterogeneous clusters
with thousands of jobs, that is fast online planning of an arbitrary number of
resources. It should be easy to integrate commercial applications. Users should
be able to reserve resources, submit jobs with a deadline, and steer the mapping.
Users and groups should be automatically (un)locked by the system. This paper
reports the results of this redesign. Its central contribution is the basic data
structure and the planning and mapping heuristic based on this.

We start with a brief comparison of the queueing and planning approach and
name challenges of planning based WLMs. In Sect. 3 we introduce OpenCCS
focusing on terms which are related to the scope of this paper. Section 4 explains
the central data structure used in the OpenCCS scheduler and its basic oper-
ations. Based on this, Sect. 5 focuses on the principle process of planning and
mapping and describes some resulting aspects in more detail. Section 6 is devoted
to performance results derived from real operation over four years. In Sect. 7 we
compare the introduced method with other approaches and Sect. 8 summarizes
the paper.

2 Queueing vs. Planning

The major criterion for the differentiation of WLMs is the planned time frame.
Queueing systems try to utilize currently free resources with waiting resource
requests and future resource planning for all waiting requests is not done. Hence,
waiting resource requests have no assigned start time. Planning systems in con-
trast plan for the present and future. Start times are assigned to all requests
and a complete schedule about the future resource usage is computed and made
available to the users.

Queueing. In principle there are several queues with different limits on the
number of requested resources and the duration (e.g., min, max, defaults, etc.).
Jobs within a queue are ordered according to a scheduling policy (e.g., FCFS
(first come, first serve)) and users may also order their jobs. Queues might be
activated only for specific times (e.g., prime time or weekend).

The task of a queueing system is to assign free resources to waiting requests.
The job with the highest priority is always the queue head. If it is possible to
start more than one queue head, further criteria, like queue priority, are used to
choose a request. If not enough resources are available to start any of the queue
heads, the system waits until enough resources become available.

134 A. Keller

These idle resources may be utilized with less prioritized requests by backfill-
ing mechanisms. Two backfilling variants are commonly used: (1) Conservative
backfilling [11]: Requests are chosen so that no other waiting request (including
the queue head) is further delayed. (2) EASY backfilling [10]: This variant is
more aggressive than conservative backfilling since only the waiting queue head
must not be delayed.

Although, it is not mandatory for queueing systems to know the maximum
duration of requests, it is often required by the administration, to decrease job
waiting times. The “cost of scheduling” is low and choosing the next request to
start is fast.

Planning. Planning systems assign start times to all requests. Obviously, dura-
tion estimates are mandatory for planning. With this knowledge reservations are
easily possible and planning systems are well suited to participate in multi-site
application runs.

Fair share [8,9] is often used in queueing systems for prioritizing jobs on the
basis of a share of the machine and past and current usage. In planning systems,
controlling the usage of the machine is often done differently. One way is to
use time dependent constraints for the planning process. For example, during
prime time 25% of the system is kept free for “small” jobs. Also project or
user specific limits are possible, so that the system is virtually partitioned. Job
priorities and even more job dependencies (e.g., job B may start only after job
A has terminated with an error) have a stronger impact on the complexity of
the planning process than in queueing systems.

Planning based WLMs are real time systems. Assume two successive requests
(A and B) using the same nodes and B has been planned one-second after A.
Then, A has to be released in at most one-second. Otherwise B will be started
while A is still occupying the nodes. This delay would also affect all subsequent
requests, since their planned allocation times depend on the release times of
their predecessors. Hence, timeouts are necessary for such operations and the
WLM has to concern them while planning and adhere to the planned slots while
executing jobs.

Planning often implies mapping, because although the number of requested
resources (e.g., cores) may be free in the requested time interval, we cannot be
sure that always the same resources are free. Additionally, if planning complex
resource sets, comprising several resource types, we have to ensure that the
whole set can be mapped to a host and of course using placing directives directly
enforces mapping. Mapping is not mandatory while planning a start time, if the
requested resource set is provided by all hosts of the system and can be mapped
to a single host (e.g., requesting one core).

Changes in the resource configuration implies replanning all affected jobs.
Possible reasons are: a node fails or is set offline, or the amount of available
nodes resources changes (e.g., a memory DIMM or a network card fails).

A Data Structure for Planning Based Workload Management 135

The “cost of scheduling” is higher than in queueing systems. And as users can
view the current schedule and know when their requests are planned, questions
like “Why is my request not planned earlier? Look, it would fit in here.” are
likely to occur. In the next section we briefly describe OpenCCS focusing on the
terms, which are necessary to understand the following sections. A more detailed
description can be found in the OpenCCS manual [3].

3 The Computing Center Software

OpenCCS has a long history starting in the 1990s at the Paderborn Center for
Parallel Computing (PC2) [13]. Today, OpenCCS consists of several modules,
which may run on multiple hosts to improve the response time. OpenCCS is
based on events (e.g., timers, messages, signals), and the communication is state-
less and asynchronous. The modules are multi-threaded but single-tasked. The
submission syntax is strongly PBSPro [12] compatible to ease the integration
of commercial applications. Figure 1 depicts the OpenCCS modules (described
below) and the event handling.

Fig. 1. The OpenCCS modules (left) and event type handling (right)

UI (User Interface): Provides a single access point to one or more systems via
command line interfaces.

AM (Access Manager): Manages the user interfaces and is responsible for authen-
tication, authorization, and accounting.

PM (Planning Manager): Schedules and maps the user requests onto the
machine.

MM (Machine Manager): Provides machine specific features like node manage-
ment or job controlling.

IM (Island Manager): Provides OpenCCS internal name services and watchdog
facilities to keep OpenCCS in a stable condition.

OS (Operator Shell): The main interface for system administrators to control
OpenCCS.

NSM (Node Session Manager): Runs with root privileges on each node managed
by OpenCCS. The NSM is responsible for node access and job controlling.
At allocation time, the NSM starts an EM for each job.

136 A. Keller

EM (Execution Manager): Establishes the user environment (UID, shell settings,
environment variables, etc.) and starts the application.

OpenCCS uses the Resource and Service Description (RSD) [2] language to
specify all system specific hardware and software attributes like node properties,
network topology, timeouts, or custom resources.

The planning based approach, implemented in OpenCCS, has some
implications. There are no explicit queues in OpenCCS. The “waiting room”
is the only equivalent to a queue. A request is moved to this queue if OpenCCS
was not able to assign a start time to an already accepted request. Possible
reasons are, for example, that resources become unavailable while a request is
in state PLANNED or ALLOCATING and there are no comparable resources
available. If the resources become available again, OpenCCS automatically tries
to replan waiting requests.

Users are supposed to specify the expected runtime of their requests. If no
duration is specified, OpenCCS assigns a site specific one.

Privileges, default values, and limitations are attached to groups and users.
Entities like user, group, resource, or limit may have a validity period. If the
validity is exceeded, the entity is disabled. The rest of the section explains some
of this implications in more detail.

Validity. Planning provides an explicit notion of time, and this is also reflected
in limits, resource availability, etc. Hence, in OpenCCS entities like resources,
users, groups, or limits all may have a validity period. It can be given as an
absolute end date, an absolute start and end date, or a cron string, specifying
repeated intervals. Validities are mandatory to map time dependent constraints
to the data structure described in Sect. 4.

Limit. Limits are assigned to a consumer (i.e., a user or a group) and there
may be a different limit for each resource. If a consumer has no limits assigned
this means all resources are available forever. A limit consists of the following
items:

Validity : The validity period of a limit.
Items: The maximum number of allocatable items.

Syntax: < min[/max] >
min is a integer and max specifies the percent of currently available items.
If both given, OpenCCS takes the maximum of min, max. Example: 30/45%
denotes a limit 30 items or 45% of the available items.

Duration: The maximum timespan the resource may be used.
Area: The maximum area.

For example, the area limit 1024h for the resource cores, allows a consumer
to request one core for 1024 h, 1024 cores for one hour, or any matching
combination in between.

A Data Structure for Planning Based Workload Management 137

If a time dependent limit is exceeded, the affected request will be scheduled
to a later or earlier slot (depending on the request type). In Example 1, the
ncpus and tesla limits override the (∗) limit (meaning all resources).

Resource Items Duration Area Validity

===

* unlimited 7d none always

ncpus 640 4d3h none 01.08.17-31.08.17

tesla unlimited none 500h always

arrayjobs 1000 none none always

jobs 5000 none none always

Example 1: Some possible limits

FreePool. FreePools are like limits, but describe the conditions for resources to
be kept free (i.e., they constrain the access to resources). A FreePool consists of
the following items: The validity period, the resource to be kept free, how many
of the resource should be kept free, and conditions to get access to the resources.
FreePools may be used to:

– Keep free 20% of the available cores but at minimum 10 cores for jobs which
request less than four cores for less than one hour.

– Keep all GPUs free for the groups G1, G2 and user alice. All others may use
the GPUs only for a maximum of two hours.

– Reserve all nodes hosting GPUs for maintenance each two months on Monday
from 8am to 6pm.

Requesting Resources. In OpenCCS, users specify the resources needed by a
job by using chunks and job-wide resources (e.g., licenses or disk space). A chunk
specifies resources that have to be allocated as a unit on a single node. Chunks
cannot be split across nodes. Syntax: rset=[N:]chunk[+[N:]chunk...]

A chunk comprises one or more res=value statements separated by a colon.
res is one of the OpenCCS built-in resources (e.g., cores, memory, or ompthreads)
or one of the customized specified via the RSD language. Chunks may be combined
with a placement specification to control how the chunks should be placed on the
nodes. Example 2 may illustrate what is possible (Table 1).

Table 1. Possible placement specifications

Modifier Meaning

Free No restriction

Pack All chunks must be placed on one node

Scatter Only one chunk per node

Exclusive Only this job may use the node

Shared This chunk may share the node with other chunks

138 A. Keller

rset=8:ncpus=2:mem=10g:rack=8

rset=ncpus=27:vmem=20g:arch=linux+4:acc=fpga

rset=5:ncpus=16:mem=12g:net=IB+ncpus=1:mem=4g,sw=g03,place=scatter:excl

Example 2: Resource requests using chunks

4 The Resource Usage Vector

In Sect. 2, we outlined challenges of a planning based WLM and in Sect. 3 the
way OpenCCS is realizing the goals drafted in the introduction. The data struc-
ture introduced here, is our central approach to tackle these issues. It is used
to represent time dependent limits, FreePools, reservations, and the available
resources in the whole managed system and on its nodes.

We store slots of used or free items sorted by time for each used resource.
We call this a resource usage vector (RUSV).

A slot comprises three components. The start time, the stop time, and the
number of items, which are used or free within the interval [start, stop]. If stop
time is 0, this means [start,∞[.
A RUSV additionally has the following components:

maxAvl : the maximum available number of items,
avl : the currently available number of items (i.e., maxAvl - defect),
minDist : the minimal time distance between two slots, normally 1 s.

In the following Ri[j] denotes the slotj in RUSVi. We do not store slots which
are completely “free” (i.e., if storing used items and slot.items ≤ 0 or, if storing
free items and slot.items ≥ RUSV.avl). Figure 2 depicts a simple example. Please
note, that in all intervals, except the specified ones, the number of used items is
0, since this RUSV stores used items.

Fig. 2. A simple example of a RUSV

4.1 Basic Operations

On RUSVs we apply the following basic operations:

Increment (⊕) Adds a slot to a RUSV.
Notation: RUSV ⊕ slot
Increments the number of items of RUSV in the interval [slot.start, slot.stop]
by slot.items. Missing slots are added.

A Data Structure for Planning Based Workload Management 139

Decrement (�) Subtracts a slot from a RUSV.
Notation: RUSV � slot
Decrements the number of items of RUSV in the interval [slot.start, slot.stop]
by slot.items. “Free” slots are removed.

Addition (+) Adds two RUSVs.
Notation: R3 = R1 + R2

This is done by ∀i ∈ R2: R1 ⊕ R2[i].
Subtraction (−) Subtracts two RUSVs.

Notation: R3 = R1 − R2

This is done by ∀i ∈ R2: R1 � R2[i].
minFree (mf) Minimum of free slots in R1 and R2.

Notation: R3 = mf(R1, R2)
This is done by: ∀i ∈ R2: R3[i] = max(R2[i].items, (R1.avl − R2[i].items)).
We do not add new slots, and gaps in R1 are processed. We use this operation
to integrate a resource limit into a RUSV. For example, R1 is the number of
available resources in the system and R2 is the limit for this resource.

Intersection (∩) Intersects R1 and R2. R1 and R2 store free items.
Notation: R3 = R1 ∩ R2

This is done by: ∀i ∈ R2: R3[i].items = min(R1[i].items, R2[i].items) .
As a result R3 holds all slots for which at least R3[i].items are free in R1 and
R2 at the same time.

getFreeSlots (R1, F,D, T1, T2) Search in R1 for slots with at least F free items
with a duration ≥ D in the interval [T1, T2].
Notation: R2 = getFreeSlots(R1, F,D, T1, T2)

For all operations, the following is valid: If the RUSV stores free items, then
slots with slot.items ≥ RUSV.avl are removed. If the RUSV stores used items,
then slots with slot.items ≤ 0 are removed. Consecutive slots are joined if their
items are equal and their distance is ≤ rus.minDist. Figure 3 depicts the possi-
ble overlaps, we have to handle. The actions done are of course specific to the
combination of operation and case. For example, assume a RUSV storing used
items. Then operation � and case (1) leads to act.items −= new.items and if
act.items ≤ 0, slot b will be removed. Operation ⊕ and case (1) leads to new
slots a and c and b.items += new.items.

Before we explain the principle planning and mapping process, we introduce
the following terms.

sRS (System Resource Set) For each known resource (e.g., cores, memory,
GPUs, licenses, etc.), we have one RUSV to reflect the usage of the whole
system. The sRS RUSVs hold used items.
Notations: sRSr is the RUSV of resource r and sRSr[i] is slot i in sRSr.

nRS (Node Resource Set) For each known resource, a node has one RUSV
to reflect its usage. The nRS has the same structure as the sRS. If a resource
of the sRS is not available on a node the related RUSV is empty (i.e., nRSr.
avl = 0).

140 A. Keller

Fig. 3. Possible slot overlap cases

rRS (Reservation Resource Set) It is a subset of the sRS depending on
what resources are reserved. All planning and mapping routines, described in
Sect. 5, are the same for normal jobs and for jobs running in a reservation.

reqRS (Requested Resource Set) The user requested resources (chunks
and job wide) in an internal format. Please note, there are no RUSVs in
a reqRS.

jRS (Job Resource Set) For each requested resource of a job, we summarize
all requested chunk and job wide resources.
E.g., requesting 8:ncpus=2:mem=10g, results in a jRS of ncpus=16:mem=80g.

usdRS (Used Resource Set) The resources which are already assigned to a
consumer. The usdRS has the same structure as the sRS and is used while
processing consumer specific limits.

uRS (User Resource Set) For each requested resource we have a RUSV
reflecting the users view on the system related to limits, FreePools, and
already assigned resources. The uRS has the same structure as the sRS and
is built in the planning process.

5 Planning and Mapping

Here, we describe the principle process of planning and mapping requests using
RUSVs. At submit time the user specifies the resources which should be used
(i.e., chunks and job wide resources) and when and how long the resources will
be used (e.g., provisional, best-effort, deadline, fixed start time, slot-aware start
time, SLAs, duration, etc.). Additionally, the user may specify how the chunks
should be placed (e.g., pack, scatter, free, shared, exclusive) and how the job
should be processed (e.g., checkpointing, re-start, etc.). Based on this specifica-
tions, the PM starts the planning which is divided into three phases.

A Data Structure for Planning Based Workload Management 141

Phase 1 checks if and when enough resources are free concerning all con-
straints like limits, FreePools, or already assigned resources.

Phase 2 does the mapping. If the resources can be mapped to all nodes,
mapping is postponed to allocation time. Mapping is a separate layer to allow
different mapping policies.

Phase 3 updates the usdRS, the sRS, and the nRS of all affected nodes. In
the following, we describe these steps in more detail.

5.1 Planning

When a new job comes in, we first scan the resource request and build internal
data structures. Thereafter, we add missing default and force values (overwriting
user given values), and check if all requested resources are known and available
(requested ≤ maxAvl). Default and force values may be assigned to the system,
the group, or the user. As a result, we get the reqRS and the jRS.

We then determine the search interval [T1, T2] which depends on the job
type (e.g., best effort, reservation, deadline). For example, the search interval of
a reservation is of course given by the user, whereas the search interval of a best
effort job starts at submit time and ends never. All subsequent operations are
working in this search interval.

After determining FreePools and limits matching the resource request and
[T1, T2], we create the uRS by computing: ∀r ∈ jRS:

uRSr = sRSr + FreePoolr and then
uRSr = mf(uRSr, limitr − usdRSr).

Processing a resource set (e.g., the sRS), means that for all resources in
question the related RUSV operations, introduced in Sect. 4, are performed.

The uRS reflects now the user’s view on the amount of available resources
in the search interval. Hence, we are able to search for slots where all requested
resources are available at the same time in the requested amount for the
requested duration. This is done by computing:

∀r ∈ jRS : RfreeSlots = RfreeSlots ∩ getFreeSlotsr(uRSr, Fr,D, T1, T2).

If RfreeSlots is not empty, we try to find a valid mapping.
The complexity of the planning process without mapping is independent of

the number of jobs in the system, since we process only RUSVs.

5.2 Mapping

The input is the job’s duration D, the reqRS, the jRS, and RfreeSlots as a result
of the planning process described in the last section. Mapping is also done in two
phases. Phase 1 determines a candidate list comprising nodes on which at least
one chunk ∈ reqRS is unused for the duration D, in the search interval. Phase
2 then uses this list to select nodes according to a policy (e.g., greedy, energy
efficiency, etc.). For this purpose, a weight (i.e., a scalar value) is computed for
all nodes. The weight is used to rank the nodes from “cheap” to “expensive”.

142 A. Keller

It is computed by: ∀r ∈ consumable resources provided by the node:

Wnode = max
(
Wnode,

r

rsystem

)

and then Wnode = Wnode ∗ coressystem + prionode ∗ coressystem.
coressystem is the number of available cores in the system.
prionode is an integer value and may be specified by the administrator via RSD.

The basic steps of phase 1 are:

1. Build Ncand: A list of all usable nodes providing the required chunks in prin-
ciple. Ncand is then sorted by the node’s weight.

2. Build FCNn,c: ∀n ∈ Ncand and for each requested chunk c build a RUSV
where the chunk is free for at least duration D on the node:

∀r ∈ chunkc : FCNn,c ∩ getFreeSlots(nRSr, Fr,D, T1, T2).

If FCNn,c for a node n is empty, this node is removed from Ncand. To get
a good node utilization, we first compute a weight for each requested chunk
related to a node, similar to the node’s weight, and sort the chunks by their
weight in descending order. As a result we get X RUSVs per node. X is the
number of requested chunks and FCNn,c[i].items holds the number of free
chunks.

3. Build FCJc: For each requested chunk build a RUSV holding the sum of all
related FCNn,c by computing:

∀n ∈ Ncand and ∀c ∈ reqRS : FCJc =
∑

c,n
FCNn,c

and removing all intervals with less than the required number of chunks or a
duration < D. We then check if enough chunks are available. If not then the
job cannot be mapped within the search interval.

4. Build FS: The intersection of all FCJc by computing:

∀c ∈ reqRS : FS ∩ FCJc.

FS then holds all slots with a duration ≥ D, where all chunks are available
at the same time.

The result of phase 1 is: A RUSV (FS) with available time slots ≥ D and a list
of nodes (Ncand) and for each node FCNn,c (a RUSV for each chunk with free
time slots ≥ D).

If FS is not empty, we have found a set of nodes which provide the resources.
We then enter phase 2. Until now, we do a greedy mapping. The Greedy mapper
tries to map expensive chunks on cheap nodes first. If mapping was not possible
for all slots in FS, we try another slot of RfreeSlots else, we build the mapping-
data njRS. For each mapped host, it holds information which resources in what
amount the host provides. The njRS can be seen as a node specific jRS.

The complexity of the mapping process is independent of the number of jobs
in the system. It depends on the number of nodes and the job’s chunk complexity.
For example mapping a chunk requesting one core can be done in more ways
than mapping a chunk comprising 32 cores and a GPU.

A Data Structure for Planning Based Workload Management 143

5.3 Booking

The last step is to commit the planned resources for the planned interval in
usdRS, sRS, and nRS by computing:

∀r ∈ jRS and ∀s ∈ {sRS,usdRS} : sr ⊕ jRSr.

For nRS, we book on all mapped nodes:

∀r ∈ node’s njRS : nRSr ⊕ njRSr.

The inverse operation (i.e., revoke) is done by computing � instead of ⊕. Revoke
is used if a job is removed or while scanning for a better plan.

5.4 Notable Aspects

Of course, there are a lot of pitfalls and exceptions to cope with, while applying
the heuristic outlined above. In the following, we describe some aspects.

Backfilling. Backfilling is invoked whenever a job has been removed from the
plan. It affects all jobs with a planned start time after the removed job. To
avoid long answer times (e.g., 100,000 planned jobs), backfilling is done in the
background controlled by a special backfilling thread. The basic two steps are:

1. Sample affected jobs and sort them (by job-priority, submit-time, etc.) A job’s
priority is computed automatically at submit time. Criteria are for example:
job type, requesting expensive or “special” resources, or node parallelism.

2. For each job try to find a “better” place in the plan. Following a First-Fit
strategy, we first unbook the job’s resources and plan it again. If the planned
start time is earlier than the previous one, we book the new time interval,
else the old one. Other strategies are possible but not yet implemented. Jobs
are started immediately if possible.

Replanning. Replanning is invoked if a job cannot be allocated due to an
allocation error or a timeout. We then displace jobs with a lower priority to
ensure that the job in question can be allocated at the planned start time.
Replanning is also necessary if a user altered the job specification, an already
assigned resource becomes unavailable (e.g., if a node is set offline or a node
monitors a resource change), or a node is available again. In the latter case all
waiting and matching jobs are then replanned.

Estimation of job runtime. Overestimation is handled by backfilling. Under-
estimation results normally in aborting the running job. However, users may
increase the runtime via altering the job. There exists also a limit which we nor-
mally set to 10% of the initial runtime. Additionally, users may specify that the
running job is notified by OpenCCS X minutes before the maximum duration
ends. This is done by running a script or sending a signal to the job. The job
then can react.

144 A. Keller

Reservations. Users may reserve resources in advance and submit then jobs to
the reservation. If planning a job for a reservation, we use rRS instead of sRS
and the maximum search interval is the duration of the reservation. Hence, for
the scheduler, a reservation is an own system.

Exclusive node access. To be able to compute RfreeSlots for exclusive node
access, we need to know the number of free cores to be searched for. For example,
assume a cluster with nodes having 16, 32, and 240 cores and the user requests
10:npcus=12, place=free:excl. How many cores should be free?

Since arrangement is free, we could map more than one chunk on a node with
32 or 240 cores. Here, the planning phase needs mapping data to be accurate
which is not possible because we cannot map before planning. To circumvent
this, we compute an average number of cores for all nodes.

Timeouts. Since a planning based WLM is a real time system, we have to use
timeouts for nearly all operations. For example, the administrator specifies how
long allocating or releasing a job may last. If a timeout is exceeded, the node in
question is set “down” in the scheduler and all related requests are replanned.

“Expensive” resources. Jobs using a GPU often also need at least one CPU
core on the host. To avoid that a job which does not need the GPU blocks all CPU
cores on the host, it may be specified in RSD that X cores are kept free for jobs
requesting GPUs. Jobs not requesting GPUs, only get min(availableCores −
X, requestedCores). While building FCNn,c, we also ensure that exclusive node
access is not possible for jobs not using a GPU.

To avoid that expensive nodes (e.g., an SMP node with 32 cores and 1 TB
RAM) get blocked by long running cheap chunks, but still are usable, the admin-
istrator my define node specific limits. For example jobs may only be mapped
to an SMP node if they request at least 80 g virtual memory, or 66 g memory, or
17 cores, or their duration is ≤12 h. This is applied while building Ncand.

Accelerating planning and mapping. If we have FreePools and limits with
a cron based validity, we accelerate the planning process, by building a template
RUSV for the validity and then transpose it to the respective needed time inter-
val. For this purpose, we use the routine: R2 = cronToRUSV(R1, I, T1, T2, P).
R1 is the template RUSV starting at 1.1.1970 (i.e., (time t) 0) and holding
one period. P is the cron’s period length (hour, day, or week). To get a RUSV
with absolute times, we add a time offset (derived by T1, T2, and P) to each
R1[i].start and stop and set R1[i].items to I. We do this in a loop with step size
P until [T1, T2] is filled. If we assume a validity of “every Monday and Friday
from 7am to 11am” and T1 is 1.1.2018 and T2 is 31.12.2025. P is then a week.

To accelerate the mapping the Ncand list is built only once. It is rebuilt,
whenever a node becomes available again. The node specific FCNn,c in the
mapping process are built in parallel because they are independent. For this
purpose the scheduler module PM uses a dynamic thread pool. The nodes to
process are put in a queue and each of the threads takes a node and computes
FCNn,c for this node until the queue is empty.

A Data Structure for Planning Based Workload Management 145

6 Performance Results

All numbers in this section are derived from real operation over four years on
our OCuLUS and ARMINIUS clusters [13].

OCuLUS is running Scientific Linux and consists of 616 compute nodes with
in total 9.920 CPU cores, 8 Xeon-Phis, and 32 GPUs. The nodes have 64 GB,
256 GB, or 1 TB RAM. All nodes are connected by Infiniband and Ethernet. The
Xeon-Phis may be used in offload or native mode. The scheduler module PM is
running on a host equipped with two Intel Xeon CPUs E5-2670, 2.60 GHz and
64 GB RAM. The PM is configured to pin on the cores 8–15, the thread-pool
maximum size is 8.

ARMINIUS is running Scientific Linux and consists of 62 compute nodes with
in total 660 CPU cores. All nodes are connected by Infiniband and Ethernet. The
PM is running on a host equipped with two Intel Xeon CPUs X5650, 2.67 GHz
and 36 GB RAM. The PM is configured to pin on the cores 8–10 (ARMINIUS
has only 62 nodes) and the thread-pool size is limited to 8.

OpenCCS on OCuLUS processed about 4.5 million jobs for about 200 differ-
ent users in about 70 groups. The job sizes ranged from one to 4,096 cores. The
runtimes ranged from seconds to 60 days. The initial duration limit for a new
project at PC2 is set to 7 days. The average number of processed jobs per day was
3,082 and the maximum was 196,217. 94% of the submitted jobs completed, 6%
were removed by the users before they started. The average runtime was 184 m,
the average waiting time 191 m. The average accuracy of the job’s duration esti-
mation was 22%. The plan normally comprises a time interval of 8 to 10 weeks
and the sRS holds about 300 to 400 slots. The bad accuracy is mainly driven
by the large number of one core jobs, submitted as job arrays. Example 3 from
the OpenCCS reporting tool gives an overview of the job distribution related to
requested cores. The data was sampled in 2016.

===
Req. Avg. Avg. Avg. %Total Sum

Rank cores Jobs Walltime Accuracy Waiting Occupied Occ.
===

1 16 57,516 10h 41.67% 7h 17.75% 17.75%
2 32 9,701 1d50m 39.68% 20h 14.19% 31.93%
3 1,024 277 19h 65.30% 8d18h 10.34% 42.27%
4 768 468 10h 55.91% 12d10h 6.63% 48.90%
5 64 3,883 13h 46.00% 11h 6.30% 55.20%
6 128 14,002 1h 26.43% 5h 4.74% 59.94%
7 256 684 13h 39.30% 14h 4.40% 64.34%
8 1,536 77 16h 64.01% 22d22h 3.62% 67.96%
9 1 1,480,565 1h 21.39% 2h 3.55% 71.51%

10 512 151 16h 62.61% 17h 2.33% 73.83%

Example 3: OCuLUS job distribution related to requested cores, ranked by
occupied core hours.

146 A. Keller

-----------RUSV INFO -------------------------
Number of RUSV-create calls : 95,766,132
Number of RUSV-free calls : 169,898,098
Number of RUSV-slot-new calls : 250,851,576
Number of RUSV-slot-free calls : 233,838,317

-----------VECTOR INFO -------------------------
Vectors (used/avail) : 5,780,091 / 6,291,456
Elements(used/avail/filling) : 11,014,670/ 61,465,796 / 17.92%
Memory (sum/payload/overhead) : 663.87MB / 153.44MB / 510.43MB
Allocs/Reallocs/Frees : 11,518,320/ 16,711,065 / 0

Example 4: Memory consumption of the OCuLUS PM

The PM on OCuLUS uses about 6 GB RAM if 15 k jobs are in the system.
Based on the data structure introduced in Sect. 4, the PM uses a large number
of RUSVs. Example 4 gives an overview of the memory usage logged by the PM.
There are 10 k jobs in the plan, the first backfill has been processed and sRS
holds 345 slots.

On OCuLUS, we measured up to about 100 processed job submissions per
second by running 30 clients on the two access nodes. Each client submitted best
effort jobs in a loop. The jobs requested chunks with two cores and a maximum
runtime of 2 m. Since the jobs were also running on the cluster, this is the
OpenCCS performance.

The performance of the PM itself is higher. As described in Sect. 5.2, the
runtime of the mapping process depends on the number of nodes and the com-
plexity of the requested chunks. This is reflected if we look on the number of
backfills per second which is continuously measured by the PM. On OCuLUS,
we see numbers up to 500 and sorting of 60 k jobs by job priority takes about
20 ms. The time to plan a job array with 10 k jobs takes about 30 s. Job array
planning is done in chunks of 500 sub-jobs. On ARMINIUS, we see up to 1500
backfills per second.

Core pinning is essential for the performance of the PM. The number of
backfills per second increases by a factor of about two if pinning is activated.
This is related to the large amount of RUSV accesses.

OpenCCS modules may be restarted at any time and if an OpenCCS module
crashed, it will be automatically restarted by the IM. At restart a module reads
its status data and synchronizes the job states with its partners. The time the
PM needs to recover 5000 jobs takes about 20 s.

7 Related Work

There are a lot of papers related to the planning based approach. Since this
paper is more a result of practical work, this section does not cover the whole
area of planning based scheduling. We only relate to similar work.

Cluster and Grid. In [4], Chlumský et al. propose a similar approach as pre-
sented here. They extend the Torque [15] scheduler to allow planning jobs to
different clusters. Their approach uses job lists, holding start and completion
time and gap lists, representing unused periods of CPU time and the amount of

A Data Structure for Planning Based Workload Management 147

free RAM across nodes within a cluster. Both list types are sorted by time. The
gap list may be seen as a kind of RUSV. A gap list entry points to the appro-
priate node, the node’s free RAM, and to the nearest following job. Planning
an incoming job is done by finding a place in the gap list, backfilling is done by
shifting jobs into earlier “slots”. The authors use a Tabu Search heuristic to opti-
mize the current schedule. Compared to the work presented here, the approach
of [4] is restricted to plan only two resources (cores and memory). Requesting
complex resource sets comprising different chunk types or job wide resources is
not possible. They also neglect limits, reservations, and placing directives.

In [14], Schneider et al. propose a list based data structure to support advance
reservations in Grid environments and local WLMs for HPC systems. Lists hold
information about the summed up booked capacity and for each node mapping
information. The list entries represent a range of free resources. Such a list may
be organized in three ways:

1. As time exclusive list. For each point in time there is only one item, repre-
senting the current available capacity. The list is ordered by the start time of
the blocks, that is, adjacent blocks follow each other in the free list.

2. As capacity list. Each item spans the whole time span where at least the given
capacity is free. During this time span, there may be other sub time spans
with more capacity available; these time spans are managed as sub lists of
the longer block. Hence, a hierarchical data structure is used.

3. As mixed list. The splitting of the list items does not follow any rule. The
items may be ordered by the start time and the available capacity. The list
items should have references to all adjacent free blocks.

For their evaluations, the authors simulate a cluster with 128 CPUs and use the
time exclusive list type. They compare three ways of organizing the lists: slotted
time, list based, and AVL tree.

Schneider et al. use an approach which is very close to the one introduced
here. The information about the summed up booked capacity corresponds to our
sRS, the mapping information to the nRS, and the list entries are structured
similar to a slot in a RUSV. The time exclusive list is nearly the same as our
resource sets, except that we handle slots of used instead of free resources and
do not store slots where all resources are in use.

Schneider et al. support only exclusive booking of nodes, and, just as in [4],
complex resource sets comprising different chunk types or job wide resources, lim-
its, and placing directives are not available. Additionally, they do not describe
how planning and mapping should work if more than one resource type is
requested, like for example ncpus=5:gpus=3.

Both, the authors of [4,14], compared their approach with other papers and
assessed them all weaker, related to their approaches. Hence, and for the lack of
space, we do not consider them here.

148 A. Keller

Big-Data. The following WLM examples are, in principle, all based on the
MapReduce model and schedule jobs on a Hadoop platform focusing on the need
for locality and elasticity of MapReduce jobs. Such jobs often consist of multiple
tasks (e.g., map or reduce) that are run on different cluster nodes, where the
unit of per-task resource allocation is a container (i.e., a bundle of resources such
as CPU, RAM and disk I/O). An OpenCCS chunk is like a container related
to scheduling. Due to the MapReduce model, tasks are often loosely coupled,
malleable and may be preempted. MapReduce jobs are mainly characterized by
a start time, a deadline, and a collection of stages. Each stage has a total demand
of containers and may also have a minimum parallelism constraint (or gang size)
of containers. The most important SLO is the job deadline.

YARN [17] schedules jobs on a Hadoop platform and comprises three basic
blocks. The Resource Manager (RM), the Application Manager (AM), and, on
each node, a Node Manager (NM). The RM is scheduling containers bound to a
particular node.

There is on AM for each job. The AM is the head of a job, managing all
lifecycle aspects including dynamically increasing and decreasing resource con-
sumption, managing the flow of execution, handling faults and computation
skew, and performing other local optimizations. Hence, the AM can be seen as a
kind of workflow engine dividing a job into tasks and mapping tasks to contain-
ers. An AM is requesting containers from the RM and then starting job-tasks on
such containers by using the NMs which are responsible for establishing, observ-
ing, and removing containers on a node. A container request to the RM includes:
the number of containers, the resources per container, locality preferences, and
priority of requests within the application. An AM may request containers to be
killed when the corresponding work is not needed any more.

In contrast to OpenCCS, YARN does not plan to the future and it does
not know maximum runtimes of a container. To our best knowledge YARN
can only handle containers consisting of CPUs and memory and is not able to
schedule job-wide resources like licenses. However, YARN supports preemption
of containers which is not supported by OpenCCS.

In [16] the authors describe TetriSched, a scheduler integrated in the YARN
reservation system. It considers both, job-specific preferences and estimated job
runtimes in its allocation of resources. Job-specific preferences are provided by
tenants as composable utility functions. They allow TetriSched to understand
which resources are preferred, and by how much, over other acceptable options.
Estimated job runtimes and constraints on job execution times (e.g., deadlines
or reservations) allow TetriSched to plan ahead in deciding whether to wait for
a busy preferred resource to become free or to assign a less preferred resource.
TetriSched translates the given requirements into a Mixed Integer Linear Prob-
lem (MILP) that is solved by an external solver to maximize the overall utility.

The main advantage of TetriSched over OpenCCS is its ability to compute
a global schedule by simultaneously considering the placement and temporal
preferences of all the jobs in each compute cycle, and to support user given
utility functions (e.g., the job needs two time units on GPUs and three on CPUs)

A Data Structure for Planning Based Workload Management 149

which allow a greater scheduling flexibility. OpenCCS does a greedy job-by-job
planning. However, it is not quite clear how long it takes to solve a MILP, if there
are tens of thousands of jobs in the system. In [5] the authors use heuristics due
to the very long runtime of the MILP solver. TetriSched seems to support only
space-sharing (i.e., a job is occupying a node exclusively).

Rayon [5] is another extension to YARN. It provides reservation-based
scheduling which leverages explicit information about the deadline and time-
varying resource needs of a job. Rayon comes with a declarative reservation def-
inition language (RDL), that allows users to express a rich class of constraints,
including deadlines, malleable and gang parallelism requirements, and inter-job
dependencies.

The scheduler itself comprises a framework for planning SLA jobs by using
fast, greedy heuristics, and a component for the dynamically assignment of clus-
ter resources to the planned and best-effort jobs, which also adapts to chang-
ing cluster conditions. Rayon makes use of planning in two ways: online, to
accept/reject jobs on arrival, and offline, to reorganize sets of accepted jobs.

Rayon immediately plans incoming SLA jobs and assigns a start time. Best
effort jobs are filled in the remaining gaps by the adaptive scheduler component.
The Rayon RDL is automatically transferred to a MILP formulation like in [16].
However, for the authors solving MILPs is not practical for online scenarios, and
cannot scale to large problem sizes (solver runtime ranged from 80 s to 3200 s).
Hence, Rayon, just like OpenCCS does, plans one job at a time, and never
reconsiders placement decisions for previously jobs. A job is divided in containers
with a minimum runtime of X time-units. In case of under-reservation, an SLA
job will run with guaranteed resources up to a point, and then continue as a
best-effort job until completion.

OpenCCS also supports reservations and deadline scheduling but does not
support neither malleable jobs nor preemption. Jobs in the HPC world are still
mainly rigid. Best-efforts jobs in OpenCCS are not starving which may happen
in Rayon. OpenCCS also allows renegotiation of accepted jobs.

It seems that Rayon, like YARN does, mainly supports CPUs and memory
as container parts. Customizable resources are not possible. It is also not clear
if Rayon supports time dependent limitations and heterogeneous clusters.

Morpheus [7], which is integrated in YARN, aims on lowering the number
of deadline violations while retaining cluster-utilization. It builds on three key
ideas: (1) automatically deriving SLOs and job resource models from historical
data, (2) relying on recurrent reservations and packing algorithms to enforce
SLOs, and (3) dynamic reprovisioning to mitigate inherent execution variance.
The job resource model is a time-varying skyline of resource demands. It employs
a MILP formulation, that explicitly controls the penalty of over/under provision-
ing and balances predictability and utilization. As in [5] Morpheus does not use
an external MILP solver due to the long runtimes.

Morpheus continuously observes and learns as periodic jobs (scheduled runs
of the same job on newly arriving data) execute over time. The findings are used
to reserve resources for the job ahead of job execution, and dynamically adapt
to changing conditions at runtime. Periodic jobs are supported by recurring

150 A. Keller

reservations, a scheduling construct that isolates jobs from the noisiness of shar-
ing induced performance variability by assigning dedicated resources. Morpheus
can only enforce container-level resources, but lacks control over globally-shared
resources. When Morpheus needs to allocate resources to a new periodic job, it
ignores most of the scheduled non-periodic jobs, and then attempts to reallo-
cate resources for non-periodic jobs in case they need more resources. Morpheus
assumes a homogeneous cluster. Extra resources are granted for up to T seconds
and then are reevaluated. This allows an elastic job to use extra parallelism to
make up for lost time. OpenCCS does not displace already planned jobs while
planning new ones.

Mapping of containers is done by a cost-based approach that takes into
account current cluster allocation and the resource demand of each job. Each
time slot in the plan is associated with a cost and the mapper allocates incoming
jobs in a way that is cost-efficient with respect to the overall costs. This is analo-
gous to limits and FreePools in OpenCCS. However OpenCCS then reduces the
number of available resources for the job in the related time slots.

8 Conclusion

We presented a data structure and a heuristic to plan and map arbitrary
resources in complex combinations while applying time dependent constraints.
We implemented the heuristic in the planning based WLM OpenCCS. Our app-
roach has stand up to the reality check during four years of real operation on two
heterogeneous HPC clusters (one of them with about 10,000 cores) and proved
its stability, flexibility, and performance. Of course, there are drawbacks inher-
ent to our approach and there are plenty of additional features to be added.
Backfilling, for example, is a time consuming operation, especially if using a
more complex policy than First-Fit. A planning horizon (e.g., 4 weeks) could
reduce the amount of jobs to be planned. Fair share is part of our limit design,
and we see a good and fair system utilization. However, we learned that this
approach does not work sufficiently if the jobs do not fully utilize the system.
Therefore, we will include dynamic soft limits which depend on the utilization
of the system, allowing consumers to extend their hard limits. Additionally, we
plan to extend the mapping layer to allow topology aware mapping (e.g., group
chunks by switches). Also, releasing and requesting resources while a job is run-
ning is part of our future work. There is a reason why queueing based WLMs
dominate the market. Queues are fast and very flexible. However, we think the
planning based approach is advantageous if time dependent constraints have to
be considered.

Acknowledgements. I would like to thank Christoph Kleineweber, Dr. Lars Schäfers,
and Dr. Jörn Schumacher for their valuable contribution to the current OpenCCS
release.

A Data Structure for Planning Based Workload Management 151

References

1. Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Planning-based scheduling
for SLA-awareness and grid integration. In: Proceedings of the 26th Workshop of
the UK Planning and Scheduling Special Interest Group (PlansSIG 2007) (2007)

2. Brune, M., Gehring, J., Keller, A., Reinefeld, A.: RSD - resource and service
description. In: Schaeffer, J. (ed.) High Performance Computing Systems and
Applications (HPCS 1998), pp. 193–206. Kluwer Academic Press, Dordrecht (1998)

3. OpenCCS Manual, July 2017. https://www.openccs.eu
4. Chlumský, V., Klusáček, D., Ruda, M.: The extension of torque scheduler allowing

the use of planning and optimization in grids. Comput. Sci. 13(2), 5–19 (2012).
https://doi.org/10.7494/csci.2012.13.2.5

5. Curino, C., Difallah, D.E., Douglas, C., et al.: Reservation-based scheduling: if
you’re late don’t blame us! Tech-report MSR-TR-2013-108, Microsoft (2013)

6. Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC resource manage-
ment systems: queuing vs. planning. In: Feitelson, D., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003).
https://doi.org/10.1007/10968987 1

7. Jyothi, S.A., Curino, C., Menache, I., et al.: Morpheus: towards automated SLOs
for enterprise clusters. In: Proceedings of the 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 2016), November 2016

8. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31, 44–55 (1998)
9. Kleban, S.D., Clearwater, S.: Fair share on high performance computing systems:

what does fair really mean? In: Proceedings of 3rd IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2003), pp. 145–153. IEEE Computer
Society (2003)

10. Lifka, D.A.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph,
L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60153-8 35

11. Mu’alem, A., Feitelson, D.G.: Utilization, predictability, workloads, and user run-
time estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

12. PBSPro Open Source, January 2017. http://www.pbspro.org
13. PC2: Paderborn Center for Parallel Computing, July 2017. https://pc2.uni-

paderborn.de
14. Schneider, J., Linnert, B.: List-based data structures for efficient management of

advance reservations. Int. J. Parallel Prog. 42, 77–93 (2014). https://doi.org/10.
1007/s10766-012-0219-4

15. Torque, January 2017. http://www.adaptivecomputing.com/products/open-
source/torque/

16. Tumanov, A., Zhu, T., Park, J.W., et al.: TetriSched: global rescheduling with
adaptive plan-ahead in dynamic heterogeneous clusters. In: Proceedings of the 11th
European Conference on Computer Systems (EuroSys 2016), April 2016. https://
doi.org/10.1145/2901318.2901355

17. Vavilapalli, V.K., Murthy, A.C., Douglas, C., et al.: Apache Hadoop YARN: yet
another resource negotiator. In: Proceedings of the 4th Annual Symposium on
Cloud Computing (SOCC 2013), October 2013. https://doi.org/10.1145/2523616.
2523633

https://www.openccs.eu
https://doi.org/10.7494/csci.2012.13.2.5
https://doi.org/10.1007/10968987_1
https://doi.org/10.1007/3-540-60153-8_35
http://www.pbspro.org
https://pc2.uni-paderborn.de
https://pc2.uni-paderborn.de
https://doi.org/10.1007/s10766-012-0219-4
https://doi.org/10.1007/s10766-012-0219-4
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633

ScSF: A Scheduling Simulation
Framework

Gonzalo P. Rodrigo1(B), Erik Elmroth1, Per-Olov Östberg1,
and Lavanya Ramakrishnan2

1 Department of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden
{gonzalo,elmroth,p-o}@cs.umu.se

2 Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
lramakrishnan@lbl.gov

Abstract. High-throughput and data-intensive applications are increas-
ingly present, often composed as workflows, in the workloads of current
HPC systems. At the same time, trends for future HPC systems point
towards more heterogeneous systems with deeper I/O and memory hier-
archies. However, current HPC schedulers are designed to support classi-
cal large tightly coupled parallel jobs over homogeneous systems. There-
fore, there is an urgent need to investigate new scheduling algorithms
that can manage the future workloads on HPC systems. However, there
is a lack of appropriate models and frameworks to enable development,
testing, and validation of new scheduling ideas.

In this paper, we present an open-source scheduler simulation frame-
work (ScSF) that covers all the steps of scheduling research through sim-
ulation. ScSF provides capabilities for workload modeling, workload gen-
eration, system simulation, comparative workload analysis, and experi-
ment orchestration. The simulator is designed to be run over a distributed
computing infrastructure facilitating large-scale tests. We demonstrate
ScSF through a case study to develop new techniques to manage scien-
tific workflows in a batch scheduler. The evaluation consisted of 1728
experiments and equivalent to 33 years of simulated time, were run in
a deployment of ScSF over a distributed infrastructure of 17 compute
nodes over two months. Finally, the experimental results were analyzed
using the ScSF framework to demonstrate that our technique minimizes
workflow turnaround time without over-allocating resources. Finally, we
discuss lessons learned from our experiences to inform future large-scale
simulation studies using ScSF and other similar frameworks.

1 Introduction

In recent years, high-throughput and data-intensive applications are increasingly
present in the workloads at HPC centers. Current trends to build larger HPC

Source code available to download at: http://frieda.lbl.gov/download.
G. P. Rodrigo—Work performed while working at the Lawrence Berkeley National
Lab.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 152–173, 2018.
https://doi.org/10.1007/978-3-319-77398-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_9&domain=pdf
http://frieda.lbl.gov/download

ScSF: A Scheduling Simulation Framework 153

systems point towards heterogeneous systems and deeper I/O and memory hier-
archies. However, HPC systems and their schedulers were designed to support
large communication-intensive MPI jobs run over uniform systems.

The changes in workloads and underlying hardware have resulted in an urgent
need to investigate new scheduling algorithms and models. However, there is
limited availability of tools to facilitate scheduling research. Currently available
simulator frameworks do not capture the complexities of a production batch
scheduler. Also, they are not powerful enough to simulate large experiment sets,
or they do not cover all its relevant aspects, i.e., workload modeling and gener-
ation, scheduler simulation, and result analysis.

Schedulers are complex systems and their behavior is the result of the inter-
action of multiple mechanisms that rank and schedule jobs, while monitoring the
system state. Many simulators, e.g., Alea [12], include state of art implementa-
tions of some of these mechanisms, but do not capture the interaction between
the components. As a consequence, hypotheses tested on such simulators might
not hold in real systems.

Scheduling behavior depends on the configurations of the scheduler and char-
acteristics of the workload. As a consequence, the potential number of experi-
ments needed to evaluate a scheduling improvement is high. Also, experiments
have to be run for long time to be significant and have to be repeated to ensure
representative results. Unfortunately, current simulation tools do not provide
support to scale up and run large numbers of long experiments. Finally, work-
load analysis tools to correlate large scheduling result sets are not available.

In this paper, we present ScSF, a scheduling simulation framework that cap-
tures the scheduling research life-cycle. It includes a workload modeling engine,
a synthetic workload generator, an instance of Slurm wrapped in a simulator, a
results analyzer, and an orchestrator to coordinate experiments run over a dis-
tributed infrastructure. ScSF will be available as open source software1, enabling
community extensions and user customization of modules. We also present a
use case that illustrates the use of the scheduling framework for evaluating a
workflow-aware scheduling algorithm. Our case study demonstrates the mod-
eling of the workload of a peta-scale system, Edison at the National Energy
Research Scientific Computing Center (NERSC). We also describe the mechanics
of implementing a new scheduling algorithm in Slurm and running experiments
over distributed infrastructures.

Specifically, our contributions are:

– We describe the design and implementation of scalable scheduling simulator
framework (ScSF) that supports and automates workload modeling and gen-
eration, Slurm simulation, and data analysis. ScSF will be available as open
source.

– We detail a case study that works as a guideline to use the framework to
evaluate a workflow-aware scheduling algorithm.

– We discuss the lessons learned from running scheduling experiments at scale
that will inform future research in the field.

1 Available at: http://frieda.lbl.gov/download.

http://frieda.lbl.gov/download

154 G. P. Rodrigo et al.

The rest of the paper is organized as follows. In Sect. 2, we present the state of
art of scheduling research tools and the previous work supporting the framework.
The architecture of ScSF and the definition of its modules are presented in
Sect. 3. In Sect. 4, we describe the steps to use the framework to evaluate a new
scheduling algorithm. In Sect. 5, we present lessons learned while using ScSF at
scale. We present our conclusions in Sect. 6.

2 Background

In this section, we describe the state of art and challenges in scheduling research.

2.1 HPC Schedulers and Slurm

ScSF support research on HPC scheduling. The framework incorporates a full
production scheduler and is modified to include new scheduling algorithms to be
evaluated.

Different options were considered for the framework scheduler. Moab (sched-
uler) plus Torque (resource manager) [5], LSF [9], and LoadLeveler [11] are
popular in HPC centers. However, their source code is not easily available which
makes extensibility difficult. The Maui cluster scheduler is an open-source pre-
cursor of Moab [10]. However it has not been kept up to date to support current
system needs. Slurm is one of the most popular recent workload managers in
HPC. It is currently used in 5 of top 10 HPC systems [2]. It was originally
developed at Lawrence Livermore National Laboratory [20], now maintained by
SchedMD [2], and it is available as open source. Also, there are publicly available
projects that support simulation in it [19]. Hence, our simulator framework is
based on Slurm.

As illustrated in Fig. 1, Slurm is structured as a set of daemons that commu-
nicate over RPC calls:

slurmctld is the scheduling daemon. It contains the scheduling calculation func-
tions and the waiting queue. It receives batch job submissions from users and
distributes work across the instances of slurmd.

Fig. 1. Slurm is composed by three daemons: slurmctld (scheduler), slurmd (compute
nodes management and supervision), and slurmdbd (accounting). A plug-in structure
wraps the main functions in those daemons.

ScSF: A Scheduling Simulation Framework 155

slurmd is the worker daemon. There can be one instance per compute node or
a single instance (front-end mode) managing all nodes. It places and runs work
in compute nodes and reports the resources status to slurmctld. The simulator
uses front-end mode.

sbatch is a command that wraps the Slurm RPC API to submit jobs to slurm-
ctld. Most commonly used by users.

Slurm has a plug-in architecture. Many of the internal functions are wrapped
by C APIs loaded dynamically depending on the configuration files of Slurm
(slurmctld.conf, slurmd.conf).

The Slurm simulator is a wrapper around Slurm to emulate HPC resources,
emulate user’s job submission, and speed up Slurm’s execution. We extended
previous work from the Swiss Supercomputing Center (CSCS, [19]) that is based
on work by the Barcelona Supercomputing Center (BSC, [14]). Our contributions
increase Slurm’s speed up while maintaining determinism in the simulations, and
adds workflow support.

2.2 HPC Workload Analysis and Generation

ScSF includes the capacity to model system workloads and generate synthetic
ones accordingly. Workload modeling starts with elimination of flurries (i.e.,
events that are not representative and skew the model) [8]. The generator models
each job variable with the empirical distribution [13], i.e., it recreates the shape
of job variable distributions by constructing a histogram and CDF from the
observed values.

2.3 Related Work

Previous work [18] proposes three main methods of scheduling algorithms
research: theoretical analysis, execution on a real system, and simulation. The
theoretical analysis is limited to produce boundary values on the algorithm, i.e.
best and worst cases, but does not allow predicting regular performance. Also,
since continuous testing of new algorithms on large real systems is not possible,
simulation is the option chosen in our work.

Available simulation tools do not cover the full cycle of modeling, genera-
tion, simulation, and analysis. Also, public up-to-date simulators and workload
generators are scarce. As an example, our work is based on the most recent
peer reviewed work on Slurm Simulation (CSCS, [19]). We improve its synchro-
nization to speed up its execution. For more grid-like workloads, Alea [12] is an
example of a current HPC simulator. However, it does not include a production
simulator in its core and does not generate workloads.

For workload modeling, function fitting and user modeling are recognized
methods [7]. ScSF’s workload model is based on empirical distributions [13], as
it produces good enough models and does not require specific information about
system users. Also, our work modeling methods are based on the experience

156 G. P. Rodrigo et al.

of our previous work on understanding workload evolution of HPC systems life
cycle [15] and job heterogeneity in HPC workloads [16].

In workload generation, previous work compares close and open loop
approaches [21], i.e. taking into account or not the scheduling decisions to cal-
culate the job arrival time. ScSF is used in environments with reduced user
information, which is needed to create closed-loop models. Thus, ScSF uses an
open-loop workload generation model to fill and load mechanisms (Sect. 3.4) to
avoid under and over job submission.

Finally, other workloads and models [6] are available, but are less represen-
tative of current HPC systems. In our work, we use workloads from Edison, a
Cray XC30 supercomputer, deployed in 2013 with 133,824 cores and 357 TB of
RAM.

3 ScSF Architecture

Figure 2 shows ScSF’s architecture. The core of ScSF is a MySQL database
that stores the framework’s data and meta-data. Running experiments based
on a reference system requires modeling its workload first by processing the
system’s scheduling logs in the workload model engine. This model is used in the
experiments to generate synthetic workloads with similar characteristics to the
original ones.

In ScSF, the simulation process starts with the description of the experi-
mental setup in an experiment definition provided by the user. The definition
includes workload characteristics, scheduler configuration, and simulation time.
The experiment runner processes experiment definitions and orchestrates exper-
iments accordingly. First, it invokes the workload generator to produce a syn-
thetic workload of similar job characteristics (size, inter arrival time) as the real
ones in the reference system chosen. This workload may include specific jobs
(e.g., workflows) according the experiment definition. Next, the runner invokes
the simulator. The ScSF simulator is a wrapper around Slurm that increases
the execution pace and emulates the HPC system and its users. The simulator
sets Slurm’s configuration according to the experiment definition and emulates

Fig. 2. ScSF schema with green color representing components developed in this work
and purple representing modified and improved components. (Color figure online)

ScSF: A Scheduling Simulation Framework 157

the submission of the synthetic workload jobs. Slurm schedules the jobs over the
virtual resources until the last workload job is submitted. At that moment, the
simulation is considered completed.

Completed simulations are processed by the workload analyzer. The analysis
covers the characterization of jobs, workflows, and system. This module includes
tools to compare experiments to differentiate the effects of scheduling behaviors
on the workload.

3.1 Workload Model Engine

A workload model is composed of statistical data that is used to generate syn-
thetic jobs that with characteristics similar to the original ones. The workload
model engine extracts a job’s characteristics from Slurm or Moab scheduling
logs including wait time, allocated CPU cores, requested wall clock time, actual
runtime, inter-arrival time, and runtime accuracy (runtime

requestedWallClockT ime). Jobs
with missing information (e.g. start time), or individual rare and very large jobs
that would skew the model (e.g. system test jobs) are filtered out.

Next, the extracted values are used to produce the empirical distributions [13]
of each job variable as illustrated in Fig. 3. A normalized histogram is calculated
on the source values. Then, the histogram is transformed into a cumulative
histogram, i.e., each bin represents the percentage of observed values that are
less or equal to the upper boundary of the bin. Finally, the cumulative histogram
is transformed into a table that maps probability ranges on a value. For example,
in Fig. 3, bin (10−20] has a [0.3, 0.8) probability range as its value is 80% and its
left neighboring bin’s value is 30%. The probability ranges map to the mid value
of the range that they correspond to, e.g., 15 is the mid value of (10 − 20]. This
model is then ready to produce values, e.g., a random number (0.91) is mapped
on the table to obtain 25.

Each variable’s histogram is calculated with specific bin sizes adapted to its
resolution. By default, the bin size for the request job’s wall clock time is one
minute (Slurm’s resolution). The corresponding bin size for inter-arrival time
is one second as that corresponds to the resolution of timestamps in the logs.
Finally, for the job CPU core allocation, the bin size is the number of cores
per node of the reference system, as in HPC systems node sharing is usually
disabled.

Fig. 3. Empirical distribution constructions for job variables: calculating a cumulative
histogram and transforming it into a mapping table.

158 G. P. Rodrigo et al.

3.2 Experiment Definition

An experiment definition outlines the conditions in an experiment process, con-
figuring the scheduler, workload characteristics, and experiment duration. A defi-
nition is composed of a scheduler configuration file and a database entry (Table 1)
that includes:

trace type and subtraces: The tag “single” identifies the experiments that are
meant to be run in the simulator. A workload will be generated and run through
the simulator for later analysis. The experiments with trace type “grouped” are
definitions that list the experiments that are the different repetitions of the same
experimental conditions in the “subtraces” field.

system model: selects which system model is to be used to produce the work-
load in the experiment.

workflow policy: controls presence of workflows in the workload. If set to “no”,
workflows are not present. If set to “period” a workflow is submitted periodi-
cally once every workflow period s seconds. If set to “percentage”, workflows
contribute workflow share of the workload core hours.

Table 1. Experiment definition fields

trace type “single”: regular experiment. “grouped”: experiments
aggregated

subtraces list of single experiments related to this grouped one

system name of system to model workload after

workflow policy “period”: one workflow workflow period s. “percent”:
workflow share core hours are workflows. “no”: no workflows

manifest list list of workflows to appear in the workload

workflow handling workflows submission in workload. “single”: pilot job. “multi”:
chained jobs”. “manifest”: workflow-aware job

start date submit time of first job valid for analysis

preload time s time to prepend to the workload for stabilization

workload duration s workload stops at start date + workload duration s

seed string to init random number generators

1 {"tasks": [

2 {"id":"SWide", "cmd":"./W.py", "cores":480, "rtime":360.0},
3 {"id":"SLong", "cmd":"./L.py", "cores":48, "rtime":1440.0,

4 "deps": ["SWide"]}]}

Fig. 4. WideLong workflow manifest in JSON format.

ScSF: A Scheduling Simulation Framework 159

manifest list: List of pairs (share, workflow) defining the workflows present in
the workload: e.g., {(0.4 Montage.json), (0.6 Sipht.json)} indicates that 40% of
the workflows will be Montage, and 60% Sipht. The workflow field points to
a JSON file specifying the structure of the workflow (e.g., Fig. 4). It includes
two tasks, the first running for 6 min, allocating 480 cores (wide task); and
the second running for 24 min, allocating 48 cores (long task). The SLong task
requires SWide to be completed before it starts.

workflow handling: This parameter controls the method to submit workflows.
The workload generator supports workflows submitted as chained jobs (multi),
in which workflow tasks are submitted as independent jobs, expressing their
relationship as job completion dependencies. Under this method, workflow tasks
allocate exactly the resources they need, but intermediate job wait times might
be long, increasing the turnaround time. Another approach supported is the
pilot job (single), in which a workflow is submitted as a single job, allocating
the maximum resource required within the workflow for its minimum possible
runtime. The workflow tasks are run within the job, with no intermediate wait
times, and thus, producing shorter turnaround times compared to chained jobs
approach. However, it over-allocates resources, that are left idle at certain stages
of the workflow.

start date, preload time s, and workload duration s: defines the duration
of the experiment workload. The variable start date sets the submit time of the
first job in the analyzed section of the workload, which will span until (start date
+ workload duration s). Before the main section, a workload of preload time s
seconds is prepended, to cover the cold start and stabilization of the system.

random seed: The random seed is an alphanumeric string that is used to ini-
tialize the random generator within the workload generator. If two experiments
definitions have the same parameters, including the seed, their workloads will be
identical. If two experiment definitions have the same parameters, but a differ-
ent seed, their workloads will be similar in overall characteristics, but different
as individual jobs (i.e. repetitions of the same experiment). In general, repeti-
tions of the same experiment with different seeds are subtraces of a “grouped”
experiment.

3.3 Experiment Runner

The experiment runner is an orchestration component that controls the work-
load generation and scheduling simulation. It invokes the workload generator
and controls through SSH a virtual machine (VM) that contains a Slurm sim-
ulator instance. Figure 5 presents the experiment runner operations after being
invoked with a hostname or IP of a Slurm simulator VM. First, the runner
reboots the VM (step 0) to clear processes, memory, and reset the operative sys-
tem state. Next, an experiment definition is retrieved from the database (step 1)

160 G. P. Rodrigo et al.

Fig. 5. Steps to run an experiment (numbers circled indicate order) taken by the
experiment runner component. Once step seven is completed, the step sequence is
re-started.

and the workload generator produces the corresponding experiment’s workload
file (step 2). This file is transferred to the VM (step 4) together with the cor-
responding Slurm configuration files (obtained in step 3). Then, the simulation
inside the VM (step 5) is started. The main part of the simulation stops after the
last job of the workload is submitted. Additionally, some extra time in included
in the end to avoid abrupt system termination noises in the results. The exper-
iment runner monitors Slurm (step 6), and when it terminates, the resulting
scheduler logs are extracted and inserted in the central database (step 7).

Only one experiment runner can start per simulator VM. However, multiple
runners manage multiple VMs in parallel, which enables scaling such that the
experiments run concurrently.

3.4 Workload Generation

The workload generator in ScSF produces synthetic workloads representative of
real system models. The workload structure is presented in Fig. 6. All workloads
start with a fill phase, which includes a group of jobs meant to fill the system.
The fill job phase is followed by the stabilization phase, which includes 24 h of
regular jobs controlled by a job-pressure mechanism to ensure that there are
enough jobs to keep the system utilized. The stabilization phase captures the
cold start of the system, and it is ignored in later analysis. The next stage is
the experiment phase, it runs for a fixed time (72 h in the figure) and includes
regular batch jobs complemented by the experiment specific jobs (in this case
workflows). After the workload is completely submitted, the simulation runs for
extra time (drain period, configured in the simulator) to avoid the presence of
noise from the system termination.

In the rest of this section, we present all the mechanisms involved in detail.

ScSF: A Scheduling Simulation Framework 161

Fig. 6. Sections of a workload: fill, stabilization, experiment, and drain. Presented with
an the associated utilization that this workload produced in the system.

Fig. 7. Job characteristics in a year of Edison’s real workload (darker) vs. a year of
synthetic workload (lighter). Distributions are similar.

Job Generation: The workload generator produces synthetic workloads
according to an experiment definition. The system model is chosen among those
produced by the workload model engine (Sect. 3.1). Also, the random generator
is initialized with the experiment definition’s seed. The system model selected
in the definition is combined with a random number generator to produce syn-
thetic batch jobs. Finally, the workload generator also supports the inclusion of
workflows according to the experiment definition (Sect. 3.2).

The workload generator fidelity is evaluated by modeling NERSC’s Edison
and comparing one year of synthetic workload with the system jobs in 2015. The
characteristics of both workloads are presented in Fig. 7, where the histogram
and Cumulative distribution functions (CDFs) for inter arrival time, wall clock
limit and allocated number of cores are almost identical. For runtime, there are
small differences in the histogram that barely impact the CDF.

162 G. P. Rodrigo et al.

Fig. 8. No Job pressure mechanism, No
Fill: Low utilization due not enough
work.

Fig. 9. Job pressure 1.0, No Fill: Low
utilization due to no initial filling jobs.

Fig. 10. Job pressure 1.0, Fill with large
jobs: initial falling spikes.

Fig. 11. Job pressure 1.0, Fill with
small jobs: Good utilization, more sta-
ble start.

Fill and Load Mechanisms: Users of HPC systems submit a job load that fills
the systems and creates a backlog of jobs that induces an overall wait time. The
fill and load mechanisms steer the job generation to reproduce this phenomena.

The load mechanism ensures that the size of the backlog of jobs does not
change significantly. It induces a job pressure (submitted over produced work)
close to a configured value, usually 1.0. Every time a new job is added to the
workload, the load mechanism calculates the current job pressure t as P (t) =
coreHoursSubmitted
coreHoursProduced(t) where coreHoursProduced = t ∗ coresInTheSystem. If
P (t) < 1.0 new jobs are generated and also inserted in the same submit time
until P (t) ≥ 1.0. If P (t) ≥ 1.1, the submit time is maintained as reference,
but the job is discarded, to avoid overflowing the system. The effect of the load
mechanism is observed in Fig. 9, where the utilization raises to values close to
one for the same workload parameters as in Fig. 8.

Increasing the job pressure raises system utilization but does not induce the
backlog of jobs and associated overall wait time that is present in real systems.
As an example, Fig. 12a presents the median wait time of the jobs submitted in
every minute of the experiment using the load mechanism of Fig. 9. Here, the
system is utilized but the job wait time is very short, only increasing to values of
15 min for larger jobs (over 96 core hours) at the end of the stabilization period
(versus the four hours intended).

The fill mechanism inserts an initial job backlog equivalent to the experi-
ment configured overall wait time. The job filling approach guarantees that they
will not end at the same time or allocate too many cores. As a consequence, the
scheduler is able to fill gaps left when they end. Figure 10 shows an experiment
in which the fill job allocations are too big, their allocation is 33,516 cores (1/4 of
the system CPU cores count). Every time a fill job ends (t = 8, 9, 10, and 11 h),
a drop in the utilization is observed because the scheduler has to fill a large gap

ScSF: A Scheduling Simulation Framework 163

Fig. 12. Median wait time of job’s submitted in each minute. a: Job pressure 1.0,
not fill mechanism, and thus no wait time baseline is present. b: Job pressure 1.0, fill
mechanism configured to induce four hours of wait time baseline.

with multiple small jobs. To avoid this, the filling mechanism calculates a fill job
size that induces the desired overall wait time while not producing utilization
drops. Fill job size calculation is based on a fixed inter-arrival time, the capacity
of the system, and the desired wait time. Figure 11 shows the utilization of a
workload where fill jobs are calculated following such a method. They are sub-
mitted in 10 s intervals creating the soft slope in the figure. Figure 12b shows the
wait time evolution for the same workload, sustained around four hours after
the fill jobs are submitted.

Customization: The workload generator includes classes to define user job
submission patterns. Trigger classes define mechanisms to decide the insertion
times pattern, such as: periodic, alarm (at one or multiple time stamps), re-
programmable alarm), or random. The job pattern is set as a fixed jobs sequence,
or a weighted random selection between patterns. Once a generator is integrated
it is selected by setting a special string in the workflow policy field of the exper-
iment definition.

3.5 Slurm and the Simulator

ScSF uses Slurm version 14.3.8. as the scheduler of the framework. Also, as
a real scheduler, it includes the effect and interaction of mechanisms such as
priority engines, scheduling algorithms, node placement algorithms, compute
nodes management, job submissions system, and scheduling accounting. Finally,
Slurm includes a simulator to use it on top of an emulated version of an HPC
system, submitting a trace of jobs to it, and accelerating its execution. This tool
enables experimentation without requiring the use of a real HPC system.

The architecture of Slurm and its simulator is presented in Fig. 13. The Slurm
daemons (slurmctld and slurmd) are wrapped by the emulator. Both daemons are
dynamically linked with the sim func library that adds the required functions to

164 G. P. Rodrigo et al.

Fig. 13. Slurm simulator architecture.
Slurm system calls are replaced to
speed-up execution. Scheduling is syn-
chronized. Job submission is emulated.

Fig. 14. Simulated time running during
RPC communications delay resource de-
allocation compromising backfilling’s job
planning and Job B start.

support the acceleration of Slurm’s execution. Also, slurmd is compiled including
a resource and job emulator. On the simulator side, the sim mgr controls the
three core functions of the system: execution time acceleration, synchronization
of the scheduling processes, and emulation of the job submission. These functions
are described below.

Time acceleration: In order to accelerate the execution time, the simulator
decouples the Slurm binaries from the real system time. Slurm binaries are
dynamically linked with the sim func library, replacing the time, sleep, and
wait system calls. Replaced system calls use an epoch value controlled by the
time controller. For example, if the time controller sets the simulated time to
1485551988, any calls to time will return 1485551988 regardless of the system
time. This reduces the wait times within Slurm i.e., if the scheduling is config-
ured to run once every 30 simulated second, it may run once every 300 ms in
“real” time.

Scheduling and simulation synchronization: The original simulated time
pace set by CSCS produces small speed ups for large simulated systems. How-
ever, increasing the simulated time pace triggers timing problems because of the
Remote Procedure Calls (RPC) in Slurm daemon communications.

Increasing the simulation pace has different negative effects. First, timeouts
occur triggering multiple RPC re-transmissions degrading the performance of
Slurm and the simulator. Second, job timing determinism degrades. Each time a
job ends, slurmd sends an RPC notification to slurmctld, and its arrival time is
considered the job end time. This time is imprecise if the simulated time increases
during the RPC notification propagation. As a consequence, low utilization and
large job (e.g. allocating 30% of the resources) starvation occurs. Figure 14 details
this effect - a large JobB is to be executed after JobA. However, JobA resources
are not considered free until two sequential RPC calls are completed (end of job

ScSF: A Scheduling Simulation Framework 165

and epilogue), lowering the utilization as they are not producing work. The later
resource release also disables JobB from starting but does not stop the jobs that
programmed are to start after JobB . As the process repeats, the utilization loss
accumulates and JobB is delayed indefinitely.

The time controller component of the sim mgr was modified to control a
synchronization crossbar among the Slurm functions that are relevant to the
scheduling timing. This solves the described synchronization problems by con-
trolling the simulation time and avoiding its increase while RPC calls are trav-
eling between the Slurm daemons.

Job submission and simulation: The job submission component of the
sim mgr emulates the submission of jobs to slurmctld following the workload
trace of the simulation. Before submitting each job, it communicates the actual
runtime (different from the requested one) to the resource emulator in slurmd.

The daemon, slurmctld, notifies slurmd of the scheduling of a job. The emu-
lator uses the notification arrival time and job runtime (received from sim mgr)
to calculate the job end time. When the job end time is reached, the emulator
forces slurmd to communicate that the job has ended to slurmctld. This process
emulates the job execution and resource allocation.

3.6 Workload Analyzer

ScSF includes analysis tools to extract relevant information across repetitions of
the same experiment or to plot and compare results from multiple experimental
conditions.

Value Extraction and Analysis: Simulation results are processed by the
workload analyzer. The jobs in the fill, stabilization, and drain phases (Fig. 6)
are discarded to extract (1) for all jobs: wait time, runtime, requested runtime,
user accuracy (estimating the runtime), allocated CPU cores, turnaround time,
and slowdown grouped by jobs sizes. (2) for all and by type of workflow: wait
time, runtime, turnaround time, and stretch factor. (3) overall: median job wait
time and mean utilization for each minute of the experiment.

The module performs different analyses for different data types. Percentile
and histograms analyze the distribution and trend of the jobs’ and workflows’
variables. Integrated utilization (i.e., coreHoursProduced/coreHoursExecuted)
measures the impact of the scheduling behavior on the system usage.

Finally, customized analysis modules can be added to the analysis pipeline.

Repetitions and Comparisons: Experiments are repeated with different ran-
dom seeds to ensure that observed phenomena are not isolated occurrences.
The workload analysis module analyzes all the repetitions together, merging the
results to ease later analysis. Also, experiments might be grouped if they differ
only in one experimental condition. The analysis module studies these groups
together to analyze the effect of that experimental condition on the system.

166 G. P. Rodrigo et al.

For instance, some experiments are identical except for the workflow submission
method, which affects the number of workflows that get executed in each exper-
iment. The module calculates compared workflow turnaround times correcting
any possible results skew derived from the difference in the number of executed
workflows.

Result Analysis and Plotting: Analysis results are stored in the database
to allow review of visualization using the plotter component. This component
includes tools to plot histograms (Fig. 7), box plots, and bar charts on the median
of job’s and workflow’s variables for one or multiple experiments (Fig. 17). It also
includes tools to plot the per minute utilization (Figs. 8, 9, 10 and 11) and per
minute median job wait time in an experiment (Figs. 12a and b), which allows
us to observe dynamic effects within the simulation. Finally, it also include tools
to extract and compare utilization values from multiple experiments.

4 ScSF Case Study

In this section, we describe a case study that demonstrates the use of ScSF. The
case study implements and evaluates a workflow-aware scheduling algorithm [17].
In particular, we model a real HPC system, and implement a new algorithm in
the Slurm simulator. Also, we detail a distributed deployment of ScSF for our
evaluation and present examples of the results to illustrate the scalability of the
ScSF framework.

4.1 Tuning the Model

Experiments to evaluate a scheduling algorithm require workload and system
models that are representative. NERSC’s Edison is chosen as the reference sys-
tem. Its workload is modeled by processing almost four years of its jobs. In
ScSF, a Slurm configuration is defined to imitate Edison’s scheduler behavior,
including - Edison’s resource definition (number of nodes and hardware con-
figuration) FCFS, backfilling with a depth of 50 jobs once every 30s, and a
multi-factor priority model that takes into account age (older-higher) and job
geometry (smaller-higher). The workload tuning is completed by running a set of
experiments to explore different job pressure and filling configurations to induce
a stable four hour wait time baseline (observed in Edison).

4.2 Implementing a Workflow Scheduling Algorithm in Slurm

As presented in Sect. 3.2, workflows are run as pilot jobs (i.e., single job over-
allocation resources) or chained jobs (i.e., task jobs linked by dependencies sup-
porting long turnaround times). However, the workflow-aware scheduling [17] is
a third method that enables per job task resource allocation, while minimizing
the intermediate wait times.

ScSF: A Scheduling Simulation Framework 167

The algorithm integration required us to modify Slurm’s jobs submission
system, and include some actions on the job queue before and after scheduling
happens. First, sbatch, Slurm’s job submission RPC, and the internal job record
data structure are extended to support the inclusion workflow manifests in jobs.
This enables workflow-aware jobs to be present as pilot jobs attaching a workflow
description (manifest).

Second, queue transformation actions are inserted before and after FCFS and
backfilling act on it. Before they act, workflow jobs are transformed into task jobs
but keeping the original job priority. When the scheduling is completed, original
workflow jobs are restored. As a consequence, workflow task jobs are scheduled
individually, but, as they share the same priority, the workflow intermediate wait
times are minimized.

4.3 Experiment Setup

The workflow-aware scheduling approach is evaluated by comparing its effect on
workflow turnaround time and system utilization with the pilot and chained job
ones. Three versions (one per approach) of experiments are created to compare
the performance of the three approaches under different conditions.

Table 2 shows the three sets the experiments created. Workflows in set0,
exhibit different structures to study their interaction with different approaches.
Set1 studies the effect of the approaches on isolated workflows and includes four
real (Montage, Sipht, Cybershake, FloodPlain [4]) and two synthetic workflows
submitted with different intervals (0, 1/12h, 1/6h, 1/h, 2/h, 6/h). Set2 studies
the effect of the approaches on systems increasing dominated by workflows. It
includes the same workflows as set1 submitted with different workflow shares
(1%, 5%, 10%, 25%, 50%, 75%, 100%). In total, they sum 1728 experiments
equivalent to 33 years of simulated time.

Experiments are created and stored using a Python class that is initialized
with all the experiment parameters. The manifest files for the synthetic workflows
are created manually following the framework’s manifest JSON format. Real
workflow manifests are created using a workflow generator from the Pegasus
project [4] that captures the characteristics of science workflows. ScSF includes
a tool to transform the output of the workflow generator into the expected JSON
format.

Table 2. Summary of experiments run in ScSF.

Set Wf. Submit #Wfs. Wf. Pres. #Pres. Sim. t. #Reps #Exps Agg. Sim. t.

Set0 aware/single/multi 18 Period 1 per wf. 7d 6 324 2268d

Set1 aware/single/multi 6 Period 6 7d 6 648 4536d

Set2 aware/single/multi 6 Share 7 7d 6 756 5292d

168 G. P. Rodrigo et al.

4.4 Running Experiments at Scale

We run 1728 individual experiments that sum 33 years of simulated time. Esti-
mating an average speedup of 10×, experiment simulation would require more
than three years of real time. In order to reduce the real time required to com-
plete this work, simulation are parallelized to increase throughput.

As presented in Sect. 3, the minimum experiment worker unit is composed by
an instance of the experiment runner component and a VM containing the Slurm
simulator. As shown in Fig. 15, parallelization is achieved by running multiple
worker units concurrently. To configure the infrastructure, Virtualbox’s hyper-
visor is deployed on six compute nodes at the Lawrence Berkeley National Lab
(LBNL) and 17 compute nodes at Ume̊a University (UMU). 161 Slurm Simula-
tor VMs are deployed across the two sites. Each VM allocates two cores, four GB
of RAM, and 20 GB of storage. Each compute node has different configurations
and thus, the number of VMs per host and their performance is not uniform,
e.g., some compute nodes only host two VMs, and some host 15.

All the experiment runners run in a single compute node at LBNL (Ubuntu,
12 cores × 2.8 GHz, 36 GB RAM). However, VMs are not exposed directly
through their host NIC and required access from the control node over sshuttle
[3], a VPN over ssh software that does not required installation on the des-
tination host. Even if both sites are distant, the network is not a significant
source of problem since the connection between UMU and LBNL traverses two
high performance research networks, Nordunet (Sweden) and ESnet (EU and
USA). Latency is relatively low (170–200 ms), data-rate is high (firewall capped
≈100 Mbits/s per TCP flow), and stability consistent.

4.5 Experiment Performance

The experiments wall clock time is characterized as a function of the experiment
setup to understand the factors driving simulation speed-up. Figure 16 shows
the experiments median runtime of one experiment set, grouped by scheduling
method, workflow type, and workflow presence.

For the same simulated time, simulations run longer under the chained job
and workflow-aware approaches compared to pilot job. Also, for the chained

Fig. 15. Schema of the distributed execution environment: VMs containing the Slurm
Simulator are distributed in hosts at LBNL and UMU. Each VM is controlled by an
instance of the experiment runner in the controller host at LBNL.

ScSF: A Scheduling Simulation Framework 169

Fig. 16. Median wall clock time for a set of simulation. More complex workloads (more
workflows, large workflows) present longer times. Pilot job approach presents shorter
times. Simulation time is 168 h (7 days).

job and aware approaches, experiments run longer time if more workflows are
present, or the workflows include more task jobs. As individual experiments are
analyzed, longer runtimes, and thus smaller speed-ups, appear to be related to
longer runtime of the scheduling passes because of higher numbers of jobs in the
waiting queue.

In summary, simulations containing numbers of jobs similar to real system
workloads present median runtimes between 10 to 12 h for 7 days (168 h) of
simulated time, or 15× speedup. Speed-up degrades as experiments become more
complex. Speed-ups under 1 are observed for experiments whose large job count
would be hard to manage for a production scheduler (e.g., Montage-75%). The
limiting factor of the simulations speed-up is the scheduling runtime, which, in
this case study, depends on the number of jobs in the waiting queue.

Fig. 17. Comparison of median workflow runtime on different experimental conditions
as speed-up (left), and absolute numbers (right). Data of workflows in 108 experiments.

170 G. P. Rodrigo et al.

4.6 Analyzing at Scale

The analysis of the presented use case required synthesis of the results of 1278
experiments into meaningful, understandable metrics. The tools described in
Sect. 3.6 supported this task.

As an example, Fig. 17 condenses the results of 324 experiments (six repe-
titions per experiment setting): median workflow runtime speed up (left) and
value (right) observed for Cybershake, Sipht, and Montage, for different work-
flow shares and scheduling approaches. Results show that chained job workflows
support much longer runtime in all cases, while aware and pilot jobs workflows
show shorter (than chained job workflows) but similar runtimes to each other.

5 Discussion

The initial design goal of ScSF was functionality, not scale, and its first deploy-
ment included four worker VMs. As the number experiments and simulation
time expanded for our case study (33 years), the resource pool size had to be
increased (161 VMs and 24 physical hosts), even expanding to resources in dis-
tributed locations.

Loss-less experiment restart is needed: As the framework runs longer and
on more nodes, the probability for node reboots becomes higher. In the months
of experiments our resources required rebooting due to power cuts, hypervisor
failures, VM freezes, and system updates (e.g. we had to update the whole cluster
to patch the Dirty Cow exploit [1]).

Our goal in ScSF has been to keep the design light-weight and easily portable.
Thus, rebooting a worker host means that work in the VMs are lost. Also, if the
controller host is rebooted, all the experiment runners are stopped and the work
in the entire cluster is lost. For some of the longest experiments, the amount
of work lost accounts in days of real time. In the future, we need to consider
the trade-offs and ScSF should include support graceful pause and restart so
resource reboots do not imply loss of work. This would be provided by a control
mechanism to pause-restart worker VMs. Also, the experiment runner function-
ality should be hosted in the worker VM to be paused with the VM, unaffected
by any reboot.

Loaded systems network fail: In our experiments, surges of experiment
failures appeared occasionally. Multiple VMs would become temporarily un-
responsive to ssh connections when their hypervisor was heavily loaded. Sub-
sequently, the experiment runner would fail to connect to the VM, and the
experiment was considered failed. Thus, saturated resources are unreliable. All
runner-VM communications were hardened, adding re-trials, which reduced the
failure rate significantly.

Monitoring is important: Many types of failures impact experiments, such
as simulator or Slurm bugs, communication problems, resource saturation in the
VMs, or hypervisor configuration issues. Failures are expected, but early version

ScSF: A Scheduling Simulation Framework 171

of ScSF lacked the tools and information to quickly diagnose the cause of the
problems. Monitoring should register metadata that allows quick diagnosis of
problems. As a consequence, the logging levels were increased and a mechanism
to retrieve Slurm crash debug files was added.

The system is as weak as its weakest link: All ScSF’s data and metadata are
stored in a MySQL database hosted in the controller host. In a first experiment
run, at 80% of completed experiments the hard disk containing the database
crashed, and all experiment data was lost that included two months of work.
Currently, data is subject to periodic backups and the database is replicated.

6 Conclusions

We present ScSF, a scheduling simulation framework which provides tools to
support all the steps of the scheduling research cycle - modeling, generation,
simulation, and result analysis. ScSF is scalable, it is deployed over distributed
resources to run and manage multiple concurrent simulations and provides tools
to synthesize results over large experiment sets. The framework produces repre-
sentative results by relying on Slurm, which captures the behavior of real system
schedulers. ScSF is also modular and might be extended by the community to
generate customized workloads or calculate new analyses metrics over the results.
Finally, we improved the Slurm simulator which now achieves up to 15× simu-
lation over real time speed-ups while preserving its determinism and experiment
repeatability.

This work provides a foundation for future scheduling research. ScSF will be
released as open source, enabling scheduling scientists to concentrate their effort
on designing scheduling techniques and evaluating them in the framework. Also,
we share our experience of using ScSF to design a workflow scheduling algorithm
and evaluating it through the simulation of a large experiment set. Our case
study demonstrates that the framework is capable of simulating 33 years of real
system time in less than two months over a distributed infrastructure.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research
(ASCR) and uses resources at the National Energy Research Scientific Computing Cen-
ter, a DOE Office of Science User Facility, supported by the Office of Science of the
U.S. Department of Energy, both under Contract No. DE-AC02-05CH11231. Finan-
cial support has been provided in part by the Swedish Government’s strategic effort
eSSENCE and the Swedish Research Council (VR) under contract number C0590801
(Cloud Control). Special thanks to Stephen Trofinoff and Massimo Benini from the
Swiss National Supercomputing Centre, who shared with us the code base of their
Slurm Simulator. Also, we would like to thank the members of the DST department at
LBNL and the distributed systems group at Ume̊a University who administrated and
provided the compute nodes supporting our case study.

172 G. P. Rodrigo et al.

References

1. Dirty cow, January 2017. https://dirtycow.ninja/
2. SchedMD, January 2017. https://www.schedmd.com/
3. shuttle, January 2017. https://github.com/apenwarr/sshuttle
4. Workflowgenerator, January 2017. https://confluence.pegasus.isi.edu/display/

pegasus/WorkflowGenerator
5. Declerck, T.M., Sakrejda, I.: External Torque/Moab on an XC30 and fairshare.

Technical report, NERSC, Lawrence Berkeley National Lab (2013)
6. Feitelson, D.G.: Parallel workloads archive 71(86), 337–360 (2007). http://www.

cs.huji.ac.il/labs/parallel/workload
7. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-

tion. Cambridge University Press, Cambridge (2015)
8. Feitelson, D.G., Tsafrir, D.: Workload sanitation for performance evaluation. In:

2006 IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 221–230. IEEE (2006)

9. IBM: Platform computing - lsf, January 2014. http://www-03.ibm.com/systems/
technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html

10. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

11. Kannan, S., Mayes, P., Roberts, M., Brelsford, D., Skovira, J.: Workload Manage-
ment with LoadLeveler. IBM Corporation, Poughkeepsie (2001)

12. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: Proceedings of the
3rd International ICST Conference on Simulation Tools and Techniques (SIMU-
Tools 2010). ICST (2010)

13. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

14. Lucero, A.: Simulation of batch scheduling using real production-ready software
tools. In: Proceedings of the 5th IBERGRID (2011)

15. Rodrigo, G., Östberg, P.O., Elmroth, E., Antypass, K., Gerber, R., Ramakrishnan,
L.: HPC system lifetime story: workload characterization and evolutionary anal-
yses on NERSC systems. In: The 24th International ACM Symposium on High-
Performance Distributed Computing (HPDC) (2015)

16. Rodrigo, G., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ramakrish-
nan, L.: Towards understanding job heterogeneity in HPC: a NERSC case study.
In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 521–526. IEEE (2016)

17. Rodrigo, G.P., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: Enabling workflow-
aware scheduling on HPC systems. In: Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing, pp. 3–14. ACM
(2017)

18. Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Cirne, W., Desai,
N. (eds.) JSSPP 2014. LNCS, vol. 8828, pp. 147–167. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15789-4 9

19. Stephen Trofinoff, M.B.: Using and modifying the BSC Slurm workload simulator.
In: Slurm User Group (2015)

https://dirtycow.ninja/
https://www.schedmd.com/
https://github.com/apenwarr/sshuttle
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/sessionscheduler.html
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/978-3-319-15789-4_9

ScSF: A Scheduling Simulation Framework 173

20. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

21. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: IEEE 22nd International Symposium on
Modelling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 51–60. IEEE (2014)

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

DJSB: Dynamic Job Scheduling
Benchmark

Victor Lopez1(B), Ana Jokanovic1(B), Marco D’Amico1(B), Marta Garcia1(B),
Raul Sirvent1(B), and Julita Corbalan2(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
{victor.lopez,ana.jokanovic,marco.damico,

marta.garcia,raul.sirvent}@bsc.es
2 Universitat Politecnica de Catalunya, Barcelona, Spain

julita.corbalan@bsc.es

Abstract. High-performance computing (HPC) systems are very big
and powerful systems, with the main goal of achieving maximum perfor-
mance of parallel jobs. Many dynamic factors influence the performance
which makes this goal a non-trivial task. According to our knowledge,
there is no standard tool to automatize performance evaluation through
comparing different configurations and helping system administrators to
select the best scheduling policy or the best job scheduler. This paper
presents the Dynamic Job Scheduler Benchmark (DJSB). It is a config-
urable tool that compares performance metrics for different scenarios.
DJSB receives a workload description and some general arguments such
as job submission commands and generates performance metrics and per-
formance plots. To test and present DJSB, we have compared three differ-
ent scenarios with dynamic resource management strategies using DJSB
experiment-driven tool. Results show that just changing some DJSB
arguments we can set up and execute quite different experiments, mak-
ing easy the comparison. In this particular case, a cooperative-dynamic
resource management is evaluated compared with other resource man-
agement approaches.

Keywords: Dynamic resource management · Job scheduling
Benchmark · Performance evaluation

1 Introduction and Motivation

HPC systems are big systems with very powerful computational and communi-
cation capacities, specially designed for parallel applications with high require-
ments in terms of computation and inter-process communication. This specific
hardware makes HPC systems very expensive and complex, resulting in the
necessity of expert software systems, i.e., job schedulers to deal with the job
scheduling and resource allocation. Additionally, system administrators config-
ure and control system behaviour. An example of job schedulers used in the top
five HPC systems are SLURM [20], PBS [14], or Cobalt [9].

c© Springer International Publishing AG, part of Springer Nature 2018
D. Klusáček et al. (Eds.): JSSPP 2017, LNCS 10773, pp. 174–188, 2018.
https://doi.org/10.1007/978-3-319-77398-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77398-8_10&domain=pdf

DJSB: Dynamic Job Scheduling Benchmark 175

The complexity of HPC systems has grown with their size, as well as with the
jobs complexity. They are composed of nodes with many cores and GPUs. The
resources are shared among jobs at different levels: memory, network, etc. being
hierarchically organized. As a consequence, parallel jobs have also evolved to
hybrid programming models to fit this configuration. Most of the jobs executed
in these systems are programmed in pure MPI [4], OpenMP [8] or OmpSs [6],
or hybrid models such as MPI+OmpSS.

Job schedulers allow system administrators to configure the machine with
different partitions, policies, policy arguments, etc. Users can also configure their
job submissions with as many requirements and details as needed for a “perfect”
job execution. Job schedulers try to execute jobs as soon as possible based on
the job requirements, priorities (e.g., arrival order), and resource availability.
If resource requirements are very specific to improve execution time, that may
increase wait time, resulting in a poor global performance, i.e., slowdown. If
job requirements are flexible, jobs can start before but their execution time can
suffer variations because of sharing of resources such as network bandwidth, for
example.

Traditional approach in HPC systems is to statically allocate resources to
jobs once they are started, i.e., they are not preempted and they own these
resources until the end of their execution. This approach simplifies job manage-
ment but reduces potential performance improvements that can be achieved with
dynamic approaches. The deployment and evaluation of dynamic job scheduling
strategies is complicated and it is a normal approach for system administrators
when upgrading their systems, or starting new HPC centers, to select well known
static approaches rather than evaluating different dynamic strategies and select-
ing the one with best performance. This evaluation must be based on center
characteristics and specific workload.

The aim of this paper is to present the Dynamic Job Scheduler Benchmark
(DJSB). DJSB is a tool that evaluates how fast and efficiently a full loaded
system accommodate new resources requests, by submitting jobs that execute
real or synthetic applications in a real HPC environment. We will refer to this
ability as the “dynamicity” of an HPC system.

DJSB can be configured to deal with different job schedulers, as well as,
interactive sessions that do not use job schedulers, different job submission fre-
quencies and different application arguments such as number of tasks. Early
prototype of the benchmark has already proven its usefulness and has been used
by other research groups [7].

DJSB actual workload is based on a use case defined as a reference case in the
Human Brain Project [2]. The use case consists in a situation where there is a
big and long running job using all the resources, typically a scientific simulation,
and a new, small and short job that arrives to the system requesting a percentage
of these resources during a short period of time. In this use case, the second job
does a partial analysis of results reported by the scientific simulation. Therefore,
we will refer to the long running job as the “simulation” and to the new job as
the “analytics”.

176 V. Lopez et al.

To illustrate the potential of DJSB, we have performed three different sets
of experiments, each one including many variations concerning system size,
application size, number of applications, memory requirements, etc. We have
compared a stop&continue approach with oversubscription and a cooperative-
dynamic resource management.

To evaluate the benefits of such a dynamic environment we will present tra-
ditional performance metric slowdown but also a new synthesized metric that
combines slowdown of both jobs and tries to summarize in a single value the
dynamicity of a system. This metric is presented in Sects. 2 and 4.

The rest of the paper is organized as follows: Sect. 2 describes DJSB
tool, experimental setup and the metrics reported. Section 3 describes our
dynamic resource management execution environment. Section 4 presents evalu-
ation results comparing among the different scenarios. Section 5 presents related
work, from the point of view of benchmarks and dynamic scheduling evaluation.
Finally, Sect. 6 presents conclusions and future work.

2 DJSB: Dynamic Job Scheduler Benchmark

The purpose of the dynamic scheduling benchmark is to do an automatic perfor-
mance comparison of different solutions on pilot systems. It provides a synthetic
model of a hypothetic interactive session workload. DJSB is implemented as a
Python (configurable) script that drives application execution, monitoring, met-
ric collection and generation of performance metrics and graphs. The benchmark
is distributed under Free BSD license.

Some mock-up parallel applications are provided to represent two types of
applications: a single long running simulation and a potential in situ analysis.
The benchmark will measure the impact of one application on the other and
the decrease of their performances. The focus will be on the ability to support
dynamic scheduling policies, so I/O will be minimal.

DJSB behaviour is configured based on several configurable parts:

– General options. This component defines the global DJSB experiment. It
includes arguments such as the number of samples of applications.

– Job submission options. DJSB can be executed in systems with different
queueing systems. The basic job submission and monitoring commands can
be specified.

– Application options. Specific details for the long running simulation and
the analytics can be specified such as execution time or memory consumption.

DJSB assumes applications are previously compiled. Once it starts, it computes
reference metrics, that is, execution time of each application when running alone
based on Application options. This is the reference stage. Once references are
available, it starts the job submission based on Job submission options and
General options. This execution stage includes the re-execution of the experiment
several times to provide statistically significant measurements. Once execution
stage finishes, a performance metrics file is generated together with the plots to
make easy performance evaluation.

DJSB: Dynamic Job Scheduling Benchmark 177

2.1 General Options

Some of the most relevant general options are:

– num of samples Number of samples or repetitions. One repetition implies
one execution of the whole benchmark (simulation + analysis).

– sleep min time, sleep max time Minimum/Maximum sleep time between
each analysis in the execution stage sample.

– num of ref analysis Number of total analytics to be executed per sample
of the reference stage.

– num of dyn analysis Number of total analytics to be executed per sample
of the execution stage.

2.2 Job Submission Options

DJSB uses a job (Python) module where an API to deal with job submission and
monitoring is specified. This API supports jobs executed in an interactive session,
or submitted in a previously created reservation, together with the interaction
with job schedulers such as SLURM or LSF [21]. Commands to be implemented
in the job module are the next one (a job module template is provided):

– get submit command(self): The method must return the shell command
to submit a job. The command can be complemented by the class attributes
from the constructor, such as the total number of tasks, etc.

– get poll completion command(self, submit stdout, submit stderr):
The benchmark needs to poll the system until the job completion occurs.
This command returns a shell command to test the condition.

– get {suspend, resume} command: To be executed when suspending or
resuming a job.

2.3 Application Options

DJSB is developed to support different applications but the results presented
in this paper are based on different configurations of the STREAM benchmark
since it was a requirement of the Human Brain Project [2] in its previous stage.

– A single, long running, simulation job. The preferred mock-up appli-
cation will be based on a version of the STREAM benchmark written in
Fortran/C [16]. Parallel versions using MPI only and MPI plus OpenMP
(based on parallel loop) are provided. The STREAM benchmark is a simple
synthetic benchmark program that measures sustainable memory bandwidth
(in MB/s) and the corresponding computation rate for simple vector kernels.

– Application analytics. For analytics we use the same approach and applica-
tion. We use a small version of STREAM executed periodically in the middle
of the big STREAM and requesting part of the resources used by the big one.

178 V. Lopez et al.

Arguments to provide detailed application descriptions are:

– total tasks Number of tasks (MPI processes) for the specific application.
– cpus per task Number of CPUs per task for the application. Also, number

of OpenMP threads per MPI process.
– same nodes as sim Only valid for the analysis application. If true, the anal-

ysis will be submitted in the same nodes as the simulation, as long as the job
interface allows it.

– total memory Total amount of memory to be used for the application.
– exec time Estimated execution time of each instance of the application.
– node host names List of nodes where the application is allowed to run.

The list is forwarded to the job module. If the list is empty, the job scheduler
should decide the allocation (default option).

– command Path to the application binary.

2.4 Application Performance Metrics

During reference stage, DJSB collects reference execution time per application,
both simulation and analytics. This reference time is computed as the average
of the several executions performed at the reference stage. During the execution
stage, traditional scheduling metrics are computed such as wait time, response
time, or slowdown.

1. Wait time - the time elapsed between the job submission and the start of the
job.

2. Execution time - the time elapsed between the start of the application and
its completion.

3. Response time - the time elapsed between the job submission and the job
completion (wait time + execution time).

4. Slowdown - the ratio between the response time when the application is exe-
cuted in a workload, i.e., sharing resources with other applications, T sharing,
and the execution time of the application executed alone on the exclusive
resources, T alone

REF , that is collected in reference stage.

slowdown =
T sharing

T alone
REF

(1)

Along with these metrics, DJSB computes application weights, which are
equal to the resources the application was occupying during its execution mul-
tiplied by the execution time of the application. The benchmark calculates the
weights for each application and for each scenario. The formulae for calculat-
ing the weights for each specific scenario are given in the Sect. 4 along with the
description of the scenarios.

DJSB: Dynamic Job Scheduling Benchmark 179

2.5 Workload Metrics

Based on individual application metrics, traditional workload metrics are pro-
vided such as average wait time, average slowdown and average response time,
along with specific DJSB metric such as the dynamicity. The dynamicity will
greatly depend on the system capability to manage and run different jobs at the
same time. For calculating dynamicity, DJSB uses weighted geometric mean, sug-
gested in various works [13,15,17] to be used for comparing among the systems
when using relative values such as slowdown. The more capable the system is to
accommodate the applications without high performance penalty, the dynam-
icity should be higher. Therefore, we use inverse weighted geometric mean of
the applications slowdowns. For a use case workload, consisting of a simulation
and an analytics, calculating the dynamicity of a specific system, i.e., scenario
reduces to calculating the formula 2. The weights ws and wa are for simula-
tion and analytics, respectively, and are calculated for each scenario differently.
The slowdowns and slowdowna are the slowdowns of simulation and analytics,
respectively. Thus, we will get a dynamicity value for each scenario, which allows
us to compare different scenarios.

dynamicity = e−ws·ln slowdowns+wa·ln slowdowna
ws+wa (2)

3 Cooperative Dynamic Resource Management

Dynamic scheduling has been a research topic for many years. In this section
we describe the execution environment used in this work, as well as, dynamic
resource management scenario that we will use in the experiments.

Figure 1 shows the main components of our execution environment. The main
characteristic of our execution environment is that the job scheduler and the
resource manager, in this case SLURM, cooperate with an additional runtime
library, Dynamic Load Balancer (DLB), that helps the system to exploit mal-
leability in an efficient way. One of the main components of DLB is Dynamic
Resource Ownership Manager (DROM).

The execution environment is composed by the following software compo-
nents:

– Job scheduler i.e., SLURM controller. SLURM is composed of two com-
ponents, the SLURM controller and a SLURM daemon per node. The job
scheduler is implemented by SLURM controller, it is in charge of job submis-
sions. It receives job requirements and it decides when and where a job can
be started based on its requirements, scheduling policy and system status.

– Node manager, i.e., SLURM daemon extended with DLB-DROM
component. Each Node manager is aware of the number of jobs and pro-
cesses being executed in the node. The Node manager provides resource man-
agement services offered by SLURM extended with DLB-DROM API for pro-
cess ownership management. DLB ownership mechanism gives a possibility

180 V. Lopez et al.

Fig. 1. Cooperative dynamic resource management

for a flexible resource allocation, where processing cores can be used by pro-
cesses that do not own them during the cores’ idle periods.

– Programming model libraries, i.e., MPI/OpenMP/OmpSs. These
three programming models are transparently supported. Malleability is eas-
ily supported in OpenMP [8] and OmpSs [11]. Malleability has been also
proposed for MPI in different contexts: Virtual malleability was proposed
for MPI in [12,18] and it is also included MPI-3. However, even having
these proposals, it is a normal practice to exploit the malleability by using
a second level of parallelism and using OpenMP in it. DLB-DROM supports
MPI+OpeMP/OmpSs or only OmpSs as indicated in Fig. 1.

Cooperative-dynamic resource management scenario in case of our
simulation-analytics workload works as follows. When the analytics arrives to
the system, the simulation resources are shrunk to accommodate the analytics
on as much resources as it requests. The simulation resources are practically lent
to analytics for some period of time. This dynamic redistribution of resources
among simulation and analytics is done by our SLURM-DROM environment. As
soon as analytics finishes its execution, the resources are returned to simulation,
and the simulation is expanded, using all of its resources. The same scenario
repeats when the new analytics arrives to the system. Section 4 presents the
explained scenario along with the other evaluated scenarios and gives the graph-
ical view in the Fig. 2.

DJSB: Dynamic Job Scheduling Benchmark 181

4 Evaluation

4.1 Scenarios

Three different scenarios are used to evaluate the dynamicity of the system.
Dynamicity is defined as the capacity to react to workload changes and reallocate
resources to running jobs in order to minimize expected slowdown. Figure 2 shows
these three scenarios.

– Oversubscription. This is a scenario where the simulation has been previ-
ously started by the scheduler and the analytics jobs are submitted to the
same job reservation, thus positively reducing the wait time to zero, but shar-
ing resources with the simulation. The sharing of resources is fully controlled

Time

R
es

ou
rc

es

Simulation
Analytics

Time

R
es

ou
rc

es

Time

R
es

ou
rc

es

stop continue

sh
rin

k

ex
p

an
d

sh
rin

k

ex
p

an
d

sh
rin

k

ex
p

an
d

stop continue stop continue

Oversubscription

Stop&Continue

Dynamic
resource management

Fig. 2. Three scenarios: oversubscription, stop&continue, and dynamic resource man-
agement. A single execution of simulation is performed, while multiple instances of
analytics are submitted to the same resources over time of simulation’s execution.

182 V. Lopez et al.

by operating system. This is untypical scenario in HPC environment and it
is enabled by configuring SLURM to force resource sharing. Typical scenario
would be the one where each job waits in the queue until enough resources
are available. Since analytics jobs need to be executed along with simulation,
the typical scenario is not applicable in this use case.

– Stop&Continue. When the analytics job is submitted, the already run-
ning simulation job is stopped. The analytics job starts without waiting for
resources. The old job remains in memory. This is not a problem in case the
memory is not a critical resource. The overhead in this scenario comes from
the time required to stop/resume processes and from the memory that may
be overloaded. We have used SLURM’s [20] suspend/resume mechanism for
this scenario.

– Cooperative-Dynamic Resource Management. Scenario described in
the previous section.

4.2 Configurations

Configuration parameters of DJSB benchmark are given in Table 1. Configura-
tion parameters for simulation and analytics are given in Table 2.

Table 1. DJSB configuration parameters

Argument or module Value

Number of samples 3

Number of simulation runs per sample 1

Number of analytics runs per sample (reference stage) 2

Number of analytics runs per sample (execution stage) 1, 2, 4, and 6

Table 2. Simulation and analytics configuration parameters

Argument Simulation Analytics

Duration 5min 10 s

Job size 512 or 1024 CPUs 50% of simulation size

Tasks per node 4 2

Memory per task 1GiB, 4 GiB and 5 GiB 50 MiB

OpenMP threads 4 per task 4 per task

DJSB: Dynamic Job Scheduling Benchmark 183

4.3 Metrics

For evaluating the results we will use slowdown and dynamicity, already
explained in the Sect. 2. Here we give the formulae for calculating weights for
simulation and analytics for each of the scenarios. We use the following notation:

– Ns
CPUS - Number of CPUs used by simulation

– Na
CPUS - Number of CPUs used by analytics

– T scenario
s - Execution time of simulation for a given scenario

– T scenario
a - Execution time of analytics for a given scenario

– na - Number of analytics runs during a single simulation execution

In case of Oversubscription scenario DJSB uses the following formulae:

woversubs
s = Ns

CPUS · T oversubs
s − 1

2
·Na

CPUS · na · T oversubs
a (3)

woversubs
a =

1
2
·Na

CPUS · T oversubs
a (4)

In (3) and (4) the term 1/2 means we assume CPU time is equally divided among
simulation and analytics during oversubscription.

In case of Stop&Continue scenario DJSB uses the following formulae:

wstopcont
s = Ns

CPUS · (T stopcont
s − na · T stopcont

a) (5)

wstopcont
a = Na

CPUS · T stopcont
a (6)

In case of Dynamic scenario DJSB uses the following formulae:

wdynamic
s = Ns

CPUS · T dynamic
s −Na

CPUS · na · T dynamic
a (7)

wdynamic
a = Na

CPUS · T dynamic
a (8)

4.4 Results

In order to show the usefulness of DJSB, we have performed a set of real exper-
iments on the local, MareNostrum supercomputer [3]. MareNostrum consists of
3098 computing nodes, with 16 processing cores per node. For our experiments
we requested the computing nodes with 32 GB of main memory per node.

We have evaluated the impact of the following parameters on the performance
of the simulation, the analytics and the system:

– The number of the analytics jobs
– Memory per task of simulation
– The size of the system

184 V. Lopez et al.

Figure 3(a) shows that slowdown of simulation increases as the number of
analytics that it shares resources with increases. The least impact is in the case
of dynamic scenario – at most 20% of performance loss. The highest impact on
simulation’s performance is in the case of oversubscription scenario, up to 20%
worse than in the case of stop&continue, and up to 30% worse than in case of
dynamic scenario. As Fig. 3(b) shows, the analytics job is the most impacted
in the case of oversubscription up to 214%. It is the least impacted in the case
of stop&continue scenario, as the simulation is stopped during its execution
and the total request for memory per node by both applications is less than
15% of the total node memory. Dynamic scenario leads to up to 104% loss of
analytics performance. We present analytics results for each of the experiments
with different number of analytics (x-axis), but as expected, the analytics does
not change performance depending on how much instances of analytics have
been run. We present average of all the analytics run within a single experiment.
Regarding the system dynamicity, Fig. 3(c) shows that as number of analytics
increases in the workload in general the system is less capable to mange the load
in an effective way. In particular, dynamicity in case of oversubscription goes as

Fig. 3. Impact of number of analytics on: (a) slowdown of the simulation, (b) slowdown
of the analytics, and (c) the dynamicity of the system. System size 1024 CPUs, i.e., 64
computing nodes. Total memory per node is 32 GB. Simulation job requests 1024 CPUs.
Analytics job requests 50% of simulation size. Total memory per node requested by
simulation is 4 GiB. Total memory per node requested by analytics is 100MiB. Number
of analytics per simulation run is indicated at x-axis.

DJSB: Dynamic Job Scheduling Benchmark 185

Fig. 4. Impact of number of analytics on: (a) slowdown of the simulation, (b) slowdown
of the analytics, and (c) the dynamicity of the system. System size 1024 CPUs, i.e.,
64 computing nodes. Total memory per node is 32 GB. Simulation job requests 1024
CPUs. Analytics job requests 50% of simulation size. Total memory per node requested
by simulation is 16 GiB. Total memory per node requested by analytics is 100MiB.
Number of analytics per simulation run is indicated at x-axis.

low as 62%, the highest is in case of stop&continue – at least 79%, and in the
case of dynamic, the dynamicity is at least 74%.

Further we configured the benchmark, i.e., the simulation options to request
more memory. The total memory requested by simulation and analytics per
node was more than 50% of total node memory. Figure 4 shows the same set of
experiments in the case of higher memory demand. Regarding the slowdowns of
the application, the simulation at most 20% more impacted when its demand for
memory is higher, whereas, analytics suffers significant impact of almost a double
performance loss comparing to the previous set of experiments. The dynamicity
plot shows that the impact of increase in memory requirements by simulation
makes system less capable to deal with the new coming applications. The dynam-
icity goes as low as 52%, 63% and 49%, for oversubscription, stop&continue and
dynamic scenario, respectively. While dynamic scenario might be good for the
system with computation-intensive applications, in case of dominantly memory-
intensive applications, such as STREAM, the dynamic resource management
does not bring better performance than oversubscription scenario.

186 V. Lopez et al.

Fig. 5. Impact of number of analytics on: (a) slowdown of the simulation, (b) slowdown
of the analytics, and (c) the dynamicity of the system. System size 512 CPUs, i.e.,
32 computing nodes. Total memory per node is 32 GB. Simulation job requests 512
CPUs. Analytics job requests 50% of simulation size. Total memory per node requested
by simulation is 16 GiB. Total memory per node requested by analytics is 100 MiB.
Number of analytics per simulation run is indicated at x-axis.

Finally, we configured benchmark to test the smaller system size, i.e., 512
CPUS. Memory request is the same as in Fig. 4. The same set of experiments is
performed in this case, as well. As we can see in the Fig. 5 with the change of
system size, the behavior of the system with respect to slowdown of individual
applications and dynamicity of the system remains the same.

5 Related Work

DJSB benchmark is a novel contribution in the literature, proposing a tool and
new metrics for evaluating what we defined as the dynamicity of an HPC system.

Typical benchmarks tend to evaluate performance of a HPC systems by
launching and measuring a set of applications’ performance executed in iso-
lation. Those performances are related to the application, that usually stresses
only some component of the system, like processors, memory hierarchy and net-
work. Some examples are the HPC Challenge Benchmark [1] or the benchmark
used by Top500 [5], Linpack [10].

DJSB: Dynamic Job Scheduling Benchmark 187

The ESP Benchmark [19] is an approach for evaluating HPC performance.
It evaluates system utilization and effectiveness by executing a medium length
workload of 82 jobs, that varies in type of applications and requested resources,
from a small job to jobs that take all system resources. With this approach, ESP
permits to measure the efficiency of the system evaluating scheduling, and the
system utilization. Our approach, DJSB permits, not only running diverse appli-
cations, but configuring differently the same applications in terms of memory
requirements, application size, duration, etc. It evaluates the impact of different
dynamic resource management approaches on each application individually, as
well as the overall dynamicity of the system.

6 Conclusions and Future Work

This paper presents DJSB, a tool targeted to evaluate HPC systems using dif-
ferent schedulers, applications characteristics and submission arguments. DJSB
is an experiment-driven tool for HPC systems that, based on its configuration,
executes a reference stage to collect reference performance metrics and later
on executes the described workload. Workload description can be more or less
specific, resulting in a fixed workload or something more variable. DJSB auto-
matically collects performance metrics for applications and generates perfor-
mance metric summaries and plots to make easy the comparison between sce-
narios. To illustrate the potential of DJSB, we have performed three different
sets of experiments, each one including many variations concerning system size,
application size, memory size, number of applications, etc. We have compared
a stop&continue approach compared with oversubscription and a cooperative-
dynamic resource management. Our experiments show that DJSB allows for
an easy comparison of the systems that use different resource management
approaches.

As future work, DJSB could be expanded to support other use cases, different
from the scientific simulation and analysis scenario, for instance by accepting
generic workloads.

Acknowledgments. This work is supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and
Technology (project TIN2015-65316-P), by the Generalitat de Catalunya (grant 2014-
SGR-1051), by the European Union’s Horizon 2020 research and innovation program
under grant agreement No. 720270 (HBP SGA1).

References

1. HPC Challenge Benchmark website. http://icl.cs.utk.edu/hpcc/
2. The Human Brain Project. https://www.humanbrainproject.eu/
3. MareNostrum Supercomputer. https://www.bsc.es/discover-bsc/the-centre/

marenostrum
4. Message Passing Interface Forum. http://www.mpi-forum.org/

http://icl.cs.utk.edu/hpcc/
https://www.humanbrainproject.eu/
https://www.bsc.es/discover-bsc/the-centre/marenostrum
https://www.bsc.es/discover-bsc/the-centre/marenostrum
http://www.mpi-forum.org/

188 V. Lopez et al.

5. Top500 website. https://www.top500.org/
6. Barcelona Supercomputing Center: The OmpSs Programming Model. https://pm.

bsc.es/ompss
7. Clauss, C., Moschny, T., Eicker, N.: Dynamic process management with allocation-

internal co-scheduling towards interactive supercomputing. In: Proceedings of the
1st Workshop Co-Scheduling of HPC Applications, January 2016

8. Dagum, L., Enon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

9. Desai, N.: Cobalt: an open source platform for HPC system software research. In:
Edinburgh BG/L System Software Workshop (2005)

10. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurr. Comput. Pract. Exp. 15(9), 803–820 (2003)

11. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173–193 (2011)

12. El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Malleable iterative
MPI applications. Concurr. Comput. Pract. Exp. 21(3), 393–413 (2009)

13. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to
summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

14. Henderson, R.L.: Job scheduling under the portable batch system. In: Feitelson,
D.G., Rudolph, L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 279–294. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60153-8 34

15. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (2015)

16. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

17. Smith, J.E.: Characterizing computer performance with a single number. Commun.
ACM 31(3), 1202–1206 (1988)

18. Utrera, G., Tabik, S., Corbalan, J., Labarta, J.: A job scheduling app-
roach for multi-core clusters based on virtual malleability. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp.
191–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32820-
6 20

19. Wong, A.T., Oliker, L., Kramer, W.T., Kaltz, T.L., Bailey, D.H.: ESP: a system
utilization benchmark. In: ACM/IEEE 2000 Conference on Supercomputing, p. 15.
IEEE (2000)

20. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

21. Zhou, S., Zheng, X., Wang, J., Delisle, P.: Utopia: a load sharing facility for large,
heterogeneous distributed computer systems. Softw. Pract. Exp. 23(12), 1305–1336
(1993)

https://www.top500.org/
https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
https://doi.org/10.1007/3-540-60153-8_34
https://doi.org/10.1007/978-3-642-32820-6_20
https://doi.org/10.1007/978-3-642-32820-6_20
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Author Index

Allcock, William 1

Corbalan, Julita 174

D’Amico, Marco 174
de la Torre, Luis 103

Elmroth, Erik 152

Fan, Yuping 1
Foran, David J. 83
Foster, Ian 83
Friese, Ryan D. 103

Garcia, Marta 174

Halappanavar, Mahantesh 103

Jokanovic, Ana 174
Jung, Eun-Sung 83

Keller, Axel 132
Kerbyson, Darren J. 103
Kettimuthu, Rajkumar 83
Klusáček, Dalibor 25

Lan, Zhiling 1
Lelong, Jérôme 43

Lohrmann, Erich 122
Lopez, Victor 174
Lukić, Zarija 122

Morozov, Dmitriy 122
Müller, Juliane 122

N’takpé, Tchimou 62

Östberg, Per-Olov 152

Parák, Boris 25
Parashar, Manish 83

Ramakrishnan, Lavanya 152
Reis, Valentin 43
Rich, Paul 1
Rodrigo, Gonzalo P. 152

Sathanur, Arun V. 103
Schram, Malachi 103
Sirvent, Raul 174
Suter, Frédéric 62

Trystram, Denis 43

Wang, Daihou 83

	Preface
	Organization
	Contents
	Experience and Practice of Batch Scheduling on Leadership Supercomputers at Argonne
	1 Introduction
	2 Mira: The 48-Rack Blue Gene/Q
	3 ALCF Goals and Constraints
	3.1 Policy and Mission Constraints

	4 Description of the Current Cobalt Scheduling Algorithm
	4.1 Negative Accounts and Overburn
	4.2 Big Run Mondays
	4.3 Interactions with User Behavior

	5 Mira Log Analysis and Key Observations
	5.1 Queues
	5.2 Users
	5.3 Exit Codes
	5.4 Modes
	5.5 Co-analysis on RAS and Job Logs
	5.6 Cycles
	5.7 Account

	6 Upcoming Challenges at Argonne
	6.1 Multi-scheduling
	6.2 On-Demand or Deadline Sensitive Computing
	6.3 High Throughput Computing (HTC) Workloads
	6.4 Complex Domain Specific Software Stacks
	6.5 Coordinated Services and Access to Remote Data
	6.6 Workflows

	7 Conclusions
	References

	Analysis of Mixed Workloads from Shared Cloud Infrastructure
	1 Introduction
	2 System Description
	2.1 Physical Clusters
	2.2 Resource Managers
	2.3 Operational Constraints and Policies

	3 Workload Description
	3.1 Main Characteristics of Cloud VMs and Grid Jobs
	3.2 Infrastructure Utilization by Cloud and Grid Workloads
	3.3 User-Oriented View of the Workloads
	3.4 Maintenance Periods

	4 Optimization Criteria Used in the System
	4.1 Grid Optimization Criteria
	4.2 Cloud Optimization Criteria
	4.3 Global Criteria

	5 Open Problems
	5.1 Advanced VM-Packing and Adaptive Re-scheduling
	5.2 Resource Reclaiming
	5.3 Fair-Sharing in Cloud
	5.4 Load-Balancing

	6 Workload Formatting and Conclusion
	References

	Tuning EASY-Backfilling Queues
	1 Introduction
	2 Related Works
	2.1 Scheduling Heuristics in HPC Platforms
	2.2 EASY
	2.3 Data-Aware Resource Management

	3 Problem Setting
	3.1 System Description
	3.2 EASY Backfilling
	3.3 Scheduling Metric
	3.4 Problem Description

	4 Experimental Protocol
	4.1 Statistical Approach
	4.2 Simulation Method and Testbed

	5 Primary and Backfilling Queues
	5.1 Maximum and Average Cost
	5.2 Comparing Backfilling Policies

	6 Queue Threshold
	6.1 Thresholding and Risk

	7 Experimental Validation
	7.1 Generalization Protocol
	7.2 Workload Logs
	7.3 Empirical Generalization Results
	7.4 Generalization with T=20h

	8 Conclusion
	References

	Don't Hurry Be Happy: A Deadline-Based Backfilling Approach
	1 Introduction
	2 Background on Job Scheduling
	3 Workloads and Platforms
	4 A Deadline-Based Backfilling Algorithm
	5 On the Determination of Deadlines
	6 Experimental Evaluation
	6.1 Evaluation Metrics
	6.2 Simulation Environment
	6.3 Results

	7 Related Work
	8 Conclusion and Future Work
	References

	Supporting Real-Time Jobs on the IBM Blue Gene/Q: Simulation-Based Study
	1 Introduction
	2 Background
	2.1 Parallel Job Scheduling
	2.2 Mira Supercomputer
	2.3 Qsim Simulator
	2.4 Checkpointing Applications

	3 Related Work
	4 Problem Statement
	5 Scheduling Techniques
	5.1 High-Priority Queue-Based Scheduling
	5.2 Preemptive Real-Time Scheduling

	6 Qsim Extensions
	7 Experimental Evaluation
	7.1 Workload Trace
	7.2 Experimental Setup
	7.3 High-Priority Queue and Preemption Without Checkpointing
	7.4 Performance of Checkpoint-Based Preemptive Scheduling
	7.5 Impact of Checkpointing Implementations
	7.6 Summary of the Results

	8 Conclusions
	References

	Towards Efficient Resource Allocation for Distributed Workflows Under Demand Uncertainties
	1 Introduction
	2 Problem Formulation
	3 Proposed Methodology
	3.1 Sample Average Approximation (SAA)
	3.2 Genetic Algorithm

	4 Experimental Setup
	5 Experimental Results and Discussion
	6 Related Work
	7 Conclusions
	References

	Programmable In Situ System for Iterative Workflows
	1 Introduction
	2 Background
	3 Scheduler
	4 Surrogate Model Experiment
	5 Conclusion
	References

	A Data Structure for Planning Based Workload Management of Heterogeneous HPC Systems
	1 Introduction
	2 Queueing vs. Planning
	3 The Computing Center Software
	4 The Resource Usage Vector
	4.1 Basic Operations

	5 Planning and Mapping
	5.1 Planning
	5.2 Mapping
	5.3 Booking
	5.4 Notable Aspects

	6 Performance Results
	7 Related Work
	8 Conclusion
	References

	ScSF: A Scheduling Simulation Framework
	1 Introduction
	2 Background
	2.1 HPC Schedulers and Slurm
	2.2 HPC Workload Analysis and Generation
	2.3 Related Work

	3 ScSF Architecture
	3.1 Workload Model Engine
	3.2 Experiment Definition
	3.3 Experiment Runner
	3.4 Workload Generation
	3.5 Slurm and the Simulator
	3.6 Workload Analyzer

	4 ScSF Case Study
	4.1 Tuning the Model
	4.2 Implementing a Workflow Scheduling Algorithm in Slurm
	4.3 Experiment Setup
	4.4 Running Experiments at Scale
	4.5 Experiment Performance
	4.6 Analyzing at Scale

	5 Discussion
	6 Conclusions
	References

	DJSB: Dynamic Job Scheduling Benchmark
	1 Introduction and Motivation
	2 DJSB: Dynamic Job Scheduler Benchmark
	2.1 General Options
	2.2 Job Submission Options
	2.3 Application Options
	2.4 Application Performance Metrics
	2.5 Workload Metrics

	3 Cooperative Dynamic Resource Management
	4 Evaluation
	4.1 Scenarios
	4.2 Configurations
	4.3 Metrics
	4.4 Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

