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Abstract. Detecting and localizing objects in three-dimensional space
is essential for robotic manipulation. One practical task is known as
“bin-picking”, where a robot manipulator picks objects from a bin of
parts without any assistance of an operator. For such a task, vision-
based object detection and location can be a cost-effective solution. In
this paper, we propose a fast and robust approach for picking flanges in
a crowd condition. We present a continuous edge detector improved from
Canny and a fast ellipse detector based on randomized hough transforma-
tion to obtain the outer contours of flange. And then we have implement
several picking experiments to verify our proposed approach is fast and
robust in practical environment.
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1 Introduction

One of the key challenge in highly automated robot-aided manufacturing is the
capability to automatically identify and locate parts, thus the robot can grasp
and manipulate them in an accurate and reliable way. In general, parts are
randomly placed inside a bin or in a conveyor belt, so one needs sophisticated
perception systems to identify and precisely locate the searched objects. Usually,
this perception task is referred as the “bin-picking” problem, and it has been
widely studied in the last decades due to its strong impact in the flexibility and
productivity for manufacturing companies.

Vision systems for recognition and localization of objects, based on standard
cameras and 2D image analysis, have been widely used in industrial automation
for many years. A vision-based recognition system for planar object has been
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proposed in [1], where a set of invariant features based on geometric primitives
of the object boundary are extracted from a single image and matched against
a library of invariant features computed from the searched objects models, gen-
erating a set of recognition hypothesis. Hypothesis are then merged and verified
to reject false recognition hypothesis. In [2], Rahardja and Kosaka presented a
stereo vision-based bin-picking system that, starting from a set of model fea-
tures selected by an operator, search for easy to find “seed” features (usually
large holes) to roughly locate the searched objets, and then look for other, usu-
ally small, “supporting” features used to disambiguate and refine the localiza-
tion. In [3], the Generalized Hough Transform (GHT) is used for 3D localization
of planar objects, the computational complexity of the GHT is here reduced by
uncoupling parameter detection. Shroff et al. [4] presented a vision-based system
for specular object detection and pose estimation: authors detect a set of edge
features of the specular objects using a multi-flash camera that highlights high
curvature regions, a multi-view approach is exploited to compute the pose of the
searched object by triangulating the extracted features. An overview of general
vision-based object recognition and localization techniques can be found in [5],
along with a performance evaluation of many types of visual local descriptors
used for 6 DoF pose estimation.

2 Target Location

A large number of industrial parts are almost circular shapes like flanges, thus
we will focus on perform an experiment on the flanges. In following sections, we
will explain our core algorithms of the mono vision system in several subsection:
edge detection, ellipse extraction and pose refinement.

2.1 Edge Detection

Traditional edge detectors like Canny [6], Sobel can extract edge pixels, but
meanwhile include much noise. As an object contour is usually continuous, we
propose a method of fast continuous edge detection that divides into three steps:
compute gradient, find candidate points and extract continuous edges.

The first step is to compute gradient image. The gradient of each pixel is
computed as the same algorithm as Canny. However gradient directions are
divided into 4 major directions that denote as C'1,C2,C3,C4, because we do
not carry about the accurate gradient direction. The regions of 4 major direction
are defined as
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Then candidate points need to be found in this step. In order to detect
continuous edge, we start with the candidate points. Since candidate points
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regarded as seeds and extend to a whole edge, we expect that the distribution
of these candidate points is dispersed.

As a edge pixel has prominent value in the gradient image, we extract the
likely candidates based on its gradient value. However considering the effect of
illumination variety, we adopt the local maximum gradient searching to find
candidates. A pixel will be brought into candidate point set if it has the local
maximum gradient value in k£ x k neighborhood. The choice of k£ depends on the
object distribution density that high value k£ will result in less candidates and
sparse distribution, and low value k in more noise. Therefore when we use a high
value k to search candidate points, we add a likely local maximum strategy that

k

if the local maximum p,,q, of a k X k patch is not in the g X 5 neighborhood of

the second largest point psec, the psee will be involved in candidate set (Fig. 1).
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Fig. 1. Regions {C1,C5,C3,Cs} represent Fig. 2. Process of continuous edge
4 major gradient directions respectively. detection.

After candidate points obtained, we start at these points to implement con-
tinuous edge extraction. Above all, pixels on a continuous edge are satisfied the
following conditions: adjacent in vertical direction of gradient (adopt 8-neighbor
judgement) gradient values are quite close; gradient directions are quite close.
The detection process is shown in Fig.2. and result in Fig.3. Obviously, our
proposed continuous edge detection approach includes less noise than Canny
detector as shown in Fig. 3.

2.2 Hough-Based Ellipse Extraction

As we know that 5 points determine a ellipse in a plane. That means the time
complexity of extracting a ellipse from n points is O(n°) when implementing
randomized hough transform (RHT_-5) in [7]. In the crowd industrial environ-
ment, the process of RHT_5 is time-consuming in randomly sampling 5 points.
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Fig. 3. Edge image. Left: original image. Middle: edge image by our proposed approach.
Right: classical Canny edge detection.

A great many invalid samples and accumulations included makes the algorithm
poor performance even almost fail in limit time.

For the reasons given above, we propose a improved RHT with 3 points.
First, we get a long axis of ellipse L, determined with 2 points pi,ps that is
randomly chosen from edge point set V. The center O of ellipse, long radius r,
and inclination angle 8, can be computed as

p1+ P2
0=l (1)
lp1 — p2ll2
a — 5 2
. 2)
—1,P1 — D3
6, = tan~! , 3
= @

Second, the sum of distances between ps and focuses f1, fo is equal to the length
of long axis, then we have

lps = fillz + llps = fall2 = 274. (4)

We can get the focus coordinates

fI = 0g —cos|0]y/rg — 1} ()
i =0, —sin|f\/r2 —r} (6)
f3 = Og +cos|0]y /3 — 1} (7)
4 =0, +sin|]\/r2 —ri. (8)

The short radius r, can also be obtained as

252 _ 2.2
r20 r2qy

10
ey’ (o

ry =



Fast Circular Object Localization and Pose Estimation 533

where
6= [0 = pslla, v = sin|0|(O, — p3) + sin |0|(O, — p3). (11)

At last step, after collecting all parameters that a ellipse needed {O, rq, 13, 0}, we
set a accumulator to count how many points p; € V fit the ellipse we obtained.
It will be accepted as a valid ellipse when the count of points exceed a threshold
Nihresh- 1IN practical experiment, we get rid of some too long or too short long
radius r, in first step, in order to accelerate the process. The pseudo-code of
RHT_3 can be described below.

Algorithm 1. RHT_3 Ellipse
1: Point Set V{p;},i=1,2,...., N
2: for p1,p2 in V do

3: if Flag[p1] =1 or Flag[p2] =1 then
4: continue
5: end if
6: if Distance(pi,p2) > maz, or Distance(p1,p2) < min, then
7 continue
8: end if
9: compute {0, a, 0}
10: init accumulator Acc := 0, perimeter Pe := 0
11: for ps in V do
12: if Flag[ps] =1 then
13: continue
14: end if
15: d := Distance(ps, O)
16: if d > a then
17: continue
18: end if
19: compute b
20: Acclb] := Acclb] + 1
21: end for
22: b_maz_acc := argmax(Acc)
23: if Acclb_max_acc]/Pelb-maz_acc] > min_vote_rate then
24: obtain ellipse EP{O, a,bmazqcc,0}
25: for p; on EP do
26: Flag[p:] :=1
27: end for
28: end if
29: end for

2.3 Pose Refinement

In this section, we show how the pose will be estimated with the ellipse function
and how to makes the pose more accurate.
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Euler Angle. In this paper, we use euler angle to describe object’s 3D pose.
The image coordinate system is defined that top-left corner used as origin, right
direct as X axis, down as Y axis and inside as Z axis. A object pose is consist
of positions {Posg, Pos,, Pos.} and rotations { Rot,, Rot,, Rot.}. However, we
ignore the Z-axis rotation Rot, in our experiment because it has no effect on
picking step, and the Pos, can only be computed in calibration. Therefore, in
the section, we only need to obtain the positions {Pos,, Pos,} and rotations
{Rot,, Rot,}. We define the order of rotation about axis as X, Y, Z. The euler
angle [8] can be calculated as below, and we will not show the detail derivation
process.

{Posy, Posy} = O (12)
Rot, = cos™! g (13)
. d
Rot, = cos (14)

V/(dsina)? + (acos a)?

In above formula, a, b, O is respectively the long radius, short radius and center
of an ellipse, and ¢, d is the Y-intercept and X-intercept.

Mirror Problem. Obviously, the outer contour of flange is always symmetric,
thus we encounter the mirror problem that we are not able to distinguish the
correct rotation direct from the mirror direct (as shown in Fig. 4.). In term of this
issue, we propose a method to recognize the correct rotation direct, which can
also improve the accuracy of fitting the flange for the ellipse. We find noisy points
focuses on one side of ellipse in a Canny edge image with a low threshold as shown
in Fig. 5., because of the flange thickness effect. We check noise distribution of
each e x € patch centered by the point in outer contour, and then regard those
points with top 25%—-35% density of noise distribution as the outliers.

Fig. 4. Mirror condition. We find no Fig. 5. Noise distribution. Noise points

difference between the out contours of are always converge in one side where
left and right image because of sym- the flange is blocked up. Red points are
metrical geometry. the correct points we obtained.

Actually our method not only imply which rotation direction is accord with
the fact, but also make the step of ellipse fitting more accuracy when discarded
outliers. The front-view contour and side-view contour are shown in Fig. 6.
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Fig. 6. Actual outline. Red edge is the actual flange front outline, and green edge is a
side-view contour. (Color figure online)

v 4 k :

Fig. 7. Picking process

3 Experiment

3.1 Strategy

For the sake of accurate picking, a flange will be always located twice. For each
flange we implement RHT_3 on the first image to obtain a rough position, on
which camera will be moved. We stop the camera just above the flange, and then
take another image for pose refinement. The strategy is showed in the following
steps (Figs. 7 and 8).

1. Take the first image Iy. Implement continuous edge detector (Sect.2.1) and
RHT_3 (Sect. 2.1) to find all ellipse in Ij. The ellipse F; with most integrated
contour will be picked next, and the center position C; is obtained;

2. Move camera to C; just above FEf;

3. Take another image I;, and compute refined pose Pos; of E; by using the

method proposed in Sect. 2.3, and meanwhile find the rough position Cy of

next flange.

Pick up the flange on pose Pos; by robot manipulator;

If the next flange not found, stop picking process. Otherwise, Cy will be

regarded as C, and then go to Step 2.

Rl o

3.2 Experimental Result

In our experiment, we have test the proposed algorithms in these environments:
single target and multi-targets randomly placed.
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(b) Ih (c) I (d) I,

Fig. 8. Camera view

In single target test, we elevate one side of a flange deliberately with some
specific angles, in order to test the accuracy of pose refinement. It is shown in
Table 1. that the translation error is almost less than 2 mm and the angle error
is less than 3.5°. Specially, we find a small rotation angle will result in a quite
big error by pose estimation. This is because cos™ 16 function is steep decrease
around 0 = 1, and we have used cos™1 to calculate Rot;, Rot,. However, it does
not affect our picking performance, since we can pick it up as well by regarding
a small angle as zero.

Table 1. Single target error

Angle | Translation error | Angle error

X (mm) | Y (mm) | X (deg) | Y (deg)
4.50 [ 0.51 0.48 3.51 2.88
9.42 | 1.78 1.34 2.17 2.24
13.29 | 1.65 1.76 1.05 1.27

17.42 | 1.82 1.20 1.17 0.74

21.54 | 1.78 1.76 1.06 0.85

Mean | 1.51 1.31 1.79 1.48

In multi-target test, we place several flanges on platform at random, and then
record successful times among 50 attempts of picking. In order to test one-time
success rate, the robot will bring the flange back automatically to experiment
platform after picking up. Of course, the returned position is almost randomized.
We do each task 5 times and obtain the average number of successful picking
times as shown in Table 2.

In addition, we test the performance of practical bin-picking task that picking
all the flanges on platform with the strategy in Sect.3.2. In this task, success
rate of attempts and time consuming of algorithm will be recorded in Table 3.
For each task, we also employ the average value of 5 times experiments.
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Table 2. Multi-target attempts success rate

Task | Number | Times of | Success rate Time Success Time (Our
of attempts | (Canny + (Canny + |rate (Our |approach)
flanges RHT.5) RHT.5) approach)

1 5 50 94.0% 1320 ms 97.6% 337ms

2 10 50 87.8% 8359 ms 93.2% 953 ms

3 15 50 74.6% 26170 ms 88.4% 2754 ms

4 20 50 - Time out 81.2% 7713 ms

Table 3. Aattempts for Picking All the Flange

Task | Number of flanges | Times of picking
1 5 5.4
2 10 11.2
3 15 18.8
4 20 23.8

4 Conclusion

A mono vision system for picking crowded flanges has been presented in this
paper. The core of the system is the location algorithm which is demonstrated ot
be robust, fast and accurate. At first we implement a continuous edge detection
in order to suppress noise in preprocessing stage, and then put forward a RHT_3
approach to dramatically accelerate the process of ellipse extraction. At last
subtly, we make advantage of noise distribution around edge points to solve the
mirror problem and to further improve the accuracy of results.
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