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Abstract. It is common to choose image classification network as back-
bone in the object detector. The art-of-the-state image classification net-
work exhibits excellent performance on image classification, but that
network hurts the detection efficiency, mainly due to the coarseness of
features from several convolution and pooling layers. In this paper, we
present a single deep neural network with inceptions, called StairsNet ,
to take advantage of the art-of-the-state image classification network
in object detection. In contrast to previous single network SSD [13]
which uses VGG-16 as a feature to extract network, our approach
applies recently state-of-the-art classification network Residual Network
(ResNets [5]). Meanwhile, to avoid coarseness of the last CNN feature,
StairsNet not only utilizes various of scale features, but also mixes dif-
ferent scale features to predict. To this end, we insert two stairs-like
architectures into the network: top stairway network that mixes multi-
scale feature maps as input to predict bounding boxes and bottom stair-
way network that turns into two different scale feature branches. Our
StairsNet significantly increases the PASCAL-style mean Average Preci-
sion (mAP) from 75.0% (SSD + ResNet-101) to 77.7%. Code is available
at https://github.com/gwyve/caffe/tree/StairsNet.
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1 Introduction

With the recent advance of convolution neural networks (CNNs) [6], a great
progress has been made these years on image classification [5,9,20,22] and object
detection [4,13,17,24]. Since R-CNN [4] was established by Girshick et al., many
recent detectors followed this paradigm: firstly, a object proposal algorithm [26]
generates candidate regions; secondly, the CNNs classify every proposed region.
Faster R-CNN [17] replaces conventional object proposal algorithm with a new
CNN RPN (Region Proposal Networks). On the other hand, following Multi-
Box [3,23], a much faster detector, SSD [13], utilizes a single network to predict
bounding box.
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Recently, many modern object detectors are changing the extract feature
layers with the change of state-of-the-art image classification networks. It is
tempting to focus on adding recent state-of-the-art image classification networks
such as Residual Network (ResNets [5]) and GoogLeNet [22] into the object
detection architecture. However, the combination of a state-of-the-art classi-
fier (ResNet-101 [5]) and SSD doesn’t show dramatic performance in improving
accuracy, as the phenomenon that inferior detection accuracy doesn’t match
the network’s superior classification accuracy. Dai et al. [10] argued that the
issue is caused by lack of respecting variance for object detection and inserted
position-sensitive score maps into the framework to remedy that issue. However,
it applies the expensive RPN to generate proposal regions in R-FCN [10], as in
Faster R-CNN [17].

To make SSD with ResNet-101 more excellent detector, we not only append
ResNet block to the extract feature layers, but also insert Inception-style archi-
tecture [7,11,21,22] into the network to predict the bounding boxes and classify
the object. Inspired by Inception [21,22,25], we use inception to capture the non-
linear concepts from CNN feature map. Meanwhile, the last CNN feature map
is too coarse to detect some small-size objects. Although SSD uses six scales to
detect the object, we support the method that combining multi-scale features
before predicting networks can improve ability to detect small-size objects [12].
Motivated by that fact, we mix multi-scale features to predict. Each inception
located at each scale pipeline captures the nonlinear concepts from single scale
CNN feature map before combination.

In this paper, we develop a object detection framework called StairsNet .
Our network consists of the 101-layer Residual Net (ResNet-101) as the backbone
and several stair modules. The stairs networks are divided into two stairways:
top stairway network that mixes multi-scale feature maps as input to predict
bounding boxes and bottom stairway network that turns into two different scale
feature branches. When being evaluated, our StairsNet significantly increases the
PASCAL-style mean Average Precision (mAP) from 75.0% (SSD + ResNet-101)
to 77.7%. Code is available at https://github.com/gwyve/caffe/tree/StairsNet.

2 Related Work

Object detection is one of the fundamental tasks in computer vision and
rapid progress recently. Many researches follow R-CNN, a two-stage detection
paradigm: Firstly, an object algorithm generates candidate regions that may
contain an object; Secondly, the CNNs classify each proposed region. Before
using deep networks, the majority of proposal algorithms include those based on
grouping super-pixels (e.g. MCG [14], CPMC [2], Selective Search [26]) and those
based on sliding windows (e.g. EdgeBoxes [27], objectness in windows [1]). In
the Faster R-CNN paper, the Selective Search region proposals, which are based
on low-level image features, are replaced by the ones learned from a region pro-
posal network (RPN). The YOLO approach by Redmon et al. [15] uses a single
network to predict bounding boxes and class probabilities, in an end to end net-
work. It divides the input image into a grid of cells and predicts the coordinates
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and confidences of objects contained in the cells. Adopting one-stage detection,
the YOLO is much faster than Faster R-CNN. Similar with YOLO, SSD also
adopts a single network in that. The difference is that SSD uses a fixed set of
default boxes for prediction, which is like the anchor in RPN.

Multi-scale: Overfeat [19] classifies different scale boxes. In recent MultiBox
works [3,23], there are multi-scale features from different convolution layers to
be used as input. The SSD adopts six scale features to predict, in which progress
we use the combination of two of those scale features. Additionally, HyperNet [8]
combines all the feature of different scales with deconvolution, different from the
method we only combine two scale feature.

Inception-Style Network: Following the Network in Network (NIN) [11],
Szegedy et al. [22] inserted inception in pipeline. They verified that approximat-
ing the expected sparse structure-Inception by readily available dense building
blocks is a viable method for improving neural networks for detection. Szegedy
et al. [25] provides several design principles in the context of the Inception. Based
on the principles, various types of Inception architecture have been presented.
As the introduction of residual connection [21], training with residual connection
accelerates the training of Inception networks significantly.

3 Model

Our object detection system is named as StairsNet, a stairs-like architecture.
The entire system is a single, unified network for object detection, which use
ResNet-101 as backbone. StairsNet is divided into two flights of stairs (Top-
Stairs and Bottom-Stairs) by landing. Each stair tread of Top-Stairs has two
inceptions (Up-Inception and Down-Inception) and features-combined module
in StairsNet. Figure 1 is an overview of the system. In Sect. 3.1 we illustrate the
details about using Residual-101 as backbone. In Sect. 3.2 we introduce the two
modules of StairsNet and we demonstrate different inception-style architecture
in Sect. 3.3. In Sect. 3.4 we show the details about training strategy for StairsNet.
In Sect. 3.5 we show some training details.

3.1 Using Residual-101 as Backbone

Single Shot MultiBox Detector (SSD [13]) chooses truncated VGG-16 [20] as
base network, and appends extra convolution layers to base network. Each of
the added layers is used to predict scores and offsets for some predefined default
bounding boxes. With dramatic success of ResNet in image classification, using
ResNet as backbone in the object detector becomes a prevalent method. To use
the advantage of ResNet, we replace VGG-16 with Residual-101. Additionally,
we append additional four residual blocks (Res6 x, Res7 x, Res8 x, Res9 x) after
Res5 x block which is the end of Residual-101’s full-convolution layers as Table 1
shows. Because of the mismatch of residual block and the input size in original
SSD paper, we change the input size to 321 × 321. Simply doing those doesn’t
improve accuracy and therefore we present StairsNet modules in our framework.
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Table 1. Architectures ResNet-101 vs. StairsNet. We replace VGG-16 with
Residual-101. Additionally, we append additional four residual blocks (Res6 x, Res7 x,
Res8 x, Res9 x) after Res5 x which is the end of Residual-101’s full-convolution layers.

SSD layer ResNet 101 StairsNet StairsNet layer Output size

conv1 7 × 7, 64, stride 2 7 × 7, 64, stride 2 Res1 x 161 × 161

conv2 x 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2 Res2 x 80 × 80⎡
⎢⎣

1× 1, 64

3× 3, 64

1× 1, 256

⎤
⎥⎦×3

⎡
⎢⎣

1× 1, 64

3× 3, 64

1× 1, 256

⎤
⎥⎦×3

conv3 x

⎡
⎢⎣
1× 1, 128

3× 3, 128

1× 1, 512

⎤
⎥⎦×4

⎡
⎢⎣
1× 1, 128

3× 3, 128

1× 1, 512

⎤
⎥⎦×4 Res3 x 40 × 40

conv4 x

⎡
⎢⎣

1× 1, 256

3× 3, 256

1× 1, 1024

⎤
⎥⎦×23

⎡
⎢⎣

1× 1, 256

3× 3, 256

1× 1, 1024

⎤
⎥⎦×23 Res4 x 20 × 20

conv5 x

⎡
⎢⎣

1× 1, 512

3× 3, 512

1× 1, 2048

⎤
⎥⎦×3

⎡
⎢⎣

1× 1, 512

3× 3, 512

1× 1, 2048

⎤
⎥⎦×3 Res5 x 20 × 20

conv6 x

⎡
⎢⎣
1× 1, 256

3× 3, 256

1× 1, 512

⎤
⎥⎦×1 Res6 x 10 × 10

conv7 x

⎡
⎢⎣
1× 1, 256

3× 3, 256

1× 1, 512

⎤
⎥⎦×1 Res7 x 5× 5

conv8 x

⎡
⎢⎣
1× 1, 256

3× 3, 256

1× 1, 512

⎤
⎥⎦×1 Res8 x 3 × 3

conv9 x

⎡
⎢⎣
1× 1, 256

3× 3, 256

1× 1, 512

⎤
⎥⎦×1 Res9 x 1 × 1

3.2 StairsNet

Similar with U-shaped stairs, StairsNet is divided into two flights of stairs by
landing .The first module is set of Inception-Style networks named Top-Stairs.
The second module named Bottom-Stairs is one-by-one corresponded by newel
with the first module every stairstep.

Bottom-Stairs includes 5 stairsteps as the color pink block showed in Fig. 1.
We use state-of-the-art classification model ResNet-101 neural network in place
of VGG-16 in SSD to get the more discriminable image feature. The tread of
upstairs is the different residual layers of ResNet-101. More details are showed
in Sect. 3.1.
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Fig. 1. StairsNet network architecture. The red layers of Bottom-Stairs are Res-
block as extra layers. Each stair tread of Top-Stairs has two inceptions and combination
module. The newel connected Top-Stairs and Bottom-Stairs one-by-one is the residual
layer feature for predictor. (Color figure online)

Landing is where a 180◦ change in direction is made. In our system, the land-
ing is where the feature transform direction changes, e.g. Res9 x in Fig. 1. After
the Landing, the input data not only comes from the previous layers, but also
combines the deconv information from the successor. In Fig. 1 red circle is com-
bination mixing different scale features.

(Top-Stairs) module of StairsNet is used to get location proposals and to match
bounding boxes. One stairstep has two inception blocks and a features-combined
module. The inception of each stairsteps changes depending on the difference
of feature scale. Top-stairs uses three different inceptions which are showed in
Fig. 2. In Fig. 1, downwards, the first two represents Inception-A, the middle
of inceptions represents Inception-B, and the last two represents Inception-C.
More details about inceptions we use is showed in next section. The combination
module changes the large scale to small scale by deconvolution, and then uses
Eltwise layer to mix the two feature maps. As is shown in color green block
in Fig. 1, some newel connects Bottom-Stairs and Top-Stairs one-by-one is the
residual layer feature for predictor, and the stairstep’s input is the combination
of different scale features.
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3.3 Inception

SSD [13] uses convolution filter as a bounding box proposal and classification
module. We argue that, as a generalized linear model (GLM) for the underlying
data patch, the level of abstraction of the convolution layer is low. As described
in [11], GLM can achieve great result when the samples of the latent concepts
are linearly separable, and the data for the same concepts are generally highly
nonlinear function of the input. Therefore, the representations that capture these
concepts are generally highly nonlinear function of the input. Inception [11]
has been a successful nonlinear function module in neural network design [22].
To utilize the added computation as efficiently as possible, Szegedy et al. [25]
explored methods to scale up networks by suitably factorized convolutions and
aggressive regularization. In our model, in place of convolution in SSD, we use
Fig. 2(a), (b) and (c) to capture these highly nonlinear feature from different
scales for next stage. Additionally, we use inception for detecting relatively small
and large objects simultaneously in location proposal module.

(a)

1x1 Conv
(512)

3x3 conv
(32)

1x1 conv
(32)

1x1 conv
(32)

1x1 Conv
(32)

Previous layer 
feature

ReLu 
Activation

3x3 conv
(64)

3x3 conv
(48)

Concatenate

(c)

1x1 Conv
(512)

1x1 Conv
(192)

1x1 Conv
(192)

Previous layer 
feature

ReLu 
Activation

3x3 Conv
(192)

3x3 Conv
(192)

Concatenate

(b)

1x1 Conv
(512)

1x1 Conv
(192)

Previous layer 
feature

ReLu 
Activation

3x3 conv
(192)

3x3 Conv
(160)

1x1 con
(128)

Concatenate

Fig. 2. Inception Module. (a) is Inception-A used for Res3 x’s and Res5 x’s Top-
Stairs. (b) is Inception-B used for Res6 x’s Top-Stairs and (c) is Inception-C used for
Res7 x’s and Res8 x’s Top-Stairs.

3.4 Optimizing Strategy

Similar to SSD, the StairsNet objective is extending MultiBox objective [3,23] to
handle multiple object categories. During training, we are selecting from default
boxes of different location at each location in several feature maps with different
scales, with using matching strategy in SSD which is for each groundtruth box.
For the i-th default bounding box(di = (dcxi , dcyi , dwi , dhi )), we predict the offsets
to the j-th groundtruth box(gj = (gcxj , gcyj , gwj , ghj )),
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ĝcxj =
(gcxj − dcxi )

dwi
ĝcyj =

(gcyj − dcyi )

dhi
(1)

ĝwj = log(
gwj
dwi

) ĝhj = log(
ghj
dhi

) (2)

and the predict location (li) will be get the confidences for all object categories.
The overall model loss is a weighted (λ) sum of the localization loss (loc) and
the confidence loss (conf).

L(x, c, l, g) =
1
N

(Lconf (x, c) + λLloc(x, l, g)) (3)

where N is the number of matched default boxes, xp
ij = {0, 1} be an indicator

for matching the i-th default box to the j-th groundtruth box of category p.

Lloc(x, l, g) =
N∑

i∈Positive

∑

m∈{cx,cy,w,h}
xk
ijSmooth L1(lmi − ĝmj ) (4)

Lconf (x, c) = −
N∑

i∈Positive

xp
ij log(ĉpi ) −

∑

i∈Negative

log(ĉ0i ) (5)

where ĉpi = exp(cpi )∑
p exp(cpi )

, and the λ is set to 1 and the positive default bounding
box is matched with groundtruth box object and the rest as negatives.

3.5 Training

In contrast to SSD, StairsNet has a small change in the prior box aspect ratio
setting. The original SSD model, boxes with aspect ratios of 2 and 3 were proven
useful from the experiments. Similar with [16], we run k-means clustering on the
training boxes with square root of box area as the feature. Results show that
most of boxes ratios fall within a range of 1–3. Therefore, we add 1.6 to the
aspect radios, and use total three aspect radios at each prediction layer.

The key difference between training SSD is that we train the model including
separated 2 steps. Firstly, we build and train base network using Residual-101
classification model, which is pre-trained on the ILSVRC CLS-LOC dataset [18],
as backbone instead of VGG-16. Secondly, frozing the the backbone network
(Residual-101) parameter, we add the Bottom-stairs and Top-stairs into the
architecture and train the entire StairsNet. We apply the same network archi-
tecture we used for VOC2007 + 2012 dataset. When training the base network,
we first train the model with 10−3 learning rate for 40k iterations, and then
continue training for 20k iterations with 10−4 and 10−5. Lastly, we continue
training our model StairsNet for 20k iterations with learning rating 10−3, 10−4

and 10−5, with utilizing the trained base network model. We can achieve 77.7%
mAP on the VOC2007 test set.
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4 Experiments

4.1 Model Result on VOC2007

We compare against Faster R-CNN, SSD, StairsNet on VOC2007 test (4950
images). All methods are trained on VOC2007 + 2012 train. Figure 1 shows
the architecture details of the StairsNet321 model. The results show StairsNet
have better effect on object detection and large size input will increase result
(Table 2).

Table 2. Pascal VOC2007 test detection result. Faster R-CNN use input images
whose minimum dimension is 600. The SSD models have exactly the same settings
except different input sizes (300 × 300 vs. 512 × 512). SSD+ResNet321 is that ResNet-
101 instead of VGG-16 of SSD and input size is 321 × 321. The two StairsNet mod-
els have same settings except that they have different input sizes (321 × 321 vs.
513 × 513).

Method Dataset Base network Using inception mAP

Faster R-CNN VOC2007 VGG-16 N 73.2%

SSD300 VOC2007 VGG-16 N 77.2%

SSD512 VOC2007 VGG-16 N 79.8%

SSD+ResNet321 VOC2007 ResNet-101 N 75.0%

StairsNet321 VOC2007 ResNet-101 Y 77.7%

StairsNet513 VOC2007 ResNet-101 Y 80.1%

4.2 Inference Time

We measure the speed with batch size 1 using NVIDIA GTX 1080Ti and cuDNN
v5 with Intel(R) Core(TM) i7-6700K CPU@4.00GHz. Table 3 shows the compar-
ison between StairsNet, Faster R-CNN [17], SSD [13]. Our proposed model is not
fast as the SSD for two reasons. Firstly, the ResNet-101 is slower than VGGNet.
Secondly, the extra layers we added to the model introduce extra overhead. Both
our StairsNet321 and StairsNet513 method outperforms Faster R-CNN in both
speed and accuracy. Our StairsNet513 model has better accuracy, but is slightly
slower. Therefore, using a faster base network could even further improve the
speed, which can possibly make the StairsNet513 model real-time as well.

4.3 Model Analysis

To understand the affects of each component in StairsNet, we carry out controlled
experiments. In all the experiments, we use the same settings and input size
(321 × 321) in specified changes to the settings or component(s).

Do Inceptions Help?
Each Top-Stairs module has two inceptions at the both sides of the deconvolu-
tion. Closer to the output, the Up-Inception can capture highly nonlinear fea-
tures after being mixed by deconvolution. As Table 4 shows, the model can’t
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Table 3. Pascal VOC2007 test detection results. StairsNet321 is real-time detec-
tion method that can achieve above 77.7% mAP. By using a larger input image,
Stairs513 outperforms all methods on accuracy.

Method mAP FPS Batch size #Boxes Input resolution

Faster R-CNN (VGG16) 73.2 14 1 ∼ 6000 ∼ 1000 × 600

SSD300 77.2 92 1 8732 300 × 300

SSD512 79.8 38 1 24564 512 × 512

StairsNet321 77.7 20 1 17080 321 × 321

StairsNet513 80.1 13 1 43936 513 × 513

find any detection unless using Up Inception. This fact shows Up-Inception has
a tremendous effect on mixed feature to predict. In Table 4, the low result when
not using Down-Inception shows the function of Down-Inception in StairsNet.

Table 4. Effects of various design choices and components on StairsNet performance.
✱ represents that the model couldn’t find any detection when evaluated.

Component name StairsNet321

Deconvolution ✓ ✓ ✓ ✓

Up-Inception ✓ ✓

Down-Inception ✓ ✓

VOC2007 test mAP 75.0% ✱ 77.2% ✱ 77.7%

Can We Utilize the Same Inceptions?
In StairsNet, depending on the different scales, we utilize the three kinds of
inceptions to handle different scale nonlinear features. Is it necessary to build
different inceptions? Will all the same inceptions with more parameters helps?
To this end, we replace all inceptions in StairsNet with the Inception-C. The
mAP of the StairsNet with the same inceptions is 70.0%. The result shows that
it is better to use various of inceptions depending on the different scales.

Large Size Image will Help Result?
Although increasing the size of input will spend more time to train and test,
Similar with SSD, using large size image as input will increase mAP. By increas-
ing the training and testing image size 513 × 513, we are 0.3% more accurate
than using SSD 512 × 512 model.

4.4 Visualization Our Result

In Fig. 3, we show some detection examples on VOC2007 test with SSD300
and StairsNet321 models. Compared to SSD, the small size objects and certain
classes that have distinct context have been improved.



312 W. Gao et al.

Fig. 3. Detection examples on VOC2007 test with StairsNet321 model. For
each pair, the left side is the result of SSD and right side is the result of StairsNet.
We show detection result with scores higher than 0.6. Each color corresponds to an
object category.
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5 Conclusions

We have presented StairsNet, a single deep neural network for object detection in
images. StairsNet provides with an effective features-combined method to utilize
the mixed multi-scale features to predict. Meanwhile, inceptions added not only
captures the nonlinear concepts from different scale features, but also decides the
effect of mixed features. We demonstrate its effectiveness on benchmark datasets
by the experiments in this paper. Using ResNet and mixing multi-scale feature,
StairsNet has the better effect in object detection.
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