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Machine Learning Techniques in Landslide
Susceptibility Mapping: A Survey
and a Case Study

Taskin Kavzoglu, Ismail Colkesen, and Emrehan Kutlug Sahin

Abstract Machine learning techniques have been increasingly employed for solv-
ing many scientific and engineering problems. These data driven methods have been
lately utilized with great success to produce landslide susceptibility maps. They give
promising results particularly for mapping large landslide prone areas with limited
geotechnical data. This chapter surveys their use in landslide susceptibility analysis
and presents a case study investigating their effectiveness with regard to a conven-
tional statistical method, namely logistic regression. It starts with the importance of
spatial prediction of future landslides from past and present ones and discusses the
requirement of advanced techniques for landslide susceptibility mapping. A critical
literature survey is given under five main categories including core algorithms and
their ensembles together with their hybrid forms. An application is presented for
machine learning application using bagging, random forest, rotation forest and
support vector machines with their optimal settings.

13.1 Introduction

Having a primary role in the establishment and development of residential settle-
ments, natural disasters have been a major research topic particularly for geoscientist
and engineering professionals. Rapid population growth increases pressure on
natural resources and the natural environment, and raises the consequent risk
associated with human activities [1]. Prediction and risk assessment of natural
disasters, which can be classified into two broad groups as hydro-meteorological
and geophysical disaster, are vital for planning and mitigation studies that reduce the
number of human and economic losses. It is a fact that the frequency and the scale of
natural disasters have increased considerably, mainly as a result of the climate
change and uncontrolled human-induced changes in the landscape
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(e.g. deforestation and road construction), which weakens the soil stability. As a
result, the cost related to the disasters has been an increase over time. According to
the Centre for Research on the Epidemiology of Disasters, at least 17% of all
fatalities from natural hazards are due to the landslides [2].

Landslides, a type of natural disaster causing severe human loses and property
damage, are geological phenomena related to ground movements of rock fall, and
debris flow. A landslide can be described as the movement of a mass of rock, debris,
or earth down a slope, under the influence of gravity [3]. Landslides are the sudden
onset disasters that are usually triggered by several factors, such as intense rainfall,
snow melting, earthquakes, volcanic eruptions and land use changes undermining
slope instability. It should be also mentioned that climate change resulting from the
global warming is one of the driving forces for landslide since it causes increased
temperature, higher intensity and frequency for rain events, and lower summer
precipitations. Therefore, attention should be paid to disaster mitigation and contin-
gency planning studies by the land-use planners and policy makers, pertaining to
sustainable development and reducing the risk from potential landslide events. As
underlined by [4], prevention from landslides may only possible to a limited degree.
However, improved understanding of the causes may help to stop or limit the human
actions that increase ground instability. Although more emphasis has been given to
the investigation of possible landslide locations, the increasing trend is expected to
continue for three major reasons: increased and uncontrolled urbanization, continued
deforestation and increased precipitation caused by climate change [5].

Determining the location of landslide prone areas is of crucial importance for
hazard management studies, which is generally conducted through landslide sus-
ceptibility analysis considering various meteorological and geo-environmental
parameters. It is well-known that conventional methods of ground geotechnical
survey are costly both in terms of time and money, also impractical for large regions
although they produce more reliable landslide hazard maps. Landslide susceptibility
mapping is based on a basic modelling concept that new landslides are most likely to
take place at lands having similar geological, geophysical and environmental char-
acteristics of the previous landslide locations. The susceptibility modelling
approach, compared to the conventional ones, is rapid and cost-effective with no
limitation for the size of the study area. In general, landslides are complicated
geophysical processes related to geology, geomorphology and hydrogeology of
the ground. They occur due to the existence of various factors that show site-to-
site variation. In fact, susceptibility analysis includes a variety of uncertainties that
make its modelling a difficult task requiring improved knowledge about the study
area characteristics and advanced techniques to model inherent relationships from a
complicated structure represented by various data types. The study of factors or
conditions that cause slope instability and the triggering factors or processes is of
primary importance in the analysis of landslide susceptibility [6].

Prior to any conceptualizing and modelling, dealing with the landslide phenom-
enology requires a profound understanding of the triggering and conditioning factors
that are in control of the landslide process [7]. In the estimation of landslide
susceptibility, causative (i.e. conditioning or preparatory) factors are usually
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considered in modelling or learning the characteristics of the problem rather than
triggering factors that are usually sudden hydrological or geotechnical changes.
Causative factors are mainly related to geology, geomorphology, soil structure,
road network, land cover type generally derived from remotely sensed images,
weathering condition and hydrogeological condition of the study area. Determina-
tion of optimum number of conditioning factors for a study area is one of the most
important and difficult task in landslide susceptibility assessment. Up to now, there
are not any guidelines agreed universally for the determination of case-specific
conditioning factors [8]. It should be pointed out that landslide conditioning factors
showed variation with respect to the study area and its geographical locations. Thus,
every study area has its own particular set of factors causing landslides [9]. In other
words, a specific factor can be a causative one for one region but not contributing one
in another region. Therefore, selection of causative factors for a particular landslide
problem is a difficult task that is usually performed by the user’s experience and
availability of the data. In the literature, a large number of factors have been
considered as causative factors in susceptibility analysis with varying degree of
usage [10, 11]. Since the number of causative factors has recently increased, some
data analysis techniques are certainly required to identify the directly related factors
[12]. Increasing the number of causative factors appears beneficial to improve
modelling quality, but it may reduce the prediction accuracy due to the involvement
of highly correlated, redundant, sometimes irrelevant factors. This issue is likely to
be a major problem for future studies having large number of factors at hand. Several
solutions to this problem including the use of genetic algorithm, a priori ranking of
factors, using certainty factor, testing various combinations of the factors have been
lately investigated by researchers [8, 13, 14].

Since the 1970s, many scientists have proposed approaches to produce suscepti-
bility maps showing the location of possible landslide locations. Methods used in
landslide susceptibility mapping are diverse and numerous [15, 16]. They can be
categorized into two groups as qualitative and quantitative methods. Qualitative
methods, simple methods mainly applied in 1970s, are used with expert judgments
and experience considering direct field measurements. Quantitative methods, on the
other hand, are based on mathematically and statistically rigorous objective meth-
odologies. They are intended to reduce the subjectivity of landslide susceptibility
evaluation by incorporating statistical and geotechnical models. These methods have
become popular due to their simple expressions of the dependent (i.e. landslides) and
independent (i.e. conditioning factors) variables [17]. Quantitative methods can also
be categorized into several subgroups: statistical, geotechnical and heuristic
methods. While the statistical methods estimate the relationship between the caus-
ative factors and past landslides using bivariate and multivariate methods, determin-
istic methods also called geotechnical methods are case-specific ones using some
factors measured on site, ignoring climate and human-induced factors. Logistic
regression, weight of evidence and analytical hierarchy process are well-known
statistical methods that are usually applied as benchmark methods when a new
method or approach is proposed. Heuristic methods also known as machine learning
techniques employ advanced algorithms to model the inherent complex relationship
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through the analysis of causative factors for landslide and non-landslide locations.
They introduce nonlinearity and do not assume any distribution for the dataset.
Machine learning is an automated model building approach for data analysis that
learns the underlying relationships or hidden insights in the data to construct
analytical models. Thus, they can be used to produce accurate and repeatable results
through iterative learning, despite not being explicitly programmed to do so. Up to
now, many machine learning methods have been proposed and practiced in landslide
susceptibility assessment, but the most popular ones have been the support vector
machines, decision trees, artificial neural networks, and ensemble methods including
bagging, random forest and rotation forest. Machine learning methods with some
selected studies are listed in Table 13.1, showing that kernel and tree-based methods
together with their hybrid versions are now popularly practiced in the current
literature. While first application of machine learning methods were applied using
the core algorithms of neural networks, decision trees and support vector machines,
current studies have largely focused on their improved versions using their deriva-
tives, hybrids or ensemble forms. These algorithms have been not only used for
susceptibility assessment but also used for some other applications including detec-
tion of landslide locations [18], selection of relevant conditioning factors [8] and
landslide displacement prediction [19].

Table 13.1 Review of machine learning methods applied in modelling landslide susceptibility

Category Method Citations

Neural networks Adaptive neuro-fuzzy inference system [14, 20–22]

Back-propagation neural network [23–29]

Extreme machine learning [30]

Learning vector quantization [31]

Multivariate adaptive regression splines [32–34]

Radial basis function neural networks [26]

Self-organizing map [35]

Fuzzy-based Fuzzy clustering [36, 37]

Hybrid k-means with particle swam opt. [35]

SVM-particle swarm optimization [38]

Wavelet packet-statistical models [39]

Kernel-based Gaussian process [40]

Kernel logistic regression [26, 41]

Support vector machines (SVM) [7, 13, 14, 25, 26, 29, 42–44]

Tree-based Bagging [15, 45, 46]

Boosting [45, 46]

Chi-squared automatic interaction detection [47, 48]

Decision trees [8, 14, 28, 32, 49, 50]

Functional tree [46]

Logistic model tree [26]

Random forest [43, 51–53]

Rotation forest [54]
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Machine learning methods have become increasingly ubiquitous throughout the
hazard management and mitigation studies, especially in landslide susceptibility
zonation. A comparative analysis of machine learning methods for the production
of landslide susceptibility maps of Macka district of Trabzon in Turkey was carried
out using available eight conditioning factors. For this purpose, the most popular
machine learning algorithms, namely bagging, random forest (RF), rotation forest
(RotFor) and support vector machines (SVM), used in susceptibility assessment.
Moreover, their performances were compared with the conventional method,
i.e. logistic regression (LR). For the evaluation of predictive ability of the bagging,
RF, RotFor, SVR and LR models the root mean squared error (RMSE) and mean
absolute error (MAE) were estimated from the differences between the predicted
susceptibility index values derived from the models and known values of the test
samples to determine the precision and bias of the predictions, respectively. Three
common statistical measures, namely overall accuracy, receiver operating charac-
teristic (ROC) curve and value of area under the ROC curve (AUC), was also
calculated to compare their performances. The differences in model performances
were analysed using Wilcoxon’s signed rank test.

13.2 Study Area

This study was conducted on Mackaregion of Trabzon, Turkey (Fig. 13.1). The
study area covers approximately 855 km2 rugged terrain, situated between 39� 190

and 39� 470 longitudes, and 40� 550 and 40� 360 latitudes. Due to its physiographic

Fig. 13.1 Geological map of the study area and landslide inventory
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conditions, land characteristics and climatic conditions such as above average
rainfall and soil structure, the region has witnessed many landslides at different
scales. The mean annual precipitation over the study area is approximately 200 mm
and many of the recent landslides in the study area are triggered by heavy rainfalls.
Elevations range from 80 to higher than 2800 m, and the slope angles reach 66�. The
lithology map (Fig. 13.1) produced by the General Directorate of Mineral Research
and Exploration covering ten types of geological formations was utilized. The study
area is covered by Cru1 (basalt, andesite, lava and pyroclastic), Cru3 (basalt,
andesite, lava and pyroclastic) and Gama2 (granite, granodiorite, quartz diorite and
diorite) formations. Preliminary analysis shows that most of landslides occur under
the Cru1, Gama2, Cru2 and Cru3 formations.

In this study, the landslide causative factors can be divided into four major groups
as geomorphology, geology, hydrology and land cover. Since each causative factor
map was produced from different sources, they were at different scales, so they were
rescaled to 30 � 30 m pixel resolution. Moreover, digital elevation model (DEM)
was produced from 1:25,000 scale topographic maps through digitization of contour
lines. Elevation, slope, aspect, plan curvature and TWI factor maps were extracted
from the DEM imagery. Detailed information related to the causative factors is
presented in Table 13.2.

13.3 Landslide Inventory

Preparing a representative landslide inventory map is of crucial importance in all
versions susceptibility mapping models. According to the basic assumption that
future landslides will most likely happen in similar physiographic settings of the past

Table 13.2 Detailed information related to factor maps

Major factors
Sub-
factors Sub-classes

Geology Lithology Jlh, Jcr, Cru1, Cru2, Cru3, Cru4, Ev, Gama2, Gama3, Alv

Geomorphology Elevation
(m)

80–576, 576–888, 888–1182, 1182–1.468, 1468–1742, 1742–
2005, 2005–2266, 2266–2820

Slope (�) 0–10.16, 10.16–16.41, 16.41–22.14, 22.14–27.09, 27.09–31.52,
31.52–35.95, 35.95–41.42, 41.42–66.42

Aspect Eight principal directions (N, NE, E, SE, etc.) and flat areas (�1�)
Plan
curvature

Concave, flat, convex

Hydrology TWI �0.83–1.07, 1.07–1.93, 1.93–2.78, 2.78–3.80, 3.80–5.21, 5.21–
7.22, 7.22–10.07, 10.07–17.94

Land cover Land
use/cover

Urban, water, green tea, hazelnut, agriculture, deciduous, pasture,
coniferous, soil/rock

NDVI �0.24–0.16, 0.16–0.26, 0.26–0.35, 0.35–0.42, 0.42–0.49, 0.49–
0.55, 0.55–0.62, 0.62–0.76
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and present landslides [55]. Therefore, it is highly important to designate the location
the past and current landslides correctly. In the literature, there is not any consensus
on how landslide inventory maps should be prepared. Some sampling strategies have
been proposed by researchers. In the present case study, a widely-used strategy
based on the use of polygons representing the spatial location of a landslide was
employed in the preparation of inventory map. In this study, landslide locations were
taken from the map produced with “Turkish Landslide Inventory Mapping Project”
by MTA Institute, Turkey. Totally 54 landslide (5144 pixels) and 23 non-landslide
(1188 pixels) polygons were taken into consideration. Location analysis of the past
landslides revealed that the north-east and south-west directions of the study area
witnessed substantially more landslides. Spatial distribution of the landslides in the
inventory map was statistically analysed, and found that the average landslide size
was 85,908 m2 and their acreage ranged from 6017 to 291,924 m2. The minimum
and maximum lengths of landslide are 117 m and 1092 m, respectively. Sixty
percent of the landslides range from 120 to 500 m in length. Their width ranged
between 65 and 451 m.

13.4 Methodology

Figure 13.2 shows the process adopted in this study for landslide susceptibility
modelling. The process begins with the preparation of landslide inventory and
causative factor maps. Subsequently, eight landslide conditioning factors (lithology,
elevation, slope, aspect, plan curvature, topographical wetness index, land use/cover
and NDVI) were considered for susceptibility mapping process using bagging
decision tree, random forest (RF), rotation forest (RotFor) and support vector
machine (SVM) methods. In addition, the logistic regression (LR) was utilized for
comparison purpose.

13.4.1 Bagging Algorithm

Introduced by [56], bagging (or bootstrap aggregating) has been successfully applied
to many classification and regression problems. Bagging algorithm aims to select a
training sample using a bootstrap aggregating (a sample collected with replacement)
from the original input training set and build a learning model. By means of
bootstrap aggregating technique, it is possible to generate different training data
sets and hence construct diverse learning algorithms in ensemble model. In other
words, bagging decreases the overall prediction error or stabilizes individual weak
learners (i.e. decision tree) by reducing variance. The resulting ensemble model
created by bagging combines the predictions of multiple learning algorithms to make
a final decision. Consider a given an input training data set containing n number of
training examples, a sample of n training examples is generated by sampling with
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replacement. For training of each individual learning algorithm in ensemble model,
this process is employed iteratively. Final prediction of a test sample is performed by
combining a vote of the predictions of each individual learner (i.e. majority voting
procedure). Although bagging is used to reduce the model variance, it is not
successful in reducing the model bias. Thus, the trees in the ensemble model become
correlated, limiting the level of error reduction. Therefore, it is advisable to deter-
mine components of the ensemble model to minimize the bias at the possible
expense of variance [57].

Fig. 13.2 Flowchart of the methodology used in this study
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13.4.2 Random Forest Algorithm

Random forest (RF) developed by [58] is widely-used ensemble learning algorithms
successfully applied for classification, regression and feature selection purposes. RF
is based on the idea that builds a set of decision trees, using randomly selected
training samples through bootstrap aggregating strategy to make final a prediction.
About two thirds of the selected samples known as in-bag samples are used for
training of the decision tree with the remaining one third known as out-of-bag
samples are used in an internal cross-validation to estimate the predictive accuracy
of the constructed tree model. The output is decided by a majority voting. The
underlying philosophy of RF is that the ‘strength’ of the trees is maintained while
reducing the correlation between the trees in the forest. For the implementation of RF
algorithm, two parameters (the number of trees and the number of variables) have to
be set by the analyst. In order to construct a random forest ensemble model, two
randomization processes are employed. First, training samples for each individual
tree are randomly selected by applying bootstrap sampling strategy. Second, instead
of selecting the best split, the tree inducer randomly samples a subset of the attributes
and chooses the best one [59]. For this reason, RF can be viewed as an enhanced or
generalized version of the bagging method that builds a randomized decision tree at
each iteration.

13.4.3 Rotation Forest Algorithm

Rotation forest (RotFor) is an advanced ensemble learning algorithm, used to
generate accurate and diverse classifiers [60]. RotFor applies a linear transformation
method, principal component analysis (PCA), to the original feature subsets to
project data in to a new feature space for each individual classifier in the ensemble
model [61]. In the each iteration of the ensemble model construction process, the
input features are randomly divided into k subsets. Then, PCA is applied to the each
subset to extract the principal components of rational features. As a result, k sets of
principal components are used to training of the each individual classifier of the
ensemble model. To increase diversity, the bootstrap sampling strategy applied to
the data created in each circle before the principal components transformations are
applied.

13.4.4 Support Vector Machine Algorithm

Survey of literature reveals that support vector machine (SVM) has been one of the
most popular kernel-based supervised learning algorithms, successfully applied to
various fields. The main idea behind the SVM is to seek an optimal hyperplane that
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provides maximum separation between linearly separable two classes. For
non-separable cases, the data set is moved to a higher dimensional space using a
kernel function to find the linear separation. When the SVM is used to model the
complex non-linear problems including function approximation and regression
estimation, the algorithm is often referred to as support vector regression (SVR)
[62]. SVR algorithm assumes that each set of input features (i.e. landslide condi-
tioning factors) has unique relation to its target variable (i.e. landslide susceptibility
index). Thus, the SVR algorithm identifies the rules to estimate the target values of
unknown test data samples from a set of inputs [63].

13.4.5 Logistic Regression Algorithm

Logistic regression (LR) is the most commonly applied multivariate analysis for
producing landslide susceptibility maps. The LR method seeks relationship between
a dependent variable (the presence or absence of landslides) and independent vari-
ables (i.e. conditioning factors). A linear fitting model is estimated describing the
relationship between the dependent and independent variables. The LR process is
associated with the probability of landslide phenomena to the “logit” Z (where
� 1 < Z < 0 for higher odds of non-occurrence and 0 < Z < 1 for higher odds
of occurrence) [64]. The LR function Logit(p) equation is as follows:

Logit pð Þ ¼ log
p

1� p

� �
ð13:1Þ

In this equation, p is the probability that the dependent variable ranging from 0 to
1, and ( p/(1 � p))is the so-called odds or likelihood ratio. Using the logit trans-
formations, the multiple linear regression equation can be written as:

Logit pið Þ ¼ β0 þ
Xn
i¼1

βi xi ð13:2Þ

Where β0 is the intercept, βi indicates the coefficients measuring the contribution
of independent variables xi, and n show the number of independent variables.

13.5 Results

This study investigates the performance of the machine learning algorithms in
comparison to logistic regression method for a study area in Turkey. For building
landslide susceptibility models, training and test datasets including landslide and
non-landslide samples were randomly selected from a landslide inventory map. The
inventory data were randomly divided into training and testing datasets considering
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70:30 sampling ratio. The same datasets were used to build regression models of the
algorithms considered in this study. The Weka software (v.3.8) was utilized for
bagging, RF, SVR algorithms, and SPSS (v.22) software was chosen for implemen-
tation of the LR method. Susceptibility index maps produced by the algorithms were
reclassified into five common susceptibility levels by applying equal interval
approach. For a successful susceptibility analysis using any parameter-based tech-
nique, it is crucially important to find and set optimal parameter values. Parameter-
ization of machine learning algorithms considered here is explained as follows.

For the construction of bagging ensemble prediction model, decision tree algo-
rithm was used as the base learner. The number of iteration is a critical user-defined
parameter for the implementation of the bagging algorithm. A cross-validation
strategy (i.e. fivefold) was applied to determine the optimum iteration number
using a training dataset. The cross-validation result showed that optimum iteration
number of bagging ensemble model was 30 for this study. In order to evaluate the
predictive power of bagging, two standard statistical metrics namely, RMSE and
mean absolute error (MAE) were also calculated from the test dataset, and the RMSE
and MAE values of 0.303 and 0.186 were estimated respectively.

For the application of RF algorithm, the number of trees (n) and the number of
input variables considered in each node split (k) are to be set by the user. The input
data set consisted of eight landslide conditioning factors, hence the number of input
variables (m) was set to be 3 (i.e. k ¼ ffiffiffiffi

m
p

variables at each split). On the other hand,
out-of-bag (OOB) error results of RF ensemble model were used to determine the
number of trees parameter. For this purpose, input data set was firstly classified using
a large number of trees (i.e. 500 trees) to estimate changes in OOB error with
increasing number of trees. The resulting graph showing the relations between
OOB error and the number of trees (n) was given in Fig. 13.3.

It was observed that there was a sharp decline in OOB error from 0.183 to less
than 0.05 as number of tree increased from 1 to 50. After that, OOB error continued
to decrease slightly until the number of trees takes value 200. From this critical point
to larger tree sizes, OOB error stays stable. For this reason, the number of trees (n)
was set to be 200 for the current study. The predictive accuracy of RF model
constructed with the user-defined parameters was tested using RMSE and MAE
statistics, estimated as 0.290 and 0.193, respectively.

Two parameters of RotFor method had to be determined. In order to determine
the optimum number of iterations, a cross-validation strategy was applied consider-
ing the training dataset and 70 iterations were estimated optimal. In the search for
optimal number of splits (K ), it was observed that changes in the parameter value
have no effect on the prediction results. Consequently, it was set to 3 for the model
building. RMSE and MEA were calculated as 0.329 and 0.256, respectively.

Radial basis function (RBF) kernel function was chosen in the implementation of
the SVR algorithm. In SVR application, three parameters are needed to define from
user-side. Meta-parameters of regularization parameter C, threshold value ε, and
kernel width γ were determined by grid search method. As a result, ε value of 0.001,
C value of 1.250, and γ value of 0.1 were determined as optimal. RMSE and MEA
were calculated as 0.308 and 0.173, respectively.
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In performing the LR method, independent variables including the eight causative
factors (lithology, elevation, slope, aspect, plan curvature, TWI, LULC and NDVI)
and the dependent variable as landslide areas were used. The LRmethod was utilized
to model the spatial relationship between the landslides and causative factors. The
standard errors (SE), regression coefficients (β), Wald test statistic and associated
p-values were estimated. Among all factors, slope was the most contributing factor
since it had the highest coefficient value. Other effective factors were lithology and
elevation. On the other hand, the coefficients estimated for NDVI and TWI were
close to 0, indicating the minor impacts or weak relation to landslide occurrence. All
causative factors had p-values lower than 0.1, indicating statistical significance
between factors and the susceptibility to landslide at the 90% confidence level.

All methods with the above-mentioned parameter settings were applied to the
multi-layer dataset to yield susceptibility maps. Histogram values were categorized
into five susceptibility classes using quantile approach to obtain susceptibility maps
(Fig. 13.4). The predictive powers of the landslide susceptibility models were
measured using overall accuracies calculated using the test dataset. It should be
noted that two susceptibility classes as very high and high level of the susceptibility
map were considered as potential landslide occurrence and the rest (i.e., moderate,
low and very low) were considered as non-landslide in accuracy assessment process.
Overall accuracies for bagging, RF, RotFor, SVR and LR methods were estimated as
83.08%, 87.23%, 85.31%, 84.85% and 78.46%, respectively. Results revealed that
the highest accuracy was estimated with the RF ensemble model (87.23%), whereas

Fig. 13.3 Out-of-bag (OOB) error graph for random forest estimation
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Fig. 13.4 Landslide susceptibility maps produced by (a) bagging, (b) random forest, (c) rotation
forest, (d) support vector machine and (e) logistic regression
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the lowest accuracy was calculated with traditional LR model (78.46%). RotFor and
SVR algorithms showed similar performances and calculated accuracies of their
predictive models were 85.31% and 84.85%, respectively. Results clearly showed
that the machine learning algorithms produced more accurate results in comparison
with the traditional LR method, and they improved the prediction accuracy up to 9%
in terms of overall accuracy. This finding supported the results of some previous
studies [65–68] whilst there are limited studies showed the effectiveness of LR
method compared to machine learning algorithms [28, 41, 69].

In order to further evaluate the performances of the obtained susceptibility
models, ROC curve and AUC value were applied. ROC curves are constructed by
correctly classified pixels (sensitivity) and incorrectly identified pixels
(1-specificity).

The estimated AUC values for bagging, RF, RotFor, SVR and LR models were
0.931, 0.963, 0.959, 0.955, and 0.868, respectively (Fig. 13.5). AUC values confirm
the overall accuracy results for the method performances. From plotted the ROC
curves, it was revealed that all susceptibility models produced acceptable results.
When the estimated AUC values were analysed, the machine learning algorithms
were much more effective for landslide susceptibility assessment, and the RF
method produced the highest AUC value of 0.963, followed by RotFor
(AUC ¼ 0.959), SVR (AUC ¼ 0.955) and bagging (AUC ¼ 0.931). It is clear
from the obtained results that the machine learning algorithms outperformed the
standard LR model with higher AUC values.

Fig. 13.5 Results of ROC curves and AUC values for the different methods
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In addition to the assessment of five susceptibility model performances using
overall accuracy and AUC values, Wilcoxon’s test was also employed to validate the
significance of differences statistically. If the estimated statistic value is larger than
critical table value (Z1, 0.05 ¼ 1.96), the null hypothesis can be rejected with 95%
confidence level. Calculated statistical test results were given as a matrix in
Table 13.3. From the table, all estimated statistic values obtained by pairwise
comparisons were greater than the critical table value. Therefore, it can be concluded
that differences in the model performances was found to be statistically significant.
In other words, performance of the RF method was statistically better than the other
machine learning methods. This could be related to the RF characteristics of being
non-parametric, capable of using continuous and categorical data, easy to parame-
trize, robust against overfitting, and not being sensitive to noise in the dataset.

13.6 Conclusions

Producing accurate and reliable landslide susceptibility maps representing the areas
prone to landslides has been one of the most concentrated topics in hazard manage-
ment. These maps are used as a base map in many global and regional studies on
hazard management and planning. Therefore, reliability and accuracy of the land-
slide susceptibility maps has crucial importance in order to achieving the desired
goals of the management plans. Landslide susceptibility mapping consists of com-
plex and multi-stage steps including preparation of landslide inventories, selection of
landslide causative factors, determining an appropriate prediction algorithm and
accuracy assessment. Up to now, many methods or frameworks have been proposed
so as to increase prediction accuracy of landslide models, and their performances
have been investigated for susceptibility of landslides. In this study, four well-known
machine learning algorithms, namely ensemble based bagging, random forest,
rotation forest and kernel-based support vector machines, were employed in the
process of susceptibility assessment. Their performances were compared to that of
the LR method, which can be regarded as a conventional statistical approach.

Result of this study revealed some important findings. Firstly, when the estimated
overall accuracies were analysed, the machine learning methods clearly
outperformed conventional logistic regression methods (up to 9% improvement).
ROC curves and related AUC statistics also supported the above finding. In addition,

Table 13.3 Wilcoxon’s signed-rank test statistic for landslide susceptibility models. Note that
estimated values greater than the table value (Z1, 0.05 ¼ 1.96) indicates statistical significance

Bagging RF RotFor SVR LR

Bagging – 8.464 5.104 2.954 9.913

RF – 6.755 7.073 18.961

RotFor – 2.860 11.824

SVR – 10.741
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performance differences were concluded as statistically significant based on
Wilcoxon’s test. Secondly, the results produced in this study also revealed that RF
algorithm produced the best performance (overall accuracy of 87.23% and AUC
value of 0.963) among the machine learning algorithms and the difference in their
performances was statistically significant at 95% confidence interval. Thirdly,
among the ensemble models based on bootstrap aggregating strategy considering
accuracy results, the RF and RotFor algorithms was superior to bagging algorithm.
This is an expected result since both the RF and RotFor methods are improved
versions of the bagging. However, the processing time required to form an ensemble
model is longer, particularly for RotFor method including PCA processing behind.
From the findings of the study and the literature review, it was induced that the
machine learning methods are invaluable tools for landslide susceptibility assess-
ment, and they should be favoured over statistical methods particularly for cases
including a large number causative factors and limited landslide locations at hand.
On the other hand, literature survey reveals that instead of single usage of the
methods, hybrid and ensembles of machine learning methods will play an important
role in future studies for improvement in predictive power of landslide susceptibility
evaluation.
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