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1 Introduction

The main aim of this study is to describe several tools for testing the stability and
resolution of waveform inversion focal mechanisms already successfully adopted for
crustal earthquakes occurred in the Calabrian Arc region, southern Italy (Fig. 1). It
is well known that focal mechanism quality can decrease for low magnitude earth-
quakes and that, on overall, several factors can influence the results of seismic wave-
form inversion, for example seismic network coverage, earth model uncertainties
and inaccurate earthquake location (Valentine and Trampert 2012; Chen et al. 2013;
Brandmayr et al. 2013; Silwal and Tape 2016). Earthquake focal mechanisms can
be considered as a primary tool for studying the interactions between earthquakes,
seismic faults, and active tectonics (Anderson et al. 1993). Information coming from
focalmechanisms is unfortunately confined to the time period of instrumental record-
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Fig. 1 Map view of southern Italy. The solid curve with the sawtooth pattern indicates the present-
day location of the Ionian subducting system. According to recent literature, black sawteeth indicate
the continuous subducting slab while white sawteeth the plate boundary segments where slab has
already undergone detachment (see, among others, Neri et al. 2009, 2012; Orecchio et al. 2014).
The white arrow shows the sense of the subducting slab rollback. The black arrows indicate the
present motion of Africa relative to Europe (Nocquet 2012 and references therein). Circles show
the locations of the earthquakes of magnitude 6.0 and larger that have occurred after 1000 A.D.
according to the CPTI15 catalog (Rovida et al. 2016; http://emidius.mi.ingv.it/CPTI15). Thick
dashed lines are depth contour lines of the Wadati-Benioff zone (Faccenna et al. 2011). In the upper
right inset we report the study area (black box) in the wider regional framework

ings and processing of the historical seismograms (i.e. earlyXX century seismograph
recordings) is often difficult (Batlló et al. 2008; Palombo and Pino 2013). Reliable
source information is generally available for earthquakes of M ≥ 5.5 that occurred
after the inception of the World-Wide Standardized Seismic Network (WWSSN) in
the early 1960s.

The methods traditionally used to compute focal mechanism solutions are based
on the polarity of P-wave first motion. First-motion focal solutions reflect only the
initial stages of faulting and strongly suffer from both uncertainty on velocity mod-
els used to reconstruct the wave path and inadequate azimuthal coverage of seismic
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networks (Lay and Wallace 1995; Pondrelli et al. 2006; Scognamiglio et al. 2009;
D’Amico et al. 2010; Presti et al. 2013).Moreover, errors in first-motion observations
may occur because of station polarity reversals or incorrect direct P-arrival picks due
to low signal-to-noise ratio. Much more powerful methods capable to furnish more
stable and reliable focal mechanisms with respect to the traditional techniques are
those based on waveform inversion (e.g. CMT, RCMT, TDMT). The Harvard Cen-
troidMomentTensor database (CMT;http://www.globalcmt.org) provides robust and
reliable seismic source mechanisms through the inversion of long period (T > 45 s)
body-waves and very-long period (T > 132 s) surface waves recorded at the global
scale for earthquakes occurred since 1976 with Mw > 4.5 (Ekström et al. 2012). The
European-Mediterranean Centroid Moment Tensor (RCMT; http://www.bo.ingv.it/
RCMT/) procedure is based on the inversion of intermediate and long period surface
waves recorded at regional and teleseismic distances (Pondrelli et al. 2002, 2004,
2006, 2007, 2011). The TimeDomainMoment Tensor (TDMT; http://earthquake.rm.
ingv.it/tdmt.php) algorithm performs long-period full waveform inversion for local
and regional events with magnitudeMw ≥ 3.5 (Dreger 2003; Dreger and Helmberger
1993; Scognamiglio et al., 2009).

During the last years, our research teammade continuous processing and improve-
ments on Calabrian Arc earthquake focal mechanisms in order to increase their
reliability and to expand the temporal and magnitude range of focal mechanism
databases (Neri et al. 2003, 2004, 2005; D’Amico et al. 2010, 2011, 2013; Presti
et al. 2013; Totaro et al. 2013, 2015, 2016). We provided in Totaro et al. (2016) the
most updated database including 438 crustal earthquake focal mechanisms for south-
ern Italy (Fig. 2).Most of these focalmechanisms (344) have been computed by using
the waveform inversion method Cut and Paste (CAP, Zhao and Helmberger 1994;
Zhu and Helmberger 1996). This method have shown to furnish reliable and high-
quality focal mechanism solutions also for relatively low-magnitude earthquakes
(down to a minimum of ca. 2.6) not reported in the national catalogues and often not
well resolved by using P-wave first motions (D’Amico et al. 2010, 2011). Because
of their frequent occurrence, these small earthquakes are particularly important for
characterizing local tectonics and constraining stress orientations.

The Calabrian Arc (Fig. 1) is the result of the convergence between Africa and
Europe in the central Mediterranean (Billi et al. 2011; Faccenna et al. 2004; Rosen-
baum and Lister 2004). This area is characterized by very heterogeneous seismotec-
tonic regimes along its length (Cristofolini et al. 1985; Montone et al. 2004; Totaro
et al. 2016) and has been the site of destructive earthquakes (M> 6) that occurred both
in recent and historical times (Galli et al. 2008; Neri et al. 2006). The tectonic frame-
work of the Calabrian Arc is complicated by the presence of a narrow subducting
slab beneath Calabria (Neri et al. 2009; Orecchio et al. 2014 Selvaggi and Chiarabba
1995) and of two active volcanic districts: the Mt Etna in eastern Sicily and Aeolian
Islands in southeastern Tyrrhenian (Carminati et al. 2010; Peccerillo 2003). In the
study area, different lithospheric units with changing thickness, composition and
velocity have been detected, even if the exact location of their boundaries, together
with the effective role of slow-rate Africa-Eurasia convergence and residual Ionian
slab rollback on regional geodynamics are still matter of debate (Carafa et al. 2015;

http://www.globalcmt.org
http://www.bo.ingv.it/RCMT/
http://earthquake.rm.ingv.it/tdmt.php
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Fig. 2 Crustal earthquake focal mechanism catalogue for the study area. Different colors identify
different types of mechanisms following Zoback’s (1992) classification based on values of plunges
of P and T axes: red = normal faulting (NF) or normal faulting with a minor strike-slip component
(NS); green = strike-slip faulting (SS); blue = thrust faulting (TF) or thrust faulting with a minor
strike-slip component (TS); black = unknown stress regime (U). “U” includes all focal mechanisms
which do not fall in the other five categories (Zoback 1992). The beach ball size is proportional to
the earthquake magnitude (see legend)

Faccenna et al. 2014; Gallais et al. 2013; Peròuse et al. 2012; Devoti et al. 2008).
Well constrained focal mechanisms obtained in the last years provide a key element
to study the regional tectonic processes in the Calabrian Arc region characterized by
high heterogeneity in terms of seismotectonics and kinematics.

2 Data

Since it is widely accepted that waveform inversion focal solutions in the study area
are much better constrained than P onset polarity ones (see, among others, Presti
et al. 2013; Scognamiglio et al. 2009; Pondrelli et al. 2006), all the focal mecha-
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nisms selected in the present work are waveform inversion solutions (i) computed
by the CAP method or (ii) coming from Italian centroid moment tensor (ItCMT, i.e.
Centroid Moment Tensors computed from the Italian region http://rcmt2.bo.ingv.it/
Italydataset.html), and (iii) time domain moment tensor (TDMT) catalogs (http://
cnt.rm.ingv.it/tdmt). In particular, our database (Fig. 2) consists of 438 waveform
inversion focal mechanisms coming from catalogues (104 solutions) and computed
by the CAP method (334 solutions). Concerning the data coming from catalogues,
most of them are from the Italian CMT catalog (time interval 1976-present, Mw ≥ 4;
Pondrelli et al. 2006) obtained by merging the existing global CMTs and European-
Mediterranean RCMTs data for the Italian region. For the period 2006–2015 the
database also includes focal solutions computed by using the Time-DomainMoment
Tensor (Mw ≥ 3.5). The CAP focal mechanisms have been estimated for earth-
quakes of magnitude Mw ≥ 2.6 that originated at depths shallower than 40 km in
the study region between January 2006 and October 2015. The CAP method allows
to compute reliable and high-quality focal mechanism solutions also for relatively
low-magnitude earthquakes (2.6 ≤ Mw ≤ 3.5) usually not reported in the national
catalogues and often not well resolved by using P-wave first motions (D’Amico et al.
2010, 2011; Orecchio et al. 2015; Totaro et al. 2016). Thus, it permitted to strongly
increase the amount of data available for the southern Italy region. Since the 90%
of our dataset is composed by focal mechanisms computed by applying the CAP
method, we carried out several analyses aiming to evaluate stability and resolution
of the algorithm. In addition, we also performed different tests in order to estimate
error on focal mechanism parameters.

3 The CAP Inversion Method

In the CAP method (Zhao and Helmberger 1994, 1996), each waveform is broken
up into Pnl (Pn followed by train of crust-trapped reflected/converted P-SV) and sur-
face wave segments, which are weighted differently during the inversion procedure.
The use of different portion of the waveform increases the stability of the final solu-
tion since different phases are sensitive to different parts of crustal structure and
have different amplitude decay with distances. The surface waves, although large
in amplitudes, are easily influenced by shallow crustal heterogeneities whereas Pnl
waves are controlled by the averaged crustal velocity structure and are thereforemore
stable.

In order to invert the data, waveforms are converted in ground velocity and pre-
ferred to ground displacement mainly because the majority of the events have mag-
nitude smaller than four and we needed to avoid the influence of long-period noise
embedded in ground displacements. Furthermore, working with ground velocity
rather than ground displacement reduces the influence of a low frequency site or
instrument noise on the deconvolution. The same frequency bands have been used
to filter synthetic and observed ground velocities, in detail 0.02–0.1 Hz for surface
waves and 0.05–0.3 Hz for Pnl waves. All these features make the CAP method

http://rcmt2.bo.ingv.it/Italydataset.html
http://cnt.rm.ingv.it/tdmt
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effective for earthquakes over a wide range of magnitudes (down to a minimum of
2.6; D’Amico et al. 2010, 2011; Zhu et al. 2006) as also proven by several tests and
comparisons (D’Amico et al. 2010, 2011; Tan et al. 2006; Zhao and Helmberger
1994; Totaro et al. 2016).

4 Stability Tests and Resolution Estimates

The use of CAP in the Calabrian Arc region has allowed to estimate focal mech-
anism solutions also for low magnitude events (down to a minimum of 2.6) and
therefore to significantly increase the number of focal mechanisms based on wave-
form inversion method (i.e., 90% of the dataset comes from CAP inversions). Such
a relevant increase has important implications for better constrain local stress con-
ditions and geodynamic interpretations in the study area (Totaro et al. 2016 and
references therein). Hence it is necessary to carefully check quality and stability of
newly-added waveform inversion solutions estimated by CAPmethod. Starting from
these considerations and by also taking into account concerned literature information
(see e.g., D’Amico et al. 2010, 2011; Presti et al. 2013; Orecchio et al. 2014) we
present in this study several resolution and stability tests aimed to properly verify
the robustness of CAP results.

We report the results of several tests performed on a subset of 5 earthquakes
chosen as representative of different network condition, magnitude value, location
area and focal depth.

For each earthquake we observed how the moment tensor varies as function of
focal depth in order to evaluate its stability around the global misfit minimum. The
depth increment in the grid search is 5 km and for each depth we report the best-fit
solution obtained by searching over the full space of orientations and magnitudes
and the relative misfit value.

Then, we repeated the inversion procedure by considering different seismic net-
work distribution. Seismic network geometry is fundamental in the earthquake anal-
ysis. In particular, in our study region the network configuration is often limited by
the presence of wide off-shore sectors and the substantial lack of OBS (Ocean Bot-
tom Seismometer) data. This factor can reduce the quality of solutions and therefore
we verify CAP results even with not-optimal azimuthal coverage and few available
records by using earthquake located both on-shore and off-shore in the Calabrian
Arc area.

Also, we investigated the influence of epicentral errors on thewaveform inversion.
Non-linear earthquake locations performed in the study area using the method by
Presti et al. (2004, 2008) and consequent hypocentral error evaluation indicate that
the mean epicentral uncertainty is in the range of 4–6 km (Orecchio et al. 2014).
Then we forced the epicenter to lie 5 km away from the true location in order to test
the solution even taking into account the mean uncertainty on earthquake location.

An important role in waveform inversion procedure is also played by the seismic
velocity model that is used for the calculation of Green’s Functions basically for
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Fig. 3 Different velocity models used to compute the Green’s functions for tests on the influence
of possible crustal structure heterogeneities in the study area (see also plot c in Fig. 4)

the double-couple mechanism estimates. Each focal mechanism of the most updated
CAP catalog (Totaro et al. 2016) has been computed by using a specific 1D velocity
model for each target area. To take into account the lithospheric heterogeneities of
the Calabrian Arc region we used the most detailed 3D velocity models available
from the literature (Barberi et al. 2004; Orecchio et al. 2011; Totaro et al. 2014) to
compute theoretical travel times for properly defined target area and to build from
these specific 1D velocity models (D’Amico et al. 2011). Even if the time-shift
allowed in the CAP algorithm can partly reduce the influence introduced by the
velocity model uncertainties, we further verified the stability of the solution with
respect to velocity structure by using different velocity models representative of
structure heterogeneities of the study region (Fig. 3).

Generally, waveform inversionmethods give a standard error for each focal mech-
anism parameter (e.g., strike, dip and rake) derived from linearized techniques. It
provides an important and useful measure of quality of focal mechanism solution
but, as shown by several authors, linearized inversion methods tend to underesti-
mate formal errors on focal mechanism parameter (Tan et al. 2006; Bevington and
Robinson 2003). We present a procedure aimed to assess more reliable confidence
limits of estimated strike, dip and rake. Following the approach described by Stich
et al. (2003), we used a grid search for error analysis in the full range of focal
parameter space. For each earthquake a set of “artificial” focal mechanisms has been
obtained by moving around the best-fit solution in all directions of the focal param-
eter space with a sampling step of 10°. Then we estimated the misfit for all artificial
focal mechanisms and compared these values with the global minimum misfit of the
best solution obtained by CAP. In this way it is possible to observe how the misfit
value changes with respect to strike, dip and rake, respectively. This comparison can
assess the confidence limits and the range of potential alternative solutions over fault
plane parameters, allowing us to define the accuracy of the focal mechanism solu-
tion. According to Stich et al. (2003), we assumed that the uncertainty region of the
solution includes all the artificial focal mechanisms having misfit <10% above the
global minimum. By application of this procedure to CAP moment tensor solutions
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Table 1 Events used in th study

ID
event

DATE
yy/mm/dd

TIME
hh:mm:ss

Lat (°) Lon (°) Depth
(km)

Strike Dip Rake Mw

1 20090701 17:58:54 38.34 15.01 2 40 90 19 3.1

2 20111119 10:19:16 16.00 37.81 14 121 70 −25 3.4

3 20140323 18:31:52 37.47 16.48 38 177 61 21 3.6

4 20140708 05:02:43 39.90 16.12 2 347 51 −83 2.9

5 20150329 10:48:46 38.09 16.21 12 52 76 −83 3.5

we are able to estimate that our focal mechanism solutions are characterized by fault
parameter errors of the order of 8°–10° (Totaro et al. 2016).

5 Results and Discussion

In Fig. 4 we report the results of the above described tests performed for the 5 events
listed in Table 1 and chosen to fairly represent dataset heterogeneities. For each event
the epicenter location (black star) and the recording seismic network (triangles) are
shown on plots (a). The earthquakes are located both on-shore and off-shore (ID
2, 4 and 1, 3, 5 in Fig. 4, respectively) in the Calabrian Arc area and they are also
characterized by different network coverage. We display on plots (b) the best focal
mechanism solution in the waveform misfit versus depth curve obtained by the grid
search procedure. From plot (b) we can observe that, in general, the focal solution
does not change significantly near theminimummisfit value. Only for the earthquake
ID 3, located in the Ionian Sea, the curve of waveform misfit is almost flat around
the minimum indicating that the network coverage does not provide a tight depth
constraint.

As already mentioned, we assess inversion results also by using different station
configurations as indicated in the left columnof plots (c) of Fig. 4wherewe also report
the respective best focal mechanism solution. In all cases the focal mechanisms are
very similar to that obtained from the inversion with the real station network. Even in
this case some differences between the focal mechanisms calculated by test and the
true one are visible for earthquake ID 3 andmay be probably related to the position of
the epicenter with respect to the recording stations. By also taking into account these
small differences this test shows the good stability of CAP results even in case of poor
station distribution or quite low magnitude. By way of example see, events ID 3, ID
4, and ID 5: for these earthquakes, in fact, the seismic network configuration has an
azimuthal gap as large as 180° and also the simulation in extremely bad conditions
characterized by only 2 recording stations show very stable solutions. Plots (c) of
Fig. 4 also report (right side) the focal mechanisms obtained by varying of 5 km
the epicenter location (grey star in plots a). It clearly appears that a mislocation
compatible with the hypocenter location uncertainties estimated does not produce
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Fig. 4 The figure shows results obtained after tests performed to verify the stability and the error
on CAP focal mechanism solutions. Plot a map reporting recording stations (black triangles) and
epicentral location (black star) used in the waveform inversion procedure together with two biased
epicentral locations used for synthetic tests (grey stars) for each event. Plot bmisfit error as function
of depth. Plot c reports the best focal mechanisms solution for each earthquake and the results
of different tests performed by changing the recording networks (also using very unfavourable
conditions), the velocity models for the study area (see Fig. 3) and by forcing the epicenters to lie
5 km away from the “true” locations. Plots d, e, f reports the graph of RMS versus strike, dip and
rake, respectively. The dashed line marks the 10% threshold of RMS. The minimum shown in each
diagram is the best solution of the event
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Fig. 4 (continued)

significant differences between true and simulated solution, further supporting the
stability of our results. In the same plots we compare the solutions estimated using
different 1D velocity models, VM1, VM2 and VM3 (Fig. 3), used for computation of
the focal mechanisms. Even in these examples, the high stability of the mechanisms
is evident.More pronounced differences affect the results of event ID 3, probably due
to inaccuracy of the model VM2 and VM3 for the Ionian Sea area. Plots (d), (e) and
(f) of Fig. 4 report the misfit values versus strike, dip and rake respectively. These
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Fig. 4 (continued)

diagrams useful to study the uncertainties of the focal mechanism solution have
been built by estimating the misfit values throughout the space of moment tensor
orientations. As the uncertainly volume is defined by misfit lower than 10° respect
to the best moment tensor solution all the focal mechanisms under the dashed line
are acceptable solutions. Usually, relying on focal mechanisms that follow the 10%
threshold we can estimate that our focal parameter errors are on average of 8°–10°,
like in the examples here reported.
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Fig. 4 (continued)

6 Concluding Remarks

In order to check the method robustness, the quality and stability of CAP focal
mechanism solutions have been proven by mean of several tests also for low magni-
tude earthquakes. Following previous investigations carried out in the study region,
we performed tests taking into account (1) recording station geometry, (2) different
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Fig. 4 (continued)

velocity models, (3) the misfit error as a function of depth, (4) epicenter uncertainty,
and (5) strike, dip and rake variations as function of waveform misfit. Through these
tests we verified that CAP solutions are robustly determined and just a few stations
provide enough information to properly constrain the earthquake focal mechanism.
Furthermore, the application of CAPmethod can provide good-quality solutions in a
magnitude range (i.e. 2.6≤Mw ≤ 3.5) not properly represented in the Italian national
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catalogues andwhere the solutions estimated from P-onset polarities are often poorly
constrained.

The procedures described in this paper could be applied to different datasets in
order to verify the robustness of estimated focal mechanisms and, consequently, to
properly improve the knowledge of the seismotectonic regime, regional stress field
features as well as the seismic hazard of different investigation areas.

Acknowledgements Some Figures were created using the Generic Mapping Tools (GMT) by
Wessel and Smith (1991).
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