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1 Introduction

When thewavelength of a seismic signal of interest ismuch longer than the dimension
of the internal seismic source that generates the signal, whether it is an earthquake,
an underground explosion or an underground mine collapse, the seismic source may
be represented by a symmetric second-order moment tensor. The observed seismic
signal is then the convolution of the source moment tensor with the earth’s impulse
response, or the Green’s function between the source and the receiver, which records
the signal. This relationship is universally used to retrieve the source moment tensor
from observed seismic data for seismic-source characterizations. Assuming a step
source time function, research organizations use seismic body waves, surface waves
and the earth’s free oscillation to routinely calculate moment tensors of global earth-
quakes (e.g., Ekström et al. 2012; Pondrelli et al. 2011; Tsuruoka et al. 2009). For
detailed source analysis, seismologists also attempt to recover source time functions
that are not a step function using either time-domain methods (e.g., Sipkin 1982;
Šílený et al. 1992) or a frequency-domain approach (e.g., Stump and Johnson 1977).

Here we describe the frequency-domain moment-tensor inversion method of
Stump and Johnson (1977) including its mathematical formulation, the inversion
method and error assessments. We also provide some examples to illustrate the
application of the method.
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2 Theory

The basic relationship between the ground displacement and the seismic source
excitation is the representation theorem. The theorem states that ground displacement
un (n=1, 2, 3) at location x and time t due to the equivalent body-force density
f i, which includes contributions from the body force, the initial condition and the
boundary condition, is

un(x, t) �
∞∫

−∞

⎡
⎣

∫ ∫ ∫

V

Gni (x, t − τ ; ξ, 0) fi (ξ, τ )dV (ξ)

⎤
⎦ dτ, (1)

where Gni is the Green’s function and the volume V contains all nonzero f i (Aki and
Richards 2002). Einstein summation is assumed for all equations in this article. By
expanding the Green’s function in a Taylor series about the coordinate origin, we
have

Gni (x, t − τ ; ξ, 0) �
∞∑

m�0

1

m!
ξ j1 . . . ξ jmGni, j1 ... jm (x, t − τ ; 0, 0), (2)

where Gni, j1··· jm is the mth spatial derivative of the Green’s function. If we define the
force moment tensor of order m + 1 as

Mi j1... jm (0, τ ) �
∫ ∫ ∫

V

ξ j1 . . . ξ jm fi (ξ, τ )dV (ξ), (3)

Equation (1) becomes

un(x, t) �
∞∫

−∞

[ ∞∑
m�0

1

m!
Gni, j1... jm (x, t − τ ; 0, 0)Mi j1... jm (0, τ )

]
dτ

�
∞∑

m�0

1

m!

∞∫

−∞
Gni, j1... jm (x, t − τ ; 0, 0)Mi j1... jm (0, τ ),

�
∞∑

m�0

1

m!

∞∫

−∞
Gni, j1... jm (x, t ; 0, 0) ∗ Mi j1... jm (0, t)

(4)

where * denotes temporal convolution (Stump and Johnson 1977; Julian et al. 1998).
If we assume that the linear momentum of the body-force system is conserved

during the source process, which is usually true for sources internal to the earth such
as earthquakes and underground explosions, then from Eq. (3),
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Mi (0, τ ) �
∫ ∫ ∫

V

fi (ξ, τ ) dV (ξ) � 0.

In addition, if the volume of the body-force system is much smaller than the
wavelength of the seismic wave that the source generates, terms with orders higher
than m � 1 in the Green’s function expansion (Eq. 2) can be neglected (Stump and
Johnson 1977). As a result, Eq. (4) is reduced to

un(x, t) � Gni, j (x, t ; 0, 0) ∗ Mi j (0, t). (5)

For internal seismic sources, the angular momentum of the source system is usu-
ally conserved. It can be shown that for such sources, the sourcemoment tensorMij is
symmetric with six independent components (Aki and Richards 2002). If we Fourier
transform Eq. (5) into the frequency domain, convolution becomes multiplication
and we obtain

un(x, f ) � Gni, j (x, f ; 0, 0)Mi j (0, f ). (6)

Equation (6) is the basic equation that we use to describe the frequency-domain
moment-tensor-inversion method.

3 Methodology

To invert Eq. (6) for the source moment tensor Mij, we use ground-motion data
recorded by multiple receivers at different azimuths and distances from the source.
In order to facilitate the inversion, we first partition ground-motion data into radial,
transverse and vertical components with the projection of the direction from the
source to the receiver on a horizontal plane as the radial direction. We then represent
the ground motion as a function of the source moment tensor defined in the source
coordinate system. We describe the procedure in detail below.

Without loss of generality, we abbreviate Eq. (6) to

un � Gni, j Mi j . (n � 1, 2, 3) (7)

We assume that Eq. (7) is defined in a coordinate system with its origin at the
source, and with x1-axis positive to the north, x2-axis positive to the east and x3-
axis positive down. We call this system the source coordinate system. Considering
a receiver that is located at θ -degree azimuth from the source, we establish another
coordinate system that has the same origin as the source coordinate system, but with
axes in radial (x1′ ), transverse (x2′ ) and vertical (x3′ ) directions. For this coordi-
nate system, the horizontal direction θ degrees from the north is radial positive, the
horizontal direction 90° clockwise from radial positive is transverse positive and
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Fig. 1 Definition of and
relationship between source
and receiver coordinate
systems
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down is vertical positive (Fig. 1). We refer to this system as the receiver coordinate
system.

In the receiver coordinate system, Eq. (7) becomes

un′ � Gn′i ′, j ′ Mi ′ j ′ . (8)

According to the transformation law for a second-order tensor,

Mi ′ j ′ � αi i ′α j j ′ Mi j , (9)

where αij are direction cosines from the transformation matrix between the source
and the receiver coordinate systems:

α �
⎡
⎣

α11′ α12′ α13′

α21′ α22′ α23′

α31′ α32′ α33′

⎤
⎦ �

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦. (10)

Using Eq. (10) to expand Eq. (9), we have

M1′1′ � M11 cos
2 θ + 2M12 cos θ sin θ + M22 sin

2 θ

M1′2′ � (M22 − M11) sin θ cos θ − M12
(
sin2 θ − cos2 θ

)
M1′3′ � M13 cos θ + M23 sin θ

M2′2′ � M11 sin
2 θ − 2M12 cos θ sin θ + M22 cos

2 θ

M2′3′ � M23 cos θ − M13 sin θ

M3′3′ � M33 (11)
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Substituting Eq. (11) into the expansion of Eq. (8) yields

un′ � M11[cos
2 θGn′1′,1′ + sin2 θGn′2′,2′ − cos θ sin θ (Gn′1′,2′ + Gn′2′,1′ )]

+ M12[2 cos θ sin θ (Gn′1′,1′ − Gn′2′,2′ ) + (cos2 θ − sin2 θ )(Gn′1′,2′ + Gn′2′,1′ )]
+ M13[cos θ (Gn′1′,3′ + Gn′3′,1′ ) − sin θ (Gn′2′,3′ + Gn′3′,2′ )]
+ M22[sin

2 θGn′1′,1′ + cos2 θGn′2′,2′ + sin θ cos θ (Gn′1′,2′ + Gn′2′,1′ )]
+ M23[sin θ (Gn′1′,3′ + Gn′3′,1′ ) + cos θ (Gn′2′,3′ + Gn′3′,2′ )]
+ M33Gn′3′,3′

,

(12)

which expresses the ground displacement in the receiver coordinate system in terms
of the source moment tensor in the source coordinate system. If we denote x1′ as
r, x2′ as t and x3′ as z, we arrive at the equation that we use for the moment-tensor
inversion:

ur � M11[cos
2 θGrr,r + sin2 θGrt,t − cos θ sin θ (Grr,t + Grt,r )]

+ M12[2 cos θ sin θ (Grr,r − Grt,t ) + (cos2 θ − sin2 θ )(Grr,t + Grt,r )]
+ M13[cos θ (Grr,z + Grz,r ) − sin θ (Grt,z + Grz,t )]
+ M22[sin

2 θGrr,r + cos2 θGrt,t + sin θ cos θ (Grr,t + Grt,r )]
+ M23[sin θ (Grr,z + Grz,r ) + cos θ (Grt,z + Grz,t )]
+ M33Grz,z

ut � M11[cos
2 θGtr,r + sin2 θGtt,t − cos θ sin θ (Gtr,t + Gtt,r )]

+ M12[2 cos θ sin θ (Gtr,r − Gtt,t ) + (cos2 θ − sin2 θ )(Gtr,t + Gtt,r )]
+ M13[cos θ (Gtr,z + Gtz,r ) − sin θ (Gtt,z + Gtz,t )]
+ M22[sin

2 θGtr,r + cos2 θGtt,t + sin θ cos θ (Gtr,t + Gtt,r )]
+ M23[sin θ (Gtr,z + Gtz,r ) + cos θ (Gtt,z + Gtz,t )]
+ M33Gtz,z

uz � M11[cos
2 θGzr,r + sin2 θGzt,t − cos θ sin θ (Gzr,t + Gzt,r )]

+ M12[2 cos θ sin θ (Gzr,r − Gzt,t ) + (cos2 θ − sin2 θ )(Gzr,t + Gzt,r )]
+ M13[cos θ (Gzr,z + Gzz,r ) − sin θ (Gzt,z + Gzz,t )]
+ M22[sin

2 θGzr,r + cos2 θGzt,t + sin θ cos θ (Gzr,t + Gzt,r )]
+ M23[sin θ (Gzr,z + Gzz,r ) + cos θ (Gzt,z + Gzz,t )]
+ M33Gzz,z

. (13)

To use Eq. (13) in themoment-tensor inversion, we need to calculate 3-component
Green’s functions for the 6 moment-tensor components, which amounts to a total of
18Green’s functions. If the earthmedium is horizontally homogeneous and isotropic,
which we often assume, Eq. (13) can be further simplified. This is because for such
an earth model, we have

Gtr,r � Gtt,t � Gtz,z � Gtr,z + Gtz,r � Grr,t + Grt,r

� Grt,z + Grz,t � Gzr,t + Gzt,r � Gzt,z + Gzz,t � 0.
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This conclusion can be proven by expanding Eq. (4.29) of Aki and Richards
(2002) and realizing that when the source moment tensor and the ground motion are
expressed in the same receiver coordinate system, for a horizontally homogeneous
and isotropic earth model, the ray path between the source and the receiver is always
in the r-z plane and the direction cosine γ t is zero. With this observation, Eq. (13)
becomes

ur � M11[cos
2 θGrr,r + sin2 θGrt,t ]

+ M12[2 cos θ sin θ (Grr,r − Grt,t )]
+ M13[cos θ (Grr,z + Grz,r )]
+ M22[sin

2 θGrr,r + cos2 θGrt,t ]
+ M23[sin θ (Grr,z + Grz,r )]
+ M33Grz,z

ut � −M11[cos θ sin θ (Gtr,t + Gtt,r )]
+ M12[(cos

2 θ − sin2 θ )(Gtr,t + Gtt,r )]
− M13[sin θ (Gtt,z + Gtz,t )]
+ M22[sin θ cos θ (Gtr,t + Gtt,r )]
+ M23[cos θ (Gtt,z + Gtz,t )]

uz � M11[cos
2 θGzr,r + sin2 θGzt,t ]

+ M12[2 cos θ sin θ (Gzr,r − Gzt,t )]
+ M13[cos θ (Gzr,z + Gzz,r )]
+ M22[sin

2 θGzr,r + cos2 θGzt,t ]
+ M23[sin θ (Gzr,z + Gzz,r )]
+ M33Gzz,z

. (14)

Next, we express Eq. (14) in terms of the 10 specific, sometimes called canonical,
Green’s functions. First, we define 4 types of sources in the source coordinate system.
We require that the time dependence of all 4 sources is an impulse that starts at t � 0.
Its Fourier transform is then 1. The first source is a left-lateral vertical strike-slip
source with its fault in the x1 − x3 plane. Its moment tensor representation is

MSS( f ) �
⎡
⎣0 1 0
1 0 0
0 0 0

⎤
⎦. (15a)

The second source is a vertical dip-slip source with the fault in the x1 − x3 plane
and the slip direction of the footwall, the wall on the positive x2 side of the fault, is
vertically downwards. Its moment tensor is

MDS( f ) �
⎡
⎢⎣
0 0 0
0 0 −1
0 −1 0

⎤
⎥⎦. (15b)
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Fig. 2 Depiction of the four sources: strike slip (SS), dip slip (DS), CLVD (LD) and explosion
(EX)

The third source is a compensated linear vector dipole (CLVD) with its vertical
dipole twice as large as its horizontal dipoles. The moment tensor of this source is

MLD( f ) �
⎡
⎢⎣
0.5 0 0
0 0.5 0
0 0 −1

⎤
⎥⎦. (15c)

The fourth source is an isotropic explosion with the moment tensor

MEX ( f ) �
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦. (15d)

The four sources are pictured in Fig. 2.
When we record seismic signals or compute synthetic seismograms from these

four sources at specific azimuths, we obtain the 10 so-called canonical Green’s func-
tions. When the receiver is at an azimuth of 45° (π /4) from the strike-slip source,
from Eqs. (14) and (15a), the radial- and vertical-component ground displacements
are
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SSr � ur � M12[2 cos
(π

4

)
sin

(π

4

)
(Grr,r − Grt,t )] � Grr,r − Grt,t

SSz � uz � M12[2 cos
(π

4

)
sin

(π

4

)
(Gzr,r − Gzt,t )] � Gzr,r − Gzt,t

. (16a)

When the receiver is at an azimuth of 0° from the strike-slip source, the transverse
component is

SSt � ut � M12[(cos
2(0) − sin2(0))(Gtr,t + Gtt,r )] � Gtr,t + Gtt,r . (16b)

For the dip-slip source, the radial and vertical components at an azimuth of 90°
(π /2) are

DSr � ur � M23[sin
(π

2

)
(Grr,z + Grz,r )] � −(Grr,z + Grz,r )

DSz � uz � M23[sin
(π

2

)
(Gzr,z + Gzz,r )] � −(Gzr,z + Gzz,r )

. (16c)

The transverse component from the dip-slip source at the azimuth of 0° is

DSt � ut � M23[cos(0)(Gtt,z + Gtz,t )] � −(Gtt,z + Gtz,t ). (16d)

For CLVD and explosion sources, there is no transverse ground motion and the
azimuth of the receiver can be arbitrary. For the CLVD source, we have

LDr � ur � M11[cos
2 θGrr,r + sin2 θGrt,t ] + M22[sin

2 θGrr,r + cos2 θGrt,t ] + M33Grz,z

� 1

2
(Grr,r + Grt,t ) − Grz,z

LDz � uz � M11[cos
2 θGzr,r + sin2 θGzt,t ] + M22[sin

2 θGzr,r + cos2 θGzt,t ] + M33Gzz,z

� 1

2
(Gzr,r + Gzt,t ) − Gzz,z

.

(16e)

For the explosion source, we have

EXr � ur � M11[cos
2 θGrr,r + sin2 θGrt,t ] + M22[sin

2 θGrr,r + cos2 θGrt,t ] + M33Grz,z
� Grr,r + Grt,t + Grz,z

E Xz � uz � M11[cos
2 θGzr,r + sin2 θGzt,t ] + M22[sin

2 θGzr,r + cos2 θGzt,t ] + M33Gzz,z
� Gzr,r + Gzt,t + Gzz,z

.

(16f)

When we substitute Eq. (16a–16f) into Eq. (14), we obtain
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ur � M11

[
SSr
2

cos 2θ +
EXr + LDr

3

]

+ M12[SSr sin 2θ ]
− M13[DSr cos θ ]

− M22

[
SSr
2

cos 2θ − EXr + LDr

3

]

− M23[DSr sin θ]

− M33

[
2

3

(
LDr − EXr

2

)]

ut � − M11

[
SSt
2

sin 2θ

]

+ M12[SSt cos 2θ ]
+ M13[DSt sin θ ]

+ M22

[
SSt

sin 2θ

2

]

− M23[DSt cos θ]

uz � M11

[
SSz
2

cos 2θ +
EXz + LDz

3

]

+ M12
[
SSz sin 2θ

]
− M13

[
DSz cos θ

]
− M22

[
SSz
2

cos 2θ − EXz + LDz

3

]

− M23
[
DSz sin θ

]
− M33

[
2

3

(
LDz − EXz

2

)]

. (17)

Equations (13) and (17) are the basic equations that are used to invert for the
frequency-domain source moment tensor, or the moment-tensor spectra. With obser-
vations at multiple receivers, these equations can be expressed in the matrix form
as

d � Gm, (18)

where d contains Fourier-transformed ground motion,G contains frequency-domain
Green’s functions and m are frequency-domain moment-tensor components. With
digital data, all spectra in Eq. (18) are for discrete frequencies.

Equation (18) can be solved for m at each frequency with standard least-squares
inversion methods such as the singular-value-decomposition method (SVD) (e.g.,
Menke 1989), in which G is decomposed as

G � U�VH,

where U is composed of eigenvectors of GGH and V is composed of eigenvectors
of GHG. Superscript H denotes conjugate transpose. Diagonal matrix � contains
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nonzero square roots of corresponding eigenvalues, called singular values. With the
SVD method, the source moment tensor is estimated as

mest � V�−1UHd. (19)

The complete source moment-tensor spectra are obtained by combining inversion
results at individual frequencies. Time histories of the moment tensor are obtained
by the inverse Fourier transform of the moment-tensor spectra.

For statistically independent ground-motion data with a uniform variance σ 2
d , the

covariance of the estimated moment tensor is (Menke 1989)

cov(mest) � σ 2
dV�−2VH. (20)

Equation (20) shows that the covariance and the variance of the estimatedmoment
tensor depend on the singular-value matrix. Small singular values result in large
moment-tensor variances.

The time history of a seismic source, whether it is an earthquake or an explosion,
often has a static offset as time approaches infinity. The Fourier transform of this
component approaches infinity as the frequency goes to zero. This low-frequency
behavior makes the frequency-domain inversion results using ground displacements
unstable. To stabilize the inversion at low frequencies,we usually use groundvelocity,
instead of ground displacement, in the moment-tensor inversion. As a result, the
time derivative of the moment-tensor spectra, or the moment-rate-tensor spectra, is
retrieved.

4 Examples

Because the purpose of using the frequency-domain moment-tensor-inversion tech-
nique is to retrieve the complete source moment-tensor spectra including its high-
frequency component, this method is often employed to characterize small sources
where the point-source approximation is more appropriate for high-frequency data.
These sources include small earthquakes, e.g., induced seismicity, and man-made
sources, such as underground explosions or mine collapses. In this section, we first
give two examples demonstrating the technique in characterizing an underground
chemical explosion and a unique underground-mine collapse. The final example
illustrates the importance of accurate velocity models to inversion results.

4.1 An Underground Chemical Explosion

The first example is the moment-tensor inversion using near-source seismograms
from an underground chemical explosion (Yang and Bonner 2009). The explosion
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Fig. 3 Locations of the
explosion source and
accelerometers
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source was constructed by drilling 5 holes in a cross pattern to a depth of 40 m,
filling the holes with 10 m of explosives, and stemming the holes to the surface. The
total weight of the explosive is 5484 kg. The arm length of the cross drill pattern is
about 3.5 m. Explosives in the 5 holes were detonated simultaneously resulting in an
effective single, contained explosion source. Seismic signals from this explosionwere
recorded by an accelerometer array around the source. Figure 3 plots the locations
of the explosion and accelerometers. The source-receiver distances are from 201
to 668 m. The accelerometers cover about half of the complete 360° azimuths. An
optimal azimuthal coverage would span 360° for a complete sampling of the source
radiation pattern. Considering the fact that the radiation pattern from an explosion
source should be relatively uniform and the fact that three-component waveforms
are utilized, this azimuthal coverage should be sufficient. Deployment of receivers at
different distances is also desired for improved sampling of the source focal sphere.

Figure 4 displays the ground-velocity seismograms determined by integrating
ground accelerations recorded at the receivers shown in Fig. 3. These are typical of
seismic signals we see from explosive sources at close distances. The raw signals are
generally short (<1 s). Themain signal is theP-wave. If we low-pass filter the signals,
short-distance, fundamental-mode Rayleigh wave (Rg) becomes significant. Even
though explosive sources are supposed to generate mainly compressional waves, we
usually see appreciable shear waves on the transverse component due to the potential
asymmetry of the sources and/or media heterogeneity.

To invert these groundmotions for the source moment tensor, we need to calculate
Green’s functions between the source and receivers. This in turn requires a proper
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Fig. 4 Ground velocities from the explosion. Amplitudes are normalized. Maximum absolute
amplitudes are marked to the right of the traces

earthmodel withP-wave velocity, S-wave velocity, density,P-wave quality factorQp

and shear-wave quality factorQs. In many cases, because source signals are recorded
at close distances (e.g., <2 km), themedium heterogeneity is not severe and a laterally
homogeneous, one-dimensional (1D) earth model can be used. This assumption is
good for this experiment where the explosion was detonated in sedimentary rocks
with velocity changesmainly in the vertical direction.Generally, different parameters
of the earth model are derived from different data types. In this example, P-wave
velocity structure of the earth model was developed using P-wave arrival times from
a refraction survey and from seismometers installed around the test site (Leidig et al.
2005). S-wave velocities were derived from surface-wave analysis, and density data
were from laboratory sample tests. Shear-wave quality factor was from analysis
of surface-wave amplitudes, whereas that of P-wave was based on a theoretical
relationship between Qs and Qp (Müller 1985).

For 1D earth models, a variety of computation methods can be used to calculate
synthetic seismograms, or Green’s functions. In this example, we use amethod called
the reflectivity method (Müller 1985) for the calculation. The method is a slowness-
integration method that generates complete seismograms including both near-field
and far-field terms. Other than an accurate earth model, the key aspect of getting
proper Green’s functions using the method is to select appropriate input parameters,
such as slowness-integration interval, slowness sampling and length of the time trace,
for the problem at hand so that important seismic phases are captured in the Green’s
function and numerical noise is minimized.

After Green’s functions for all receivers are obtained, they are substituted into
Eq. (18) and amoment-tensor inversion can then be performed.Because the 1Dmodel
is an approximation of the real earth structure, errors such as differences in phase
arrival times between theGreen’s functions and the observed seismograms exist. One
way to reduce the effect of model error is to manually align P-wave arrival times
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Fig. 5 Moment-tensor time histories of the explosion source from the inversion

between the Green’s function and the observed signal before the Fourier transform.
This procedure has been used in regionalmoment-tensor inversion studies (e.g., Zhao
and Helmberger 1994), and it is a common practice in frequency-domain moment-
tensor inversions. Even though the method does not correct for arrival-time error of
later phases or amplitude errors, it still improves the inversion result. An additional
measure that can be taken is to multiply the seismograms and the Green’s functions
by corresponding epicentral distances to some power. This is to increase amplitudes
of seismograms at longer distances so that they provide similar contributions to the
inversion result as close-in seismograms do. Multiplication by distance itself is a
usual choice.

Figure 5 plots the moment tensor time histories of the explosion source from
the inversion of seismograms shown in Fig. 4. Both manual alignment of P-wave
arrival times and multiplication of seismograms by distance were applied before
the inversion. The time histories provide detailed information about the source pro-
cess including its mechanism, strength and evolution over time. It shows that the
explosion-source moment tensor is dominated by its diagonal components. The
source signal consists mainly of a single pulse that starts at time zero. All three
diagonal components have similar wave shapes and amplitudes.

The isotropic nature of the source can be seen more clearly in its moment-rate
spectra shown in Fig. 6. The amplitudes of the diagonal moment-rate spectra are
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Fig. 6 The moment-rate
spectra of the explosion
source
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almost identical between 5 and 25 Hz. Below 5 Hz, the diagonal-component spectra
display an amplitude plateau possibly containing the static component, or the long-
period level, of the source signal, which is used to estimate the sourcemoment.When
we integrate ground accelerations to ground velocities, we enhance the long-period
noise in the data. As a result, we usually need to high-pass filter the seismograms.
Because of the filtering,we see the roll-off of spectral amplitudes toward low frequen-
cies. Below 20–30 Hz, off-diagonal-component spectral amplitudes are more than
an order of magnitude lower than those of diagonal components. This is consistent
with time-domain observations (Fig. 5).

Figure 7 plots the relative variance of the sourcemoment-tensor spectra calculated
using Eq. (20), assuming a unit data variance. The variance can be used to evaluate
the reliability of the source spectra from the inversion. The variances of the diagonal
moment-tensor components track each other closely for frequencies below 30 Hz.
Above 30 Hz, the variance ofM33 begins to increase significantly from those ofM11

andM22. We see corresponding deviation ofM33 spectral amplitude in Fig. 6 for the
same high frequencies. The correlation implies that the deviation could be caused
by errors in modeling M33 at high frequencies and a physical interpretation of the
deviation should be done with caution. Variances of off-diagonal components also
increase with increasing frequency, meaning their spectra at high frequencies are not
as well constrained either.

To further assess the quality of the inversion result, we usually compare observed
seismograms used in the inversion with those predicted by the inversion result.
Figure 8 shows such a comparison. Based on the correlation coefficient values, we
conclude that the moment tensor from the inversion accurately reproduces observed
signals particularly for vertical-component data and at closer distances.
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Fig. 7 Relative variance of
moment-tensor spectra
shown in Fig. 6
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Fig. 8 A comparison between observed seismograms and synthetic seismograms predicted by
the source moment tensor. Thick gray lines are observed seismograms. Trace amplitudes are nor-
malized. Correlation coefficients between observed and predicted seismograms are marked above
corresponding traces. Epicentral distances in meters are given on the far left of the figure

4.2 An Explosion-Induced Mine Collapse

In this example, we present the moment-tensor-inversion result of a mine collapse
(Yang et al. 1998). The mine is an underground copper mine where the room-and-
pillar method had been used to extract ore. The collapse was the intentional goal of an
experiment where multiple pillars supporting a mined-out opening were explosively
destroyed simultaneously. After the explosion-induced removal of pillars, the ceiling
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Fig. 9 Locations of the collapse and seismometers that recorded the collapse

collapsed upon the sudden loading of its own weight. The collapse occurred at a
depth of 320 m below the earth’s free surface and was recorded by seismometers
deployed on the free surface. Figure 9 is a plan view of the locations of the collapse
and seismometers that recorded the collapse. For this experiment, the seismometers
have better azimuthal and distance coverage. The experiment design resulted in a
better-constrained source moment tensor.

Figure 10 shows the mine-collapse moment-tensor time histories from the inver-
sion. Again, the moment tensor is dominated by its diagonal components. This time,
however, the three diagonal moment-tensor components do not have the same ampli-
tudes. Among them, the vertical dipole M33 has the largest amplitude. This is con-
sistent with the moment-tensor representation of a horizontal tension-crack model
(Aki and Richards 2002).

Because we were able to retrieve the complete time history of the collapse source
including its initiation and evolution, we gain better insight into the source process
that would otherwise not be obtainable. One observation about this collapse from
its moment-tensor time history is that the source started as an expansion source
with positive onsets for all diagonal components. This is in contrast to accidental
mine collapses that occur naturally as the result of the slow strain accumulation and
final rock failure. Those collapses all start as implosional sources with dilatational
seismic-wave first motions and negative onsets for their diagonal moment-tensor
components (e.g., Taylor 1994; Pechmann et al. 1995). This unique collapse charac-
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Fig. 10 Moment-tensor time histories of the explosion-induced mine collapse from the inversion

teristic motivated Yang et al. (1998) to propose a new model for the source process
of this kind of explosion-induced mine collapses. This example illustrates the special
power of the frequency-domain moment-tensor inversion technique.

4.3 Effects of Green’s Functions on the Moment-Tensor
Inversion

Because the process of moment-tensor inversion is essentially removing the propa-
gation effects from observed seismograms to retrieve the source signal, it is apparent
that accurate Green’s functions that adequately represent the true path effects are crit-
ical to the success of the inversion. In this final example, we show how uncertainty
in the velocity model used to calculate Green’s functions can affect the resulting
moment tensor.

This example is from another field experiment involving a small, contained under-
ground chemical explosion. The explosion was recorded by seismometers within
700 m of the source. Refraction surveys were conducted around the test site during
the experiment. As a result, the P-wave velocity structure was well constrained. The
S-wave velocity, on the other hand, could not be determined reliably from available
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Fig. 11 Synthetic
seismograms calculated
using velocity models with
different Poisson’s ratios
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data. As an alternative, S-wave velocities of the structure model were calculated
based on P-wave velocities and different Poisson’s ratios.

Figure 11 compares synthetic seismograms calculated using velocity models with
different S-wave velocities corresponding to Poisson’s ratios of 0.15, 0.25 and 0.4.
Several observations can be made from the figure. As the Poisson’s ratio increases,
S-wave velocity decreases. This delays the arrival time of the surface wave (the long-
period waves after about 0.35 s) significantly. In addition, the dominant frequency
of the surface wave shifts to lower frequencies. Even though the quality factor Q of
the velocity model remains the same, the amplitudes of the seismograms are reduced
due to the decrease of the S-wave velocity. This is true not only for the surface-wave
amplitude, but for the P-wave amplitude as well.

Figure 12 shows the effect of changing the S-wave velocity on the resulting
moment tensor. We plot only results for Poisson’s ratios of 0.15 and 0.4 as two
end-member examples. For the Poisson’s ratio of 0.15, the moment tensor has strong
M13 and M23 signals. Among the diagonal components, M33 is much larger. As
the Poisson’s ratio increases to 0.4, the moment tensor looks much more like an
isotropic-source moment tensor with dominant diagonal components that have sim-
ilar amplitudes. The difference between the two moment tensors in terms of their
source mechanisms is apparent, which poses a challenge to the reliable and quanti-
tative interpretation of the source process.

Lessons learned from this example are that it is critically important to have an
accurate velocity model for a moment-tensor inversion. Efforts should be made to
constrain not only the P-wave velocity structure, but also S-wave-velocity and atten-
uation structures. In certain situations, a 3D model may be the only viable choice
and Eq. (13), instead of Eq. (17), should be used.
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Fig. 12 Moment tensors from two inversions using Green’s functions from two velocity models
with Poisson’s ratios of 0.15 (a) and 0.4 (b)

5 Conclusions

In this article, we described a frequency-domain moment-tensor inversion technique.
Often used with near-source (e.g., <2 km) observations from small seismic sources,
the method retrieves the complete source moment-tensor spectra and time histories,
revealing detailed source information.

We provided examples illustrating the application and the advantage of the
method. The last example highlights one of the issues that require attention in order
to conduct successful frequency-domain moment-tensor inversions.
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