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Part I
Introduction to Spreading in Social

Systems



Complex Contagions: A Decade
in Review

Douglas Guilbeault, Joshua Becker, and Damon Centola

1 Introduction

Most collective behaviors spread through social contact. From the emergence of
social norms, to the adoption of technological innovations, to the growth of social
movements, social networks are the pathways along which these “social contagions”
propagate. Studies of diffusion dynamics have demonstrated that the structure
(or topology) of a social network can have significant consequences for the patterns
of collective behavior that will emerge.

Over the last 45 years, questions about how the structure of social networks
affects the dynamics of diffusion have been of increasing interest to social scientists.
Granovetter’s [1] “Strength of Weak Ties” study ushered in an era of unprecedented
interest in how network dynamics, and in particular diffusion on networks, affect
every aspect of social life, from the organization of social movements to school
segregation to immigration. Granovetter’s study showed that “weak ties” between
casual acquaintances can be much more effective in promoting diffusion and social
integration than “strong ties” between close friends. This is because although casual
friendships are relationally weak, they are more likely to be formed between socially
distant actors with few network “neighbors” in common. These “long ties” between
otherwise distant nodes provide access to new information and greatly increase the
rate at which information propagates, despite the relational weakness of the tie as a
conduit.

In the last two decades, the explosion of network science across disciplines
such as physics, biology, and computer science has produced many important
advances for understanding how the structure of social networks affect the dynamics
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of diffusion. The full impact of Granovetter’s original insight was not realized
until Watts and Strogatz’s [2] “small world” model demonstrated that bridge ties
connecting otherwise distant nodes can dramatically increase the rate of propagation
across a network by creating “shortcuts” between remote clusters. Introducing
“long ties” into a network can give even highly clustered networks the “degrees
of separation” characteristic of a small world. This model of network dynamics
has had a tremendous impact on fields as diverse as computer science, physics,
epidemiology, sociology, and political science.

Building on the idea of pathogenic contagions, this research combines the diverse
domains of ideas, information, behaviors, and diseases into the generic concept
of a universal contagion. The attractive implication is that the mathematical tools
developed by epidemiologists for studying the spread of disease can be generically
used to study the dynamics of social, cultural, and political change. In particular,
the properties of social networks that have been shown to accelerate the spreading
dynamics of disease diffusion—such as small world topologies, weak ties, and
scale-free degree distributions—can also be used to make inferences about the role
of networks in the domains of social and political behavior. Regardless of whether
a given contagion is a prophylactic measure to prevent HIV infection or the HIV
infection itself, Granovetter’s groundbreaking claim was that “whatever is to be
diffused can reach a larger number of people, and traverse a greater social distance,
when passed through weak ties rather than strong” ([1], p. 1366).

However, while this theory is useful for understanding the rapid spread of HIV
infections through networks of weak ties, it has not shed light on the remarkable
failure of these same networks to spread prophylactic measures for preventing HIV
[3]. The reason for this disturbing asymmetry between the spread of infectious
diseases and the diffusion of preventative measures is that infectious diseases
are typically simple contagions—that is, contagions for which a single activated
source can be sufficient for transmission—while preventive measures are typically
complex contagions, that is, behaviors, beliefs, or attitudes for which transmission
requires contact with multiple sources of activation. While repeated contact with
the same person can increase the likelihood of transmitting a simple contagion, the
transmission of complex contagions requires reinforcement from several contacts.
Any social contagion that is costly, difficult, or unfamiliar is likely to be a complex
contagion, requiring social reinforcement to spread.

The primary consequence of the distinction between simple and complex
contagions for diffusion through social networks is that as “worlds” become very
small, the speed of simple contagions increases, while complex contagions become
harder to spread. As Centola and Macy write,

For simple contagions, too much clustering means too few long ties, which slows down
cascades. For complex contagions, too little clustering means too few wide bridges, which
not only slows down cascades but can prevent them entirely (2007, p. 723).

Centola and Macy [4] identify several reasons why contagions may be com-
plex, including the need for social legitimation, the need for credibility, or the
complementarity of a behavior. For instance, a contagion might be complex due
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to externalities, in which the value of the contagion increases with the number
of adopters. The value of a communication technology such as a fax machine
rests heavily on the number of people who use it. When only one person has a
fax machine, it holds no value. A single contact with someone who has a fax
machine provides little reason for someone else to adopt it. Even if the adopter
provides repeated signals, a single person alone cannot do much to increase the
complementary value of the fax machine. However, if a potential adopter comes
into contact with several independent sources who have all adopted fax machines,
the complementary value of the technology increases. After exposure to a sufficient
number of reinforcing contacts, a person with no inherent interest in fax machines
can be convinced that it is a necessary investment.

A different kind of reason why a contagion might be complex is due to
uncertainty. For instance, physicians are often resistant to adopting new medical
technologies for fear of placing themselves at risk of acting outside accepted pro-
tocols. Early studies on adoption patterns among physicians found that physicians
were unlikely to adopt a new medical technology, even though it had been formally
approved and was expected to be very effective, until they observed several of
their colleagues using it [5]. For similar reasons, complexity in diffusion can also
be a result of normative pressures. This is often the case with the diffusion of
managerial practices among elite firms. Because the choice of corporate governance
strategy can impact the reputation of a firm, the adoption of new practices is
often dependent upon social reinforcement from competing firms within the same
industry. Corporate boards concerned about the risk of social sanction are often
unwilling to adopt new managerial practices until they have already seen them
adopted by several peer institutions [6].

In the last decade, the literature on complex contagions has rapidly evolved both
empirically and theoretically. In this review, we discuss recent developments across
four empirical domains: health, innovation, social media, and politics. Each domain
adds new complexities to our understanding of how contagions emerge, spread, and
evolve, as well as how they undergird fundamental social processes. We also discuss
how these empirical studies have spurred complementary advancements in the
theoretical modeling of contagions, which concern the effects of network topology
on diffusion, as well as the effects of variation in threshold dynamics. Importantly,
while the empirical studies reviewed in this paper complement existing theoretical
work, they also present many opportunities for new theoretical extensions. We
suggest three main directions for future development of research on complex
contagions. The first concerns the study of how multiple contagions interact within
the same network and across networks, in what may be called an ecology of complex
contagions. The second concerns the study of how the structure of thresholds and
their behavioral consequences can vary by individual and social context. The third
area concerns the recent discovery of diversity as a causal variable in diffusion,
where diversity can refer either to the diversity of demographic profiles among
local peers, or to the broader structural diversity that local peers are situated within.
Throughout, we take effort to anticipate the theoretical and empirical challenges that
may lie ahead.
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2 Empirical Advances

2.1 Applications to Health

For the past few decades, the study of public health has concerned not only biologi-
cal contagions, but also social contagions concerning health behaviors, for example,
medication, vaccines, exercise, and the ideologies related to each (Christakis and
Fowler 2012). It has been found that simple contagions do not adequately capture
the network dynamics that govern the diffusion of health behaviors [4, 7–9]. Social
health behaviors often require reinforcement from peers, and they are strongly
influenced by cultural practices and group norms.

The Framingham Heart Study suggested that obesity spread socially through a
densely interconnected network of 12,067 people, assessed from 1971 to 2003 [10].
However, this study posited that either biological or normative mechanisms might
play a role in the diffusion process, where each mechanism would be expected to
yield very different diffusion dynamics.

A clearer hypothesis came from a follow-up study examining the spread of
smoking behavior [11]. This study found evidence that the likelihood a smoker will
quit depends on their exposure to multiple contacts, in part because smoking is
often explicitly social and thus shaped by the dynamics of social norms. The role
of complexity in smoking behavior (and cessation) has been supported by a more
recent study using data from the National Longitudinal Study of Adolescent Health,
which simulated the complex contagion dynamics of smoking under conditions
where smokers can revert to smoking after quitting [12, 13]. By examining peer
interactions over QuitNet—a social media platform for smokers attempting to
quit—it was found that smokers were more likely to abstain if exposed to reinforcing
contact from several abstinent users [14]. Kuhlman et al. [13] discuss how the
diffusion of smoking behavior is filtered by both pro- and anti-smoking norms. This
insight into the complexity of the quitting process helps to refine earlier models
of smoking diffusion, in which threshold outcomes are represented by the binary
decision to adopt without consideration of countervailing influences from non-
adopters. Norms empower people to exert different kinds of influence—that is, for
and against behavior—which amplifies the role of complexity in situations where
non-adopters exhibit countervailing influences.

Exercise has similarly been found to exhibit the dynamics of complexity when
peers influence each other to adopt new exercise behaviors. The characteristics
of peers play an important role in influence dynamics, as both homophily and
diversity have been shown to amplify the impact of reinforcing signals on the
likelihood of behavior change. Centola [8] demonstrated a direct causal relationship
between homophily and the diffusion of complex contagions, indicating that the
effects of social reinforcement were much stronger when individuals shared a
few key health characteristics in common. Further, Centola and van de Rijt [15]
showed that social selection among “health buddy” peers in a fitness program
led to connections among peers who were homophilous on the same key health
characteristics: gender, age, and BMI. Aral and Nicolaides [16] elaborate in showing
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that social reinforcement from similar peers is strengthened when those peers come
from different social groups, highlighting the value of structural diversity in the
dynamics of complexity. Another recent study of exercise behavior used an online
intervention to demonstrate that exposure to social influence from a reinforcing
group of anonymous online “health buddies” could directly increase participants’
levels of offline exercise activity [17].

An interesting twist in the relationship between complexity and health came from
a series of studies which showed how clustered networks that facilitate the spread
of social norms (e.g., anti-vaccination behavior) can thereby make populations
susceptible to epidemic outbreaks of simple contagions (e.g., such as the measles)
[18, 19]. These studies model the diffusion of anti-vaccine attitudes as a complex
contagion that pulls people into echo chambers that amplify the likelihood of disease
outbreak in the overall population. This work points to a vital direction for future
research into how health behaviors and attitudes toward health interact in a broader,
multilayered network of both complex contagions and disease diffusion.

Moreover, there are even some surprising instances where biological pathogens
may also be complex. Infectious diseases are complex in situations where patients
suffer simultaneous “co-infections” from multiple pathogens. In these cases, each
disease increases a patient’s susceptibility to the other one, making it more likely
that both infections will take in hold in a patient. For instance, infection with the
influenza virus can increase the likelihood of coinfection with other respiratory
diseases, such as the Streptococcus pneumoniae bacterium (a leading cause of
pneumonia). Each one creates susceptibility to the other, increasing the likelihood
that joint exposure will lead a patient to become infected with both.

While a single virus can efficiently use weak ties to spread across a network,
several viruses from different sources cannot be so easily transmitted the same
way. For these kinds of illnesses, clustered social networks significantly increase
the likelihood that individuals who are exposed to complementary infections, such
as pneumonia and flu, or syphilis and HIV, will spread reinforcing coinfections.
Contrary to most epidemiological intuitions, in random networks incidence rates of
“complex synergistic co-infections” typically drop to zero, while clustered social
networks are surprisingly vulnerable to epidemic outbreaks [20].

2.2 Diffusion of Innovations

Economists, marketers, and organizational theorists have long been interested in
how technological innovations diffuse through a population. Bass [21] developed
one of the first influential models of innovation diffusion, where technological
adoption was understood as a simple contagion. As the uptake of innovations came
to be viewed as inseparable from social networks, Schelling [22] started to formulate
a threshold-based model of innovation adoption based on the influence of multiple
peers. It has since been found that complex contagions characterize the diffusion of
technologies in multiple areas of social life.
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A number of controlled experiments illustrate that innovations diffuse through
populations as complex contagions. Bandiera and Rasul [23] showed how farmers
in Mozambique were more likely to adopt a new kind of crop if they had a higher
number of network neighbors who had adopted. Oster and Thornton [24] show
that the adoption of menstrual cups in women depends on influence from multiple
peers, because of the transference of technology-relevant knowledge. Based on these
findings, Beaman et al. [25] used complex contagion models to design seeding
strategies for the distribution of pit planting in Malawi. Pit planting is a traditional
West African technology which is largely unknown in Malawi, and it has the
potential to significantly improve maize yields in arid areas of rural Africa. Beaman
et al. compared the seeding strategies recommended by complex contagion models
to a benchmark treatment where village leaders used local knowledge to select
seeds. Seeding, in this experiment, involved training specific people in each village
on how to use pit planting, given evidence that trained adopters of a technology
are most effective in distributing new technologies [26]. 200 different villages were
randomly treated with seeding strategies from either complex contagion models or
traditional approaches based on local expertise. They found that seeding strategies
informed by complex contagion models increased adoption more than relying on
extension workers to choose seeds. Further, Beaman et al. observe no diffusion
of pit planting in 45% of the benchmark villages after 3 years. In villages where
seeds were selected using the complex contagion model, there was a 56% greater
likelihood of uptake in that village.

Complex contagions have also been shown to characterize the diffusion of
software innovations. Karsai et al. [27] examined the uptake of Skype—the world’s
largest Voice over Internet protocol service—from September 2003 to March 2011.
They find that the probability of adoption via social influence is proportional to the
fraction of adopting neighbors. Interestingly, they find that while adoption behaves
like a complex contagion process, termination of the service occurs spontaneously,
without any observable cascade effects. These results suggest that there may be
an asymmetry in the dynamics of adoption (which are socially driven) versus the
dynamics of termination (which may depend on nonsocial factors).

Ugander et al. [28] also observe complex contagion dynamics in the initial
growth of Facebook, which now has over a billion users worldwide. Facebook
initially grew through peer recruitment over e-mail. The results showed a complex
diffusion process, in which people were more likely to adopt Facebook if they
received requests from multiple friends, especially if these friends belonged to
separate network components. This finding on the value of structural diversity for
amplifying reinforcing signals for adoption suggests interesting new theoretical
directions for research on the connections between homophily, diversity, and
complexity (see Sect. 4.3).

A parallel stream of research has focused on the role of mass-media marketing
in spreading the complex diffusion of innovations. Toole et al. [29] show that
while mass media served to measurably increase the adoption of Twitter, peer–to-
peer social influence mechanisms still account for the lion’s share of the adoption
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patterns that were observed, where local reinforcement played a major role in
individuals’ decisions to adopt Twitter. So much so, that the online microblogging
platform exhibited strong spatial diffusion patterns in its initial growth, as it spread
through densely clustered networks of peer reinforcement. Similar findings are
echoed by Banerjee et al. [26]. These studies suggest that the local peer influence
dynamics of complexity can initiate global cascades in the adoption of innovations.
For marketing to propel the diffusion of new technologies, mass-media strategies
need to account for how messages are dynamically filtered by social networks [30].
Evidence suggests that advertising campaigns initially diffuse like simple conta-
gions with the first media broadcast, but diffuse more like complex contagions once
they begin spreading through social networks [31]. The interaction between mass-
media diffusion and social influence in the adoption of technology (particularly
complementary technologies) suggests that the complexity of a diffusion process
is determined in part by interactions across several scales of a population.

The study of innovation diffusion is expanding in response to a novel kind
of complexity introduced by technologies themselves. A new direction for future
research concerns the role that social media technologies play in shaping the
evolution of other contagions, once the social media technologies themselves are
adopted. Due to their explicitly complementary design, social media technologies,
including Facebook, Twitter, and Skype, all exhibited the dynamics of complexity in
their diffusion, spreading most effectively through networks of peer reinforcement.
Once these technologies diffuse, they allow individuals to grow larger networks that
communicate at much faster rates than were previously possible in word-of-mouth
exchanges. Thus, in addition to the spread of social media technologies, the domain
of social media itself has become its own space for studying the complex dynamics
of the diffusion of collective behavior.

2.3 Social Media

Social media has significantly shaped and, in some cases, augmented the diversity
of complex contagions that can spread, the speed at which they can spread, and
the overall size of the populations they are able to reach via global cascades [32].
Kooti et al. [33] show that one of the first methods for retweeting was established
as the successor of various competing complex contagions, in an ecology of
possible conventions. Barash [34] and Weng et al. [35] find that most tweets
spread via complex contagions in retweet networks. This finding reappears with
Harrigan et al. [36] who show that tweets are more likely to diffuse through
retweeting within clustered communities, where twitter users are able to observe
their friends retweeting the same message. Complex contagions are observed
across other platforms as well. Photo-tagging in Flickr exhibits the hallmarks of
diffusion via influence from multiple peers [34]. A recent massive-scale randomized
experiment over Facebook showed that user-generated stories diffused like complex
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contagions [37]. Meanwhile, social media websites gather an unprecedented amount
of data on communication flows, permitting novel insights into how complex
contagions emerge and operate.

One of the most interesting findings of social media research is that the content
of a contagion matters for whether it behaves in a complex manner. Wu et al. [38]
show that the modality of information that structures a contagion influences its life
span: viral videos long outlive their textual counterparts. Romero et al. [39] find
that there are distinct contagion dynamics for different kinds of hashtags. Political
hashtags are found to behave like complex contagions, where exposure to multiple
people using the hashtag is strongly correlated with adoption. But hashtags based on
idioms or memes, by contrast, behave like simple contagions. Barash and Kelly [40]
and Fink et al. [41] replicate this finding by showing that political hashtags behave
like complex contagions, whereas news-based hashtags, broadcast by mass media,
spread like simple contagions.

Using the massively multiplayer virtual world of Second Life, Bakshy et al. [42]
uncover complex contagions in the exchange of user-created content. Specifically,
they focus on the spread of conventionalized avatar gestures constructed by players,
which can only spread through peer-to-peer sharing mechanisms. Bakshy et al.
unveil subtle interactions between user degree and diffusion: Users who are most
effective at initiating cascades of gestures do not have the highest degree; rather,
they collect rare gestures that other users are more likely to adopt. This result points
to uncharted territory in complex contagions research, relating to how the quality or
style of a contagion influences its likelihood of spreading via social influence.

Undoubtedly, the source of complexity in these online dynamics of spreading
behavior lies partly in the sociological significance that the content of an online
contagion holds. For instance, Romero et al. suggest that political hashtags, such
as #TCOT (which stands for “Top Conservatives on Twitter”) and #HCR (which
stands for “Health Care Reform”), were “riskier to use than conversational idioms
. . . since they involve publicly aligning yourself with a position that might alienate
you from others in your social circle” (2011, p. 3). The implication is that users have
to be motivated enough to use the hashtag despite social costs, as a result of either
personal political engagement or peer influence. In this case, the authors found “that
hashtags on politically controversial topics are particularly persistent, with repeated
exposures continuing to have unusually large marginal effects on adoption” (p. 3).

It is also likely that the level of complexity in diffusion depends, in part, on the
design of interfaces and the kinds of sociological processes that platforms facilitate.
Readymade communication buttons—such as the “share” button on Facebook or the
“retweet” button on Twitter—automatically enable the spread of information as a
simple contagion. However, State and Adamic [43] show how simple contagions do
not account for the spread of digital artifacts that require more effort to construct.
Using a dataset of over three million users, they show that the adoption of new
conventions for profile pictures are best described as complex contagions. They
argue that the difference pertains to the amount of effort it takes to adopt the
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behavior: Certain informational contagions behave in a simple manner because it
takes no time to click and share after one exposure. But when a contagion requires
more effort, such as manually changing a profile picture, users require evidence that
several of their peers have expended the energy for the contagion, thereby justifying
its weight in terms of social capital.

Conversely, platform design can also prevent complex contagions from emerging
and spreading by constraining the ability for people to perceive and share potential
contagions [31, 37, 44, 45]. Doerr et al. [46] find that, over the social news
aggregator Digg, users do not seem to preferentially share the content of their peers.
This result is likely to be specific to the Digg environment, because the culture of the
platform is based on sharing news that your friends do not already know. Studies of
social media thus reveal how environmental design alters the capacity for diffusion
by shaping the salience of peer behaviors and the culture of interaction altogether.

Going forward, social media environments are likely to serve as a powerful
tool for studying complex contagions experimentally. Centola [7, 8, 47] devel-
oped a method for designing social media platforms that embed participants into
engineered social networks, which allow researchers to test the effects of network
topology and other variables on the dynamics of social diffusion. In a less controlled
study, Kramer et al. [48] modified the newsfeeds of Facebook users to examine
emotional contagion. For some users, they reduced the amount of positive content,
whereas for other users, they reduced the amount of negative content. As a result,
they were able to systematically alter the emotional content of users’ posts. While
this study could not eliminate endogeneity within user networks, the randomization
of messages allowed for suggestive experimental results on the ways that social
exposure to messages influences user behavior.1

Another related approach to experimentation on social media comes from the
advent of experimental methods that use algorithmically controlled social media
accounts called bots to manipulate users’ experiences [51]. Mønsted et al. [52]
released a network of bots into twitter and tested whether they could prompt
the uptake of specific hashtags. They show that bots can initiate the uptake of
new hashtags and that these hashtags spread as complex contagions, whereby the
probability of using the new hashtag drastically increased if multiple bots and users
were seen using it.

1Kramer et al.’s study also raised the important point about the ethics of experimentation on social
media. While previous social media studies using experimentally designed social platforms [7, 8,
49, 50] enrolled subjects into their online platform with an explicit process of informed consent,
Kramer et al.’s study on Facebook used existing networks of peers without their explicit consent.
It is an important topic of ongoing discussion how to properly use existing peer networks, such as
Facebook and Twitter, to conduct experiments that manipulate user behavior.
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2.4 Politics

Political processes have been a long-standing topic of interest for threshold-based
contagion models. Granovetter’s [1, 53] original threshold model of collective
action gave special attention to the start-up problem for political protests and riots.
He observed that individuals have different degrees of willingness (i.e., thresholds)
to participate in a riot, where their willingness is dependent on how many of their
neighbors they observe participating in the riot. Granovetter observed that riots can
emerge as a result of cascades, where a subset of instigator individuals with low
thresholds trigger the spread of rioting. The first efforts to describe the emergence of
social movements with agent-based modeling maintained that population diversity
was essential for getting a movement off the ground. Without long ties connecting
communities, it was thought that social movements would not be able to diffuse
through a population and reach critical mass.

More recent models extend the study of diversity in political processes by
emphasizing the supporting role of homophily during the growth phase of social
movements. Centola [54] argues that because social movements involve risky and
costly forms of deviant behavior, people require reinforcement from multiple peers
to participate, where homophily is useful for establishing a critical mass of like-
minded peers.

Again, this raises an interesting connection between diversity and homophily.
For organizing a critical mass, dense, homophilous communities are necessary for
getting social movements off the ground because like-mindedness facilitates group
solidarity, which may be necessary to withstand the normative backlash that comes
from deviant behavior. On these grounds, Centola designed an agent-based model to
show that weak ties hinder the spread of social movements by increasing exposure
to counter-norm pressures, while also reducing the group transitivity needed to
reinforce group interests. Homophily and clustering thus reinforce one another.
However, once homophilous networks gain enough local reinforcement, they can
create a critical mass that allows the movement to achieve sufficient salience in the
whole population and to expand to diverse communities through the aid of mass
media.

In an empirical study of the effects of communication networks on mobilization,
Hassanpour [55] explored the spread of armed conflict as a complex contagion in
Damascus, Syria. On November 29, 2012, Internet and cellular communications
were shut down all across Syria for over a day. The shutdown, according to Has-
sanpour, resulted in the loss of communication with long ties to individuals across
the city. At the same time, the shutdown immediately preceded an unprecedented
increase in the diffusion of armed conflict throughout the city. Using a geolocated
dataset of daily conflict locations in Damascus, Hassanpour uncovers signs that the
likelihood of conflict in a region was influenced by whether there had been conflict
in multiple neighboring regions. Hassanpour suggests that this indicates the spread
of conflict as a complex contagion, which was allowed to emerge when long ties
were broken and interaction within local clusters became the strongest determiners
of armed conflict.
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In other results, González-Bailón et al. [56] shows that protest recruitment in
Spain, 2011, diffused over Twitter as a complex contagion via peer influence.
González-Bailón et al. [56] used k-core decomposition to show that the users
who are in the core of the network were most effective at initiating cascades of
recruitment. In a complementary study, Steinhert-Threlkeld [57] offered evidence
that users in the periphery of social media networks can also trigger global cascades.
These studies suggest that social media can influence the rise and spread of political
complex contagions that inspire on-the-ground political action.

Other recent empirical work has uncovered complex contagions within a wide
range of political processes, including campaign donations [58], grassroots mobi-
lization [59, 60], petition signing [61], social control [62, 63], institutional change
[64], and administrative management in both rural [65] and urban settings [66].

Barash [34] developed a unique set of measures for characterizing the life span
of political contagions over social media. A complex contagion begins by saturating
a locally clustered community. Once saturation is reached, the rate of propagation
for the contagion decelerates, as the number of potential adopters decreases. If the
saturated community has sufficiently wide bridges to other communities, Barash
[34] argues that it is possible for a contagion to travel from one community to the
next. Diffusion between communities can create a detectable temporal signature,
because as a contagion enters a new community, its rate of propagation rapidly
increases with the availability of new adopters. Barash explains how changes in
the rate of complex propagation can provide a measure for whether a contagion is
ramping up for a global cascade, hinting toward the possibility of detecting global
cascades, prior to their emergence.

Based on the work of Barash et al. [67], Fink et al. [41] developed a number of
measures for characterizing the spread of political hashtags as complex contagions.
These measures include peakedness, commitment, concentration, and cohesion.
Peakedness concerns the duration of global activity associated with a contagion,
where a peak refers to a day-long period of usage when the average mentions per
day are more than two standard deviations away from the average mentions in the
preceding days. Peakedness is closely related to burstiness, which has been shown
to play an important role in threshold-based cascade dynamics [68]. Commitment
refers to the number of people who sustain the life of a complex contagion,
even though they endure social costs by not conforming to surrounding norms.
Concentration simply refers to the proportion of people using a hashtag during a
given time period. And cohesion refers to the network density over the subgraph of
all users engaged in a particular contagious phenomena. The authors make use of
the idea that complex contagions are incubated in locally dense communities before
they colonize other communities via sparse connections.

Using these measures, researchers have made a number of valuable observations.
Fink et al. [41] apply these measures to the study of political hashtags in Nigeria. In
their sample, they find political hashtags consistently arise with a small proportion
of instigators (roughly 20%) who are densely connected, and that almost 60% of
late adopters for political hashtags had two or more previous adopter friends. News
hashtags, by contrast, are first propagated by largely unconnected instigators who
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constitute between 50% and 90% of the network, where less than 10% of adopters
had two or more previous adopter friends. Consistent with Romero et al. [39],
the authors suggest that political hashtags require influence from multiple peers
because they have higher social costs, especially in countries like Nigeria where
surveillance by governments and extremists groups looms over users. Compared to
other hashtags, the researchers also find that hashtags related to social movements
have a higher density of ties among early adopters, consistent with the argument
that political movements require a coalition of homophilous, densely connected
users [54]. Fink et al. further illustrate that it is possible to map the virality of
political hashtags using Barash’s measures for the temporal signatures of diffusion.
They show how the #bringbackourgirls hashtag went viral shortly after a period
of decreased usage among early adopters, which indicated saturation in a local
community prior to the spread of the contagion to other communities.

In a related paper, Barash and Kelly [40] use the same measures to model the
spread of complex contagions over Russian Twitter, a significantly different cultural
setting. Yet again, these researchers find that politically salient hashtags diffuse like
complex contagions where news hashtags from mass media do not. Importantly,
this analysis shows how the heterogeneous distribution of adoption thresholds
is critical for understanding political contagions. They find that engagement in
political issues is nonuniform across the population, and different communities have
distinct patterns of engagement and adoption, based on how the community relates
to the content captured by the hashtag. Users belonging to groups that oppose the
political regime engage with controversial topics over a long period, as a committed
minority. Contrary to expectations, they find that when hot button issues relevant to
the opposition make it into the mainstream, they are much more likely to sustain
global saturation, even amongst pro-government users. These results suggest that
reinforcement dynamics can drive the spread of politically salient content over
social media.

The diffusion of political contagions online interacts with both the structure
of the subcommunities that they reach and the group identities that they activate.
In March 2013, three million Facebook users changed their profile picture to an
“equals sign” to express support for same-sex marriage. Consistent with earlier
work, State and Adamic [43] found that the equals sign a profile picture spread
as a complex contagion. Their data suggests that mass media created only about
58,000 spontaneous adopters, while roughly 106 million users adopted based on
peer exposures. They find that it took, on average, exposure to eight different
peer adopters for a person to adopt. When examining this threshold, the authors
uncover intricate dependencies between the identity of a user and their willingness
to adopt. Users were more likely to be exposed and thereby more likely to adopt
if they were female, liberal, nonheterosexual, and between the ages of 25–34.
These findings suggest that thresholds for adopting contagions are modulated by
online identity signaling regarding political values and beliefs. Similar, smaller-
scale studies of behavior on Facebook find that a user’s demographic characteristics
do not determine their influence in generating cascades, but instead most cascades
rely on multiple users to trigger spreading [69].
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The study of political contagions—offline and online—reveals a number of
subtleties in how thresholds operate in sociological contexts. Political identity is
a driving motivation for behavior change, suggesting that homophily and clustering
in social networks can be essential for incubating the early growth of a political
behavior over social media. Furthermore, gender, race, and religion are also
strong predictors of whether someone will be exposed and receptive to a political
contagion. A recent study by Traag [58] shows that campaign donations diffuse as
complex contagions, but the findings here emphasize the value of diversity. The
growth of support for a candidate increases when people are exposed to donors
from separate communities, particularly if those donors supported the opposite
party. Diversity can thus complement homophily when it signals wider support
for a candidate, and thereby increases the likelihood that the candidate will be
more effective in achieving bi-partisan goals. The details are subtle, however, since
there are also situations where diverse support for a candidate might signal mixed
allegiances and compromise the candidate’s party loyalty. The complementary roles
of homophily and diversity in supporting complexity depend upon the content of the
political messages that are used and the identities that they activate.

3 Theoretical Advances

Recent research into the formal model of complex contagions has explored two
general directions. The first direction investigates how complex contagions spread
within large networks of varying topologies. To date, researchers have examined
threshold-based contagion models within power-law [67], locally tree-like [70],
degree-correlated [71, 72], directed [73], weighted [74], small-world [9], modular
[75], clustered [76, 77], temporal [78, 79], multiplex [80–82], and interdependent
lattice networks [83]. Researchers have used different topologies to simulate
how external factors like mass media influence cascade dynamics [84], and how
topologies influence percolation processes [85]. A pivotal theoretical finding is
that complex contagions require a critical mass of infected nodes to initiate global
cascades, and it has been shown that critical mass dynamics depend in sensitive
ways on network topology and the distribution of node degree and adoption
thresholds [34]. There have also been efforts to provide analytic proofs for the global
dynamics of complex contagions [34, 86]. At the cutting edge is research into how
complex contagions spread in coevolving, coupled, time-varying, and multilayered
networks [68, 87].

The second major direction in theoretical complex contagion research concerns
mechanisms of diffusion at the node level, concerning individual attributes and
thresholds. Wang et al. [88, 89] propose a contagion model which shows that the
final adoption size of the network is constrained by the memory capacities of agents
and the distribution of adoption thresholds. Perez-Reche et al. [90] simulate complex
contagion dynamics with synergistic effects among neighbors, and McCullen et al.
[91] structure the motivation for an agent to adopt a behavior as a combination of
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personal preference, the average of the states of one’s neighbors, and the global
average. Dodds et al. [92] attempt to explicitly encode sociological processes into
their models by building agents with a preference for imitation but an aversion for
complete conformity. Melnik et al. [93] model multistage complex contagions, in
which agents can assume different levels of personal involvement in propagating the
contagion, at different times in their life cycle. They find that multistage contagions
can create multiple parallel cascades that drive each other, and that both high-stage
and low-stage influencers can trigger global cascades. Huang et al. [94] build agents
with a persuasiveness threshold which determines their ability to initiate adoption.
This new parameter can cause networks to become more vulnerable to global
cascades, especially heterogeneous networks. Further incorporating sociological
considerations, Ruan et al. [95] simulated how conservativeness among nodes—
that is, the reluctance to adopt new norms—interacts with cascades caused by
spontaneous adopters.

The latest theoretical developments have informed research on how to design
network interventions and seeding strategies to stop the spread of harmful complex
contagions [96]. Such interventions are based on the use of oppositional nodes
that are permanently unwilling to adopt a behavior, regardless of peer influence.
Kuhlman et al. [96] offers two heuristics for using seeding methods to determine
critical nodes for inhibiting the spread of complex contagions. The first heuristic is
to select the nodes with the highest degree, and the second heuristic is to select
nodes from the 20 core, determined by k-core decomposition. They show how
the second heuristic is more effective at initiating and preventing global cascades,
because selecting from the 20 core increases the likelihood that nodes are adjacent
and thereby capable of reinforcing each other’s influence. Centola [97] shows that
similar ideas can be used to evaluate the tolerance of networks against error and
attack. Albert et al. [98] showed that scale-free networks are robust against network
failures, defined in terms of the inability to diffuse simple contagions. When it
comes to diffusing complex contagions, Centola shows that scale-free networks are
much less robust than exponential networks. Thus, moving from simple to complex
contagions changes the robustness properties of scale-free networks. Building on
this work, Blume et al. [99] investigate which topologies are more susceptible to
what they call cascading failures, which refers to the outbreak of negative complex
contagions that are harmful for social networks. Siegel [62, 63] shows how these
developments can inform models for repressing social movements and performing
crowd control on behalf of governments.

While early models of diffusion consider individual contagions as indepen-
dent and spreading in isolation, a number of studies have begun to investigate
evolutionary dynamics among multiple complex contagions. Myers and Leskovec
[100] develop a statistical model wherein competing contagions decrease one
another’s probability of spreading, while cooperating contagions help each other
in being adopted throughout the network. They evaluate their model with 18,000
contagions simultaneously spreading through the Twittersphere, and they find
that interactions between contagions can shape spreading probability by 71% on
average. Jie et al. [101] construct a similar model to simulate competing rumor
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contagions in a homogenous network. Empirical evidence is accumulating that
multiple contagions frequently interact in real-world social systems. For instance,
the study of social contagions in the health domain has shown competitive dynamics
among positive and negative health practices, for example, smoking vs. jogging
[12, 13]. Most interestingly, health research has uncovered ecological interactions
among contagions at different scales, such as the interaction between complex
contagions (e.g., health-related attitudes and lifestyle choices), and the spread of
simple contagions (e.g., biological pathogens) [18].

4 New Directions

Recent work on complex contagions points to three main directions for future
development. The first concerns the study of how multiple contagions interact within
the same network and across networks, in what may be called an ecology of complex
contagions. The second concerns the study of how the structure of thresholds and
their behavioral consequences can vary by social context. The third area concerns
the interaction of diversity and homophily in the spread of complex contagions,
where diversity can refer to either the diversity of demographic profiles among one’s
local peers, or to the broader structural diversity that local peers may be situated
within.

4.1 Ecologies of Complex Contagions

Past theoretical research has made significant progress in mapping the behavior of
complex contagions within a range of network topologies. Newer work has begun
to explore the complexities that arise when multiple kinds of contagions interact in
the same network [102]. Moreover, while the content of a contagion undoubtedly
influences the spread and interaction of competing behaviors, it may have an impact
on network structure as well. An important area of future research concerns how
complex contagions shape network structure and how network structure shapes
complex contagions, as part of a coevolutionary process of network formation [103].

The process of modeling ecologies of contagions goes hand in hand with a
growing effort to model complex contagions in several new domains of collective
behavior. Among the most recent applications is the examination of complex
contagions in swarm behaviors. One study showed that complex contagions pro-
vided the most robust model of escape reflexes in schools of golden shiner fish,
where frightened individuals trigger cascades of escape responses on the basis of a
fractional threshold among multiple peers [104]. Another direction for application
concerns the role of complex contagions in cognitive science. Simulation results
suggest that complex contagions may be able to account for the emergence and
spread of new categories, at the level of both perception and language, consistent
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with the long-standing view that cultural artifacts depend on principles of emergence
and diffusion [49, 105, 106]. Related extensions concern the role of contagion in the
structuring of collective memory [107]. Situating complex contagions at this level
will extend existing perspectives on how processes of social diffusion are woven
into the foundations of culture and cognition.

4.2 Mapping Heterogeneous Thresholds in Context

Extant models represent threshold heterogeneity in terms of distributions of values
along a numerically defined scale, from 0 to 1 [108]. Applied studies of contagion
dynamics show how thresholds vary by individual differences and contextual depen-
dencies relating to the content of the contagion and its sociological significance. For
instance, there appear to be a different set of thresholds that govern the adoption of a
contagion (e.g., a technology) and the termination of the contagion [27]. Similarly,
the study of health contagions suggests that people are susceptible to influence
by those supporting a positive health behavior and to those resisting it, where
individuals may vary in their responses to processes of support and resistance [12,
14].

In the context of social media, readymade sharing buttons alter the cost structure
for certain contagions, allowing memes to be adopted simply with a click. Interface
design can also make certain contagions costlier, thereby impacting the thresholds
of individuals and their willingness to adopt. Certain complex contagions, such
as political hashtags, appear to require exposure from 2 to 5 peers [40], whereas
changes in profile pictures appear to require exposure of up to eight or more
peers [43]. One conjecture is that thresholds are fractional, and therefore depend
sensitively on the number of connections that a person has. The more connections
there are, the higher the thresholds are likely to be.

Finally, identity appears to play a structural role in defining thresholds. Identity
has been used in two ways: group identity and personal identity. A few recent
studies have excluded group identity and focused narrowly on personal identity,
such as demographic characteristics [16, 109]. However, the role of demographic
characteristics such as gender and race on adoption thresholds is hard to understand
independently of social context. Depending on the social context and the identities
that are activated, people will react differently to a political contagion than to a
health contagion. By contrast, other work has suggested that demographic traits play
an important role in defining group identity, which in turn interacts with people’s
thresholds for adoption [8].

Political studies further show how identity-based responses to contagions can
take a variety of forms, where thresholds do not simply represent the binary outcome
of adoption—they also represent whether an individual will join a committed
minority, or whether they will actively attempt to punish deviant behavior [54].
Parkinson [60] uses ethnographic methods to suggest that part of the reason why
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identity influences contagion thresholds is because identities correspond to different
functional roles in a social system, which entail different kinds of behavioral
responses that mediate diffusion. These studies help to expose how group member-
ship and normative pressures give rise to individual variation in threshold dynamics.
It is likely that individuals differ in the kinds of thresholds they adopt toward a
potential contagion based on how they categorize the contagion, relative to their
political identity [43, 58]. It may therefore be useful to consider different types
of thresholds that vary along sociological and psychological dimensions, where
key differences are marked by how contagions interface with the identity-based
responses of individuals and groups.

4.3 The Roles of Homophily and Diversity in Diffusion

There are two forms of diversity in the literature on diffusion. Researchers use
the term to refer to cases where one’s local neighborhood in the network consists
of people with different demographic profiles and personality traits. We may call
this identity-based diversity. At other times, researchers use the term to refer to
structural diversity where one’s local neighborhood consists of people who belong
to separate components of the network, identified by removing the ego node from
the ego network. The first kind of diversity tends to limit diffusion of complex
contagions, while the second kind tends to amplify it.

Looking at identity-based diversity, Centola [8] compared complex contagion
dynamics on homophilous networks to the dynamics on non-homophilous net-
works, keeping network topology constant. The results showed that homophily
(i.e., reduced identity-diversity) significantly improved the spread of complex
contagions. The reason for this is that greater similarity among contacts in a health
context made peers more relevant. Women were more likely to adopt from women,
and obese people were likely to adopt from obese people. Reinforcing signals
from irrelevant (i.e., diverse) peers were largely ignored, while reinforcing signals
from relevant (i.e., similar) peers were influential in getting individuals to adopt a
new health behavior. This result was most striking for obese individuals. Exposure
among obese individuals was the same across conditions, yet there was not a single
obese adopter in any of the diverse networks, while the number of obese adopters
in homophilous networks was equivalent to the total number of overall adopters in
the diverse networks—resulting in a 200% increase in overall adoption as a result
of similarity among peers.

The effects of homophily can be complemented by structural diversity. In
studying the complexity of campaign donations, Traag [58] suggests that structural
diversity can increase the credibility of a complex contagion. If one belongs to an
echo chamber, where one’s peers are highly similar and densely connected, then
peer agreement may undermine credibility, since their agreement may be the result
of induced homophily and pressures for conformity. By contrast, if one’s peers
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are from different components of the network, their opinions may reasonably be
viewed as independent and mutually confirming. What unites these arguments is
the supposition that people use the identity composition of their local network
neighbors to infer the broader structural diversity of their network. However,
structural diversity does not imply reduced homophily. Individuals may be similar
to their friends in different ways. They may be the same gender as some, have the
same professional role as others, and participate in the same volunteer organizations
as yet others. While identity diversity can correlate with structural diversity, it
does not always provide a reliable way for inferring it. Receiving reinforcing
encouragement from individuals who belong to different parts of a person’s social
network strengthens the independence of their signals, and may therefore be more
likely to trigger adoption.

Similarly, Ugander et al. [28] identify how the mechanism of structural diversity
can boost the influence of social reinforcement. Their study of Facebook shows that
people are more likely to adopt a social media technology when they receive invites
from people belonging to separate components of their ego network. Structural
diversity does not, however, entail identity-based diversity. Ugander et al.’s study
leaves open the possibility that structural diversity alone—without identity-based
diversity—can modulate adoption thresholds.

This observation is especially interesting in light of State and Adamic’s [43]
finding that while the number of friends a user had scaled linearly with their
chances of adoption, adoption probabilities plummeted as soon as a user possessed
400 friends or more. The authors propose that having too many friends on social
media can stifle the spread of complex contagions by exposing users to a variety
of content so vast that they fail to receive repeated exposure by different peers
to any given phenomenon. Consistent with earlier results on political hashtags
and social movement mobilization, these findings suggest that more contentious
complex contagions tend to benefit from clustered, homophilous networks that can
foster social change without being overwhelmed by countervailing influences.

5 Conclusion

Complex contagions are found in every domain of social behavior, online and off.
Early theoretical developments in complex contagions showed that topology and the
distribution of adoption thresholds can be decisive for determining whether global
saturation is possible. More recent theoretical modeling concerns the interaction of
multiple different contagions in the same network, where individuals are attributed
different motivations and behavioral responses to each contagion. One of the critical
challenges ahead involves mapping heterogeneous thresholds in context, where
political identity, group membership, and even the content of contagions can affect
individual thresholds and, by consequence, diffusion. Another valuable area for
future research concerns the ways in which individuals use information about
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global network structure to inform their adoption patterns, as is demonstrated by
the effects of structural diversity on diffusion. Investigations in this direction will
benefit from studying how individuals infer global structure from local interactions,
and how new social media environments are augmenting these inferences by
supplying information about one’s broader ego network. As shown by the literature
accumulated over the last decade, examining complex contagions in various applied
domains has been enormously fruitful. Each new domain has revealed new elements
of diffusion dynamics that require new theoretical explanations and elaborated
modeling techniques, revealing new areas of cumulative progress in understanding
the collective dynamics of social diffusion.
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82. Yağan O, Gligor V (2012) Analysis of complex contagions in random multiplex networks.
Phys Rev E 86:036103

83. Shu P, Gao L, Zhao P, Wang W, Stanley H (2017) Social contagions on interdependent lattice
networks. Sci Rep 7:44669

84. Bassett D, Alderson D, Carlson J (2012) Collective decision dynamics in the presence of
external drivers. arXiv. https://arxiv.org/abs/1206.1120

85. Zhao JH, Zhou HJ, Liu YY (2013) Inducing effect on the percolation transition in complex
networks. Nat Commun 4:2412

86. O’Sullivan D, Keefe G, Fennell P, Gleeson J (2015) Mathematical modeling of complex
contagion on clustered networks. Front Phys 8:71

87. Pastor-Satorras R, Castellano C, Mieghem PV, Vespignani A (2015) Epidemic processes in
complex networks. arXiv. https://arxiv.org/abs/1408.2701

88. Wang W, Shu P, Zhu YX, Tang M, Zhang YC (2015) Dynamics of social contagions with
limited contact capacity. Chaos 25(10):103102

89. Wang W, Tang M, Zhang HF, Lai YC (2015) Dynamics of social contagions with memory of
nonredundant information. Phys Rev E Stat Nonlin Soft Matter Phys 92(1):012820

90. Perez-Reche FJ, Ludlam JJ, Taraskin SN, Gilligan CA (2011) Synergy in spreading processes:
from exploitative to explorative foraging strategies. Phys Rev Lett 106(21):218701

91. McCullen N, Rucklidge A, Bale C, Foxon T, Gale W (2013) Multiparameter models of
innovation diffusion on complex networks. J Appl Dyn Syst 12:515–532

92. Dodds PS, Harris KD, Danforth CM (2013) Limited imitation contagion on random networks:
chaos, universality, and unpredictability. Phys Rev Lett 110(15):158701

93. Melnik S, Ward JA, Gleeson JP, Porter MA (2013) Multi-stage complex contagions. Chaos
23:013124

94. Huang W, Zhang I, Xu X, Fu X (2016) Contagion on complex networks with persuasion. Sci
Rep 6:23766. https://doi.org/10.1038/srep23766

https://arxiv.org/abs/1206.1120
https://arxiv.org/abs/1408.2701
http://dx.doi.org/10.1038/srep23766


Complex Contagions: A Decade in Review 25

95. Ruan Z, Iniguez G, Karsai M, Kertesz J (2015) Kinetics of social contagion. Phys Rev Lett
115(21):218702

96. Kuhlman CJ, Kumar VSA, Marathe MV et al (2015) Inhibiting diffusion of complex
contagions in social networks: theoretical and experimental results. Data Min Knowl Disc
29:423. https://doi.org/10.1007/s10618-014-0351-4

97. Centola D (2009) Failure in complex networks. J Math Sociol 33:64–68
98. Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex networks. Nature

406:378–382
99. Blume L, Easley D, Kleinberg J, Kleinberg R, Tardos E (2011) Which networks are least

susceptible to cascading failures? In: IEEE 52nd annual symposium on foundations of
computer science (FOCS)

100. Myers S, Leskovec J (2013) Clash of the contagions: cooperation and competition in
information diffusion. In: IEEE 12th international conference on data mining (ICDM)

101. Jie R, Qiaoa J, Xub G, Menga Y (2016) A study on the interaction between two rumors in
homogeneous complex networks under symmetric conditions. Phys A 454:129–142

102. Su Y, Zhang X, Liu L et al (2016) Understanding information interactions in
diffusion: an evolutionary game-theoretic perspective. Front Comput Sci 10:518.
https://doi.org/10.1007/s11704-015-5008-y

103. Teng C, Gong L, Eecs A, Brunetti C, Adamic L (2012) Coevolution of network structure
and content. In: Proceedings of WebSci ‘12 proceedings of the 4th annual ACM web science
conference, pp 288–297

104. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID (2015) Revealing the hidden
networks of interaction in mobile animal groups allows prediction of complex behavioral
contagion. PNAS 112(15):4690–4695

105. Dimaggio P (1997) Culture and cognition. Annu Rev Sociol 23:263–287
106. Puglisi A, Baronchelli A, Loreto V (2008) Cultural route to the emergence of linguistic

categories. PNAS 105(23):7936–7940
107. Coman A, Momennejad I, Drach RD, Geana A (2016) Mnemonic convergence in social net-

works: the emergent properties of cognition at a collective level. PNAS 113(29):8171–8176
108. Morris S (2000) Contagion. Rev Econ Stud 67:57–78
109. Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based contagion from

homophily-driven diffusion in dynamic networks. PNAS 106(51):21544–21549
110. Alvarez-Galvarez J (2015) Network models of minority opinion spreading: using agent-based

Modeling to study possible scenarios of social contagion. Soc Sci Comput Rev 34(5):567–581

http://dx.doi.org/10.1007/s10618-014-0351-4
http://dx.doi.org/10.1007/s11704-015-5008-y


A Simple Person’s Approach
to Understanding the Contagion
Condition for Spreading Processes
on Generalized Random Networks

Peter Sheridan Dodds

1 Introduction

Given a local contagion mechanism acting on a random network, and a seed set of
nodes N0, we would like to know the answers to a series of increasingly specific
questions:

Q1: Is a global spreading event possible? We’ll define a “global spreading event”
as one that reaches a non-zero fraction of a network in the infinite limit.

Q2: If a global spreading event is possible, what’s the probability of one occurring?
Q3: What’s the distribution of final sizes for all spreading events?
Q4: Global or not, how does the spreading from the seed set N0 unfold in time?

Now, if we know the full time course of a spreading event (Q4) (see [11]), we
evidently will be able to answer questions 1, 2, and 3. We might be tempted to take
on only the more challenging analytical work and call it day (or appropriate time
frame of suffering required). But it turns out to be useful to address each question
separately.

While we will take on these questions for simple model distillations only, their
real-world counterparts are some of the most important ones we face. What’s the
probability that a certain fraction of a population will contract influenza? Could an
ecosystem collapse? Indeed, the biggest question for many systems is:

Q5: If we have limited knowledge of a network and limited control, how do we
optimally facilitate or prevent spreading [21, 37]?
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In this chapter, we’ll focus on Q1, determining the contagion condition for a
range of contagion processes on random networks including bipartite ones. We
will do so by plainly encoding the course of the spreading process itself into the
contagion condition.

We will take the basic contagion mechanism to be one for which there are node
states: Susceptible (S) and Infected (I). We will also prevent nodes from recovering
or becoming susceptible; once nodes are infected, they remain so. In mathematical
epidemiology, such models are referred to as SI, where S stands for Susceptible
and I for Infected. Two other commonly studied models are SIR and SIRS, where
a recovered immune state R is allowed for both and the possibility of cycling in the
latter.

For the most part, we will be considering infinite random networks. If needed,
we will define such networks as the limit of a one parameter family of networks
(e.g., Erdös-Rényi networks with increasing N and mean degree held constant). As
a rough guide for simulations, using around N = 104 nodes is typically sufficient
for yield results that visually conform well to theoretical ones (e.g., fractional size
of the largest component in Erdös-Rényi networks).

2 Elements of Simple Contagion on Random Networks

The key feature of random networks for spreading is that they are locally pure
branching structures. This remains true for a large number of variations on random
networks such as correlated random networks and bipartite affiliation graphs.
Successful spreading away from a single seed (which could be one of many seeds)
can only occur if nodes are susceptible when just one of their neighbors is infected
(see Fig. 1). We will refer to these easily susceptible nodes as critical nodes (called
vulnerable nodes in [36]). Denoting a network’s entire node set as Ω , global
spreading will only be possible if there is a connected subnetwork of critical nodes
that forms a giant component, the critical mass network Ωcrit.

This set of critical nodes behaves in the same way as a critical mass one does
for collective action [13, 27–29] but there is now an internal dynamic. If one node
is infected within the critical mass network Ωcrit, then spreading to some fraction
of the critical mass network and beyond is possible, depending on the probabilistic
nature of the contagion process.

There are two other subnetworks that need to be characterized to understand
spreading on random networks. First, containing the critical mass network and all
non-critical nodes connected to the critical mass network is the triggering com-
ponent, Ωtrig. Knowledge of this structure is required to determine the probability
of a global spreading event [17]. Second, we have Ωfinal which is the extent of
infection realized for any spreading event. For random networks, the distribution of
the fractional size of Ωfinal will be either unimodal (the contagion process always
succeeds) or bimodal (initial failure is possible).
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Fig. 1 Random networks are
locally pure branching
structures. For the initial
stages of the spread shown,
nodes can only experience the
infection from a single
neighbor. For spreading to
take off from a simple seed,
the network must contain a
connected macroscopic
critical mass network Ωcrit of
nodes susceptible to a single
neighbor becoming infected

Fig. 2 One possible
arrangement of the three
essential subnetworks for a
contagion process on a
random network: the critical
mass network Ωcrit, the
triggering component Ωtrig,
and the final extent of a
global spreading process,
Ωfinal. In general,
Ωcrit ⊂ Ωtrig, Ωcrit ⊂ Ωfinal,
and Ωtrig,Ωfinal ⊂ Ω

In Fig. 2, we show how the three subnetworks Ωcrit, Ωtrig, and Ωfinal potentially
overlap. A global spreading event is only possible if Ωcrit takes up a non-zero
fraction of the network. Some limiting cases allow for surprising kinds of robust-
yet-fragile contagion, such as Ωcrit being vanishingly small while any successful
infection spreads to the full network [36].

3 The Contagion Condition

We would like to devise some kind of general, quick test algorithm into which
we would be able to feed any contagion mechanism and any network, whether
constructed or real. Such an algorithm would generate what we’ll call a Contagion
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Condition, and would only be worthwhile if it avoided simulating all possible
spreading events and instead computed a composite test statistic. Upon running a
system through our algorithm we would simply receive a “Yes” or “No.” Scaling
up, we could then test an array of systems in parallel and for the “Yes” responses,
we would proceed to explore those systems in detail (e.g., those cities which are
susceptible to Zombie outbreaks [24]).

3.1 Contagion Condition for One-Shot Spreading Processes

For random network models, our test algorithm can be formulated in a physically-
minded way. We will step through the building of the contagion condition for one-
shot, permanent infection spreading on generalized, uncorrelated random networks
and then expand from there.

By one-shot spreading, we mean that each newly infected node has one chance in
the next time step to infect its uninfected neighbors. That is, if node i fails to infect
a specific neighbor i′, then i cannot attempt to infect i′ again in any following time
step. Permanent infection means that nodes do not recover.

For a node i with degree k, we will write i’s probability of infection given j of
its neighbors are infected as Bkj . While our focus on the initial spread on random
networks means we need only consider the probability nodes are infected by one
of their neighbors, Bk1, we must consider the response to multiple simultaneous
infections for later stages of global spreading on random networks [10, 11], more
complicated contagion mechanisms, and, more importantly if we care about the real
world, networks with non-zero clustering [25, 38].

As is often the case with networks, we open up better ways to understand and
explain phenomena if we focus on edges rather than nodes. This is not entirely
natural as for many problems we are ultimately concerned with how nodes behave
and, for contagion especially, we can readily map ourselves directly onto individual
nodes (will my next movie fail?). But once we lose this anchoring and shift to
thinking first about edges with nodes in the background, clearer paths emerge.

So, instead of framing spreading as rooted in node infection rates, we consider
the dynamics of infected edges. For our purposes, an infected edge will be one
emanating from an infected node, and we will have to consider direction even for
undirected networks.

We need to determine one number for our system, what we’ll call the gain ratio,
R [6]. We define R as the expected number of newly infected edges that will be
generated by a single infected edge leading to an uninfected node. (In epidemiology,
the gain ratio would be equivalent to the reproduction number, R0.)

For the moment, let’s assume we have computed R for a system. Because sparse
random networks are locally pure branching structures (see Fig. 1), the spread
emanating from a single seed will also be a simple branching one. Early on, there
will be no interactions between any two newly infected edges leading to the same
uninfected node.
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The fraction of newly infected edges at time t , f inf
(·) (t), must then follow an

elementary evolution:

f inf
(·) (t) = Rf inf

(·) (t − 1). (1)

The subscript for the count f inf will indicate the edge’s type which for our initial
system is irrelevant, hence (·).

The early growth will therefore be exponential with

f inf
(·) (t) = Rt f inf

(·) (0), (2)

where f inf
(·) (0) equals the degree of the seed node. We might guess that we can write

down the exact evolution as f inf
(·) (t) = Rt f inf

(·) (0), but the initial step is sneakily
different. Well get to this issue later on.

Global spreading will evidently be possible only if

R > 1, (3)

and this very simple criterion will be our Contagion Condition.
The above equations maintain the same form if we consider not one seed but a

random seed set taking up a non-zero fraction of the random network. Writing ρt as
the fraction of edges emanating from newly infected nodes at time t , we have, again
for the initial phase of spreading:

ρt = Rρt−1, (4)

which leads to

ρt = Rt ρ0. (5)

We now determine the gain ratio R for the simple class of one-shot contagion
on random network systems. In doing so, we show that the Contagion Condition is
worthwhile beyond being a simple diagnostic as, with the right treatment, it can be
also seen to carry physical intuition.

In determining R, there are three (3) pieces to consider: two are structural and
a function of the network, and the third couples the contagion mechanism to the
network.

1. We start on an edge that has just become infected and look toward the uninfected
node that has now become exposed. The properly normalized probability that
this node has degree k is

Qk = kPk

〈k〉 (6)

because each degree k node can be reached along its k edges. This skewing of
the degree distribution is a result of some renown as it drives the Simon-like rich-
get-richer models of network growth of Price [4, 5] and Barabási and Albert [2],
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and also underlies the friendship paradox and its generalizations [7, 23]: Your
friends are quite likely to be different from you, and often in disappointing ways
such as by having more friends or wealth on average.

2. Second, we have the action of contagion mechanism. As have already defined,
with probability Bk1 the node of degree k is infected by the single incoming
infected edge. With probability 1 − Bk1, the infection fails.

3. Depending on whether or not the infection is successful, we know that in the next
time step the contagion mechanism will generate either 0 or k − 1 new infected
edges.

Putting these pieces together, we have

R =
∞∑

k=0

kPk

〈k〉︸︷︷︸
prob. of
connecting to
a degree k node

• Bk1︸︷︷︸
Prob. of
infection

• (k − 1)︸ ︷︷ ︸
# outgoing
infected
edges

+
∞∑

k=0

kPk

〈k〉︸︷︷︸
prob. of
connecting to
a degree k node

• (1 − Bk1)︸ ︷︷ ︸
Prob. of
no infection

• ( 0 )︸︷︷︸
# outgoing
infected
edges

(7)

The second piece evaporates and we have our contagion condition:

R =
∞∑

k=0

kPk

〈k〉 • Bk1 • (k − 1) > 1. (8)

Again, the value here is that this structure of R encodes the contagion mechanism
in a clear way. As such, we resist any urge to rearrange the form of Eq. (8) for a
more elegant form. As we move to more general systems, the three part form of two
pieces for the network and one for the contagion mechanism will be maintained,
and the criterion of a single number exceeding unity, R > 1, will elevate to being
the largest eigenvalue of a gain ratio matrix exceeding unity.

We now move through a few examples of other kinds of systems involving
contagion mechanisms acting on network structures.

3.2 Contagion Condition for Multiple-Shot Spreading
Processes

We have presumed a one-shot contagion process in our derivation of Eq. (8). In
loosening this restriction to spreading processes that may involve repeated attempts
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to infect a node with the possible recovery of the infected node allowed as well, we
can compute Bk1 as the long-term probability of infection. The form of gain ratio
remains the same and therefore so does the contagion condition given in Eq. (8).

3.3 Remorseless Spreading and the Giant Component
Condition

We step back from contagion momentarily to show that we can also determine
whether or not a random network has a giant component. This is now a structural
test absent any processes. A network will have a giant component if it is, on average,
locally expanding. That is, if we travel along a randomly chosen edge, we will reach
a node which has, on average, more than one other edge emanating from it. But
this is just a remorseless version of our one-shot contagion mechanism, one where
infection always succeeds, i.e., Bk1 = 1.

Setting Bk1 = 1 in Eq. (8), we have the giant component condition:

R =
∞∑

k=0

kPk

〈k〉 • (k − 1) > 1, (9)

where we have again used the physical sense of a gain ratio.

3.4 Simple Contagion on Generalized Random Networks

If Bk1 = B < 1, a fraction (1-B) of all edges will not transmit infection, and the
contagion condition becomes

R =
∞∑

k=0

kPk

〈k〉 • B • (k − 1) > 1. (10)

This is a bond percolation model [33], and Eq. (10) can be seen as a giant component
condition for a network with (1-B) of its edges removed. The resultant network has
a degree distribution P̃k = Bk

∑∞
i=k

(
i
k

)
(1−B)i−kPi, and evidently, as B decreases,

only increasingly more connected networks will be able to facilitate spreading.

3.5 Other Routes to Determining the Contagion and Giant
Component Conditions

There are many other ways to arrive at the contagion condition in Eq. (8) and
the giant component condition in Eq. (9). The path taken affects the form of the
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condition and may limit understandability [6]. For example, the giant component
condition was determined by Molloy and Reed [22] in 1995 and presented as

∞∑

k=0

k(k − 2)Pk > 0. (11)

While equivalent to Eq. (9), the framing of local expansion is obscured.
For a simple spreading mechanism with Bk1 = B, Newman [25], for example,

used generating functionology methods [40] to first determine the average size of
finite components and then find when this quantity diverged. For Granovetter’s
social contagion threshold model on random networks [13], Watts took the same
approach [36]. This size divergence is a hallmark of phase transitions in statistical
mechanical systems in general, and while it can be used to find the critical point,
doing so would ideally be at the level of a consistency check.

For the giant component condition, a somewhat more direct approach using
generating functions [26] is based on the probability distribution that the node at
the randomly chosen end of a randomly chosen edge has k other edges is

Rk = Qk+1 = 1

〈k〉 (k + 1)Pk+1. (12)

Writing the generating function for the degree distribution as FP (x) =∑∞
k=0 Pkx

k ,
we have FR(x) = F ′

P (x)/F ′
P (1), where we have used 〈k〉 = F ′

P (1), an elementary
result for determining averages with generating functions [40]. The average number
of other edges found at a randomly-arrived-at node is F ′

R(1) = F ′′
P (1)/F ′

P (x) =
〈k(k−1)〉

〈k〉 . This is exactly our gain ratio and we now have

〈k(k − 1)〉
〈k〉 > 1 (13)

for the giant component condition. Again, while Eqs. (9) and (13) are equivalent,
the latter does not have an immediate physical interpretation—it’s just a condition.

3.6 Simple Contagion on Generalized Directed Random
Networks

For purely directed networks, we allow each node to have an in-degree ki and an
out-degree ko with probability Pki,ko (see Fig. 3). The same arguments that gave us
Eq. (8) now end with:
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Fig. 3 For general directed
networks, a node has ki
incident edges and ko
emanating edges governed by
a joint distribution Pki,ko

Fig. 4 Nodes in mixed
random networks have ku
undirected edges, ki incident
edges, and ko emanating
edges. Node degree is
represented by the vector
k = [ ku ki ko ]T and degrees
are sampled from a joint
distribution Pk

R =
∞∑

ki=0

∞∑

ko=0

kiPki,ko

〈ki〉 • Bki,1 • ko > 1. (14)

The three components of the contagion condition have the same interpretation as
before (Fig. 4).

3.7 Simple Contagion on Mixed, Correlated Random Networks

We jump to a more complex possibility of mixed random networks with a
combination of directed and undirected (or bidirectional) edges as well as arbitrary
degree–degree correlations between nodes, as introduced in [3].

Nodes may have three types of edges: ku undirected edges, ki incoming directed
edges, and ko outgoing directed edges. The degree distribution is now a function of
a three-vector:

Pk where k = [ ku ki ko ]T. (15)
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As for directed networks, we require in- and out-degree averages to match up:
〈ki〉 = 〈ko〉. We add two point correlations per [3, 6] through three conditional
probabilities:

• P (u)(k | k′) = probability that an undirected edge leaving a degree k′ nodes
arrives at a degree k node.

• P (i)(k | k′) = probability that an edge leaving a degree k′ nodes arrives at a degree
k node is an in-directed edge relative to the destination node.

• P (o)(k | k′) = probability that an edge leaving a degree k′ nodes arrives at a degree
k node is an out-directed edge relative to the destination node.

We now require more refined (detailed) balance along both undirected and

directed edges (see Fig. 5). Specifically, we must have [3, 6]: P (u)(k | k′) k′
uP(k′)
〈k′

u〉 =
P (u)(k′ | k)

kuP(k)
〈ku〉 , and P (i)(k | k′) k′

oP(k′)
〈k′

o〉 = P (o)(k′ | k)
kiP(k)

〈ki〉 .

For all example systems so far, the gain ratio has been a single number. For
mixed random networks, infections along directed edges may cause infections along
undirected edges and so on. We will need to count undirected and directed edge
infections separately, the growth of infections for a one-shot contagion process will
obey the following dynamic:

Fig. 5 For mixed random
networks, node degree
correlations may be measured
along undirected and/or
directed edges



The Contagion Condition for Spreading Processes on Generalized Random Networks 37

[
f

(u)
k (t + 1)

f
(o)
k (t + 1)

]
=
∑

k′
Rkk′

[
f

(u)

k′ (t)

f
(o)

k′ (t)

]
, (16)

where we now identify a gain ratio tensor:

Rkk′ =
[

P (u)(k | k′) • Bkk′ • (ku − 1) P (i)(k | k′) • Bkk′ • ku

P (u)(k | k′) • Bkk′ • ko P (i)(k | k′) • Bkk′ • ko

]
. (17)

For a gain ratio matrix or tensor, our contagion condition is now a test of whether or
not the largest eigenvalue exceeds 1.

3.8 Contagion on Correlated Random Networks with Arbitrary
Node and Edge Types

We make one last step of generalization for correlated random networks [6]. As per
Fig. 6, we allow arbitrary types of nodes and edges along with arbitrary correlations
between node-edge pairs. For multi-shot contagion, we have

fα(d + 1) =
∑

α′
Rαα′fα′(d) (18)

where Rαα′ is the gain ratio matrix and has the form:

Rαα′ = Pαα′ • kαα′ • Bαα′ . (19)

Here,

• Pαα′ = conditional probability that a type λ′ edge emanating from a type ν′ node
leads to a type ν node.

Fig. 6 Element of a general
correlated random network
where edges and nodes may
take on arbitrary
characteristics. Node and
edge type are specified as
α = (ν, λ)
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• kαα′ = potential number of newly infected edges of type λ emanating from nodes
of type ν.

• Bαα′ = probability that a type ν node is eventually infected by a single infected
type λ′ link arriving from a neighboring node of type ν′.

Finally, we can write down our generalized contagion condition as:

max |μ| : μ ∈ σ (R) > 1, (20)

where σ(R) denotes the eigenvalue spectrum of R.

3.9 Simple Contagion on Bipartite Random Networks

Bipartite networks (or affiliation graphs) connect two populations through some
association, and induce networks within each population [1, 9, 12, 18, 26, 34].
Bipartite structures and variants are natural representations of many real networked
systems with a classic example being boards and directors. The induced distribu-
tions are formed by connecting all pairs of boards that share at least one director
and all pairs of directors that belong to the same board.

Base models for real bipartite systems are random bipartite networks which are
formed by randomly connecting two populations with specified degree distributions.
Random bipartite networks are able to reproduce induced degree distributions,
which may be non-trivial in form [26].

To help with our analysis, we’ll consider a random bipartite network between
stories and tropes [35]. Each story contains one or more trope, and each trope is part
of one more stories. Stories sharing tropes are then linked as are tropes found in
the same story. In Fig. 7, we show a small example (center) along with the induced
trope–trope and story–story networks.

For spreading between stories we may wish to imagine we’re in the BookWorld
of the Thursday Next series [8].

Fig. 7 Example of a bipartite affiliation network and the induced networks. Center: A small story-
trope bipartite graph. The induced trope network and the induced story network are on the left and
right. The dashed edge in the bipartite affiliation network indicates an edge added to the system,
resulting in the dashed edges being added to the two induced networks
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We’ll use this notation for our two inter-affiliated types: � for stories and � for
tropes.

Consider a story-trope system with N� denoting the number of stories, N�

the number of tropes, and m�,� the number of edges connecting stories and
tropes.

Let’s have some underlying distributions for numbers of affiliations: P
(�)
k

(a story has k tropes) and P
(�)
k (a trope is in k stories).

Some bookkeeping arises with balance requirements. Writing 〈k〉� as the
average number of tropes per story, and 〈k〉� as the average number of stories
containing a given trope, we must have: N� · 〈k〉� = m�,� = N� · 〈k〉�.

Let’s first get to the giant component condition before talking about contagion.
Just as for random networks, we focus on edges begetting edges, and we will need

the distributions analogous to Qk , Eq. (6). We randomly select an edge connecting
a story � to a trope �. Traveling from the trope to the story, we have that the
probability the story � contains k total tropes is:

Q
(�)
k = kP

(�)
k

∑N�

j=0 jP
(�)
j

= kP
(�)
k

〈k〉�
. (21)

Heading instead towards the trope �, we find the probability that the trope � is in k

total stories is

Q
(�)
k = kP

(�)
k∑N�

j=0 jP
(�)
j

= kP
(�)
k

〈k〉�
. (22)

To determine the giant component condition for the induced network of stories
(to choose a side), let’s start with a randomly chosen edge and travel from the
story to the trope. As shown starting on the left of Fig. 8, we hit the trope and
then travel to the other stories containing that trope. This bouncing back and forth
between tropes and stories continues and because the connections are random and
if the system is large enough, no story or trope is returned to early on. Just as for
random networks, there are no short loops (technically, finitely many in the infinite
limit).

We are thus able to depict the expanding branching in Fig. 8 and we can see that
the giant component condition will involve the product of the gain ratio for each
distribution.

R = R� · R� =
[ ∞∑

k=0

kP
(�)
k

〈k〉�
• (k − 1)

][ ∞∑

k=0

kP
(�)
k

〈k〉�
• (k − 1)

]
> 1 (23)

As for gain ratios for random networks we can arrive at this result through the
use of generating functions and other approaches. Regardless of the path, more
mathematically pleasing variants are always available such as [26]:
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Fig. 8 Spreading on a random bipartite network can be seen as bouncing back and forth between
the two connected populations. The gain ratio for simple contagion on a bipartite random network
is the product of two gain ratios as shown in Eq. (23)

∞∑

k=0

∞∑

k′=0

kk′(kk′ − k − k′)P (�)
k P

(�)

k′ = 0, (24)

but, again, we have stripped the physics away.
Introducing a simple contagion can be done as before by allowing tropes to infect

other tropes in the same story (with probability B
(�)
k1 ) and stories to affect other

stories if they share a trope (with probability B
(�)
k1 ) We adjust Eq. (23) to obtain:

R = R� · R� =
[ ∞∑

k=0

kP
(�)
k

〈k〉�
• B

(�)
k1 • (k − 1)

]

×
[ ∞∑

k=0

kP
(�)
k

〈k〉�
• B

(�)
k1 • (k − 1)

]
> 1 (25)

3.10 Threshold Contagion on Generalized Random Networks

We turn to our last example: threshold contagion, an important simple model
of social contagion [13–16, 30–32, 36]. In basic threshold contagion models, all
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individuals observe the infection status of their neighbors at each time step, and
become infected if their internal threshold is exceeded. In the present and following
section, we will explore the contagion condition for threshold models on all-to-all
networks and random networks, and examine the early course of a global spreading
event reflecting on the nature of early adopters.

In Granovetter’s mean-field or all-to-all network version [13], individuals are
always aware of the overall fraction of the population that is infected. We write
the fraction of the population that is infected at time t as at . If we have a general
threshold distribution f (φ), then the fraction of the population whose threshold will
be exceeded at time t and hence be infected at time t + 1 is:

φt+1 =
∫ φt

0
f (u)du = F(u)|φt

0 = F(φt ) − F(0) (26)

where F is the cumulative distribution of f (if F(0) > 0, then the system has
nodes that will always be on regardless of the state of others). Thus, we have system
whose dynamics are described by a map of the unit interval. We are interested in
small seeds for the mean-field version, i.e., φ0 → 0. In this limit, global spreading
occurs if (1) F(0) > 0 meaning the population will always activate spontaneously,
or (2) φ = 0 is a fixed point but is unstable (meaning F(0) = 0 and F ′(0) > 1). If
φ = 0 is a stable fixed point (meaning F(0) = 0 and F ′(0) < 1), then spreading
may still occur but not for vanishingly small seeds. Perhaps surprisingly, the same
process on a network may give rise to spreading from a single seed, as we explain
this in the next section.

For the random network version due to Watts [36], and again taking a general
threshold distribution f (φ) a degree k node will be part of the critical mass network
with probability:

Bk1 =
∫ 1/k

0
f (φ)dφ. (27)

The gain ratio remains the same as the one given in Eq. (8).
We now link the contagion conditions for the all-to-all network and random

network versions of social contagion.

3.11 Connecting the Contagion Condition for All-To-All
and Random Networks for Threshold Contagion

We make the simple observation that if we examine the threshold model’s behavior
on a random network and allow the average degree 〈k〉 to increase, then the results
will tend towards what we would observe on an all-to-all network. Since the limiting
behavior of the contagion model on all-to-all networks is governed by the presence
or absence of fixed points of the cumulative threshold distribution F , we are
therefore able to state what the model’s behavior on random networks must tend
towards as 〈k〉 increases based solely on the form of F .
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Fig. 9 Plots comparing the behavior of the model on all-to-all networks (plots (a) and (c)) and
random networks ((b) and (d)) for two different example threshold distributions. The insets to
plots (a) and (c) show the two underlying threshold distributions, which are unimodal and bimodal,
respectively, and the corresponding cumulative distributions are presented in the main plots of
(a) and (c). Plots (b) and (d) show global spreading event intervals for random networks with the
same threshold distributions as (a) and (c), respectively. The black lines in (b) and (d) indicate the
average size of global spreading events that exceed 0.05N , and the dashed lines the average size
of the largest critical mass network (sizes are normalized by N ). The threshold distribution in plot
A leads to a bounded global spreading event interval on random networks while the distribution in
plot (c) leads to an unbounded one. In plot (d), the average size of the largest critical mass network
decays to 0 as 〈k〉 → ∞. The results in plots (b) and (d) are derived from 103 networks with
N = 104 and one seed per network

We consider two examples of threshold distribution f to facilitate our discussion.
First, for a general threshold distribution f , it is useful for us to define a global
spreading event interval as the range of 〈k〉 for which global spreading events
are possible on a random network. A simple example involving a bounded global
spreading event interval and a non-trivial threshold distribution f is represented in
Fig. 9a, b. The main plot of Fig. 9a shows the cumulative distribution F , and the inset
shows the threshold distribution f . The all-to-all network model, Fig. 9a, exhibits
a simple kind of critical mass behavior: the infection level approaches unity if the
initial activated fraction φ0 is above the sole unstable fixed point, or else it dies away.
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Thus for all-to-all networks, a small initial infection level will always fail to yield
global infection. For global spreading events to occur on all-to-all networks, some
alternative seeding mechanism (an advertising campaign, perhaps) must precede the
word-of-mouth dynamics so as to create a sufficiently large φ0.

By contrast, global spreading events can arise from a single infected individual
in a sparse random network with exactly the same distribution of thresholds, as
shown in Fig. 9b. The reason is that when individuals are connected to a limited
number of alters within a population, the fraction of their neighbors that are
infected may now be nonzero and thus may exceed their threshold (in infinite all-
to-all networks, this fraction is always 0 for finite seeds). By effectively reducing
the knowledge individuals have of the overall population—by increasing their
ignorance—global spreading events become possible. Related observations invoke
pluralistic ignorance [19, 20] and the importance of small groups in facilitating
collective action [29] by circumventing the free rider problem.

Thus, when the threshold distribution f is fixed, we observe a connection
between the results for spreading on all-to-all networks and random networks.
Bounded global spreading event intervals can only occur when the mean-field
version exhibits a critical mass property, i.e., when there exists a stable fixed point
at the origin φ = 0 (i.e., F(0) = 0 and F ′(0) < 1). We know this because no
small seed will ever be able to generate a global spreading event in the all-to-all
case and that as the average degree of a random network increases, so too must
its similarity in behavior to that of all-to-all networks. Furthermore, if there is a
stable fixed point at the origin, whether or not global spreading events are possible
at all in any random network depends on the global spreading event condition being
satisfied. In other words, ignorance does not always help the spread of influence—
some threshold distributions never lead to the contagion condition being satisfied
for any value of 〈k〉.

Unbounded global spreading event intervals arise when there are sufficient
individuals who will be vulnerable even if their degree is very high, i.e., when
the threshold distribution has enough weight at or near φ = 0. An example of an
unbounded global spreading event interval is given in Fig. 9d with the underlying
threshold distribution and its cumulative shown in Fig. 9c. Since small seeds always
take off in the all-to-all network version, as network connectivity is increased,
global spreading events continue to occur and the global spreading event interval is
unbounded. The size of the largest critical mass network is nonzero for all finite 〈k〉,
though it tends to 0 in the limit 〈k〉 → ∞. For highly connected random networks,
the final size of the global spreading event again depends on the fixed points of F .
For example, in Fig. 9b, global spreading events typically reach the full size of the
giant component which corresponds to an upper stable fixed point of F at φ = 1.
In Fig. 9d, we see global spreading events only reach half the size of the population,
corresponding to the stable fixed point of F at φ = 1/2.

We thus see that in moving from all-to-all networks to random networks, the
behavior of the threshold model changes qualitatively in the sense that there exist
threshold distributions for which global spreading events started by a small seed
cannot occur on an all-to-all network, yet may occur on sparse, random networks.
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4 Concluding Remarks

For any parameterized system that may afford global spreading, the contagion
condition is a fundamental criterion to determine. We have outlined the contagion
condition for a range of contagion mechanisms acting on generalized random
networks, showing that the condition can be derived so as to bear a clear imprint
of the mechanism at work. A similar approach can be used to lay out the triggering
probability of a global spreading event in a readable form [17].

While generating function approaches provided many of the first breakthroughs
giving the possibility and probability of spreading [26, 39] and have yielded
powerful access to many other results, they have tended to obscure the forms of the
simplest ones such as the contagion condition. These techniques are also inherently
indirect as they work by avoiding the giant component and characterizing only finite
ones. Later work focusing on fractional seeds was able to go directly into the giant
component and determine not just the final size but full time dynamics of global
spreading events [10, 11], and we recommend continued pursuit of this line of attack
going forward.
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Challenges to Estimating Contagion
Effects from Observational Data

Elizabeth L. Ogburn

1 Background

A network is a collection of units, or nodes, and the ties, or edges, between them.
The presence of a tie between two nodes indicates that the nodes share some kind
of a relationship; what types of relationships are encoded by network ties depends
on the context. Some types of relationships are mutual (undirected), for example
familial relatedness and shared place of work; others may go in only one direction.
A node whose characteristics we wish to explain or model is called an ego; nodes
that share ties with the ego are its alters. If an ego’s outcome may be affected by
his contacts’ outcomes, then the outcome is said to exhibit induction, contagion,
peer effects, or peer influence. For consistency we will use the term contagion
throughout.

A growing body of literature attempts to learn about contagion using observa-
tional (i.e., non-experimental) data collected from a single social network. While
the conclusions of these studies may be correct, the methods rely on assumptions
that are likely—and sometimes guaranteed to be—false, and therefore the evidence
for the conclusions is often weaker than it is portrayed to be. Developing methods
that do not need to rely on implausible assumptions is an incredibly challenging
and important open problem in statistics. Appropriate methods don’t (yet!) exist, so
researchers hoping to learn about contagion from observational social network data
are sometimes faced with a dilemma: they can abandon their research program, or
they can use inappropriate methods. This chapter will focus on the challenges and
the open problems and will not weigh in on that dilemma, except to mention here
that the most responsible way to use any statistical method, especially when it is
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well-known that the assumptions on which it rests do not hold, is with a healthy
dose of skepticism, with honest acknowledgment and deep understanding of the
limitations, and with copious caveats about how to interpret the results.

A number of high profile papers have used standard methods like generalized
linear models (GLMs) and generalized estimating equations (GEEs) to attempt to
infer causal relationships from network data (e.g., [1, 8–11, 24, 40]). There has been
backlash from the statistical community [12, 28, 45] because these statistical models
are not equipped to deal with network dependence and are rarely appropriate for
estimating effects using network data. In some settings it may be possible to use
them to test for the presence of network dependence, but it is unclear whether
these tests have power to detect contagion and therefore whether rejecting the
null hypothesis can safely be interpreted as evidence for the alternative hypothesis
[44, 53]. In general, methods that assume independence when in fact network
dependence is present result in p-values that are artificially small, confidence
intervals that are artificially narrow, and inference that is anticonservative.

Spatial autoregressive (SAR) models have been applied to the study of contagion
in network settings (e.g., [15, 25, 26, 35]). The shortcoming of these models
stems from the fact that, because the endogenous and exogenous variables are
measured at the same time, they parameterize an equilibrium state rather than
causal relationships. Causal relationships require the exposure to temporally precede
the outcome. Few data generating processes give rise to true equilibrium states
[5, 23, 50]; therefore, SAR models may often be misspecified or uninformative about
causal relationships.

A hallmark of most of the work to date on outcomes sampled from a network
is that it uses models, like GEE, GLM, and SAR models, that were developed for
very different settings. Very recently, researchers have begun to develop methods
designed specifically for the network setting. Work by van der Laan [51] and Ogburn
et al. [34] harnesses independence assumptions that require observing the evolution
of the network and outcomes over time. In many settings, however, we will only
get a snap shot of the network, or we may observe it at multiple time points but not
enough to capture the full evolution of the network. Many methods for interference,
which is when one subject’s exposure may affect another subject’s outcome, are
highly relevant to the analysis of network data. However, the inferential methods
developed in this context generally require observing multiple independent groups
of units, which corresponds to observing multiple independent networks, or else
they require that the exposure be randomized.

In the rest of the chapter, we will go through the specific challenges to learning
about contagion from observational social network data one by one, followed by a
quick discussion of successful methods for overcoming these challenges in some
settings. First, in Sect. 2 we describe a motivating example that will anchor the
discussion throughout. In Sect. 3 we describe causal effects that are of interest in
social network settings. In Sects. 4 and 5 we discuss two overwhelming challenges
for estimating causal effects in social network settings: confounding and statistical
dependence. In Sect. 6 we briefly describe some existing and future directions for
solutions to these challenges.
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2 Motivating Example

Suppose that students attending the residential Faber College are measured and
weighed at the start and close of each school year, and a complete social network
census is taken, cataloguing all social ties among members of the student body. In
addition, researchers have access to basic demographic covariates measured on each
student. Researchers are interested in testing whether there is a contagion effect for
body mass index (BMI): if one individual—the ego—gains (or looses) weight, does
that make his or her social contacts—the alters—more likely to do the same? They
are also interested in estimating the contagion effect if one exists: if an ego gains
(or loses) weight, what is the expected increase (or decrease) in the alters’ body
mass indices?

There are many different procedures one could use to test for or estimate a
contagion effect, using different models, different assumptions, different sets of
covariates, different ways of calculating intervals or uncertainty, and the list goes
on. In order for a procedure to be useful, it has to satisfy two requirements. First,
it has to isolate the causal effect of the ego’s change in BMI on the alters’ changes
in BMI from potential other sources of similarity between the ego’s and the alters’
outcomes. This has to do with confounding, which is the subject of Sect. 4.

The second requirement for a useful analysis is that it must be generalizable to
populations beyond the precise student body used in the analysis. We would like to
be able to extrapolate what we learn about contagion from the Faber student body
to contagion of BMI in similar college populations across different colleges or even
across different years at Faber College. Assume that the student body we observe
at Faber College is representative of these other student populations, that is, that
the true underlying contagion effect for the observed sample of Faber students is
the same as the true underlying contagion effect in the other college populations
to which we want to extrapolate. This ensures that whatever quantities we are able
to estimate using Faber College data will be unbiased. Then one way to determine
what we can learn by extrapolating from Faber students to the other similar groups
of students is to calculate a confidence interval for the true contagion effect, based
on a model of asymptotic growth of the sample. For example, if the sample is
large enough that a central limit theorem approximately holds for the contagion
effect estimate, then a Gaussian confidence interval around the sample mean is
approximately valid. Under the assumption of the same true underlying contagion
effect, our confidence that this interval covers the true contagion effect for Faber
College students is the same as our confidence that it covers the true contagion
effect for students at a different college or in a different year. As in many settings
for statistical inference, asymptotics are appropriate not because we care about
an infinite population but because they shed light on finite samples. This requires
valid statistical inference, and specifically appropriate methods for calculating the
variance of an estimator, which is the subject of Sect. 5.
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3 Defining Causal Effects

Questions about the influence one subject has on the outcome of another subject are
inherently questions about causal effects: contagion is a causal effect on an ego’s
outcome at time t of his alter’s outcome at time s for some s < t . Causal effects
are defined in terms of potential or counterfactual outcomes (see, e.g., [19, 42]).
In general, a unit-level potential outcome, Yi(z), is defined as the outcome that
we would have observed for subject i if we could have intervened to set that
subject’s treatment or exposure Zi to value z. A contagion effect of interest for
dyadic data might be a contrast of counterfactuals of the form Y t

ego(y
t−1
alter ), for

example E
[
Y t

ego(y) − Y t
ego(y − 1)

]
would be the expected difference in the ego’s

counterfactual outcome at time t had the alter’s outcome at time t − 1 been set
to y compared to y − 1. In data comprised of independent dyads this contagion
effect is well-defined, but social networks represent a paradigmatic opportunity for
interference, whereby one subject’s exposure may affect not only his own outcome
but also the outcomes of his social contacts and possibly other subjects. This is a
violation of the stable unit treatment value assumption (SUTVA) usually made in
causal inference settings, which entails that each subject’s potential outcome is a
function of his or her own treatment but no other treatments. Under interference,
the traditional unit-level potential outcomes are not well-defined. Instead, Yi(z)
is the outcome that we would have observed if we could have set the vector of
exposures for the entire population, Z, to z = (z1, . . . , zn) where for each i,
zi is in the support of Z. The causal inference literature distinguishes between
interference, which is present when one subject’s treatment or exposure may affect
others’ outcomes, and contagion, which is present when one subject’s outcome
may influence or transmit to other subjects (e.g., [31]), but in fact they are usually
intertwined. Consider three Faber students: Alex, Andy, and Ari, all friends with
each other. Alex’s outcome at time t depends on both Andy’s and Ari’s outcomes
at time t − 1, Andy’s outcome at time t depends on Alex’s and Ari’s at time
t − 1, and Ari’s outcome at time t depends on Alex’s and Andy’s at time t − 1.
This results in a situation that is hardly distinguishable from the hallmarks of
interference: Y t

Alex(y
t−1
Andy, y

t−1
Ari ), Y t

Andy(y
t−1
Alex, y

t−1
Ari ), and Y t

Ari(y
t−1
Alex, y

t−1
Andy) are

potential outcomes that depend on multiple “treatments” and those treatments are
overlapping across subjects. Furthermore, just as in settings with interference, a
counterfactual outcome for node i that omits some of the treatments to which node
i is exposed (i.e., the outcomes at time t−1 for some of i’s alters) is not well-defined.
This has been overlooked in most of the literature on contagion in observational
social network data, which generally focuses on alter-ego pairs, thereby inherently
considering ill-defined counterfactuals like Y t

Alex(y
t−1
Andy).

This points to an under-appreciated challenge for the study of contagion in a
social network: simply defining the causal effect of interest. If researchers sample
non-overlapping alter-ego dyads from the network, then Y t

ego(y
t−1
alter ) may be well-

defined, but if they wish to use all of the available data, comprised of overlapping
dyads, causal effects must be defined in terms of all of the alters for a particular
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ego. In the latter case, we could define a contagion effect that compares the mean
counterfactual outcome for an ego had the mean outcome among the alters been set
to one value as opposed to a different value. For simplicity, in the remaining sections
we will talk about alter-ego pairs rather than clusters of an ego with all of its alters.
This is in keeping with the existing applied literature, but it is important to note that
close attention should be paid in future work to the definition of causal contagion
effects for non-dyadic data. Numerous papers and researchers have addressed the
definition of counterfactuals and causal effects in settings with interference (e.g.,
[4, 17, 18, 20, 21, 31, 39, 41, 48, 49]); similar attention should be paid to contagion
effects.

It is also worth noting here that measuring alters’ and egos’ outcomes at different
times is crucial. When all outcomes are measured at the same time, it is impossible
to determine the direction of causality. Treatments or exposures must temporally
precede outcomes in order for causal effects to be well-defined.

4 Confounding

Confounding, is, loosely, the presence of a non-causal association that may be
misinterpreted as a causal effect of one variable on another. Most commonly,
confounding is due to the presence of a confounder that has a causal effect on both
the hypothesized cause and the hypothesized effect. Such a confounder generates
an association between the hypothesized cause and effect which, without careful
analysis, could be taken as evidence of a causal effect. There are two types of
confounding that are nearly ubiquitous and especially intransigent in the context
of contagion effects in social networks: homophily is the tendency of people who
are similar to begin with to share network ties, and environmental confounding is the
tendency of people who share network ties to also share environmental exposures
that could jointly affect their outcomes. We elucidate these two types of confounding
below.

4.1 Homophily

Consider the Faber College student body. Suppose that two students, Pat and Lee,
meet in September and bond over the fact that they both used to be competitive
runners but recently developed injuries that prevent them from running and from
participating in other active hobbies they used to enjoy. Soon Pat and Lee are close
friends. Over the course of a few months, the sedentary lifestyle catches up with
Pat, who gains a considerable amount of weight. It takes longer for Lee, but by
the close of the school year Lee has also gained a lot of weight. If you did not
have access to the back story and only observed that Pat gained weight and then
Pat’s close friend Lee did too, this looks like potential evidence of a causal effect of
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Pat’s change in BMI on Lee’s change in BMI. In fact, this is a case of homophily:
unobserved covariates related to the propensity to gain weight (in this case, recent
injury) caused Pat and Lee to become friends and also caused them to both undergo
changes in BMI.

Some carefully considered studies attempt to control for all sources of homophily
(see [45] for details and references), but this is generally not possible unless
researchers have a high degree of control over data collection and can collect
extremely rich (and therefore expensive!) data on the covariates that affect ties.
Any traits that are related to the formation, duration, or strength of ties and to
the outcome of interest must be measured. For some outcomes, such as infectious
diseases, it may be possible to enumerate and observe all such traits, but for other
outcomes, such as BMI, endless permutations of the Pat-and-Lee story are possible
(e.g., friendship based on shared body norms, shared love of sugary snacks, shared
appreciation for a particular celebrity whose BMI changes could affect both Pat and
Lee’s, etc.), making it nearly impossible to control for all potentially confounding
traits. In addition to the challenge of enumerating the potentially confounding traits,
there are huge costs to collecting such rich data, and available social network data
are highly unlikely to include adequate covariates.

For these reasons, researchers have developed clever tricks to try to control for
homophily using only data the network and the outcome of interest. One such trick
is to include both the alter and the ego’s outcomes at a time t − 2 as covariates in a
regression of the ego’s outcome at time t on the alter’s outcome at time t − 1. The
argument used to justify this method is that any traits related to tie formation and to
the outcome are fully captured by the similarity in the alter and ego’s outcomes at
time t − 2; any association between the alter’s outcome at time t − 1 and the ego’s
at time t after controlling for this baseline similarity must be due to contagion. But
the story of Pat and Lee demonstrates one flaw in this argument: baseline traits can
affect outcome trajectories over time and so conditioning on the outcome at a single
time point does not render all future outcome measures independent of the baseline
covariates. Another flaw in the argument is that homophily operates not only through
the propensity to form ties, but also through the propensity to maintain ties and
through the strength of the ties; neither strength nor duration can be captured by
past outcomes [30]. Furthermore, Shalizi and Thomas [45] demonstrated that, even
if a baseline trait only affects friendship formation (not strength or duration), merely
conditioning on the presence of a tie, which is inherent in all analyses focused on
alter-ego pairs, creates a spurious association between the alter’s outcome at time
t − 1 and the ego’s outcome at time t . This is because the presence of a tie is a
collider: a common effect of two variables, conditioning on which creates a spurious
association between the two causes. (For an accessible review of colliders, see [13].)

Another clever trick is to compare the strength of the association between an
alter’s and an ego’s outcomes across different types of ties: undirected, or mutual;
directed, with the ego naming the alter as a friend but not vice versa; and directed,
with the alter naming the ego as a friend but not vice versa. Suppose Pat claims Lee
as a friend but Lee does not claim Pat as a friend. Any similarity in baseline traits
that Pat and Lee share is a symmetric relationship, the argument goes, and therefore
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if the regression of Pat’s BMI at time t on Lee’s BMI at time t − 1 results in a larger
coefficient than does the regression of Lee’s BMI at time t on Pat’s BMI at time t−1,
this is evidence of contagion. Unfortunately, this argument is also flawed [28, 45].
This is because, somewhat counterintuitively, similarity in baseline traits does not
have to be symmetric. Suppose Pat claims Lee as a friend because Lee is the only
person Pat knows who is going through a painful separation with running and other
active hobbies, while Lee participates in a support group for recently injured former
runners and considers only one participant, Lou, who has the exact same injury and
prognosis, as a friend. By construction, even though Lee is the node with the most
baseline similarity to Pat from among all of Pat’s potential friends, the reverse is not
true: Lou, not Pat, is the node with the most similarity to Lee from among all of Lee’s
potential friends. Therefore, if Lou’s outcome at time t−1 has a stronger association
with Lee’s outcome at time t − 1 than Pat’s does, this could be evidence of greater
similarity on baseline characteristics rather than contagion. Furthermore, it can be
shown that a similar story results in reciprocated ties having the strongest association
of all [28]. Shalizi and Thomas [45] used a slightly different data-generating process
to show that purported evidence for contagion due to asymmetry in the association
of an alter’s outcome with an ego’s outcome for different types of ties is consistent
with homophily rather than contagion.

4.2 Shared Environment

Let’s turn to a different pair of Faber students, Cam and Sam, who both decided to
move off campus to a neighborhood across town from the college. Over the course
of the school year, both the grocery store and the gym in their neighborhood closed
down and were replaced with fast food restaurants. Cam immediately starts taking
every meal at the fast food joint and gains weight fairly quickly, while Sam holds out
for several months, taking the bus to a distant grocery store, but when time winter
weather and final exams pile on Sam, too, falls prey to the fast food marketing. By
the end of the year both students have gained weight. This is confounding due to
shared environment, another source of confounding that plagues attempts to learn
about contagion from observational data. People who share network ties tend to live
near each other, work together, pay attention to the same information, or work in the
same industry, all of which can generate confounding due to shared environment
(which need not be restricted to physical environment). Note that confounding due
to shared environment is present whether Cam and Sam are friends because they
live in the same neighborhood or they moved to the same neighborhood because
they were friends. The distinction between homophily and shared environment is
not always clear-cut; if Cam and Sam became friends because they lived in the same
neighborhood that would simultaneously be an example of homophily and of shared
environment. The same strategies described above for dealing with homophily have
been used in an attempt to control for confounding due to shared environment, but
similar reasoning controverts their effectiveness.
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Cohen-Cole and Fletcher [12] proposed controlling for confounding by shared
environment by including fixed effects for “community” in regressions of an ego’s
outcome at time t on an alter’s outcome at time t −1. If all such confounding occurs
due to clearly delineated and known communities, like well-defined neighborhoods
in the example above, this is potentially a good solution, though in many cases the
operative communities, or their membership, will likely be unknown.

5 Dependence

Suppose confounding is not an issue, because researchers at Faber were well-funded
and prescient enough to collect data on every possible confounder of the contagion
effect, and further suppose that the researchers have a model—maybe a regression,
maybe a propensity-score based method [3], maybe some other model—that they
believe gives an estimate of the causal contagion effect. We now turn to the question
of how to perform valid statistical inference using a model fit to data from a social
network. The issue of valid statistical inference is entirely separate from the issue
of confounding or even contagion; it applies whether we want to estimate a simple
mean or a complicated causal effect. The key points made in this section apply to
anything that we want to estimate using social network data. Most estimators of
causal effects, including The coefficient on the alter’s outcome at time t − 1 in a
regression of the ego’s outcome at time t , are closely related to sample means (to be
technical, they are M-estimators), so all of the points made below apply.

Going back to Faber College, administrators are now interested in the simpler
problem of estimating the mean BMI for the student body at the end of the school
year. There are n students, or nodes in the social network comprised of students,
and each one furnishes an observed BMI measurement Yi . Our goal is to perform
valid (frequentist) statistical inference about the true mean μ of Y using a sample
mean Ȳ = 1

n

∑n
i=1 Yi of dependent observations Y = (Y1, . . . , Yn), where the

dependence among observations is determined or informed by network structure.
But for the dependence, this is a familiar problem. In general, when we want to
use a sample mean to perform inference about a true mean, we take the sample
mean as our point estimate, calculate a standard error for the sample mean, and tack
on a confidence interval based on that standard error. The unique challenge for the
social network setting is the effect of dependence on the standard error. To keep
things as simple as possible, let’s assume that Yi, . . . , Yn are identically, though not
independently, distributed, so the mean of Yi is μ and the variance of Yi is σ 2, which
we assume is finite, for all i. (In fact, it is easier to deal with observations that are
not identically distributed than it is to deal with observations that are dependent, so
relaxing this assumption is not too difficult.)
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Recall that the standard error of Ȳ is the square-root of its variance, where

V ar(Ȳ ) = 1

n2
V ar

(
n∑

i=1

Yi

)

= 1

n2

⎧
⎨

⎩

n∑

i=1

σ 2 +
∑

i 	=j

cov(Yi, Yj )

⎫
⎬

⎭

= σ 2

n
+ 1

n2

∑

i 	=j

cov(Yi, Yj ).

When Yi, . . . , Yn are independent, the covariance term cov(Yi, Yj ) is equal to 0

for all i 	= j pairs, so the variance of Ȳ is σ 2

n
, which should be familiar from any

introductory statistics or data analysis class. But when Yi, . . . , Yn are dependent,
in particular when they are positively correlated (which is the type of dependence
that we would expect to see in just about every social network setting), the variance

of Ȳ is bigger than σ 2

n
because it includes the term 1

n2

∑
i 	=j cov(Yi, Yj ). This is

an average of the pairwise covariances for all of the
(
(n,2)

)
pairs of observations;

the more dependence the data exhibit the larger this term will be. Define bn =
1
n

∑
i 	=j cov(Yi, Yj ). Then

var(Ȳ ) = σ 2

n/
(

1+ bn

σ2

)

and we can see that the factor by which the variance of Ȳ is bigger than what it would

be if Yi, . . . , Yn were independent is
(

1 + bn

σ 2

)
. We call n/

(
1 + bn

σ 2

)
the effective

sample size of our sample of n dependent observations Y1, . . . , Yn. The effective

sample size n/
(

1 + bn

σ 2

)
is smaller than the true sample size n; heuristically, this

is because each observation Yi contains some new information about the target of
inference μ and some information that is rendered redundant by dependence. Under
independence each observation furnishes 1 “bit” of information about μ, whereas

under dependence each observation furnishes only 1/
(

1 + bn

σ 2

)
bit of information

about μ.
In order to explain the impact of this dependence on statistical inference, we first

review the standard inferential procedure for independent data. When Yi, . . . , Yn

are independent, a typical procedure would be to calculate an approximate 95%
confidence interval for μ as Ȳ ±1.96× σ̂√

n
, where σ̂ is the square root of an estimate

of the variance of Y . The factor 1.96 is the 97.5th quantile of the standard Normal
distribution; t-distribution quantiles could be used instead to account for the fact that
σ is estimated rather than known. This procedure relies on several preliminaries: (1)
Ȳ is unbiased for μ, (2) Ȳ is approximately Normally distributed, and (3) σ̂√

n
is a
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good estimate of the variance of Ȳ . These preliminaries hold, at least approximately,
in most settings with independent data and moderate to large n. Dependence doesn’t
affect (1), but it does affect (2) and (3).

When Yi, . . . , Yn are independent, the Central Limit Theorem (CLT) tells us that√
n
(
Ȳ − μ

)
converges in distribution to a Normal distribution as n → ∞. The

factor
√

n is called the rate of convergence and it is needed to make sure that the
variance of

√
n
(
Ȳ − μ

)
is not 0, in which case

√
n
(
Ȳ − μ

)
would converge to a

constant rather than a distribution, and is not infinite, in which case
√

n
(
Ȳ − μ

)

would not converge at all. The variance of Ȳ (equivalently, the variance of Ȳ − μ)
is σ 2/n, so the variance of

√
n
(
Ȳ − μ

)
is n × (σ 2/n

) = σ 2, which is a positive,
finite constant. When Yi, . . . , Yn are dependent, the rate of convergence may be
different (slower) than

√
n. (In fact, if the dependence is strong and widespread

enough, the CLT may not hold at all; determining what types of social network
dependence are consistent with the CLT is an important area for future study.) This
is because the rate of convergence is determined by the effective sample size instead

of by n: the variance of Ȳ is σ 2/
{
n/
(

1 + bn

σ 2

)}
, so (as long as a CLT holds),

√
n/
(

1 + bn

σ 2

) (
Ȳ − μ

)
will converge to a Normal distribution as n → ∞ and

the rate of convergence is given by

√
n/
(

1 + bn

σ 2

)
rather than

√
n. Sometimes, in

particular when bn is fixed as n → ∞, this distinction will be meaningless. But
sometimes, when bn grows with n, it is a meaningfully slower rate of convergence.
(Note that bn/n must converge to 0 as n → ∞ in order for a CLT to hold, so bn

must grow slower than n.) This matters because it informs when the approximate
Normality of the CLT kicks in, i.e. at what sample size it is safe to assume that
Ȳ is approximately Normally distributed. Many different rules of thumb exist for
determining when approximate Normality holds; one popular rule of thumb is
that n = 30 suffices. With dependent data, this number is larger, and sometimes
considerably so. The effective sample size, rather than n, should be used to assess
whether the sample size is large enough to approximate the distribution of Ȳ with a
Normal distribution. When researchers ignore dependence and rely on the Normal
approximation in samples that have large enough n but not large enough effective
sample size, there is no reason to think that their 95% confidence intervals will have
good coverage properties.

Ignoring dependence is most dangerous when estimating the standard error of
Ȳ . Any estimate of var(Ȳ ) that is based only on the marginal variances σ 2 of
Yi and ignore the covariances cov(Yi, Yj ) will underestimate the standard error
of Ȳ , often severely. Inference that is based on an underestimated standard error
is anticonservative: confidence intervals are narrower than they should be and p-
values are lower than they should be, leading researchers to draw conclusions that
are not in fact substantiated by the data. Even if each observation is dependent
only on a fixed and finite number of other observations, so that dependence is
asymptotically negligible and does not affect the rate of convergence of the CLT, in
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finite samples ignoring the covariance terms in var(Ȳ ) could still have substantial
implications on inference. This is particularly a problem because no good solutions
exist. Statisticians are good at dealing with dependence that arises due to space
or time, or even other more complicated processes that can be expressed using
Euclidean geometry. But dependence that is informed by a network is very different
from these well-understood types of dependence, and, unfortunately, statisticians are
only just beginning to develop methods for taking it into account. Most published
research about social contagion uses regression models or generalized estimating
equations (GEEs) to estimate contagion effects; though some of these models
account for the dependence due to observing the same nodes over multiple time
points, none of them account for dependence among nodes.

5.1 Sources of Network Dependence

In the literature on spatial and temporal dependence, dependence is often implicitly
assumed to be the result of latent traits that are more similar for observations that are
close in Euclidean distance than for distant observations. This type of dependence
is likely to be present in many network contexts as well. In networks, edges present
opportunities to transmit traits or information, and contagion or influence is an
important additional source of dependence that depends on the underlying network
structure.

Latent trait dependence will be present in data sampled from a network whenever
observations from nodes that are close to one another are more likely to share
unmeasured traits than are observations from distant nodes. Homophily is a
paradigmatic example of latent trait dependence. If the outcome under study in
a social network has a genetic component, then we would expect latent variable
dependence due to the fact that family members, who share latent genetic traits,
are more likely to be close in social distance than people who are unrelated. If
the outcome were affected by geography or physical environment, latent variable
dependence could arise because people who live close to one another are more likely
to be friends than those who are geographically distant. Of course, whether these
traits are latent or observed they can create dependence, but if they are observed
then conditioning on them renders observations independent, so only when they are
latent do they result in dependence that requires new tools for statistical inference.
Just like in the spatial dependence context, there is often little reason to think that we
could identify, let alone measure, all of these sources of dependence. The notions of
latent sources of homophily or latent correlates of shared environment are familiar
from the discussion of confounding, above, but there is an important distinction to
be made between latent sources of confounding and latent sources of dependence:
in order to be a source of unmeasured confounding, a latent trait must affect both the
exposure (e.g., the alter’s outcome at time t − 1) and the outcome (ego’s outcome
at time t) of interest. In order to be a source of dependence, a latent trait must
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Fig. 1 Dependence by
contagion

affect two or more outcomes of interest. Latent trait dependence is the most general
form of dependence, in that it provides no structure that can be harnessed to propel
inference. In order to make any progress towards valid inference in the presence of
latent trait dependence, some structure must be assumed, namely that the range of
influence of the latent traits is primarily local in the network and that any long-range
effects are negligible.

Direct transmission of an alter’s treatment or outcome to an ego also results
in statistical dependence. Contagion or influence arises when the outcome under
study is transmitted from node to node along edges in the network. The diagram
in Fig. 1 depicts contagion in a network with three nodes in which node 2 is
connected to nodes 1 and 3 but there is no edge between 1 and 3. Y t

i represents
the outcome for node i at time t , and the unit of time is small enough that at most
one transmission event can occur between consecutive time points. Dependence
due to direct transmission has known, though possibly unobserved, structures that
can sometimes be harnessed to facilitate inference; we touch on this briefly in
Sect. 6. Crucially, whenever contagion is present so is dependence due to direct
transmission, and therefore statistical analysis must take dependence into account
in order to result in valid inference.

6 Solutions

Researchers have known for decades that learning about contagion from observa-
tional data is fraught with difficulty, perhaps most famously expressed by Manski
[29]. Recent years have seen incremental methodological progress, but huge hurdles
remain. Most of the constructive ideas in [45] involve bounding contagion effects
rather than attempting to point identify them; looking for bounds rather than point
estimates is a general approach that could prove fruitful in the future. Indeed,
Ver Steeg and Galstyan [54] built upon the ideas in [45] and were able to derive
bounds on the association due to homophily on traits that do not change over
time (“static homophily”). Another general approach is to make use of sensitivity
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analyses whenever an estimation procedure relies on assumptions that may not be
realistic (e.g., [52]). Some of the problems discussed above have solutions in some
settings; below we discuss solutions that exploit features of specific settings rather
than providing general approaches to the problem of estimating contagion effects.
(Some of the material below was first published in [33].)

6.1 Randomization

An in-depth discussion of randomized experiments is given in the chapter “Ran-
domized Experiments to Detect and Estimate Social Influence” by Sean J. Taylor
and Dean Eckles in this volume; here we give a very brief overview. If it is possible
to randomize some members of a social network to receive an intervention, and
if it is known that an alter’s receiving an intervention can only affect the ego’s
outcome through contagion (as opposed to directly; see [31] for discussion), then
problems of confounding and dependence can be entirely obviated. Randomization-
based inference, pioneered by Fisher [14] and applied to network-like settings by
Rosenbaum [39] and Bowers et al. [6], is founded on the very intuitive notion that,
under the null hypothesis of no effect of treatment on any subject (sometimes called
the sharp null hypothesis to distinguish it from other null hypotheses that may
be of interest), the treated and control groups are random samples from the same
underlying distribution. Randomization-based inference treats outcomes as fixed
and treatment assignments as random variables: quantities that depend on the vector
of treatment assignments are the only random variables in this paradigm. Therefore,
dependence among outcomes is a non-issue. Typically this type of inference is
reserved for hypothesis testing, though researchers have extended it to estimation.
We leave the details, including several subtleties and challenges that are specific to
the social network context, to a later chapter (see also [33] for a review).

Randomizing the formation of network ties themselves obviates confounding
due to the effects of homophily on tie formation. A number of studies have taken
advantage of naturally occurring randomizations of this kind, such as the assignment
of students to dorm rooms [43] or of children to classrooms [22]. However, this does
not suffice to control for the effects of homophily on tie strength or duration, or to
control for confounding due to shared environment. If students at Faber College
are randomly assigned to dorm rooms at the beginning of their freshman year, then
each student’s exposure to his or her roommate’s BMI is unconfounded by design.
However, if, for example, randomly assigned roommates who happen to both be
athletes form stronger bonds than other types of roommates, then the contagious
effect of BMI could still be confounded by homophily: homophily acting on tie
strength rather than tie presence.
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6.2 Parametric Models

If researchers are willing to commit to certain types of parametric models, it may
be possible to isolate contagion from confounding [46]. It is a reliance on strong
parametric models, for example, that underpins mathematical modeling or agent
based modeling approaches to contagion [7, 38, 47].

This might seem benign—after all, most statistical analyses rely on parametric
models of one kind or another—but there is a fundamental difference between, for
example, using a linear regression when the true underlying relationships is not
linear, and relying on parametric models to identify a causal effect that is otherwise
hopelessly confounded. In the first case, a misspecified model may bias the estimate
we are interested in, often in ways that are well-understood, and often in proportion
to the fit of the model to the data (i.e., the worse the misspecification, the greater the
bias). In the latter case, at least in the absence of a model-specific proof otherwise,
any hint of misspecification undermines the causal interpretation we would like to be
able to justify and what looks like evidence of a causal effect could just be evidence
of confounding. George Box’s oft-cited aphorism, “all models are wrong but some
are useful,” justifies the use of misspecified parametric models in many settings, but
when the parametric form of the model is the only bulwark against confounding, the
model must (in the absence of a proof to the contrary) in fact be correct in order to
be useful.

6.3 Instrumental Variable Methods

O’Malley et al. [36] proposed an instrumental variable (IV) solution to the problem
of disentangling contagion from homophily. An instrument is a random variable,
V , that affects exposure but has no effect on the outcome conditional on exposure.
When the exposure–outcome relation suffers from unmeasured confounding but an
instrument can be found that is not confounded with the outcome, IV methods can be
used to recover valid estimates of the causal effect of the exposure on the outcome.
In this case there is unmeasured confounding of the relation between an alter’s
outcome at time t−1 and an ego’s outcome at time t whenever there is homophily on
unmeasured traits. Angrist and Pischke [2], Greenland [16], and Pearl [37] provide
accessible reviews of IV methods.

O’Malley et al. [36] proposed using a gene that is known to be associated with
the outcome of interest as an instrument. In their paper they focus on perhaps the
most highly publicized claim of peer effects, namely that there are significant peer
effects of body mass index (BMI) and obesity [9]. If there is a gene that affects
BMI but that does not affect other homophilous traits, then that gene is a valid
instrument for the effect of an alter’s BMI on his ego’s BMI. The gene affects the
ego’s BMI only through the alter’s manifest BMI (and it is independent of the ego’s
BMI conditional on the alter’s BMI), and there is unlikely to be any confounding,
measured or unmeasured, of the relation between an alter’s gene and the ego’s BMI.



Challenges to Estimating Contagion Effects from Observational Data 61

There are two important challenges to this approach. First, the power to detect
peer effects is dependent in part upon the strength of the instrument–exposure
relation which, for genetic instruments, is often weak. Indeed, O’Malley et al. [36]
reported low power for their data analyses. Second, in order to assess contagion at
more than a single time point (i.e., the average effect of the alter’s outcomes on the
ego’s outcomes up to that time point), multiple instruments are required. O’Malley
et al. [36] suggests using a single gene interacted with age to capture time-varying
gene expression, but this could further attenuate the instrument–exposure relation
and this method is not valid unless the effect of the gene on the outcome really does
vary with time; if the gene-by-age interactions are highly collinear, then they will
fail to act as differentiated instruments for different time points.

6.4 Data from Multiple Independent Networks

When multiple independent networks are observed, the problems of confounding
due to shared environment and of dependence may be considerably easier to deal
with. A large literature on interference in causal inference is dedicated to inference
in the setting where independent groups of individuals interact and affect one
another within, but not between, groups; this is analogous to multiple independent
social networks (see, e.g., [20, 21, 27, 48, 49]). If environmental factors can be
shared within but not across networks, it may be possible to control for confounding
by shared environment via a fixed effect for each network, as in [12]. For our running
example, this would entail that the administrators of Faber College join forces with
n − 1 other (randomly selected and similar) colleges to generate a sample of n iid
social networks. This magnitude of data is often unavailable in practice.

6.5 Highly Structured Dependence

Ifdependence and the structure is lost. researchers have reason to believe that
there is no unmeasured homophily or features of shared environments that con-
tribute to confounding or to dependence, i.e. if direct transmission (see Sect. 5)
is the only mechanism giving rise to either dependence or to associations among
the outcomes of interest, then there are a few recent methodological advances
that can be used to estimate contagion effects [32, 34, 51]. Dependence due
to direct transmission has known, though possibly unobserved, structures that
can sometimes be harnessed to facilitate inference. Time and distance act as
information barriers for dependence due to contagion, giving rise to many condi-
tional independencies that can sometimes be used to make network dependence
tractable. Two examples of the many conditional independencies that hold in

Fig. 1 are
[
Y t

1 ⊥ Y t
2 | Y t−2

1 , Y t−2
2 , Y t−1

1 , Y t−1
2

]
and

[
Y t−1

1 ⊥ Y t
3 | Y t−2

2

]
. The first
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conditional independence statement illustrates the principle that outcomes measured
at a particular time point are mutually independent conditional on all past outcomes.
The second conditional independence statement illustrates the fact that outcomes
sampled from two nonadjacent nodes are independent if the amount of time that
passed between the two measurements was not sufficiently long for information to
travel along the shortest path from one node to the other, conditional any information
that could have simultaneously influenced the sampled nodes (in this case Y t−2

2 ).
Observing outcomes in a network on a fine enough time scale to observe all
transmissions requires a richness of data that will not usually be available, and if the
network under a contagious process is observed at a single time point, dependence
due to contagion is indistinguishable from latent variable

Ogburn et al. [34] allows for a very limited kind of latent variable dependence in
addition to dependence due to direct transmission: if any latent variable dependence
only affects friends and friends-of-friends, that is pairs of network nodes separated
by no more than two ties, then the methods presented in [34] are valid. This is a first
step towards making the methods described above more appropriate for real data,
but it is generally unrealistic for latent variable dependence to vanish at a distance of
two. Future work is needed to accommodate more realistic kinds of latent variable
dependence, which would decay as distance grows rather than suddenly dropping
off.

7 Conclusion

Interest in and availability of social network data are both on the rise, and
statisticians and other methodologists have a lot of work to do to catch up. It
is crucial for applied researchers to acknowledge the limitations of many current
methods, most notably their inability to control for confounding due to homophily
or to account for network dependence; for the curators of social network data to
recognize the importance of temporal data and of studies carefully designed to
control for homophily; and for statisticians to develop new methods better suited
to this new kind of dependent data.
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Slightly Generalized Contagion: Unifying
Simple Models of Biological and Social
Spreading

Peter Sheridan Dodds

1 Introduction

Spreading, construed fully, is everywhere: the entropically aspirant diffusive relax-
ation of all systems; wave motion, for which ubiquitous is assigned with no
overstatement; in the propagation of earthquakes; the expansion of species range,
so often involving people; power blackouts, now able to affect large fractions of the
world population through system growth; the repeated bane of global pandemics;
economic prosperity and misery; and the talk of the famously talked about. And
understanding how myriad entities spread between people—from diseases to stories,
both true and false—is central to our scientific understanding of large populations.

Used for good, as the trope goes, a deep knowledge of contagion mechanisms—
contagion science—is necessary to help in our collective efforts to produce a world
where individuals can flourish. Used for bad, a path scientific knowledge always
offers, malefactors will be empowered in the persuasion and manipulation of pop-
ulations or the breaking of financial systems. To prevent negative and catastrophic
outcomes, contagion science should be able to provide us with algorithms for system
defense.

There remain many open questions on contagion. How many types of spreading
and contagion mechanisms are there? How can we identify and categorize real-
world contagions? But we have only recently moved from the data-scarce period of
studying social phenomena to the start of the data-rich stage, and contagion science
is still very much developing
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Our goal in this piece is constrained to revisiting our 2004 revisiting of basic
mathematical models of contagion surrounding one question [5, 6]: Can we connect
models of disease-like and social contagion?

We call the process we constructed for this objective “generalized contagion.”
We will give a straightforward explanation of the model here and discuss its most
important features.

An incidental contribution with generalized contagion was to make memory a
primary ingredient. For contagion, memory comes in many forms, for example,
in the development of protection against an infectious disease through an immune
response, or through recalling past exposures to some kind of social influence. The
core models of biological and social contagion incorporate only the simplest kind
of memory, that of the present state.

In proceeding, we first outline the independent and interdependent interaction
models of biological and social contagion. Apart from standing as the footing of
our generalized model, we will also preserve certain framings and notations. We
then describe our model of generalized contagion and discuss the three universality
classes of systems identified in the context of small seeds leading to global
spreading.

2 Independent Interaction Models of Biological Contagion

In mathematical epidemiology, the standard model [17] was first put forward in the
1920s by Reed and Frost and formalized by Kermack and McKendrick [14–16].
These models came to be generally referred to as SIR models in reference to the
three epidemiological states:

• Susceptible;
• Infective (or Infectious);
• Recovered (or Removed or Refractory).

Individuals cycle through the states S to I to R (and then back to S for an SIRS
model). The behavior of these initial models was described by differential equations
but can be easily realized as a discrete time system, and we will use the latter
framework for our generalized model. SIR models are also mass action type models,
meaning individuals are represented as normalized fractions of a population which
randomly interact with each other.

To connect notation across different models, we will write the fractions in the
three states as St , φt (normally It ), and Rt . We must have the constraint St + φt +
Rt = 1. There is no memory in these systems other than the current balance of
Susceptibles, Infectives, and Recovereds.

Figure 1 shows an example automata for the independent interaction model
when time is discrete. From the point of view of an individual agent in a discrete
time SIR system, they interact independently, at each time step connecting with
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Fig. 1 Update mechanism
for an example discrete
version of the basic SIR
model. Individuals may be
susceptible (state S), infective
(state I), and recovered (state
R). The three transition
probabilities are p for being
infected given contact with
infected (S → I ), r for
recovery (I → R), and ρ for
loss of immunity (R → S).
The model’s complication
lies in the nonlinear term
involved in the transition of
susceptibles to infectives

pI

I

R

S

1 − ρ

ρ

r 1 − r

1 − pI

a Susceptible, Infective, or Recovered. The probabilities of each interaction are
equal to the normalized fractions St , φt , and Rt . When Susceptibles interact with
Infectives (occurring with probability φt ), they themselves become Infective with
probability p. Regardless of their interactions, Infectives recover with a probability
r and Recovereds become Susceptibles with probability ρ (for SIR models, ρ = 0,
while for SIRS models, ρ > 0).

A traditionally key quantity in mathematical epidemiology is the Reproduction
Number R0 [which is terrible notation given we already have state R and Rt ]. The
Reproduction Number is the expected number of infected individuals resulting from
the introduction of a single initial infective. The Reproduction Number is easily
interpreted and leads to an Epidemic threshold: If R0 > 1, an “epidemic” occurs.
As with many complex systems, the focus on a single number as a diagnostic
is always fraught, and the Reproduction Number ultimately combines too many
aspects of the disease itself and population interaction patterns, rendering it a
deceptive measure [24]. Nevertheless, for simple models R0 is important and the
notion of an Epidemic Threshold is more generally essential.

For our simple discrete model, we can compute R0 easily. We introduce one
Infective into a randomly mixing population of Susceptibles. At time t = 0,
this single Infective randomly bumps into a Susceptible who is infected with
probability p. The single Infective remains infected with probability (1 − r)t at
time t , having attempted to infect t Susceptibles by this point. The expected number
infected by original Infective is therefore:

R0 = p + (1 − r)p + (1 − r)2p + (1 − r)3p + . . .

= p
1

1 − (1 − r)
= p/r, (1)
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Fig. 2 Stylized example plot
of the final fractional size of a
spreading event for SIR type
models. The reproduction
number R0 = p/r (Eq. (1))
acts as a phase parameter with
a continuous phase transition
occurring at R0 = 1, the
epidemic threshold
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and the disease spreads in this system if

R0 = p/r > 1. (2)

Figure 2 shows an example of epidemic threshold from our elementary SIR
model where the tunable parameter is the Reproduction Number R0 = p/r.

The final fraction infected exhibits a continuous phase transition (technically a
transcritical bifurcation [20]). The epidemic threshold is a powerful story arising
from a simple model.

3 Interdependent Interaction Models of Social Contagion

In spite of the basic SIR model’s failings to represent biological contagion accu-
rately in all cases and particularly at large scales, it has enjoyed a long tenure.
There have also been overly courageous attempts to use SIR and its sibling models
beyond disease spreading including the adoption of ideas and beliefs [9], the spread
of rumors [3, 4], the diffusion of innovations [1], and the spread of fanatical
behavior [2].

And while some kinds of social contagion may be disease-like, it is clearly
of a different nature for the most part. One of the major departures is due to
the fact that people take in information from potentially many sources and weigh
their inputs relatively. This observation gives rise to the notion of thresholds, first
used in modeling in the early 1970s by Schelling in his efforts to understand
segregation [18, 19] (the so-called tipping of neighborhoods, and the origin of
“Tipping Point”). Schelling’s model played out (literally) on a chessboard and was
manifestly spatial.
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Later in the same decade and inspired in part by Schelling’s work, Granovetter
produced a distilled mass action threshold model which would become famous in
its own right. While social contagion is arguably more multifaceted than biological
contagion, Granovetter’s model will serve as our elemental model here.

An individual in Granovetter’s model may be framed as having a choice of
adopting a behavior or not based on their perception of that behavior’s popularity.
Each individual i has a threshold d∗

i ∈ [0, 1] drawn from a population-level
threshold distribution P (thr) at t = 0. We can preserve the SIR model framing of
two states: S and I, with infectives being those who have adopted the behavior. We
will continue to use φt as the fraction individuals who are infected.

At each time step, if individual i observes the fraction I of the total population
expressing the behavior as meeting or exceeding their threshold d∗

i , then they adopt
the behavior. The system iterates forward, potentially reaching an asymptotic state.

Without any spatial structure, all of the interesting dynamics of Granovetter’s
model is generated purely by the threshold distribution P (thr). We are in fact in the
realm of maps of the interval, the territory where so many extraordinary findings
have been made for dynamical systems and chaos [20]. The time evolution of
Granovetter’s model can be written down as:

φt+1 =
∫ φt

0
P (thr)

u du. (3)

The fraction infected in the next time step φt+1 will be exactly the fraction whose
threshold is exceeded by the current fraction infected φt+1.

Writing P
(thr)
≥ as the cumulative function of P (thr), we have, compactly, that

φt+1 = P
(thr)
≥;φt

. (4)

The dynamics of Granovetter’s model are thus inscribed in P
(thr)
≥ particularly

in P
(thr)
≥ ’s fixed points and relative slopes. As an example, Fig. 3 shows how

Granovetter’s model may represent a critical mass phenomenon. Figure 3a gives
the distribution P

(thr)
≥ of individual thresholds showing a middle tendency. There

are very few extremely gullible people (d∗ � 0) and very difficult to influence
ones (d∗ � 1). In Fig. 3b, the cumulative function with some example cobweb
iterates [20] show that if the initial fraction infected is above the internal fixed point,
the fraction adopting the behavior rapidly approaches 1, while any initial fraction
starting below the fixed point will see the behavior die out. The initial adoption level
φ0 must be generated by an exogenous mechanism (e.g., education, marketing) and
then the purely imitative dynamics of the system take off.

Granovetter’s model and its variants are rich in dynamics and avenues of
analysis [10–12, 21, 22]. In reintroducing spatial interactions, Watts transported
Granovetter’s model to random networks [21] showing that limiting an individual’s
awareness to a small set of neighbors on a network could lead to large-scale,
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Fig. 3 Example of Granovetter’s model reflecting a Critical Mass system. a Distribution of
individual thresholds: P

(thr)
φ = 7

2 φ4(1−φ)2(1− 1
2 φ)2. b Map of the interval showing the evolution

of the model per Eq. (3). The two cobweb iterates indicate how a critical mass is required initially
for the contagion to be self-sustained and grow

potentially catastrophic and unexpected spreading [21]. And in moving to more
structured, socially realistic networks, even more surprising dynamics open up as
possibilities [7, 13, 23].

4 Generalized Contagion Model

The SIR and threshold models are of course intended to be simple, extracting the
most amount of story from the least amount of stage setting. But let’s list some
standard “I have two comments”-type complaints anyway. As we have trumpeted,
both models involve no memory other than of the current state traditional disease
models assume independence of infectious events. Threshold models only involve
proportions: 17/73 ≡ 170/730. Threshold models also ignore the exact sequence
of influences and assume immediate and repeated polling. Other issues applying to
both models, and ones that we will not attend to here, include the choice between
continuous and discrete time, synchronous updating for discrete time models, and
the dominant assertion of random mixing populations (even so, network effects are
only part of the story as media provides population-scale and sub-population scale
signals). (Standard random scientist issue: “You did not cite my work [which you
will find out is not related].”)

We would like to bring these basic models of biological and social contagion
together, and, if this is possible, see if we can gain some new knowledge about
contagion processes in general. Adding memory will be the way forward. Memory
has been successfully incorporated into other kinds of social contagion models with
a view to modeling real-world behavior online [8, 25].
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We explain generalized contagion in the context of a random-mixing model
acting on a population of N individuals. We will again have the three states S, I,
and R, for susceptibles, infectives, and recovereds.

The major variation on the previous models is that each individual has a fixed
memory length T drawn from a distribution P (mem) with 1 ≤ T ≤ Tmax. In [5] and
[6], T was the same for all individuals. At all times, individual i possesses a record
of their last Ti interactions, a kind of ticker tape memory. Each entry in individual
i’s memory will be either zero or a dose received from a successful interaction with
an infective (details below).

As for Granovetter’s model, we allow for a general threshold distribution, P (thr).
All nodes randomly select a threshold d∗ using P (thr), and thresholds remain fixed.
Both memory and thresholds could be made to vary with time though we do not do
this here.

Here’s the game play for each step.
At each time step, regardless of their current state, each individual i will interact

with a randomly chosen individual i′ from the population. Next:

1. Individual i′ will be an infective with probability φt , the current fraction of
infectives.

a. With probability p, a dose is successfully transmitted to i—an exposure. The
dose size d will be drawn from a distribution P (dose).

b. With probability 1 − p, i will not be exposed and they will record a dose size
d = 0.

2. Individual i′ will not be an infective with probability 1 − φt and i will record
d = 0 in its memory.

For the SIR model, p was the probability of a successful infection whereas now it
is the probability of a successful transmission of a dose which is in turn probabilistic.

Node i’s updates its current dosage level Dt,i as the sum of its last Ti doses:

Dt,i =
t∑

t ′=t−Ti+1

dt,i . (5)

We can now define transition probabilities for individuals in each of the three
states. As shown in Fig. 4:

• S ⇒ I: Infection occurs if individual i’s “threshold” is exceeded:

Dt,i ≥ d∗
i . (6)

• I ⇒ R: Only if Dt,i < d∗
i , individual i may recover to state R with probability r .

• R ⇒ S: An individual i may become susceptible again with probability ρ.
A detail here is that we allow nodes that arrive in state R an immediate chance
of returning to S in the same time step. Nodes in state R are immune and will
remain in state R even if their dosage level Dt,i exceeds their threshold.



74 P. S. Dodds

Fig. 4 Mechanism of the
generalized contagion model,
developing from the same
template used for the SIR
model in Fig. 1

rρ if Dt,i < d∗
i

I

S
1 if Dt,i ≥ d∗

i

1 − ρ

1 if Dt,i < d∗
i

R
1 − r if Dt,i < d∗

i

1 if Dt,i ≥ d∗
i

ρ

r(1 − ρ) if Dt,i < d∗
i

5 Analysis

We now perform some basic analyses of the generalized contagion model with a
focus on determining the potential for a small seed to lead to a global spreading
event, and characterizing the abruptness of that spreading if it is possible. In doing
so, we will show how the dynamics of the SIR and threshold models are contained
within that of generalized contagion.

Expanding on the results of [5, 6], the key quantity for our analysis is the
probability that a randomly selected threshold d∗ will be exceeded by k randomly
selected doses drawn from P (dose). Using the notation P

(inf)
k we have

P
(inf)
k =

∫ ∞

0
dd∗P (thr)

d∗ Pr

⎛

⎝
k∑

j=1

dj ≥ d∗
⎞

⎠ . (7)

The integral is over all thresholds d∗, and the probability in the integrand is the
cumulative distribution of the convolution of k copies of the dose distribution
P (dose).

The probabilities P
(inf)
1 and P

(inf)
2 will prove to be essential. In particular, P

(inf)
1 ,

the probability that one randomly chosen dose will exceed one randomly chosen
threshold will determine if SIR-like dynamics are possible. The quantity P

(inf)
1 can

be interpreted as the population fraction of the most “vulnerable” individuals [21].
Whatever the length of memory T of these individuals, they typically require only
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one dose to become infected, and their high susceptibility enables the contagion to
spread. This is a harder story to see and many are readily taken by the simpler, naive
ones of “super-spreaders” and “influentials.”

We will consider the SIS version, ρ = 1, and the case of immediate recovery
once an individual dosage drops below its threshold, r = 1. Although more difficult,
some analytic work can be carried out if these probabilities are reduced below 1
(many variations are explored in [6]), and, of course, simulations can always be
readily performed.

As with many dynamical systems problems, we are able to determine the main
features of the ρ = r = 1 generalized contagion system by examining the system’s
fixed points which follow from the system’s update equation:

φt+1 =
Tmax∑

T =1

P
(mem)
T

T∑

k=1

(
T

k

)
(pφt )

k(1 − pφt )
T −kP

(inf)
k . (8)

Reading through the right-hand side of this fixed point equation, we first have the
probability that a randomly chosen individual has a memory of length T , P

(mem)
T .

The inner sum then computes the probability that an individual with memory of
length T ’s threshold is exceeded after receiving all possible numbers of positive
doses, k = 1 to k = T .

To find a closed form expression for the fixed points of the system, we set
φt+1 = φt :

φ∗ =
Tmax∑

T =1

P
(mem)
T

T∑

k=1

(
T

k

)
(pφ∗)k(1 − pφ∗)T −kP

(inf)
k . (9)

In general, curves for φ∗ as a function of the exposure probability p will need to
be determined numerically. However, for the question of whether a small seed may
lead to a global spreading event or not, we can use Eq. (9) to find universal results.

Expanding Eq. (9) for φ∗ near 0 we obtain:

φ∗ =
Tmax∑

T =1

P
(mem)
T Tpφ∗P (inf)

1 + O(φ∗2
). (10)

Taking φ∗ → 0, we find the critical exposure probability for the system is therefore
given by

pc = 1

〈T 〉P (inf)
1

, (11)

where 〈T 〉 = ∑Tmax
T =1 T P

(mem)
T is the average memory length (if all individuals have

a memory of uniform length T∗, as assumed in [5] and [6], Eq. (11) reduces to



76 P. S. Dodds

pc = 1/[T∗P (inf)
1 ].) We interpret pc in the same way as the epidemic threshold of

the SIR model. Global spreading from small seeds will occur if p > pc, and this
will only be feasible if the condition for an epidemic threshold is satisfied:

pc < p < 1. (12)

If instead pc > 1, then our system will be more social-like. As we will show below,
an initial critical mass will be needed for spreading to take off, if any spreading is
possible at all.

To make the epidemic threshold criterion for generalized contagion intuitive, we
can combine Eqs. (11) and (12) to form the condition:

(p〈T 〉) · P
(inf)
1 > 1. (13)

For a small seed to take off, the interpretation of Eq. (13) tracks as follows.
Consider one infected individual at t = 0 with a one off dose in their memory
exceeding their threshold. They will randomly interact with T different uninfected
individuals before they themselves recover. The expected number of exposures they
will produce in this time is p〈T 〉, the first term in Eq. (13). Because the seed set
of infectives is infinitesimally small, each susceptible individual interacted with
by an infective will receive at most one dose. And this dose will infect them with
probability P

(inf)
1 , the second term in Eq. (13). Thus, p〈T 〉 · P

(inf)
1 is the expected

number of new infectives due to one infective, equivalent to the reproduction
number R0 of the SIR model. In short, Eq. (13) is the statement that one infective
begets at least one new infective, leading to an initial exponential growth of the
contagion.

We now need to take some more care as the epidemic threshold for generalized
contagion is not as simple as that of SIR contagion. If pc < 1, we must consider
whether the transition is continuous or discontinuous. As we saw with the example
in Fig. 2, it is always the former for the SIR model.

If the transition is continuous, then when p = pc a small seed will not grow,
whereas when the transition is discontinuous, spreading will take off rapidly.

To test the phase transition’s continuity, we expand Eq. (8) to second order:

φt+1 � (pφt )

Tmax∑

T =1

P
(mem)
T T P

(inf)
1 + (pφt )

2
Tmax∑

T =1

P
(mem)
T T (T − 1)

[
1

2
P

(inf)
2 − P

(inf)
1

]

= (pφt )〈T 〉P (inf)
1 + (pφt )

2〈T (T − 1)〉
[

1

2
P

(inf)
2 − P

(inf)
1

]
. (14)

Setting p = pc, Eq. (11), we have:

φt+1 � φt + (φt )
2 〈T (T − 1)〉
〈T 〉2[P (inf)

1 ]2

[
1

2
P

(inf)
2 − P

(inf)
1

]
. (15)
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A discontinuous phase transition is apparent if the fraction infected φt grows and
this evidently occurs if right-hand side of Eq. (15) is positive, meaning:

P
(inf)
2 < 2P

(inf)
1 : continuous,

P
(inf)
2 > 2P

(inf)
1 : discontinuous. (16)

We see that the kind of contagion behavior we observe with social phenomena, that
repeated doses combine superlinearly P

(inf)
2 > 2P

(inf)
1 , corresponds with explosive

spreading of a small seed at the critical point. Discontinuous phase transitions are
phase transitions of surprise—as we increase the exposure probability p starting
well below pc, we see no spreading until we reach pc (or just below depending
on φ0) when the growth will both be sudden and potentially leading to a large final
fraction of infection. If repeated doses combine sublinearly, P

(inf)
2 < 2P

(inf)
1 , then

the final fraction of infections will grow continuously from 0 as we move past pc.
Now, this is for the special case of a pure SIS model and as we later note, the
criterion for a vanishing critical mass model, P

(inf)
2 > 2P

(inf)
1 , does not remain

so simple as we move to more complicated models. So, while we can observe
that a sufficiently nonlinear interaction in doses leads to non-epidemic threshold
model, we arguably should not have been able to intuit the simple inequality
P

(inf)
2 > 2P

(inf)
1 as being the salient test.

We can now assert that the generalized contagion model produces three distinct
universality classes with respect to spreading behavior from a small seed. These
are:

• Epidemic Threshold Class:
Criteria:

1. pc = 1/(〈T 〉P (inf)
1 ) < 1.

2. P
(inf)
1 > P

(inf)
2 /2.

• Vanishing Critical Mass:
Criteria:

1. pc = 1/(〈T 〉P (inf)
1 ) < 1.

2. P
(inf)
1 < P

(inf)
2 /2.

• Pure Critical Mass:
Criteria:

1. pc = 1/(〈T 〉P (inf)
1 ).

2. Equation (9) is solvable with solutions φ∗(p) ∈ [0, 1].
In Fig. 5, we show results from numerically solving Eq. (9) for three example

dose distributions and T = 20 set uniformly, (see caption for details; adapted from
Fig. 9 in [6]).
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Fig. 5 Examples of the three main universality classes with added bifurcative embellishments,
arising solely from variable threshold distributions. In the epidemic threshold and vanishing critical
mass cases of a and b, phase transitions for p < 1 are both apparent but are strikingly different. The
continuous phase transition in a means the system’s behavior does not change abruptly as p moves
above pc for a small seed φ0. The discontinuous phase transition of b however means that the
growth will be sudden and large. Vanishing critical mass models with r = 1 have P

(inf)
2 > 2P

(inf)
1

which can be interpreted as meaning that the mutual effect of two doses is greater than their direct
sum would suggest. In c, we see a critical mass system for which only a non-zero fraction must
be initially infected for the contagion to maintain and spread. Mathematically, pc > 1, so no
small seed can take off. In all three cases, initial seeds will grow if the fixed point curve directly
below them is unstable (and necessarily the one above will be stable). Simulation details (adapted
from [6]): r = ρ = 1, P (mem)

d = δT ,1, and P
(dose)
d = δd,1. (a) P

(dose)
d∗ = 0.2δ(d −1)+0.8δ(d −6);

(b) P
(dose)
d∗ = 0.075δ(d − 1) + 0.4δ(d − 2) + 0.525δ(d − 12); and (c) P

(dose)
d∗ = 0.3δ(d − 3) +

0.7δ(d − 12). All curves were obtained from numerically solving Eq. (9)

The three panels correspond in order to the three universality classes. We
emphasize that the universality classes we find here relate to the kind of critical point
present in the system for φ∗ = 0, if such a critical point exists. The details of these
systems are unimportant as many threshold and dose distributions give same P

(inf)
k .

All solid blue curves indicate stable fixed points and dashed red curves unstable
fixed points.

For the epidemic threshold in Fig 5a, we see a continuous phase transition
occurring at pc = 1/4. Small seeds for p above pc will grow but be constrained.

In Fig. 5b, the Vanishing Critical Mass class also shows a epidemic threshold but
now the phase transition is discontinuous. Tuning the system from below to above
pc = 2/3, a small seed moves from ineffectual to suddenly producing successful
global spreading to, roughly, half of the population.

The fixed point curves for the Critical Mass model in Fig. 5c show the resilience
of this third class to small seeds initiating spreading events. Only if the initial seed
is above the dashed red curves of unstable fixed points, will the final extent of
spreading be non-zero (this statement is true for all three classes).

For uniform memory length T∗, the full linearization near p has the form [6]:

φ∗ � C1

C2p2
(p − pc) = T 2∗ P 3

1

(T∗ − 1)(P1 − P2/2)
(p − pc), (17)
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where from the denominator we can again see that P1 − P2/2 = 0 locates
the transition between Epidemic Threshold models and Vanishing Critical Mass
models.

Moving away from systems behavior for small seeds, in all three examples, we
see that the threshold distributions are of enough variability to produce non-trivial
fixed point curves. Further, both the Epidemic Threshold and Vanishing Critical
Mass examples also show that hysteresis dynamics (with respect to p) are available
for Generalized Contagion systems.

If we relax the recovery probability r below 1 and/or elevate the immune state
transition probability ρ above 0, then we see the same three universality classes will
still emerge. The conditions for the three classes will become more complex [6]. The
appealing form of the test separating Epidemic Threshold and Vanishing Critical
Mass models, P

(inf)
2 < 2P

(inf)
1 , will no longer be quite so simple. Analytic results

are possible for r < 1 and ρ = 0 [6] while systems with ρ > 0 have not yielded, at
least to our knowledge, to exact treatments.

6 Concluding Remarks

We developed generalized contagion to demonstrate that a single mechanism could
be shown to produce both disease-like and social-like spreading behavior. The
observation that memory is a natural aspect of real-world spreading phenomena
proved to be the binding agent.

The three universal classes of contagion processes pertain to the spectrum of
random-mixing models and their dynamics in the fundamental initial condition of
an infinitesimally small seed. We see that dramatic changes in behavior are possible,
particularly in the Vanishing Critical Mass class.

Generalized contagion is also another example of a model where the vulnerable
or gullible population may be more important than a small group of super-spreaders
or influentials [22].

Two avenues for changing dynamics are clear. One would be to change the model
itself through adjusting its parameters: memory, recovery rates, and the fraction
of individuals vulnerable to 1 or 2 doses. (T , r , ρ, P

(inf)
1 , and P

(inf)
2 ). Given a

model with fixed parameters, changing the system’s behavior would be possible
by changing the probability of exposure (p) and/or the initial fraction infected (φ0).

We hope that this overview of generalized contagion serves as both an introduc-
tion to the model itself and an inspiration for the many possible adjacent areas in
contagion dynamics available for development. Generalized contagion on social-
like networks more complicated than random networks would be one such path.
While perhaps this work would be resilient to simple analysis, simulations could
prove illuminating.



80 P. S. Dodds

References

1. Bass F (1969) A new product growth model for consumer durables. Manage Sci 15:215–227
2. Castillo-Chavez C, Song B (2003) Models for the transmission dynamics of fanatic behaviors,

vol 28. SIAM, Philadelphia, pp 155–172
3. Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature 204:1118
4. Daley DJ, Kendall DG (1965) Stochastic rumours. J Inst Math Appl 1:42–55
5. Dodds PS, Watts DJ (2004) Universal behavior in a generalized model of contagion. Phys Rev

Lett 92:218701
6. Dodds PS, Watts DJ (2005) A generalized model of social and biological contagion. J Theor

Biol 232:587–604. https://doi.org/10.1016/j.jtbi.2004.09.006
7. Dodds PS, Harris KD, Danforth CM (2013) Limited imitation contagion on random networks:

chaos, universality, and unpredictability. Phys Rev Lett 110:158701
8. Gleeson JP, O’Sullivan KP, Baños RA, Moreno Y (2016) Effects of network structure,

competition and memory time on social spreading phenomena. Phys Rev X 6(2):021019
9. Goffman W, Newill VA (1964) Generalization of epidemic theory: an application to the

transmission of ideas. Nature 204:225–228
10. Granovetter MS, Soong R (1983) Threshold models of diffusion and collective behavior. J

Math Sociol 9:165–179
11. Granovetter MS, Soong R (1986) Threshold models of interpersonal effects in consumer

demand. J Econ Behav Organ 7:83–99
12. Granovetter M, Soong R (1988) Threshold models of diversity: Chinese restaurants, residential

segregation, and the spiral of silence. Sociol Methodol 18:69–104
13. Harris KD, Payne JL, Dodds PS (2014) Direct, physically-motivated derivation of

triggering probabilities for contagion processes acting on correlated random networks.
http://arxiv.org/abs/1108.5398

14. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics.
Proc R Soc Lond A 115:700–721

15. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics.
III. Further studies of the problem of endemicity. Proc R Soc Lond A 141(843):94–122

16. Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics.
II. The problem of endemicity. Proc R Soc Lond A 138(834):55–83

17. Murray JD (2002) Mathematical biology, 3rd edn. Springer, New York
18. Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1:143–186
19. Schelling TC (1978) Micromotives and macrobehavior. Norton, New York
20. Strogatz SH (1994) Nonlinear dynamics and chaos. Addison Wesley, Reading
21. Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci

99(9):5766–5771
22. Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum

Res 34:441–458
23. Watts DJ, Dodds PS (2009) Threshold models of social influence. In: Hedström P, Bearman P

(eds) The Oxford Handbook of analytical sociology. Oxford University Press, Oxford, chap 20,
pp 475–497

24. Watts DJ, Muhamad R, Medina D, Dodds PS (2005) Multiscale, resurgent epidemics in a
hierarchcial metapopulation model. Proc Natl Acad Sci 102(32):11157–11162

25. Weng L, Flammini A, Vespignani A, Menczer F (2012) Competition among memes in a world
with limited attention. Nat Sci Rep 2:335

https://doi.org/10.1016/j.jtbi.2004.09.006
http://arxiv.org/abs/1108.5398


Message-Passing Methods for Complex
Contagions

James P. Gleeson and Mason A. Porter

1 Introduction

In this chapter, we consider analytical approaches for calculating the expected
sizes of cascades in complex contagions.1 As a concrete example of a complex
contagion, we use the Watts threshold model (WTM) [44] (see also [15, 43]) on
undirected, unweighted networks. In this model, each node i of a network has a
positive threshold ri ; usually, the thresholds are chosen at random from a given
probability distribution, but (with some difficulty and arguably circular reasoning)
they can also be estimated from empirical data. We focus in particular on the case
in which a contagion is initiated by multiple seed nodes, so we assume that a finite
(but small) fraction of the network nodes are active at the beginning of contagion
dynamics.

Each node can be in one of two states; we will call the states “inactive” and
“active.” All nodes, except for the seed nodes, are initially inactive. In each discrete
time step, each inactive node i of a network considers its neighboring nodes, and it
becomes active if the fraction of its neighbors that are active exceeds or equals the
threshold ri of node i. One can interpret the threshold as a node’s stubbornness and
the fraction of active nodes as a “peer pressure” function [26]. Once a node becomes
active, it cannot later return to the inactive state, so the cascade grows in a monotonic
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1See [35] and references therein for discussions of cascades on networks and for a “definition” of
a complex contagion. See [29] for a friendly introduction to cascades on networks.
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fashion. An important macroscopic quantity is the fraction ρn of active nodes at time
step n. Because of the monotonic nature of the dynamics, ρn is a nondecreasing
function of n, so (because ρn ≤ 1, by definition) the limit ρ∞ = limn→∞ ρn exists.
We call ρ∞ the “steady-state fraction of active nodes,” and we focus our attention
on methods for analytically approximating its value.2 Assuming that a fraction ρ0
of the nodes are selected uniformly at random as the seed nodes for a contagion,
we want to predict the steady-state value ρ∞ and to determine the conditions under
which ρ∞ substantially exceeds ρ0. In other words, we want to answer the question
“When does a global cascade occur?”3

The rest of this chapter is organized as follows. In Sects. 2 and 3, we focus
on ensembles of infinite-size random networks (i.e., on asymptotic behavior as
the number N of nodes becomes infinite), both without (see Sect. 2) and with
(see Sect. 3) degree–degree correlations. In Sect. 4, we discuss recent progress on
calculating ρ∞ for finite-size networks. We conclude in Sect. 5.

2 Configuration-Model Networks

Let’s begin by assuming that our networks are realizations drawn from a
configuration-model ensemble [9]; they are characterized by a given degree
distribution pk , where pk is the probability that a node chosen uniformly at
random has k neighbors, but they are otherwise maximally random. Moreover, our
theoretical approach is for the limit of infinitely large networks (sometimes called
the “thermodynamic limit”). Because configuration-model networks are locally
tree-like [25], one might expect that we can apply mean-field approaches, such as
those used for models of biological contagions [33], to approximate the fraction
of active nodes. We’ll first briefly summarize what we’ll call a “naive mean-field
(MF)” approach, and we’ll then explain why—and how—it can be improved.

2.1 Naive Mean-Field Approximation

We define ρ
(k)
n as the probability that a node of degree k is active at time step n; the

total fraction of active nodes is then given by

ρn =
∑

k

pkρ
(k)
n . (1)

2In [12], Gleeson and Cahalane showed that if nodes are updated one at a time in a random order,
rather than all simultaneously as described here (i.e., if we use “asynchronous” updating instead of
“synchronous” updating [35]), one obtains the same steady-state limit ρ∞, although the temporal
evolution of the active fraction does depend on the updating scheme that is used [8]. See Sect. 5.1
of [35] for a description of an algorithm for a stochastic simulation of the WTM.
3See the discussion in [35] of ways of measuring cascade sizes.
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A node of degree k is active at time n either because (i) it was a seed node (with
probability ρ0) or (ii) it was not a seed node (with probability 1 − ρ0), but it has
become active by time step n. In the latter case, the number m of its active neighbors
at time n − 1 must be large enough so that the fraction m/k is at least as large as
the node’s threshold. Treating the k neighbors as independent of each other, the
probability that m of the k are active at time n is given by the binomial distribution

(
k

m

)
(ρn−1)

m(1 − ρn−1)
k−m , (2)

where ρn−1 is the probability that the node at the end of a uniformly randomly
chosen edge is active at time step n − 1. Under the usual mean-field assumptions
(see, for example, [25]), we write ρn−1 as the weighted mean over the possible
degrees of neighbors4:

ρn−1 =
∑

k

k

z
pkρ

(k)
n−1 , (3)

where z =∑k kpk is the mean degree of the network.
If m neighbors of a node are active, the probability that the node is active is equal

to the probability that its threshold is less than m/k. We write this probability as
C(m/k), where C is the cumulative distribution function (CDF) of the thresholds.
Putting together these arguments and summing over all possible values of m, we
write the MF approximation for ρ

(k)
n as

ρ(k)
n = ρ0 + (1 − ρ0)

k∑

m=0

(
k

m

) (
ρn−1

)m (1 − ρn−1
)k−m

C
(m

k

)
. (4)

Multiplying Eq. (4) by k
z
pk and summing over k gives

ρn = ρ0 + (1 − ρ0)
∑

k

k

z
pk

k∑

m=0

(
k

m

) (
ρn−1

)m (1 − ρn−1
)k−m

C
(m

k

)
, (5)

so we now have an expression for ρn in terms of ρn−1. Starting from an initial
condition with a fraction ρ0 = ρ0 of seed nodes (chosen uniformly at random), one
can iterate Eq. (5) to determine ρn for any later time step, and it converges to ρ∞

4The weighting (k/z)pk arises because we are considering the mean over nodes of degree k, where
those nodes are reached by traveling along an edge from the node of interest. It is well-known (see,
e.g., [32]) that a node at the end of a uniformly randomly chosen edge of a configuration-model
network has degree k with probability (k/z)pk , reflecting the fact that large-k nodes are more likely
than small-k nodes to be reached in this way.
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as n → ∞. One then calculates the naive MF approximation to the steady-state
fraction ρ∞ of active nodes from Eqs. (1) and (4) with the formula

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(ρ∞)m (1 − ρ∞)k−m C

(m

k

)
. (6)

However, as we illustrate in Fig. 1, the naive MF approximation calculated using
Eqs. (5) and (6) does not accurately match the values of ρ∞ from numerical
simulations on large networks. In Sect. 2.2, we consider why this mismatch occurs,
and we introduce an improved approximation technique, which is of “message-
passing” type.

2.2 Message-Passing for Configuration-Model Networks

In this section, we present the approach that was first used in [10, 13], who adapted
the method used by Dhar et al. [5] for the zero-temperature random-field Ising
model on Bethe lattices. Nowadays, the approach is called “message-passing for
configuration-model networks.” See, for example, Sect. IV of [40].

The fundamental problem with the naive MF approach of Sect. 2.1 is that it
neglects the directionality in the spreading of a contagion. The contagion spreads
outwards from the seed nodes, and it can reach inactive nodes only after it has first
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Fig. 1 The expected steady-state fraction ρ∞ of active nodes for cascades in the Watts threshold
model (WTM) when every node has the same threshold r = 0.18 (so a node becomes active
when its fraction of active neighbors is at least as large as 0.18). The networks are Erdős–Rényi
random graphs (G(N,m), where m is the total number of edges) with mean degree z (so they
have approximately a Poisson degree distribution pk = zke−z/k!), and the initial seed fraction is
ρ0 = 10−3. The simulation results, shown by the black squares, are a mean over 100 realizations
on networks with N = 105 nodes. The blue dashed curve shows the result of the naive mean-field
approximation given by Eqs. (5) and (6), and the red solid curve comes from the message-passing
approach of Eqs. (10) and (12)
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Fig. 2 Schematic for the method described in Sect. 2.2. We suppose that the contagion spreads
upward from level n − 1 to level n and beyond. The assumption of infinite network size allows us
to consider the limit of an infinite number of levels, terminating with the “top” (i.e., “root”) node
of the tree approximation

infected some of their neighbors. In the schematic in Fig. 2, we assume that the
contagion spreads upward from “level” n − 1 to level n and then to level n + 1.
We number the levels according to their distance from the seed nodes, which we
place at level 0. This is a highly stylized approximation, as we are almost always
considering networks that are not actually trees (and, e.g., social networks typically
have significant clustering), but we see nevertheless that it gives good results (see,
e.g., the discussion in [25]). For the synchronous updating that we employ in
this chapter, level n of the tree approximation corresponds to time step n of the
contagion process on the original network. See [10] for details and an extension to
asynchronous updating.

We now focus again on the steady-state limit n → ∞. We introduce the variable
q

(k)
n , the probability that a node of degree k on level n is active, conditional on its

parent (at level n + 1) being inactive. When we calculate q
(k)
n , we account for the

directionality of the contagion spreading, because we assume that the node at level
n + 1 in Fig. 2 is inactive at the time when the node at level n is updating from the
inactive to the (possibly) active state. As before, there are two ways in which the
node at level n can be active: either it was a seed node (with probability ρ0) or it
was not a seed node (with probability 1 − ρ0) but has been activated by its children
(i.e., the nodes at level n − 1 in Fig. 2). Because the level-n node has degree k and
one of its edges is adjacent to its (inactive) parent, there are k − 1 children node at
level n − 1. Each of these children is active with probability qn−1, where (similar to
Eq. (3)) qn is the weighted mean over the q

(k)
n values. That is,

qn−1 =
∑

k

k

z
pkq

(k)
n−1 . (7)

Therefore, the probability that m children are active is given by the binomial
distribution on k −1 nodes, where each is active with independent probability qn−1.
That is,

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−m . (8)
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As with the naive MF case, the activation of a degree-k node with m active
children depends on its threshold being less than the fraction m/k; this occurs with
probability C(m/k). Putting together the preceding arguments, we write

q(k)
n = ρ0 + (1 − ρ0)

k−1∑

m=0

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−mC

(m

k

)
, (9)

and we obtain a discrete scalar map for qn by multiplying Eq. (9) by k
z
pk and

summing over k. Using Eq. (7) then yields

qn = ρ0 + (1 − ρ0)
∑

k

k

z
pk

k−1∑

m=0

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−mC

(m

k

)
. (10)

Iterating Eq. (10) starting from initial condition q0 = ρ0 leads to the steady-state
value

q∞ = lim
n→∞ qn . (11)

Finally, we use the fact that a node at the “top” (i.e., “root”) of the tree—formally
at level ∞—has k children with probability pk and (assuming that the root node is
not a seed node) that each child is active with probability q∞. We then determine
the steady-state active fraction of nodes from q∞ by calculating

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(q∞)m(1 − q∞)k−mC

(m

k

)
. (12)

The solid red curve in Fig. 1 shows the result of using Eqs. (10) and (12) to
determine the steady-state fraction of active nodes. This approximation method is
very accurate, and it is far superior to the naive MF approach of Sect. 2.1. Note that
simulation results at the discontinuous transition near z = 6.5 depend strongly on
the size of a network, and agreement with the theory improves as one considers
larger networks (see Fig. 3 of [12]).

2.3 The Criticality Condition (i.e., “Cascade Condition”)

An additional benefit of the analytical approach that we outlined in Sect. 2.2 is that
it enables one to determine conditions on the model parameters that control whether
or not global cascades occur. This question was first addressed by Watts [44] using
a percolation argument, but one can derive the same condition using the approach
of Sect. 2.2. For this analysis, we assume that the seed fraction is vanishingly small,
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so we take the ρ0 → 0 limit of our general equations. (See [13] for extensions
to nonzero ρ0.) In this case, Eq. (10) always has the solution qn ≡ 0 for all n,
corresponding to the case of no contagion. However, for certain parameter regimes,
this contagionless solution can be unstable, and then any infinitesimal seed fraction
ρ0 > 0 leads to a global cascade of nonzero fractional size. (The “fractional size”
of a contagion is the number of active nodes divided by the total number of nodes.)
Therefore, we linearize Eq. (10) about the solution qn ≡ 0 to determine its (linear)
stability. For scalar maps of the form qn = g(qn−1), the criterion for instability of
the 0 solution is that [41]

|g′(0)| > 1 . (13)

Differentiating the right-hand side of Eq. (10) and setting qn−1 = 0 yields
the following condition for global cascades to occur (from an infinitesimal seed
fraction)5:

∑

k

k

z
pk(k − 1)C

(
1

k

)
> 1 . (14)

Given a network’s degree distribution pk and the CDF C of thresholds, it is
easy to evaluate the condition (14), so Eq. (14) is a very useful criterion for
determining whether global cascades can exist (the “supercritical regime”) or not
(the “subcritical regime”).

3 Networks with Degree–Degree Correlations

We now follow [6, 10, 34] and extend the message-passing approach to networks
with nontrivial degree–degree correlations. Let pkk′ be the joint probability distri-
bution function (PDF) for the degrees k and k′ of the end nodes of a uniformly
randomly chosen edge of a network.6 As in Sect. 2, and referring again to Fig. 2, we
define q

(k)
n as the probability that a degree-k node on level n is active, conditional on

its parent (on level n + 1) being inactive. Similarly, writing q
(k)
n for the probability

that a child of an inactive level-(n + 1) node of degree k is active, it follows that

q(k)
n =

∑
k′ pkk′q(k′)

n∑
k′ pkk′

, (15)

5Note that C(0) = 0, because we have assumed that all thresholds are positive.
6In configuration-model networks, in which no correlations are imposed in the generative model,
pkk′ = kpkk

′pk′/z2, because the degrees of the nodes at the two ends of an edge are independent.
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because a neighbor of the degree-k node has degree k′ with probability
pkk′/

∑
k′′ pkk′′ . Similar to Eq. (9), we then determine the conditional probabilities

for each degree at level n from the children at level n − 1 using the relation

q(k)
n = ρ0 + (1 − ρ0)

k−1∑

m=0

(
k − 1

m

)(
q

(k)
n−1

)m (
1 − q

(k)
n−1

)k−1−m

C
(m

k

)
, (16)

where q
(k)
0 = ρ0 for all k. The unconditional density of active degree-k nodes at

steady-state is

ρ(k)∞ = ρ0 + (1 − ρ0)

k∑

m=0

(
k

m

)(
q(k)∞
)m (

1 − q(k)∞
)k−m

C
(m

k

)
, (17)

and the total network density is equal to

ρ∞ =
∑

k

pkρ
(k)∞ . (18)

3.1 Matrix Criticality Condition

As in Sect. 2.3, one can derive the condition that determines whether global
cascades arise from infinitesimal (i.e., ρ0 → 0) seeds by linearizing the system
of equations (16) about the zero-contagion solution q

(k)
n ≡ 0 for all n and k. Note

that Eq. (16) includes one equation for each distinct degree class in a network, so
the condition for instability of the contagionless solution is an eigenvalue condition
on the Jacobian matrix of the system. From Eqs. (16) and (15), we find (see [10])
that the condition for instability (i.e., for the existence of global cascades) is that the
largest eigenvalue7 of the matrix M exceeds 1, where M is the matrix with entries

Mkk′ = (k′ − 1)∑
k′′ pkk′′

pkk′C

(
1

k′

)
. (19)

As noted in [10], a similar condition occurs for bond percolation on networks with
degree–degree correlations [31], and such conditions are also relevant for epidemic
models on networks [19].

The message-passing method that we have described has also been generalized
for networks with community structure [10] and different degree–degree corre-
lations in different communities [27] (where the latter case also has a notable
interpretation in the language of multilayer networks [20]), multiplex networks

7The matrix M is not symmetric, but there exists a similarity transformation to a symmetric matrix,
so all of its eigenvalues are real.
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[46], other contagion models [18], dynamics in which nodes can be in more
than two states [26], and more. Reference [11] presented an alternative derivation
(starting from a so-called “approximate master equation” (AME) framework) of the
configuration-model-approximation equations (10) and (12).

4 Message-Passing for Finite-Size Networks

In this section, we discuss message-passing approaches [23, 40] that are applicable
to finite-size networks, rather than to the ensembles of (infinite-size) networks that
we discussed above. Recent papers [23, 40] have shown how a message-passing
approach can be applied successfully to networks with a finite number of nodes. In
this section, we explain this idea by applying it to the WTM. The resulting equations
are computationally very expensive to solve. We close the chapter by deriving the
analog of the criticality conditions of Eqs. (14) and (19) for the existence of global
cascades in finite-size networks. This criticality condition is relatively tractable to
compute.

Suppose that we are given a finite-size network that is unweighted and undirected
(and unipartite). The total number of edges in the N -node network is E, where E =
Nz/2 and z is the mean degree. To use a message-passing approach, we consider
quantities like qj→i , which are specified for a directed edge j → i. We consider
each undirected edge of a network (such as the one between nodes i and j ) as
consisting of a reciprocal pair of directed edges (i → j and j → i), giving a total
of 2E directed edges. The direction of the edges gives the local directionality of a
contagion, analogous to the ascending levels in Fig. 2.

The edge-based quantity qj→i is the probability that node j is active, conditional
on node i being inactive. See Fig. 3, and compare it to Fig. 2. To write an equation for
qj→i , we consider the effect on j of all of its neighbors aside from i. Specifically, if
node j is not a seed node (which is the case with probability 1−ρ0), it is active only
if sufficiently many of its neighbors are active. To calculate qj→i , we assume that
node i is inactive,8 so we must consider whether the number of active nodes among

Fig. 3 Schematic for the message-passing approach of Sect. 4

8This assumption has various names: it is called the “cavity approach” in statistical physics [28,
39, 47], and it is closely related to the WOR (“without regarding”) property that was used for
financial-contagion cascades in [16].
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the remaining neighbors is sufficient to activate node j . It is convenient to introduce
the notation σ
 to represent the state of node 
 in a given realization: σ
 = 1 if node

 is active, and σ
 = 0 if node 
 is inactive. One can then write the equation for
qj→i as

qj→i = ρ0 + (1 − ρ0)
∑

{σ
}:
 ∈Nj \i
C

(∑

 σ


kj

) ∏

σ
=1

q
→j

∏

σ
= 0

(
1 − q
→j

)
. (20)

The summation in Eq. (20) is over all combinations of σ
 values. In other words,
one sums over the possible states of the neighbors of j (where Nj denotes the
set of such neighbors), except for node i. Given the set {σ
} of neighbor states, the
fraction of active neighbors of node j is

∑

 σ
/kj , where kj is the degree of node j .

The probability that this fraction is at least as large as the threshold of node j is

given by C
(∑


 σ


kj

)
. Let’s consider each of inactive node j ’s neighbors, except for i.

Because each of these nodes 
 is active with an independent probability of q
→j , the
first product term of Eq. (20) gives the probability that a specified subset of nodes
is active, and the second product term of Eq. (20) gives the probability that the
remaining neighbors of j are inactive. Consequently, multiplying the two product
terms gives the probability (assuming that j is inactive) to have a given combination
{σ
}
 ∈Nj \i of neighbors’ states, and the sum over all possible combinations plays
the same role as the sum over m in Eqs. (9) and (16).

In principle, one can solve Eq. (20) by iteration to determine qj→i for every
directed edge. The probability that node i is active (similar to Eq. (17)) is then
given by

ρ(i) = ρ0 + (1 − ρ0)
∑

{σj }:j ∈Ni

C

(∑
j σj

ki

)
∏

σj =1

qj→i

∏

σj = 0

(
1 − qj→i

)
, (21)

where the sum in Eq. (21) is over the possible states of all neighbors of i (compare
to Eq. (17)). Unfortunately, the summations in both Eqs. (20) and (21) require
calculating a combinatorially large numbers of terms. For example, the sum over the
sets {σ
}
 ∈Nj \i of the possible states of the neighbors of node j has 2kj −1 terms,
each of which has its own probability measure that needs to be evaluated with the
two product terms in Eq. (20). The large number of possible combinations makes
the implementation of this message-passing approach extremely computationally
expensive, except for very small networks.

On the bright side, one can derive the steady-state equations for the
configuration-model ensemble that we discussed in Sect. 2 from the message-
passing Eqs. (20) and (21), as is described in detail in [40]. Essentially, in a
configuration-model ensemble, each edge-based conditional probability q
→j is
replaced by the single quantity q (which we called q∞ in Sect. 2). Because all
neighbors are treated as identical, the sum in Eq. (20) over {σ
} becomes the sum
over the number m of active neighbors, weighted by the binomial coefficient

(
k−1
m

)
,

which gives the number of arrangements of precisely m active neighbors among the
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k − 1 neighbors who can be active. Consequently, the sum over {σ
} in Eq. (20)
reduces to a sum over m in Eq. (8), yielding the steady-state limit (n → ∞) of the
configuration-model equations (10) and (12).

4.1 Criticality Condition for Finite-Size Networks

Although calculating the full message-passing equations (21) is prohibitively
expensive for large networks, one can nevertheless apply the same approach as in
earlier sections to derive a condition for the existence of global cascades. As before,
we take the ρ0 → 0 limit and linearize the governing equation (20) about the zero-
contagion equilibrium. Specifically, we linearize Eq. (20) about qj→i = 0 for each
edge. For very small values of the edge probabilities, the sum in Eq. (20) gives a
linear contribution only when a single neighbor is active. The resulting linearization
is then given by

qj→i =
∑


∈Nj \i
C

(
1

kj

)
Bi→j,j→
 q
→j , (22)

where B is the nonbacktracking (Hashimoto) matrix, which has recently been
studied in network-science questions such as percolation [17], community detection
[21], and centrality [24, 38]. The nonbacktracking matrix is a sparse matrix of
dimension 2E × 2E, where each row (or column) corresponds to a directed edge
between two nodes. The elements of B are nonzero when the directed edge that
corresponds to the row (e.g., the edge i → j ) leads to the directed edge that
corresponds to the column (e.g., j → 
) via a common node (which, in this case, is
node j ), provided that the second directed edge does not return to the source node
of the original edge (i.e., node 
 cannot be the same as node i).

Rewriting Eq. (22) in a matrix form that is suitable for iteration (analogous to
Eqs. (10) and (16)) yields

qn = DBqn−1 , (23)

where q is the 2E-vector of values qj→i . We then immediately see that the linear
stability of the q = 0 solution depends on the largest eigenvalue of the product
matrix DB, where D is a 2E × 2E diagonal matrix with nonzero elements given by

Di→j,i→j = C

(
1

kj

)
. (24)

The criterion that we have derived from the message-passing approach is therefore
that the existence of global cascades requires the spectral radius of the 2E × 2E

matrix DB to exceed 1. Because the matrix is sparse, one can check this cascade
criterion even for large networks.
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Table 1 The critical value of θ , the upper limit of the uniform distribution of thresholds, for the
WTM on various networks, as calculated using the configuration-model result Eq. (14) for θconfig
and using the maximum eigenvalue of the DB matrix in Eq. (23) to determine θcrit

Network N z θconfig θcrit

3-Regular random graph 105 3 2
3

2
3

Facebook (Caltech) [42] 762 43.7 0.98 0.98

Facebook (Oklahoma) [42] 17,420 102 0.99 0.99

Gowalla [2, 4] 1.97 × 105 9.67 0.90 0.94

PGP network [1, 3] 10,680 4.55 0.78 0.94

Power grid [30, 45] 4941 2.67 0.63 0.78

The network size (i.e., number of nodes) is N and the mean degree is z, so the number of
undirected edges is E = Nz/2. Note, as expected, that θconfig is identical to θcrit for the 3-regular
random graph. The corresponding values for the Facebook networks are also very close, indicating
that the configuration-model theory is very accurate for these networks (as also found in [14, 25]).
For the other networks, there is a considerable difference between θconfig and θcrit, indicating
that the configuration-model result is inaccurate for these networks (although it is also known
that the message-passing approach, which is based on a tree-like assumption of independence of
messages [7], tends to be inaccurate for spatially-embedded networks [36, 38], such as the power-
grid example in this table)

In Table 1, we give examples in which we consider the WTM with thresholds
uniformly distributed over the interval (0, θ), so the mean threshold value is θ/2. If
the parameter θ is small, all thresholds are small, and a seed node is likely to cause
many neighbors to become active, leading quickly to a global cascade. However, a
very large value of θ implies that many nodes’ thresholds are too large to allow them
to activate, so no global cascades occur. In Table 1, we report the critical value of
the parameter θ that separates the global-cascade (i.e., supercritical) regime from the
no-global-cascade (i.e., subcritical) regime for several real-world networks using the
configuration-model condition given by Eq. (14) and the spectral condition on the
matrix DB that we described above. In previous work on calculating percolation
thresholds for real-world networks [36, 37], using the nonbacktracking matrix
has led to more accurate predictions than those found by applying configuration-
model theory (which uses only the degree distribution of a network). We therefore
anticipate that the cascade threshold identified by the largest eigenvalue of the
matrix DB will be more accurate than configuration-model predictions and will
provide important insights into the structural features of certain networks that enable
configuration-model theories to give accurate results [14].

5 Conclusions

In this chapter, we reviewed several analytical approaches for complex-contagion
dynamics. For concreteness, we focused on the example of the Watts threshold
model, but the methods that we discussed can also be applied to other monotonic
binary-state dynamics [11]. To provide context, we first introduced a naive mean-
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field approach, which has limited accuracy. We then showed that using the methods
of [5, 13] gives very accurate results on configuration-model networks. We demon-
strated how the methodology can yield a criterion for determining whether global
cascades occur, and we briefly reviewed an extension of the method to networks with
imposed degree–degree correlations. In Sect. 4, we briefly discussed the approaches
of [23, 40] to derive message-passing equations for cascades on finite-size networks.
Although the resulting equations are computationally expensive to solve, we showed
that they give a condition for global cascades in terms of the spectral radius of a
matrix that is related to the nonbacktracking matrix. The nonbacktracking matrix has
arisen in prior work from linearizations of belief-propagation algorithms [21], but
the product matrix DB that determines the cascade condition has not been studied
in detail (to our knowledge), and we believe that further investigations of it will
yield fascinating insights into the propagation of monotonic complex contagions
and other monotonic dynamics [22, 23].
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Optimal Modularity in Complex
Contagion

Azadeh Nematzadeh, Nathaniel Rodriguez, Alessandro Flammini,
and Yong-Yeol Ahn

1 Introduction

The previous chapter reviewed the message-passing (MP) framework that can
accurately describe the dynamics of spreading processes, and in particular that
exhibited by the Watts threshold model [1–3]. In this chapter, we leverage the
framework to study how complex contagions are affected by the modular structure
of the underlying social network. In particular, we focus on the notion of optimal
modularity that predicts the occurrence of global cascades when the network
exhibits just the right amount of modularity [4].

Modular organization, or community structure, is one of the most ubiquitous
properties of real-world networks [5, 6] and therefore it is crucial to understand how
information diffusion is affected by a modular structure. Addressing this problem
is particularly urgent when one considers spreading phenomena characterized by
complex contagion. Unlike the case of simple contagion, where modules simply
slow down the spreading, complex contagion may be either enhanced or hampered
by modular structure [7, 8]. In contrast to simple, complex contagion requires
multiple exposures and those are favored within densely connected communities.
At the same time, complex contagion can be strongly hampered at the boundaries
of communities due to the lack of the sufficient connectivity needed to provide the
required multiple exposures from the activated community to the yet-to-be-activated
one. The counter-intuitive phenomenon of optimal modularity arises from the clash
and compromise between these opposite tendencies.
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The basic setting for our study is as follows. We assume a network of individuals
where an individual can be in either an “active” or “inactive” state. At each time
step, an inactive node may become active if the node is surrounded by enough
active nodes. The activation condition is captured in a threshold function C(m, k)

that typically depends on the degree k of a node, and the number m of its active
neighbors. Here we consider C(m, k) = H(m

k
− θ), where H(x) is a Heaviside

step function and θ is a threshold value. Throughout this chapter we assume that
θ is constant across the network. Our analysis leverages the framework introduced
in the previous chapter. We focus our analysis only on the ensembles of random
networks with arbitrary degree distribution [9], and “message-passing” (MP) and
“Tree-Like” (TL) are used interchangeably throughout our chapter.

2 Analytical Framework

2.1 Mean-Field and Message-Passing Approaches
for Configuration Model

As explained in the previous chapter, the steady-state fraction of active nodes ρ∞
can be estimated using Mean-Field (MF) or the Message-Passing (MP) approaches.
Assuming an underlying infinite networks with a given degree distribution pk but
otherwise random, ρ∞ can be obtained by solving the following self-consistent
equations. Using the MF approach,

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(ρ∞)m(1 − ρ∞)k−mC

(m

k

)
, (1)

where ρ0 is the initial fraction of seeds. This approach does not aim at describing
the evolution from one time step to the other, rather it states that at stationarity,
the density of active nodes is the sum of two contributions: the fraction of seed
nodes and expected number of nodes that have an above-the-threshold fraction of
active neighbors. This last contribution, in turn, is expressed in terms of the degree
distribution and of the density of active nodes itself.

The MP (TL) approach assumes that the underlying network is well approxi-
mated by a tree structure. To the extent to which such approximation is valid, where
each node is affected only by its children. The density of active nodes depends only
from the level of the tree where the node is, which is described by the following
formula:

qn = ρ0 + (1 −ρ0)
∑

k

k

〈k〉pk

k−1∑

m=0

(
k − 1

m

)
(qn−1)

m(1 − qn−1)
k−1−mC

(m

k

)
, (2)
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where qn is the density of active nodes at the n-th level of the tree (q0 = ρ0). Note
that excess degree distribution is used in the place of degree distribution because
each node uses one of its links to connect to its parent and only children nodes
affect the status of the node. The final density can be calculated by focusing on the
root node:

ρ∞ = ρ0 + (1 − ρ0)
∑

k

pk

k∑

m=0

(
k

m

)
(q∞)m(1 − q∞)k−mC

(m

k

)
, (3)

where q∞ = limn→∞ qn. See the previous chapter for more details.

2.2 Generalization to Modular Networks

The MP framework can be readily generalized to modular networks by introducing
density-of-active variables for each community [3]. Consider a network with d

communities, where the connection probabilities between communities are stored
in a d × d mixing matrix e. Here eij is the probability that a random edge connects
community i and j . Consider a node in community i and at the n + 1 level of the
spreading tree. The probability to pick one of its active children (n-th level) can be
written as:

q(i)
n =

∑
j eij q

(j)
n∑

j eij

. (4)

Equation (2) can be extended to describe the relation between the densities in
different communities [3].

q
(i)
n+1 = ρ

(i)
0 + (1 − ρ

(i)
0 )
∑

k

k

z(i)

k−1∑

m=0

(
k − 1

m

)
(q

(i)
n−1)

m(1 − q
(i)
n−1)

k−1−mC(i)
(m

k

)
,

(5)

where z(i) = ∑
k kp

(i)
k is the mean degree of community i. This set of equations

can be solved by iteration analogously to Eq. (3). The density of active nodes at
stationarity is:

ρ∞ =
∑

i

N(i)

N
ρ(i)∞ . (6)

See [3] for more details.
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3 Networks with Two Communities

Having set up the necessary tool, we now turn into investigating how the strength of
the modular structure can affect the spreading of complex contagion. The simplest
setting one may consider is a network with two equally sized communities. Given a
fixed and predefined number L of links in the network, we first randomly connect
μL couple of nodes, where each member of the couple sits in a different community.
The remaining links are then used to randomly connect couple of nodes in the same
community [5]. If μ = 0, no edge is placed between the two communities (the
network has two components and is therefore maximally modular); if μ = 0.5, the
network is an Erdős-Rényi random graph in the infinite size limit. A fraction ρ0 of
active nodes are set in one of the two communities, which we call “seed community.”

As shown in [4] and illustrated in Fig. 1, the density of active nodes at stationarity
ρ∞ depends non-trivially on the degree of inter-community connectivity, showing a
maximum at intermediate values of μ.

Small values of μ allow initial spreading in the seed community, but it is essential
to have enough mixing (bridges) between communities to have a cascade that
significantly interests the global community. At the same time, when too many
links across community are present, since these occur at the expense of the intra-
community links, there is insufficient connectivity in the seed community to trigger
the initial diffusion of the activation. We name optimal modularity the range of μ

values for which the two mechanisms above find their trade-off to maximize the size
of the cascade.

4 Optimal Modularity in Networks with Many Communities

A network with just two equally sized communities with all the seed users
concentrated in one of those is an obvious starting point for this study, but, in
general, a non-realistic assumption. We generalize our finding by first consider-
ing multiple communities of the same size and with the same degree of intra
and inter-connectivity. We then consider a more general process to generate the
network and its modular structure. We consider the family of graphs known as
LFR (Lancichinetti-Fortunato-Radicchi) benchmark graphs [10], which allow us to
independently modulate both the size and the degree distribution of the individual
communities. We finally remove the constraint of having all seed nodes in a single
community.

4.1 Spreading from a Seed Community

Figures 2 and 3 show the qualitative behavior of ρ∞ as a function of μ and ρ0,
when there are two or more communities and the activation is initiated from a
single seed community. In general, a larger number of communities require a smaller
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Local Spreading Global spreading No spreading

Fig. 1 The trade-off between intra- and inter-community spreading. Stronger communities
(small μ) facilitate spreading within the originating community while weak communities (large
μ) provide bridges that allow spreading between communities. Blue and Red imply activation,
while white implies inactivity. There is a range of μ values that allow both (optimal). The blue
squares represent ρA∞, the final density of active nodes in the community A, and the red circles
represent ρB∞. The parameters for the simulation are: ρ0 = 0.17, θ = 0.4, N = 131,056, and
〈k〉 = 20

adoption threshold to allow the cascade to spread over all the network; increasing the
number of communities makes the signal outgoing from the seed community less
focused. Such signal, therefore, spreads less easily from community to community.
Nevertheless, the same trade-off, and thus optimal modularity, exists between local
spreading due to clustering and inter-community spreading due to bridges.

4.2 Spreading from Randomly Distributed Seeds

Next we consider the more general scenario in which the initial signal is distributed
across the whole network. The MP approach as described by Eqs. (4) and (5) is
sufficiently general to handle the scenario at hand. In particular we will have:
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Fig. 2 Optimal modularity arises even when there are many communities. The phase diagrams are
calculated using the MP framework with different number of communities.“nc” refers the number
of communities. θ and z values are varied to demonstrate the existence of optimal modularity
clearly

Fig. 3 The behavior of
threshold model in the
presence of community
structures generated by LFR
benchmark, with
N = 25,000, z = 10,
t1 = 2.5 (degree exponent),
t2 = 1.5 (community size
exponent), kmax = 30 and
θ = 0.3. LFR benchmark
generates more realistic
networks with community
structures. The degree
distribution may have a
power-law distribution (with
exponent t1 and degree cutoff
kmax ). The size of the
communities may also follow
a power-law distribution
(with exponent t2)
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Fig. 4 The phase diagram of threshold model with uniformly distributed random seeds. Three
example slices are taken from the contour plot (horizontal lines) and displayed in the right figure.
N = 25,600 with C = 160 communities with 160 nodes each. The solid black line on the contour
shows the MP (TL) results

q̄(i)
n = (1 − μ)q(i)

n + μ

(d − 1)

d∑

j 	=i

q
(j)
n . (7)

Here d is the number of communities and, as before, μ represents the total fraction
of inter-community bridges in the network. Also, in Eq. (5), ρ

(i)
0 	= 0 for all i’s

rather than just one. The equations can still be solved iteratively.
Figure 4 shows the results derived via the MP (TL) approach for a network with

25,600 nodes, 160 evenly sized communities, and seeds randomly distributed across
the network. An optimal region emerges as in the previous multi-community cases.

We would like to note that the optimal region vanishes if each community has
exactly same number of seeds; there is no dependence of ρ∞ on μ. The emergence
of an optimal region critically depends on the existence of variability across
communities. Individual communities show a sharp transition between inactivity
and activity as the seed fraction ρo increases. As all nodes activate essentially
simultaneously, the entire system can be regarded as a random network of super-
nodes, each representing a single community. The qualitative behavior is therefore
the same as that of a random network with no communities. If there is sufficient
variability across the communities, in terms of the number of seed nodes they
contain then some communities will activate before others and the community
structure will have a measurable effect, as shown in Fig. 4.

The effect of variability in the nodes’ threshold was actually the focus of the
original study of the linear threshold model by Granovetter [1]. He found that
changes in the variance of the threshold distribution lead to qualitatively different
spreading behavior even when the mean is kept constant. When variance is low,
nodes have approximately the same threshold and, all other factors being the same,
they get activated more or less simultaneously. Higher variance brings the existence
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of a continuum spectrum from low to high threshold nodes. Low threshold are
typically activated first and can help the activation of nodes with slightly higher
threshold. In turn, these can contribute to activate even higher threshold nodes, and
possibly generate a large size cascade. But if threshold variance is too high, the gap
between low threshold and high threshold nodes is too large and the activation of
the former is not sufficient to fill the gap in threshold.

Given the tendency of nodes in a community to activate simultaneously, it is
possible to regard them as coarse-grained super-nodes whose threshold is effectively
determined by the number of seeds they contain. This formulation provides similar
insights as the Granovetter’s study [1]. We investigated this idea by distributing
seeds across communities according to a Beta distribution. We fix the α and β

parameters for the Beta distribution in such a way to maintain the expected value
constant at 〈ρo〉 = 0.19 while the standard deviation (σ ) is varied.

Our experiments, as shown in Fig. 5 produce results qualitatively similar to those
for Granovetter’s model [1].

Specifically, Fig. 5 shows that two optimal behaviors emerge, one with respect to
σ and one with respect to μ. The peak along σ arises for exactly the reasons exposed
above. A large cascade can be triggered for intermediate values of σ , when there is
a continuum spectrum of effective activation thresholds across communities. Due
to a cascading effect, increasing activity within the network makes it more likely
to activate communities with fewer and fewer seeds. When σ is low communities
have roughly the same number of seeds and none have enough seeds to fully activate
unless the mean number of seeds is increased. At high σ , communities with many
seeds activate, but they don’t generate enough cumulative activity to activate the low
seed communities.

The optimal region with respect to μ arises for the same trade-off to those
studied above. Low μ implies strong connectivity inside single communities, but
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Fig. 5 The phase diagram of threshold model with beta distributed random seeds. Two example
slices are taken from the contour plot (vertical lines) and displayed in the right figure. The mean
seed 〈ρo〉 = 0.19. Numerical simulations were done with N = 25,600 with C = 160 communities
with 160 nodes each. The solid black line on the contour shows the MP results
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insufficient bridges to spread the activation signal externally. For high μ there
are bridges, but not sufficient internal connectivity in order to trigger the initial
activation of a sufficiently large number of communities. An optimal balance is
achieved at intermediate values of μ.

5 Temporal Aspects of Optimal Modularity

How fast a contagion can spread is often as important as how far it can spread.
Imagine, for example, the sudden availability of a prophylactic measure in the
wake of a pandemic. The issue would then be not just whether this measure
can spread broadly, but also whether it can spread sufficiently fast to effectively
oppose the pandemic. Here we limit our study to the basic setting consisting of two
communities with varying degree of modularity (μ) and only one seed community.
We measure the total diffusion time: the number of time steps needed for the system
to reach a steady state. We run a 1000 simulations (each with an independent
network realization) and measure the mean ρ∞ and total diffusion time. We also
assume a uniform threshold (θ = 0.4).

Figure 6 demonstrates that, while ρ∞ remains constant at its maximum value,
the total diffusion time greatly varies. Close to either border of the optimal range,
contagion significantly slows down, while the global spreading can happen fastest

Fig. 6 Total diffusion time and optimal modularity. The blue symbols and line represent the total
diffusion time in the community A (seed community), and the red symbols and line represent the
total diffusion time in the community B (the other community). The optimal modularity range that
allows global cascades is represented with a purple shade. The total diffusion time curve peaks
at the two transition points, demonstrating that there exists a narrower range of μ values where
the global cascades happen, faster. The parameters for the simulation are: ρ0 = 0.17, θ = 0.4,
N = 8192, and z = 20
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near the middle of the optimal modularity regime. When there are just enough
bridges (the left border), the spreading from the seed community to the other
community is slower than the case where there are more than just enough bridges
to spare (center). Similarly, when there are just enough local cohesion (the right
border), the local spreading produces just enough newly activated nodes to achieve
global cascade, slowing down the spreading process.

6 Discussion

In this chapter, we have generalized the optimal modularity phenomena and studied
its temporal aspect. We showed that many simplifying assumption made in the
original study can be relaxed without disrupting the qualitative scenario that predicts
a maximum in the fraction of active individuals for intermediate values of inter-
community connectivity. In particular we considered the case of a large number of
communities, with heterogeneous size, and nonuniform degree of initial activation.

Our experiment showed that our model behaves qualitatively same as one in
which communities can be considered as super-nodes and are characterized by
different threshold. This, in turn, may open the possibility to study very large
system if one could devise a strategy to compute the effective parameters of a
coarse grained model where communities are represented by single nodes. The
interest in developing such “renormalization” techniques is not only theoretical:
threshold models have found several applications to real-world problems, including
the multi-scale modeling of brain networks [11] and of their activation dynamics in
the brain [12].
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Probing Empirical Contact Networks
by Simulation of Spreading Dynamics

Petter Holme

1 Introduction

Spreading processes1 affect people at many levels. They are the basis of innovation
processes [9] and spreading [1], they shape our opinions [11], lifestyles [14], and
they are also part of the mechanisms giving us infectious disease [2, 25, 28]. Even
though disease spreading is a bit special and not the primary topic of this book,
much of the theory of the interaction of spreading and contact structure comes from
epidemiology of infectious diseases. For this reason, we will mostly use disease
spreading as our model spreading dynamics and leave it to the reader to draw the
analogies to other phenomena.

At the time of writing “data science” is a buzzword. One key idea behind it is
that we can understand much of the social world around us by analyzing the data
we create—be it from the location traces of our smart-phones [90], transportation
cards [78], etc. A special type of such data records contacts between pairs of people.
By contact we will mean any kind of binary interaction where something can
spread from one person to the other. It could be being in physical proximity, so
that disease could spread, or following someone on a social media channel, so that
information could spread. A contact network could thus be thought of as a list of
pairs of individuals, annotated with the time, type, and locations of the interaction.
In practice one usually does not have access to so much meta-information on

1In the social science and computer science literature these are commonly known as diffusion
processes. In this chapter, we stick to the natural science convention (keeping “diffusion” for
processes where the total mass or amount of whatever is spreading, or diffusing, is conserved).
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the contacts. In many cases one must settle with only the time and identities
of the individuals (a temporal network [31, 35, 56]), or even just the identities
(a static network) [6, 61]. On the other hand, several properties of the spreading are
determined by the (temporal or static) network structure—the regularities making
the network differing from a purely random one—and our understanding of how
they shape the spreading dynamics is still incomplete.

One challenge for understanding how the structures of contact networks affect
spreading is to be able to list and quantify the relevant structures. Structures are
dependent, however, and this makes it a challenge even in the simplest case of
static networks. Acquaintance networks are, for example, thought to contain many
triangles [27]. The presence of triangles is thought to slow down spreading [85].
However, this does not necessarily mean that human friendships slow down spread-
ing. In a simple network model where the density of triangles (a.k.a. clustering
coefficient) is the only structure to control, a typical network would have one
very densely connected core contributing with most of the triangles, not triangles
distributed all over the network as empirical friendship networks have [12]. Thus,
there are other constraints, or structures, present in the real networks that could
potentially also affect spreading phenomena. An alternative approach to controlling
the density of triangles would be to take empirical networks as the starting point and
simulating disease spreading directly on these. To monitor the effect of triangles one
could manipulate the original network, for example by randomly rewiring links [59].
Of course, one cannot isolate network structures completely—by rewiring the
network, one could presumably change, e.g., the average path length as well.
However, one would do that from a realistic part of the space of (temporal) networks.
In addition, this approach gives insights about how the network itself acts as an
infrastructure for the spreading process.

The problem of straightforward approaches to understanding the effects of
network structure in real spreading processes becomes more severe the more
information-rich network representation one uses. For temporal networks—where
information about the time of contacts are included—this is particularly clear. It has
been observed that human behavior has an intermittent, bursty behavior [5, 26].
Subsequently, authors noticed that fat-tailed interevent time distributions—the
hallmark of bursty activity—slow down spreading [43, 60]. At the same time, other
authors observed that simulated disease spreading was slowed down by randomizing
the timing of contacts in some kinds of contact networks [70]. There must thus
be other temporal structures also controlling disease spreading. In this work, we
explore methods to understand the relationship between network structure and
spreading dynamics that take empirical networks, rather than network models, as
starting point.

In the remainder of this chapter, we will go through some of the empirical
networks authors have used, typical models of spreading processes for the purpose,
randomization methods, and similar techniques. Finally, we will discuss future
prospects and relation to other methods.
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2 Networks

In this section, we will discuss the empirical data available at the moment and some
technical issues related to how to represent it mathematically or computationally.

2.1 Data Sources

2.1.1 Proximity Networks

Human proximity networks have gained much attention recently. Such data sets
records when, and sometimes where, persons are in contact. At least they contain
identities of the people in contact and when the contacts happen. Typically these
data sets sample people connected by some circumstance—workers in the same
office [24, 79], at the same hospital [38, 52, 83], students in the same school [55,
72, 75, 91], visitors to an art gallery [82], conference attendants [39], etc. The time
limits are typically set by the experiment and in most cases running throughout 1
day (when the school or office is open).

Researchers have been very creative in gathering proximity networks. One
common method is to equip the participants with radio-frequency identification
(RFID) sensors [7] which records proximity of a couple of meters. Notably, the
organization Sociopatterns (sociopatterns.org) provide many open access datasets.
A similar performance to RFID sensors can be obtained by infrared [79] or
wireless [65, 72] sensors. Another type of proximity measure is to use the Bluetooth
channel of smart-phones. These typically record slightly more distant contacts (the
order of 10 meters). Bluetooth-based studies typically run longer and are less
constrained [18, 76, 77].

In addition to proximity recorded by sensors, researchers have used location
information to infer who is close to whom at what time. Ref. [78] studies people
sharing the same public transport; Ref. [91] uses a dataset of people connected to
the same WiFi router. There is also a rather large field of studying patient flow
within hospital systems, e.g. Refs. [16, 17, 52, 88] from the records of patients and
healthcare workers. A contact in such networks corresponds to two persons being at
the same ward at the same time.

Yet another kind of human proximity networks (perhaps different enough to
constitute a stand-alone category) is sexual networks. Classic sexual network studies
do not have the time of the contacts. The only large-scale temporal network of sexual
contacts we are aware of is the prostitution data of Rocha et al. [69] where contacts
with sex sellers are self-reported by the sex buyers at a web community.

Finally, although this book focuses on humans, we mention that proximity
networks of animals have been studied fairly well. In particular, populations of
livestock have been studied either as metapopulation networks (where one farm is
one node and an animal transport between two farms is a contact) or as a temporal

sociopatterns.org
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network of individual animals where a contact represents being at the same farm at
the same time. Livestock here could refer to either cattle [23, 74, 81] or swine [47].
In addition domesticated animals, researchers have also studied wild animals—
zebras [50] and monkeys [15] by GPS traces, ants [13] by visual observation, and
birds [64] from foraging records.

In the latter part of this chapter we will use some data set of this type as
an example. In particular, we use several Sociopatterns data sets: Conference
(participants of a computer science conference), Hospital (patients, doctors, and
nurses of a hospital), Office (workers at the same office), Primary and High School
(school students), Gallery (visitors to an art gallery), and families in rural Kenya
(Kenya). Some of these data sets cover several days, which we treat separately. We
also use one Bluetooth data set sampled among college students in USA (Reality)
and a similar dataset from Romania (Romania) sampled with WiFi technology.
Finally, we use one dataset based on a diary-style survey (Diary) and one from
self-reported sexual contacts with escorts (Prostitution). Statistics and references to
these data sets can be found in Table 1.

2.1.2 Communication Networks

Temporal networks of human communication are probably the largest class of
systems modeled as temporal networks after proximity networks. One such type of
data comes from call-data records of mobile phone operators [43, 48, 49]. These use
lists who called whom, or who texted whom. Typically the data sets are restricted to
one operator in one country. Another type of communication networks are e-mails
sampled from the accounts of a group of people during a window of time [19, 20].
Yet another of this kind comes from messages at social media platforms such
as Twitter [71, 73] or Internet communities [37, 40, 42, 57, 86]. A difference to
proximity networks is that links in this category are naturally directed. (Later in this
chapter, when we will compare networks of this kind to proximity networks and
then treat contacts as undirected.)

Below we analyze one data set of wall-posts at Facebook (Facebook), one
Facebook-like community for college students (College), one Internet dating service
(Dating), and one film-discussion community (Forum for posts at a discussion
forum, and Messages for direct, e-mail-like communication). We also study three
data sets of e-mail communication E-mail 1, 2, and 3. A summary of these data sets
and references can be found in Table 1.

2.2 Network Representations

The basic setting we are considering is a set V of N nodes (sometimes called
vertices). For most purposes of this chapter, the nodes represent individual people. In
a static network, or graph (emphasizing the mathematical representation rather than
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Table 1 Basic statistics of the empirical temporal networks

Data set N C T Δt M Ref.

Conference 113 20,818 2.50 day 20 s 2196 [39]

Hospital 75 32,424 96.5 h 20 s 1139 [83]

Office 92 9827 11.4 day 20 s 755 [24]

Primary School 1 236 60,623 8.64 h 20 s 5901 [75]

Primary School 2 238 65,150 8.58 h 20 s 5541 [75]

High School 1 312 28,780 4.99 h 20 s 2242 [55]

High School 2 310 47,338 8.99 h 20 s 2573 [55]

High School 3 303 40,174 8.99 h 20 s 2161 [55]

High School 4 295 37,279 8.99 h 20 s 2162 [55]

High School 5 299 34,937 8.99 h 20 s 2075 [55]

Gallery 1 200 5943 7.80 h 20 s 714 [82]

Gallery 2 204 6709 8.05 h 20 s 739 [82]

Gallery 3 186 5691 7.39 h 20 s 615 [82]

Gallery 4 211 7409 8.01 h 20 s 563 [82]

Gallery 5 215 7634 5.61 h 20 s 967 [82]

Reality 64 26,260 8.63 h 5 s 722 [18]

Romania 42 1,748,401 62.8 day 1 month 256 [65]

Kenya 52 2070 61 h 1 h 86 [45]

Diary 49 2143 418 day 1 day 345 [66]

Prostitution 16,730 50,632 6.00 year 1 day 39,044 [69]

WiFi 18,719 9,094,619 83.7 day 5 month 884,800 [91]

Facebook 45,813 855,542 1,561 day 1 s 183,412 [87]

College 1899 59,835 193 day 1 s 13,838 [62]

Messages 35,624 489,653 3018 day 1 s 94,768 [42]

Forum 7084 1,429, 573 3141 day 1 s 138,144 [42]

Dating 29,341 529,890 512 day 1 s 115,684 [37]

E-mail 1 57,194 444,160 112 day 1 s 92,442 [19]

E-mail 2 3188 309,125 81 day 1 s 31,857 [20]

E-mail 3 986 332,334 526 day 1 s 16,064 [63]

N is the number of individuals; C is the number of contacts; T is the total sampling time; Δt is the
time resolution of the data set, and M is the number of links in the projected static networks. One
data set (Romania) was coarse-grained from second to minute resolution (we consider a pair with
at least one contact (in the raw data) within a minute a contact)

the real system) G(V,E), the nodes are connected pairwise by M links (sometimes
called edges) E. In a temporal network the nodes are connected at specific times
by C contacts (sometimes called events)—triples (i, j, t) showing that i interacted
with j at time t . An alternative way of thinking about how time enters networks
is to consider nodes as a sequence of static graphs {Gt(Vt , Et )}Tt=1, one for every
discrete time step of the data. T is called the sampling time. This type of graph
sequence is a special case of multilayer networks [10, 46]. Mathematically it is
equivalent to sequences of contacts, but it does put other ideas into the mind of the
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user. To be specific, thinking of the system as a sequence of graphs suggests that one
can first apply static network theory to each time slice individually, then aggregate
these results. This could be a powerful approach in many cases, but not if the time
resolution is so high that the networks are mostly very fragmented (or perhaps even
empty, as the case in, e.g., an e-mail network). Since paths in temporal networks
need to follow the arrow of time, they are not transitive—the pairs (i, i′) and (i′, i′′)
can have contacts without i being able to influence i′′. The reason is that all contacts
between (i′, i′′) might have happened by the time the spreading has reached i′′.

Many studies consider spreading processes in space. This is true not only for
disease spreading [21], but the study of spreading of innovation (Ref. [58] is an
important early such reference). In principle, space can be encoded into the contacts
of a network. On the other hand, in cases one is not aware of the detailed contact
structure, one can resort to spatial spreading models. Spatial information can be
combined with a network representation [8] and such mixed approaches are efficient
in modeling multi-scale human mobility patterns (and thus contact patterns) [4].

3 Spreading Dynamics

In this section we, discuss models of spreading phenomena that can be simulated on
empirical contact sequences. It is not a complete review of the matter, but intended
to make the latter discussion more concrete.

3.1 Epidemic Spreading

The framework for modeling the spread of infections in a population is well
established [2, 25]. The so-called compartmental models divide the population
into states (classes, or compartments) with respect to the disease, and prescribe
transition rules between these classes. The four most common states are: susceptible
(S, individuals that can get the disease, but not spread it), infectious (I, who can
spread the disease), recovered (R, who can neither get nor spread the disease), and
exposed (E, who got the disease but can yet not infect others). The infection event
typically happens between a susceptible and infectious individual. It is the only
transition that requires two people to meet. Two canonical compartmental models
are the SIR and SIS model. In SIR an S person can become I upon meeting an
S, and an I will eventually become R. In SIS, I becomes S rather than R. There
are some subtleties involved in how to implement the transitions. Mathematical
epidemiology has traditionally implemented the transition from I (to R in the SIR
model or S in the SIS model) as happening with a constant rate. In other words, all
infected persons have the same chance of becoming uninfected every unit of time.
This—constant infection rate (CIR) version—leads to an exponential distribution
of the infection time, which is in contrast to observations [84], but simplifies the
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calculations. An other approach—the constant infection duration (CID) version—
is to model the duration of the infection as constant. As all infected nodes expose
their neighbors the same amount of time, this simplifies some statistical analyses.
It is also somewhat algorithmically more straightforward (but this should not be
a ground for selecting the algorithm). In either of these cases, the SIR and SIS
models have two parameter values. One controlling how easily a node gets infected.
Another controlling how long the node stays infected. For the CIR version these
are the infection and recovery rates. For the CID version they are the per-contact
infection probability λ and disease duration δ.

The second ingredient in epidemic modeling is a model or data of the contact
patterns. In most approaches this part comes from a simple model—the simplest
being that everyone has the same chance of meeting everyone else at every time, but,
in particular, with the advent of network epidemiology [44], researchers have started
to study more realistic contact patterns. One approach is to construct models of
human contact patterns. For example, based on the observation that sexual networks
have a power-law degree distribution, researchers have studied the transmission
of sexually transmitted infections on model networks with such a degree distribu-
tion [51]. Another approach for increased realism in disease spreading studies is to
simulate the spreading on data sets of empirical contacts [32, 34, 66, 70, 72]. As
mentioned, this approach gives more than just better predictions—we can also use
it to understand what structures of the contact sequence is important, and why.

3.2 Opinion and Information Spreading

Much of the previous section is true for modeling information and opinion spreading
too. The main difference is that one cannot assume that such spreading is well-
modeled by compartmental models. We have learned from studies of spreading in
social media that individual behavior is very diverse and platform dependent. Not
only do people have different activity levels, they could also follow completely
different mechanisms [54, 71]. Sometimes authors make the distinction between
simple and complex contagion [89]. The former are all types of spreading phenom-
ena where the spreading can be modeled as a probabilistic event when an S meets
an I, independent of the rest of the system. Complex contagion, on the other hand,
can depend on more than a pairwise interaction: an opinion might need exposure
from several different neighbors to spread from one vertex to another; a piece of
information might spread slower with age; it could spread more easily between
people that are similar to one another, etc. [89].

The simplest type of complex contagion are threshold models.2 These assume
that an individual adopts an idea when the exposure is over a threshold. What

2An even simpler type of opinion spreading model is the voter model [22]. This is a simple
contagion model where random nodes copy the opinion of random neighbors.
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“exposure” means is not trivial. It could be the number of different persons that
one hear an opinion from; it could also be the number of times one has heard the
opinion [3]. Furthermore, for temporal networks, old exposures are not as important
as more recent ones [42, 80]. Authors have modeled this by counting exposures in
a time window into the past [41] or assigning every contact with an exponentially
decreasing importance metric [80].

4 Null Models, Randomizations, and Positional Comparisons

So far, we have discussed the kind of datasets available and different dynamic
models of spreading phenomena. While running such simulations on the raw contact
data can be interesting in its own right, it can be hard to generalize the results.
As mentioned in the Introduction, one option is to compare the results to those
expected from models. This approach has been a fruitful way for static networks but
is challenging for more information-rich representations of the contact patterns. One
reason is that it is hard to even name a reasonably complete set of simple structures
in temporal networks (it is of course even harder to control them in a way such that
the results are easy to interpret). An alternative approach is to draw the conclusions
from comparisons. One way is to randomize some aspect of the real data and thereby
destroy some particular structure. By comparing the spreading on the original and
randomized networks, one can draw conclusions about the effects of the randomized
structures. By successively randomizing less and less one can, in principle, home
into the important structures. One may argue that this approach is only replacing
the problem of listing fundamental structures, by the problem of listing structures
to randomize. However, one is certain that going from the original data to the fully
randomized data, one has removed all structure there is, and thus all structure that
can play a role in the spreading (even though this procedure should be coarser than
ideal).

References [30, 35] present several methods of randomization. In this chapter,
we will exemplify with two: Random times (RT) and Random links (RL). For RT
one replaces the timestamps of contacts with random times in the interval [0, T ),
thus destroying several types of temporal structures including effects of: order of
events, periodic changes in the overall activity, the turnover of individuals, etc.
RT is thus a quite pervasive type of randomization, only conserving the number
of contacts and the static network structure. One can regard RL as a topological
counterpart to RT. For RT one replaces link by a link between two random nodes
in the network. Thus one destroys all the topological structure, including the degree
distribution.3 With the results for the original and randomized networks at hand one

3Effectively one replaces the degree sequence by one drawn from a binomial distribution. For many
applications one is rather interested in the topological structure other than the degree distribution,
and would rather conserve the degree of the nodes [59], but to be able to compare the topological
randomization to the temporal one, we use this definition.
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can see how the destroyed structure affects the spreading. This effect would typically
depend on the parameter values of the spreading dynamics. To get interpretable
results one typically averages over many randomized data sets. The good news is
that temporal networks are typically “self-averaging” in the sense that fluctuations
decrease with systems size. To move further into describing how the contact
structure affects the spreading one can also include measurements of (temporal
or static network structure). For example, Ref. [34] compares the discrepancies
between two estimates of disease severity for different contact data sets. They
correlate the discrepancies with measures—network descriptors—like the node and
link burstiness [26], the fraction of nodes and links present throughout the sampling
time, etc. From this analysis they can conclude that some types of discrepancies are
more related to temporal structures, other to topological structures.

In addition to randomizing structure, one can learn about the structure of the
contact network by comparing nodes and links within the same network. One can
for example, compare spreading starting at different nodes and compare the average
outbreak size, time to peak prevalence or time to extinction [29, 68]. Another
approach would be to eliminate single nodes and links and study the changes of
the mentioned quantities.

5 Example: SIR Model on Empirical Networks

In this section, we will present an analysis along the lines outlined above for the 29
contact networks of Table 1. In Fig. 1, we show the average outbreak size Ω (the
fraction of recovered nodes at the end of the outbreak) in an SIR simulation. We
use the CID version, so the two parameter values are the per-contact transmission
probability λ and the disease duration δ. The infection is started at one randomly
chosen node at a random time between 0 and T . All data points are averaged over
at least 103 outbreak runs per networks. In Figs. 2 and 3 we show plots of Ω as
a function of λ and δ for the RT and RL randomizations, respectively. For these
figures, we also average each value over 100 randomizations.

A first thing to notice in Fig. 1 is that Ω is increasing with both λ and δ. For
some networks, Ω reaches its maximal value 1, but for most it does not. For the
Gallery data, Prostitution and the social media networks (Facebook, Messages,
Forum, Dating, and College) there is a big overturn of agents—the individuals that
are there in the beginning are not there in the end. (This is easy to imagine for the
Gallery networks as a visitor to an art gallery would stay for a limited amount of
time.) A small maximal Ω can most easily be explained by the turnover of agents
breaking many time-respecting paths, thus cutting many infection chains. Another
explanation would be that most contacts happen at the beginning, so that by chance
the network is very fragmented by the time a typical first infection event happens.
Some of the networks are so dense that even for the lowest parameter values
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Fig. 1 The average outbreak size for SIR epidemics on our data sets. The scales of the axes and
colors are the same for all panels (as indicated in the legend)

(λ = δ/T = 0.01) Ω is quite large. The most conspicuous example is perhaps
Romania where both the minimum and maximum Ω values are intermediate. At this
point, it is worth noting that λ (unlike δ) should not be understood as a parameter
that is unique for one disease. It must be defined in combination with the network
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Fig. 2 The average outbreak size for SIR epidemics data sets where the time stamps of contacts
are replaced by random ones. Otherwise, the figure is the same as Fig. 1

representation—a more restrictive definition of a contact would correspond to a
larger λ value [77]. Finally, we note that the data sets that come from the same setup
(the five High School and Gallery networks looks like each other—an indication
that the used methods are not sensitive occasional misinformation).
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Fig. 3 The average outbreak size for SIR epidemics data sets where the node identities are
replaced by random ones. Otherwise, the figure is the same as Fig. 1

Next, we turn to the data with randomized time stamps. Ω as a function of λ

and δ is displayed in Fig. 2. The effect of the randomization is different for different
data sets. For several data sets Ω increases, at least the maximal Ω , or sometimes
Ω throughout the parameter space. The main exception is Prostitution where the
maximal Ω decreases upon randomization. Some other data sets—the Gallery data



Probing Empirical Contact Networks by Simulation of Spreading Dynamics 121

and E-mail 1 do not change. From this we understand that given the underlying
contact network, and the number of contacts between each pair of nodes, the timing
of the nodes can both speed up and slow down the disease spreading. Since bursty
behavior is known to slow down spreading [43, 60] and the RT randomization makes
contacts less bursty, we can understand that other temporal factors also determine
the speed and scope of the spreading. We can also notice that the effects of RT
randomization is largest for intermediate values of Ω (of Fig. 1).

The outbreak sizes corresponding to Fig. 1 for topologically randomized datasets
is shown in Fig. 3. The pattern from the RT plots of Fig. 2 remains, and is somewhat
accentuated. For the RL randomized plots, Ω reaches close to its maximum value
Ω = 1 for most of the data sets (including Gallery, where this was not true for
the RT randomization). For some other datasets—Prostitution, Diary, E-mail 1,
and E-mail 3—the maximal Ω decreases going from RT to RL. In summary, most
datasets we have investigated have both temporal and topological structures that
decrease the outbreak sizes. Why the opposite occasionally happens is an interesting
and—at the moment of writing—not fully resolved problem. One observation is that
all such data sets are fairy sparse in the sense that C/M is small, but other structures
can separate these data sets from others even more clearly. One such structure is
the average duration of a link [33]. Other quantities that describe the long-term
evolution of the system could also work well.

6 Discussion

In this chapter, we have pointed at some ways one can analyze empirical datasets
of human interaction by simulating spreading phenomena on top of them. We
have discussed data sources, network representations, and some of the analysis
techniques including some of the many randomization-based null-models available.
The type of analysis we have outlined is not from a pipeline to handle contact data.
Indeed, the analysis of temporal networks is not so developed or systematic as the
ones for static networks. To understand how contact networks works, at the moment,
one need to use different approaches at once (what we sketched in this chapter
is one of them). Several papers that have used the same approach as this chapter
do not stop after comparing the original and randomized networks, they continue
to try to identify lower-level structures. For example, Refs. [32, 34] characterize
the differences between SIR spreading on the original and randomized data, then
perform a regression analysis to find which low-level structural descriptor has the
highest explanatory power.

For the future, we hope it will be possible to formalize the ideas in the chapter
to a more programmatic approach. In particular, it is probably possible to construct
a flow-chart how to perform successive randomizations to identify the important
structures for spreading on a particular data set. This would need to solve the
question about how to randomize away arbitrary structures (or at least all structures
that are easy to understand conceptually, thus contributing to our understanding of
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network dynamics). For opinion spreading problems, a major challenge is to find
an appropriate microscopic model of the spreading [89]. Reversely, one could argue
that if the purpose of the dynamic system is not to understand social dynamics, but
the underlying structure, then there more abstract dynamic systems could perhaps be
useful. This approach has been used in, e.g., biochemistry where cellular automata-
type symbolic dynamics have been used to explore metabolic networks [53]. In
social networks, running prisoner’s dilemma dynamics on empirical networks have
been argued to say more about the network architecture than the stability of
cooperation [36]. Using the Potts’ model for community detection [67] is yet an
example of a creative use of a seemingly unrelated model to explore network
structure.
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Theories for Influencer Identification
in Complex Networks

Sen Pei, Flaviano Morone, and Hernán A. Makse

1 Introduction

In spreading processes of information, it is well known that certain individuals
are more influential than others. In the field of information diffusion, it has been
accepted that the ability of influencers to initiate a large-scale spreading is attributed
to their privileged locations in the underlying social networks [41, 59, 71, 92].
Due to the direct relevance of influencer identification in such phenomena as viral
marketing [46], innovation diffusion [81], behavior adoption [17], and epidemic
spreading [69], the research on searching for influential spreaders in different
settings is becoming increasingly important in recent years [71].

In the relative simple case of locating individual influencers, given the rich
structural information encoded in nodes’ location in the network, it is straightfor-
ward to measure the influence of a single node using centrality-based heuristics.
Over the years, a growing number of predictors have been developed and routinely
employed to rank single node’s influence in spreading processes, among which the
most widely used ones include number of connection [1], k-core [85], betweenness
centrality [25], and PageRank [13], just to name a few. Beyond this non-interacting
problem, a more challenging task is to identify a set of influencers to achieve max-
imal collective influence. Originally formulated in the context of viral marketing
[80], collective influence maximization is in fact a core optimization problem in
an array of important applications in various domains, ranging from cost-effective
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marketing in commercial promotion, optimal immunization in epidemic control, to
strategic protection against targeted attacks on infrastructures. In addition to the
topological complexity of network structure, collective influence maximization is
further complicated by the entwined interactions between multiple spreaders, which
renders the aforementioned centrality-based approaches invalid. As a result, it is
required to treat the problem from a collective point of view to develop effective
solutions [61].

2 Finding Individual Influencers

In reality, many spreading phenomena are typically initiated by a single spreader.
For instance, an epidemic outbreak in a local area is usually caused by the first
infected person. For such processes, ranking the spreading capability of individual
spreaders is of great significance in both accelerating and confining the diffusion.

2.1 Topological Measures

Intuitively, the nodes with large numbers of connections should have more influence
on their direct neighbors. The disproportionate effect of highly-connected nodes,
or hubs, on dynamical processes has been revealed in the early works on the
vulnerability of scale-free networks [1, 23]. The targeted attack on a very small
number of high-degree nodes will rapidly collapse the giant component of networks
with heavy-tailed degree distribution. Compared with other more complex centrality
measures, the computational burden of degree is almost negligible. Due to this,
the simple degree centrality has been playing an important role in influencer
identification. In implementation, the performance of high-degree ranking can be
further enhanced by a simple adaptive calculation procedure, that is, recalculating
the degree of remaining nodes after the removal of previously selected nodes.

An obvious drawback of degree centrality is that it only considers the number
of direct neighbors. However, as indicated by empirical studies, most spreading
phenomena are proceeded in a cascading fashion. Therefore, the ultimate influence
of a single spreader is also affected by the global network structure. In realistic
complex networks, high-degree nodes can appear at either the core area or the
periphery region. This implies, the number of connections may not be a reliable
indicator of influencers in real-world systems. Recently, Kitsak et al. confirmed this
speculation through extensive simulations of susceptible-infected-recovered (SIR)
and susceptible-infected-susceptible (SIS) dynamics on diverse real-world social
networks [41]. In SIR model, a susceptible individual will become infected with a
probability β upon contact with his/her infected neighbors, and infected population
will recover with a probability μ and become immune to the disease. In SIS
model, the infection follows the same dynamics but infected persons will become
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Fig. 1 (a), A schematic diagram of k-shell decomposition. The two highlighted nodes (blue and
yellow), although both with degree k = 8, are in different k-shells. (b–d), Infections starting
from single nodes with same degree k = 96 (A and B) can result in totally different outcomes.
Whereas, infections originating from node C, locating in the same k-shell of node A (kS = 63)
but with a smaller degree, are quite similar to the spreading from node A. The colors indicate
nodes’ probability to be infected in SIR simulations with infection rate β = 0.035 and recovery
rate μ = 1. Results are averaged over 10,000 realizations. Figure is adapted from Kitsak et al. [41]

susceptible again with a probability μ. As shown in Fig. 1b–d, SIR spreading
processes initiated by two hubs with the same degree could result in quite different
infected population, depending on their global position in the network. In contrast,
the k-core index, which distinguishes the network core and periphery, is a more
reliable predictor of influence.

The k-core index is obtained by the k-shell decomposition in which nodes
are iteratively pruned according to their remaining degree in the network (see
Fig. 1a) [85]. Specifically, nodes with degree k = 1 are first removed successively
until there is no node left with one link. The removed nodes are assigned with
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k-core index kS = 1. Then we remove nodes with degree k = 2 similarly and
continue to prune higher k-shells until no node left in the network. In terms of
computational complexity, the above decomposition process can be finished within
O(M) operations, where M is the number of links [7]. Thus k-core ranking is
feasible for large-scale complex networks encountered in big-data analysis.

As illustrated in Fig. 1a, the classification of k-core can be very different from
that of degree. A hub with low k-core index is usually surrounded by many low-
degree neighbors that limit the influence of the hub. On the contrary, nodes located
in the core region, although may have moderate degree, are capable of generating
large-scale spreading facilitated by their well-connected neighbors. In the case
where recovered individuals do not develop immunity, infections would persist in
the high k-core area. These findings challenge the previous predominate focus on the
number of connections. The simple yet effective measure k-core has inspired several
generalizations in consideration of the detailed local environment in the vicinity of
high k-core nodes [50, 51, 54, 95].

Although k-core was found effective in SIR and SIS spreading dynamics, some
studies indicate that it may not be a good predictor of influence for other spreading
models. For instance, in rumor spreading model, Borge-Holthoefer and Moreno [11]
showed that the spreading capabilities of the nodes did not depend on their k-core
values. These contradictory results relying on the choice of specific spreading model
necessitate more extensive empirical validation with real information flow [72].

Apart from the k-core index, another measure that takes into account the global
network structure is eigenvector centrality [10, 79]. The reasoning behind the
eigenvector centrality is that the influence of an individual is determined by the
spreading capability of his/her neighbors. Starting from a uniform score assigned
to each node, the scores propagate along the links until a steady state is reached. In
calculation, each step of score propagation corresponds to a left multiplication of the
adjacency matrix to the current score vector. This procedure is actually the power
method to compute the principal eigenvalue of the adjacency matrix. As a result, the
steady score vector is in fact proportional to the right eigenvector corresponding to
the largest eigenvalue. Notice that, supposing the initial score of each node is one,
the first step of iteration will recover the degree centrality.

Despite the wide application of eigenvector centrality, it was recently found
that the scores could be localized at a few high degree nodes due to the repeated
reflection of scores from their neighbors during the iteration. Martin et al. solved
this problem by using the leading eigenvector of the Hashimoto Non-Backtracking
(NB) matrix [56]. In NB matrix, the immediate backtracking paths i → j and j → i

are not permissible [34], thus avoiding the heavy score accumulation caused by the
recurrent one-step reflection. Recently, by mapping the SIR spreading process to
bond percolation, Radicchi and Castellano proved that the NB centrality was an
optimized predictor for single influencers in SIR model at criticality [76]. In the
next section, we will see the important role of NB matrix in collective influence
maximization and optimal percolation [61].
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2.2 Dynamics-Based Measures

Beyond the above pure topological measures, a number of centralities are developed
on the basis of specific assumptions on the spreading dynamics. In some classical
centralities proposed in the field of social networks, much emphasis is put on the
shortest path. Along this way, several renowned centralities were developed and
widely accepted in social network ranking. For instance, the closeness centrality
quantifies the shortest distance from a given node to all other reachable nodes in
the network [84], while betweenness centrality measures the fraction of shortest
paths cross through a certain individual between all node pairs [25]. A useful
generalization of closeness centrality is the Katz centrality [39], which considers
all possible paths in the network, but assigns a larger weight to shorter paths
using a tunable parameter. In application, the applicability of these shortest-path-
based centralities is limited by the high computational complexity of calculating the
shortest paths between all pairs of nodes. As a result, they are more suitable for
small or medium scale networks.

Another group of metrics are designed based on random walks. A famous
random walk based centrality is PageRank [13]. As a revolutionary webpage ranking
algorithm, PageRank mimics a random walk process along the directed hyperlinks.
To avoid the random walker trapped in the dangled nodes, a jumping probability α

is introduced to allow the walker jump to a randomly chosen node. The PageRank
score is the stationary probability of each node to be visited by the random walker,
which can be calculated through iteration. In applications, the PageRank of a node i

in a network can be calculated from pt(i) = 1−α
N

+ α
∑

j

Aij pt−1(j)

kout(j)
, where kout(j)

is the number of outgoing links from node j and α is the jumping probability. In
a generalization called LeaderRank [53], a ground node is connected to all other
nodes by additional bidirectional links. This procedure ensures the network to be
strongly connected so that the convergence becomes faster.

In addition to the aforementioned centralities designed for general spreading
processes, several measures are proposed aimed at specific dynamics, depending
explicitly on model parameters. In these approaches, the development of measures
is based on the equations depicting the dynamical process. Usually, the analysis of
equations will naturally lead to the procedure of path counting in which the number
of possible spreading paths is assessed. For instance, Klemm et al. developed a
general framework to evaluate the dynamical importance (DI) of nodes in a series
of dynamical processes [43]. The iterative calculation of DI centrality essentially
counts the total number of arbitrarily long walks departing from each node. Another
metric relying on possible spreading paths is the expected force (ExF) proposed
by Lawyer [45]. To compute the expected force, all possible clusters of infected
nodes after n transmission events starting from a given node are enumerated. Then
the entropy of their cluster degree (i.e., number of outgoing links of the cluster, or
infected-susceptible edges) is calculated as the expected force for each node.
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The approaches introduced here are far from complete. A growing number
of metrics and methods are continuously proposed in the active area of finding
single influencers [52]. In designing effective methods for more complex spreading
models, the basic principles behind these measures should be universal.

3 Finding Multiple Influencers

In spite of the great value of estimating individual nodes’ influence with centralities,
in a realistic situation, it is more relevant to understand spreading processes initiated
by several spreaders. In applications such as viral marketing, it is expected that
the spreaders can be coordinated in an optimal manner so that the final collective
influence will be maximized. Although it sounds similar to the problem of locating
single influencers, the collective influence maximization is in fact a fundamentally
different and more difficult problem. In the seminal work of Kempe et al. [40],
the influence maximization problems in both Independent Cascade Model (ICM)
and Linear Threshold Model (LTM) were mapped to the NP-complete Vertex Cover
problem. This implies, the influence maximization problem cannot be solved exactly
within a polynomial time, leaving us the only choice of heuristic approach.

A straightforward idea to find multiple influencers is to select the top-ranked
spreaders as individual seeds using centrality measures. However, this approach
neglects the interactions and collective effect among spreaders. As demonstrated in
SIR simulations, the selected spreaders have significant overlap in their influenced
population [41]. Therefore, the set of influencers identified with centrality metrics
are usually far from optimal. To solve this conundrum, it needs to be treated from a
collective point of view [61].

3.1 Optimal Percolation

We start our discussion from the percolation model point of view. As a well-studied
dynamical process, percolation was shown to be closely related to spreading and
immunization [16, 67, 70]. Percolation is a classical physical process in which nodes
or links are randomly removed from a graph [86]. The critical quantity that is of
particular interest is the fraction of nodes or links whose removal will collapse
the giant component. It is well known that the size of giant component decreases
continuously to zero as the number of removed nodes or links increases. In the
pioneering works of Newman [67, 68], the class of SIR models were mapped to the
percolation process for which the critical point of the continuous transition could
be solved exactly.

In contrast to the studies focused on random removal, the problem of optimal
percolation aims to find the minimal set of nodes that could guarantee the global
connectivity of the network, or equivalently, dismantle the network if removed.
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Morone and Makse showed that, mathematically, the optimization of spreading
process following exactly the Linear Threshold Model with threshold k − 1 (k is
the degree of each node) can be mapped to the optimal percolation problem [61].
For this specific spreading model, finding the minimum number of seeds so that
the information percolates the entire network is essentially equivalent to locating
the optimal set of nodes in the optimal percolation problem. Similarly, the optimal
immunization problem, dual of optimal spreading, can also be mapped to optimal
percolation [61]. The relation between the cohesion of a network and influence
spreading indicates that the most influential spreaders are the nodes that maintain
the integrity of the network.

The collective influence theory for optimal percolation is developed based on
the message passing equations of the percolation process. For a network with N

nodes and M edges, suppose n = (ni, · · · , nN) indicates whether node i is removed
(ni = 0) or left (ni = 1) in the network. The total fraction of removed nodes is
therefore q = 1 −∑N

i=1 ni/N . For a directed link from i to j (i → j ), let νi→j

denote the probability of node i belonging to the giant component G in the absence
of node j . The evolution of νi→j satisfies the following self-consistent equation:

νi→j = ni

⎡

⎣1 −
∏

k∈∂i\j
(1 − νk→i )

⎤

⎦ , (1)

where ∂i \ j denotes the nearest neighbors of i excluding j . The final probability
νi of node i belonging to the giant component is then determined by νk→i (k ∈ ∂i)
through

νi = ni

[
1 −

∏

k∈∂i

(1 − νk→i )

]
. (2)

The fraction of nodes in the giant component is then given by G(q) =∑N
i=1 νi/N .

For the continuous phase transition in percolation process, the stability of the
zero solution G = 0 is determined by the largest eigenvalue λ(n; q) of the
coupling matrix M for the linearized Eq. (1) evaluated at {νi→j = 0} (see
Fig. 2a). Concretely, M is defined on the 2M × 2M directed links as Mk→
,i→j ≡
∂νi→j

∂νk→

|{νi→j =0}. A simple calculation reveals that for locally-tree like random

networks, M is given in terms of the Non-Backtracking (NB) matrix B [34] via
Mk→
,i→j = niBk→
,i→j in which Bk→
,i→j = 1 if 
 = iandj 	= k, and 0
otherwise.

To guarantee the stability of the solution {νi→j = 0}, it is required λ(n; q) ≤ 1.
The optimal influence problem for a given q can be rephrased as finding the optimal
configuration n that minimizes the largest eigenvalue λ(n; q). As q approaches the
optimal threshold qc, there exist a decreasing number of configurations that satisfy
λ(n; q) ≤ 1. At qc, only one configuration n∗ exists such that λ(n∗; qc) = 1, and
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Fig. 2 (a), For q ≥ qc, the global minimum of the largest eigenvalue λ of the NB matrix over
n is 0. In this case, G = 0 is stable, although there exist non-optimal configurations with λ > 1
for which G > 0. For q < qc, the minimum of the largest eigenvalue is always λ > 1. Therefore
the solution G = 0 is unstable and G > 0. At the optimal percolation transition, the minimum is
at n∗ such that λ(n∗, qc) = 1. At q = 0, λ = κ − 1 where κ = 〈k2〉/〈k〉. At λ = 1, the giant
component is reduced to a tree plus one single loop. This loop is destroyed at the transition qc, and
λ abruptly falls to 0. (b), Ball(i, 
) of radius 
 around node i is shown. ∂Ball is the set of nodes on
the boundary. The highlighted route is the shortest path from i to j . (c and d), Giant component
G(q) of Twitter (N = 469, 014) and Mobile phone network in Mexico (N = 1.4 × 107) computed
using CI, high degree adaptive (HDA), PageRank (PR), high degree (HD), and k-core strategies.
Figure is adapted from Morone et al. [61]

all other configurations will give λ(n; q) > 1. The optimal configuration of Nqc

influencers n∗ is therefore obtained when the minimum of the largest eigenvalue
satisfies λ(n∗; qc) = 1. In practice, the largest eigenvalue can be calculated by the
power method (we leave out q in λ(n; q)):

λ(n) = lim

→∞

[ |w
(n)|
|w0|

]1/


. (3)
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Here |w
(n)| is the 
 iterations of M on initial vector w0: |w
(n)| = |M 
w0|. To
find the best configuration of n, we need to minimize the cost function |w
(n)| for a
finite 
. Through a proper simplification, we have an approximation of |w
(n)|2 of
order 1/N as

|w
(n)|2 =
N∑

i=1

(ki − 1)
∑

j∈∂Ball(i,2
−1)

⎛

⎝
∏

k∈P2
−1(i,j)

nk

⎞

⎠ (kj − 1), (4)

in which ∂Ball(i, 
) is the frontier of the ball of radius 
 in terms of shortest path
centered around node i, P
(i, j) is the shortest path of length 
 connecting i and j ,
and ki is the degree of node i. See an example in Fig. 2b.

Based on the form of Eq. (4), an energy function for each configuration n can be
defined as follows:

E
(n) =
N∑

i=1

(ki − 1)
∑

j∈∂Ball(i,
)

⎛

⎝
∏

k∈P
(i,j)

nk

⎞

⎠ (kj − 1), (5)

where E
(n) = |w(
+1)/2|2 for 
 odd and E
(n) = 〈w
/2|M |w
/2〉 for 
 even.
For 
 = 1, E
(n) is exactly the energy function of an Ising model which can be
optimized using the cavity method [57]. For 
 ≥ 2, it becomes a hard optimization
problem involving many-body interactions. To develop a scalable algorithm for
big-data analysis, an adaptive method is proposed, which is essentially a greedy
algorithm for minimizing the largest eigenvalue of the stability matrix M for a given

 in the form of Eq. (4). In fact, Eq. (5) can be rewritten as the sum of collective
influence from single nodes:

E
(n) =
N∑

i=1

CI(i), (6)

in which the collective influence (CI) of node i at length 
 is defined as:

CI
(i) = (ki − 1)
∑

j∈∂Ball(i,
)

(kj − 1). (7)

The main idea behind the CI algorithm is to remove the nodes that can cause
largest decrease of energy function in Eq. (4). In each iteration of CI algorithm, the
node with the largest CI value is deleted, after which the CI values for remaining
nodes are recalculated. The adaptive removal continues until the giant component
is fragmented, i.e. G(q) = 0. Notice that the procedure minimizes qc but does
not guarantee the minimization of G in the percolation phase G > 0. If we want to
optimize the configuration for G(q) > 0, a reinsertion procedure is applied from the
configuration at G(q) = 0. In practice, if we use a heap structure to find the node
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with the largest CI and only update the nodes inside the (
+1)-radius ball around the
removed node, the computational complexity of CI algorithm can achieve N log(N)

[62]. As a result, the CI algorithm is scalable for massively large-scale networks in
modern social network analysis. For a Twitter network with 469,013 users (Fig. 2c)
and a social network of 1.4 × 107 mobile phone users in Mexico (Fig. 2d), CI
algorithm finds a smaller set of influencers than simple scalable heuristics including
high degree adaptive (HDA), PageRank (PR), high degree (HD), and k-core [61].
To apply CI algorithm to real-time influencer ranking, a Twitter search engine was
developed at http://www.kcore-analytics.com. Notice that, for 
 = 0, CI algorithm
degenerates to high-degree ranking. So degree can be interpreted as the zero-order
approximation of CI in Eq. (7).

To guarantee the scalability of the algorithm, CI essentially takes an adaptive
greedy approach. The performance of CI algorithm can be further improved by a
simple extension of CI using the message passing framework for 
 → ∞—the
CI propagation algorithm (CIP) [62]. Remarkably, the CI propagation algorithm
can reproduce the exact analytical threshold of optimal percolation for cubic
random regular graphs [8]. Another belief-propagation variant of CI algorithm
based on optimal immunization (CIBP) also has similar performance of CIP [62].
However, the improvement over CI algorithm is at the price of higher computational
complexity O(N2 log(N)), which makes both CIP and CIBP unscalable.

Recent studies have shown that the optimal percolation problem is closely related
to the optimal decycling problem, or minimum feedback vertex set (FVS) problem
[38]. Using belief-propagation (BP) algorithms, the optimal percolation problem
was solved in recent works [12, 65]. The result of BP algorithms was found better
than CI algorithm. Another approach to the optimal destruction of networks makes
use of the explosive percolation theory [22].

3.2 Independent Cascade Model

The percolation process is deterministic on a given network with a given seed set.
An important class of spreading model with stochasticity is the independent cascade
model (ICM) [42]. In these models, a node is infected or activated by its neighbors
with a predefined probability independently. Frequently used independent cascade
models include susceptible-infected (SI) model, susceptible-infected-susceptible
(SIS) model, and susceptible-infected-removed (SIR) model. These models are
widely adopted in modeling infectious disease outbreaks and information spreading
in social networks [35, 41, 74, 87, 93, 94]. Therefore, it is of particular interest in
relevant applications.

In the pioneering work of Kempe et al. [40], influence maximization was first
formalized as a discrete optimization problem: For a given spreading process on
a network and an integer k, how to find the optimal set of k seeds that could
generate the largest influence. For a large class of ICM and LTM, the influence

http://www.kcore-analytics.com
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maximization problem can be well approximated by a simple greedy strategy, with
a provable approximation guarantee [40]. In the basic greedy algorithm, the seed
set is obtained by repeatedly selecting the node that provides the largest marginal
increase of influence at each time step. The performance guarantee is built on the
submodular property of the influence function σ(S) [66], which is defined as the
expected number of active nodes if the initial seed set is S. The influence function
σ(·) is submodular if the incremental influence of selecting a node u into a seed
set S is no smaller than the incremental influence of selecting the same node into a
larger set V containing S. That is, σ(S ∪ {u}) − σ(S) ≥ σ(V ∪ {u}) − σ(V ) for
all nodes u and any sets S ⊆ V . Leveraging on the result of submodular function
[66], the greedy algorithm is guaranteed to approximate the true optimal influence
within a factor of 1 − 1/e ≈ 63%, i.e., σ(S) ≥ (1 − 1/e)σ (S∗), where S is the seed
set obtained by the greedy algorithm and S∗ is the true optimal seed set. Although
the basic greedy algorithm is simple to implement and performance-guaranteed, it
requires massive Monte Carlo simulations to estimate the marginal gain of each
candidate node. Several works were proposed to improve the efficiency of greedy
algorithm [19, 20, 30, 47].

While performance guaranteed, from an optimization point of view, the greedy
algorithm may be stuck into local optimum. This drawback can be solved by
a more sophisticated message passing approach. Altarelli et al. developed the
message passing algorithms (both belief-propagation (BP) and max-sum (MS)) for
the problem of optimal immunization for SIR and SIS model [4], which can be
applied to general ICMs. From another point of view, the independent cascade
model can be naturally mapped to a bond percolation. Hu et al. found that in a
series of real-world networks, most SIR spreading would be restrained to a local area
while global-scale spreading rarely occurs [37]. Using the bond percolation theory,
a characteristic local length termed influence radius was revealed. They argue that
the global spreading optimization problem in fact can be solved locally, with the
knowledge of the local environment within the influence radius.

3.3 Linear Threshold Model

Compared with independent cascade model, linear threshold model is more complex
in the sense that a node’s state is collectively determined by its neighbors’ state.
In a typical instance of LTM, each node v is assigned with a threshold value
θv and each link (u, v) is assigned with a weight w(u, v). During the cascade,
a node is activated only if the sum of weights of its activated neighbors reaches
the threshold value, i.e.

∑
u∈∂v w(u, v) ≥ θv . In the case where the weights and

thresholds are drawn uniformly from the interval [0, 1], LTM was proven to be
submodular [40]. Therefore, the influence maximization in this class of LTM can
be well approximated by the greedy strategy, as we introduced in the above section.
However, even with the lazy forward update [47], the algorithm is still unscalable
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for large networks. Chen et al. found a way to approximate the influence of a node
in a local subgraph [21], and developed a scalable greedy algorithm. Goyal et al.
[31] further improved this algorithm by considering more choices of paths.

The above greedy approach and its variants are applicable to LTM with sub-
modular property. However, for the general class of LTM with fixed weight and
threshold, it is not guaranteed to be submodular [40]. An important class of LTM
that may not be submodular is defined as follows: A node i is activated only after a
certain number mi of its neighbors are activated. The choice of different threshold
mi can generate two qualitatively different cascade regimes with continuous and
discontinuous phase transitions. For instance, in the special case of mi = ki − 1
(ki is the degree of node i), a continuous phase transition of influence occurs as the
seed set grows [61]. However, there also exist a wide class of LTM exhibiting a first-
order, or discontinuous phase transition. In the case that seeds are selected randomly,
the transition between these two regimes is explored in detail in the context of
bootstrap percolation [9, 29] and a simple cascade model [91]. But these results are
based on the typical dynamical properties starting from random initial conditions.
For influence maximization with a special initial condition, the dynamical behavior
should be deviated from the average ones. Altarelli et al. proposed a BP algorithm
that could estimate statistical properties of nontypical trajectories and found the
initial conditions that lead to cascading with desired properties [2]. To obtain the
exact set of seeds, MS equations were derived by setting the inverse temperature
β → ∞ in the energy function [3]. Extending the work under the assumption of
replica symmetry, the theoretical limit of the minimal contagious set (the minimal
seed set that can activate the entire graph) in random regular graphs is obtained
using the cavity method with the effect of replica symmetry breaking [33].

In big-data analysis, an efficient and scalable algorithm designed for general
LTM is needed. Starting from the message passing equations of LTM, generalized
from Eq. (1) of percolation, a scalable algorithm named collective influence
for threshold model (CI-TM) can be developed [75]. By iteratively solving the
linearized message passing equations, the cascading process can be decomposed
to separate components, each of which corresponds to the contribution made by a
single seed. Interestingly, it is found the contribution of a seed is determined by the
subcritical paths along which cascade propagates. In order to design a scalable algo-
rithm, the node with the largest number of subcritical paths is recursively selected
into the seed set. After each selection, the selected node and the subcritical paths
attached to it are removed, and the status of the remaining nodes is recalculated.
Making use of the heap structure, CI-TM algorithm can achieve the complexity
of O(N log N). On one hand, computing CI − TM
 value for a given length 
 is
equivalent to iteratively visiting subcritical neighbors of each node layer by layer
within 
 radius. Because of the finite search radius, computing CI − TM
 for each
node takes O(1) time. Initially, we have to calculate CI − TM
 for all nodes.
However, during later adaptive calculation, there is no need to update CI − TM


for all nodes. We only have to recalculate for nodes within 
 + 1 steps from the
removed vertices, which scales as O(1) compared to the network size as N → ∞
as shown in [62]. On the other hand, selecting the node with maximal CI-TM can
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be realized by making use of the data structure of heap that takes O(log N) time
[62]. Therefore, the overall complexity of ranking N nodes is O(N log N) even
when we remove the top CI-TM nodes one by one. In both homogeneous and scale-
free random networks, CI-TM achieves larger collective influence given the same
number of seeds compared with other scalable approaches. This provides a practical
method that can be applied to massively large-scale networks.

4 Applications of Influencer Identification

The problem of influencer identification is ubiquitous in a wide class of applications.
So far, the theory of influencer identification has been applied to a number of
important problems. In this section, we will introduce the application of influencer
identification in three different areas: information diffusion, brain networks, and
socioeconomic systems.

4.1 Information Diffusion in Social Networks

The most direct application of influencer identification is to maximize the informa-
tion diffusion in social networks. In recent years, a huge number of research works
have been performed aiming to relate users’ spreading power to their locations,
or personal features [58, 72, 89]. These works, mainly focusing on various types
of online social networks including email communication [49], Facebook [60, 90],
Twitter [6, 18, 44], and blogs sharing communities [5, 77], enrich our understanding
of information diffusion in social networks.

A great challenge of developing effective predictors of influencers comes from
the validation. In most of the previous works, the validation of proposed measures
depends on modeling of information spreading in a given network. This approach,
however, has led to several contradictory results on the best predictor of influence
depending on the particular models [11, 41]. These models are built on simplified
assumptions on human behavior [36] that neglect some of the most important
features in real information diffusion [27], such as activity frequency [64, 83],
behavior pattern [48, 73, 88], etc. Therefore, it is required to validate the various
proposed predictors using empirical diffusion records in real-world social media.

We first compare the performance of different predictors for single influencers
[72]. Realistic information diffusion instances as well as the underlying social
networks are collected in four dissimilar social platforms: a blog-sharing community
LiveJournal, scientific journals of American Physical Society, an online social
network Facebook, and microblog service Twitter. To determine the real influence
of each node, a directed diffusion graph is first constructed for each system by
combining all directed diffusion links together. Then starting from a source node
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Fig. 3 K-core predicts the average influence of spreading more reliably than in-degree. Logarith-
mic values (base 10) of the average size of influence region M(kS, kin) when spreading originates
from nodes with (kS, kin) for LiveJournal (a), APS journals (b), Facebook (c), and Twitter (d) are
shown. Figure is adapted from Pei et al. [72]

i, the total influence Mi of node i is computed by tracking the diffusion links
layer by layer in a breadth-first-search (BFS) fashion. Once we get the realistic
influence, it is convenient to compare the performance of different predictors,
including degree, k-core, and PageRank. Specifically, we can calculate the average
influence M(kS, kin) for nodes with a given combination of k-core value kS and
in-degree kin: M(kS, kin) = ∑

i∈ϒ(kS,kin)
Mi/N(kS, kin), where ϒ(kS, kin) is the

collection of users in the (kS, kin) bin, and N(kS, kin) is the size of this collection.
In all the systems, it is consistently observed that nodes with fixed degree can have
either large or small influence, while nodes located in the same k-core have similar
influence (see Fig. 3). Thus the influence of nodes is more related to their global
location in the network, indicated by their k-core values. The same conclusion is
also obtained in the comparison with PageRank. K-core does not only predict the
average influence better, but also recognize influencers more accurately. Although
k-core is effective, it is too coarse to distinguish different nodes within same shells.
In some cases, there may be millions of nodes in one shell.
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We further investigate the identification of multiple influencers [89]. Again,
we use the realistic diffusion instances in the above four platforms. However, the
empirical data cannot be directly mapped to ideal multi-source spreading. Such
ideal multi-source spreading instances in which spreaders send out the same piece
of message at the same time rarely exist in reality. Even though we can find such
instances, the initial spreaders are hardly the same as the set of nodes selected
by CI or other heuristic strategies. To circumvent this difficulty, we can construct
virtual multi-source spreading processes by leveraging the behavior patterns of users
extracted from the data. Suppose n spreaders S = {si |i = 1, 2, · · · , n, n = qN} are
activated at the beginning of the virtual process. The influence strength Ig1(s) from
seed s to its neighbor g1 depends on the tendency of g1 to receive information from
s. Assume during the observation time, s has sent out r(s) pieces of messages and g1
has accepted r(s, g1) of them. Then the influence strength can be approximated by
Ig1(s) = r(s, g1)/r(s). In subsequent spreading, g1 may affect its neighbor g2 	= s

in the same manner. Following the spreading paths, we can acquire the influence
strength s enforcing on its 
-step neighbor g
: Ig


(s) =∏

k=1 r(gk−1, gk)/r(gk−1),

where g0 = s. The collective influence Iu for node u imposed by the seed set S is
therefore Iu = maxn

i=1 Iu(si). See Fig. 4 for an example. Finally, summing up all
the N nodes in the network, the collective influence of the spreaders imposed on the
entire system is Q(q) = ∑N

u=1 Iu/N . Based on this virtual spreading process, we
can evaluate the collective influence of the spreaders selected by different methods.
In particular, we compare the influencers selected by collective influence algorithm
(CI), adaptive high degree (HDA), high degree (HD), PageRank (PR), and k-core.
In all the systems, CI consistently outperforms other ranking methods.

Fig. 4 (a) Calculation of influence strength to node u. Suppose the maximum spreading layer is set
as L = 2 for two distinct seeds s1 and s2. The collective influence enforcing to u is selected as the
largest value of the strength Iu(s1) and Iu(s2). (b) An illustration of single influence and collective
influence. The three circle-like areas represent influence range Rs1 , Rs2 and Rs3 , for different
spreaders s1, s2, and s3. The contour lines show the levels of influence strength. The collective
influence (grey curve) is obtained by combining single influence strengths of all spreaders. Figure
is adapted from Teng et al. [89]
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4.2 Collective Influence in Brain Networks

The human brain is a robust modular system interconnected as a Network of
Networks (NoN) [15, 28, 78]. How this robustness emerges in a modular structure
is an important question in many disciplines. Previous interdependent NoN models
inspired by power grid are extremely fragile [14], thus cannot explain the observed
robustness in brain networks. To reveal the mechanism beneath this robustness, a
NoN model is proposed which can afford inter-link functionality and remain robust
at the same time [63, 82].

In NoN system, the links are classified into two types: inter-modular links
that represent the mutual dependencies between modules and intra-modular links
that do not involve in the inter-modular dependencies. Denote S (i) and F (i) as
the set of nodes connected to node i via intra-modular and inter-modular links,
respectively. Suppose the variable state of node i is σi ∈ {0, 1} (inactive or
active), and the external input to node i is ni ∈ {0, 1} (no input or input). In
the general activation model, the variable state is related to the input through

σi = ni

[
1 −∏j∈F (i)(1 − nj )

]
. That is, the node i is activated only if i receives

the input (ni = 1) and at least one of its neighbors connected with inter-modular
links receives the input. In a robust brain network, for typical input configuration
n = (n1, · · · , nN), the giant (largest) component of the active nodes G with σi = 1
should be globally connected. Therefore, the robustness of the brain network can
be characterized by the critical value qrand = 1 − 〈n〉 of zero inputs such that
G(qrand) = 0. Here the input configuration n is sampled from a flat distribution.
Ideally, the robust NoN should have no disconnected phase, with a large value of
qrand close to 1.

To explain both robustness and inter-link functionality of brain networks, a robust
NoN (R-NoN) model is proposed [63]. Define ρi→j ∈ {0, 1} as the message running
along an intra-modular link i → j , ϕi→j ∈ {0, 1} as the message running along
an inter-modular link i → j . The information flow follows the self-consistent
equations

ρi→j = σi

⎡

⎣1 −
∏

k∈S (i)\j
(1 − ρk→i )

∏


∈F (i)

(1 − ϕ
→i )

⎤

⎦ , (8)

ϕi→j = σi

⎡

⎣1 −
∏

k∈S (i)

(1 − ρk→i )
∏


∈F (i)\j
(1 − ϕ
→i )

⎤

⎦ . (9)

The physical meaning of the above equations is easy to be interpreted. For instance,
in Eq. (8), a positive message ρi→j is transmitted from i to j in the same module if
node i is active σi = 1 and if it receives at least one positive message from either a
node k in the same module ρk→i = 1 or a node 
 in the other module ϕ
→i = 1.
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Notice that, the logical OR is important since it is the basis of the robustness of
R-NoN. The final probability of node i belonging to the largest active component
G is

ρi = σi

⎡

⎣1 −
∏

k∈S (i)

(1 − ρk→i )
∏


∈F (i)

(1 − ϕ
→i )

⎤

⎦ . (10)

The size of G is therefore G = 〈ρi〉. In the R-NoN model, the system is robust since
a node can be active σi = 1 even it does not belong to G. This prevents catastrophic
cascading effects in the catastrophic C-NoN model inspired by power grid failure
[14]. In the C-NoN model, a node remains functional only if it belongs to the giant
component in both networks. This implies the status of a node in one network
is interdependent on its status in the other network. The fundamental difference
between C-NoN and R-NoN is that, in C-NoN model, the size of G is computed
through

ρi = σi

⎡

⎣1 −
∏

k∈S (i)

(1 − ρk→i )

⎤

⎦

⎡

⎣1 −
∏


∈F (i)

(1 − ϕ
→i )

⎤

⎦ . (11)

So the logical OR in Eq. (10) is replaced by the logical AND in C-NoN. This stricter
condition makes the system extremely sensitive to small perturbations. In synthetic
NoN made of ER and SF random graphs, it is found the percolation threshold qrand

of R-NoN model is close to 1. On the contrary, the C-NoN model has threshold
qrand close to 0. This indicates that the two models indeed capture two different
phenomena.

After exploring the behavior of R-NoN model under typical inputs, it is required
to study the response to rare events targeting the influencers in the brain networks.
Rare malfunction of nodes in the brain network that targets influencers may interrupt
the global communication in the brain, which have been conjectured be responsible
for certain neurological disorders. Or conversely, activating the influencers would
optimally broadcast information to the entire network. Therefore, it is important to
predict the location of the most influential nodes involved in information processing
in the brain. To find the minimal fraction of nodes qinf l in the brain network
whose removal would optimally fragment the giant component, the R-NoN model
is mapped to the optimal percolation. The collective influence of nodes is calculated
by minimizing the largest eigenvalue of the modified NB matrix. Particularly, the
collective influence of node i is given by

CI
(i) = zi

∑

j∈∂Ball(i,
)

zj +
∑

j∈F (i):kout
j =1

zj

∑

m∈∂Ball(j,
)

zm, (12)
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Fig. 5 (a) Spatial location of the three main modules (AC, PPC, and V1/V2) in the 3NoN.
(b) Topology of the 3NoN. Inter-links and intra-links are displayed. (c) Size of the largest active
cluster G(q) as a function q of the nodes with ni = 0 following CI optimization (red curve, 
=3)
and random states (black curve, random percolation). Figure is adapted from Morone et al. [63]

where zi ≡ kin
i + kout

i − 1. The first term is the node-centric contribution, which
presents in the single network case of optimal percolation, while the second term is
the node-eccentric contribution, which is a new feature of the brain NoN.

Applying the R-NoN model and collective influence theory to real brain net-
works, it is possible to obtain the collective influence map of brain NoN. The brain
network is constructed from the functional magnetic resonance imaging (fMRI)
data of the experiment of stimulus driven attention [26, 28, 63]. In the experiment,
each subject performs a dual visual-auditory task when receiving a visual stimulus
and an auditory pitch simultaneously. This experiment requires the deployment of
high level control modules in the brain, thus captures the role of dependency inter-
modular connections. In the obtained brain network (see Fig. 5a, b), it is observed
that the system is robust with large threshold qrand ≈ 0.9. While the minimal set of
influencers only requires qinf l ≈ 0.2 fraction of nodes (see Fig. 5c). Using the CI-
map of the brain network, it is confirmed that control is deployed from the higher
level module (Anterior cingulate) towards certain strategic locations in the lower
ones (posterior parietal cortex, posterior occipital cortex). Moreover, the coarse-
grain of the NoN to top CI nodes can predict the strategic areas in the brain.
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4.3 Financial Status in Socioeconomic Systems

It has long been recognized that the pattern of individuals’ social connection in
society can affect people’s financial status [32]. However, how to quantify the
relationship between the location of an individual in social network and his/her
economic wellness remains an open question. Despite that the effect of network
diversity on economic development has been tested in the community level [24],
inference of people’s financial status from social network centralities or metrics in
individual level is still needed. The difficulty of such investigation comes from the
lack of empirical data containing both individual’s financial information and pattern
of social ties.

To find a reliable social network predictor of people’s financial status, a massively
large social network of the mobile and residential communication in Mexico
containing 1.10 × 108 users together with financial banking data are analyzed [55].
With this dataset, it is possible to precisely cross-correlate the financial information
of a person with his/her location in the communication network at the country level.
Particularly, the financial status of individuals is reflected by their credit limit. In
the analysis of the 5.02 × 105 bank clients identified in the phone call network, the
top 10% and bottom 10% individuals present completely different communication
pattern (see Fig. 6). Richer people maintain more active and diverse links, some
connecting to remote locations and forming tightly linked “rich clubs.”

To characterize the affluent people with network metrics, several centralities that
are feasible for large-scale networks are compared, including degree, PageRank,
k-core, and collective influence (CI). In the communication network, these four
metrics are correlated. Therefore, they all show correlations with financial status
when age is controlled. Among them, both k-core and CI capture the strong
correlation with credit line with a R2 value of 0.96 and 0.93, respectively. However,
CI is more preferable since it satisfies both, a strong correlation and a high
resolution. According to the definition of CI, top CI nodes are surrounded by hubs
hierarchically. This is exactly the structure of ego-centric network of the top 1%
wealthy people.

Fig. 6 (a and b) Visualization of communication activity of population in the top 10% and bottom
10% total credit limit classes. Figure is adapted from Luo et al. [55]
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The performance of predictions can be further enhanced by considering the factor
of age. An age-network combined metric ANC = αAge + (1 − α)CI with α = 0.5
can achieve a correlation with R2 = 0.99. Moreover, it is able to identify 70%
high credit individuals at the highest earner level. To validate the effectiveness, a
real social marketing campaign was performed. Specifically, text messages inviting
new credit card clients were sent to 656,944 people selected by their high CI
values in the social network. Meanwhile, the same message was sent to a control
group of 48,000 individuals selected randomly. The response rate, measured by the
fraction of recipients who requested the product, is augmented by threefold in the
top influencers identified by CI compared with the random control group.

The same analysis was also applied to individuals’ diversity of links [24]. The
diversity of an individual can be measured by the diversity ratio DR = Wout/Win,
i.e., the ratio of total communication events with people in other communities Wout
and within the same community Win. The correlation between DR and CI is weak
so they should reflect different aspects of network structure. In comparison with
financial data, the age-diversity composite ADC = αAge + (1 − α)DR (α = 0.5)
well correlates with people’s financial status. These evidences indicate that both CI
and DR are effective predictors of people’s financial situation in an individual level.
This finding has a great practical value in relevant applications, for instance, social
marketing campaigns.

Acknowledgements We acknowledge funding from NIH-NIBIB 1R01EB022720, NIH-NCI
U54CA137788 / U54CA132378 and NSF-IIS 1515022.
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Service Adoption Spreading in Online
Social Networks

Gerardo Iñiguez, Zhongyuan Ruan, Kimmo Kaski, János Kertész,
and Márton Karsai

1 Introduction

A human society abounds with examples of collective patterns of behaviour that
arise due to the correlated decisions of a large number of individuals. This is evi-
denced in the spread of religious beliefs and political movements, in the behavioural,
cultural, and opinion shifts in a population, in the adoption of technological and
medical innovations, in the rise of popularity of political and media figures, in
the growth of bubbles in financial markets, and in the use of products and online
services. All of these phenomena tend to evolve similarly over time, as they
start with individuals that independently from their peers and due to external
influence such as mass media take the risk by adopting a certain behaviour [1, 2].
Then, these processes continue as friends, colleagues, and acquaintances observe
such individuals and engage with the same behaviour, therefore participating in a
spreading process throughout society [3].
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The way ideas, products, and behaviour spread throughout a population over
time, commonly known as innovation diffusion, was first observed empirically
in the mid twentieth century by the likes of Rogers [4] and Bass [5]. In the
following decades, many mathematical models were introduced with the goal of
identifying mechanisms by which behaviour diffuses through society [6–8]. One
of the first (and arguably simplest) is the Bass model for forecasting sales of new
consumer durables [5], which characterises the diffusion of innovation as a process
of contagion initiated by some external influence [2] (e.g. mass communication,
news media) and promoted by internal, social influence [9] (via word-of-mouth,
viral marketing, etc.). The model assumes a homogeneous population of adopters
and it predicts that aggregated sales data has an s-shaped pattern as a function of
time [6, 10].

Despite the success of the Bass model and similar diffusion-like models to
capture qualitatively the temporal behaviour of adoption processes, macroscopic
models only provide empirical generalisations based on the behaviour of society
as a whole (by means of aggregated data on adoption rates, for example). Hence,
these models do not take into account individual heterogeneities and the complex
structure and dynamics of social processes [11]. In other words, since the same
macro-level behaviour may arise from several individual-level mechanisms (like
learning, externalities, or contagion), it is difficult for these models to assess what
mechanisms are actually responsible for large-scale spreading phenomena [12–14].
In order to overcome this issue, agent-based diffusion models consider behavioural
heterogeneities, networked social interactions [15, 16], and decision-making pro-
cesses based on the cognitive capacities of individuals [17–19]. Then, behaviour at
the level of society emerges dynamically from the interplay between network struc-
ture and the actions of people. This microscopic approach allows for the modelling
of varying behaviour across individuals, while recognising that social interactions
and interpersonal communication are essential in determining adoption [1, 20].

Under the network approach, the Bass model is an archetypal example of
simple contagion [21] where, akin to the transmission of a disease, information
and individuals’ willingness to adopt may propagate with exposure to a single
person engaging in some particular behaviour. However, when adoption turns out
costly, risky or controversial, the spread of ideas and products often requires
social reinforcement and exposure to several sources, a phenomenon usually called
complex contagion [22, 23]. The requirement of multiple interactions for adoption
was first implemented theoretically by Granovetter via behavioural thresholds,
namely “the number or proportion of others who must make one decision before
a given actor does so” [6]. Following this idea various agent-based network models
have been introduced and analysed by Watts and others [1, 24–31] in order to
understand the properties of threshold-driven social contagion.

Despite the allure of social influence as the reason behind innovation diffusion,
it is more challenging to identify causal mechanisms in adoption spreading than
in biological contagion, since the same empirical, large-scale observations may be
obtained as effects of social influence [32], homophily [33], or the environment. For
example, collective adoption patterns may appear as a consequence of homophilic
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structural correlations, where interacting individuals adopt due to their similar
interests and not due to actual social influence [23]. Hence distinguishing between
the effects of social influence and homophily at the individual level remains
a challenge [34, 35]. Moreover, regarding the particular role social influence
may have in adoption spreading, several assumptions have been proposed about
its functional dependency on the number of adopters necessary to influence an
individual. While Granovetter and others [6, 24] suggest a simple linear dependency,
as observed in some large techno-social systems [19], Latané [36] argues for non-
linear effects that have been demonstrated empirically by online experiments at
different scales [9, 37, 38].

Perhaps one of the most intriguing features of threshold-driven social contagion
is its ability to capture what Watts calls the robust yet fragile nature of complex
systems [24]. This means that a population may be robust and disregard many
ideas and products, but suddenly exhibit fast system-wide adoption patterns known
as behavioural cascades. While homophily suggests that adoption behaviour is
only seemingly correlated, and simple contagion implies that external influence
always induces global adoption in a connected population, complex contagion
captures the additional feature that large cascades of behavioural patterns tend to
happen only rarely, and may be triggered by actions at the individual level that are
indistinguishable from the rest. Indeed, behavioural cascades are rare but potentially
disrupting social spreading phenomena, where collective patterns of exposure
arise through reinforcement as a consequence of small initial perturbations [39].
Examples include the rapid emergence of political and grass-root movements [40–
42], or the fast spreading of information [12, 27, 43–48] and behavioural patterns
[49]. Moreover, cascades may appear in both online [50–54] and offline [55] social
environments.

The characterisation [12, 13, 56–59] and modelling [24, 60–63] of behavioural
cascades have received a lot of attention in the past and provide some understanding
of the causal mechanisms and structure of empirical and synthetic cascades on
various types of networks [64–67]. However, these studies fail in addressing the
temporal dynamics of the emerging cascades, which may vary among empirical
examples of social contagion. In other words, previous works do not answer why
real-world cascades may evolve either slowly or rapidly over time. In contrast
to the cases of rapid cascading mentioned above, the propagation of products in
social networks is typically slower, with adoption spreading gradually, even if it
is driven by threshold mechanisms and may eventually cover a large fraction of
the total population [19]. This slow behaviour characterises the adoption of online
services such as Facebook, Twitter, LinkedIn, and Skype (Fig. 1a), since their yearly
maximum relative growth rate of cumulative adoption [68] is lower than in the
case of rapid cascades, as suggested in standard models of threshold-driven social
contagion like the Watts threshold (WT) model [24].

In this chapter we review recent works [69, 70] focusing on the empirical char-
acterisation and mathematical modelling of the slow, threshold-driven spreading of
service adoption in online social networks, particularly in the case of Skype. We
first provide empirical evidence of the distribution of individual adoption thresholds
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Fig. 1 The speed and layers of online service adoption. (a) Yearly maximum relative growth rate
(RGR) of cumulative adoptions obtained by taking the maximum of the yearly adoption rate (yearly
count of adoptions) normalised by the final observed number of adoptions of a given service. We
show it for several online social-communication services [68] (black bars), including three paid
Skype services (s1—“subscription”, s2—“voicemail”, and s3—“buy credit”). The dark grey bar
corresponds to a rapid cascade of adoption as suggested by the Watts threshold model, while the
light grey bar is the prediction of our model for Skype s3. (b) Schematic layer structure of online
service adoption systems. The lowest layer represents a real, offline social network; the middle
layer corresponds to any online social network; and the top layer is the adoption of a service
within the social network. As an advantage in this study we have full knowledge about the Skype
online social network in this multi-layer structure, while we follow a paid service spreading on the
online network. This figure is adopted from Ref. [70] and it is licensed under Creative Commons
Attribution 4.0 International Licences

and other structural and dynamical features of the worldwide Skype adoption
cluster. We then show how to incorporate the observed structural and threshold
heterogeneities into a dynamical threshold model where multiple individuals may
adopt spontaneously (i.e. firstly among their acquaintances). We find that if the
fraction of users who reject to adopt a product or idea in the model is large, the
system enters a quenched state where the evolution and structure of the global
adoption cluster is very similar to our observations of services within Skype.
Model calculations and the analysis of the real social contagion process suggest
that the evolving structure of an adoption cluster differs radically from previous
expectations [24], since it is triggered by several spontaneous adoptions arriving at
a constant rate. Furthermore, the stable adopters (who initially resist exposure) are
actually responsible for the emergence of global social adoption.

2 Empirical Observations

In order to observe service adoption dynamics we analyse an example of an online
diffusion process, where we have access to individual service adoption events as
well as the underlying social network. Our aim is to identify the crucial mechanisms
necessary to consider in models of complex contagion to match them better with
reality, and define a model that incorporates these mechanisms and captures the
possible dynamics leading to the emergence of real-world global cascades.
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To fully understand service adoption processes on online social structures, we
need to keep in mind some of their proxy characteristics. People of a society
constitute a social network by being connected with ties of several kinds that are
maintained in various ways. However, and despite their recent popularity, online
social systems are not capable of mapping the entire social network as offline,
occasionally maintained, temporary, or ill-favoured social ties may remain invisible
in such systems. Therefore, these networks provide only a proxy sample of the real
social structure (Fig. 1b), with important but also insignificant social ties present.
Moreover, data available for social network studies commonly arrives as a sample
of a larger online social system, which unavoidably leads to observational biases. In
addition, connections in an online social structure cannot precisely assign the flow
of direct social influence among the connected individuals, only the possibility of it.
Finally, just like real social networks, online social systems evolve over time via the
creation and dissolution of social ties or by nodes entering or leaving the system.
Due to all these limitations it is rather challenging to make unbiased observations
about any unfolding dynamical processes, without making some assumption about
the underlying online social systems.

In our study we use the social network of one of the largest voice-over-internet
providers in the world, the network of Skype, which actually copes well with the
limitations listed above. It maps all connections in the Skype network without
sampling, thus it provides us with a complete, unbiased map of the underlying social
network, maintaining the diffusion of services available only for registered users in
the network. This network evolves as a function of time via adoption, churning, and
link creation dynamics. We have shown in an earlier study [19] that while rates of
these actions increase considerably with time, the adoption processes can be well
characterised by the net rate of the actual number of users. We also found that while
spontaneous adoptions and churning evolve with a constant rate, the probability
of peer-pressured adoptions corresponds linearly to the strength of social influence,
giving rise to a non-linear dynamics at the system level, which enables its modelling
as a complex contagion process.

In our study we concentrate on the adoption dynamics of a paid service that
unfolds over the Skype social network (Fig. 1b). Since this adoption process evolves
in a considerably faster time-scale than the underpinning social network, we
can validly assume a time-scale separation. Thus, from here on we consider the
network structure to be static, which may give us a good first approximation while
concentrating on the adoption dynamics unfolding on its fabric. To identify the
effects of social influence in our empirical system we also present a null model
study (Sect. 2.4).

2.1 Data Description

In our social network nodes represent users and edges between pairs of users exist
if they are in each other’s contact lists. A user’s contact list is composed of friends.
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If user u wants to add another user v to his/her contact list, u sends v a contact
request, and the edge is established at the moment v approves the request (or
not, if the contact request is rejected). For the purpose of our study we use the
largest connected component of the aggregated free Skype service network, which
was recorded from September 2003 to November 2011 (i.e. over 99 months) and
contains roughly 4.4 billion links and 510 million registered users worldwide [71].
The data is fully anonymised and considers only confirmed connections between
users after the removal of spammers and blocked nodes.

To study an example of service adoption dynamics we follow the purchases of
the “buy credit” paid service for 89 months starting from 2004. Data includes the
time of first payment of each adopting user, an individual and conscious action that
tracks adoption behaviour. Note that other examples about the adoption dynamics
of similar services are presented in [70].

2.2 Degree and Threshold Heterogeneities

In his seminal work on modelling adoption cascades [24], Watts identified two
structural characteristics that control the emergence of collective adoption cascades.
One is the distribution P(k) of degrees (i.e. number of neighbours of a node), with
average z = 〈k〉, and the other is the distribution P(ϕ) of adoption thresholds (with
average w = 〈ϕ〉), defined as the necessary fraction of exposed neighbours that
triggers the adoption of an individual under study, or central ego.

Degree heterogeneities have been in the focus of network science for a while now,
and a broad degree distribution P(k) is one of the main characteristics of complex
networks [72, 73]. This distribution has been usually described as a power-law, but
a log-normal fit has often turned out to work better [74]. The latter is the case with
our data:

P(k) ∝ k−1 exp[−(ln k − μD)2/(2σ 2
D)], (1)

where the best fit is obtained with k ≥ kmin and parameters μD = 1.2, σD = 1.39
and kmin = 1 (Fig. 1a), giving an average degree z = 8.56.

It is a challenging task to quantify individual adoption thresholds, as their
observation simultaneously requires information about the underlying network
structure and the dynamical adoption process evolving on top. Therefore, besides
measuring the number k of friends of an ego in the Skype social network (already
needed for the degree distribution), for k-degree users at the time of their adoption
we measure the number �k of their neighbours who have adopted the service earlier,
i.e. the integer threshold [57]. To our knowledge, this is the first detailed study
measuring the number of adopting neighbours of adopters in an empirical setting.
The obtained distribution P(�k) for varying k is shown in the inset of Fig. 2b.
The importance of our empirical findings is amplified by the observation that these
distributions can be scaled together when using the fractional threshold variable
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(a) (b)

Fig. 2 Degree and threshold heterogeneities. (a) Degree distribution P(k) of the Skype network
(light/dark grey circles for raw/binned data) on a double log-scale with arbitrary base n. P(k)

is fitted with a log-normal distribution (see text) with parameters μD = 1.2 and σD = 1.39,
and average z = 8.56 (grey line). (b) Distribution P(�k) of integer thresholds �k for several
degree groups in Skype s3 (inset). By using P(�k, k) = kP (�k/k), these curves collapse into a
master curve approximated by a log-normal function (dashed line in main panel) with parameters
μT = −2 and σT = 1, as constrained by the average threshold w = 0.19. This figure is adopted
from Ref. [70] and it is licensed under Creative Commons Attribution 4.0 International Licences

ϕ = �k/k, i.e. the fraction of adopting neighbours at the time of adoption (Fig. 2b
main panel). Thus, in a discussion of whether the number or the ratio of adopting
neighbours matters in behavioural adoption [22, 24], our results give strong support
to the latter.

Using fractional thresholds and the relationship P(�k, k) = kP (�k/k), all
distributions collapse to a master curve, which is once again well-approximated by
a log-normal function of the following form,

P(�k/k) = P(ϕ) ∝ ϕ−1 exp[−(ln ϕ − μT )2/(2σ 2
T )], (2)

with parameters μT = −2 and σT = 1 as constrained by the average threshold w =
0.19 [70]. These empirical observations, in addition to the broad degree distribution,
provide quantitative description of the heterogeneous nature of adoption thresholds.

2.3 Dynamics and Structure of Adoption Cascades

Since we know the complete structure of the online social network, as well as the
first time of service usage for all adopters, we can follow the temporal evolution
of the adoption dynamics. By counting the number of adopting neighbours of
an ego, we identify innovators (�k = 0), and vulnerable (�k = 1) or stable
(�k > 1) nodes, in accordance with the categorisation of Watts [24]. As we show
in Fig. 3a, the adoption rates for these categories behave rather differently from
previous suggestions [24]. First, there is not only one seed but an increasing fraction
of innovators in the system who, after an initial period, adopt approximately at a
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(a) (b)

(c) (d)

Fig. 3 The dynamics and structure of adoption cascades. (a) Adoption rate of innovators [Ri(t)],
vulnerable nodes [Rv(t)], and stable nodes [Rs(t)], as well as the net service adoption rate [R(t)],
where the rates are measured with a 1-month time window, and q and τ are arbitrary constants. The
shaded area indicates the regime where innovators adopt approximately with constant rate. (b) Null
model rates where times of adoption are randomly shuffled. (c) Empirical connected-component
size distribution at different times for the adoption [P(sa), main panel] and stable adoption [P(ss),
inset] networks, with sa and ss relative to system size. (d) Empirical connected-component size
distribution P(sv) for the relative size of innovator-induced vulnerable trees at different times.
This figure is adopted from Ref. [70] and it is licensed under Creative Commons Attribution 4.0
International Licences

constant rate (denoted by the grey shaded area in Fig. 3a). Second, vulnerable nodes
adopt approximately with the same rate as innovators, which suggests a strong
correlation between these types of adoption. This stationary behaviour is rather
surprising as environmental effects, like competition or marketing campaigns, could
potentially influence the adoption dynamics. On the other hand, the overall adoption
process accelerates due to the increasing rate of stable adoptions induced by social
influence.

To better understand how innovation spreads throughout the social network,
we take a closer look at the internal structure of the service adoption process. To
do so, we consider individual adoption times and construct an evolving adoption
network, where links exist between users who have adopted the service before
time t and are connected in the social network underneath. In order to avoid the
effect of instantaneous group adoptions (evidently not driven by social influence),
we only consider links between connected nodes whose adoption did not happen
at the same time. This way links in the adoption graph indicate ties where social
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influence among individuals could have existed. By observing the evolution of the
adoption network, we are interested in its connectedness and its composition of sub-
components of adopters of different kinds.

The size distribution P(sa) of connected components in the adoption network
shows the emergence of a giant percolating component over time (Fig. 3c main
panel), along with several other small clusters. Moreover, after decomposition we
observe that the giant cluster builds up from several innovator seeds that induce
small vulnerable trees locally (Fig. 3d), each with small depth [12, 70, 75]. At the
same time the stable adoption network (considering connections between all stable
adopters at the time) has a giant connected component, indicating the emergence
of a percolating stable cluster with size comparable to the largest adoption cluster
(Fig. 3c, inset). These observations suggest a scenario for the evolution of the
global adoption component where multiple innovators adopt at different times and
trigger local vulnerable trees, which in turn induce a percolating component of the
connected stable nodes holding the global adoption cluster together. Consequently,
in the structure of the adoption network primary triggering effects are important only
locally, while external and secondary triggering mechanisms seem to be responsible
for the emergence of global-scale adoption.

Despite this expansion dynamics and connected structure of the service adoption
network, we need to take a closer look at spurious effects, which could potentially
induce the observed behaviour. First, during our analysis we assume that the
adoption process is exclusively driven by social influence, without any direct
information about the presence of the influence itself. One can argue that the
observed phenomena is simply explained by homophily, i.e. by frequent links
between people who are both interested in the given service and who would adopt
independently from each other. Second, the service reaches less than 6% of the total
number of active Skype users over a period of 7 years [71]. Since this adopting
minority is connected within a giant adopting cluster, it may indicate local effects
of social influence but also raises the question about the role of non-adopting
users. Finally, we observe that the giant adoption cluster evolves over several years,
which could simply be the consequence of individual decisions of users to wait to
adopt the service even after their threshold has been reached. In the following we
further investigate these questions to better understand the adoption process. First
we present a null model study to underline the overall effects of social influence as
compared to homophily; we also perform a time re-scaling experiment to explore
the role of waiting times on the global adoption dynamics; and finally we propose a
dynamical threshold model [69, 70], which helps us understand the role of multiple
innovators and non-adopters in the unfolding of the service adoption processes.

2.4 Social Influence vs. Homophily

Studies of social contagion phenomena assume that social influence is responsible
for the correlated adoption of connected people. However, an alternative expla-
nation for the observed correlated adoption patterns is homophily: a link creation
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mechanism by which similar egos get connected in a social structure. In the latter
case, the correlated adoption of a connected group of people would be explained
by their similarity and not necessarily due to social influence. Homophily and
influence are two processes that may simultaneously play a role during the adoption
process. Nevertheless, distinguishing between them on the individual level is very
challenging using our or any similar datasets [34, 35]. Fortunately, at the system
level one may identify which process is dominant in the empirical data. To do that
we first need to elaborate on the differences between these two processes.

Influence-driven adoption of an ego may take place once one or more of its
neighbours have adopted, since then their actions may influence the decision of
the central ego. Consequently, the time ordering of adoptions of the ego and its
neighbours matters. Homophily-driven adoption is, however, different. Homophily
drives social tie formation such that similar people tend to be connected in the
social structure. In this case connected people may adopt because they have similar
interests, but the time ordering of their adoptions would not matter. Therefore, it is
valid to assume that adoption could evolve in clusters due to homophily, but these
adoptions would appear in a more-or-less random order.

To test this hypothesis we define a null model where we take the adoption times
of users and shuffle them randomly among all adopting egos. This way a randomly
selected time is assigned to each adopter, while the adoption rate and the final set
of adopters remain the same. Moreover, this procedure only destroys correlations
between adoption events induced by social influence, but keeps the social network
structure and node degrees unchanged. In this way, during the null model process
the same egos appear as adopters, but the rates of adoption may in principle change
(or not), corresponding to social influence (or homophily) as a dominant factor
during the adoption process. If adoption is mostly driven by homophily, the rates
of adoption would not change considerably beyond statistical fluctuations. On the
other hand, if social influence plays a role in the process, rates of adoption in the
null model should be very different from the empirical curves, implying that the
time ordering of events matters in the adoption process. In this case, the rate of
innovators should be higher than in the empirical data, since nodes that are in the
adoption cluster originally without being directly connected would have a greater
chance to appear as innovators, due to a random adoption time that is not conditional
to the time ordering of the adopting neighbours.

After calculating the adoption rates of different user groups in the shuffled null
model, we observe the latter situation (Fig. 3b): the rate of innovators becomes
dominant, while the rates of stable and vulnerable adoptions drop considerably as
they appear only by chance. This suggests that the temporal ordering of adoption
events matters a lot in the evolution of the observed adoption patterns, and thus
social influence may play a strong role here. Of course one cannot decide whether
influence is solely driving the process or homophily has some impact on it; in reality
it probably does to some extent. However, we can use this null model measure to
demonstrate the presence and importance of the mechanism of influence during the
adoption process.
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(a) (b)

Fig. 4 The waiting time distribution and its effect on the adoption process. (a) Distribution P(τw)

of times between the last adoption in the egocentric network of an individual and his/her own
adoption. (b) Cumulative adoption rates before and after the removal of waiting times [CR(t) and
CRτw (t), respectively]. n and τ are arbitrary constant values. This figure is adopted from Ref. [70]
and it is licensed under Creative Commons Attribution 4.0 International Licences

2.5 Waiting Time of Adoption

As we mentioned earlier, one reason behind the slow evolution of the adoption
process could be due to the time users wait after their personal adoption threshold
is reached and before adopting the service. This lag in adoption can be due to
individual characteristics, or can come from the fact that social influence does not
spread instantaneously (as commonly assumed in threshold models). This waiting
time τw can be estimated by measuring the time difference between the last adoption
in a user’s egocentric network and the time of his/her adoption. This time is τw = 0
by definition for innovators, but τw can take any positive value for vulnerable and
stable adopters up to the length of the observation period.

We find that waiting times are broadly distributed for adopters in our dataset
(Fig. 4a), meaning that many users adopt the service shortly after their personal
threshold is reached, but a considerable fraction waits long before adopting the
service. This heterogeneous nature of waiting times may be a key element behind
the observed adoption dynamics. One way to figure out its effect on the speed of
cascade evolution is by removing them. We can extract the waiting time from the
adoption time of adopters and assign a rescaled adoption time for each of them. The
rescaled adoption time of a user is the last time when his/her fraction of adopting
neighbours changed and the adoption threshold was (hypothetically) reached. After
this procedure, we can calculate a new adoption rate function by using the rescaled
adoption times and compare this rate to the original. From Fig. 4b we conclude that
although adoption becomes faster, the rescaled adoption dynamics is still not rapid.
On the contrary, it suggests that the rescaled adoption dynamics is still very slow
and quite similar to the original. Consequently, waiting times cannot explain the
observed slow dynamics of adoption.

Note that long waiting times can have a further effect on the measured dynamics.
After the “real” threshold of a user is reached and he/she waits to adopt, some
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neighbours may adopt the product. Hence all observed measures are in this
sense “effective”: observed thresholds are larger or equal than real thresholds; the
innovator rate is smaller or equal; the vulnerable and stable rates will be larger or
equal; and waiting times will be shorter or equal than the real values. Consequently
the process may actually be faster than that we observe in Fig. 4b after removing
the effective waiting times. However, this bias becomes important only after the
majority of individuals in the social network has adopted the service and the
spontaneous emergence of adopting neighbours becomes more frequent. As the
fraction of adopters in our dataset is always less than 6% [71], we expect minor
effects of this observational bias on our measurements.

3 Modelling Social Contagion

In order to understand better the possible microscopic mechanisms behind the
empirical observations of online service adoption described previously, we intro-
duce and analyse two agent-based network models of threshold-driven social
contagion. First we discuss the WT model as originally proposed by Watts [24],
and secondly an extended, dynamical threshold model devised by us [69, 70], where
both multiple innovators and non-adopters have a role in social contagion.

3.1 The Watts Model

Under the complex contagion hypothesis by Granovetter, Centola, and others [6, 22],
social contagion may be modelled as a binary-state process evolving in a network
and driven by a threshold mechanism. In this framework individuals are represented
by agents or network nodes, each in either a susceptible (0) or adopter (1) state,
while the influence by an agent is achieved by transferring information via social
ties. Nodes are connected in a network with degree distribution P(k) and average
degree z = 〈k〉. Moreover, each node has an individual threshold ϕ ∈ [0, 1]
drawn from a distribution P(ϕ) with average w = 〈ϕ〉. The threshold ϕ determines
the minimum fraction of exposed neighbours that triggers adoption, capturing the
resistance of an individual against engaging in a given behaviour. Hence, in case
a node has m adopting neighbours and m ≥ kϕ (the so-called threshold rule),
it switches state from 0 to 1 and remains so until the end of the dynamics. In
his seminal paper about threshold dynamics [24], Watts classified nodes into three
categories based on their threshold and degree: He first identified innovator nodes
that spontaneously change state to 1 and therefore start the spreading process.
Such nodes have a trivial threshold ϕ = 0. Then there are nodes with threshold
0 < ϕ ≤ 1/k, called vulnerable, which need one adopting neighbour before their
own adoption. Finally, there are more resilient nodes with threshold ϕ > 1/k,
known as stable, representing individuals in need of strong social influence to follow
the actions of their acquaintances.
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In the WT model [24], small perturbations (like the spontaneous adoption of
a single seed node) can trigger network-wide cascading patterns. However, their
emergence is subject to the following cascade condition: the innovator seed has to be
linked to a percolating vulnerable cluster, which adopts immediately afterwards and
further triggers a global cascade (i.e. a set of adopters larger than a fixed fraction of a
finite network, or a nonzero fraction of adopters in an infinite network). The cascade
condition is satisfied if the network is inside a bounded regime in (w, z)-space
[24]. When considering a vanishingly small innovator seed and a configuration-
model network [72] [i.e., by ignoring structural correlations in the social network
and characterising it solely by its degree distribution P(k)], a generating function
approach allows us to write the cascade condition as

∑

k

k

z
(k − 1)P (k)f (k, 1) > 1, (3)

where f (k, 1) = C(1/k) is the probability that a randomly-selected node with
degree k is vulnerable, and C is the cumulative distribution function of P(ϕ). More
generally, f (k,m) (for m = 0, . . . , k) is also known as a response function of the
monotone binary dynamics defining the WT model [23, 69].

As Eq. (3) shows, the cascade regime depends on degree and threshold hetero-
geneities [24] and may change its shape if several innovators start the process [61].
In addition, while models with more sophisticated functional forms of social
influence may be introduced [36, 76], the original assumption proposed by Watts
and Granovetter seems to be sufficient to interpret our observations.

3.2 Dynamical Threshold Model with Immune Nodes

Our modelling framework is an extension to the WT model and similar threshold
dynamics on networks, studied by Watts, Gleeson, Singh, and others, where all the
nodes are initially susceptible and innovators are only introduced as an initial seed
of arbitrary size [24, 30, 61, 62]. Apart from the above discussed threshold rule
and motivated by the empirical observations in the spread of online services within
Skype, our model considers two additional features, namely that (1) a fraction r of
“immune” nodes never adopts, indicating a lack of interest in the online service, and
that (2) due to external influence, susceptible nodes adopt the service spontaneously
(i.e. become innovators) throughout the time with constant rate pn, rather than
only at the beginning of the dynamics. In this way, the dynamical evolution of
the system is completely determined by the online social network, the distribution
P(ϕ) of thresholds, and the parameters r and pn (Fig. 5). For the sake of simplicity,
we consider a configuration-model network and statistical independence between
degrees and thresholds [57, 78, 79]. We remark that the somewhat similar concepts
of “stubborn nodes”, mimicking individuals’ resistance against adoption [80, 81],
and “global nodes”, capturing adoption driven by external effects [82], have also
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Fig. 5 Immune individuals in social contagion. Numerical simulation of our dynamical threshold
model in an empirical network, with a single adoption threshold ϕ = 0.2 for all the nodes, rate
of spontaneous adopters pn = 0.0005, and fraction of immune nodes r = 0.1. The network is an
ego sample of Facebook friendships with size N = 96 and average degree z = 10.63 [77]. The
network shows how susceptible nodes adopt spontaneously with rate pn, or after a fraction ϕ of
their neighbours has adopted, while immune nodes never adopt. Reprinted figure with permission
from Ruan et al. [69]. Copyright 2018 by the American Physical Society

been considered in threshold models and show a rich variety of effects on cascading
behaviour.

As we show in the Appendix, our threshold model [69, 70] can be studied
analytically by extending the framework of approximate master equations (AMEs)
for monotone binary-state dynamics recently developed by Gleeson [57, 78, 79],
where the transition rate between susceptible and adoption states only depends
on the number m of network neighbours that have already adopted. We may also
implement the model numerically via a Monte Carlo simulation in a network of size
N , with a log-normal degree distribution and a log-normal threshold distribution as
observed empirically in the case of Skype. Hence we can explore the behaviour of
the fractions of adopters and innovators in the network, ρ and ρ0, as a function of z,
w, pn and r , both in the numerical simulation and in the theoretical approximation
given by Eqs. (9) and (12) (see Appendix). For pn > 0 some nodes adopt
spontaneously as time passes by, leading to a frozen state characterised by the final
fraction of adopters ρ(∞) = 1 − r . However, the time needed to reach such a
state depends heavily on the distribution of degrees and thresholds, as indicated by
a region of large adoption (ρ ≈ 1− r) that grows in (w, z)-space with time (contour
lines in Fig. 6a). If we fix the time in the dynamics and vary the fraction of immune
nodes instead, this region shrinks as r increases (contour lines in Fig. 6b). In other
words, the set of networks (defined by their average degree and threshold) that allow
the spread of adoption is larger at later times in the dynamics, or when the fraction
of immune nodes is small. When both t and r are fixed, the normalised fraction
of adopters ρ/(1 − r) gradually decreases for less connected networks with larger
thresholds (surface plot in Fig. 6a, b).

Both numerical simulations and analytical approximations show how the dynam-
ics of spreading changes by introducing immune individuals in the social network.
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Fig. 6 A dynamical threshold model for the adoption of online services. (a, b) Surface plot of the
normalised fraction of adopters ρ/(1 − r) in (w, z)-space, for r = 0.73 and t = 89. Contour lines
signal the parameter values for which 20% of non-immune nodes have adopted, for fixed r and
varying time (a), and for fixed time and varying r (b). The continuous contour line and dot indicate
parameter values of the last observation of Skype s3. A regime of maximal adoption (ρ ≈ 1 − r)
grows as time goes by, and shrinks for larger r . (c) Time series of the fraction of adopters ρ for
fixed pn = 0.00019 and varying r (main), and for fixed r = 0 and varying pn (inset). These curves
are well approximated by the solution of Eq. (9) for k0 = 3, kM−1 = 150 and M = 25 (dashed
lines). The dynamics is clearly faster for larger pn values. As r increases, the system enters a
regime where the dynamics is slowed down and adopters are mostly innovators. (d) Final fraction
of innovators ρ0,∞ and the time tc when 50% of non-immune nodes have adopted as a function
of r , both simulated and theoretical. The crossover to a regime of slow adoption is characterised
by a maximal fraction of innovators and time tc. Unless otherwise stated, pn = 0.00019 and we
use N = 104, μD = 1.09, σD = 1.39, kmin = 1, μT = −2, and σT = 1 to obtain z = 8.56 and
w = 0.19 as in Skype s3. The difference in μD between data and model is due to finite-size effects.
Numerical results are averaged over 102 (a, b) and 103 (c, d) realisations. This figure is adopted
from Ref. [70] and it is licensed under Creative Commons Attribution 4.0 International Licences

For r ≈ 0, the adoption cascade appears sooner for larger pn, since this parameter
regulates how quickly we reach the critical fraction of innovators necessary to
trigger a cascade of fast adoption throughout all susceptible nodes (Fig. 6c, inset).
Yet as we increase r above a critical value rc (and thus introduce random quenching),
the system enters a regime where rapid cascades disappear and adoption is slowed
down, since stable nodes have more immune neighbours and it is difficult to fulfil
their threshold condition. The crossover between these fast and slow regimes is
gradual, as seen in the shape of ρ for increasing r (Fig. 6c, main panel). We may
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identify rc in various ways: by the maximum in both the final fraction of innovators
ρ0,∞ = ρ0(∞) and the critical time tc when ρ = (1 − r)/2 (Fig. 6d), or as the
r value where the inflection point in ρ disappears. These measures indicate rc ≈
0.8 for parameter values calibrated with Skype data. All global properties of the
dynamics (like the functional dependence of ρ and ρ0) are very well approximated
by the solution of Eqs. (9) and (12) (dashed lines in Fig. 6c, d). Indeed, the AME
framework is able to capture the shape of the ρ time series, the crossover between
regimes of fast and slow adoption, as well as the maximum in ρ0,∞ and tc.

In the simplified case of an Erdős-Rényi random graph as the underlying social
network, the crossover between fast and slow regimes of spreading may also be
characterised by a percolation-type transition in the asymptotic limit (t → ∞) of
the size distribution P(s) of induced adoption clusters, i.e. connected components of
adopters disregarding innovators [69]. For early times P(s) includes small induced
clusters only, which in turn indicates that a larger fraction of spontaneous adopters
is crucial for global spreading in the absence of a percolating vulnerable component.
However, for late times the behaviour of P(s) differs between regimes: in the regime
of fast spreading the distribution becomes bimodal due to the appearance of a global
cluster of induced adopters, while in the slow regime it remains unimodal until the
end of dynamics.

Finally, in the extreme case of pn = 0 (corresponding to the WT model with
immune nodes), the reduced AME system of Eq. (9) can be used to derive a cascade
condition and thus give insight into the dynamics of spreading in the presence of
immune individuals [23, 69]. Equation (9) has an equilibrium point for the initial
condition (ρ(0), ν(0)) = (0, 0). If this equilibrium point is linearly unstable, the
perturbation of a single innovator seed may move the dynamical system away from
equilibrium and create a global cascade. A linear stability analysis shows that this
condition is equivalent to

(1 − r)
∑

k

k

z
(k − 1)P (k)f (k, 1) > 1, (4)

where f (k, 1) = C(1/k) implements the response of a non-immune node of degree
k to one adopting neighbour, and C is the cumulative distribution function of P(ϕ)

(for non-immune nodes with c > 0). When r = 0, Eq. (4) reduces trivially to
the cascade condition of the original WT model in Eq. (3). This shows that the
shape of the cascade regime can be obtained either by using generating functions
in percolation theory or by performing a stability analysis of the AMEs.

4 Validation

As demonstrated above, our model provides insight on the role of innovators
and immune nodes in controlling the speed of the adoption process. However, in
empirical datasets information about the fraction of non-adopters is usually not



Service Adoption Spreading in Online Social Networks 167

available, which makes it difficult to predict the future dynamics of service adoption.
Here we use our modelling framework to perform data-driven simulations with
parameters determined from Skype for two reasons: (a) to estimate the fraction r

of immune nodes in the real system; and (b) to validate our modelling as compared
to real data.

To set up our data-driven simulations we use the Skype data to directly determine
all model parameters, apart from the fraction r of immune nodes. As we already
discussed, the best approximation of the degree distribution of the real network is
a log-normal function (Eq. (1)) with parameters μD = 1.2, σD = 1.39, minimum
degree kmin = 1 and average degree z = 8.56. To account for finite-size effects in
the model results for low N , we decrease μD slightly to obtain the same value of z as
in the real network. We also observe in Fig. 2b that the threshold distribution of each
degree group collapses into a master curve after normalisation by using the scaling
relation P(�k, k) = kP (�k/k). This master curve can be well-approximated by
the log-normal distribution shown in Eq. (2), with parameters μT = −2 and σT = 1
as determined by the empirical average threshold w = 0.19 and standard deviation
0.233. We estimate a rate of innovators pn = 0.00019 by fitting a constant function
to Ri(t) for t > 2τ (Fig. 3a). The fit to pn also matches the time-scale of a Monte
Carlo iteration in the model to 1 month. To model the observed dynamics and
explore the effect of immune nodes, we use a configuration-model network [72]
with log-normal degree and threshold distributions and pn as the constant rate of
innovators, all determined from the empirical data. Model results in Fig. 7 (and
Fig. 8) are averaged over 100 networks of size N = 105 (106) after T = 89
iterations, matching the length of the observation period in Skype.

As a function of r , the underlying and adoption networks pass through three
percolation-type phase transitions. First, the appearance of immune nodes (for
increasing r) can be considered as a removal process of nodes available for adoption
from the underlying network structure. After the appearance of a critical fraction
of immune nodes, rnet

c , the effective network structure available for adoption will
be fragmented and will consist of small components only, limiting the size of the
largest adoption cluster possible. Second, r also controls the size of the emergent
adoption cascades evolving on top of the network structure. While for small r

the adoption network is connected into a large component, for larger r cascades
cannot evolve since there are not enough nodes to fulfil the threshold condition
of susceptible stable nodes, even if the underlying network is still connected. The
transition point between these two phases of the adoption network is located at
rcasc
c ≤ rnet

c , limited from above by the critical point rnet
c . Finally, we observe from

the empirical data and model results that the adoption network is held together by
a large connected component of stable nodes. Consequently, for increasing r the
stable adoption network goes through a percolation transition as well, with a critical
point rstab

c ≤ rcasc
c ≤ rnet

c .
To characterise these percolation phase transitions we compute the average size

of the largest (LC) and second largest (LC2nd) connected components (Fig. 7). We
measure these quantities for the underlying network, and for the stable, vulnerable
and global adoption networks, as a function of the fraction of immune nodes r .
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Fig. 7 Empirical cluster statistics and simulation results. Average size of the largest (LC, upper
panel) and the 2nd largest (LC2nd, lower panel) components of the model network (“Net”, squares),
adoption network (“Casc”, circles), stable network (“Stab”, diamonds), and induced vulnerable
trees (“Vuln”, triangles) as a function of the fraction r of immune nodes. Dashed lines show the
observed relative size of the real LC of the adopter network in 2011 (Fig. 3c) and the predicted
remp value. Dotted lines on the lower panel indicate the critical percolation points for the full
(rcasc

c ) and stable (rstab
c ) adoption networks. This figure is adopted from Ref. [70] and it is licensed

under Creative Commons Attribution 4.0 International Licences

After T = 89 iterations (matching the length of the real observation period), we
identify three regimes of the dynamics: if 0 < r < 0.6 (dark-shaded area) the
spreading process is very rapid and evolves as a global cascade, which reaches most
of the nodes of the shrinking susceptible network in a few iteration steps. About
10% of adopters are connected in a percolating stable cluster, while vulnerable
components remain very small in accordance with empirical observations. In the
crossover regime 0.6 < r < 0.8 (light-shaded area), the adoption process slows
down considerably (Fig. 7, upper panel), as stable adoptions become less likely
due to the quenching effect of immune nodes. The adoption process becomes
the slowest at rstab

c = 0.8 when the percolating stable cluster falls apart, as
demonstrated by a peak in the corresponding LC2nd curve in Fig. 7 (diamonds in
lower panel). Finally, around rcasc

c = 0.9 the adoption network becomes fragmented
and no global cascade takes place. Since the underlying network has a broad degree
distribution, it is robust against random node removal processes [72]. That is why
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its critical percolation point rnet
c appears after 95% or more nodes are immune. Note

that similar calculations for another service have been presented before [70] with
qualitatively the same results, but with the crossover regime shifted towards larger
r due to different parameter values of the model process.

We can use these calculations to estimate the only unknown parameter, namely
the fraction r of immune nodes in Skype, by matching the relative size of the
largest component (LCNet) between real and model adoption networks at time T .
Empirically, this value is the relative size sLC

a � 0.043 corresponding to the last
point on the right-hand side of the distribution for 2011 in Fig. 3c (main panel).
Matching this relative size with the simulation results (see the observation line in
Fig. 7 upper panel), we find that it corresponds to remp = 0.73 (prediction line in
Fig. 7), suggesting that the real adoption process lies in the crossover regime. In
other words, large adoption cascades could potentially evolve in Skype but with
reduced speed, as 73% of users might not be interested in adopting a service within
the network.

To test the validity of the predicted remp value we perform three different
calculations. First we measure the maximum relative growth rate of cumulative
adoptions and find a good match between model and data (see Skype s3 and Model
Skype s3 in Fig. 1). In other words, the model correctly estimates the speed of
the adoption process. Second, we measure the distribution P(d) of the depths of
induced vulnerable trees (Fig. 8a). Vulnerable trees evolve with a shallow structure
in the empirical and model processes. After measuring the distribution P(d) for var-
ious r values below, above and at remp, we find that the distribution corresponding
to the predicted remp value fits the best with the empirical data. Finally, in order to
verify earlier theoretical suggestions [61], we look at the correlation 〈sv〉(k) between
the degree of innovators and the average size of vulnerable trees induced by them
(Fig. 8b). Similar to the distribution P(d), we perform this measurement on the

(a) (b)

Fig. 8 Additional empirical cluster statistics and simulation results. (a) Distribution P(d) of
depths of induced vulnerable trees in both data and model for several r values, showing a good
fit with the data for r = 0.73. The difference in the tail is due to finite-size effects. (b) Correlation
〈sv〉(k) between innovator degree and average size of vulnerable trees in both data and model with
the same r values as in (a). Model calculations correspond to networks of size N = 106 and
are averaged over 102 realisations. This figure is adopted from Ref. [70] and it is licensed under
Creative Commons Attribution 4.0 International Licences
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real data and in the model for r = 0.6 and 0.9, as well as for the predicted value
remp = 0.73. We find a strong positive correlation in the data, explained partially
by degree heterogeneities in the underlying social network, but surprisingly well
emulated by the model as well. More importantly, although this quantity appears
to scale with r , the estimated r value fits the empirical data remarkably well, thus
validating our estimation method for r based on a matching of relative component
sizes.

5 Conclusion and Future Directions

The analysis and modelling of the diffusion of services and innovations is a
long-standing scientific challenge, with recent developments built on large digital
datasets registering adoption processes in a society with a large population. Due
to these advancements we are currently at the position to simultaneously observe
various types of adoption processes and the underlying social structure. Individual-
level observations of social and adoption behaviour are crucial in identifying the
mechanisms that fuel collective patterns of rapid or slow adoption cascades. In this
chapter, using one of the first datasets of this kind, we observe the worldwide spread
of an online service in the techno-social communication network of Skype. First
we provide novel empirical evidence about heterogeneous adoption thresholds and
non-linear dynamics of the adoption process. We have also identified two additional
components necessary to introduce into the modelling of product adoption, namely
(a) a constant flow of innovators, which may induce rapid adoption cascades
even if the system is initially out of the cascading regime, and (b) a fraction
of immune nodes that forces the system into a quenched state where adoption
slows down. These features are responsible for a critical structure of empirical
adoption components that radically differs from previous theoretical expectations.
We incorporate these mechanisms into a threshold model that, despite containing
several simplifying assumptions, successfully recovers and predicts real-world
adoption scenarios such as the spreading of Skype services.

Our aim in this chapter has been to provide empirical observations as well as
methods and tools to model the dynamics of social contagion phenomena, with
the hope that it will foster thoughts for future research. One possible direction
is the observation of the reported structure and evolution of the global adoption
cluster in other systems similar to the ones studied in [12, 13, 41, 43, 44, 75]. Other
promising directions are the consideration of structural homophilic or assortative
correlations, the evolving nature of the underpinning social network with timely
created and dissolved social ties (as studied in [19]), and the effects of interpersonal
influence or leader-follower mechanisms on the social contagion process. We hope
that our results provide a direction for data-driven modelling of these phenomena,
and serve as a scholarly example in future studies of the dynamics of service
adoption processes.
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Appendix: Analytical Treatment of the Model

Our threshold model [69, 70] may be studied analytically by extending the AME
framework for monotone binary-state dynamics [57, 78, 79], where the transition
rate between susceptible and adoption states only depends on the number m of
network neighbours that have already adopted. We describe a node by the property
vector k = (k, c), where k = k0, k1, . . . kM−1 is its degree and c = 0, 1, . . . ,M its
type, i.e. c = 0 is the type of the fraction r of immune nodes, while c 	= 0 is the type
of all non-immune nodes that have threshold ϕc. In this way, P(ϕ) is substituted by
the discrete distribution of types P(c) (for c > 0). The integer M is the maximum
number of degrees (or non-zero types) considered in the AME framework, which
can be increased to improve the accuracy of the analytical approximation at the
expense of speed in its numerical computation.

We characterise the static social network by the extended distribution P(k),
where P(k) = rP (k) for c = 0 and P(k) = (1 − r)P (k)P (c) for c > 0. Non-
immune and susceptible nodes with property vector k adopt spontaneously with a
constant rate pn, otherwise they adopt only if a fraction ϕc of their k neighbours has
adopted before. These rules are condensed into the probability Fk,mdt that a node
will adopt within a small time interval dt , given that m of its neighbours are already
adopters,

Fk,m =
{

pr if m < kϕc

1 if m ≥ kϕc

, ∀m and k, c 	= 0, (5)

with F(k,0),m = 0 ∀k,m and F(0,c),0 = pr ∀c 	= 0 (for immune and isolated nodes,
respectively). The rescaled rate pr = pn/(1 − r) (with pr = 1 for pn > 1 − r)
is necessary if we wish to obtain a rate pn of innovators for early times of the
dynamics, regardless of the value of r .

The dynamics of adoption is well described by an AME for the fraction sk,m(t)

of k-nodes that are susceptible at time t and have m = 0, . . . , k adopting
neighbours [23, 78, 79],

ṡk,m = −Fk,msk,m − βs(k − m)sk,m + βs(k − m + 1)sk,m−1, (6)
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where

βs(t) =
∑

k P(k)
∑

m(k − m)Fk,msk,m(t)∑
k P(k)

∑
m(k − m)sk,m(t)

, (7)

and the sum is over all the degrees and types, i.e.
∑

k • = ∑
k

∑
c •. To reduce the

dimensionality of Eq. (6), we consider the ansatz

sk,m(t) = Bk,m[ν(t)]e−pr t for m < kϕc and c 	= 0, (8)

with ν(t) the probability that a randomly-chosen neighbour of a susceptible node is
an adopter.

Introducing the ansatz of Eq. (8) into the AME system of Eq. (6) leads to the
condition ν̇ = βs(1−ν). With some algebra, the AMEs for our dynamical threshold
model are reduced to the pair of ordinary differential equations

ρ̇ = h(ν, t) − ρ, (9a)

ν̇ = g(ν, t) − ν, (9b)

where ρ(t) = 1 −∑k P(k)
∑

m sk,m(t) is the fraction of adopters in the network,
and the initial conditions are ρ(0) = ν(0) = 0. Here,

h = (1 − r)
[
ft + (1 − ft )

∑

k|c 	=0

P(k)P (c)
∑

m≥kϕc

Bk,m(ν)
]
, (10)

and

g = (1 − r)
[
ft + (1 − ft )

∑

k|c 	=0

k

z
P (k)P (c)

∑

m≥kϕc

Bk−1,m(ν)
]
, (11)

where ft = 1 − (1 − pr)e
−pr t , and Bk,m(ν) = (

k
m

)
νm(1 − ν)k−m is the

binomial distribution. The fraction of adopters ρ is then obtained by solving Eq. (9)
numerically. Since the susceptible nodes adopt spontaneously with rate pn, the
fraction of innovators ρ0(t) in the network is given by

ρ0(t) = pr

∫ t

0
[1 − r − ρ(τ)]dτ. (12)
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Misinformation Spreading on Facebook

Fabiana Zollo and Walter Quattrociocchi

1 Introduction

The rapid advance of the Internet and web technologies facilitated global com-
munications all over the world, allowing news and information to spread rapidly
and intensively. These changes led up to the formation of a new scenario, where
people actively participate in both contents’ production and diffusion, without
the mediation of journalists or experts in the field. The emergence of such a
wide, heterogeneous (and disintermediated) mass of information sources may affect
contents’ quality and the mechanisms behind the formation of public opinion
[29, 32, 49]. Indeed, despite the enthusiastic rhetoric about collective intelligence
[35], unsubstantiated or untruthful rumors reverberate on social media, contributing
to the alarming phenomenon of misinformation. Since 2013, the World Economic
Forum (WEF) has been placing the global danger of massive digital misinformation
at the core of other technological and geopolitical risks, ranging from terrorism, to
cyber attacks, up to the failure of global governance [26]. People are misinformed
when they hold beliefs neglecting factual evidence, and misinformation may
influence public opinion negatively. Empirical investigations have showed that, in
general, people tend to resist facts, holding inaccurate factual beliefs confidently
[31]. Moreover, corrections frequently fail to reduce misperceptions [39] and often
act as a backfire effect.

Thus, beyond its undoubted benefits, a hyperconnected world may allow the viral
spread of misleading information, which may have serious real-word consequences.
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In that direction, examples are numerous. Inadequate health policies in South
Africa led to more than 300,000 unnecessary AIDS deaths [37], however the events
were exacerbated by AIDS denialists, who state that HIV is inoffensive and that
antiretroviral drugs cause, rather than treat, AIDS. Similar considerations may be
extended to the Ebola outbreak in west Africa: after the death of two people having
drunk salt water, the World Health Organisation (WHO) had to restate that all
rumors about hypothetical cures or practices were false and that their use could
be dangerous [14]. Or again, the American case of Jade Helm 15, a military training
exercise which took place in multiple US states, but turned out to be perceived as a
conspiracy plot aiming at imposing martial law, to the extent that Texas Gov. Greg
Abbott ordered the State Guard to monitor the operations.

Certainly, such a scenario represents a florid environment for digital wildfires,
especially when combined with functional illiteracy, information overload, and
confirmation bias—i.e., the tendency to seek, select, and interpret information
coherently with one’s system of beliefs [38]. On the Internet people can access
always more extreme versions of their own opinions. In this way, the benefits
coming from the exposure to different points of views can be dramatically reduced
[34]. Individuals, and the groups that they form, may move to a more extreme
point in the same direction indicated by their own preexisting beliefs; indeed, when
people discuss with many like-minded others, their views become more extreme
[46]. First evidences of social contagion and misperception induced by social groups
emerged in the famous experiment conducted by Solomon Asch in 1955 [7]. The
task of the participants was very simple: they had to match a certain line placed
on a white card with the corresponding one (i.e., having the same length) among
three other lines placed on another white card. The subject was one of the eight
people taking part to the test, but was unaware that the others were there as part
of the research. The experiment consisted of three different rounds. In the first two
rounds everyone provided the right (and quite obvious) answer. In the third round
some group members matched the reference line to the shorter or longer one on
the second card, introducing the so-called unexpected disturbance [28]. Normally
subjects erred less than 1% of the time; but in the third case they erred 36.8% of the
time [4]. Another relevant study was conducted by James Stoner, who identified the
so-called risky shift [45]. In the experiment people were first asked to study twelve
different problems and provide their solution; after that, they had to take a final
decision together, as a group. Out of thirteen groups, twelve repeatedly showed a
pattern towards greater risk-taking.

Misinformation, as well of rumor spreading, deals with these and several other
aspects of social dynamics. However, adoption and contagion are often illustrated
under the oversimplified metaphor of the virus: ideas spread by “contact” and
people “infected” become active spreaders in the contagion process. We believe
that such a metaphor is misleading, unless we consider that the receptor of such
a virus is complex and articulated. Indeed, the adoption of ideas and behaviors
deals with a multitude of cognitive dimensions, such as intentionality, trust, social
norms, and confirmation bias. Hence, simplistic models adapted from mathematical
epidemiology are not enough to understand social contagion. It is crucial to focus



Misinformation Spreading on Facebook 179

on such relevant research questions by using methods and applying tools that go
beyond the pure, descriptive statistics of big data. In our view, such a challenge can
be addressed by implementing a cross-methodological, interdisciplinary approach
which takes advantage of both the question-framing capabilities of social sciences
and the experimental and quantitative tools of hard sciences.

2 Outline

The chapter is structured as follows. In Sect. 3 we provide the background of our
research work, as well as tools and methodology adopted; in Sect. 4 we describe
the datasets; in Sect. 5 we discuss the dynamics behind information consumption
and the existence of echo chambers on both the Italian and the US Facebook; in
Sect. 6 we show how confirmation bias dominates information spreading; in Sect. 7
we focus on users’ interaction with paradoxical and satirical information (trolls),
while in Sect. 8 we analyze users’ response to debunking attempts. In Sect. 9 we
target the emotional dynamics inside and across echo chambers. Finally, we draw
our conclusions in Sect. 10.

3 Background and Research Methodology

In 2009 a paper on Science [33] proclaims the birth of the Computational Social
Science (CSS), an emerging research field aiming at studying massive social
phenomena quantitatively, by means of a multidisciplinary approach based on
Computer Science, Statistics, and Social Sciences. Since CSS benefits from the
large availability of data from online social networks, it is attracting researchers
in ever-increasing numbers as it allows for the study of mass social dynamics at an
unprecedented level of resolution. Recent studies have pointed out several important
results ranging from social contagion [6, 36, 48] up to information diffusion [2, 8],
passing through the virality of false claims [15, 21]. A wide literature branch is
also devoted to understanding the spread of rumors and behaviors by focusing on
structural properties of social networks to determine the way in which news spread
in social networks, what makes messages go viral, and what are the characteristics of
users who help spread such information [13, 15, 21, 48]. Several works investigated
how social media can shape and influence the public sphere [1, 9, 17, 18], and efforts
to contrast misinformation spreading range from algorithmic-based solutions up to
tailored communication strategies [5, 16, 25, 42–44].

Along this path, important issues have been raised around the emergence of
the echo chambers, enclosed systems where users are exposed only to information
coherent with their own system of beliefs [47]. Many argue that such a phenomenon
is directly related to the algorithms used to rank contents [40]. Speaking of
this, Facebook research scientists quantified exactly how much individuals can
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be exposed to ideologically diverse news and information on social media [9],
finding that individual’s choice about contents has an effect stronger than that of
Facebook’s News Feed algorithm in limiting the exposure to cross-cutting content.
Undoubtedly, selective exposure to specific contents facilitates the aggregation of
users in echo chambers, wherein external and contradicting versions are ignored
[30]. Moreover, the lack of experts mediating the production and diffusion of content
may encourage speculations, rumors, and mistrust, especially on complex issues.
Pages about conspiracy theories, chem-trails, reptilians, or the link between vaccines
and autism, proliferate on social networks, promoting alternative narratives often
in contrast to mainstream content. Thus, misinformation online is pervasive and
difficult to correct. To face the issue, several algorithmic-driven solutions have
been proposed both by Google and Facebook [20, 23], that joined other major
corporations to provide solutions to the problem and try to guide users through the
digital information ecosystem [27]. Simultaneously, it has also been observed the
rapid spread of blogs and pages devoted to debunk false claims, namely debunkers.

Moreover, the diffusion of unreliable content may lead to confuse unverified
stories with their satirical counterparts. Indeed, it has been noticed the proliferation
of satirical, wacky imitations of conspiracy theses. In this regard, there is a large
community of people, known as trolls, behind the creation of Facebook pages aimed
at diffusing caricatural and paradoxical contents mimicking conspiracy news. Their
activities range from controversial comments and satirical posts, to the fabrication
of purely fictitious statements, heavily unrealistic and sarcastic. According to Poe’s
law [3], without a blatant display of humor, it is impossible to create a parody of
extremism or fundamentalism that someone won’t mistake for the real thing. Hence,
trolls are often accepted as realistic sources of information and, sometimes, their
memes become viral and are used as evidence in online debates from real political
activists. As an example, we report one of the most popular memes in Italy:

Italian Senate voted and accepted (257 in favor, 165 abstained) a law proposed by Senator
Cirenga aimed at providing politicians with a 134 Billion fund to help them find a job in
case of defeat in the next political competition.

It would be easy to verify that the text contains at least three false statements: (1)
Senator Cirenga does not exist and has never been elected in the Italian Parliament,
(2) the total number of votes is higher than the maximum possible number of voters,
and (3) the amount of the fund corresponds to more than 10% of Italian GDP. Indeed,
the bill is false and such a meme was created by a troll page. Nonetheless, on the
wave of public discontent against Italian policy-makers, it quickly became viral,
obtaining about 35K shares in less than 1 month. Nowadays, it is still one of the
most popular arguments used by protesters manifesting all over Italian cities.

Such a scenario makes crucial the quantitative understanding of the social
determinants related to content selection, news consumption, and beliefs formation
and revision. In this essay, we focus on a collection of works [10–12, 19, 50, 51]
aiming at characterizing the role of confirmation bias in viral processes online. We
want to investigate the cognitive determinants behind misinformation and rumor
spreading by accounting for users’ behavior on different and specific narratives. In
particular, we define the domain of our analysis by identifying two well-distinct
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narratives: (a) conspiracy and (b) scientific information sources. Notice that we
do not focus on the quality or the truth value of information, but rather on its
verifiability. While producers of scientific information as well as data, methods, and
outcomes are readily identifiable and available, the origins of conspiracy theories
are often unknown and their content is strongly disengaged from mainstream society
and sharply divergent from recommended practices.

Thus, we first analyze users’ interaction with Facebook pages belonging to such
distinct narratives on a time span of 5 years (2010–2014), in both the Italian and the
US context. Then, we measure users’ response to (1) information consistent with
one’s narrative, (2) troll contents, and (3) dissenting information e.g., debunking
attempts.

4 Datasets

We identify two main categories of pages: conspiracy news—i.e., pages promoting
contents neglected by mainstream media—and science news. The first category
includes all pages diffusing conspiracy information (i.e., pages that disseminate
controversial information, most often lacking supporting evidence and sometimes
contradictory of the official news). Pages like I don’t trust the government,
Awakening America, or Awakened Citizen promote heterogeneous contents ranging
from aliens, chem-trails, geocentrism, up to the causal relation between vaccinations
and homosexuality. The second category is that of scientific dissemination and
includes institutions, organizations, scientific press having the main mission to
diffuse scientific knowledge. For example, pages like Science, Science Daily, and
Nature are active in diffusing posts about the most recent scientific advances.
Finally, we identify two additional categories of pages:

1. Troll: sarcastic, paradoxical messages mocking conspiracy thinking (for the
Italian dataset);

2. Debunking: information aiming at correcting false conspiracy theories and
untruthful rumors circulating online (for the US dataset).

To produce our datasets, we built a large atlas of Facebook public pages with the
assistance of several groups (Skepti Forum, Skeptical spectacles, Butac, Protesi di
Complotto), which helped in labelling and sorting both conspiracy and scientific
sources. To validate the list, all pages have then been manually checked by looking at
their self-description and the type of promoted content. The exact breakdowns of the
Italian and US Facebook datasets are reported in Tables 1 and 2, respectively. The
entire data collection process is performed exclusively by means of the Facebook
Graph API [24], which is publicly available and can be used through one’s personal
Facebook user account. We used only public available data (users with privacy
restrictions are not included in our dataset). Data was downloaded from public
Facebook pages that are public entities. Users’ content contributing to such entities
is also public unless users’ privacy settings specify otherwise and in that case it is
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Table 1 Breakdown of the
Italian Facebook dataset

Science Conspiracy Troll

Pages 34 39 2

Posts 62,705 208,591 4,709

Likes 2,505,399 6,659,382 40,341

Comments 180,918 836,591 58,686

Likers 332,357 864,047 15,209

Commenters 53,438 226,534 43,102

Table 2 Breakdown of the
US Facebook dataset

Science Conspiracy Debunking

Pages 83 330 66

Posts 262,815 369,420 47,780

Likes 453,966,494 145,388,117 3,986,922

Comments 22,093,692 8,304,644 429,204

Likers 39,854,663 19,386,131 702,122

Commenters 7,223,473 3,166,726 118,996

not available to us. When allowed by users’ privacy specifications, we accessed
public personal information. However, in our study we used fully anonymized
and aggregated data. We abided by the terms, conditions, and privacy policies of
Facebook.

5 Echo Chambers

5.1 Attention Patterns

We start our discussion by analyzing how information gets consumed by users in
both the Italian [10–12] and the US Facebook [50]. As a first step, we focus on
users’ actions allowed by Facebook’s interaction paradigm i.e., likes, comments,
and shares. Each action has a particular meaning [22]: while a like represents a
positive feedback to the post, a share expresses the desire to increase the visibility
of a given information; finally, a comment is the way in which the debate takes form
around the topic of the post. Also, we consider the lifetime of a post (respectively,
a user) i.e., the temporal distance between the first and last comment to the post
(respectively, of the user). We also define the persistence of a post (respectively,
a user) as the Kaplan-Meier estimates of survival functions by accounting for the
lifetime of the post (respectively, the user).

Figure 1 shows the empirical Complementary Cumulative Distribution Functions
(CCDFs) of users’ activity on posts grouped by category on the Italian Facebook.
We may notice that distributions of likes, comments, and shares are all heavy-tailed.
To further investigate users’ consumption patterns, in Fig. 2 we also plot the CCDF
of the posts’ lifetime, observing that distinct kinds of contents show a comparable
lifetime.
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Fig. 1 ITALIAN FACEBOOK. Empirical complementary cumulative distribution functions
(CCDFs) of users’ activity (likes, comments and shares) on posts grouped by category. Distri-
butions denote heavy-tailed consumption patterns

As for the US Facebook, the distribution of the number of likes, comments, and
shares on posts belonging to both scientific and conspiracy news is shown in the
left panel of Fig. 3. As seen from the plots, all distributions are heavy-tailed—i.e,
they are best fitted by power laws and possess similar scaling parameters. In the
right panel of Fig. 3, we plot the Kaplan-Meier estimates of survival functions of
posts grouped by category. To further characterize differences between the survival
functions, we perform the Peto and Peto [41] test to detect whether there is a
statistically significant difference between the two survival functions. Since we
obtain a p-value of 0.944, we can state that there are not significant statistical
differences between posts’ survival functions on both science and conspiracy news.
Thus, posts’ persistence in the two categories is similar also in the US case.
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Fig. 2 ITALIAN FACEBOOK. Empirical CCDF, grouped by category, of the posts’ lifetime i.e.,
the temporal distance (in hours) between the first and last comment. Lifetime is similar for both
categories

Fig. 3 US FACEBOOK Left: Complementary cumulative distribution functions (CCDFs) of the
number of likes, comments, and shares received by posts belonging to conspiracy (top) and
scientific (bottom) news. Right: Kaplan-Meier estimates of survival functions of posts belonging
to conspiracy and scientific news. Error bars are on the order of the size of the symbols
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Summarizing, our findings show that distinct kinds of information (science,
conspiracy) are consumed in a comparable way. However, when considering the
correlation between couples of actions, we find that users of conspiracy pages are
more prone to both share and like a post, denoting a higher level of commitment
[10]. Conspiracy users are more willing to contribute to a wide diffusion of their
topics of interest, according to their belief that such information is intentionally
neglected by mainstream media.

5.2 Polarization

We now want to understand if users’ engagement with a specific kind of content can
become a good proxy to detect groups of users sharing the same system of beliefs
i.e., echo chambers. Assume that a user u has performed x and y likes (comments)
on scientific and conspiracy posts, respectively, and let ρ(u) = (y − x)/(y + x).
Thus, we say that user u is polarized towards science if ρ(u) ≤ −0.95, while she is
towards conspiracy if ρ(u) ≥ 0.95 user u is polarized towards conspiracy.

In Fig. 4 we show the Probability Density Function (PDF) of users’ polarization
on the Italian Facebook. We observe a sharply peaked bimodal distribution where
the vast majority of users is polarized either towards science (ρ(u) ∼ 1) or
conspiracy (ρ(u) ∼ −1). Hence, most of likers can be divided into two groups
of users, those polarized towards science and those polarized towards conspiracy
news.

Let us consider now the fraction of friends y of a user u sharing the same
polarization of u. We define the engagement θ(u) of a user u as her liking activity

Fig. 4 ITALIAN FACEBOOK Left: Probability density function (PDF) of users’ polarization.
Notice the strong bimodality of the distribution, with two sharp peaks localized at −1 � ρ(u) �
−0.95 (conspiracy users) and at 0.95 � ρ(u) � 1 (science users). Right: Fraction of polarized
neighbors as a function of the engagement θ for both science (left) and conspiracy (right) users
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Fig. 5 US FACEBOOK Probability Density Functions (PDFs) of the polarization of all users
computed both on likes (left) and comments (right)

normalized with respect to the total number of likes in our dataset. We find that the
more a user is active on her narrative, the more she is surrounded by friends sharing
the same attitude. Such a pattern is shown in the right panels of Fig. 4. Hence, social
interactions of Facebook users are driven by homophily: users not only tend to be
very polarized, but they also tend to be linked to users with similar preferences.
Indeed, in both right panels of Fig. 4 we can observe that for polarized users the
fraction of friends with the same polarization is very high (�0.75) and grows with
the engagement.

Similar patterns can be observed on the US Facebook. In Fig. 5 we show that
the PDF for the polarization of all users is sharply bimodal here as well, with most
having (ρ(u) ∼ −1) or (ρ(u) ∼ 1). Thus, most users may be divided into two main
groups, those polarized towards science and those polarized towards conspiracy.
The same pattern holds if we look at polarization based on comments rather than on
likes.

In summary, our results confirm the existence of echo chambers on both the
Italian and the US Facebook. Indeed, contents related to distinct narratives aggregate
users into distinct, polarized communities, where users interact with like-minded
people sharing their own system of beliefs.

6 Information Spreading and Cascades

In this section we show how confirmation bias dominates viral processes of
information diffusion and that the size of the (mis)information cascades may
be approximated by the size of the echo chamber [19]. We begin our analysis
by characterizing the statistical signature of cascades according to the narrative
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Fig. 6 ITALIAN FACEBOOK
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on science news and
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20 h
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(science or conspiracy). Figure 6 shows the PDF of the cascade lifetime for both
science and conspiracy. We compute the lifetime as the time (in hours) elapsed
between the first and the last share of the post. In both categories we find a first
peak at approximately 1–2 h and a second peak at approximately 20 h, denoting that
the temporal sharing patterns are similar, independently of the narrative. We also
find that a significant percentage of the information spreads rapidly (24.42% of the
science news and 20.76% of the conspiracy rumors diffuse in less than 2 h, and
39.45% of science news and 40.78% of conspiracy theories in less than 5 h). Only
26.82% of the diffusion of science news and 17.79% of conspiracy lasts more than
1 day.

In Fig. 7 we show the lifetime as a function of the cascade’s size, i.e. the number
of users sharing the post. For science news we observe a peak in the lifetime
corresponding to a cascade’s size value of ≈200; moreover, the variability of the
lifetime grows with the cascades’ sizes, and higher cascade’s size values correspond
to high lifetime variability. For conspiracy-related contents, lifetime variability
increases with cascade’s size, and for highest values we observe a variability of the
lifetime 50% around the average values. Such results suggest that news assimilation
differs according to the categories. Science information is usually assimilated (i.e.,
it reaches a higher level of diffusion) quickly. A longer lifetime does not necessarily
correspond to a higher level of interest, but possibly to a prolonged discussion within
a specialized group of experts. Conversely, conspiracy rumors are assimilated more
slowly and show a positive relation between lifetime and size; long-lived posts tend
to be discussed by larger communities.
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Fig. 7 ITALIAN FACEBOOK Lifetime as a function of the cascade’s size for conspiracy news (left)
and science news (right). We observe a contents-driven differentiation in the sharing patterns. For
conspiracy the lifetime grows with the size, while for science news there is a peak in the lifetime
around a value of the size equal to 200, and a higher variability in the lifetime for larger cascades

Fig. 8 ITALIAN FACEBOOK
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Finally, Fig. 8 shows that the majority of links between consecutively sharing
users is homogeneous, i.e. both users share the same polarization and, hence, belong
to the same echo chamber. In particular, the average edge homogeneity value of all
the observed sharing cascades is always greater than or equal to zero, suggesting
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that information spreading occurs mainly inside homogeneous clusters in which all
users share the same polarization. Thus, contents tend to circulate only inside the
echo chambers.

Summarizing, we found that cascades’ dynamics differ, although consumption
patterns on science and conspiracy pages are similar. Indeed, selective exposure
is the primary driver of contents’ diffusion and generates the formation of echo
chambers, each with its own cascades’ dynamics.

7 Response to Paradoxical Information

We have showed that users tend to aggregate around preferred contents shaping
well-separated and polarized communities. Our hypothesis is that users’ exposure to
unsubstantiated claims may affect their selection criteria and increase their attitude
to interact with false information. Thus, in this section we want to test how polarized
users interact with information that is deliberately false i.e., troll posts, which
are paradoxical imitations of conspiracy contents [10]. Such posts diffuse clearly
dubious claims, such as the undisclosed news that infinite energy has been finally
discovered, or that a new lamp made of actinides (e.g., plutonium and uranium) will
finally solve the lack of energy with less impact on the environment, or that chemical
analysis reveal that chem-trails contain sildenafil citratum (sold as the brand name
Viagra).

Figure 9 shows how polarized users of both categories interact with troll posts
in terms of comments and likes on the Italian Facebook. Our findings show that
users usually exposed to conspiracy claims are more likely to jump the credulity
barrier: indeed, conspiracy users are more active in both liking and commenting troll
posts. Thus, even when information is deliberately false and framed with a satirical
purpose, its conformity with the conspiracy narrative transforms it into credible
content for members of the conspiracy echo chamber. Evidently, confirmation bias
plays a crucial role in content selection.

Fig. 9 ITALIAN FACEBOOK

Percentage of comments and
likes on troll posts from users
polarized towards science
(light blue) and conspiracy
(orange)
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8 Response to Dissenting Information

Debunking pages on Facebook strive to contrast misinformation spreading by
providing fact-checked information to specific topics. However, if confirmation
bias plays a pivotal role in selection criteria, then debunking is likely to sound
to conspiracy users such as information dissenting from their preferred narrative.
In this section, our aim is to study and analyze users’ behavior w.r.t. debunking
contents on the US Facebook [50].

As a first step, we show how debunking posts get liked and commented
according to users’ polarization. Figure 10 shows how users’ activity is distributed
on debunking posts: left (respectively, right) panel shows the proportions of likes
(respectively, comments) left by users polarized towards science, users polarized
towards conspiracy, and not polarized users. We notice that the majority of both likes
and comments is left by users polarized towards science (respectively, 66.95% and
52.12%), while only a small minority is made by users polarized towards conspiracy
(respectively, 6.54% and 3.88%). Indeed, the first interesting result is that the
biggest consumer of debunking information is the scientific echo chamber. Out
of 9,790,906 polarized conspiracy users, just 117,736 interacted with debunking
posts—i.e., commented a debunking post at least once.

Hence, debunking posts remain mainly confined within the scientific echo
chamber and only few users usually exposed to unsubstantiated claims actively
interact with the corrections. Dissenting information is mainly ignored. However,
in our scenario few users belonging to the conspiracy echo chamber do interact with
debunking information. We now wonder about the effect of such an interaction.
Therefore, we perform a comparative analysis between users’ behavior before and
after they first comment on a debunking post. Figure 11 shows the liking and
commenting rates—i.e, the average number of likes (or comments) on conspiracy
posts per day—before and after the first interaction with debunking. We can
observe that users’ liking and commenting rates increase after the interaction, Thus,
their activity in the conspiracy echo chamber is reinforced. In practice, debunking
attempts are acting as a backfire effect.

Fig. 10 US FACEBOOK

Proportions of likes (left) and
comments (right) left by
users polarized towards
science, users polarized
towards conspiracy, and not
polarized users
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Fig. 11 US FACEBOOK
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conspiracy posts of users who
interacted with debunking
posts

9 Emotional Dynamics

In this section, we aim at analyzing the emotional dynamics inside and across echo
chambers. In particular, we apply sentiment analysis techniques to the comments
of our Facebook Italian dataset, and study the aggregated sentiment with respect to
scientific and conspiracy-like information [51]. The sentiment analysis is based on a
supervised machine learning approach, where we first annotate a substantial sample
of comments, and then build a Support Vector Machine (SVM) classification model.
The model is then applied to associate each comment with one sentiment value:
negative, neutral, or positive. The sentiment is intended to express the emotional
attitude of Facebook users when posting comments.

To further investigate the dynamics behind users’ polarization, we now study
how the sentiment changes w.r.t. users’ engagement in their own echo chamber. In
the left panel of Fig. 12, we show the PDF of the mean sentiment of polarized users
with at least two comments. We may observe an overall negativity, more evident on
the conspiracy side. When looking at the sentiment as a function of the number of
comments of the user, we find that the more active a polarized user is, the more she
tends towards negative values, both on science and conspiracy posts. Such results
are shown in the right panel of Fig. 12, where the sentiment has been regressed w.r.t.
the logarithm of the number of comments. Interestingly, the sentiment of science
users decreases faster than that of conspiracy users.

We now want to investigate the emotional dynamics when such polarized
(and negative-minded) users meet together. To this aim, we pick all the posts
representing the arena where the debate between science and conspiracy users
takes place. In particular, we select all the posts commented at least once by both
a user polarized on science and a user polarized on conspiracy. We find 7751



192 F. Zollo and W. Quattrociocchi

Fig. 12 ITALIAN FACEBOOK Left: Probability Density Function (PDF) of the mean sentiment of
polarized users having commented at least twice, where −1 corresponds to negative sentiment, 0 to
neutral and 1 to positive. Right:Average sentiment of polarized users as a function of their number
of comments. Negative (respectively, neutral, positive) sentiment is denoted by red (respectively,
yellow, blue) color. The sentiment has been regressed w.r.t. the logarithm of the number of
comments

Fig. 13 US FACEBOOK

Aggregated sentiment of
posts as a function of their
number of comments.
Negative (respectively,
neutral, positive) sentiment is
denoted by red (respectively,
yellow, blue) color

such posts (out of 315,567), reinforcing the fact that the two communities are
strictly separated and do not often interact with one another. Then, we analyze how
the sentiment changes when the number of comments of the post increases i.e.,
when the discussion becomes longer. Figure 13 shows the aggregated sentiment of
such posts as a function of their number of comments. Clearly, as the number of
comments increases—i.e., the discussion becomes longer—the sentiment is always
more negative. Therefore, we may conclude that the length of the discussion does
affect the negativity of the sentiment.
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10 Conclusions

We investigated how information related to two very distinct narratives—i.e., scien-
tific and conspiracy news—gets consumed and shapes communities on Facebook.
For both the Italian and the US scenario, we showed the emergence of two well-
separated and polarized groups—i.e., echo chambers—where users interact with
like-minded people sharing the same system of beliefs. We found that users are
extremely focused and self-contained on their specific narrative. Such a highly
polarized structure facilitates the reinforcement and contents’ selection by confir-
mation bias. Moreover, we observed that social interactions of Facebook users are
driven by homophily: users not only tend to be very polarized, but they also tend to
be linked to users with similar preferences. According to our results, confirmation
bias dominates viral processes of information diffusion. Also, we found that the
size of misinformation cascades may be approximated by the same size of the echo
chamber.

Furthermore, by measuring the response to the injection of false information
(parodistic imitations of alternative stories), we observed that users prominently
interacting with alternative information sources—i.e. more exposed to unsubstan-
tiated claims—are more prone to interact with intentional and parodistic false
claims. Thus, our findings suggest that conspiracy users are more likely to jump
the credulity barrier: even when information is deliberately false and framed with
a satirical purpose, its conformity with the conspiracy narrative transforms it into
credible content for members of the conspiracy echo chamber.

Then, we investigated users’ response to dissenting information. By analyzing
the effectiveness of debunking on conspiracy users on the US Facebook, we
found that scientific echo chamber is the biggest consumer of debunking posts.
Indeed, only few users usually active in the conspiracy echo chamber interact with
debunking information and, in the latter case, their activity in the conspiracy echo
chamber increases after the interaction, rather than decreasing. Thus, debunking
attempts are acting as a backfire effect.

Finally, we focused on the emotional dynamics inside and between the two
echo chambers, finding that the sentiment of users on science and conspiracy pages
tends to be negative, and is more and more negative when the discussion becomes
longer or users’ activity on the social network increase. In particular, the discussion
degenerates when the two polarized communities interact with one another.

Our findings provide insights about the determinants of polarization and the
evolution of core narratives on online debating, suggesting that fact-checking is not
working as expected. As long as there are no immediate solutions to functional
illiteracy, information overload and confirmation bias will continue dominating
social dynamics online. In such a context, misinformation risk and its consequences
will remain significant. To contrast misinformation spreading, we need to smooth
polarization. To this aim, understanding how core narratives behind different echo
chambers evolve is crucial and could allow to design more efficient communication
strategies that account for users’ cognitive determinants behind these kind of
mechanisms.
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Scalable Detection of Viral Memes
from Diffusion Patterns

Pik-Mai Hui, Lilian Weng, Alireza Sahami Shirazi, Yong-Yeol Ahn,
and Filippo Menczer

1 Introduction

A meme is a distinct piece of information that replicates among people, like
biological genes replicating through reproduction [1]. Memes resemble infectious
diseases, in the sense that both travel through social ties between people [2, 3].
As blooming online social media services facilitate online social interactions, they
also change how memes spread through society. Most importantly, social media
platforms such as Facebook, Google Plus, Twitter, and Tumblr connect billions of
users into a network that can spread a meme to the whole world instantly. At the
same time, these services allow us to directly observe and study the spreading of
memes and user behaviors by recording detailed data about user activities.

A vast number of memes are created every day. However, only a tiny fraction
goes viral. This raises the most fundamental question in information diffusion
research: What makes something viral? This question has attracted attention across
disciplines including marketing and advertisement, as well as machine learning and
network science. One shall agree that the question is meaningful but too broad.
Here we focus on a more specific and well-defined question: How can we predict
the virality of a meme early?

There are roughly two general approaches to the problem of meme virality
prediction: time series analysis and feature-based classification. What follows in this
chapter focuses on feature-based classification [4–6]. Readers who are interested in
the approach of time series analysis are referred to a different literature [7–10].
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The feature-based classification approach aims to discover distinguishing features
of viral memes and to apply supervised machine learning techniques using these
features. As in standard feature-based machine learning problems, a general saying
is garbage in, garbage out, implying that if inputs to a model are not informative,
its output will neither be meaningful. Therefore the most critical step is to identify
and extract useful features from datasets at hand.

We study a set of useful features from our theoretical and conceptual understand-
ing of network structure and social information diffusion processes. In particular,
we discuss the features of the diffusion patterns based on dense subgroups (com-
munities) in underlying networks. We will demonstrate that diffusion pattern can be
extracted at scale, which preserves its strength in virality prediction in two massive
datasets from Twitter and Tumblr.

2 What Makes It Viral?

Although we do not address this question directly, understanding the potential rea-
sons why memes go viral is nevertheless crucial for identifying useful features and
for any discussion about viral memes. From literature we identify three key aspects
of viral spreading, namely innate attractiveness of memes, user characteristics, and
properties of the underlying social network. Motivated readers are recommended to
query the references for more details on these aspects of virality.

2.1 Innate Attractiveness

The innate appeal of a meme may be the most basic factor contributing to its virality.
It is intuitive that users are more likely to reshare memes with better “quality.”
Quality can be defined in different contexts. For example, Berger and Milkman
studied the emotional constituents in news articles and their impact on the articles’
virality. They find that news articles that actively evoke arousal become more viral
later on [11]. Many studies presuppose virality as an intrinsic trait of memes. Since
a meme is represented by its content, it justifies the search for content features that
correlate with quality. For one, Guerini et al. characterized various aspects of virality
and how they indicate the future virality of text-based content [12].

Although innate attractiveness is an intuitive explanation of virality, it does not
paint the whole picture. The attractiveness of a meme is highly dependent on many
contextual features, such as other existing memes and the culture of surrounding
population. Studies have also demonstrated that quality alone does not explain
virality well. In fact, agent-based simulation showed that highly skewed distribution
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of meme popularity can arise even if we do not assume any difference in innate
quality of memes [13]. Moreover, the success of online content, such as songs from
online music downloads and social news filtering, depends significantly on provided
social cues [14, 15]. This suggests that factors other than innate quality, such as
visibility and reachability of the memes, may as well contribute to virality.

2.2 User Characteristics

The importance of social influence leads us to the concept of influencers and the
roles of user characteristics in general. Although there are seemingly countless
memes available, the scarcity of user effort in consuming information leads to
limited individual attention in any social networks. Similar to biological organisms
(and genes) striving for resources to reproduce, all memes strive for the attention
of people. Since user consumes meme at a limited rate, only the memes that are
seen within a short time period have a chance to propagate. Memes originating at an
isolated location in the social network may not have any chance to spread because
no one can see them in the first place. Such memes quickly go extinct in the system.
Meanwhile, a meme that happens to be reshared by a user with many followers will
have a significantly higher chance to reproduce across the followers’ minds.

When user B reads user A’s post, the likelihood of user B resharing the
information depends on his/her evaluation of user A. That is, the influence that one
exerts on others varies across the actors. Content by a well-respected celebrity such
as a founder of a famous organization naturally generates a stronger influence on
others than that by a normal person, despite that they are two copies of the same
content. In addition, each user has a specific set of topical interests. Some care
more about global politics and wars in the Middle-East, while others may only
want to know about new French recipes. Since users consume and share information
according to their own interests, it is more likely for meme to spread between users
with similar interests, when one shares and one consumes closely relevant contents.
These effects are further exacerbated by a combination of limited user attention and
abundant supply of memes. Weng et al. showed that limited individual attention
in the competition among memes induces strong heterogeneity in meme popularity
and longevity [13]. In deciding which meme to consume, each user prioritizes based
on their interests and this alters meme popularity [16].

In other words, the spreading of viral memes favors users of specific charac-
teristics. We call them influential users. Many methods have been proposed for
quantifying user influence and identifying these influential users. In general, these
methods use relevant observables of user characteristics, such as high degree or
retweetability [17, 18], topical similarity [19–21], information forwarding activ-
ity [18, 22], or size of cascades [23, 24], to infer the strength of user influence over
other.
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2.3 Properties of Underlying Social Network

The characteristics of social ties in the underlying social network, through which
memes spread, also affect the success of memes. Strong and homophilous ties
are considered more effective than weak ties for spreading messages [25], while
weak ties are thought of as transmitting novel information [26]. These theories
are commonly used in viral marketing and consumer studies, where researchers
actively apply network approaches to analyze and model local and global patterns of
social network structure [27–29]. In addition, the existence of hubs, namely nodes
with extremely large degree, is known to affect the persistence of infections, the
distribution of cascade sizes, and the vulnerability of the system [30, 31]. Intuitively,
hubs provide pathways through which memes can teleport to distant parts of the
network instantly, facilitating the development of meme popularity on the whole
network.

Another important network structure feature in most social networks is the
presence of dense subgraphs called communities [32–35]. Communities are char-
acterized by internal cohesion (more internal edges than expected) and external
isolation (fewer outgoing edges than expected). While communities naturally
constrain information flow across their borders, they may be necessary for providing
initial critical mass before a meme can spread broadly [36]. In addition, the theory
of complex contagion [37–41] suggests that we may expect an even stronger
constraining effect from community structure [4]. Therefore, information extracted
from the network structure and early spreading patterns is valuable to predict the
virality of a meme. Further discussion on extracting features from community
structures of social networks follows in a later section.

3 Data and Methods

In this section we present details of the datasets used in our experiments, and explain
the methods we applied to extract network communities and to predict virality. We
begin with a brief introduction to the online social media platforms from which
our data was collected, and the networks that we constructed using each of these
platforms.

3.1 Social Media Platforms

Online social media platforms enable people to share information and subscribe to
updates from other users. The information can be of any type, ranging from short
text messages and blog posts, to images and video clips. On these platforms, users
typically choose others to whom they pay attention by “following” them. Most
platforms also provide users with multiple mechanisms of information sharing,
which serve different purposes.
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Twitter is one of the most popular social media platforms. On Twitter, users post
short messages called tweets. Between a pair of users (u, v), we consider three main
types of interactions: (1) u can follow v to subscribe to tweets from v; (2) u can
retweet v’s messages to re-broadcast them to u’s followers; and (3) u can mention
v’s screen name in tweets by using the “@” symbol (e.g., ‘@potus’). Users can also
explicitly attach indexable topic identifiers to a tweet by using hashtags, terms with
the “#” symbol as a prefix (e.g., #news).

Tumblr is another popular social networking and microblogging platform sup-
ported by Yahoo! since 2013, hosting hundreds of millions of monthly active users
and blogs. Tumblr features many functions similar to Twitter, such as hashtags,
resharing, liking, and replies.

On both Twitter and Tumblr, hashtags can be used to operationalize the concept
of memes, thanks to multiple characteristics of hashtags that accord with the
definition of a meme [1]. First, hashtags are concretely defined by user consensus
and uniquely identifiable through searches; second, hashtags reproduce through
imitation by users; third, hashtags mutate, compete, and dominate in the same
system over time. For example, #ows rapidly suppressed several similar hashtags to
become the reference label for the Occupy Wall Street movement among hundreds
of thousands of people who participated in related public discourse [42]. The usage
of hashtags also makes the application of our methods straightforward and our
findings easily comparable to results based on other platforms.

3.2 Community Detection

Communities contain rich information about the structure of a social network.
These communities can be extracted by applying different algorithms. The results
in this chapter are based on communities detected by two methods, namely
InfoMap [33] and Louvain’s method [43]. We have chosen these two methods,
based on contrasting principles, to evaluate the robustness of the results under
different choices of community detection algorithm. InfoMap and Louvain’s method
optimize for different objective functions and are therefore expected to produce
distinct results, particularly regarding community size and resolution [44]. Another
difference is that InfoMap considers the direction of edges, while Louvain’s method
treats all edges as undirected. Therefore the results may provide insight about the
usefulness of edge directionality as signals for virality prediction.

Nowadays, the sizes of online social networks and the volume of information
traffic on them are so large that analysis requires distributed storage and computing
environments. Algorithms running on single computers do not scale well to
such large networks, say with tens of million nodes. Additionally, moving large
volumes of data stored on different storage nodes to a single machine is costly.
Although the original implementations of the InfoMap and Louvain’s algorithms
were not designed for parallel computation, distributed implementations of these
algorithms have been developed to better utilize resources in multiple-machine
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clusters. These scalable methods optimize execution speed and resource efficiency
without sacrificing accuracy. We use distributed Louvain [45] and RelaxMap [46],
parallel implementations of Louvain’s and InfoMap methods, respectively, to extract
communities from large Twitter and Tumblr networks.

3.3 Twitter Information-Sharing Network

In prior work, virality was predicted using community features extracted from
a Twitter follower network [5]. While constructing such a follower network is
desirable, it poses some challenges. Some social media platforms, such as Facebook,
regard friendship data as private, and therefore do not make it available for research.
Furthermore. collecting complete follower information among many users can be
forbiddingly expensive. The APIs provided by popular online social platforms
restrict the rate at which such data can be queried without payment, making even
moderate-size experiment difficult. This motivates an alternative approach.

We can extract communities based on an information-sharing network rather
than a follower network. The links in such a network represent how memes spread
through, e.g., retweets and replies. This can be used as a proxy for the social
network that captures the process of meme diffusion. Since people typically retweet
messages from users they follow, an information-sharing network has a significant
overlap with the follower network. Let us consider two networks constructed in this
fashion, using high-volume streams of Twitter and Tumblr posts.

In our experiment, the Twitter information-sharing network is constructed using
a 10% sample of public tweet stream. The tweets used in our study are from July to
September 2015 (Table 1). We divide the collected tweets into two temporal parts:
a one-month observation period followed by a two-month experiment period.

In the observation period we collect existing hashtags and information-sharing
activities. These activities are used to construct a directed information-sharing
network. Each edge in the network is formed by retweets and mentions of one user
by another, and is weighted by the frequency of information flow from source to
destination user. When user A is retweeted by user B, or when user A mentions
user B, information flows from A to B. Communities in this network are extracted
by RelaxMap and Louvain’s algorithms. To reduce noise, only the largest weakly-
connected component of network is used in community detection.

In the experiment period, we consider only newly-born hashtags, which did not
occur in the observation period. Each new hashtags is tracked for a period of 30
days, starting from its first occurrence. If a hashtag first occurs within 30 days of
the end of the experiment period, so that we do not have 30 days of data in the
experiment period, we do not consider it in our study. For each tracked hashtag, we
record the sequence of users who share it (adopters).

This setup has some desirable properties. Since the networks are constructed
using only information from the observation period and evaluation is done strictly
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over content in the experiment period, there is no information leak between training
and evaluation. Moreover, every hashtag in the evaluation is observed for exactly 30
days after its first use, avoiding a bias against late hashtags.

In summary, tweets from the observation period are used to construct the directed
network from which communities are extracted. The experiment period is used to
construct meme adoption histories and run the prediction experiments.

3.4 Tumblr Information-Sharing Network

We also collected posts from the Tumblr firehose, a database with the complete
history of user posts. On Tumblr, a user can create and own multiple blogs with
one account. Tumblr identifies the same user posting in distinct blogs as different
persona. However, each user is identified by one primary blog while reacting to
posts from other users, such as when replying and liking posts. Therefore we
consider a user’s primary blog as their identity. We focus on text posts, excluding
other types of content such as pictures and video clips.

We divided this dataset the same way we did for the Twitter network (Table 1).
A directed network is constructed by scanning all text posts in November 2015
(the observation period), and its largest weekly connected component is used to
extract communities. An edge is generated when a user likes or replies to a post by
another user, and edges are weighted by the frequencies of interaction. Edges are
directed from user A to user B when B likes or replies to posts by A. Text posts in
December 2015 and January 2016 (the experiment period) were collected to run the
predictions.

The Tumblr dataset contains a very diverse set of hashtags. Tumblr hashtags are
case sensitive, can contain spaces and emoji, and have no length limit. As a result,
they can be very long (full sentences) and have duplication, for instance “Cute cat”
and “cute_cat.” To limit the noise caused from these degenerate cases, we filtered out
hashtags that are longer than 20 characters and trimmed all emoji, common phrase
separators (space, underscore, etc.) and repeated expressions, then lowercased all
characters.

Table 1 Information and basic statistics about the network datasets in the study

Twitter Tumblr

Type of edge Retweets and mentions Replies and likes

Observation period 2015-07 2015-11

Experiment period 2015-08/09 2015-12/2016-01

# Nodes 29,224,842 19,701,097

# Edges 169,685,133 711,573,645
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4 Network Community Features

In this section we present the features extracted from the networks. The features are
a subset of the ones used in our prior work [5]. In particular, we focus on features that
are motivated by the community structure of the underlying social networks. These
network features are computed based on the locations of the first n adopters of each
hashtag, where the parameter n is set to be a relatively small number compared to
the final number of tweets generated by viral hashtags. In our experiment, n = 25.

Let us start by defining a few key concepts and mathematical notations. Some of
the information is mentioned in previous sections, but is included below for the sake
of completeness.

Definition 1 (Meme) We consider each hashtag h as a meme. The popularity of
meme h is quantified by the number of adopters. A(h) is the set of all adopters who
posted about h and An(h) ⊆ A(h) is the set of early adopters who posted at least
one of the first n posts. We define the popularity of h as |A(h)|.
Definition 2 (Adopter Sequence) For a given meme h, we consider the sequence
of meme adopters, 〈ah

1 , ah
2 , . . . , ah

n〉, where ah
i ∈ A(h) is the creator of the i-th post

containing h. A user may appear multiple times in the sequence if the user posts
about h more than once.

Definition 3 (Community) A community c ∈ C is a dense subgraph of nodes
(users) in the network. Given information about which nodes belong to which
communities, A(h|c) is the set of adopters of a meme h in community c. An(h|c)
is the similar set that only considers the first n relevant tweets. C(h) denotes the
infected communities of h, which are communities with at least one tweet containing
h. Similarly, the infected communities with early posts are Cn(h).

Community structure is useful in predicting meme virality because of how
memes travel among users who are socially connected. This process is commonly
called social contagion. It has been argued that social contagions are complex
contagions, in contrast to simple contagions like epidemic spreading. To explain
the connection between complex contagion and community structure in the context
of social network analysis, we note that complex contagion is known to possess two
distinctive characteristics:

Social reinforcement. Until a certain point, each additional exposure drastically
increases the probability of adoption [47–49].

Homophily. Social relationships are more likely to be formed between people who
share certain characteristics, captured in the sayings “birds of a feather flock
together” and “similarity breeds connection” [50, 51].

Community structure has been shown to help quantify the strength of both
social reinforcement and homophily by the following mechanisms [4]. First, dense
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Fig. 1 Visualizations of diffusion patterns of viral (a, b) and non-viral (c, d) memes on Twitter.
Early adopters among the first 30 tweets (in blue) and their neighbors in the same communities
are shown. Each node represents a user and each link indicates the reciprocal follow relationship
between two users. Figure reproduced with permission [5]

connectivity inside a community increases the chances of multiple exposures,
thus enhancing the contagion that is sensitive to social reinforcement. Second,
groups with similar tastes naturally establish more edges among them, forming
communities. Therefore members of the same community are more likely to share
similar interests. We thus expect that, if these two effects are strong, communities
will facilitate the internal circulation of memes while preventing diffusion across
communities, causing strong concentration or low community diversity.

Unpopular memes tend to be concentrated in a small number of communities,
while a few viral memes have high community diversity, spreading widely across
communities like epidemic outbreaks [4]. This can be explained by trapping of
information flow in communities. Viral memes are able to breach the borders of
communities and out-survive other memes. Therefore, features that quantify the
community diversity should help predict future meme virality. As an illustration,
Fig. 1 is a visualization of the early diffusion patterns of a few memes based on the
first 30 tweets, #TheWorseFeeling and #IAdmit clearly exhibit more com-
munity diversity than non-viral memes, e.g. #ProperBand and #FollowFool.
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Based on the above analysis, we define a key feature of diffusion patterns based
on community structure as follows:

Definition 4 (Adopter Entropy, HA
n (h)) The measurement of entropy describes

how adopters of a given meme are scattered or concentrated across communities.
Large entropy indicates low concentration or high diffusion diversity:

HA
n (h) = −

∑

c∈C(h)

|An(h|c)|
|An(h)| log

|An(h|c)|
|An(h)| .

5 Experiment

Let us present the details of our experiment on virality prediction using the diffusion
features extracted from the network community structure. We first define a virality
prediction task. We will show that diffusion diversity is a strong predictor of virality.

5.1 Task Specification

Each new hashtag is associated with a series of adopters within the experiment
period. We only compute features using the positions of the first n = 25 adopters
in the network. Our method therefore requires that a new hashtag has been used at
least 25 times within the experiment period.

Meme popularity exhibits a broad and skewed distribution, as observed in many
previous studies [13, 52]. Our key questions are whether the diffusion diversity
feature based on community structure provides a predictive signal, and whether this
signal is informative at the large scales of our information-sharing networks. The
following recipe defines a meme virality prediction task:

1. Each hashtag is given either viral (1) or not (0) as its ground-truth class; the most-
frequent 50% of the inspected hashtags within a month of usage are defined as
viral.

2. All hashtags are ranked by adopter entropy HA
n (h), from the highest to the

lowest.
3. The top 50% of hashtags based on the ranking in step 2 are predicted as viral.
4. Receiver Operating Characteristic (ROC) curve and the corresponding Area

Under the Curve (AUC) are used to evaluate prediction accuracy.

We note that this balanced binary classification task is simpler than the more
realistic scenario in which only a small fraction of memes go viral.

ROC curves are drawn by first ranking the scores of the hashtags, then evaluating
each sample point as a true positive or false positive in the ranked order. If the true
positive data points are among the top ranks, the curve will bounce up, hence the
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Fig. 2 A plot of ROC curves
using diffusion diversity
(adopter entropy) as the
ranking criterion. Different
curves correspond to different
information-sharing networks
and community detection
algorithms

Table 2 Prediction accuracy
(AUC) from evaluation on
each of the datasets

Twitter Tumblr

RelaxMap 0.67 0.60

D-Louvain 0.68 0.60

AUC will be close to one. On the other hand, if false positive sample points are
ranked high, the AUC will be close to zero. A random ranking will spread true and
false positives evenly, and therefore yield an AUC close to 0.5.

5.2 Evaluation

The ROC curves in Fig. 2 and AUC values in Table 2 show that community entropy
of adopters HA

n (h) alone provides a useful signal in predicting which memes will go
viral in large-scale social media. The AUC values around 0.7 and 0.6 for Twitter and
Tumblr networks, respectively, represent significant improvements upon the random
baseline. Naturally, the results could be improved further by combining entropy with
other features in the literature [5, 6].

The RelaxMap and distributed Louvain’s methods perform similarly on the
same data. Recall that Louvain’s method ignores the direction of edges, while
RelaxMap does not—InfoMap is based on directed random walks. To investigate
the contribution of edge directionality, we ran RelaxMap on an undirected version
of the Twitter information-sharing network. This was done by adding weights for
reciprocal edges, similarly to the way this is done in the distributed implementation
of Louvain’s method. The resulting AUC is not significantly different from the
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random baseline. This suggests that RelaxMap makes use of both weights and
directionality of the edges while extracting communities, and this affects the signal
we use for virality prediction.

The diffusion patterns are informative in the prediction task on both Twitter and
Tumblr platforms. Despite the simplicity of the task, the results of our evaluation
demonstrate that for meme virality prediction, diffusion patterns are robust against
source platforms and network construction, and scale up to very large networks.

Compared to Twitter, virality prediction in Tumblr seems to be much more
challenging. The difficulty may be attributed to different ways in which the platform
is used and the data is collected. First, hashtags on Tumblr tend to be used differently
due to the lack of strong limitations on the set of characters. People use hashtags
with more characters and diverse types of expression styles, such as irony and
sarcasm. As the possible space of hashtags grows, it becomes less clear if the
assumption of hashtags as proxies of memes is appropriate. Further, unlike Twitter,
Tumblr encourages users to create blog posts without length limitation, giving rise
to distinct meme consumption and diffusion patterns.

Another potential difference between the two platforms is the sampling of posts
in the Twitter stream, which is biased toward active users who are responsible for
most of the tweets. The Tumblr firehose includes barely active and less predictable
users.

6 Conclusion

In this chapter, we explore the question of virality of online content and its
prediction on large social media platforms. We summarize three perspectives on
driving factors of virality—innate attractiveness of the content, user characteristics,
and the network structure of the underlying social network. We present a simple,
yet effective community feature that captures the diffusion patterns of memes in the
network. We show that the communities, from which the entropy feature is derived,
can be extracted in large-scale information-sharing networks such as Twitter and
Tumblr. We also find that diffusion diversity provides a predictive signal across
platforms.

There are multiple future directions for this line of research. A noteworthy
challenge in deploying the methods in any real-time system is the computa-
tional complexity of updating the required features as the social network evolves.
Although community structures can be assumed to be fairly stable over time,
it is unclear for how long this assumption of static network holds. Consensus
clustering [53] could be applied to explore this question.

Another potential direction is to investigate the effect of groups with different
characteristics, for instance cultures, religions, and genders, on meme consumption.
There has been little work on feature-based models that are aware of group-level
characteristics. One can imagine that a meme will gain attention in a particular group
while being ignored in others. If early adopters of the meme are in relevant groups
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of users who are motivated to share it, the meme is more likely to go viral. Such
content-aware approach, accompanied with powerful community features, may lead
to the development of more powerful prediction algorithms.
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Attention on Weak Ties in Social
and Communication Networks

Lilian Weng, Márton Karsai, Nicola Perra, Filippo Menczer,
and Alessandro Flammini

1 Introduction

With the aid of Internet technologies we can easily communicate with essentially
anybody in the world at any time. Social media platforms, for example, provide
inexpensive opportunities of creating and maintaining social connections and of
broadcasting and gathering information through these connections [1]. In fact, the
huge amount of information that we create and exchange exceeds our capacity to
consume it [2, 3] and increases the competition among ideas for our collective
attention [4–6]. As a result, our interactions are steered more than ever before by
the “economy of attention” [7, 8]. As Simon predicted:

“What information consumes is rather obvious: it consumes the attention of its recipients.
Hence a wealth of information creates a poverty of attention and a need to allocate that
attention efficiently among the overabundance of information sources that might consume
it.” [7]
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Attention has thus become a valuable resource to be spent parsimoniously. Here
we investigate how individuals allocate attention to different classes of social
connections.

In the seminal paper “The strength of weak ties,” Granovetter [9] defines the
strength of social ties as proportional to the size of the shared social circles of
connected individuals. The more common friends two individuals have, the stronger
is the tie between them. We adopt this same definition here. In the weak tie
hypothesis, he postulates that social ties of different strength play distinct roles in
the dynamics of social structure and information sharing [9, 10]. In particular, weak
ties do not carry as much communication as strong ties do, but they often act as
bridges between communities, and thus as important channels for novel information
otherwise unavailable in close social circles.

There is a vast literature supporting the idea that weak ties play an important
role in spreading novel information across communities [11–15]. This body of
work, however, is not concerned with the nature and importance of the information
exchanged across ties, and in particular does not confirm (or disprove) the second of
Granovetter’s hypotheses, namely that weak ties carry “important” information. One
major aim of this chapter is to address this second, more subtle, point by measuring
the attention that users pay to information exchanged on ties of different strength.

Specifically, here we address two questions:

1. How is the intensity of communication related to the strength of a social tie?
2. How is attention differently allocated among strong and weak ties?

Answering these two questions leads us to naturally discriminate between ties of
different strength and the kind of interactions they represent. In particular we study
how social exchange and information gathering interactions are typically related
to the strength of the ties. We investigate these questions using three large-scale
networks describing different types of human interactions: information sharing in
online social media, cell phone calls, and email exchanges.

The first question can be quantitatively addressed by measuring the strength of
a social tie as the size of the neighborhood shared by two connected agents. Our
results, in agreement with previous studies (e.g., by Onnela et al. [13]), confirm
the first of the weak tie hypothesis: the largest fraction of interactions do happen
on strong ties while weak ties carry much less traffic [9, 13]. We then focus on
the second of Granovetter’s hypotheses by examining the role of attention and
its relationship with tie strength. We propose to use attention as a proxy for the
importance of the information exchanged across a tie. Attention is here defined as
the fraction of an individual’s activities that is devoted to a particular tie. We study
how attention changes as a function of the strength of ties, and examine how it
is distributed among the user’s ties to either access information or maintain social
connections. Interestingly, we find that only very weak or very strong ties attract
a good amount of attention, implying two potentially competing trends. On one
hand, people frequently interact with strong ties to satisfy their social needs. On
the other hand, people look for information through weak ties, as suggested by
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both Granovetter’s and Simon’s work. The former activity assigns more attention to
strong ties, while the latter prefers weak ones. While these observations hold across
all the datasets we examine, the relative magnitude of the two tendencies depends
on the specific network functionality.

2 Related Work

Motivated by Granovetter’s work, many empirical studies explored the role of
weak ties in social networks mostly by surveys or interviews, and found support
for the weak tie hypothesis [11, 12, 16–19]. Brown and Reingen [11] found
an important bridging function of weak ties in word-of-month referral behavior,
allowing information to travel from one distinct subgroup of referral actors to
another. Levin and Cross [12] investigated dyadic social ties in transferring useful
knowledge. They found that strong ties lead to the reception of useful knowledge
more than weak ties, but weak ties benefit knowledge transmission when the
trustworthiness is controlled. Gilbert and Karahalios [14] tested several dimensions
of tie strength on social media and revealed that both intensity of communication
and intimate language are strong indicators of relationship closeness. Strong ties
are also believed to provide greater emotional support [20, 21] and to be more
influential [11, 15, 22], while weak ties provide novel information and connect us to
opportunities outside our immediate circles [9, 23, 24].

Advances in technology have lowered the cost of communication, information
production and consumption, and social link formation, creating unprecedented
opportunities to study social interactions through massive digital traces [25, 26].
However, only a handful of studies have leveraged recently available large-scale data
to explore the weak tie hypothesis. Onnela et al. [13] analyzed a mobile call network
and showed that individuals in clusters tend to communicate more, while weak ties,
acting as bridges between clusters, have less traffic. Bakshy et al. [15] found that on
Facebook, strong ties are individually more influential in propagating information
(external URLs) compared to weak ties. However, the greater number of weak
ties collectively contribute to a larger influence in aggregate [27]. Weak ties also
play a dominant role in slowing down information spreading in temporal networks,
due to their special topological bottleneck position and limited communication
frequencies [28–31]. The presence of strong and weak ties has been recently linked
also to the opposite effect. In fact, the concentration of interactions between strong
ties facilitates classes of contagion processes characterized by endemic states such
as Susceptible-Infected-Susceptible (SIS) processes [32].

The body of empirical work referenced above includes both small experiments
conducted in controlled settings and “big data” approaches. As an introduction to
the work presented here, it is important to stress the different advantages that these
two approaches bring to the study of weak and strong ties. Big data approaches
have obviously the advantage of scale, and, often, of addressing questions in the
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wild. Their major weakness is that they provide much less control on the nature
of specific social ties and of information exchanged. Here we try to overcome this
limitation by adopting attention as a proxy for the importance of the information
exchanged and as a tool to infer the nature of a tie.

3 Datasets and Network Representation

We consider three very different datasets. The basic statistics of each network are
summarized in Table 1.

Twitter network. Twitter is a micro-blogging platform used by many millions
of people to broadcast short messages through social connections. Users can
subscribe to (or “follow”) people they deem interesting to automatically receive
the information they produce. The collection of all “follow” connections forms
the follower network. In the follower network, each node i ∈ V represents a
user and a directed link (i, j) ∈ E is drawn between nodes i and j if user i

follows j . In such a directed link, we call i the source node and j the target (but
note that information travels in the opposite direction). Users post short messages
(“tweets”), which may be reposted (“retweeted”) by their followers. We define
the weight of a link (i, j) as the number of times that i retweets j .
Twitter allows for other forms of interaction, such as direct mentions of specific
users. While these could alternatively be used to define edge weights, mentions
are typically used in discussions and do not necessarily indicate replies to
previous tweets. Retweets provide a more direct measure of the extent to which
a user i pays attention to information broadcast by j .
We collected about 934 millions tweets, 150 millions of which were retweets,
from a 10% sample of the public tweets provided by the Twitter streaming API.1

The information about following connections is gathered for a randomly sampled
subset of creators of the collected tweets through the Twitter follower API.2

Phone call network. The mobile phone call dataset records about 487 millions call
events during 120 days with one second resolution. The dataset was recorded by

Table 1 Statistics of three network datasets

Network name # Nodes # Links % Mutual links Weight Duration

Twitter 628,916 44,611,893 64% # reposts Mar–Apr 2012

Cell phones 6,101,641 19,013,221 61% # calls 120 days

Email 86,818 359,817 16% # messages Sep 1999–Feb 2002

Note that a link (i, j) is deemed mutual if both (i, j) and (j, i) exist in the network

1https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/decahose.
2https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/
get-followers-ids.

https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/decahose
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
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a single operator with 20% market share in an undisclosed European country.3

This dataset naturally leads to a social network where nodes represent users, and
a direct edge (i, j) ∈ E is present if target user j has received at least one call
from source user i. The weight of each tie represents the number of calls.

Enron email network. The Enron email network records 246,391 emails
exchanged inside the Enron corporation. An edge (i, j) ∈ E is established
if there is at least one email from source user i to target user j , as i directs
individual attention to j intentionally. The weight of an edge is the number of
emails from i to j . The Enron email corpus was made publicly available during
the legal investigation concerning the Enron corporation [33].

4 Tie Strength, Weight, and Attention

4.1 Tie Strength

In line with Granovetter’s hypothesis, we measure tie strength—the closeness
between two connected users i and j—as the Jaccard coefficient between their
friend sets [9, 13]:

Oij = |Ni ∩ Nj |
|Ni ∪ Nj \ {i, j}| (1)

where Ni and Nj are the sets of neighbors of i and j , respectively:

Ni = {u | (i, u) ∈ E ∨ (u, i) ∈ E}. (2)

In measuring the strength of a tie according to this definition, we ignore the
direction of links. Although considering direction might convey a more nuanced
interpretation of the notion of strength itself, it would require introducing an
additional hypothesis not directly testable, which we prefer to avoid in this study.
Link direction is obviously important when one is concerned with the flow of
information, therefore we will consider it later when we examine the information
and attention flows.

In the subsequent discussion we also refer to tie strength as link overlap. In Fig. 1
we plot the probability distribution of link overlap in the three datasets. All of them
present fast (exponential) decay: most ties are weak with little overlap, while only a
very small fraction of ties are strong.

The heat maps in Fig. 2 show tie strength as a function of the degrees of the two
nodes connected by the link. In Twitter, high link overlap is more likely to appear

3A statement about the ethical use of this dataset was issued by Northeastern University’s
Institutional Review Board.
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Twitter
Phone call
Email

Fig. 1 Distribution of link overlap. We plot the probability distributions of link overlap for the
three datasets

Fig. 2 Tie strength as a function of the degree. Heat maps of link overlap of an edge (i, j) as a
function of degree k(i) of the source node i and degree k(j) of the target node j in Twitter, cell
phone network and Enron email network. Degrees are plotted using logarithmic bins. The color of
each cell represents the average link overlap of all the edges that fall into that bin given the degrees
of the target and source nodes. Note that the degree is the sum of in-degree and out-degree, i.e. the
number of neighbors of a given node irrespective of direction

between two nodes with similar degrees; in the cell phone call network, ties between
users with fewer contacts tend to have higher overlap; in the Enron network, people
with similar numbers of email contacts are more likely to have overlapping contact
groups.

4.2 Weight

The intensity of communication on a tie (i, j) is quantified by the total number
of times that i retweets, calls, or emails j , denoted as link weight wij . Figure 3
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Twitter
Phone call
Email

Fig. 3 Distribution of link weight. We plot the probability distributions of link weights for the
three datasets

shows broad distributions of link weights, suggesting that in all three networks, the
majority of links carries little traffic but a significant minority supports extremely
high volumes of interactions.

4.3 Attention

As we mentioned earlier, we propose to use attention toward a social contact as
a proxy for the importance of information provided by that contact. Attention is
therefore a key notion in the present analysis. In principle we would like to have a
quantity that measures the amount of cognitive resources that an individual invests
in interacting with other individuals. A good proxy could be time spent on the
specific “platform” but this information is not available in our data. A second
alternative would be the activity of the users (e.g., the tweets produced) but this
could yield an artificially low value for users who mostly consume information. A
third, computationally convenient alternative is to link attention to the number of
friends a user has in the social network. It is reasonable to expect that the cognitive
resources spent in maintaining social relationships is, on average, an increasing
function of the degree of a node, up until a saturation limit compatible with the
finite attention of individuals [2, 3, 5, 6, 34–37], and after which attention should
remain essentially constant. There is a considerable amount of empirical work that
supports this hypothesis. Romero et al. [38] showed that the probability of adopting
(and therefore paying attention to) a hashtag exhibits this qualitative behavior when
plotted vs. the number of times the user is exposed to the hashtag—and therefore,
on average, the number of friends. Hodas and Lerman [6] found an analogous
result for the probability of retweeting a URL. Kwak et al. [39] observed the same
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Fig. 4 Average activity (the number of tweets, calls, or emails) of individuals with a given out-
degree on (a) linear and (b) logarithmic scales in three networks. We track users with up to kout =
200 in the Twitter network, kout = 50 in the phone call network, and kout = 100 in the Enron email
network to avoid the noise caused by scarcity of data points. More than 92% of users in the Twitter
network have kout ≤ 200, more than 99% of users in the phone call network have kout ≤ 50, and
more than 92% of users in the email network have kout ≤ 100

qualitative behavior between user activity and both number of followers and friends
on Twitter. These studies together suggest that different proxies of attention behave
in a qualitatively similar fashion when considered as functions of the degree of the
user, i.e., a relatively quick growth for small values of the degree, followed by a
saturation or a very slow growth regime.

We find support for this general behavior in our datasets as well. Indeed, Fig. 4a
illustrates how activity (tweets, phone calls, emails) grows as a function of out-
degree (people one follows, calls, or emails). In general, we observe that the activity
of an individual grows nonlinearly with out-degree; it can be approximated by a
linear dependence in logarithmic scale (Fig. 4b).

To capture this qualitative behavior we define the total attention of user i as

a(i) = α log kout(i) (3)

and without loss of generality, we set α = 1.
Next, we assume that the fraction of attention devoted by user i to user j , aij is

proportional to the weight wij of link (i, j). We thus obtain:

aij = a(i) · wij∑
u∈Nout

i
wiu

= log kout(i) · wij∑
u∈Nout

i
wiu

(4)

where Nout
i = {u | (i, u) ∈ E}. Unlike tie strength, attention considers direction,

because it flows from the source to the target and only depends on the actions of the
source. Attention has a narrow distribution in all three datasets, as shown in Fig. 5.
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Email

Fig. 5 Distribution of link attention. We plot the probability distributions of link attention for the
three datasets

5 Weak Ties Hypothesis and the Role of Attention

The weak tie hypothesis maintains that strong ties carry the majority of interactions,
while weak ties act as bridges between communities and are crucial channels for
transferring important or novel information. If this is true, we expect that users pay
more attention to information received through a weak tie. In the present section
we test such hypothesis by measuring how attention is allocated across strong and
weak ties. The use of attention as a proxy for importance allows us to overcome the
difficulty of defining and empirically measuring the elusive notions of importance
or novelty of a piece of information.

5.1 Traffic on Strong Ties

As a first step, we aim to confirm that strong ties carry more traffic. To this end
we plot the average link weight versus overlap. More precisely, following Onnela
et al. [13], we define the average weight 〈w〉p over the fraction p of weakest
ties (links with lowest overlap), and plot it as a function of p. As shown in
Fig. 6, the average link weights in the three datasets increase as a function of tie
strength. Strong ties carry more traffic than weak ties, confirming that people tend
to communicate more with close friends, or others with very similar social circles.
The observed pattern is consistent with the weak tie hypothesis and with several
previous empirical studies [13, 16, 40–43]. The plateaus of the average curves for
the weakest ties are due to links with zero overlap. These are quite common: 5.5%
of links in Twitter, 40% in the cell phone network, and 23.6% in the Enron email
network connect nodes without common neighbors.
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Twitter Phone call Email

Fig. 6 Average weight 〈w〉p of the fraction p of weakest ties versus p. Weak links have low
overlap (on the left of the x axis) while strong links have high overlap (on the right)

It is important to stress the diversity of the datasets considered; they reflect
the usage of communication media with different purposes, governed by different
norms. Despite such differences in usage patterns, the networks corresponding to
the three platforms exhibit consistent characteristics. In Twitter, the result implies
that users are more likely to adopt and repost messages from neighbors with similar
social circles. In the phone call network, people tend to call more frequently
individuals with very similar contact lists. In the email network, people working
in the same or close divisions of the corporation and thus sharing many common
coworkers have more email exchanges. The emerging picture in such diverse
networks provides strong evidence for the generality of the first part of Granovetter’s
weak tie theory.

5.2 Attention on Weak Ties

The second part of the weak tie hypothesis states that weak ties function as key
communication channels in the social network by conveying important information
that one is unlikely to discover through strong ties. Removing a strong tie is unlikely
to have a significant effect on our access to information generated in our circle of
friends, as alternative contacts could provide the same information. On the other
hand, the removal of a weak tie could prevent us from being exposed to information
from another community, to which the weak tie provides a bridge. This intuition
suggests that more attention could be devoted to information received through weak
ties.

Let us compute the average link attention 〈a〉p over the fraction p of weakest
ties (links with lowest overlap), and plot it as a function of p. While the three
datasets show the same qualitative behavior in link weights (Fig. 6), they exhibit
crucial differences in the allocation of attention versus tie strength, as reported in
Fig. 7.
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Twitter Phone call Email

Fig. 7 Average link attention 〈a〉p of the fraction p of weakest ties versus p. Weak ties have low
overlap (on the left of the x axis) while strong ties have high overlap (on the right). The flat portion
of the phone call curve for low p corresponds to a high number of links with zero overlap, i.e.,
connecting nodes with no common neighbors

The attention curve is U-shaped in the Twitter network—a positive correlation
between attention and overlap for strong ties but a negative correlation for weak ties
suggests that people are likely to allocate much attention on both very weak and
very strong ties. The U-shape is less evident in the phone call network. Weak ties
acquire attention slightly more than intermediate ties while the majority of attention
is assigned to strong connections.

However, the trend is reversed in the Enron email network, where weak ties
are dominant in attracting attention and there is a negative correlation between the
amount of attention per tie and its strength.

A possible interpretation for the observed U-shaped attention curves in Twitter
and phone data stems from two coexisting trends: on one hand, people are actively
maintaining their social relationships by frequent interactions with close friends,
so that strong ties capture much attention; on the other hand, people are paying
attention to novel and useful information from weak ties. We can argue that a typical
user pays attention to both weak and strong ties. Some users may pay attention
to their strongest ties while others may pay attention to their weakest ties. It is
conceivable that both tendencies coexist. In the aggregate, attention is split between
weak and strong ties.

In Twitter, people follow close friends (strong ties) as well as other important
information sources (weak ties). Hence we can observe a combined effect of the
attention allocation toward both ends of the tie strength spectrum. It seems plausible
for the phone call network to be more driven by social interactions. People often call
their closest friends, accounting for the greater attention toward strong ties. Calls to
weak ties, such as consumer service hotlines, command attention but are much less
common. In contrast, the email exchanges in the Enron dataset happen within a
corporation and therefore we presume the network to be information-driven. The
tendency for maintaining social relationships in such a network is hardly expected,
consistently with the little attention observed on strong ties. This interpretation
of the attention patterns, driven by the distinction between information-driven and
social-driven communication, is further explored in the next section.
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6 Social and Informational Links

Attention concentrates on either very weak or very strong ties, as seen in Fig. 7.
We conjecture that this observed pattern may originate from the coexistence of two
different, potentially competing, communication needs: maintaining social bonds
and acquiring novel information. Let us first look into the different types of links in
the three networks that might account for these two distinct tendencies.

Micro-blogging systems like Twitter, Tumblr, Weibo, and Google+ have several
fundamental differences from offline social networks. These systems are designed
for efficient information sharing, not only for maintaining mutual friendships.
People may establish directed connections unilaterally, and therefore links do not
necessarily represent relationships of mutual trust or reciprocal friendship. Many
users in micro-blogging platforms follow unknown but interesting others, such as
musicians, politicians, technology experts, news sources, and brands. Owing to this
special mechanism in micro-blogging systems, Huberman et al. [44] distinguished
friends from followers based on the number of reply and mention interactions
and pointed out that most traffic is conveyed by an underlying social networks of
reciprocal friends.

A similar phenomenon can be found in the phone call network. Real-world
friends frequently talk to each other on phone and the interactions are usually
intensive, mutual, and long-lasting. Meanwhile, business hotlines and customer
services get calls from individual callers on an occasional basis, and the ties between
them are expected to be weak and non-mutual.

In the Enron email network, most messages are supposed to be business- or
information-driven, and therefore the social activity is weaker than in the Twitter
or call networks. The number of exchanges on a tie may still be dependent on how
much overlap two individuals have at work, and these routine email exchanges are
more likely to go through both directions. However, cross-division communication
on a weak tie, though maybe not mutual (i.e., an announcement from the board), is
expected to be more crucial and of higher priority, thus attracting more attention.

The social relationship between real-world friends is expected to be different
from one between unknown people or coworkers (i.e., a Twitter user following
a celebrity, a consumer calling a business hotline, or two coworkers with no
personal contact). The former reflects existing social ties, while the latter represents
information gathering. We therefore refer to these two classes of connections as
social links and informational links, respectively.

We consider mutual links as social and unilateral ones (i.e., unreciprocated
Twitter followers, phone calls, and emails) as informational [9, 13, 28, 44]. Let us
compare the use of these classes of connections by separately computing average
link weight and attention as a function of link overlap for social and informational
links, respectively. As shown in Fig. 8, we observe clear distinctions between the
two types of links in terms of the allocation of both traffic and attention. More
importantly, the distinctions provide us with an interpretation of the different
distributions of attention observed in the three networks (Fig. 7).
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Fig. 8 Social links versus information links in terms of weight and attention allocation in three
networks. In panels (a), (b), and (c) we plot the average link weight 〈w〉p of the fraction p of
weakest ties versus p. In panels (d), (e), and (f) we plot the average link attention 〈a〉p of the
fraction p of weakest ties versus p

Let us start with a discussion of link weights in Fig. 8a–c. In all three networks,
social links have larger weights than informational ones, irrespective of tie strengths.
Their average weights increase with tie strength. The average weights of informa-
tional links, instead, do not display a robust dependence on tie strength. In Fig. 8d–f
we display the attention distributions on social ties of different nature. Among social
links, strong ties attract more attention than weak ones. Among informational links,
weak ties are more appealing with regard to attention.

Furthermore, considering that links with zero overlap play a special topological
role—a perfect bridge4 connecting distant groups—we expect to see more zero-
overlap ties among informational links than among social ties. In Twitter, 7.5% of
informational links have zero overlap, compared with 4.4% of social links; in the
phone call network, about 65% of informational links have zero overlap versus about
40% of social links; this effect is the strongest in the email network, where 27.5%
of informational links have zero overlap as opposed to 4.1% of social links.

The distinctions between informational and social links in terms of attention
allocation help us interpret the difference between the patterns observed in Fig. 7.
The Twitter network allows users to maintain social contacts and information
sources at the same time, and the volume of attention on social and informa-
tional links is comparable. The phone call network is more commonly used for
social purposes, so informational links only win little attention overall. The email
exchanges in the Enron corporate network are designed for gaining information
and processing business issues, making information links dominant. In fact the

4Note that in our calculation, leaf nodes (with only one out-link) are removed.
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Enron email network only contains 16% social (mutual) links, compared to 64% and
61% in Twitter and phone call networks, as shown in Table 1. When we aggregate
attention across both classes of links (Fig. 7), the increasing attention toward strong
ties is explained by social interactions, while the higher attention toward weak ties
originates from informational links. In the Twitter and phone call networks, the
combined effects of the two classes of ties lead to the U-shaped attention profiles.
In the email network, the predominance of informational links is consistent with the
monotonically decreasing attention with increasing tie strength.

7 Conclusion

This chapter aimed to verify the two different aspects of the weak tie hypothesis [9]
on three large empirical networks. We found that the large majority of interactions
are indeed localized among strong ties. We then studied the fraction of an individ-
ual’s attention directed towards a neighbor to quantify the importance of a social
connection with respect to information diffusion. Interestingly we found that while
strong ties do carry more traffic, weak ties succeed in attracting attention similar to
or even more than strong ties.

We hypothesize that the extent to which weak ties acquire attention can be
explained by two distinct link roles, whose prevalence is network dependent. By
distinguishing between social and informational links based on reciprocity, we
found evidence supporting our interpretation that people interact along strong ties
due to their social relationships, while looking for novel information through weak
ties. In systems used for information-driven communication, such as a corporate
email network, informational links are dominant, explaining higher attention toward
weak ties. In systems designed for social communication, such as mobile phones,
social links yield more attention and explain the importance of strong ties; however,
a portion of traffic is devoted to information seeking, and so we also observe a
weaker increase of attention toward weak ties. Finally, microblogs have dual social
and informational purposes, explaining the non-monotonic pattern of attention
versus tie strength.

Inferring the nature and purpose of a social link from its “usage” is challenging,
but could lead to improved ranking algorithms to prioritize social media content.
This work aims to be a step in this direction.

While many studies have confirmed the first part of Granovetter’s hypothesis,
namely that strong ties receive more traffic in social networks, our analysis provides
empirical evidence and a quantitative interpretation of the second part of Gra-
novetter’s theory, i.e., that weak ties are more important for information gathering.
Until now, studies in this direction have been hampered by a lack of operational
definitions of attention or importance, as well as by limits in the availability of
social and communication network data that would allow one to measure these
quantities at a large scale. As additional datasets of this kind become available, they
will enable further refinements in our understanding of the relationships between
strength, attention, and importance of social links.
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Measuring Social Spam and the Effect
of Bots on Information Diffusion
in Social Media

Emilio Ferrara

1 Introduction

Social media have received widespread recognition as enablers of modern society
communication [14, 18, 55, 56, 58], as a tool to democratize discussion about
politics [2, 10, 15, 25, 26, 61, 90] and social issues [9, 22, 23, 40, 41, 81, 84], and
even as an effective system to respond to crises and emergencies [39, 57, 78, 91, 92].

The benefits of the rise to popularity of social media are hard to quantify, as they
touch billions of people every day, all over the world. However, as early as 2006,
concerns have been raised regarding the possibility of manipulating public opinion
through social media [44]. Particularly problematic can be the fact that social media
have proved effective in influencing individuals, their beliefs and behaviors [7,
17, 33, 54, 67]. These concerns have been later proved well grounded by several
scientific studies, which highlighted a variety of manipulation strategies and related
contexts where such forms of abuse can take place [27, 30, 32, 45, 66, 72, 73, 86].

One way to manipulate social media is by using social bots, algorithmically-
controlled accounts that emulate the activity of human users but operate at much
higher pace (e.g., automatically producing content or engaging in social interac-
tions), while successfully keeping their robotic identity undisclosed [36, 46, 65, 85].

Evidence of the adoption of social media bots to attempt manipulating political
communication dates back nearly a decade: during the 2010 U.S. midterm elections,
social bots were employed to support some candidates and smear others, by
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injecting thousands of tweets pointing to websites with fake news [71]. The research
community reported another similar case around the time of the 2010 Massachusetts
special election [66]. Campaigns of this type are sometimes referred to as astroturf
or Twitter bombs. Unfortunately, most of the times, it has proven impossible to
determine who’s behind these types of operations [11, 36, 53]. Governments, orga-
nizations, and other entities with sufficient resources can obtain the technological
capabilities to deploy thousands of social bots and use them to their advantage,
either to support or to attack particular political figures or candidates.

Bots have been used in other contexts too, most prominently for social spamming
and social phishing purposes [48, 50, 69, 74, 82, 83, 89]. A large body of scientific
literature covers the challenges related to detecting social spam [38, 63, 94], spam
bots [12, 59, 60, 76], fake reviews [69], etc. Differently from traditional Internet
spam, distributed via email or mailing lists, social spam proliferates in online
platforms, and bots have been extensively used to make its diffusion more effective.
Although much work has been devoted to characterize and detect social spam
campaigns or spam bots, the interplay between these two, and in particular the
effect of spam bots on the diffusion of spam in social media, has not received much
attention.

1.1 Contributions of This Chapter

This chapter aims at investigating both the directions of social bots influence on
political discussion and spam bots influence in social spam campaigns. In particular,
we will be concerned with measuring the role and effects of bots in social media
information spreading dynamics. The scope and contributions of this chapter are
therefore threefold:

• We will first review how social bots, and in particular Twitter bots, are created,
how they operate, and what are the challenges in detecting them (see Sect. 2).
The literature discussed here will be mostly aligned with a recent review paper
we published on Communications of the ACM [36].

• We will then discuss how social bots have been used during the 2016 US
Presidential Election to sway the discussion around the presidential candidates,
and to frame agendas and messages attaching particular sentiments. This review
(see Sect. 3.1) will be based on results we recently published [11].

• Then, we will propose novel analysis of the effects of social spam bots on the
diffusion of social spam campaigns and promotional content on Twitter (see
Sect. 3.2). We will investigate the differences between traditional spammers and
social spam bots, provide a characterization of their most typical features, and
describe their effect of the diffusion of social spam on Twitter.
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2 What Social Bots Are and How They Operate

2.1 How to Create a Social Spam Bot

In the early days of online social media, over one decade ago, creating a bot
was not a simple task: a skilled programmer would need to sift through various
platforms’ documentation to create a software capable of automatically interfacing
with the platform and operate functions in a human-like manner. For example,
in 2009, we spent significant amounts of efforts to create a simple bot that
would navigate Facebook pages and extract basic publicly-available social network
information [16]: that required the application of sophisticated Web scripting
techniques [35] in conjunction with a trial-and-error approach to deal with the Web
platform infrastructure. Similar efforts have been reported for other such type of
early endeavors [4, 20]

These days, the landscape has completely changed: indeed, it has become
increasingly simpler to deploy social bots, so that, in some cases, no coding skills
are required to set up accounts that perform simple automated activities: tech blogs
often post tutorials and ready-to-go tools for this purposes. Various source codes for
sophisticated social media bots can be found online as well, ready to be customized
and optimized by the more technically-savvy users [53].

We inspected same of the readily-available Twitter bot-making tools and this is a
(non-comprehensive) list of capabilities they provide:

• Search Twitter for phrases/hashtags/keywords and automatically retweet them;
• Automatically reply to tweets that meet a certain criteria;
• Automatically follow any users that tweet something with a specific hashtag,

keyword, or phrase;
• Automatically follow back any users that have followed the bot;
• Automatically follow any users that follow a specified user;
• Automatically add users tweeting about something to public lists;
• Search Google (and other engines) for articles/news according to specific criteria

and post them, or link them in automatic replies to other users;
• Automatically aggregating public sentiment on certain topics of discussion;
• Buffer and post tweets automatically.

Most of these bots can run within cloud services or infrastructures like Amazon
Web Services (AWS) or Heroku, making it more difficult to block them when they
violate the Terms of Service of the platform where they are deployed.

Finally, a very recent trend is that of providing Bot-As-A-Service (BaaS):
companies like RoboLike1 provide “Easy-to-use Instagram/Twitter auto bots” per-
forming certain automatic activities for a monthly price. Advanced conversational

1RoboLike: https://robolike.com/.

https://robolike.com/
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bots powered by sophisticated Artificial Intelligence are provided by companies
like ChatBots.io that allow anyone to “Add a bot to services like Twitter, Hubot,
Facebook, Skype, Twilio, and more”.2

2.2 How to Detect Social Bots

The detection of social bots in online social media platform has proven a challenging
task. For this reason, it has attracted a lot of attention from the computing research
community. Even DARPA became interested to the point that a DARPA Challenge
was organized, namely the 2016 DARPA Twitter Bot Detection [77]: over one dozen
academic and industry teams participated, with University of Maryland, University
of Southern California, and Indiana University topping the challenge.

For these reasons, the literature on social bot detection has become very
extensive. We tried to summarize the most relevant approaches in a survey paper
recently appeared on Communications of the ACM [36]: we refer the interested
reader to that review for a deeper analysis of this problem.

In our review, we proposed a simple taxonomy to divide the social bot detection
approaches proposed in literature into three classes: (1) bot detection systems based
on social network information; (2) system based on crowd-sourcing and leveraging
human intelligence; (3) machine learning methods based on the identification
of highly-revealing features that discriminate between bots and humans. In the
following, we report some examples of these three classes.

2.2.1 Graph-Based Social Bot Detection

Social bot detection has been framed as an adversarial setting [6]: an adversary
may control multiple social bots to impersonate different identities and infiltrate
a system. Proposed detection strategies often rely on examining the structure of
a social graph, and assume that bot accounts exhibit a small number of links to
legitimate users, connecting mostly to other bots. This feature is exploited to identify
densely interconnected groups of bots. Yet, a wise attacker may counterfeit the
connectivity of the controlled bot accounts; this strategy would make the attack
invisible to these detection methods. To address this shortcoming, some systems
also employ the paradigm of innocent by association: an account interacting with
a legitimate user is considered itself legitimate. Unfortunately, the effectiveness of
such detection strategies is bound by the behavioral assumption that legitimate users
refuse to interact with unknown accounts. This was proven unrealistic by various
experiments [13, 29, 76]. On other platforms like Twitter and Tumblr, connecting
and interacting with strangers is one of the main features. In these circumstances, the

2Pandora bot: https://developer.pandorabots.com/.

https://developer.pandorabots.com/
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innocent-by-association paradigm yields high false positive rates. Moreover, real-
world platforms may contain many mixed groups of legitimate users who fell prey of
some bots [6], and sophisticated bots may succeed in large-scale infiltration making
it impossible to detect them solely from network structure information. Despite its
high false-positive rate, social network information can complement other sources
of information to improve prediction accuracy, as demonstrated by prior work [36].

2.2.2 Crowd-Sourcing Social Bot Detection

Some authors suggested crowd-sourcing social bot detection, assuming that it
would be a simple task for humans to evaluate an account’s behavior and to
observe emerging patterns and anomalies associated with bots [88]. Using data
from Facebook and Renren (a popular Chinese online social network), the authors
tested the efficacy of human detectors, using both expert annotators and workers
hired online. Although this strategy exhibited a near-zero false positive rate, it has
proven unfeasible for several reasons: for existing platform with large user bases,
like Facebook and Twitter, manually verify millions of suspicious accounts has a
prohibitive cost; even if large social network companies could afford to hire teams
of analysts for this purpose [75], such cost might not be sustainable for small
social networks in their early stages; finally, exposing personal information to online
workers for annotation would raise privacy issue [28].

2.2.3 Feature-Based Social Bot Detection

Encoding behavioral patterns into features, in conjunction with machine learning
techniques to learn the signature of human and bot behavior, may be the most
popular bot detection strategy. One example of feature-based system is represented
by Bot or Not: released in 2014, and constantly updated, this was the first Twitter
bot detection tool to be made publicly available [24].3 Bot or Not implements a
detection algorithm relying upon highly-predictive features capturing a variety of
suspicious behaviors to separate social bots from humans. The system employs
off-the-shelf supervised learning algorithms trained with examples of both humans
and bots behaviors. In addition to the classification results, Bot or Not provides a
variety of interactive visualizations that yield insights on the features exploited by
the system. We will later describe how we used Bot or Not for our studies.

Bots are continuously changing and evolving: the analysis of the highly-
predictive behaviors that feature-based detection systems can detect may reveal
interesting patterns and provide unique opportunities to understand how to discrim-
inate between bots and humans. User meta-data are considered among the most
predictive features and the most interpretable ones [46, 88]: we can suggest few

3http://truthy.indiana.edu/botornot.

http://truthy.indiana.edu/botornot
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rules of thumb to infer whether an account is likely a bot, by comparing its meta-
data with that of legitimate users. Further work, however, will be needed to detect
sophisticated strategies exhibiting a mixture of humans and social bots features
(sometimes referred to as cyborgs). Detecting these bots, or hacked accounts [93], is
currently impossible for feature-based systems. Recent studies suggested that some
advanced social bots may no longer aim at mimicking human behavior, but rather at
misdirecting attention to irrelevant information [1]: such smoke screening strategies,
requiring high degree of coordination among bots, can also escape feature-based
detection systems.

3 Applications and Case Studies

In the following, we present two case studies. We first study the use of social bots
in the context of the 2016 US Presidential Election (cf. Sect. 3.1). The results we
present are based on recently published work [11]. Then, we discuss new results on
the effect of bots on the diffusion of social media spam (cf. Sect. 3.2).

3.1 Case Study 1: Political Campaigns

In the introduction of this chapter, we discussed at length the widespread abuse
of social media platforms. In the context of political campaigns, one could try to
boost the popularity of a candidate, for example by creating the impression that
there is an organic support behind that candidate; however, the apparent support
can be artificially generated by means of orchestrated campaigns. This phenomenon
is commonly referred to as astroturf, and it has long-lasting roots, starting from
offline campaigns [62], and evolving, during more recent times, into various forms
of Internet [52] and social media [72] campaigns. We report our study of social
media astroturf in the context of the 2016 US Presidential Election next, with a
special focus on the role of social bots. We discuss data collection first, then we go
over the employed bot detection and sentiment analysis approaches. The case study
concludes with some discussion of the insights our analysis yielded.

3.1.1 Data Collection

We manually crafted a list of hashtags and keywords related to the 2016 US
Presidential Election. The list was compiled so that to contain a roughly equal
number of hashtags/keywords associated with each major presidential candidate:
we selected 23 terms in total, including 5 terms specifically for the Republican
Party nominee Donald Trump (#donaldtrump, #trump2016, #neverhillary, #trump-
pence16, #trump), 4 terms for the Democratic Party nominee Hillary Clinton
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(#hillaryclinton, #imwithher, #nevertrump, #hillary), and several terms relative to
the four presidential debates. The full list of search terms is reported in our
paper [11]. By querying the Twitter Search API at regular intervals of 10 s,
continuously and without interruptions in three periods between September 16 and
October 21, 2016, we collected a large dataset constituted by 20.7 million tweets
posted by nearly 2.8 million distinct users. We used the Twitter Search API4 to
obtain all tweets that contain the search terms, posted during the data collection
period, rather than a sample of unfiltered tweets: this avoids incurring in the issues
reported in the literature related to collecting sample data from the Twitter Stream
API5 instead [68].

3.1.2 Bot Detection

Determining whether either human or a bot controls a social media account has
proven a very challenging task [36, 77]. Our prior efforts produced an openly
accessible solution called Bot Or Not [24], consisting of a Python API6 and
a Website.7 As we briefly discussed earlier, Bot Or Not is a machine-learning
framework that extracts and analyzes a set of over one thousand features, spanning
content and network structure, temporal activity, user profile data, and sentiment
analysis to produce a score that suggests the likelihood that the inspected account is
indeed a social bot. Extensive analysis revealed that the two most important classes
of feature to detect bots are, maybe unsurprisingly, the metadata and usage statistics
associated with the user accounts.

The following indicators provide the strongest signals to separate bots from
humans: (1) whether the public Twitter profile looks like the default one or it is
customized (it requires some human efforts to customize the profile, therefore bots
are more likely to exhibit the default profile setting); (2) absence of geographical
metadata (humans often use smartphones and the Twitter iPhone/Android App,
which records as digital footprint the physical location of the mobile device); (3)
and activity statistics such as total number of tweets and frequency of posting
(bots exhibit incessant activity and excessive amounts of tweets), proportion of
retweets over original tweets (bots retweet contents much more frequently than
generating new tweets), proportion of followers over followees (bots usually have
less followers and more followees), account creation date (bots are more likely to
have recently-created accounts), randomness of the username (bots are likely to have
randomly-generated usernames). We point the reader interested in further technical
details to our prior work [24, 36].

4Twitter Search API: https://dev.twitter.com/rest/public/search.
5Twitter Stream API: https://dev.twitter.com/streaming/overview.
6Bot or Not Python API: https://github.com/truthy/botornot-python.
7Bot or Not Website: https://truthy.indiana.edu/botornot/.

https://dev.twitter.com/rest/public/search
https://dev.twitter.com/streaming/overview
https://github.com/truthy/botornot-python
https://truthy.indiana.edu/botornot/
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Bot Or Not has been trained with thousands of instances of social bots, from
simple to sophisticated, and an accuracy of above 95% [24]. Typically, Bot Or
Not yields likelihood scores above 50% only for accounts that look suspicious to
a scrupulous analysis. We adopted the Python Bot Or Not API to systematically
inspect the most active users in our dataset. The Python Bot Or Not API queries the
Twitter API to extract the most 300 tweets and all the publicly available account
metadata, and feed this features to an ensemble of machine learning classifiers,
which produce a bot score. To label accounts as bots, we use the 50% threshold—
which has proven effective in prior studies [24, 36]—an account is considered to be
a bot if the bot score is above 0.5.

Since the Python Bot Or Not API incurs in the query limitations imposed by the
Twitter API, it would have been impossible to test all the 2.78 million accounts.
Therefore, we tested the top 50 thousand accounts ranked by activity volume.
Although these top 50 thousand users account for roughly only 2% of the entire
population, it is worth noting that they are responsible for producing over 12.6
million tweets, which is about 60% of the total conversation. This choice gives us
sufficient statistical power to extrapolate the distribution of bots and humans for the
entire population without the need to test accounts that are only marginally involved
in the conversation. Out of the top 50 thousand accounts, Bot Or Not assigned
a bot score greater than the established 0.5 threshold, and therefore classified as
likely bots, to a total of 7183 users, responsible for 2,330,252 tweets. A total of
40,163 users (responsible for 10.3 million tweets) were labeled as humans. Bot
Or Not labeled the remainder 2654 users as unknown/undecided, either because
their scores does not significantly diverge from the classification threshold of 0.5,
or because the accounts have been suspended/deleted. Even if all the 2654 users
were bots, and Twitter suspended their accounts for violating the terms of service,
this would suggest that roughly 70% of the total bot population (the remainder
7183 accounts) was still active on the platform at the time of our verification. By
extrapolating for the entire population, we estimate the presence of at least 400
thousand bots, accounting for roughly 15% of the total Twitter population active
in the U.S. presidential election discussion, and responsible for about 3.8 million
tweets, roughly 19% of the total volume. Additional statistics are summarized in
our paper [11].

3.1.3 Sentiment Analysis

To understand how bots and humans discuss about the presidential candidates
we will rely upon sentiment analysis. To attach a sentiment score to the tweets
in our dataset, we used SentiStrength [80]. SentiStrength is a sentiment analysis
algorithm which has been specifically designed to annotate social media data. This
design choice provides some desirable advantages: first, it is optimized to annotate
short, informal texts, like tweets, that contain abbreviations, slang, and other non-
orthodox language features; second, SentiStrength employs additional linguistic
rules for negations, amplifications, booster words, emoticons, spelling corrections,
etc. Applications of SentiStrength to social media data found it particularly effective
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at capturing positive and negative emotions with, respectively, 60.6% and 72.8%
accuracy [79]. We tested it extensively and also used it in prior studies to validate
the effect of sentiment on the diffusion of information in social media [33]. The
algorithm assigns to each tweet t a positive P +(t) and negative P −(t) polarity
score, both ranging between 1 (neutral) and 5 (strongly positive/negative). Starting
from the polarity scores, we capture the emotional dimension of each tweet t with
one single measure, the sentiment score S(t), defined as the difference between
positive and negative polarity scores: S(t) = P +(t) − P −(t). The above-defined
score ranges between −4 and +4. The negative extreme indicates a strongly negative
tweet, and occurs when P +(t) = 1 and P −(t) = 5. Vice-versa, the positive extreme
identifies a strongly positive tweet labeled with P +(t) = 5 and P −(t) = 1. In the
case P +(t) = P −(t)—positive and negative sentiment scores for a tweet t are the
same—the sentiment S(t) = 0 of tweet t is considered as neutral (note that the
neutral class represents the majority, by construction, since it contains all tweets
that have equal number of positive and negative words, as well as all tweets with no
sentiment-labeled terms).

3.1.4 Partisanship and Supporting Activity

We next inferred the partisanship of the users in our dataset. We used the five Trump-
supporting hashtags (#donaldtrump, #trump2016, #neverhillary, #trumppence16,
#trump) and the four Clinton-supporting (#hillaryclinton, #imwithher, #nevertrump,
#hillary) to attribute partisanships. In detail, we employed a simple heuristics based
on hashtag adoption: for each user, we calculated the top ten hashtags that appear
in the tweets posted by that user. If the majority of hashtags support one particular
candidate, we assigned the given user to that political faction (Clinton- or Trump-
supporter). This is a very strict and conservative partisanship assignment, likely
less prone to misclassification that may be yield by automatic machine-learning
techniques not based on manual validation, e.g., [21]. Our procedure yielded a small,
high-confidence, annotated dataset constituted by 7112 Clinton supporters (590 bots
and 6522 humans) and 17,202 Trump supporters (1867 bots and 15,335 humans).

3.1.5 Analytic Insight 1: Human vs. Bot Engagement

Figures 1 and 2 show the Complementary Cumulative Distribution Functions
(CCDFs) of the interactions respectively replies and retweets, initiated by bot and
human users. Each plot disaggregates the interactions in three categories: (1) within
group (for example, bot–bot, or human–human); (2) across groups (e.g., bot–human,
or human–bot); and, (3) total (i.e., bot-all and human-all). Both figures exhibit
broad distributions typical of social media activity. What interestingly emerges
from contrasting the two figures is that humans are engaging in replies interactions
significantly more (one order of magnitude difference) with other humans than
with bots (see right panel of Fig. 1). Conversely, bots fail to substantially engage
humans and end up interacting via replies with other bots significantly more than
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Fig. 1 Complementary cumulative distribution function (CCDF) of replies interactions generated
by bots (left) and humans (right) (published in Bessi and Ferrara, 2016 [11])
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Fig. 2 Complementary cumulative distribution function (CCDF) of retweets interactions gener-
ated by bots (left) and humans (right) (published in Bessi and Ferrara [11])

with humans. Given that bots by design are intended to engage in interactions with
humans, our observation goes against what we would have intuitively expected—
similar paradoxes have been highlighted in our prior work [36]. One intuitive
explanation to this phenomenon is that bots that are not sophisticated enough, cannot
produce engaging-enough questions to foster meaningful discussions with humans.
Figure 2, however, demonstrates that rebroadcasting is a much more effective
channel of information spreading: there is no significant difference in the amounts of
retweets that humans generate by rebroadcasting content produced by other humans
or by bots. In fact, humans and bots retweet each other substantially at the same
rate. This suggests that bots are being very effective at spreading information in
the human population, which could have some nefarious consequences in the cases
when humans fail at verifying the correctness and accuracy of such information and
information sources.

3.1.6 Analytic Insight 2: Human vs. Bot Sentiment

To further understand how social media users (both bots and humans) are talking
about the two presidential candidates, we explore the sentiment that the tweets
convey. To this purpose, we rely upon sentiment analysis and in particular on
SentiStrength. Figure 3 shows four panels: the top two panels illustrate the sentiment
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Fig. 3 Distributions of the sentiment of bots (top) and humans (bottom) supporting the two
presidential candidates. The main histograms show the disaggregated volumes of tweets talking
about the two candidates separately, while the insets show the absolute value of the difference
between them (published in Bessi and Ferrara [11])

of the tweets produced by the bots, while the bottom two panels show the same
information for tweets generated by humans. Furthermore, the two left panels show
the support to Hillary Clinton (respectively by bots and humans), whereas the two
right panels show the support to Donald Trump (respectively by bots and humans).
The main histograms in each panel show the volume of tweets about Clinton or
Trump, separately, whereas the insets show the difference between the two (this
to illustrate the disproportion in support of the candidate of one’s factions, as
opposed to the other candidate). What appears evident from contrasting the left
and right panels is that, on average, the tweets produced by Trump’s supporters are
significantly more positive than that of Clinton’s supporters, regardless of whether
the source is human or bot. If we focus on Trump’s bot supporters, we note that
they generate almost no negative tweets; they indeed produce the most positive set
of tweets in the entire dataset—a very significant fraction of these non-negative
bot-generated tweets (about 200,000 or nearly two-third of the total) are in support
of Donald Trump. This generates a stream of support that is at staggering odds
with respect to the overall negative tone that characterizes the 2016 presidential
election campaigns. The fact that bots produce systematically more positive content
in support of a candidate can bias the perception of the individuals exposed to it,
suggesting that there exists an organic, grassroots support for a given candidate,
while in reality it is all artificially generated. Some interesting insights emerge
also from the analysis of Clinton’s supporters: on average, human-generated tweets
show slightly more positive sentiment toward the candidate than the bot-generated
ones. Overall, a more natural distribution of tweets’ sentiment emerges from the two
groups of bots and human supporters, with a roughly equal number of positive and
negative tweets being present in the pro-Clinton discussion. To further understand
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these dynamics, we manually analyzed two hashtags, namely #NeverTrump and
#NeverHillary, as emblematic examples of campaigns explicitly devoted to target
the candidate of one’s opposing political leaning. The hashtag #NeverTrump,
used by supporters of the Democratic Candidate Hillary Clinton, accrued 105,906
positive tweets, and 118,661 negative ones, roughly an equal split; on the other hand,
the hashtag #NeverHillary pushed by Trump’s supporters generated significantly
more negative tweets (204,418) than positive ones (171,877). The paper [11] reports
various examples of tweets generated by bots, and the candidate they support.
A final consideration emerges when contrasting the pro-Clinton and pro-Trump
factions: the former focuses much more on their candidate, with a significant
number of tweets referring to Clinton. Conversely, pro-Trump supporters (humans
and bots) devote a significant number of tweets to their opponent: in fact, the
majority of negative tweets generated by both humans and bots are addressing
Hillary Clinton.

3.2 Case Study 2: Social Spam Campaigns

In the second part of this chapter, we study social spam campaigns. The widespread
use of social media makes them an ideal target as a vector to diffuse spam
campaigns. Indeed, spam has evolved, moving away from traditional vectors like
emails and mailinglists [43], due to the increasing effectiveness of email spam
filters, and migrating to social platforms like social media [19, 38, 94] and digital
marketplaces [51, 64, 70], etc. In the former scenario, the use of bots has been
documented to generate artificial promotional campaigns, to advertise dubious
products (whose sale is sometimes illicit), etc. In the latter, bots are exploited
to generate and diffuse fake product reviews. Next, we study social media spam,
focusing on the effects of social bots in the diffusion of spam campaigns on
Twitter. We first discuss social spam data collection, then introduce a tool named
dynamical activity-connectivity map we recently proposed to study the mechanisms
of influence in social media. We conclude studying spam campaigns’ sentiment and
its interplay with bots’ efficacy.

3.2.1 Data Collection

Similarly to the political discussion scenario, we manually crafted a list of hashtags
and keywords to collect our data. We focused on the tobacco-related discussion,
and in particular electronic cigarettes. We identified this case study by noticing how
spam seems to be a pervasive presence in this topic of discussion on Twitter [5].
The list included over one hundred terms covering nicotine-related products (e.g.,
tobacco, cigar, cigarettes, etc.), electronic cigarettes (multiple variants like ecig, e-
cig, ecigs, e-cigs, e-cigarette, ecigarette, etc.), vaping products (e.g., vape, ehookah,
ejuices, eliquids, etc.), popular vaping brands (e.g., green smoke, eversmoke,
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etc.), health-related terms (e.g., second-hand smoke, second-hand vape), health
campaigns terms (e.g., still blowing smoke, not blowing smoke, tobacco free kids,
etc.), and more. We queried the Search API at regular intervals from January 1
to September 30, 2015 and collected a large dataset constituted by over 9 million
unique tweets.

3.2.2 Spam Detection

Detecting social spam has proven a challenging and tedious task. The lack of a
rigorous definition of what spam is makes detection a complex problem. Although
various detection techniques have been proposed in the machine learning literature,
they carry some limitations: they are either outdated, being trained and tested on
early (2008–2010) Twitter spam data [12, 59, 60, 76], or overly-specific to detect
certain types of campaigns [37, 38, 63, 94]. The first limitation becomes a problem
due to the fact that bots evolve, becoming increasingly sophisticated thus rendering
detection less effective if training data is not current; the latter issue hinders the
applicability of detection systems to a broader range of problem domains.

For the reasons above, to detect spam campaigns in our data and separate
legitimate tobacco-related discussion from social spam, we implemented a novel
strategy. We first performed traditional data cleaning operations on the texts of the
tweets in our dataset, namely removing stop-words and punctuation, then tokenizing
and stemming the terms. Afterwards, we elaborated the following iterative three-
stages detection procedure:

1. We generated a list of keywords appearing in the tweets, ranked by frequency.
2. Then, two independent human annotators manually identified and labeled key-

words associated to spam campaigns appearing in the list of the top 250 most
common keywords (to provide contextual information, the annotators had access
to the full text of some example tweets where such keywords occur).

3. Finally, all tweets containing spam-associated keywords are moved into a
separate repository that we will call spam dataset; the iterative process then
restarts. It is worth noting that, at each next iteration of the algorithm, the ranked
list of keywords changes because the spam keywords identified at stage 2 are
removed.

The process ended when the list of top 250 most common keywords did not
contain any spam-associated term. This yielded a manually-curated list of 87 spam
keywords,8 that appear in the spam dataset accounting for 3.06M unique tweets
posted by over 850 thousand distinct users. Of these users, about 74K posted more
than one tweet. We will focus our attention, for the rest of our analysis, on these
74K active spammers.

8The combination of the top 250 non-spam keywords, plus the 87 spam keywords, accounts for
over 90% of all tweets in the original dataset.
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The top ten most recurring spam keywords, in order of frequency, are: win,
dvd, movies, giveaway, deals, horror, bluray, ebay, gameofthrones, movie. Manual
inspection of the 87 keywords suggests that three main types of social media spam
campaigns occur in this scenario:

• Tobacco-related product promotions (sales, coupons, discount codes, etc.);
• Tobacco-unrelated product promotions (sales, coupons, discount codes, etc.), in

particular related to entertainment products (dvd, music, books, etc.);
• Topic-hijacking campaigns, i.e., spam that includes tobacco-related keywords to

attract the attention of users to tweets related to completely different topics,
including movies and TV shows (keywords like gameofthrones, fiftyshades,
hungergames, celebs, ageofultron, insurgent, and many others), and offline news
events (e.g., charlestonshooting, ericgarner).

The phenomenon of Twitter hashtag hijacking has been documented exten-
sively [19, 42, 47, 49]. In the following analysis, we do not make a specific
distinction between different types of spam campaigns. However, in the future, we
will try to determine whether campaign types, as well as different scopes and intents
lead to different social spam dynamics.

3.2.3 Descriptive Data Statistics

Our initial exploratory analysis aims at highlighting the temporal dynamics of social
spam production. Figure 4 shows the timeline of the volume of spam tweets per
day in our dataset. Overall, we can note a mild upward trend over the course of

Fig. 4 Timeline of the volume of spam tweets per day during the observation period. The inset
shows the cumulative count. A few drops visible in April and May are associated with Twitter data
collection service outages
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Fig. 5 Distributions of the average number of tweets, retweets, followers, friends, and follower vs
friend ratio of the users in our spam dataset

the 9 months of observation. By the end of the year, the volume of tweets per day
is roughly twice that of the beginning. This growth suggests the effectiveness of
social spam in the tobacco-related context: if ineffective, the cost associated with
running social spam campaigns would outweigh their benefits and therefore we
would observe declining trends.

After assessing that social spam was “alive and well” during our analysis
period, we moved forward to provide a statistical characterization of the actors
therein involved: the Twitter spammers. Figure 5 shows the distribution of the
average number of posted tweets, obtained retweets, number of followers and
friends, and follower vs. friend ratio, for the set of users in our spam dataset. The
averages are calculated across the 9-month observation period. A few observations
are in order. Firstly, although all distributions exhibit the heavy tails typical of
social networks [3, 8], some are significantly different from others. For example,
the distribution of posted tweets is somewhat unexpected; if compared with the
distribution of obtained retweets, which exhibits the typical power-law like behavior
(i.e., a truncated straight line in the log-log plot of Fig. 5), the distribution of posted
tweets appears anomalous. In particular, it appears that there is roughly the same
probability of observing accounts with a number of posted tweets that spans from
a few to over ten thousands: this is represented by the nearly-flat slope of the blue
solid curve in the regime 10 ≤ x < 104. After that point, the probability decreases
very rapidly. This unusual behavior is commonly linked to the activity of social
bots. Their activity, however, does not catch up with the lack of influence they are
typically characterized by, and therefore the amount of average retweets that most
of these accounts receive is orders of magnitude lesser than the amount of tweets
they post. Concluding, both the friends and follower distribution exhibit uncommon
shapes, suggesting the presence of two different regimes, one for 10 ≤ x < 103

and one for x ≥ 103. The slope in the former regime is nearly flat, whereas in the
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Fig. 6 Dynamical activity-connectivity map of the users in our dataset. The x axis represents the
proportional variation of followers/friends for each user over the accounted time period. The y axis
represents the proportional variation of received/posted tweets of each user over the time period

latter both distributions decay with more typical heavy tails suggesting the presence
of accounts with a very large number of friends and followers, another interesting
behavior associated with two types of users: influential individuals, or social bots.
Next, we study in detail the relation between activity and connectivity patterns.

3.2.4 Dynamical Activity-Connectivity Maps

The analysis above was static: taking the average values of the five features above
made the results oblivious of the temporal dynamics of activity and connectivity
as they unfold over the observation time. We now plan to investigate what effect
the progression of activity levels of a user has on their connectivity evolution (and
viceversa). In Fig. 6 we provide a Dynamical Activity-Connectivity map: we recently
introduced this type of maps [31, 84] as dynamic variants of the map proposed by
Gonzalez-Bailon and collaborators—see Figure 4 in the paper titled Broadcasters
and Hidden Influentials in Online Protest Diffusion [41].

Figure 6 shows the probability density of users in the two-dimensional space
where the x-axis represents the growth of network connectivity, and the y-axis
conveys the messaging activity rate. For a given user u, xu and yu are here defined as

xu = 1 + δfu

1 + δFu

and yu = 1 + δrtu

1 + δtu
.

We use the notations fu and Fu to identify the number of followers and friends,
respectively, of a user u. The variations of followers and friends of user u over a

period of time t are thus defined as δfu = f max
u −f min

u

t
and δFu = F max

u −F min
u

t
; the

length of time t is defined as the number of days of u’s activity, measured from
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registration to last observed activity (this varies from user to user). Finally, the

variations of received retweets, and posted tweets, are defined as δrtu = rtmax
u −rtmin

u

t

and δtu = tmax
u −tmin

u

t
, respectively, where rtu and tu are the number of obtained

retweets and posted tweets by user u during the period of activity t .
All values are added to the unit to avoid zero-divisions and to allow for

logarithmic scaling (i.e., in those cases where the variation is zero). The “heat”
(the color intensity) in the map represents the joint probability density pdf (x, y)

for users with given values of x and y. The plot also introduce a bin normalization
to account for the logarithmic binning.

The Dynamical Activity-Connectivity map we conceived is interpreted as follows:
the bulk of the joint probability density mass should be observed in the neighbor-
hood of (1, 1), as the majority of accounts would usually exhibit a comparable
variation along the two dimensions. That would be in line with what all previous
social media studies where this type of map was employed reported [31, 41, 84].
However, the results Fig. 6 shows are unprecedented: we hypothesize that this is due
to the spam dynamics characterizing this dataset. Let us discuss the two dimensions
of connectivity growth and activity rate separately.

The connectivity growth is captured by the x axis and, in our case, ranges
roughly between 10−2 and 102. Users for which x > 1 (i.e., 100) are those with a
followership that grows much faster than the rate at which these users are following
others. In other words, they are acquiring social network popularity (followers) at
a fast-paced rate. Note that, if a user is acquiring many followers quickly, but s/he
is also following many users at a similar rate, the value of x will be near 1. This
is a good property of our measure because it is common strategy on social media
platforms, especially among bots [11, 36], to indiscriminately follow others in order
to seek for reciprocal followerships. Our Dynamical Activity-Connectivity map will
discriminate users with fast-growing followerships, who will appear in the right-
hand side of the map, from those who adopt that type of reciprocity-seeking strategy.
The former group can be associated with highly popular users with a fast-paced
followership growth. According to Gonzalez-Bailon and collaborators [41] this
category is composed by two groups: influential users and information broadcasters,
depending on their activity rates. Values of x < 1 indicate users who follow others
at a rate higher than that they are being followed; they fall in the left-hand side of the
map. According to Gonzalez-Bailon and collaborators, these are mostly the common
users, although the so-called hidden influentials also sit in this low-connectivity
regime.

As for what concerns the y axis, it measures the activity rate, i.e., the rate at
which a user receives retweets versus how frequently s/he tweets. Users with values
of y > 1 are those who receive systematically more retweets with respect to how
frequently they tweet. This group of users can be referred to as influentials, i.e., those
who are referred to significantly more frequently than others in the conversation;
they fall in the upper region of the map, and according to Gonzalez-Bailon et al.,
depending on their connectivity growth can be divided in influential (x > 1) and
hidden influential (x < 1) users. Conversely, users with values of y < 1 are
those who post exceedingly more tweets than the retweets they receive. This group
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would generally represent the common-user behavior (x < 1), although information
broadcasters (x > 1) also exhibit the same low-activity rate. These users fall in the
lower region of the map.

Now that a reading of dynamical activity-connectivity maps has been provided,
we can proceed with interpreting Fig. 6: the bottom-left quadrant reports the most
common users, those with both activity and connectivity growth lesser than 1. In our
case, we identify these accounts as traditional spammers. Manual validation of some
of these accounts revealed that they employ simple automatic posting strategies,
thus they generate a very large number of tweets, but they never attract other users’
attention and thus they are rarely retweeted. We identified over 27K such accounts.

Conversely, the upper-right quadrant reports users with the higher connectivity
growth and activity rates. These are influential accounts: they systematically attract
other users’ attention by receiving lots of retweets compared with how often they
tweet, and their followerships grow at a very fast pace. Influential users are quite
rare in this context, and in fact we identified only 438 users according to our
method. Manual inspection of all these users revealed that our technique correctly
detects influential users which are not bots: accounts in this category include official
accounts of movies and TV shows (e.g., Avengers, CaptainAmerica, Divergent,
GameOfThrones, etc.), and various official accounts of tobacco-related sellers.

Lastly, social spam bots sit in the bottom-right quadrant. Differently from
traditional spammers, their connectivity growth is much more similar to that
of influential accounts. Their followership increases at a pace higher than their
following others. They still produce disproportionately more tweets than the
retweets they receive, but their embeddedness in the social network looks somewhat
effective. Further analysis reveals that many of these spam bots tend to reciprocate
followership to external users (accounts not present in the spam dataset) but also
tend to follow each other; this coordinated behavior gives the appearance of network
influence. We identified over 46K social spammers, the majority class by far in our
spam dataset. Finally, we detected only 47 hidden influentials, too few to warrant
further analysis.

Figure 7 provides a different view on the five features characterizing the users
in the three classes. As opposed to spammers, influential users receive significantly
more attention (retweets), significantly more followers than friends (thus a much
higher followers/friends ratio), and on average post one order of magnitude fewer
tweets than bots. Concluding, the only significant difference between traditional
spammers and social spam bots is their social network: social bots exhibit more
followers than friends on average; the vice versa is true for traditional spam bots.

3.2.5 The Interplay Between Sentiment of Spam Bots

We conclude our analysis with a high-level investigation of the interplay between
spam sentiment and spam bot characteristics. We applied the same Sentiment
Analysis technique, i.e., SentiStrength, as in the previous case study, to our spam
dataset. Figure 8 shows the distribution of sentiment scores for the tweets in our
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Fig. 7 Box plot of the distributions of posted tweets, obtained retweets, number of friends and
followers, and follower/friend ratio for the main three classes of users in our spam dataset
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Fig. 8 Distribution of tweet sentiment scores (SentiStrength) in the spam dataset
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Fig. 9 Average number of tweets posted as a function of tweet’s sentiment, calculated only on
tweets retweeted at most once (left) and on those that have been retweeted more than once (right)

Fig. 10 Average number of obtained retweets as a function of sentiment, calculated only on tweets
retweeted at most once (left) and on those that have been retweeted more than once (right)

Fig. 11 Average number of user friends as a function of sentiment, calculated only on tweets
retweeted at most once (left) and on those that have been retweeted more than once (right)

corpus. The distribution exhibits its typical peak around zero [34, 79]. However,
in contrast with respect to previous findings on Twitter sentiment obtained using
SentiStrength [34], the distribution in the spam dataset appears skewed toward
negativeness. In particular, roughly one order of magnitude more strongly negative
tweets (S ≤ −3) appear than strongly positive ones (S ≥ 3).

Worth noting, this dataset is significantly smaller and topically biased (i.e., it cov-
ers only spam) than the comprehensive Twitter dataset we previously studied [34]:
we hypothesize that some correlation may exist between this atypical sentiment
distribution and the role of spam bots.

To this purpose, in Figs. 9, 10 and 11 we plotted four features we used to
characterize the bots (i.e., number of posted tweets, obtained retweets, friends, and
followers). All figures report error bars (obtain hardly noticeable) that convey the
standard error of the sampled average feature distributions. We will use them for
diagnostic purpose, i.e., to highlight anomalies in spam dynamics with respect to
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organic social media sentiment [34]. Given the exiguous number of tweets with
extremely positive or negative sentiment (i.e., S = 4 or S = −4), next we will limit
our analysis to values of sentiment in the range −3 ≤ S ≤ 3.

The interpretations of the bar plots in Figs. 9, 10 and 11 is the following: given
a fixed value of sentiment x, then y is the average value of the selected feature
for all tweets with sentiment equal to x. Plots on the left are for the subset of
tweets retweeted at most once; plots on the right are for tweets retweeted more than
once. The separation is carried out to address the issue of activity heterogeneity
highlighted before (cf. Fig. 5) and is necessary to avoid problems like the Simpson
Paradox [87].

For the sake of example, let us discuss the left panel of Fig. 9 that shows the
distribution of the average number of tweets posted by users, which were retweeted
at most once, as a function of sentiment.

Let us consider sentiment S = 3 (there are about 1300 such tweets in our dataset,
cf. Fig. 8): the average number of tweets posted by the users who posted one such
tweet with sentiment S = 3 is about 92K. This is significantly higher than for
every other sentiment score, denoting the fact that users who post strongly positive
tweets (e.g., promotional tweets) on average posted significantly more tweets than
the others. It is also worth noting that an average value of tweets nearing the hundred
of thousands clearly denotes very highly-active accounts, and likely some form of
automatic posting—a common feature of spam bots.

The right panel of Fig. 9 shows how this pattern is preserved even for the set of
tweets that have been retweeted more than once: moreover, the distribution takes a
U-like shape, suggesting that also accounts that post negative tweets exhibit much
more activity than average. This suggests that some spam campaigns may not be
necessarily positive. Indeed, if one compares this result with the previous case study
on the manipulation of political campaigns, some interesting similarities emerge.
In other words, spam at times can aim to smear some products, e.g., those from
competitors.

Figure 10 shows another interesting patterns. The left panel again captures tweets
that have been retweeted at most once; the right panel captures more popular tweets
and exhibits a striking difference if compared to the left one: increasingly positive
sentiment yields significantly more retweets. This is known as positivity bias, i.e.,
the emergence of a strong preference for retweeting positive messages; such bias
was already observed in our prior Twitter analysis [34]. Strongly positive tweets
obtain on average more than twice the number of retweets than negative or neutral
ones. It is worth hypothesizing that, in the spam scenario, this pattern may also
conceal some form of coordinated activity, i.e., bots may retweet other bots’ spam
in an orchestrated fashion.

Further clues supporting this hypothesis come from Fig. 11, in particular the
right panel: users associated with positive tweets that are retweeted very often all
exhibit a number of friends that are nearly twice as much as others. Inspecting users
who follow on average over 7K accounts revealed strong reciprocity—another very
common bot characteristic highlighted multiple times above.
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Fig. 12 Average number of user followers as a function of sentiment, calculated only on tweets
retweeted at most once (left) and on those that have been retweeted more than once (right)

Looking at the complementary picture, i.e. the distribution of followers reported
in Fig. 12, reinforces our hypothesis: left and right panels illustrate two very
different scenarios, with the latter showing how users who post very positive or very
negative tweets attracted significantly fewer followers than others: bots involved in
spam campaigns do not commonly exhibit large followership (cf. Fig. 6).

Concluding, our diagnostics revealed characteristic patterns that may conceal
clues to decode the strategies employed by spam bots to spread the content they
produce, and try giving spam a legitimate appearance.

4 Conclusions

Social bots have become a pervasive presence in social media platforms. Appli-
cations of social bots have been documented in a variety of scenarios, including
for public opinion manipulation and for social spam campaigns. The focus of this
chapter was to investigate both these domains, and in particular to study the interplay
between bots and information diffusion in the two scenarios.

In Sect. 2, we reviewed how social bots are created, and how they operate in
social media platforms. We also briefly discussed the challenges of, and the methods
to detecting them, covering techniques based on graph-centric detection, crowd-
sourcing, and traditional feature-based supervised learning.

Section 3.1 presented our first case study, discussing how social bots have been
used during the 2016 US Presidential Election to sway the conversation around
the presidential candidates. In this section we revised in detail the tools we used
for social bot detection, namely Bot Or Not, for Sentiment Analysis, namely
SentiStrength, and for partisanship detection.

We also summarized the results of our study on political manipulation [11],
providing in particular two data-driven insights: first, we noted that social bots
generate as much engagement, at least in terms of obtained retweets, than humans,
suggesting the fact that humans cannot tell apart bots from other humans very
easily when rebroadcasting politics-related information on Twitter. Second, we
illustrated the interplay between content sentiment and social bots, highlighting a
few partisanship differences (e.g., Trump bots single-handedly generated the most
positive supporting content of their candidate in the entire analyzed dataset).



Measuring Social Spam and the Effect of Bots on Information Diffusion. . . 251

Finally, in Sect. 3.2 we proposed a second case study, and new results and
analyses about the effects of social spam bots on the diffusion of social spam
campaigns within the tobacco-related conversation on Twitter. First, we identified
the presence of three types of spam campaigns: (1) relative to tobacco products; (2)
relative to products unrelated to the tobacco industry, e.g., entertainment products;
and, finally, (3) instances of topic hijacking, namely the use of hashtags and
keywords related to the tobacco industry to attract individuals’ attention on issues
completely unrelated to that, e.g., social issues connected to news events in the
offline world.

By means of a newly-introduced method named Dynamical Activity-Connectivity
map, we also revealed the existence of different classes of spam accounts, including
traditional spammers and social spam bots; we also discussed a statistical charac-
terization of their most typical features. In conclusion, we provided an analysis of
the interplay between sentiment and spam bots, revealing patterns that may conceal
strategies of bot coordination, and the resulting effects in terms of spam diffusion.

Our findings in both case studies exemplify the potential for social media
abuse: whether at stakes is the right to exercise unbiased elections and therefore
democracy itself, or the exposure to illegitimate spam and propaganda, social media
manipulation can have devastating societal effects. This study encourages future
efforts of the research community to address the various facets of this form of abuse.
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67. Mønsted B, Sapieżyński P, Ferrara E, Lehmann S (2017) Evidence of complex contagion of

information in social media: an experiment using twitter bots. PLos One 12: e0184148
68. Morstatter F, Pfeffer J, Liu H, Carley KM (2013) Is the sample good enough? Comparing data

from twitter’s streaming API with twitter’s firehose. In: 7th international AAAI conference on
weblogs and social media

69. Mukherjee A, Liu B, Glance N (2012) Spotting fake reviewer groups in consumer reviews. In:
Proceedings of the 21st international conference on world wide web, pp 191–200

70. Pang B, Lee L et al (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr
2(1–2):1–135

71. Ratkiewicz J, Conover M, Meiss M, Gonçalves B, Flammini A, Menczer F (2011) Detecting
and tracking political abuse in social media. ICWSM 11:297–304

72. Ratkiewicz J, Conover M, Meiss M, Gonçalves B, Patil S, Flammini A, Menczer F (2011)
Truthy: mapping the spread of astroturf in microblog streams. In: Proceedings of the 20th
international conference companion on world wide web. ACM, New York, pp 249–252

73. Shorey S, Howard PN (2016) Automation, algorithms, and politics| automation, big data and
politics: a research review. Int J Commun 10:24

74. Song J, Lee S, Kim J (2011) Spam filtering in twitter using sender-receiver relationship. In:
International workshop on recent advances in intrusion detection, pp 301–317

75. Stein T, Chen E, Mangla K (2011) Facebook immune system. In: Proceedings of the 4th
workshop on social network systems, p 8. ACM, New York

76. Stringhini G, Kruegel C, Vigna G (2010) Detecting spammers on social networks. In:
Proceedings of the 26th annual computer security applications conference, p 1–9. ACM, New
York

77. Subrahmanian V, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L, Ferrara E,
Flammini A, Menczer F et al (2016) The DARPA Twitter bot challenge. IEEE Comput
49(6):38–46

78. Sutton JN, Palen L, Shklovski I (2008) Backchannels on the front lines: emergency uses of
social media in the 2007 Southern California wildfires. University of Colorado, Boulder

79. Thelwall M (2013) Heart and soul: sentiment strength detection in the social web with
sentistrength. In: Proceedings of the CyberEmotions, pp 1–14

80. Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A (2010) Sentiment strength detection in
short informal text. J Am Soc Inf Sci Technol 61(12):2544–2558

81. Theocharis Y, Lowe W, van Deth JW, García-Albacete G (2015) Using twitter to mobilize
protest action: online mobilization patterns and action repertoires in the occupy wall street,
indignados, and aganaktismenoi movements. Inf Commun Soc 18(2):202–220



Measuring Social Spam and the Effect of Bots on Information Diffusion. . . 255

82. Thomas K, Grier C, Song D, Paxson V (2011) Suspended accounts in retrospect: an analysis
of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM conference on internet
measurement conference. ACM, New York, pp 243–258

83. Thomas K, McCoy D, Grier C, Kolcz A, Paxson V (2013) Trafficking fraudulent accounts:
the role of the underground market in twitter spam and abuse. In: Usenix security, vol 13, pp
195–210

84. Varol O, Ferrara E, Ogan CL, Menczer F, Flammini A (2014) Evolution of online user behavior
during a social upheaval. In: Proceedings 2014 ACM conference on web science, pp 81–90

85. Varol O, Ferrara E, Davis C, Menczer F, Flammini A (2017) Online human-bot interactions:
detection, estimation, and characterization. In: International AAAI conference on web and
social media

86. Varol O, Ferrara E, Menczer F, Flammini A (2017) Early detection of promoted campaigns on
social media. EPJ Data Sci 6(1):13

87. Wagner CH (1982) Simpson’s paradox in real life. Am Stat 36(1):46–48
88. Wang G, Mohanlal M, Wilson C, Wang X, Metzger M, Zheng H, Zhao BY (2013) Social turing

tests: crowdsourcing sybil detection. In: NDSS. The Internet Society, Reston
89. Yang C, Harkreader R, Zhang J, Shin S, Gu G (2012) Analyzing spammers’ social networks

for fun and profit: a case study of cyber criminal ecosystem on twitter. In: Proceedings of the
21st international conference on world wide web. ACM, New York, pp 71–80

90. Yang X, Chen B-C, Maity M, Ferrara E (2016) Social politics: agenda setting and political
communication on social media. In: International conference on social informatics. Springer,
Berlin, pp 330–344

91. Yates D, Paquette S (2011) Emergency knowledge management and social media technologies:
a case study of the 2010 haitian earthquake. Int J Inf Manag 31(1):6–13

92. Yin J, Lampert A, Cameron M, Robinson B, Power R (2012) Using social media to enhance
emergency situation awareness. IEEE Intell Syst 27(6):52–59

93. Zangerle E, Specht G (2014) “Sorry, I was hacked” a classification of compromised twitter
accounts. In: SAC: the 29th symposium on applied computing

94. Zhang X, Zhu S, Liang W (2012) Detecting spam and promoting campaigns in the twitter
social network. In: IEEE 12th international conference on data mining (ICDM), 2012. IEEE,
Piscataway, pp 1194–1199



Network Happiness: How Online Social
Interactions Relate to Our Well Being

Johan Bollen and Bruno Gonçalves

1 Introduction

In the normal course of our daily lives we naturally interact with many other indi-
viduals: the barista that prepares our daily venti white chocolate mocha frappuccino,
the bus driver whom we ask for information, the supermarket teller that rings us out,
our online acquaintances that we discuss scifi literature with, our coworkers, and our
family and loved ones. However, it is clear that not all of these interactions carry the
same weight or importance. We may not remember the name of the bus driver or the
barista, but we would be remiss if we didn’t remember the birthday of our significant
other.

In an offline context it is relatively intuitive to observe and distinguish which
relationships matter most to us. A small group of people with which we have close
personal relations account for most of our social interactions while we dedicate
less time or attention to more transactional interactions, such as those with service
providers or strangers. Unfortunately for social scientists, it has proven difficult to
quantitatively measure the strength and extent of real-world relationships at large
scale without intrusive procedures and interventions.

However, our online activities now provide a unique opportunity to conduct
such measurements as a by-product of the way in which such systems function.
Every “Like,” “retweet,” or “mention” of billions of individuals is recorded and
stored in large-scale databases that provide a unique perspective on how individuals
interact socially, how they communicate with one another, and which aspects of their
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social lives capture most of their attention [3]. Different systems naturally provide
different features, different modes of interaction and, consequently, different views
on human social behavior.

In this work we focus on Twitter which is a popular microblogging platform
that as of June 30, 20161 was used world-wide by over 328 million users. Twitter
was designed from the start to allow users to share their content to the world at
large in the easiest way possible. As a result, all user-generated Twitter content is
public by default and easily accessible through the use of an extensive API,2 a fact
that has long since made Twitter an invaluable resource for academic and industry
researchers interested in the study of human behavior, information diffusion, and
social network dynamics. Through the Twitter API one is able to easily access both
the content user share and their social relations, a feature that makes it particularly
suitable for the purposes of studying the relation between individual psychological
states and social relationships.

2 Social Interactions

Modern online social network platforms provide a rich set of features and possibil-
ities for users to interact socially. Twitter, in particular, allows users to unilaterally
“Follow” another user, “Mention” another user, “Retweet” someone’s tweet, or
“Like” one another user’s tweet. Each of these manners of interaction has a different
meaning and, potentially, represents a different type of relationship.

Based on these types of interaction there are different possibilities to decide
whether or not two users are in fact “friends.”

The simplest method is to define friends as users who regularly engage each
other in conversation (via replies). This definition is based on the assumption that
the active exchange of information between two parties indicates a social relation.
This definition has been used [4] previously by us to empirically verify the well-
known Dunbar’s number (a cognitive limit on the typical number of active social
relationships). While likely corresponding to a “real,” offline, relationship, this
definition does have the disadvantage of being rather strict; not all friendships
involve the active exchange of information through Twitter replies.

Another method which we apply for the rest of this manuscript is to define
friendship simply as two users who follow each other, as in Fig. 1. After all,
friendship implies a reciprocated, symmetric relation. Celebrities can be followed
by thousands and even hundreds of thousands of other users, and might on occasion
even reply to messages, but they are not necessarily friends with their Followers,
since the relation is not symmetric. While it is rather unlikely that all symmetrical
Follow relations correspond to actual friendships, it does provide us with an

1https://about.twitter.com/company.
2https://dev.twitter.com/rest/public.

https://about.twitter.com/company
https://dev.twitter.com/rest/public
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FriendFollower

Follower network Friend network

Fig. 1 Friendship ties are by their very nature symmetric, but Twitter connects users by
asymmetric Follower relations. This means that Twitter users may Follow other users, but the
Follow relationship does not have to be reciprocated. Twitter’s Follow relations are thus not
sufficient to establish the existence of a Friendship tie between users. In our work, we adopt
a minimal definition of a Friendship relation in the Twitter network as two users that share a
reciprocal Follow relation. This approach does not require additional metadata such as content or
frequency of information exchanges and it satisfies the minimum condition that a Friendship tie be
symmetric. However, as a result, it does not account for the intensity or degree of the relationship—
See [1]

operational definition of online friendship in which information (in the form of
tweets) may in principle flow both ways so that each user may potentially influence
the other.

The first step of our analysis is to build an empirical friendship network from
our Twitter follow data. For this purpose, we collected about 129 million tweets
covering the period between November 28, 2008 to May 2009. The API provides us
only with a 10% sample of all tweets produced. To avoid issues due to this sampling
limitation, we expanded this dataset by retrieving the complete twitter history of all
the users in our (sampled) dataset, as well as their follower network. The final mutual
Twitter Follower network contains a total of 4,844,430 users (including followers of
our users for which we did not collect timeline information).

From this dataset, we eliminate any user that has, on average, less than one tweet
per day in the period of our study. In this way, we eliminate spurious users that
are unlikely to have a significant impact on their neighbors. Finally, we remove all
nonmutual connections to define the friendship network shown in Fig. 2. The giant
connected component of our final network has over 102 thousand and a relatively
large diameter. Further network statistics can be found in Table 1.

To each edge, we associate a weight, wij , that measures the social overlap
between the two nodes. The overlap is defined as:

wi,j = ||Ci ∩ Cj ||
||Ci ∪ Cj || , (1)

where Ci is the set of friends of node i. Our goal in defining the strength of each
connection in this way is twofold: first, this definition of social overlap is purely
topological and insensitive to the number of actual interactions between the two
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Fig. 2 A force-directed visualization of a sample of the Friendship Network that resulted from
our analysis of the Twitter Follow relations between more than 102,000 users. See [1]

users. Second, it gives us a parameter that we may threshold in order to control
for shared social context as users with more mutual friends are more likely to be
subjected to similar content.

3 Network Structure

We now explore the structure of the friendship network we generated in the previous
section. Some fundamental network statistics are listed in Table 1. Particularly
significant are the relatively large average degree, 〈k〉 = 46.3 and clustering
coefficient, 〈C〉 = 0.262. The high clustering value is typical of real-world social
networks [5, 6] with tightly knit groups of friends that are loosely connected through
mutual acquaintances.

This type of structure is a result of the definition we used for friendship and helps
to explain the relatively large diameter 14 that we observe. Above, we imposed
that a link between two individuals is only created if they mutually follow each
other. Inside dense friend groups, this happens naturally over the course of repeated
interactions and also thanks to the fact that in many cases, these groups are to some
degree topical [7]. On the other hand, our strict definition also makes it less likely for
us to observe mutual follower relationships between individuals in distant groups,
directly increasing the diameter of the network. The full degree distribution can
be observed on the right-hand side of Fig. 3. The degree distribution we observe
displays a clear broad tailed behavior. This provides further clues to the structure of
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Table 1 Network statistics
for a Friendship network
derived from the Twitter
Follow relationships between
102, 009 users

Nodes 102,009

Edges 2,361,547

Density 0.000454

Diameter 14

〈k〉 46.300

〈C〉 0.262
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Fig. 3 Distributions of edge weights and node degrees showed considerable skewness indicating
that the large majority of connections have low connection weights whereas a few have very high
connection weights, and that most users have very few Friendship relations in the network whereas
a few individuals having order of magnitude higher number of friends. See [1]

the network as it shows that most nodes have relatively small degrees while a small
number of them, the hubs, have collected several thousands of edges and help bind
the network together as a whole.

However, not all links are created equal. We assign to each edge a weight
corresponding to the number of mutual friends of the two individual at each end
of the connection. Naturally, we expect that edges within groups will have higher
weights while external edges should correspond to significantly smaller values
resulting in a broad tailed weight distribution as shown on the left-hand side of
Fig. 3.

4 Friendship Paradox

Hubs, by their very nature, play an important role in maintaining the connectivity
of the network. The simple fact that they have such large degree implies that they
must be connected to nodes in very different locations on the network. However,
the picture is even more interesting if we take the opposite perspective, that of the
ordinary node that is connected to a hub.
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Fig. 4 Histogram of the number of users with lower degree than the median of their friends over
5000 bootstrap realizations. See [2]

As most of us will remember from High School or college, there are advantages
to being friends with the most popular kid in school. They know everyone and are
better plugged in to the zeitgeist so they can act as brokers of information and
introduce us to others we might be interested in meeting. As a result, they have
a disproportionately large weight in our lives. This means that we will likely try to
connect to them and others like them increasing both their global reach and impact
in our lives. If we extend this way of thinking just a couple of steps further we reach
a startling conclusion: everyone is trying to connect to these few hubs, resulting in
a locally star-like graph. However, we have already observed strong assortativity
effects. How can these two phenomena co-exist in the same system?

This observation is indeed paradoxical, but real none the less and is known as the
Friendship Paradox: your friends are similar to you, but they also have more friends
than you on average [8]. We investigate this paradox by measuring the fraction
of users for whom the median degree of their friends is higher than their own.
The result of this measurement is a single number of which we have no further
information. We study its robustness through a simple bootstrapping procedure.
Instead of measuring it over the full network, we evaluate it repeatedly over a small
randomly selected fraction of the network. In Fig. 4 we plot the histogram of the
fraction of nodes whose degree is smaller than the median of their friends’ degrees
taken over 5000 bootstrapping procedures. As we can see, our network displays
a very strong Friendship Paradox. A large majority of users find themselves less
popular than their friends on average.

5 Subjective Well-Being

After the data mining and preparation procedure outlined above, we have the
complete Twitter history of all users in our network for a period of 6 months.
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We define the Subjective Well-Being of an individual as the average valence
(+ or −) of the content produced by him or her. To this end we apply the
OpinionFinder (OF)3 lexicon that assigns a positive (+1) or negative (−1) valence
value to a set of 8630 words (2718 positive and 4912 negative words).

The subjective well-being S (u) of user u is then defined as the fractional
difference between the number of tweets that contain positive OF terms and those
that contain negative terms:

S (u) = N+ (u) − N− (u)

N+ (u) + N− (u)
, (2)

where N− (u) and N+ (u) represent, respectively, the numbers of positive and
negative tweets for user u.

After this procedure was applied, each node in our undirected, weighted network,
has associated with it the average emotional polarity of the respective user, defined
on a scale of [1,+1]. The empirical distribution of SWB is shown in Fig. 5. Despite
the fact that the OF Corpus contains almost twice as many negative as positive
words, we find a skew in the distribution towards positive SWB values with the
positive values displaying an almost symmetrical distribution centered at SWB =
0.2. It is also worth to note that most negative values are close to zero, but how are
these nodes connected to one another?

Fig. 5 Distribution of Subjective Well-Being values over all users in our network reveals a
strongly bi-modal distribution with two peaks: one slightly below zero and one around SWB = 0.2.
See [1]

3http://www.cs.pitt.edu/mpqa/opinionfinderrelease/.

http://www.cs.pitt.edu/mpqa/opinionfinderrelease/
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Fig. 6 2D histogram of SWB values for users (x) and their neighborhood (y). Left: all edges
included. SWB assortativity = 0.689, N = 102,009 nodes. Right: histogram including only edges
with wij ≥ 0.1, SBW assortativity = 0.746, N = 59,952. See [1]

We start to answer this question by measuring the correlations between SWB
of neighboring users. On the left side of Fig. 6 we plot the 2D histogram of the
SWB values for users (x) and the average value taken over their neighborhood (y).
Surprisingly, we find that this distribution is bi-modal with two clear clusters: one
centered around zero and a larger one centered around SWB ≈ 0.2. Most points
in the figure are located close to the diagonal, indicating a large degree of SWB
assortativity. Indeed, we measure the assortativity as the correlation between the
two SWB values and find it to be a surprisingly large, namely R = 0.689.

However, as we saw in Figs. 3 and 5, a large number of edges have low weight and
a large number of nodes have lower values of SWB. Perhaps this is further blurring
the results and might explain why we find a SWB cluster near 0? To clarify this
possibility we repeat this analysis while keeping only edges with weights wij ≥ 0.1
(see [9] for further details). In this way, we are able to keep only the strongest (and
thus likely intra-group) edges and help reduce the amount of noise in our results.

The resulting plot is shown on the right-hand side of Fig. 6. The outcome is
quite striking. Not only is the second cluster near SWB = 0 still present, but
the assortativity has increased significantly to a whopping 0.746 providing strong
evidence that these results correspond to significant features of our social system.

6 Happiness Paradox

We finalize our analysis by further considering the correlations between SWB values
in the two clusters we found. For this, we divide our users into two groups: a
“Happy” group and an "Unhappy" group. The former has high SWB values and is
surrounded by friends with equally high SWB value. The latter has low SWB values
and so do their friends. This way we compare SWB values only within clusters of
comparable individuals.

We use a Gaussian Mixture Model (GMM) to demarcate our Happy and Unhappy
groups. The location and distribution of each Gaussian component in the distribution
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Fig. 7 Distribution of bootstrapped estimates of the magnitude of the Happiness Paradox in our
network for the Happy (red) and Unhappy (blue) group, and All (gray). See [2]

of individual vs. mean friend happiness is used to demarcate both groups by simply
determining whether the SWB value of a subject and the mean SWB values of
their neighbors fall within 2 standard deviations from the center of either one of
the components (illustrated by the ellipses in Fig. 7).

Similarly to our Friendship Paradox analysis we also measure how the SWB
value of a user is related to that of their friends through a bootstrapping procedure.
In Fig. 7 we plot the histograms, taken of 5000 realizations of the bootstrapping
procedure of the fraction of users whose SWB is less than the mean of their friends
for the full dataset, the “Happy” and the “Unhappy” groups. As we can see, a similar
behavior as the one observed for the Friendship Paradox is observed in all three
cases: your friends are happier on average than you. We call this the Happiness
Paradox.

One particularly interesting feature of these results is the fact that the Unhappy
group, despite being the smallest, is the one for which the Happiness Paradox is
strongest. This result together with Fig. 6 brings to bear the true strength of this
phenomenon. Despite the fact that, in the Unhappy group, you are most likely
connected with other Unhappy (SWB < 0) users, they are still happier than you.
In Fig. 8 we schematically represent the relation between the Friendship and the
Happiness Paradoxes.

Finally, we further investigate how the Friendship Paradox manifests itself in the
Happy and Unhappy groups as shown in Fig. 9. Subplot A illustrates the boundaries
of each group as identified by our GMM approach, while subplots B and C illustrate
the friendship paradox for each group. For clarity, we plot the log of the degrees.
From this figure, it is clear that both the Friendship and Happiness paradoxes
are present and statistically robust in our data set opening up new possibilities
of research on the dynamical mechanisms that might help us understand these
phenomena.
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Fig. 8 Diagram that visualizes how in many networks some user are very popular (left) and
thereby inflate the average popularity of the Friendship networks they are part of, leading to a
Friendship paradox where a majority of users are less popular than their friends on average (red
nodes). If Popular individuals are also Happier, their presence in the network will also inflate
average Happiness and lead to a Happiness Paradox (right). See [2]. (a) Friendship paradox (b)
Happiness paradox

7 Discussion

The advent of social media has created a unique opportunity to study long-standing
questions about how humans form social relations and how these relations affect
their well-being, individually as well as collectively. The availability of longitudinal
records of what users publish on social media allows us to assess their fluctuating
mood state and overall well-being. The records of whom users talk to, about, and
whom they follow, provide various perspectives on the multiplex of their social
relations. In our work, we adopted an approach that combines a variety of social
media data to measure otherwise difficult to quantify social constructs such as
“happiness,” “well-being,” and “friendship” and establish meaningful correlations
between how individuals and communities relate to each other and how it may
affect their well-being over time. Social media has been in existence for almost
a decade establishing records that allow us to study socio-economic phenomena as
they emerge and develop over time. This allows the study of longitudinal behavioral
and psychological indicators pertaining to individuals and communities over long
periods of time.

We caution that many of our results may confound natural phenomena with
interface and sample bias. Social media platforms are run by private enterprises that
are not bound by requirements to further social science research. Researchers in
this field therefore need to carefully consider the potential of self-selection, sample,
interface, and social conformity bias in their work. In addition, our work pertains
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Fig. 9 This graph visualizes the magnitude of the Happiness and Friendship paradox in our
sample of Twitter user. (a) (left): a majority of users are situated above the diagonal line in
which a user’s own Subjective Well-Being (SWB) is equal to the mean SWB of the user’s friends.
In other words, we find a significant Happiness paradox for both Happy and Unhappy groups
of users. (b and c) (right): users in both Happy (red) and Unhappy (blue) groups experience a
significant Friendship paradox, i.e. the users find themselves above the diagonal at which their
own log(degree) as an indication of Popularity is equal to log(mean degree) of their Friends. See
[2]

to snapshots, i.e. data that was harvested in a post-hoc manner and that pertains to
specific periods of time in which we were provided access to the data. This situation
does not enable controlled experiments and frequently precludes the measurement
of “ground truth” with respect to social constructs that are operationalized post-ex-
facto in terms of the available data.

In future research, we seek to address these shortcomings. The proliferation of
social media platforms may allow the assessment of interface and sample bias as
well as the correction of “opportunistic” data harvesting. In addition, we are seeing
an increasing trend computational social science of using more traditional social
science methods to validate computational indicators derived from social media
data to establish “ground truth” and the pre-registration of trials and hypotheses.
Our results can be seen as first steps towards an effort to establish a more robust
understanding of socio-economic phenomena through the window of large-scale
online social networking data.
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Information Spreading During
Emergencies and Anomalous Events

James P. Bagrow

1 Introduction

Social networks are characterized both by their topological properties and by the
dynamics they facilitate. The social spread of information is one of the most
important of these dynamics [27]. Information spreading in the real world has been
well studied. For example, Granovetter studied how individuals use their social ties
to learn about new job opportunities [7]. Modern datasets such as social media and
mobile phones have provided large-scale followups and confirmation to this seminal
work [20].

However, most research on social spreading has been limited to understanding
the ordinary, day-to-day dynamics. Anomalous and extreme situations, such as
information spreading in the wake of an emergency or disaster, have not received as
much attention [1]. Yet with appropriate data these situations provide a context by
which researchers can better understand social networks and spreading phenomena.
When an event occurs, a large amount of activity is generated, and this activity is
all focused on that one event, leading to a strong and cohesive signal. Moreover,
latent portions of the social network are likely to be activated, providing researchers
a new view of the underlying social system, and there is no clearer indicator of
the importance of a social tie than someone in the middle of an emergency or its
aftermath choosing to reach out and communicate with that tie.

In this chapter, we discuss how natural and technological emergency and disaster
events can be used to better understand social systems, human dynamics, and the
spread of information and misinformation. Evidence supports a long-term increase
in the frequency and severity of such events [3, 4], with driving factors including
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climate change and population growth. Every effort should be made to prevent
human and technological disasters, but when they inevitably occur it is important
to glean as much useful information from them as possible, not only for scientific
understanding but also to improve our response to future events and save lives.

The rest of this chapter is organized as follows. In Sect. 2 we describe the
history of the sociology of disasters, and summarize research on using social media
and telecommunications data to better understand information spreading during
emergencies and disasters. In Sect. 3 we provide a case study of activity on Twitter
related to the Boston Marathon Bombings. In Sect. 4 we summarize research on
measuring activities in the wake of emergencies using mobile phone data taken from
a country in Western Europe. In Sect. 5 we introduce an algorithm to detect unusual
call activity in this country-wide mobile phone data, use it to detect 340 anomalies
during a 6 month period, and define statistics to characterize the properties of
these emergencies and how emergency and non-emergency events (such as music
festivals) differ. We conclude with a discussion in Sect. 6.

2 Background

The study of the social response to emergencies, crises, and disasters has a long
and fruitful history within the field of sociology, much of it due to E.L. Quarentelli,
Russell Dynes, and J. Eugene Haas, who founded the Disaster Research Center at
Ohio State University and pioneered the field of disaster sociology [13, 21–25]. This
work, strongly influenced by the aftermath of World War II and the then-current
climate of the Cold War, focused on organized behavior and emergent activity
both during disasters and in their aftermaths [35]. Other pioneering work included
case studies of disasters, such as panics and stampedes at large rock concerts [10].
Emergencies are complicated events, however, and the way individuals react to them
is challenging to study. Indeed, even basics question, like how much panic occurs
or does not occur among individuals experiencing an emergency, is a contested area
of research [5].

A primary focus of disaster sociology has been understanding and improving
the organizational aspects of the response to a disaster. Communication problems
between competing and overlapping government agencies have hampered first
responders in many large-scale emergencies, including highly unpredictable situ-
ations like the 9/11 terrorist attacks and more predictable situations such as the
landfall of Hurricane Katrina [15]. Researchers have studied how organizations
such as first responders use communication technology, how their use of that
technology has adapted to changes and modernizations [16], and how and why such
organizations either under-perform or can improve in their ability to efficiently and
effectively respond to emergencies and disasters.

Since the pioneering work on disaster sociology, the rise of mobile phones,
smartphones, and online social media have reshaped human communications.
Individuals can now remain in constant contact with social ties if they choose,
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and can quickly broadcast to a group of online followers almost anywhere. And
these broadcasts can quickly go “viral,” spreading very rapidly online. Social media
such as Facebook and Twitter have played key roles in recent emergency situations
[16, 29, 37].

Recent work has studied how Twitter posts spread in the event of emergen-
cies [8, 37]. Twitter is a popular microblogging platform where users can post short
messages called tweets to their online followers, as well as repost or forward other
tweets by “retweeting” them. Some tweets will become heavily retweeted, leading
to cascades. Some tweets are geotagged, containing the geographic coordinates of
the tweet poster when the tweet was made. Twitter posts are public and available
through APIs to researchers, providing a wealth of text and activity data. For
example, Sakaki et al. studied Twitter activity in the wake of a major earthquake,
showing that tweets can be used to detect an earthquake in real-time [28]. Other
work has studied how information (and misinformation) spreads during and after
events including the Deepwater Horizon oil spill [30], wildfires and floods [36],
Hurricane Sandy [2], the 2010 Haiti Earthquake [18, 19], and the Boston Marathon
Bombing [31, 34]. Twitter is also used by government organizations such as first
responders and by NGOs such as aid providers and relief organizations. Researchers
have studied how these organizations use Twitter to spread information and deal
with rumors and misinformation [32, 33].

Another avenue for data on emergencies and disasters is mobile phone records,
specifically voice calls and text messages.1 Unlike social media, these are generally
not intended for broadcasting content to a group of followers, but are instead a
specific, often one-on-one, communication medium. This activity is also not mixed
with news media usage in the way that most journalistic organizations now rely
heavily on social media. This one-on-one nature allows mobile phone data to more
accurately capture individual social behavior and communication intent.

Researchers have studied mobile phone and smartphone activity in the wake of
emergency events [1, 6, 26]. Kapoor et al. used mobile phone records in Africa
to show that phone communications can act as early warning signals for an
earthquake, and proposed an algorithm that can accurately pinpoint the epicenter of
the earthquake [12]. Bagrow et al. [1] and Gao et al. [6] used mobile phone records
to study a number of emergency events occurring in a country in western Europe,
including a bombing and a plane crash. These records capture the temporal and
spatial localization of the event from the spike in call volume immediately following
the event, as well as the social propagation of information (see also Sects. 4 and 5
and Figs. 5, 6, 7, 8, 9). While mobile phone data are less readily available for
researchers than public social media activity, we propose that it is an invaluable
source of information parallel to social media.

1Although smartphone texting apps such as WhatsApp, Facebook Messenger, WeChat, Signal,
SnapChat, Line, Apple Messages, etc. are now blurring the line between mobile phone SMS texts
and online social media.
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3 Twitter During and After the Boston Marathon Bombing

As an example demonstrating how emergency events provide a window into
human dynamics, we performed a small case study of Twitter social media activity
following the Boston Marathon Bombing.

3.1 Background

The Boston Marathon Bombing occurred on April 15, 2013 at 14:49 local time. Two
improvised explosive devices exploded in a crowd near the Boston Marathon’s finish
line, killing three and injuring 264 [14]. A manhunt soon unfolded, and on April
18 the FBI released photos of two suspects, Chechen-American brothers Dzhokhar
Tsarnaev and Tamerlan Tsarnaev. That evening the brothers shot and killed a police
officer, kidnapped a man and stole in his car, and had a shootout with police during
which Tamerlan Tsarnaev was killed. The next day on April 19, Dzhokhar Tsarnaev
was shot and arrested at 20:42. A police officer wounded in the April 18 shootout
died the following year. Dzhokhar Tsarnaev was convicted of multiple crimes and
sentenced to death in 2015 [17].

There was much related activity on Twitter in the immediate aftermath of the
bombing and throughout the period of heightened uncertainty between the bombing
and the capture of Dzhokhar Tsarnaev. In fact, Dzhokhar Tsarnaev himself tweeted
multiple times between April 15 and April 19 [17]. Further, much misinformation
and rumor propagated online, including online groups making false allegations
against a missing college student [34].

3.2 Information and Rumors on Twitter

The events and rumors surrounding the Boston Marathon Bombing and how
they unfolded online provide a useful case study for information and rumor
spreading. Here we studied Twitter activity during and after the Boston Marathon
Bombing using data captured from the “Gardenhose” feed, which captures a random
10% of all public Twitter activities. Figure 1 shows the volume of tweets (and
retweets) over time containing “boston” (case-insensitive). Two strong spikes are
present, coinciding with the bombing itself and Dzhokhar Tsarnaev’s capture. For
comparison, we also determined the number of tweets containing “boston” 1 year
prior, and superimposed the two time series. Before the bombing these time series
line up very well, demonstrating much year-over-year regularity. When the bombing
occurs, the volume of related tweets increases by a factor of approximately 800.
The increased volume persisted for the rest of April. A closeup of the event period
itself (Fig. 2) showed how well events surrounding the bombing are mirrored in the
Twitter discussion.
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Fig. 1 Twitter activity surrounding the Boston Marathon Bombing. Shown are counts of tweets
containing “boston” (case-insensitive) during April 2013, compared with 1 year earlier. The
bombing on April 15 is clearly visible, as is the capture of Dzhokhar Tsarnaev on April 19. The
year-over-year regularity of the time series before the bombing is evident in the lower plot, which
shows the same time series but with a tighter range. Year-over-year deviations before the bombing
are primarily due to sporting events

Fig. 2 Closeup on the Boston Marathon Bombing time series shown in Fig. 1. The exogenous
“spiking” pattern of both major events is clear, as are multiple other events occurring in the interim
period between the bombing itself and the capture of the Dzhokhar Tsarnaev
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Fig. 3 The blast site (marker) and selection area (circle) for the Boston Marathon Bombing. The
circle forming the event region has radius 3 km. Users who post tweets from within the event region
during the 5-h period following the blast comprise the G0 population

We next considered all geotagged tweets occurring within 3 km of the Boston
Marathon Bombing blast site (Fig. 3) during the 5-h period immediately after the
bombing occurred. The authors of these tweets form a population called G0, those
active “tweeters” in the vicinity of the event. We then re-scanned the Gardenhose
feed, capturing all the tweets posted by individuals within G0 and all tweets which
mention individuals within G0. Mentions (or “at-mentions”) are a Twitter-specific
term for posted tweets which contain the usernames of other Twitter users and
are used to focus discussions and alert participants to online conversations; we
used the mentioned usernames which Twitter extracted and provided as part of the
Gardenhose feed. Time series of tweet activity for G0 individuals and mentions of
G0 individuals are showed in Fig. 4.

Both time series show elevated activity levels in the aftermath of the bombing.
In fact, the selection criterion for the G0 population forces the time series to display
a higher activity level, as that time series is now conditioned on the fact that tweets
were posted after the bombing [1]. Beyond this, we make two observations:

1. The spike in mentions of G0 individuals occurs more quickly than the spike in
direct G0 activity. This implies that Twitter is not being used to get information
out of the event area as much as it is being used in parallel with other media such
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Fig. 4 Volume of tweets posted by members of the Boston Marathon Bombing G0 population
(Fig. 3) and tweets at-mentioning members of the G0 population. The second spike beginning at
approximately 17:30 is primarily due to a highly retweeted tweet reported by a member of the G0
population about a possible suspect in custody. This event was later determined to be unrelated to
the attacks

as news reports. Perhaps these tweets are people trying to reach social ties within
the event region, although the nature of public Twitter activity makes it more
likely that these are news reports and other media and government organizations.

2. A very strong second spike in mentions is apparent several hours after the
bombing. Inspecting tweets posted at this time showed that this is due to one
highly viral (heavily “retweeted”) tweet reporting the arrest of an individual as
witnessed by a member of G0. This second spike also peaked at a higher volume
than the original spike, although it died out more quickly. This implies that
the Twitter audience was primed to forward information during the immediate
aftermath of the bombing, and the virality of any related content was much
stronger. An emergency event primes the audience of social media for rumoring
and other information propagation.

Taken together, the tragic Boston Marathon Bombing provides an exemplar
case study for analyzing the interplay between human dynamics, information and
misinformation spread, and communication media and social media.

4 Mobile Phone Activity During Emergencies

Mobile phone datasets complement social media data for studying emergencies and
disasters in many ways. Mobile phones are generally more established in various
regions of the world, having a longer history of use and higher levels of adoption,



276 J. P. Bagrow

A
Bombing
Plane crash
Earthquake
Blackout

 0

 1

 2

 3

 4

Festival
Concert

 0

 2

 4

 6

 8
 10

-3 -2 -1  0  1  2  3  4  5  6  7

ΔV
/〈V

no
rm

al
〉

time since event (hours) 

B

-2 < t  < 0

0 < t  < 2

exp(- r / 9.98)

-2

 0

 2

 4

 6

 8

 10

 0  10  20  30

× 10 3

distance from epicenter, r (km)
ΔV

(r
) 

(c
um

ul
at

iv
e)

 

Plane crash

Fig. 5 Temporal and spatial response during emergencies, as measured from the mobile phone
records of a large service provider in a western European country. (a) The time dependence of
call volume V (t) (voice and text) after four emergencies and two non-emergencies. We plot the
relative change in call volume �V/ 〈Vnormal〉, where �V = Vevent − 〈Vnormal〉, Vevent is the call
volume on the day of the event and 〈Vnormal〉 is the average call volume during the same period of
the week. (b) The total change in call volume between two, 2-h periods before and after a plane
crash, as a function of distance r from the epicenter of the crash. Following the event, we see an
approximately exponential decay �V ∼ exp(−r/rc) characterized by decay rate rc (figure adapted
from Bagrow et al. [1])

and providing years worth of extra historical records and large population samples.
Mobile phone activity, especially voice calling, also lacks the broadcast nature
of social media, acting instead as a direct communication channel. This direct
communication means phone activity captures something very different than social
media activity.

In an earlier work, we studied activity levels in the wake of multiple emergency
events using mobile phone records from a phone provider in a western European
country [1, 6]. These events included a bombing, a plane crash, and more. We
found that the rapid spike in calls immediately following the emergency (Fig. 5a)
was spatially localized (Fig. 5b), but rapidly propagated socially for the most serious
events (Figs. 6, 7, and 8). This social propagation was measured from the time series
of call activity for different populations of mobile phone users: G0, the eyewitness
group, calling from the direct vicinity of the event; G1, those individuals who
receive calls from members of the G0 group during the time period of the event;
G2, etc. As i increases, the group Gi becomes more social distant from the event
itself.

The bombing in western Europe provides the most clear evidence for social
information spreading based on the time series of call activity (Fig. 8a). Here we
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first half hour first hour first two hours
Previous
week

Bombing

G7

G0

Fig. 6 Part of the contact network formed between mobile phone users in the wake of the
European bombing. Nodes are colored by group, with G0 representing phone users calling from
the event region, G1 the recipients of those calls, etc. As time goes by more users are contacted as
information propagates. Those same users make little contact during a corresponding time period
the week before. These snapshots show the social spreading one can observe from mobile phone
data (figure adapted from Bagrow et al. [1])

denote on the figure the times of the peaks of call volume for each group Gi using
vertical bars. A temporal ordering is clearly evident for the bombing with the peak
cascading through the populations over an approximately 20-min period (denoted by
the horizontal arrow). The plane crash (Fig. 8b) does not show such clear temporal
ordering of the peak. This may be due to the fact that news media were covering
the crash and that social ties, particularly members of G1, were likely to already
be aware that their contacts were traveling that day. This underscores the different
natures of equally unexpected emergency events.

This social spread of information outward from the wake of an emergency
is intuitive, but we did not observe it in the Twitter data following the Boston
Marathon Bombing. Indeed, in that case, unaffected individuals mentioning affected
individuals spiked in activity before those who tweeted within the Boston Marathon
Bombing event region (Fig. 4). This underscores the strong influence the communi-
cation channel has: for mobile phones, it is a direct communication channel and that
limited scope requires a G0 individual to carefully choose who to contact, but for
Twitter it is a secondary broadcast meant to update many followers. Those followers
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Fig. 7 Social spread of
activity following
emergencies, as measured
from mobile phone records.
The most serious events show
strong propagation across the
contact network. (a) Time
series of call volume before
and after the event, for each
population G0, . . . , G3. The
shaded regions denote the
extra or anomalous call
volume from that population
compared with their activity
the week prior. (b) The total
difference in call volume
compared to the prior week
during time periods before
and after the event, for each
Gi . The two events and their
Gi populations are those
studied from Bagrow et al. [1]
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Fig. 8 Outward social information spread is most evident for the bombing. Different time series
curves for each of G0, . . . , G3 correspond to 5-, 10-, and 15-min time bins, intended to smooth the
curves. Vertical marks denote the approximate peaks of each time series

are likely to be less socially close than contacts reached by mobile phone call, and
it is probable (though definitely not certain) that a G0 individual will turn to phone
calls first in the wake of an event, and then only later begin to use social media. And
of course, mobile phones are not confounded by news organizations, government
entities, and journalists the way social media are.
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5 Detecting Anomalous Events

Given that emergencies and disaster events are useful for understanding and
observing how information spreads in context, it is also worth understanding how
rare these events are. To estimate the rate of emergencies and non-emergency events
(collectively called anomalies) in modern datasets, as well as provide an example
of the types of analysis now possible, here we introduce and apply an anomaly
detection method to a country-wide mobile phone dataset, and use several basic
descriptive measures on the identified anomalies to characterize their features. Such
algorithms can in principle be used to detect the onset of an emergency event in
real-time. This is a crucial application for first responders. However, here our focus
is only on discovering anomalous events after they occur, so that they may be
retroactively studied.

5.1 Detecting Anomalies

We implement a basic event detection algorithm and apply it to the six-month
time series’ of call volume taken from the mobile phone call detail records. This
algorithm exploits the periodicity and recurrent nature of mobile phone activity
patterns and performs well with noisy data. (A more advanced method, the Markov-
modulated Poisson process [9], proved inadequate for this dataset.)

We first pre-processed the data. To help with heterogeneous tower densities, we
began by dividing the country into equally-spaced squares of size 1×1 km (one can
also use 10 × 10 km grids). All cell towers sharing a grid space were merged so that
the total volume Vx(t) of phone calls at grid space x is the sum of the call volumes
of all towers within x. Grid spaces that do not contain cell towers were neglected.
We now refer to each square grid space as a location. Since our goal is to find events
that can yield good statistics, we ignored locations that are mostly unoccupied by
only considering locations that average at least one phone call per minute over the
entire six-month period. These time series are then binned into 10-min intervals so
that their total length is 6 × 24 × 7 × W (covering W weeks).

The algorithm uses two calculations to flag runs of suspiciously high call volume
for each time series, where a run is a time period denoted by a start time and a stop
time. Runs that overlap in time (or nearly overlap) are merged.2 After mergers, a
run must have at least one time bin flagged as suspicious by both calculations and
have a duration of at least five time bins to be considered an anomaly.

The two calculations to flag runs of suspiciously high activity use the variance
(Sect. 5.1.1) and the recurrence (Sect. 5.1.2) of the Vx(t).

2Specifically, two adjacent runs of suspicious time periods are merged if they overlap in time or
they are separated by less than four time bins and at least one of the two runs is longer than four
time bins.
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5.1.1 Variance Calculation

Each location’s time series Vx(t) is copied W times, with each copy circularly
rotated by one week from the previous copy. Now each 10-min bin t can be
compared to all the other bins that occur at that same time of the week. Dropping
the location index, let us denote V (t) as the original time series, 〈Vshifted(t)〉 as the
average of element t over the W rotated copies, and σ (Vshifted(t)) as the standard
deviation of the W rotated copies. Now we construct a new vector Z(t),

Z(t) = V (t) − 〈Vshifted(t)〉
σ (Vshifted(t))

. (1)

Finally, we flag as suspicious those contiguous times ts ∈ [tstart, tstop] where
Z(ts) > Zthr for all ts . In other words, a suspicious event’s tstart and tstop > tstart
are determined by those times t where Z(t) crosses and remains above Zthr. Events
where only a single time bin was flagged (tstart = tstop) are ignored. For this work
we use Zthr = 2.5.

5.1.2 Recurrence Calculation

Take the original time series V (t) (suppressing location index) and rotate it by
10τ min (τ elements). One can construct a recurrence or Poincaré plot by plotting
the original time series V (t) against the rotated series V (t + τ).

If the time series is periodic, the plot will trace out a circular trajectory (Fig. 9).
Deviations away from the normal pattern will appear as regions of the phase space
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Fig. 9 Recurrence plots of V (t) for τ = 10 min. Colored squares indicate the log of the probability
for a randomly chosen point to fall in that bin. The run of points in an otherwise unoccupied
region in the upper-right corner of the right plot indicates a persistent deviation from the expected
recurrence and is flagged as suspicious
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with relatively few points. To detect these regions we bin the phase space into
squares of size 20 × 20 min. The probability for a bin to contain a randomly chosen
point is estimated as the fraction of points that fall within that bin. We flag points
as suspicious if the probability to be in that bin is less than 1/(24 × 7 × W). For
this work we use two rotations, one being 10 min (τ = 1), which primarily looks
for sudden changes in activity, and the other being 1 week (τ = 6 × 24 × 7), which
focuses on changes from the weekly periodicity. A point in time is suspicious if it is
flagged in either recurrence plot.

5.1.3 Results

We applied the algorithm defined above to 6 months of mobile phone data records,
and detected a total of 340 call anomalies. This corresponds to an average of 1.8
anomalies per day. Therefore, we conclude that researchers with access to years or
decades of activity data may have records of hundreds or even thousands of small-,
medium-, and large-scale anomalies to study. While many of the 340 events detected
are not emergencies,3 even non-emergency events provide a view into social activity
and information spreading that is not available when one is limited to studying
normal periods of activity.

5.2 Characterizing Detected Events

After identifying a call anomaly using the above procedure (Fig. 10a), we can
characterize its temporal, spatial, and social properties:

Temporal The temporal nature of an event can be captured by how quickly it
peaks. However, the time of the peak itself is often difficult to measure accurately
from a noisy time series and may be influenced by any binning of the time series.
Instead, we measure fmid, the midpoint fraction, defined as the fraction of time it
takes for half of the total anomalous call activity to occur. When there is a sharp
spike in call volume, as shown in the red curve in Fig. 10a, fmid will be low.
Specifically, fmid = (tmid − tstart)/(tstop − tstart), where tmid is defined such that

∫ tmid

tstart

(Vevent(t) − 〈Vnormal〉 (t)) dt

= 1

2

∫ tstop

tstart

(V (t)event − 〈Vnormal〉 (t)) dt. (2)

3We inspected the anomalies manually and determined the origins of many of the events using
Google News, but cannot share this information as it will reveal the country of origin of the data,
breaking our non-disclosure agreement with the mobile phone provider.
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Fig. 10 Systematic anomaly detection to estimate the rate of anomalies captured by mobile phone
data records. (a) The full country is divided into 1 km × 1 km grids. Assigned to each grid
space is a six-month time series corresponding to activity from mobile phone towers within that
space. A composite detection algorithm, exploiting daily, weekly, and seasonal periodicities in call
activity, is then used to flag anomalous call periods (highlighted). The final result is a corpus of
340 anomalies. The bombing and several known concerts occurred during this six-month period,
and were successfully identified. (b) Time series for some anomalies, scaled so that the total
activity during the anomaly is unity. (Inset) The distribution of anomaly durations is approximately
exponential, with an average duration of 273 min. (c) The distribution of characteristic spatial
distances rc. The average 〈rc〉 = 2.33 km corresponds well to the events studied by Bagrow et
al. [1]. A log-normal distribution is shown for comparison. (Inset) The distribution of anomaly start
times, as a function of time of day and day of week. Fifty one percent of anomalies occur between
6 PM and midnight. (d and e) For each anomaly, we plot: the midpoint fraction fmid, the time it
takes for half the anomalous call activity to occur; rc; and the social propagation factor, measuring
how rapidly the anomaly propagates through the social network. We see that propagation rates are
independent of rc and that the bombing shows faster propagation than the concerts. Interestingly,
events that occur during the day tend to show slower social propagation than events that begin
during nighttime hours

Spatial How much an event’s call anomaly is localized spatially around the
detected epicenter can be captured by its characteristic spatial decay rate rc.
We measure this by integrating the anomalous call activity in concentric rings
of radius r around the event epicenter, and fit an exponential function, i.e.,
�V (r) ∼ exp(−r/rc). The spatial decay rate tells us whether the event is sharply
peaked at a location (small rc) or spreads broadly over space (large rc).
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Social The social spread of a call anomaly can be measured by analyzing statistics
of the time series of calls made by populations G0,G1, . . .. These populations
capture those directly affected by the event (G0), those who receive calls from
G0 but are not themselves members of G0 (G1), the recipients of call from G1
members not in G1 or G0 (G2), etc. To capture how quickly the call anomaly
spreads through these populations, we define the social propagation factor as
simply the midpoint fraction of the time series of anomalous call volume for
each population Gi , averaged over Gi .

In Fig. 10b we present re-scaled time series of the call activity during the
detected anomalies, compared with activity under non-anomaly circumstances.
Most anomalies are short in duration, lasting under 2 h, although a few were detected
lasting over 20 h. Likewise, most anomalies were spatially localized (Fig. 10c).
Most anomalies occurred after 18:00 local time, although most phone activity also
occurred after 18:00 so this observation may be a simple confound. Weekends were
more likely to contain anomalies, with Wednesday being the weekday having the
fewest detected anomalies.

The speed of the event, measured by how quickly the localized call anomaly
peaks, correlates well with the social propagation factor measuring how quickly
the call anomaly peaks within the social populations G0,G1, . . . (Fig. 10d, e).
This relationship is roughly independent of spatial localization as measured by rc
(Fig. 10d). We also observe that social propagation is slower for daytime events
(those occurring between 06:00 and 18:00 local time), regardless of fmid itself
(Fig. 10d, e). For an event to occur in the middle of the night and have a strong
social propagation factor is good evidence that it is an emergency or disaster.

5.2.1 Principal Component Characterization

Lastly, we performed a principal component analysis (PCA) [11] on the 340
detected events (including events that were found by manual inspection to corre-
spond to those studied by Bagrow et al. [1]). Nine measurements (or features) were
determined for each event: the spatial size of the event rc; the speed at which the
event occurs fmid; the time of day; event duration; total number of calls; affected
population size |G0|; the “social decay rate,” the ratio of the total number of calls
made by population Gi vs. Gi−1 averaged over i; the z-score for the total number
of anomalous calls placed by population Gi , averaged over i; and weighted social
distance

∑
i i × Vtotal(Gi)/

∑
i Vtotal(Gi). These measures are intended to capture

many different aspects of the call anomalies, and more can in principle be used,
under the assumption that PCA will “net out” the most relevant linear combinations
of these features. A 340 × 9 data matrix is then constructed. The first three principal
components are shown here (Fig. 11). We found a clustering of known emergencies,
with known non-threatening events appearing mostly as outliers. The clustering of
emergencies is evidence that the measures introduced here can be used to categorize
events without additional information.
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Fig. 11 Principal component analysis for the anomalies detected in the mobile phone records.
Anomalies were manually inspected and many were found to correspond to known emergency and
non-emergency events. Emergency events showed distinct clustering, particularly in the first two
principal components

6 Discussion

In this chapter, we discussed how to measure information or activity spreading
through a social system in the wake of an emergency, disaster or other anomalous
event. Such emergency events act as “found experiments,” providing researchers
with new contexts and windows on the underlying social system. We presented
a case study of information spread on Twitter following the Boston Marathon
Bombing, and described measures of social spreading within a western European
country captured from mobile phone records. Mobile phone data are limited
in scope—lacking, for example, contextual details such as the text information
available in social media—and are generally less freely available to researchers.
But mobile phone datasets strongly complement other data such as those taken
from Twitter because phone calls and text messages represent one-on-one, direct
communication and are not confounded by broadcast effects and news media the
way Twitter is.

Comparing the spreading dynamics on Twitter surrounding the Boston Marathon
Bombing with the western European Bombing captured from mobile phone records
underscores how different these communication media are, both in who uses these
media and what is expected from these media. Researchers must account for these
differences when studying and comparing across media. Even within a single type of
media there may be great differences: a photo-oriented platform like SnapChat may
present vastly different dynamics than a microblogging platform like Twitter or a
chat platform like WhatsApp or Facebook Messenger. Further, spreading in a single
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platform does not take place in isolation: the dynamics of Twitter users following
the Boston Marathon Bombing are strongly influenced by information they (or their
social ties) receive from traditional, broadcast media.

As communication services continue to evolve, and online activity continues to
adapt to new services, researchers will be confronted with both technical challenges
to overcome but also a wealth of new opportunities brought about by new data.
Recent advances in machine learning and artificial intelligence may prove fruitful
here, for example. Deep learning for computer vision may soon allow researchers
to better understand and analyze video feeds and imagery created by eyewitnesses
of emergency events, particularly when those feeds are generated in large volumes,
keeping pace with new smartphone video streaming services such as Facebook Live
and Periscope.
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Part IV
Controlled Studies



Randomized Experiments to Detect and
Estimate Social Influence in Networks

Sean J. Taylor and Dean Eckles

1 Introduction

There is a long tradition in the social sciences of examining how individual level
behaviors diffuse and aggregate, including influential work by Schelling [107–
109] and Granovetter [56], among many others [25, 87, 101, 119]. Stylized models
from this tradition have been used to explain some of the most important human
phenomena, from which innovations are likely to gain widespread usage to who
people vote for in elections. The fundamental building blocks of diffusion models
are assumptions about how people change their behaviors in response to the
behaviors of people they observe or interact with. These assumptions can vary
in their disciplinary origins and sophistication—from epidemiological models to
game-theoretic models with multiple equilibria.

Randomized experiments provide a useful tool for testing theories. The increas-
ing digitization and connectedness of human behaviors has made digital field
experiments cheaper and easier to apply to social behaviors via contemporary
communication technologies. This methodological paradigm shift has created
opportunities for researchers hoping to understand the underpinnings of large-
scale social behaviors in order to improve theory, make predictions, and compare
hypothetical policies.
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In this review, we hope to make randomized experimentation more accessible
to researchers seeking to contribute to our understanding of social influence and
diffusion in social systems. We first discuss how randomized experiments can rule
out potential confounding factors (Sect. 1.1). Because experiments require that the
researcher intervenes in the social system, we devote Sect. 1.2 to discussing the
ethical consideration associated with employing digital field experiments.

Section 2 outlines the four components of a randomized experiment to detect
or estimate social influence. This facilitates discussing the many design choices
experimenters have, including defining the relevant network, what treatments can
be employed, and how those treatments may be randomly assigned to subjects.
In Sect. 3, we turn to the analysis of experiments in networks, where we focus
on Fisherian randomization inference. Section 4 discusses how the analysis of
experiments can be extended in various ways in order to increase the usefulness
of the results.

This review complements more general references on design and analysis of
randomized experiments [15, 55, 64]. Design and analysis with disjoint groups
has received substantial attention in economics and epidemiology [e.g., 18, 58,
105, 121]. On the other hand, there are few other reviews of design and analysis
of experiments in networks. Compared with extant reviews [5, 122], we aim to
integrate all the methods reviewed into a single causal model and discuss some
design choices and analysis methods in detail.

What exactly counts as social influence? Different fields distinguish among
various processes by which people affect each other. For example, economists
distinguish between peer effects caused by constraint, preference, and expectation
interactions [78], while other fields may make different distinctions. Thus, for some
prior work, “social influence” denotes something more specific. However, given our
methodological focus here, we choose to remain agnostic about the mechanisms and
define social influence to include all processes by which an individual’s behaviors
affect another’s, either directly or indirectly. Thus, we could have instead referred to
“peer effects,” “diffusion,” or “social contagion.” Further theory-specific distinctions
may motivate additional design and analysis choices.

1.1 What Makes Randomized Experiments Different?

We privilege information gained through randomized experiments because they
create a different kind of knowledge than observational studies: We know exactly
how units are assigned to treatments. Thus, a properly implemented experiment
rules out all alternative explanations for an observed correlation besides the causal
one, and allows for both unbiased estimation of the effect of our intervention and
statistical inference that is exact in finite samples [53].

Any observational analysis intended to answer questions about social influence
must confront several potential biases that make it difficult to trust its conclusions.
First, social networks are known to exhibit strong homophily [44, 73, 80, 83],
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creating network correlation of attributes, opinions, and behaviors through people’s
preferences for whom they spend time with. For instance, people with similar
political beliefs may be more likely to form friendships [23, 57, 62], and therefore
homophily may readily explain cases of apparent political persuasion. Second,
people who are connected in social networks are subject to similar exogenous
shocks to their behavior, as when neighbors are exposed to similar marketing
messages on billboards.

A substantial program of research has been devoted to proving that what
economists call “identification problems” in social influence are likely to be
insurmountable without randomized experiments [77, 112]. The intuitive reason is
that without intervening in the social system, there are usually reasonable alternative
explanations for correlations that do not involve a social influence effect.

Despite their clear advantages, the use of randomized experiments is not a
panacea for social scientists. Experiments are usually more costly to design and
implement than observational studies because the researcher must alter people’s
behaviors or interactions in a social system in some way. Interventions require
substantial upfront costs for planning and implementation, including: recruitment
of subjects, cost of the interventions themselves (financial or logistical), evaluation
and exposure of risks of harm to subjects [65]. Because field experiments require
researchers to impact the social systems they study at potentially very large scale,
they can be associated with different ethical challenges from other methods, which
we summarize in Sect. 1.2.

Experiments can also be problematic because, although they reduce concerns
about bias, the variance of estimation becomes a first-order concern and the
possibility of type II errors (commonly known as issues with experimental power)
dominate due to the cost of sample size or the impossibility of the researcher
creating large effects [19].

On a more positive note, we will see in Sect. 3 that some well-designed
experiments can require more straightforward analysis than observational studies.
In addition, there are reduced internal validity concerns with experiments, as they
can provide unbiased estimates for the social influence effects they were designed
to measure. The two main constraints of an experimental methodology are which
estimates are possible and the precision of those estimates.

The randomization the researcher employs and structure of the network together
determine what causal quantities of interest can be credibly estimated [117]. These
estimands address counterfactual questions about which individual-level behaviors
would obtain under alternative interventions. In one simple case, we may be able
to answer the question of how much an individual’s probability of a behavior is
increased by having exactly one peer (rather than no peers) who engages in that
behavior. A more complex causal estimand might be the distribution of that behavior
in the total population after a series of targeted (e.g., marketing) interventions or a
policy change (e.g., by a government). As we will see, a single experiment will
generally not answer all possible causal questions and the experiment should be
designed with some estimands in mind.
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The second constraint from using experiments is the precision of the effect
estimates. Experimental data is often more costly to collect than observational data
because treatments are not free and observational data is abundant. The power to
detect social influence is limited by the direct effects of the intervention (weaker
ones provide less experimental power) and the available sample size [55].

1.2 Ethical Considerations for Digital Field Experiments

The reduced cost and increased feasibility of digital field experiments (DFEs)
has led to increased experimentation over the past decade. While DFEs may help
researchers answer many important questions about social influence, they can
present more ethical challenges than observational research and even pre-digital
lab and field experiments. To ground the discussion, we will refer to the four
ethical principles proposed in the Belmont Report [96] and the subsequent Menlo
Report [47] which are meant to provide guidance on human subjects research. Those
principles—Respect for Persons, Beneficence, Justice, and Respect for Law and
Public Interest—are briefly summarized in Table 1.

For an in-depth, thorough treatment of ethics in research in the digital age, we
refer the reader to Chapter 6 of [104] and for a recent discussion of institutional
review processes to mitigate risk please see [65]. Rather than review those materials
exhaustively, we use this subsection to discuss five ethical considerations that we
consider to be particularly salient for digital field experiments.

First, DFEs are implemented in software and therefore have very low variable
costs with respect to the size of the treated population. It is no longer unusual
for experiments to deploy treatments to millions of people [31], amplifying their
potential harm compared to more modest sample sizes. Additionally, treatments
with network effects can, by research intention or not, cause detrimental effects
for people who were not in the original treated population. Researchers acting in
accordance with the ethical principle of Beneficence may have a more difficult time
evaluating the potential risks of DFEs in networks because their potential effects on
social systems are not obvious, intuitive, or even measured.

Table 1 Ethical principles for human subjects research

Principle Description

Respect for persons Treating people as autonomous and acting in accordance with their
wishes

Beneficence Recognizing the potential risks and benefits of research and striking a
balance between them

Justice Ensuring that the risks and benefits of research are fairly distributed

Respect for law and
public interest

Recognizing the risks and benefits for all relevant stakeholders, not
just research subjects
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Second, it may be difficult to identify whether subjects in DFEs are members
of a vulnerable or protected population. When designing a DFE, researchers might
find it challenging to estimate risks of harm because there is uncertainty about how
many subjects could be adversely affected. Researchers might also be unable to
reason about whether the benefits and risks of the research are distributed equitably
across the population, in accordance with the principle of Justice. On many online
or mobile platforms, researchers may not know if users are a reasonable age for
consent or are particularly vulnerable to risk from the planned experiment.

Third, DFEs typically use automated, large-scale collection of potentially sen-
sitive and/or identifying information, e.g. location information or exchange of
personal communication. Indeed, these data can be integral to the ability of the
experiment to answer the research question of interest. For instance, a log of
email communications can be used to infer a social network [73], which is a key
component for social influence studies. Persistent records of sensitive or identifying
information can potentially be used for unintended purposes, causing harm to
experimental subjects [89, 91].

Fourth, because of their large scale and integration with existing technologies,
DFEs often pose unique challenges for receiving informed consent, which is
sometimes an implication of the ethical principle of Respect for Persons. Inform-
ing subjects of the experiment and receiving their consent can be disruptive to
their normal experiences using various platforms and products (particularly if
experiments are frequent, as is becoming more common). Furthermore, requiring
informed consent can limit or bias the experimental population or prime the
subjects, undermining or altering the treatment effects. Although informed consent
is important component of Respect for Persons, deception may be permissible
if the experiment complies with all other ethical principles and the deception
does not strongly violate the norms of that setting [98]. Some experiments with
potentially important benefits require deception in order to ensure the research
question can be suitably answered. For instance, in the employment discrimination
field experiments [98] discuss, one could not credibly measure discrimination after
informing employers of the nature of the research.

Fifth, it may be difficult for researchers to comply with all laws, contracts, terms
of service, or social norms because DFEs may involve partnerships with companies,
span countries or other legal boundaries, or include subjects from many cultures.
Inconsistent, overlapping, and sometimes unclear rules and norms lead to challenges
for researchers hoping to understand all potential stakeholders and their associated
goals and risks.

These five considerations are not meant to be exhaustive—there are certainly
other ways in which DFEs can present new ethical challenges for researchers. But
we hope that this subsection has made clear that while experimental research has
become easier to conduct on some dimensions, it has become more fraught on
others—in particular in evaluating and mitigating the risk of harm to subjects.
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1.2.1 Recommendations for Ethical Research

Taking into account the challenges identified, more research is needed to address
the ethical implications in DFEs and to develop mitigating and creative strategies.
In the meantime, researchers should do the utmost to:

• Ensure that the research is ethical and beneficial for subjects; that it does not
expose them to risk or harm (this may require escalation and further deliberation
with other teams within the company, along with the assessment of alternative
research methods that could be used).

• Carefully assess if the collection and processing of sensitive data is essential for
the research being conducted.

• Determine if an experiment is strictly necessary for the objectives of the research
(or if the same results can be obtained through less risky research, e.g. a smaller
sample size).

• Whenever possible, ensure that such collection and processing is done with prior
informed consent given by the data subjects.

• Only keep that data for the minimum necessary period of time and ensure the
proper de-identification of that data according to most effective and updated
industry standards.

2 Components of a Randomized Experiment

The randomized experiment methodology has four main components:

1. A target population of units (i.e., individuals, subjects, vertices, nodes) who are
connected by some interaction network (Sect. 2.1).

2. A treatment which can plausibly affect behaviors or interactions (Sect. 2.2).
3. A randomization strategy mapping units to probabilities of treatments

(Sect. 2.3).
4. An outcome behavior or attitude of interest and measurement strategy for

capturing it (Sect. 2.4).

To summarize the relationship of these components, the researcher applies a
treatment (2) to a target population (1) using a randomization strategy (3) and then
measures the outcome behavior (4).

The following four sections describe these four components, characterize the
space of possibilities for each one, and provide examples from existing research. We
introduce notation along the way that we will use in Sects. 3 and 4. For convenience
that notation is summarized in Table 2. Lowercase letters designate particular fixed
values of interest.
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Table 2 Definitions of terminology and notation used in this review

Term Definition

Xi A vector of pre-treatment covariates about subject i

Ui A vector of unobserved covariates about subject i

Dj A behavior of the peer j that could affect the subject i

Aij Edge between i and j in the interaction network that mediates social influence

Zj Researcher-determined treatment status for peer j

Wij Researcher-determined treatment status for relationship ij

Yi The outcome of interest for subject i, measured post-treatment

Subject A focal individual whose outcome variable Yi is studied

Peer The person whose behavior Dj could influence Yi

See Fig. 1 for a graphical depiction of the relationship between these quantities

Yi

Xi

Ui

Ai j

D jZ j

Xj

Uj Wi j

Fig. 1 Causal diagram for the random variables in our example. Squares are observed variables
and circles are unobserved. Here i is the ego or focal subject for whom we will measure outcome
Yi . We believe that her friend j can affect Yi through her behavior Dj , which is affected by our
treatment Zj . The strength of their friendship Aij can moderate this effect and is exogenously
affected by treatment Wij . Ui and Uj are unobserved confounders that cause i and j to become
friends and may also affect Dj and Yi . By conditioning on Aij , the backdoor path indicated by
the dashed line is activated and provides an alternative explanation for any association we observe
between Dj and Yi
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2.1 Target Population and Interaction Network

The target population is the set of people whose interactions and behaviors the
researcher seeks to study. If we were studying whether peers affect which movies we
choose to watch, the population of interest might be movie-goers. Before and during
the experiment the target population generates some data, which we list here:

• We observe N individuals from some target population, indexed by i. This
might be a sample or it may be the entire finite population.

• We observe pre-treatment covariates for the individuals: Xi . Commonly
researchers collect demographic information such as gender, physical location,
or age. Often it is also useful to measure pre-experimental behaviors that are
similar to the outcome of interest.

• We observe an interaction network between people in the population Aij where
i, j ∈ [1, . . . , N ]; alternatively, this is a network G = (V ,E). This interaction
network determines an exposure model—which individuals we expect to poten-
tially influence each other and with what intensity.

• We observe when the population engages in some behavior of interest Di .
• We observe some outcome variable associated with each individual, Yi . For

instance, the researcher might survey them to ask often they smoke. We will
discuss outcome measurement in more depth in Sect. 2.4.

Substantively, we care about the effect of the behavior Dj on the outcome Yi in
the population. The special case where Di = Yi can be termed in-kind peer effects
and is frequently studied, but it is easy to envision cases where the peer behavior of
interest is different from the outcome (e.g., my friend’s studying habits, measured
as Dj , affect my probability of applying to college, Yi).

Selecting the target population often involves tradeoffs between external validity
and the ability to collect data about behaviors, outcomes of interest, and relevant
social interactions—and intervene. Researchers have used the following three
strategies to solve this recruitment problem.

First, researchers have continued to recruit convenience samples. As with
classic lab experiments in social influence e.g., [13], these are often students from
universities and colleges for studies. These samples can facilitate either construction
of artificial networks or measuring the subjects’ networks (with, e.g., surveys, asking
them to log into Facebook, measuring co-location). The latter strategy can be used
to conduct “lab experiments in the field” as existing networks are combining with
artificial choices and treatments e.g., [75]. The former strategy has been increasingly
used in combination with online labor markets (such as Amazon’s Mechanical
Turk), which has created an important new source of experimental subjects [81].
These individuals can be assigned to positions in networks by researchers or through
economic games played by the subjects themselves [82, 94, 95, 113]; of course, this
may limit external validity.

Second, the last decade has led to a dramatic increase in experiments that are
conducted on online social networks or in collaboration with the companies that
run online communication services. [6, 7] constructed a Facebook application in
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order to gather social network information, introduce a treatment (presence of
viral features), and measure the outcome of interest (adoption of the application).
Other researchers have worked directly with Internet firms to conduct experiments.
[31] and [114] conducted experiments by implementing them in partnership with
Facebook (see Bond et al., this volume), while [88] partnered with a social news
website to introduce an experimental change.

Third, researchers in education, development, labor economics, and ecology have
conducted ambitious field experiments in samples of schools or classrooms [37, 93],
villages [35, 71], and animals [4, 52] for which networks can be measured.

2.1.1 Measuring or Constructing the Interaction Network

We use the term “interaction network,” which is vague, because what is usually
denoted by “social network” will often not be the causal network of interest.1 In
most settings there is some specific type of interaction we hypothesize to transmit
the behavior we care about. An intuitive definition is that interaction is “i considers
j to be her friend,” but, even when this can be operationalized, further consideration
of a particular research question may lead to other choices:

• i saw a story j posted on Facebook [21]
• i is made aware that her friend j likes a product [20]
• i lives with j in a dormitory for a year [103]
• i lives in the same household as j [90]
• i is in the same training class as j [37]

The researcher hopes that the chosen network captures salient interactions for the
influence process she expects. This definition can vary depending on the outcome
behavior of interest. In the case of the Sacerdote [103], who study educational
outcomes, the interaction network is prolonged co-habitation, while in the case of
Bakshy et al. [20], who study clicks on ads, it is merely that a Facebook friend’s
name can appear next to an advertisement. A more prolonged, socially important
interaction network can plausibly cause larger changes in subject behavior. In the
former case, the researchers can study changes in more important and ingrained
behaviors like studying habits, while in the latter the researchers must study more
proximate outcomes (clicks on ads).

There are many different possibilities for measuring, eliciting, or directly
constructing interaction networks. If the research setting is an articulated social
network (e.g., an online social network such as Facebook, Instagram, Twitter, or
Pinterest), the researcher may use that network’s definition (followers, friends,
subscriptions). This approach is convenient but often not the precise interaction
network of interest. Most people have online “friends” with whom they never

1Another related term is “exposure model”—a model that determines which subjects are exposed
to which other subjects.
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interact in person, as well as “real life” friends who they have not articulated ties
with online. Facebook, Instagram, and Twitter use algorithmic ranking to determine
which content users see, meaning that a friend or follow relationship on those
platforms may not necessarily imply content visibility. If the plausible mechanism
of influence is offline, then using an online network might bias estimates of causal
effects. A misspecification of the interaction network can, even with randomization,
bias measurement of social effects.

In digital settings, interaction networks may be constructed incrementally as
people’s interactions in the social system are logged (i.e., Aij = 1 if i chatted with
person j during some period). For instance in Bakshy et al. [20], the interaction
network is determined by Facebook users seeing advertisements during their
browsing sessions. The salient interaction network is easily captured by logging
which users see which ads. In addition, logging the interactions which have the
potential for transmitting behaviors can improve precision by omitting interactions
with no potential to transmit influence. Bakshy et al. [20] could have used other
definitions of the interaction network (e.g., Facebook friendship), but these would
have yielded biased and/or higher variance estimates of effects.

Like observational research [e.g., the US National Longitudinal Study of Ado-
lescent Health (AddHealth) study [97]], much measurement of social networks for
randomized experiments has involved asking subjects who their friends, kin, etc.,
are. The specific questions can be selected to elicit the possibly domain-specific
network of interactions. For example, Cai et al. [35] asked heads of rural households
to household heads to list five friends that they most frequently discuss farming
and finance with, anticipating that this would be a relevant network for social
influence in adoption of weather insurance and spillovers from their intervention.
Such questions require being able to uniquely identify the named peers, which
may be challenging in the presence of common names and/or limited literacy.
Kim et al. [71] thus used a complete photographic census of the villages in which
they planning to intervene. When the goal is to measure an objective fact about
behavioral interactions, incentives for subjects to truthfully report their friends and
tie-strength to researchers could be helpful. For example, Leider et al. [75] use a
game in which individuals report how much time they spend with peers and paying
them more money if this report matches the peer’s report.

Researchers can infer interaction networks from communication meta-data,
especially when it covers enough time to precisely measure interaction rates and
the communication medium (e.g., email) is likely to be the medium through which
influence is transmitted. Influential observational research has measured networks
by counting exchanges of emails [73] or instant messages [9]. Beyond allowing for
constructing a binary network, directed behaviors between individuals predict self-
reported tie strength [66]. In a randomized experiment, these measures can then be
used to estimate how spillovers [31] or social influence [8, 20, 21, 32] varies by tie
strength. Choices by researchers in inferring networks from communications data
can be non-trivial and have a substantive impact on results [45].

Finally, studies can be designed to directly construct the interaction network for
the subjects, a strategy which is enabled by running digital experiments even if they
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happen to be conducted synchronously in behavioral research labs [69, 82, 94, 95].
For example, Suri and Watts [113] randomly varies the networks on which Amazon
Mechanical Turkers play a public goods game. Since creating the interaction
network requires the researcher to intervene in the social system, we will discuss
this strategy in more depth in Sect. 2.2.

2.1.2 Extensions to This Framework

Thus far we have described a randomized experiment with a single time period
of post-treatment observation and a single outcome of interest. The DAG in Fig. 1
does not allow for the subject’s behavior to affect the peer’s behavior, which in turn
affects the subject’s behavior. There are two simple extensions which may be useful
and more realistic. First, we might study the outcome at different points in time
(e.g., instead of Di and Yi we might observe Di(t) and Yi(t) where t denotes either
discrete or continuous time. Time-dependent behavior is a challenging empirical
setting because the researcher will often need to model how the interaction network
varies across time, as well as how the individual behavior evolves over time [99].

The second extension is from a single peer behavior and outcome of interest
to multiple behaviors and outcomes. We might observe a set of people make
decisions about a collection of products, ads, content items, or behaviors, meaning
we would measure Dik and Yik , where k indexes the items. Multiple items present
an important opportunity to observe social influence processes play out repeatedly
in the same population of individuals across the same interaction network. Studies
which measure effects across multiple behaviors might provide a more generalizable
estimate of effects or allow the researcher to understand effect heterogeneity on
other dimensions. As we discuss in Sect. 3.3, this may offer additional opportunities
in analysis.

2.2 Experimental Treatments

Treatments are the means by which the researcher intervenes in the social system.
The space of treatments is often very limited based on cost and practical constraints,
risks to subjects, and simply what changes a researcher can possibly apply in a social
system.

We will consider the researcher intervening by setting variables Zj and Wij ,
usually through some random assignment procedure. Note that we do not assume the
researcher can directly change Dj and Aij , as these variables are chosen by individ-
uals and can often only be affected through the researcher-controlled instruments.
The case where this is possible is the special case of perfect compliance, which
is rare in field experiments. Instead, we posit a (potentially estimable) compliance
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model that produces Dj and Aij and which may also include pre-treatment variables
and random noise. This section focuses on defining these treatments; we defer their
random assignment to Sect. 2.3 below.

2.2.1 Subject-Level Treatments

A binary subject-level treatment is denoted by Zj ∈ {0, 1}, where Zj = 0 by
default, and where this treatment is expected to affect behavior such that Dj(zj ) =
fi(zj , εj ), with observed Dj = fi(Zj , εj ). The direct effects of the treatment may
sometimes be of interest (e.g., effects of a message on voter turnout), but the idea
here is that Zj functions as an encouragement or instrumental variable with respect
to Dj , allowing interpretation of spillovers from treatment as social influence via
Dj . Thus, researchers can create these treatments primarily for this purpose of
detecting social influence. For the treatment to be effective as an instrument, we
must believe that fi is such that changing Zj sometimes changes Dj ; for example,
perhaps Dj(zj ) = 1{α + βzj + εj > 0} with β 	= 0, which can be tested.
Many interventions (e.g., providing information, advertisements) cause only small
changes in the behavior, making detecting downstream social influence difficult.

The special case where Dj = Zj is known as perfect compliance. Noncompli-
ance may also be only one-sided, such that if Zj = 1 then Dj = 1. Say we are
interested in social influence in adoption of a paid upgrade of a music streaming
service. We could, as do [24], purchase the upgrade for active users at random,
thus producing one-sided, rather than two-sided, noncompliance (i.e., users could
still purchase the upgrade on their own if we did not).2 Two-sided noncompliance
seems to be more common in the social sciences, particularly among the difficult-to-
change behaviors which are often most interesting to study (e.g., health behaviors,
costly product purchases).

Experiments using subject-level treatments within groups (i.e., networks con-
sisting of disconnected cliques) to detect and estimate social influence—sometimes
called partial population experiments [86]—have been adopted in economics and
political science [2, 48, 54, 84, 90]. These designs are based on the expectation
that treating a fraction of subjects can induce detectable changes in the population
of individuals connected to them. A smaller number of such experiments have
been conducted in networks; these too have often relied on having a network
multiple connected components (e.g., villages, schools) [e.g. 35, 43, 71, 93] with
few exceptions [31].

Knowledge of the interaction network can be crucial for the success of subject-
level treatments. If there is uncertainty about which peers may be affected by

2Of course, in such cases we may wonder whether Dj (i.e., having the upgrade) was really the
behavior we were interested in. Perhaps so—if most of the effects of peers’ upgrades on subjects
would be via a single indicator on the peers’ profiles that they had upgraded.
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a subject’s treatment, then detecting effects can become more burdensome from
a statistical standpoint because omitting edges or including irrelevant ones adds
additional random variation in estimation.

2.2.2 Interaction-Network Treatments

In an interaction-network treatment, the researcher intervenes by setting Wij , which
affects the interaction network of the subjects in the experiment; that is, Aij (wij ) =
gij (wij , Ui, Uj , νij ), with observed Aij = gi(Wij , Ui, Uj , νij ). As above, if Aij is
binary, we may posit that Aij (wij ) = 1{γ + δwij + νij > 0} with δ 	= 0. Then
particular edges may exist (δ > 0) or not (δ < 0) because of the treatment.

In the edge-formation case of δ > 0, we have treatments such as suggesting
that two people become friends or introducing them [17, 110]. Not all suggested
edges will form, but we expect that some will. Researchers sometimes define the
interaction network such that there is perfect compliance. There are numerous
examples of randomized group formation with ostensibly perfect compliance.
Hasan and Koning [60] used a novel group randomization to understand how the
constituents of groups affect ideation. Sacerdote [103] and Carrell et al. [37] use
random assignment of college roommates and squadrons in order to understand
how these groups affect various learning and development outcomes. Note that the
degree of “compliance” depends on how the network is defined. Although roommate
assignment creates perfect compliance for the network of roommates, there is still
two-sided noncompliance for the network of friendships.

Encouraging edge removal, preventing formation, or attenuating interaction
(δ < 0) can also be possible, if challenging in practice, and would rely on the
researcher discouraging at least one type of interaction between individuals in the
population. As an extreme example, researchers studying smoking cessation could
ask subjects to delete phone contacts for any friend they believe might encourage
them to continue smoking.

In the context of online communication technologies, whether some binary
treatment should be understood as encouraging or discouraging interaction is
relative to an arbitrary and temporary status quo. For example, Eckles et al. [49]
analyze an intervention that modifies the display of i’s posts to j , varying the
salience of the user interface elements for commenting on the post.

Perfect compliance, or at least one-sided noncompliance, can also occur when
there is some exhaustive channel by which interaction occurs. For example, Aral
and Walker [7] randomizes along which edges notification for their Facebook
application are sent, thus defining an interaction network that is a random subset
of the Facebook friendship network. Similarly, Bakshy et al. [20] randomizes
whether or not a friend appears as social context for an advertisement. We have
elsewhere called these mechanism experimental designs since they randomize
whether particular mechanisms for social influence are active [49].
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2.3 Randomization Strategy

A randomization strategy φ specifies a probability distribution over treatment
assignments; here, πφ(Z) or πφ(W), where Z is the N -vector of subject-level
treatments Zi and W is the matrix of edge-level treatments Wij . The marginal
distribution is thus a function that maps a subject (j ) or edge (ij ) to probability
of treatment. More advanced experiments might additionally allow this function to
depend on pre-treatment covariates Xj or the existing interaction network Aij . The
specific form of the randomization determines what causal questions the experiment
is capable of, or especially suitable for, answering.

2.3.1 Implementing Randomization

In practice, researchers tend to implement randomization using deterministic crypto-
graphic hash functions to generate pseudo-random variables with specified distribu-
tions [22, 72]. PlanOut is a domain-specific language for specifying randomization
strategies that is used at Facebook and several other companies.3 Using variable-
specific cryptographic salts, PlanOut provides functionality for independent random
assignment for multiple experiments, multiple variables, and multiple types of units
(e.g., users, clusters, items, edges). The determinism of the hash functions ensures
that a random assignment is “persistent,” without requiring the assignments be
stored; that is, the assignments can be computed online and statelessly, as subjects
arrive. PlanOut code implementing the i.i.d. randomization we described in the
previous paragraph as well as some more advanced randomizations are shown in
Listing 1.

Listing 1 Example PlanOut code for subject-level treatment assignment.

# i . i . d . random a s s i g n m e n t
smoking_program = un i fo rmCho ice ( c h o i c e s = [ 0 , 1 ] ,

u n i t = s u b j e c t _ i d ) ;

# b l o c k random a s s i g n m e n t
smoking_program = un i fo rmCho ice ( c h o i c e s = [ 0 , 1 ] ,

u n i t = s u b j e c t _ g r o u p _ i d ) ;

# h i e r a r c h i c a l b l o c k random a s s i g n m e n t
smoking_program_prob = randomFloa t ( min =0 , max=1 ,

u n i t = s u b j e c t _ g r o u p _ i d ) ;
smoking_program = b e r n o u l l i T r i a l ( p=smoking_program_prob ,

u n i t = s u b j e c t _ i d ) ;

3The design of PlanOut is described in Bakshy et al. [22] and it is available from
https://github.com/facebook/planout.

https://github.com/facebook/planout
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2.3.2 Subject-Level Treatment Randomizations

Here we consider randomizations for subject-level treatments. Consider the simplest
possible randomization for a subject-level treatment is independent and identically
distributed (i.i.d) Bernoulli random variable: Zj ∼ Bernoulli(0.5).4 Say Zj is
assignment to a smoking prevention program. We hypothesize that the program will
reduce how much people in the study smoke (i.e., Dj is lower in expectation when
Zj = 1), and are further interested in using this randomization to learn about social
influence in smoking. In the context of disjoint groups (i.e., a network consisting of
multiple disjoint cliques), we can think of this randomization as a partial population
experiment [18, 86], in that some of the population is treated and we can study
behavior of their peers. This design is analogous to marketing interventions which
seek to exploit spillovers or network effects in demand by providing discounts or
promotions to a small subset of consumers [59].

In order for our randomization to enable detecting and estimating social influ-
ence, we will generally need variation in the treatments of the peers of our subjects.
While many measures of peer treatment can be used, we will illustrate the points in
this section with the fraction of i’s peers who are treated:

Ti =
N∑

j=1

ĀijZj ,

where Āij = Aij /
∑N

j=1 Aij an entry in the row-normalized adjacency matrix, with

Āij = 0 if
∑N

j=1 Aij = 0.
The i.i.d. subject-level assignment described above and shown in the third panel

of Fig. 2 has a very important limitation: if a subject has a substantial number of
peers, then there is a vanishingly small probability that they will all be assigned to
treatment; for example, if subject i has 10 peers, then Pr(Ti = 1) = Pr(

∑10
i=1 Zj =

10) < .01. So we are unlikely to be able to use an experiment with this type of
randomization to answer counterfactual questions about having all (or even a large
percentage) of a person’s friends participate in the program. For some asymptotic
sequences with growing degree, this will mean the variance of sample means for
units with, e.g., all treated peers diverges [118]. Thus, we will often want to consider
other randomizations.

At the opposite extreme, we could assign treatment at the level of groups or
clusters. For instance, if students are grouped by classrooms, we could do the
smoking prevention assignment at the classroom-level. Let c(j) be the classroom
for subject j . Then a group-level randomization would be to assign each group
an i.i.d Bernoulli, Pc ∼ Bernoulli(0.5) and assign each student her group’s
assignment, Zj = Pc(j). If we think the classrooms are disjoint cliques, we might

4Often the literature on randomized experiments e.g., [55, 64] starts with a completely randomized
design, in which some fixed number N1 of the N subjects are assigned to treatment. However,
in the case of large digital field experiments implemented as described in Sect. 2.3.1, this cannot
easily be done in online (i.e., streaming) assignment without complications.
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i.i.d. assignment on
balanced groups

0 1

hierarchical assignment
on balanced groups

0 1

i.i.d. assignment on
small world network

0 1

clustered assignment on
small world network

0 1

Fig. 2 Various subject-level randomizations illustrating how they each induce different distribu-
tions of treatment status for a subject’s friends. Each of the four squares is an adjacency matrix (dots
represent undirected friendships). The horizontal grey bars represent treatment probabilities, with
the darkest color indicating treatment is assigned to subjects in that row with 100% probability. The
stylized histograms beneath the squares indicate the fraction of friends who are treated induced by
the randomization strategy above it

posit an interaction network that is a block-diagonal matrix, such that Aij =
1{c(i) = c(j)}. Note that in the case of disjoint groups, such an “everyone or
nobody” randomization abandons the partial population idea. This randomization
can help answer questions about what will happen should we deploy the program
to everyone, but it cannot answer questions about social influence and thus whether
the program can be deployed more cost-effectively by treating a smaller proportion
of students. We may be able to dramatically reduce smoking in a classroom by
encouraging 25% of the students to not smoke. In this group randomization, we will
never observe a classroom with any quantity other than 0% or 100% of the students
treated; see the first panel of Fig. 2.

Intermediate designs between these two extremes use a hierarchical (or, in this
case, two-stage) randomization to create additional dispersion in the quantity of
students per classroom assigned to the treatment, but also make subject’s own
treatment and their peers not perfectly dependent. For example, we can first draw
a random uniform variable per classroom, Pg ∼ Uniform(0, 1), and then for
each student, we draw a Bernoulli random variable with their group’s probability,
Zj ∼ Bernoulli(pc(j)).5 For some randomization ψ , we call it overdispersed
because Varψ(Ti) > Variid(Ti); that is, it has greater variability in the fraction

5With a small number of groups, we may want to use a completely randomized design, rather
than independent draws of Pc. Baird et al. [18] consider optimal two-stage randomizations in the
context of disjoint groups, given the goal of estimating some particular direct or indirect effects.
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of peers treated than from i.i.d. subject-level randomizations. An overdispersed
randomization could be useful for selecting a number of students to treat per
classroom, given some budget, that will minimize smoking because it can provide
an estimate smoking behavior under different many levels of treatment.

Block-diagonal networks (e.g., villages assumed to not interact) make overdis-
persed randomizations easy to implement. With more general networks, there
are more design choices, and it can be difficult to generate arbitrary degrees
of overdispersion in friend treatment assignment probabilities. We may prefer a
randomization such that the distribution of Ti has certain properties; for example,
one heuristic is we should have positivity such that Pr(Ti = k) > ε for all
feasible fractions k given i’s degree. Or we may aim to maximize Pr(Ti = k)

for k ∈ {0, 1}. One recently popular way to do so is to partition the network into
clusters using existing graph partitioning algorithms, and then proceed with the
cluster-randomized design (i.e., graph cluster randomization; [51, 106, 118, 123]).
Given the structure of the network, there will still be edges between clusters (fourth
panel in Fig. 2). For example, say we use state-of-the-art methods to partition the
Facebook friendship network; with only 1000 clusters, already over 40% of edges
will be between clusters [111]. Not only is graph partitioning challenging in large
networks, but standard min-cut objectives will often just be a heuristic: we would
instead prefer to optimize bias or total error in estimation of particular quantities.
To facilitate such optimization, one can further treat the clusters, or some other
model fit to the network (e.g., a more general stochastic block model [68]), as an
approximation to the observed network. Thus, Basse and Airoldi [27] propose using
optimal designs for approximations to the observed network.

A final design possibility with subject-level treatment randomizations is that
treatment assignment probabilities can depend on pre-treatment covariates Xi in
order to increase precision. Blocking or pre-stratification exactly balances some
covariates between treatments, rather than simply balancing them in expectation,
thus reducing the variance in effect estimates is attributable to the random assign-
ment of treatments causing covariate imbalance in small samples [55, ch. 4]. For
instance, in a small sample it could make a large difference in estimates if a subject
who is very active or who has many friends is assigned to treatment or not. State-of-
the-art blocking methods allow improving balancing on high-dimensional covariates
and lead to higher-precision estimates of treatment effects [61]. While usually large
samples make blocking irrelevant because post-stratification or regression adjust-
ment can provide similar precision gains [85], use of graph cluster randomization
again reduces the effective number of units being randomized, perhaps making
blocking a relevant design consideration.

Pre-treatment covariates can be used to target specific subjects who may have
certain network positions or be likelier to cause social influence based on some
hypothesis or prior analysis. If a researcher wanted to test a seeding strategy based
on network position, a reasonable design would be to select a set of influential
candidate subjects [70] and treat a random fraction of them while reserving some
others as a control [cf. 28, 71].
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2.3.3 Interaction-Level Treatment Randomization

Treatments defined at the level of individual edges allow for further choices in
randomization. Because this design space is so large, we consider some notable
examples.

Historically, many examples of interaction-level treatments come from exper-
iments in the formation of random groups. Here the interaction network is set
in advance by the researcher or by some exogenous process. From a notational
standpoint, these designs amount to setting Wij = 1 for blocks of subjects to induce
variation in Aij and, in turn, the distribution of quantities such as the fraction of
adopting peers,

∑N
j=1 DjĀij . An important aspect of this type of randomization

is that the resulting groups must exhibit variance on Dj , the behavior of interest.
For the same reason that i.i.d. assignment in subject-level treatments may not cause
sufficient variation in peer exposures, large random groups are unlikely to be useful
for identifying causal effects [cf. 3]. As with subject-level treatments above, it may
be desirable to introduce overdispersion in group composition.

The random group assignment designs generally leverage existing group forma-
tion policies. In the case of [103], which exploits the fact that roommate assignments
at Dartmouth college are conditionally randomly assigned (directly setting Aij = 1
for the “is roommate” relation), we may even consider this a natural experiment.
On the other hand, Carrell et al. [37, 38] introduce novel group formation policies
for squadrons at the United States Air Force Academy; here squadrons are groups
of roughly 30 that cadets are required to spend the majority of their time with.
As a further refinement, random group formation can be performed dynamically
to allow for repeated measurements of the same individuals as they change social
contexts. Hasan and Koning [60] uses such a randomization to measure how group
interactions between entrepreneurs affect their ideation. Their approach allows them
to not only measure how changing groups affects their outcome of interest, but
allows for longitudinal measurements of individual outcomes as well.

Without leveraging existing group formation policies, researchers may be limited
to encouraging the formation edges that involve less prolonged contact. Several
experiments have randomly assigned subjects to different graph structures whether
in an artificial setting e.g., [69] or in the context of an online health-related
service [39]. Here the experiment is generally conceptualized at the level of entire
replications of a particular graph. Thus, the outcomes and analyses may be defined
and conducted in aggregate rather than at the individual level. One can think of
these designs as randomizing A directly and then observing some aggregate network
outcome, which is slightly more complex than the framework we propose here.

Other edge-level treatments are best understood as conditional on peer behaviors
and a pre-treatment network. These include what we have called mechanism exper-
imental designs, which work by randomizing whether a social signal is delivered
via particular channel. Mechanism designs [e.g., 7, 21, 31] are equipped to answer
counterfactuals about how peer behavior would be affected in the amplification or
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attenuation of the influence channel of interest.6 For example, in [20], the only
peers eligible for the experiment are those who have already liked a page on
Facebook (conditioning on Dj = 1) and the randomization (assigning Wij as a
Bernoulli random variable with perfect compliance for Aij ) determines whether
this behavior will be displayed when the focal user sees an ad. Aral and Walker
[7] uses another mechanism design in exploiting the fact that notifications in their
Facebook application are delivered to a random set of the user’s friends. If we
believe that these notifications are the only mechanism through which a Facebook
friend might adopt the application, this amounts to randomly amplifying values of
Aij for the friends who received the notifications, while leaving it un-amplified
for the remaining Facebook friends that were collected when the user installed the
application.

Edge-level randomizations need not be i.i.d. For instance, Bakshy et al. [20]
selects random subsets of edges involving the same subject. In the context of a
treatment that encourages providing feedback (likes and comments on Facebook,
in this case) along a specified directed edge, Eckles et al. [49] compare different
possible randomizations. One sender-clustered design would randomly assign
vertices to an encouragement to give all of their peers more feedback. Another
recipient-clustered design would randomly assign vertices to have all of their peers
encouraged to give them feedback This latter design is used in Eckles et al. [49], as
simulations suggest it will often have precision advantages. Finally, other designs
could, like some of the designs we considered in the previous section, interpolate
between i.i.d. assignment of edges and either of these clustered designs.

2.4 Outcome Measurement

Perhaps an underrated requirement of randomized experiments is the ability to
measure an outcome appropriate to the research question at hand. Sometimes
researchers invest more time and expense in intervening with their treatment than in
measuring the outcome. However, precise, valid, and complete measurement plays
a large role in the success of randomized experiments.

A simple example is that, if outcomes are measured with noise, the resulting esti-
mates will be less precise. Even more problematic are cases where some outcomes
are missing, either randomly or not. Coey and Bailey [42] shows that matching
ad exposures to conversions via cookies—where matching is random but plausibly
independent of treatment status—results in a substantial loss of experimental power.
Other experiments might rely on surveys or self-reports to measure outcomes, which
yields either a biased measurement (e.g., social desirability) or a treatment effect

6An additional refinement of the model we outline here is subjects may be connected via multiple
overlapping networks, such as in-person vs online interactions, and an experiment may cause
changes in some of those networks but not others.
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estimate for only a biased sub-population (survey takers). Berry and Taylor [30],
who studies social influence for comment quality in public discussions, can only
measure comment quality improvements for the set of subjects who choose to write
comments. Bond et al. [31] measures voter turnout by matching Facebook users to
people in the state voter files, which is a noisy process (match rates were about 40%)
that was limited to 13 states because of the expense of acquiring voter file data.

Digital field experiments present some opportunities and also limitations for
experimenters. Many important outcomes are potentially observable, such as clicks
on ads [20], sharing and production of user-generated content [21, 49], and
adoption of apps (both free and paid) [6, 24]. However, digital platforms create
comprehensive logs of digital behaviors, which are perhaps not the only behaviors
of theoretical interest. For instance, while [74] applies a reasonable text-analysis
procedure to measure people’s emotions at scale, it is debatable whether a change
in emotion is adequately captured by the text they choose to share on Facebook
[29]. The sheer volume of data produced on digital platforms is a signal of how
trivial the actions they collect can be. Despite dramatic advances in observability of
human behavior, it continues to be a central research challenge to measure important
outcomes and join them to experimentally assigned treatments.

3 Analyzing Randomized Experiments

One frequent consequence of having a well-designed randomized experiment is
that the data analysis is then straightforward. While this is true to some degree in
experiments about social influence in networks, estimation and inference can both
be complicated by the network. Causal and statistical inference in networks remains
an active research area, with contemporary contributions to basic problems such as
laws of large numbers and asymptotic inference in networks [12, 76, 116, 120].

In this section, we review methods for estimation and inference (e.g., hypothesis
testing) for social influence in network experiments. The known randomization of
subjects or edges to treatments provides a “reasoned basis” for inference [53, p. 14]
with minimal assumptions even when we only observe a network with a single giant
component. We thus focus on Fisherian randomization inference, but briefly review
other methods.

As with the experimental design, the primary goal in analysis is learning about
social influence. Ideally, this means learning about effects of Dj on Yi or of Aij on
Yi . It will often be more straightforward to simply detect any effects of Zj or Wij on
Yi . This is because (a) the experimenter sets these, but usually only affects Dj on Yi

indirectly and (b) in measuring Dj and Aij , we may not capture all of the ways that
our treatments can affect subjects. Thus, we can often take evidence about effects of
Zj or Wij as evidence of social influence, without being about to denominate these
effects in terms of peer behaviors. We start with this simpler case.
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3.1 Effects of Randomized Treatments

In this section, we consider how to conduct inference about effects of randomized
treatments. We start by considering inference about spillovers in experiments where
subjects are randomly assigned to subject-level treatments; that is, we are interested
in questions about whether subjects’ outcomes are affected by others’ treatments. If
we assume that others’ treatment only affect an individual through others’ behaviors
(Fig. 1), then these tests are also tests of social influence.

3.1.1 Testing Sharp Null Hypotheses About Spillovers

Consider the null model in which there is a direct effect of a subject’s own treatment,
but no effects of others’ treatments, including those of peers.

Hypothesis 1 (No Spillovers with Constant Direct Effects) There exists some τ

such that Yi(zi) = τzi + ξi for all z ∈ Z
N and i ∈ V .

Note that under this null hypothesis Yi − τZi does not vary under alternative
treatment assignments. This null hypothesis is a composite of null hypotheses of
the form:

Hypothesis 2 (No Spillovers with Constant Direct Effects, τ0) Yi(zi) = τ0zi +
ξi for all z ∈ Z

N and i ∈ V .

Hypothesis 2 is a sharp null hypothesis, which allows inferring all of a unit’s
potential outcomes from its single, observed potential outcome. We can thus use
Fisherian randomization inference, in which we exploit our knowledge of the
distribution of Z (which we or the experimenter chose), to test this null hypothesis.
This is often implemented as a permutation test with a test statistic chosen to be
sensitive to the kinds of deviations from the null that we expect. For example,
consider a larger model that includes a linear effect of the fraction of treated peers:

Yi = τZi + ρ

N∑

j=1

Zj Āij + ξi (1)

where Āij is an entry in the row normalized adjacency matrix. A non-zero ρ would
correspond to a particular violation of Hypothesis 1. The score statistic for ρ can be
used as a test statistic [16], as can many other test statistics.

Algorithm 1 tests Hypothesis 2 using Fisherian randomization inference. To test
Hypothesis 1, researchers would generally test many particular values of τ (e.g., in
a grid, or through a search algorithm) and take the supremum.
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Algorithm 1 (Randomization Inference for Hypothesis 2) Inputs: test statistic
T (·, ·) : Y

N × {0, 1}N that is a function of units’ residual outcomes and the
treatment vector; posited direct effect τ0.

1. Compute residual outcomes given τ0, Ỹ := Y − τ0Z.
2. For every r ∈ {1, ..., R} and some τ0:

a. Draw a new treatment vector Z∗ consistent with the original randomization.
b. Compute value of test statistic with observed outcomes and permuted treat-

ment Tnull,r := T (Ỹ , Z∗).

3. Compare observed and null test statistics, yielding

̂p − value(τ0) = 1

R

R∑

r=1

1{T (Ỹ , Z) > Tnull,r}.

We would then reject Hypothesis 2 for small p-values, instead concluding
subjects are affected by others’ treatments.

Remark 1 (Randomization Inference and Permutation Tests) While randomization
inference frequently makes use of permutation tests, the two are not identical. Fish-
erian randomization inference makes use of knowledge about the exact distribution
of variables that were randomized to conduct exact causal inference for a finite
population of units. Often (e.g., with a single completely randomized treatment
vector) this can be approximated to arbitrary precision through permutation of
the treatment vector, but need not be if the distribution over treatments is more
complicated. Furthermore, permutation tests of social influence are often used
without the justification they are afforded by randomization; that is, they are often
used when other assumptions would be needed to make them exact in finite samples
or even good asymptotic approximations. For example, Anagnostopoulos et al. [1]
make additional, strong assumptions about non-influence processes to justify the
use of a permutation test to detect influence in observational data.

Even in the case of randomized experiments, particular permutation tests may not
be readily justified by the randomization. Without explicitly considering the relevant
sharp null hypothesis, it can be easy to make mistakes that make the resulting
permutation test invalid. For example, Bond et al. [31] test for spillovers from a
randomly assigned encouragement to vote in the 2010 U.S. elections. This was
implemented as a permutation test that implicitly assumed the absence of direct
effects, even though Bond et al. [31] elsewhere rejected that null hypothesis. Athey
et al. [16] show that such tests can have dramatically inflated Type I error rates (i.e.,
they too often reject the null hypothesis when it is true).
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3.1.2 Inference for the Magnitude of Spillovers

Say we use Algorithm 1 and reject Hypothesis 1. We may further wish to quantify
the magnitude of these spillovers from treatment. These methods can also be used to
construct acceptance regions for more complex positive hypotheses about the size
of spillovers in the network. To do this, we can use a similar test but with Eq. (1)
specifying a sharp null hypothesis given a choice of τ and ρ. We can, for example,
use a test statistic that measures model fit (e.g., sum of squared residuals) [34] and
determine a region of τ and ρ values that we do not reject (i.e., an acceptance
region). With only these two parameters, grid search is often feasible, but other
search algorithms can be used. For more on this topic, see Bowers et al. [33, 34].

The preceding methods require testing a sharp null hypothesis or a composite null
consisting of a parametrically defined set of sharp nulls. In particular, we imposed
the constant effects assumption that the direct effect of the treatment τ was common
to all units. If direct effects are heterogeneous, these tests could reject the null even
when there are no spillover effects of treatment. To partially address this concern,
we could expand the null model to allow effects to be heterogeneous by observed
subject covariates Xi ; however, this would not allow for latent heterogeneity in
direct effects. Outside the context of networks, we might be confident that, at
least asymptotically, good choices of test statistics would result in tests that are
not asymptotically sensitive to this heterogeneity [41]; however, we lack such
asymptotic results for networks. In the next sections, we consider alternative
methods that do not make use of these homogeneity assumptions. Nonetheless, the
preceding methods may have some advantages in practice (e.g., greater power).

3.1.3 Conditional Randomization Inference in Networks

How can we use randomization inference to test for spillovers without specifying
the form of direct effects? Consider a null hypothesis of no spillovers in the absence
of assumptions about constant direct effects of treatment.

Hypothesis 3 (No Spillovers) Yi(z) = Yi(z
′) for all i ∈ V , and all pairs of

assignment vectors z, z′ ∈ {0, 1}N such that zi = z′
i .

This hypothesis is not sharp because it does not specify how each subject would
have behaved if its treatment were different. Rather, it posits levels sets of Yi(·). It is
possible to test such non-sharp null hypotheses by using conditional randomization
inference—that is, by conditioning on functions of the treatment vector Z [11, 16,
100].

Here consider the basic case of testing Hypothesis 3. In particular, we can
designate a subset of subjects as focal subjects for which we examine their
outcomes and condition on their observed treatment assignment [11, 16]. Note that,
conditional on the focal subjects receiving the same treatment, Hypothesis 3 is now
sharp for those subjects. We can implement this test as follows.
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Algorithm 2 (Conditional Randomization Inference for Hypothesis 2) Inputs:
set of focal units VF ∈ V , test statistic T (·, ·) : Y|VF | × {0, 1}N that is a function of
focal units’ outcomes and the treatment vector.

1. Draw permuted treatment vector Z∗ such that all focal units get the same
treatment as observed, Z∗

i = Zi for all i ∈ VF

2. Compute value of test statistic with observed outcomes and permuted treatment
T (YVF

, Z∗)
3. Repeat 1 and 2 for R times, storing results as the R-vector Tnull.
4. Compare observed and null test statistics, yielding

p − value = 1

R

R∑

r=1

1{T (YVF
, Z) > Tnull,r }.

We would then reject Hypothesis 3, and thus the stronger Hypothesis 1, for small
values of this p-value. This test has the correct Type I error rate without any
assumptions about the model for direct effects.

How should the focal subjects be selected? Any choice is valid (i.e. results in
correct Type I error rates), but this choice can affect power. First, in some cases, this
choice may be obvious because of the availability of outcome data. For example,
when joining treatment and network data with a second data set with outcomes, a
researcher may only observe outcomes for a small fraction of subjects, which could
then be designated the focal subjects e.g., [67]. Second, theory or prior observations
may suggest that some subject may not respond to social influence; it may be
desirable to not include them as focal units. Finally, the network itself can be used
to select focal subjects to improve power [16, 26].

It is possible to apply similar approaches to testing for higher-order spillovers,
testing for spillovers on a second network, and other hypotheses about spillovers.
When the null hypothesis allows for, e.g., spillovers from immediate neighbors on a
relatively dense network, these methods may lack sufficient power to be useful. We
refer readers to Athey et al. [16] for details.

3.1.4 Extension to Edge-Level Treatments

We have focused on the case where subjects, rather than edges, are assigned to
treatments; however, similar methods can be used when edges are assigned as long
as either (a) a sharp null hypothesis can be posited or (b) a non-sharp null hypothesis
implies level sets that can be conditioned on.
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3.2 Estimating Effects of Peer Behaviors

Thus far we have described inference about effects of other subjects’ randomly
assigned treatments, while often the substantive questions are about effects of other
subjects’ behaviors (i.e. social influence). As noted above, if we assume that a
subject’s outcome is only affected by a peers’ treatments via their behaviors, then
evidence for spillovers from treatment is evidence for social influence. However, we
are often interested in quantifying the size of this social influence by, e.g., estimating
effects of Dj or Aij on Yi .

We can proceed as before by considering the following sharp null hypothesis,
which specifies how a subject’s outcomes vary with its own treatment and peers’
behaviors.

Hypothesis 4 (Constant Direct Effects and Social Influence, (τ0, θ0))

Yi(z, d) = τ0zi + θ0

N∑

j=1

dj Āij + ξi, (2)

for all z ∈ {0, 1}N , d ∈ D
N , and i ∈ v.

According to Hypothesis 4, subjects are unaffected by others’ treatments except
as reflected in their neighbors behaviors Dj . This is a complete mediation assump-
tion or exclusion restriction and is encoded in Fig. 1. Combined with Z having
been randomized, this is sufficient for function of Z to be used as instrumental
variables for social influence. Following Imbens and Rosenbaum [63], we can then
test Hypothesis 4 by noting that it implies that Yi(z, d) − τ0zi − θ0

∑N
j=1 dj Āij

is invariant in z, and thus that Algorithm 1 can be applied with this alternative
residualization of the outcomes.

3.3 Other Methods of Analysis

There are some other methods available for statistical inference about spillovers and
social influence with randomized experiments. Under monotonicity assumptions
(i.e., that treating more subjects can only increase all subjects’ potential outcomes)
and with bounded outcomes, it is possible to construct confidence intervals for
effects attributable to the observed treatment assignment [40]. Or under local inter-
ference assumptions (i.e., subjects are only affected by immediate peers’ treatments)
and bounded degree, it is possible to do conservative asymptotic inference [12, 120].

In some cases the presence of replication is helpful by allowing for plausible
independence assumptions. First, there may be observation of multiple plausibly
independent behaviors on a single network. For example, Bakshy et al. [20]
randomizes a mechanism of social influence for many different subjects and brands.



314 S. J. Taylor and D. Eckles

In their estimation and statistical inference, they assume that outcomes that do not
have a common subject or brand are independent. They then use statistical methods
that account for dependence of observations within brands and users [19, 36, 92].
Ignoring or not properly accounting for dependence in analyzing such experiments
would increase the type I error rate.

Second, some networks consist of multiple sizable connected components (e.g.,
villages, schools), rather than a single giant component. However, often the lack
of edges between components is an artifact of how the network is measured.
For example, Kim et al. [71] measure kinship and friendship relationship among
rural villagers in Honduras, but edges between villages are not measured. On
the other hand, Cai et al. [35] measure inter-village edges, but nonetheless only
allow for within-village dependence when conducting statistical inference. Thus,
independence remains a potentially strong assumption.

4 Interpretation and Additional Analyses

The simplest possible randomized experiment with a binary treatment (i.e., an
“A/B test”) could be used to estimate as little as a single causal parameter of
interest—the average treatment effect. In many cases researchers have found that
this is an unsatisfying conclusion to a study, especially given the costs of designing,
planning, and implementing7 randomized field experiments. Therefore it is common
for empirical researchers to conduct more extensive analysis of experimental data
or to use it as input to models or simulations. We have found that the results of field
experiments, though exhibiting high internal and external validity, often motivate
deeper questions about the underlying mechanism and alternative counterfactual
questions that can be explored through modeling or simulation.

In Sect. 3, we made assumptions about the structure of social influence and
specified models or inferential procedures to detect or estimate it. In most of
these experiments we are more interested in how the effect scales with number or
proportion of friends who engage in a particular behavior. But beyond estimation
of that response curve, there are two other broad types of questions that can be
answered by experiments.

The first is treatment effect heterogeneity—the subpopulations of products,
people, or social connections where social influence is stronger or weaker. By fitting
more complex models researchers can estimate heterogeneous treatment effects and
these estimates can help suggest causal mechanisms or guide design of marketing
efforts or public policies, analogous to finding predictors of positive response to
clinical treatments in medicine.

7One should realistically add to this list of costs, the expected cost of failure. Researchers have
not always succeeded in salvaging scientific knowledge from experiments and complexity of field
experiments is associated with greater risk of unexpected problems.
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The second is understanding optimal policies by simulating alternative policies.
Policy simulations can be used to extrapolate the results of randomized experiments
to alternative policies which were never directly tested. They are most commonly
used by economists who have a rich history of using structural8 models in order to
measure the effects of potential policy changes.

4.1 Heterogeneous Treatment Effects

One obvious type of effect heterogeneity is what clinical researchers might call
a dose-response function, which characterizes how effects tend to scale as the
number of friends who are influencing the person varies [46]. Bakshy et al. [20]
looks at a slightly different dose-response function: when an influential social
cue from a single peer is present, how does the effect size vary with the tie-
strength of that individual? This heterogeneity is important to understand because
it can inform advertising strategies. For instance, knowing that close friends are far
more influential than random friends, we might design a marketing campaign to
encourage people to share with a small number of select friends rather than many of
them.

Another common analysis is measuring how influence may be moderated by the
demographic characteristics of the pair of people involved. For instance, Aral and
Walker [7] observes pairwise demographic attributes of the message sender and
recipient and uses this information to measure how the relative effectiveness of viral
messages (Facebook notifications generated by app usage) varies as a means of
identifying more influential or susceptible members of social networks.

It is completely plausible that the average treatment effect can be zero, yet
obscure significant positive and negative treatment effects for many large subgroups
that happen to cancel out. Taylor et al. [115] shows that the presence of some
people’s identity cues causes their content to receive higher and lower ratings than
when their content is rendered anonymously. A distribution of effects that contains
both positive and negative values is plausible in many social environments with
fixed resources, such as status, reputation, or attention.

In all of the three aforementioned papers in this section, we would like to
point out the effect heterogeneity does represent a “free” causal estimand. If the
experiment is designed to measure the ATE (the average treatment effect over the
population), the effect heterogeneity we measure is simply an association between
certain subgroups of the experiment and differential effects. Researchers cannot
make the claim that an intervention designed to move a subject from one subgroup
to another would change their treatment effect. For instance in Taylor et al. [115],
the experiment tests the effects of anonymization of a commenter’s identity on

8Here we mean structural in the sense of imposing economic “structure,” meaning that assumptions
about human behavior derived from theory are imposed in the models.
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ratings, but is unable to answer questions about what rating a person’s content would
receive if she had some alternate identity. This type of counterfactual question is
precisely the type of treatment effect heterogeneity that would drive policy decisions
in the social advertising space. Such a finding can only be measured by a more
complicated experiment which randomizes which identity is presented among some
set of choices—a much more difficult experiment to design and implement.

We end this section with a note of warning about seeking results based on treat-
ment effect heterogeneity. As researchers search dimensions by which treatment
effects may exhibit differential effects, they may increase the rate of false discovery.
Independently testing many heterogeneity on many possible dimensions, or for
many subgroups of the experiment will invariably result in false positive results as
one of the subgroups may be “lucky.”9 There are reasonable methods to control this
risk while still detecting interesting heterogeneity, see [14] for a detailed discussion
and recent methodological development.

4.2 Policy Simulations

Given the obvious importance of experiments for effective policy decisions, it is
natural to ask for a policy recommendation at the conclusion of a study based on a
randomized experiment. Often a policy recommendation is not directly recoverable
from causal quantities of interest. For instance, the average treatment effect (ATE)
might tell you that the treatment has a positive effect on some outcome on average,
but it does not necessarily follow that everyone should receive the treatment.
Treatments have costs which might need to be weighed and nature of social
spillovers means that treating a friend of an individual can be a substitute or a
complement for treating that individual directly.

Ryan and Tucker [102] reports policy simulations, employing models containing
economic structure based on assumptions about individual behavior in the presence
of peer effects [59]. The key idea behind the policy simulation approach is that the
experiment is used to estimate parameters of the model and then the model can
be used to extrapolate the findings to more complex or interesting policies than
those randomly set in the original data set. Policy simulations are often used in
conjunction with natural experiment, where the researcher did not ex ante decide the
most informative randomization and would like to answer some additional questions
at the cost of imposing additional assumptions through a model.

Another example of reporting policy simulations is Aral et al. [10], which applies
experimental estimates from an experiment [7] to form the basis of an optimal
seeding strategy in networks. As a key feature, their experiment estimated the degree
to which influence and susceptibility to influence were clustered in the network,
which is an important feature for understanding diffusion processes.

9See for example: https://xkcd.com/882/.

https://xkcd.com/882/
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5 Conclusion

We believe that credible causal inference is an important goal in the practice of
social science. There is obvious utility in knowing causal structure—good policy
decisions require that the policy-maker at least know the sign of a causal effect. But
also from a purely scientific perspective, measurements which do not have causal
interpretation lack usefulness and insight because they afford multiple explanations.
Correlations are interesting, but they usually cannot uniquely identify an explanation
for a social phenomenon.

We admit there is perhaps a bit of experimental dogma present in the social
sciences and it is often possible to satisfyingly answer questions through some
combination of reasonable assumptions, models, and observational data. However,
the realm of social influence is one where alternative explanations are difficult to rule
out without some exogenous variation which can identify causal effects [50]. Manzi
[79] refers to this problematic aspect of human behavior as “high causal density.” In
domains of high causal density, where there are highly dense causal graphs that can
explain the observed associations in data we collect, credible causal claims often
require randomization, either by the researcher or by nature.
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The Rippling Effect of Social Influence
via Phone Communication Network

Yan Leng, Xiaowen Dong, Esteban Moro, and Alex ‘Sandy’ Pentland

1 Introduction

We live in a connected world and are increasingly closer to each other thanks to
the emerging information technologies. While the “small-world” phenomenon and
the “six degrees of separation” have been traditionally studied by Milgram [14] and
Watts [24], a recent research suggests that the average degree of separation between
two members of the online social network Facebook is reduced to around 4.74
[5]. Furthermore, individuals are not merely connected; as a series of experiments
in various domains such as obesity, happiness, cooperation, and political opinions
has demonstrated, connectivity also indicates behavioral similarities of up to three
degrees of separation [7, 25].

The recent availability of large-scale communication and networked data, such
as emails, mobile phone records, and online social media activities, enables the
studies of information diffusion and correlations of adoption behaviors as well
as social contagion processes at an unprecedented scale [8, 15, 17]. In particular,
the understanding of the phenomenon of and the mechanism that drives the social
contagion process help promote behavioral change in domains such as commerce,
public health, politics, and social mobilization at both local and global scales
[3, 6, 9, 23]. As examples, Aral et al. [4] focused on the diffusion of the adoptions
of mobile service application using a social network connected by instant message
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traffic [2]. Ugander et al. [23] found that the decision to join Facebook varies
with the number of distinct social groups their friends occupy. Bond et al. [6]
conducted a 61-million-person experiment on Facebook and found that strong ties
are instrumental for spreading political behavior through online social network.
Often, the connectivity and structure of the social network play a role in the
effectiveness of social contagion. For instance, both Onnela et al. [17] and Ugander
et al. [23] emphasized the importance of network structure in information spreading
and product adoption [26].

However, most of the previous works focus on online social networks, and
measure influence between direct contacts concerning either long-term habits or
low-cost decision-making in virtual space (such as online product adoption). In
this study, we are interested in investigating how social influence propagates
over a large-scale offline communication network, and how it manifests in short-
time decision-making and social mobilization that are more costly than merely
information diffusion or online production adoption.

We use a data set of mobile phone records with high resolution in Andorra for
our analysis. We construct a large-scale communication network and mirror the
contagion process of social influence, whose effect is measured by the change in
the likelihood of attending a large-scale international cultural event in the capital
city. In order to control for the selection bias caused by homophily and identify
the causal effect of social influence, we utilize a matching method to mimic the
procedure of random assignment of treatments [3, 11]. One novel aspect of our
study is to condition matchings on revealed preferences, i.e., historical visitation
patterns, instead of the traditionally considered demographics. Rather surprisingly,
our results show that influence decays across social distance from initial attendees,
but persists up to six degrees of separation, similarly to the physical phenomenon
of ripples expanding across the water. Meanwhile, the patterns of communication,
such as intensity and the timeliness of communication, also impact the strength of
social influence, but to a lesser degree. Finally, we analyze the heterogeneous effects
of social influence on the population, and observe that the effect is stronger on the
geographically explorative subgroup of population.

2 Data and Method

Mobile phone logs have been used in various studies as a proxy for human mobility
and social interactions at a societal scale [8, 21]. We leverage the detailed tracking
and wide coverage of mobile phone logs in the country of Andorra to study how the
likelihood of an individual attending a local Cirque Du Soleil performance, which
was held repetitively in July, 2016, is affected if someone in his social circle receives
phone calls directly or indirectly from past attendees of the event.

We introduce three key definitions in our study. First, we assume that people
who were connected to a cell tower nearby the performance venue, as shown in
the left panel of Fig. 1, during the performance hours (±30 min as buffer time)
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Fig. 1 Illustration of attendee, influence cascade and hop

attended the events and are labeled as attendees. Next, we construct influence
cascade, as shown in the right panel of Fig. 1, by adding links between the caller
and receiver if: (1) at least one of them is linked directly or indirectly with the
attendees by the time the call was initiated; (2) the calls took place within 24 h after
the performance started. Finally, we use hop to capture the shortest social distance
to any attendee via the influence cascade. Overall, we observed 16,043 attendees
across the one-month observational period. Among others, the influence cascade
covers 161,857 individuals. And another 71,337 population are disconnected to the
influence cascade.

In order to quantify the effect of social influence in people’s decision-making,
the key challenge is to control for the upward estimation bias caused by homophily.
We use matched sample estimation to mimic the assignment of treatment as in
a randomized experiment, rather than regression analysis which only establishes
correlations [3, 10, 11]. More specifically, for the influence cascade constructed for
each day, we consider a treatment group in which individuals are of certain social
distance from the attendees (we use treatment group on hop h to represent people
that are h-degree of separation from the closest attendee), and a control group in
which individuals are not connected to any attendee on that day. Individuals in
treatment and control groups are matched to control group on a one-to-one basis
based on their mobility patterns, which we will further explain in more detail in
later section.

Before establishing causal studies, we first analyze the distribution of social
distances of individuals to the attendees. As shown in Fig. 2, a large mass of
population are three and four degrees of separation from the attendees. Moreover,
we analyze the predictive power of the degree of separation from the attendees
for attendance rate. We compare the attendance ratio between treatment group on
hop h and control group. The larger-than-one ratio comes from a mixed effects of
homophily, social influence and other confounding variables. The right panel of
Fig. 2 shows the ratio between the likelihood of attending the social event of people
on hop h and those who receive no treatment. As we see, direct contacts of the
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Fig. 2 Distribution of social distances of individuals to the attendees (left) and the attendance ratio
between treatment group on hop h and control group (right)

attendees are five times more likely to attend the performance than individuals who
do not receive treatment. Meanwhile, individuals on hop six are 2.5 times more
likely to attend the events than individuals receiving no treatment. The average
decreasing trend of the likelihood indicates that the degree of separation from
the attendees is an important factor in studying the likelihood of attending the
performance. However, this correlation does not indicate causality, the latter of
which is the main focus of our study.

2.1 Controlling for Homophily

It is widely argued that the adoption behavior in the social network (the decision
of attending the event in our case) is a mixture of similarities over friends and
contagion driven by social influence [3, 6, 22]. Similarities among peers may
cause the over-estimation of social influence [3]. Therefore, we need to balance
the distribution of similarities across individuals in the influence cascades and
isolate the causal effect of word-of-mouth influence through phone calls in our
observational study.

Empowered by the longitudinal and detailed mobility tracking via Call Detail
Records, we use behavioral patterns to characterize individuals instead of the widely
applied method of demographic characterization [3, 6]. The power of behavioral
characterization as a control for homophily is that behavior reveals preferences
regarding the same type activities that we are observing and treating [13], which
is exactly what we want to control for. Specifically in our case, activities performed
during their leisure time, the revealed visitation preferences, are captured via cell
tower visitation frequencies over the weekend for the past 6 months [12]. As shown
in Fig. 3, the left panel represents an individual who spends most of the weekends
in the crowded shopping districts while the right panel stands for an individual with
a diversified activity patterns.
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Fig. 3 Two examples of historical mobility patterns during the weekends for the past 6 months

2.2 Matching

As stated before, we use matched sample estimation to yield the estimates of social
influence by conditioning matches on mobility frequency vectors. The matching
results establish an upper bound to which extent social influence, rather than
homophily, explains the attendance behavior1 [3].

We segment individuals into two groups, the treatment group and the control
group, based on whether they receive influence related to the event or not. Treatment
groups are further split into eight subgroups according to the hop index. The control
group consists of individuals who are disconnected to the influence cascades. Each
individual in the treatment group is paired with another individual in the control
group that is most similar in terms of preferences approximated by mobility patterns.
By such a matching, we ensure that the main difference between the two individuals
paired together is whether or not one receives the treatment of social influence [20].
The matchings depend on nearest Mahalanobis distance calculated as:

md(Xj ,Xk) = [(Xj − Xk)
T S−1(Xj − Xk)]1/2, (1)

where Xj and Xk are the covariate vectors (mobility frequency vectors) for
individual j and individual k, and S is the sample covariance matrix for the mobility
frequency matrix X.

We perform Principal Component Analysis on X to reduce the correlations
of the visitation patterns among nearby cell towers and to reduce the number
of variables used in matching. Dimension reduction is important in Mahalanobis
Distance Matching, which works better in balancing fewer covariates [11].

1Unobserved confounding variables are difficult to control for by using matching-based methods.
To partly address the issue that tourists may travel together and social links may not pass social
influence, we remove individual pairs who are potentially on the same trip to Andorra. This can be
inferred based on whether individuals stay at the same hotel at the same night.
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In our setting, the difference in the attendance rate of the two groups is the
average treatment effect of social influence:

ATEh = E(Yih − Yic), (2)

where ATEh is the average treatment effect of treatment group on hop h, Yih is the
outcome for matched pair i in treatment group h, and Yic is the outcome for matched
pair i in control group.

3 Results

In this section, we first investigate the effect of social influence after distinguishing
it from homophily using Mahalanobis Distance Matching. To evaluate the inflation
bias caused by homophily, we compare our results with random matching, where
we do not control for homophilous behavior and pair individuals randomly.
Furthermore, we quantify both external and internal factors that affect the strength of
social influence, namely, the patterns of the communications and the characteristics
of the individuals.

3.1 The Decay of Influence over Social Distance from Attendee

After distinguishing homophily and social influence, we are able to estimate the
treatment effect of social influence on the likelihood of attendance. In Fig. 4, the
blue-dashed line shows the average treatment effect of social influence (as in y-axis)
across hops (as in x-axis). The positive treatment effects—the increasing likelihood
of attending a future performance—indicate that social influence promotes the
likelihood of attending the performance. More importantly, we discover a “ripple
effect” of social influence over communication network: originating from the
attendees and expanding across information cascade. In particular, this effect
decays across social distances from the attendees and persists up to six degrees of
separation. The average treatment effect of social influence is 11% on the first hop
and drops dramatically to a half at the second hop. Starting from the third hop, the
treatment effects decay slowly and persist until the sixth hops.

The difference between the red-dashed line and the blue-dashed line in Fig. 4
shows the overestimation of social influence without controlling for homophily. In
particular, with random matching, we overestimate the effect of social influence by
around 100%, which is similar to the findings in a previous study by Aral (2009) on
the adoption of an online application [4].

Furthermore, we use “random shuffling” proposed by Anagnostopoulos [1] to
exclude the concern that other mechanical reasons might cause the decay pattern in
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Fig. 4 Average treatment effect of social influence via communication network

social network. We first randomly assign people to control and treatment group, as
well as the hop index if assigned to treatment group, and then measure the average
treatment effect with Mahalanobis Distance Matching. The average treatment effect
as well as the decay pattern disappear.

In order for the estimation of treatment effects from matching results to be robust,
the assignment of treatment, conditional on the Mahalanobis distance, need to be
as good as randomly assigned. In other words, the covariates are required to be
balanced between matched pairs in treatment and control groups. Therefore, we use
standardized mean differences (SMD) to evaluate whether the covariates in the two
groups demonstrate sufficient overlap [16]. SMD is calculated as the difference of
means in units of pooled standard deviation as follows:

SMD = xl,h − xl,c√(
s2
l,h + s2

l,c

)
/2

, (3)

where xl,h and xl,c are the means of covariate xl for treatment group h and control
group, respectively, and si,h and si,c are the standard deviation of covariate xl for
treatment group h and control group, respectively. We run the covariates balanced
test and show that all of the SMDs are far below 0.1, which rejects the hypothesis
that they have insufficient overlap.
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Fig. 5 Average treatment effect of social influence with respect to intensity of communications.
Different colors shown in the legend represent different hop indexes as labeled

3.2 Communication Patterns

In this section, we test the hypothesis that social influence and contagion process
on the social network may vary according to the communication patterns. As shown
in Fig. 5, more intense communications between two individuals indicates a larger
treatment effect for the first three hops and stay constant afterwards. In terms of
the timeliness of communication, we show in Fig. 6 that the treatment effects are
significantly stronger if the calls are made immediately after the event. Similarly to
intensity, this only holds up to hop three. These two empirical exercises indicate that
communication patterns exert quantifiable and discernible effects on the strength of
social influence up to three degrees of separation.

4 Discussion

In this study, we illustrate the application of a matching strategy in a large-
population study to identify the effect of social influence. A novel aspect of our
study is the use of matched samples as determined by previously observed behavior
instead of those obtained by Randomized Control Trails (RCTs), which seems
potentially quite useful in many large-scale studies. By analyzing the pattern of
attendance of an international cultural event in Andorra using large-scale mobile
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Fig. 6 Average treatment effect of social influence with respect to timeliness of communication.
Different colors shown in the legend stand for different hop indexes as labeled in the legend

phone data, we quantify how our decision-makings are influenced by, and how the
social network propagates our influence to, people that are several degrees away
from us in the communication network with matched and balanced samples.

Our results reveal the subtle and often invisible effect of social influence on
decision-making via phone communication network, which, surprisingly, persists
up to six degrees of separation. This is analogous to the physical phenomenon of
ripples expanding across the water, which highlights the hidden relationship and
connections among people in the society. More interestingly, we show that such
effect is significantly larger when phone communication took place immediately
after the event and lasted longer, and when those receiving calls are more explorative
geographically as indicated by a more diverse mobility pattern.

The ripple effect via phone communications demonstrated through our study
has far-reaching implications in domains such as viral marketing, public health,
and social mobilization. Recent works have demonstrated the success of social
mobilization via Internet-based services [18], but also shown that such mechanisms
are not without limitations [19]. Our findings suggest that an alternative would
be to exploit the hidden and often overlooked influence between people that are
caused by chains of offline communication. The same strategy may also be applied
into marketing or political campaigns. Our results on the impact of communication
pattern and mobility pattern of individuals on the strength of influence can also help
design more effective strategies to maximize social influence.

Our work also opens new possibilities in understanding social influence and
contagion, in terms of both mathematical modeling and experiment-based studies.



332 Y. Leng et al.

In the context of networks, threshold-based contagion models and epidemic models
have largely explored the direct interaction between neighboring nodes in the
network, where the behavior of a given node is dependent on its interactions with
neighboring nodes. Hidden interactions across several degrees of separation could
be naturally incorporated into such models. For example, we could systematically
model the treatment effect and the adoption behavior of a given node as a function of
degrees of separation, as well as other network characteristics. With better models
on contagion processes, we could perform counter-factual simulations over different
intervention strategies to incentivize key individuals and maximize social influence
for behavioral change.

It is worth noting that our study also has certain limitations. First, given that we
do not have the actual records for attendance of the event, we consider people who
had phone activities at cell towers close to the venue as attendees. This strategy
might, therefore, have included people who just passed by the venue without
actually attending the event. Second, due to the lack of demographic information,
we approximate homophily in a social network by looking at the mobility history of
individuals. While it is reasonable to assume that mobility patterns reflect to some
extent characteristics and interests of different people, it may also make people with
different demographics much more similar. Third, in the current framework, we
define social distance as the length of the shortest path between an individual and the
attendees, thus effectively considering only this “strongest treatment” in estimating
the treatment effect. There might be a multiplicative effect in the case of more than
one communication path (hence the possibility of multiple treatments), which may
require slightly more complex modeling of influence. We leave such analysis for
future work.
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Network Experiments Through
Academic-Industry Collaboration

Robert M. Bond, Christopher J. Fariss, Jason J. Jones, and Jaime E. Settle

1 Introduction

The study of social contagion and the spread of behaviors across social networks
is a vibrant and dynamic field of scientific inquiry.1 Massive scale datasets that are
collected unobtrusively (i.e., without users noticing they are being observed) and in
real time are being compiled by a large number of private companies and open up
new insights into social contagion and the spread of different behaviors (e.g., [7, 15,
16, 55]). The use of services that collect such data, such as social media websites,
is now so commonplace that there is very little debate about the generalizability
from studies conducted on samples drawn from Facebook or other social networking
platforms.

1The examples from this literature utilize both observational and experimental research designs
but are too numerous to cite completely. Prominent examples from this literature include [2, 8, 9,
12, 16, 21–29, 36–38, 42, 44, 45, 52, 54, 55, 58–60, 62, 63], among many others.
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Unfortunately, the advance of scientific knowledge has had difficulty keeping
pace with the rapid development of new forms of behavior on these platforms.
Social networking site companies like Facebook and Twitter strive to optimize
their interfaces for user interaction and the flow of information, resulting in a near
constant evolution of the particular affordances of a given site. Social scientists
struggle to keep up: as the features on the site are developed, new forms of social
behavior arise. What we might infer about users’ offline behavior and attitudes
is in flux as the form of the online data and users’ online behavior co-evolve.
The challenge is not only to theorize the etiology and consequences of these
behaviors, but also to derive measures of theoretically important behaviors and
attitudes through them while also keeping in mind the processes that give rise to
the behaviors.

Herein lies the chief obstacle in this vein of research: the difficulty in developing
a robust and rigorous science of social contagion in online environments, as well as
the relationship between online and offline social behaviors, is the accessibility of
the massive social network data itself. Why? Because massive online social media
and behavioral data are not publicly available and only a handful of researchers
have access to it. Over the last few years, the private companies that collect and
store these data are placing increasingly stringent limitations over access and use.
Moreover, the types of research questions that these gatekeepers are comfortable
publicly addressing has changed as these for-profit companies face public criticism
for their participation in some of the more controversial online experimental studies
(e.g., [43]) that have been published to date (for additional commentary about this
controversy, see [40, 48]). Perhaps due to the negative backlash against these studies,
experimental research conducted internally is frequently no longer being publicly
discussed by the research teams working with these companies.

This “behind closed door” mentality is not only a loss for the scientific com-
munity, but it also raises ethical concerns about the production of knowledge itself.
The research at these firms goes on, but it often does not enter the public domain,
adhere to the standards of university institutional review boards, or participate in a
transparent and replicable peer review process.

We argue that instead, companies should embrace the opportunities for innova-
tive massive scale behavioral research and that researchers should work together
to make inroads with the owners and curators of existing massive scale databases.
These types of collaborations offer opportunities that are mutually beneficial.
Scholars gain access to large samples with collections of data that otherwise would
be impossible to efficiently collect. Companies gain access to the expertise of
scholars who are at the forefront of cutting-edge methodological and theoretical
research. By working together, companies and academics have the potential to
advance our scientific understanding of our complex world and answer questions
that are pertinent to the company’s goals. This is the promise of big data.

In this essay, we describe some experimental research that we successfully
developed, implemented, and publicly disseminated with the Data Science Team
at Facebook. Our relationship with this team was highly productive and positive
over a 6-year period beginning in the summer of 2010, just a few months prior
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to the 2010 U.S. midterm elections. Since that time, we along with many other
social scientists working at the University of California, San Diego, have published
a number of important observational and experimental studies based on this
academic-industry collaboration (e.g., [7–9, 15, 26, 27, 36–38, 55]). We hope that
what was a positive experience for us might, in the future, again serve as a model for
future collaborations with for-profit companies that house massive scale behavioral
data like Facebook. These data are important for uncovering countless patterns of
social contagion and the spread of behaviors. They help us understand the world
and, hopefully, contribute to making it better.

We make three contributions with this essay. First, we describe several exper-
imental designs that we successfully implemented in partnership with the Data
Science Team at Facebook. We hope these designs spur innovative new ideas for
other experimental research designs and serve as a focal point for members of data
science and analytics teams at other firms collecting massive scale data, of which the
number is growing quickly. Second, we describe several design considerations that
future research should take into account. These considerations should help improve
on existing research by expanding the ability to put forth testable extensions based
on the current state of knowledge. Third, we offer concrete suggestions based on
our experience collaborating with for-profit companies. Academic-industry collab-
orations are essential for fulfilling the promise of understanding social contagion
and the spread of behaviors across social networks.

2 The Experiments

2.1 The 2010 Get-Out-the-Vote Experiment

In the summer of 2010, we were fortunate to start what was to become a long-term
and productive research collaboration with the Data Science Team at Facebook.
The first major study to emerge from this collaboration was an experiment that was
conducted during the 2010 U.S. midterm elections. Our collaborative team based
at UCSD and Facebook designed and implemented a get-out-the-vote (GOTV)
experiment on the Facebook website [8]. The experiment was intended to test
whether a message delivered through Facebook could increase voter participation in
the election. Further, as we describe below, the design of the experiment enabled us
to test whether such a message would spillover from friend to friend to friend. This
experiment permitted tests of a number of hypotheses about how social networks
function and how interactions in online media impact our offline political behaviors.

Previous work in political science had shown that while many types of GOTV
messages are effective at increasing turnout [3, 32, 33, 50], electronic messages had
been shown to be much less effective [49] though text messaging was effective in
one study [18]. Understanding if and how electronic messages may be effective for
increasing turnout is important both for practitioners seeking to influence election
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outcomes and social scientists interested in understanding social contagion. For
practitioners, understanding if and when electronic messaging may be effective at
increasing voter turnout is particularly important because electronic messaging is
much cheaper than in-person or on-the-phone messaging. Facebook had recognized
the potential of its platform for mobilization. In 2008, they had delivered a “banner”
to the top of every adult American user’s News Feed with a standard message
reminding people to vote and linking them to information about their polling
location. Voter mobilization efforts via social media were thus “in the wild” and
established as a possible way to increase voter turnout.

The challenge for researchers was thus to figure out what kind of messages
could most effectively mobilize people to vote. For researchers interested in
social contagion, electronic messaging, particularly through social media, enables
researchers to quickly and relatively easily couple information about treatment
status to information about social ties. More and more, our behaviors, attitudes,
and social connections are recorded online [44]. This fact presents social scientists
with unprecedented new opportunities to understand how social contagion manifests
outside of small sample laboratory settings (e.g., [23]) or specific contexts which
are difficult to generalize from (e.g., [12]). In our case, we were able to leverage the
popularity of social media to conduct a field experiment at the scale of millions of
participants and several hundred million relationships.

The design of the experiment we implemented had many advantages over other
research designs in terms of both internal and external validity.2 First, by placing
information about voting at the top of users’ News Feeds we were confident that
when users logged in to the site, they were very likely to receive the treatment. With
other electronic messaging intended to increase turnout, such as through email, it
is likely that at least some recipients are not exposed to the message, because they
never open the email or the email goes to a spam folder and the user never even
knows of its existence. Researchers typically focus on the “intent to treat” effect in
those designs. However, in such cases the actual exposure to treatment may be quite
low, which in turn makes the detection of treatment effects on those who actually

2Shadish [56], who builds on the research design tradition from [14], defines internal validity,
as “[t]he validity of inferences about whether observed covariation between A (the presumed
treatment) and B (the presumed outcome) reflects a causal relationship from A to B, as those
variables were manipulated or measured,” and external validity as “The validity of inferences about
whether the cause–effect relationship holds over variation in persons, settings, treatment variables,
and measurement variables.” (4). Within the potential outcomes framework developed by Rubin
[53], the focus is oriented primarily towards internal validity. However, some authors have related
the SUTVA assumption from the potential outcomes framework to issues of external validity and
construct validity [51, 56]. There are many sources available for additional and more detailed
discussions that link together different validity types. For classic discussions of the relationships
between these concepts, see [1, 11, 14, 57, 64]. For more recent treatments, see [17, 19, 20].
A focus on internal validity for massive social interventions forces the analyst to intentionally
design the study to avoid violations to the Stable Unit-Treatment Value Assumption (SUTVA)
[53]. Recognizing this assumption and designing the study to address are critical steps, which are
necessary for exploring social contagions (e.g., [13, 51, 61]).
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were exposed more difficult. With the prominent placement of the GOTV message
in our experiment, it was very likely that users were exposed to the information we
intended. This type of placement on a popular social media website would only be
possible through collaboration with the company. Researchers are able to purchase
ads appearing on sites or post their own content, but the prominence with which the
treatment was presented to users could not be achieved in other ways. These design
choices limit the external validity of the results.

Second, the message included an “I voted” button. While this was a useful
online dependent variable—with which we were able to identify differences in
the likelihood of clicking the button—it also functioned as one of the potential
mechanisms through which network sharing took place. When users clicked the
button a story about their voting action was automatically created and shared with
their friends. Through this mechanism, the names and faces of friends who reported
that they had voted became highly salient to the targeted users on Election Day.

Finally, by studying voter turnout, we were able to link an online treatment to
a validated offline behavior. In the U.S., whether or not an individual has voted is
a matter of public record, but the process through which a researcher may collect
public voting records varies considerably from state to state. In some states, such
records are easily downloadable for free. In others, there may be a cumbersome
application process, a substantial fee (up to $30,000), or requirements that the
requests for turnout data be made by residents of the state. Additionally, states vary
in what data they collect and make available in such records. Some states collect
information about voters’ demographic characteristics, but most do not.

Because of this extensive variation, we identified thirteen states3 that made
available the data necessary for matching to Facebook records (first name, last
name, and date of birth) at a reasonable cost per record. We then used a group-
level matching process [38] that allowed for individual level inferences but avoided
any direct one-to-one matching between the data from Facebook and the data from
the state voter lists. The data was never linked together.

We developed the group-level matching procedure in order to preserve the
privacy of individual Facebook users. By using the group-level matching procedure
we were able to know probabilistically whether or not an individual had voted. This
type of procedure may be helpful for instances in which two data frames need to
be matched with one another, but preserving some uncertainty about individual
attributes or measures is desirable. An important, if often overlooked feature of this
method, is that the two datasets never need to reside on the same system. Only
the repeated instances of the group-level information needs to be generated and
transferred from one dataset to the other. The only way the identities of users on
one dataset can be confirmed within the other dataset is if the set of users in both
are completely overlapping. Otherwise, knowledge of the identity and the individual
level attributes of each individual user is preserved.

3The states we collected data from were Arkansas, California, Connecticut, Florida, Kansas,
Kentucky, Missouri, Nevada, New Jersey, New York, Oklahoma, Pennsylvania, and Rhode Island.
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The GOTV experiment included three conditions. First was the “social message”
condition, to which 98% of users were assigned. In this condition, users saw a
message that encouraged them to vote, saw a link to a website that enabled them to
search for their polling location, were offered a button to click to self-report voting,
and were shown a set of up to six profile pictures of friends who had previously
reported voting on the site. While we were unable to test the mechanism directly,
we believe that seeing the faces of friends likely encouraged users to think of voting
as a social act. As we note in the paper, however, it is also possible that the faces
of friends simply made the message larger and more interesting, thereby drawing
additional attention to it. The second experimental condition was the “message”
condition, to which 1% of users were randomly assigned. The message looked just
like the social message condition, but did not include the faces of friends. Because
of this, this message was much more similar to a traditional GOTV message that
encouraged voting and provided some of the information necessary to vote. Finally,
the remaining 1% of users were randomly assigned to a control condition in which
there was no message at the top of the users News Feeds—in essence Facebook
appeared similar to how it would on any other day.

In the first stage of our analysis, we investigated the direct effects of treatment on
vote reporting (clicking the “I voted” button), searching for information related to
voting (clicking on the link to find a polling place), and validated voting. For each
of these conditions, we found that users in the social message condition engaged in
the behavior at a significantly higher rate than users in the message condition. For
validated voting, we also compared the social message group to the control group
and again found that being exposed to the social message led to higher rates of
turnout. While we were able to use the full sample for comparisons of the online
behavior, to compare rates of offline behavior (validated voting) we were restricted
to the set of matched users. This meant that our sample size was about one-tenth the
original number of users in the experiment, greatly reducing our statistical power
in these comparisons compared to the comparisons we could make with the full
sample.

In fact, one of the important lessons we learned from conducting the experiment
was about the issue of statistical power. Of course, with such a large sample size,
statistical power is greatly increased. However, with online experiments such as the
one described here, and particularly when the dependent variable is a behavior that
occurs offline, frequently the effects that one is likely to observe are quite small
as well. The other issue with our design relates to the difference in the relative
proportions of the three conditions: 98%, 1%, and 1%, respectively. We made this
choice for two main reasons. First, Facebook wanted to maintain a consistent user
experience for most of its users. Second, Facebook did not want to reduce its
mobilization efforts compared to what they had done in the 2008 election. Because
we hypothesized that the social message treatment would be most effective, the
company prioritized that message. This choice however greatly reduced statistical
power, which is an important trade-off that must be considered in any industry-
academic collaboration.
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As previous research had shown, email messages show little evidence of
mobilization [49]. With this in mind, we knew that if the Facebook message was
to be successful in mobilizing voters, the effect of the message was likely to be
small in percentage terms and we would need a large sample in order to identify it
statistically.

In our case, with a sample of approximately 6.3 million users who had been
matched to voting records, we were able to identify a small effect that would have
been undetectable with smaller samples. Although such small effect sizes may seem
relatively unimportant, when treatments that have small effects are given to millions
of people, their cumulative effects can add up to large changes in overall behavior.
For our GOTV intervention, we estimated that the direct effect of the experiment
was approximately 60,000 increased votes. Some critics might respond that with
such large samples of users, that statistical significance is almost guaranteed. But
this is not the case because of the sample size issue we described above. Moreover,
we tested for this using a variety of auxiliary tests that we describe in detail in the
supplementary appendix that accompanies the main article. These types of auxiliary
tests are important for ruling out false positives in such massive scale studies.

In many ways, what we have described above is akin to a typical field experiment
implemented at a very large scale. It was important to provide evidence supporting
the idea that electronic GOTV efforts could yield small effects that most likely are
statistically insignificant when conducted on the size sample typically available to
academic researchers.

However, the more important contribution of the study was the ability to examine
whether or not the effects of the experiment spilled over to other users as well.
Although the literature on get-out-the-vote messages was by this point robust, few
scholars investigated whether such messages had effects beyond those on directly
contacted individuals. Because politics is such a social process, and the message
encouraging voting was to be delivered through a social medium, we felt confident
that this was an area in which the spread of the message from one individual to
another was likely.

In our view, one of the biggest advantages of working with Facebook was the
detailed information that the site dynamically collects about social relationships.
A challenging aspect of conducting experiments in a social context is the possible
presence of spillovers, intentional or otherwise (e.g., [61]). However, identifying
the network ties that govern how such spillover occurs is a critical design challenge.
Facebook’s existing data on friendships enabled us to not only identify such network
ties, but also to differentiate between them in any number of theoretically-important
ways [37].

What types of relationships should be most likely to show evidence of social
influence, based on findings from previous research? A long literature in the social
sciences has emphasized tie strength, and its importance for understanding if and
how things in networks may be transferred between individuals [10, 26, 27, 31, 35,
47]. While we knew we wanted to examine spillovers, we also knew that using the
set of all Facebook friends was unlikely to provide us with the best opportunity
to understand the social pathways through which information about voting spread.
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Previous researchers had differentiated between friendships based on single criteria,
such as photo-tagging behavior [46]. Knowing that an even more fine-grained
measure of tie strength would enable us to better understand which ties mattered the
most for the spread of behavior, we devised a method to assign friendship weights
across a continuum [37].

To differentiate between network ties of various strengths, we coupled survey
data with data from Facebook on how frequently people interact offline. We first
surveyed a convenience sample of users about who their closest real-world friends
were. We then matched their free-responses to this question to the list of their
Facebook friends and used data on the interactions between an individual and his
or her friends to predict these user-specified close friendships. Facebook collects
many distinct types of digital traces that represent interactions between individuals,
such as posting on one another’s timeline, commenting on one another’s posts,
tagging each other in photos, liking a post of another, and so on. Our analysis
revealed that simply counting these interactions (and accounting for the base rate of
interaction with friends overall) was a good predictor for the self reported closeness
of a relationship.

Once we had measures of tie strength, we investigated whether the treatment of
one individual had an effect on the behavior of another. To do so, we started with
the full network of Facebook friendships (among users included in the study). We
assigned each individual his or her experimental condition, observed the outcome
behavior (validated voting, vote reporting, searching for polling place information),
and for each friendship pair we assigned a measure of friendship strength. We then
observed the relationship between one individual’s treatment status and the behavior
of his or her friend.

While this gave us a good estimate of the relationship between an individual’s
treatment status and a friend’s turnout behavior, we did not yet have a measure
of how likely the relationship was to be observed simply by chance. That is, we
knew that individuals whose friends had seen the social message were more likely
to have voted than individuals whose friends had been in the control condition,
but we did not yet know if that relationship was different from what we would
expect by chance. Traditional statistical tools we use to test for the likelihood of such
differences when treatment and behavior are measured within the same individual,
such as a t-test or regression, would not account for the network. In particular,
because individuals are tied together in the network, the structure of those ties may
impact the likelihood of observing a relationship between treatment and behavior
simply due to chance. So, we had to use other statistical tools, as described below,
to assess whether the relationship we observed was different from chance.

We used a permutation method [30] to estimate a null distribution for the
relationship between treatment and behavior. To do so, we kept the network
topology and the behavior of each individual fixed and randomly shuffled the
assignment to treatment. We then observed the relationship between treatment status
and the turnout in this new random network, which was one example of what would
have happened if treatment was not related to behavior. We repeated this process
1000 times, creating a full null distribution for the potential outcomes that may have
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occurred simply due to chance. Conducting the analysis this way gave us confidence
that if the true, observed relationship was outside of the null distribution, or at least
in the top 2.5% of the distribution, that the relationship we observed was not due to
chance.4

We repeated the above permutation analysis for the relationship between treat-
ment of one individual and the behavior of his or her friends for increasingly close
friendship relationships. Across all relationships we found that friend treatment
was linked to increased probability of vote reporting. However, we found that for
validated voting, only in the closest 20% of friendships was a person’s friend’s
treatment related to his or her own behavior. It is notable that we found very small
effect sizes here. For instance, for each close friend who was assigned to the social
message, a user was 0.22% more likely to vote than had a friend been in the control
condition. Similar to the results on direct effects, though the per-friend effect size
is quite small, because the number of friends is so large, the cumulative effects of
effect sizes like these can be substantial. For example, we estimated that the spillover
of the message to close friends increased voting by approximately 559,000 votes.

Finally, we were interested in understanding whether the effects of the GOTV
message spread even further than a single link in the social network. In other words,
could we detect friend-of-a-friend spillover? We knew that for validated voting
spillovers were likely to occur only for close friendships. Therefore, we assumed
that the first place to look for further spillovers was through the close friends. We
constructed a network of the close friends of close friends (who are not also friends).
That is, if Joe and Amy are close friends and Amy and Jill are close friends, but
Joe and Jill are not friends at all, we used Joe’s experimental condition to predict
Jill’s behavior. In doing so, we were able to investigate whether or not the spillover
occurred at more than one step removed from the focal individual. We found that
the per-close-friend-of-close-friend effect was very small and only different from
chance for self-reported vote—an increase of 0.01%.

2.2 The 2012 Get-Out-the-Vote Experiment

During the 2012 U.S. presidential election, we followed up our 2010 study with
another GOTV experiment [39]. Our goals in doing so were to both replicate the
2010 study and to further examine the mechanisms that are likely to drive the
social contagion we observed in the 2010 study. Both the election context and the
use of social media changed from 2010 to 2012. For one thing, as opposed to the
2010 midterm election, the 2012 election involved a presidential race, and GOTV

4Later methodological work pointed out this procedure for simulating the null distribution rests
on the unnecessary assumption of no direct effects [5]. Thus, our method of naively permuting
treatments over the network could elevate the rate of false alarms. Focal unit analysis [4, 5] allows
the researcher to more explicitly specify the null hypothesis and test for the presence of spillovers.
The analysis performed on the 2012 election experiment data utilizes focal unit analysis.
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messages are known to be less effective during high-stakes elections [34]. Secondly,
between 2010 and 2012, millions more Americans had joined Facebook. A report
from pew showed that in 2010, 60% of those who had access to the Internet used at
least one social networking site. By 2012, that percent had climbed to 67%. The rate
of growth was fastest among older Americans, the very kind of users we had found
to be most responsive to the treatment in 2010. Because of the shifting context, we
felt it was particularly important to replicate the findings from our previous research.
As we describe below, we also changed the design of the experiment to try to better
understand the mechanisms that were likely to drive changes in behavior.

The 2012 study functioned in a largely similar fashion to the 2010 study with
some key differences. Again, users were exposed to a message encouraging turnout
and offering a button to report voting through the site. However, in this experiment
we implemented a 2 × 2 design. The first factor varied whether or not individuals
saw a post at the top of their News Feeds that encouraged turnout (the “banner”
condition). This was very similar to the social message vs. control comparison from
the 2010 study. The other factor varied whether or not users saw individual posts
within their News Feed regarding friends’ voting (the “feed” condition). In the 2010
experiment, all users saw these messages within their feeds. By treating this as an
experimental variable in 2012, we hoped to better understand if the banner message
or the feed messages were more likely to induce behavior change, as well as if one or
the other was more likely to cause contagion. Similar to the 2010 experiment, most
users (96%) were in the condition that included both the banner GOTV message and
the messages from friends in the newsfeed, and the remaining 4% were in control
conditions for one or both of the GOTV message conditions.

In this experiment, we found largely similar results as in the 2010 experiment.
In particular, we found that those in both the banner and feed conditions were
significantly more likely to have voted than those in the control conditions. We also
attempted to differentiate between the banner and feed, but we found no statistical
differences between them, which suggests that the combination of the banner and
the feed was responsible for the increase in voting.

We again investigated spillover effects. In the 2012 experiment, we found that the
banner treatment caused significant spillovers, but that the feed treatment did not.
So, while the combination of treatments appears to be most effective for causing
direct change in behavior, the banner treatment appears to be more effective for
causing spillovers. A critical component of this research was replicating the previous
finding. As we noted earlier, both the affordances of social media and the ways in
which people use sites change rapidly. As such, it is important to replicate findings
from such studies across different sites and across time points. The fact that the 2010
and 2012 experiments had similar results gives us confidence that the processes of
social influence that we observed were not dependent on aspects of the site or the
ways in which the site was used at a particular time.
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3 Design Considerations

Academic-industry collaborations provide both opportunities and challenges for the
design of social science experiments. On the one hand, the wealth of data available
can create unparalleled opportunities for testing effects that would be difficult to
do using other kinds of data. At the same time, the imperative for experimental
design must be balanced against a company’s preferences and requirements for the
user experience. Under certain circumstances, this may necessitate limits on optimal
experimental design.

3.1 Heterogeneous Treatment Effects

Previous work has investigated how influence may be maximized [41] in addition
to how influence and susceptibility may be balanced [2, 6]. A significant advantage
of working with a very large sample is the significant increase in statistical power
that such sample sizes afford. Following this work, we investigated differences
in treatment effect size in the 2010 turnout experiment across the pre-treatment
covariates of users [9]. The reduction in sample size resulting from matching to
voter records prohibited investigating treatment effect heterogeneity on validated
voting. However, with the larger sample for which we had information on vote
reporting and polling place search we were able to examine how treatment varied
across individuals.

We found substantial differences in the likelihood that individuals responded
to the treatment. For example, we found that older users were much more likely
to respond to the treatment than younger users. For the number of friends that an
individual has, we found an inverted u-shaped relationship: those with a moderate
number of close friends were most responsive to treatment. This finding in particular
should be of interest to researchers designing future experiments. If users with a
moderate number of friends are most responsive to treatment, does the boost in
responsiveness make up for the moderate number of friends to whom they may pass
on the effects of the treatment? That is, is it better to treat nodes with many network
ties, knowing that they may not be as responsive as other nodes, but that if they do
respond they will pass along the effect to many others? Or is it better to have a larger
direct effect on nodes that have a more limited capacity to create contagion?

In the future, researchers should examine how individual attributes, and edge
attributes, are not only related to treatment effects, but also to the likelihood that
contagion occurs. For example, while we found that older users were more likely
than younger users to respond to the treatment themselves, we don’t yet know
if older users are more or less influential. By understanding this, practitioners
may be better able to design and implement programs intended to effect change
by accounting for not only the types of people they should contact, but also the
likelihood that the people they contact will spread their message further.
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3.2 The Importance of Close Friends

One of the key findings from our 2010 experiment suggested the importance of
differentiating between friends online based on the strength of the relationship
between the individuals offline. By estimating tie strength, we were better able
to understand which types of friends are influential. For both online and offline
behaviors, we found that the closest friends have particularly strong effects. In both
cases, it appears that the relationship between friendship strength and likelihood
of influence is non-linear—that is, close friends seem to matter much more than
otherwise similar, but slightly more distant friends. Further, our analyses suggest
that the closest friends are where most of the contagion is likely to take place,
particularly for offline behaviors.

There is a more general lesson for network researchers in these results. If our
findings are representative of how other network phenomena are likely to spread,
then our work underscores the importance of measuring edge attributes in addition
to node attributes.

3.3 Uneven Assignment of Users to Conditions

The final design consideration worthy of discussion is the uneven assignment of
users to conditions. In both the 2010 and 2012 experiments, assignment to treatment
was much more likely than to control. The proportion of people assigned to each
condition was weighted in this way in order to make sure that the user experience
was similar for most users. This was an important aspect of the design from
Facebook’s point of view, as maintaining consistency in user experience was very
important. This has important implications for the analysis and interpretation of the
results, particularly the contagion results. For measuring direct effects, this impacts
statistical power as it would for other, similar experiments. In particular, while
we have relatively precise estimates for the condition to which most individuals
are assigned, the estimates for the control conditions are noisier. For the online
behaviors, where the sample size is very large, this is largely a non-issue. For the
offline behavior, where the sample size is relatively small (even if large in absolute
terms) this makes the identification of treatment effects more difficult.

Perhaps more important, however, is how the uneven assignment to treatment
groups affects the inferences drawn from the spillover analyses. Because treatment
is assigned in uneven ways, and network topology is not accounted for in treatment
assignment, for most people the vast majority of their friends are assigned to
treatment. That is, we observe many egos for whom all or nearly all of their
friends were assigned to treatment groups, but we observe very few egos for whom
few of their friends were assigned to treatment. Because of this, our findings
about contagion leave many questions about how the distribution of the number or
proportion of friends who were treated unanswered. For some contagions, a single
friend who is treated may be enough to effect behavioral change, while for others
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many friends may need to be treated. In the future, studies should implement designs
that enable researchers to better understand how the distribution of treatment affects
the likelihood of spillover effects.

4 Academic-Industry Collaboration

We do not claim to be experts at academic-industry collaboration. Indeed, we
believe there are likely many researchers who are in a better position than we
are to discuss how to best enable academic researchers and their industry partners
to have successful collaborative relationships. However, we do believe that our
experience places us in a unique position to discuss why collaboration is particularly
important for the study of complex social systems. In particular, we hope that
our experience might act as a guide or reference point for other scholars working
towards establishing relationships with industry partners.

We began collaborating with Facebook as graduate students. We had been
working to build our own app that we hoped to recruit students to use so we could
collect our own data on online networks. However, the development of the app was
slow-going and we were unsure whether such a research design was likely to bear
fruit. Thus, when the opportunity arose to work directly with the Facebook Data
Science Team, we moved forward as quickly as university bureaucracy would allow.

More generally, we recognize that social media companies possess data that is
both deep (many millions of users) and wide (many datapoints on demographics
and behavior), and no academic researcher has the resources to create something
on the same scale. For better or worse, the best social science datasets in the world
live on the servers of for-profit companies. By collaborating with industry partners,
many of the limiting factors related to understanding network phenomena are greatly
alleviated.

One of the advantages to such collaborations is the ability to quickly and at a
relatively low cost implement experiments on existing networks. This is particularly
important for studying phenomena that are unpredictable. For example, the Ebola
outbreak of 2015 and the information and messaging surrounding it constituted
a quickly developing and uncertain circumstance for people globally in which
information and misinformation were being spread widely, often through social
media. In such circumstances, social media data would enable researchers to
understand how information is being spread and how correct information may be
spread to greater effect. Importantly, in such circumstances data could be collected
about people’s beliefs and behavior in real time. Even with a large amount of
resources, collecting and analyzing social network information from scratch in
such an environment would take a long time—perhaps too long to implement
policy changes before significant societal changes have taken place. However, if
researchers were able to collaborate with social media platforms that already have
information about networks and over which the transmission of information is likely
to take place, such research may take place at a truly rapid pace.
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5 Conclusion

We hope that our experience working with Facebook does not represent a unique
moment in time when industry-held collections of massive scale behavioral data
were open for analysis and publicly facing social science. Rather, we hope that this
type of collaboration might happen again at places like Facebook and the many
other new firms that are collecting and analyzing data. Social scientists can help
understand and disseminate many important social patterns that could reveal new
insights. Let’s not black box the social data that we are all participating in producing.
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Spreading in Social Systems: Reflections

Sune Lehmann and Yong-Yeol Ahn

1 Introduction

As a starting point, we believe that social contagion will play a key role in shaping
how society and democracy develops in the coming decades. As our world has
become increasingly connected through the networks of social media, the role
of social contagion has grown. Social media services, such as Twitter, Facebook,
or Reddit, are becoming the main channels through which people communicate
and consume news. Because of these platforms’ global connectedness, a piece of
news—fake or not—can spread to millions of people around the world at near
instantaneous speed. Moreover, the increasing social media use, combined with
sophisticated machine learning algorithms for content recommendation, means that
we increasingly find ourselves within comfortable ideological bubbles. Inside each
bubble, content that reinforces our beliefs and biases will spread more easily among
people with shared ideologies and potentially entrench people. Such entrenchment
may grow in the future. Thus, humanity’s major challenges are beginning to revolve
less around building the right technologies, but more around puncturing bubbles in
order to reduce societal polarization.

The power to manipulate and control people’s beliefs through social contagion
is a double-edged sword. Such power can be used for public good—to effectively
spread informed opinions on public health matters: safe sex, smoking, or vaccination
to name a few examples. At the same time, however, this power can be, and has been,
misused for manipulating public opinions or influencing the outcome of elections.
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We expect that the impact of social contagion on our society—particularly on
the foundation of democracy—will keep increasing. The social responsibility of
research into social contagion processes should not be overlooked.

• • •

As is clear from the fantastic contributions in this book, our understanding of social
spreading processes has advanced significantly over the past decade. Still, there are
of course outstanding challenges. Among many, here we discuss the following:

• How can we improve the quality, quantity, extent, and accessibility of datasets?
• How can we extract more information from limited datasets?
• How can we take individual cognition and decision-making processes into

account?
• How can we incorporate other complexities from the real contagion processes?
• How can we translate research into positive real-world impact?

2 Please Sir, I Want Some More Data

History tells us that the availability of high-quality data is a key driving force in
science. The science of social contagion is no exception. In the past decade, datasets
from long-term longitudinal studies, such as the Framingham Heart Study, as well
as other massive online social media datasets have been the main fuel source that
propels the study of social contagion. So, a natural question is “how can we get our
hands on better datasets?”

We should probably begin by asking what “better” data would even mean.
“Better” may mean simply more details and larger volume. For instance, high-
resolution data can reveal insights that are completely hidden when that same dataset
is aggregated. Larger datasets imply increased statistical power and the ability to
identify minute effects. Having more attributes can lead to the discovery of new
associations or more precise control of confounding factors.

Going beyond size and detail, better data may also imply a shift from found
data to more designed data [1]. Instead of re-purposing observational datasets, one
can specifically design a (controlled) experiment and collect data. To do so, one
should either create one’s own data collection environment (e.g., Sensible DTU [2])
or leverage existing services (e.g., controlled experiments conducted by Facebook
[3, 4]). The former is more constrained by resources and difficult to scale, while the
latter is more constrained by the economic incentives of the company and details
of the services. Collaboration between academia and industry is a nice hybrid
approach and has produced many successful insights (see, for example, Part IV,
chapter “Network Experiments Through Academic-Industry Collaboration”).

Finally, we stress the importance of open access to data. Even if one collects an
ideal dataset to study social contagion, the dataset may make little impact on the field
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if the data cannot be shared with others. Even the validity of a study that uses this
ideal data may not be ensured if no one can use the data to replicate the results. The
benefits of data sharing are clear; making a dataset public can maximize the impact
of the dataset and makes the resulting research more transparent and reproducible.

However, many social datasets are not easy to share in a raw form (or even
collect) due to privacy concerns. There have been several efforts from industry to
share anonymized datasets but many have unfortunately failed. For instance, Netflix
shared a large dataset for a highly profiled recommendation engine challenge, only
to find that the dataset could be easily de-anonymized [5]. Later, an anonymized
Flickr social network was de-anonymized using Twitter’s social network [6]. After
several incidents of this kind and more theoretical developments, it has become clear
that it is very difficult to properly anonymize data, in particular data that involves
social networks.

There can also be other kinds of backlash related to sharing data, or simply just
sharing results of studies that are conducted in industry. For instance, the emotional
contagion study published by Facebook in collaboration with academic researchers
[3] upset many users and put Facebook in a difficult position. The adverse reaction
to this study may have suppressed the in-house research efforts across industry
and reduced incentives to publish academic articles, not to mention datasets. Thus,
understandably, most companies are cautious about sharing raw datasets and even
results of their internal experiments.

At the same time, the push from publishers, scientists, and other advocates for
open data has begun to produce practical solutions. These practical solutions aim
for a compromise between level of detail within the data and privacy concerns. A
common approach is to share data that is sufficiently aggregated so that the re-
identification or extraction of any individual data is impossible. Another solution is
to maintain a special internal repository for replication data as well as mechanisms
for external researchers to access the data upon request. Such solutions may address
the issue of replicability, but fall short with respect to replicating the full benefits of
open datasets. It will be interesting to see whether it will become easier to access raw
datasets from industry through improved privacy-conserving algorithms or whether
we will see aligned efforts resulting academia-industry collaboration in the future.

3 Homophily or Contagion?

Although we now have unprecedented amounts of data related to social contagion—
and describing social behavior in general, most available datasets are still obser-
vational. This fact imposes serious limitations. A central issue is that, because of
homophily (and latent homophily) in networks, it is difficult to perform causal
inference. As the heated debate regarding the series of papers using the Framingham
Heart Study—an observational dataset—has demonstrated [7–14], causal inference
based on observational data is a major challenge, and the effort to extract as much
as information from observational datasets will continue. A number of methods
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have been developed to more clearly understand the limitations and extract more
information from observational datasets (see chapter “Challenges to Estimating
Contagion Effects from Observational Data”). The results from observational data
will remain as an important part of the social contagion research.

4 Micro-Contagionomics

Most existing studies assume fairly simple contagion models that do not take
into account complex individual decision-making and variations across individuals.
Given what is known about cognition and social psychology, another interesting
avenue of research will be to incorporate cognitive and psychological models of
decision-making and behavioral changes into the study of social contagion; both in
theoretical and empirical studies.

Although there are many theoretical models, rich models that can capture more
nuanced cognitive limitations and biases—such as complex interactions between
beliefs [15] or limited attention [16]—as well as the nature of contagion [17] will
be needed to fully understand and better model social contagions.

On the empirical front, we need more precisely controlled, high-resolution
experiments. In spite of all the progress there has been made studying empirical
patterns of information diffusion (Part III), we are still limited to examining overall
patterns and the results of spreading. In fact, outside of purely theoretical models
(Part II), we have little idea how to incorporate knowledge and insights from
psychology and cognitive science in order to measure the microscopic mechanisms
that govern the adoption of a new idea.

Within the empirical work, we mostly study proxies for the information that is
truly spreading, whereas the work on random control trials (Part IV) focuses on
observing behaviors resulting from a spreading process on an underlying network.
Thus, a possible way forward could be through new experimental paradigms, where
we study both the spreading agent on its journey through the network, along with
well-defined behavioral changes on the individual-level.

To make this concrete, let us outline some thought experiments. An extreme
one will be similar to a reality show, where every single conversation and related
behavior is recorded [18], with added potential interventions and controls. The data
then could then be analyzed to identify how exactly the information spread through
the participants.

Another possible experimental design would begin with designing specific, well-
defined pieces of information designed to illicit a reaction (or lack thereof) that
can be measured (e.g., going to collect free beer at a certain location, pressing a
certain button). Further, study participants must only be able to access these pieces
of information in a way that reveals the identity of the person in question (e.g., by
displaying this information on a personalized web-page or via a mobile-phone app).
Finally, of course, information on how to access these pieces of information must
travel in a well-defined way on the social graph independently of the communication
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platform (email, online social network, face-to-face). While accessing the piece of
information, we could also provide information about actions (or information state)
of the network neighbors. Starting from randomized control trials and with access
to both detailed spreading paths on the network and behavioral outcomes, such an
experimental paradigm would allow us to begin collect reliable statistics and answer
questions on the microscopic mechanisms that shape spreading and adoption, such
as how the probability of spreading depends on the local network structure.

By running multiple experiments we would also be able to empirically examine
the role of “stickyness” or “sexyness” of ideas in spreading, acknowledging that
intrinsic properties of the spreading agent might interact with the network in a non-
trivial way.

5 It’s Complicated: Multi-Layered, Dynamic,
Co-evolving Networks

Over the past 20 years or so, we have made substantial progress in our ability
to describe and analyze static complex networks. But real networks exhibit many
complex features. For instance, networks change dramatically over time. The
connection patterns of social networks are constantly reconfigured as we connect
with friends, co-workers, and family—as we move through our daily lives, as we
adopt new platforms for communication. Our theoretical foundation for analyzing
and understanding temporal networks is solidifying, but we are still learning how
to treat the interplay between temporal networks and the dynamics of network
spreading on those networks.

Network structure is not just changing in isolation. Often the dynamic evolution
of a network is due to the social contagion in the network. In other words, the
structure of social network and the dynamics of social contagion co-evolve [19, 20].
We can re-examine the issue of homophily versus contagion in this context. It is not
just that these two concepts are confounded (a difficult problem in its own right). It
is also that reality is often a mixture of the two (an even more difficult problem in
its own right). In the wild, we are likely to see a dynamic bidirectional interplay of
influence and homophily on each dyad—and more generally within each network
neighborhood—shaping the evolution of the network itself, as well as the dynamics
of information flowing through it.

While the advent of online social media and other communication channels have
opened up new ways to study society and our communication patterns, online social
media have also had the less publicized effect of increasingly fragmenting social
communication across multiple channels. Most people use multiple social media
services, often each for different purposes. As the main communication channel
for their friends, some may use Facebook, some may use Twitter, some may use
Snapchat, and some others may not even use any social media services at all,
using only “traditional” channels such as in-person conversations. Thus, even when
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some company dominates in many markets across the globe, a single service only
captures a small, biased fraction of threads in this fabric of social communication.
For instance, a single instance of social contagion may manifest itself as numerous
disjoint spreading events if observed through the lens of a single service. And thanks
to homophily and network effects, users of a service, and the ways that they use the
service, tend not to be random samples from the full population.

An important implication in terms of the study of social contagion is that even
the largest studies, if they were conducted on a single platform, might be lacking
significant spreading events that occur via other channels and making conclusions
based on biased behavioral patterns. Thus, it is important to ask: how can we know
that the observed results are not artifacts of such a fragmentation? How can we study
spreading phenomena that occur across many communication channels?

We believe that progress on this topic will occur by working simultaneously on
both the theoretical and empirical side, with each side complementing the other.
Empirical observations describe how people juggle multiple types of social media
and how information spreads across the different layers of social networks will
provide good insights on how to model use of the fragmented networks. Theoretical
studies on multi-layer information spreading processes will then inform hypotheses
and suggest general patterns to be tested through additional empirical studies.
Collaborations across multiple social media platforms are also needed to obtain
proper datasets to study multi-layer diffusion. Smaller-scale, but higher-resolution
studies also have great potential to deepen our understanding of how people
use multi-layered social fabric. Finally, because it will be practically impossible
to capture every possible social interaction, statistical inference techniques and
theoretical studies to understand the effect of missing data—or missing layers—and
to infer the missing data will be necessary.

6 Translating into Real-World Applications

The final frontier will consist in translating social contagion research to real-world
social problems beyond applications to product adoption and advertisement. Such
studies could focus on inducing social contagion that intends a positive impact on
society. Topics that citizens of a society can democratically agree are to the benefit
of everyone. For instance, researchers in Facebook have already demonstrated that it
is possible to significantly increase the participation to the election by engineering
the social contagion on Facebook alone [4]. Similar campaigns may be designed
and implemented for the behaviors that are relevant to public health, such as hand
washing, safe sex, or vaccination.

At the same time, it is essential to remain vigilant with respect to the other
side of the coin: increasing our collective ability to detect and mitigate malicious
manipulative campaigns or public shaming events. It has been shown that there
exist ongoing efforts to manipulate public opinions through human workers, social
bots, and fake news [21, 22]. This type of manipulation potentially threatens the
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foundation of democracy in many countries across world and even the very concept
of “truth.” Thus it will be important for researchers to ask how the study of social
contagion can help us understand and improve the “post-truth” world.

• • •

And to the reader who has made it this far. We thank you!
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