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Abstract. As data come out one by one from an infinite stream, auto-
matic learners maintain some string as long term memory, and update
it at every new datum (example) they process. Transduced learners are
generalization of automatic learners. Both kind of learners are evalu-
ated with respect to the space they consume for learning. For automatic
learners, it is unknown whether at any point, the size of the long term
memory can be bounded by the length of the longest datum that has
been received so far. Here it is shown that, even when restricting learn-
ing to automatic families, there is a hierarchy of classes that can be learnt
with memory O(nk), and all automatic families which are learnable in
principle can be learnt by a transduced learner using exponential sized
memory.
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1 Introduction

Gold [11] introduced the model of learning in the limit from positive data. Subse-
quent research in inductive inference [1,3,6,15,19,22,23] studied also variations
on this model. The basic features of Gold’s model are the following. Let L ⊆ Σ∗

be a language, where Σ is a finite alphabet. The learner gets as input a text for
L, that is, a sequence of strings x0, x1, . . . that contains all members but no
non-member of L. As output, the learner conjectures a sequence of indices e0,
e1, . . . as its hypotheses on what the input language might be. The hypotheses
are taken from some hypothesis space {He : e ∈ I}, where I is the set of pos-
sible indices and every possible learning task equals some He. If the sequence
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of hypotheses converges to an index e for the language L (that is, He = L),
then the learner is said to have learnt the input language from the text. The
learner learns a language L if it learns it from all texts for L. It learns a class
L of languages if it learns all languages in L. To measure the complexity of a
learner, it is convenient to consider the learner as operating in cycles: it starts
with hypothesis e0 and in the n-th cycle, it gets the datum xn and conjectures
the hypothesis en+1. Freivalds et al. [10] and Kinber and Stephan [18] imposed
the condition that between two cycles, the learner remembers only part of its
previous inputs and works via some (long term) memory, which can be restricted.
Thus, the complexity of learners can be measured in terms of two parameters:
(a) the computational complexity of mapping the old memory and input datum
to the new memory and hypothesis and (b) the length of the memory as a func-
tion of the length of the longest example seen so far.

Fundamental choices for (a) are: recursive learners (the mapping can be com-
puted by a Turing machine), transduced learners (the mapping can be computed
by a finite transducer) and automatic learners (the mapping is an automatic
function). Pitt [23] showed that many complexity-theoretic restrictions—like
requiring that the update time in each cycle be carried out in time polynomial in
the sum of the lengths of all inputs seen so far—do not give a real restriction for
most learning criteria from classical inductive inference. Automatic learners are
more severely restricted and offer an interesting object of study [5,13]. In par-
ticular, it is natural to investigate the target classes that are represented in an
automata-theoretic framework, namely the automatic families [14]. These offer
a representation that an automatic learner can handle easily. It is also natural
to impose that hypothesis spaces be themselves automatic families containing
the class to be learnt. It turns out that certain such families are learnable by a
recursive learner, but not by an automatic learner. The inability to memorise all
past data is a major weakness of automatic learners and is exploited by many
non-learnability proofs. Still, as shown by Jain et al. [13], w.r.t. the learnability
of automatic families from fat text (with infinitely many occurrences of each
datum), automatic and recursive learners have the same power; their memory
can even be restricted to the length of the longest datum seen so far, the so-
called word length memory limitation.

The current work studies transduced learners which are a generalisation of
automatic learners. For transduced learners, the update mapping of the learner
is computed by a non-deterministic transducer which on all accepting runs, pro-
duces the same outputs for the same inputs. Both inputs (old memory and cur-
rent datum) are read independently, and both outputs (new memory and hypoth-
esis) are written independently. This independence makes transduced learners
more powerful than automatic ones.

For (b), Freivalds et al. [10] imposed that learners operate in cycles and only
remember, from one cycle to the next, information recorded in a (long term)
memory, with restrictions on its length. For automatic and transduced learners,
the memory is a string over a fixed alphabet, that may depend on the learner,
whose size is measured by the length of the string [10,13,18]. In the subfield of
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automatic learning, this way of restricting the memory led to fruitful findings,
still leaving one major question open: is it truly restrictive to bound the mem-
ory by the length of the longest datum seen so far? A positive answer will be
provided for transduced learners. Moreover, there is a learning hierarchy based
on the memory sizes as a function of the length of the longest datum seen so
far. In particular, polynomials and exponential functions of various degrees and
exponents, respectively, are the most prominent memory bounds.

2 Preliminaries

Let N denote the set of natural numbers {0, 1, . . .}. Let Σ denote a finite alphabet
(set of symbols), ε the empty string, and Σ∗ the set of all strings (words) over
Σ. A language is a subset of Σ∗ for some finite alphabet Σ. Concatenation of
strings u and v is denoted by u · v, or just uv when the context makes it clear.
A string u of length n can be considered as a function from {0, 1, . . . , n − 1}
to Σ, with u(i) the (i + 1)-th symbol in u. Length lexicographic order between
strings is defined as follows: u <ll v if either |u| < |v| or |u| = |v| and u is
lexicographically before v w.r.t. some underlying ordering of Σ.

2.1 Automatic Relations and Functions

A relation R = {(u1, . . . , un) : ui ∈ Σ∗} is said to be automatic iff it is recog-
nised by a finite automaton with n inputs which reads all inputs at the same
speed (one symbol per input and cycle with a special symbol # when the cor-
responding input is exhausted) [4,6,12,16,17,24]. A function f with m inputs
and n outputs is said to be automatic iff the corresponding relation, that is,
R = {(u1, . . . , um, v1, . . . , vn) : f(u1, . . . , um) = (v1, . . . , vn)}, is automatic. A
class of languages {Le : e ∈ I} defined using indexing I is said to be an auto-
matic family if I is regular and {(e, x) : x ∈ Le} is automatic.

2.2 Transducers

A transducer processes its inputs at different speeds; its transition function δ
does not necessarily process one symbol from each input component, but pos-
sibly none or many. Formally, a transducer is a tuple (Q,n,Σ, δ, q0, F ), where
Q is a finite set of states, n is input arity, Σ is a finite set of symbols, q0 ∈ Q
is the starting state, F ⊆ Q is the set of final states, and the transition func-
tion δ is a subset of Q × (Σ∗)n × Q. A run of a transducer is of the form:
(p0, s1,1, . . . , s1,n, p1), (p1, s2,1, . . . , s2,n, p2), . . . , (pk−1, sk,1, . . . , sk,n, pk), where
p0 is the starting state and for all i < k, (pi, si+1,1, si+1,2, . . . , si+1,n, pi+1) ∈ δ.
Note that the lengths of the si,j may differ. The run is accepting if pk ∈ F , and the
accepted input is (w1, w2, . . . , wn), where wi = s1,is2,i . . . sk,i for i = 1, 2, . . . , n.
The relation recognised by a transducer is the set of inputs it accepts (in some
accepting run); such relations are called rational or transduced. Note that the
main difference between an automatic relation and a transduced relation is that
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the transducer can read the inputs independently at different speeds and there-
fore the non-determinism of the transducer may prove useful. Nivat [20] provided
a characterisation when a relation is transduced which is based on the notion
of a homomorphism. Here a homomorphism is a mapping h which replaces each
symbol a by a possibly empty word h(a). Now a k-ary relation R is transduced
iff there is a regular set A and there are k homomorphisms h1, . . . , hk such that,
for each symbol, at most one of the homomorphism h1, . . . , hk maps this symbol
to a non-empty word and the relation R is the set {(h1(u), . . . , hk(u)) : u ∈ A}.

A function f is said to be transduced or rational if the relation
{(u1, . . . , um, v1, . . . , vn) : f(u1, . . . , um) = (v1, . . . , vn)} is rational and every
input tuple (u1, . . . , um) has a unique output tuple (v1, . . . , vn). A class of lan-
guages {Le : e ∈ I} indexed by I is said to be a transduced family if I is regular
and the relation {(e, x) : x ∈ Le} is recognised by some transducer; the class is
automatic iff the relation is recognised by a finite automaton. Transduced fami-
lies have some of the decidability properties of automatic families, in particular
those below.

Proposition 1. If {Le : e ∈ I} is a transduced family and a transducer M
accepts {(e, x) : x ∈ Le, e ∈ I}, then one can effectively (from M, parameter y
and finite set D), for each of the following sets, find a DFA recognising it:

(a) Ay = {p : y ∈ Lp};
(b) A′

y = {p : y �∈ Lp};
(c) By = {p :

{
z ∈ Lp : |z| > |y|} �= ∅};

(d) B′
y = {p :

{
z ∈ Lp : |z| > |y|} = ∅};

(e) CD = {p : D ⊆ Lp};
(f) C ′

D = {p : D = Lp};
(g) Fe = {x : x ∈ Le}.
In particular, given d and e, it can be effectively determined whether Ld ⊆ Le

and whether Ld ⊂ Le.

2.3 Learning Theory

Gold [11] defined a text as a mapping T from N to Σ∗ ∪ {#}, whose contents,
denoted content(T ), is the set {T (x) : x ∈ N} \ {#}; it is a text for a language
L iff content(T ) = L. The initial segment of text T of length n is denoted T [n].

To learn a target class L = {Le : e ∈ I}, defined using indexing I, a learner
uses a hypothesis space H = {He : e ∈ J}, defined using indexing J , with L ⊆ H.

The following notions are adapted from Gold [11]. A learner uses some alpha-
bet Γ for its memory. It starts with an initial memory and hypothesis. On each
datum, it updates its memory and hypothesis. That is, a learner is a map-
ping M from (Γ ∗ ∪ {?}) × (Σ∗ ∪ {#}) to (Γ ∗ ∪ {?}) × (J ∪ {?}), together
with an initial memory mem0 and hypothesis hyp0. Intuitively, ? denotes both
null memory (different from ε) and null hypothesis (when the learner issues
no hypothesis). One can extend the definition of a learner to arbitrary initial
sequences of texts T , setting M(T [0]) = (mem0, hyp0), and then inductively
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setting M(T [n+1]) = (memn+1, hypn+1) = M(memn, T (n)). Intuitively, memn

and hypn are the memory and conjecture of the learner after having seen the
data in T [n], respectively. A learner M converges on text T to a hypothesis e iff
for all but finitely many n, hypn = e. Note that the memory is not required to
converge. A learner M explanatorily learns a language L if for all texts T for L,
M converges on T to a hypothesis e with He = L. A learner M (explanatorily)
learns a class L of languages iff it learns each L ∈ L [8,9,11].

Blum and Blum [3] defined a finite sequence σ to be a locking sequence for a
learner M on language L if (a) content(σ) ⊆ L, (b) the hypothesis e of M on σ
satisfies He = L, and (c) for all τ with σ ⊆ τ and content(τ) ⊆ L, the hypothesis
of M on τ is e. They showed that if M learns L then such a σ exists.

A learner M is said to be recursive if the corresponding function F , mapping
(old memory, datum) to (new memory, hypothesis), is recursive. Jain et al. [13]
defined M to be an automatic learner if F is automatic. Finally, M is said to be
a transduced learner if F can be computed by a transducer.

In this work, learners are recursive, and can or not be transduced or auto-
matic. The memory limitations of the learner discussed in this paper is based
on the length of the memory of the learner in terms of the length of the longest
datum seen so far. Thus, for example, a learner M is word size memory bounded
if for some constant c, for all finite sequences σ, if M(σ) = (mem, hyp), and
n = max{|x| : x ∈ content(σ)}, then |mem| ≤ n + c. Similarly, the learner is
O(n2) memory bounded if |mem| ≤ cn2 + c.

Example 2. For all e ∈ {0, 1}+, let Le = {0, 1}∗ \ ({0, 1}∗ · {e}) and consider
the class defined by the transduced family {Le : e ∈ {0, 1}+}. The transduced
learner for this family has its current memory always the same as the current
hypothesis e (initialised to 0). For an input word x, if x ends with e then e is
updated to its length-lexicographic successor else e remains unchanged. Thanks
to its non-deterministic nature, a transducer can check whether x ends with e
and give the corresponding output. Note that both outputs, new memory and new
hypothesis, of the update function of this learner are always the same.

During the learning process, as long as the current value of e is length-
lexicographically strictly below the target, the learner will eventually see an input
ending with e, as there are infinitely many of these inputs, and then update
the hypothesis and memory to the next binary word in length-lexicographical
order. Eventually e reaches the correct value and then no further datum can
cause another update of the hypothesis. Hence, one can verify that the trans-
duced learner indeed converges to the correct hypothesis. Proposition 3 provides
a more complicated version of this class that has a transduced but not an auto-
matic learner.

3 Automatic versus Transduced Learners and
Memory-Size Hierarchies for Transduced Learners

Proposition 5 shows that some automatic classes can be learnt by transduced
learners but not by automatic ones. Proposition 3 shows that furthermore, if
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one considers transduced classes, then a transduced learner can succeed while
keeping the word-size memory bound, whereas no automatic learner succeeds.

Proposition 3. There is a transduced family which can be learnt by a transducer
with word-size memory while it does not have an automatic learner at all.

The following result provides lower bounds for the long term memory in terms
of the longest example seen so far.

Proposition 4. Suppose that S is a regular set and f(n) =
∣
∣{x ∈ S : |x| ≤ n}∣

∣.

Let L =
{

L : ∃n
[
L ⊆ {x ∈ S : |x| ≤ n} and f(n) − 1 ≤ |L| ≤ f(n)

]}
. Then

any learner, whether automatic, transduced or recursive, needs in the worst case
memory of length at least f(n)/c, for some constant c, after having seen some
sequence containing only words of length up to n.

Proof. Consider any learner M for L which uses alphabet Γ for its memory.
For any n, consider L = {x ∈ S : |x| ≤ n}. Suppose there are two finite

sequences σ and τ with content(σ) �= content(τ), content(σ) ∪ content(τ) ⊆ L,
and the memories of M after having seen the inputs σ and τ are the same. Let z
be in the symmetric difference of content(σ) and content(τ), say in content(σ) \
content(τ). Let T be a text for L \ {z}. Now, M either converges to the same
hypothesis on σT and τT or fails to converge on both. As σT and τT are texts
for L and L \ {z}, respectively, which are different languages in L, M fails to
learn at least one of these languages.

It follows that M has at least 2f(n) different memory values on different finite
sequences with elements from S of length at most n. Thus, at least one of these
memory values must have length at least f(n)/c, where c = log2(|Γ |). 
�
If f(n) = nk for some constant k, the lower bound is Ω(nk); if f(n) = cn for some
constant c, the lower bound is Ω(cn) on the maximum length of the memory on
input sequences containing words of length up to n. It will be shown that for
some regular languages S, similar upper bounds are obtained.

Proposition 5. Let S = {0}∗ · {1}∗. Let f(n) =
∣
∣{x ∈ S : |x| ≤ n}∣

∣ (which
is equal to (n2 + 3n + 2)/2). Define L as the set of all languages L for which
∃n

[
L ⊆ {x ∈ S : |x| ≤ n} and f(n) − 1 ≤ |L| ≤ f(n)

]
. Then L can be learnt

by a transduced learner with memory size O(n2) but L cannot be learnt by any
automatic learner, even without explicit memory bounds.

Proof. Suppose for a contradiction that an automatic learner M learns L. Fix-
ing n ∈ N, consider a sequence σ containing exactly n elements of length at most
n from S. As M is automatic, its memory on σ can be of length at most cn for
some constant c, and thus the number of possible memories of M after seeing σ is
bounded by dn for some constant d. On the other hand, there are at least

(
n2/2

n

)

possible contents of such sequences, and for large enough n, this is larger than
dn. Thus, for large enough n, there exist two sequences σ and σ′, with different
content, each containing exactly n elements of length at most n, such that the
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memory of M after seeing σ and σ′ is the same. Let x ∈ content(σ)\content(σ′),
and let T be a text for S ∩{y ∈ S : |y| ≤ n} \ {x}. Now, M on texts σT and σ′T
either does not converge or converges to the same conjecture even though they
are texts for different languages in L. Thus, M cannot learn L.

Now it is shown that a transduced learner can learn L. For representation of
languages in L, the indices are of the form 0i1j2k and 3k+1. If w = 0i1j2k then
Lw contains all words in S of length up to i + j + k except for 0i1j . If w = 3k+1

then Lw contains all members of S of length up to k.
The learner uses as memory a string of the form {0, 1}∗, where certain posi-

tions are marked. Intuitively, for memory w = w(0)w(1) . . . w(n − 1), each posi-
tion in the memory string represents a string of the form 0i1j , the marked
positions representing the strings that have been seen in the input. A posi-
tion p in the string represents the string formed by taking the number of 0s in
w(0)w(1) . . . w(p), followed by p − r 1s for the largest r ≤ p such that w(r) = 0;
if there is no 0 in w(0)w(1) . . . w(p) then r is taken to be −1. Thus, a position
p represents the string formed by taking the sequence of 0s up to position p
(inclusive) followed by the number of 1s between position p (inclusive) and the
position of the last 0 up to position p (inclusive).

For example, if the strings 00, 001 and 011 have been observed, then the
value of the memory data structure is 011′0′1′ and the strings represented by
the positions of the marked (primed) letters as ordered in the memory word are
011, 00 and 001. Note that the principle of taking the “maximal numbers of 0s”
before the third mark implies that the word 0111 is not represented in the above
memory as there is a 0 between the 1s taken over. The overall goal of updating
the memory is to let the current input word 0i1j be represented in the memory
by a position and the symbol at this position be marked. The beginning of the
memory can be marked in order to record that ε has been observed in the input.

The learner starts with memory ε without any marks. Now suppose that at
any time, (1) the new input word is 0i1j , (2) i′ is the number of 0s in the current
memory word, and (3) j′ is the number of 1s in the current memory word which
have exactly i 0s in the memory before their position. Note that j′ is 0 if either
i′ < i or i′ ≥ i and after the first i 0s, either the word ends or another 0 follows.
The non-deterministic transducer does the following:

1. First, while there is a 0 to be read in both memory and input datum d: read
old memory copying each symbol to new memory and whenever a 0 is read,
read it also on d until at least one of the memory or d has only symbols
from {1}∗ left; thus the memory is copied until min{i, i′} 0s (along with
intermediate 1s in the memory) are copied from the old memory and d has
the first min{i, i′} symbols read.

2. If i′ ≥ i (this is determined by the transducer by guessing, and verifying when
reading the rest of the words) then read j 1s from the current datum and j′

1s from the old memory and write max{j, j′} 1s to the new memory. Then
copy the remaining part of the old memory to the new memory.
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3. If i′ < i then first copy all remaining 1s from the old memory to the new
memory and then copy the remaining symbols 0i−i′

1j from the current datum
to the new memory.

4. Besides this, all symbols copied from the old memory to the new memory keep
their marks in case they have some already, and the symbol at the position
representing 0i1j in the new memory also receives a mark.

What follows demonstrates how the hypothesis is written when writing to the
new memory, as both outputs are independently written into different words.
Still, the workings of the transducer is best understood when the transducer is
thought of as non-deterministically extracting hypothesis from new memory.

Note that the memory keeps track of all words seen in the input using the
marks. It can also be used to indicate missing words: if a position representing
0i1j is unmarked, then 0i1j has not been seen in the input; if the i-th 0 in the
memory does not have a 1 preceding it, then 0i−11 is not seen in the input.
Call a word v stored in the memory maximal iff v1 is not represented in the
memory. Note that if all positions in the memory are marked and the lengths
of all maximal words in the memory except the maximal word v have the same
parity as the length of v1, then v1 has not been seen in the input so far, even
though v1’s length is at most that of the maximal word in the input language.

When writing the new hypothesis, the learner can verify and act according
to the first of the following cases which applies. Suppose i′ is the total number
of 0s in the memory.

1. If the position representing ε is not marked, then the hypothesis is 2i′
;

2. If the memory ends in 1, then the hypothesis is 0i′+1;
3. If some 0 in the memory is not preceded by a 1, then the hypothesis is

0i−11i′−i+1 for the least i such that the i-th 0 is not preceded by a 1;
4. If some 0 in the memory is not marked then the hypothesis is 0i2i′−i for the

least i such that the position representing 0i is not marked;
5. If some 1 is not marked then the hypothesis is 0i1j2j′−j where j is such that

0i1j is represented by the position of the leftmost unmarked 1 and j′ is the
number of 1s between the i-th and (i + 1)-st 0s in memory;

6. If all positions are marked and the lengths of all maximal words represented,
except for the maximal word v, share the same parity, then the hypothesis is
v1;

7. If none of the above conditions applies then the hypothesis is 3i′+1, which is
the set of all words in S of length up to i′.

Note that in order to check the sixth case, the transducer can always count the
number of 0s up to the current position modulo 2, and then count the number
of 1s following this 0 modulo 2. Also, the transduced learner can easily verify for
any particular case that none of the earlier cases applies. Thus, the learner can
generate the hypothesis based on the above.

The memory keeps track of all data seen in the above described data struc-
ture. Also, the hypothesis is computed in such a way that it is correct whenever
all of the shortest f(n) members of S except perhaps one have been seen, but no
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longer data have been observed. As an example, the following table illustrates
data, memory and hypothesis updates of the learner. The initial memory is ε
and the old memory is always the new memory of the previous step.

Datum New memory w Words in Lw

1 1′ ε None

01 1′01′ 00 ε, 0, 1, 01, 11

ε ′1′01′ 00 ε, 0, 1, 01, 11

00 ′1′01′0′ 02 ε, 1, 00, 01, 11

0 ′1′0′1′0′ 11 ε, 0, 1, 00, 01

11 ′1′1′0′1′0′ 333 ε, 0, 1, 00, 01, 11

The above example illustrates parts of the proof. 
�
The previous proof can be generalised to larger alphabet sizes; however, one has
to fix the alphabet size and exponent of the polynomial. Thus both preceding
results give the following corollary, in which the bound Θ(nk) for the family
given by Lk indicates that one can learn with memory size O(nk), but every
learner needs at least memory size Ω(nk).

Corollary 6. Suppose Σ has k symbols 0, 1, . . . , k−1, and let Sk be {0}∗ · {1}∗ ·
. . . · {k − 1}∗. Let Lk be the class of all Lvw =

{
x ∈ Sk : |x| ≤ |vw| and x �= v

}

for all w ∈ {k}∗ and v ∈ {0}∗ ·{1}∗ · . . . ·{k−1}∗, and Lw be
{
x ∈ Sk : |x| < |w|}

for all w ∈ {k + 1}+. Note that the number of elements in Sk of length at most
n is f(n) =

(
n+k

k

)
=

∑
m≤n

(
m+k−1

k−1

)
. Now, Lk can be learnt by a transduced

learner with a memory length bound of Θ(nk), where n is the length of the
longest example seen so far.

An additional corollary to Proposition 5 can be obtained with respect to target-
sized learners. The result uses the following fact which Jain et al. [14] showed
for all automatic families: there is a constant c such that for each language Le,
if words in the language Le have at most length n then the shortest index d of
Le has at most length n+ c. Stephan [25] defined a learner to have a target-sized
memory bound if the length of the memory is never longer than the length of the
shortest index of the language being learnt plus a constant. If one relaxes this
bound by just requiring the existence of a function f such that the memory is
never longer than f(n) with n being the size of the shortest index of the target,
then one can get the following corollary.

Corollary 7. The class Lk (from Corollary 6) of all subsets of {0}∗ · {1}∗ · . . . ·
{k−1}∗ of words up to length n except perhaps one, can be learnt by a transduced
learner with target-sized memory of size O(f(n)), where f(n) =

(
n+k

k

)
, but not

with any better memory constraint, except for a multiplicative constant.
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The class of all languages of binary words up to length n except perhaps for
one can be learnt by a transduced learner with exponential target-sized memory.

The class of all Lw = {v ∈ Σ∗ : ε <ll v ≤ll w} with w �= ε and Lε = Σ∗

cannot be learnt with any type of target-sized memory.

Proposition 8. If an automatic class can be explanatorily learnt from text then
there is a transduced learner for the same class which learns it with O(cn) sized
memory where c is some constant that depends only on the class and where n is
the size of the longest datum seen so far.

4 A Space Bound for Learning All Learnable Transduced
Classes

A learner M is set-driven [21] if for all sequences σ and τ such that content(σ) is
equal to content(τ), M’s memory and hypothesis are the same after seeing either
σ or τ . It is first shown that every learnable transduced family can be learnt by a
set-driven recursive learner, which can be obtained uniformly from a transducer
learner for the family. This learner is defined for all transduced families. However,
for unlearnable families, the learner will fail on some input texts. The learner
employs the properties of transduced families listed in Proposition 1.

A tell-tale set for a language L with respect to a class L of languages is a
finite subset D of L such that for all L′ ∈ L, if D ⊆ L′ ⊆ L then L′ = L. Angulin
[1] has shown that for any learnable family of languages L, every language in L
has a tell-tale with respect to L.

Proposition 9. For every learnable transduced family L = {Le : e ∈ I}, some
set-driven recursive learner learns that family. Furthermore, this learner can be
effectively obtained from the transducer describing the transduced family.

Hence for some recursive function g, the memory of the recursive learner is
bounded by g(n) where n is the length of the longest datum seen so far.

Proof. The learner is given by the following algorithm. Let D = {a1, a2, . . . , am}
be the set of words observed in the input so far (where each ai is distinct). Let
f(D) be the length-lexicographically least index e with D ⊆ Le (note that by
Proposition 1, this can be found effectively). Let n be the maximum of

– the length of the description of the DFA accepting I,
– the length of the description of the transducer accepting the set defined as

{(e, x) : x ∈ Le, e ∈ I} for the transduced family {Le : e ∈ I} to be learnt,
– the alphabet size for the transduced family and
– the lengths |a1|, |a2|, . . ., |am| of all words in D.

Now the learner M chooses the first of the following options which applies:

1. If there is an e ∈ I with Le = D then M outputs the length-lexicographically
least such e (by Proposition 1, this is decidable for transduced families);
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2. If f(D) is defined, because there is e with D ⊆ Le, then M selects the length-
lexicographically least index e of length at most |f(D)|+n such that D ⊆ Le

and there is no index d of length at most |f(D)| + n with D ⊆ Ld ⊂ Le;
3. Otherwise, D is not consistent with any hypothesis in the family and M

outputs ? to signal that there is no valid conjecture.

By definition, M is set-driven. Furthermore, if the input language Le is finite
then M will converge to its length-lexicographically least index after having seen
all elements. If Le is infinite then there must exist a finite subset D of L (a tell-
tale set) such that there is no language Ld in L such that D ⊆ Ld ⊂ Le. Thus,
for large enough n, and thus after having received large enough datum, step 2
would output the least index for Le. Thus, M learns all languages in L.

For the function g, note that there are only finitely many pairs of descriptions
of transduced families {Le : e ∈ I} and data sets D ⊆ {0, 1, . . . , n − 1}∗ such
that their size is bounded by n. One can therefore take g(n) to be the maximum
of the space used by the algorithm when run with the given parameterisation
describing the transduced family and the data set D as input. The number g(n)
can be algorithmically computed from n. 
�
Proposition 10. If a class has a set-driven recursive learner using space bound
g(n), then it also has a transduced learner using space bound g(n) + cn for its
memory, for some constant c, with n denoting the size of the longest datum seen
so far.

5 Conclusion and Subsequent Work

It was demonstrated that whereas many questions on memory usage remain
open for automatic learners, transduced learners that learn a transduced family
can always bound the memory size as a function of the longest datum seen so
far. When learning automatic families, concrete bounds have been found, and a
hierarchy of polynomial and exponential bounds has emerged. It has been shown
that every family can be learnt using some exponential bound.

Subsequent work addressed the question of the extent to which transduced
learners can satisfy additional properties like consistency [2], conservativeness
[1,22] and iterativeness [26]. Many learners constructed here can be made itera-
tive; furthermore, transduced learners can be made consistent and conservative,
similarly to the polynomial-time setting [7]; however, these criteria cannot be
combined with more restrictive memory-limitations. These results have been
delayed to the full version of the paper due to space limitations.
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