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Preface

These proceedings contain the papers that were presented at the 12th International
Conference on Language and Automata Theory and Applications (LATA 2018), held
at Bar-Ilan University near Tel Aviv, Israel, during April 9–11, 2018.

The scope of LATA is rather broad, including: algebraic language theory,
algorithms for semi-structured data mining, algorithms on automata and words, auto-
mata and logic, automata for system analysis and program verification, automata
networks, automatic structures, codes, combinatorics on words, computational com-
plexity, concurrency and Petri nets, data and image compression, descriptional com-
plexity, foundations of finite-state technology, foundations of XML, grammars
(Chomsky hierarchy, contextual, unification, categorial, etc.), grammatical inference
and algorithmic learning, graphs and graph transformation, language varieties and
semigroups, language-based cryptography, mathematical and logical foundations of
programming methodologies, parallel and regulated rewriting, parsing, patterns, power
series, string processing algorithms, symbolic dynamics, term rewriting, transducers,
trees, tree languages and tree automata, weighted automata.

LATA 2018 received 58 submissions. Every paper was reviewed by three Pro-
gramme Committee members. There were also a few external experts consulted. After a
thorough and vivid discussion phase, the committee decided to accept 20 papers (which
represents a competitive acceptance rate of about 34%). The conference program
included five invited talks as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

January 2018 Shmuel Tomi Klein
Carlos Martín-Vide

Dana Shapira
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Constraint Satisfaction Problems:
Complexity and Algorithms

Andrei A. Bulatov(B)

School of Computing Science, Simon Fraser University,
8888 University Drive, Burnaby, Canada

abulatov@sfu.ca

Abstract. In this paper we briefly survey the history of the Dichotomy
Conjecture for the Constraint Satisfaction problem, that was posed 25
years ago by Feder and Vardi. We outline some of the approaches to this
conjecture, and then describe an algorithm that yields an answer to the
conjecture.

1 Constraint Satisfaction Problem

We begin with definitions, examples and brief historical remarks on the
Constraint Satisfaction Problem.

1.1 The Problem

The archetypal example of the Constraint Satisfaction Problem is a Sudoku
puzzle, see, Fig. 1: One needs to assign values to every cell of the puzzle so
that the assignment satisfies certain constraints, such as the values in every
row, column, and smaller block are different. This example can be naturally
generalized in the following way. In the definition below tuples of elements are
denoted in boldface, say, a, and the ith component of a is referred to as a[i].

Definition 1. Let A1, . . . , An be finite sets. An instance I of the Constraint
Satisfaction Problem (CSP for short) over A1, . . . , An consists of a finite set of
variables V such that each v ∈ V is assigned a domain Aiv

, iv ∈ {1, . . . , n},
and a finite set of constraints C. Each constraint is a pair 〈s, R〉 where R is a
relation over A1, . . . , An (say, k-ary), often called the constraint relation, and s
is a k-tuple of variables from V , called the constraint scope. Let σ : V → A =
A1∪· · ·∪An with σ(v) ∈ Aiv

; we write σ(s), for (σ(s[1]), . . . , σ(s[k])). A solution
of I is a mapping σ : V → A such that for every constraint 〈a, R〉 ∈ C we have
σ(s) ∈ R. The objective in the CSP is to decide whether or not a solution of a
given instance I exists.

This research was supported by an NSERC Discovery grant.

c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 1–25, 2018.
https://doi.org/10.1007/978-3-319-77313-1_1
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2 A. A. Bulatov

Fig. 1. A Sudoku puzzle as a CSP. The ellipses inducate some of the constraints

Since its inception in the early 70s [59], the CSP has become a very popular
and powerful framework, widely used to model computational problems first in
artificial intelligence, [34] and later in many other areas.

Modeling a specific computational problem usually gives rise to a restricted
CSP. Such restrictions can be imposed either on the type of the allowed con-
straint relations, or on the way the constraint scopes interact, or both. Restric-
tions of the first kind—the main subject of this paper—are usually given by
specifying a constraint language, that is, a set of relations Γ over a set, or a
collection of sets such that every constraint relation has to belong to Γ . More
formally, let A1, . . . , A� be finite sets and Γ a set (finite or infinite) of relations
over A1, . . . , A�, called a constraint language. Then CSP(Γ ) is the class of all
instances I of the CSP such that R ∈ Γ for every constraint 〈s, R〉 from I. The
following examples are just a few of the problems representable as CSP(Γ ).

k-Col The standard k-Coloring problem has the form CSP(Γk−Col), where
Γk−Col = {�=k} and �=k is the disequality relation on a k-element set
(of colours).

3-SAT An instance of the 3-SAT problem is a propositional logic formula in
CNF each clause of which contains 3 literals, and asking if it has a sat-
isfying assignment. Thus, 3-SAT is equivalent to CSP(Γ3SAT), where
Γ3SAT is the constraint language on {0, 1} and containing relations
R1, . . . , R8, which are the 8 ternary relations that can be expressed by
a 3-clause.

Lin Let F be a finite field and let 3Lin(F ) be the problem of deciding the
consistency of a system of linear equations over F each of which con-
tains at most 3 variables. Then 3Lin(F ) is equivalent to CSP(Γ3Lin(F )),
where Γ3Lin(F ) is the constraint language over F whose relations are
given by an equation with at most 3 variables.

MonEq Let M be a monoid (or a semigroup). An equation over M is an expres-
sion of the form t = s, where t and s are words that involve indeter-
minates and constants from M . A solution of t = s is an assignment
of elements from M to the indeterminates such that t and s evaluate
to the same element of M . In the problem MonEq(M) we are given
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a system of equations over monoid M , and the objective is to decide,
whether or not there exists an assignment to the indeterminates that is
a solution for each of the given equations. Similar to 3Lin, MonEq(M)
is the problem CSP(ΓMonEq(M)), where ΓMonEq(M) is the constraint lan-
guage consisting of all relations representable by an equation over M .
Note that ΓMonEq(M) is infinite in general.

1.2 Logic and Databases

The next step in the CSP research was motivated by its applications in the theory
of relational databases. The Query Evaluation problem can be thought of as
deciding whether a first order sentence in the vocabulary of a database is true
in that database (that is, whether or not the query has an answer). The Query

Containment problem asks, given two queries Φ and Ψ , whether Φ → Ψ is
true in any database with the appropriate vocabulary. The former problem is
of course the main problem relational databases are needed for, while the latter
is routinely used in various query optimization techniques. It turns out that
both problems have intimate connections to the CSP, if the CSP is properly
reformulated. We need some terminology from model theory.

A vocabulary is a finite set of relational symbols R1, . . . , Rn each of which
has a fixed arity ar(Ri). A relational structure over vocabulary R1, . . . , Rn is a
tuple H = (H;RH

1 , . . . , RH
n ) such that H is a non-empty set, called the universe

of H, and each RH
i is a relation over H having the same arity as the symbol Ri.

A sentence is said to be a conjunctive query if it only uses existential quantifiers
and its quantifier-free part is a conjunction of atomic formulas.

Definition 2. An instance of the CSP is a pair (Φ,H), where H is a relational
structure in a certain vocabulary, and Φ is a conjunctive sentence in the same
vocabulary. The objective is to decide whether Φ is true in H.

To see that the definition above is equivalent to the original definition of the
CSP, we consider its special case, k-Colouring. The vocabulary corresponding
to the problem contains just one binary predicate R �=. Let Hk be the relational
structure with universe [k] = {1, . . . , k} in the vocabulary {R �=}, where RHk

�= is
interpreted as the disequality relation on the set [k]. (In the future we will tend
to omit the superscripts indicating an interpretation, whenever it does not lead
to a confusion.) Then an instance G = (V,E) of k-Colouring is equivalent to
testing whether conjunctive sentence

∧
(u,v)∈E R �=(u, v) (we omit the quantifier

prefix) is true in H.
The Query Evaluation problem is thus just the CSP, when restricted to

conjunctive queries. A database is then cosidered as the input relational struc-
ture. The Chandra-Merlin Theorem [29] shows that the Query Containment

problem is also equivalent to the CSP.
Relational database theory also massively contributed to the CSP research,

most notably by techniques related to local propagation algorithms and the logic
language Datalog. We will return to this subject in Sect. 3.1.
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1.3 Homomorphisms and Dichotomy

The complexity of the CSP and its solution algorithms have been a major theme
since the problem was introduced. The general CSP is NP-complete, as it can
be easily shown. However, various restrictions of the CSP may result in more
tractable problems. Papers [36,37] by Feder and Vardi marked the beginning of a
systematic research of the complexity of the CSP. Among the numerous insights
of this paper, it introduced a new definition of the CSP.

Let G and H be relational structures over the same vocabulary. A homomor-
phism from G to H is a mapping ϕ : G → H from the universe G of G (the
instance) to the universe H of H (the template) such that, for every relation RG

of G and every tuple a ∈ RG , we have ϕ(a) ∈ RH.

Definition 3. An instance of the CSP is a pair of relational structures G,H
over the same vocabulary. The objective is to decide whether or not there exists
a homomorphism from G to H.

The homomorphic definition of the CSP makes its restricted version very ele-
gant. Let H be a relational structure. An instance of the nonuniform constraint
satisfaction problem CSP(H) is a structure G over the same vocabulary as H,
and the question is whether there is a homomorphism from G to H.

We again illustrate the correspondence between the definition above and
Definition 1 with an example. Consider again the k-Colouring problem, and
let Hk denote the relational structure with universe [k] over vocabulary {R �=}
and RHk

�= is interpreted as the disequality relation. In other words, Hk = Kk is
a complete graph with k vertices. Then a homomorphism from a given graph
G = (V,E) to Kk exists if and only if it is possible to assign vertices of Kk

(colours) to vertices of G in such a way that for any (u, v) ∈ E the vertices u
and v are assigned different colours. The latter is just a proper k-colouring of G.

Using the homomorphism framework the k-Colouring problem can be gen-
eralized to the H-Colouring problem, where H is a graph or digraph: Given
a (di)graph G, decide whether or not there is a homomorphism from G to H.
Using the CSP notation the H-Colouring is CSP(EH), where EH denotes the
edge relation of H. The H-Colouring problem has received much attention in
graph theory, see, e.g. [48,49].

Feder and Vardi in [36,37] also initiated the line of research that is central
for this paper, the study of the complexity of nonuniform CSPs. They observed
that in all known cases a nonuniform CSP either can be solved in polynomial
time, e.g. CSP(Γ3Lin) or 2-Colouring, or is NP-complete, e.g., 3-SAT or k-
Colouring for k > 2. Two results were quite suggestive at that point. The first
one is the classification of the complexity of CSP(H) for 2-element structures (or
the Generalized Satisfiability problem, as it was referred to) by Schaefer
[68]; who proved that every such problem is either solvable in polynomial time,
or is NP-complete. The second result by Hell and Nešetřil [49] establishes that
the H-Colouring problem, where H is a graph, follows the same pattern: The
H-Colouring problem can be solved in polynomial time if H is bipartite or
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has a loop, and it is NP-complete otherwise. This allowed Feder and Vardi to
pose the following

Conjecture 4 (The Dichotomy Conjecture). For every finite relational structure
H the problem CSP(H) is either solvable in polynomial time or is NP-complete.

Most of the remaining part of this paper is devoted to resolving the
Dichotomy Conjecture.

1.4 The Other Side and Other Types

In nonuniform CSPs we restrict a constraint language or a template relational
structure. Clearly, other kinds of restrictions are also possible. For instance, in
database theory one cannot assume any restrictions on the possible content of a
database—which is a template structure in the Conjunctive Query Evalua-

tion problem—but some restrictions on the possible form of queries make much
sense. If a CSP is viewed as in Definition 1, the cosntraint scopes of an instance
I form a hypergraph on the set of variables. In a series of works [40,43,44,46,47]
it has been shown that if this hypergraph allows some sort of decomposition, or
is tree-like, then the CSP can be solved in polynomial time. The tree-likeness
of a hypergraph is usually formalized as having bounded treewidth, or bounded
hypertree width, or bounded fractional hypertree width. This line of work cul-
minated in [64], in which Marx gave an almost tight description of classes of
hypergraphs that give rise to a CSP solvable in polynomial time. Hybrid restric-
tions are also possible, although research in this direction has been more limited,
see, [30,38,39] as an example.

Along with the decision version of the CSP, other versions of the problem
have been intensively studied, see, [31] for definitions and early results on many
of them. These include the Quantified CSP, which is the problem of checking
whether or nor a conjunctive sentence allowing both universal and existential
quantifiers is true in a given relational structure [11]. In the MaxCSP one needs
to maximize the number of satisfied constraints. Note that often constraints in
MaxCSP are considered weighted and the the problem is to maximize the total
weight of satisfied constraints. Another variation of this problem is Valued CSP,
in which the constraints are replaced by functions that give a weight to each
assignment. The problem is to minimize (or maximize) the weight of an assign-
ment. This problem has been considered for both exact optimization [56,57,69]
and approximation algorithms [5,33,66]. The Counting CSP has received much
attention, particularly due to its connections to statistical physics. In this prob-
lem the goal is to count the number of solutions of a CSP (the unweighted version)
or to evaluate the total weight of the assignments (the weighted version). The
complexity of exact counting is well understood [18,28,35], while approximate
counting remains a largely open area [54].

2 Algebraic Approach

The most successful approach to tackling the Dichotomy Conjecture turned out
to be the algebraic one. In this section we introduce the algebraic approach to the
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CSP and show how it can be used to determe the complexity of nonuniform CSPs.
A keen reader can find more details on the algebraic approach, its applications,
and the underlying algebraic facts from the following books [45,50], surveys
[6,7,26,27], and research papers [2–4,9,16,17,19,24,25,51].

2.1 Primitive Positive Definitions

Let Γ be a set of relations (predicates) over a finite set A. A relation R over A
is said to be primitive-positive (pp-) definable in Γ if R(x) = ∃y Φ(x,y), where
Φ is a conjunction that involves predicates from Γ and equality relations. The
formula above is then called a pp-definition of R in Γ . A constraint language Δ
is pp-definable in Γ if so is every relation from Δ. In a similar way pp-definability
can be introduced for relational structures.

Example 5. Let K3 = ([3], E) be a 3-element complete graph. Its edge relation
is the binary disequality relation on [3]. Then the pp-formula

Q(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)
∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the relation Q that consists of all triples containing exactly 2 different
elements from [3].

A link between pp-definitions and reducibility between nonuniform CSPs was
first observed in [52].

Theorem 6 ([52]). Let Γ and Δ be constraint languages and Δ finite. If Δ is
pp-definable in Γ then CSP(Δ) is polynomial time reducible1 to CSP(Γ ).

It was later shown that pp-definability in Theorem6 can be replaced with a
more general notion of pp-constructibility [7,8].

2.2 Polymorphisms and Invariants

Primitive positive definability can be concisely characterized using polymor-
phisms. An operation f : Ak → A is said to be a polymorphism of a relation
R ⊆ An if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak) also belongs to R, where
f(a1, . . . ,ak) stands for (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n])). Operation
f is a polymorphism of a constraint language Γ if it is a polymorphism of every
relation from Γ . Similarly, operation f is a polymorphism of a relational structure
H if it is a polymorphism of every relation of H. The set of all polymorphisms of
language Γ or relational structure H is denoted by Pol(Γ ), Pol(H). If F is a set
of operations, Inv(F ) denotes the set of all relations R such that every operation
from F is a polymorphism of R.

1 In fact, due to the result of [67] this reduction can be made log-space.
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Example 7. Let R be an affine relation, that is, R is the solution space of a system
of linear equations over a field F . Then the operation f(x, y, z) = x − y + z is
a polymorphism of R. Indeed, let A · x = b be the system defining R, and
x,y, z ∈ R. Then

A · f(x,y, z) = A · (x − y + z) = A · x − A · y + A · z = b.

In fact, the converse can also be shown: if R is invariant under f , where f is
defined in a certain finite field F then R is the solution space of some system of
linear equations over F .

Example 8. In [55] it was shown that MonEq(M) for a monoid M can be solved
in poltnomial time if and only if M is commutative and is the union of its sub-
groups. If this is the case then the operation t(x, y, z) = xyω−1z is a polymor-
phism of ΓMonEq(M) (see also [58]). Here xω denotes the power of x such that
xω is an idempotent of M .

Several other useful polymorphisms are the following

Example 9 ([24,52,53]). (1) A binary semilattice operation.

(2) A k-ary operation g on A is called a near-unanimity operation, or NU if

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y) = x

for any x, y ∈ A. A ternary NU is also referred to as a majority operation.
(3) A k-ary operation g on A is called a weak near-unanimity operation, or

WNU if it satisfies all the equations of an NU except for the last one

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y).

(4) A ternary operation h on A is called Mal’tsev if

h(x, y, y) = h(y, y, x) = x

for any x, y ∈ A. As we saw in Example 7 any structure whose relations can
be represented by linear equations has the Mal’tsev polymorphism x− y + z
where + and − are the operations of the underlying field. Note that the
operation xyω−1z from Example 8 is not necessarily Mal’tsev.

(5) If every polymorphism f of a relational structure H is such that
f(x1, . . . , xn) = xi for some i and all x1, . . . , xn ∈ H, then CSP(H) is
NP-complete.

(6) Schaefer’s Theorem [68] can be stated in terms of polymorphisms. Let H be
a 2-element relational structure (we assume its universe to be {0, 1}). The
problem CSP(H) is solvable in polynomial time if and only if one of the
following operations is a polymorphism of H: the constant operations 0 or 1,
the semilattice operations of conjunction and disjunction, the majority oper-
ation on {0, 1} (there is only one such operation), or the Mal’tsev operation
x − y + z where + and − are modulo 2. Otherwise CSP(H) is NP-complete.
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A link between polymorphisms and pp-definability of relations is given by
Galois connection.

Theorem 10 (Galois connection, [10,42]). Let Γ be a constraint language
on A, and let R ⊆ An be a non-empty relation. Then R is preserved by all
polymorphisms of Γ if and only if R is pp-definable in Γ .

2.3 Algebras and the CSP

Recall that a (universal) algebra is an ordered pair A = (A,F ) where A is a
non-empty set, called the universe of A, and F is a family of finitary operations
on A, called the basic operations of A. Operations that can be obtained from F
by means of composition are said to be term operations of the algebra. Every
constraint language on a set A can be associated with an algebra Alg(Γ ) =
(A,Pol(Γ )). In a similar way any relational structure A (with universe A) can be
paired up with the algebra Alg(A) = (A,Pol(A)). On the other hand, an algebra
A = (A,F ), can be associated with the constraint language Inv(F ) or the class
Str(A) of structures A = (A,R1, . . . , Rk) such that R1, . . . , Rk ∈ Inv(F ).

This correspondence can be extended to CSPs: For an algebra A by CSP(A)
we denote the class of problems CSP(A), A ∈ Str(A). Equivalently, CSP(A)
can be thought of as CSP(Inv(F )) for the infinite constraint language Inv(F ).
Note, however, that there is a subtle difference in the notion of polynomial time
solvability in these two cases that we will address next.

We say that algebra A is tractable if every CSP(A), A ∈ Str(A), is solv-
able in polynomial time. Observe that this does not guarantee that there is
a single solution algorithm for all such problems, nor it guarantees that there
is any uniformity among those algorithms. In general, it is plausible that for
a tractable algebra A = (A,F ) the problem CSP(Inv(F )) is NP-hard. If the
problem CSP(Inv(F )) is solvable in polynomial time, we call A globally tractable.
Algebra A is called NP-complete if some CSP(A), A ∈ Str(A) is NP-complete.
Algebra A is globally NP-complete if CSP(Inv(F )) is NP-complete.

Using the algebraic terminology we can pose a stronger version of the
Dichotomy Conjecture.

Conjecture 11 (Dichotomy Conjecture+). Every finite algebra is either globally
tractable or NP-complete (in the local sense).

Our next goal is to make Conjecture 11 more precise. We achieve this goal in
Sect. 2.4, while now we observe that the standard algebraic constructions behave
quite well with respect to reducibility between CSPs.

Theorem 12 ([25]). Let A = (A;F ) be a finite algebra. Then

(1) if A is tractable then so is every subalgebra, homomorphic image, and direct
power of A.

(2) if A has a NP-hard subalgebra, homomorphic image, or direct power, then
A is NP-hard.
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Fig. 2. (a) Algebra AM . (b) The congruence lattice of AM

More reducibility properties related to term operations of an algebra can
be proved. Recall that an operation f on a set A is said to be idempotent if
the equality f(x, . . . , x) = x holds for all x ∈ A. An algebra all of whose term
operations are idempotent is said to be idempotent.

Theorem 13 ([25]). For any finite algebra A there is an idempotent finite alge-
bra B such that:

– A is globally tractable if and only if B is globally tractable;
– A is NP-complete if and only if B is NP-complete.

Theorem 13 reduces the Dichotomy Conjecture+ 11 to idempotent algebras.

Example 14. The next example will be our running example throughout the
paper. Let A = {0, 1, 2}, and let AM be the algebra with universe A and two
basic operations: a binary operation r such that r(0, 0) = r(0, 1) = r(2, 0) =
r(0, 2) = r(2, 1) = 0, r(1, 1) = r(1, 0) = r(1, 2) = 1, r(2, 2) = 2; and a ternary
operation t such that t(x, y, z) = x − y + z if x, y, z ∈ {0, 1}, where +,− are
the operations of Z2, t(2, 2, 2) = 2, and otherwise t(x, y, z) = t(x′, y′, z′), where
x′ = x if x ∈ {0, 1} and x′ = 0 if x = 2; the values y′, z′ are obtained from
y, z by the same rule. It is an easy excercise to verify the following facts: (a)
B = ({0, 1}, r{0,1}, t{0,1}) and C = ({0, 2}, r{0,2}, t{0,2}) are subalgebras of AM ,
(b) the partition {0, 1}, {2} is a congruence of AM , let us denote it θ, (c) algebra C

is basically a semilattice, that is, a set with a semilattice operation, see Fig. 2(a).
The classes of congruence θ are 0θ = {0, 1}, 2θ = {2}. Then the quotient

algebra AM/θ is also basically a semilattice, as r/θ(0θ, 0θ) = r/θ(0θ, 2θ) =
r/θ(2θ, 0θ) = 0θ and r/θ(2θ, 2θ) = 2θ. �

2.4 The CSP and Omitting Types

In the 1980s Hobby and McKenzie developed tame congruence theory that stud-
ies the local structure of algebras [50]. They discovered that the local structure
of universal algebras is surprisingly well behaved and can be classified into just
five types. Each type is associated with a certain basic algebra, and if an algebra
admits a type, it means that its local structure resembles that of the correspond-
ing basic algebra. The five basic algebras and corresponding types are:
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1. A unary algebra whose basic operations are permutations (unary type);
2. A one-dimensional vector space over some finite field (affine type);
3. A 2-element boolean algebra whose basic operations include conjunction, dis-

junction, and negation (boolean type);
4. A 2-element lattice whose basic operations include conjunction and disjunc-

tion (lattice type);
5. A 2-element semilattice whose basic operations include a semilattice operation

(semilattice type).

Omitting or admitting types is strongly related to the complexity of the CSP.
Theorem 5 from [25] claims that if a relational structure A is such that Alg(A) is
idempotent and admits the unary type then CSP(A) is NP-complete. Combined
with Theorem 12 this allows for a more precise Dichotomy Conjecture.

Conjecture 15. If a relational structure A is such that Alg(A) is idempotent, then
CSP(A) is solvable in polynomial time if and only if no subalgebra of Alg(A)
admits the unary type. Otherwise it is NP-complete.

Or in the stronger algebraic version.

Conjecture 16 (Dichotomy Conjecture ++). An idempotent algebra A is globally
tractable if and only if none of its subalgebras admits the unary type. Otherwise
it is NP-complete.

The results [63] imply that the latter condition in Conjecture 16 is also equiv-
alent to the existence of a weak near-unanimity term operation in A.

Conjecture 16 has been confirmed in a number of special cases.

– Schaefer’s classification of 2-element structures [68] with respect to complexity
can be easily extended to 2-element algebras. Then it claims that an idem-
potent 2-element algebra is globally tractable if and only if it has one of the
following term operations: a semilattice operation, a majority operation, or
the affine operation x−y+z. By [65] this is equivalent to having a term weak
near-unanimity operation.

– Let H be a graph, A = Alg(H), and let B the idempotent algebra constructed
from A as in Theorem 13. If H is bipartite then B is 2-element and has a
majority term operation. Otherwise B admits the unary type [15]. Thus the
classification from [49] matches the Dichotomy Conjecture++.

– The Dichotomy Conjecture++ was confirmed for 3-element algebras in [12,
16], and for 4-element algebras in [61].

– It was shown in [13,17] that the Dichotomy Conjecture++ holds for conser-
vative algebras, that is, algebras in which every subset of the universe is a
subalgebra. These results have also been simplified in [1,19].

– Finally, Zhuk in [70,71] proved the conjecture for 5- and 7-element algebras.

In the rest of this paper we show that Conjecture 16 is true. The hardness
part of the conjecture follows from the mentioned result of [25]; so we focus
on the algorithmic part. The algorithm presented here is based on [23] (a full
version can be found in [22]). Note that the conjecture was also independently
proved by Zhuk [72].
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3 CSP Algorithms

It would be natural to expect a wide variety of algorithms solving the CSP in
those cases in which it can be solved in polynomial time. However, surprisingly,
only two types of such algorithms are known, and for each type there is ‘the
most general’ algorithm, which means that basically only two CSP algorithms
exist.

3.1 Local Propagation Algorithms

The first type can be described as local propagation algorithms. We describe one
such algorithm, applicable whenever any other propagation algorithm solves the
problem.

Let R ⊆ An be a relation, a ∈ An, and J = {i1, . . . , ik} ⊆ [n]. Let prJa =
(a[i1], . . . ,a[ik]) and prJR = {prJa : a ∈ R}. Often we will use sets of CSP
variables to index entries of tuples and relations. Projections in such cases are
defined in a similar way. Let I = (V, C) be a CSP instance. For W ⊆ V by IW

we denote the restriction of I onto W , that is, the instance (W, CW ), where for
each C = 〈s, R〉 ∈ C, the set CW includes the constraint CW = 〈s ∩ W,prs∩W R〉.
The set of solutions of IW will be denoted by SW .

Unary solutions, that is, when |W | = 1 play a special role. As is easily
seen, for v ∈ V the set Sv is just the intersections of unary projections prvR
of constraints whose scope contains v. Instance I is said to be 1-minimal if
for every v ∈ V and every constraint C = 〈s, R〉 ∈ C such that v ∈ s, it holds
prvR = Sv. For a 1-minimal instance one may always assume that allowed values
for a variable v ∈ V is the set Sv. We call this set the domain of v and assume
that CSP instances may have different domains, which nevertheless are always
subalgebras or quotient algebras of the original algebra A. It will be convenient
to denote the domain of v by Av. The domain Av may change as a result of
transformations of the instance.

Instance I is said to be (2,3)-minimal if it satisfies the following condition:
– for every X = {u, v} ⊆ V , any w ∈ V −X, and any (a, b) ∈ SX , there is c ∈ Aw

such that (a, c) ∈ S{u,w} and (b, c) ∈ S{v,w}.
For k ∈ N, (k, k + 1)-minimality is defined in a similar way using k, k + 1.

Instance I is said to be minimal (or globally minimal) if for every C =
〈s, R〉 ∈ C and every a ∈ R there is a solution ϕ such that ϕ(s) = a. Similarly, I
is said to be globally 1-minimal if for every v ∈ V and a ∈ Av there is a solution
ϕ with ϕ(v) = a.

Any instance can be transformed to a 1-minimal or (2,3)-minimal instance
in polynomial time using the standard constraint propagation algorithms (see,
e.g. [34]). These algorithms work by changing the constraint relations and the
domains of the variables eliminating some tuples and elements from them. We
call such a process tightening the instance. It is important to notice that if the
original instance belongs to CSP(A) for some algebra A, that is, all its constraint
relations are invariant under the basic operations of A, the constraint relations
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obtained by propagation algorithms are also invariant under the basic opera-
tions of A, and so the resulting instance also belongs to CSP(A). Establishing
minimality amounts to solving the problem and so not always can be easily done.

If a constraint propagation algorithm solves a CSP, the problem is said to be
of bounded width. More precisely, CSP(Γ ) (or CSP(A)) is said to have bounded
width if for some k every (k, k + 1)-minimal instance from CSP(Γ ) (or CSP(A))
has a solution (we also say that CSP(Γ ) has width k in this case). Problems of
bounded width are well studied, see the older survey [26] and more recent [2].

Theorem 17 ([2,14,21,60]). For an idempotent algebra A the following are
equivalent:

(1) CSP(A) has bounded width;
(2) every (2,3)-minimal instance from CSP(A) has a solution;
(3) A has a weak near-unanimity term of arity k for every k ≥ 3;
(4) every quotient algebra of a subalgebra of A has a nontrivial operation, and

none of them is equivalent to a module (in a certain precise sense).

Example 18. (1) The 2-SAT problem has bounded width, namely, width 2.

(2) The H-Colouring problem has width 2 when graph H is bipartite, and
NP-complete otherwise.

(3) The Horn-SAT is the Satisfiability problem restricted to Horn clauses,
i.e., clauses of the form x1 ∧ · · · ∧ xk → y. Let Γk-Horn be the constraint
language consisting of relations expressible by a Horn clause with at most
k premises. The problem k-Horn-SAT is equivalent to CSP(Γk-Horn) and
has width k.

3.2 Gaussian Elimination and Few Subpowers

The simplest algorithm of the second type is known from basic linear algebra—
Gaussian elimination. While propagation algorithms cannot solve the Lin prob-
lem, it is solvable by Gaussian elimination. A similar algorithm solving group
constraints, defined in terms of finite groups, was suggested in [37].

Algebraic techniques make it possible to generalize the Gaussian elimination
algorithm. The algorithm from [24] solving CSP(A) for a relational structure A
with a Mal’tsev polymorphism can be viewed as a generalization of Gaussian
elimination in the following sense. Similar to the output of Gaussian elimination
it constructs some sort of a basis or a compact representation of the set of all
solutions of a CSP.

It is thought that the property of relations to have a compact representation,
where compactness is understood as having size polynomial in the arity of the
relation, is the right generalization of linear algebra problems where Gaussian
elimination can be used. Let A = (A,F ) be an algebra. It is said to be an algebra
with few subpowers if every relation over A invariant under F admits a compact
representation [9,51]. The term ‘few subpowers’ comes from the observation that
every relation invariant under F is a subalgebra of a direct power of A, and if
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the size of compact representation is bounded by a polynomial p(n) then at
most 2p(n) n-ary relations can be represented, while the total number of such
relations can be as large as 2|A|n . Algebras with few subpowers are completely
characterized by Idziak et al. [9,51]. A minor generalization of the algorithm
from [32] solves CSP(A), where A has few subpowers.

Here the few subpowers algorithm is used in the context of semilattice edges.
A pair of elements a, b ∈ A is said to be a semilattice edge if there is a binary
term operation f of A such that f(a, a) = a and f(a, b) = f(b, a) = f(b, b) = b,
that is, f is a semilattice operation on {a, b}. For example, the set {0, 2} from
Example 14 is a semilattice edge, and the operation r of AM witnesses that.

Proposition 19 ([21]). If an idempotent algebra A has no semilattice edges, it
has few subpowers, and therefore CSP(A) is solvable in polynomial time.

Semilattice edges have other useful properties including the following one
that we use for reducing a CSP to smaller problems.

Lemma 20 ([20]). For any idempotent algebra A there is a term operation xy
(think multiplication) such that xy is a semilattice operation on any semilattice
edge and for any a, b ∈ A either ab = a or {a, ab} is a semilattice edge.

Note that any semilattice operation satisfies the conditions of Lemma 20. The
operation r of the algebra AM from Example 14 is not a semilattice operation
(it is not commutative), but it satisfies the conditions of Lemma20.

4 Congruence Separation and Centralizers

We now move on to describe the algorithm resolving the Dichotomy Conjecture.
In this section we introduce two of the key ingredients of our algorithm.

4.1 Separating Congruences

Unlike the vast majority of the literature on the algebraic approach to the CSP
we use not only term operations, but also polynomial operations of an algebra.
It should be noted however that the first to use polynomials for CSP algorithms
was Maroti in [62]. We make use of some ideas from that paper in the next
section. Let f(x1, . . . , xk, y1, . . . , y�) be a k + 	-ary term operation of an algebra
A and b1, . . . , b� ∈ A. The operation g(x1, . . . , xk) = f(x1, . . . , xk, b1, . . . , b�) is
called a polynomial of A. A polynomial for which k = 1 is said to be a unary
polynomial. If α is a congruence, and f is a unary polynomial, by f(α) we denote
the set of pairs {(f(a), f(b)) | (a, b) ∈ α}.

Let A be an algebra and let Con(A) denote its congruence lattice. For α, β ∈
Con(A) we write α ≺ β if α < β (that is, α ⊂ β as sets of pairs) and α ≤ γ ≤ β
in Con(A) implies γ = α or γ = β. If this is the case we call (α, β) a prime
interval in Con(A). Let α ≺ β and γ ≺ δ be prime intervals in Con(A). We say
that α ≺ β can be separated from γ ≺ δ if there is a unary polynomial f of
A such that f(β) �⊆ α, but f(δ) ⊆ γ. The polynomial f in this case is said to
separate α ≺ β from γ ≺ δ.
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Example 21. The unary polynomials of the algebra AM from Example 14 include
the following unary operations (these are the polynomials we will use, there are
more unary polynomials of AM ):

h1(x) = r(x, 0) = r(x, 1), such that h1(0) = h1(2) = 0, h1(1) = 1;
h2(x) = r(2, x), such that h2(0) = h2(1) = 0, h2(2) = 2;
h3(x) = r(0, x) = 0.

The lattice Con(AM ) has two prime intervals 0 ≺ θ and θ ≺ 1 (see Example 14
and Fig. 2(b)). As is easily seen, h3(1) ⊆ 0, therefore h3 collapses both prime
intervals. Since h1(θ) �⊆ 0, but h1(1) ⊆ θ, polynomial h1 separates (0, θ) from
(θ, 1). Similarly, the polynomial h2 separates (θ, 1) from (0, θ), because h2(1) �⊆ θ,
while h2(θ) ⊆ 0. �

In a similar way separation can be defined for prime intervals in different
coordinate positions of a relation. Let R be a subdirect product of A1 ×· · ·×An,
that is, priR = Ai for i ∈ [n]. Then R can also be viewed as an algebra with
operations acting component-wise, and polynomials of R can be defined in the
same way. Since every basic operation acts on R component-wise, its unary
polynomials also act component-wise. Therefore, for a unary polynomial f of R
it makes sense to consider f(a), where a ∈ Ai, i ∈ [n]. Let i, j ∈ [n] and let
α ≺ β, γ ≺ δ be prime intervals in Con(Ai) and Con(Aj), respectively. Interval
α ≺ β can be separated from γ ≺ δ if there is a unary polynomial f of R such
that f(β) �⊆ α but f(δ) ⊆ γ. The binary relation ‘cannot be separated’ on the
set of prime intervals of an algebra or factors of a relation is easily seen to be
reflexive and transitive. We will say that α ≺ β, γ ≺ δ cannot be separated if
α ≺ β and γ ≺ δ cannot be separated from each other.

Example 22. Let R be a ternary relation over AM invariant under r, t, given by

R =

⎛

⎝
0 0 1 1 0 0 1 1 2 2
0 1 1 0 0 1 1 0 2 2
0 0 0 0 1 1 1 1 0 2

⎞

⎠ ,

where triples, the elements of the relation are written vertically. It will be con-
venient to distinguish congruences in the three factors of R, so we denote them
by 0i, θi, 1i for the ith factor. Since pr12R is the congruence θ, any unary poly-
nomial h of R acts identically modulo θ on the first and the second coordinate
positions. In particular, the prime interval (θ1, 11) cannot be separated from the
prime interval (θ2, 12). Consider the polynomial h(x) of R given by

h(x) = r

⎛

⎝

⎛

⎝
2
2
0

⎞

⎠ , x

⎞

⎠ =

⎛

⎝
r(2, x)
r(2, x)
r(0, x)

⎞

⎠ =

⎛

⎝
h2(x)
h2(x)
h3(x)

⎞

⎠ ,

it is a polynomial of R because (2, 2, 0) ∈ R. Since h2(1) �⊆ θ, but h3(1) ⊆ θ
and h3(θ) ⊆ 0, the prime interval (θ2, 12) can be separated from (03, θ3) and
(θ3, 13). Similarly, the interval (θ3, 13) can be separated from (01, θ1), (02, θ2).
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Through a slightly more involved argument it can be shown that (θ3, 13) cannot
be separated from (θ1, 11), (θ2, 12). In the next section we explain why the prime
intervals (0i, θi), (0j , θj) cannot be separated from each other. �

4.2 Quasi-Centralizers

The second ingredient we will use here is the notion of quasi-centralizer of a pair
of congruences. It is similar to the centralizer as it is defined in commutator
theory [41], albeit the exact relationship between the two concepts is not quite
clear, and so we name it differently for safety.

For an algebra A, a term operation f(x, y1, . . . , yk), and a ∈ A
k, let fa(x) =

f(x,a); it is a unary polynomial of A. Let α, β ∈ Con(A), and let ζ(α, β) ⊆ A
2

denote the following binary relation: (a, b) ∈ ζ(α, β) if an only if, for any term
operation f(x, y1, . . . , yk), any i ∈ [k], and any a,b ∈ A

k such that a[i] = a,
b[i] = b, and a[j] = b[j] for j �= i, it holds fa(β) ⊆ α if and only if fb(β) ⊆ α.
(Polynomials of the form fa, fb are sometimes called twin polynomials.) The
relation ζ(α, β) is always a congruence of A. Next we show how it is related to
the structure of algebra A and the corresponding CSP.

Example 23. In the algebra AM , see Example 14, the quasi-centralizer acts as fol-
lows: ζ(0, θ) = 1 and ζ(θ, 1) = θ. We start with the second centralizer. Since every
polynomial preserves congruences, for any term operation h(x, y1, . . . , yk) and
any a,b ∈ A

k
M such that (a[i],b[i]) ∈ θ for i ∈ [k], we have (ha(x), hb(x)) ∈ θ for

any x. This of course implies ζ(θ, 1) ≥ θ. On the other hand, let f(x, y) = r(y, x).
Then as we saw before, f0(x) = f(x, 0) = r(0, x) = h3(x) and f2(x) =
f(x, 2) = r(2, x) = h2(x), and f0(1) ⊆ θ, while f2(1) �⊆ θ. This means that
(0, 2) �∈ ζ(θ, 1) and so ζ(θ, 1) ⊂ 1. For the first centralizer it suffices to demon-
strate that the condition in the definition of quasi-centrailizer is satisfied for pairs
of twin polynomials produced by r, t of the form (r(a, x), r(b, x)), (r(x, a), r(x, b)),
(t(x, a1, a2), t(x, b1, b2)), (t(a1, x, a2), t(b1, x, b2)), (t(a1, a2, x), t(b1, b2, x)), which
can be verified directly.

Note that the equality ζ(0, θ) = 1 explains why prime intervals (0i, θi), (0j , θj)
in Example 22 cannot be separated. For that the relation prijR has to contain
tuples (a, b), (c, d) such that (a, c) ∈ ζ(0i, θi) while (b, d) �∈ ζ(0j , θj), which is
impossible. �

5 The Algorithm

In this section we introduce the reductions used in the algorithm, and then
explain the algorithm itself.

5.1 Decomposition of CSPs

Let R be a binary relation, a subdirect product of A × B, and α ∈ Con(A),
γ ∈ Con(B). Relation R is said to be αγ-aligned if, for any (a, c), (b, d) ∈ R,
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(a, b) ∈ α if and only if (c, d) ∈ γ. This means that if A1, . . . , Ak are the α-blocks
of A, then there are also k γ-blocks of B and they can be labeled B1, . . . , Bk in
such a way that

R = (R ∩ (A1 × B1)) ∪ · · · ∪ (R ∩ (Ak × Bk)).

Lemma 24. Let R, A, B be as above and α, β ∈ Con(A), γ, δ ∈ Con(B), with
α ≺ β, γ ≺ δ. If (α, β) and (γ, δ) cannot be separated, then R is ζ(α, β)ζ(γ, δ)-
aligned.

Lemma 24 provides a way to decompose CSP instances. Let I = (V, C) be
a (2,3)-minimal instance from CSP(A). We will always assume that a (2,3)-
minimal instance has a constraint CX = 〈X,RX〉 for every X ⊆ V , |X| = 2,
where RX = SX . Recall that Av denotes the domain of v ∈ V . Also, let W ⊆ V
and congruences αv, βv ∈ Con(Av) for v ∈ W be such that αv ≺ βv, and for any
v, w ∈ W the intervals (αv, βv) and (αw, βw) cannot be separated in R{v,w}.

Denoting ζv = ζ(αv, βv) for v ∈ W we see that there is a one-to-one corre-
spondence between ζv- and ζw-blocks of Av and Aw, v, w ∈ W . Moreover, by
(2,3)-minimality these correspondences are consistent, that is, if u, v, w ∈ W and
Bu, Bv, Bw are ζu-, ζv- and ζw-blocks, respectively, such that R{u,v}∩(Bu×Bv) �=
∅ and R{v,w} ∩ (Bv × Bw) �= ∅, then R{u,w} ∩ (Bu × Bw) �= ∅. This means
that IW can be split into several instances, whose domains are ζv-blocks.

Lemma 25. Let I,W, αv, βv for each v ∈ W , be as above. Then IW can be
decomposed into a collection of instances I1, . . . , Ik, k constant, Ii = (W, Ci)
such that every solution of IW is a solution of one of the Ii and for every
v ∈ W its domain in Ii is a ζv-block.

Example 26. Consider the following simple CSP instance from CSP(AM ), where
AM is the algebra introduced in Example 14, and R is the relation introduced in
Example 22: I = (V = {v1, v2, v3, v4, v5}, {C1 = 〈s1 = (v1, v2, v3), R1〉, C2 =
〈s2 = (v2, v4, v5), R2〉}, where R1 = R2 = R. To make the instance (2,3)-
minimal we run the appropriate local propagation algorithm on it. First, such
an algorithm adds new binary constraints C{vi,vj} = 〈(vi, vj), R{vi,vj}〉 for
i, j ∈ [5] starting with R{vi,vj} = AM × AM . It then iteratively removes pairs
from these relations that do not satisfy the (2,3)-minimality condition. Simi-
larly, it tightens the original constraint relations if they violate the conditions
of (2,3)-minimality. This algorithm does not change constraints C1, C2, and
the new binary relations are as follows: R{v1,v2} = R{v2,v4} = R{v1,v4} = θ,
R{v1,v3} = R{v2,v3} = R{v2,v5} = R{v4,v5} = R{v1,v5} = R{v3,v4} = Q, and
R{v3,v5} = S, where

Q = pr13R =
(

0 0 1 1 2 2
0 1 0 1 0 2

)

, S =
(

0 0 1 1 0 2 2
0 1 0 1 2 0 2

)

.

For convenience let the domain of vi be denoted by Ai, its elements by 0i, 1i, 2i,
and the congruences of Ai by 0i, θi, 1i.
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Let W = {v1, v2, v4}, αi = θi, βi = 1i for vi ∈ W . We have ζi = ζ(αi, βi) =
θi = αi. Then, as was observed in Example 23, the prime interval (αi, βi) cannot
be separated from (αj , βj) for vi, vj ∈ W . Therefore by Lemma 25 the instance
IW = ({v1, v2, v4}, {C1

W = 〈(v1, v2),prv1v2
R1〉, C2

W = 〈(v2, v4),prv2v4
R2〉}) can

be decomposed into a disjoint union of two instances:

I1 = ({v1, v2, v4}, {〈(v1, v2), Q1〉, 〈(v2, v4), Q2〉}),
I2 = ({v1, v2, v4}, {〈(v1, v2), {(21, 22)}〉, 〈(v2, v4), {(22, 24)}〉}),

where Q1 = {01, 11} × {02, 12}, Q2 = {02, 12} × {04, 14}. �

5.2 Block-Minimality

In order to formulate the algorithm properly we need one more transformation
of algebras. An algebra A is said to be subdirectly irreducible if the intersection
of all its nontrivial (different from the equality relation) congruences is non-
trivial. This smallest nontrivial congruence μA is called the monolith of A. For
instance, the algebra AM from Example 14 is subdirectly irreducible, because it
has the smallest nontrivial congruence, θ. It is a folklore observation that any
CSP instance can be transformed in polynomial time to an instance, in which
the domain of every variable is a subdirectly irreducible algebra. We will assume
this property of all the instances we consider.

Lemma 25 allows us to use a new type of consistency of a CSP instance, block-
minimality, which is key for our algorithm. In a certain sense it is similar to the
standard local consistency, as it is also defined through a family of relations
that have to be consistent in a certain way. However, block-minimality is not
quite local, and is more difficult to establish, as it involves solving smaller CSP
instances recursively. The definitions below are designed to allow for an efficient
procedure to establish block-minimality. This is achieved either by allowing for
decomposing a subinstance into instances over smaller domains as in Lemma 25,
or by replacing large domains with their quotient algebras.

Let I = (V, C) ∈ CSP(A) and αv be a congruence of Av for v ∈ V . By I/α

we denote the instance (V, Cα) constructed as follows: the domain of v ∈ V is
Av/αv

; for every constraint C = 〈s, R〉 ∈ C, s = (v1, . . . , vk), the set Cα includes
the constraint 〈s, R/α〉, where R/α = {(a[v1]αv1 , . . . ,a[vk]αvk ) | a ∈ R}.

We start with several definitions. Let I = (V, C) be a (2,3)-minimal instance
and let {RX | X ⊆ V, |X| = 2} be the relations introduced after Lemma 24. Let
UI denote the set of triples (v, α, β) such that v ∈ V , α, β ∈ Con(Av), and α ≺ β.
For every (v, α, β) ∈ UI , let Wv,αβ denote the set of all variables w ∈ V such
that (α, β) and (γ, δ) cannot be separated in R{v,w} for some γ, δ ∈ Con(Aw)
with (w, γ, δ) ∈ UI . Sets of the form Wv,αβ are called coherent sets. Let ZI

denote the set of triples (v, α, β) ∈ UI , for which ζ(α, β) is the full relation.
We say that algebra Av is semilattice free if it does not contain semilattice

edges. Let size(I) denote the maximal size of domains of I that are not semilat-
tice free and MAX(I) be the set of variables v ∈ V with |Av| = size(I) and Av
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is not semilattice free. For instances I, I ′ we say that I ′ is strictly smaller than
I if size(I ′) < size(I). For Y ⊆ V let μY

v = μv if v ∈ Y and μY
v = 0v otherwise.

Instance I is said to be block-minimal if for every (v, α, β) ∈ UI the following
conditions hold:

(B1) if (v, α, β) �∈ ZI , the problem IWv,αβ
is minimal;

(B2) if (v, α, β) ∈ ZI , for every C = 〈s, R〉 ∈ C the problem IWv,αβ
/μY , where

Y = MAX(I) − s, is minimal;
(B3) if (v, α, β) ∈ ZI , then for every (w, γ, δ) ∈ UI −ZI the problem IWv,αβ

/μY ,
where Y = MAX(I) − (Wv,αβ ∩ Ww,γδ) is minimal.

Example 27. Let us consider again the instance I from Example 26. There we
found all its binary solutions, and now we use them to find coherent sets and
to verify that this instance is block-minimal. For the instance I we have UI =
{(vi, 0i, θi), (vi, θi, 1i) | i ∈ [5]} and ZI = {(vi, 0i, θi) | i ∈ [5]}. As we noticed
in Example 22, interval (0i, θi) cannot be separated from (0j , θj) for any i, j ∈
[5]. Therefore, for each i ∈ [5] we have Wvi,0iθi

= V . Also, it was shown in
Example 22 that (θi, 1i) cannot be separated from (θj , 1j) for {i, j} = {1, 2} and
{i, j} = {2, 4}, while {θi, 1i} can be separated from (θj , 1j) and (0j , θj) for i ∈
{1, 2, 4} and j ∈ {3, 5}. Therefore, for i ∈ {1, 2, 4} we have Wvi,θi1i

= {v1, v2, v4}.
Finally, (θ3, 13) can be separated from (05, θ5), (θ5, 15) by considering the relation
S from Example 26, and (0i, θi), i ∈ {1, 2, 4} can be separated from (θ3, 13) by
considering the relation Q. Therefore, Wvi,θi1i

= {vi} for i ∈ {3, 5}.
Now we check the conditions (B1)–(B3) for I. Since ζ(θi, 1i) = θi, i ∈ [5],

for the coherent sets Wvi,θi1i
we need to check condition (B1). If i = 3, 5 this

condition is trivially true, as the set of solutions of I on every 1-element set
of variables is AM . Consider Wv1,θ111

= {v1, v2, v4}; as is easily seen, a triple
(a1, a2, a4) is a solution of I{v1,v2,v4} if and only if (a1, a2), (a1, a4), (a2, a4) ∈ θ.
Condition (B1) amounts to saying that for any constraint of I, say, C1, and any
tuple a from its constraint relation R1, the projection prv1v2

a can be extended
to a solution of I{v1,v2,v4}. Since prv1v2

a ∈ θ, this can always be done. For other
constraints (B1) is verified in a similar way.

Next consider Wv1,01θ1 = V . As ζ(01, θ1) = 11, we have to verify conditions
(B2),(B3). We consider condition (B2) for constraint C1, the remaining cases are
similar. The monolith of AM is θ, therefore in the first case Y = {v4, v5} and μY

vi

is the equality relation for i ∈ {1, 2, 3} and μY
v4

= θ4, μ
Y
v5

= θ5. The instance I/μY

is as follows: I/μY = (V, {C ′1 = 〈s1, R1〉, C ′2 = 〈s2, R2/μ〉}). The constraint rela-
tion, of C ′1 equals R1, as μY

vi
= 0i for i ∈ {1, 2, 3}. The constraint relation of C ′2

then equals R′
2 = R2/μY = {(0, 0θ, 0θ), (1, 0θ, 0θ), (2, 2θ, 0θ), (2, 2θ, 2θ)}. Now, for

every tuple a ∈ R1, and for every tuple b ∈ R′
2 we need to find solutions ϕ,ψ of

I/μY such that ϕ(vi) = a[vi] for i ∈ {1, 2, 3} and ψ(vi) = b[vi] for i ∈ {2, 4, 5}. If
a[v2] ∈ {0, 1} (b[v2] ∈ {0, 1}) then extending a by ϕ(v4) = ϕ(v5) = 0θ (extending
b by ψ(v1) = ψ(v3) = 0) gives solutions of I/μY . If a[v2] = 2 (b[v2] = 2), then
tuples a,b can be extended by ϕ(v4) = ϕ(v5) = 2θ and by ψ(v1) = ψ(v3) = 2 to
solutions of I/μY . �
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Next we observe that establishing block-minimality can be efficiently reduced
to solving a polynomial number of strictly smaller instances. First, observe that
Wv,αβ can be large, even equal to V , as we saw in Example 27. However if
(v, α, β) �∈ ZI , by Lemma 25 the problem IWv,αβ

splits into a union of disjoint
problems over smaller domains, and so its minimality can be established by
recursing to strictly smaller problems. On the other hand, if (v, α, β) ∈ ZI then
IWv,αβ

may not split into such a union. Since we need an efficient procedure
of establishing block-minimality, this explains the complications introduced in
conditions (B2), (B3). In the case of (B2) IWv,αβ

/μY (see the definition of block-
minimality) can be solved for each tuple a ∈ R by fixing the values from this
tuple. Taking the quotient algebras of the remaining domains guarantees that we
recurse to a strictly smaller instance. In the case of (B3) IWv,αβ∩Ww,γδ

/μY splits
into disjoint subproblems, and we branch on those strictly smaller subproblems.

Lemma 28. Let I = (V, C) be a (2,3)-minimal instance. Then by solving a
quadratic number of strictly smaller CSPs I can be transformed to an equivalent
block-minimal instance I ′.

5.3 The Algorithm

In the algorithm we distinguish three cases depending on the presence of semi-
lattice edges and quasi-centralizers of the domains of variables. In each case we
employ different methods of solving or reducing the instance to a strictly smaller
one. Algorithm 1 gives a more formal description of the solution algorithm.

Let I = (V, C) be a subdirectly irreducible, (2,3)-minimal instance. Let
Center(I) denote the set of variables v ∈ V such that ζ(0v, μv) = 1v. Let μ∗

v = μv

if v ∈ MAX(I) ∩ Center(I) and μ∗
v = 0v otherwise.

Semilattice Free Domains. If no domain of I contains a semilattice edge then
by Proposition 19 I can be solved in polynomial time, using the few subalgebras
algorithm, as shown in [21,51].

Small Centralizers. If μ∗
v = 0v for all v ∈ V , block-minimality guarantees the

existence of a solution, as Theorem 29 shows, and we can use Lemma 28 to solve
the instance.

Theorem 29. If I is subdirectly irreducible, (2,3)-minimal, block-minimal, and
MAX(I) ∩ Center(I) = ∅, then I has a solution.

Proof of Theorem29 is the most technically involved part of our result.

Large Centralizers. Suppose that MAX(I) ∩ Center(I) �= ∅. In this case the
algorithm proceeds in three steps.

Step 1. Consider the problem I/μ∗. We establish the global 1-minimality
of this problem. If it is tightened in the process, we start solving the new
problem from scratch. To check global 1-minimality, for each v ∈ V and every
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a ∈ Av/μ∗
v
, we need to find a solution of the instance, or show it does not exists.

To this end, add the constraint 〈(v), {a}〉 to I/μ∗. The resulting problem
belongs to CSP(A), since Av is idempotent, and hence {a} is a subalgebra
of Av/μ∗

v
. Then we establish (2,3)-minimality and block minimality of the

resulting problem. Let us denote it I ′. There are two possibilities. First, if
size(I ′) < size(I) then I ′ is a problem strictly smaller than I and can be
solved by recursivly calling Algorithm1 on I ′. If size(I ′) = size(I) then, as
all the domains Av of maximal size for v ∈ Center(I) are replaced with their
quotient algebras, there is w �∈ Center(I) such that |Aw| = size(I) and Aw is
not semilattice free. Therefore for every u ∈ Center(I ′), for the corresponding
domain A

′
u we have |A′

u| < size(I) = size(I ′). Thus, MAX(I ′) ∩ Center(I ′) =
∅, and I ′ has a solution by Theorem 29.
Step 2. For every v ∈ Center(I) we find a solution ϕ of I/μ∗ satisfying the
following condition: there is a ∈ Av such that {a, ϕ(v)} is a semilattice edge
if μ∗

v = 0v, or, if μ∗
v = μv, there is b ∈ ϕ(v) such that {a, b} is a semilattice

edge. Take b ∈ Av/μ∗
v

such that {a, b} is a semilattice edge in Av/μ∗
v

for some
a ∈ Av/μ∗

v
. Since I/μ∗ is globally 1-minimal, there is a solution ϕv,b such that

ϕv,b(v) = b.
Step 3. We apply the transformation of I suggested by Maroti in [62]. For a
solution ϕ of I/μ∗ by I ·ϕ we denote the instance (V, Cϕ) given by the rule: for
every C = 〈s, R〉 ∈ C the set Cϕ contains a constraint 〈s, R · ϕ〉. To construct
R · ϕ choose a tuple b ∈ R such that b[v]μ

∗
v = ϕ(v) for all v ∈ s; this is

possible because ϕ is a solution of I/μ∗. Then set R · ϕ = {a · b | a ∈ R}. By
the results of [62] it can be shown that the instance I ·ϕ has a solution if and
only if I does. Let I ′ = (. . . (I · ϕv1,b1) · . . . ) · ϕv�,b�

, where ϕv1,b1 , . . . , ϕv�,b�

are the solutions chosen in Step 2. We have size(I ′) < size(I).

This last case can be summarized as the following

Theorem 30. If I/μ∗ is globally 1-minimal, then I can be reduced in polynomial
time to a strictly smaller instance over an algebra satisfying the conditions of
the Dichotomy Conjecture.

Example 31. We illustrate the algorithm SolveCSP on the instance from Exam-
ple 26. Recall that the domain of each variable is AM , its monolith is θ, and ζ(0, θ)
is the full relation. This means that size(I) = 3, MAX(I) = V and Center(I) = V ,
as well. Therefore we are in the case of large centralizers. Set μ∗

vi
= θi for each

i ∈ [5] and consider the problem I/μ∗ = (V, {C∗
1 = 〈s1, R∗

1〉, C∗
2 = 〈s2, R∗

2〉),
where R∗ = {(0θ, 0θ, 0θ), (2θ, 2θ, 0θ), (2θ, 2θ, 2θ)}. It is an easy excercise to show
that this instance is globally 1-minimal (every value 0θ can be extended to
the all-0θ solution, and every value 2θ can be extended to the all-2θ solution).
This completes Step 1. For every variable vi we choose b ∈ AM/θ such that
for some a ∈ AM/θ the pair {a, b} is a semilattice edge. Since AM/θ is a 2-
element semilattice, setting b = 0θ and a = 2θ is the only choice. Therefore
all solutions ϕvi,0θ in our case can be chosen to be ϕ, where ϕ(vi) = 0θ; and
Step 2 is completed. For Step 3 first note that in AM the operation r plays
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Algorithm 1. Procedure SolveCSP

Require: A CSP instance I = (V, C) from CSP(A)
Ensure: A solution of I if one exists, ‘NO’ otherwise
1: if all the domains are semilattice free then
2: Solve I using the few subpowers algorithm and RETURN the answer
3: end if
4: Transform I to a subdirectly irreducible, block-minimal, and (2,3)-minimal

instance
5: µ∗

v = µv for v ∈ MAX(I) ∩ Center(I) and µ∗
v = 0v otherwise

6: I∗ = I/µ∗

7: %% Check the 1-minimality of I∗

8: for every v ∈ V and a ∈ Av/µ∗
v
do

9: I′ = I∗
(v,a) %% Add the constraint 〈(v), {a}〉 fixing the value of v to a

10: Transform I′ to a subdirectly irreducible, (2,3)-minimal instance I′′

11: if size(I′′) < size(I) then
12: Call SolveCSP on I′′ and flag a if I′′ has no solution
13: else
14: Establish block-minimality of I′′; if the problem changes, return to Step 10
15: If the resulting instance is empty, flag element a
16: end if
17: end for
18: If there are flagged values, tighten the instance by removing the flagged elements

and start over
19: Use Theorem 30 to reduce I to an instance I′ with size(I′) < size(I)
20: Call SolveCSP on I′ and RETURN the answer

the role of multiplication · defined in Lemma 20. Then for each of the con-
straints C1, C2 choose a representative a1 ∈ R1 ∩ (ϕ(v1) × ϕ(v2) × ϕ(v3)) =
R1 ∩ {0, 1}3, a2 ∈ R2 ∩ (ϕ(v2) × ϕ(v4) × ϕ(v5)) = R2 ∩ {0, 1}3, and set
I ′ = ({v1, . . . , v5}, {C ′

1 = 〈(v1, v2, v3), R′
1〉, C ′

2 = 〈(v2, v4, v5), R′
2〉}), where

R′
1 = r(R1,a), R′

2 = r(R2,b). Since r(2, 0) = r(2, 1) = 0, regardless of the
choice of a,b in our case R′

1 ⊆ R1, R
′
2 ⊆ R2, and are invariant with respect to

the affine operation of Z2. Therefore the instance I ′ can be viewed as a system
of linear equations over Z2 (this system is actually empty in our case), and can
be easily solved. �

Using Lemma 28 and Theorems 29, 30 it is not difficult to see that the algo-
rithm runs in polynomial time. Indeed, every time it makes a recursive call it
calls on a problem whose non-semilattice free domains of maximal cardinality
have strictly smaller size, and therefore the depth of recursion is bounded by |A|
if we are dealing with CSP(A).
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56. Kolmogorov, V., Krokhin, A.A., Roĺınek, M.: The complexity of general-valued
CSPs. SIAM J. Comput. 46(3), 1087–1110 (2017)

57. Krokhin, A.A., Zivny, S.: The complexity of valued CSPs. In: The Constraint
Satisfaction Problem: Complexity and Approximability, pp. 233–266 (2017)

58. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of
polynomial equations over finite algebras. IJAC 16(3), 563–582 (2006)

59. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)
60. Kozik, M., Krokhin, A., Valeriote, M., Willard, R.: Characterizations of several

Maltsev conditions. Algebra Univers. 73(3–4), 205–224 (2015)
61. Markovic, P.: The complexity of CSPs on a 4-element set. Oral Communication

(2011)
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1 Introduction

Streaming algorithms. Streaming algorithms [1] process an input sequence
a1a2 · · · am of data values from left to right. Random access to the input is not
allowed, and at time instant t the algorithm has only direct access to the current
data value at and its goal is to compute an output value f(a1a2 · · · at) for a
certain function f . During this process it is quite often infeasible and in many
settings also not necessary to store the whole history a1a2 · · · at. Such a scenario
arises for instance when searching in large databases (e.g., genome databases
or web databases), analyzing internet traffic (e.g. click stream analysis), and
monitoring networks. Ideally, a streaming algorithm works in constant space,
in which case the algorithms is a deterministic finite automaton (DFA), but
polylogarithmic space with respect to the input length might be acceptable, too.

The first papers on streaming algorithms as we know them today are usually
attributed to Munro and Paterson [24] and Flajolet and Martin [16], although the
principle idea goes back to the work on online machines by Hartmanis et al. from
the 1960’s [23,27]. Extremely influential for the area of streaming algorithms was
the paper of Alon et al. [2] on computing frequency moments in the streaming
model.

The sliding window model. The streaming model sketched above is also
known as the standard streaming model. One missing aspect of the standard
model is the fact that data items are usually no longer important after a certain
time. For instance, in the analysis of a time series as it may arise in medical mon-
itoring, web tracking, or financial monitoring, data items are usually outdated
after a certain time. The sliding window model is an alternative streaming model
that can capture this aspect. Two variants of the sliding window model can be
found in the literature; see e.g. [3]:
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-77313-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77313-1_2&domain=pdf


Sliding Window Algorithms for Regular Languages 27

– Fixed-size model: In this model the algorithm works on a sliding window of a
certain fixed length n. While reading the input word w = a1a2 · · · am symbol
by symbol from left to right it has to output at every time instant n ≤ t ≤ m
a value f(at−n+1 · · · at) that depends on the n last symbols. The number n
is also called the window size.

– Variable-size model: Here, the sliding window at−n+1at−n+2 · · · at is deter-
mined by an adversary. At every time instant the adversary can either remove
the first data value from the sliding window (expiration of a value), or add a
new data value at the right end (arrival of a new value).

In the seminal paper of Datar et al. [15], where the (fixed-size) sliding window
model was introduced, the authors show how to maintain the number of 1’s in a
sliding window of size n over the alphabet {0, 1} in space 1

ε · log2 n if one allows
a multiplicative error of 1 ± ε. A matching lower bound is proved as well in [15].
Following the work of Datar et al., a large number of papers that deal with the
approximation of statistical data over sliding windows followed. Let us mention
the work on computation of the variance and k-median [4], quantiles [3], and
entropy [8] over sliding windows. Other computational problems that have been
considered for the sliding window model include optimal sampling [9], various
pattern matching problems [10–13], database querying (e.g. processing of join
queries [20]) and graph problems (e.g. checking for connectivity and computation
of matchings, spanners, and spanning trees [14]). Further references on the sliding
window model can be found in the surveys [1, Chapter 8] and [7].

Language recognition in the streaming model. A natural problem that
has been surprisingly neglected for the streaming model (in particular the slid-
ing window model) is language recognition. The goal is to check whether an
input string belongs to a given language L. Let us quote Magniez et al. [22]:
“Few applications [of streaming] have been made in the context of formal lan-
guages, which may have impact on massive data such as DNA sequences and
large XML files. For instance, in the context of databases, properties decidable
by streaming algorithm have been studied [25,26], but only in the restricted
case of deterministic and constant memory space algorithms.” For Magniez et
al. this was the starting point to study language recognition in the streaming
model. Thereby they restricted their attention to the above mentioned standard
streaming model. Note that in the standard model the membership problem
for a regular language is trivial to solve: One simply has to simulate a DFA
on the stream and thereby only store the current state of the DFA. In [22] the
authors presented a randomized streaming algorithm for the (non-regular) Dyck
language Ds with s pairs of parenthesis that works in space O(

√
n log n) and

time polylog(n) per symbol. The algorithm has a one-sided error: it accepts
with small probability also words that do not belong to Ds. An almost matching
lower bound of Ω(

√
n log n) for two-sided errors is proved in [22] as well. Fur-

ther investigations on streaming language recognition for various subclasses of
context-free languages can be found in [5,6,17,21].

Let us emphasize that all the papers cited in the last paragraph exclusively
deal with the standard streaming model. Language recognition problems for the
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sliding window model have been completely neglected so far. This is surprising,
since even for regular languages the membership problem becomes non-trivial in
the sliding window model. This was the starting point for our work on streaming
[18,19] that mainly deals with the membership problem for regular languages in
the sliding window model. Before we explain the results from [18,19] in Sect. 4,
we formally define the various streaming models in the next section.

2 Streaming Algorithms as Automata

We use standard definitions from automata theory. A nondeterministic finite
automaton (NFA) is a tuple A = (Q,Σ, I,Δ, F ) where Q is a finite set of states,
Σ is an alphabet, I ⊆ Q is the set of initial states, Δ ⊆ Q × Σ × Q is the
transition relation and F ⊆ Q is the set of final states. A deterministic finite
automaton (DFA) A = (Q,Σ, q0, δ, F ) has a single initial state q0 ∈ Q instead of
I and a transition function δ : Q × Σ → Q instead of the transition relation Δ.
A deterministic automaton has the same format as a DFA, except that the state
set Q is not required to be finite. If A is deterministic, the transition function
δ is extended to a function δ : Q × Σ∗ → Q in the usual way and we define
A(x) = δ(q0, x) for x ∈ Σ∗. The language accepted by A is L(A) = {w ∈
Σ∗ : δ(q0, w) ∈ F}.

Recall from the introduction that a streaming algorithm reads an input word
w = a1a2 · · · am from left to right and computes at every time instant 0 ≤ t ≤ m
a value f(a1a2 · · · at) for some target function f . In this paper we make two
restrictions:

– The data values ai are from some finite alphabet Σ. This rules out streaming
algorithms that read for instance a natural number in each time unit.

– The target function is boolean-valued, i.e., f : Σ∗ → {0, 1}.

These two restrictions imply that a streaming algorithm can be seen as a deter-
ministic automaton, possibly with an infinite state set. Moreover, in order to
make statements about the space complexity of a streaming algorithm, we also
have to fix an encoding of the automaton states by bit strings. Formally, a
streaming algorithm over Σ is a deterministic (possibly infinite) automaton
A = (S,Σ, s0, δ, F ), where the states are encoded by bit strings. We describe
this encoding by an injective function enc: S → {0, 1}∗. The space function
space(A, ·) : Σ∗ → N specifies the space used by A on a certain input: For w ∈ Σ∗

let space(A, w) = max{|enc(A(u))| : u ∈ Pref(w)}, where Pref(w) denotes the
set of prefixes of w. We also say that A is a streaming algorithm for the accepted
language L(A).

3 Sliding Window Streaming Models

In the above streaming model, the output value of the streaming algorithm at
time t depends on the whole past a1a2 · · · at of the data stream. However, in
many practical applications one is only interested in the relevant part of the
past. Two formalizations of “relevant past” can be found in the literature:
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– Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant.
This streaming model is called the fixed-size sliding window model.

– The relevant suffix of a1a2 · · · at is determined by an adversary. In this model,
at every time instant the adversary can either remove the first symbol from
the active window (expiration of a data value), or add a new symbol at the
right end (arrival of a new data value). This streaming model is also called
the variable-size sliding window model.

In the following two subsections, we formally define these two models.

3.1 Fixed-Size Sliding Windows

Given a word w = a1a2 · · · am ∈ Σ∗ and a window length n ≥ 0, we define
lastn(w) ∈ Σn by

lastn(w) =

{
am−n+1am−n+2 · · · am, if n ≤ m,

�n−ma1 · · · am, if n > m,

which is called the active window. Here � ∈ Σ is an arbitrary symbol, which
fills the initial window. A sequence A = (An)n≥0 is a fixed-size sliding window
algorithm for a language L ⊆ Σ∗ if each An is a streaming algorithm for the
language

Ln := {w ∈ Σ∗ : lastn(w) ∈ L}.

Its space complexity is the function fA : N → N∪{∞} where fA(n) is the maximal
encoding length of a state in An. Note that for every language L and every n
the language Ln is regular, which ensures that An can be chosen to be a DFA
and hence fA(n) < ∞ for all n ≥ 0.

A trivial fixed-size sliding window algorithm B = (Bn)n≥0 for L is obtained
by taking the DFAs Bn = (Σn, Σ,�n, δn, Σn ∩ L) with the transition function
δn(au, b) = ub for a, b ∈ Σ, u ∈ Σn−1. It stores the active window explicitly in
the state. States of Bn can be encoded with O(log |Σ|·n) bits. By minimizing each
Bn, we obtain an optimal fixed-size sliding window algorithm AL for L. Finally,
we define FL(n) = fAL

(n). Thus, FL is the space complexity of an optimal fixed-
size sliding window algorithm for L. Notice that FL is not necessarily monotonic.
For instance, take L = {au : u ∈ {a, b}∗, |u| odd}. Then, we have FL(2n) ∈ Θ(n)
(see Example 5 below) and FL(2n + 1) ∈ O(1). The above trivial algorithm B
yields FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window model is a non-uniform model: for
every window size we have a separate streaming algorithm and these algorithms
do not have to follow a common pattern. Working with a non-uniform model
makes lower bounds stronger. In contrast, the variable-size sliding window model
that we discuss next is a uniform model in the sense that there is a single
streaming algorithm that works for every window length.
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3.2 Variable-Size Sliding Windows

For an alphabet Σ we define the extended alphabet Σ = Σ∪{↓}. In the variable-
size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ

∗
is defined as

follows:

– wnd(ε) = ε
– wnd(ua) = wnd(u) a for a ∈ Σ
– wnd(u↓) = ε if wnd(u) = ε
– wnd(u↓) = v if wnd(u) = av for a ∈ Σ

A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming
algorithm A for {w ∈ Σ

∗
: wnd(w) ∈ L}. Its space complexity is the function

vA : N → N ∪ {∞} mapping each window length n to the maximum number of
bits used by A on inputs producing an active window of size at most n. Formally,
it is the function

vA(n) = max{space(A, u) : u ∈ Σ
∗
, |wnd(v)| ≤ n for all v ∈ Pref(u)}.

Note that vA is a monotonic function. It is not completely obvious that every
language L has an optimal variable-size sliding window algorithm:

Lemma 1. For every language L ⊆ Σ∗ there exists a variable-size sliding win-
dow algorithm A such that vA(n) ≤ vB(n) for every variable-size sliding window
algorithm B for L and every n.

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window
algorithm for L from Lemma 1. Since any algorithm in the variable-size model
yields an algorithm in the fixed-size model, we have FL(n) ≤ VL(n).

It is not hard to show that any variable-size sliding window algorithm for a
non-trivial language has to store enough information to recover the length of the
active window. Hence, we have:

Lemma 2. For every language L ⊆ Σ∗ such that ∅ = L = Σ∗ we have VL(n) ∈
Ω(log n).

4 Sliding Window Algorithms for Regular Languages

4.1 Space Trichotomy for Regular Languages

The main result from [19] is a space trichotomy for regular languages with respect
to the two sliding window models: For every regular language, the space is either
constant, logarithmic or linear.

Theorem 3 (space trichotomy [19]). For every regular language L, exactly
one of the following three cases holds:

1. FL(n) ∈ O(1)
2. FL(n) ∈ O(log n) \ o(log n) and VL(n) ∈ Θ(log n)
3. FL(n) ∈ O(n) \ o(n) and VL(n) ∈ Θ(n)
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Note in particular that the class of regular languages that need logarithmic
space (resp., linear space) is the same for the fixed-size model and the variable-
size model. This is not true for constant space: For instance, for the language
L1 = {a, b}∗a we have FL1(n) ∈ O(1), whereas Lemma 2 implies that VL1(n) ∈
Ω(log n). Here are two further examples:

Example 4. For the language L2 = {a, b}∗a{a, b}∗ we have FL2(n) ∈ Θ(log n) as
well as VL2(n) ∈ Θ(log n). A variable-size sliding window algorithm for L2 stores
(i) the length of the active window and (ii) the position of the right-most a in
the active window (or ∞ if the active window does not contain an a). For this,
O(log n) bits are sufficient. To see that VL2(n) ∈ Ω(log n) consider a fixed-size
sliding window algorithm A = (An)n≥0 for L2. Consider the window length n
and all strings wi = bi−1abn−i for 1 ≤ i ≤ n. Then a standard fooling argument
shows that for 1 ≤ i < j ≤ n the words wi and wj must lead to different states
in An. Hence, An has at least n states, which implies that fA(n) ∈ Ω(log n).

Example 5. For the language L3 = a{a, b}∗ we have FL3(n) ∈ Θ(n) as well as
VL2(n) ∈ Θ(n). It suffices to show the lower bound FL3(n) ∈ Ω(n). This follows
from a fooling argument similar to the one from Example 4: Consider a fixed-size
sliding window algorithm A = (An)n≥0 for L3. Consider the window length n.
Then, all words from Σn have to lead to different states of An, i.e., An has at
least |Σ|n states which implies that fA(n) ∈ Ω(n).

The reader might wonder why we write FL(n) ∈ O(log n) \ o(log n) (resp.,
FL(n) ∈ O(n) \ o(n)) instead of FL(n) ∈ Θ(log n) (resp., FL(n) ∈ Θ(n)) in
point 2 (resp., point 3) of Theorem 3. To see that this is indeed necessary,
consider again the language L = {au : u ∈ {a, b}∗, |u| odd}. Then, we have
FL(2n) ∈ O(n) \ o(n), but FL(n) ∈ Ω(n), since FL(2n + 1) ∈ O(1). On the
other hand, for the variable-size model, we can make the stronger statement
VL(n) ∈ Θ(log n) (resp., VL(n) ∈ Θ(n)) due to the monotonicity of VL(n).

4.2 Characterizations of the Space Classes

We use the following notation for the three classes from Theorem 3:

– Reg(1) is the class of all regular languages for which point 1 from Theorem3
holds.

– Reg(log n) is the class of all regular languages for which point 2 from Theo-
rem 3 holds.

– Reg(n) is the class of all regular languages for which point 3 from Theorem3
holds.

Theorem 3 does not give language theoretical characterizations of the above
three classes. Such characterizations were provided in [18]. We need the following
definitions.

A language L ⊆ Σ∗ is called k-suffix testable if for all x, y ∈ Σ∗ and z ∈ Σk

we have: xz ∈ L if and only if yz ∈ L. Equivalently, L is a Boolean combination
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of languages of the form Σ∗w where w ∈ Σ≤k. We call L suffix testable if it is
k-suffix testable for some k ≥ 0. Clearly, every finite language is suffix testable:
if L ⊆ Σ≤k then L is (k + 1)-suffix testable. Moreover, every suffix testable
language is regular. A language L ⊆ Σ∗ is called a length language if for all
n ∈ N, either Σn ⊆ L or L ∩ Σn = ∅.

Theorem 6 ([18]). Reg(1) is the class of all finite Boolean combinations of
suffix testable languages and regular length languages.

In order to characterize the class Reg(log n) we need the following definition: A
language L ⊆ Σ∗ is called a left ideal if Σ∗L ⊆ L.

Theorem 7 ([18]). Reg(log n) is the class of all finite Boolean combinations of
regular left ideals and regular length languages.

The class Reg(log n) has a useful characterization in terms of automata as well.
A strongly connected component (SCC for short) of a DFA A = (Q,Σ, q0, δ, F )
is an inclusion-maximal subset C ⊆ Q such that for all p, q ∈ C there exist
words u, v ∈ Σ∗ such that δ(p, u) = q and δ(q, v) = p. A singleton SCC {q} is
called trivial if δ(q, u) = q for all non-empty words u (i.e., q is not on a cycle).
An SCC C ⊆ Q is well-behaved if for all q ∈ C and u, v ∈ Σ∗ with |u| = |v|
and δ(q, u), δ(q, v) ∈ C we have: δ(q, u) ∈ F if and only if δ(q, v) ∈ F . Clearly,
every trivial SCC is well-behaved. If every SCC in A which is reachable from q0
is well-behaved, then A is called well-behaved. Figure 1 shows an example of a
well-behaved DFA. Its SCCs are {0} (which is trivial), {1}, {2, 3}, and {4}.

0 1 2

3

4
a, b

b

a

a a, b

b
a, b

Fig. 1. A well-behaved DFA.

For a word w = a1a2 · · · an, let wrev = an · · · a2a1 be the reversed word.

Theorem 8 ([18]). A regular language L belongs to Reg(log n) if and only if
the reversed language Lrev = {wrev : w ∈ L} is accepted by a well-behaved DFA.
Moreover, this holds if and only if every DFA for Lrev is well-behaved.

Let us sketch the logspace (variable-size) sliding-window algorithm for a regular
language L such that Lrev is accepted by a well-behaved DFA A = (Q,Σ, q0, δ, F ).
Let w be the current active window. Assume that we store for every state q ∈ Q
the run of A on the word wrev (i.e., the sequence of visited states) that starts in q.
This information would allow to make the necessary updates and queries for the
variable-size model (i.e., removing the left-most symbol from the window, adding
a symbol on the right, and testing membership in L). But the space needed to
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store these runs would be linear in the length w. The main observation for the
logspace algorithm is that since A is well-behaved it suffices to store for each of
the above runs a so called path summary that is defined as follows: Let C1, . . . , Ck

be the sequence of pairwise different SCCs that are visited by the run in that
order. The path summary of the run is the sequence (q1, �1, q2, �2, . . . , qk, �k)
where qi is the first state in Ci visited by ρ, and �i ≥ 0 is the number of
transitions from the first occurrence of qi until the first state from Ci+1 (or until
the end for qk).

The lower bound Ω(n) for the space complexity (with respect to the fixed-
size model) in case Lrev is accepted by a DFA that is not well-behaved can be
shown by a fooling argument similar to the one from Example 5.

4.3 Uniform Space Bounds

In the statements from Sects. 4.1 and 4.2 we always assume a fixed regular lan-
guage. When, e.g., saying that VL ∈ O(log n) then the O-constant depends on
the automaton size. Using the path summaries mentioned in Sect. 4.2, one can
show:

Theorem 9 ([18]). Let A be a DFA or NFA with m states such that L =
L(A) ∈ Reg(log n) is well-behaved. There are constants cm, dm that only depend
on m such that the following holds:

– If A is a DFA then VL(n) ≤ (2m · m + 1) · log n + cm for n large enough.
– If A is an NFA then VL(n) ≤ (4m + 1) · log n + dm for n large enough.

The following theorem states a lower bound for the fixed-size model (and hence
also for the variable-size model) that almost matches the space bound in Theo-
rem 9:

Theorem 10 ([18]). For all k ≥ 1 there exists a language Lk ⊆ {0, . . . , k}∗

recognized by a DFA with k + 3 states such that Lk ∈ Reg(log n) and FLk
(n) ≥

(2k − 1) · (log n − k).

It is open whether in Theorem 10 the alphabet {0, . . . , k} can be replaced by a
fixed (e.g. binary) alphabet without changing the lower bound.

4.4 Deciding the Space Classes

Theorem 8 leads to a decision algorithm for the class Reg(log n): Given a DFA
(or NFA) for a regular language L, one first constructs a DFA A for Lrev using
standard automata constructions and then checks whether A is well-behaved.
But this algorithm is not very efficient since in general the size of a DFA for Lrev

is exponential in the size of an automaton for L, even if the latter automaton
is deterministic. In [18] we provided a more efficient algorithm for the class
Reg(log n) as well as Reg(1) in case the input automaton is deterministic.
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Theorem 11 ([18]). Given a DFA for a regular language L, it is NL-complete
to check whether L ∈ Reg(log n), respectively L ∈ Reg(1).

As one might expect, if the input automaton is nondeterministic than the com-
plexity increases by one exponent:

Theorem 12 ([18]). Given an NFA for a regular language L, it is Pspace-
complete to check whether L ∈ Reg(log n), respectively L ∈ Reg(1).

5 Future Work

The space trichotomy theorem for regular languages (Theorem 3) leads to several
interesting research questions:

– Do similar results hold for context-free languages or subclasses like determin-
istic context-free languages or visibly pushdown languages?

– Is it possible to generalize Theorem 3 to a randomized setting? In fact, most
papers on streaming algorithms deal with randomized streaming algorithms.

These topics will be the content of two forthcoming papers.
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Abstract. The paper investigates some of the fundamental ideas of the
context-free grammar theory, as they are applied to several extensions
and subclasses of context-free grammars. For these grammar families,
including multi-component grammars, tree-adjoining grammars, con-
junctive grammars and Boolean grammars, a summary of the follow-
ing properties is given: parse trees, language equations, closure under
several operations, normal forms, parsing algorithms, representation
in the FO(LFP) logic, representations by automata and by categorial
grammars, homomorphic characterizations, hardest language theorems,
pumping lemmata and other limitations, computational complexity.

1 Introduction

Formal grammars are both a classical subject, presented in all computer science
curricula, and a topic of ongoing theoretical and applied research. Over half
a century, the classroom presentation of grammars has stabilized to a certain
collection of essential facts on context-free grammars, all established in the 1960s.
However, the research on formal grammars did not end in the 1960s: many
results on context-free grammars were established, and also quite a few new
grammar models have been introduced over the years. Some of the new models
did not work out well: indeed, when there are no examples of sensible language
specifications by the proposed grammars, no efficient algorithms and even no
theoretical results of any value, such a model deserves oblivion. On the other
hand, a few models were found to share some useful properties of context-free
grammars, which confirmed their value, and the research on such models has
carried on.

The aim of this paper is to present several grammar families with good
properties together, emphasizing their common underlying principles, and tracing
what happens with the fundamental ideas of formal grammar theory, as they are
applied to these families. Even putting these grammar families together already
requires a certain reappraisal of foundations. At the dawn of computer science,
the study of formal grammars was dominated by the string-rewriting approach in
Chomsky’s [17] early work. By now, the Chomsky hierarchy of rewriting systems
has retained a purely historical value, and modern presentations of the basics of
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formal grammars, such as the one in Sipser’s [78] textbook, omit it altogether.
Rather than try fitting all kind of grammars into this framework, one should
look for the actual common ground for the existing formal grammar families,
and present them in light of the current state of knowledge.

This common ground is the understanding of formal grammars as a logic for
describing the syntax, and definitions of grammars through inference rules. For
instance, whereas the string-rewriting approach is to rewrite S into NP VP by
a rule S → NP VP, and then proceed with rewriting NP VP into, e.g., Every
man is mortal, using inference rules, a proposition S(Every man is mortal)
is inferred from NP(Every man) and VP(is mortal). This more modern under-
standing of grammars led to many developments in formal grammar theory which
would not be possible under the string-rewriting approach. In particular, it is
essential in the definitions of multi-component grammars of Seki et al. [77], it led
to the important representation of formal grammars in the FO(LFP) logic, given
by Rounds [74], and to a uniform description of parsing algorithms by Pereira
and Warren [70].

Once the grammar families are uniformly defined, this paper aims to trace the
main recurring ideas in the field, all originating from the context-free grammar
theory, as they are applied to various new grammar models. It turns out that
almost none of these ideas are exclusive to context-free grammars, and their
applicability to other grammar families confirms that the formal grammar theory
is larger than just the context-free grammar theory. As well put by Chytil [19], “A
tour through the theory of context-free languages reveals an interesting feature
of many celebrated results—something like ‘stability’ of their proofs, or ‘buried
reserves’ contained in them”.

Before proceeding any further, there is a certain small detail to mention
that will likely arouse some controversy. When Chomsky [17] proposed the
term “context-free grammar”, he considered the idea of a phrase-structure rule
applicable only in specified contexts, and attempted to implement this idea by
a string-rewriting system. Thus, the ordinary kind of grammars got a name
“context-free” to distinguish them from the attempted new model. However, it
was soon found that context-sensitive string rewriting does not implement any
sensible syntactic descriptions, and, as a formal grammar model, it makes no
sense. As of today, even though the term “context-free” has been repeated for
decades, no major model in the theory of formal grammars uses contexts of any
kind. Thus, this name is no longer suitable for distinguishing the main model
of syntax from other related models. Due to the significance of this model in
computer science and its central position in the theory of formal grammars, the
suggested alternative name is

an ordinary grammar.

This name is used throughout in this paper. All other grammar families are
named after the feature that makes them different from the ordinary gram-
mars: linear grammars, unambiguous grammars, conjunctive grammars, multi-
component grammars, etc.
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2 Grammar Families

A formal grammar is a mathematically precise syntactical description, which for-
malizes natural definitions, such as “A noun phrase followed by a verb phrase is
a sentence” or “An arithmetical expression enclosed in brackets is also an arith-
metical expression”. The following standard example of a grammar illustrates
this kind of definitions.

Example 1. The set of well-nested strings of brackets over the alphabet Σ =
{a, b}, known as the Dyck language, is defined by the following conditions.

– The empty string ε is well-nested.
– If w is a well-nested string, then so is awb.
– If u and v are well-nested strings, then so is uv.

In the notation of formal grammars, this definition is expressed as follows, where
S is the syntactic category of well-nested strings.

S → ε | aSb | SS

The S on the left-hand side, followed by an arrow, means that this is the def-
inition of strings with the property S. The right-hand side defines the possible
form of such strings, with alternative structure separated by vertical lines. Any
occurrence of S on the right-hand sides stands for an arbitrary string with the
property S.

Actually, there is a bizarre detail: a rule in a grammar means a logical impli-
cation from its right-hand side to its left-hand side, and therefore there are all
reasons to write the arrow in the opposite direction, as in S ← ε | aSb | SS.
This paper follows the traditional, incorrect direction of arrows.

The general form of this kind of syntactic descriptions is universally known.

Definition 1 (Chomsky [17]). An ordinary grammar (Chomsky’s “context-
free”) is a quadruple G = (Σ,N,R, S), where

– Σ is the alphabet of the language being defined;
– N is the set of syntactic categories defined in the grammar, which are typically

called nonterminal symbols;
– R is the set of rules, each of the form A → u0B1u1 . . . B�u�, with � � 0,

u0, u1, . . . , u� ∈ Σ∗ and B1, . . . , B� ∈ N .
– the nonterminal symbol S represents the syntactic category of grammatically

correct strings (“sentences” of the language).

Each rule A → u0B1u1 . . . B�u� defines a possible structure of strings with the
property A; it means that if each string vi has the property Bi, then the string
u0v1u1 . . . v�u� has the property A. If there are multiple rules for A, this means
that strings with the property A may be of any of the given forms.

All other grammar families are obtained by modifying some elements of this
definition. For that reason, in order to see what kind of grammar families can
there be, one should first take note, what is this definition comprised of.
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Definition 2. A family of grammars is characterized by the following three ele-
ments.

Constituents, that is, fragments, from which a sentence is formed. Fragments
are joined together to form larger fragments, until the entire sentence is ulti-
mately obtained. In most grammar families, the constituents are substrings
of the sentence.

Operations on constituents used to express other constituents.
Logical operations used to define syntactic conditions.

A grammar family is thus a specialized logic for reasoning about the properties
of constituents.

In ordinary grammars, constituents are substrings, the only operation on
constituents is concatenation, that is, writing two substrings one after another
to form a longer substring. The only logical operation is disjunction of syntac-
tical conditions.

How can one modify this model? One of its special cases, the linear grammars,
is obtained by restricting the operations on constituents: instead of concatena-
tion of arbitrary substrings, as in a rule S → SS, linear grammars may only
concatenate fixed symbols to a substring from both sides, as in a rule S → aSb.

Another special case, the unambiguous grammars, restricts both the concate-
nation and the disjunction. In an unambiguous grammar, whenever a concate-
nation of two languages, K and L, is expressed, it is required that every string
w has at most one partition w = uv into a string u in K and a string v in L.
Furthermore, whenever a disjunction is used in an unambiguous grammar, at
most one alternative must be true.

Several grammar families are obtained by splitting the alphabet Σ into
left brackets and right brackets, restricting the constituents to be well-nested
substrings, and then restricting the concatenation, ensuring, in particular,
that only well-nested strings could be expressed. Such models proposed by
McNaughton [53] (“parenthesis grammars”), by Ginsburg and Harrison [30]
(“bracketed grammars”) by Berstel and Boasson [9] (“balanced grammars”) and
by Alur and Madhusudan [3] (“visibly pushdown grammars”).

One possible direction for extending ordinary grammars is to augment the
set of allowed logical operations. Adding the conjunction of any syntactical con-
ditions leads to conjunctive grammars, defined as follows.

Definition 3 [57,65]. A conjunctive grammar is a quadruple G = (Σ,N,R, S),
where Σ, N and S are as in an ordinary grammar, and each rule in R is of the
form A → α1 & . . . &αm, where m � 1 and α1, . . . , αm ∈ (Σ ∪ N)∗.

Such a rule asserts that if a string w can be representated according
to each conjunct αi, then w has the property A. More precisely, let αi =
ui,0Bi,1ui,1Bi,2 . . . ui,�i−1Bi,�i

ui,�i
, with Bi,1, . . . , Bi,�i

∈ N , �i � 0 and
ui,0, ui,1 . . . , ui,� ∈ Σ∗. Then, if, for each i ∈ {1, . . . , m}, the string w is repre-
sentable as w = ui,0vi,1ui,1vi,2 . . . ui,�i−1vi,�i

ui,�i
, where each vi,1 has the property

Bi, then w has the property A.
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Thus, conjunctive grammars use substrings as constituents, concatena-
tion as the only operation on substrings, and unrestricted disjunction and
conjunction as logical operations. Years before this model was studied by the
author [57], exactly the same model was defined by Szabari [81] in his unpub-
lished Master’s thesis. Closely related models were considered by Boullier [13]
and by Lange [50]. Clark et al. [20] and Yoshinaka [90] defined an equivalent
grammar model for their learning algorithm.

Example 2. The following conjunctive grammar describes the language
{ anbncn | n � 0 }.

S → AB &DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the nonterminal symbols A, B, C and D do not use conjunction,
and have the same meaning as in an ordinary grammar. In particular, A and
C define the languages a∗ and c∗, B defines { bncn | n � 0 } and D defines
{ akbk | k � 0 }. Then the rule for S represents the strings in a∗b∗c∗ that have
the same number of symbols b and c (ensured by AB), as well as the same
number of symbols a and b (specified by DC). These are exactly all strings of
the form anbncn.

Boolean grammars are a further extension of conjunctive grammars that
additionally allows the negation.

Definition 4 [58,65]. A Boolean grammar is a quadruple G = (Σ,N,R, S),
where each rule in R is of the form A → α1 & . . . & αm & β1 & . . . & βn, with
m,n � 0, m + n � 1 and α1, . . . , αm, β1, . . . , βn ∈ (Σ ∪ N)∗.

This rule asserts that if a string w can be representated according to each pos-
itive conjunct αi, and cannot be represented according to any negative conjunct
βj, then w has the property A.

Restricting conjunctive grammars and Boolean grammars to use linear concate-
nation yields linear conjunctive grammars and linear Boolean grammars, which
are known to be equivalent in power [59].

Extended grammar models of another kind feature more complicated con-
stituents, such as substrings with a gap. A substring with a gap is a pair (u, v),
with u, v ∈ Σ∗, which stands for any substring of the form u-gap-v, or uxv
with x ∈ Σ∗. Using these constituents facilitates describing syntactical links
between two remote parts of the same sentence. A more complicated type of
constituents are substrings with multiple gaps, that is, k-tuples of the form
(u1, u2, . . . , uk), representing substrings u1-gap-u2-gap- . . . -gap-uk with k − 1
gaps. Grammars, in which every nonterminal symbol defines a set of such k-
tuples, for some k, were independently defined by Seki et al. [77] (as “multiple
context-free grammars”), and by Vijay-Shanker et al. [89] (as “linear context-free
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rewriting systems”). In these grammars, which shall be called multi-component
grammars in this paper, there is the following operation on constituents: given
a k-tuple and an �-tuple, the substrings therein may be concatenated with each
other in any combinations, forming an m-tuple, with 1 � m � k + �. The only
logical operation is disjunction.

Definition 5 (Seki et al. [77]; Vijay-Shanker et al. [89]). A multi-
component grammar is a quintuple G = (Σ,N,dim, R, S), where Σ and N are as
in an ordinary grammar, the function dim: N → N defines the dimension of each
nonterminal symbol, that is, the number of components its refers to, and each
rule in R defines a possible structure of (dim A)-tuples with the property A as a
composition of � (dim Bi)-tuples with the property Bi, for some B1, . . . , B� ∈ N .

For each i, let (xi,1, . . . , xi,dimBi
) be variables representing the components

of a (dim Bi)-tuple with the property Bi. Let α1, . . . , αdimA be strings comprised
of symbols from Σ and the variables xi,j, with the condition that every variable
xi,j occurs in α = α1 . . . αdimA exactly once, and that, for every i, the variables
xi,1, . . . , xi,dimBi

occur in α in their original order. These strings represent the
form of the desired (dim A)-tuple, which is written down as the following rule
in R.

A(α1, . . . , αdimA) → B1(x1,1, . . . , x1,dimB1), . . . , B�(x�,1, . . . , x�,dimB�
),

The initial symbol has dim S = 1. The dimension of the grammar is the maxi-
mum dimension of a nonterminal symbol: dim G = maxA∈N dim A.

In this notation, a rule A → BC in an ordinary grammar is written down as
A(xy) → B(x), C(y).

Example 3. The following multi-component grammar, with dimS = 1 and
dim A = 2, defines the language { ambncmdn | m,n � 0 }.

S(xy) → A(x, y)
A(axb, cyd) → A(x, y)

A(ε, ε) →

An interesting special case of multi-component grammars are the well-nested
multi-component grammars, in which the constituents are the same, and the
operations on the constituents are restricted as follows. For each rule in R, for
any variables xi,j and xi,k of some Bi, and for any variables xi′,m and xi′,n of
some Bi′ , their occurrences in α1, . . . , αdimA may not cross each other, as in
. . . xi,j . . . xi′,m . . . xi,k . . . xi′,n . . .. The grammar in Example 3 is well-nested.

Well-nested 2-component grammars have received particular attention in the
literature. In these grammars, constituents are substrings with at most one gap,
and the operations are: wrapping a pair (u, v) around a pair (x, y), producing
a pair (ux, yv); creating a pair (w, ε) or (ε, w) out of a substring w; removing
the gap in a pair (u, v), obtaining a string uv. This model was defined under a
somewhat cryptic name of head grammars [71]; the definitions were later restated



42 A. Okhotin

?

?
?

?

Reg

LL

IDPDA

LRLinLLLin

Bool

Lin

Conj

Ordinary

LinConj

Unamb

UnambConj UnambBool

LR

UnambLin

TAGUnambTAG Multi

Fig. 1. Hierarchy of grammar families: inclusions.

in the modern form by Rounds [74]. These grammars were then found to be
equivalent to the earlier studied tree-adjoining grammars [88].

The hierarchy of grammar families described in this paper is given in Fig. 1,
where each arrow indicates containment; all inclusions without a question mark
are known to be proper. The hierarchy is centered at the ordinary grammars
(Ordinary), Chomsky’s “context-free”; other families are defined in reference to
them. Their special cases are: the unambiguous grammars (Unamb); the LR and
the LL grammars (LR, LL); and their subcases with linear concatenation (Lin,
UnambLin, LRLin, LLLin). A family of grammars dealing with well-nested strings
is labelled with the name of the corresponding automata: the input-driven push-
down automata (IDPDA). Then, there are the generalizations of ordinary gram-
mars: well-nested 2-component grammars, labelled according to the name “tree-
adjoining grammars” (TAG ) conjunctive grammars (Conj), Boolean grammars
(Bool), and their unambiguous subclasses (UnambTAG, UnambConj, Unamb-
Bool). Finally, there is the full family of multi-component grammars (Multi)
and the linear conjunctive grammars (LinConj). The regular languages stand at
the bottom of the hierarchy.

3 Inference Rules and Parse Trees

So far, grammars have been presented as an intuitively defined formalism for lan-
guage specification, as in Example 1. Several mathematically precise definitions
of grammars are known. Chomsky’s [17] string rewriting is one possible way of
formalizing these syntactic descriptions. Although it is sufficient to reason about
ordinary grammars, it does not explicitly follow the intuition behind Example 1,
and is unsuitable for defining the extensions of ordinary grammars.

A much clearer definition, representing the right outlook on formal grammars.
was presented, for instance, in a monograph by Kowalski [46, Chap. 3]. This
definition regards a grammar as a logic, in which the properties of any string
can be inferred from the properties of its substrings by the means of logical
inference. For an ordinary grammar, the logic deals with propositions of the form
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“a string w ∈ Σ∗ has the property A ∈ N”, denoted by A(w). For instance, a
rule A → BC allows the following deductions to be made, for all u, v ∈ Σ∗.

B(u) C(v)
A(uv)

(A → BC)

Example 4. For the ordinary grammar in Example 1, the well-nestedness of the
string abaabb is proved by the following logical derivation.

S(ε)
S(ab)

S(ε)
S(ab)

S(aabb)
S(abaabb)

This object is essentially the parse tree.

In a conjunctive grammar, a proposition A(w) can be deduced by a rule
A → BC & DE as follows, for any two partitions w into w = uv = xy, with
u, v, x, y ∈ Σ∗.

B(u) C(v) D(x) E(y)
A(w)

(A → BC & DE)

Example 5. For the conjunctive grammar in Example 2, the following derivation
establishes that the string w = abc is a well-formed sentence.

A(ε)
A(a)

B(ε)
B(bc)

D(ε)
D(ab)

C(ε)
C(c)

S(abc)

This inference, as well as any such inference for a conjunctive grammar, repre-
sents a parse tree with shared leaves: indeed, there are only three symbols in the
string, which are shared by two subtrees corresponding to the two conjuncts in
the rule for S. This sharing represents multiple structures for the same substring.

Definition by logical inference perfectly works for multi-component gram-
mars.

Example 6. The multi-component grammar in Example 3 defines the string w =
aabbccdd by the following logical derivation.

A(ε, ε)
A(ab, cd)

A(aabb, ccdd)
S(aabbccdd)

The definitions by logical derivation cannot implement the negation in the
rules, such as in Boolean grammars. Negation can be formalized within the more
general approach to defining grammars explained in the next section.
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Conclusions. Grammar families without negation can be defined by logical
derivations. This is a formalization of a most intuitive object, a parse tree.

4 Language Equations

Another approach to defining the language described by a grammar is based
upon a variant of informal definitions, such as the one in Example 1, this time
written down as “if and only if” conditions.

Example 7. A string w ∈ {a, b}∗ is well-nested if and only if

– either w = ε,
– or w = aub, for some well-nested string u,
– or w = uv, for some well-nested strings u and v.

This can be written down as the following language equation, with the set of
well-nested strings X as the unknown.

X = {ε} ∪ ({a} · X · {b}) ∪ (
X · X

)

The Dyck language is among the solutions of this equation, actually the least
solution with respect to inclusion.

The representation of grammars by language equations was discovered by
Ginsburg and Rice [31]. An ordinary grammar G = (Σ,N,R, S), with N =
{X1, . . . , Xn} is represented by a system of equations with the following form,
where each nonterminal symbol Xi becomes a variable.

⎧
⎪⎨

⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)
(*)

For each Xi, the right-hand side of its equation is a union of concatenations,
representing the rules for Xi, with each occurrence of a symbol a ∈ Σ represented
by a constant language {a}, as shown in the above Example 7.

Language equations corresponding to conjunctive grammars represent the
conjunction operator by intersection of languages on the right-hand sides.

Language equations can be naturally extended to the cases of tree-adjoining
grammars and multi-component grammars. These equations will use sets of pairs
or k-tuples of strings as unknowns. The operations on the right-hand sides are:
the set-theoretic union, and the operations on constituents extended to sets.

Language equations are particularly essential for defining Boolean gram-
mars [58], but there are a few non-trivial details to take care of. First, the
negation in the rules is implemented by a complementation operation on sets.
However, in this case the equations might have no solutions, such as the equation
S = S corresponding to the grammar S → ¬S. One possibility of handling this
problem is to impose an certain condition on grammars, under which the gram-
mar S → ¬S is dismissed as ill-formed [58]. An improved definition of Boolean
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grammars done in terms of three-valued logic was given by Kountouriotis
et al. [45]: under their definition, every grammar defines a three-valued language,
with each string having a “well-formed”, “ill-formed” or “undefined” status; in
particular, the grammar S → ¬S defines a language with all strings undefined.

Language equations of the general form, with unrestricted left-hand sides,
can define computationally universal sets by their solutions [41,47,60,63], which
makes them completely useless for the purpose of defining grammar models.

Conclusions. All grammar families have definitions by language equations, this
is a common underlying principle.

5 Expressibility of Operations

Closure properties are among the main indicators of the expressive power of a
grammar family: closure under some operation means that this operation can be
expressed in those grammars. Some closure results are immediate, because the
operation is a part of the formalism of rules: for instance, union and concatena-
tion are expressible both in ordinary grammars and in conjunctive grammars,
and in the latter, intersection is expressible as well. There are numerous closure
results for various grammar families, and only a brief account of some recurring
properties can be given in this paper.

Perhaps the most fundamental closure result for ordinary grammars is
their closure under intersection with a regular language, proved by Bar-Hillel
et al. [6]: in their construction, an ordinary grammar G = (Σ,N,R, S) and a
finite automaton A = (Σ,Q, q0, δ, F ) are combined into a new grammar G′ with
the nonterminal symbols of the form Ap,q, with A ∈ N and p, q ∈ Q, which
defines all strings with the property A, on which the finite automaton moves
from state p to state q. Parse trees in G′ have the same structure as parse trees
in G, with the extra information on the computation of A.

By a similar method, one can implement a nondeterministic finite transduc-
tion (NFT) on an ordinary grammar G, producing a grammar G′ for the set of all
strings that can be emitted by the transducer while processing a string defined
by G [29]. This general closure result has important special cases, such as homo-
morphisms, inverse homomorphisms, inverse deterministic finite transductions
(DFT), the set of prefixes, etc.

All the above results apply to linear grammars and to multi-component gram-
mars. For unambiguous grammars, the construction for intersection with a reg-
ular language still applies, but the construction simulating an NFT is no longer
applicable. In fact, this family is not closed already under homomorphisms. How-
ever, the special case of the latter construction involving an inverse DFT applies
for unambiguous grammars as well.

For conjunctive and Boolean grammars, similarly, there is a non-closure under
homomorphisms [57], but the contruction for the closure under inverse DFT can
still be generalized [51].
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6 Normal Forms

Numerous normal form theorems exist for ordinary grammars, and some of them
have been extended to other grammar families.

The most well-known normal form is the Chomsky normal form for ordinary
grammars, which requires all rules to be of the form A → BC, with B,C ∈ N , or
A → a, with a ∈ Σ. The known transformation to the normal form proceeds by
first ensuring that the right-hand sides are of length at most one (this incurs a
linear increase in the size of the grammar), then eliminating null rules of the form
A → ε (linear increase), and finally eliminating chain rules of the form A → B

(quadratic increase). A lower bound of the order n
3
2−o(1) has been established

by Blum [11].
The Chomsky normal form exists for several subclasses of ordinary grammars:

namely, for unambiguous grammars, for LL grammars and for LR grammars.
For conjunctive grammars, there is a direct generalization, called the binary

normal form [57]. A conjunctive grammar in the binary normal form has all
rules of the form A → B1C1 & . . . & BmCm, with m � 1 and Bi, Ci ∈ N , or of
the form A → a, with a ∈ Σ. The transformation follows the same plan as for
ordinary grammar, consecutively eliminating null conjuncts in rules of the form
A → ε & . . ., and unit conjuncts in rules of the form A → B & . . .. However, the
elimination of unit conjuncts incurs an exponential blow-up. No lower bound on
the complexity of this transformation is known.

In the Greibach normal form [32] for ordinary grammars, every rule is of the
form A → aα, with a ∈ Σ and α ∈ N∗. The best known transformation to the
Greibach normal form was developed by Rosenkrantz [73] and by Urbanek [85]:
it transforms a grammar in the Chomsky normal form to a grammar in the
Greibach normal form with a cubic blow-up. An O(n2) lower bound on the
complexity of the latter transformation was proved by Kelemenová [44].

The definition of the Greibach normal form can be naturally extended to con-
junctive grammars, which would have all rules of the form A → aα1 & . . . & aαm,
with a ∈ Σ, m � 1 and α1, . . . , αm ∈ N∗. However, it is not known whether
every conjunctive grammar can be transformed to this form [65, Problem 5].

A stronger version of the Greibach normal form for ordinary grammars was
defined by Rosenkrantz [73]. In the Rosenkrantz normal form (also known as
double Greibach normal form), every rule is of the form A → aαd, with a, d ∈ Σ
and α ∈ (Σ ∪ N)∗, or A → a. The transformation from the Chomsky normal
form to the Rosenkrantz normal form, as stated by Engelfriet [24], produces a
grammar of size O(n10), no lower bounds are known.

In the operator normal form for ordinary grammars, defined by Floyd [27],
each rule is of the form A → u0B1u1B2u2 . . . uk−1Bkuk, with k � 0, u0, uk ∈ Σ∗,
B1, . . . Bk,∈ N and u1, . . . , uk−1 ∈ Σ+. This normal form extends to conjunctive
grammars [68]: every grammar can be transformed to one with all rules of the
form A → B1a1C1 & . . . &BmamCm, with m � 1, Bi, Ci ∈ N , and ai ∈ Σ, or
A → a, or S → aA, as long as S never appears on the right-hand sides of any
rules.
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There is a generalized normal form theorem by Blattner and Ginsburg [10],
in which all rules are either of the form A → w, with w ∈ Σ∗, or of the form
A → u0B1u1 . . . B�u�, where � and the lengths ui may be fixed almost arbitrarily.

Conclusions. Ordinary grammars can be normalized in many different ways.
Some normal form theorems are extended to conjunctive grammars; other normal
forms could be generalized as well, but it is open whether every grammar can be
transformed to those forms. For multi-component grammars, such normal forms
would be hard to formulate: apparently, one has to deal with grammars of more
or less the general form.

7 Parsing

Most parsing algorithms applicable to grammars of the general form are based
upon the dynamic programming method. The most well-known is the Cocke–
Kasami–Younger algorithm, which, for an ordinary grammar G = (Σ,N,R, S)
in the Chomsky normal form, given a string w = a1 . . . an, constructs, for each
substring ai+1 . . . aj , the sets Ti,j = {A | ai+1 . . . aj ∈ LG(A) }. Its running
time is Θ(n3) and it uses Θ(n2) space. The algorithm applies to conjunctive
grammars [57] and to Boolean grammars [58] without any changes.

Valiant [86] proved that the same data structure can be constructed in time
O(nω), where O(nω) is the number of operations needed to multiply two n × n
matrices. Valiant’s algorithm was originally presented in a generalized algebraic
form, which complicates the creation of any derivative algorithms. However,
it can be reformulated easier and in elementary terms, and then it directly
applies to conjunctive and Boolean grammars [66], with the same time com-
plexity O(nω).

The ideas of the Cocke–Kasami–Younger algorithm are directly extended to
multi-component grammars [77, Sect. 3.2], obtaining an algorithm working in
time O(nk), where k depends on the number of components and on the com-
plexity of rules. In particular, for tree-adjoining grammars, the basic algorithm
works in time O(n6). Both algorithms can be accelerated using fast matrix mul-
tiplication [54,72].

A variant of the Cocke–Kasami–Younger algorithm, the Kasami–Torii algo-
rithm constructs a different data structure encoding the same sets Ti,j : for each
position j and for each nonterminal symbol A, this is the sorted list of all posi-
tions i with A ∈ Ti,j . The resulting algorithm works in time O(n3) in the worst
case, and in time O(n2) for unambiguous grammars, as well as for unambigu-
ous conjunctive and unambiguous Boolean grammars [62]. Using the same idea,
parsing for tree-adjoining grammars can be accelerated to O(n4).

There are well-known subclasses of ordinary grammars that have linear-time
parsing algorithms: the LL grammars and the LR grammars. The LL grammars
have a generalization for Boolean grammars [61], the LR grammars have an
extension for conjunctive grammars [2].
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O(n) O(n2) O(n2)
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Fig. 2. Hierarchy of grammar families: parsing time.

Conclusions. Each grammar family has a simple dynamic programming parsing
algorithm that works in polynomial time, with the degree of the polynomial
depending on the grammar family. The presence of Boolean operations does
not affect the complexity, whereas for multi-component grammars, the degree of
the polynomial is determined by the structure of rules. For all known grammar
families, the algorithm can be accelerated by using fast matrix multiplication,
and with the unambiguity assumption, the algorithm can be accelerated even
further. Linear-time algorithms for subclasses of ordinary grammars are well-
developed, but their extensions to more powerful grammar families need further
study. The running time for different families is compared in Fig. 2.

8 Representation in the FO(LFP) Logic

In 1988, Rounds [74] has identified the previously unknown foundation for formal
grammars: the FO(LFP) logic. The fundamental theoretical property of this
logic, discovered by Immerman [37] and by Vardi [87], is that it can describe
exactly all problems decidable in polynomial time: the complexity class P. As it
turned out, it is not only that all grammar families can be described within this
logic—they can be described exactly according to their definition! Then, each
grammar family becomes a clearly defined special case of the FO(LFP) logic.

Definition 6. Let Σ be an alphabet, let N be a finite set of predicate symbols,
with each A ∈ N having a finite number of arguments, denoted by dim A.

The logic uses first-order variables referring to positions in the string. Posi-
tions are given by terms, defined as follows.

– The first position, the last position and any variables are terms.
– If t is a term, then so are t + 1 and t − 1.
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Next, a formula is defined as follows.

– If A ∈ N is a predicate symbol with dim A = k and t1, . . . , tk are terms, then
A(t1, . . . , tk) is a formula;

– If a ∈ Σ is a symbol and t is a term, then ϕ = a(t) is a formula;
– If t and t′ are terms, then t < t′ and t = t′ are formulae;
– If ϕ and ψ are formulae, then so are ϕ ∨ ψ and ϕ ∧ ψ;
– If ϕ is a formula and x is a free variable in ϕ, then (∃x)ϕ and (∀x)ϕ are

formulae as well.

A FO(LFP)-definition is a quintuple G = (Σ,N,dim, 〈ϕA〉A∈N , σ), where each
predicate A ∈ N is defined by a formula ϕA with dim A free variables, and σ is a
formula with no free variables that defines the condition of being a syntactically
well-formed sentence.

Similarly to a grammar, an FO(LFP)-definition describes a language of well-
formed strings. For each string w ∈ Σ∗, there is a least assignment of sets of
(dim A)-tuples of positions in w to each predicate A, which satisfies the system
of equations A = ϕA, for all A. This is essentially a generalization of language
equations of Ginsburg and Rice [31]. Then, if σ is true under this assignment,
the string w is considered well-formed.

Example 8. The grammar in Example 1 is transcribed as the FO(LFP)-definition
G = (Σ, {S},dim, 〈ϕS〉, σ), with dimS = 2 and with S defined by the following
formula.

S(x, y) =
[
(∃z)(S(x, z) ∧ S(z, y))

] ∨ (a(x + 1) ∧ S(x + 1, y − 1) ∧ b(y)) ∨ x = y
︸ ︷︷ ︸

ϕS

The condition of being a well-formed sentence is σ = S(first, last).

All other grammar families can be similarly expressed in the FO(LFP) logic:
conjunctive grammars are represented using the conjunction, multi-component
grammars require predicates with more than two arguments.

The following decision procedure for the FO(LFP) logic can be regarded as
the mother of all parsing algorithms.

Theorem 1. Let G = (Σ,N,dim, 〈ϕA〉A∈N , σ) be an FO(LFP)-definition, let
k be the largest dimension of a predicate, let m be the largest number of nested
quantifiers in a definition of a predicate. Then there exists an algorithm, which,
given an input string w ∈ Σ∗ of length n, determines whether w is in L(G), and
does so in time O(n2k+m), using space O(nk).

The algorithm calculates the least model by gradually proving all true ele-
mentary propositions. There are O(nk) propositions in total, and at each step,
at least one new proposition is proved, which bounds the number of steps by
O(nk). At each step, the algorithm cannot know, which propositions it is already
able to prove, so it tries proving each of O(nk) propositions. Each nested quan-
tifier requires considering n possibilities for the bounded variables, and thus an
attempted proof of each proposition requires O(nm) steps.
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Conclusions. All grammar families are representable in FO(LFP) and have a
polynomial-time parsing algorithm provided by Theorem 1. The degree of the
polynomial is usually not as good, as provided by the specialized algorithms
given in Sect. 7.

9 Equivalent Models

The classical representation of ordinary grammars by nondeterministic push-
down automata [18] gives rise to several related results. First, the LR grammars
are similarly characterized by deterministic pushdown automata [28], and linear
grammars are characterized by one-turn pushdown automata,

A particularly important special case of pushdown automata are the input-
driven pushdown automata, also known as visibly pushdown automata. This
model was known already in 1980; von Braunmühl and Verbeek [14], proved
that its deterministic and nondeterministic variants are equal in power. Later,
Alur and Madhusudan [3] reintroduced the model under the names “visibly push-
down automata” and “nested word automata”, carried out a systematic study of
its properties and inspired further work on the closure properties of input-driven
automata and on their descriptional complexity [69].

A generalization of pushdown automata characterizing conjunctive grammars
was defined by Aizikowitz and Kaminski [1]. Their model, the synchronized alter-
nating pushdown automata, are pushdown automata with a tree-structured stack,
with bottom of the stack as the root of the tree and with the top of the stack
formed by all the leaves.

Linear conjunctive grammars have an automaton representation of an
entirely different kind [59]. They are characterized by the simplest kind of one-
dimensional cellular automata: the one-way real-time cellular automata, also
known as trellis automata, studied, in particular, by Ibarra and Kim [36] and by
Terrier [82–84]. These automata work in real time, making n − 1 parallel steps
on an input of length n, and the next value of each cell is determined only by
its own value and the value of its right neighbour.

An important alternative representation of ordinary grammars as categorial
grammars was established by Bar-Hillel et al. [5]. An extension of categorial
grammars, the combinatory categorial grammars, similarly characterizes tree-
adjoining grammars [88]. A different extension augmented with conjunction was
introduced by Kuznetsov [48], and its equivalence to conjunctive grammars was
proved by Kuznetsov and Okhotin [49].

Conclusions. Representations by pushdown automata and by categorial gram-
mars are among the recurring ideas of formal grammars. A representation by
cellular automata has so far been found only for linear conjunctive grammars.

10 Homomorphic Characterizations

The Chomsky–Schuützenberger theorem [18] was one of the first theoretical
results on grammars. In its original form, it asserts that every language L ⊆ Σ∗
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described by an ordinary grammar is a homomorphic image of an intersection
of a Dyck language on k pairs of brackets Dk with a regular language M .

L = h(Dk ∩ M)

The classical proofs of this result rely on using erasing homomorphisms.
There are several stronger forms of this theorem that use non-erasing homo-

morphisms. The simplest of them assumes that all strings in L are of even length;
then it is sufficient to use only symbol-to-symbol homomorphisms.

Theorem 2 (Chomsky and Schützenberger [18]; Okhotin [64]; Crespi-
Reghizzi and San Pietro [22]). For each alphabet Σ, there exists such a num-
ber k � 1, that a language L ⊆ (Σ2)∗ is described by an ordinary grammar if and
only if there exist a regular language M over an alphabet of k pairs of brackets
and a symbol-to-symbol homomorphism h mapping each bracket to Σ, such that
L = h(Dk ∩ M).

In plain words, the theorem asserts that if a language is defined by an ordinary
grammar, then it is obtained from a nested bracketed structure checked by a
finite automaton by renaming the brackets to symbols in Σ.

Yoshinaka et al. [91] extended the Chomsky–Schützenberger theorem (in its
erasing form) to multi-component grammars, using a suitable generalization of
the Dyck language. Salomaa and Soittola [76] and Droste and Vogler [23] estab-
lished a variant for weighted grammars.

The theorem cannot be extended to conjunctive grammars, regardless of
which language would be used instead of the Dyck language, for the reason that
every recursively enumerable set is representable as a homomorphic image of a
language described by a conjunctive grammar.

11 Hardest Languages

A famous theorem by Greibach [33] states that there exists a fixed language L0

described by an ordinary grammar G0, with the property that every language L
over any alphabet Σ that is described by an ordinary grammar G is reducible to
L0 by a homomorphic reduction. In other words, L is representable as an inverse
homomorphic image h−1(L0), for some homomorphism h : Σ → Σ∗

0 . In the proof,
the image h(a) of each symbol a ∈ Σ encodes basically the entire grammar G,
and for each string w ∈ Σ∗, its image h(w) is defined by the “universal” grammar
G0 if and only if w ∈ L.

This theorem is similar in spirit to the results on the existence of complete sets
in several complexity classes, such as NP-complete sets. In Greibach’s theorem,
a homomorphism is a reduction function, cf. polynomial-time reductions in the
definitions of NP-complete problems.

For conjunctive grammars and for Boolean grammars, there are hardest lan-
guage theorems with exactly the same statement [67]. Likely, Greibach’s theo-
rem could also hold for certain classes of multi-component grammars, such as
for multi-component grammars of maximum dimension k, for each k.
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Turning to special cases of ordinary grammars, Greibach [34] demonstrated
that the LR grammars cannot have a hardest language under homomorphic
reductions, and Boasson and Nivat [12] proved the same result for linear gram-
mars. One could expect that there is no hardest language for the unambiguous
grammars; however, as Boasson and Nivat [12] rightfully remarked, proving that
“seems to be a hard problem”. Whether Greibach’s theorem holds for linear
conjunctive grammars is another open problem.

Conclusions. Grammar families without any special restrictions, such as deter-
minism, unambiguity or linearity of concatenation, tend to have hardest lan-
guages. For various combinations of special restrictions, the existence of hardest
languages has either been disproved or remains open.

12 Limitations of Grammars

There are several known methods for proving that a language is not described
by any grammar from a certain class.

For ordinary grammars, there is the classical pumping lemma of Bar-Hillel
et al. [6] that exploits the possibility of inserting repetitive structure into any suf-
ficiently large parse tree. The same idea yields stronger versions of the pumping
lemma: Ogden’s lemma [55] featuring distinguished positions and the Bader–
Moura lemma [4] that further allows some positions to be excluded from pump-
ing. There are two special results based on exchanging subtrees between parse
trees of different strings: Soko�lowski’s lemma [79] and the interchange lemma by
Ogden et al. [56].

In general, the idea behind the pumping lemma equally applies to multi-
component grammars: one can also insert repetitive structure into their parse
trees. However, the inserted fragments may scatter between the components,
and, as demonstrated by Kanazawa et al. [43], a direct analogue of the ordinary
pumping lemma does not hold for multi-component grammars of dimension 3
or more; it is only known that some string can be pumped, but not necessarily
all of them. A standard pumping lemma exists for well-nested multi-component
grammars [42].

Parikh’s theorem states that if a language is described by an ordinary gram-
mar, then it can be transformed to a regular language by changing the order of
symbols in the strings. Numerous proofs of this theorem are known, including the
recent constructive proof by Esparza et al. [25]. Parikh’s theorem directly applies
to multi-compoment grammars, and does not apply to conjunctive grammars,
which can, for instance, describe some non-regular unary languages [39,40].

Negative results for unambiguous grammars can be proved using the pump-
ing lemma and its variants [55], or using the methods of analytic combina-
torics [26]: if the generating function for a language is transcendental, it cannot
be described by an unambiguous grammar. These methods extend to unambigu-
ous multi-component grammars, but are not applicable to unambiguous con-
junctive grammars.
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For linear conjunctive grammars, several methods for proving non-
representability of languages have been developed using their cellular automaton
representation [16,82,84]. There are no known methods for proving that there
is no conjunctive grammar for a certain language [65], and this remains a sub-
stantial gap in the knowledge on that family.

13 Complexity

In the late 1950 s and early 1960s, when nothing was yet known about computa-
tional complexity, the Chomsky hierarchy by itself served as a pre-historic hierar-
chy of complexity classes, consisting of DSPACE(const), grammars, NSPACE(n)
and the recursively enumerable sets. It answered the natural question on the
complexity of ordinary grammars by placing them between DSPACE(const) and
NSPACE(n), and put them in the context of the emerging theoretical computer
science. The complexity theory has advanced since that time, and it is impor-
tant to relate formal grammars to the modern complexity classes, as well as to
compare different grammar families according to their complexity. The resulting
picture is presented in Fig. 3.

First of all, different grammar families are special cases of the complexity
class P due to their representation in the FO(LFP) logic; and linear conjunctive
grammars can describe some P-complete languages [36,65]. At the lower end
of the hierarchy, there are families contained in the logarithmic space (L), the
largest of them are the LR(1) linear grammars (LRLin); also, there exists an
LR(1) linear grammar that describes an L-complete language [35]. The whole
family of linear grammars (Lin) is similarly contained in NL and can describe an
NL-complete language [80].
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Unamb
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UnambLin

TAGUnambTAG Multi

Fig. 3. Hierarchy of grammar families: complexity.

Turning to the complexity of ordinary grammars, in 1979, Cook [21] wrote:
“I see no way of showing DCFL ⊆ NC”. Yet, a few years later, Brent and
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Goldschlager [15] and Rytter [75], described a circuit of depth (log n)2 with
O(n6) gates that recognizes the membership of a string in the language in time
O((log n)2). There was a much earlier algorithm based on the same idea: this
was the recognition procedure for ordinary grammars by Lewis, Stearns and
Hartmanis [52] that uses only O((log n)2) bits of memory, at the expense of
super-polynomial running time. The underlying idea of these algorithms is to use
an augmented logical system, in which the height of proof trees is logarithmic in
the length of a string. The small-space algorithm and the fast parallel algorithm
both work by finding a shallow proof in the augmented system.

14 Towards Further Models

Some good grammar families may still remain undiscovered, and it would be
interesting to identify such models.

In the early days of formal language theory, when, following Chomsky [17],
grammars were regarded as rewriting systems, any new kinds of grammars were
defined by modifying the rewriting rules. These attempts usually resulted in
models that do not correspond to any intuitive syntactic descriptions. It is
unlikely that any useful model can be defined in this way.

Judging by today’s knowledge, since other grammar families are naturally
expressed in FO(LFP), there are all reasons to expect some further well-chosen
fragments of FO(LFP) to give rise to interesting models. Likely, an interesting
model would express some condition that could be naturally used in informal
definitions of syntax, and at the same time would maintain some of the recurring
ideas of formal grammars. For instance, grammars with context operators [7,
8] were defined by taking the old idea of a rule applicable in a context and
expressing it in FO(LFP).

Instead of using FO(LFP) as the base model, one could also consider the
related logic theories studied in the field of descriptive complexity [38]; perhaps
some of them could be useful as a source of inspiration in the search for new
grammar families.
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1 Introduction

The CF formal grammar model was twin-born and raised, 1956–1963 [C,CS,
BGS,BPS].

(1) As the second in Chomsky hierarchy of models for syntactic phrase-structure
in natural languages sentences.

(2) As “Backus Normal Form” - to model syntax of programming languages like
ALGOL 60.

The research of the twins soon diverged. Compilers built for translating pro-
gramming languages to assembly languages - developed submodels, like LR(k)
which avoided ambiguity and were amenable to deterministic parsing.

The Linguist twin was worried by inadequacies, syntactic constructs which
seem beyond the CF power. This led to extensions. “Mild context-sensitive”
models and beyond. The tree-adjunction grammar [TAG] is the most popular.
It received a fervent linguistic defence in Frank’s book [F].

However, the formal study of the extensions evolved toward “stringology”:
Algebraic and algorithmic study of recursive-iterative mechanisms to generate
infinite sets of strings, trees or other designs and how to parse the yields of those
mechanisms. Kallmeyer’s book [K] gives an extensive account of this research.

But if the primary goal of the model is computerized parsing of natural lan-
guages texts, it should be comprehensive and efficient. Conforming with linguistic
theories and over-generation - are secondary issues.

The reshape proposal goes in this direction. It stays away from extensions
which increase the recursive power. Even within CFG, a “thinning diet” cuts
away some iterative rules which create bad ambiguities, increase parsing com-
plexity and seem syntactically unuseful.

The proposal is presented and reasoned in Sects. 4 and 5, which can be read
right here. Its parsing is described in Sect. 6. Sections 2 and 3 are overviews of the
CF model and its deficiencies: The universal and hardest CFG/CFL, its extreme
non-determinism and inherent ambiguities, indicating how to ameliorate them
toward a reshaped model.
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2 Overview of CFG/L: Universal, Hardest, Extreme
Ambiguity

Familiarity with basic CFG definitions and notations is assumed. The presenta-
tion follows the extensive survey [ABB].

Definition 2.1. The DYKE set of strings in {Aj , Āj , j ∈ J}∗ is the subset of
strings which cancel to e (the null string) under repeated cancelations AjĀj = e.

Remark 2.2. For arithmetic- and logic-expressions, with operators having two
(independent) arguments, using infix notation, DYKE provides pairs of brackets.
These are used to isolate substrings which serve as arguments, thus avoiding
ambiguity in parsing. DYKE serves a similar role in CFG parsing (by PDA)
to denote (start, end) of applying production A → α. But ambiguity creeps in
the multiple choice: which production to use next. Thus, Shamir theorem [S1]
characterizes each CFL by a homomorphism into subsets of DYKE. Its proof
in [HK,ABB] is simplified via Greibach normal form for productions in G

Aj → aαj , 1 ≤ j ≤ k, for a ∈ T, Aj ∈ NT, αj ∈ (NT )∗

Now Φ on T ∗ is defined by the monomials

(2.3) Φ(a) = [Ā, αR + · · · + ĀkαR
k ], αR = reverse of α

(2.4) Φ(w = a1 . . . ar) = Φ(a1) . . . Φ(ar) ([,+, ]extra symbols)

Using the distributive law, this product in (2.4) opens to a sum of terms∑
� β�. β� ∈ {Aj , Āj}∗ and finally

w ∈ LS(G) = {w ∈ T ∗, S ∗→ w ∈ G)(2.5)
iff S · β� ∈ DY KE{Aj , Āj} for some �.

The proof in [ABB,HK] is by simple induction. Its idea lies in the pushdown
[PDA] simulation of a derivation in G. Upon reading the terminal a, some Āj , α

R
j

is chosen to push into the stack, or if Aj → a is chosen, then Āj is popped
(corresponds to AjĀj = e). Acceptance is by empty PDA stack.

Clearly, a choice of the good productions leading to an empty stack is an
extremely non-deterministic process, but also very handy in verifying a candidate
language to be CFL.

A universal CFG/L is obtained by taking in 2.3, 2.4 all possible productions
A → aα. It embeds all CFGs (up to size K), hence inherits all undesirable
properties, unbounded inherent ambiguities, and more. Greibach [GR2] observed
it is also the hardest CFG/L to parse.

Remark 2.6. The proof in [S1] relied on homomorphism [BGS] into subset of
“category symbols” with different cancellation rules, and reduced it to DYKE-
cancellations, which is simpler. ��
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3 Inherent Ambiguities in CLF

Ginsburg’s book [G] has a chapter on inherent ambiguities in CFLs contained in
a∗
1 . . . a∗

n. More realistic is the inherently unbounded ambiguity in L1 (uR asks:
where is my partner u)

(3.1) L1 = HuH ′$uR, u,H,H ′ = {a1b}∗

uR is the reverse of u. L1 has a linear CFG. First derive H ′, then switch to derive
the dependency u $uR, finally switch to derive H ′. The ambiguity results
from the non-deterministic choice when to switch. This is a rhythmical non-
determinism/ambiguity, which appears also in NDFA. Intuitively it is unbounded
and inherent - formally proved in [S2]. Consider now

(3.2) L2 = N · M = uR$Hu · vH ′$vR

the factors N,M have unambiguous linear grammars. But an answer to the
question: where is the dot between N and M? creates unbounded (and inherent)
product ambiguity:

(3.3) X → Y Z, Y
∗→ u, Y

∗→ u′, Z
∗→ v, Z

∗→ v′, uv = u′v′.

This type of ambiguity is more serious. In Earley parsing algorithm, unbounded
product ambiguity in G raises the parsing time-complexity to cubic, O(n3).

Consider now the transformation NM/↘ N∧M# called “top trunk rotation”
- [TTR]. It takes the top trunk of N , creating the dependency uR − u rotates
it by 180◦ and mounts it on M (formal definition in (3.5)). It is seen that the
yield of NM is cyclic rotated; for example:

(3.4) abb$Hbba dccH ′$ccd/↘ $HbbadccH ′$ccd abb

Now N∧M# is linear and essentially the same as L1 above:

u · v between the two $ signs and (u · v)R on the right.

Moreover, the ambiguous D-trees are mapped, in 1−1 onto manner, from product
type to rhythmical type.

Remark 3.5. Linear CFGs and their substitution closure class (= non expan-
sive grammars class) [ABB,S4] are free of product ambiguity.

Definition 3.6. TTR transforms N.M to N∧M# where N,M are grammars
with disjoint non-terminals, root (N) = B is a pump symbol. Hence each D-tree
of N starts with the [B] trunk. It is rotated by 180◦ and mounted on M , by the
corresponding rotation of the (binary) production of the trunk in N upon their
transfer to M#:

in N B′ → CB′′ rotates to B′′ → CB′ in M#

in N B′ → B′′C rotates to B′′ → B′C in M#

The cyclic rotation of the yield, as shown in (3.4) is readily verified.
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4 The Reshaped Grammar - Formal Presentation

The reshaped grammar G consists of

I. The kernel - a bounded bunch of linear grammars G(i), sharing NT symbols
and pre-terminal symbols

Definition 4.1. Symbol G if preterminal if it is a root of a CF grammar subs
(C) which derives only D-trees without iterations along their branches - hence
only a bounded number of bounded trees, whose yield are terminal strings.

II. Compiled substitution banks, subs (C) for each preterminal C as described
in (4.1)

III. Compiled Adjunction Lists - list of substrings u − u′ of bounded size which
are legally possible in terminal strings of G.

A typical example is cross-serial dependency u − ϕ(u) (cf. 6.4). The concept
comes from TAG, which enables insertion of subtrees around an inner node of
an existing D-tree. It is beyond CF power. But if it occurs locally in a bounded
section of a string, then a complicated (ugly) CFG could generate it. Integrating
it and (subs (C) as well) into the CYK tabular parsing algorithm in Sect. 6, is
simple to describe and much more efficient to parse.

Back to the kernel: In a linear G(i) grammar (WLOG, its productions are
binary or unary), each D-tree has a single main trunk, labelled by NT symbols
and length 1 branches on both sides of the trunk, labeled by preterminal
symbols (if all branches are on one side, it is a finite automaton).

The main trunks are like towers with several floors. Each floor hosts one
pump equivalence class [B].

(4.2) B′ ∈ pump class [B] if B
∗→ −B′ − and B′ ∗→ −B − .

In addition few symbols may appear as “stairs” connecting the floors.
The recursive iteration in the kernel can occur only inside the pump classes.

As in example (3.1), the only non-determinism is rhythmic, when to exit a floor
downward. The substring (of pre-terminals) derived by a pump class is embed-
ded, like a subordinate clause in the substring generated above it. Embedding in
the opposite direction is also valid by syntax rules. So several G(i) in the kernels
with various orders of the pump classes along the trunks are desired. Inversion of
orders is obtained when TTR is applied to product N ·M of linear grammars as
in Sect. 3 (continued TTRs on N∧ until if is fully mounted on the other factor).
Thus the class of CFG which admit decomposition to union of linear grammars
(provided the yields are viewed as circular string) is closed under union and
products.
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5 The Reshaped Grammar-Linguistic Aspects

The proposed reshaped grammar is designed primarily for machines, for com-
puterized parsing aided by completed repositories. It should not be evaluated as
a formal generation model. E.g., some over-generation is acceptable.

The kernel is designed to contain all the recursive-iterative abilities of the
model, and restrict them to be “vertical” inside the pump-classes of the linear
D-trees. Derivation of (sideways) expansive grammars [ABB], like S

∗→ −S−S−
are out. Repeating them will crowd many unrelated S-categories (e.g., sentence
category) onto one sentence, which creates bad ambiguities and complicated
parsing, while the option of using a paragraph with several sentences is avail-
able and preferable. The linear trunks also provide embedding of one clause as
subordinate to another (in a “higher floor”). The multi-linear character of the
kernels enable the embeddings in various orders. Thus transformation grammar
mechanism (like active to passive) which inverts the direction of embeddings are
enabled.

The repositories of substitution and adjunction describe local sequences of
fine-grained parts of speech in sentences (e.g. noun, verb, adjective, ...) which are
descriptors of lexical items in dictionaries. These are small repositories compiled
by linguists, unlike the huge corpora of parsed sentences (like Penn).

The kernel and substitution banks seem ubiquitous across most natural lan-
guages, which conforms to Chomsky’s belief in innate syntax faculty in humans.
The adjunction lists are more custom-made, to the peculiarities of each lan-
guage, designed to settle most of the inadequacies of the CF model, in bounded
sentences, not in the asymptotic unbounded limits.

Remark 5.1. Viewing sentences and clauses as circular strings helps to resolve
ambiguities. Consider the politically loaded sentence

The policeman shot $ the boy# with the gun

The ambiguity (who held the gun) is resolved both ways by the cyclic rotations
starting at $, #.

6 The Parsing Algorithm

The terminology follows Chap. 3 in [K]. A parsing scheme is presented as a
collection of deduction rules which have antecedent items (“top”, “above the
line”), and one consequent item (“bottom”, “below the line”), and side conditions
which determine the validity of the deduction.

These rules support a bottom-up dynamic programming algorithm for decid-
ing membership in LA(G) of a candidate circular string ∗w of length n. Then,
top-down, it finds a parse for the derivations A

∗→∗
w.

The algorithm here, for the reshaped grammar, is an adaptation of CYK for
linear CFG. Items are of the form (A, i, j) signifying the derivation status of
w(i+1) . . . w(j), a cyclic substring of ∗w of width k. Linearity implies that each
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deduction has a single top item. Items (A, i, j) are placed in entry (i, j) of n × n
table. Those of width k form the k-diagonal. The 1-diagonal contains the axioms
(empty top)

(6.1)
·

(B, i, i + 1)
if B → w(i + 1) is a production in G.

The other deductions come in two groups:
I substitutions for the yields Y (C) of preterminal C.

(6.2)
(B′, i, �)
(B, i, j)

if B → B′C in G and w(� + 1) · · · , w(j) ∈ Y (C)

(6.3)
(B′, �, j)
(B, i, j)

if B → CB′ in G and w(i + 1) · · · , w(�) ∈ Y (C)

namely, a substring from Y (C) found in w complements the ‘top’ substring from
right or left, respectively.

II Adjunction permitted by a dependency LIST.

(B, i, i + r + s)
(B, i, i + r + s + t)

if (α, γ) ∈ LIST(6.4)

α = w(i + 1) · · · w(i + r)
β = w(i + r + 1, · · · , w(i + r + s),
γ = w(i + r + s + 1, . . . , w(i + r + s + t)

namely αβγ is a substring of w with αβ in the top item and the newly read γ
complements it, since (α, γ) ∈ LIST. This is a dependency across β A typical
one is a ϕ-copy (α,ϕ(α)). This is a bounded version of (linear) adjunction. In
TAG, adjunction are more versatile and unbounded, e.g., the copy language αα
[K, p. 27].

Each validated deduction in the table is recorded by a backward arrow from
the bottom to the top item. Successful termination happens when an item of
width n (i, i + n( mod n)) is reached. It signifies that some cyclic version of
the circular ∗w is derivable using production of GA for substitution, and also
adjunction steps (which do not change the category B). The proof is the same
as for CYK.

Finally, tracing some path of backward arrows from a validated n-width item
down to the axioms provides a parsing from ∗w, (there may be several in case
of ambiguity).

Complexity: Each bottom item of width m has a bounded number of top items
which may validate it, and they are in diagonals of width ≥ m−k, so only those
are kept in the work-memory which is O(n), and the time for each item is O(1),
so total run-time O(n2). So, up to a constant it’s like parsing linear grammar by
CYK!
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Remark 6.5. The same table can be used for all the linear grammar G(i) in
the kernel (the skeleton) - simply color the backward arrows by distinct colors
for the G(i)s.

Remark 6.6. The multi-linear kernel is like making group of machines to work
in parallel on the same data. This proved very useful in several complex compu-
tation problems. Also, the linear bound on work-space of the parsing algorithm
may make it useful for algorithms designed to study DNA and RNA structures
[JP].

Concluding remark: The proposed reshaped grammar was not implemented.
It is a gedanken experiment. Hopefully it will have impact on implementations.
Quoting the opening lines of Shakespeare’s sonnet 116, with a small twist, Let
me not to the marriage of minds and machine admit impediments.

Acronyms

CFG - context-free grammar
CFL - context-free language
PDA - pushdown automaton
NDFA - Non-deterministic finite automaton
TAG - Tree adjoining grammar
D-tree - derivation tree
NT - Non terminal (symbols)
TTR - Top trunk rotations
A

∗→ −B−,∃u, v,A
∗→ uBv

Y (c1) - yield of a D-tree with root C
F ∗ -

⋃∞
j=0 F j

wR - the string w, reversed
∗w - w considered as a circular string
NLP - Natural language processing
WLOG - without loss of generality
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Abstract. Variants of the union and concatenation operations on for-
mal languages are investigated, in which Boolean logic in the definitions
(that is, conjunction and disjunction) is replaced with the operations
in the two-element field GF(2) (conjunction and exclusive OR). Union
is thus replaced with symmetric difference, whereas concatenation gives
rise to a new GF(2)-concatenation operation, which is notable for being
invertible. All operations preserve regularity, and their state complexity
is determined. Next, a new class of formal grammars based on GF(2)-
operations is defined, and it is shown to have the same computational
complexity as ordinary grammars with union and concatenation.

1 Introduction

The classical operations on formal languages are union and concatenation; both
regular expressions and formal grammars are based on these operations. Union
and concatenation are defined in terms of Boolean logic: the union K ∪ L is
the set of all strings w with w ∈ K or w ∈ L, which is a disjunction of two
conditions; similarly, the membership of a string w in a concatenation K · L is a
disjunction, over all partitions w = uv, of the conjunction of u ∈ K and v ∈ L.

K · L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is non-zero }
The purpose of this paper is to investigate a pair of related operations on lan-
guages defined using the exclusive OR instead of the disjunction, so that Boolean
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logic is effectively replaced with the two-element field GF(2). Thus, the union
operation turns into the symmetric difference, whereas concatenation gives rise
to the following new GF(2)-concatenation operation.

K � L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is odd }

The interest in these operations is motivated by the fact that they generalize
the two unambiguous operations on formal languages: the disjoint union and
the unambiguous concatenation, that is, concatenation K ·L with the restriction
that each string w ∈ K · L has a unique factorization w = uv with u ∈ K and
v ∈ L. Indeed, as long as two languages are disjoint, their symmetric difference
equals their union, and if the concatenation of K and L is unambiguous, the
GF(2)-concatenation K � L coincides with the standard concatenation K · L.
The unambiguous operations are important, for instance, for being the only oper-
ations expressible in unambiguous grammars and their practically valuable sub-
classes with efficient parsing algorithms, such as the LL and the LR grammars.
Accordingly, any model featuring the GF(2)-operations has the corresponding
unambiguous model as a special case.

The two proposed operations can be equally obtained by regarding K and
L as formal power series in non-commuting variables with coefficients in GF(2);
then, their sum is K�L and their product is K � L. However, the authors’
intention is to treat them as operations on standard formal languages, and to
carry out a usual language-theoretic study of these operations.

The basic algebraic properties of GF(2)-operations, listed in Sect. 2, follow
from the known facts on formal power series: formal languages form a ring with
the symmetric difference as addition and with GF(2)-concatenation as multipli-
cation. Furthermore, every language containing the empty string is an invertible
element, which gives a somewhat unexpected property of inverting the concate-
nation, and presents another operation to study.

Closure properties of standard language families under GF(2)-concatenation
and GF(2)-inverse are investigated in Sect. 3. It is shown that the family of
regular languages is closed under both operations. This is proved by direct con-
structions on finite automata, which are shown to be optimal with respect to
the number of states. The context-free languages and their basic subclasses are
predictably not closed under any of the GF(2)-operations.

The next subject is a new family of formal grammars based on GF(2)-
operations. The semantics of ordinary grammars with union and concatena-
tion (Chomsky’s “context-free”) are defined by least solutions of language equa-
tions [4], owing to the monotonicity of both union and concatenation. Since
GF(2)-operations are not monotone, such a definition is not applicable to the
desired new class of grammars. The definition given in Sect. 4 restricts a gram-
mar, so that each string may have only finitely many parses, and under this
restriction, language equations always have a solution.

In the last Sect. 5, the computational complexity of the new class of GF(2)-
grammars is investigated. First, it is proved that every such grammar can be
transformed to an analogue of the Chomsky normal form, leading to simple
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variants of the Cocke–Kasami–Younger and Valiant’s parsing algorithms; the
latter algorithm is particularly practical over GF(2). The NC2 parallel parsing
algorithm by Brent and Goldschlager [2] and by Rytter [12] is also adapted to
handle GF(2)-grammars, thus establishing the same complexity upper bound for
these grammars as for the ordinary grammars with union and concatenation. The
uniform membership problem for GF(2)-grammars is shown to be P-complete,
whereas for the subclass of linear GF(2)-grammars, this problem naturally turns
out to be ⊕L-complete.

2 GF(2)-Operations and Their Basic Properties

Two binary operations on formal languages are considered: the symmetric dif-
ference K�L and the GF(2)-concatenation K � L. The latter language consists
of all strings w that have an odd number of partitions w = uv, with u ∈ K and
v ∈ L (cf. non-zero number of partitions for the classical concatenation). By
definition, K � L ⊆ K · L, and if the concatenation is unambiguous, then these
two languages coincide.

Example 1. {ε, a} � {ε, a} = {ε, aa}. The string a is missing from the GF(2)-
concatenation, because its two factorizations cancel each other.

Elementary algebraic properties of GF(2)-concatenation and symmetric dif-
ference on formal languages follow from the general results on the representation
of languages as formal power series with coefficients from an arbitrary semiring,
with GF(2) used as the semiring of coefficients. In particular, both the symmet-
ric difference and the GF(2)-concatenation are associative and have identities
∅ and {ε}, respectively; furthermore, the symmetric difference is invertible by
complementation, as L�L = ∅; the two operations are distributive.

Proposition 1. For every alphabet Σ, the set of all languages 2Σ∗
forms a ring,

with symmetric difference as sum and with GF(2)-concatenation as product.

A further interesting property is that some languages have inverses with
respect to GF(2)-concatenation.

Example 2. {ε, ab} � (ab)∗ = {ε}.

No language L with ε /∈ L may have an inverse, because in this case ε /∈ K�L
for any language K. On the other hand, every language containing the empty
string has a GF(2)-inverse.

Theorem 1. For every language L ⊆ Σ∗ with ε ∈ L, there exists a unique
language L−1 ⊆ Σ∗ that satisfies L � L−1 = L−1 � L = {ε}.

Although a direct proof can be given, this result is a direct adaptation of a
known fact on formal power series—namely, that it is invertible if and only if its
constant term is invertible in the semiring of coefficients.
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Example 3. {ε, ab}−1 = (ab)∗ and, accordingly, ((ab)∗)−1 = {ε, ab}.

Example 4. (a∗b∗)−1 = {ε, a, b, ba}.

The inverse can be equivalently represented as the following adaptation of
the Kleene star.

Definition 1. For every language L, its GF(2)-star, denoted by L�, is the set
of all strings w that have an odd number of representations of the form w =
w1w2 . . . wk, with k � 0 and w1, . . . , wk ∈ L \ {ε}.
Lemma 1. For every language L, a string w is in L� if and only if it the
number of representations w = uv, with u ∈ L \ {ε} and v ∈ L�, is odd.

Theorem 2. For every language L ⊆ Σ∗ with ε ∈ L, the inverse L−1 equals
the star L�.

3 Closure Properties and State Complexity

3.1 GF(2)-Concatenation on Regular Languages

For every operation on languages, the first basic question is whether it preserves
the class of regular languages. If it does, the next question is its descriptional
complexity, that is, how large an automaton is necessary to represent this oper-
ation on finite automata of a given size. The closure holds both for GF(2)-
concatenation and for GF(2)-inverse, and deterministic finite automata (DFA)
implementing these operations, which are optimal with respect to the number
of states, are constructed below.

Theorem 3. Let A = (Σ,P, p0, η, E) and B = (Σ,Q, q0, δ, F ) be two DFA.
Then the language L(A) � L(B) is recognized by a DFA C with the set of states
P × 2Q.

Proof (a sketch). The states of C are of the form (p, S), where p ∈ P is the
current state of A reading the same input string, while S is the set of all states
reached an odd number of times in the simulated computations of B.

The initial state of C is (p0, {q0}) if ε ∈ A, and (p0, ∅) otherwise.
The transition in a state (p, S) by a symbol a advances all currently simulated

computations of B cancelling out all states reached an even number of times.

S′ = { q′ | the number of states q ∈ S, with q′ = δ(q, a), is odd }
One step of A is also simulated, and if it enters an accepting state, then another
computation of B is started.

π((p, S), a) =

{
(η(p, a), S′), if η(p, a) /∈ E

(η(p, a), S′�{q0}), if η(p, a) ∈ E

A state (p, S) is accepting, if S has an odd number of accepting states of B. �	
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As shown in the next theorem, using all states in P × 2Q is necessary in the
worst case.

Theorem 4. For every m,n � 3, there exist languages K and L over an alpha-
bet {a, b}, recognized by an m-state DFA and by an n-state DFA, respectively,
for which every DFA recognizing their GF(2)-concatenation K �L must have at
least m · 2n states.

Proof (a sketch). The language K is recognized by the DFA A = (Σ, {0, . . . ,m−
1}, 0, η, {m − 1}), with the transitions η(i, a) = i and η(i, b) = i + 1 (mod m),
for all i. The automaton recognizing L is B = (Σ, {0, . . . , n − 1}, 0, δ, {n − 1}),
with the following transitions: δ(i, a) = i + 1, if i 
= k − 1; δ(k − 1, a) = k − 1;
δ(k − 2, b) = k − 1; δ(k − 1, b) = k − 2; and δ(i, b) = i for the remaining states.

Let C be the DFA with m · 2n states constructed for A and B in Theorem 3.
For every state (p, S) of C, it is proved that it is reachable from the initial state q′

0

by some string, whereas for every pair of distinct states, some string is accepted
from one of these states and not from the other. �	

This establishes the precise state complexity of GF(2)-concatenation for DFA
as m · 2n. To compare, the state complexity of the classical concatenation is
m · 2n − 2n−1, as proved by Maslov [7], see also Yu et al. [15]. The number of
states in an NFA representing GF(2)-concatenation of two NFA remains open:
the only available construction is by determinizing the given automata and then
applying Theorem 3, which yields an upper bound of 2m · 22

n

states. On the
other hand, for the class of symmetric difference automata (⊕FA), studied by
van Zijl [16], an automaton for GF(2)-concatenation can be naturally obtained
by a series composition of two automata, using m + n states.

3.2 GF(2)-Inverse on Regular Languages

Theorem 5. For every n-state DFA A = (Σ,Q, q0, δ, F ), the language L(A)�

is recognized by a DFA C with the set of states 2Q ∪ {q′
0}.

Proof (a sketch). The construction relies on the representation of the GF(2)-
star according to Lemma 1. All states of C, except its initial state q′

0, are subsets
S ⊆ Q. The subset S consists of all states of A reached an odd number of times
in the simulated computations of A.

Transitions in the initial state q′
0 start a single computation of A as π(q′

0, a) =
{δ(q0, a)}. The transition in a state S by a ∈ Σ continues all simulations, leaving
only the states reached an odd number of times. If |S ∩ F | is even, then

π(S, a) = { q | # of states p ∈ S with δ(p, a) = q is odd },

and if |S ∩ F | is odd, then another computation is started.

π(S, a) = { q | # of states p ∈ S with δ(p, a) = q is odd }�δ(q0, a).

Subsets with an odd number of accepting states of A are accepting in C. �	
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This construction is optimal as well, and it is optimal even for the special
case of GF(2)-inverses (that is, for languages containing the empty string).

Theorem 6. For every n � 3, there exist a language L over an alphabet Σ =
{a, b, c}, with ε ∈ L, which is recognized by a DFA with n states, whereas every
DFA recognizing its GF(2)-inverse L−1 must have at least 2n + 1 states.

Proof. The desired n-state DFA has the set of states Q = {0, . . ., n − 1}, where
0 is the initial state and the accepting states are 0 and n − 1. The transitions
in each state i ∈ Q are defined as δ(a, i) = min(i + 1, n − 1), δ(b, i) = i and
δ(c, i) = max(i − 1, 0).

Then, for the DFA C with the set of states {q′
0} ∪ 2Q, as constructed for A

by Theorem 5, it is proved that every subset S ⊆ Q is reachable from the initial
state q′

0 by some string, and that for every two states of C, there exists a string
that is accepted from one of them and not from the other. �	

For NFA, the GF(2)-star is representable using 22
n

+ 1 states. For ⊕FA, the
same can be naturally done using n + 1 states.

Computations indicate that the GF(2)-inverse over the unary alphabet
apparently requires DFA with 2n−1 + 1 states, with the worst-case examples
producing DFA with period 2n−1 − 1.

3.3 Non-closure Results

The non-closure of the context-free languages under the symmetric difference
is well-known: indeed, there is no grammar for the language { a�bmcn | � =
m or m = n,but not both }. This non-closure extends to their subclasses: the
unambiguous languages, the LR languages, etc. From this fact, the non-closure
under GF(2)-concatenation and GF(2)-inverse is inferred as follows.

Lemma 2. Let K,L ⊆ Σ+ be any languages that do not contain the empty
string, let c /∈ Σ be a new symbol, and let M = {c} ∪ cK and N = {c} ∪ Lc.
Then a string cwc, with w ∈ Σ+, is in M � N if and only if w ∈ K�L.

Then, if K and L are defined by grammars, then so are the languages M and
N , and if their GF(2) concatenation M �N were defined by a grammar as well,
then there would be a grammar for K�L. The non-closure under GF(2)-inverse
is established similarly, using the following representation.

Lemma 3. Let K,L ⊆ Σ+ be any languages that do not contain the empty
string, let c /∈ Σ be a new symbol, and let M = {ε, c} ∪ cK ∪ Lc. Then a string
cwc, with w ∈ Σ∗, is in M−1 if and only if w ∈ K�L.

4 Formal Grammars with GF(2)-Operations

In the ordinary kind of formal grammars, called “context-free grammars” in
Chomsky’s tradition, the available operations are union and concatenation. The



74 E. Bakinova et al.

rest of grammar families, such as linear grammars or conjunctive grammars [8],
differ from the ordinary grammars in the sets of available operations: in lin-
ear grammars, the operations include concatenation with single symbols and
the union, whereas in conjunctive grammars, the operations are union, inter-
section and concatenation. This paper initiates the study of a new model,
the GF(2)-grammars, with the operations of symmetric difference and GF(2)-
concatenation.

One should note that none of the aforementioned grammar families involves
any context dependencies, they differ only in the set of allowed operations. Hence,
grammars with union and concatenation (Chomsky’s “context-free”) shall be
referred to as ordinary grammars, to distinguish them from the GF(2)-grammars,
which are defined in almost the same way.

Definition 2. A GF(2)-grammar is a quadruple G = (Σ,N,R, S), in which
Σ is the alphabet, N is the set of nonterminal symbols, with the initial symbol
S ∈ N and every rule in R is of the form A → X1 � . . . � X�, with � � 0 and
X1, . . . X� ∈ Σ ∪ N .

A grammar is linear GF(2), if, in each rule, at most one of X1, . . . X� is a
nonterminal symbol.

Multiple rules for the same nonterminal can be written down using the sum
modulo 2 operator (⊕), so that two rules, A → B � C and A → D � E, are
written down as A → (B � C) ⊕ (D � E), The general plan is to define the
language described by a grammar, so that it is a solution of the corresponding
system of language equations in variables N , where the sum modulo 2 operator
is implemented as the symmetric difference of languages.

A =
�

A→X1�...�X�∈R

X1 � . . . � X� (A ∈ N) (*)

However, there are certain complications, because in some cases this system
has no solutions; for instance, such is the system corresponding to the gram-
mar S → (S � S) ⊕ ε. The general theory of weighted grammars with weights
from a semiring—see, for instance, a survey by Petre and Salomaa [10]—is not
applicable here, because it requires certain monotonicity and continuity condi-
tions, which do not hold for coefficients in GF(2). For that reason, the proposed
definition requires the number of parse trees to be finite.

Definition 3. For each GF(2)-grammar G = (Σ,N,R, S), let Ĝ = (Σ,N, R̂, S)
be the corresponding ordinary grammar with R̂ containing a rule A → X1 . . . X�

for each rule A → X1�. . .�X� in R. Assuming that, for all A ∈ N and w ∈ Σ∗,
the number of parse trees of w as A in Ĝ is finite, the language LG(A) is defined
as the set of all strings w with an odd number of parse trees as A in Ĝ. If the
finiteness condition does not hold, then G is considered ill-formed.

The languages thus defined satisfy the system of language equations, and
hence implement the desired definition.
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Proposition 2. Let G = (Σ,N,R, S) be a GF(2)-grammar that satisfies the
condition in Definition 3. Then the substitution A = LG(A) for all A ∈ N is a
solution of the system (*).

What kind of languages can be described by GF(2)-grammars? First of all,
if an unambiguous grammar is transcribed as a GF(2)-grammar, it still defines
the same language. On the other hand, taking any ambiguous grammar and
reinterpreting it as a GF(2)-grammar leads to simple non-trivial examples of
these grammars.

Example 5. The linear GF(2)-grammar given below describes the language L =
{ a�bmcn | � = morm = n,but not both }.

S → A ⊕ C

A → aA ⊕ B C → Cc ⊕ D

B → bBc ⊕ ε D → aDb ⊕ ε

Here, as well as in all later examples, the GF(2)-concatenation with fixed strings
u and v is denoted simply by uLv, owing to the fact that {u} · L · {v} = {u} �
L � {v} for every language L.

The same language is not representable by an ordinary grammar. At the
same time, for the language { a�bmcn | � = m or m = n } described by a similarly
defined ordinary grammar, it is unclear whether a GF(2)-grammar exists.

The next example is of interest, in particular, because it is not known whether
conjunctive grammars can describe languages of this kind [8, Problem 6].

Example 6. The following GF(2)-grammar describes the language {uv | u, v ∈
{a, b}∗, |u| = |v|, u and v differ in an odd number of positions }.

S → (A � B) ⊕ (B � A)
A → aAa ⊕ aAb ⊕ bAa ⊕ bAb ⊕ a

B → aBa ⊕ aBb ⊕ bBa ⊕ bBb ⊕ b

The next grammar representing a non-regular unary language achieves a
result similar to a conjunctive grammar given by Jeż [5], and to a language equa-
tion with concatenation and complementation given by Leiss [6], even though
there is apparently nothing common in the methods.

Example 7. The following grammar describes the language { a2n | n � 0 }.

S → (S � S) ⊕ a

Indeed, the number of parse trees of a string a� in the grammar S → SS | a is
the (� − 1)-th Catalan number, which is odd if and only if � is a power of 2.

The latter example indicates that GF(2)-grammars are not in all respects
symmetric to ordinary grammars with concatenation and disjunction: whereas
ordinary grammars over a unary alphabet can define only regular languages,
GF(2)-grammars are strictly more powerful in this case.
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5 Parsing for GF(2)-Grammars

In order to develop parsing algorithms for GF(2)-grammars and to assess their
computational complexity, it is convenient to obtain a normal form for these
grammars first. The following adaptation of the Chomsky normal form can be
established.

Theorem 7. Every GF(2)-grammar can be effectively transformed in polyno-
mial time to a GF(2)-grammar that describes the same language, and has all
rules of the form A → B � C, with B,C ∈ N , or A → a, with a ∈ Σ.

The transformation follows the standard path of first cutting long rules into
rules with at most two symbols on the right-hand side, then eliminating null
rules of the form A → ε, next, eliminating unit rules of the form A → B, with
B ∈ N , and finally, moving all occurrences of terminal symbols on the right-hand
sides to separate rules.

The elimination of null rules begins with determining all nonterminals that
define the empty string.

Lemma 4. For every ordinary grammar G = (Σ,N,R, S) with finitely many
parse trees of ε from each A ∈ N , the set Odd-Nullable = {A | # of parses
of ε from A is odd} can be constructed in polynomial time.

Since the number of parse trees is finite, the set Odd-Nullable is well-
defined, and the only question is how to construct it efficiently. The algorithm
uses the finiteness of the number of parse trees to determine the partial order,
in which the nonterminals may occur in parse trees of ε. Then the algorithm
calculates the number of parse trees in this order.

Using this set, the null rules are removed by the standard construction, mod-
ified to use the parity instead of existence.

Lemma 5. For every GF(2) grammar G = (Σ,N,R, S), let G′ = (Σ,N,R′, S)
be another GF(2) grammar that contains a rule A → X1 � . . .�X�, if � � 1 and
the number of rules A → θ0 � X1 � θ1 � . . . � X� � θ� in R, with each θi being a
GF(2)-concatenation of zero or more nonterminals in Odd-Nullable, is odd.
Then, for every A ∈ N , LG′(A) = LG(A) \ {ε}.

There is also a similar “parity” version of the classical unit rules elimination.

Lemma 6. For every GF(2) grammar G = (Σ,N,R, S) with no rules of the
form A → ε, let G′ = (Σ,N,R′, S) be another GF(2) grammar that contains a
rule A → X1 � . . . � X�, with � � 2 or X1 ∈ Σ, if there is an odd number of
chains of the form A → B1, B1 → B2, . . . , Bn−1 → Bn, Bn → X1 � . . . � X�.
Then, for every A ∈ N , LG′(A) = LG(A).

With the normal form theorem established, an adaptation of the Cocke–
Kasami–Younger algorithm follows immediately: for a GF(2)-grammar G =
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(Σ,N,R, S) in the normal form, given an input string w = a1 . . . an, the algo-
rithm constructs the following sets inductively on the length of substring.

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) } (for 0 � i < j � n)

For each one-symbol substring, the set is Tj−1,j = {A | A → aj ∈ R }, and for
every longer substring it is determined by the following expression.

Ti,j =
j−1�

k=i+1

{A | # of rules A → BC, with (B,C) ∈ Ti,k × Tk,j , is odd }

Overall, there are O(n2) elements in the table, each of them is calculated in time
O(n), and thus the algorithm works in time O(n3).

Using Valiant’s [14] algorithm, the same table Ti,j can be constructed in time
O(nω), where O(nω) is an upper bound on the number of operations needed to
multiply a pair of n × n matrices in GF(2).

Theorem 8. Every language described by a GF(2)-grammar is in DTIME(nω).

In fact, practical algorithms for matrix multiplication over GF(2) are substan-
tially faster than those for Boolean matrix multiplication: for smaller matrices
there is a particularly efficient implementation of the Four Russians method [1],
and for large matrices one can apply Strassen’s algorithm directly. This makes
the algorithm more efficient than the parsing algorithms for ordinary grammars.

The next question concerns the complexity of the uniform membership prob-
lem, where both the string and the grammar are given.

Theorem 9. The uniform membership problem for GF(2)-grammars, stated as
“Given a GF(2) grammar G and a string w, determine whether w is in L(G)”,
is P-complete.

Proof (a sketch). The problem is decided in polynomial time by first transform-
ing the given grammar to the normal form and then applying the cubic-time
parsing algorithm. Its P-hardness follows from the P-hardness of the Circuit
Value Problem, similarly to the classical result for ordinary grammars. �	

An extension of the Brent–Goldschlager–Rytter (log n)2-time parallel pars-
ing algorithm [2,12] requires some work. The original algorithm determines the
existence of parse trees, and while doing so, it may consider the same tree an
unspecified number of times. In the algorithm for GF(2)-grammars, which has
to test that the number of trees is odd, it is imperative that every subtree is con-
sidered exactly once. In a different context, Rossmanith and Rytter [11] ensured
this property in a similar algorithm for unambiguous grammars. The following
algorithm does this without the unambiguity assumption.

Theorem 10. Let G = (Σ,N,R, S) be a GF(2)-grammar. Then there is a uni-
form family of circuits for testing strings of length n for being in L(G), which
are of depth O((log n)2) and contain O(n7) nodes.



78 E. Bakinova et al.

Proof (a sketch). The circuit has the following main gates: for each A ∈ N , a
gate (A, i, j) determines whether the number of parse trees of ai+1 . . . aj from
A is odd; for A,D ∈ N , a gate (A,D, i, k, �, j) similarly computes the parity of
the number of parse trees with root A and with a missing subtree with root D,
where the leaves left of the path from A to D are ai+1 . . . ak, and the leaves right
of that path are a�+1 . . . aj . Each gate is expressed through the gates referring to
substrings of length smaller by a constant factor, using O(n3) intermediate gates,
and thus ensuring logsquare circuit depth. The structure of the computation
elaborates the structure of the Brent–Goldschlager–Rytter algorithm. �	

The last complexity question concerns linear GF(2) grammars, which have
all rules of the form A → uBv or A → w, with B ∈ N and u, v, w ∈ Σ∗.
Whereas ordinary linear grammars with the union operation are known to have
an NL-complete uniform membership problem [13], the same problem for linear
GF(2)-grammars is—by all means, predictably—complete for the complexity
class ⊕L of all problems decided by a nondeterministic logarithmic-space Turing
machine that accepts by having an odd number of accepting paths.

Theorem 11. The uniform membership problem for linear GF(2)-grammars is
⊕L-complete. Furthermore, there exists a linear GF(2)-grammar that describes
an ⊕L-complete language.

Proof (a sketch). The uniform membership problem for linear GF(2)-grammars
is solved in ⊕L by attempting to parse a given string using two pointers, choosing
each rule nondeterministically.

The “hardest” linear GF(2)-grammar is based on the problem of testing
whether the number of s-t-paths in a given directed graph is odd; this problem
is ⊕L-complete, see Damm [3]. A grammar for the yes-instances of this problem
can reuse the classical construction by Sudborough [13]: the encoding of graphs
remains the same, and the union operation in the grammar is replaced with the
symmetric difference. �	

The complexity of grammar families is compared in Table 1. It would be
important to know whether the emptiness problem for GF(2)-grammars is

Table 1. Complexity of grammars with different operations.

Fixed membership Uniform

Time Space Class

Unamb. linear (�, lin·) O(n2) O((log n)2) in UL in UL

Linear (∪, lin·) O(n2) O((log n)2) NL-complete [13] NL-complete

Linear GF(2) (�, lin·) O(n2) O((log n)2) ⊕L-complete ⊕L-complete

Unambiguous (�,unamb·) O(n2) O((log n)2) in NC2 [11] P-complete

Ordinary (∪, ·) O(nω) [14] O((log n)2) in NC2 [2,12] P-complete

GF(2) (�,�) O(nω ) O((logn)2) in NC2 P-complete

Conjunctive (∪,∩, ·) O(nω) [9] O(n) [8] P-complete P-complete
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decidable. However, the equivalence problem for the unambiguous grammars
reduces to this problem, and whether it is decidable is a major and long-standing
open problem in formal language theory. On the other hand, if the emptiness of
GF(2)-grammars is undecidable, proving that would require new methods.

Another important question is developing a method for proving that some
languages are not described by any GF(2)-grammar.
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Abstract. In this paper we introduce and study Event-Clock Nested
Automata (ECNA), a formalism that combines Event Clock Automata
(ECA) and Visibly Pushdown Automata (VPA). ECNA allow to express
real-time properties over non-regular patterns of recursive programs. We
prove that ECNA retain the closure and decidability properties of ECA
and VPA being closed under Boolean operations and having a decidable
language-inclusion problem. In particular, we prove that emptiness, uni-
versality, and language-inclusion for ECNA are Exptime-complete prob-
lems. As for the expressiveness, we have that ECNA properly extend any
previous attempt in the literature of combining ECA and VPA.

1 Introduction

Model checking is a well-established formal-method technique to automatically
check for global correctness of reactive systems [7]. In this setting, automata the-
ory over infinite words plays a crucial role: the set of possible (potentially infinite)
behaviors of the system and the set of admissible behaviors of the correctness
specification can be modeled as languages accepted by automata. The verifica-
tion problem of checking that a system meets its specification then reduces to
testing language inclusion between two automata over infinite words.

In the last two decades, model checking of pushdown automata (PDA) has
received a lot of attention [11,17,20]. PDA represent an infinite-state formalism
suitable to model the control flow of typical sequential programs with nested and
recursive procedure calls. Although the general problem of checking context-free
properties of PDA is undecidable [16], algorithmic solutions have been proposed
for interesting subclasses of context-free requirements [3,5,6,13]. A well-known
approach is that of Visibly Pushdown Automata (VPA) [5,6], a subclass of PDA
where the input symbols over a pushdown alphabet control the admissible oper-
ations on the stack. Precisely, the alphabet is partitioned into a set of calls, rep-
resenting a procedure call and forcing a push stack-operation, a set of returns,
representing a procedure return and forcing a pop stack-operation, and a set
of internal actions that cannot access or modify the content of the stack. This
restriction makes the class of resulting languages (visibly pushdown languages or
VPL) very similar in tractability and robustness to that of regular languages [5,6].
VPL are closed under Boolean operations, and language inclusion is Exptime-
complete. VPA capture all regular properties, and, additionally, allow to specify
regular requirements over two kinds of non-regular patterns on input words:
c© Springer International Publishing AG, part of Springer Nature 2018
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abstract paths and caller paths. An abstract path captures the local computa-
tion within a procedure with the removal of subcomputations corresponding to
nested procedure calls, while a caller path represents the call-stack content at a
given position of the input.

Recently, many works [1,8,10,14,15,19] have investigated real-time exten-
sions of PDA by combining PDA with Timed Automata (TA) [2], a model widely
used to represent real-time systems. TA are finite automata augmented with
a finite set of real-valued clocks, which operate over words where each sym-
bol is paired with a real-valued timestamp (timed words). All clocks progress
at same speed and can be reset by transitions (thus, each clock keeps track of
the elapsed time since the last reset). Constraints on clocks are associated with
transitions to restrict the behavior of the automaton. The emptiness problem for
TA is decidable and Pspace complete [2]. However, since in TA, clocks can be
reset nondeterministically and independently of each other, the resulting class
of timed languages is not closed under complement and, in particular, language
inclusion is undecidable [2]. As a consequence, the general verification problem
(i.e., language inclusion) of formalisms combining unrestricted TA with robust
subclasses of PDA such as VPA, i.e. Visibly Pushdown Timed Automata (VPTA),
is undecidable as well. In fact, checking language inclusion for VPTA is undecid-
able even in the restricted case of specifications using at most one clock [15].

Event-clock automata (ECA) [4] are an interesting subclass of TA where the
explicit reset of clocks is disallowed. In ECA, clocks have a predefined associa-
tion with the input alphabet symbols. Precisely, for each symbol a, there are
two clocks: the global recorder clock, recording the time elapsed since the last
occurrence of a, and the global predictor clock, measuring the time required for
the next occurrence of a. Hence, the clock valuations are determined only by
the input timed word being independent of the automaton behavior. Such a
restriction makes the resulting class of timed languages closed under Boolean
operations, and in particular, language inclusion is Pspace-complete [4].

Recently, a robust subclass of VPTA, called Event-Clock Visibly Pushdown
Automata (ECVPA), has been proposed in [18], combining ECA with VPA.
ECVPA are closed under Boolean operations, and language inclusion is Exptime-
complete. However, ECVPA do not take into account the nested hierarchical
structure induced by a timed word over a pushdown alphabet, namely, they do
not provide any explicit mechanism to relate the use of a stack with that of event
clocks.

Our contribution. In this paper, we introduce an extension of ECVPA, called
Event-Clock Nested Automata (ECNA) that, differently from ECVPA, allows to
relate the use of event clocks and the use of the stack. To this end, we add for each
input symbol a, three additional event clocks: the abstract recorder clock (resp.,
abstract predictor clock), measuring the time elapsed since the last occurrence
(resp., the time for the next occurrence) of a along the maximal abstract path
visiting the current position; the caller clock, measuring the time elapsed since
the last occurrence of a along the caller path from the current position. In this
way, ECNA allow to specify relevant real-time non-regular properties including:
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– Local bounded-time responses such as “in the local computation of a proce-
dure A, every request p is followed by a response q within k time units”.

– Bounded-time total correctness requirements such as “if the pre-condition
p holds when the procedure A is invoked, then the procedure must return
within k time units and q must hold upon return”.

– Real-time security properties which require the inspection of the call-stack
such as “a module A should be invoked only if module B belongs to the call
stack and within k time units since the activation of module B”.

We show that ECNA are strictly more expressive than ECVPA and, as for ECVPA,
the resulting class of languages is closed under all Boolean operations. Moreover,
language inclusion and visibly model-checking of VPTA against ECNA speci-
fications are decidable and Exptime-complete. The key step in the proposed
decision procedures is a translation of ECNA into equivalent VPTA.

Related work. Pushdown Timed Automata (PTA) have been introduced in [10],
and their emptiness problem is Exptime-complete. An extension of PTA, namely
Dense-Timed Pushdown Automata (DTPA), has been studied in [1], where each
symbol in the stack is equipped with a real-valued clock representing its ‘age’
(the time elapsed since the symbol has been pushed onto the stack). It has been
shown in [14] that DTPA do not add expressive power and can be translated into
equivalent PTA. Our proposed translation of ECNA into VPTA is inspired from
the construction in [14]. In [9], an equally-expressive extension of ECVPA [18]
over finite timed words, by means of a timed stack (like in DTPA), is investigated.

2 Preliminaries

In the following, N denotes the set of natural numbers and R+ the set of non-
negative real numbers. Let w be a finite or infinite word over some alphabet. By
|w| we denote the length of w (we set |w| = ∞ if w is infinite). For all i, j ∈ N,
with i ≤ j, wi is i-th letter of w, while w[i, j] is the finite subword wi · · · wj .

An infinite timed word w over a finite alphabet Σ is an infinite word w =
(a0, τ0)(a1, τ1), . . . over Σ × R+ (intuitively, τi is the time at which ai occurs)
such that the sequence τ = τ0, τ1, . . . of timestamps satisfies: (1) τi ≤ τi+1 for all
i ≥ 0 (monotonicity), and (2) for all t ∈ R+, τi ≥ t for some i ≥ 0 (divergence).
The timed word w is also denoted by the pair (σ, τ), where σ is the untimed
word a0a1 . . . and τ is the sequence of timestamps. An ω-timed language over Σ
is a set of infinite timed words over Σ.

Pushdown alphabets, abstract paths, and caller paths. A pushdown alphabet is a
finite alphabet Σ = Σcall∪Σret∪Σint which is partitioned into a set Σcall of calls,
a set Σret of returns, and a set Σint of internal actions. The pushdown alphabet
Σ induces a nested hierarchical structure in a given word over Σ obtained by
associating to each call the corresponding matching return (if any) in a well-
nested manner. Formally, the set of well-matched words is the set of finite words
σw over Σ inductively defined by the following grammar:
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σw := ε
∣
∣ a · σw

∣
∣ c · σw · r · σw

where ε is the empty word, a ∈ Σint , c ∈ Σcall , and r ∈ Σret .
Fix an infinite word σ over Σ. For a call position i ≥ 0, if there is j > i such

that j is a return position of σ and σ[i + 1, j − 1] is a well-matched word (note
that j is uniquely determined if it exists), we say that j is the matching return
of i along σ. For a position i ≥ 0, the abstract successor of i along σ, denoted
succ(a, σ, i), is defined as follows:

– If i is a call, then succ(a, σ, i) is the matching return of i, if such a matching
return exists; otherwise, succ(a, σ, i) = ⊥ (⊥ denotes the undefined value).

– If i is not a call, then succ(a, σ, i) = i + 1 if i + 1 is not a return position, and
succ(a, σ, i) = ⊥, otherwise.

The caller of i along σ, denoted succ(c, σ, i), is instead defined as follows:

– if there exists the greatest call position jc < i such that either succ(a, σ, jc) =
⊥ or succ(a, σ, jc) > i, then succ(c, σ, i) = jc; otherwise, succ(c, σ, i) = ⊥.

In the analysis of recursive programs, a maximal abstract path captures the
local computation within a procedure removing computation fragments corre-
sponding to nested calls, while the caller path represents the call-stack con-
tent at a given position of the input. Formally, a maximal abstract path (MAP)
of σ is a maximal (finite or infinite) increasing sequence of natural numbers
ν = i0 < i1 < . . . such that ij = succ(a, σ, ij−1) for all 1 ≤ j < |ν|. Note
that for every position i of σ, there is exactly one MAP of σ visiting position
i. For each i ≥ 0, the caller path of σ from position i is the maximal (finite)
decreasing sequence of natural numbers j0 > j1 . . . > jn such that j0 = i and
jh+1 = succ(c, σ, jh) for all 0 ≤ h < n. Note that the positions of a MAP have
the same caller (if any).

For instance, consider the finite untimed word σp of length 10 depicted below
where Σcall = {c}, Σret = {r}, and Σint = {ı}.

σp =
0
c

1
c

2
ı

3
c

4
ı

5
r

6
r

7
c

8
ı

9
r

10
ı

Let σ be σp ·ıω. Note that 0 is the unique unmatched call position of σ: hence, the
MAP visiting 0 consists of just position 0 and has no caller. The MAP visiting
position 1 is the infinite sequence 1, 6, 7, 9, 10, 11, 12, 13 . . . and the associated
caller is position 0; the MAP visiting position 2 is the sequence 2, 3, 5 and the
associated caller is position 1, and the MAP visiting position 4 consists of just
position 4 whose caller path is 4, 3, 1, 0.

3 Event-Clock Nested Automata

In this section, we define the formalism of Event-Clock Nested Automata (ECNA),
which allow a combined used of event clocks and visible operations on the stack.
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To this end, we augment the standard set of event clocks [4] with a set of abstract
event clocks and a set of caller event clocks whose values are determined by con-
sidering maximal abstract paths and caller paths of the given word, respectively.

In the following, we fix a pushdown alphabet Σ = Σcall ∪Σret ∪Σint . The set
CΣ of event clocks associated with Σ is given by CΣ :=

⋃

b∈Σ{xg
b, y

g
b , x

a
b, y

a
b , x

c
b}.

Thus, we associate with each symbol b ∈ Σ, five event clocks: the global recorder
clock xg

b (resp., the global predictor clock yg
b) recording the time elapsed since

the last occurrence of b, if any, (resp., the time required to the next occurrence
of b if any); the abstract recorder clock xa

b (resp., the abstract predictor clock
ya

b) recording the time elapsed since the last occurrence of b, if any, (resp. the
time required to the next occurrence of b) along the MAP visiting the current
position; and the caller (recorder) clock xc

b recording the time elapsed since the
last occurrence of b if any along the caller path from the current position. Let
w = (σ, τ) be an infinite timed word over Σ and i ≥ 0. We denote by Pos(a, w, i)
the set of positions visited by the MAP of σ associated with position i, and by
Pos(c, w, i) the set of positions visited by the caller path of σ from position i. In
order to allow a uniform notation, we write Pos(g, w, i) to mean the full set N of
positions. Fixed the input word w, when the automaton reads the i-th position
σi at time τi, the values of the clocks are uniquely determined as follows.

Definition 1 (Input determinisitic clock valuations). A clock valuation
over CΣ is a mapping val : CΣ �→ R+ ∪ {⊥}, assigning to each event clock a
value in R+∪{⊥} (⊥ denotes the undefined value). Given an infinite timed word
w = (σ, τ) over Σ and a position i, the clock valuation valwi over CΣ , specifying
the values of the event clocks at position i along w, is defined as follows for each
b ∈ Σ, where dir ∈ {g, a, c} and dir′ ∈ {g, a}:

valwi (xdir
b ) =

⎧

⎨

⎩

τi − τj if ∃j < i : b = σj , j ∈ Pos(dir, w, i), and
∀k : (j < k < i and k ∈ Pos(dir, w, i)) ⇒ b = σk

⊥ otherwise

valwi (ydir′
b ) =

⎧

⎨

⎩

τj − τi if ∃j > i : b = σj , j ∈ Pos(dir′, w, i), and
∀k : (i < k < j and k ∈ Pos(dir′, w, i)) ⇒ b = σk

⊥ otherwise

It is worth noting that while the values of the global clocks are obtained by
considering the full set of positions in w, the values of the abstract clocks (resp.,
caller clocks) are defined with respect to the MAP visiting the current position
(resp., with respect to the caller path from the current position).

For C ⊆ CΣ and a clock valuation val over CΣ , val |C denotes the restriction
of val to the set C. A clock constraint over C is a conjunction of atomic formulas
of the form z ∈ I, where z ∈ C, and I is either an interval in R+ with bounds
in N∪{∞}, or the singleton {⊥} (also denoted by [⊥,⊥]). For a clock valuation
val and a clock constraint θ, val satisfies θ, written val |= θ, if for each conjunct
z ∈ I of θ, val(z) ∈ I. We denote by Φ(C) the set of clock constraints over C.

For technical convenience, we first introduce an extension of the known class
of Visibly Pushdown Timed Automata (VPTA) [10,15], called nested VPTA.
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Nested VPTA are simply VPTA augmented with event clocks. Therefore, transi-
tions of nested VPTA are constrained by a pair of disjoint finite sets of clocks:
a finite set Cst of standard clocks and a disjoint set C ⊆ CΣ of event clocks.
As usual, a standard clock can be reset when a transition is taken; hence, its
value at a position of an input word depends in general on the behaviour of the
automaton and not only, as for event clocks, on the word.

The class of Event-Clock Nested Automata (ECNA) corresponds to the sub-
class of nested VPTA where the set of standard clocks Cst is empty.

A (standard) clock valuation over Cst is a mapping sval : Cst �→ R+ (note
that the undefined value ⊥ is not admitted). For t ∈ R+ and a reset set Res ⊆
Cst, sval + t and sval [Res] denote the valuations over Cst defined as follows
for all z ∈ Cst: (sval + t)(z) = sval(z) + t, and sval [Res](z) = 0 if z ∈ Res
and sval [Res](z) = sval(z) otherwise. For C ⊆ CΣ and a valuation val over C,
val ∪ sval denotes the valuation over Cst ∪ C defined in the obvious way.

Definition 2 (Nested VPTA). A Büchi nested VPTA over Σ = Σcall ∪ Σint ∪
Σret is a tuple A = (Σ,Q,Q0,D = C ∪ Cst, Γ ∪ {�},Δ, F ), where Q is a finite
set of (control) states, Q0 ⊆ Q is a set of initial states, C ⊆ CΣ is a set of event
clocks, Cst is a set of standard clocks disjoint with CΣ , Γ ∪ {�} is a finite stack
alphabet, � /∈ Γ is the special stack bottom symbol, F ⊆ Q is a set of accepting
states, and Δc ∪ Δr ∪ Δi is a transition relation, where (D = C ∪ Cst):

– Δc ⊆ Q × Σcall × Φ(D) × 2Cst × Q × Γ is the set of push transitions,
– Δr ⊆ Q × Σret × Φ(D) × 2Cst × (Γ ∪ {�}) × Q is the set of pop transitions,
– Δi ⊆ Q × Σint × Φ(D) × 2Cst × Q is the set of internal transitions.

We now describe how a nested VPTA A behaves over an infinite timed word
w. Assume that on reading the i-th position of w, the current state of A is q,
valwi is the event-clock valuation associated with w and i, sval is the current
valuation of the standard clocks in Cst, and t = τi − τi−1 is the time elapsed
from the last transition (where τ−1 = 0). If A reads a call c ∈ Σcall , it chooses
a push transition of the form (q, c, θ,Res, q′, γ) ∈ Δc and pushes the symbol
γ = � onto the stack. If A reads a return r ∈ Σret , it chooses a pop transition
of the form (q, r, θ,Res, γ, q′) ∈ Δr such that γ is the symbol on top of the stack,
and pops γ from the stack (if γ = �, then γ is read but not removed). Finally,
on reading an internal action a ∈ Σint , A chooses an internal transition of the
form (q, a, θ,Res, q′) ∈ Δi, and, in this case, there is no operation on the stack.
Moreover, in all the cases, the constraint θ of the chosen transition must be
fulfilled by the valuation (sval + t) ∪ (valwi )|C , the control changes from q to q′,
and all the standard clocks in Res are reset (i.e., the valuation of the standard
clocks is updated to (sval + t)[Res]).

Formally, a configuration of A is a triple (q, β, sval), where q ∈ Q, β ∈ Γ ∗·{�}
is a stack content, and sval is a valuation over Cst. A run π of A over w = (σ, τ)
is an infinite sequence of configurations π = (q0, β0, sval0), (q1, β1, sval1), . . . such
that q0 ∈ Q0, β0 = �, sval0(z) = 0 for all z ∈ Cst (initialization requirement),
and the following holds for all i ≥ 0, where ti = τi − τi−1 (τ−1 = 0):
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– Push: If σi ∈ Σcall , then for some (qi, σi, θ,Res, qi+1, γ) ∈ Δc, βi+1 = γ · βi,
sval i+1 = (sval i + ti)[Res], and (sval i + ti) ∪ (valwi )|C |= θ.

– Pop: If σi ∈ Σret , then for some (qi, σi, θ,Res, γ, qi+1) ∈ Δr, sval i+1 =
(sval i+ti)[Res], (sval i+ti)∪(valwi )|C |= θ, and either γ = � and βi = γ ·βi+1,
or γ = βi = βi+1 = �.

– Internal: If σi ∈ Σint , then for some (qi, σi, θ,Res, qi+1) ∈ Δi, βi+1 = βi,
sval i+1 = (sval i + ti)[Res], and (sval i + ti) ∪ (valwi )|C |= θ.

The run π is accepting if there are infinitely many positions i ≥ 0 such that
qi ∈ F . The timed language LT (A) of A is the set of infinite timed words w over
Σ such that there is an accepting run of A on w. The greatest constant of A,
denoted KA, is the greatest natural number used as bound in some clock con-
straint of A. For technical convenience, we also consider nested VPTA equipped
with a generalized Büchi acceptance condition F consisting of a family of sets
of accepting states. In such a setting, a run π is accepting if for each Büchi
component F ∈ F , the run π visits infinitely often states in F .

A VPTA [15] corresponds to a nested VPTA whose set C of event clocks is
empty. An ECNA is a nested VPTA whose set Cst of standard clocks is empty.
For ECNA, we can omit the reset component Res from the transition function
and the valuation component sval from each configuration (q, β, sval). Note the
class of Event-Clock Visibly Pushdown Automata (ECVPA) [18] corresponds
to the subclass of ECNA where abstract and caller event-clocks are disallowed.
We also consider three additional subclasses of ECNA: abstract predicting ECNA
(AP ECNA, for short) which do not use abstract recorder clocks and caller clocks,
abstract recording ECNA (AR ECNA, for short) which do not use abstract predic-
tor clocks and caller clocks, and caller ECNA (C ECNA, for short) which do not
use abstract clocks. Note that these three subclasses of ECNA subsume ECVPA.

Example 1. Let us consider the AR ECNA depicted below, where Σcall = {c},
Σret = {r}, and Σint = {a, b, ı}. The control part of the transition relation
ensures that for each accepted word, the MAP visiting the b-position associated
with the transition tr from q4 to q5 cannot visit the a-positions following the call
positions. This implies that the abstract recorder constraint xa

a = 1 associated
with tr is fulfilled only if all the occurrences of calls c and returns r are matched.
Hence, constraint xa

a = 1 ensures that the accepted language, denoted by Lrec
T ,

q0 q1

c, push(c)

a
q2

a

c, push(c)
q3

r, pop(c)

a
q4

b

r, pop(c)
q5

ı

b, xa
a = 1

consists of all the timed words of the form (σ, τ) · (ıω, τ ′) such that σ is a well-
matched word of the form a · cn · am · rn · bk with n,m, k > 0, and the time
difference in (σ, τ) between the first and last symbols is 1, i.e. τ|σ|−1 − τ0 = 1.
The example shows that ECNAallow to express a meaningful real-time prop-
erty of recursive systems, namely the ability of bounding the time required to
perform an internal activity consisting of an unbounded number of returning
recursive procedure calls. Similarly, it is easy to define an AP ECNA accepting
the timed language, denoted by Lpred

T , consisting of all the timed words of the
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form (σ, τ)·(ıω, τ ′) such that σ is a well-matched word of the form ak ·cn ·bm ·rn ·b,
with n,m, k > 0, and the time difference in (σ, τ) between the first and last sym-
bol is 1. Finally, we consider the timed language Lcaller

T , which can be defined by
a C ECNA, consisting of the timed words of the form (c, t0) · (σ, τ) · (ıω, τ ′) such
that σ is a well-matched word of the form a · cn · am · rn · bk, with n,m, k > 0,
and the time difference in (c, t0) · (σ, τ) between the first and last symbols is 1.

Closure properties of Büchi ECNA. As stated in the following theorem, the class
of languages accepted by Büchi ECNA is closed under Boolean operations. The
proof exploits a technique similar to that used in [18] to prove the analogous
closure properties for ECVPA (for details, see Appendix A of [12]).

Theorem 1. The class of ω-timed languages accepted by Büchi ECNA is closed
under union, intersection, and complementation. In particular, given two Büchi
ECNA A = (Σ,Q,Q0, C, Γ∪{�},Δ, F ) and A′ = (Σ,Q′, Q′

0, C
′, Γ ′∪{�},Δ′, F ′)

over Σ, one can construct

– a Büchi ECNA accepting LT (A)∪LT (A′) with |Q|+ |Q′| states, |Γ |+ |Γ ′|+1
stacks symbols, and greatest constant max(KA,KA′);

– a Büchi ECNA accepting LT (A) ∩ LT (A′) with 2|Q||Q′| states, |Γ ||Γ ′| stacks
symbols, and greatest constant max(KA,KA′);

– a Büchi ECNA accepting the complement of LT (A) with 2O(n2) states,
O(2O(n2) · |Σcall | · |Const |O(|Σ|)) stack symbols, and greatest constant KA,
where n = |Q| and Const is the set of constants used in the clock constraints
of A.

Expressiveness results. We now summarize the expressiveness results for ECNA.
First of all, the timed languages Lrec

T , Lpred
T , and Lcaller

T considered in Example 1
and definable by AR ECNA, AP ECNA, and C ECNA, respectively, can be used
to prove that the three subclasses AR ECNA, AP ECNA, and C ECNA of ECNA
are mutually incomparable. Hence, these subclasses strictly include the class of
ECVPA and are strictly included in ECNA. The incomparability result directly
follows from Proposition 1 below, whose proof is in Appendix B of [12].

As for ECNA, we have that they are less expressive than Büchi VPTA. In
fact, by Theorem 3 in Sect. 4, Büchi ECNA can be converted into equivalent
Büchi VPTA. The inclusion is strict since, while Büchi ECNA are closed under
complementation (Theorem 1), Büchi VPTA are not [15].

In [9], an equally-expressive extension of ECVPA over finite timed words, by
means of a timed stack, is investigated. The Büchi version of such an extension
can be trivially encoded in Büchi AR ECNA. Moreover, the proof of Proposi-
tion 1 can also be used for showing that Büchi ECVPA with timed stack are less
expressive than Büchi AR ECNA, Büchi AP ECNA, and Büchi C ECNA.
The general picture of the expressiveness results is summarized by Theorem 2.

Proposition 1. The language Lrec
T is not definable by Büchi ECNA which do

not use abstract recorder clocks, Lpred
T is not definable by Büchi ECNA which
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do not use abstract predictor clocks, and Lcaller
T is not definable by Büchi ECNA

which do not use caller clocks. Moreover, the language Lrec
T ∪ Lpred

T ∪ Lcaller
T is

not definable by Büchi AR ECNA, Büchi AP ECNA and Büchi C ECNA.

Theorem 2. The classes AR ECNA, AP ECNA, and C ECNA are mutually
incomparable, and AP ECNA ∪ AR ECNA∪ C ECNA⊂ ECNA. Moreover,

(1) ECVPA ⊂ AR ECNA (2) ECVPA ⊂ AP ECNA
(3) ECVPA ⊂ C ECNA (4) ECNA ⊂ VPTA

Note that the expressiveness results above also hold for finite timed words.

4 Decision Procedures for Büchi ECNA

In this section, we first investigate emptiness, universality, and language inclusion
problems for Büchi ECNA. Then, we consider the Visibly model-checking problem
against Büchi ECNA, i.e., given a visibly pushdown timed system S over Σ (that
is a Büchi VPTA where all the states are accepting) and a Büchi ECNA A over
Σ, the problem whether LT (S) ⊆ LT (A) hold. We establish that the above
mentioned problems are decidable and Exptime-complete. The key intermediate
result is an exponential-time translation of Büchi ECNA into language-equivalent
generalized Büchi VPTA. More precisely, we show that event clocks in nested
VPTA can be removed with a single exponential blow-up.

Theorem 3 (Removal of event clocks from nested VPTA). Given a
generalized Büchi nested VPTA A, one can construct in singly exponential
time a generalized Büchi VPTA A′ (which do not use event clocks) such that
LT (A′) = LT (A) and KA′ = KA. Moreover, A′ has n · 2O(p·|Σ|) states and
m + O(p) clocks, where n is the number of A-states, m is the number of stan-
dard A-clocks, and p is the number of event-clock atomic constraints used by A.

In the following we sketch a proof of Theorem3. Basically, the result follows
from a sequence of transformation steps all preserving language equivalence. At
each step, an event clock is replaced by a set of fresh standard clocks. To remove
global event clocks we use the technique from [4]. Here, we focus on the removal
of an abstract predictor clock ya

b with b ∈ Σ, referring to Appendix D and E of
[12] for the treatment of abstract recorder clocks and caller clocks, respectively.

Fix a generalized Büchi nested VPTA A = (Σ,Q,Q0, C ∪Cst, Γ ∪{�},Δ,F)
such that ya

b ∈ C. By exploiting nondeterminism, we can assume that for each
transition tr of A, there is exactly one atomic constraint ya

b ∈ I involving ya
b used

as conjunct in the clock constraint of tr. If I = {⊥}, then ya
b ∈ I is equivalent

to a constraint of the form ya
b � � ∧ ya

b ≺ u, where �∈ {>,≥}, ≺∈ {<,≤},
� ∈ N, and u ∈ N ∪ {∞}. We call ya

b � � (resp., ya
b ≺ u) a lower-bound (resp.,

upper-bound) constraint. Note that if u = ∞, the constraint ya
b ≺ u is always

fulfilled, but we include it to have a uniform notation. We construct a generalized
Büchi nested VPTA Aya

b
equivalent to A whose set of event clocks is C \ {ya

b},
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and whose set of standard clocks is Cst ∪ Cnew, where Cnew consists of the fresh
standard clocks z�� (resp., z≺u), for each lower-bound constraint ya

b � � (resp.,
upper-bound constraint ya

b ≺ u) of A involving ya
b .

We now report the basic ideas of the translation. Consider a lower-bound
constraint ya

b � �. Assume that a prediction ya
b � � is done by A at position

i of the input word for the first time. Then, the simulating automaton Aya
b

exploits the standard clock z�� to check that the prediction holds by resetting
it at position i. Moreover, if i is not a call (resp., i is a call), Aya

b
carries the

obligation �� in its control state (resp., pushes the obligation �� onto the stack)
in order to check that the constraint z�� � � holds when the next b occurs at a
position jcheck along the MAP ν visiting position i. We observe that:

– if a new prediction ya
b � � is done by A at a position j > i of ν strictly

preceding jcheck, Aya
b

resets the clock z�� at position j rewriting the old
obligation. This is safe since the fulfillment of the lower-bound prediction
ya

b � � at j guarantees that prediction ya
b � � is fulfilled at i along ν.

– If a call position ic ≥ i occurs in ν before jcheck, the next position of ic in ν is
the matching return ir of ic, and any MAP visiting a position h ∈ [ic+1, ir−1]
is finite and ends at a position k < ir. Thus, the clock z�� can be safely reset
to check the prediction ya

b � � raised in positions in [ic + 1, ir − 1] since this
check ensures that z�� � � holds at position jcheck.

Thus, previous obligations on a constraint ya
b � � are always rewritten by more

recent ones. At each position i, Aya
b

records in its control state the lower-bound
obligations for the current MAP ν (i.e., the MAP visiting the current position
i). Whenever a call ic occurs, the lower-bound obligations are pushed on the
stack in order to be recovered at the matching return ir. If ic + 1 is not a return
(i.e., ir = ic + 1), then Aya

b
moves to a control state having an empty set of

lower-bound obligations (position ic + 1 starts the MAP visiting ic + 1).
The treatment of an upper-bound constraint ya

b ≺ u is symmetric. Whenever
a prediction ya

b ≺ u is done by A at a position i, and the simulating automaton
Aya

b
has no obligation on the constraint ya

b ≺ u, Aya
b

resets the standard clock
z≺u. If i is not a call (resp., i is a call) the fresh obligation (first,≺u) is recorded
in the control state (resp., (first,≺u) is pushed onto the stack). When, along the
MAP ν visiting position i, the next b occurs at a position jcheck, the constraint
z≺u ≺ u is checked, and the obligation (first,≺u) is removed or confirmed (in
the latter case, resetting the clock z≺u), depending on whether the prediction
ya

b ≺ u is asserted at position jcheck or not. We observe that:

– if a new prediction ya
b ≺ u occurs in a position j > i of ν strictly preceding

jcheck, Aya
b

simply ignores it (the clock z≺u is not reset at position j) since
checking the prediction ya

b ≺ u at the previous position i guarantees the
fulfillment of the prediction ya

b ≺ u at the position j > i along ν.
– If a call position ic ≥ i occurs in ν before jcheck, then all the predictions ya

b ≺ u
occurring in a MAP visiting a position h ∈ [ic + 1, ir − 1], with ir ≤ jcheck
being the matching-return of ic, can be safely ignored (i.e., z≺u is not reset
there) since they are subsumed by the prediction at position i.
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Thus, for new obligations on an upper-bound constraint ya
b ≺ u, the clock z≺u

is not reset. Whenever a call ic occurs, the updated set O of upper-bound and
lower-bound obligations is pushed onto the stack to be recovered at the matching
return ir of ic. Moreover, if ic+1 is not a return (i.e., ir = ic+1), then Aya

b
moves

to a control state where the set of lower-bound obligations is empty and the set
of upper-bound obligations is obtained from O by replacing each upper-bound
obligation (f ,≺u), for f ∈ {live,first}, with the live obligation (live,≺u). The
latter asserted at the initial position ic+1 of the MAP ν visiting ic+1 (note that
ν ends at ir − 1) is used by Aya

b
to remember that the clock z≺u cannot be reset

along ν. Intuitively, live upper-bound obligations are propagated from the caller
MAP to the called MAP. Note that fresh upper-bound obligations (first,≺ u)
always refer to predictions done along the current MAP and, differently from
the live upper-bound obligations, they can be removed when the next b occurs
along the current MAP.

Extra technicalities are needed. At each position i, Aya
b

guesses whether i
is the last position of the current MAP (i.e., the MAP visiting i). For this,
it keeps track in its control state of the guessed type (call, return, or internal
symbol) of the next input symbol. In particular, when i is a call, Aya

b
guesses

whether it has a matching return. If not, Aya
b

pushes onto the stack a special
symbol, say bad, and the guess is correct iff the symbol is never popped from the
stack. Conversely, Aya

b
exploits a special proposition p∞ whose Boolean value is

carried in the control state: p∞ does not hold at a position j of the input iff the
MAP visiting j has a caller whose matching return exists. Note that p∞ holds
at infinitely many positions. The transition function of Aya

b
ensures that the

Boolean value of p∞ is propagated consistently with the guesses. Doing so, the
guesses about the matched calls are correct iff p∞ is asserted infinitely often along
a run. A Büchi component of Aya

b
ensures this last requirement. Finally, we have

to ensure that the lower-bound obligations and fresh upper-bound obligations
at the current position are eventually checked, i.e., the current MAP eventually
visits a b-position. For finite MAP, this can be ensured by the transition function
of Aya

b
. For infinite MAP, we note that at most one infinite MAP ν exists along

a word, and ν visits only positions where p∞ holds. Moreover, each position i
greater than the initial position i0 of ν is either a ν-position, or a position where
p∞ does not hold. Thus, a Büchi component of Aya

b
using proposition p∞ ensures

the b-liveness requirements along the unique infinite MAP (if any). Full details
of the construction of Aya

b
are in Appendix C of [12].

By exploiting Theorems 1 and 3, we establish the main result of the paper.

Theorem 4. Emptiness, universality, and language inclusion for Büchi ECNA,
and visibly model-checking against Büchi ECNA are Exptime-complete.

Proof. For the upper bounds, first observe that by [1,10] the emptiness problem
of generalized Büchi VPTA is Exptime-complete and solvable in time O(n4 ·
2O(m·log Km)), where n is the number of states, m is the number of clocks, and
K is the largest constant used in the clock constraints of the automaton (hence,
the time complexity is polynomial in the number of states). Now, given two
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Büchi ECNA A1 and A2 over Σ, checking whether LT (A1) ⊆ LT (A2) reduces
to check emptiness of the language LT (A1) ∩ LT (A2). Similarly, given a Büchi
VPTA S where all the states are accepting and a Büchi ECNA A over the same
pushdown alphabet Σ, model-checking S against A reduces to check emptiness
of the language LT (S) ∩ LT (A). Since Büchi VPTA are polynomial-time closed
under intersection and universality can be reduced in linear-time to language
inclusion, by the closure properties of Büchi ECNA (Theorem 1) and Theorem 3,
membership in Exptime for the considered problems directly follow.

For the matching lower-bounds, the proof of Exptime-hardness for empti-
ness of Büchi VPTA can be easily adapted to the class of Büchi ECNA. For
the other problems, the result directly follows from Exptime-hardness of the
corresponding problems for Büchi VPA [5,6] which are subsumed by Büchi
ECNA. ��

Conclusions. In this paper we have introduced and studied ECNA, a robust
subclass of VPTA allowing to express meaningful non-regular timed properties
of recursive systems. The closure under Boolean operations, and the decidability
of languages inclusion and visibly model-checking makes ECNA amenable to
specification and verification purposes. As future work, we plan to investigate
suitable extensions of the Event Clock Temporal Logic introduced for ECA so
that a logical counterpart for ECNA can be similarly recovered.
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Abstract. Planar automata seems to be representative of the synchro-
nizing behavior of deterministic finite state automata. We conjecture
that Černy’s conjecture holds true, if and only if, it holds true for planar
automata. We provide new (and old) evidence concerning the conjectured
Č erny-universality of planar automata.

This work is related to the synchronization of deterministic finite state automata
(DFAs, for short), and wherever we say automaton we are referring a DFA.

Let M be a DFA, and let ΣM be its input alphabet, we use the symbol
Σ∗

M to denote the set of finite strings over the alphabet ΣM. The function
̂δM : Σ∗

M × QM → QM is defined by the recursion:

̂δM (w1, q) = δM (w1, q) ;

̂δM (w1...wn, q) = δM
(

wn, ̂δM (w1...wn−1, q)
)

,

where δM is the transition function of M.
A synchronizing string (reset word) for M is a string w ∈ Σ∗

M such that
the equality ̂δM (w, p) = ̂δM (w, q) holds for all p, q ∈ QM. We say that the
deterministic automaton M is synchronizing, if and only if, there exists a syn-
chronizing string for M. Let M be a synchronizing automaton, the shortest reset
length of M, denoted by rlM, is equal to the length of the shortest synchronizing
strings for M. It is easy to prove that rlM ∈ O

(

|QM|3
)

. Černy conjectured that

rlM ≤ (|QM| − 1)2 (see [5]). This conjecture is called Černy’s Conjecture and
it is considered the most important open problem in the combinatorial theory
of finite state automata.

The universality conjecture for planar automata. It is well known that
Černy’s conjecture holds true for strongly connected synchronizing automata, if
and only if, it holds true for synchronizing automata. Therefore, we say that the
class of strongly connected automata is Černy-universal. We conjecture that the
same is true for the class of planar automata. Let us discuss some facts that led
us to formulate the Černy-universality conjecture for planar automata.

We are interested in some algorithmic problems related to the synchroniza-
tion of DFA’s. The algorithmic complexity of most of those problems is well
c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 93–104, 2018.
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understood, and there are many deep results characterizing their intrinsic hard-
ness (see for example [6,8,11] and the references therein). It happens that the
same hardness results can be obtained for planar automata by noticing that their
proofs for general automata work verbatim or with minor adjustments in the pla-
nar framework. Then, we have that the planar restrictions of the aforementioned
algorithmic problems are as hard as the unrestricted versions. It suggests that
the class of planar automata is an universal class with respect to the algorithmic
hardness of synchronization.

It is also interesting to observe that all the sequences of slowly synchroniz-
ing automata registered in the literature are sequences of planar automata (see
[1]). It is important to remark, at this point, that it is fairly easy to transform
a sequence of slowly synchronizing planar automata into a sequence of slowly
synchronizing non-planar automata. Suppose we have a sequence of slowly syn-
chronizing planar automata, and suppose that all those automata are quaternary
(the sizes of their input alphabets are all equal to 4), then it suffices to insert
a copy of K3,3 into each one of the automata in the sequence while taking care
of preserving the synchronizability. However, it seems that all the sequences of
slowly synchronizing planar automata have a planar core.

The above two observations are the origin of our conjecture. In this work we
present some new results that can be considered as additional evidence support-
ing the conjectured Černy-universality of planar automata. We think that the
aforementioned results are interesting in their own right.

Organization of the work and contributions. This work contains a single
section besides the introduction. We characterize the algorithmic hardness of
some synchronization problems related to planar automata and we show that
all those problems are as hard as the unrestricted versions. We get most of
those results by simply noticing that their proofs for general automata work
verbatim in the planar framework. We get a new hardness result for planar
and unrestricted automata. The proof of this result for planar automata is not
trivial. The aforementioned result is related to the parameterized complexity of
synchronizing small sets of states, we prove that the corresponding algorithmic
problem, as well as its planar restriction, are WNL complete (see [9]).

1 On the Algorithmic Hardness of Synchronizing
Planar Automata

We investigate the synchronization of finite state automata focussing on the class
of planar DFA’s. A deterministic finite state automaton is planar, if and only if,
its transition digraph is planar. Planar automata have been previously studied
and it is known that there are regular languages which cannot be recognized
by deterministic planar automata [4]. This last fact indicates that the class of
planar automata is not universal with respect to recognition power. However,
we conjecture that this restricted class is universal with respect to the hardness
of synchronization. This conjecture motivates us to study the synchronization of
planar automata. Consider the following two algorithmic problems:
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Problem 1. (Synch [P ]: Optimal synchronization of planar automata)

– Input: (M, k), where M is a synchronizing planar automaton and k is a
positive integer.

– Problem: Decide if there exists a synchronizing string for M whose length is
upperbounded by k.

Problem 2. (ESynch [P ]: Deciding shortest reset length)

– Input: (M, k), where M is a synchronizing planar automaton and k is a
positive integer.

– Problem: Decide if the shortest reset length of M is equal to k.

It is easy to prove the following theorem.

Theorem 1. We have that

1. The problem Synch [P ] is NP complete.
2. Given ε > 0, it is NP hard to approximate the shortest reset length of planar

synchronizing automata within the ratio O
(

n1−ε
)

, while the ratio O (n) can
be achieved in polynomial time.

3. ESynch [P ] is complete for the class DP.

Proof. Proofs of the same results but for unrestricted automata are presented in
the Refs. [6,8,11]. It is enough to observe that the aforementioned proofs work
verbatim or with minor adjustments for planar automata.

In next section we add a further hardness result.

1.1 The Parameterized Hardness of Synchronizing Small Sets
of States

In this section we characterize the parameterized complexity of subset synchro-
nization [10]. We refer the reader to [7] for a pedagogical introduction to the
basics of parameterized complexity.

Let M be a DFA, and let q1, ..., qk ∈ QM, a synchronizing string for these k

states is a string w such that the equality ̂δM (w, qi) = ̂δM (w, qj) holds for all
i, j ≤ k. In the later case we say that w synchronizes the subset {q1, ..., qk}.

We think that subset synchronization is a powerful concept that allows one
to model some different types of discrete dynamics. Suppose, for instance, that
we have a troop of agents scattered over a territory and we want to broadcast
an instruction, the same one for all the agents, which must lead the agents to
a common site on the territory. If the territory is the transition digraph of a
synchronizing automaton and we do not know the initial locations of the agents,
then we must broadcast a reset word for the underlying automaton. On the
other hand, if we know the initial locations q1, ..., qk, then we must broadcast
a synchronizing string for these k states. Notice that a shortest synchronizing
string for the states q1, ..., qk could be very much shorter than any shortest
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synchronizing string for the whole automaton. It could happens if the set of
states to be synchronized is very much smaller than QM. We consider that
planar automata constitutes a set of natural scenarios for some of the most
representative instances of subset synchronization. Notice that planar digraphs
are the discrete versions of two-dimensional territories.

Let p-Synch [P ] be the parameterized problem defined by:

Problem 3. (p-synch [P ]: Parameterized synchronization of planar automata)

– Input: ((M, {q1, ..., qk} , l) , k) , where M is a synchronizing planar automaton
and q1, ..., qk ∈ QM.

– Parameter: k.
– Problem: Decide if there exists a synchronizing string of length l for the states

q1, ..., qk.

Recall that a parameterized problem is fixed-parameter tractable, if and only
if, it can be solved in time O (f (k) · nc), for some function f and some constant
c (see [7]). Is p-Synch [P ] fixed- parameter tractable? We prove that the problem
p-Synch [P ] is WNL complete. The class WNL is supposed to be the parame-
terized analogue of PSPACE [9]. This class is located above of the W-hierarchy,
and hence we have that p-Synch [P ] is W[t] hard for all t ≥ 1. The class WNL
is defined as the closure under fpt-reductions (see [7]) of the following problem.

Problem 4. (p-WNL: Deciding acceptance of parameterized space bounded
computations)

– Input: ((M, t) , k), where M is a nondeterministic Turing machine, t is a
positive integer given in unary, and k ≥ 1.

– Parameter: k.
– Problem: Decides if M accepts the empty input in at most t steps and check-
ing at most k cells.

Let L be a parameterized problem. Suppose we want to check that L belongs
to WNL. It is enough to exhibit a nondeterministic RAM N accepting L and
satisfying the following constraint: Let R (X, k) be the maximum number of reg-
isters used by N , along its computations on input (X, k) , the quantity R (X, k)
is bounded above by a function r (k) that only depends on the parameter k
(see [9]).

It is easy to prove that p-synch [P ] belongs to WNL. It is harder to prove that
p-synch [P ] is WNL hard. We prove the later by exhibiting a fpt Turing reduc-
tion of The parameterized longest common subsequence problem in p-Synch [P ].
The parameterized longest common subsequence problem, denoted by p-LCS,
is the parameterized problem defined by:



On the Synchronization of Planar Automata 97

Problem 5. (p-LCS: Parameterized longest common subsequence)

– Input: (({w1, ..., wk} , Σ,m) , k) , where Σ is a finite alphabet, w1, ..., wk ∈ Σ∗

and m is a positive integer.
– Parameter: k.
– Problem: Decide if there exists a string w ∈ Σ∗ such that for all i ≤ k the

string w is a substring of wi, and such that |w| = m.

Guillemot [9] proved that p-LCS is hard for WNL, and it means that our
reduction suffices.

Theorem 2. The problems p-Synch [P ] and p-Synch are WNL complete.

Proof. First we check that p-Synch belongs to WNL. To this end we construct
a suitable nondeterministic RAM accepting the problem p-Synch. The machine
works, on input ((M, {q1, ..., qk} , l) , k), as follows:

The machine stores in the first k registers a tuple of positive integers
(s1, ..., sk) such that for all i ≤ k the inequality si ≤ |QM| holds. It begins
with (0, ..., 0), and then it overwrites (q1, ..., qk). Set

(

s11, ..., s
1
k

)

= (q1, ..., qk), for
all i ≤ l the machine nondeterministically chooses a tuple

(

si+1
1 , ..., si+1

k

)

which
can (over)write on the first k registers, if and only if, there exists a ∈ ΣM such
that the equality δM

(

a, si
j

)

= si+1
j holds for all j ≤ k. The machine accepts, if

and only if, the entries of the last tuple are all equal.
We get that p-Synch [P ] and p-Synch belongs to WNL. It remains to be

proved that p-Synch [P ] is WNL hard.
First we prove that p-LCS is fpt many-one reducible to p-Synch, and then

we prove that p-Synch is fpt Turing reducible to p-Synch [P ].
First stage (Reducing p-LCS to p-Synch).
Let X = (({w1, ..., wk} , Σ,m) , k) be an instance of p-LCS. Let i ≤ k, we

use Baeza-Yates construction (see [2]) to compute in polynomial time a DFA,
say Mi, that accepts the language constituted by all the subsequences of wi.

Notice that for all i ≤ k we are using the automaton Mi as a language
acceptor. The later fact implies that for all i ≤ k there exists a marked state
(the initial state of Mi) which we denote with the symbol qi

0. Moreover, we have
that for all i ≤ k there exists a nonempty subset of Qi, denoted with the symbol
Ai, and which is equal to the set of accepting states of automaton Mi.

We use the set {Mi : i ≤ k} to define an automaton M = (Ω,Q, δ) in the
following way:

1. Ω = Σ ∪ {d}, where d /∈ Σ.

2. Q =

(

⊔

i≤k

Qi

)

� {q, p1, ..., pm+1}, where � denotes disjoint union, and given

i ≤ k, the symbol Qi denotes the set of states of the automaton Mi. Moreover,
we have that q, p1, ..., pm+1 /∈ ⊔

i≤k

Qi.
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3. The transition function of M, which we denote with the symbol δ, is defined
as follows

δ (a, p) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δi (a, p) , if p ∈ Qi and a �= d
q, if p ∈ ⊔

i≤k

Ai and a = d

p1, if p ∈ (Qi\Ai) and a = d
q, if p = q

pj+1, if p = pj , j < m + 1 and a ∈ Σ
p1, if p = pj , j < m + 1, and a = d

q, if p = pm+1 and a = d
p1, if p = pm+1 and a �= d

Let Y (X) be equal to
((M,

{

q10 , ..., q
k
0 , p1

}

,m + 1
)

, k + 1
)

, it is the output
of our reduction. We check that X ∈ p-LCS, if and only if, the states q10 , ..., q

k
0 , p1

can be synchronized in time m + 1.
Suppose that (({w1, ..., wk} , Σ,m) , k) is a positive instance of p-LCS. Let

w ∈ Σm such that w is a subsequence of each one of the strings w1, ..., wk. Let
u = wd ∈ (Σ ∪ {d})m+1

, we claim that u synchronizes the states q10 , ..., q
k
0 , p1.

We have that for all i ≤ k the state ̂δ
(

w, qi
0

)

belongs to Ai. Moreover, we

have that ̂δ (w, p1) = pm+1. Then, given r ∈
{

̂δ (w, x) : x ∈ {

q10 , ..., q
k
0 , p1

}

}

the equality δ (d, x) = q holds. Thus, we get that u is a string that sends the
states q10 , ..., q

k
0 , p1 to the sink q. We conclude that the states q10 , ..., q

k
0 , p1 can be

synchronized in time m + 1.
Now suppose that the states q10 , ..., q

k
0 , p1 can be synchronized in time m + 1

by a string u ∈ (Σ ∪ {d})m+1. We observe that the synchronizing state must
be equal to the sink q. We also observe that the distance between p1 and q is
equal to m+1, and it implies that the synchronization of the states q10 , ..., q

k
0 , p1

cannot be achieved with strings of length smaller than m + 1. Given i ≤ m,
we have that at least one of the tokens is not placed on q at time i. The later
implies that the last character of u must be equal to d. Let u = wd. If w /∈ Σm,
then ̂δ (w, p1) �= pm+1 and u does not synchronize the set

{

q10 , ..., q
k
0 , p1

}

. We can

conclude that w ∈ Σm. Suppose that there exists i ≤ k such that ̂δ
(

w, qi
0

)

/∈ Ai,

we get that ̂δ
(

wd, qi
0

) �= q and the string u = wd does not synchronize. Thus,
we have that for all i ≤ k the Baeza-Yates automaton Mi accepts the string w.
The later fact implies that w is a subsequence of each one of the strings in the
set {w1, ..., wk} , and we can conclude that X is a positive instance of p-LCS.

It is interesting to observe that we used the states p1, ..., pm+1 to built a clock,
a gadget that was used to prevent that synchronization occurs earlier than time
m+1. It is not a surprise if we have to use clocks when we want to synchronize.

It happens that Baeza-Yates construction is non-planar, and hence if Y (X) is
equal to

((M,
{

q10 , ..., q
k
0 , p1

}

,m + 1
)

, k + 1
)

, it could occur that the automaton
M is a non-planar one. Therefore, we have to proceed with the second reduction

Second stage (Reducing p-Synch to p-Synch [P ]).
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Let p-Synch [2] be the restriction of p-Synch to the set of instances

{((M, {q1, ..., qk} , l) , k) : M is a binary synchronizing automaton} .

The construction used in [3] yields a fpt many-one reduction of the problem
p-Synch in its restriction p-Synch [2]. We exhibit a fpt Turing reduction of the
problem p-Synch [2] in the problem p-Synch [P ].

Let ((M, {q1, ..., qk} ,m) , k) be an instance of p-Synch [2]. A planar drawing
of the automaton M is an embedding of its transition digraph in R

2, and which
satisfies the following three constraints:

– Edges are mapped on simple curves.
– No three edges meet at a common crossing.
– Two edges meet at most once.

Let M = ({a, b} , Q, δ). A Planar drawing of M can be computed in polyno-
mial time in |Q|, and if the automaton M is a planar one, then the computed
drawing can be chosen to be a planar embedding (a drawing without crossings).

Suppose that M is non-planar, and let ρ be a planar drawing of M. Let e
be an edge (transition) of M, we use the symbol crρ (e) to denote the number
of crossings involving edge e. We have that for all ρ and for all e the inequal-
ity crρ (e) ≤ 2 |Q| holds. The later inequality follows from the following fact:
Automaton M has exactly 2 |Q| transitions (edges), and given that any two
edges meet at most once, each one of the edges can get involved in at most
2 |Q| − 1 crossings.

To begin with the reduction we compute a planar drawing of M, say ρ, and
we use ρ to compute a planar automaton N0. The computation of N0 goes as
follows:

1. The input alphabet of N0 is equal to {a, b} × {0, 1}.
2. The set of states of automaton N0 contains the set {ρ (p) : p ∈ Q}. It is impor-

tant to remark that we will have to use 16 |Q|2 − |Q| additional states.
3. Given e, a transition of M, edge e is represented in N by a path of length 8 |Q|.

To construct the later path we subdivide ρ (e) into 2 |Q| disjoint segments.
The segments can be chosen to be connected, with a nonempty interior, and
such that each one of the crρ (e) crossings involving e is an inner point of one
of those intervals. Moreover, we can choose the 2 |Q| segments in such a way
that each one of them contains at most one crossing. Notice that we need no
more than 2 |Q| segments because we have no more than 2 |Q| crossings. Each
one of those 2 |Q| segments is in turn subdivided into four subsegments. Those
four segments are used to built the gadgets that will allow us to eliminate the
crossings involving the edge e. Thus, suppose that e is directed from p to q
and let 1 ≤ i ≤ 2 |Q|. We choose four points in the i-th segment of ρ (e), let
ve,i
1 , ve,i

2 , ve,i
3 and ve,i

4 be those four points, and suppose that ve,i
1 is the start-

point of the segment (the point that is closest to ρ (p)). We also suppose that
ve,i
2 lies between ve,i

1 and ve,i
3 , while ve,i

3 lies between ve,i
2 and ve,i

4 . Moreover,
the point ve,i

4 belongs to the interior of the i-th segment. If i = 1, we have
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that ve,1
1 = ρ (p). If i = 2 |Q| , we have that v

e,2|Q|+1
1 = ρ (q). All the points

in the set {

ve,i
k : k ≤ 4, i ≤ 2 |Q| and e is an edge of M

}

are states of the automaton N0 that we want to construct. So far we have
only computed a subdivision of M.

4. Let i ≤ 2 |Q|, let I be the i-th segment and let r (e)i
1 , r (e)i

2 , r (e)i
3 , r (e)i

4 be
the four subsegments of I. Each one of those four segments become edges of
N . Given j ≤ 3, the edge r (e)i

j is directed from ve,i
j to ve,i

j+1, while the edge
r (e)i

4 is directed from ve,i
4 to ve,i+1

1 . Moreover, we assign to those four edges
the labels (c, 0) , (c, 1) , (c, 1) and (c, 0), where c is the label assigned to edge
e in M.

5. Now suppose that edges e and f meet at some point x. There exists i, j ≤ 2 |Q|
such that x lies on the i-th segment of e, and x lies on the j-th segment of f.
We can choose the points ve,i

1 , ve,i
2 , ve,i

3 and ve,i
4 , and the points vf,j

1 , vf,j
2 , vf,j

3

and vf,j
4 in such a way that:

– The equalities ve,i
3 = vf,j

2 and ve,i
4 = vf,j

3 hold.
– If the labels of e and f are equal, the segments r (e)i

3 and r (f)j
2 are equal,

otherwise they meet each other only at the points ve,i
3 and ve,i

4 .
– If the labels of e and f are equal, the point x lies in the interior the

segment r (e)i
3, otherwise it lies in the interior of the simple closed curve

formed by r (e)i
3 and r (f)j

2 .
Notice that the above construction allows us to eliminate the crossing x.
It is interesting to observe that the later construction is somewhat asymmet-
rical. The asymmetric nature of the construction is not a problem: Given two
edges that meet each other at some point x, it makes not difference which
edge plays the role of e and which one plays the role of f. Suppose we are
constructing the automaton N0 and we are given a pair of edges of M that
meet each other, we can choose at random the role played by each one of the
two edges. Moreover, the asymmetrical nature of this construction is used to
prevent that tokens being synchronized on N0 use the crossings of M to find
shortcuts (see Fig. 1 below).

6. Recall that we are trying to draw a planar automaton N0. To this end, we
use the set of points

P =
{

ve,i
j : i ≤ 2 |Q| , j = 1, 2, 3, 4 and e is an edge of M

}

,

and the set of edges

E =
{

r (e)i
j : i ≤ 2 |Q| , j = 1, 2, 3, 4 and e is an edge of M

}

.

Notice that |P | = 16 |Q|2, and E = 64 |Q|2 . If we add some loops we get a
planar synchronizing automaton denoted by N0. Let us check that N0 is syn-
chronizing. Let f : {a, b}∗ → ({a, b} × {0, 1})∗ be the homomorphism defined
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by: Given k ≥ 1 and given w1 · · · wk ∈ {a, b}∗ we have that f (w1 · · · wk) is
equal to

((w1, 0) (w1, 1) (w1, 1) (w1, 0))2|Q| · · · ((wk, 0) (wk, 1) (wk, 1) (wk, 0))2|Q|
.

If the string w synchronizes the automaton M, then f (w) is a reset word for
N0. Moreover, if the string w synchronizes the states q1, ..., qk, we have that f (w)
synchronizes the states ρ (q1) , ..., ρ (qk). Notice that the later property of N0 is
almost all that we need. However, the later property is not really enough, notice
that we also have to prevent the existence of short synchronizing strings that
do not belong to the image of f. The later can happen because of the following:
Edges of M are represented in N0 by paths of length 8 |Q|, and the tokens
moving on N0 can prematurely leave those paths and find shortcuts thanks to
the crossings in M. We use clocks to avoid the later possibility.

Fig. 1. Elimination of the crossing.

Let m ≥ 1 and let p be an state of M, we use the symbol Nm,p to denote the
planar automaton that is obtained from N0 by attaching to node ρ (p) a planar
digraph that we call Cm,p. The gadget Cm,p is computed from m and |Q| (it does
not depend on p), and it is used as a clock for the synchronization process. The
clock Cm,p is used to force two things:

– Optimal synchronization occurs at node ρ (p) (any other node is excluded).
– Synchronization cannot occur earlier than time 8m |Q| .

The construction of Cm,p must fulfill the following additional condition:
The states {q1, ..., qk} can be send to state p using m characters, if and only

if, the states ρ (q1) , ..., ρ (qk) and the clock-state w (p) can be synchronized in
time 8m |Q| .

If we succeed with the construction of the automata {Nm,p : p ∈ Q}, then
we can use this small set of automata to define our Turing reduction. If we
want to know wether the states {q1, ..., qk} can be synchronized in time m, it
suffices if we make exactly |Q| queries: Given p ∈ Q we ask wether the states
ρ (q1) , ..., ρ (qk) , w (p) ∈ QNm,p

can be synchronized at state ρ (p) in time 8m |Q|.
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The clock Cm,p is constituted by m segments. Each one of those segments is
constituted by two directed paths of length 8 |Q|, which meet only at the start-
node (the start-node of both paths is the same, and it is the single common
node). Let λ ≤ m, the λ-th segment is constituted by the states

{

pi,λ
,j,x : i ≤ 2 |Q| ; j = 1, 2, 3, 4;x = a, b

}

,

where p1,λ
1,a = p1,λ

1,b = p1,λ
1 (the start nodes are equal). If λ = 1, we set

p1,1
1,a = p1,1

1,b = w (p) ,

and we call this later state the clock-state of Nm,p.

Given i ≤ 2 |Q| − 1 and given x = a, b, we add the edge
(

pi,λ
1,x, pi,λ

2,x

)

and we

label it with the letter (x, 0) . We also add the edges
(

pi,λ
2,x, pi,λ

3,x

)

and
(

pi,λ
3,x, pi,λ

4,x

)

and we label them with the letter (x, 1) . Moreover we add the edge
(

pi,λ
4,x, pi+1,λ

1,x

)

an we label it with the letter (x, 0). We glue together the λ-th segment and the
λ + 1-th by adding the edges

(

p
2|Q|,λ
4,a , p1,λ+1

1

)

and
(

p
2|Q|,λ
4,b , p1,λ+1

1

)

, we label
them with the letters (a, 0) and (b, 0) (respectively).

We embed Cm,p in the plane in such a way that, after adding the edges
(

p
2|Q|,m
4,a , ρ (p)

)

and
(

p
2|Q|,m
4,b , ρ (p)

)

, the whole construction becomes planar. To
achieve the later, it suffices to use a miniaturized copy of Cm,p that can be
inserted without crossings into a small neighborhood of ρ (p). To finish with the
construction we add the necessary loops to obtain a full transition function.

We observe that the planar automaton Nm,p can be constructed in fpt time.
We also have that Nm,p is synchronizing. Let us check the later. Automaton N0

could be synchronized before the insertion of Cm,p. Then, it suffices to send all
the states in Cm,p to the state ρ (p), and then synchronize the states that are
out of Cm,p. The former is quite easy to achieve, while the later corresponds to
synchronize the automaton N0.

It only remains to be proved that the states q1, ..., qk can be simultane-
ously sent to the state p using a string of length m, if and only if, the states
ρ (q1) , ..., ρ (qk) , w (p) ∈ QNm,p

can be synchronized in time 8m |Q| .
Suppose that w ∈ {a, b}m sends the states q1, ..., qk to the state p. Then,

the string f (w) synchronizes the states ρ (q1) , ..., ρ (qk) , w (p) . Now suppose
that ρ (q1) , ..., ρ (qk) , w (p) can be synchronized in time 8m |Q|, and let W ∈
({a, b} × {0, 1})8m|Q| be a synchronizing string for those states. String W sends
the state w (p) to ρ (p). Notice that the minimal paths connecting those two
states are labeled by strings that belong to the image of f . Thus, we have that
there exists w ∈ {a, b}m such that the equality W = f (w) holds. It remains
to be proved that w synchronizes the states q1, ..., qk. To prove the later it is
enough to show the following:

Claim. Let e = (p, q) be an edge of M that is labeled with the letter x ∈ {a, b},
and let i ≤ m. Suppose that we are moving the tokens that were placed at states
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ρ (q1) , ..., ρ (qk) , w (p) according to the synchronizing string f (w), and suppose
that at time 8i |Q| + 1 a token is moved from ρ (p) = ve,1

1 to ve,1
2 . Then, at time

8 (i + 1) |Q| the same token is reaching the state ρ (q).

Proof of the claim. Suppose that the claim is false. Then, we have that while
reading the substring W [8i |Q| + 1, ..., 8 (i + 1) |Q|] the token prematurely left
the path that represents the edge e. It could only happen at one of the crossings
involving e. Then, there exists f , and edge of M, and there exist k, l ≤ 2 |Q|
such that the k-th segment of e and the l-th segment of f meet each other. We
suppose that our lost token left the path representing e at this crossing. Let us
also suppose that the equalities

ve,k
3 = vf,l

2 and ve,k
4 = vf,l

3

hold. Notice that we are using, for the first time, the asymmetric architecture of
the crossing-gadgets. The lost token had to use the character

W [8i |Q| + 4 (k − 1) + 4]

to leave the e-path, choosing edge
(

vf,l
3 , vf,l

4

)

instead of edge
(

ve,k
4 , ve,k+1

1

)

.

We observe that the later is not possible: There exist x, y ∈ {a, b} such that
W [8i |Q| + 4 (k − 1) + 3] = (x, 0) , the label of

(

ve,k
4 , ve,k+1

1

)

is equal to (x, 0),

and the label of
(

vf,l
3 , vf,l

4

)

is equal to (y, 1). We can conclude that tokens cannot
prematurely leave the edges of M and the claim is proved.

Given the automaton M and given S = {q1, ..., qk}, we use the symbol Ip,m,S

to denote the tuple

(Nm,p, {ρ (q1) , ..., ρ (qk) , w (p)} , 8m |Q|) .

We have that S can be synchronized in time m, if and only if, there exists
p ∈ Q such that the states ρ (q1) , ..., ρ (qk) , w (p) of the automaton Nm,p can be
synchronized in time 8m |Q|. Altogether we have a true table Turing reduction
of p-Synch [2] in p-Synch [P ] which can be computed in fpt time. The theorem
is proved.

Remark 1. Let us use the symbol p-Synch [P, 4] to denote the restriction of p-
Synch [P ] to the class of planar automata defined over a four letter alphabet.
The above reduction shows that p-Synch [P, 4] is WNL complete.
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Abstract. In this paper we continue to investigate the complexity of
the circuit representation of DFA—BC-complexity. We compare it with
nondeterministic state complexity, obtain upper and lower bounds which
differ only by a factor of 4 for a Binary input alphabet. Also we prove
that many simple operations (determining if a state is reachable or if an
automaton is minimal) are PSPACE-complete for DFA given in circuit
representation.

1 Introduction

As finite automata is one of the most popular models of computation, state
complexity is by far the most popular complexity measure of finite automata. It
serves well in the structural language theory, however it does not always reflect
the complexity (or simplicity) of automata implementation. In this paper we
consider another complexity measure of automata: BC-complexity, that tries to
capture the details of automata implementation.

As state complexity is related to the state minimization problem, BC-
complexity is related to the state assignment problem [1]. State assignment is a
classical problem in the synthesis of finite state machines—how to encode states
of an automaton into a vector of binary memory elements to have the “simplest”
switching function as a transition function for this automaton.

It is a well-studied problem but only from the functional optimization point
of view. A lot of papers and books have been devoted to methods of optimal
state assignment with a respect to different notions of “simplest” switching func-
tion. Standard optimization methods try to minimize the dependencies among
state variables that leads to effective implementation of the transition function
as a Boolean circuit [1,2], but there are other interpretations of simplicity, for
example, the minimization of the average switching of memory elements [3,4]
that corresponds to the minimal power dissipation of the circuit.

But despite the large amount of research in the area during the last 40
years, until recently the state assignment problem has not been studied from
the complexity point of view although it is a natural complexity question.

The notion of BC-complexity corresponds to the standard interpretation of a
“simplicity” of a switching function—the number of gates in the circuit. Roughly
c© Springer International Publishing AG, part of Springer Nature 2018
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the model is as following: encode inputs and states of a finite automaton as bit
vectors and its transition function as a Boolean circuit. The complexity of this
circuit we take as the complexity (BC-complexity) of (this circuit representation
of) the automaton.

This paper is a logical continuation to the work that has been started in [5,6].
BC-complexity was formally defined in [5], upper and lower bounds for the BC-
complexity were obtained in [6] and also there it was shown that the Shannon
effect takes place: for almost all languages with a given state complexity their
BC-complexity is close to its maximum value. Also in [5] it was shown that the
minimization of the number of states can lead to a dramatic increase in the BC-
complexity—a proof to a well-known statement that state minimization should
be considered together with state assignment.

The contribution of this paper is three-fold. At first, we prove a useful lemma
(Lemma 3), that allows us to prove lower bounds of BC-complexity in a uniform
manner for different language classes.

Then we use this lemma to prove the lower bound for BC-complexity of lan-
guages for a given non-deterministic state complexity and also improve the upper
bound from [6] so, that these bounds now differ only by a constant multiplicative
factor (at most 4, for a Binary input alphabet).

In the final part of this paper we consider the algorithmic complexity of
various algorithms on DFAs in circuit representation. It is proved that many
simple problems (e.g. determining if a state is reachable) under such representa-
tion become PSPACE-complete. In particular, we prove that the minimization
of BC-complexity for DFAs given in their circuit representation and for NFAs in
their standard state table representation are PSPACE-complete.

2 Finite Automata and Boolean Circuits

In this paper we use the standard models of deterministic and nondetermin-
istic finite automata (DFA and NFA), we assume that the reader is familiar
with notions of their equivalence, state reachability and minimization. By sc(L)
(nsc(L)) we denote the state (nondeterministic state) complexity of a regular
language L, the minimal number of states of a DFA (NFA) that recognizes L.

For the sake of simplicity we will use estimates of the number of distinct
languages with a bounded state or nondeterministic state complexity from [7]
in a slightly relaxed form. Let Lk

s (Nk
s) be the set of languages over k-letter

alphabet whose state (nondeterministic state) complexity is not larger than s.

Theorem 1 [7].
|Lk

s | ≥ 2ss(k−1)s for s ≥ 3.

2(k−1)s2 ≤ |Nk
s | ≤ 2s2ks2

for k ≥ 2 and

2s ≤ |N1
s| ≤ 2s log s if k = 1.
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We will use the standard notion of a Boolean circuit [8,9] and restrict our
attention to circuits in the standard base (&, ∨, ¬). The size of the circuit C(F )
is the number of gates in it, the complexity of a Boolean function C(f) is the
size of the smallest circuit that represents this function.

We will use the following notation from [9] for the asymptotic comparison of
two functions f and g:

f(n) � g(n) ⇐⇒ lim
n→∞

f(n)
g(n)

≤ 1
(

⇐⇒ f(n) < g(n)(1 + o(1))
)

.

This is more precise than the standard big-Oh notation, which ignores con-
stant factors.

Given a family of sets Sn we will say that property P (x) is true for almost all
x ∈ Sn if the fraction of x in Sn for which P (x) is not true tends to zero when
n goes to infinity. We will say that for almost all x ∈ Sn f(x) � h(n) if there is
a function g(n) such that for almost all x ∈ Sn f(x) ≤ g(n) and g(n) � h(n).

The next theorem of this chapter is the crucial part that we will use in
the estimation of lower bounds for BC-complexity. Although this result has not
appeared in the literature before, it is very similar to Theorem 16 in [9] and
the technique we use to prove it (counting argument) is quite standard, for this
reason its proof is just sketched.

For each circuit x with n input bits and C gates let mC(x) = n + C be its
modified complexity—we need it to avoid the fact that the number of distinct
circuits even with zero (standard) circuit complexity is infinite.

Theorem 2. Let An be an arbitrary sequence of finite sets of increasing size,
whose elements are non-isomorphic Boolean circuits with the number of output
variables not exceeding the number of input variables plus one. Then for arbitrary
constants a1 and a2 for almost all x ∈ An

mC(x) >
log |An|

log log |An| − a1
+ a2

.

Proof. The number of Boolean circuits with n input variables, m output variables
and no more than C gates, that correspond to distinct Boolean functions does
not exceed 9C+n(C + n)C+m [6].

Let k be a given natural number and let N(k) denote the number of distinct
Boolean circuits with n inputs, no more than n + 1 outputs whose modified
complexity does not exceed k. Then N(k) < (16k)k for sufficiently large k, this
can be obtained by summing the previous expression for all n,m ≤ k.

Now let r = log |An|
log log |An|−a1

+a2 and let ε be the fraction of the circuits from A

whose modified complexity is less or equal to r. It is enough to show that ε → 0
when |An| → ∞, and that follows from the fact that ε ≤ N(r)

|An| < (16r)r

|An| with the
aid of some algebra. 
�
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3 Circuit Representation of DFA and BC-Complexity

In this section we shortly repeat the main definitions from [6] regarding circuit
representation of DFA and BC-complexity.

An encoding E(X) of a set X onto a binary string is an injective mapping
fX : X → {0, 1}bX where bX is the length of the encoding. An encoding of a
DFA consists of an encoding of its input alphabet fΣ and an encoding of the
state space fQ which we call input encoding and state encoding, respectively.
Additionally, for the state encoding we ask that the start state is encoded as a
string of all zeros fQ(q0) = 0bQ .

A circuit representation of a DFA consists of two circuits that compute its
transition function and acceptance function (characteristic function of the subset
of accepting states). The input of the transition function is encoded input and
encoded state and its output is encoded (next) state. The input of the acceptance
circuit is encoded state and it has one bit output whether this state is accepting
state or not.

The BC-complexity of a circuit representation of a DFA (F,G) is the sum of
complexities of its transition circuit and acceptance circuit and the number of
state bits:

CBC((F,G)) = C(F ) + C(G) + bQ.

The BC-complexity of a DFA A, CBC(A), is the minimal BC-complexity of
its circuit representations. BC-complexity of a regular language L is the minimal
BC-complexity of a DFA that recognizes L.

The number of state bits bQ is included in the definition to avoid a situation
that an automaton has a large number of states but zero BC-complexity. It is
natural to assume that it costs something to create a circuit even if it has no
gates and this is one of the possible ways how to reflect that in the definition.

4 Lower Bounds on BC-Complexity

In the beginning we will prove a lemma that will help us to estimate lower bounds
of BC-complexity in the future.

Lemma 3. Let a be an arbitrary constant and let Ln be a sequence of finite
sets of increasing size whose elements are distinct regular languages over a fixed
alphabet. Then for almost all L ∈ Ln

CBC(L) ≥ log |Ln|
log log |Ln| − a

.

Proof. For each L ∈ Ln we find the DFA that has a representation (F,G) with
minimal BC-complexity. We can combine its transition and acceptance circuits
into one circuit H (see Fig. 1) that has bQ +bΣ input variables and bQ +1 output
variables. Notice that mC(H) = C(F ) + C(G) + bQ + bΣ = CBC(F,G) + bΣ .
It is easy to see that as languages are distinct then for each two of them these
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Fig. 1. Transition (F ) and acceptance (G) circuits combined together

circuits H are non-isomorphic. Also note that the number of output variables
can be by at most one larger than the number of input variables.

If we apply Theorem 2 for this sequence of sets of circuits H with a1 = a and
a2 = bΣ , then we get that for almost all L ∈ Ln:

CBC(L) = mC(H) − bΣ >
log |Ln|

log log |Ln| − a
+ bΣ − bΣ =

log |Ln|
log log |Ln| − a


�
We illustrate the usage of this lemma in the next theorem. The Shannon effect

for BC-complexity here means that the BC-complexity of almost all languages
in Lk

s is close to its maximum value.

Theorem 4. [6] For almost all x ∈ Lk
s (k ≥ 2)

(k − 1)s � CBC(L) � (k − 1)s

For almost all x ∈ L1
s

s

log s
� CBC(L) � s

log s
.

Proof. We will prove just the second statement (lower bound) for k ≥ 2. From
Theorem 1 we know that |Lk

s | ≥ 2ss(k−1)s ≥ s(k−1)s and from Lemma 3 we see
that for arbitrary a for almost all L ∈ Lk

s

CBC(L) ≥ log s(k−1)s

log log s(k−1)s − a
=

(k − 1)s log s

log s + log log s + log (k − 1) − a

If we choose a = log (k − 1) and use log s
log s+log log s � 1, then we get the result. For

k = 1 the lower bound follows in the same manner. 
�

5 BC-Complexity and Nondeterministic State
Complexity

In this chapter we compare the nondeterministic state complexity with the BC-
complexity of a language. It is well known that if nsc(L) = s then log sc(L) ≤ s ≤
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sc(L) and putting that together with Theorem4 we obtain the first estimation
of BC-complexity for L ∈ Nk

s :

log s ≤ CBC(L) � (k − 1)2s. (1)

At first, let’s look at the lower bound. It is well known that there are regular
languages L for which nsc(L) = sc(L) e.g. the language Ls that consists of all
words whose length is divisible by s. For this language nsc(Ls) = sc(Ls) = n,
but its BC-complexity is not larger than c�log n: its transition circuit does an
addition modulo s. Hence BC-complexity of Ls is just a constant times larger
than the lower bound in our rough estimation (1).

But the upper bound is far too high. Even when we know that for almost
all languages in Lk

s the BC-complexity is around its maximal value (k − 1)s
(Theorem 4, Shannon effect), it turns out that languages L with nsc(L) � sc(L)
have their BC-complexity much lower than this maximum. The next theorem
improves the naive upper bound (1) exponentially (and the bound obtained in
[6] by a log s factor).

Theorem 5. For all L ∈ Nk
s

CBC(L) � ks2

log s
.

Proof. Let N be an NFA that recognizes L with s states Q = {q1, q2, . . . , qs}.
Let A be DFA that is obtained from N with a powerset construction without
any further minimization. Its state space is 2Q (set of all subsets of Q), and it
can be naturally encoded into s state bits: subset S ⊆ Q we can encode with
a bit vector fQ(S) = z1, . . . , zs such that zi = 1 ⇐⇒ qi ∈ S. Input alphabet
Σ = {a1, . . . , ak} we will encode with k bits fΣ(am) = x1, . . . , xk, from which
all are zeros except the m-th: xi = 1 ⇐⇒ i = m.

Denote Qi
m ⊆ Q to be the subset of the states of NFA N from which by

reading letter am ∈ Σ the automaton leads to state qi. The property that by
reading am ∈ Σ NFA N moves from a subset of its states S ⊆ Q to S′ ⊆ Q
can be expressed with formula qi ∈ S′ ⇐⇒ (S ∩ Qi

m) �= ∅. It means that in a
transition circuit for each output (state) bit z′

i we have to compute the following
Boolean formula:

z′
i =

k∨
m=1

⎛
⎝xm&

∨
qj∈Qi

m

zj

⎞
⎠ .

If we would create a circuit for each of these s formulas separately, then
after careful counting the complexity of the transition circuit C(F ) would be
t + (k − 1)s where t is the number of transitions of N . This is not bad if t is
small, but it can be as high as t = ks2.

However we can improve the complexity it by a logarithmic factor. The main
part of our computation is ks disjunctions

∨
qj∈Qi

m
zj : one for each output state

bit and each input letter, and the main idea of the optimization is to reuse some
intermediate results among them.
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At first we split all our state bits into groups of c bits (the constant c will
be chosen later), there are

⌈
s
c

⌉
such groups. For each group we precompute all

2c − 1 disjunctions among its inputs for which we need 2c − c − 1 OR gates (one
for each disjunction except the given inputs and the empty disjunction) and for
all groups this gives us in total

⌈
s
c

⌉
(2c − c − 1) gates.

Now each of our ks disjunctions
∨

qj∈Qi
m

zj can be computed as a disjunction
of

⌈
s
c

⌉
precomputed elements using ks(

⌈
s
c

⌉ − 1) OR gates in total. For each
output bit z′

j we also need k AND gates and we need (k − 1) OR gates to
compute the outer disjunction

∨k
m=1. This would add additional (2k − 1)s gates

for the transition circuit F .
The acceptance circuit G is simply a disjunction of all input bits zi that

correspond to an accepting state of N . Its size does not exceed s. The number
of state bits bQ = s also is counted into BC-complexity and now we have all the
parts for it:

CBC(A) ≤ C(F )+C(G)+ bQ ≤ ks(
⌈s

c

⌉
−1)+

⌈s

c

⌉
(2c − c−1)+(2k−1)s+s+s

and by grouping similar terms and estimating
⌈

s
c

⌉
(−c − 1) + s ≤ 0 we finally

get CBC(A) ≤ ⌈
s
c

⌉
(ks + 2c) + ks.

It remains to find the best value for the constant c and we choose c =
�log s − log log s. Then

⌈
s
c

⌉ ≤ s
log s−log log s−1 , 2c ≤ 2log s−log log s+1 = 2s

log s and

CBC(A) ≤
(

s

log s − log log s − 1

)(
ks +

2s

log s

)
+ ks � ks2

log s
.


�
At the end of this section we will show that this upper bound is almost

(within a constant factor) optimal.

Theorem 6. If k ≥ 2, then for almost all L ∈ Nk
s

CBC(L) >
(k − 1)s2

2 log s
.

Proof. From Theorem 1 we know that |Ns| ≥ 2(k−1)s2
if k ≥ 2. Then Lemma 3

with a = log (k − 1) tells us that for almost all L ∈ Nk
s

CBC(L) >
log |Ns|

log log |Ns| − a
>

(k − 1)s2

log (k − 1)s2 − log (k − 1)
=

(k − 1)s2

2 log s
.


�
For deterministic state complexity the upper and lower bounds on BC-

complexity coincide (Theorem 4). But if we look at Theorems 5 and 6 we see
that (k−1)s2

2 log s < CBC(L) � ks2

log s , upper and lower bounds differ by a factor
2k/(k − 1) < 4. Why is this so and how can we improve these bounds?
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The difference in coefficients k − 1 and k comes from the estimation of |Nk
s |

in Theorem 1 where one can see the same factors k and k − 1 in the upper and
lower bounds. If one could improve the lower bound of Theorem1, then that
would automatically improve the lower bound of Theorem6.

But the factor 2 in the denominator comes from the transition circuit where
ks disjunctions

∨
qj are constructed. We could consider it as a separate problem

and for simplicity lets assume that k = 1. Let f : {0, 1}s → {0, 1}s be a function,
where if xi and yi are input and output Boolean variables and each output
variable is a disjunction of some input variables: yi = xi1 ∨ xi2 ∨ · · · ∨ xik .

For this class of functions the best known upper and lower bounds on circuit
complexity differ twice. The upper bound of s2

log s gates can be constructed as in

Theorem 5, the lower bound of s2

2 log s can be obtained by a counting argument.
The problem looks simple but turns out to be a hard one that can additionally be
illustrated by a fact that despite intuition there are such functions f , for which
the smallest circuit besides OR gates contain some AND gates as well [10].

In this chapter we have said very little about unary languages. For them
the best lower bound that we can get is the same as for the deterministic case
(Theorem 4), and the upper bound from the Theorem5 gives us that s

log s <

CBC(L) � s2

log s for almost all L ∈ N1
s.

The difference in these two formulas is by a factor of s and it cannot be
explained just by a difference in the upper and lower bound of Theorem1. Possi-
bly one can create a circuit representation of unary NFAs more effectively than
in Theorem 5, but this question requires further research.

6 Computational Complexity of Automata Problems
in Circuit Representation

For the standard automata representation (state table) problems like state reach-
ability, state equivalence or automata minimization are “easy” ones, they can
easily be computed in polynomial time and some of them even in logspace. But
the situation becomes completely different if a DFA is given in its circuit repre-
sentation, in such a setting all these problems are PSPACE-complete.

To show this we will use the theory of succinct versions of algorithmic
instances developed in 80s and 90s in a series of papers [11–13]. We will adopt
the definitions and results from [13].

Let c(x1, . . . , xn) be a circuit with n input variables and one output variable.
It describes a word w(c) of length 2n over a binary alphabet in a natural way:
its i-th letter is the value of its i-th assignment, where assignments are ordered
lexicographically. In other words, w(c) is the result column of the truth table
representation of c.

Let the word described by a circuit c and an integer m, formally w(c,m) be
the length-m prefix of w(c). Note that this implies w(c) = w(c, 2n). If a word
x does not encode a circuit, then w(x,m) is defined to be the empty word. We
say that (c,m) is a succinct instance of w(c,m). The succinct version S(A) of a
language A is the set of all succinct instances of all words in A.
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When working with succinct versions of languages, instead of standard poly-
nomial time reducibility we will use polylogarithmic time reducibility ≤PLT . A
Turing machine that works in polylogarithmic time cannot read even the whole
input. To overcome this we will use a known modification—a random access
Turing machine, that can in one step access any bit on its input tape. Another
problem we have to overcome is the length of the output, a function that works
in polylogarithmic time can produce at most polylogarithmic number of output
bits. To overcome this we ask that each output bit is computable in polyloga-
rithmic time.

Definition 7. A language A is polylogarithmic time reducible to a language B
(A ≤PLT B) if there are two functions R : Σ∗ × N → {0, 1} and l : Σ∗ → N

computable in polylogarithmic time with random access to their input such that

x ∈ A ↔ R(x, 0)R(x, 1) . . . R(x, l(x)) ∈ B

It is easy to see that ≤PLT reducibility is reflexive and transitive and implies
standard polynomial time many-one reducibility. The main result that we will
need is following:

Theorem 8. [13] Let f(n) be a nondecreasing bound. Then, if A is ≤PLT

hard for DTIME(f(n)), NTIME(f(n)), DSPACE(f(n)) or NSPACE(f(n)) then
S(A) is ≤PLT hard for DTIME(f(2n)), NTIME(f(2n)), DSPACE(f(2n)) or
NSPACE(f(2n)), respectively.

Notice that the circuit representation of an automaton and a succinct
instance of an automaton are closely related. The circuit representation of an
automaton consists of two circuits—one for the transition function and one for
the acceptance table while the succinct version of an automaton consists of one
circuit describing both transition and acceptance tables bit by bit. These repre-
sentations can easily be obtained one from another.

Let (F,G) be a circuit representation of an automaton, then by adding one
more argument that tells which bit to extract this can easily be changed to a
succinct instance of an automaton. On the other hand given a succinct instance of
an automaton where state is encoded as b binary bits, one can concatenate b such
circuits to obtain a transition function of an automaton and one more succinct
representation one can turn into an acceptance circuit. This transformation can
easily be done in polynomial time. Without going into details we will state that,
given a succinct instance of DFA A of size n, one can in polynomial time construct
a circuit representation of A with BC-complexity poly(n) and vice versa.

Let REACH be a language that consists of all pairs (s,A) where s is a reach-
able state in DFA A (given in standard form). By L and NL we denote (as usual)
the class of languages computable in logarithmic space with a deterministic or
nondeterministic Turing machines, respectively.

Theorem 9. For a fixed input alphabet |Σ| ≥ 2, REACH is NL-complete under
≤PLT reduction. For a unary alphabet it is L-complete under ≤PLT reduction.
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Proof. First we have to show that REACH(s,A) ∈ NL. We can guess the input
for which s is reachable nondeterministically, to do this we just need to keep the
counter, current state and the next state on the working tape, it is easy to see
that it takes no more than logarithmic space.

Now let’s prove that any language B ∈ NL is ≤PLT reducible to
REACH(s,A). Consider a nondeterministic TM M that recognizes B using no
more than c log n space and consider its configuration graph V on input x. It is a
directed graph, each vertex of which has two (non-deterministic), one (determin-
istic) or 0 (end-state) outgoing edges. The states of DFA A will be the vertices of
V (configurations of M), transitions of A will be the edges of V . For each state
(configuration) there are at most two outgoing transitions that we can label with
two (or less) input letters, for the DFA to be completely specified we can set
all other transitions to stay in the same state. The state s of our interest will
correspond to a configuration of M in its end-state having “1” on its worktape
(accepting configuration). It is easy to see that x ∈ B iff s is reachable in A.

As M works in logspace its configuration graph is polynomial on the size of its
input. The length of each configuration is logarithmic in n and all the transitions
of A (edges of the configuration graph) can be computed in polylogarithmic time
using the definition of M .

For unary alphabet one just have to notice that each vertex of a configuration
graph of a deterministic TM has at most one outgoing edge. 
�

Denote by REACHCR the language consisting of all pairs (s, (F,G)) where
(F,G) is a circuit representation of a DFA and s is a state that is reachable in
A.

Theorem 10. For a fixed input alphabet, REACHCR is PSPACE-complete.

Proof. First let’s see why REACHCR is in PSPACE. Similarly as for REACH
we can nondeterministically guess the input which leads to state s from the start
state, no more than polynomial space is needed for that.

A direct consequence of Theorems 9 and 8 is that S(REACH) is PSPACE-
hard. But S(REACH) can be reduced to REACHCR in polynomial time as noted
before. 
�

Using this result we can show that many more problems on DFA in their
circuit representation are PSPACE-complete.

Theorem 11. The following problems are PSPACE-complete:

1. Given a circuit representation of a DFA and (an encoding of) two its states
determine if these states are equivalent

2. Given a circuit representation of a DFA determine if the language it accepts
is the empty language

3. Given two circuit representations of DFAs determine if these DFAs are equiv-
alent

4. Given a circuit representation of a DFA and a number c determine if there
is an equivalent DFA with BC-complexity at most c
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Proof. For the first problem if the given two states are not equivalent then we
can nondeterministically guess the input word which leads them to states one
of which is accepting, but the other not. Thus testing non-equivalence (and also
equivalence) is in NPSPACE = PSPACE. Now let’s see how REACHCR can be
reduced to state equivalence testing. Assume that we are given (F,G) and an
encoding of state s, and we want to test if s is reachable. Change (F,G) in the
following way: add one more state s′ (as a separate state bit) that leads to itself
for any input letter and set the only accepting state of A to be s. It is easy to
see that start state s0 and s′ are equivalent iff s is not reachable.

For the second (emptiness) problem we have to test if all the accepting states
are not reachable, what can easily be done in PSPACE. To show that it is
PSPACE-complete we will again reduce REACHCR to it. Let (F,G) be a given
circuit representation and s be a state. Change the acceptance circuit so that s
is the only accepting state. Now this DFA accepts empty language iff s is not
reachable.

For the third problem to be in PSPACE we have to show that testing equiv-
alence of initial states of two given automata can be done in PSPACE, what
can be obtained the same way as for the first problem. To show that it is
PSPACE-complete we note that even testing if a circuit representation of a
given automaton is equivalent to a circuit representation of the empty language
is PSPACE-complete.

Finally, for the fourth problem we can nondeterministically guess a circuit
representation of DFA with no more than k states that is equivalent to a given
one and then test their equivalence (that is in PSPACE). That puts this problem
into NPSPACE = PSPACE. Next we will reduce emptiness problem to it. The
only circuit representations whose BC-complexity is 0 are those of all-accepting
and all-rejecting automata. Given a circuit representation of a DFA to test its
emptiness we first test if the start state is an accepting state. If yes, then the
automaton is not empty. If no, then we check if it has en equivalent DFA with
zero BC-complexity, and it has iff it is an empty automaton. 
�
The last problem in Theorem11 is the minimization problem of DFA in their
circuit representation stated as a decision problem. It shows that despite the
fact that automata minimization in standard representation is easily solvable in
polynomial time, in circuit representation this problem is PSPACE complete.
But this is not the most natural setting of the problem. In the synthesis of
sequential machines an automaton usually is given in its standard state table
representation and the task is to find an optimal circuit representation for it.
Thus we can ask a different question: Given a DFA (as a state table) and a
number c determine if there exists an equivalent DFA with BC-complexity at
most c.

This problem is definitely in PSPACE, one can construct a circuit represen-
tation of a given automaton and then apply Theorem11. But is it really so hard
or may be there are more effective methods to solve it remains an interesting
open question.
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On the other hand if the given automaton is an NFA (instead of DFA) then
this problem is PSPACE-complete. Indeed, it is well known that determining if
a given NFA is equivalent to all-accepting NFA is PSPACE-complete [14]. Hence
this question is PSPACE-complete even for c = 0.

7 Conclusions

In this paper we continued the research (started in [5,6]) on the complexity
properties of circuit representations of automata.

In the first part of the paper upper and lower bounds on BC-complexity were
obtained for languages with a given nondeterministic state complexity, which
differ just by a constant factor. We can conclude that if we want to express
an automaton with s states as a Boolean circuit then it does not matter if it
is a DFA or NFA, the size difference of the resulting circuit representation is
polynomial ((k − 1)s versus ks2

log s ).
In the second part of the paper the algorithmic complexity of circuit repre-

sentations of automata was studied. It was shown that if a circuit representation
of DFA is given then many simple questions (is given state reachable, is this
automaton minimal) are PSPACE-complete. On the other hand the exact com-
plexity of the natural problem: given DFA find its minimal circuit representation,
has left as an open question.
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Abstract. The paper addresses the disturbance decoupling problem by
dynamic measurement feedback for finite automata. The mathematical
technique called the pair algebra of partitions is used. The paper gives
sufficient solvability conditions and a procedure to construct the required
feedback.
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1 Introduction

Disturbances in finite automata (FA) may appear as malfunctions (or faults) in
technical elements of the system, caused either by external or internal perturba-
tions. The solution of the disturbance decoupling problem (DDP) aims to con-
struct a feedback controller in such a manner that the output-to-be-controlled
in the closed-loop system is not influenced by the disturbance anymore. The
solution of the DDP is important for FA since malfunctions happen with high
probability in different technical systems constructed from a large number of
elements. The DDP by output feedback control has been addressed for timed
event graphs, that is a special case of discrete-event systems in Lhommeau
et al. [1] and in Shumsky and Zhirabok [2] for the same class of systems as
in this paper (see also Kotta and Mullari [3]). Finally note that the problem
has been investigated in Cheng [4] and Yang et al. [5] for Boolean control net-
works using state feedback. In Katz [6] the method to compute the controlled-
invariant sets for discrete-event systems over the max-plus algebra has been
given.

The paper Shumsky and Zhirabok [2] sketched the unified approach for solu-
tion of the DDP in three separate cases - for continuous systems, discrete-time
systems and discrete-event systems. The focus of [2] was on the unification aspect
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of the mathematical technique called the functions’ algebra, developed in paral-
lel with pair algebra of partitions, and not on the specific results regarding the
three cases. Based on [2], the results for the discrete-time case were fully worked
out in Kaldmäe et al. [7] and for the discrete-event systems in Kaldmäe et al. [8].
Note that whereas in [2] the output-to-be-controlled and the measured output
are the same, the papers [7,8] consider the more general case when they may be
different.

The present paper investigates solvability of the disturbance decoupling prob-
lem via the dynamic measurement feedback for finite automata and provides
the sufficient solvability conditions. The paper develops the results obtained
in [7,8].

The rest of the paper is organized as follows. In Sect. 2, the problem state-
ment is formulated. Section 3 recalls some facts from the algebra of partitions,
which are necessary for proving the results of this paper. Section 4 contains some
preliminary results. Section 5 presents the problem solution. Section 6 concludes
the paper.

2 Problem Formulation

Consider a finite automaton

x+ = δ(x, u, w),
y = λ(x),
y′ = λ′(x), (1)

where X = {x1, . . . , xn}, x+ ∈ X is the new state after transition from the state
x ∈ X, initiated by the inputs U = {u1, . . . , um}, u ∈ U , W = {w1, . . . , wp},
w ∈ W is the unmeasurable disturbance, Y = {y1, . . . , yl}, y ∈ Y is the measured
output, and y′ ∈ Y ′ = {y′

1, . . . , y
′
l′}, y′ ∈ Y ′ is the output-to-be-controlled. The

functions δ, λ, and λ′ are determined by the table of state transitions and output
functions (see Example 8).

In this paper we study the dynamic disturbance decoupling problem via
measurement feedback. We are looking for dynamic feedback of the form

x+
∗ = δ∗(x∗, y, u),
u = λ∗(x∗, y, u∗), (2)

where X∗ = {x∗1, . . . , x∗n∗}, x∗ ∈ X∗ and the new inputs U∗ = {u∗1, . . . , u∗m∗},
u∗ ∈ U∗ such that the values of the outputs-to-be-controlled y′ of the closed-
loop automaton are independent of the disturbance w. Note that cardinality of
U∗ is a design object. The functions δ∗ and λ∗ will be searched in the form of
appropriate tables given δ, λ and λ′ in (1). Closed-loop dynamics (1), (2) are
shown in Fig. 1. Denote the dynamics in (2) by automaton S∗.
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Fig. 1. Closed-loop dynamics

3 Mathematical Technique

We briefly recall the tools of pair algebra of partitions developed by Hartmanis
and Stearns [9] which are used to solve different problems Berdjag et al. [10],
Danilov et al. [11], Kaldmäe et al. [12], Zhirabok and Shumsky [13]. The pair
algebra of partitions will be used in this paper. The main elements of this algebra
are partitions on some set. If x, x′ ∈ X are in the same block of some partition
π, then we write x ≡ x′(π).

The main ingredients of pair algebra of partitions are:

1. relation of partial order, denoted by ≤,
2. binary operations, denoted by × and +,
3. binary relation, denoted by Δ,
4. operators m and M.

Partitions. Let π and σ be partitions on X. One says that the partition π is
less than or equal to σ, denoted by π ≤ σ, if for every block Bπi ∈ π there exists
block Bσj ∈ σ such that Bπi ⊆ Bσj , or x ≡ x′(π) ⇒ x ≡ x′(σ). If we know the
partition π on X, then we have knowledge about the states of the automaton
with accuracy up to the partition π; in particular, if π ≤ σ, then the partition
π contains the same amount or more information about states than σ.

There exist two special partitions denoted by 0 and 1. Each block of the
partition 0 contains only a single element of the set X; the partition 1 has a
single block containing all elements of X. Obviously, for arbitrary partition π on
X, 0 ≤ π ≤ 1.

Lattice. A set of all partitions on X with relation of partial order is a lattice
[9]. Therefore, for each pair of partitions (π, σ) on X one can find two partitions
inf(π, σ) and sup(π, σ). It is a common practice to replace these partitions by
π × σ and π + σ, respectively and speak about the multiplication and addition
instead of taking inf and sup. The partitions π, σ, and γ satisfy the following
conditions:

(π × σ ≤ π, π × σ ≤ σ), (γ ≤ π, γ ≤ σ ⇒ γ ≤ π × σ);
(π ≤ π + σ, σ ≤ π + σ), (π ≤ γ, σ ≤ γ ⇒ π + σ ≤ γ). (3)
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To calculate the product and sum, one may use the following simple rules. Each
block of the partition π ×σ is the intersection of some blocks of the partitions π
and σ, and each block of the partition π +σ is the union of all intersected blocks
of the partitions π and σ.

Partition pairs. Let π and σ be partitions on X. The ordered pair (π, σ) is a
partition pair on X, denoted as (π, σ) ∈ Δ, iff the blocks of π are mapped by
the state transition function of the automaton (1) into the blocks of σ:

x ≡ x′(π) ⇒ δ(x, u, w) ≡ δ(x′, u, w)(σ) ∀(u,w) ∈ U × W.

Given a partition π, some partitions σ may exist such that (π, σ) ∈ Δ; in
particular, (π,1) ∈ Δ is valid for arbitrary π. Alternatively, given a partition σ,
some partitions π may exist such that (π, σ) ∈ Δ; in particular, (0, σ) ∈ Δ is
valid for arbitrary σ.

Operators m and M. Define the operator m as follows. Given partition π,
m(π) is the smallest partition such that (π,m(π)) ∈ Δ. That is, for any other
partition σ,

(π, σ) ∈ Δ ⇒ m(π) ≤ σ.

Because (π,1) ∈ Δ, the partition m(π) always exists, in extreme case, m(π) = 1.
Define the operator M as follows. Given a partition σ, M(σ) is the largest

partition such that (M(σ), σ) ∈ Δ. That is, for any other partition π,

(π, σ) ∈ Δ ⇒ π ≤ M(σ).

Because (0, σ) ∈ Δ, the partition M(σ) always exists, in extreme case, M(σ) =
0. Loosely speaking, the partition m(π) describes the largest amount of infor-
mation regarding the state x+ from the knowledge of π. Similarly, the partition
M(σ) describes the least amount of information one has to know about x to
compute σ for x+.

The following formulas can be used for calculation:

m(π) =
∑

c∈U×W (σc|σcis minimal such that
x ≡ x′(π) ⇒ δ(x, c) ≡ δ(x′, c)(σc)),

M(σ) =
∏

c∈U×W (πc|πcis maximal such that
x ≡ x′(πc) ⇒ δ(x, c) ≡ δ(x′, c)(σ)).

Lemma 1 [9]. Let π, σ and γ be some partitions on X. Then

1. π ≤ σ ⇒ m(π) ≤ m(σ), M(π) ≤ M(σ);
2. π ≤ σ ⇒ π × γ ≤ σ × γ, π + γ ≤ σ + γ;
3. π ≤ σ ⇔ π × σ = π ⇔ π + σ = σ.
4. M(π) × M(σ) = M(π × σ).
5. m(M(π)) ≤ π, σ ≤ M(m(σ)).
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4 Preliminaries

To solve the problem, we will use both partitions and functions. It is known that
if β is a function β : X → Xβ , then there exists partition πβ on X, defined by
β such that

x ≡ x′(πβ) ⇔ β(x) = β(x′). (4)

On the other hand, if πβ is a partition on X and Xβ = {Bπβi} is the respective
set of blocks of πβ , then there exists the function β : X → Xβ , corresponding to
the partition πβ such that β(x) = Bπβj for x ∈ Bπβj .

Lemma 2. Let functions α and β correspond to the partitions πα and πβ,
respectively. Then πα ≤ πβ if and only if a function γ exists such that γ(α)(x) =
β(x) for all x ∈ X.

The proof of this lemma is obvious.
Consider a function ϕ : X → X∗ such that

ϕ(δ(x, u, w)) = δ0(ϕ(x), λ(x), u, w) (5)

for some function δ0 and for all (x, u, w) ∈ X × U × W . Note that the function
ϕ always exists; in the extreme cases ϕ is the identity function with δ0 = δ
or ϕ = const with δ0 = const. The function ϕ can be found from the tables
of transitions and outputs of automata (1) and (2). For that, introduce the
partitions πϕ, πλ, and πλ′ on the set X, given by the functions ϕ, λ, and λ′

respectively, according to the rule (4). That is, the states x and x′ are in the
same block of the partition πϕ (πλ or πλ′) if their images for the function ϕ (λ or
λ′) coincide. By analogy with Nijmeijer and van der Schaft [14] the function ϕ
and the partition πϕ are called (λ, δ)-invariant. If we take in the above definition
λ(x) = const (that corresponds to πλ = 1), then we end up with the concepts
of δ-invariant function ϕ and partition πϕ.

It follows from (5) that if ϕ(x) = ϕ(x′) and λ(x) = λ(x′), then ϕ(δ(x, u, w)) =
ϕ(δ(x′, u, w)) for all (u,w) ∈ U × W . Taking into account the relations between
the functions ϕ, λ and their respective partitions πϕ, πλ, one may alternatively
write

(x ≡ x′(πϕ))&(x ≡ x′(πλ)) ⇒ δ(x, u, w) ≡ δ(x′, u, w)(πϕ). (6)

This relation and definition of the binary relation Δ yields (πϕ × πλ, πϕ) ∈
Δ. According to the definitions of operators m and M, the last inclusion is
equivalent to the inequalities

m(πϕ × πλ) ≤ πϕ, πϕ × πλ ≤ M(πϕ). (7)

Note that these inequalities may be considered as an alternative definition of
(λ, δ)-invariant partition πϕ, and will be used later in the proofs and computa-
tions.

Based on relation (5), one may say that the function ϕ(δ(x, u, w)) can be
expressed via ϕ(x), λ(x), u, and w. The same is true for the relations (6) and
(7) in terms of partitions.
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Lemma 3. Let π and σ be minimal (λ, δ)-invariant and δ-invariant partitions
on X satisfying the conditions μ ≤ π and μ ≤ σ for arbitrary partition μ,
respectively. Then π ≤ σ.

Proof. By assumptions of the lemma and (7) the inequalities m(π × πλ) ≤ π
and m(σ) ≤ σ hold (taking πλ = 1 in (7)). By the 1st property of Lemma 1,
M(m(π × πλ)) ≤ M(π) and M(m(σ)) ≤ M(σ); next, by the 5th property of
Lemma 1, π × πλ ≤ M(π) and σ ≤ M(σ). Multiplication of these inequalities
componentwise yields π × σ × πλ ≤ M(π) × M(σ). By the 4th property of
Lemma 1, M(π) × M(σ) = M(π × σ); therefore π × σ × πλ ≤ M(π × σ). The
latter means that π×σ is (λ, δ)-invariant partition. Since μ ≤ π and μ ≤ σ, then
μ ≤ π × σ by (3). Because π is a minimal (λ, δ)-invariant partitions satisfying
the condition μ ≤ π, then π ≤ π × σ. Since the inverse inequality π × σ ≤ π is
evident, one has π × σ = π, then by the 3rd property of Lemma1, π ≤ σ. 
�

The function α (and the appropriate partition πα) is said to be a controlled-
invariant if there exists a static state feedback u = λ0(x, u∗) such that the
function α (the partition πα) is δ-invariant for the closed-loop automaton.

Lemma 4. If the partition π is (λ, δ)-invariant (δ-invariant), then it is (λ, δ)-
invariant (δ-invariant) in the closed-loop automaton.

Proof. Let the partition π be (λ, δ)-invariant, then (x ≡ x′(π))&(x ≡ x′(πλ)) ⇒
δ(x, u, w) ≡ δ(x′, u, w)(π) for all u and w according to (6). If ψ is a function
corresponding to π according to (4), then one may say that the composition
ψ(δ(x, u, w)) can be expressed via ψ(x), λ(x), u, and w. In the closed-loop
automaton the input u is replaced with u = λ∗(x∗, y, u∗) which can be expressed
via ψ(x), λ(x), and u∗ as well. Therefore, the partition π is (λ, δ)-invariant in
the closed-loop automaton. In case πλ = 1 one obtains δ-invariance. 
�

5 Problem Solution

5.1 Automaton S∗ Design

To construct the automaton S∗, we have to find the function ϕ that satisfies the
additional property

ϕ(δ(x, u, w)) = δ∗(ϕ(x), λ(x), u) (8)

for some function δ∗ independent of w and for all (x, u, w) ∈ X × U × W . To
construct (λ, δ)-invariant function ϕ with the property (8), introduce the smallest
partition πW on X that satisfies the condition

δ(x, u, w) ≡ δ(x, u, w′)(πW ) (9)

for all (x, u) ∈ X × U and for all w,w′ ∈ W . Observe that the block of the par-
tition πW , containing the state δ(x, u, w) contains also all the states δ(x, u, w′).
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It follows from (8) and the definition of partitions, that πϕ satisfies (9) too, and
since πW is the smallest partition satisfying (8), then

πW ≤ πϕ. (10)

Thus, the partition πϕ satisfies inequalities (7) and (10). To construct the
automaton S∗, one has to find the smallest partition πϕ, satisfying the above
properties, since this will yield the automaton S∗ with the largest number of
states.

Theorem 5. Let

π0 = πW , πj+1 = πj + m(πj × πλ), j = 0, 1, . . . (11)

Then there is k such that πk = πk+1. This πk, from now onwards denoted as πϕ,
is the smallest partition satisfying the conditions (7) and (10) simultaneously.

Proof. 1 Notice that by construction πj+1 ≥ πj and thus πϕ = πk ≥ πW . Since
the set X is finite, the integer k exists such that πk+1 = πk. It follows from (11)
that πϕ = πk = πk+1 ≥ πk +m(πk ×πλ). Therefore πϕ = πϕ +m(πϕ ×πλ). Thus
m(πϕ×πλ) ≤ πϕ. That is, the partition πϕ satisfies both conditions (7) and (10).
Suppose that another partition πα satisfies these conditions, i.e. m(πα×πλ) ≤ πα

and πW ≤ πα. Then m(π0) ≤ m(πα) and m(π0 × πλ) ≤ m(πα × πλ) by the 1st
and 2nd properties of Lemma1. From π0 ≤ πα, one obtains π0 + m(π0 × πλ) ≤
πα + m(πα × πλ). Since m(πα × πλ) ≤ πα by (7), the above inequality can be
rewritten in the form π1 = π0 +m(π0 ×πλ) ≤ πα. By induction, it can be shown
that π2 ≤ πα,. . . , πϕ = πk ≤ πα. 
�
Theorem 6. The output-to-be-controlled y′ of automaton (1) is disturbance
decoupled iff there exists δ-invariant function α such that πW ≤ πα ≤ πλ′ .

Proof. Necessity. Using Theorem 5 (πλ = const), find the minimal δ-invariant
partition πα satisfying the condition πW ≤ πα. By definition, δ-invariance yields
(πα, πα) ∈ Δ. Let α be a function corresponding to the partition πα by (4).
Define z0 = α(x); because of the inequality πW ≤ πα, z0 is independent of the
disturbance w. Construct the automaton

z+0 = α(δ(x, u, w)) =: δz(z0, u).

This automaton has maximal possible number of states since πα is a minimal
δ-invariant partition. Since y′ is disturbance decoupled, then maximality of the
automaton above means that the output y′ may be considered as an output
of this automaton, therefore, y′ = λ0(z0) for some function λ0. By definition,
y′ = λ′(x), hence λ′(x) = (λ0(α))(x) for all x ∈ X, meaning that πα ≤ π′

λ by
Lemma 2.

1 For the specific case πλ = 1, Theorem 5 has been proved in [9], in this case the
appropriate partition and the corresponding function are δ-invariant.
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Sufficiency. Since πα is δ-invariant, then (πα, πα) ∈ Δ. Define z0 := α(x);
because of the inequality πW ≤ πα, z0 is independent of w. Construct the
automaton

z0+ = α(δ(x, u, w)) =: δz(z0, u).

Since πα ≤ π′
λ, by Lemma 2, the function λ0 exists such that λ0(α(x)) = λ′(x)

for x ∈ X. From above, y′ = λ′(x) = λ0(z0); because z0 is independent of the
disturbance w, then y′ is independent of w as well. 
�

Note that the state x∗ of the compensator (2) is defined by x∗ = ϕ(x). Since
the dynamics of the compensator (2) is free of the disturbance w and πW is the
minimal partition which does not depend on w, the following condition must be
satisfied: πW ≤ πϕ. Recall that some partition πα is controlled-invariant if the
partition πα is δ-invariant for the closed-loop automaton.

Theorem 7. Automaton (1) can be disturbance decoupled by feedback (2) iff
there exist a controlled-invariant partition πξ and a (λ, δ)-invariant partition πϕ

(satisfying πW ≤ πϕ) such that

πW ≤ πϕ ≤ πξ ≤ πλ′ . (12)

Proof. Necessity. Assume that there exists a feedback (2) that solves the distur-
bance decoupling problem. Then, by Theorem6, there exists δ-invariant (in the
closed-loop automaton) partition πξ such that πW ≤ πξ ≤ πλ′ . Since the parti-
tion πξ is δ-invariant in the closed-loop automaton, then it is controlled-invariant.
In (2), the function ϕ is clearly (λ, δ)-invariant and the condition πW ≤ πϕ is sat-
isfied. Because πϕ is (λ, δ)-invariant, then by Lemma4, πϕ is (λ, δ)-invariant in
the closed-loop automaton. Since πξ is δ-invariant in the closed-loop automaton,
then πϕ ≤ πξ by Lemma 3.

Sufficiency. Since the partition πξ is controlled-invariant, there exists a static
state feedback u = λ∗(x, u∗) such that x ≡ x′(πξ) ⇒ δ∗(x, u∗) ≡ δ∗(x′, u∗)(πξ)
for all u∗ and some δ∗. Since πW ≤ πξ ≤ πλ′ , then by Theorem 6, the closed-
loop automaton is disturbance decoupled. It remains to show that the function λ∗
depends only on the variables x∗, y and u∗. Since πϕ ≤ πξ, then M(πϕ) ≤ M(πξ).
Due to (λ, δ)-invariance of the partition πϕ and transitivity of the relation ≤, one
has πϕ ×πλ ≤ M(πϕ) and πϕ ×πλ ≤ M(πξ). The last inequality is equivalent to
(x ≡ x′(πϕ))&(x ≡ x′(πλ)) ⇒ δ∗(x, u∗) ≡ δ∗(x′, u∗)(πξ) for all u∗. This means
that δ∗ can be written in terms of x∗, y, and u∗ and then the function λ∗ depends
also only on x∗, y, and u∗. 
�

Note that relations similar to (12) were obtained by Isidori [15] in terms of
distributions and in Kaldmäe et al. [7] in terms of vector functions.

Define the dynamics of automaton S∗ by the equation

x+
∗ = δ∗(x∗, y, u) (13)

where the function δ∗, given by (8), can be obtained from the table of transitions
of automaton (1) by combining the states, contained in the same blocks of the
partition πϕ, and denoting them as the state x∗ of the automaton S∗.
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Example 8. Consider the automaton, described by Table 1. The automaton has
six states, three control inputs u and two disturbance inputs w, three measure-
ment outputs y and two outputs to-be-controlled y′.

From Table 2, πλ = {(1, 4), (2, 6), (3, 5)}, πλ′ = {(1, 4, 5), (2, 3, 6)}, and πW =
{(1), (2, 3), (4), (5), (6)}. Since πλ ×πW = 0, from (11) one obtains π1 = π0 and,
as a result (see Theorem 5), πϕ = {(1), (2, 3), (4), (5), (6)}. Description of the
automaton S∗ is given by Table 2 where x∗1 corresponds to the block (1), x∗2 to
(2, 3), x∗3 to (4), x∗4 to (5), x∗5 to (6).

Table 1. Given automaton

x x+ y y′

u1 u2 u3

w1 w2 w1 w2 w1 w2

x1 x1 x1 x2 x3 x5 x5 a A

x2 x2 x2 x4 x4 x3 x3 b B

x3 x6 x6 x5 x5 x3 x3 c B

x4 x4 x4 x1 x1 x4 x4 a A

x5 x5 x5 x1 x1 x5 x5 c A

x6 x2 x2 x5 x5 x3 x3 b B

Table 2. Automaton S∗

x∗ x∗+

u1 u2 u3

x∗1 x∗1 x∗2 x∗4
x∗2, y = b x∗2 x∗3 x∗2
x∗2, y = c x∗5 x∗4 x∗2
x∗3 x∗3 x∗1 x∗3
x∗4 x∗4 x∗1 x∗4
x∗5 x∗2 x∗4 x∗2

5.2 Construction of Function λ∗

Construction of the function λ∗ is based on the partition πξ. To obtain the
controlled-invariant partition πξ such that πϕ ≤ πξ, one may use Theorem 7 after
replacing πW by πϕ to construct δ-invariant partition πξ, which, by Lemma 4, is
δ-invariant in the closed-loop automaton, i.e. is controlled-invariant.

The alternative approach for obtaining the partition πξ is based on the par-
tition πλ′ and the following result. Find the sequence of partitions:

π0
θ := πλ′ , πj

θ = πλ′ × M(πλ′) × . . . × Mj(πλ′), j = 0, 1, . . . (14)
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When πc
θ = πc+1

θ for some c, the partition πξ = πc
θ is maximal δ-invariant

satisfying the condition πξ ≤ πλ′ Hartmanis and Stearns [9].

Example 9. Consider Example 8. Set π0 := πϕ = {(1), (2, 3), (4), (5), (6)} and
use Theorem 7. Compute m(π0) = {(1), (2, 6), (3), (4, 5)}, π1 = π0 + m(π0) =
{(1), (2, 3, 6), (4, 5)}, π2 = π1 + m(π1) = {(1), (2, 3, 6), (4, 5)}. As a result,
πξ = {(1), (2, 3, 6), (4, 5)}. Since πξ ≤ πλ′ , automaton (1) can be disturbance
decoupled.

The alternative approach based on (14) gives the same result as before:
πξ = {(1), (2, 3, 6), (4, 5)}. Since πϕ ≤ πξ, automaton (1) can be disturbance
decoupled.

Next, define the auxiliary automaton S0 with the state x0 = ξ(x) by the
equation

x+
0 = δ0(x0, u)

where δ0 is the transition function of the quotient automaton of automaton (1)
with equivalence relation πξ. It can be obtained from the table of transitions of
automaton (1) by replacing the states contained in some block of the partition
πξ, by the appropriate state x0i. The automaton S0 is given in Table 3 where
x01 corresponds to the block (1), x02 to (2, 3, 6), and x03 to (4, 5).

Table 3. Auxiliary automaton S0

x0 x+
0

u1 u2 u3

x01 x01 x02 x03

x02 x02 x03 x02

x03 x03 x01 x03

Recall that the dynamics of S∗ depends on the disturbance w only through
the measured output y. To avoid this, our goal is to use the control u to com-
pensate the possible dependence. To achieve this goal, the auxiliary automaton
S0 is used.

Set
x+
0 = δ0(x0, u) = u∗, (15)

u∗ ∈ U∗, where U∗ is chosen in such a way that its cardinality is equal to the
number of states of the automaton S0. Solve the Eq. (15) for u∗ to obtain the
function λ∗(x∗, y, u∗). This function is the inverse of δ0 in (15) with respect to
variables u and can be obtained by interchanging the values of u and u∗ in table
of the automaton Sξ: u = λ∗(x∗, y, u∗).

To solve (15), introduce the set of partitions {ρx0} on the set U as follows:

u ≡ u′(ρx0) ⇔ δ0(x0, u) = δ0(x0, u
′).
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The set {ρx0} may be constructed by analyzing the rows of the table of transi-
tions of the automaton S0 corresponding to x0.

The unique solution of (15) is possible iff ρx0 = 0 for all x0 ∈ X0 since then
different inputs u correspond to different inputs u∗ for each x0. Such a solution
can be found as follows. The table of transitions of S0 is rewritten in such a
manner that rows correspond to the states x0 and columns correspond to the
inputs u. Then the states x+

0 = δ0(x0, u) are replaced by the inputs u∗ according
to (15).

If ρx0 = 0 for some x0, the state x+
0 is replaced by the respective block Bρx0

of the partition ρx0 (instead of u values). In this case the function λ∗ is partially
defined.

The necessary condition for ρx0 = 0 for all x0 is the inequality |πϕ| ≥ |U |
where by |πϕ| is denoted the number of blocks of the partition πϕ, |U | means
the cardinality of the set U . If |πϕ| < |U |, then ρx0 = 0 for some x0.

Example 10. Consider the automaton S0 described by Table 3. Compute ρx01 =
0, ρx02 = ρx03 = {(u1, u3), (u2)}. Since πϕ ≤ πξ, then to construct the function
λ∗, states x0j of the automaton S0 can be replaced by states x∗j . As a result,
the function λ∗ is given in Table 4.

Table 4. Function λ∗

x0 u

u∗1 u∗2 u∗3

x∗1 u1 u2 u3

x∗2 − (u1, u3) u2

x∗3 u2 − (u1, u3)

x∗4 u2 − (u1, u3)

x∗5 − (u1, u3) u2

6 Conclusions

A sufficient solvability condition has been given for the DDP by dynamic mea-
surement feedback for finite automata as well as the algorithm to compute
the feedback whenever it exists. The solution is obtained for automata, whose
dynamics is described by tables. In the solution the concept of (λ, δ)-invariant
partition plays a key role. This concept extends the notion of (h, f)-invariant
distribution Nijmeijer and van der Schaft [14] for automata.

If we compare the results of this paper to those of Kaldmäe et al. [7] that
addresses the DDP in case of discrete-time systems, one can say the following.
Discrete-time systems are described via difference equations whereas automata
are given in the form of tables and this determines the choice of the mathe-
matical techniques, the algebra of functions or the pair algebra of partitions,
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respectively. These objects – functions and partitions – are, however, related;
see (4). Because of the latter, many constructions in this paper correspond to
those in [7]. In particular, partition πϕ corresponds to function α, partition πξ

to function ξ, etc. However, the function λ∗ in (2) of this paper, unlike those in
[7] are not uniquely defined. Some results of this paper – Theorems 6 and 7 –
are analogues of the results in Isidory [15] and [7]; they supplement the paper
Kaldmäe et al. [8].
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Abstract. In this paper, we study Reiter’s propositional default logic
when the treewidth of a certain graph representation (semi-primal graph)
of the input theory is bounded. We establish a dynamic programming
algorithm on tree decompositions that decides whether a theory has a
consistent stable extension (Ext). Our algorithm can even be used to
enumerate all generating defaults (EnumSE) that lead to stable exten-
sions. We show that our algorithm decides Ext in linear time in the
input theory and triple exponential time in the treewidth (so-called fixed-
parameter linear algorithm). Further, our algorithm solves EnumSE with
a pre-computation step that is linear in the input theory and triple expo-
nential in the treewidth followed by a linear delay to output solutions.

Keywords: Parameterized algorithms · Tree decompositions
Dynamic programming · Reiter’s default logic · Propositional logic

1 Introduction

Reiter’s default logic (DL) is one of the most fundamental formalisms to non-
monotonic reasoning where reasoners draw tentative conclusions that can be
retracted based on further evidence [1,2]. DL augments classical logic by rules
of default assumptions (default rules). Intuitively, a default rule expresses “in
the absence of contrary information, assume . . . ”. Formally, such rule is a
triple p : j → c of formulas p, j, and c expressing “if prerequisite p can be
deduced and justification j is never violated then assume conclusion c”. For an
initial set of facts, beliefs supported by default rules are called an extension of
this set of facts. If the default rules can be applied consistently until a fixed
point, the extension is a maximally consistent view (consistent stable extension)
with respect to the facts together with the default rules. In DL stable extensions
involve the construction of the deductive closure, which can be generated from
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the conclusions of the defaults and the initial facts by means of so-called gener-
ating defaults. However, not every generating default leads to a stable extension.
If a generating default leads to a stable extension, we call it a stable default
set. Our problems of interest are deciding whether a default theory has a con-
sistent stable extension (Ext), output consistent stable default sets (CompSE),
counting the number of stable default sets (#SE), and enumerating all stable
default sets (EnumSE). All these problems are of high worst case complexity,
for example, the problem Ext is Σp

2 -complete [3].
Parameterized algorithms [4] have attracted considerable interest in recent

years and allow to tackle hard problems by directly exploiting certain structural
properties present in input instances (the parameter). For example, Ext can be
solved in polynomial time for input theories that allow for small backdoors into
tractable fragments of DL [5]. Another parameter is treewidth, which intuitively
measures the closeness of a graph to a tree. Ext can also be solved in linear time
for input theories and a (non-elementary) function that depends on the treewidth
of a certain graph representation of the default theory (incidence graph) [6]. This
result relies on logical characterization in terms of a so-called MSO-formula and
Courcelle’s theorem [7]. Unfortunately, the non-elementary function can become
extremely huge and entirely impractical [8]. More precisely, the result by Meier
et al. [6] yields a function that is at least quintuple exponential in the treewidth
and the size of the MSO-formula. This opens the question whether one can
significantly improve these runtime bounds. A technique to obtain better worst-
case runtime bounds that often even allows to practically solve problem instances,
which have small treewidth, are dynamic programming (DP) algorithms on tree
decompositions [9–11]. In this paper, we present such a DP algorithm for DL,
which uses a slightly simpler graph notation of the theory (semi-primal graph).

Contributions. We introduce DP algorithms that exploit small treewidth to
solve Ext and CompSE in time triple exponential in the semi-primal treewidth
and linear in the input theory. Further, we can solve #SE in time triple expo-
nential in the semi-primal treewidth and quadratic in the input theory. Our
algorithm can even be used to enumerate all stable default sets (EnumSE) with
a pre-computation step that is triple exponential in the semi-primal treewidth
and linear in the input theory followed by a linear delay for outputting the
solutions (Delay-FPT [12]).

2 Default Logic

A literal is a (propositional) variable or its negation. The truth evaluation of
(propositional) formulas is defined in the standard way [2]. In particular, θ(⊥) =
0 and θ(�) = 1 for an assignment θ. Let f and g be formulas and X = Vars(f)∪
Vars(g). We write f � g if and only if for all assignments θ ∈ 2X it holds that
if the assignment θ satisfies f , then θ also satisfies g. Further, we define the
deductive closure of f as Th(f) := { g ∈ P | f � g } where P is the family that
contains all formulas. In this paper, whenever it is clear from the context, we may
use sets of formulas and a conjunction over formulas equivalently. In particular,
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we let for formula f and a family M of sets of variables be ModM(f) := {M |
M ∈ M,M � f}. We denote with Sat the problem that asks whether a given
formula f is satisfiable.

We define for formulas p, j, and c a default rule d as a triple p : j → c; p is
called the prerequisite, j is called the justification, and c is called the conclusion;
we set α(d) := p, β(d) := j, and γ(d) := c. The mappings α, β and γ naturally
extend to sets of default rules. We follow the definitions by Reiter [1]. A default
theory 〈W,D〉 consists of a set W of propositional formulas (knowledge base)
and a set of default rules.

Definition 1. Let 〈W,D〉 be a default theory and E be a set of formulas. Then,
Γ (E) is the smallest set of formulas such that: (i) W ⊆ Γ (E) (ii) Γ (E) =
Th(Γ (E)), and (iii) for each p : j → c ∈ D with p ∈ Γ (E) and ¬j /∈ E,
it holds that c ∈ Γ (E). E is a stable extension of 〈W,D〉, if E = Γ (E). An
extension is inconsistent if it contains ⊥, otherwise it is called consistent. The
set G = { d | α(d) ∈ E,¬β(d) /∈ E, d ∈ D } is called the set of generating
defaults of extension E and default theory D.

The definition of stable extensions allows inconsistent stable extensions. How-
ever, inconsistent extensions only occur if the set W is already inconsistent where
〈W,D〉 is the theory of interest [2, Corollary 3.60]. In consequence, (i) if W is
consistent, then every stable extension of 〈W,D〉 is consistent, and (ii) if W is
inconsistent, then 〈W,D〉 has a stable extension. For Case (ii) the stable exten-
sion consists of all formulas. Therefore, we consider only consistent stable exten-
sions. For default theories with consistent W, we can trivially transform every
formula in W into a default rule. Hence, in this paper we generally assume that
W = ∅ and write a default theory simply as set of default rules. Moreover, we
refer by SE(D) to the set of all consistent stable extensions of D.

Example 1. Let the default theories D1 and D2 be given as D1 := {d1 = � :
a → a ∨ b, d2 = � : ¬a → ¬b} and D2 := {d1 = c : a → a ∨ b, d2 = c : ¬a →
¬b, d3 = � : c → c, d4 = � : ¬c → ¬c}. D1 has no stable extension, while D2

has only one stable extension E1 = {¬c} . �

In our paper, we use an alternative characterization of stable extension
beyond fixed point semantics, which is inspired by Reiter’s stage construction [1].

Definition 2. Let D be a default theory and S ⊆ D. Further, we let E(S) :=
{γ(d) | d ∈ S}. We call a default d ∈ D p-satisfiable in S, if E(S) ∪ ¬α(d)
is satisfiable; and j-satisfiable in S, if E(S) ∪ β(d) is unsatisfiable; c-satisfiable
in S, if d ∈ S. The set S is a satisfying default set, if each default d ∈ D is
p-satisfiable in S, or j-satisfiable in S, or c-satisfiable in S.

The set S is a stable default set, if (i) S is a satisfying default set and
(ii) there is no S′ where S′ � S such that for each default d it holds that d is
p-satisfiable in S′, or j-satisfiable in S, or c-satisfiable in S′. We refer by SD(D)
to the set of all stable default sets of D.
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The following lemma establishes that we can simply use stable default sets
to obtain stable extensions of a default theory.

Lemma 1 (�1). Let D be a default theory. Then,

SE(D) =
⋃

S∈SD(D)

Th({γ(d) | d ∈ S}).

In particular, S ∈ SD(D) is a generating default of extension Th({γ(d) | d ∈
S}).

Given a default theory D we are interested in the following problems: Ext
asks whether D has a consistent stable extension. CompSE asks to output a
stable default set D. #SE asks to output the number of stable default sets of D.
EnumSE asks to enumerate all stable default sets of D.

3 Dynamic Programming on TDs for Default Logic

In this section, we present the basic methodology and definitions to solve our
problems more efficiently for default theories that have small treewidth. Our algo-
rithms are inspired by earlier work for another non-monotonic framework [10].
However, due to much more evolved semantics of DL, we require extensions of
the underlying concepts.

Before we provide details, we give an intuitive description. The property
treewidth was originally introduced for graphs and is based on the concept of
a tree decomposition (TD). Given a graph, a TD constructs a tree where each
node consists of sets of vertices of the original graph (bags) such that additional
conditions hold. Then, we define a dedicated graph representation of the default
theory and our algorithms work by dynamic programming (DP) along the tree
decomposition (post-order) where at each node of the tree, information is gath-
ered in tables. The size of these tables is triple exponential in the size of the
bag. Intuitively, the TD fixes an order in which we evaluate the default theory.
Moreover, when we evaluate the default theory for one node, we can restrict the
theory to a sub-theory and parts of prerequisites, justifications, and conclusions
that depends only on the content of the currently considered bag.

Tree Decompositions. Let G = (V,E) be a graph, T = (N,F, n) be a tree (N,F )
with root n, and χ : N → 2V be a mapping. We call the sets χ(·) bags and N
the set of nodes. The pair T = (T, χ) is a tree decomposition (TD) of G if the
following conditions hold: (i) for every vertex v ∈ V there is a node t ∈ N with
v ∈ χ(t); (ii) for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and
(iii) for any three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3,

1 Statements or descriptions whose proofs or details are omitted due to space limita-
tions are marked with “�”. These statements are sketched in an extended version.
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then χ(t1) ∩ χ(t3) ⊆ χ(t2). The width of the TD is the size of the largest bag
minus one. The treewidth tw(G) is the minimum width over all possible TDs
of G. For k ∈ N we can compute a TD of width k or output that no exists in
time 2O(k3) · |V | [13].

a b

d2 d1 {a, b, d1}t1 {a, b, d2} t2

{a, b} t3

Fig. 1. Graph G (left) and an TD T (right) of G.

Next, we restrict the TD T such that we have only nice case distinctions
for our DP algorithm later. Therefore, we define a nice TD in the usual way as
follows. For a node t ∈ N we say that type(t) is leaf if t has no children; join if
t has children t′ and t′′ with t′ = t′′ and χ(t) = χ(t′) = χ(t′′); int (“introduce”)
if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+1; rem (“removal”) if t
has a single child t′, χ(t) ⊆ χ(t′) and |χ(t′)| = |χ(t)|+1. If every node t ∈ N has
at most two children, type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and
the root are empty, then the TD is called nice. For every TD, we can compute a
nice TD in linear time without increasing the width [13]. In our algorithms we
will traverse a TD bottom up, therefore, let post-order(T, t) be the sequence of
nodes in post-order of the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Example 2. Fig. 1 (left) depicts a graph G together with a TD of width 2 of G.
Further, the TD T in Fig. 2 sketches main parts of a nice TD of G (obvious parts
are left out). �

Graph Representations of Default Theories. For a default theory D, its inci-
dence graph I(G) is the bipartite graph, where the vertices are of variables of D
and defaults d ∈ D, and there is an edge d a between a default d ∈ D and a
corresponding variable a ∈ Vars(d). The semi-primal graph S(D) of D is the
graph, where the vertices are variables Vars(D) and defaults of D. For each
default d ∈ D, we have an edge a d if variable a ∈ Vars(d) occurs in d. More-
over, there is an edge a b if either a, b ∈ Vars(α(d)), or a, b ∈ Vars(β(d)), or
a, b ∈ Vars(γ(d))2. Observe the following connection. For any default theory D,
we have that twI(D) ≤ twS(D). Note that earlier work [6] uses a special ver-
sion of the incidence graph I ′(D). The graph I ′(D) is a supergraph of I(D) and
still a bipartite graph, which contains an additional vertex for each subformula
of every occurring formula, and corresponding edges between subformulas and
variables. Consequently, we obtain the bound tw(I(D)) ≤ tw(I ′(D)).

Example 3. Recall default theory D1 of Example 1. We observe that graph G
in the left part of Fig. 1 is the semi-primal graph of D1. �

2 Note that these formulas may also be � or ⊥, which we “simulate” by means of the
same formula v ∨¬v or v ∧¬v, where variable v does not occur in the default theory.
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In our DP algorithms for default logic we need to remember when we can
evaluate a formula (prerequisite, justification, or conclusion) for a default, i.e.,
we have a default and all the variables of the formula in a bag. To that end,
we introduce labels of nodes. Since we work along the TD and want a unique
point where to evaluate, we restrict a label to the first occurrence when working
along the TD. A labeled tree decomposition (LTD) T of a default theory D is a
tuple T = (T, χ, δ) where (T, χ) is a TD of S(D) and δ : N → 2({α,β,γ}×D) is
a mapping where for any (f, d) in {α, β, γ} × D it holds that (i) if (f, d) ∈ δ(t),
then {d} ∪ f(d) ⊆ χ(t); and (ii) if {d} ∪ f(d) ⊆ χ(t) and there is there is no
descendent t′ of t such that (f, d) ∈ δ(t′), then (f, d) ∈ δ(t).

We need special case distinctions for DL. Therefore, we restrict an LTD as
follows. For a node t ∈ N that has exactly one child t′ where χ(t) = χ(t′) and
δ(t) = ∅, we say that type(t) is label. If every node t ∈ N has at most two
children, type(t) ∈ {leaf, join, int , label , rem}, bags of leaf nodes and the root
are empty, |δ(t)| ≤ 1, and δ(t) = ∅ for type(t) = label then the LTD is called
pretty. It is easy to see that we can construct in linear time a pretty LTD without
increasing the width from a nice TD, simply by traversing the tree of the TD
and constructing the labels and duplicating nodes t where δ(t) = ∅. Assume in
the following, that we use pretty LTDs, unless mentioned otherwise.

Listing 1: Algorithm DP(T ) for Dynamic Programming on TD T for DL, cf. [10].

In: Pretty LTD T = (T, χ, δ) with T = (N, ·, n) of the semi-primal graph S(D).
Out: A table for each node t ∈ T stored in a mapping Tables[t].

1 for iterate t in post-order(T,n) do
2 Child-Tabs := {Tables[t′] | t′ is a child of t in T}
3 Tables[t] ← SPRIM(t, χ(t), δ(t), Dt, Child-Tabs)
4 return Tables[·]

Next, we briefly present the methodology and underlying ideas of our DP
algorithms on TDs. The basis for our Algorithm is given in Listing 1 (DP),
which traverses the underlying tree of the given LTD (T, χ, δ) in post-order and
runs an algorithm SPRIM at each node t ∈ T . SPRIM computes a new table τt

based on the tables of the children of t. It has only a “local view” on bag-defaults,
which are simply the “visible” defaults, i.e., Dt := D∩χ(t). Intuitively, we store
in each table information such as partial assignments of Dt, that is necessary to
locally decide the default theory without storing information beyond variables
that belong to the bag χ(t). Further, the default theory below t is defined as
D≤t := {d | d ∈ Dt′ , t′ ∈ post-order(T, t)}, and the default theory strictly below
t is D<t := D≤t \ Dt. For root n of T , it holds that D≤n = D<n = D.

Example 4. Intuitively, the LTD of Fig. 1 enables us to evaluate D by analyzing
sub-theories ({d1} and {d2}) and combining results agreeing on a, b. Indeed, for
the given LTD of Fig. 1, D≤t1 = {d1}, D≤t2 = {d2} and D = D≤t3 = D<t3 =
D≤t1 ∪ D≤t2 . �

The next section deals with the details of SPRIM. Before, we need a notion
to talk about the result of sequences of a computation. For a node t, the Algo-
rithm SPRIM stores tuples in a table τt based on a computation that depends
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on tuples (originating tuples) that are stored in the table(s) of the child nodes.
In order to talk in informal explanations about properties that tuples or parts
of tuples have when looking at the entire computation from the relevant leaves
up to the node t in the post-order, we need a notion similar to a default the-
ory below t for parts of tuples. Assume for now that our tuples in tables are
only tuples of sets. Then, we collect recursively in pre-order along the induced
subtree T ′ of T rooted at t a sequence s of originating tuples (u,u1, . . . ,um ).
If the set T occurs in position i of tuple u, our notion T≤t(s) takes the union
over all sets T, T1, . . . , Tm at position i in the tuples u1, . . . ,um . Since a node
of type rem will typically result in multiple originating tuples, we have multi-
ple sequences s1, . . . , sm of originating tuples in general. This results in a fam-
ily T ≤t := {T≤t(s) | s ∈ {s1, . . . , sm}} of such sets. However, when stating
properties, we are usually only interested in the fact that each S ∈ T ≤t satisfies
the property. To this end, we refer to T≤t as any arbitrary S ∈ T ≤t. Further,
we let T<t := T≤t \ T . The definition vacuously extends to nested tuples and
families of sets. A more formal compact definition provide so-called extension
pointers [14].

Example 5. Recall the given TD in Fig. 1 (right). For illustrating notation,
we remove node t2, since we only care about nodes t1 and t3 and thereby
obtain a simpler TD T = (T, χ, δ) (of some simpler graph). Assume that for
both nodes t in T we store a table of tuples, say of the form 〈X,Y 〉, where
X is a subset of the bag χ(t) and Y is a set of subsets of χ(t). Further, let
the tables τi for the two nodes in this example be as follows: τ1 := {u1.1 =
〈{d1}, {∅, {d1}, {d1, b}}〉,u1.2 = 〈{a}, {{b}}〉}, and τ3 := {u3.1 = 〈∅, {{a}}〉}.
Then, we let tuple u3.1 originate from tuple u1.1 of child table τ1 and not
from u1.2. We discuss only the Y part of tuple u3.1 (referred to by Y3.1). In
order to talk about any “extension” Y ≤t

3.1.1 ⊇ Y3.1.1 of Y3.1.1 = {a} in T , we
write Y ≤t

3.1.1, which can be one of {a}, {a, d1}, or {a, d1, b}. �

4 Computing Stable Default Sets

In this section, we present our table algorithm SPRIM. Therefore, let D be a
given default theory and T = (T, χ, δ) a pretty LTD of S(D).

Our table algorithm follows Definition 2, which consists of two parts: (i) find-
ing sets of satisfying default sets of the default theory and (ii) generating smaller
sets of conclusions for these satisfying default sets in order to invalidate subset
minimality. Since, SPRIM has only a “local view” on default theory D, we are
only allowed to store parts of satisfying default sets. However, we guarantee that,
if for the “visible” part Z of a set of satisfying defaults for any node t of T there is
no smaller set of satisfying defaults, then Z can be extended to a stable default
set of D<t. However, in general Z alone is not sufficient, we require auxiliary
information to decide the satisfiability of defaults. We need a way to prove that
Z witnessed a satisfying default set Z≤t. In particular, even though each d ∈ Z≤t

is vacuously c-satisfiable, we have to verify that each default d ∈ D\Z≤t is indeed
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p-satisfiable or j-satisfiable. In turn, we require a set M of (partial) assignments
of Z≤t. To this end, we store in table τt tuples that are of the form 〈Z,M,P, C〉,
where Z ⊆ Dt and M ⊆ 2X for X = χ(t) ∩ Vars(D). The first three tuple
positions cover Part (i) and can be seen as the witness part. The last position
consists of a set of tuples C = 〈ρ,AC,BC〉 to handle Part (ii) and can be seen as
the counter-witness part.

In the following, we describe more details of our tuples. We call Z the witness
set, since Z witnesses the existence of a satisfying default set Z≤t for a sub-
theory S. Each element M in the set M of witness models witnesses the existence
of a model of F≤t :=

∧
d∈Z≤t γ(d). For our assumed witness set Z, we require a

set P of witness proofs. The set P consists of tuples of the form 〈σ,A,B〉, where
σ : Dt → {p, j, c} and A,B ⊆ 2X for X = χ(t)∩Vars(D). The function σ, which
we call states function, maps each default d ∈ Dt to a decision state v ∈ {p, j, c}
representing the case where d is v-satisfiable. The set A, which we call the
required p-assignments, contains an assignment A ∈ 2X for each default d that
is claimed to be p-satisfiable. More formally, there is an assignment A ∈ A
for each default d ∈ σ−1(p) ∪ D<t where σ≤t(d) = p such that there is an
assignment A≤t that satisfies F≤t ∧ ¬α(d). The set B, which we call the refuting
j-assignments, contains an assignment B ∈ 2X for certain defaults. Intuitively,
for each B ∈ B there is a default d in the current bag χ(t) or was in a bag
below t such that there is an assignment B≤t where the justification is not
fulfilled. More formally, there is a B ∈ B if there is an assignment B≤t that
satisfies F≤t ∧ β(d) for some default d ∈ σ−1(j) ∪ D<t where σ≤t(d) = j. In the
end, if Z proves the existence of a satisfying default set Z≤t of theory D<t, then
there is at least one tuple 〈·, ·,B〉 ∈ P with B = ∅. Hence, we require that B = ∅
in order to guarantee that each default d ∈ D<t is j-satisfiable where σ≤t(d) = j.
To conclude, if table τn for (empty) root n contains u = 〈Z, ·,P, C〉 where P
contains 〈·, ·, ∅〉, then Z≤t is a satisfying default set of the default theory D. The
main aim of C is to invalidate the subset-minimality of Z≤t, and will be covered
later.

Next, we briefly discuss important cases of Listing 2 for Part (i), which con-
sists only of the first three tuple positions (colored red and green) and ignores
the remaining parts of the tuple. We call the resulting table algorithm SCONS,
which only concerns about computing satisfying default sets. Let t ∈ T and
u′ = 〈Z,M,P, ·〉 a tuple of table τ ′ for a child node of t and 〈σ,A,B〉 a tuple
in P. We describe informally how we transform u′ tuples into one or more tuples
for the table in node t.

If t is of type int and a default d is introduced in t, Line 3 guesses whether d is
p-satisfiable, j-satisfiable, or c-satisfiable. To this end, SGuessd,S(P) adds poten-
tial proofs to P where the satisfiability state of d is within S. Lines 5, 7 and 9
cover nodes of type label as follows: In Line 5, if (γ, d) is the label and σ(d) = c,
we enforce that each M ∈ M is also a model of γ(d). PCond(P) only keeps tuples
in P where each A ∈ A is a model of γ(d). In Line 7, if (α, d) is the label and
σ(d) = p, PPred(P,M) enforces that each A ∈ A within P is a model of ¬α(d).
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Listing 2 (�): Table algorithm SPRIM(t, χt, δt, Dt, Child-Tabs).

In: Bag χt, label mapping δt, bag-theory Dt, and child tables Child-Tabs of t.

Out: Table τt.

1 if type(t) = leaf then τt ← {〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉} /* Abbreviations below. */

2 else if type(t) = int, d ∈ Dt is the introduced default, and τ ′ ∈ Child-Tabs then

3 τt ← { 〈Z+
d , M,SGuessd,{c}(P), SGuessd,{p,j,c}(C) ∪ SGuessd,{p,j}(P, M)〉,

〈Z, M,SGuessd,{p,j}(P), SGuessd,{p,j}(C)〉 | 〈Z, M, P, C〉 ∈ τ ′}
4 else if type(t) = label, {(γ, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then

5 τt ← {〈Z,ModM(γ(d)),PCond(P), CCond(C)〉 | 〈Z, M, P, C〉 ∈ τ ′, d ∈ Z} ∪
{〈Z, M, P, C〉 | 〈Z, M, P, C〉 ∈ τ ′, d �∈ Z}

6 else if type(t) = label, {(α, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then

7 τt ← {〈Z, M,PPred(P, M), CPred(C)〉 | 〈Z, M, P, C〉 ∈ τ ′}
8 else if type(t) = label, {(β, d)} = δt is the label of t, d ∈ Dt, and τ ′ ∈ Child-Tabs then

9 τt ← {〈Z, M,PJustd(P, M), PJustd(C, M)〉 | 〈Z, M, P, C〉 ∈ τ ′}
10 else if type(t) = int, a ∈ χt is the introduced variable, and τ ′ ∈ Child-Tabs then

11 τt ← {〈Z, M ∪ M]
a ,PGuessa(P), PGuessa(C)〉 | 〈Z, M, P, C〉 ∈ τ ′}

12 else if type(t) = rem, d �∈ Dt is the removed default, and τ ′ ∈ Child-Tabs then

13 τt ← {〈Z−
d , M,SProjd(P), SProjd(C)〉 | 〈Z, M, P, C〉 ∈ τ ′}

14 else if type(t) = rem, a �∈ χt is the removed variable, and τ ′ ∈ Child-Tabs then

15 τt ← {〈Z, M∼
a ,AProja(P), AProja(C)〉 | 〈Z, M, P, C〉 ∈ τ ′}

16 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ �= τ ′′ then

17 τt ← {〈Z, M′ ∩ M′′, P ′�̂	M′,M′′P ′′, (C′�̂	M′,M′′C′′) ∪ (P ′�̂	M′,M′′C′′) ∪
(C′�̂	M′,M′′P ′′)〉 | 〈Z, M′, P ′, C′〉 ∈ τ ′, 〈Z, M′′, P ′′, C′′〉 ∈ τ ′′}

18 return τt

S−
e := S \ {e}, S∼

e := {S−
e | S ∈ S}, S+

e := S ∪ {e}, and S]
e := {S+

e | S ∈ S}.

In Line 9, if (β, d) is the label and σ(d) = j, PJustd(P,M) adds assignments
of M to B that are also models of β(d).

Next, we cover the case, where a variable a is introduced. In Line 11, we
increase the existing witness set M ∪ {a} for each M ∈ M. PGuessa(P) works
analogously for B and computes all potential combinations of every A ∈ A, where
a is either set to true or to false.

In Line 13, we remove default d from Z and SProjd(P) removes d from the
domain of the mapping σ, since d is not considered anymore. In Line 15, we
remove variable a from each M ∈ M and AProja(P) works analogously for each
assignment of A and B.

Finally, if the node is of type join, we have a second child and its table τ ′′

as well as a tuple u′′ ∈ τ ′′. Intuitively, tuples u′ and u′′ represent intermediate
results of two different branches in T . To combine these results, we have to join
the tuples on the witness extension, witness states, and the witness models. The
join operation �� can be seen as a combination of inner and outer joins, used in
database theory [15]. Note that for instance for an assignment B ∈ B to endure
within P of τt, it suffices that B is a corresponding witness model in u′′.

Example 6. Consider default theory D from Example 1 and in Fig. 2 (left)
pretty LTD T = (·, χ, δ) of the semi-primal graph S(D) and the tables τ1, . . . ,
τ18 illustrating computation results obtained during post-order traversal of T by
DP using SCONS instead of SPRIM in Line 3. We omit the last position of the
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tuples, since those are only relevant for SPRIM. Note that we discuss only selected
cases, and we assume for presentation that each tuple in a table τt is identified
by a number, i.e., the i-th tuple corresponds to ut.i = 〈Zt.i,Mt.i,Pt.i, Ct.i〉. The
numbering naturally extends to sets in witness proofs and counter-witnesses.

We obtain table τ1 = {〈∅, {∅}, {〈∅, ∅, ∅〉}〉} as type(t1) = leaf (see Line 1).
Since type(t2) = int and a is the introduced variable, we construct table τ2

from τ1 by modifying M2.1 and P2.1 = {〈σ1.1,A1.1,M2.1〉}, where M2.1 con-
tains M1.1.k and M1.1.k ∪ {a} for each M1.1.k (k ≤ 1) in τ1. This corresponds to
a guess on a. Precisely, M2.1 := {∅, {a}} (Line 11).

Then, t3 introduces default d1, which results in two tuples. In tuple u3.1

default d1 is p-satisfiable or j-satisfiable due to α(d1) or β(d1) (see P3.1, Line 3).
In tuple u3.2 default d1 is c-satisfiable and we have that Z3.2 = {d1} and

P3.2 = {{d1 �→ c}, ∅, ∅〉}.
Node t4 introduces label (β, d1) and modifies P4.1.2. In particular, it chooses

among M candidates, which might contradict that d1 is j-satisfiable (see Line 9).
Obviously, we have that B4.1.2 = {{a}}, since β(d1) = a.

In table τ5, we present the case where default d1 should be p-satisfiable. In
this case since α(d1) = �, we do not find any model of ⊥. In consequence, there
is no corresponding successor of P4.1.1 in τ5, i.e., in τ5 it turns out that d1 can
not be p-satisfiable.

Table τ7 concerns the conclusion γ(d1) of a default. It updates every
assignment occurring in the table, such that the models satisfy γ(d1) if d1 is
c-satisfiable. The remaining cases work similarly.

In the end, join node t16 just combines witnesses agreeing on its content. �

∅ t18

{a, b}
t15

γ,d2:{a, b, d2}
t14

β,d2:{a, d2}

α,d2:{a, d2}

{a, d2} t11

∅t9

{a, b}

γ,d1:{a, b, d1}t7

{a, b, d1}

α,d1:{a, d1}
t5

β,d1:{a, d1}
t4

{a, d1} t3

{a} t2

∅t1

〈Z14.i, M14.i, P14.i, C14.i〉 τ14

〈∅, 2{a,b}, {〈{d2 �→ j}, ∅, {∅, {b}}〉}, ∅〉
〈{d2}, {∅, {a}}, {〈{d2 �→ c}, ∅, ∅〉},

{〈{d2 �→ j}, ∅, [2{a,b}]mo ∪ {∅}〉}〉

〈Z18.i, M18.i, P18.i, C18.i〉
〈∅, {∅}, {〈∅, ∅, {∅}〉}, ∅〉
〈∅, {∅}, {〈∅, ∅, ∅〉},

〈∅, ∅, {∅}〉}〉

τ18

〈Z4.i, M4.i, P4.i, C4.i〉 τ4

〈∅, {∅, {a}}, {〈{d1 �→ p}, ∅, ∅〉,
〈{d1 �→ j}, ∅, {{a}}〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 �→ c}, ∅, ∅〉},

{〈{d1 �→ p}, ∅, [2{a}]mo〉,
〈{d1 �→ j}, ∅, [2{a}]mo ∪ {{a}}〉}〉

〈Z5.i, M5.i, P5.i, C5.i〉 τ5

〈∅, {∅, {a}},
{〈{d1 �→ j}, ∅, {{a}}〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 �→ c}, ∅, ∅〉},

{〈{d1 �→ j}, ∅, [2{a}]mo ∪ {{a}}〉}〉

〈Z3.i, M3.i, P3.i, C3.i〉 τ3

〈∅, {∅, {a}}, {〈{d1 �→ p}, ∅, ∅〉,
〈{d1 �→ j}, ∅, ∅〉}, ∅〉

〈{d1}, {∅, {a}}, {〈{d1 �→ c}, ∅, ∅〉},

{〈{d1 �→ p}, ∅, [2{a}]mo〉,
〈{d1 �→ j}, ∅, [2{a}]mo〉}〉

〈Z7.i, M7.i, P7.i, C7.i〉 τ7

〈∅, 2{a,b},
{〈{d1 �→ j}, ∅, {{a}, {a, b}}〉}, ∅〉

〈{d1}, 2{a,b} \ ∅, {〈{d1 �→ c}, ∅, ∅〉},
{〈{d1 �→ j}, ∅,

[2{a,b}]mo ∪ {{a}, {a, b}}〉}〉
〈Z1.i, M1.i, P1.i, C1.i〉
〈∅, {∅}, {〈∅, ∅, ∅〉}, ∅〉

τ1

Fig. 2. Selected DP tables of SPRIM for pretty LTD T .

Next, we briefly discuss the handling of counter-witnesses, which completes
Algorithm SPRIM. The handling of counter-witnesses C is quite similar to the
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witness proofs P. The tuples 〈ρ,AC,BC〉 ∈ C consist of a states function ρ :
D≤t �→ {p, j, c}, required p-assignments AC ⊆ 2X and refuting j-assignments
BC ⊆ 2(X∪{mo}) for X = Vars≤t ∩χ(t). In contrast to the refuting j-assignments
in B, BC may in addition contain an assignment B ∈ BC with a marker mo.
The marker indicates that B≤t is actually not refuting, but only a model of γ(d)
for each default below t that is c-satisfiable, i.e.,

∧
d∈D≤t,ρ≤t(d)=c γ(d). In other

words, those assignments setting mo to true are the counter-witness assignments
that do not refute c-assignments (comparable to witness assignments in M for
Part (ii)).

The existence of a certain counter-witness tuple for a witness in a table τt

establishes that the corresponding witness can not be extended to a stable default
set of D≤t. In particular, there exists a stable extension for D if the table τn

for root n contains a tuple of the form 〈∅, {∅},P, C〉, where P = ∅ and contains
tuples of the form 〈·, ·, ∅〉. Moreover, for each 〈ρ,AC,BC〉 ∈ C there is ∅ ∈ BC
indicating a true refuting j-assignment for the empty root n. Intuitively, this
establishes that there is no actual counter-witness, which contradicts that the
corresponding satisfying default Z≤t is subset-minimal and hence indeed a stable
default set.

Due to space limitations, we omit a full description of both Parts (i) and
(ii) together for our algorithm. A major difference of Part (ii) is that we need a
special function CCond(C) to establish that a default d is j-satisfiable, which is
defined with respect to fixed set S, c.f., Case (ii) of Definition 2. Then, CCond(C)
additionally adds potential proofs involving counter-witnesses and mo models,
where ρ(d) = c, but σ(d) = c.

In the following, we state the correctness of the algorithm DP.

Theorem 1 (�). Given a default theory D, algorithm DP correctly solves Ext.

Proof (Idea). The correctness proof of this algorithm needs to investigate each
node type separately. We have to show that a tuple at a node t guarantees
existence of a stable default set for a sub-theory of theory D≤t, which proves
soundness. Conversely, one can show that each stable default set is indeed eval-
uated while traversing the pretty LTD, which establishes completeness.

Next, we establish that we can extend DP to enumerate stable default sets.
The algorithm on top of DP is relatively straight forward, which can be found
in an extended version. The idea is to compute a first stable default set in linear
time, followed by systematically enumerating subsequent solutions with linear
delay. One can even further extend DP to solve #SE, similar to related work [10]
in a slightly different context.

Theorem 2 (�). Given a default theory D, algorithm SPRIM can be used as a
preprocessing step to construct tables from which we can solve problem EnumSE.

Proof (Idea). The correctness proof requires to extend the previous results to
establish a one-to-one correspondence when traversing the tree of the TD and
such that we can reconstruct each solution as well as we do not get duplicates.
The proof proceeds similar to Theorem 1.
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The following theorem states that we obtain threefold exponential runtime
in the treewidth.

Theorem 3 (�). Algorithm DP runs in time O(22
2k+4

· ‖S(D)‖) for a given
default theory D, where k := tw(S(D)) is the treewidth of semi-primal
graph S(D).

5 Conclusion

In this paper, we established algorithms that operate on tree decompositions of
the semi-primal graph of a given default theory. Our algorithms can be used
to decide whether the default theory has a stable extension or to enumerate all
stable default sets. The algorithms assume small treewidth and run in linear time
and with linear delay, respectively. Even though already linear time results for
checking the existence of a stable extension are known, we are able to establish
runtime that is only triple exponential in the treewidth of the semi-primal graph.

In order to simplify the presentation, we mainly covered the semi-primal
graph. However, we believe that our algorithms can be extended to tree decom-
positions of the incidence graph. Then we need additional states to handle the
cases where prerequisite, justification, and conclusion do not occur together in
one bag. Consequently, such an algorithm will likely be very complex. Further,
we also believe that our algorithm can be extended to disjunctive defaults [16],
where we have to guess which of the conclusion parts is to apply. An interesting
research question is whether we can improve our runtime bounds. Still it might
be worth implementing our algorithms to enumerate stable default sets for DL,
as previous work showed that a relatively bad worst-case runtime may anyways
lead to practical useful results [9].
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Abstract. In this paper we consider the problems of canonisation and
minimisation of subsequential transducer with output in an arbitrary
monoid. We show that these problems can be efficiently solved for a
large class of monoids that includes the free monoids, tropical monoid,
and groups, and is closed under Cartesian Product. We describe this
class of monoids in terms of five simple axioms. The first four of them
seem to be natural. For the last one, we show that it is also necessary.
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1 Introduction

Subsequential transducers provide a natural and effective way to represent func-
tions that map words to words, to real numbers, or, more generally, to elements
of an arbitrary monoid, [2–4,13]. They also facilitate an efficient on-line process-
ing of words which makes them an attractive formalism for Natural Language
Modelling [8–12]. In this paper we consider two classical problems related to
subsequential transducers: canonisation and minimisation.

The canonical subsequential transducers provide the maximal piece of the
output that is currently unambiguously defined. In the special case of free
monoids and tropical monoid this problem has been considered in [1,11] where
also efficient algorithms for its solution have been proposed. In this paper we
generalise the notion of canonical transducer to arbitrary monoids. Specifically,
we consider the preorder on monoidal elements a ≤ b iff b = ac for some c. In
this notion, the longest common beginning of several elements of the monoid
translates to an infimum of those elements.

The minimisation of subsequential transducers is the problem to find a sub-
sequential transducer with as few states as possible that is equivalent to a given
one. The problem in the case of free monoids and real numbers with addition
c© Springer International Publishing AG, part of Springer Nature 2018
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has been also thoroughly studied and efficient algorithms in these cases are well
known, [4,11]. These algorithms can be considered as refinement of the classical
minimisation [7] of deterministic automata applied on canonical subsequential
transducers. Thus, it is not surprising that being able to canonise a subsequen-
tial transducer, it is also possible to minimise it. This is what we do. Yet, the
invertible elements in the monoid lead to complications that we show how to
resolve.

In this paper we define a class of monoids for which the canonisation and
minimisation problem are algorithmically tractable. This is the class of monoids
with the following five properties: (i) left and (ii) right cancellation; (iii) lower
semi-lattice under ≤; (iv) pairs of elements with upper bound have also a least
upper bound; (v) b ≤ c and b ≤ ac implies b ≤ ab.

After some preliminaries in Sect. 2, we formally state and discuss the above
five properties in Sect. 3. In Sect. 4 we describe a general construction for canon-
isation, and Sect. 5 presents a construction for minimisation of subsequential
transducers. In Sect. 6 we argue that property (v) is also necessary. We conclude
in Sect. 7.

2 Preliminaries

A monoid M = 〈M, ◦, e〉 is a semigroup 〈M, ◦〉 with a unit element e. A special
class of monoids are the free monoids, Σ∗, generated by a finite set Σ. The
support of Σ∗ is the set of words over Σ, i.e. the finite sequences of elements
of Σ. The product is the concatenation of words, and the unit element is the
empty word. Groups represent another class of monoids. Another example of a
monoid is the set of non-negative real numbers with addition, 〈R+,+, 0〉. We
refer to this monoid as tropical monoid.

For monoids Mi = 〈Mi, ◦i, ei〉 for i = 1, 2, the Cartesian Product, M =
M1 × M2, is defined as M = 〈M1 × M2, ◦, 〈e1, e2〉〉, where:

〈a1, a2〉 ◦ 〈b1, b2〉 = 〈a1 ◦1 b1, a2 ◦2 b2〉.

We note that the Cartesian Product of monoids is a monoid.
For a monoid M and a set S we denote with eS : S → M the identity

function, i.e. eS(s) = e for s ∈ S. For a singleton, S = {s} we use es for e{s}.
An automaton1 over a monoid M is a tuple A = 〈M, Q, I, F,Δ, ι, Ψ〉 where

Q is a finite set of states, I, F ⊆ Q are sets of initial and final states, respectively,
Δ ⊆ Q × M × Q is a finite set of transitions, and ι : I → M and Ψ : F → M are
initial and final functions.

A path in an automaton A is a possibly empty sequence of transitions:

π = 〈p0,m1, p1〉 . . . 〈pn−1,mn, pn〉.

1 We adopt the definition from [4] so that (sub)sequential transducers can be consid-
ered as a special kind of automata.
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We call σ(π) = p0 initial state of π and τ(π) = pn – terminal state of π. |π| = n
is the length of π and the product 	(π) =

∏n
i=1 mi is the label of the path π. By

default, the trivial path is of length 0 and its label is the unit element, e.
A path π in A is called successful if σ(π) ∈ I and τ(π) ∈ F . In these terms,

the language of an automaton A = 〈M, Q, I, F,Δ, ι, Ψ〉 is:

L(A) = {ι(σ(π)) ◦ 	(π) ◦ Ψ(τ(π)) |π is a successful path in A}.

For a state p ∈ Q, we define the automaton Ap as Ap = 〈M, Q, {p}, F,Δ, ep, Ψ〉.
We shall often write L(p) as a short hand for L(Ap).

A state p is called accessible in A if there is a path π with σ(π) ∈ I and
τ(π) = p. A state p is called co-accessible in A if there is a path π with σ(π) = p
and τ(π) ∈ F . An automaton is called trimmed if every state of the automaton
is both accessible and co-accessible.

We shall also use the standard notions Δ∗ and Δ≤n. Formally:

Δ∗ = {〈σ(π), 	(π), τ(π)〉 |π is a path}
Δ≤n = {〈σ(π), 	(π), τ(π)〉 |π is a path with |π| ≤ n}.

A Σ−M-transducer is an automaton: T = 〈Σ∗ × M, Q, I, F,Δ, ι, Ψ〉, where
Σ is a finite set. Thus, the language of T is a relation, L(T ) ⊆ Σ∗ × M. A
transducer is called one-letter transducer if, additionally, Δ ⊆ Q × (Σ ∪ {ε}) ×
M × Q, Rng(ι) ⊆ {ε} × M , and Rng(Ψ) ⊆ {ε} × M . Clearly, for a one-letter
transducers we can identify ι and Ψ with their second projections ι2 : I → M
and Ψ2 : F → M , respectively. To simplify the notation, we shall do so when no
confusion is possible.

A Σ − M-transducer is called (sub)sequential if:

1. I = {s} is a singleton,
2. there are (partial) functions δ : Q × Σ → Q and λ : Q × Σ → Q with

Dom(δ) = Dom(λ), such that:

Δ = {〈p, 〈a, λ(p, a)〉, δ(p, a)〉 | 〈p, a〉 ∈ Dom(δ)}.

To stress these particularities of the (sub)sequential transducers we denote them
as: T = 〈Σ∗ × M, Q, s, F, δ, λ, ι, Ψ〉.

The functions, δ∗ : Q × Σ∗ → Q and λ∗ : Q × Σ∗ → M are the natural
extensions of δ and λ, respectively. In particular, Dom(λ∗) = Dom(δ∗) and:

Δ∗ = {〈p, 〈w, λ∗(p,w)〉, δ∗(p,w)〉 | 〈p,w〉 ∈ Dom(δ∗)}.

Clearly, a (sub)sequential transducer, T , recognises a graph of a function map-
ping Σ∗ to M , as opposed to general (rational) relation of Σ∗ and M . We denote
this function with OT : Σ∗ → M . One can easily see that for each w ∈ Σ∗:

OT (w) = ι(s) ◦ λ∗(s, w) ◦ Ψ(δ∗(s, w)) iff δ∗(s, w) ∈ F.

In our considerations we shall denote with O(q)
T = OTq

the function that corre-
sponds to the (sub)sequential transducer Tq.
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3 Monoids

In this section we define the subclass of monoids that we shall be interested in.
We also introduce the notion of infimum of a subset of a monoid that generalises
the notion of longest common prefix for languages and infimum for real numbers.
Interestingly, all the notions and properties that we introduce make sense and
are valid for free monoids, tropical monoid, and, more generally, sequentiable
structures [5], and also for groups. Furthermore, all the properties we are looking
at are closed under Cartesian Product of monoids.

Definition 1. For a monoid M and elements a, b ∈ M we say that a ≤M b if
there is an element c ∈ M with a ◦ c = b.

Remark 1. It should be clear that ≤M defines a pre-order on M. Furthermore,
if M is a group any two elements a and b satisfy a ≤M b. On the other hand for
a free monoid M, a ≤M b means that a is a prefix of b. Finally, for the tropical
monoid, 〈R+,+, 0〉, a ≤M b means a ≤ b as real numbers.

Definition 2. For a subset S ⊆ M of a monoid M we introduce the lower and
upper bounds for S as:

low(S) = {l | ∀s ∈ S(l ≤M s)} up(S) = {u | ∀s ∈ S(s ≤M u)}.

The infimum and supremum sets for S are defined as:

inf S = low(S) ∩ up(low(S)) and supS = up(S) ∩ low(up(S)).

Remark 2. For all S, e ∈ low(S). However, up(S) can be empty even if S �= ∅,
consider the free monoid an two incomparable words. Even if low(S) �= ∅, it
should not be the case that inf S �= ∅ – one may consider 〈Q+,+, 0〉 and arbitrary
decreasing sequence tending to an irrational number. The same holds for supS.

Remark 3. Note, that in the case where M is a group, for any S ⊆ M we have
low(S) = up(S) = inf S = supS = M .

Definition 3 (LSL-axiom). We say that a monoid M satisfies the Lower
Semi-Lattice axiom (LSL-axiom), if for any two elements a, b ∈ M , inf{a, b} �= ∅.

If M satisfies the LSL-axiom we shall denote with a� b an arbitrary, but
fixed, element in inf{a, b}. For a finite sequence of elements {ai}n

i=1 we shall use

⊔

n
i=1 ai := (. . . ((a1 � a2)� a3) . . . � an−1)� an).

Remark 4. The groups, free monoids (longest common prefix), and the tropical
monoid (minimum), satisfy the LSL-axiom.

Lemma 1. If monoids M1 and M2 obey the LSL-axiom, then so does
M1 × M2. ��

The symmetric requirement, i.e. sup{a, b} �= ∅, would impose on the monoid
structure similar to a lattice. However, it is too strong and natural monoids, say
the free monoids, violate this condition. We go for a much weaker requirement:
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Definition 4 (RMGE-axiom). We say that a monoid M satisfies the Right
Most General Equaliser Axiom (RMGE-axiom) if for any two elements a, b ∈ M
it holds:

up({a, b}) �= ∅ ⇒ sup{a, b} �= ∅.

If M satisfies the RMGE-axiom we shall denote with a ∨ b an arbitrary,
but fixed, element in sup{a, b}, if such exists. For a finite sequence of elements
{ai}n

i=1 we shall use
∨n

i=1 ai := (. . . ((a1 ∨ a2) ∨ a3) · · · ∨ an−1) ∨ an).

Remark 5. Trivially, any group satisfies the RMGE-axiom. Further, in a free
monoid Σ∗ words α and β have an upper bound if and only if one of the words
is a prefix of the other. In this case, the longer word is easily seen to be a
supremum for α and β. Finally, for the tropical monoid, the maximum of two
real numbers a and b is clearly their supremum.

Lemma 2. If monoids M1 and M2 obey the RMGE-axiom, then so does
M1 × M2. ��

The next two properties that we shall consider are the left and right cancel-
lation properties of a monoid. Formally:

Definition 5 (LC-axiom). The Left Cancellation Axiom (LC-axiom) for a
monoid M states that for every a, b, c ∈ M : ca = cb ⇒ a = b.

For elements c, d ∈ M with2 c ≤M d, we denote with d
c the unique element

in M s.t.: c ◦ d
c = d.

Definition 6 (RC-axiom). The Right Cancellation Axiom (RC-axiom) for a
monoid M states that for every a, b, c ∈ M : ac = bc ⇒ a = b.

If c, d ∈ M and there is an invertible element a ∈ M such that ac = d we
denote with d � c the unique element a with this property.

Remark 6. Clearly, groups satisfy the LC and RC-axioms. Further, free monoids
(think of suffixes and prefixes) satisfy the LC and RC-axioms. Finally, the trop-
ical monoid also satisfies the LC and RC-axioms (consider the difference of real
numbers).

Definition 7. A monoid M satisfying the RMGE-, LC-, and RC-axioms is
called a most general equaliser (mge) monoid.

By the above discussion, it should be clear that groups, free monoids, and tropical
monoid are mge monoid. Furthermore, it also follows that mge monoids are
closed under Cartesian Product.

Next two lemmata describe some interesting properties of mge monoids.

Lemma 3. Let M be an mge monoid. If a, b ∈ M have an upper bound, then:

1. aa∨b
a = ba∨b

b .

2 Note that c ≤M d is equivalent to the existence of an element a with ca = d.
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2. if ax = by for some x, y ∈ M , then x = a∨b
a z and y = a∨b

b z for some z ∈ M .

Lemma 4. Let M be an mge monoid, S ⊆ M be a nonempty subset of M and
m ∈ M be arbitrary. Then inf(mS) = m inf S.

The last property of monoids that we shall consider is the following:

Definition 8 (LCB-axiom). We say that a monoid M satisfies the Greatest
Common Left Factor Axiom (GCLF-axiom) if for any a, b, c ∈ M it holds:

b ≤M c& b ≤M ac ⇒ b ≤M ab.

For free monoids the GCLF-axiom can be expressed in the following way. If b
is a prefix of c, and b is a prefix of ac, then b is a prefix of ab. For words this
implication is obvious, because by the premise ab is a prefix of ac and ab is longer
than b. Thus, since b is a prefix of ac, it is also a prefix of ab.

Remark 7. The groups (trivially), free monoids (by above), and the tropical
monoid (nonnegative reals) satisfy the GCLF-axiom.

Lemma 5. If monoids M1 and M2 satisfy the GCLF-axiom, then so does
M1 × M2. ��

In the next two sections we shall consider mge monoids with LSL- and GCLF-
axioms, i.e. monoids M satisfying all the axioms defined in this section: LSL-,
RMGE-, LC-, RC-, and GCLF-axioms. In the last section we construct a monoid
satisfying the first four axioms violates the GCLF-axiom for which the implica-
tions of our results are also false.

4 Canonisation of Transducers

Throughout this section we assume that M is an mge monoid satisfying the
LSL- and GCLF-axioms.

Definition 9. For a Σ−M-transducer T = 〈Σ∗ × M, Q, I, F,Δ, ι, Ψ〉 and a
state p ∈ Q we define the range of the state p as: R(p) = Rng(Tp). We say that
T is onward if for every p ∈ Q it holds that e ∈ inf R(p).

By input-transitions of T , we mean Δin = {〈p, a, q〉|∃m(〈p, 〈a,m〉, q〉 ∈ Δ)}, i.e.
the set of transitions of T by dropping their output. The result in this section is:

Theorem 1. For every Σ−M one-letter transducer, T , there is an equivalent
onward transducer, Tc, with the same states and the same input-transitions.

The proof of this result for free monoids relies on the computation of the
longest common prefix for regular languages, [1,10,11]. Afterwards longest com-
mon prefixes of the output languages are pushed forward along the transitions.
Our approach follows along these lines. However, while we shall have little prob-
lems with the second step, it is not quite obvious how to generalise the algorithms
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for computation of longest common prefix to an algorithm for a greatest common
left factor in the general setting of the monoid M.

In the sequel, we first describe an algorithm for the computation of Greatest
Common Left Factor (GCLF) Problem. Then, we complete the canonisation
algorithm of a transducer in a standard way.

Recall that L(p) = L(Ap), Ap = 〈M, Q, {p}, F,Δ, ep, Ψ〉, is the right lan-
guage of the state p. We define the GCLF Problem as:

Given:A = 〈M, Q, I, F ,Δ, ι, Ψ〉 trimmed automaton.
Output:μ(p) ∈ inf L(p) for all p ∈ Q.

To solve this problem, we suggest the following standard dynamic programming
construction:

1. for each p ∈ Q select an element μ0(p) ∈ L(p), s.t. μ0(f) = Ψ(f) for f ∈ F .
2. for k = 0 to k = 2|Q| − 2 for each p ∈ Q compute:

μk+1(p) = μk(p)� ⊔

〈p,m,q〉∈Δ

(m ◦ μk(q)).

3. Output μ(p) = μ2|Q|−1(p).

For a transducer T , a state p of the T and an integer k we denote:

L≤k(p) = {m ◦ Ψ(f) | f ∈ F and 〈p,m, f〉 ∈ Δ≤k}.

We denote with L≤k(A) =
⋃

i∈I L≤k(i). The correctness of the suggested con-
struction relies on the following lemma:

Lemma 6. Let A = 〈M, Q, I, F,Δ, eI , Ψ〉 be a trimmed automaton and let
n = 2|Q| − 1. Then, low(L(A)) = low(L≤n(A)).

Proof. Let L = low(L(A)) and Ln = low(L≤n(A)). Since L≤n(A) ⊆ L(A),
L ⊆ Ln. We prove that the converse is also true.

To this end, let us fix an element l ∈ Ln. For an element m ∈ L(A) we set
κ = κ(m) to be the minimal k s.t. m ∈ L≤k(A). Let P (k) be the statement:

P (k) : ∀m ∈ L(A)(κ(m) = k ⇒ l ≤M m).

We prove that P (k) holds true for every k ∈ N by induction on k. For k ≤ n
we have that the premise of P (k) already implies that m ∈ Ln and therefore
l ≤M m because l ∈ Ln.

Let k ∈ N be such that k ≥ n + 1 and P (k′) is true for all k′ < k. Let
m ∈ L(A) and κ(m) = k. Let π be any successful path with m = 	(π) ◦ Ψ(τ(π))
and |π| = k. By the definition of κ(m) such a path exists. Let π be given as:

π : 〈p0,m1, p1〉〈p1,m2, p2〉 . . . 〈pk−1,mk, pk〉.

Since k ≥ n + 1 = 2|Q| there is a state p ∈ Q and indices 0 ≤ i1 < i2 < i3 ≤ k
such that pij = p for j = 1, 2, 3. Setting i0 = 0 and i4 = k the three fixed
occurrences of p split the path π into four (sub)paths:

πj : 〈pij−1 ,mij−1+1, pij−1+1〉 . . . 〈pij−1,mij , pij 〉 for j = 1, 2, 3, 4.
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Since i1 < i2 < i3, π2 and π3 are non-trivial. Let m(j) = 	(πj) be the label of the
path πj for j = 1, 2, 3, 4. Thus: π1π4, π1π2π4, π1π3π4, and π = π1π2π3π4 are all
successful paths and furthermore the first three have length strictly less than k.
Let: x = m(1)m(4)Ψ(pk), y = m(1)m(2)m(4)Ψ(pk), and z = m(1)m(3)m(4)Ψ(pk).
Thus, by the discussion above we have that x, y, z ∈ L(A), κ(x), κ(y), κ(z) < k
and by the induction hypothesis: l ≤M x, l ≤M y, and l ≤M z.

This shows that x, y, z ∈ up({l,m(1)}). Hence l ∨ m(1) is defined. Let
v = l∨m(1)

m(1) . Hence: v ≤M m(4)Ψ(pk), v ≤M m(2)m(4)Ψ(pk), and v ≤M

m(3)m(4)Ψ(pk).
By the GCLF-axiom, the first two inequalities imply that v ≤M m(2)v.

Now, taking into account also the last one, we get: v ≤M m(2)v ≤M

m(2)m(3)m(4)Ψ(pk). Multiplying both sides of the inequality by m(1) we obtain:
l ∨ m(1) = m(1)v ≤M m(1)m(2)m(3)m(4)Ψ(pk) = m. Since l ≤M l ∨ m(1) we get
l ≤M m. This completes the inductive step. Now the result is immediate. ��

Now, it is rather standard to verify the correctness of the algorithm outlined
in the beginning of the section. The following lemma is technical:

Lemma 7. Throughout the construction, for any k = 0, . . . , 2|Q| − 1 and any
p ∈ Q it holds that there is a set Sk(p) ⊆ M with the following two properties:

1. μk(p) ∈ inf Sk(p),
2. L≤k(p) ⊆ Sk(p) ⊆ L(p).

Corollary 1. For all p ∈ Q it holds that μ2|Q|−1(p) ∈ inf L(p).

Proof. Let n = 2|Q|−1. By the previous lemma we have that L≤n(p) ⊆ Sn(p) ⊆
L(p). Furthermore by Lemma 6 we know that inf L(p) = inf L≤n(p), therefore
inf Sn(p) = inf L(p) and hence μn(p) ∈ inf L(p). ��

The following lemma is now straightforward. Similar results for the deter-
ministic case and free monoids or tropical monoid can be found in [8,11].

Lemma 8. Let T = 〈Σ,M, Q, I, F,Δ, ι, Ψ〉 be a trimmed one-letter transducer
and M be an mge-monoid. Assume that μ(p) ∈ inf RT (p) for all p ∈ Q, then:

1. for any transition t = 〈p, 〈a,m〉, p′〉 ∈ Δ it holds μ(p) ≤M m ◦ μ(p′). In
particular, m(t) = m◦μ(p′)

μ(p) is well-defined.
2. for any f ∈ F , μ(f) ≤M Ψ(f)
3. the transducer Tc = 〈Σ,M, Q, I, F,Δc, ιc, Ψc〉, where ιc(s) = ι(s) ◦ μ(s),

Ψc(f) = Ψ(f)
μ(f) , and Δc = {〈p, 〈a,m(t)〉, p′〉 | t = 〈p, 〈a,m〉, p′〉 ∈ Δ} has the

properties:
(a) L(T ) = L(Tc).
(b) for all p ∈ Q: e ∈ inf RTc

(p).

Now we can complete the proof of Theorem 1.
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Proof. First, assume that T is trimmed. Then we consider the projection of T
w.r.t. M and compute μ(p) ∈ inf RT (p). Now, the result follows by Lemma 8.
In the general case, we first construct the onward Tc for the trimmed part of T
and afterwards we add the transitions that do not lie on a successful path. This
preserves the correctness, since those transitions are irrelevant for the language.
Furthermore, low(∅) = M and hence e ∈ inf ∅. ��

5 Minimisation of (Sub)sequential Transducers

In this section, again, we consider an mge monoid M with LSL- and GCLF-
axioms. We set out to develop a minimisation construction for subsequential
transducers. Even though we follow the well-known technique, we have to take
into account invertible elements. This is why we give the following syntactic
definition:

Definition 10. Let T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 be a complete subsequential
transducer. We define the syntactic relation ∼T ⊆ Q × Q as:

q1 ∼T q2 ⇐⇒ ∃u ∈ M(u is invertible and O(q1)
T = uO(q2)

T ).

We shall write q1 ∼u
T q2 to stress that O(q1)

T = uO(q2)
T .

We start with the following technical lemma:

Lemma 9. Let T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 be a complete subsequential trans-
ducer. Then ∼T is an equivalence relation. Furthermore, if T is onward, then
p1 ∼u

T p2 implies δ(p1, a) ∼T δ(p2, a) for any character a ∈ Σ. Moreover, if
δ(p2, a) ∼v

T δ(p1, a) then λ(p1, a) = uλ(p2, a)v.

With this result it is standard to prove that the following construction yields a
minimal subsequential transducer.

Lemma 10. Let T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 be an onward complete subse-
quential transducer such that each state q ∈ Q is accessible. Let n = ind(∼T )
and QM = {q1 = s, q2, . . . , qn} be a set of pairwise non-equivalent states in Q.
Let FM = QM ∩ F and ΨM = Ψ � QM and δM and λM be defined as:

δM (qi, a) = qj ⇐⇒ δ(qi, a) ∼T qj

λM (qi, a) = λ(qi, a)v if qj ∼v
T δ(qi, a) for some j and v ∈ M.

Then TM = 〈Σ,M, QM , s, FM , δM , λM , ι, ΨM 〉 is well-defined and OTM
= OT .

Furthermore, TM is minimal, i.e. any complete (sub)sequential transducer T ′

with OT ′ = OT has at least |QM | states.
In view of Lemma 10 the question arises whether and how to compute ∼T for
onward subsequential transducers. We generalise the classical minimisation algo-
rithm, [7]. We assume that T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 is onward.

The problem with applying directly the standard minimisation algorithm for
subsequential transducers arises from the necessity to account for the witnesses
involved in the definition of the equivalence ∼T . To surmount this difficulty we
start with the following simple observation:
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Lemma 11. If p1 ∼u
T p2 and p1 ∼v

T p2 then Dom(Tp1) = Dom(Tp2) = ∅, or
u = v.

Proof. If γ ∈ Dom(Tp1), then by p1 ∼u
T p2 it follows that O(p1)

T (γ) = uO(p2)
T (γ)

and by p1 ∼v
T p2, O(p1)

T (γ) = vO(p2)
T (γ). Hence by the RC-axiom u = v. ��

Now, the idea is the following. We are going to introduce a linear order on
the words in Σ∗ and for each co-accessible state p ∈ Q we are going to compute
〈αmin(p),mmin(p)〉 ∈ L(p) such that αmin(p) is the least element in the domain
of p. Using these pairs we are going to compute an initial approximation for ∼T
that we will subsequently refine as in the standard minimisation algorithm.

Definition 11. We define the relation �deg−lex⊆ Σ∗ × Σ∗ as:

α �deg−lex β ⇐⇒ |α| < |β| or (|α| = |β| and α �lex β)

where �lex is some fixed lexicographic ordering on Σ∗.

Definition 12. For a subsequential transducer T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 we
define the mapping: μ : Q → (Σ∗ × M) ∪ {⊥} as follows:

μ(p) = arg min
�deg−lex

{α | 〈α,m〉 ∈ L(p)}.

Lemma 12. Given a subsequential transducer T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉
over an mge monoid M we can construct the mapping μ.

Proof. We can adopt a standard BFS procedure to yield the values μ(p):

1. set Q0 = F , μ(p) = 〈ε, Ψ(p)〉 for each p ∈ F . Let k = 0 and Q−1 = ∅.
2. while Qk �= Qk−1 do:

(a) set Qk+1 = Qk, μk+1 = μk.
(b) for each q ∈ Qk \ Qk−1 and each transition δ(p, a) = q add p to Qk+1.
(c) for p ∈ Qk+1 \ Qk let a ∈ Σ be the lex. least s.t. δ(p, a) ∈ Qk. Set:

μk+1(p) = 〈a, λ(p, a)〉 ◦ μk(δ(p, a)).
(d) set k = k + 1.

3. complete μk with ⊥ to μ.

The correctness of the algorithm follows by an inductive argument. ��

Next, we proceed to show how to compute the relation ∼T . First we define
the relation ∼0⊆ Q × Q as:

p1 ∼0 p2 ⇐⇒ μ(p1) = μ(p2) = ⊥ or
μ1(p1) = μ1(p2) and μ2(p1) � μ2(p2) �= ⊥.

If p1 ∼0 p2 we write p1 ∼⊥
0 p2 if μ(p1) = ⊥, or p1 ∼u

0 p2 where u = μ2(p1)�μ2(p2)
to indicate the witness for p1 ∼0 p2.

Remark 8. It should be clear that ∼0 is an equivalence relation.
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Assume that ∼n⊆ Q×Q is defined. We refine ∼n to ∼n+1 as follows. For states
p1, p2 ∈ Q, p1 ∼n+1 p2 if and only if the following conditions hold:

1. p1 ∼n p2 and p1 ∼u
0 p2 for some u ∈ M ∪ {⊥},

2. for each a ∈ Σ, δ(p1, a) ∼n δ(p2, a), δ(p2, a) ∼v
0 δ(p1, a), and

v �= ⊥ ⇒ λ(p1, a) = uλ(p2, a)v.

The following standard lemma shows that computing the relations ∼n suffices
to compute ∼T :

Lemma 13. For all n ∈ N it holds: (i) ∼n+1⊆∼n; (ii) ∼T ⊆∼n; (iii)⋂
∼n⊆∼T ; (iv) if ∼n=∼n+1 then ∼n=∼T ; (v) ∼|Q|=∼T .

From the discussion above we obtain the following result:

Theorem 2. Let M be an mge monoid with LSL- and GCLF-axioms. Then
there is a construction that converts any (complete) (sub)sequential transducer:
T = 〈Σ,M, Q, s, F, δ, λ, ι, Ψ〉 into an equivalent minimal (sub)sequential trans-
ducer. ��

6 Example for the Necessity of the GCLF-axiom

Whereas the LC and RC-axioms are natural algebraic axioms, and RMGE- and
LSL- are, in a sense, also natural semi-lattice properties, a question arises what
the influence of the GCLF-axiom is. Clearly, from the proof of Lemma 6, it allows
us to eliminate cycles in the transducer or, equivalently, eliminate Kleene-stars
in the definition of regular languages over the monoid M. But, can we drop it
and still have infimums of regular sets? The answer to this question is negative:

Theorem 3. There is a monoid M such that:

1. M satisfies the RMGE-, LC-, RC-, and LSL-axioms,
2. M violates the GCLF-axiom,
3. M admits a (non-empty) regular language with an empty infimum set.

We construct such an example as follows. We consider the alphabet Σ = {a, b, c}
with three distinct elements. Then, we factorise the free monoid Σ∗ w.r.t. the
equality abc = b. In terms of grammars we can describe this as follows. Let
G be a grammar with a single production abc → b. For a word w ∈ Σ∗ we
denote with [w] the deg-lex minimal word in Σ∗ such that: w ⇒∗

G [w]. We set:
M = {[w] |w ∈ Σ∗}. Next, we introduce the operation ◦ : M × M → M in a
standard way:

[u] ◦ [v] = [[u][v]],

where [u][v] refers to the usual concatenation of words in Σ∗. It is standard
combinatorics on words to check that:

Lemma 14. The structure M = 〈M, ◦, [ε]〉 is a monoid and further it supports
left and right cancellation and satisfies RMGE and LSL-axioms. ��
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Remark 9. Note that [abc] = [b] = b, [a] = a, [bc] = bc and [ab] = ab. Therefore,
we have [b] ≤M [bc] and [b] ≤M [a] ◦ [bc]. On the other hand [b] �≤M [a] ◦ [b] = ab.
This shows that M violates the GCLF-axiom.

Finally, it holds that:

Lemma 15. In M = 〈M, ◦, [ε]〉 the language a∗b has an empty infimum set.

Proof (Sketch). It is easy to see that [α] ∈ low(a∗b) implies [α] ∈ a∗ ∪a∗b. Next,
since an+1b ≤M [an+1b]◦[c] = anb and anb �≤M an+1b, we get that low(a∗b) = a∗.
But since an+1 �≤M an we get that no element of a∗ can be in inf(a∗b). ��

7 Conclusion

In this paper we defined a general class of monoids for which the canonisation and
minimisation of subsequential transducers are tractable. We showed constructive
proofs of our results, which, under reasonable assumptions, can be turned into
efficient algorithms. All but one of the axioms that describe the considered class
of monoids correspond to natural algebraic properties from the theory of semi-
groups and lattices, respectively. For the last one we have shown that it holds if
the canonisation should be always possible. It is interesting if these results may
open new application areas for the learning algorithms developed in [6,8].
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Abstract. For a regular set R of quantified Boolean formulae we decide
whether R contains a true formula. We conclude that there is a PSPACE-
complete problem for which emptiness of intersection with a regular set is
decidable. Furthermore, by restricting depth and order of quantification
we obtain complete problems for each level of the polynomial hierarchy
with this decidability as well.

Keywords: Automata and logic · Emptiness of regular intersection
Quantified Boolean formula · PSPACE · Polynomial hierarchy

1 Introduction and Motivation

The original motivation of this work is to distinguish families of formal lan-
guages like the context-free or regular ones with iteration or pumping lemmata
and various decidabilities from complexity classes where no such combinatorial
arguments are available. In particular, the existence of families of formal lan-
guages being densely complete in the classes NP, SAC1 and NSPACE(log n)
[5,6] drives this line of research by highlighting the disparities between formal
languages and complexity classes. The distinction between these two kinds of
language classes currently relies only on examples. Out of the lengthy list of
differences (see [7]) we analyzed the decidability of the emptiness of intersection
with regular languages as a candidate for a precise criterion. In contrast to com-
plexity classes, families of formal languages (as Reg, CFL and their subclasses)
have a decidable emptiness problem. Since they are closed under intersection
with regular sets, the following property of a formal language is decidable.

Definition 1. Let intReg(L) be the problem of deciding, given a finite automa-
ton, whether its language has a non-empty intersection with L.

Since all known families of formal languages (up to the OI-hierarchy as one
of the largest known family of formal languages [3]) are contained in NP we
void this criterion by identifying problems (most probably) outside of NP for
which intReg is decidable. We exhibit languages L of true quantified Boolean
c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 156–168, 2018.
https://doi.org/10.1007/978-3-319-77313-1_12
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formulae (again, likely) outside of NP where intReg(L) is decidable. This implies
that intReg is unsuitable as a characterization of formality. Van Leeuwen [10]
showed that the satisfiability problem SAT in an appropriate variable-free coding
is an ET0L (and hence indexed) language, which implies the decidability of
intReg (SATvar-free) [1].

This might be contrasted by the NP-complete machine language LNP :=
{〈M〉, x, an | M is NTM accepting x in n steps}. Here, intReg(LNP) is undecid-
able since for an arbitrary Turing machine M0 with L(M0) ⊆ Σ∗ the language
LNP intersected with the regular set {〈M0〉, x, an | x ∈ Σ∗, n ≥ 0} is non-empty
if and only if L(M0) is non-empty, which is undecidable.

In this article we consider the complexity classes PSPACE and the levels
of the polynomial hierarchy (PH). Machine versions of languages complete for
these classes would be defined by using polynomially time bounded Turing
machines of unbounded and respectively bounded alternation depth. In both
cases intRegwould be undecidable. As SAT is the canonical NP-complete prob-
lem, languages of (true) quantified Boolean formulae (TQBF) are canonical com-
plete languages for PSPACE and PH. Arbitrary true quantified Boolean formu-
lae form a PSPACE-complete language, where constraining quantification depth
and order yields languages for the classes of the polynomial hierarchy. We show
for the ΣP

k -, ΠP
k - and respectively PSPACE-complete languages LΣk

, LΠk
and

LTQBF that intReg(LΣk
), intReg(LΠk

) and intReg(LTQBF) are decidable. In the
case of languages where intReg is decidable the question of coding the input
(e.g. a Boolean formula) may be of importance. We adopt an encoding for QBFs
that only differentiates from the commonly used notation by omitting explicit
quantifiers. Instead, literals carry information about their quantification depth
as a unary string.

A converse viewpoint of this problem is to consider a regular set of encoded
quantified Boolean formulae and to decide whether at least one does evaluate
to true. For finite sets this problem is, from a decidability perspective, trivial.
On the contrary, the question whether an arbitrary (not necessarily regular)
infinite set contains a true quantified Boolean formula is not per se decidable.
In our proof we make use of the finiteness of the state set of finite automata
which assure us the repetitions of certain subwords in words accepted by the
automaton. This way we are able to reduce the set of possibilities to a finite
number of candidates when we search for true quantified Boolean formulae in
infinite regular sets.

This article is structured as follows: We start with preliminaries and define
the complete problems we need. The main results are listed in Sect. 3, where
a short overview of the proof ideas are given. The detailed elaboration of the
proofs is content of Sects. 4 and 5. Finally, in the last section we discuss our
results and list some open problems.

2 Preliminaries

We assume the reader to be acquainted with the basics and standard results
of complexity theory as they are presented in any text book of this topic. We
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use the common notation for Boolean formulae with 0 and 1 as truth values.
For readability reasons we extend regular expressions by operations E≤n :=(
E|E2| · · · |En

)
and E≥n := EnE∗ for a fixed n ∈ N and E a regular expression

and write w ∈ E instead of w ∈ L(E). In particular we write E≥1 instead of E+

because signs are part of the alphabet we use. For w ∈ Γ ∗ and γ ∈ Γ let #γ(w)
denote the number of γs in w.

In the following we will describe our encoding of quantified Boolean formu-
lae. We will avoid the explicite use of quantifiers. Instead, variables will contain
their quantification depth. Our convention will be that variables on even lev-
els of quantification are universally quantified, while variables on odd levels are
existentially quantified. We allow missing levels of quantification, i.e. the occur-
ing levels of quantification are not necessarily consecutive. As a consequence, the
minimal quantification level of a formula decides whether it is a Σ- or Π-formula.
E.g. the absence of a first level, together with existence of the second level implies
that a Π formula is encoded. In addition we assume the propositional part (the
matrix) to be in conjunctive normal form.

Existentially and universally quantifying a propositional formula over
{0, 1}, yields a quantified Boolean formula: Qi1x i1Qi2x i2 . . . Qikx ik φ(x i1 ,x i2 ,
. . . ,x ik), where m < n ⇒ im < in and Qij = ∃ for odd ij and Qij = ∀ for
even ij and x ij are finite vectors of Boolean variables and φ is a propositional
Boolean formula with

∑k
j=1|x ij | free variables.

Wrathall [11] showed that true quantified Boolean formulae with k alter-
nating quantifiers and suitable propositional structure yield complete languages
for the k-th level of the polynomial hierarchy. The shape of the propositional
formula depends on the innermost quantifier. If the innermost quantifier is exis-
tential (universal), it is in CNF (DNF). The set of true quantified Boolean for-
mulae with k alternating quantifiers, where Q1 = ∃ (Q1 = ∀) is complete for ΣP

k

(ΠP
k ). If the propositional formula is kept in CNF regardless of the innermost

quantifier, then for each odd (even) k and Q1 = ∃ (Q1 = ∀) the true quanti-
fied formulas with k alternating quantifiers yield ΣP

k (ΠP
k )-complete language.

If the number of quantifier alternations in formulae is not bounded the set of
true quantified Boolean formulae yields the PSPACE-complete set TQBF [9].

Throughout the article we will describe regular sets of quantified Boolean
formulae. We will use a natural encoding (similar to Stockmeyer [8]) of quantified
Boolean formulae, where literals ±b∗a∗ contain three kinds of information: A sign
will indicate whether the variable is negated or not, followed by a factor b∗ which
indicates the quantification depth and the name or index of the variable used in
this literal as suffix in a∗. Odd length quantification levels denote that variables
are existentially quantified and analogously even levels that they are universally
quantified. Also, we will assume the propositional structure to be in 3-CNF.

Example 2. If two consecutive vectors are both indexed odd/even they will be
quantified identically. Let ψ with range over x 1 = (x1,1), x 3 = (x3,2, x3,4),
x 4 = (x4,2) and x 8 = (x8,1, x8,2) be
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∃x 1∃x 3∀x 4∀x 8(x1,1 ∨ x8,1 ∨ x3,2) ∧ (x3,4 ∨ x4,2 ∨ ¬x4,2) ∧ (¬x3,4 ∨ x8,2 ∨ x3,4)

Then the encoding of ψ reads

〈+ba ∨ +b8a ∨ +b3aa〉 ∧ 〈+b3a4 ∨ +b4aa ∨ −b4aa〉 ∧ 〈−b3a4 ∨ +b8aa ∨ +b3a4〉

Definition 3. Let Γ = {a, b, 〈, 〉,∧,∨,+,−} and ± be the regular expression of
{+,−}. As the regular set of encoded quantified Boolean formulae in 3-CNF we
define Lk-QBF :=

L
(
〈±b≤ka≥1 ∨ ±b≤ka≥1 ∨ ±b≤ka≥1〉 (∧〈±b≤ka≥1 ∨ ±b≤ka≥1 ∨ ±b≤ka≥1〉)∗)

Furthermore, let LQBF :=
⋃

k≥1 Lk-QBF be the set of encoded quantified Boolean
formulae without bound of quantifier alternation depth.

Definition 4. Let LΣk
(LΠk

) ⊆ Lk-QBF be the set of all true quantified Boolean
formulae in our encoding and 3-CNF, where the first quantifier is existential
(universal).

Let Lk-TQBF := LΣk
∪ LΠk

and LTQBF :=
⋃

k≥1 Lk-TQBF.

Fact 5. For odd k, the language LΣk
is ΣP

k -complete and for even k the language
LΠk

is ΠP
k -complete [11]. The set LTQBF ⊆ LQBF of encoded true quantified

Boolean formulae in 3-CNF is PSPACE-complete [9].

3 Results

In this section we present our two main theorems for the ΣP
k -complete lan-

guage LΣk
, the ΠP

k -complete language LΠk
and the PSPACE-complete language

LTQBF, where the formal proofs are contained in Sects. 4 and 5.

Theorem 6. Let R be a regular language. For each k ∈ N it is decidable whether
LΣk

∩ R = ∅ and LΠk
∩ R = ∅, i.e. intReg (LΣk

) and intReg (LΠk
) are decidable.

Idea of proof: Let A be a DFA recognizing R. For every pair of states in A
we compute the (possibly empty) regular set of end-to-end literals that can
be read in-between them. Each such literal set is then assigned a finite set of
representing literals. We define an automaton condense(A) based on the finitely
many representatives and show that condense(A) recognizes a true quantified
Boolean formula if and only if A accepts one. Finally we show that for each
k ∈ N the emptiness of condense(A) ∩ LΣk

and condense(A) ∩ LΠk
is decidable,

which in total proves Theorem 6.

Theorem 7. Let R be a regular language. It is decidable whether LTQBF∩R = ∅,
i.e. intReg (LTQBF) is decidable.



160 D. Güler et al.

Idea of proof: Let R be given as a DFA A. Formulae recognized by A can
be unbounded in their quantification depth. We construct a new automaton
restrict(A) which only accepts formulae of quantification depth up to d, where
d is only dependent on the size of A. We show that A accepts a true quantified
Boolean formula if and only if restrict(A) accepts one. Following Theorem 6 it
is decidable whether L(restrict(A)) contains a true quantified Boolean formula
with at most d alternating quantifiers and thus LTQBF ∩R = ∅ is decidable, too.

4 Proof of Theorem 1

Let R ⊆ Lk-QBF be a regular language. If R is finite, checking whether R contains
at least one true quantified Boolean formula can be achieved by decoding and
evaluating every single word in R.

For infinite R this procedure is obviously not possible. Instead, we will show
that we only have to test finitely many quantified Boolean formulae in R for each
(infinite) regular language to decide the intersection emptiness with LΣk

/LΠk
.

The idea is to extract from R a finite subset {w1, . . . , wn} ⊆ R such that
R ∩ LΣk

�= ∅ if and only if wi ∈ LΣk
for some i. In order to do so, we look in a

word x∧〈l1 ∨ l2 ∨ l3〉∧ y ∈ R for literals li which are existentially quantified and
make the following case distinction. If the finite automaton A accepting R has a
loop while reading li we can single out a uniquely referenced variable for li. Thus,
li can be existentially satisfied without effecting other literals/clauses. Otherwise,
if A has no loop while reading li leading from some state q to some state q′ we
conclude that there can only exist finitely many different literals l′ leading from
q to q′. All of these are put (after some massage) in a set rep(Λq,q′) for joint
treatment of all rep(Λq,q′). The case of universally quantified literals needs more
care. For every pair (q, q′) of states in A we compute a set Λq,q′ of literals leading
from q to q′. From the powerset of all Λ sets we identify combinations of Λ sets,
sharing a common variable, which is chosen as a representative. In a manner
this procedure minimizes the number of universally quantified variables, which
makes the formula overall easier to be true.

4.1 Construction of the Condensed Automaton

Definition 8. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton with
L(A) ⊆ Lk-QBF. For every pair of states q, q′ ∈ Q, s ∈ {+,−} and 1 ≤ d ≤ k
we define

Λd,s
q,q′ :=

{
w ∈ (〈|ε)sbda≥1(∨|〉) | δ∗(q, w) = q′} ,

the literal transition set from q to q′ with sign s and quantifier depth d. Further-
more, let

Λq,q′ :=
⋃

s∈{+,−},1≤d≤k

Λd,s
q,q′

be the union of all literal transition sets from q to q′. For easier readability, we
will sometimes refer to Λd,s

q,q′ as Λ if d, s and q, q′ are understood.
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Each Λ is recognized by a sub-automaton of A and therefore is a regular set.

Definition 9. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton with
L(A) ⊆ Lk-QBF. Let Υ d :=

{
Λd,s

q,q′ | q, q′ ∈ Q, s ∈ {+,−}
}

be the set containing
all universally quantified literal transition sets with quantifier depth d, for all
even d with 1 ≤ d ≤ k.

Definition 10. Let trunc : Γ = {a, b, 〈, 〉,+,−,∨,∧}∗ → {a, b}∗ be the homo-
morphism with

trunc(γ) :=

{
γ if γ ∈ {a, b},

ε otherwise.

Define the operation extend such that extend(w,Λ) := trunc−1(w) ∩ Λ for w ∈
trunc(Λ) and language Λ.

Intuitively, function trunc returns the variable referenced by a literal forgetting
its sign and its position in a clause, while extend provides us with all possible
occurrences of a variable as a literal leading from state q to state q′.

Definition 11. Let P d :=
{
p ∈ P (

Υ d
) | ∩Λ∈ptrunc(Λ) �= ∅} for all even d with

1 ≤ d ≤ k be the subset of the powerset of all literal transition sets with quantifier
depth d, which only contains sets of languages with a common variable.

In the following we construct for each Λ a finite set rep(Λ) ⊆ Λ of representatives,
which will carry the essential information whether the language contains a true
quantified Boolean formula.

Definition 12. For a language L ⊆ Γ ∗ let min
lex

(L) denote the lexicographically

minimal element of L.

Since an existentially quantified variable which only occurs once in a quanti-
fied Boolean formula can always be satisfied, we try to separate all existentially
quantified variables when assigning representatives to each literal transition set.
Conversely, having many different universally quantified variables makes a quan-
tified Boolean formula harder to be true. The elements in P d state which literal
transition sets contain universally quantified literals, which can reference the
same variable.

Definition 13. For every Λd,s
q,q′ define a finite set of representatives rep(Λd,s

q,q′)
with the following case distinction:

1. If d is even (universally quantified) use Algorithm1 to compute the represen-
tatives of Λd,s

q,q′ .
2. If d is odd (existentially quantified) and |Λd,s

q,q′ | < ∞, then rep(Λd,s
q,q′) = Λd,s

q,q′ .
3. If d is odd (existentially quantified) and |Λd,s

q,q′ | = ∞, then rep(Λd,s
q,q′) =

extend(bdal, Λd,s
q,q′), such that the truncated bdal is in no other set of rep-

resentatives for any Λd′,s′
p,p′ , with p, p′ ∈ Q, quantifier depth d′ and sign s′.
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forall Λ ∈ Υ d do
rep(Λ) ← ∅

end

forall p ∈ P d do

label(p) ← min
lex

(⋂
Λ∈p trunc(Λ)

)

end
forall Λ ∈ p do

rep(Λ) ← rep(Λ) ∪ extend(label(p), Λ)
end

Algorithm 1. Computation of rep(Λ) for even d. For every combination of lit-
eral transition sets sharing common variables, unique representatives are cho-
sen and assigned to all respective literal transition sets.

Remark 14. The lexicographic minimal element of each p ∈ P d is chosen to
make the algorithm deterministic. Any other element of

⋂
Λ∈p trunc(Λ) could be

picked as possible label.

Lemma 15. For all q, q′ ∈ Q, quantifier depth d ≤ k and s ∈ {+,−} the set
rep(Λd,s

q,q′) is finite.

Proof. For odd d the claim is easily verified. So, assume d to be even. The set Υ d

is finite since d is bounded by k, Q is finite and s can only assume two values.
Hence the powerset P (

Υ d
)

is finite and therefore P d is finite, too. Each p ∈ P d

has exactly one label. So for finitely many p, finitely many elements are added
to rep(Λ) for any Λ. Hence rep(Λ) is finite for any Λ ∈ Υ d. ��
Definition 16. For q, q′ ∈ Q let

rep(Λq,q′) :=
⋃

s∈{+,−},d≤k

rep
(
Λd,s

q,q′

)

be the set of representatives from q to q′ of arbitrary quantification and sign s.

Definition 17. Based on literal transition sets (see Definition 8), we define for
every q, q′ ∈ Q clause transition sets

Cq,q′ :=
⋃

q1,q2∈Q,Λq,q1 �=∅,Λq1,q2 �=∅,Λq2,q′ �=∅
rep(Λq,q1) · rep(Λq1,q2) · rep(Λq2,q′),

where we require that all words in Λq,q1 start with 〈, the words in Λq1,q2 contain
neither 〈 nor 〉 and the words in Λq2,q′ end with 〉.
Lemma 18. For every q, q′ ∈ Q the clause transition set Cq,q′ is finite.

Proof. For every q, q′ ∈ Q the set of representatives rep(Λq,q′) is finite, and
hence finite concatenation yields again a finite set. ��
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Definition 19. Let R ⊆ Lk-QBF be a regular language and A = (Q,Γ, δ, q0, F )
be a DFA with L(A) = R. Define the condensed automaton condense(A) =
(Q,Γ ′, δ′, q0, F ) where

Γ ′ =
⋃

q,q′∈Q

Cq,q′ ∪ {∧}

and ∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ Cq,q′

∀q, q′ ∈ Q : (q,∧, q′) ∈ δ′ if (q,∧, q′) ∈ δ .

The automaton condense(A) accepts a subset of L(A) such that the words in
L(condense(A)) are built over a finite set of clauses.
The next section shows that L(A) ∩ LΣk

�= ∅ ⇐⇒ L(condense(A)) ∩ LΣk
�= ∅.

Thus, we can decide the emptiness of the intersection by inspecting the finitely
many elements which are accepted by loop-free paths in condense(A) one-by-one.

4.2 Condensation Preserves Regular Intersection (Non-)Emptiness

Lemma 20. Let R ⊆ Lk-QBF be a regular language and A be a DFA with
L(A) = R. If L(condense(A)) ∩ Lk-TQBF �= ∅ then also R ∩ Lk-TQBF �= ∅.
Proof. The condensed automaton condense(A) recognizes a subset of R. In par-
ticular, every recognized true quantified Boolean formula w, is also in R. ��
Lemma 21. Let R ⊆ Lk-QBF be a regular language and A be a DFA with
L(A) = R. If R ∩ Lk-TQBF �= ∅ then also L(condense(A)) ∩ Lk-TQBF �= ∅.
Proof (proof idea). Let w ∈ R evaluate to true. Every literal of w is part of
some Λ. Each one can be substituted by a representative in rep(Λ), making a
case distinction between existential and universal quantification, yielding a word
in L(condense(A)) which is also true. ��

4.3 Deciding intReg(LΣk
) and intReg(LΠk

)

Lemma 22. Let A be a DFA with L(A) ⊆ Lk-QBF and w ∈ L(condense(A))
where w is the labeling of an accepting path p in condense(A) containing at least
one loop. Let w′ be w without the factors read in the loops of p. If w is a true
quantified Boolean formula, then so is w′.

Proof. The formula w is in conjunctive form w = c1∧· · ·∧cn with some clauses ci

which all evaluate to true. Loops only contain whole clauses and thus w′ consists
of a subset of the clauses of w. Thus, w′ also evaluates to true. ��
This means that words recognized through simple accepting paths in the con-
densed automaton are the only ones that need consideration when looking for
true quantified Boolean formulae. To determine whether LΣk

or LΠk
contain a

word of L(condense(A)) we need to consider the outermost quantified variable.
Since clauses containing this variable might occur on a loop we have to consider
paths of length ≤ 2|Q|.
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Lemma 23. Let R be a regular language and A be a DFA with L(A) = R. It is
decidable whether L(condense(A)) ∩ LΣk

�= ∅ and L(condense(A)) ∩ LΠk
�= ∅.

Proof. Let R ⊆ Lk-QBF w.l.o.g. enumerate all words w1, w2, . . . , wn which are
recognized through (the finitely many) accepting paths in condense(A) of length
≤ 2|Q|. For i = 1, . . . , n test if wi is a true quantified Boolean formula. Following
Lemma 22, if all wi evaluate to false, no other w ∈ L(condense(A)) can evaluate
to true. Thus, the intersection L(condense(A)) ∩ LΣk

is non-empty iff at least
one wi evaluates to true and the first quantifier in wi is existential. Analogously,
L(condense(A)) ∩ LΠk

�= ∅ iff at least one wi evaluates to true and the first
quantifier in wi is universal. ��
In total this yields Theorem 6.

Theorem 1. Let R be a regular language. For each k ∈ N it is decidable whether
LΣk

∩ R = ∅ and LΠk
∩ R = ∅, i.e. intReg (LΣk

) and intReg (LΠk
) are decidable.

Proof. Assume w.l.o.g. that R ⊆ Lk-QBF. Let A be a DFA recognizing R.
Lemma 23 states that condense(A) ∩ LΣk

�= ∅ and condense(A) ∩ LΠk
�= ∅

is decidable. Following Lemmas 20 and 21 L(condense(A)) ∩ Lk-TQBF �= ∅ ⇐⇒
R ∩ Lk-TQBF �= ∅. Thus both, LΣk

∩ R = ∅ and LΠk
∩ R = ∅ is decidable. ��

5 Proof of Theorem 2

In this section we prove Theorem 7, stating that intReg (LTQBF) is decidable.
That is, one can test whether a regular language encoding quantified Boolean
formulae in 3-CNF with unbounded quantifier alternation contains at least one
true quantified Boolean formula. Observe that the automaton condense(A) con-
structed in the last subsection to test for (non)emptiness of R ∩ LΣk

is depen-
dent in k. We now give a construction which allows us to use the condense(A)-
automaton despite the presence of unboundedly nested quantifiers.

Fact 24. Let x 1 and x 2 be vectors of Boolean variables and φ be a propositional
Boolean formula with |x 1|+|x 2| free variables. Then following implications holds:

1. ∃x 1∀x 2φ(x 1,x 2) ⇒ ∀x 2∃x 1φ(x 1,x 2)
2. ∀x 1φ(x 1) ⇒ ∃x 1φ(x 1)
3. Let Q be fixed as ∃ or ∀. Then Qx 1Qx 2φ(x 1,x 2) ⇒ Qx 2Qx 1φ(x 1,x 2)

Fact 24 intuitively speaking states that we can “pull out” universal quanti-
fiers. Furthermore, we can substitute universal quantifiers by existential ones
and permute consecutive vectors quantified by the same type of quantifier while
preserving validity.
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5.1 Defining the Reduction

For a given DFA A we construct a new automaton restrict(A) which accepts a
true quantified Boolean formula if and only if A does. Depending on the size of
A there is constant d such that, formulas in L(restrict(A)) have at most d + 2
(and therefore finite) quantifier alternations. Words of L(restrict(A)) have the
property that quantifier levels of literals above a threshold d are summed up in
a sequence of universal quantifier levels, followed by a non-overlapping sequence
of existentially quantified levels.

Definition 25. For a DFA A = (Q,Γ, δ, q0, F ) and s ∈ {+,−} let

Gs
q,q′ := {n ∈ N | ∃q1, q2 ∈ Q : δ(q1, s) = q ∧ δ∗(q, bn) = q′ ∧ δ(q′, a) = q2}

be the set of quantification depths we can use for s-signed literals starting in q
and passing q′ on the way.

Lemma 26. Let A = (Q,Γ, δ, q0, F ) be a DFA. For all q, q′ ∈ Q and s ∈ {+,−}
the following statement holds: If there exists n ∈ Gs

q,q′ with n ≥ |Q| and n ≡ 1
mod 2, then |Gs

q,q′ ∩ {i | i ≥ |Q| and i ≡ 1 mod 2}| = ∞.

If the same even quantification level n with n ≥ 2|Q||Q| can be read in different
locations of an DFA A, a smaller, also even, quantification level n′ with n′ ≤
2|Q||Q| can be read in the same locations.

Lemma 27. Let A = (Q,Γ, δ, q0, F ) be a DFA and Z ⊆ Q × Q. For all (q, q′) ∈
Z and s ∈ {+,−} the following statement holds: If ∃n ∈ ⋂

(q,q′)∈Z Gs
q,q′ with

n ≥ 2|Q||Q| and n ≡ 0 mod 2, then ∃n′ ∈ ⋂
(q,q′)∈Z Gs

q,q′ with n′ ≤ 2|Q||Q| and
n′ ≡ 0 mod 2.

Lemmata 26 and 27 can be proved by using pumping arguments.

Definition 28. For a DFA A = (Q,Γ, δ, q0, F ), let G
,s
q,q′ := Gs

q,q′ ∩ {i | i ≥ |Q|}
be the set of quantifier levels higher then |Q|. We will define the level of G
,s

q,q′

algorithmically. We set counter ← 2|Q||Q| +1 in the beginning and compute for
each q, q′ ∈ Q and s ∈ {+,−} the level of a G
,s

q,q′ in arbitrary, but fixed order
with Algorithm2.

Definition 29. For a DFA A = (Q,Γ, δ, q0, F ) define restrict(A) as the automa-
ton A′ = (Q′, Γ, δ′, q0, F ) with δ′ being the following modification of δ. For each
p, p′ ∈ Q remove each transition of the form δ(p, b) = p′. Instead, we will intro-
duce a path δ∗(q, bn) = q′ for each n ∈ Gs

q,q′ with n < |Q| using n − 1 supple-
mentary states we add to Q′. Moreover, for each G
,s

q,q′ we add additional paths
δ∗(q, bn) = q′ for each n ∈ level(G
,s

q,q′ ).

In the restricting process we remove all b-transitions to get rid of b-loops. Loop-
free b-transitions are reintroduced in such a way, that the emptiness of the inter-
section with LTQBF is not changed.
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if G�,s
q,q′ ∩ {i | i ≡ 1 mod 2} �= ∅ then

level(G�,s
q,q′ ) ← min

(
G�,s

q,q′ ∩ {i | i is odd and i ≥ counter}
)

counter ← level(G�,s
q,q′ ) + 2

else

level(G�,s
q,q′ ) ← G�,s

q,q′ ∩ {i | i ≡ 0 mod 2 and |Q| ≤ i ≤ 2|Q||Q|}
end

Algorithm 2. Computing the level for G
,s
q,q′ . If possible we pick an existential

representative above the threshold 2|Q||Q|and separate it by quantification level.
Otherwise, a representative for every universal level below the this threshold is
introduced.

5.2 Correctness of the Reduction

Lemma 30. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton. Then,
L(A) ∩ LTQBF �= ∅ if and only if L(restrict(A)) ∩ LTQBF �= ∅.
Proof (proof idea). “⇒”: Let w ∈ L(A) ∩ LTQBF. We use the pumping property
to substitute universal quantifiers by existential ones and shift the existential
quantifiers to the end, while we conflate the unbounded universal quantifiers to
a finite block. Renaming the variables yields a word in L(restrict(A)).

“⇐”: By construction L(restrict(A)) is a proper subset of L(A). ��

5.3 Deciding intReg(LTQBF)

Theorem 2. Let R be a regular language. Then R ∩ LTQBF = ∅ is decidable.

Proof. Let A be the finite automaton recognizing R and let k be the length of
the longest b-factor along an accepting path of restrict(A). Following Theorem6
it is decidable whether L(restrict(A)) ∩ Lk-TQBF = ∅. Lemma 30 states that
L(restrict(A)) contains an encoded true quantified Boolean formula if and only
if L(A) does. Hence, L(A) ∩ LTQBF = ∅ if and only if L(restrict(A)) ∩ LΣk

= ∅
and L(restrict(A)) ∩ LΠk

= ∅. Since the intersection is non-empty if and only if
restrict(A) encodes a true quantified formula, the latter is also decidable. ��

6 Discussion

We have shown that each level ΣP
k , ΠP

k in the polynomial hierarchy, as well as
PSPACE contain complete languages Li such that intReg(Li) is decidable. While
it was known, that for families of formal languages, such as context-free and
indexed languages intReg is decidable, complexity classes, generally, do not have
this property. Thus, the decidability of intReg seemed to be an adequate criterion
to characterize formal language. However, LΣk

and LTQBF show the existence
of languages (probably) outside of NP with the aforementioned property, void-
ing regular intersection emptiness as a formality criterion. Further research in
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differentiating families of formal languages from complexity classes and further
discrediting intReg as a criterion of formality will be presented in the upcoming
article [4].

Since every complexity class has its own complete machine language, for
which intReg is undecidable, an interesting question would be how to characterize
the subset of those elements of a complexity class which do have a decidable
intReg. If we denote for a complexity class X by XintReg the set of all L ∈ X with
decidable intReg(L), our results imply equivalences like PintReg = NPintReg ⇔
P = NP.

The problems we decide in this work can be expected to be of high complexity.
Since w ∈ L ⇔ L∩{w} �= ∅ the complexity of the corresponding word problems
is a lower bound.

An open question is how much influence the kind of encoding has on the
decidability of intReg. In the encoding we used for quantified Boolean formulae
the literals in each clause were given sequentially, similar to Stockmeyer’s [8]
encoding. While letterwise shuffling strings that encode Turing machine configu-
rations have been used to show undecidability results [2], we have the conjecture
that intReg still is decidable for 3-SAT, where the literals in each clause are given
letterwise shuffled. This would only yield the result for NP = ΣP

1 , but leave the
open question whether for the set of true quantified Boolean formulae encoded
letterwise shuffled intReg is decidable.

It would be also interesting to consider regular intersection of complete
problems for complexity classes above PSPACE, such as for example EXP
or EXPSPACE. Also, one could consider the decidability of non-regular sets
(e.g. visibly pushdown languages, or one counter languages) of quantified
Boolean formulae regarding their containment of true formulae.

Acknowledgments. We thank Benjamin Gras for the fruitful discussions during the
TüFTLeR seminar. Also, we give our thanks to Michaël Cadilhac, Silke Czarnetzki and
Michael Ludwig for proof-reading.
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Abstract. As data come out one by one from an infinite stream, auto-
matic learners maintain some string as long term memory, and update
it at every new datum (example) they process. Transduced learners are
generalization of automatic learners. Both kind of learners are evalu-
ated with respect to the space they consume for learning. For automatic
learners, it is unknown whether at any point, the size of the long term
memory can be bounded by the length of the longest datum that has
been received so far. Here it is shown that, even when restricting learn-
ing to automatic families, there is a hierarchy of classes that can be learnt
with memory O(nk), and all automatic families which are learnable in
principle can be learnt by a transduced learner using exponential sized
memory.

Keywords: Automata and logic · Inductive inference · Transducers

1 Introduction

Gold [11] introduced the model of learning in the limit from positive data. Subse-
quent research in inductive inference [1,3,6,15,19,22,23] studied also variations
on this model. The basic features of Gold’s model are the following. Let L ⊆ Σ∗

be a language, where Σ is a finite alphabet. The learner gets as input a text for
L, that is, a sequence of strings x0, x1, . . . that contains all members but no
non-member of L. As output, the learner conjectures a sequence of indices e0,
e1, . . . as its hypotheses on what the input language might be. The hypotheses
are taken from some hypothesis space {He : e ∈ I}, where I is the set of pos-
sible indices and every possible learning task equals some He. If the sequence
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of hypotheses converges to an index e for the language L (that is, He = L),
then the learner is said to have learnt the input language from the text. The
learner learns a language L if it learns it from all texts for L. It learns a class
L of languages if it learns all languages in L. To measure the complexity of a
learner, it is convenient to consider the learner as operating in cycles: it starts
with hypothesis e0 and in the n-th cycle, it gets the datum xn and conjectures
the hypothesis en+1. Freivalds et al. [10] and Kinber and Stephan [18] imposed
the condition that between two cycles, the learner remembers only part of its
previous inputs and works via some (long term) memory, which can be restricted.
Thus, the complexity of learners can be measured in terms of two parameters:
(a) the computational complexity of mapping the old memory and input datum
to the new memory and hypothesis and (b) the length of the memory as a func-
tion of the length of the longest example seen so far.

Fundamental choices for (a) are: recursive learners (the mapping can be com-
puted by a Turing machine), transduced learners (the mapping can be computed
by a finite transducer) and automatic learners (the mapping is an automatic
function). Pitt [23] showed that many complexity-theoretic restrictions—like
requiring that the update time in each cycle be carried out in time polynomial in
the sum of the lengths of all inputs seen so far—do not give a real restriction for
most learning criteria from classical inductive inference. Automatic learners are
more severely restricted and offer an interesting object of study [5,13]. In par-
ticular, it is natural to investigate the target classes that are represented in an
automata-theoretic framework, namely the automatic families [14]. These offer
a representation that an automatic learner can handle easily. It is also natural
to impose that hypothesis spaces be themselves automatic families containing
the class to be learnt. It turns out that certain such families are learnable by a
recursive learner, but not by an automatic learner. The inability to memorise all
past data is a major weakness of automatic learners and is exploited by many
non-learnability proofs. Still, as shown by Jain et al. [13], w.r.t. the learnability
of automatic families from fat text (with infinitely many occurrences of each
datum), automatic and recursive learners have the same power; their memory
can even be restricted to the length of the longest datum seen so far, the so-
called word length memory limitation.

The current work studies transduced learners which are a generalisation of
automatic learners. For transduced learners, the update mapping of the learner
is computed by a non-deterministic transducer which on all accepting runs, pro-
duces the same outputs for the same inputs. Both inputs (old memory and cur-
rent datum) are read independently, and both outputs (new memory and hypoth-
esis) are written independently. This independence makes transduced learners
more powerful than automatic ones.

For (b), Freivalds et al. [10] imposed that learners operate in cycles and only
remember, from one cycle to the next, information recorded in a (long term)
memory, with restrictions on its length. For automatic and transduced learners,
the memory is a string over a fixed alphabet, that may depend on the learner,
whose size is measured by the length of the string [10,13,18]. In the subfield of
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automatic learning, this way of restricting the memory led to fruitful findings,
still leaving one major question open: is it truly restrictive to bound the mem-
ory by the length of the longest datum seen so far? A positive answer will be
provided for transduced learners. Moreover, there is a learning hierarchy based
on the memory sizes as a function of the length of the longest datum seen so
far. In particular, polynomials and exponential functions of various degrees and
exponents, respectively, are the most prominent memory bounds.

2 Preliminaries

Let N denote the set of natural numbers {0, 1, . . .}. Let Σ denote a finite alphabet
(set of symbols), ε the empty string, and Σ∗ the set of all strings (words) over
Σ. A language is a subset of Σ∗ for some finite alphabet Σ. Concatenation of
strings u and v is denoted by u · v, or just uv when the context makes it clear.
A string u of length n can be considered as a function from {0, 1, . . . , n − 1}
to Σ, with u(i) the (i + 1)-th symbol in u. Length lexicographic order between
strings is defined as follows: u <ll v if either |u| < |v| or |u| = |v| and u is
lexicographically before v w.r.t. some underlying ordering of Σ.

2.1 Automatic Relations and Functions

A relation R = {(u1, . . . , un) : ui ∈ Σ∗} is said to be automatic iff it is recog-
nised by a finite automaton with n inputs which reads all inputs at the same
speed (one symbol per input and cycle with a special symbol # when the cor-
responding input is exhausted) [4,6,12,16,17,24]. A function f with m inputs
and n outputs is said to be automatic iff the corresponding relation, that is,
R = {(u1, . . . , um, v1, . . . , vn) : f(u1, . . . , um) = (v1, . . . , vn)}, is automatic. A
class of languages {Le : e ∈ I} defined using indexing I is said to be an auto-
matic family if I is regular and {(e, x) : x ∈ Le} is automatic.

2.2 Transducers

A transducer processes its inputs at different speeds; its transition function δ
does not necessarily process one symbol from each input component, but pos-
sibly none or many. Formally, a transducer is a tuple (Q,n,Σ, δ, q0, F ), where
Q is a finite set of states, n is input arity, Σ is a finite set of symbols, q0 ∈ Q
is the starting state, F ⊆ Q is the set of final states, and the transition func-
tion δ is a subset of Q × (Σ∗)n × Q. A run of a transducer is of the form:
(p0, s1,1, . . . , s1,n, p1), (p1, s2,1, . . . , s2,n, p2), . . . , (pk−1, sk,1, . . . , sk,n, pk), where
p0 is the starting state and for all i < k, (pi, si+1,1, si+1,2, . . . , si+1,n, pi+1) ∈ δ.
Note that the lengths of the si,j may differ. The run is accepting if pk ∈ F , and the
accepted input is (w1, w2, . . . , wn), where wi = s1,is2,i . . . sk,i for i = 1, 2, . . . , n.
The relation recognised by a transducer is the set of inputs it accepts (in some
accepting run); such relations are called rational or transduced. Note that the
main difference between an automatic relation and a transduced relation is that



172 S. Jain et al.

the transducer can read the inputs independently at different speeds and there-
fore the non-determinism of the transducer may prove useful. Nivat [20] provided
a characterisation when a relation is transduced which is based on the notion
of a homomorphism. Here a homomorphism is a mapping h which replaces each
symbol a by a possibly empty word h(a). Now a k-ary relation R is transduced
iff there is a regular set A and there are k homomorphisms h1, . . . , hk such that,
for each symbol, at most one of the homomorphism h1, . . . , hk maps this symbol
to a non-empty word and the relation R is the set {(h1(u), . . . , hk(u)) : u ∈ A}.

A function f is said to be transduced or rational if the relation
{(u1, . . . , um, v1, . . . , vn) : f(u1, . . . , um) = (v1, . . . , vn)} is rational and every
input tuple (u1, . . . , um) has a unique output tuple (v1, . . . , vn). A class of lan-
guages {Le : e ∈ I} indexed by I is said to be a transduced family if I is regular
and the relation {(e, x) : x ∈ Le} is recognised by some transducer; the class is
automatic iff the relation is recognised by a finite automaton. Transduced fami-
lies have some of the decidability properties of automatic families, in particular
those below.

Proposition 1. If {Le : e ∈ I} is a transduced family and a transducer M
accepts {(e, x) : x ∈ Le, e ∈ I}, then one can effectively (from M, parameter y
and finite set D), for each of the following sets, find a DFA recognising it:

(a) Ay = {p : y ∈ Lp};
(b) A′

y = {p : y �∈ Lp};
(c) By = {p :

{
z ∈ Lp : |z| > |y|} �= ∅};

(d) B′
y = {p :

{
z ∈ Lp : |z| > |y|} = ∅};

(e) CD = {p : D ⊆ Lp};
(f) C ′

D = {p : D = Lp};
(g) Fe = {x : x ∈ Le}.
In particular, given d and e, it can be effectively determined whether Ld ⊆ Le

and whether Ld ⊂ Le.

2.3 Learning Theory

Gold [11] defined a text as a mapping T from N to Σ∗ ∪ {#}, whose contents,
denoted content(T ), is the set {T (x) : x ∈ N} \ {#}; it is a text for a language
L iff content(T ) = L. The initial segment of text T of length n is denoted T [n].

To learn a target class L = {Le : e ∈ I}, defined using indexing I, a learner
uses a hypothesis space H = {He : e ∈ J}, defined using indexing J , with L ⊆ H.

The following notions are adapted from Gold [11]. A learner uses some alpha-
bet Γ for its memory. It starts with an initial memory and hypothesis. On each
datum, it updates its memory and hypothesis. That is, a learner is a map-
ping M from (Γ ∗ ∪ {?}) × (Σ∗ ∪ {#}) to (Γ ∗ ∪ {?}) × (J ∪ {?}), together
with an initial memory mem0 and hypothesis hyp0. Intuitively, ? denotes both
null memory (different from ε) and null hypothesis (when the learner issues
no hypothesis). One can extend the definition of a learner to arbitrary initial
sequences of texts T , setting M(T [0]) = (mem0, hyp0), and then inductively
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setting M(T [n+1]) = (memn+1, hypn+1) = M(memn, T (n)). Intuitively, memn

and hypn are the memory and conjecture of the learner after having seen the
data in T [n], respectively. A learner M converges on text T to a hypothesis e iff
for all but finitely many n, hypn = e. Note that the memory is not required to
converge. A learner M explanatorily learns a language L if for all texts T for L,
M converges on T to a hypothesis e with He = L. A learner M (explanatorily)
learns a class L of languages iff it learns each L ∈ L [8,9,11].

Blum and Blum [3] defined a finite sequence σ to be a locking sequence for a
learner M on language L if (a) content(σ) ⊆ L, (b) the hypothesis e of M on σ
satisfies He = L, and (c) for all τ with σ ⊆ τ and content(τ) ⊆ L, the hypothesis
of M on τ is e. They showed that if M learns L then such a σ exists.

A learner M is said to be recursive if the corresponding function F , mapping
(old memory, datum) to (new memory, hypothesis), is recursive. Jain et al. [13]
defined M to be an automatic learner if F is automatic. Finally, M is said to be
a transduced learner if F can be computed by a transducer.

In this work, learners are recursive, and can or not be transduced or auto-
matic. The memory limitations of the learner discussed in this paper is based
on the length of the memory of the learner in terms of the length of the longest
datum seen so far. Thus, for example, a learner M is word size memory bounded
if for some constant c, for all finite sequences σ, if M(σ) = (mem, hyp), and
n = max{|x| : x ∈ content(σ)}, then |mem| ≤ n + c. Similarly, the learner is
O(n2) memory bounded if |mem| ≤ cn2 + c.

Example 2. For all e ∈ {0, 1}+, let Le = {0, 1}∗ \ ({0, 1}∗ · {e}) and consider
the class defined by the transduced family {Le : e ∈ {0, 1}+}. The transduced
learner for this family has its current memory always the same as the current
hypothesis e (initialised to 0). For an input word x, if x ends with e then e is
updated to its length-lexicographic successor else e remains unchanged. Thanks
to its non-deterministic nature, a transducer can check whether x ends with e
and give the corresponding output. Note that both outputs, new memory and new
hypothesis, of the update function of this learner are always the same.

During the learning process, as long as the current value of e is length-
lexicographically strictly below the target, the learner will eventually see an input
ending with e, as there are infinitely many of these inputs, and then update
the hypothesis and memory to the next binary word in length-lexicographical
order. Eventually e reaches the correct value and then no further datum can
cause another update of the hypothesis. Hence, one can verify that the trans-
duced learner indeed converges to the correct hypothesis. Proposition 3 provides
a more complicated version of this class that has a transduced but not an auto-
matic learner.

3 Automatic versus Transduced Learners and
Memory-Size Hierarchies for Transduced Learners

Proposition 5 shows that some automatic classes can be learnt by transduced
learners but not by automatic ones. Proposition 3 shows that furthermore, if
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one considers transduced classes, then a transduced learner can succeed while
keeping the word-size memory bound, whereas no automatic learner succeeds.

Proposition 3. There is a transduced family which can be learnt by a transducer
with word-size memory while it does not have an automatic learner at all.

The following result provides lower bounds for the long term memory in terms
of the longest example seen so far.

Proposition 4. Suppose that S is a regular set and f(n) =
∣
∣{x ∈ S : |x| ≤ n}∣

∣.

Let L =
{

L : ∃n
[
L ⊆ {x ∈ S : |x| ≤ n} and f(n) − 1 ≤ |L| ≤ f(n)

]}
. Then

any learner, whether automatic, transduced or recursive, needs in the worst case
memory of length at least f(n)/c, for some constant c, after having seen some
sequence containing only words of length up to n.

Proof. Consider any learner M for L which uses alphabet Γ for its memory.
For any n, consider L = {x ∈ S : |x| ≤ n}. Suppose there are two finite

sequences σ and τ with content(σ) �= content(τ), content(σ) ∪ content(τ) ⊆ L,
and the memories of M after having seen the inputs σ and τ are the same. Let z
be in the symmetric difference of content(σ) and content(τ), say in content(σ) \
content(τ). Let T be a text for L \ {z}. Now, M either converges to the same
hypothesis on σT and τT or fails to converge on both. As σT and τT are texts
for L and L \ {z}, respectively, which are different languages in L, M fails to
learn at least one of these languages.

It follows that M has at least 2f(n) different memory values on different finite
sequences with elements from S of length at most n. Thus, at least one of these
memory values must have length at least f(n)/c, where c = log2(|Γ |). 
�
If f(n) = nk for some constant k, the lower bound is Ω(nk); if f(n) = cn for some
constant c, the lower bound is Ω(cn) on the maximum length of the memory on
input sequences containing words of length up to n. It will be shown that for
some regular languages S, similar upper bounds are obtained.

Proposition 5. Let S = {0}∗ · {1}∗. Let f(n) =
∣
∣{x ∈ S : |x| ≤ n}∣

∣ (which
is equal to (n2 + 3n + 2)/2). Define L as the set of all languages L for which
∃n

[
L ⊆ {x ∈ S : |x| ≤ n} and f(n) − 1 ≤ |L| ≤ f(n)

]
. Then L can be learnt

by a transduced learner with memory size O(n2) but L cannot be learnt by any
automatic learner, even without explicit memory bounds.

Proof. Suppose for a contradiction that an automatic learner M learns L. Fix-
ing n ∈ N, consider a sequence σ containing exactly n elements of length at most
n from S. As M is automatic, its memory on σ can be of length at most cn for
some constant c, and thus the number of possible memories of M after seeing σ is
bounded by dn for some constant d. On the other hand, there are at least

(
n2/2

n

)

possible contents of such sequences, and for large enough n, this is larger than
dn. Thus, for large enough n, there exist two sequences σ and σ′, with different
content, each containing exactly n elements of length at most n, such that the
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memory of M after seeing σ and σ′ is the same. Let x ∈ content(σ)\content(σ′),
and let T be a text for S ∩{y ∈ S : |y| ≤ n} \ {x}. Now, M on texts σT and σ′T
either does not converge or converges to the same conjecture even though they
are texts for different languages in L. Thus, M cannot learn L.

Now it is shown that a transduced learner can learn L. For representation of
languages in L, the indices are of the form 0i1j2k and 3k+1. If w = 0i1j2k then
Lw contains all words in S of length up to i + j + k except for 0i1j . If w = 3k+1

then Lw contains all members of S of length up to k.
The learner uses as memory a string of the form {0, 1}∗, where certain posi-

tions are marked. Intuitively, for memory w = w(0)w(1) . . . w(n − 1), each posi-
tion in the memory string represents a string of the form 0i1j , the marked
positions representing the strings that have been seen in the input. A posi-
tion p in the string represents the string formed by taking the number of 0s in
w(0)w(1) . . . w(p), followed by p − r 1s for the largest r ≤ p such that w(r) = 0;
if there is no 0 in w(0)w(1) . . . w(p) then r is taken to be −1. Thus, a position
p represents the string formed by taking the sequence of 0s up to position p
(inclusive) followed by the number of 1s between position p (inclusive) and the
position of the last 0 up to position p (inclusive).

For example, if the strings 00, 001 and 011 have been observed, then the
value of the memory data structure is 011′0′1′ and the strings represented by
the positions of the marked (primed) letters as ordered in the memory word are
011, 00 and 001. Note that the principle of taking the “maximal numbers of 0s”
before the third mark implies that the word 0111 is not represented in the above
memory as there is a 0 between the 1s taken over. The overall goal of updating
the memory is to let the current input word 0i1j be represented in the memory
by a position and the symbol at this position be marked. The beginning of the
memory can be marked in order to record that ε has been observed in the input.

The learner starts with memory ε without any marks. Now suppose that at
any time, (1) the new input word is 0i1j , (2) i′ is the number of 0s in the current
memory word, and (3) j′ is the number of 1s in the current memory word which
have exactly i 0s in the memory before their position. Note that j′ is 0 if either
i′ < i or i′ ≥ i and after the first i 0s, either the word ends or another 0 follows.
The non-deterministic transducer does the following:

1. First, while there is a 0 to be read in both memory and input datum d: read
old memory copying each symbol to new memory and whenever a 0 is read,
read it also on d until at least one of the memory or d has only symbols
from {1}∗ left; thus the memory is copied until min{i, i′} 0s (along with
intermediate 1s in the memory) are copied from the old memory and d has
the first min{i, i′} symbols read.

2. If i′ ≥ i (this is determined by the transducer by guessing, and verifying when
reading the rest of the words) then read j 1s from the current datum and j′

1s from the old memory and write max{j, j′} 1s to the new memory. Then
copy the remaining part of the old memory to the new memory.
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3. If i′ < i then first copy all remaining 1s from the old memory to the new
memory and then copy the remaining symbols 0i−i′

1j from the current datum
to the new memory.

4. Besides this, all symbols copied from the old memory to the new memory keep
their marks in case they have some already, and the symbol at the position
representing 0i1j in the new memory also receives a mark.

What follows demonstrates how the hypothesis is written when writing to the
new memory, as both outputs are independently written into different words.
Still, the workings of the transducer is best understood when the transducer is
thought of as non-deterministically extracting hypothesis from new memory.

Note that the memory keeps track of all words seen in the input using the
marks. It can also be used to indicate missing words: if a position representing
0i1j is unmarked, then 0i1j has not been seen in the input; if the i-th 0 in the
memory does not have a 1 preceding it, then 0i−11 is not seen in the input.
Call a word v stored in the memory maximal iff v1 is not represented in the
memory. Note that if all positions in the memory are marked and the lengths
of all maximal words in the memory except the maximal word v have the same
parity as the length of v1, then v1 has not been seen in the input so far, even
though v1’s length is at most that of the maximal word in the input language.

When writing the new hypothesis, the learner can verify and act according
to the first of the following cases which applies. Suppose i′ is the total number
of 0s in the memory.

1. If the position representing ε is not marked, then the hypothesis is 2i′
;

2. If the memory ends in 1, then the hypothesis is 0i′+1;
3. If some 0 in the memory is not preceded by a 1, then the hypothesis is

0i−11i′−i+1 for the least i such that the i-th 0 is not preceded by a 1;
4. If some 0 in the memory is not marked then the hypothesis is 0i2i′−i for the

least i such that the position representing 0i is not marked;
5. If some 1 is not marked then the hypothesis is 0i1j2j′−j where j is such that

0i1j is represented by the position of the leftmost unmarked 1 and j′ is the
number of 1s between the i-th and (i + 1)-st 0s in memory;

6. If all positions are marked and the lengths of all maximal words represented,
except for the maximal word v, share the same parity, then the hypothesis is
v1;

7. If none of the above conditions applies then the hypothesis is 3i′+1, which is
the set of all words in S of length up to i′.

Note that in order to check the sixth case, the transducer can always count the
number of 0s up to the current position modulo 2, and then count the number
of 1s following this 0 modulo 2. Also, the transduced learner can easily verify for
any particular case that none of the earlier cases applies. Thus, the learner can
generate the hypothesis based on the above.

The memory keeps track of all data seen in the above described data struc-
ture. Also, the hypothesis is computed in such a way that it is correct whenever
all of the shortest f(n) members of S except perhaps one have been seen, but no



Learners Based on Transducers 177

longer data have been observed. As an example, the following table illustrates
data, memory and hypothesis updates of the learner. The initial memory is ε
and the old memory is always the new memory of the previous step.

Datum New memory w Words in Lw

1 1′ ε None

01 1′01′ 00 ε, 0, 1, 01, 11

ε ′1′01′ 00 ε, 0, 1, 01, 11

00 ′1′01′0′ 02 ε, 1, 00, 01, 11

0 ′1′0′1′0′ 11 ε, 0, 1, 00, 01

11 ′1′1′0′1′0′ 333 ε, 0, 1, 00, 01, 11

The above example illustrates parts of the proof. 
�
The previous proof can be generalised to larger alphabet sizes; however, one has
to fix the alphabet size and exponent of the polynomial. Thus both preceding
results give the following corollary, in which the bound Θ(nk) for the family
given by Lk indicates that one can learn with memory size O(nk), but every
learner needs at least memory size Ω(nk).

Corollary 6. Suppose Σ has k symbols 0, 1, . . . , k−1, and let Sk be {0}∗ · {1}∗ ·
. . . · {k − 1}∗. Let Lk be the class of all Lvw =

{
x ∈ Sk : |x| ≤ |vw| and x �= v

}

for all w ∈ {k}∗ and v ∈ {0}∗ ·{1}∗ · . . . ·{k−1}∗, and Lw be
{
x ∈ Sk : |x| < |w|}

for all w ∈ {k + 1}+. Note that the number of elements in Sk of length at most
n is f(n) =

(
n+k

k

)
=

∑
m≤n

(
m+k−1

k−1

)
. Now, Lk can be learnt by a transduced

learner with a memory length bound of Θ(nk), where n is the length of the
longest example seen so far.

An additional corollary to Proposition 5 can be obtained with respect to target-
sized learners. The result uses the following fact which Jain et al. [14] showed
for all automatic families: there is a constant c such that for each language Le,
if words in the language Le have at most length n then the shortest index d of
Le has at most length n+ c. Stephan [25] defined a learner to have a target-sized
memory bound if the length of the memory is never longer than the length of the
shortest index of the language being learnt plus a constant. If one relaxes this
bound by just requiring the existence of a function f such that the memory is
never longer than f(n) with n being the size of the shortest index of the target,
then one can get the following corollary.

Corollary 7. The class Lk (from Corollary 6) of all subsets of {0}∗ · {1}∗ · . . . ·
{k−1}∗ of words up to length n except perhaps one, can be learnt by a transduced
learner with target-sized memory of size O(f(n)), where f(n) =

(
n+k

k

)
, but not

with any better memory constraint, except for a multiplicative constant.
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The class of all languages of binary words up to length n except perhaps for
one can be learnt by a transduced learner with exponential target-sized memory.

The class of all Lw = {v ∈ Σ∗ : ε <ll v ≤ll w} with w �= ε and Lε = Σ∗

cannot be learnt with any type of target-sized memory.

Proposition 8. If an automatic class can be explanatorily learnt from text then
there is a transduced learner for the same class which learns it with O(cn) sized
memory where c is some constant that depends only on the class and where n is
the size of the longest datum seen so far.

4 A Space Bound for Learning All Learnable Transduced
Classes

A learner M is set-driven [21] if for all sequences σ and τ such that content(σ) is
equal to content(τ), M’s memory and hypothesis are the same after seeing either
σ or τ . It is first shown that every learnable transduced family can be learnt by a
set-driven recursive learner, which can be obtained uniformly from a transducer
learner for the family. This learner is defined for all transduced families. However,
for unlearnable families, the learner will fail on some input texts. The learner
employs the properties of transduced families listed in Proposition 1.

A tell-tale set for a language L with respect to a class L of languages is a
finite subset D of L such that for all L′ ∈ L, if D ⊆ L′ ⊆ L then L′ = L. Angulin
[1] has shown that for any learnable family of languages L, every language in L
has a tell-tale with respect to L.

Proposition 9. For every learnable transduced family L = {Le : e ∈ I}, some
set-driven recursive learner learns that family. Furthermore, this learner can be
effectively obtained from the transducer describing the transduced family.

Hence for some recursive function g, the memory of the recursive learner is
bounded by g(n) where n is the length of the longest datum seen so far.

Proof. The learner is given by the following algorithm. Let D = {a1, a2, . . . , am}
be the set of words observed in the input so far (where each ai is distinct). Let
f(D) be the length-lexicographically least index e with D ⊆ Le (note that by
Proposition 1, this can be found effectively). Let n be the maximum of

– the length of the description of the DFA accepting I,
– the length of the description of the transducer accepting the set defined as

{(e, x) : x ∈ Le, e ∈ I} for the transduced family {Le : e ∈ I} to be learnt,
– the alphabet size for the transduced family and
– the lengths |a1|, |a2|, . . ., |am| of all words in D.

Now the learner M chooses the first of the following options which applies:

1. If there is an e ∈ I with Le = D then M outputs the length-lexicographically
least such e (by Proposition 1, this is decidable for transduced families);
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2. If f(D) is defined, because there is e with D ⊆ Le, then M selects the length-
lexicographically least index e of length at most |f(D)|+n such that D ⊆ Le

and there is no index d of length at most |f(D)| + n with D ⊆ Ld ⊂ Le;
3. Otherwise, D is not consistent with any hypothesis in the family and M

outputs ? to signal that there is no valid conjecture.

By definition, M is set-driven. Furthermore, if the input language Le is finite
then M will converge to its length-lexicographically least index after having seen
all elements. If Le is infinite then there must exist a finite subset D of L (a tell-
tale set) such that there is no language Ld in L such that D ⊆ Ld ⊂ Le. Thus,
for large enough n, and thus after having received large enough datum, step 2
would output the least index for Le. Thus, M learns all languages in L.

For the function g, note that there are only finitely many pairs of descriptions
of transduced families {Le : e ∈ I} and data sets D ⊆ {0, 1, . . . , n − 1}∗ such
that their size is bounded by n. One can therefore take g(n) to be the maximum
of the space used by the algorithm when run with the given parameterisation
describing the transduced family and the data set D as input. The number g(n)
can be algorithmically computed from n. 
�
Proposition 10. If a class has a set-driven recursive learner using space bound
g(n), then it also has a transduced learner using space bound g(n) + cn for its
memory, for some constant c, with n denoting the size of the longest datum seen
so far.

5 Conclusion and Subsequent Work

It was demonstrated that whereas many questions on memory usage remain
open for automatic learners, transduced learners that learn a transduced family
can always bound the memory size as a function of the longest datum seen so
far. When learning automatic families, concrete bounds have been found, and a
hierarchy of polynomial and exponential bounds has emerged. It has been shown
that every family can be learnt using some exponential bound.

Subsequent work addressed the question of the extent to which transduced
learners can satisfy additional properties like consistency [2], conservativeness
[1,22] and iterativeness [26]. Many learners constructed here can be made itera-
tive; furthermore, transduced learners can be made consistent and conservative,
similarly to the polynomial-time setting [7]; however, these criteria cannot be
combined with more restrictive memory-limitations. These results have been
delayed to the full version of the paper due to space limitations.
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Abstract. We explore an approach to model learning that is based
on using satisfiability modulo theories (SMT) solvers. To that end, we
explain how DFAs, Mealy machines and register automata, and observa-
tions of their behavior can be encoded as logic formulas. An SMT solver
is then tasked with finding an assignment for such a formula, from which
we can extract an automaton of minimal size. We provide an implemen-
tation of this approach which we use to conduct experiments on a series
of benchmarks. These experiments address both the scalability of the
approach and its performance relative to existing active learning tools.

1 Introduction

We are interested in algorithms that construct black-box state diagram models
of software and hardware systems by observing their behavior and performing
experiments. Developing such algorithms is a fundamental research problem that
has been widely studied. Roughly speaking, two approaches have been pursued in
the literature: passive learning techniques, where models are constructed from
(sets of) runs of the system, and active learning techniques, that accomplish
their task by actively doing experiments on the system.

Gold [11] showed that the passive learning problem of finding a minimal
DFA that is compatible with a finite set of positive and negative examples, is
NP-hard. In spite of these hardness results, many DFA identification algorithms
have been developed over time, see [13] for an overview. Some of the most suc-
cessful approaches translate the DFA identification problem to well-known com-
putationally hard problems, such as SAT [12], vertex coloring [10], or SMT [18],
and then use existing solvers for those problems.

Angluin [5] presented an efficient algorithm for active learning a regular lan-
guage L, which assumes a minimally adequate teacher (MAT) that answers two
types of queries about L. With a membership query, the algorithm asks whether
or not a given word w is in L, and with an equivalence query it asks whether or
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not the language LH of an hypothesized DFA H is equal to L. If LH and L are
different, a word in the symmetric difference of the two languages is returned.
Angluin’s algorithm has been successfully adapted for learning models of real-
world software and hardware systems [19,21,25], as shown in Fig. 1. A member-
ship query (MQ) is implemented by bringing the system under learning (SUL)
in its initial state and the observing the outputs generated in response to a given
input sequence, and an equivalence query (EQ) is approximated using a confor-
mance testing tool (CT) [17] via a finite number of test queries (TQ). If these
test queries do not reveal a difference in the behavior of an hypothesis H and
the SUL, then we assume the hypothesis model is correct.

TQs

SUL

CT

MQs

EQ

Learner Teacher

Fig. 1. Model learning within the MAT framework.

Walkinshaw et al. [26] observed that from each passive learning algorithm
one can trivially construct an active learning algorithm that only poses equiv-
alence queries. Starting from the empty set of examples, the passive algorithm
constructs a first hypothesis H1 that is forwarded to the conformance tester.
The first counterexample w1 of the conformance tester is then used to construct
a second hypothesis H2. Next counterexamples w1 and w2 are used to construct
hypothesis H3, and so on, until no more counterexamples are found.

In this article, we compare the performance of existing active learning algo-
rithms with passive learning algorithms that are ‘activated’ via the trick of
Walkinshaw et al. [26]. At first, this may sound like a crazy thing to do: why
would one compare an efficient active learning algorithm, polynomial in the size
of the unknown state machine, with an algorithm that makes a possibly super-
polynomial number of calls [6] to a solver for an NP-hard problem? The main
reason is that in practical applications i/o interactions often take a significant
amount of time. In [22], for instance, a case study of an interventional X-ray
system is described in which a single i/o interaction may take several seconds.
Therefore, the main bottleneck in these applications is the total number of mem-
bership and test queries, rather than the time required to decide which queries to
perform. Also, in practical applications the state machines are often small, with
at most a few dozen states (see for instance [3,4,22]). Therefore, even though
passive learning algorithms do not scale well, there is hope that they can still
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handle these applications. Active learning algorithms rely on asking a large num-
ber of membership queries to construct hypotheses. Passive learning algorithms
pose no membership queries, but instead need a larger number of equivalence
queries, which are then approximated using test queries. A priori, it is not clear
which approach performs best in terms of the total number of membership and
test queries needed to learn a model.

Our experiments compare the original L∗ [5] and the state-of-the-art TTT
[15] active learning algorithm with an SMT-based passive learning algorithm
on a number of practical benchmarks. We encode the question whether there
exists a state machine with n states that is consistent with a set of observations
into a logic formula, and then use the Z3 SMT solver [9] to decide whether this
formula is satisfiable. By iteratively incrementing the number of states we can
find a minimal state machine consistent with the observations. As equivalence
oracle we use a state-of-the-art conformance testing algorithm based on adap-
tive distinguishing sequences [16,23]. In line with our expectations, the passive
learning approach is competitive with the active learning algorithms in terms of
the number of membership and test queries needed for learning.

An advantage of SMT encodings, when compared for instance with encodings
based on SAT or vertex coloring, is the expressivity of the underlying logic. In
recent years, much progress has been made in extending active learning algo-
rithms to richer classes of models, such as register automata [2,8,14] in which
data may be tested and stored in registers. We show that the problem of finding a
register automaton that is consistent with a set of observations can be expressed
as an SMT problem, and compare the performance of the resulting learning
algorithm with that of Tomte [2], a tool for active learning of register automata,
on some simple benchmarks. New algorithms for active learning of FSMs, Mealy
machines and various types of register automata are often extremely complex,
and building tools implementations often takes years [2,8,15]. Adapting these
tools to slightly different scenarios is typically a nightmare. One such scenario is
when the system is missing reset functionality. This renders most active learn-
ing tools impractical, as these rely on the ability to reset the system. Developing
SMT-based learning algorithms for register automata in settings with and with-
out resets only took us a few weeks. This shows that the SMT-approach can be
quite effective as a means for prototyping learning algorithms in various settings.

The rest of this paper is structured as follows. Section 2 describes how one
can encode the problem of learning a minimal consistent automaton in SMT.
The scalability and effectiveness of our approach, and its applicability in practice
are assessed in Sect. 3. Conclusions are presented in Sect. 4.

2 Model Learning as an SMT Problem

This section describes how to express the existence of an automaton A of at most
n states that is consistent with a set of observations S in a logic formula. If and
only if there exists an assignment to the variables of this formula that makes it
true, then exists an automaton A with at most n states that is consistent with S.
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We use an SMT solver to find such an assignment. If the SMT solver concludes
that the formula is satisfiable, then its solution provides us with A.

We distinguish three types of constraints:

– axioms must be satisfied for A to behave as intended by its definition.
– observation constraints must be satisfied for A to be consistent with S.
– size constraints must be satisfied for A to have n states or less.

Hence, the problem can be solved by iteratively incrementing n until the encod-
ing of the axioms, observation constraints and size constraints is satisfiable.

In the following subsections, we present encodings for deterministic finite
automata (Sect. 2.1), register automata (Sect. 2.2), and input-output register
automata (Sect. 2.3). Not included here are encodings for Mealy and Moore
machines. These are available in the extended version of this work1.

2.1 An Encoding for Deterministic Finite Automata

A deterministic finite automaton (DFA) accepts and rejects strings, which are
sequences of labels. We define a DFA as follows.

Definition 1. A DFA is a tuple (L,Q, q0, δ, F ) comprising a finite, non-empty
set of labels L, a finite non-empty set of states Q, an initial state q0 ∈ Q, a
transition function δ : Q × L → Q and a set of accepting states F ⊆ Q.

Let x be a string. We use xi to denote ith label of x. We use x[i,j] to denote
the substring of x starting at position i and ending at position j (inclusive), i.e.
x = x[1,|x|]. A DFA accepts a string x if its computation ends in an accepting
state, or more formally, if δ(q0, x) ∈ F where δ is extended to strings.

Let S+ be a set of strings that should be accepted, and let S− be a disjoint
set of strings that should be rejected. Let S be the set that contains all of these
strings, along with their labels, i.e. S = {(x, true) : x ∈ S+} ∪ {(x, false) : x ∈
S−}. A DFA is consistent with S if it accepts all strings in S+, and rejects all
strings in S−.

In our DFA encoding, Q is a finite subset of the (non-negative) natural num-
bers N with q0 = 0, while F is encoded as a function λ : Q → B, such that
q ∈ F ⇐⇒ λ(q) = true.

Similarly to Heule and Verwer [12] and Bruynooghe et al. [7], we arrange
elements of S in an observation tree (OT) with the following definition:

Definition 2. An OT for S = {S+, S−} is a tuple (L,Q, λ), where L is a set
of labels, Q = {x ∈ L∗ : x is a prefix of a string in S+ ∪ S−}, λ : S+ ∪ S− → B

is a output function for the strings, with x ∈ S+ ⇐⇒ λ(x) = true.

An OT allows us to provide efficient encodings for the labeled strings in S.
Suppose an OT T = (L,QT , λT ) for a given set S = {S+, S−}. To find a DFA

1 https://gitlab.science.ru.nl/rick/z3gi/blob/lata/resources/paper.pdf.

https://gitlab.science.ru.nl/rick/z3gi/blob/lata/resources/paper.pdf


186 R. Smetsers et al.

A = (L,QA, q0, δ
A, F ) consistent with S, we define a surjective (i.e. many-to-

one) function map : QT → QA encoding correspondence between prefixes in the
OT and states in A. We then introduce the following observation constraints:

map(ε) = q0 (1)

∀xl ∈ QT : x ∈ L∗, l ∈ L δA(map(x), l) = map(xl) (2)

∀x ∈ S+ ∪ S− λA(map(x)) = λT (x) (3)

Equation 1 maps the empty string to the initial state of A. Equation 2 encodes
the observed prefixes as transitions of A while Eq. 3 encodes the observed out-
puts, with λA encoding F .

Lastly, we limit A to at most n states by the following size constraint:

∀q ∈ {0, . . . , n − 1} ∀l ∈ L
n−1∨

q′=0

δ(q, l) = q′ (4)

2.2 An Encoding for Register Automata

A register automaton (RA) can be seen as an automaton that is extended with
a set of registers that can store data parameters. The values in these registers
can then be used to express conditions over the transitions of the automaton, or
guards. If the guard is satisfied the transition is fired, possibly storing the pro-
vided data parameter (this is called an assignment) and bringing the automaton
from the current location to the next. As such, an RA can be used to accept
or reject sequences of label-value pairs. Unlike finite automata, “states” in a
register automaton are called locations because the state of the automaton also
comprises the values of the registers. Therefore, an infinite number of possible
states can be modeled using a small number of locations and registers.

The RAs we define have the following restrictions. Transitions in an RA
do not imply (dis)equality of distinct registers (right invariance), values cannot
be moved from one register to another (non-swapping) and registers always
store unique values (unique-valued). The first two restrictions help simplify the
encoding while the third is necessary to avoid the non-determinism caused by two
used registers holding the same value. RAs with these restrictions can require
more locations to be consistent with a given set of action strings, than those
without. However, they are equally expressive. For a formal treatment of these
restrictions and their implications, we refer to [2].

We define an RA as follows.

Definition 3. An RA is a tuple (L,R,Q, q0, δ, λ, τ, π). Therein, L, Q, q0 and
λ are a set of labels, a set of locations, the start location, and a location output
function respectively. R is a finite set of registers. δ : Q × L × (R ∪ {r⊥}) → Q
is a register transition function. τ : Q × R → B is a register use predicate, and
π : Q × L → (R ∪ {r⊥}) is a register update function.
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We call a label-value pair an action and denote it l(v) for input label l
and parameter v. We assume w.l.o.g. that parameter values are integers (Z).
A sequence of actions is called an action string, and is denoted by σ. A set
of observations S for an RA comprises a set of action strings that should be
accepted S+, and a set of action strings that should be rejected S−. An RA is
consistent with S = {S+, S−} if it accepts all action strings in S+, and rejects
all action strings in S−.

Roughly speaking, an RA can be described as a DFA (Definition 1) enriched
with a finite set of registers R and two additional functions. The first function,
τ , specifies which registers are in use in a location. In a location q there can be
two types of transitions for a label l and parameter value v. If v is equal to some
used register r, then the transition δ(q, l, r) is taken. Else (v is different to all
used registers), the fresh transition δ(q, l, r⊥) is taken.

The second function, π, specifies if and where to store a value v when a fresh
transition (δ(q, l, r⊥)) is taken. If π(q, l) = r⊥ then the value v on transition
δ(q, l, r⊥) is not stored. Else (if π(q, l) = r for some register r ∈ R), the value v
on transition δ(q, l, r⊥) is stored in register r.

For the RA to behave as intended we introduce the following axioms. First,
we require that no registers are used in the initial location:

∀r ∈ R τ(q0, r) = false (5)

Second, if a register is used after a transition, it was used before or updated:

∀q ∈ Q ∀l ∈ L ∀r ∈ R ∀r′ ∈ (R ∪ {r⊥})
τ(δ(q, l, r′), r) = true =⇒ ( τ(q, r) = true ∨ (r′ = r⊥ ∧ π(q, l) = r) ) (6)

Third, if a register is updated, then it is used afterwards:

∀q ∈ Q ∀l ∈ L ∀r ∈ R π(q, l) = r =⇒ τ(δ(q, l, r⊥), r) = true (7)

Our goal is to learn an RA that is consistent with a set of action strings
S = {S+, S−}. For this, we need to define a function that keeps track of
the valuation of registers during runs over these action strings. Let A =
(L,RA, QA, q0, δ

A, λA, τA, πA) be an RA, and let T = (L × Z, QT , λT ) be an
OT for S. In addition to the map function (map : QT → QA), we define a valu-
ation function val : QT × RA → Z that maps a state of T and a register of A to
the value the register contains in that state.

Before constructing constraints for action strings, we first canonize them by
making them neat [2, Definition 7]. An action string is neat if each parameter
value is equal to either a previous value, or to the largest preceding value plus
one. To exemplify, let a be an input label, and let a(3)a(1)a(3)a(45) be an action
string, then a(0)a(1)a(0)a(2) is its corresponding neat action string. Aarts et al.
[1] show that an RA can be learned by just studying its neat action strings.

Observation constraints for an RA are constructed as follows. First, we map
the empty string to the initial location of A (Eq. 1). Second, we assert that a
register is updated if and only if its valuation changes:
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∀σl(v) ∈ QT ∀r ∈ RA val(σl(v), r) �= val(σ, r) ⇔ πA(map(σ), l) = r (8)

We proceed by formulating how a register’s valuation changes:

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) =

⎧
⎪⎨

⎪⎩
v

if δA(map(σ), l, r⊥) = map(σl(v))
∧ π(map(σ), l) = r

val(σ, r) otherwise
(9)

We then encode the observed transitions:

∀σl(v) ∈ QT

map(σl(v)) =

⎧
⎪⎨

⎪⎩
δA(map(σ), l, r)

if ∃!r ∈ R : τA(map(σ), r) = true

∧ val(σ, r) = v

δA(map(σ), l, r⊥) otherwise
(10)

Finally, we encode the observed outputs, which can be done in the same way as
for DFAs (see Eq. 3).

The task for the SMT solver is to find a solution that is consistent with these
constraints. Obviously, we are interested in an RA with the minimal number of
locations and registers. The number of locations can be limited in the same way
as we limited states in DFAs (see Eq. 4). The number of registers is defined by
the variables r that we quantify over in the presented equations. Therefore, they
can be limited as such. In our case, the number of registers is never higher than
the number of locations (because we can only update a single register from each
location). Hence, the learning problem can be solved by iteratively incrementing
the number of locations n, and for each n incrementing the number of registers
from 1 to n, until a satisfiable encoding is found.

2.3 An Extension for Input-Output Register Automata

An input-output register automaton (IORA) is a register automaton transducer
that generates an output action (i.e. label and value) after each input action. As
in the RA-case, we restrict both input and output labels to a single parameter.
Input and output values may update registers. Input values may be tested for
(dis)equality with values in registers. Output values can be equal to the values
stored, or may be fresh. As such, an input-output register automaton can be
used for modeling software that produces parameterized outputs.

For a formal description of IORAs we refer to [1]. We define an IORA in
Definition 4. Again, in the interest of our encoding, our definition is very different
from that in [1]. Despite this, the semantics are similar.

Definition 4. An IORA is a tuple (I,O,R,Q, q0, δ, λ, τ, π, ω). Therein, I and O
are finite, disjoint sets of input and output labels. R, Q, q0, τ and π are the same
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as for an RA (Definition 3). δ : (Q∪{q⊥})× (I ∪O)× (R∪{r⊥}) → (Q∪{q⊥})
is a register transition function with a sink location. λ : (Q ∪ {q⊥}) → B is a
location output function with a sink location while ω : Q → B is a location type
function which returns true if a location is an input location, and false if it
is an output location.

A set of observations S for an IORA consists of action traces, which are pairs
(σI , σO) where σI ∈ (I × Z)∗ is an input action string, and σO ∈ (O × Z)∗ is an
output action string with |σI | = |σO|. An IORA is consistent with a set S if for
each pair (σI , σO) ∈ S it generates σO when provided with σI .

Despite that semantically an IORA is a transducer, we define it as an RA
(Definition 3) which distinguishes between input and output labels, and which
defines an additional function ω for the location type. From an input location
transitions are allowed only for input actions. After an input action the IORA
reaches an output location, in which a single transition is allowed. This transition
determines the output action generated in response, and the input location the
IORA will transition to. Transitions that are not allowed lead to a designated
sink location, which is denoted q⊥.

Using this definition we incorporate the axioms defined for our RA encoding
(Eqs. 5–7) also in our IORA encoding. To these, we add the following axioms for
an IORA to behave as intended.

First, observe that we do not use λ as an output function for an IORA.
Instead, we use it to denote which locations are allowed. Hence, we require that
the sink location q⊥ is the only rejecting location:

∀q ∈ (Q ∪ {q⊥}) λ(q) =

{
false if q = q⊥
true otherwise

(11)

Second, we require that transitions do not lead to the sink location:

∀q ∈ Q ∀o ∈ O ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, o, r) = q⊥ (12)

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, i, r) = q⊥ (13)

∀l ∈ I ∪ O ∀r ∈ (R ∪ {r⊥}) δ(q⊥, l, r) = q⊥ (14)

Finally, we require that input locations are input enabled (Eq. 15), and that there
is only one transition possible in an output location (Eq. 16):

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, i, r) �= q⊥ (15)

∀q ∈ Q ∃!o ∈ O ∃!r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, o, r) �= q⊥ (16)

Our goal is to learn an IORA A = (I,O,RA, QA, q0, δ
A, λA, τA, πA, ωA) that

is consistent with a set of action traces S. Because of the nature of our encoding,
we consider each action trace σ = (σI , σO) in S as an interleaving of the input
action string σI and the output action string σO, i.e. σ = σI

1σ
O
1 . . . σI

|σI |σ
O
|σI |.

Let T = ((I ∪ O) × Z, QT , λT ) be an OT for such strings.
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The constraints for an IORA can now be constructed in the same way as
for an RA (Eqs. 1 and 8–10). Observe that we do not use λ to encode observed
outputs (this is already done by encoding the transitions of the OT). Instead, λ
is used to denote which locations are allowed. All the locations in Q are allowed
(because we have observed them) and q⊥ is the only location that is not allowed
(λ(q⊥) = false by Eq. 11). As such, we add the following constraint:

∀σ ∈ QT map(σ) �= q⊥ (17)

We can now determine if there is an IORA with at most n locations and m
registers in the same way as for RAs.

3 Implementation and Evaluation

We implemented our encodings using Z3Py, the Python front-end of Z3 [9]2.
Our tool can generate an automaton model from a given set of observations
(passive learning), or a reference to the system and a tester implementation
(active learning), also when this system cannot be reset. We have also imple-
mented a tester for the classes of automata supported. The tester generates test
queries (or tests) each test consisting of an access sequence to an arbitrary state
in the current hypothesis, and a sequence generated by a random walk from that
state. In experiments, we configure the tester to build shorter tests. Longer tests
worsen the scalability of our tool, and are unneeded for learning small models.
Validity of the learned models was ensured by running a large number of tests
on the last hypothesis and checking the number of states. We conducted a series
of experiments to assess the scalability and effectiveness of our approach.

Our first experiment assesses the scalability of our encodings by adapting the
scalable Login, FIFO set and Stack benchmarks of [2] to DFAs, Mealy machines,
RAs and IORAs. To generate tests, we used the testing algorithm described
earlier. The maximum length of the random sequence is 3 + size, where size is
the number of users or elements in the system. The solver timeout – the amount
of time the solver was provided to compute a solution or indicate its absence –
was set to 10 seconds for the DFA and Mealy systems, and to 10 min for the RA
and IORA systems whose constraints could take considerably longer to process.
Each learning run ends when either a solution is found (indicating success), or
when a maximum bound for n is reached (indicating failure). We hence continue
incrementing n even after encountering solver timeouts. By doing so, we lose
the minimality guarantee yet may learn larger systems. For each system we
performed 5 learning runs and collated the resulting statistics.

The results are shown in Table 1. Columns describe the system, the number
of successful learning runs, the number of states/locations (which may vary due
to loss of minimality) and registers (where applicable), average and standard
deviation for the number of tests and inputs used in learning except for validating
the last hypothesis, and for the amount of time learning took. The table only

2 See https://gitlab.science.ru.nl/rick/z3gi/tree/lata.

https://gitlab.science.ru.nl/rick/z3gi/tree/lata
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Table 1. Scalable experiments. The model name encodes the formalism, type and size.

Model Succ States
loc

Regs Tests Inputs Time (sec)

Avg Std Avg Std Avg Std

DFA FIFOSet(8) 5 10.0 228.0 81.11 2156.0 832.02 76.28 42.49

DFA FIFOSet(9) 2 11.5 413.5 161.93 4194.0 2104.35 199.99 26.1

DFA Login(3) 5 11.0 446.0 100.18 3092.0 781.73 131.84 39.26

Mealy FIFOSet(11) 5 12.0 280.0 110.65 3694.0 1722.57 79.75 23.69

Mealy FIFOSet(12) 4 15.5 370.0 200.12 5021.0 3312.85 227.15 290.99

Mealy FIFOSet(13) 2 14.5 526.5 318.91 8021.5 5608.06 190.36 51.96

Mealy Login(3) 5 10.0 104.0 10.03 726.0 69.93 52.4 4.83

Mealy Login(4) 1 16.0 241.0 0.0 2094.0 0.0 370.19 0.0

RA Stack(1) 5 3.0 1 32.0 21.18 109.0 90.48 3.18 0.86

RA Stack(2) 5 5.0 2 202.0 71.88 1018.0 394.58 124.72 53.41

RA FIFOSet(1) 5 3.0 1 49.0 12.92 180.0 52.56 4.94 6.07

RA FIFOSet(2) 5 6.0 2 365.0 88.41 2025.0 578.33 333.09 334.12

RA Login(1) 5 4.0 1 306.0 163.18 1336.0 765.23 54.96 9.99

RA Login(2) 3 8.0 2 1606.0 345.22 9579.0 2163.67 6258.11 1179.27

IORA Stack(1) 5 7.0 1 7.0 1.58 24.0 6.63 8.77 1.92

IORA FIFOSet(1) 5 7.0 1 8.0 3.27 31.0 9.36 6.45 0.84

IORA Login(1) 5 9.0 1 33.0 6.65 152.0 29.89 1509.18 477.04

includes entries for the largest systems we could learn. A table with entries for
all the systems learned is featured in the extended version of this work (See
footnote 1).

As part of our second experiment we applied our tool on models learned in
three case-studies [3,4,22]. These models are Mealy machines detailing aspects
of the behavior of bankcard protocols, biometric passports and power control
services (PCS). We used the tester described in [23]. This produces tests similar
to our own, but extended by distinguishing sequences. These tests are parame-
terized by the length of the random sequence and a factor k. We set both to 1.
The solver timeout is set to 1 min.

We use this experiment to also draw comparison between our approach and
learners in the classical framework. To that end, to learn the case study models
we also use the TTT [15] and classical L * [5] algorithms. Both of these algorithms
are provided by the LearnLib learning tool (v0.12.1) [21]. To draw further com-
parison we additionally include scalable systems in this experiment. This allows
us to compare the SMT-based approach with Tomte (v0.41) [2], a state-of-the-art
learning tool for register automata. We note that the test configurations are sim-
ilar for all learners. Due to the high standard deviation, we ran 20 experiments
for each benchmark.
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Table 2 shows the results of this experiment. We include the alphabet size
and number of states/locations in the model, as well as the average time it
took for the SMT approach to learn (this statistic is not useful for the other
learners, which took at most a couple of seconds). We remark that the SMT-
based approach is able to successfully learn all models every time, though it
takes a long time for the larger ones. We also note that increasing the length of
the random sequence used in tests even by 1 meant the SMT-based approach
occasionally failed to infer the larger VISA model.

Analyzing Table 2, we remark that the SMT-based approach largely out-
performs L* and Tomte, while staying competitive with TTT. The approach
performs better on scalable systems than on the case study models. This can be
attributed to scalable systems requiring more counterexamples. To process these
counterexamples, active learning algorithms require additional queries. Perfor-
mance is further hindered if counterexamples are not optimal (e.g. they are
unnecessarily long). Such problems do not affect the SMT-based approach.

Table 2. Comparison with other learners

Model States

loc

Alph

size

SMT TTT L* Tomte

Tests Inputs Time Tests Inputs Tests Inputs Tests Inputs

Biometric passport 6 9 220 1057 26 220 941 333 1143

MAESTRO 6 14 835 4375 359 860 4437 1190 4718

MasterCard 6 14 839 4379 353 996 5260 1190 4718

PIN 6 14 757 3945 338 911 4769 1190 4718

SecureCode 4 14 313 1485 90 194 682 798 2758

VISA 9 14 796 4770 2115 750 4094 2040 9015

PCS 1 8 9 629 3530 189 417 2179 657 2682

PCS 2 3 9 71 279 9 75 196 252 657

PCS 3 7 9 508 2651 154 476 2472 576 2196

PCS 4 7 9 559 3024 154 451 2297 576 2196

PCS 5 9 9 1120 6260 778 417 1753 1308 5340

PCS 6 9 9 1158 6442 704 457 1977 1308 5340

Mealy FIFOSet(2) 3 2 6 27 0 12 38 14 38

Mealy FIFOSet(7) 8 2 52 481 7 71 588 235 2494

Mealy FIFOSet(10) 11 2 179 2152 63 163 1822 486 6743

Mealy Login(2) 6 3 37 214 7 57 242 57 219

Mealy Login(3) 10 3 89 644 64 120 704 240 1720

IORA FIFOSet(1) 7 2 9 31 7 21 36.5

IORA Stack(1) 7 2 8.5 33 8 19 34

IORA Login(1) 9 3 33 152 849 157 580

Our final experiment assesses our extension for learning systems without
resets using benchmarks from recent related work [20]. For the sake of space we
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summarize results and refer the reader to the extended version (See footnote
1) for details. Despite the simplicity of the test setup, the SMT-based approach
performed only slightly worse than the sophisticated SAT-based approach of [20].

4 Conclusions

We have experimented with an approach for model learning which uses SMT
solvers. The approach is highly versatile, as shown in its adaptations for learning
FSMs and register automata, and for learning without resets. We provide an
open source tool implementing these adaptations. Experiments indicate that
our approach is competitive with the state-of-the-art. While the approach does
not scale well, we have shown that it can be used for learning small models in
practice. In the future we wish to improve the scalability of the approach via
more efficient encodings. We hope this paper gives rise to a broader direction of
future work, since the presented approach has several advantages over traditional
model learning algorithms. Notably, it appears to be quite effective for rapid
prototyping of learning algorithms for new formalisms and settings.

References

1. Aarts, F., et al.: Generating models of infinite-state communication protocols using
regular inference with abstraction. FMSD 46(1), 1–41 (2015)

2. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning
register automata with fresh value generation. In: Leucker, M., Rueda,
C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–
183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 11.
http://www.sws.cs.ru.nl/publications/papers/fvaan/TomteFresh/

3. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: ICST
Workshops, pp. 461–468. IEEE (2013)

4. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0 54

5. Angluin, D.: Learning regular sets from queries and counterexamples. I&C 75(2),
87–106 (1987)

6. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121–150
(1990)

7. Bruynooghe, M., et al.: Predicate logic as a modeling language: modeling and
solving some machine learning and data mining problems with IDP3. TPLP 15(6),
783–817 (2015)

8. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. FAOC 28(2), 233–263 (2016)

9. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. CACM 54(9), 69–77 (2011)
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1 Introduction

Combinatorial structures having a rational or an algebraic generating function
play a key role in many fields: computer science (analysis of algorithms involving
trees, lists, words), computational geometry (integer points in polytopes, maps,
graph decomposition), bioinformatics (RNA structure, pattern matching), num-
ber theory (integer compositions, automatic sequences and modular properties,
integer solutions of varieties), probability theory (Markov chains, directed ran-
dom walks), see e.g. [3,12,21,35]. They are often the trace of a structure which
has a recursive specification in terms of a system of tree-like structures, or of
some functional equation solvable by variants of the kernel method [13].

Since the seminal article by Chomsky and Schützenberger on the link between
context-free grammars and algebraic functions [15], which also holds for push-
down automata [33], many articles encoded and enumerated combinatorial struc-
tures via a formal language approach. See e.g. [19,25,30] for such an approach on
the so-called generalized Dyck languages. These languages are in fact equivalent
to directed lattice paths, and in this article, we try to understand how some of
these fundamental objects can be enumerated when they have the additional con-
straint to avoid a given pattern. For sure, such a class of objects can be described
as the intersection of a context-free language and a rational language; therefore,
classical closure properties imply that they are directly generated by another (but
huge and clumsy) context-free language. Unfortunately, despite the fact the alge-
braic system associated with the corresponding context-free grammar is in theory
solvable by a resultant computation or by Gröbner bases, this leads in practice to
equations which are so big that no current computer could handle them in memory,
even for generalized Dyck languages with 20 different letters.

In this article, we introduce a generic and efficient way to tackle the question
of enumerating words avoiding a given pattern (for languages generated by push-
down automata) which bypass these intractable equations. For directed lattice
paths, our method allows to handle an arbitrary number of letters (i.e., allowed
jumps), up to alphabets of thousands of letters, computationally in a few minutes.
It relies on an analytic combinatorics approach, and also on the kernel method,
which we used in our investigation of enumerative and asymptotic properties
of lattice paths [4–7]. This allows to unify the considerations of many articles
which investigated natural patterns like peaks, valleys, humps, etc., in Dyck
and Motzkin words, corresponding patterns in trees, compositions. . . , see e.g.
[9,10,14,16–18,20,26,29,31] and all the examples mentioned in our Sect. 7.

2 Definitions and Notations

Let S, the set of steps (or jumps), be some finite subset of Z, that contains at
least one negative and at least one positive number. A lattice path with steps
from S is a finite word w = [v1, v2, . . . , vn] in which all letters belong to S,
visualized as a directed polygonal line in the plane, which starts in the origin
and is formed by successive appending of vectors (1, v1), (1, v2), . . . , (1, vn). The
letters that form the path w = [v1, v2, . . . , vn] are referred to as its steps. The
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length of w, to be denoted by |w|, is the number of steps in w. The final altitude
of w, to be denoted by h(w), is the sum of all steps in w, that is v1+v2+ . . .+vn;
visually, it is the y-coordinate of the point where w terminates.

Under this setting, it is usual to consider two restrictions: being the whole
path (weakly) above the x-axis, and having final altitude 0 (equivalently, termi-
nating at the x-axis). Consequently, one considers four classes of lattice paths:

1. A walk is any path as described above.
2. A bridge is a path that terminates at the x-axis.
3. A meander is a path that stays (weakly) above the x-axis.
4. An excursion is a path that stays (weakly) above the x-axis and also termi-

nates at the x-axis. In other words, an excursion fulfills both restrictions (See
Table 1).

Table 1. Summary of our results. For the four types of paths and for any set of
jumps encoded by P (u), we give the corresponding generating function of such lattice
paths avoiding a pattern p (of length � and final altitude b). The formulas involve the
autocorrelation polynomial R(t, u) of p, and the small roots ui of the kernel K(t, u) :=
(1 − tP (u))R(t, u) + t�ub.

ending anywhere ending at 0

on Z

walks

W (t, u) =
R(t, u)
K(t, u)

bridges

B(t) =
e∑

i=1

u′
i

ui

t

1 + R′(t,ui)

R(t,ui)2
t�+1ub

i − (�−1)t�ub
i

R(t,ui)

on N

meanders

M(t, u) =
R(t, u)
K(t, u)

c∏

i=1

(u− ui(t))

excursions

E(t) =
(−1)c+1

t

c∏

i=1

ui(t)

For each of these classes (when no pattern is forbidden), Banderier and Fla-
jolet [4] gave general expressions for the corresponding generating functions and
the asymptotics of their coefficients. In the generating functions, the variable t
corresponds to the length of a path, and the variable u to its final altitude. P (u)
is the characteristic polynomial of the set of steps S, defined by P (u) =

∑
s∈S us.

The smallest (negative) number in S is denoted by −c, and the largest (positive)
number in S is denoted by d: that is1, if one orders the terms of P (u) by the
powers of u, one has P (u) = u−c + . . . + ud.
1 Some weights (or probabilities, or multiplicities) could be associated with each jump,

but we omit them in this article to keep readability. All the proofs would be similar.
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3 Lattice Paths with Forbidden Patterns,
and Autocorrelation Polynomial

We consider lattice paths with step set S that avoid a certain pattern, that is,
an a priori fixed path p = [a1, a2, . . . , a�]. To be precise, we define an occurrence
of p in a lattice path w as a substring of w which coincides with p. If there is no
occurrence of p in w, we say that w avoids p. For example, the path [1, 2, 3, 1, 2]
has two occurrences of [1, 2], but it avoids [2, 1].

Before we state our results, we introduce some notations.
A presuffix of p is a non-empty string that occurs in p both as a prefix and

as a suffix. In particular, the whole word p is a (trivial) presuffix of itself. If p
has one or several non-trivial presuffixes, we say that p exhibits an autocorre-
lation phenomenon. For example, for the pattern p = [1, 1, 2, 1, 2] we have no
autocorrelation. In contrast, the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1] has three
non-trivial presuffixes: [1], [1, 1], and [1, 1, 2, 3, 1, 1], and thus in this case we
have autocorrelation.

While analysing the Boyer–Moore string searching algorithm and properties
of periodic words, Guibas and Odlyzko introduced in 1981 [22] what turns out
to be one of the key characters of our article, the autocorrelation polynomial2

of the pattern p: For any given word p, let Q be the set of its presuffixes; the
autocorrelation polynomial of p is

R(t, u) =
∑

q∈Q

t|q̄|uh(q̄), (1)

where q̄ denotes the complement of q in p.
For example, consider the pattern p = [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]. Its four presuf-

fixes produce four terms of P (t, u) as follows:

q |q̄| h(q̄)
[1] 9 15

[1, 1] 8 14
[1, 1, 2, 3, 1, 1] 4 7

[1, 1, 2, 3, 1, 1, 2, 3, 1, 1] 0 0

Therefore, for this p we have R(t, u) = 1 + t4u7 + t8u14 + t9u15.
Notice that if for some p no autocorrelation occurs, then we have Q = {p}

and therefore R(t, u) = 1.
Finally, we define the kernel as the following Laurent polynomial:

K(t, u) := (1 − tP (u))R(t, u) + t|p|uh(p). (2)

Also in our case it can be shown that each root u = u(t) of K(t, u) = 0 is either
small or large, and that the number of small roots is e := max{c,−h(p)}: we
shall denote them by u1, . . . , ue.
2 A similar notion also appears in the work of Schützenberger on synchronizing words

[34].
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Now we can state our main results. Recall that t is the variable for the length
of a path, and u is the variable for its final altitude.

Theorem 1. Let S be a set of steps, and let p be a pattern with steps from S.
Denote � = |p|, b = h(p).

1. The bivariate generating function for walks avoiding the pattern p, is

W (t, u) =
R(t, u)
K(t, u)

. (3)

If one does not keep track of the final altitude, this yields

W (t) = W (t, 1) =
1

1 − tP (1) + t�/R(t, 1)
. (4)

2. The generating function for bridges avoiding the pattern p is

B(t) = t

e∑

i=1

u′
i(t)

ui(t)
R(t, ui(t))

R(t, ui(t)) + (∂tR)(t,ui(t))
R(t,ui(t))

t�+1ui(t)b − (� − 1)t�ui(t)b
, (5)

where u1, . . . , ue are the small roots of the kernel K(t, u), as defined in (2).

Definition. For meanders and excursions, the formulas have a noteworthy shape
when the pattern p is a pseudomeander, i.e. a lattice path which does not cross
the x-axis, except, possibly, at the last step. Notice that if the pattern p is a
pseudomeander, then h(p) ≥ −c, and therefore, the number of small roots of
K(t, u) is c.

Theorem 2. Let S be a set of steps, and let p be a pseudomeander. Denote
� = |p|, b = h(p).

1. The bivariate generating function M(t, u) for meanders avoiding the pattern
p is

M(t, u) =
R(t, u)

uc K(t, u)

c∏

i=1

(
u − ui(t)

)
, (6)

where u1(t), . . . , uc(t) are the small roots of K(t, u) = 0.
If one does not keep track of the final altitude, this yields

M(t) = M(t, 1) =
R(t, 1)
K(t, 1)

c∏

i=1

(
1 − ui(t)

)
. (7)

2. The generating function for excursions avoiding the pattern p is

E(t) = M(t, 0) =
(−1)c+1

t

c∏

i=1

ui(t) (8)

if b > −c; if b = c, then one has t − t� rather than t in the denominator.

N.B.: When p is not a pseudomeander, there are still some algebraic expres-
sions, but not as concise.

Remark. Notice that for these four classes of lattice paths, if one forbids a
pattern of length 1 or if one uses symbolic weights for each jump, this recovers
the formulas from Banderier and Flajolet [4].
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4 Automaton and Transfer Matrix A

The following automata, sharing the spirit of the Knuth–Morris–Pratt algorithm,
will allow us to tackle pattern avoidance. Let p = [a1, . . ., a�] be the “forbidden”
pattern. As we construct a lattice path w = [v1, v2, . . .] step by step, it might
start “accumulating” p, that is, contain some prefix of p. We introduce � many
states that indicate how much of p has the path w accumulated at each step.
These states, X0, X1, . . ., X�−1, will be labelled by proper prefixes of p: Xi =
[a1, a2, . . . , ai] (in particular, the first state is labelled by the empty word: X0 =
ε = [ ]). We say that w1..m = [v1, v2, . . ., vm], a prefix of w, is in the state Xi

(or, alternatively: w, after its mth step, is in the state Xi), if the label of Xi is
the longest proper prefix of p that coincides with a suffix of w1..m: vm−i+1 = a1,
vm−i+2 = a2, . . ., vm = ai.

If w is in the state Xi after certain step vm, then its state after the next step
vm+1 is uniquely determined by i and vm+1 (unless i = �−1 and vm+1 = a� which
is impossible since this would yield an occurrence of the forbidden pattern). This
gives a finite automaton completely determined by P (u) and p. Its states are
labelled by X0, . . . , X�−1, and for i, j ∈ {0, . . . , � − 1} we have an arrow labelled
λ from Xi to Xj if j is the maximum number such that Xj is a suffix of Xiλ. Its
transition matrix will be denoted by A: it is an � × � matrix, and its (i, j) entry
is the sum of all terms uλ such that there is an arrow labelled λ from Xi−1 to
Xj−1. See Fig. 1 for an example.

[1,2,1,2][1,2,1][1,2][1]ε

X1 X2 X3 X4
S = {−1, 1, 2}
p = [1, 2, 1, 2,−1]

1 2 1 2

−1, 2 1

−1
−1, 2

1

−1

1

2

u−1 + u2

u−1

u−1 + u2

u−1

u2

u

u

u

u

u

u2

u2

A =

d = 0

d = 1

d = 2

d = 3

1 2 1 2
2 1 2 -1

1 2 -1

2 -1

-1

1 2 1

1 2

1

A2,2 = u

A5,4 = u

A4,2 = u

A5,2 = 0

because we already have u
to the right of this entry

X0

Fig. 1. The automaton and the transfer matrix A for S = {−1, 1, 2} and the pattern
p = [1, 2, 1, 2,−1]. (The 0 entries of A are replaced by dots.)
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The matrix A has several general properties. In particular, for all i, j such
that j > i + 1, we have Ai,j = 0; for each i, 1 ≤ i ≤ � − 1, we have Ai,i+1 = ai;
for each j, 2 ≤ j ≤ �, every entry in the jth column is either 0 or aj−1; for each
i, 1 ≤ i ≤ � − 1, the sum of the entries in the ith row is P (u); the sum of the
entries in the �-th row is P (u) − a�.

The “essential” entries of A are those with 2 ≤ j ≤ i. They can be determined
by the following procedure, which is also illustrated in Fig. 1. For d = 0, 1, . . . ,
� − 2 we compare [a1, a2, . . . , a�−d−1] with [ad+2, ad+3, . . . , a�]. If they coincide
(aβ = ad+1+β for all β = 1, 2, . . . , �−d−1), then all the entries Ai,j with i−j = d,
j ≥ 2, are 0. Otherwise, if β is the smallest number such that aβ �= ad+1+β , then
Ad+β+1,β+1 = uβ , unless a smaller d yielded uβ in the same row, to the right of
this position (if this happens, Ad+β+1,β+1 = 0).

5 The Structure of the Kernel: det(I − tA)

In what follows, an important role will be played by the matrix I−tA, specifically
by its determinant and by the sum of elements in the first row of its adjoint. In
particular the role of det(I − tA) in our study is the analog of the role played by
1 − tP (u) in the study of Banderier and Flajolet [4], but our equation is more
involved.

Theorem 3. Let S be a set of steps, and let p be a pattern with steps from S.
Then for A, the transfer matrix of the automaton, we have

det(I − tA) = K(t, u) = (1 − tP (u))R(t, u) + t|p|uh(p), (9)

(1 0 · · · 0) adj(I − tA) (1 1 · · · 1)� = R(t, u), (10)

where K(t, u) and R(t, u) are the kernel and the autocorrelation polynomial, as
defined in Eqs. (1) and (2). In particular, in the case without autocorrelation we
have det(I − tA) = 1 − tP (u) + t|p|uh(p), and the sum of the entries in the first
row of adj(I − tA) is 1.

Proof (sketch). Consider first that every step s of S has a symbolic weight ts.
Let W be the generating function of walks avoiding p with these weights, R
the autocorrelation polynomial of p, P =

∑
s ts the polynomial encoding the

different steps s, and tp the weight of p. Using the construction of [21, p. 60], we
find that: W = R(t,u)

(1−P (u))R(t,u)+tp
. By Cramer’s rule, W is also equal to the left-

hand side of (10) divided by the left-hand side of (9). Since (1−P (u))R(t, u)+tp
is an irreducible polynomial with degree �, the two rational representations of
W are identical. We conclude by specializing ts to tuh(s) for all s. ��
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6 Proofs of the Generating Functions for Walks, Bridges,
Meanders, and Excursions

Proof of Theorem 1 for walks. Let W (t, u) be the bivariate generating func-
tion for the number of walks with steps from S avoiding a fixed pattern p. For
α = 1, 2, . . . , �, we denote by Wα = Wα(t, u) the corresponding bivariate gener-
ating function restricted to those walks that terminate in state α. Then we have
the following vectorial functional equation:

(W1 W2 · · · W�) = (1 0 · · · 0) + t (W1 W2 · · · W�) A,

(W1 W2 · · · W�) (I − tA) = (1 0 · · · 0),

(W1 W2 · · · W�) = (1 0 · · · 0)
adj(I − tA)

|I − tA| .

Therefore, the generating function for W (t, u), which is the sum of the generating
functions Wα(t, u) over all states, is equal to

W (t, u) = (W1 W2 · · · W�) (1 1 · · · 1)�

=
(1 0 · · · 0) adj(I − tA) (1 1 · · · 1)�

|I − tA| =
R(t, u)

(1 − tP (u))R(t, u) + t|p|uh(p)
,

where the last equality follows from Theorem 3. ��
Proof of Theorem 1 for bridges. In order to find the univariate generating
function B(t) for bridges, we need to extract the coefficient of [u0] from W (t, u).
To this end, we assume that t is a sufficiently small fixed number, extract the
coefficient of a (univariate) function by means of Cauchy’s integral formula, and
apply the residue theorem:

B(t) = [u0]W (t, u) =
1

2πi

∫

|u|=ε

W (t, u)
u

du =
e∑

i

Resu=ui(t)
W (t, u)

u
,

where u1, . . . , ue are the small roots of K(t, u). By the formula for residues of
rational functions, we have

Resu=ui(t)
W (t, u)

u
= Resu=ui(t)

R(t, u)
u ((1 − tP (u))R(t, u) + t�ub)

=
R(t, u)

d
du (u ((1 − tP (u))R(t, u) + t�ub))

∣
∣
∣
∣
∣
u=ui(t)

.

The denominator of this expression is

−tuP ′(u)R(t, u) + u(1 − tP (u))Ru(t, u) + bt�ub
∣
∣
u=ui(t)

. (11)

Next, we differentiate K(t, ui) = 0 with respect to t and obtain an expression
for P ′(ui(t)). When we substitute it to (11), we obtain (5). ��
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Proof of Theorem 2 for meanders and excursions. Similarly to our nota-
tion above, we denote by M(t, u) the bivariate generating function for meanders,
and by Mα(t, u) the bivariate generating function for meanders that terminate
in state α. Then we have the following vectorial functional equation:

(M1 M2 · · · M�) = (1 0 · · · 0) + t (M1 M2 · · · M�) A − t [u<0]
(
(M1 M2 · · · M�)A

)
,

where [u<0] denotes all the terms in which the power of u is negative. The first
component of [u<0]

(
(M1 M2 · · · M�)A

)
is a sum of several fractions of the form

M j
i (t, u)/uγ , where M j

i (t, u) is the generating function for p-avoiding meanders
that terminate in state i at altitude j, and 1 ≤ γ ≤ c. We denote this expression
by F (t, u)/uc, where F (t, u) is polynomial in t and u. All other components of
[u<0]

(
(M1 M2 · · · M�)A

)
are 0 because if the path arrives at state Xi with

i > 1 this means that it accumulated a non-empty prefix of p. And since p
is a pseudomeander, w will always remain (weakly) above the x-axis while it
accumulates its non-empty prefix. Thus we obtain

(M1 M2 · · · M�) (I − tA) =
(

1 − t

uc
F (t, u)

)

(1 0 · · · 0), (12)

(M1 M2 · · · M�) =
(

1 − t

uc
F (t, u)

)

(1 0 · · · 0)
adj(I − tA)

|I − tA| . (13)

Finally, we multiply it the last identity by (1 1 · · · 1) from the right and obtain,
through the use of Theorem 3,

M(t, u) =
(

1 − t

uc
F (t, u)

)
R(t, u)
K(t, u)

. (14)

In order to determine 1 − tF (t, u)/uc, we proceed as follows. First, the kernel
K(t, u) has precisely c small roots. This follows from the fact that the lowest
degree of u in K(t, u) is −c: it is contributed by u−c in P (u), while the lowest
degree of u in t�ub is at least −c; and this these terms cannot cancel out (the
only exception is the trivial case of a one-letter pattern); then it can be shown
(for example, by the Newton polygon method) that K(t, u) has c many (distinct)
roots whose Puiseux series starts with const · u1/c. Further, it can be show in
a similar way that all other roots of K(t, u) are large. As usual, we denote the
small roots by u1, . . . , uc.

For each 1 ≤ i ≤ c, we substitute u = ui into (12). Then the matrix I − tA
is singular and therefore it has a (right) eigenvector v that belongs to the eigen-
value 0. Moreover, the first component of v is not 0: otherwise the columns of
I − tA, with the first column excluded, are linearly dependent, which contra-
dicts the structure of the matrix. Then comparing the first components yields
the identity 1 − t

uc
i
F (t, u) = 0, which means that each ui, i = 1, . . . , c, satis-

fies uc − tF (t, u) = 0, which is a polynomial equation of degree c. This implies
uc − tF (t, u) = (u − u1)(u − u2) . . . (u − uc), We substitute this into (14) and
finally obtain the claimed result (6).

Setting u = 0 in Formula (6) gives the formula for excursions. ��
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7 Examples

We end our article with a small set of examples, see Table 2. We can also link
some self-avoiding walks and pattern avoiding lattice paths. In fact, the enumer-
ation and the asymptotics of self-avoiding walks in Z

2 is one of the famous open
problems of combinatorics and probability theory. As it is classical for intractable
problems, many natural subclasses have been introduced, and solved. Our lat-
tice paths avoiding some pattern allow to enumerate many of these subclasses
of self-avoiding walks, like partially directed self-avoiding walks with an added
constraint of living in a half-plane or a strip [2]. Partially directed walks have
three kinds of steps, say n, e and s, and the self-avoiding condition means that
factors ns and sn are disallowed. Consider the following three models:

– in the first model, the half-plane is the one over the line x = 0; the heights
of the steps are h(n) = 1, h(e) = 0 and h(s) = −1;

– in the second model, the half-plane is the one over the line x = y; the heights
are h(n) = 1, h(e) = −1 and h(s) = −1;

– in the third model, the half-plane is the one over the line x = −y; the heights
are h(n) = 1, h(e) = 1 and h(s) = −1.

These models are illustrated in Fig. 2 on next page. Each of them leads to an
algebraic generating function, compatible with our formulas.

Table 2. Our results provide a unified approach for the computation of generating
functions for different models. In particular, this solves several conjectures in the On-
Line Encyclopedia of Integer Sequences, it also allows to produce many formulas: this
recovers several earlier works, often related to Dyck/Motzkin paths.

Steps, pattern, model Generating function OEIS referencea

S = {−1, 0, 1}
p = [1, 0, . . . , 0, −1]

bridges

1√
1−2t−3t2+2t�−2t�+1+t2�

� = 2: OEIS A051286
(Proving a claim therein on

Whitney numbers, see also [11])

S = {−1, 0, 1}
p = [1, 0, . . . , 0, −1]

meanders

1−3t+t�−
√

1−2t−3t2+2t�−2t�+1+t2�

2t(1−3t+t�)
� = 2: OEIS A091964
(RNA folding, see [23])

S = {−1, 0, 1}
p = [1, 0, . . . , 0, −1]

excursions

1−t+t�−
√

1−2t−3t2+2t�−2t�+1+t2�

2t2
� = 2: OEIS A004148 [24]

� = 3: OEIS A114584 [27]

S = {1, −1}
p = [1, −1, 1, −1, . . . , 1]

excursions

1−t�+1−
√

1−4t2+2t�+1+4t�+3−3t2�+2

2t2(1−t�−1)
� = 3: ≈ OEIS A001006
(Motzkin numbers [32,36])

S = {1, −1}
p = [1, −1, 1, −1, . . . , −1]

excursions

1−t�+2−
√

1−4t2+6t�+2−4t2�+2+t2�+4

2t2(1−t�)
� = 4: OEIS A078481
(Irreducible stack

sortable permutations, [8,28])

aSuch references are links to the webpage dedicated to the corresponding sequence in the On-Line

Encyclopedia of Integer Sequences, http://oeis.org.

https://oeis.org/A051286
https://oeis.org/A091964
https://oeis.org/A004148
https://oeis.org/A114584
https://oeis.org/A001006
https://oeis.org/A078481
http://oeis.org
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Fig. 2. Some models of self-avoiding walks are encoded by partially directed lattice
paths avoiding a pattern (see [2]).

8 Conclusion and Extensions

In this article, we showed how a vectorial generalization of the kernel method
allows to enumerate lattice paths avoiding a given pattern. Our approach is flexi-
ble, and our future researches include the case of several patterns at once and the
general study (enumeration, limit laws) of counting the number of occurrences of
a given pattern in algebraic structures. The asymptotics are interestingly much
more involved than in [4], we analyse these aspects in our companion article [1].
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Abstract. We present a new recursive generation algorithm for prefix
normal words. These are binary words with the property that no factor
has more 1s than the prefix of the same length. The new algorithm uses
two operations on binary words, which exploit certain properties of prefix
normal words in a smart way. We introduce infinite prefix normal words
and show that one of the operations used by the algorithm, if applied
repeatedly to extend the word, produces an ultimately periodic infinite
word, which is prefix normal and whose period’s length and density we
can predict from the original word.

Keywords: Algorithms on automata and words
Combinatorics on words · Combinatorial generation
Prefix normal words · Infinite words · Binary languages

1 Introduction

Prefix normal words are binary words with the property that no factor has
more 1s than the prefix of the same length. For example, 11001010 is prefix
normal, but 11001101 is not, since the factor 1101 has too many 1s. These words
were introduced in [10], originally motivated by the problem of Jumbled Pattern
Matching [1,2,4,8,9,11,12,15,17].

Prefix normal words have however proved to have diverse other connections
[5–7]. Among these, it has been shown that prefix normal words form a bubble
language [18–20], a family of binary languages which include Lyndon words, k-
ary Dyck words, necklaces, and other important classes of binary words. These
languages have efficient generation algorithms1, and can be listed as Gray codes,
i.e. listings in which successive words differ by a constant number of operations.
More recently, connections of the language of prefix normal words to the Binary
Reflected Gray Code have been discovered [21], and prefix normal words have
proved to be applicable to certain graph problems [3].

1 Here, the term efficient is used in the sense that the cost per output word should be
small—in the best case, this cost is constant amortized time (CAT).
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In this paper, we present a new recursive generation algorithm for prefix
normal words of fixed length. In combinatorial generation, the aim is to find
a way of efficiently listing (but not necessarily outputting) each one of a given
class of combinatorial objects. Often it is necessary to examine each one of such
objects, even though their number may be very large, typically exponential. The
latest volume 4 A of Donald Knuth’s The Art of Computer Programming devotes
over 200 pages to combinatorial generation of basic combinatorial patterns [14],
such as permutations and bitstrings, and much more is planned on the topic [13].

The previous generation algorithm for prefix normal words of length n runs in
amortized linear time per word [6], while it was conjectured there that its running
time is actually amortized O(log n) per word, a conjecture which is still open. Our
new algorithm recursively generates all prefix normal words from a seed word,
applying two operations, which we call bubble and flip. Our new algorithm’s
running time is O(n) per word, and it allows new insights into properties of
prefix normal words. It can be applied (a) to produce all prefix normal words of
fixed length, or (b) to produce all prefix normal words of fixed length sharing
the same critical prefix. (The critical prefix of a binary word is the first run of 1s
followed by the first run of 0s.) This could help proving a conjecture formulated
in [6], namely that the expected critical prefix length of an n-length prefix normal
word is O(log n). Moreover, it could prove useful in counting prefix normal words
of fixed length: it is easy to see that this number grows expontially, however,
neither a closed form nor a generating function are known [7].

In the second part of the paper, we prove some surprising results about
extending prefix normal words. Note that if w is prefix normal, then so is w0,
but not necessarily w1. We introduce infinite prefix normal words and show
that repeatedly applying the flip-operation used by the new algorithm produces
an ultimately periodic infinite word. Moreover, we are able to predict both the
length and the density of the period, and give an upper bound on when the
period will appear. Due to space limitations, some proofs have been omitted.

2 Basics

A (finite) binary word (or string) w is a finite sequence of elements from {0, 1}.
We denote the i’th character of w by wi, and its length by |w|. Note that we
index words from 1. The empty word, denoted ε, is the unique word with length
0. The set of binary words of length n is denoted {0, 1}n and the set of all finite
words by {0, 1}∗.2 For two words u, v, we write w = uv for their concatenation.
For an integer k ≥ 1 and u ∈ {0, 1}n, uk denotes the k · n-length word uuu · · · u
(k-fold concatenation of u). If w = uxv, with u, x, v ∈ {0, 1}∗ (possibly empty),
then u is called a prefix, x a factor (or substring), and v a suffix of w. We
denote by wi · · · wj , for i ≤ j, the factor of w spanning the positions i through
j. For a word u, we write |u|1 for the number of 1s in u. We denote by ≤lex the
lexicographic order between words.

2 In Sect. 4, we deal with infinite binary words, and give appropriate definitions there.



Bubble-Flip—A New Generation Algorithm for Prefix Normal Words 209

We denote by prefi(w) the prefix of w of length i, and by Pw(i) = |prefi(w)|1,
the number of 1s in the prefix of length i. (In succint indexing, this function is
often called rank1(w, i).) If clear from the context, we write P (i) for Pw(i).

Definition 1 (Prefix normal words, prefix normal condition). A word
w ∈ {0, 1}∗ is called prefix normal if, for all factors u of w, |u|1 ≤ Pw(|u|). We
denote the set of all finite prefix normal words by L, and the set of prefix normal
words of length n by Ln. Given a binary word w, we say that a factor u of w
satisfies the prefix normal condition if |u|1 ≤ Pw(|u|).
Example 1. The word 1101000100110100 is not prefix normal because the factor
1001101 violates the prefix normal condition.

Fact 2 ([7]: Basic facts about prefix normal words) Let w ∈ {0, 1}n.

(i) If w ∈ L, then either w = 0n or w1 = 1.
(ii) w ∈ L if and only if prefi(w) ∈ L for i = 1, . . . , n.
(iii) If w ∈ L then w0i ∈ L for all i = 1, 2, . . . .
(iv) Let w ∈ L. Then w1 ∈ L if and only if for all 1 ≤ i < n, we have Pw(i+1) >

|wn−i+1 · · · wn|1.
Definition 3 (Critical prefix). Given a non-empty binary word w, it can be
uniquely written in the form w = 1s0tγ, where s, t ≥ 0, s = 0 implies t > 0, and
γ ∈ 1{0, 1}∗ ∪ {ε}. We refer to 1s0t as the critical prefix of w.

We will define several operations on binary words in this paper. For an oper-
ation op : {0, 1}∗ → {0, 1}∗, we denote by op(i) the i’th iteration of op. We
denote by op∗(w) = {op(i)(w) | i ≥ 1}, the set of words obtainable from w by a
finite number of applications of op.

3 The Bubble-Flip Algorithm

In this section we present our new generation algorithm for all prefix normal
words of a given length. We show that the words are generated in lexicographic
order. We also show how our procedure can be easily adapted to generate all
prefix normal words of a given length with the same critical prefix.

3.1 The Algorithm

Let w ∈ {0, 1}n. We let RightmostOne(w) be the largest index r such that
wr = 1, if it exists, and ∞ otherwise. We will use the following operations on
prefix normal words:

Definition 4 (Operation flip). Given w ∈ {0, 1}n, and 1 ≤ j ≤ n, we define
flip(w, j) to be the binary word obtained by changing the j-th character in w,
i.e., flip(w, j) = w1w2 · · · wj−1wjwj+1 · · · wn, where x is 1 − x.
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Definition 5 (Operation bubble). Given w ∈ {0, 1}n \ {0n} and r = Right-
mostOne(w) < n, we define bubble(w) = w1w2 · · · wr−1010n−r−1, i.e., the word
obtained from w by shifting the rightmost 1 one position to the right.

We start by giving a simple characterization of those flip-operations which
preserve prefix normality.

Lemma 6. Let w ∈ Ln such that r = RightmostOne(w) < n and let j be an
index with r < j ≤ n. Then flip(w, j) is not prefix normal if and only if there
exists 1 ≤ k < r such that for β = wr−k+1 . . . wr, it holds |β|1 = Pw(k) and
|wk+1 . . . wk+j−r|1 = 0.

Proof. First note that flip(w, j) ∈ L if and only if v = prefj(flip(w, j)) ∈ L,
by Fact 2 (ii) and (iii). Moreover, v ∈ L if and only if for every suffix u of
w1 · · · wj−1, it holds that |u|1 < Pw(|u|+1) (which we refer to as (*)-condition),
again by Fact 2 (iv). We now only have to show that having a suffix u which
violates the (*)-condition is equivalent to the right side of the lemma’s statement.

Now let u be a suffix of w1 . . . wj−1. If |u| < r−j −1, then |u|1 = 0, and since
w is prefix normal and contains at least one 1, u cannot violate the (*)-condition.
Thus assume that u spans over position r, the position of the last 1 in w. We can
write u as u = β0j−r−1, and clearly we have |β|1 = |u|1. Denote |β| = k. Since
w is prefix normal, we have Pw(k) ≥ |β|1 = |u|1. Thus, if |u|1 = Pw(|u| + 1),
this, together with the monotonicity of Pw, implies that Pw(k) = |β|1. Moreover,
then we also have Pw(|u| + 1) = Pw(k), which in turn implies that the prefix of
length k is followed by |u| + 1 − k = j − r many 0s.

Conversely, if exists β = wr−k+1 . . . wr with |β|1 = Pw(k), and
wk+1 · · · wk+j−r consists only of 0s, then write u = β0r−j−1. We then have
|u|1 = |β|1 = Pw(k) = Pw(k + j − r) = P (|u| + 1), in violation of the (*)-
condition. �	

Definition 7 (Phi). Let w ∈ Ln \ {0n}. Let r = RightmostOne(w). Define
ϕ(w) as the minimum j such that r < j ≤ n and flip(w, j) is prefix normal, and
ϕ(w) = n + 1 if no such j exists.

Example 2. For the word w = 1101001001011000, we have ϕ(w) = 16, since the
words flip(w, 14) and flip(w, 15) both violate the prefix normal condition, for the
prefixes of length 3 and 6, respectively.

Lemma 8. Let w ∈ Ln \ {0n} and r = RightmostOne(w). Let m be the max-
imum length of a run of zeros following a prefix of w1 · · · wr−1 which has the
same number of 1s as the suffix of w1 · · · wr of the same length. Formally,
m = max{j − k | 1 ≤ k < j < r, |w1 · · · wk|1 = |wr−k+1 · · · wr|1 and
|wk+1 · · · wj |1 = 0} (where we set the maximum of the empty set to 0). Then,
ϕ(w) = min(r + m + 1, n + 1).

Proof. We first show that ϕ(w) ≤ r + m + 1. Skipping trivial cases, we can
assume that m < n − r, for otherwise the desired inequality holds by definition.
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Algorithm 1. Compute ϕ

Given a prefix normal word w, computes the leftmost index j, after the
rightmost 1 of w, such that flip(w, j) is prefix normal

1 r ← RightmostOne(w), f ← 0, g ← 0, i ← 1, max ← 0
2 while i < r do
3 f ← f + wi, g ← g + wr−i+1

4 if f = g then
5 l ← 0, i ← i + 1
6 while i < r and wi = 0 do
7 l ← l + 1, i ← i + 1

8 if l > max then
9 max ← l

10 else
11 i ← i + 1

12 return min{r + max + 1, n + 1}

Let m′ = m + 1. Then, there are no j, k ∈ {1, . . . , r − 1} such that j − k =
m′, |w1 · · · wk|1 = |wr−k+1 · · · wr|1 and |wk+1 · · · wj |1 = 0. Thus, by Lemma 6,
we have that flip(w, r + m′) ∈ L, hence ϕ(w) ≤ r + m′ = r + m + 1.

Let now j, k be indices attaining the maximum in the definition of m, i.e.,
1 < k < j < r, j −k = m, |w1 · · · wk|1 = |wr−k+1 · · · wr|1 and |wk+1 · · · wj |1 = 0.
Let 0 < m′ ≤ m then for j′ = k+m′ we have |w1 · · · wk|1 = |wr−k+1 · · · wr|1 and
|wk+1 · · · wj′ |1 = 0. Then, by Lemma 6, flip(w, r+m′) 
∈ L. Hence ϕ(w) > r+m′,
for m′ ≤ m, and in particular ϕ(w) ≥ r + m + 1, which completes the proof. �	

Algorithm 1 implements the idea of Lemma 8 to compute ϕ. For a given
prefix normal word w, it finds the position r of the rightmost one in w. Then,
for each length i such that the number of 1s in prefi(w) (counted by f) is the
same as the number of 1s in wr−i+1 · · · wr (counted by g), the algorithm counts
the number of 0s in w following prefi(w) and sets m to the maximum of the
length of such runs of 0’s. By Lemma 8 and the definition of ϕ it follows that
min{r+m+1, n+1} is equal to ϕ, as correctly returned by Algorithm 1. It is not
hard to see that the algorithm has linear running time since the two while-loops
are only executed as long as i < r, and the variable i increases at each iteration
of either loop. Therefore, the total number of iterations of the two loops together
is upper bounded by r ≤ n. Thus, we have proved the following lemma:

Lemma 9. For w ∈ Ln \ {0n}, Algorithm1 computes ϕ(w) in O(n) time.

The next lemma gives the basis of our algorithm: applying either of the
two operations flip(w,ϕ(w)) or bubble(w) to a prefix normal word w results in
another prefix normal word.

Lemma 10. Let w ∈ Ln \ {0n}. Then the following holds:

(a) for every �, such that ϕ(w) ≤ � ≤ n, flip(w, �) is prefix normal, and
(b) if |w|1 ≥ 2 then bubble(w) is prefix normal.
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Proof. Let r = RightmostOne(w). In order to show (a) we can proceed as in the
proof of the upper bound in Lemma 8. Fix ϕ(w) ≤ � ≤ n, and let m′ = � − r.
Then, by Lemma 8, there exist no 1 < j < k < r such the k − j = m′ and
|w1 · · · wk|1 = |wr−k+1 · · · wr|1 and |wk+1 · · · wj |1 = 0. This, by Lemma 6, implies
that flip(w, �) ∈ L.

For (b), let r′ = max{i < r | wi = 1}, i.e., r′ is the position of the penultimate
1 of w. Let w′ = w1 · · · wr′0n−r′

. By Fact 2 we have w′ ∈ L. Moreover, r ≥ ϕ(w′),
since flip(w′, r) = w ∈ L. Thus, by (a), bubble(w) = flip(w′, r + 1) ∈ L. �	
Definition 11 (PN ). Given w ∈ Ln \ {0n} with r = RightmostOne(w), we
define PN (w) as the set of all prefix normal words v such that v = w1 · · · wr−1γ
for some γ with |γ|1 > 0. Formally,

PN (w) = {v ∈ L | v = w1 · · · wr−1γ, |γ| = n − r + 1, |γ|1 > 0}.

Moreover, we will use the convention that PN (flip(w,ϕ(w))) = ∅ if ϕ(w) > n,
and PN (bubble(w)) = ∅ if RightmostOne(w) = n, since then flip(w,ϕ(w)) resp.
bubble(w) are undefined.

Lemma 12. Given w ∈ Ln \ {0n}, we have

PN (w) = {w} ·∪ PN (flip(w,ϕ(w)))
·∪ PN (bubble(w)).

We are now ready to describe an algorithm that computes all words in
the set PN (w) for a prefix normal word w. The pseudocode is given in Algo-
rithm2. The procedure generates recursively the set PN (w) as the union of
PN (flip(w,ϕ(w))) and PN (bubble(w)). The call to subroutine V isit() is a place-
holder indicating that the algorithm has generated a new word in PN (w), which
could be printed or examined or processed as required. By Lemma 12 we know
that V isit() is executed for each word in PN (w) exactly once.

Algorithm 2. Generate PN (w)
Given w prefix normal word such that |w|1 > 1, generate the set PN (w)

1 if RightmostOne(w) �= n then
2 w′ = bubble(w)
3 Generate PN (w′)
4 V isit()
5 j = ϕ(w)
6 if j ≤ n then
7 w′′ = flip(w, j)
8 Generate PN (w′′)

Lemma 13. For w ∈ Ln \ {0n}, Algorithm2 generates all prefix normal words
v ∈ PN (w) in lexicographic order, spending O(n) time on each word generation.
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Proof. Algorithm 2 recursively generates first all words in PN (bubble(w))), then
the word w, and finally the words in PN (flip(w,ϕ(w))). As we saw above, these
sets form a partition of PN (w), hence every word v ∈ PN (w) is generated
exactly once. Moreover, by definition of PN , for every u ∈ PN (bubble(w)) it
holds that u = w1 · · · wr−10γ with |γ| = n − r and |γ|1 > 0, thus it follows
that u <lex w. In addition, for every v ∈ PN (flip(w,ϕ(w))) it holds that v =
w1 · · · wr−11δγ where |δ| = k = ϕ(w) − r − 1, |δ|1 = 0, |γ| = n − r − k and
|γ|1 > 0, thus w <lex v. Since these relations hold at every level of the recursion,
it follows that the words are generated by Algorithm2 in lexicographic order
(Fig. 1). The linear time bound comes from the computation of ϕ in line 5 (see
Lemma 9). �	

Fig. 1. The words in PN (11010000) represented as a tree. If a node of the tree is word
w, its left child is bubble(w) and its right child is flip(w, ϕ(w)). In the tree, the position
of ϕ(w) is indicated and the corresponding flip is highlighted in red (resp. grey) in the
right child. Algorithm 2 generates these words by performing an in-order traversal of
the tree. The corresponding list of words is on the right. (Color figure online)

Recall that by Fact 2(i) every prefix normal word of length n, other than 0n,
has 1 as its first character. Clearly, there is only one prefix normal word of length
n with a single 1, namely 10n−1. Moreover, by Fact 2(i) and the definition of
PN , the set of all prefix normal words of length n with at least two 1s coincides
with PN (110n−2). These observations lead to Algorithm 3, which generates all
prefix normal words w of length n. The procedure generates the words 0n and
10n−1 and then PN (110n−2). Thus we have proved the following theorem:

Theorem 14. The Bubble-Flip algorithm generates all prefix normal words
of length n in O(n) time per word.

Proof. From the previous discussion and Lemmas 12 and 13.
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Algorithm 3. Bubble-Flip

For a given n, generates all prefix normal words of length n

1 w = 0n

2 V isit()
3 w = 10n−1

4 V isit()
5 w = 110n−2

6 Generate PN (w)

3.2 Prefix Normal Words with Given Critical Prefix

It was conjectured in [6] that the average length of the critical prefix taken over
all prefix normal words is O(log n). Using the Bubble-Flip algorithm, we can
generate all prefix normal words with a given critical prefix u, which could be
used to count all prefix normal words with critical prefix u.

Recall Definition 3. In the following lemma, we present a characterization of
prefix normal words of length n with the same critical prefix 1s0t in terms of
our generation algorithm. For s > 1, t ≥ 0, let us denote by CritSet(s, t, n) the
set of all prefix normal words of length n and critical prefix 1s0t.

Lemma 15. Fix s ≥ 1 and t ≥ 0, and let u = 1s0t. Then,

CritSet(s, t, n) =

{
{u} if s + t = n,

{v} ∪ PN (flip(v, ϕ(v)), if s + t < n,

where v = u10n−(s+t+1).

4 On Finite and Infinite Prefix Normal Words

In this section, we study infinite prefix normal words. We focus on infinite exten-
sions of finite prefix normal words which satisfy the prefix normal condition at
every finite point and which are in a certain sense densest among all possible
infinite extensions of the starting word. We show that words in this class are
ultimately periodic, and we are able to determine both the size and the density
of the period and to upper bound the starting point of the periodic behaviour.

4.1 Definitions

An infinite binary word is a function v : N → {0, 1} (where N denotes the set of
natural numbers not including 0). The set of all infinite binary words is denoted
{0, 1}ω. As with finite words, we refer to the i’th character of v by vi, to the
factor spanning positions i through j by vi · · · vj , and to the prefix of length i
by prefi(v). As before, P (i) = Pv(i) denotes the number of 1s in the prefix of
length i. Given a finite word u, uω denotes the infinite word uuu · · · . An infinite
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word v is called ultimately periodic if there exist two integers p, i0 ≥ 1 such that
vi+p = vi for all i ≥ i0, or equivalently, if it can be written as v = zuω for some
finite words z, u. The word v is called periodic if it is ultimately periodic with
i0 = 1, or equivalently, if there exists a finite word u such that v = uω.

Definition 16 (Minimum density, minimum density prefix). Let w ∈
{0, 1}∗ ∪{0, 1}ω. Denote by D(i) = Dw(i) = Pw(i)/i, the density of the prefix of
length i. Define the minimum density of w as ρ(w) = inf{D(i) | 1 ≤ i}. If this
infimum is attained somewhere, then we also define

ι(w) = min{j | ∀i : D(j) ≤ D(i)}, and κ(w) = Pw(ι(w)).

We refer to prefι(w)(w) as the minimum-density prefix, the shortest prefix
with density ρ(w). Note that ι(w) is always defined for finite words, while for
infinite words, a prefix which attains the infimum may or may not exist.

Example 3. For w = 110100101001 and u = 110100101010 we have ρ(w) =
5/11, ι(w) = 11, κ(w) = 5, and ρ(u) = 1/2, ι(u) = 6, κ(u) = 3. For the infinite
words v = (10)ω and v′ = 1(10)ω, we have ρ(v) = ρ(v′) = 1/2, and ι(v) =
2, κ(v) = 1, while ι(v′) is undefined, since no prefix attains density 1/2.

For a prefix normal word u, every factor of the infinite word u0ω respects the
prefix normal condition. Thus, we can define infinite prefix normal words.

Definition 17 (Infinite prefix normal words). An infinite binary word v is
called prefix normal if, for every factor u of v, |u|1 ≤ Pv(|u|).

Clearly, as for finite words, it holds that an infinite word is prefix normal if
and only if all its prefixes are prefix normal. Therefore, the existence of infinite
prefix normal words can also be derived from König’s Lemma (see [16]), which
states that the existence of an infinite prefix-closed set of finite words implies
the existence of an infinite word which has all its prefixes in the set.

We now define an operation on finite prefix normal words which is similar
to the flip operation from Sect. 3: it takes a prefix normal word w ending in a 1
and extends it by a run of 0s followed by a new 1, in such a way that this 1 is
placed in the first possible position without violating prefix normality.

Definition 18 (Operation flipext). Let w ∈ L ∩ {0, 1}∗1. Define flipext(w)
as the finite word w0k1, where k = min{j | w0j1 ∈ L}. We further define the
infinite word v = flipextω(w) = limi→∞ flipext(i)(w).

For a prefix normal word w, the word w0|w|1 is always prefix normal, so the
operation flipext is well-defined. Let w ∈ L and r = RightmostOne(w) < |w|.
Then flipext(prefr(w)) is a prefix of flip(w,ϕ(w)) if and only if ϕ(w) ≤ |w|, in
particular, flip(w,ϕ(w)) = flipext(prefr(w)) · 0|w|−ϕ(w).

Definition 19 (Iota-factorization). Let w be a finite binary word, or an infi-
nite binary word such that ι = ι(w) exists. The iota-factorization of w is the
factorization of w into ι-length factors, i.e. the representation of w in the form
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w = u1u2 · · · urv,

where r = �|w|/ι�, |ui| = ι for i = 1, . . . , r , and |v| < ι, for w finite, and

w = u1u2 · · · , where |ui| = ι for all i, for w infinite.

4.2 Flip Extensions and Ultimate Periodicity

Lemma 20. Let w be a finite or infinite prefix normal word, such that ι = ι(w)
exists. Let w = u1u2 · · · be the iota-factorization of w. Then for all i, |ui|1 =
κ(w).

Proof. Since w is prefix normal, |ui| ≤ κ = κ(w). On the other hand, assume
there is an i0 for which |ui0 |1 < κ. Then the prefix u1u2 . . . ui0 has fewer than
i0κ many 1s, and thus density less than i0κ/i0ι = κ/ι = D(ι), in contradiction
to the definition of ι. �	

The next lemma states that the iota-factorization of a word w constitutes a
non-increasing sequence w.r.t. lexicographic order, as long as w fulfils a weaker
condition than prefix normality, namely that factors of length ι(w) obey the
prefix normal condition. That this does not imply prefix normality can be seen
on the example (1110010)ω, which is not prefix normal.

Lemma 21. Let w be a finite or infinite binary word, such that ι = ι(w) exists.
Let w = u1u2 · · · be the iota-factorization of w. If for every i, |ui|1 = κ = κ(w),
and every factor u of length ι fulfils the prefix normal condition, then for all i,
ui ≥lex ui+1.

Proof. Let us write ui = ui,1 · · · ui,ι. Let aij = |ui,1 · · · ui,j |1 denote the number
of 1s in the j-length prefix of ui, and bij = |ui,j+1 · · · ui,ι|1 the number of 1s in
the suffix of length ι − j. By Lemma 20, we have that aij + bij = κ. On the
other hand, bij + ai+1j ≤ κ, since all ι-length factors satisfy the prefix normal
condition. Thus, for all i: aij ≥ ai+1j .

If ui 
= ui+1, let h = min{j | j = 1, . . . , ι : aij > ai+1j}. Thus, for every
j < h, we have ui,j = ui+1,j and ui,h = 1, ui+1,h = 0, implying ui ≥lex ui+1. �	
Corollary 22. Let w be a finite or infinite prefix normal word, such that ι =
ι(w) exists. Then for all i, ui ≥lex ui+1, where ui is the i’th factor in the iota-
factorization of w.

We now prove that operation flipext leaves the minimum density invariant.

Lemma 23. Let w ∈ L such that wn = 1, and let v ∈ flipext∗(w)∪{flipextω(w)}.
Then ρ(v) = ρ(w), and as a consequence, ι(v) = ι(w) and κ(v) = κ(w).

Theorem 24. Let w ∈ L and v = flipextω(w). Then v is ultimately periodic. In
particular, v can be written as v = uxω, where |x| = ι(w) and |x|1 = κ(w).



Bubble-Flip—A New Generation Algorithm for Prefix Normal Words 217

Proof. By Lemma 23, ι(v) = ι(w), and by Lemma 20, in the iota-factorization of
w, all factors ui have κ(w) 1s. Moreover, by Corollary 22, the factors ui constitute
a lexicographically non-increasing sequence. Since all ui have length ι(w), and
there are finitely many binary words of length ι(w), the claim follows. �	

Next we show that for a word v ∈ flipext∗(w), in order to check the prefix
normality of an extension of v, it is enough to verify that the suffixes up to
length |w| satisfy the prefix normal condition.

Lemma 25. Let w be prefix normal and v′ ∈ flipext∗(w). Then for all k ≥ 0
and v = v′0k1 ∈ L if and only if for all 1 ≤ j ≤ |w|, the suffixes of v of length j
satisfy the prefix normal condition.

By Theorem 24, we know that v = flipextω(w) has the form v = uxω for
some x, whose length and density we can infer from w. The next theorem gives
an upper bound on the waiting time for x, both in terms of the length of the
non-periodic prefix u, and in the number of times a factor can occur before we
can be sure that we have essentially found the periodic factor x (up to rotation).

Theorem 26. Let w ∈ L and v = flipextω(w). Let us write v = uxω, with |x| =
ι(w) and x not a suffix of u. Then

1. |u| ≤ (
(

ι
κ

) − 1)mι, and
2. if for some y ∈ {0, 1}ι, it holds that ym+1 occurs with starting position j >

|w|, then y is a rotation of x,

where ι = ι(w), κ = κ(w), and m = � |w|
ι �.

Proof. 1. Assuming 2., then every ι-length factor y which is not the final period
can occur at most m times consecutively. By Corollary 22, consecutive non-equal
factors in the iota-factorization of v are lexicographically decreasing, so no factor
y can reoccur again once it has been replaced by another factor. By Theorem
24, the density of each factor is κ. There are at most

(
ι
κ

)
such y which are

lexicographically smaller than prefι(w), and each of these has length ι.
2. By Lemma 25, in order to produce the next character of v, the operation

flipext needs to access only the last |w| many characters of the current word.
After m+1 repetitions of u, it holds that the |w|-length factor ending at position
i is equal to the |w|-length factor at position i − ι, which proves the claim. �	

5 Ongoing Work

Our algorithm visits the words using an in-order traversal of the computation
tree. If the words are visited in post-order, then the algorithm produces a Gray
code: two consecutive words differ in at most one flip and one bubble operation.

We have developed several heuristics to speed up our algorithm. One of these
is an application of Lemma 25, while another allows to propagate the value of the
ϕ-function down the computation tree. We are currently evaluating the impact
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of these heuristics on our algorithm’s performance. Further, we want to apply
the algorithm to enumerate (count) certain subsets of prefix normal words, with
the aim of finding a closed form for the number of prefix normal words of length
n, as well as for those with a given critical prefix.

Acknowledgements. We wish to thank three anonymous referees, who read our
paper very carefully and whose detailed comments contributed to improving its expo-
sition.
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Abstract. We prove that the set of permutations sorted by a stack of
depth t ≥ 3 and an infinite stack in series has infinite basis, by construct-
ing an infinite antichain. This answers an open question on identifying
the point at which, in a sorting process with two stacks in series, the
basis changes from finite to infinite.
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1 Introduction

A permutation is an arrangement of an ordered set of elements. Two permu-
tations with same relative ordering are said to be order isomorphic, for exam-
ple, 132 and 275 are order isomorphic as they have relative ordering ijk where
i < k < j. A subpermutation of a permutation p1 . . . pn is a word pi1 . . . pis with
1 ≤ i1 < · · · < is ≤ n. A permutation p contains q if it has a subpermutation
that is order isomorphic to q. For example, 512634 contains 231 since the subper-
mutation 563 is order isomorphic to 231. A permutation that does not contain
q is said to avoid q. Let Sn denote the set of permutations of {1, . . . , n} and let
S∞ =

⋃
n∈N+

Sn. The set of all permutations in S∞ which avoid every permuta-
tion in B ⊆ S∞ is denoted Av(B). A set of permutations is a pattern avoidance
class if it equals Av(B) for some B ⊆ S∞. A set B = {q1, q2, . . . } ⊆ S∞ is
an antichain if no qi contains qj for any i �= j. An antichain B is a basis for a
pattern avoidance class C if C = Av(B).

Sorting mechanisms are natural sources of pattern avoidance classes, since
(in general) if a permutation cannot be sorted then neither can any permutation
containing it. Knuth characterised the set of permutations that can be sorted by
a single pass through an infinite stack as the set of permutations that avoid 231
[11]. Since then many variants of the problem have been studied, for example [1–
9,13–18]. The set of permutations sortable by a stack of depth 2 and an infinite
stack in series has a basis of 20 permutations [7], while for two infinite stacks
in series there is no finite basis [12]. For systems of a finite stack of depth 3 or
more and infinite stack in series, it was not known whether the basis was finite
or infinite.
c© Springer International Publishing AG, part of Springer Nature 2018
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Here we show that for depth 3 or more the basis is infinite. We identify an
infinite antichain belonging to the basis of the set of permutations sortable by
a stack of depth 3 and an infinite stack in series. A simple lemma then implies
the result for depth 4 or more. A computer search by the authors [10] yielded
8194 basis permutations of lengths up to 13 (see Table 1; basis permutations
are listed at https://github.com/gohyoongkuan/stackSorting-3). The antichain
used to prove our theorem was found by examining this data and looking for
patterns that could be arbitrarily extended.

Table 1. Number of basis elements for S(3,∞) of length up to 13

Permutation length Number of sortable
permutations

Number of basis
elements

5 120 0

6 711 9

7 4700 83

8 33039 169

9 239800 345

10 1769019 638

11 13160748 1069

12 98371244 1980

13 737463276 3901

2 Preliminaries

The notation N denotes the non-negative integers {0, 1, 2, . . . } and N+ the pos-
itive integers {1, 2, . . . }.

Let Mt denote the machine consisting of a stack, R, of depth t ∈ N+ and an
infinite stack, L, in series as in Fig. 1. A sorting process is the process of moving
entries of a permutation from right to left from the input to stack R, then to
stack L, then to the output, in some order. Each item must pass through both
stacks, and at all times stack R may contain no more than t items (so if at some
point stack R holds t items, the next input item cannot enter until an item is
moved from R to L).

A permutation α = a1a2 . . . an is in S(t,∞) if it can be sorted to 123 . . . n
using Mt. For example, 243651 ∈ S(t,∞) for t ≥ 3 since it can be sorted using
the following process: place 2, 4 into stack R, move 4, 3, 2 across to stack L, place
6, 5, 1 into stack R, then output 1, 2, 3, 4, 5, 6. Note 243651 �∈ S(2,∞) by [7].

The following lemmas will be used to prove our main result.

Lemma 1. Let α = a1a2 . . . an ∈ S(t,∞) for t ∈ N+. If i < j and ai < aj then
in any sorting process that sorts α, if both ai and aj appear together in stack L
then ai must be above aj.

https://github.com/gohyoongkuan/stackSorting-3
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inputoutput

R

L

a1a2 . . . an

Fig. 1. A stack R of depth t and an infinite stack L in series

Proof. If aj is above ai in stack L then the permutation will fail to be sorted. �	
Lemma 2. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i < j <
k ≤ n with aiajak order-isomorphic to 132. Then in any sorting process that
sorts α, ai, aj , ak do not appear together in stack R.

Proof. If ai, aj , ak appear together in stack R, we must move ak then aj onto
stack L before we can move ai, but this means aj , ak violate Lemma 1. �	
Lemma 3. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and 1 ≤ i1 < i2 < · · · < i6 ≤
n with ai1ai2 . . . ai6 order isomorphic to 243651. Then in any sorting process that
sorts α, at some step of the process ai4 and ai5 appear together in stack R.

Proof. For simplicity let us write ai1 = 2, ai2 = 4, ai3 = 3, ai4 = 6, ai5 = 5, ai6 =
1. Before 6 is input, 2, 3, 4 are in the two stacks in one of the following configu-
rations:

1. 2, 4, 3 are all in stack R. In this case we violate Lemma 2.
2. two items are in stack R and one is in stack L. In this case by Lemma 1 we

cannot move 6 to stack L, so 6 must placed and kept in stack R. If t = 3
stack R is now full, so 5 cannot move into the system, and if t ≥ 4, when 5 is
input we violate Lemma 2.

3. one item, say a, is in stack R and two items are in stack L. In this case we
cannot move 6, 5 into stack L by Lemma 1 so they remain in stack R on top
of a, violating Lemma 2.

4. stack R is empty. In this case, 2, 3, 4 must be placed in stack L in order, else
we violate Lemma 1. We cannot place 6, 5 into stack L until it is empty, so
they must both stay in stack R until 4 is output.

In particular, the last case is the only possibility and in this case ai4 , ai5 appear
in stack R together. �	
Lemma 4. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i1 < i2 <
· · · < i5 ≤ n with ai1ai2 . . . ai5 order-isomorphic to 32514. Then, in any sorting
process that sorts α, if ai1 , ai2 appear together in stack R, then at some step in
the process ai3 , ai4 appear together in stack L.
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Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 1, ai5 = 4.
Figure 2 indicates the possible ways to sort these entries, and in the case that
2, 3 appear together in stack R we see that 4, 5 must appear in stack L together
at some later point. �	

R

L

2514

3
R

L

2514

3

2, 3 never appear together in stack R

R

L

514

2
3

R

L

514

2

3

R

L

14

2

5
3

R

L

412

5

3

4, 5 must appear together in stack L

R

L

14

5
2
3

R

L

14

5

2
3

4,5 must appear together in stack L

Fig. 2. Sorting 32514

Lemma 5. Let α = a1a2 . . . an ∈ S(t,∞) for t ≥ 3 and suppose 1 ≤ i1 < i2 <
· · · < i5 ≤ n with ai1ai2 . . . ai5 order-isomorphic to 32541. Then, in any sorting
process that sorts α, if ai1 , ai2 appear together in stack L, then at the step that
ai1 is output,
1. ai3 , ai4 are both in stack R, and
2. if ak is in stack L then k < i2.

Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 4, ai5 = 1,
and α = u03u12u25u34u41u5. Figure 3 indicates the possible ways to sort these
entries. In the case that 2, 3 appear in stack R together, Lemma 1 ensures 2, 3 do
not appear together in stack L. In the other case, before 3 is moved into stack L,
any tokens in stack L come from u0u1. Thus when 3 is output the only tokens
in stack L will be ak with k < i2. Lemma 1 ensures that 4, 5 are not placed on
top of 3 in stack L, so that the step that 3 is output they sit together in stack
R. �	
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R

L

2541

3
R

L

541

2
3

2, 3 cannot appear together in stack L

R

L

2541

3

tokens under 3 must be from u0u1

R

L

541

2

3

R

L

1

3

4
5
2

violates Lemma 2

R

L

541

2
3

R

L

1

2
3

4
5

R

L

12

3

4
5

(1) and (2) are satisfied

Fig. 3. Sorting 32541

3 An Infinite Antichain

We use the following notation. If α = a1 . . . an is a permutation of 12 . . . n and
m ∈ Z then let αm be the permutation obtained by adding m to each entry of
α. For example (1 2 3)4 = 5 6 7 and 136 = 19.

We construct a family of permutations G = {Gi | i ∈ N} as follows. Define

P = 2 4 3 7 6 1
xj = (10 5 9)6j
yj = (13 12 8)6j
Si = (14 15 11)6i
Gi = P x0 y0 x1 y1 . . . xi yi Si

The first three terms are

G0 = 2 4 3 7 6 1 (10 5 9) (13 12 8) 14 15 11,
G1 = 2 4 3 7 6 1 (10 5 9) (13 12 8) (16 11 15) (19 18 14) 20 21 17,
G2 = P (10 5 9) (13 12 8) (16 11 15) (19 18 14) (22 17 21)(25 24 20) 26 27 23.

A diagram of G2 is shown in Fig. 4 which illustrates the general pattern.
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Fig. 4. Diagram of the permutation G2 = 2 4 3 7 6 1 x0 y0 x1 y1 x2 y2 26 27 23

We will prove that each Gi is an element of the basis of S(3,∞) for all i ∈ N.
Note that if we define x−1, y−1 to be empty, G−1 = 243761895 is also an element
of the basis. We noticed this and G0 had a particular pattern which we could
extend using xjyj . However, we exclude G−1 from our antichain to make the
proofs simpler.

Proposition 6. The permutation Gi �∈ S(3,∞) for all i ∈ N.

Proof. Suppose for contradiction that Gi can be sorted by some sorting process.
Since P is order isomorphic to 243651, by Lemma 3 in any sorting process 7, 6
appear together in stack R. Next, 7 6 10 5 9 is order isomorphic to 32514 so by
Lemma 4 since 7, 6 appear together in stack R we must have that 10, 9 appear
together in stack L at some point in the process.

Now consider xjyj = (10 5 9 13 12 8)6j , and assume that 106j , 96j both
appear in stack L together. Since (10 9 13 12 8)6j is order isomorphic to 32541
by Lemma 5 136j , 126j must be placed together in stack R and stay there until
106j is output.
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Next consider yjxj+1 = (13 12 8 16 11 15)6j , and assume that 136j , 126j both
appear in stack R together. Then since (13 12 16 11 15)6j is order isomorphic
to 32514 by Lemma 4 we have 166j , 156j appear together in stack L. Note that
166j , 156j = 106(j+1), 96(j+1), so putting the above observations together we see
that for all 0 ≤ j ≤ i we have 106j , 96j both appear in stack L together and
136j , 126j appear together in stack R and stay there until 106j is output.

Now we consider the suffix

xiyiSi = (10 5 9 13 12 8 14 15 11)6i

where 106i, 96i are together in stack L. Lemma 5 tells us not only that 136i, 126i
appear together in stack R and stay there until 106i is output, but that any-
thing sitting underneath 106i in stack L comes before 96i in Gi, so in particular
146i, 156i are not underneath 106i. All possible processes to sort xiyiS are shown
in Fig. 5. All possible sorting moves fail, which means Gi cannot be sorted. �	

R

L

146i 156i 116i

126i
136i

106i

(Si)

R

L

156i 116i

146i
126i
136i

106i

R

L

146i 156i 116i106i

126i
136i

R

L

156i 116i106i

146i
136i

126i

R

L

116i106i

156i
146i
136i

126i

cannot be sorted

R

L

156i 116i106i

146i
126i
136i

R

L

156i 116i106i

126i
136i

146i

R

L

116i106i

156i
126i
136i

146i

cannot be sorted

R

L

106i

116i
156i
136i

126i
146i

cannot be sorted

Fig. 5. All possible ways to sort xiyiS

The idea of the preceding proof can be summarised informally as follows. The
prefix P forces 7, 6 to be together in stack R, then Lemmas 4 and 5 alternately
imply that the 106j , 96j terms of xj must be in stack L and the 136j , 126j terms
of yj must be in stack R. When we reach the suffix Si the fact that certain entries
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are forced to be in a particular stack means we are unable to sort the final terms.
We now show that if a single entry is removed from Gi, we can choose to place
the 106j , 96j terms in stack R and 136j , 126j terms in stack L, which allows the
suffix to be sorted.

Lemma 7. Let 0 ≤ j ≤ i. If stack R contains one or both of 106j , 96j in ascend-
ing order, and yj . . . yiSi is to be input as in Fig. 6, then there is a sorting pro-
cedure to output all remaining entries in order.

R

L

136j 126j 86j (xj+1 . . . or Si)

(yj)

96j
106j

Fig. 6. A sortable configuration

Proof. For j < i move 136j , 126j into stack L, output 86j , 96j , 106j , move 166j =
106(j+1) into stack R, output 116j = 56(j+1), output 136j , 126j from stack L and
input 156j = 96(j+1) so that the configuration has the same form as Fig. 6 with
j incremented by 1.

For j = i the remaining input is (13 12 8 14 15 11)6j . Put 136i, 126i in stack L
in order, output 86i, 96i, 106i, put 146i, 156i in stack R and output 116i, 126i, 136i,
move 156i into stack L and output 146i then 156i.

If one of 96j , 106j is missing, use the same procedure ignoring the missing
entry. �	
Lemma 8. Let 0 ≤ j ≤ i. If stack L contains one or both of 126j , 136j in
ascending order, and xj+1 . . . Si (or just Si if j = i) is to be input as in Fig. 7,
then there is a sorting procedure to output all remaining entries in order.

R

L

xj+1 . . . or Si

126j
136j

Fig. 7. Another sortable configuration
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Proof. If j < i move 106(j+1) into stack R, output 56(j+1), 126j , 136j , move
96(j+1) to stack R to reach the configuration in Fig. 6, which we can sort by
Lemma 7. If j = i then the remaining input is just Si = (14 15 11)6i: move
146i, 156i to stack R, then output all entries.

If one of 126j , 136j is missing, use the same procedure ignoring the missing
entry. �	
Proposition 9. Let G′

i be a permutation obtained by removing a single entry
from Gi. Then G′

i ∈ S(3,∞).

Proof. We give a deterministic procedure to sort G′
i. There are three cases

depending on from where the entry is removed.
Term removed from P . Let P ′ be the factor P with one entry removed. We

claim that there is a sorting sequence for P ′x0 which outputs the smallest six
items in order and leaves 10, 9 in stack R. To show this we simply consider all
cases.

1. If 1 is removed, 2, 4, 3 can be output in order, then 7, 6 placed in stack L, 10
in stack R, then 5, 6, 7 output, and 9 placed on top of 10 in stack R.

2. If 2, 3, or 4 are removed, write P ′ = ab761 with a, b ∈ {2, 3, 4}. Place a, b
in stack R, move 7, 6 into stack L, output 1, then output a, b in the correct
order, then move 10 into stack R, output 5, 6, 7 and move 9 into stack R.

3. If 6 or 7 is removed, write P ′ = 243a1 with a ∈ {7, 6}. Place 4, 3, 2 in stack
L in order, move a into stack R, output 1 then 2, 3, 4, then move a into stack
L, move 10 into stack R, output 5, a and move 9 into stack R.

Thus after inputting P ′x0 we have the configuration shown in Fig. 6 with
j = 0, which we can sort by Lemma 7.

Term removed from xs, 0 ≤ s ≤ i.
Input P leaving 6, 7 in stack R, which brings us to the configuration in Fig. 8

with j = 0. Now assume we have input P . . . xj−1yj−1 with j ≤ s (note the
convention that x−1, y−1 are empty) and the configuration is as in Fig. 8.

R

L

xj yj . . . or x′
sys . . .

126(j−1)

136(j−1)

Fig. 8. Configuration after P . . . xj−1yj−1 is input

If j < s we can input xjyj into the stacks to arrive at the same configuration
with j incremented by 1, as follows: move 106j to stack L, output 56j , 66j =
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126(j−1), 76j = 136(j−1), move 96j to stack L, move 136j , 126j to stack R, output
86j , 96j , 106j .

If j = s, we proceed as follows:

1. If 56s removed, output 66s = 126(s−1), 76s = 126(s−1), move 96s, 106s to stack
R, to reach the configuration in Fig. 6 with j = s. From here the remaining
entries can be sorted by Lemma 7.

2. If 106s is removed, output 56s, 66s, 76s and place 96s in stack R, to reach the
configuration in Fig. 6 with j = s and 106s missing. From here the remaining
entries can be sorted Lemma 7.

3. If 96s is removed, move 66s to stack L, move 106s on top of 76s in stack R,
output 56s, 66s, move 136s, 126s into L, then output 86s, 106s. This gives the
configuration in Fig. 7 with j = s. From here the remaining entries can be
sorted by Lemma 8.

Term removed from ys, 0 ≤ s ≤ i or Si. Input Px0 to reach the configuration in
Fig. 9 with j = 0: move 2, 3, 4 into stack L, 7, 6 to R, output 1, 2, 3, 4, move 10
into L, output 5, 6, 7 then move 9 into L.

R

L

106j
96j

Fig. 9. Configuration after Px0y0 . . . xj is input

Now suppose we have input Px0y0 . . . xj to reach the configuration in Fig. 9.
If no entry is removed from yj and j < i then we can input yjxj+1 to return to the
configuration in Fig. 9 with j incremented by 1 as follows: move 136j , 126j to stack
R, output 86j , 96j , 106j , move 106(j+1) to L, output 56(j+1) = 116j , 126j , 136j ,
then move 96(j+1) to stack L.

If j = s (ys is removed):

1. If 86s is removed, output 96s, 106s, move 136s, 126s to stack L to reach the
configuration in Fig. 7, from which the remaining entries can be sorted by
Lemma 8.

2. If b ∈ {136s, 126s} is removed, place b in stack R, output 86s, 96s, 106s, move b
to stack L to reach the configuration in Fig. 7 with one of 126s, 136s removed,
from which the remaining entries can be sorted a by Lemma8.

If j = i and the entry is removed from Si, sort the remaining entries as
follows:

1. If 116i is removed, place 136i, 126i into stack R, output 86i, 96i, 106i, then
126i, 136i, 146i, 156i.
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2. If b ∈ {146i, 156i} is removed, place 136i, 126i into stack R, output
86i, 96i, 106i, move 126i into stack L, place b on top of 136i in stack R, output
116i then 126i, move b into stack L, output 136i then b. �	

Theorem 10. The set of permutations that can be sorted by a stack of depth 3
and an infinite stack in series has an infinite basis.

Proof. Proposition 6 shows that each Gi cannot be sorted, and Proposition 9
shows that no Gi can contain Gj for j �= i as a subpermutation since any
subpermutation of Gi can be sorted. Thus G = {Gi | i ∈ N} is an infinite
antichain in the basis for S(3,∞). �	

4 From Finite to Infinitely Based

Let Bt be the basis for S(t,∞) for t ∈ N+. Modifying Lemma1 in [7] for the
sorting case, we have the following:

Lemma 11. If σ ∈ Bt has length n then either σ or (213)nσ belongs to Bt+1.

Proof. If σ �∈ S(t+1,∞) then since σ ∈ Bt, deleting any entry gives a permuta-
tion in S(t,∞) ⊆ S(t + 1,∞), so σ ∈ Bt+1. Else σ ∈ S(t + 1,∞). In any sorting
process for (213)nσ the entries 1n, 2n, 3n cannot appear together in stack L, so
at least one entry must remain in stack R which means we must sort σ with
stack R of depth at most t, which is not possible, so (213)nσ cannot be sorted.
If we remove an entry of the prefix then the two entries a, b ∈ {1n, 2n, 3n} can
be placed in stack L in order, leaving stack R depth t + 1 so the permutation
can be sorted, and if an entry is removed from σ then since σ ∈ Bt it can be
sorted with R having one space occupied. �	
Theorem 12. The set of permutations that can be sorted using a stack of depth
t ∈ N+ and an infinite stack in series is finitely based if and only if t ∈ {1, 2}.
Proof. We have |B1| = 1 and |B2| = 20 [7,11]. Theorem 10 shows that B3 is
infinite. Lemma 11 implies if Bt is infinite then so is Bt+1. �	

A small modification of Propositions 6 and 9 shows that for t ≥ 4 the set
Gt = {Gi,t}, where Gi,t = P (x0y0) . . . (xiyi)(14 15 16 . . . 12t 11)6i, is an explicit
antichain in the basis of S(t,∞). Details can be seen in [10].
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ordered stacks in series. Theor. Comput. Sci. 289(1), 205–223 (2002).
http://dx.doi.org/10.1016/S0304-3975(01)00270–5
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Abstract. We investigate the function L(h, p, q), called here the thresh-
old function, related to periodicity of partial words (words with holes).
The value L(h, p, q) is defined as the minimum length threshold which
guarantees that a natural extension of the periodicity lemma is valid
for partial words with h holes and (strong) periods p, q. We show how
to evaluate the threshold function in O(log p + log q) time, which is an
improvement upon the best previously known O(p + q)-time algorithm.
In a series of papers, the formulae for the threshold function, in terms
of p and q, were provided for each fixed h ≤ 7. We demystify the generic
structure of such formulae, and for each value h we express the threshold
function in terms of a piecewise-linear function with O(h) pieces.

Keywords: Partial words · Words with don’t cares
Periodicity lemma

1 Introduction

Consider a word X of length |X| = n, with its positions numbered 0 through
n − 1. We say that X has a period p if X[i] = X[i + p] for all 0 ≤ i < n − p.
In this case, the prefix P = X[0..p − 1] is called a string period of X. Our work
can be seen as a part of the quest to extend Fine and Wilf’s Periodicity Lemma
[11], which is a ubiquitous tool of combinatorics on words, into partial words.

Lemma 1 (Periodicity Lemma [11]). If p, q are periods of a word X of length
|X| ≥ p + q − gcd(p, q), then gcd(p, q) is also a period of X.

A partial word is a word over the alphabet Σ ∪ {♦}, where ♦ denotes a hole
(a don’t care symbol). In what follows, by n we denote the length of the partial
word and by h the number of holes. For a, b ∈ Σ∪{♦}, the relation of matching ≈
is defined so that a ≈ b if a = b or either of these symbols is a hole. A (solid)
word P of length p is a string period of a partial word X if X[i] ≈ P [i mod p]
for 0 ≤ i < n. In this case, we say that the integer p is a (strong) period of X.
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We aim to compute the optimal thresholds L(h, p, q) which make the following
generalization of the periodicity lemma valid:

Lemma 2 (PeriodicityLemmaforPartialWords). IfX is a partialwordwith
h holes with periods p, q and |X| ≥ L(h, p, q), then gcd(p, q) is also a period of X.

If gcd(p, q) ∈ {p, q}, then Lemma 2 trivially holds for each partial word X.
Otherwise, as proved by Fine and Wilf [11], the threshold in Lemma 1 is known
to be optimal, so L(0, p, q) = p + q − gcd(p, q).

Example 3. L(1, 5, 7) = 12, because:

– each partial word of length at least 12 with one hole and periods 5, 7 has also
period 1 = gcd(5, 7),

– the partial word ababaababa♦ of length 11 has periods 5, 7 and does not have
period 1.

As our main aim, we examine the values L(h, p, q) as a function of p, q for a given
h. Closed-form formulae for L(h, ·, ·) with h ≤ 7 were given in [2,5,24]. In these
cases, L(h, p, q) can be expressed using a constant number of functions linear in
p, q, and gcd(p, q). We discover a common pattern in such formulae which lets us
derive a closed-form formula for L(h, p, q) with arbitrary fixed h using a sequence
of O(h) fractions. Our construction relies on the theory of continued fractions; we
also apply this link to describe L(h, p, q) in terms of standard Sturmian words.

As an intermediate step, we consider a dual holes function H(n, p, q), which
gives the minimum number of holes h for which there is a partial word of length
n with h holes and periods p, q which do not satisfy Lemma 2.

Example 4. We have H(11, 5, 7) = 1 because:

– H(11, 5, 7) ≥ 1: due to the classic periodicity lemma, every solid word of
length 11 with periods 5 and 7 has period 1 = gcd(5, 7), and

– H(11, 5, 7) ≤ 1: ababaababa♦ is non-unary, has one hole and periods 5, 7.

We have H(12, 5, 7) ≤ H(11, 5, 7) + 1 = 2 since appending ♦ preserves periods.
In fact H(12, 5, 7) = H(15, 5, 7) = 2. However, there is no non-unary partial
word of length 16 with 2 holes and periods 5, 7, so L(2, 5, 7) = 16; see Table 1.

Table 1. The optimal non-unary partial words with periods 5, 7 and h = 0, . . . , 5 holes
(of length L(h, 5, 7) − 1) and the values H(n, 5, 7) for n = 10, . . . , 25.
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For a function f(n, p, q) monotone in n, we define its generalized inverse as:

˜f(h, p, q) = min{n : f(n, p, q) > h}.

Observation 5. L = ˜H.

As observed above, Lemma 2 becomes trivial if p | q. The case of p | 2q is
known to be special as well, but it has been fully described in [24]. Furthermore,
it was shown in [5,23] that the case of gcd(p, q) > 1 is easily reducible to that
of gcd(p, q) = 1. We recall these existing results in Sect. 4, while in the other
sections we assume that gcd(p, q) = 1 and p, q > 2.

Previous Results. The study of periods in partial words was initiated by Berstel
and Boasson [2], who proved that L(1, p, q) = p + q. They also showed that the
same bound holds for weak periods1 p and q. Shur and Konovalova [24] developed
exact formulae for L(2, p, q) and L(h, 2, q), and an upper bound for L(h, p, q).
A formula for L(h, p, q) with small values h was shown by Blanchet-Sadri et
al. [3], whereas for large h, Shur and Gamzova [23] proved that the optimal
counterexamples of length L(h, p, q)−1 belong to a very restricted class of special
arrangements. The latter contribution leads to an O(p + q)-time algorithm for
computing L(h, p, q). An alternative procedure with the same running time was
shown by Blanchet-Sadri et al. [5], who also stated closed-form formulae for
L(h, p, q) with h ≤ 7. Weak periods were further considered in [4,6,25].

Other known extensions of the periodicity lemma include a variant with three
[8] and an arbitrary number of specified periods [13,26], the so-called new peri-
odicity lemma [1,10], a periodicity lemma for repetitions with morphisms [18],
extensions into abelian [9] and k-abelian [14] periodicity, into abelian periodicity
for partial words [7], into bidimensional words [19], and other variations [12,20].

Our Results. First, we show how to compute L(h, p, q) using O(log p + log q)
arithmetic operations, improving upon the state-of-the-art complexity O(p + q).

Furthermore, for any fixed h in O(h log h) time we can compute a compact
description of the threshold function L(h, p, q). For the base case of p < q,
gcd(p, q) = 1, and h < p + q − 2, the representation is piecewise linear in p
and q. More precisely, the interval [0, 1] can be split into O(h) subintervals I so
that L(h, p, q) restricted to p

q ∈ I is of the form a · p + b · q + c for some integers
a, b, c.

Overview of the Paper. We start by introducing two auxiliary functions Hs

and Hd which correspond to two restricted families of partial words. Our first
key step is to prove that the value H(n, p, q) is always equal to Hs(n, p, q) or
Hd(n, p, q) and to characterize the arguments n for which either case holds. The
final function L is then obtained as a combination of the generalized inverses Ls

and Ld of Hs and Hd, respectively. Developing the closed-form formula for Ld

requires considerable effort; this is where continued fractions arise.
1 An integer p is a weak period of X if X[i] ≈ X[i+ p] for all 0 ≤ i < n − p.
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2 Functions Hs and Ls

For relatively prime integers p, q, 1 < p < q, and an integer n ≥ q, let us define

Hs(n, p, q) =
⌊

n−q
p

⌋

+
⌊

n−q+1
p

⌋

.

We shall prove that H(n, p, q) ≤ Hs(n, p, q) for a suitable range of lengths n.
Fine and Wilf [11] constructed a word of length p + q − 2 with periods p and

q and without period 1. For given p, q we choose such a word Sp,q and we define
a partial word Wp,q as follows, setting k = �q/p	 (see Fig. 1):

Wp,q = (Sp,q[0..p − 3]♦♦)k · Sp,q · (♦♦Sp,q[q..q + p − 3])k.

Intuitively, the partial word Wp,q is an extension of Sp,q preserving the period
p, in which a small number of symbols is changed to holes to guarantee the
periodicity with respect to q. This is formally proved in the full version [16].

Lemma 6. The partial word Wp,q has periods p and q.

Fig. 1. The structure of the partial word Wp,q♦♦ = X · Sp,q · Y ♦♦ for �q/p� = 3.
Tiny rectangles correspond to two holes ♦♦. We have |X| = |Y | = p �q/p� = 3p and
|Wp,q| = p+ q + 2p �q/p� − 2 = q + 7p − 2. There are 4 · �q/p� = 12 holes.

Example 7. For p = 5 and q = 7, we can take S5,7 = ababaababa and

W5,7 = aba♦♦ ababaababa ♦♦aba.

This partial word has length 20 and 4 holes. Hence, H(20, 5, 7) ≤ 4 = Hs(20, 5, 7)
and L(4, 5, 7) ≥ 21. In fact, these bounds are tight; see Table 1.

We use the word Sp,q and the partial word Wp,q♦♦ to show that Hs is an
upper bound for H for all intermediate lengths n (|Sp,q| ≤ n ≤ |Wp,q♦♦|).
Lemma 8. Let 1 < p < q be relatively prime integers. For each length p+q−2 ≤
n ≤ p + q + 2p �q/p	, we have H(n, p, q) ≤ Hs(n, p, q).

Proof. We extend Sp,q to Wp,q♦♦ symbol by symbol, first prepending the char-
acters before Sp,q, and then appending the characters after Sp,q. By Lemma 6,
the resulting partial word has periods p and q because it is contained in Wp,q♦♦.
Moreover, it is not unary because it contains Sp,q.
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A hole is added at the first two iterations among every p iterations. Hence,
the total number of holes is as claimed:

⌈

n−|Sp,q|
p

⌉

+
⌈

n−|Sp,q|−1
p

⌉

=
⌊

n−q+1
p

⌋

+
⌊

n−q
p

⌋

= Hs(n, p, q),

because 
x
p � = �x+p−1

p 	 for every integer x. �

Finally, the function Ls = ˜Hs is very simple and easily computable.

Lemma 9. If h ≥ 0 is an integer, then Ls(h, p, q) =
⌈

h+1
2

⌉

p+q−(h+1) mod 2.

Proof. We have to determine the smallest n such that
⌊

n−q
p

⌋

+
⌊

n−q+1
p

⌋

= h+1.

There are two cases, depending on parity of h:

Case 1: h = 2k. In this case
⌊

n−q
p

⌋

= k and
⌊

n−q+1
p

⌋

= k+1. Hence, n−q+1 =

p(k + 1), i.e., n = p(k + 1) + q − 1 =
⌈

h+1
2

⌉

p + q − (h + 1) mod 2.

Case 2: h = 2k + 1. In this case
⌊

n−q
p

⌋

= k + 1 and
⌊

n−q+1
p

⌋

= k + 1. Hence,

n − q = p(k + 1), i.e., n = p(k + 1) + q =
⌈

h+1
2

⌉

p + q − (h + 1) mod 2. �

3 Functions Hd and Ld

In this section, we study a family of partial words corresponding to the special
arrangements introduced in [23]. For relatively prime integers p, q > 1, we say
that a partial word S of length n ≥ max(p, q) is (p, q)-special if it has a position
l such that for each position i:

S[i] =

⎧

⎪

⎨

⎪

⎩

a if p � (l − i) and q � (l − i),
b if p | (l − i) and q | (l − i),
♦ otherwise.

Let Hd(n, p, q) be the minimum number of holes in a (p, q)-special partial word
of length n.

Fact 10. For each n ≥ max(p, q), we have H(n, p, q) ≤ Hd(n, p, q).

Proof. Observe that every (p, q)-special partial word has periods p and q. How-
ever, due to p, q > 1, it does not have period 1 = gcd(p, q). �
Example 11. The partial word aaaabaaaa♦a♦aa♦aaa is (5, 7)-special (with l =
4), so H(18, 5, 7) ≤ Hd(18, 5, 7) ≤ 3 and L(3, 5, 7) ≥ 19. In fact, these bounds
are tight; see Table 1.
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To derive a formula for Hd(n, p, q), let us introduce an auxiliary function G,
which counts integers i ∈ {1, . . . , n} that are multiples of p or of q but not both:

G(n, p, q) =
⌊

n
p

⌋

+
⌊

n
q

⌋

− 2
⌊

n
pq

⌋

.

The function Hd can be characterized using G, while the generalized inverse
Ld = ˜Hd admits a dual characterization in terms of ˜G; see also Table 2.

Lemma 12. Let p, q > 1 be relatively prime integers.

(a) If n ≥ max(p, q), then Hd(n, p, q) = minn−1
l=0 (G(l, p, q) + G(n − l − 1, p, q)).

(b) If h ≥ 0, then Ld(h, p, q) = maxh
k=0

(

˜G(k, p, q) + ˜G(h − k, p, q)
)

.

Proof. Let S be a (p, q)-special partial word of length n with h holes, k of which
are located to the left of position l. Observe that k = G(l, p, q) (so l + 1 ≤
˜G(k, p, q)) and h − k = G(n − l − 1, p, q) (so n − l ≤ ˜G(h − k, p, q)). Hence,
h = G(l, p, q) + G(n − l − 1, p, q) and n + 1 ≤ ˜G(k, p, q) + ˜G(h − k, p, q). The
claimed equalities follow from the fact that these bounds can be attained for
each l and k, respectively. �

Table 2. Functions ˜G and Ld for p = 5, q = 7, and h = 0, . . . , 15. By Lemma 12, we
have, for example, Ld(8, 5, 7) = max

(

˜G(0, 5, 7)+ ˜G(8, 5, 7), . . . , ˜G(4, 5, 7)+ ˜G(4, 5, 7)
)

=
max(5 + 28, 7 + 25, 10 + 21, 14 + 20, 15 + 15) = 34.

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
˜G(h, 5, 7) 5 7 10 14 15 20 21 25 28 30 40 42 45 49 50 55

Ld(h, 5, 7) 10 12 15 19 21 25 28 30 34 35 45 47 50 54 56 60

4 Characterizations of H and L

Shur and Gamzova in [23] proved that H(n, p, q) = Hd(n, p, q) for n ≥ 3q + p.
We give a complete characterization of H in terms of Hd and Hs, and we derive
an analogous characterization of L in terms of Ld and Ls.

A tedious proof of the following theorem is given in the full version [16].

Theorem 13. Let p and q be relatively prime integers such that 2 < p < q. For
each integer n ≥ p + q − 2, we have

H(n, p, q) =

{

Hs(n, p, q) if n ≤ q + p
 q
p� − 1 or 3q ≤ n ≤ q + 3p − 1,

Hd(n, p, q) otherwise.

Moreover, for each integer h ≥ 0:

L(h, p, q) =

{

Ls(h, p, q) if q
p >

⌈

h
2

⌉

or (h = 4 and q
p < 3

2 )
Ld(h, p, q) otherwise.
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The remaining cases have already been well understood:

Fact 14 [5,23]. If p, q > 1 are integers such that gcd(p, q) /∈ {p, q}, then

L(h, p, q) = gcd(p, q) · L
(

h, p
gcd(p,q) ,

q
gcd(p,q)

)

.

Fact 15 [24]. If q, h are integers such that q > 2, 2 � q, and h ≥ 0, then

L(h, 2, q) = (2p + 1)
⌊

h
p

⌋

+ h mod p.

The results above lead to our first algorithm for computing L(h, p, q).

Corollary 16. Given integers p, q > 1 such that gcd(p, q) /∈ {p, q} and an inte-
ger h ≥ 0, the value L(h, p, q) can be computed in O(h + log p + log q) time.

Proof. First, we apply Fact 14 to reduce the computation to L(h, p′, q′) such
that gcd(p′, q′) = 1 and, without loss of generality, 1 < p′ < q′. This takes
O(log p + log q) time. If p′ = 2, we use Fact 15, while for p′ > 2 we rely on the
characterization of Theorem 13, using Lemmas 9 and 12 for computing Ls and
Ld, respectively. The values ˜G(h′, p′, q′) form a sorted sequence of multiples of p′

and q′, but not of p′q′. Hence, it takes O(h) time to generate them for 0 ≤ h′ ≤ h.
The overall running time is O(h + log p + log q). �

5 Faster Algorithm for Evaluating L

A more efficient algorithm for evaluating L relies on the theory of continued
fractions; we refer to [15,22] for a self-contained yet compact introduction. A
finite continued fraction is a sequence [γ0; γ1, . . . , γm], where γ0,m ∈ Z≥0 and
γi ∈ Z≥1 for 1 ≤ i ≤ m. We associate it with the following rational number:

[γ0; γ1, . . . , γm] = γ0 + 1

γ1+
1

. . .+ 1
γm

.

Depending on the parity of m, we distinguish odd and even continued fractions.
Often, an improper continued fraction [; ] = 1

0 is also introduced and assumed
to be odd. Each positive rational number has exactly two representations as
a continued fraction, one as an even continued fraction, and one as an odd
continued fraction. For example, 5

7 = [0; 1, 2, 2] = [0; 1, 2, 1, 1].
Consider a continued fraction [γ0; γ1, . . . , γm]. Its convergents are continued

fractions of the form [γ0; γ1, . . . , γm′ ] for 0 ≤ m′ < m, and [; ] = 1
0 . The semi-

convergents also include continued fractions of the form [γ0; γ1, . . . , γm′−1, γ
′
m′ ],

where 0 ≤ m′ ≤ m and 0 < γ′
m′ < γm′ . The two continued fractions representing

a positive rational number have the same semiconvergents.

Example 17. The semiconvergents of [0; 1, 2, 2] = 5
7 = [0; 1, 2, 1, 1] are [; ] = 1

0 ,
[0; ] = 0

1 , [0; 1] = 1
1 , [0; 1, 1] = 1

2 , [0; 1, 2] = 2
3 , and [0; 1, 2, 1] = 3

4 .
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Semiconvergents of p
q can be generated using the (slow) continued fraction

algorithm, which produces a sequence of Farey pairs (a
b , c

d ) such that a
b < p

q < c
d .

Algorithm 1: Continued fraction algorithm for a rational number p
q > 0

(a
b , c

d ) := (01 , 1
0 );

while true do
Report a Farey pair (a

b , c
d );

if a+c
b+d < p

q then a
b := a+c

b+d ;
else if a+c

b+d = p
q then break;

else c
d := a+c

b+d ;

Example 18. For p
q = 5

7 , the Farey pairs are ( 01 , 1
0 ) � ( 01 , 1

1 ) � ( 12 , 1
1 ) �

(23 , 1
1 ) � ( 23 , 3

4 ). The process terminates at 2+3
3+4 = 5

7 .

Consider the set F = {a
b : a, b ∈ Z≥0, gcd(a, b) = 1} of reduced fractions

(including 1
0 ). We denote Fk = {a

b ∈ F : a + b ≤ k} and, for each x ∈ R+:

Leftk(x) = max{a ∈ Fk : a ≤ x} and Rightk(x) = min{a ∈ Fk : a ≥ x}.

We say that a
b < x is a best left approximation of x if a

b = Leftk(x) for some
k ∈ Z≥0. Similarly, c

d > x is a best right approximation of x if c
d = Rightk(x).

Example 19. We have F7 = (01 , 1
6 , 1

5 , 1
4 , 1

3 , 2
5 , 1

2 , 2
3 , 3

4 , 1
1 , 4

3 , 3
2 , 2

1 , 5
2 , 3

1 , 4
1 , 5

1 , 6
1 , 1

0 ).
Here, Left7( 57 ) = 2

3 and Right7(
5
7 ) = 3

4 are best approximations of 5
7 .

We heavily rely on the following extensive characterization of semiconver-
gents:

Fact 20 ([15], [21, Theorem 3.3], [22, Theorem 2]). Let p
q ∈ F \ {1

0 , 0
1}. The

following conditions are equivalent for reduced fractions a
b < p

q :

(a) the Farey process for p
q generates a pair (a

b , c
d ) for some c

d ∈ F ,
(b) a

b is an even semiconvergent of p
q ,

(c) a
b is a best left approximation of p

q ,
(d) b = �aq

p 	 + 1 and aq mod p > iq mod p for 0 ≤ i < a.

By symmetry, the following conditions are equivalent for reduced fractions c
d > p

q :

(a) the Farey process for p
q generates a pair (a

b , c
d ) for some a

b ∈ F ,
(b) c

d is an odd semiconvergent of p
q ,

(c) c
d is a best right approximation of p

q ,
(d) c = �dp

q 	 + 1 and dp mod q > ip mod q for 0 ≤ i < d.

Example 21. For p
q = 5

7 , the prefix maxima of (iq mod p)p−1
i=0 = (0, 2, 4, 1, 3)

are attained for i = 0, 1, 2 (numerators of 0
1 , 1

2 , 2
3 ) while the prefix maxima of

(ip mod q)q−1
i=0 = (0, 5, 3, 1, 6, 4, 2) are attained for i = 0, 1, 4 (denominators of

1
0 , 1

1 , 3
4 ).
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Due to Fact 20, the best approximations can be efficiently computed using
the fast continued fraction algorithm; see [22].

Corollary 22. Given p
q ∈ F and a positive integer k, 1 ≤ k < p + q, the values

Leftk(p
q ) and Rightk(p

q ) can be computed in O(log k) time.

In the full version [16], we characterize the function Ld as follows.

Lemma 23. Let p, q > 2 be relatively prime integers and let h < p + q − 3. If
a
b = Lefth+3(p

q ) and c
d = Righth+3(

p
q ), then, assuming G(−1, p, q) = 0:

Ld(h, p, q) =

{

˜G(a + b − 2, p, q) + ˜G(c + d − 2, p, q) if a + b + c + d = h + 4,
˜G(h + 2, p, q) otherwise.

Lemma 23 applies to h < p+q−3; the following fact lets us deal with h ≥ p+q−3.
It appeared in [5], but in the full version [16] we provide an alternative proof.

Fact 24 ([5, Theorem 4]). Let p, q be relatively prime positive integers. For each
h ≥ 0, we have

Ld(h, p, q) = Ld(h mod (p + q − 2), p, q) +
⌊

h
p+q−2

⌋

· pq.

Moreover, Ld(p + q − 3, p, q) = pq.

Theorem 25. Given integers p, q ≥ 1 such that gcd(p, q) /∈ {p, q} and an integer
h ≥ 0, the value L(h, p, q) can be computed in O(log p + log q) time.

Proof. We proceed as in the proof of Corollary 16, except that we apply Fact 24
and Lemma 23 to compute Ld(h, p, q). Fact 24 reduces the problem to determin-
ing Ld(h′, p, q), where h′ = h mod (p + q − 2). We use Corollary 22 to compute
Lefth′+3(p

q ) and Righth′+3(
p
q ) in O(log h′) time. The values ˜G(r, p, q) can be

determined in O(log r) time using binary search (restricted to multiples of p or
q). The overall running time for Ld(h, p, q) is O(log h′) = O(log p + log q), so for
L(h, p, q) it is also O(log p + log q). �

6 Closed-Form Formula for L(h, ·, ·)
In this section we show how to compute a compact representation of the function
L(h, ·, ·) in O(h log h) time. We start with such representations for ˜G and Ld.

Assume that h < p + q − 3. For 0 < i ≤ h + 4, let us define fractions

li = i−1
h+4−i , mi = i

h+4−i ,

called the h-special points and the h-middle points, respectively. As proved in
the full version [16], the function ˜G can now be expressed as follows; see Fig. 2.
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0
10

1
10

1
9

2
9

2
8

3
8

3
7

4
7

4
6

5
6

5
5

10p q 9p 2q 8p 3q 7p 4q 6p 5q

0
13

1
13

1
12

2
12

2
11

3
11

3
10

4
10

4
9

5
9

5
8

6
8

6
7

7
7

13p q 12p 2q 11p 3q 10p 4q 9p 5q 8p 6q 7p

Fig. 2. Graphical representations of the closed-form formulae for ˜G(9, p, q) (above)
and ˜G(12, p, q) (below) for p < q: partitions of [0, 1] into intervals w.r.t. p/q and linear
functions of p and q for each interval. The respective special points are shown in bold.

Lemma 26. If gcd(p, q) = 1 and h < p + q − 3, then

˜G(h + 2, p, q) =

{

(h + 4 − i) · p if li ≤ p
q ≤ mi,

i · q if mi ≤ p
q ≤ li+1.

Combined with Lemma 23, Lemma 26 yields a closed-form formula for Ld,
which we formally derive in the full version [16]. Note that for each i, we have li ≤
Lefth+3(mi) ≤ mi ≤ Righth+3(mi) ≤ li+1, but none of the inequalities is strict in
general. In particular, Lefth+3(mi) = mi = Righth+3(mi) if gcd(i, h+ 4− i) > 1.

Corollary 27. Let p, q be relatively prime positive integers and let h ≤ p+q −3
be a non-negative integer. Suppose that li ≤ p

q ≤ li+1 and define reduced fractions
ai

bi
= Lefth+3(mi) and ci

di
= Righth+3(mi). Then:

Ld(h, p, q) =

⎧

⎪

⎨

⎪

⎩

(h + 4 − i) · p if li ≤ p
q ≤ ai

bi
,

aiq + dip if ai

bi
< p

q < ci
di

,

i · q if ci
di

≤ p
q ≤ li+1.

Theorem 28. Let 2 < p < q be relatively prime and let 4 < h < p + q − 2.
Suppose that li ≤ p

q ≤ li+1 and define reduced fractions ai

bi
= Lefth+3(mi) and

ci
di

= Righth+3(mi). Then:

L(h, p, q) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⌈

h+1
2

⌉

p + q − (h + 1) mod 2 if 0 < p
q < 1/

⌈

h
2

⌉

else
(h + 4 − i) · p if li ≤ p

q ≤ ai

bi
,

aiq + dip if ai

bi
< p

q < ci
di

,

i · q if ci
di

≤ p
q ≤ li+1.

This compact representation of L(h, p, q) (see Fig. 3 for an example) for a given
h has size O(h) and can be computed in time O(h log h).

Proof. The formula follows from the formulae for Ls (Lemma 9) and Ld (Corol-
lary 27) combined using Theorem 13. To compute the table for L efficiently, we
determine ai

bi
= Lefth+3(mi) and ci

di
= Righth+3(mi) using Corollary 22. �
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1
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1
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3
5

4
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4
5

1
1 =

5
5

q+4p 8p q+5p 3q 7p q+5p 4q 6p 4q+p

0 1
5

1
4

2
7

3
10

2
5

4
9

1
2

4
7

5
8

3
4

6
7

7
7

q+6p−1 11p q+7p 3q 10p 4q 9p q+7p 5q 8p 6q 7p

a
b

c
d

b · p a
b

c
d

a · q + d · p a
b

c
d

c · q

Fig. 3. Graphical representations of the closed-form formulae for L(7, p, q) (middle)
and L(10, p, q) (below). Compared to ˜G(9, p, q) and ˜G(12, p, q), respectively, an initial
subinterval and several middle subintervals are added. A general pattern for the left,
middle, and right subintervals, is presented above. However, the left subinterval ( 1

5
, 1
4
)

within L(10, p, q) is an exception because is has been trimmed by the initial interval.

7 Relation to Standard Sturmian Words

For a finite directive sequence γ = (γ1, . . . , γm) of positive integers, a Sturmian
word St(γ) is recursively defined as Xm, where X−1 = q, X0 = p, and Xi =
Xγi

i−1Xi−2 for 1 ≤ i ≤ m; see [17, Chapter 2]. We classify directive sequences γ
(and the Sturmian words St(γ)) into even and odd based on the parity of m.

Observation 29. Odd Sturmian words of length at least 2 end with pq, while
even Sturmian words of length at least 2 end with qp.

For a directive sequence γ = (γ1, . . . , γm), we define fr(γ) = [0; γ1, . . . , γm].

Fact 30 [17, Proposition 2.2.24]. If fr(γ) = p
q , then St(γ) contains p characters

q and q characters p.

Example 31. We have 5
7 = [0; 1, 2, 2] = [0; 1, 2, 1, 1], so the Sturmian words with 5

q’s and 7 p’s are: St(1, 2, 2) = pqpqppqpqppq and St(1, 2, 1, 1) = pqpqppqpqpqp.

For relatively prime integers 1 < p < q, we define Stp,q as a Sturmian word with
fr(γ) = p

q . Note that we always have two possibilities for Stp,q (one odd and one

Table 3. The Sturmian words Stp,q for p = 5 and q = 7 and the corresponding values
of ˜G(i, p, q) for i < p+ q − 2.

0 1 2 3 4 5 6 7 8 9 10 11

Stp,q[i] p q p q p p q p q p p/q q/p

˜G(i, p, q) p q 2p 2q 3p 4p 3q 5p 4q 6p

˜G(i, p, q) 5 7 10 14 15 20 21 25 28 30
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even), but they differ in the last two positions only. In fact, the first p + q − 2
characters of Stp,q are closely related to the values ˜G(i, p, q).

Fact 32 [17, Proposition 2.2.15]. Let 1 < p < q be relatively prime integers. If
i ≤ p + q − 3, then

Stp,q[i] =

{

p if p | ˜G(i, p, q),
q if q | ˜G(i, p, q).

As a result, the values ˜G(i, p, q) can be derived from Stp,q; see Table 3. The
following theorem, formally proved in the full version [16], can be seen as a
restatement of Lemma 23 in terms of the standard Sturmian words.

Theorem 33. Let Stp,q be a standard Sturmian word corresponding to p
q and

let 0 ≤ h < p + q − 3. If Stp,q[0..h + 3] is a Sturmian word, then Ld(h, p, q) =
˜G(l − 2, p, q) + ˜G(r − 2, p, q), where l, r are the lengths of the longest proper
Sturmian prefixes of Stp,q[0..h + 3] of different parities, and ˜G(−1, p, q) = 0.
Otherwise, Ld(h, p, q) = ˜G(h + 2, p, q).

Example 34. Consider a word St5,7 as in Table 3. The lengths of its proper
even Sturmian prefixes are 2, 7, whereas the lengths of its proper odd Sturmian
prefixes are 1, 3, 5. Hence, Ld(7, 5, 7) = ˜G(9, 5, 7) = 30, since St5,7[0..10] is not
a Sturmian word. Moreover, Ld(8, 5, 7) = ˜G(5, 5, 7) + ˜G(3, 5, 7) = 20 + 14 = 34,
since St5,7[0..11] = St5,7 is a Sturmian word.
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Abstract. In this paper we introduce a way to estimate a level of close-
ness of Cayley automatic groups to the class of automatic groups using
a certain numerical characteristic. We characterize Cayley automatic
groups which are not automatic in terms of this numerical character-
istic and then study it for the lamplighter group, the Baumslag–Solitar
groups and the Heisenberg group.
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1 Introduction

Cayley automatic groups had been introduced by Kharlampovich, Khoussainov
and Miasnikov as a generalization of automatic groups [9]. They are all finitely
generated groups for which their directed labeled Cayley graphs are finite
automata presentable structures (automatic structures) [10]. In particular, Cay-
ley automatic groups include all automatic groups in the sense of Thurston [7].
Cayley automatic groups inherit the key algorithmic properties of automatic
groups: the first order theory for a directed labeled Cayley graph of a Cayley
automatic groups is decidable, the word problem in a Cayley automatic group
is decidable in quadratic time [9]. The set of Cayley automatic groups comprise
all finitely generated nilpotent groups of nilpotency class at most two [9], the
Baumslag–Solitar groups [2] and all fundamental groups of 3–dimensional man-
ifolds. This shows that Cayley automatic groups include important classes of
groups.

In this paper we introduce the classes of Cayley automatic groups Bf defined
by non–decreasing and non–negative functions f . Informally speaking, for any
given group G ∈ Bf , the function f shows an upper bound for a level of closeness
of the group G to the class of automatic groups. In particular, if f is identically
equal to zero, then G must be automatic. So, similarly to a growth function, one
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can consider f as a numerical characteristic of the group G. Studying numerical
characteristics of groups and relations between them is an important topic in
group theory [13]. In this paper we initiate study of this numerical characteris-
tic. We first characterize non–automatic groups in terms of this characteristic.
Then we study this characteristic for some non–automatic groups, namely, the
lamplighter group Z2 �Z, the Baumslag–Solitar groups BS(p, q), with 1 � p < q,
and the Heisenberg group H3(Z). Another motivation to introduce this numeri-
cal characteristic is to address the problem of finding characterization for Cayley
automatic groups by studying classes Bf for some functions f .

The paper is organized as follows. In Sect. 2 we recall the definitions of auto-
matic and Cayley automatic groups. Then we give the definition of the classes
of Cayley automatic groups Bf and show that it does not depend on the choice
of generators. In Sect. 3 we give a characterization of non–automatic groups by
showing that if G ∈ Bf is non–automatic, then f must be unbounded. In Sects. 4
and 5 we show that the Baumslag–Solitar groups BS(p, q), with 1 � p < q, and
the lamplighter group Z2 � Z are in the class Bi, where i is the identity function:
i(n) = n. Moreover, we show that these groups cannot be elements of any class
Bf , if the function f is less than i in coarse sense (see Definition 3). In Sect. 6
we show that the Heisenberg group H3(Z) is in the class Be, where e is the
exponential function: e(n) = exp(n). We then show that H3(Z) cannot be an
element of any class Bf , if f is less than the cubic root function 3

√
n in coarse

sense. Section 7 concludes the paper.

2 Preliminaries

Let G be a finitely generated infinite group. Let A ⊆ G be a finite generating
set of the group G. We denote by S the set S = A ∪ A−1, where A−1 is the
set of the inverses of elements of A. For given elements g1, g1 ∈ G, we denote
by dA(g1, g2) the distance between the elements g1 and g2 in the Cayley graph
Γ (G,A). Similarly, we denote by dA(g) = dA(e, g) the word length of g with
respect the generating set A. We denote by π : S∗ → G the canonical mapping
which sends every word w ∈ S∗ to the corresponding group element π(w) = w ∈
G. We assume that the reader is familiar with the notion of finite automata and
regular languages. For a given finite alphabet Σ we put Σ� = Σ ∪ {�}, where
� /∈ Σ is a padding symbol. The convolution of n words w1, . . . , wn ∈ Σ∗ is the
string w1 ⊗ · · · ⊗wn of length max{|w1|, . . . , |wn|} over the alphabet Σn

� defined
as follows. The kth symbol of the string is (σ1, . . . , σn)�, where σi, i = 1, . . . , n
is the kth symbol of wi if k � |wi| and � otherwise. The convolution ⊗R of a
n–ary relation R ⊆ Σ∗n is defined as ⊗R = {w1 ⊗ · · · ⊗ wn|(w1, . . . , wn) ∈ R}.
We recall that a n–tape synchronous finite automaton is a finite automaton over
the alphabet Σn

� \ {(�, . . . , �)}. We say that a n–ary relation R ⊆ Σ∗n is regular
if ⊗R is accepted by a n–tape synchronous finite automaton. Below we give a
definition of automatic groups in the sense of Thurston [7].
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Definition 1. We say that G is automatic if there exists a regular language
L ⊆ S∗ such that ϕ = π|L : L → G is a bijection and for every a ∈ A the binary
relation Ra = {(ϕ−1(g), ϕ−1(ga))|g ∈ G} ⊆ L × L is regular.

In Definition 1 we forced ϕ to be a bijection, so this definition of automatic
groups is different from the original one [7, Definition 2.3.1]. However, it can
be verified that both definitions are equivalent. We denote by A the class of all
automatic groups. Below we give a definition of Cayley automatic groups [9].

Definition 2. We say that G is Cayley automatic if there exist a regular lan-
guage L ⊆ S∗ and a bijection ψ : L → G such that for every a ∈ A the binary
relation Ra = {(ψ−1(g), ψ−1(ga))|g ∈ G} ⊆ L×L is regular. We call ψ : L → G
a Cayley automatic representation of G.

In Definition 2 we forced L to be a language over the alphabet S and ψ to
be a bijection, so this definition of Cayley automatic groups is different from the
original one [9, Definition 6.4]. However, because the cardinality of S is greater
than or equal to 2, it can be verified that both definitions are equivalent. We
denote by C the class of all Cayley automatic groups.

Clearly, A ⊆ C. However, A is a proper subset of C: for example, the lamp-
lighter group, the Baumslag–Solitar groups and the Heisenberg group H3(Z) are
Cayley automatic, but not automatic. We will refer to N as the set of all positive
integers. We denote by R

+ the set of all non–negative real numbers. Let F be
the following set of non–decreasing functions:

F = {f : [Q,+∞) → R
+|[Q,+∞) ⊆ N ∧ ∀n(n ∈ dom f =⇒ f(n) � f(n + 1))}.

Definition 3. Let f, h ∈ F. We say that h � f if there exist positive integers
K,M and N such that [N, +∞) ⊆ dom h∩dom f and h(n) � Kf(Mn) for every
integer n � N . We say that h � f if h � f and f � h. We say that h ≺ f if
h � f and h �� f .

Let G ∈ C be a Cayley automatic group and f ∈ F. Let us choose some finite
generating set A ⊆ G. For a given language L ⊆ S∗ and n ∈ N we denote by
L�n the set of all words of length less than or equal to n from the language L,
i.e., L�n = {w ∈ L | |w| � n}.

Definition 4. We say that G ∈ Bf if there exist a regular language L ⊆ S∗ and
a Cayley automatic representation ψ : L → G such that for the function h ∈ F,
defined by the equation

h(n) = max{dA(π(w), ψ(w))|w ∈ L�n}, (1)

the inequality h � f holds.

We denote by Bf the class of all Cayley automatic groups G for which G ∈ Bf .
Proposition 5 below shows that Definition 4 does not depend on the choice of
generating set A.
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Proposition 5. Definition 4 does not depend on the choice of generating set.

Proof. Let A′ ⊆ G be another generating set of G ∈ Bf . We put S′ = A′ ∪A′−1.
In order to simplify an exposition of our proof, we will assume that e ∈ A′. Let us
represent every element g ∈ S by a word wg ∈ S′∗ (i.e., π(wg) = g) for which the
lengths of the words |wg| are the same for all g ∈ S. In order to make the lengths
wg, g ∈ S equal, one can use e ∈ S′ as a padding symbol. Let us canonically
extend the mapping g �→ wg, g ∈ S to the monoid homomorphism ξ : S∗ → S′∗.
We remark that the definition of ξ ensures that π(ξ(w)) = π(w) for w ∈ S∗.
For a given Cayley automatic representation ψ : L → G for which h � f , we
construct a new Cayley automatic representation ψ′ : L′ → G as follows. We
put L′ = ξ(L) ⊆ S′∗ and define a bijection ψ′ : L′ → G as ψ′ = ψ ◦ τ , where
τ = (ξ|L)−1. It can be seen that ψ′ is a Cayley automatic representation of G.
Furthermore, for the function h′ ∈ F defined by (1) with respect to ψ′ we obtain
that h′ � h which implies that h′ � f . This proof can be generalized for the case
when e /∈ A′.

We denote by z ∈ F the zero function: z(n) = 0 for all n ∈ N. By Definition
4, we have that Bz = A. Proposition 6 below shows some elementary properties
of the classes Bf .

Proposition 6. If f � g, then A ⊆ Bf ⊆ Bg ⊆ C. If f � g, then Bf = Bg.

Proof. By definition, every group of the class Bg is Cayley automatic, i.e., Bg ⊆
C. The inclusion A ⊆ Bf follows from the fact that z � f for every f ∈ F. The
transitivity of the relation � on F implies that if f � g, then Bf ⊆ Bg. The fact
that f � g implies Bf = Bg is straightforward.

3 Characterizing Non–Automatic Groups

Let G be a Cayley automatic group, A ⊆ G be a finite generating set and
S = A ∪ A−1. Given a word w ∈ S∗, for a non–negative integer t we put w(t) to
be the prefix of w of a length t, if t � |w|, and w(t) = w, if t > |w|. Following
notation from [7], we denote by ŵ : [0,∞) → Γ (G,A) the corresponding path
in the Cayley graph Γ (G,A) defined as follows. If t � 0 is an integer, then
ŵ(t) = π(w(t)), and ŵ is extended to non–integer values of t by moving along
the respective edges with unit speed. Given words w1, w2 ∈ S∗ and a constant
C0 � 0, we say that the paths ŵ1 and ŵ2 are a uniform distance less than or
equal to C0 apart if dA(ŵ1(t), ŵ2(t)) � C0 for all non–negative integers t.

Theorem 7 below is a simplified modification of the theorem characterizing
automatic groups due to Epstein et al. [7, Theorem 2.3.5]. This theorem follows
from the existence of standard automata [7, Definition 2.3.3] for all elements of
A. For the existence of standard automata it is enough to assume the solvability
of the word problem in G. We recall that for Cayley automatic the word problem
in G is decidable [9, Theorem 8.1].
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Theorem 7. ([7, Theorem 2.3.5]) Let L ⊆ S∗ be a regular language such that
π : L → G is surjective. Assume that there is a constant C0 such that for every
w1, w2 ∈ L and a ∈ A for which π(w1)a = π(w2), the paths ŵ1 and ŵ2 are a
uniform distance less than or equal to C0 apart. Then G is an automatic group.

Let d ∈ F be any bounded function which is not identically equal to the zero
function z. Although z ≺ d, the theorem below shows that the class Bd does not
contain any non–automatic group.

Theorem 8. The class Bd = A. In particular, if for any function f ∈ F the
class Bf contains a non–automatic group, then f must be unbounded.

Proof. Let us show that Bd = A. By Proposition 6, we only need to show
that Bd ⊆ A. Assume that G ∈ Bd. By Definition 4, there exists a Cayley
automatic representation ψ0 : L0 → G for some L0 ⊆ S∗ such that, for the
function h0(n) = max{dA(π(w), ψ0(w))|w ∈ L�n

0 }, h0 � d. This implies that
dA(ψ0(w), π(w)) is bounded from above by some constant K0 for all w ∈ L0.
We put L1 = S∗�K0 . Let L = L0L1 be the concatenation of L0 and L1. The
language L is regular. For any given g ∈ G, dA(π(ψ−1

0 (g)), g) � K0. This implies
that there is a word u ∈ L1 such that, for the concatenation w = ψ−1

0 (g)u,
π(w) = g. Therefore, the map π : L → G is surjective. Let w1, w2 ∈ L be
some words for which π(w1)a = π(w2), a ∈ A. There exist words v1, v2 ∈
L0 and u1, u2 ∈ L1 for which w1 = v1u1 and w2 = v2u2. We obtain that
dA(ψ0(v1), ψ0(v2)) � dA(π0(v1), π0(v2)) + 2K0 � dA(π(w1), π(w2)) + 2K0 +
2K0 � 4K0 + 1. That is, there exists g ∈ G, for which dA(g) � 4K0 + 1,
such that ψ0(v1)g = ψ0(v2). The pair (v1, v2) is accepted by some two–tape
synchronous automaton Mg. Let Ng be the number of states of Mg. Given a non–
negative integer t, there exist words p1, p2 ∈ S∗, for which the lengths |p1|, |p2| are
bounded from above by Ng, such that the pair (v1(t)p1, v2(t)p2) is accepted by
Mg; in particular, v1(t)p1, v2(t)p2 ∈ L0. We obtain that dA(π(v1(t)), π(v2(t))) �
dA(π(v1(t)p1), π(v2(t)p2)) + |p1| + |p2| � dA(ψ0(v1(t)p1), ψ0(v2(t)p2)) + 2K0 +
2Ng � dA(g) + 2K0 + 2Ng � 6K0 + 2Ng + 1. Therefore, dA(ŵ1(t), ŵ2(t)) =
dA(π(w1(t)), π(w2(t))) � dA(π(v1(t)), π(v2(t))) + 2K0 � 8K0 + 2Ng + 1. There
are only finitely many g for which dA(g) � 4K0+1, so Ng can be bound by some
constant N0. Thus, for C0 = 8K0+2N0+1, we obtain that dA(ŵ1(t), ŵ2(t)) � C0,
that is, the paths ŵ1 and ŵ2 are a uniform distance C0 apart. By Theorem 7, the
group G is automatic. The second statement of the theorem is straightforward.

4 The Baumslag–Solitar Groups

Let us consider the Baumslag–Solitar groups BS(p, q) = 〈a, t|tapt−1 = aq〉 with
1 � p < q. These groups are not automatic due to Epstein et al. [7, Section 7.4],
but they are Cayley automatic [2, Theorem 3]. The Cayley automatic represen-
tations of the Baumslag–Solitar groups constructed in [2, Theorem 3] use the
normal form obtained from representing these groups as the HNN extensions [2,
Corollary 2]. In [5, Theorem 3.2] Burillo and Elder provide the metric estimates
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for the groups BS(p, q) using the normal form [5, Lemma 3.1]. We note that
the normal forms shown in [2, Corollary 2] and [5, Lemma 3.1], up to changing
n to p and m to q, are the same. This normal form is shown in the following
proposition.

Proposition 9. Any element g ∈ BS(p, q) for 1 � p � q can be written uniquely
as g = w̃(a, t)ak, where w̃(a, t) ∈ {t, at, . . . , aq−1t, t−1, at−1, . . . , ap−1t−1}∗ is
freely reduced and k ∈ Z.

Let us now describe a modification of the Cayley automatic representation
of BS(p, q) constructed in [2, Theorem 3.2] which is compatible with Defini-
tion 2. We put a1 = a, . . . , aq−1 = aq−1. Let A = {a0, a1, . . . , aq−1, t} and
S = A ∪ A−1 = {e, a1, a2, . . . , aq−1, a

−1
1 , . . . , a−1

q−1, t, t
−1}. Given an element g =

w̃(a, t)ak ∈ BS(p, q), we construct the word w = uv which is the concatenation
of two words u, v ∈ S∗ defined as follows. The word u ∈ {t, t−1, a1, . . . , aq−1}∗

is obtained from the corresponding word w̃(a, t) by changing the subwords
atε, . . . , aq−1tε to the subwords a1t

ε, . . . , aq−1t
ε, respectively, where ε = +1 or

ε = −1. The word v is obtained from the q–ary representation of |k| by changing
the 0 to e and 1, . . . , q − 1 to a1, . . . , aq−1 and a−1

1 , . . . , a−1
q−1, if k � 0 and k < 0,

respectively. The set of all such words w is a regular language L ⊆ S∗. Thus,
we have constructed the bijection ψ : L → BS(p, q). By [2, Theorem 3.2], ψ
provides a Cayley automatic representation of BS(p, q). It is worth noting that
if g ∈ BS(p, q) is an element for which k = 0, then for w = ψ−1(g) we obtain
that ψ(w) = π(w). Let ˜A = {a, t}. We have the following metric estimates for
the groups BS(p, q).

Theorem 10. ([5, Theorem 3.2]) There exist constants C1, C2,D1,D2 > 0 such
that for every element g ∈ BS(p, q) for 1 � p < q written as w̃(a, t)ak, we have:
C1(|w̃| + log(|k| + 1)) − D1 � d

˜A(g) � C2(|w̃| + log(|k| + 1)) + D2.

It follows from Theorem 10 that there exist constants C ′
1, C

′
2,D

′
1,D

′
2 > 0 such

that for every element g ∈ BS(p, q) and for the corresponding word ψ−1(g) = uv
we have

C ′
1(|u| + |v|) − D′

1 � dA(g) � C ′
2(|u| + |v|) + D′

2. (2)

Theorem 11. Given p and q with 1 � p < q, the Baumslag–Solitar group
BS(p, q) ∈ Bi. Moreover, for any f ≺ i, BS(p, q) /∈ Bf .

Proof. For given p and q with 1 � p < q let us consider the Cayley automatic
representation ψ : L → BS(p, q) constructed above. Let h be the function given
by (1) with respect to this Cayley automatic representation. We will show that
h � i (in fact one can verify that h � i). Let w = uv ∈ L�n and g = ψ(w) be
the corresponding group element of BS(p, q). By (2), there exists a constant C
such that dA(g) � C(|u|+ |v|) = C|w|. Therefore, dA(π(w), ψ(w)) � n+dA(g) �
(C+1)n. Therefore, h � i which implies that BS(p, q) ∈ Bi. Let us show now the
second statement of the theorem. Suppose that BS(p, q) ∈ Bf for some f ≺ i.
Then there exists a Cayley automatic representation ψ′ : L′ → BS(p, q) for
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which h′ � f , where h′ is given by (1). We have h′ ≺ i. We recall that for a group
〈X|R〉 given by a set of generators X and a set of relators R the Dehn function
is given by D(n) = maxu∈Un

{area(u)}, where Un = {u ∈ (X ∪ X−1)∗|π(u) =
e∧|u| � n} is the set of words of the length at most n representing the identity of
the group 〈X|R〉 and area(u) is the combinatorial area of u which is the minimal
k for which u =

∏k
i=1 vir

±1
i v−1

i in the free group F (X), where ri ∈ R. Let
w ∈ {a, a−1, t, t−1}∗ be a word representing the identity in BS(p, q) for which
|w| � n. The word w corresponds to a loop in the Cayley graph BS(p, q) with
respect to the generators a, t. Repeating an argument of [7, Theorem 2.3.12]
(showing that the Dehn function for an automatic group is at most quadratic),
it can be seen that the loop w can be subdivided into at most K0n

2 loops of
length at most �(n) = 4h′(K0n) + K1 for some integer constants K0 and K1.
Therefore, D(n) � K0n

2D(�(n)) which implies that D(n) � n2D(�(n)). For
the group BS(p, q) the Dehn function is at most exponential (see [7, § 7.4]), i.e.,
D(n) � λn for some constant λ. Therefore, D(n) � n2λ�(n). Clearly, � � h′ which
implies that � ≺ i. Let us show that n2λ�(n) ≺ e. It can be seen that n2λ�(n) � e.
Assume that e � n2λ�(n). Then, for all sufficiently large n and some constants
K and M we have: exp(n) � Kn2λ�(Mn). This implies that n − 2 ln n − ln K �
(ln λ)�(Mn). Clearly, n

2 � n − 2 ln n − ln K for all sufficiently large n, and,
therefore, n � (2 ln λ)�(Mn). This implies that i � � which contradicts to the
inequality � ≺ i. Thus, D(n) � n2λ�(n) ≺ e which implies that D(n) ≺ e. The last
inequality contradicts to the fact that for the group BS(p, q) the Dehn function
is at least exponential, i.e., D(n) � μn for some constant μ (see [7, Sect. 7.4])
which implies that e � D(n).

5 The Lamplighter Group

The lamplighter group is the wreath product Z2 � Z of the cyclic group Z2 and
the infinite cyclic group Z. For the definition of the wreath product of groups
we refer the reader to [8]. Let t be a generator of the cyclic group Z = 〈t〉
and a be the nontirival element of the group Z2. The canonical embeddings of
the groups Z2 and Z into the wreath product Z2 � Z enable us to consider Z2

and Z as the subgroups of Z2 � Z. With respect to the generators a and t, the
lamplighter group has the presentation 〈a, t | [tiat−i, tjat−j ], a2〉. The lamplighter
group is not finitely presented [1], and, therefore, it is not automatic due to [7,
Theorem 2.3.12].

The elements of the lamplighter group have the following geometric inter-
pretation. Every element of the lamplighter group corresponds to a bi–infinite
string of lamps, indexed by integers i ∈ Z, each of which is either lit or unlit,
such that only finite number of lamps are lit, and the lamplighter pointing at the
current lamp i = m. The identity of the lamplighter group corresponds to the
configuration when all lamps are unlit and the lamplighter points at the lamp
positioned at the origin m = 0. The right multiplication by a changes the state
of the current lamp. The right multiplication by t (or t−1) moves the lamplighter
to the right m �→ m+1 (or to the left m �→ m−1). The elements of the subgroup
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Z � Z2 � Z are the configurations for which all lamps are unlit. For the elements
of the subgroup Z2 � Z2 �Z all lamps, apart from the one at the origin, are unlit
and the lamplighter points at the lamp positioned at the origin, which can be
either lit or unlit.

For any given integer i ∈ Z we put ai = tiat−i. The group element ai

corresponds to the configuration when the lamp at the position i is lit, all other
lamps are unlit and the lamplighter points at the origin m = 0. Let g be an
element of the lamplighter group. The ‘right–first’ and the ‘left–first’ normal
forms of g are defined as follows:

rf(g) = ai1ai2 . . . aika−j1a−j2 . . . a−jlt
m,

lf(g) = a−j1a−j2 . . . a−jlai1ai2 . . . aik tm,

where ik > · · · > i2 > i1 � 0, jl > · · · > j1 > 0 and the lamplighter points
at the position m (see [6]). For the element g the lit lamps are at the positions
−jl, . . . ,−j1, i1, . . . , ik and the lamplighter points at the position m. In ’right–
first’ normal form the lamplighter moves to the right illuminating the appropriate
lamps until it reaches the lamp at the position ik. Then it moves back to the
origin, and then further to the left illuminating the appropriate lamps until it
reaches the lamp at the position −jl. After that the lamplighter moves to the
position m. Let A = {a, t} and S = {a, a−1, t, t−1}.

Proposition 12. ([6, Proposition 3.2]) The word length of the element g with
respect to the generating set A is given by

dA(g) = k + l + min{2ik + jl + |m + jl|, 2jl + ik + |m − ik|}.

Some Cayley automatic representations of Z2 �Z had been obtained in [2,3,9].
Let us now construct a new Cayley automatic representation of Z2 � Z using the
’right–first’ normal form which is compatible with Definition 2. For a given
element g of the lamplighter group we construct the word w = u′v′ which is the
concatenation of two words u′, v′ ∈ S∗. The words u′ and v′ are obtained from
the words u and v, defined below, by canceling adjacent opposite powers of t.
Assume first that m � 0.

– Suppose that {i1, . . . , ik} = ∅ or {i1, . . . , ik} �= ∅ and m > ik. We put
u = ti1at−i1 . . . tikat−iktmaa. We put v = t−j1atj1 . . . t−jla.

– Suppose that {i1, . . . , ik} �= ∅ and m � ik. If m = in for some n = 1, . . . , k,
then we put u = ti1at−i1 . . . tinaaat−in . . . tika. Otherwise, either m < i1
or there exists q = 1, . . . , k − 1 for which iq < m < iq+1. In the first
case we put u = tmaat−mti1at−i1 . . . tika. In the latter case we put u =
ti1at−i1 . . . tiqat−iq tmaat−mtiq+1at−iq+1 . . . tika. The word v is the same as
above.

Assume now that m < 0.

– Suppose that {j1, . . . , jl} = ∅ or {j1, . . . , jl} �= ∅ and m < −jl. We put
v = t−j1atj1 . . . t−jlatjltmaa. We put u = ti1at−i1 . . . tika.
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– Suppose that {j1, . . . , jl} �= ∅ and m � −jl. If m = −jn for some n = 1, . . . , l,
then we put v = t−j1atj1 . . . t−jnaaatjn . . . t−jla. Otherwise, either m > −j1
or there exists q = 1, . . . , l − 1 for which −jq > m > −jq+1. In the first
case we put v = tmaat−mt−j1atj1 . . . t−jlatjl . In the latter case we put v =
t−j1atj1 . . . t−jqatjq tmaat−mt−jq+1atjq+1 . . . t−jla. The word u is the same as
above.

Let us show two simple examples. Suppose first that the lit lamps are at the
positions −1, 0, 2 and the lamplighter is at the position m = 1. Then, for the
corresponding group element, the word w is ataatat−1a. Suppose now that the lit
lamps are at the positions −1, 1 and the lamplighter is at the position m = −1.
Then, for the corresponding group element, the word w is tat−1aaa. The set
of all such words w forms some language L ⊆ S∗. Thus, we have constructed
the bijection ψ : L → Z2 � Z. It can be verified that L is a regular language
and ψ provides a Cayley automatic representation of the lamplighter group in
the sense of Definition 2. We note that in the Cayley automatic representation
ψ : L → Z2 �Z constructed above we use the subwords aa and aaa to specify the
lamplighter position. We use aa and aaa if the lamp, the lamplighter is pointing
at, is unlit and lit, respectively. It is worth noting that if g ∈ Z2 �Z is an element
for which all lamps at negative positions j < 0 are unlit and m � ik, then for
w = ψ−1(g) we obtain that π(w) = ψ(w). That is, on a certain infinite subset of
L the maps π and ψ coincide.

Theorem 13. The lamplighter group Z2 � Z ∈ Bi. Moreover, for any f ≺ i,
Z2 � Z /∈ Bf .

Proof. Let us consider the Cayley automatic representation ψ : L → Z2 � Z

constructed above. Let h be the function given by (1) with respect to the Cayley
automatic representation ψ. We will show that h � i (in fact one can verify
that h � i). For a given n let w ∈ L�n be a word and g = ψ(w) be the
corresponding group element of Z2 � Z. Clearly, we have that dA(π(w), ψ(w)) �
n + dA(g). Therefore, it suffices to show that dA(g) � Cn for some constant
C. It follows from the construction of w = ψ−1(g) that if m � 0, then |w| =
k+l+max{m, ik}+jl+2, and if m < 0, then |w| = k+l+max{−m, jl}+ik+2. By
Proposition 12, we obtain that dA(g) � 3|w| � 3n. Therefore, h � i which implies
that Z2 � Z ∈ Bi. Let us show the second statement of the theorem. For a given
m > 0, let Rm be the following set of relations Rm = {a2} ∪ {[tiat−i, tjat−j ] | −
m � i < j � m}. We first notice that for any loop w ∈ S∗, |w| � l in the
lamplighter group Z2 �Z the word w can be represented as a product of conjugates
of the relations from Rl, i.e., the identity w =

∏k
i=1 vir

±1
i v−1

i holds in the free
group F (A) for some vi ∈ S∗ and ri ∈ Rl, i = 1, . . . , k. Suppose now that
Z2 � Z ∈ Bf for some f ≺ i. Similarly to Theorem 11, we obtain that then there
exists a function � ≺ i such that any loop w of the length less than or equal to n
can be subdivided into loops of the length at most �(n). Therefore, for any loop
given by a word w ∈ S∗, |w| � n, the identity w =

∏k
i=1 vir

±1
i v−1

i holds in the
free group F (A) for some vi ∈ S∗ and ri ∈ R�(n), i = 1, . . . , k. In particular, every
relation from Rn can be expressed as a product of conjugates of the relations
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from R�(8n+4) (the longest relation from Rn is [t−natn, tnat−n] which has the
length 8n + 4). However, not every relation from Rn can be expressed as a
product of conjugates of the relations from Rn−1 ⊂ Rn because the groups Gn =
〈a, t|Rn〉 and Gn−1 = 〈a, t|Rn−1〉 are not isomorphic. This implies the inequality
�(8n+4) � n leading to a contradiction with � ≺ i. The fact that Gn = 〈a, t|Rn〉
and Gn−1 = 〈a, t|Rn−1〉 are not isomorphic can be shown as follows. The group
Gn can be represented as Gn = 〈a−n, . . . , a0, . . . , an|a2

0; ai−1 = t−1ait, i = −(n−
1), . . . , n; [ai, aj ], i, j = −n, . . . , n〉, so Gn is the HNN extension of the base group
⊕n

i=−n Z2 = 〈a−n, . . . , an|a2
i , [ai, aj ]〉 relative to the isomorphism ϕn between

the subgroups An, Bn � Gn generated by a−(n−1), . . . , an and a−n, . . . , an−1,
respectively, for which ϕn : ai �→ ai−1, i = −(n − 1), . . . , n. As a consequence
of Britton’s lemma [11], we have the property that every finite subgroup of an
HNN extension is conjugate to a finite subgroup of its base group. Therefore,
assuming that Gn+1 and Gn are isomorphic, we obtain that

⊕n+1
i=−(n+1) Z2 can

be embedded into
⊕n

i=−n Z2 which leads to a contradiction.

6 The Heisenberg Group

The Heisenberg group H3(Z) is the group of all matrices of the form:
⎛

⎝

1 x z
0 1 y
0 0 1

⎞

⎠ ,

where x, y and z are integers. Every element g ∈ H3(Z) corresponds to a triple
(x, y, z). Let s be a group element of H3 corresponding to the triple (1, 0, 0),
p corresponding to (0, 1, 0), and q corresponding to (0, 0, 1). If g corresponds
to a triple (x, y, z), then gs, gp and gq correspond to the triples (x + 1, y, z),
(x, y + 1, x + z) and (x, y, z + 1), respectively. The observation that H3 is not an
automatic group but its Cayley graph is automatic was first made by Sénizergues.

The Heisenberg group H3 is isomorphic to the group 〈s, p, q|s−1p−1sp =
q, sq = qs, pq = qp〉, and it can be generated by the elements s and p. The
exact distance formula on H3(Z) for the generating set {s, p} is obtained in
[4, Theorem 2.2]. However, for our purposes it is enough to have the metric
estimates which the reader can find in [12, Proposition 1.38]. Let A = {e, s, p, q}
and S = A ∪ A−1 = {e, s, p, q, s−1, p−1, q−1}.

Proposition 14. ([12, Proposition 1.38]) There exist constants C1 and C2 such
that for an element g ∈ H3 corresponding to a triple (x, y, z) we have

C1(|x| + |y| +
√

|z|) � dA(g) � C2(|x| + |y| +
√

|z|).
Proof. We first get an upper bound. Every group element g ∈ H3 can be rep-
resented as snpmql corresponding to the triple (x, y, z) = (n,m, nm + l). It
can be verified that skpks−kp−k = qk2

. Therefore, the length of ql is at most
6
√|l| � 6

√|z| + 3|n| + 3|m|. For C2 = 6 we obtain the required upper bound.
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Let us prove now a lower bound. If dA(g) = r for an element g corresponding
to a triple (x, y, z), then |x|, |y| � r and |z| � r + r2. For C1 = 1

4 we obtain the
required lower bound.

Let us construct a Cayley automatic representation of the Heisenberg group
H3 which is compatible with Definition 2. For a given g ∈ H3 corresponding to
a triple (x, y, z) we construct the word w = uv which is the concatenation of
two words u, v ∈ S∗ constructed as follows. We put u = py. Let bx and bz be
the binary representations of the integers |x| and |z| (with the least significant
digits first). We put b to be bx ⊗bz with the padding symbol � changed to 0. The
word b is a word over the alphabet consisting of the symbols

(

0
0

)

,

(

0
1

)

,

(

1
0

)

,

(

1
1

)

.
Replacing the symbols

(

0
0

)

,

(

0
1

)

,

(

1
0

)

,

(

1
1

)

in b by the words ee, eq, se and sq we
obtain a word b′ ∈ {e, s, q}∗. If x � 0 and z � 0, then we put v = b′. If x < 0 or
z < 0, then v is obtained from b′ by replacing the symbols s and q to the symbols
s−1 and q−1, respectively. For example, the triple (3,−3,−4) is represented by
the word p−1p−1p−1seseeq−1. The set of all such words w is a regular language
L ⊆ S∗. Thus, we have constructed the bijection ψ : L → H3. It can be verified
that ψ provides a Cayley automatic representation of the Heisenberg group H3.
It is worth noting that if g ∈ H3 corresponds to a triple (0, y, 0), then for the
word w = ψ−1(g) we have ψ(w) = π(w). That is, the maps π and ψ coincide if
restricted on the cyclic subgroup 〈p〉 � H3.

Theorem 15. The Heisenberg group H3 ∈ Be. Moreover, for any f ≺ 3
√

n,
H3 /∈ Bf .

Proof. Let h be the function given by (1) with respect to the Cayley automatic
representation ψ : L → H3 constructed above. We will show that h � e. Although
for the first statement of the theorem it is enough to show that h � e, the
inequality e � h guarantees that we cannot get a better result using just the
representation ψ. Let w = uv ∈ L�n and g = ψ(w) be the group element of H3

corresponding to a triple (x, y, z). By Proposition 14, there exists a constant C2

such that dA(g) � C2(|x| + |y| +
√|z|) � C2(2|v| + |u| +

√
2|v|) � 2C22|u|+|v| �

2C2 exp (|w|) � 2C2 exp (n). Therefore, h � e which implies that H3 ∈ Be. Let
us show now that e � h. Let gi = si, i � 2. The length of the corresponding word
wi = ψ−1(gi) is equal to the doubled length of the binary representation of i.
We have dA(π(wi), ψ(wi)) = dA(π(wi)−1si) = dA(sni) for some positive integer
ni. Clearly, there exists a constant C such that ni � Ci. The group element sni

corresponds to the triple (ni, 0, 0). By Proposition 14, we have dA(sni) � C1ni.
Therefore, there exists a constant C ′ > 0 such that dA(sni) � C ′2

|wi|
2 for all

i � 2. This implies that e � h. Therefore, h � e. Let us show now the second
statement of the theorem. Repeating exactly the same argument as used in
Theorem 11, we conclude that there exists a function �(n) ≺ 3

√
n for which

the inequality D(n) � n2D(�(n)) holds, where D(n) is the Dehn function of
H3. For the group H3 the Dehn function is at most cubic; specifically for the
presentation H3 = 〈s, p, q|s−1p−1sp = q, sq = qs, pq = qp〉, D(n) � n3 (see [7,
§ 8.1]). Therefore, D(n) � n2�(n)3. Let us show that n2�(n)3 ≺ n3. It can be
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seen that n2�(n)3 � n3. Assume that n3 � n2�(n)3. Then, for all sufficiently
large n and some constants K and M we have: n3 � Kn2�(Mn)3. This implies
that 3

√
n � 3

√
K�(Mn). Therefore, 3

√
n � �(n) which contradicts to the inequality

�(n) ≺ 3
√

n. Thus, D(n) � n2�(n)3 ≺ n3 which implies that D(n) ≺ n3. The last
inequality contradicts to the fact that the Dehn function is at least cubic (see
[7, § 8.1]) which implies that n3 � D(n).

7 Discussion

In this paper we proposed a way to measure closeness of Cayley automatic groups
to the class of automatic groups. We did this by introducing the classes of Cayley
automatic groups Bf for the functions f ∈ F. In Theorem 8 we characterized
non–automatic groups by showing that for any such group G in some class Bf

the function f must be unbounded. We studied then the cases of the Baumslag–
Solitar groups BS(p, q), 1 � p < q, the lamplighter group and the Heisenberg
group H3. In Theorems 11 and 13 we proved that the Baumslag–Solitar groups
and the lamplighter group are in the class Bi and they cannot belong to any
class Bf for which f ≺ i. For the Heisenberg group H3 in Theorem 15 we proved
that H3 ∈ Be, but we could only prove that it cannot belong to any class Bf for
which f ≺ 3

√
n. The following questions are apparent from the results obtained

in this paper.

– Is there any unbounded function f ≺ i for which the class Bf contains a
non–automatic group?

– Is there any function f ≺ e for which H3 ∈ Bf?

Acknowledgments. The authors thank the referees for useful comments.
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2 LETIA, Université d’Abomey-Calavi, Cotonou, Bénin
comlan@hotmail.fr
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Abstract. Reset Petri nets are a particular class of Petri nets where
transition firings can remove all tokens from a place without checking if
this place actually holds tokens or not. In this paper we look at partial
order semantics of such nets. In particular, we propose a pomset bisimu-
lation for comparing their concurrent behaviours. Building on this pom-
set bisimulation we then propose a generalization of the standard finite
complete prefixes of unfolding to the class of safe reset Petri nets.

1 Introduction

Petri nets are a well suited formalism for specifying, modeling, and analyzing
systems with conflicts, synchronization and concurrency. Many interesting prop-
erties of such systems (reachability, boundedness, liveness, deadlock, . . . ) are
decidable for Petri nets. Over time, many extensions of Petri nets have been
proposed in order to capture specific, possibly quite complex, behaviors in a
more direct manner. These extensions offer more compact representations and/or
increase expressive power. One can notice, in particular, a range of extensions
adding new kinds of arcs to Petri nets: read arcs and inhibitor arcs [3,11] (allow-
ing to read variables values without modifying them), and reset arcs [1] (allow-
ing to modify variables values independently of their previous value). Reset arcs
increase the expressiveness of Petri nets, but they compromise analysis tech-
niques. For example, boundedness [6] and reachability [1] are undecidable. For
bounded reset Petri nets, more properties are decidable, as full state spaces can
be computed.

Full state-space computations (i.e. using state graphs) do not preserve partial
order semantics. To face this problem, Petri nets unfolding has been proposed
and has gained the interest of researchers in verification [7], diagnosis [4], and
planning [9]. This technique keeps the intrinsic parallelism and prevents the
combinatorial interleaving of independent events. While the unfolding of a Petri

c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 258–270, 2018.
https://doi.org/10.1007/978-3-319-77313-1_20
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net can be infinite, there exist algorithms for constructing finite prefixes of it [8,
10]. Unfolding have the strong interest of preserving more behavioral properties
of Petri nets than state graphs. In particular they preserve concurrency and
its counterpart: causality. Unfolding techniques have also been developed for
extensions of Petri nets, and in particular Petri nets with read arcs [2].

Our Contribution: Reachability analysis is known to be feasible on bounded
reset Petri nets, however, as far as we know, no technique for computing finite
prefixes of unfolding exists yet, and so, no technique preserving concurrency and
causality exists yet. This is the aim of this paper to propose one. For that, we
characterise the concurrent behaviour of reset Petri nets by defining a notion
of pomset bisimulation. This has been inspired by several works on pomset
behaviour of concurrent systems [5,12,14]. From this characterization we can
then express what should be an unfolding preserving the concurrent behaviour
of a reset Petri net. We show that it is not possible to remove reset arcs from safe
reset Petri nets while preserving their behaviours with respect to this pomset
bisimulation. Then we propose a notion of finite complete prefixes of unfold-
ing of safe reset Petri nets that allows for reachability analysis while preserving
pomset behaviour. As a consequence of the two other contributions, these finite
complete prefixes do have reset arcs.

This paper is organized as follows: We first give basic definitions and nota-
tions for (safe) reset Petri nets. Then, in Sect. 3, we propose the definition of
a pomset bisimulation for reset Petri nets. In Sect. 4 we show that, in general,
there is no Petri net without resets which is pomset bisimilar to a given reset
Petri net. Finally, in Sect. 5 – building on the results of Sect. 4 – we propose a
finite complete prefix construction for reset Petri nets.

2 Reset Petri Nets

Definition 1 (structure). A reset Petri net structure is a tuple (P , T , F ,R)
where P and T are disjoint sets of places and transitions, F ⊆ (P ×T )∪(T ×P )
is a set of arcs, and R ⊆ P × T is a set of reset arcs.

An element x ∈ P ∪ T is called a node and has a preset •x = {y ∈ P ∪
T : (y, x) ∈ F} and a postset x• = {y ∈ P ∪ T : (x, y) ∈ F}. If, moreover, x
is a transition, it has a set of resets �x = {y ∈ P : (y, x) ∈ R}.

For two nodes x, y ∈ P ∪ T , we say that: x is a causal predecessor of y,
noted x ≺ y, if there exists a sequence of nodes x1 . . . xn with n ≥ 2 so that ∀i ∈
[1..n−1], (xi, xi+1) ∈ F , x1 = x, and xn = y. If x ≺ y or y ≺ x we say that x and y
are in causal relation. The nodes x and y are in conflict, noted x#y, if there exists
two sequences of nodes x1 . . . xn with n ≥ 2 and ∀i ∈ [1..n − 1], (xi, xi+1) ∈ F ,
and y1 . . . ym with m ≥ 2 and ∀i ∈ [1..m − 1], (yi, yi+1) ∈ F , so that x1 = y1 is
a place, x2 �= y2, xn = x, and ym = y.

A marking is a set M ⊆ P of places. It enables a transition t ∈ T if ∀p ∈
•t, p ∈ M . In this case, t can be fired from M , leading to the new marking
M ′ = (M \ (•t ∪ �t)) ∪ t•. The fact that M enables t and that firing t leads to
M ′ is denoted by M [t〉M ′.
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Definition 2 (reset Petri net). A reset Petri net is a tuple (P , T , F ,R,M0)
where (P , T , F ,R) is a reset Petri net structure and M0 is a marking called the
initial marking.

Figure 1 (left) is a graphical representation of a reset Petri net. It has five
places (circles) and three transitions (squares). Its set of arcs contains seven
elements (arrows) and there is one reset arc (line with a diamond).

p1

t1

p2

p3

t2

p4t3

p5

c1

e1

c2

c3

e2

c4

c1 c2 c3 c4 e1 e2
h p1 p2 p3 p4 t1 t2

Fig. 1. A reset Petri net (left) and one of
its processes (right)

A marking M is said to be reach-
able in a reset Petri net if there
exists a sequence M1 . . . Mn of mark-
ings so that: ∀i ∈ [1..n − 1],∃t ∈
T ,M i[t〉M i+1 (each marking enables
a transition that leads to the next
marking in the sequence), M1 = M0

(the sequence starts from the ini-
tial marking), and Mn = M (the
sequence leads to M). The set of all
markings reachable in a reset Petri net
NR is denoted by [NR〉.

A reset Petri net with an empty set of reset arcs is simply called a Petri net.

Definition 3 (underlying Petri net). Given NR = (P , T , F ,R,M0) a reset
Petri net, we call its underlying Petri net the Petri net N = (P , T , F , ∅,M0).

The above formalism is in fact a simplified version of the general formalism of
reset Petri nets: arcs have no multiplicity and markings are sets of places rather
than multisets of places. We use it because it suffices for representing safe nets.

Definition 4 (safe reset Petri net). A reset Petri net (P , T , F ,R,M0) is
said to be safe if for any reachable marking M and any transition t ∈ T , if M
enables t then (t• \ (•t ∪ �t)) ∩ M = ∅.

The reader familiar with Petri nets will notice that our results generalize to
larger classes of nets: unbounded reset Petri nets for our pomset bisimulation
(Sect. 3), and bounded reset Petri nets for our prefix construction (Sect. 5).

In the rest of the paper, unless the converse is specified, we consider reset
Petri nets so that the preset of each transition t is non-empty: •t �= ∅. Notice that
this is not a restriction to our model: one can equip any transition t of a reset
Petri net with a place pt so that pt is in the initial marking and •pt = p•

t = {t}.
One may need to express that two (reset) Petri nets have the same behaviour.

This is useful in particular for building minimal (or at least small, that is with
few places and transitions) representatives of a net; or for building simple (such
as loop-free) representatives of a net. A standard way to do so is to define a
bisimulation between (reset) Petri nets, and state that two nets have the same
behaviour if they are bisimilar.

The behaviour of a net will be an observation of its transition firing, this
observation being defined thanks to a labelling of nets associating to each tran-
sition an observable label or the special unobservable label ε.
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Definition 5 (labelled reset Petri net). A labelled reset Petri net is a tuple
(NR, Σ, λ) so that: NR = (P , T , F ,R,M0) is a reset Petri net, Σ is a set of
transition labels, and λ : T → Σ ∪ {ε} is a labelling function.

In such a labelled net we extend the labelling function λ to sequences of
transitions in the following way: given a sequence t1 . . . tn (with n ≥ 2) of tran-
sitions, λ(t1 . . . tn) = λ(t1)λ(t2 . . . tn) if λ(t1) ∈ Σ and λ(t1 . . . tn) = λ(t2 . . . tn)
else (that is if λ(t1) = ε). From that, one can define bisimulation as follows.

Definition 6 (bisimulation). Let (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) be two
labelled reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i). They are bisimi-
lar if and only if there exists a relation ρ ⊆ [NR,1〉 × [NR,2〉 (a bisimulation) so
that:

1. (M0,1,M0,2) ∈ ρ,
2. if (M1,M2) ∈ ρ, then

(a) for every transition t ∈ T 1 so that M1[t〉M1,n there exists a sequence
t1 . . . tn of transitions from T 2 and a sequence M2,1 . . .M2,n of markings
of NR,2 so that: M2[t1〉M2,1[t2〉 . . . [tn〉M2,n, λ2(t1 . . . tn) = λ1(t), and
(M1,n,M2,n) ∈ ρ

(b) the other way around (for every transition t ∈ T 2. . . )

p1

t1

p2

p3

t2

p4

NR,1

p1

t1

p2

p3

t2

p4

p5

NR,2

Fig. 2. Two bisimilar nets

This bisimulation however hides
an important part of the behaviours
of (reset) Petri nets: transition fir-
ings may be concurrent when transi-
tions are not in causal relation nor in
conflict. For example, consider Fig. 2
where NR,1 and NR,2 are bisimi-
lar (we identify transition names and
labels). In NR,1, t1 and t2 are not in
causal relation while in NR,2 they are in causal relation.

To avoid this loss of information, a standard approach is to define bisimula-
tions based on partially ordered sets of transitions rather than totally ordered
sets of transitions (the transition sequences used in the above definition). Such
bisimulations are usually called pomset bisimulations.

3 Pomset Bisimulation for Reset Petri Nets

In this section, we propose a definition of pomset bisimulation for reset Petri nets.
It is based on an ad hoc notion of processes (representations of the executions
of a Petri net, concurrent counterpart of paths in automata).
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3.1 Processes of Reset Petri Nets

We recall a standard notion of processes of Petri nets and show how it can be
extended to reset Petri nets. As a first step, we define occurrence nets which are
basically Petri nets without loops.

Definition 7 (occurrence net). An occurrence net is a (reset) Petri net
(B,E, FO, RO,MO

0 ) so that, ∀b ∈ B, ∀x ∈ B ∪ E: (1) |•b| ≤ 1, (2) x
is not in causal relation with itself, (3) x is not in conflict with itself, (4)
{y ∈ B ∪ E : y ≺ x} is finite, (5) b ∈ MO

0 if and only if •b = ∅.
Places of an occurrence net are usually referred to as conditions and transi-

tions as events. In an occurrence net, if two nodes x, y ∈ B∪E are so that x �= y,
are not in causal relation, and are not in conflict, they are said to be concurrent.
Moreover, in occurrence net, the causal relation is a partial order.

There is a price to pay for having reset arcs in occurrence nets. With no
reset arcs, checking if a set E of events together form a feasible execution (i.e.
checking that the events from E can all be ordered so that they can be fired in
this order starting from the initial marking) is linear in the size of the occurrence
net (it suffices to check that E is causally closed and conflict free). With reset
arcs the same task is NP-complete as stated in the below proposition.

Proposition 1. The problem of deciding if a set E of events of an occurrence
net with resets forms a feasible execution is NP-complete.

Proof. (Sketch) Graph 3-coloring reduces to executability of an occurrence net.

The branching processes of a Petri net are then defined as particular occur-
rence nets linked to the original net by homomorphisms.

Definition 8 (homomorphism of nets). Let N 1 and N 2 be two Petri nets
such that N i = (P i, T i, F i, ∅,M0,i). A mapping h : P 1 ∪ T 1 → P 2 ∪ T 2 is
an homomorphism of nets from N 1 to N 2 if ∀p1 ∈ P 1,∀p2 ∈ P 2,∀t ∈ T 1:
(1) h(p1) ∈ P 2, (2) h(t) ∈ T 2, (3) p2 ∈ •h(t) ⇔ ∃p′

1 ∈ •t, h(p′
1) = p2, (4)

p2 ∈ h(t)• ⇔ ∃p′
1 ∈ t•, h(p′

1) = p2, (5) p2 ∈ M0,2 ⇔ ∃p′
1 ∈ M0,1, h(p′

1) = p2.

Definition 9 (processes of a Petri net). Let N = (P , T , F , ∅,M0) be a Petri
net, O = (B,E, FO, ∅,MO

0 ) be an occurrence net, and h be an homomorphism
of nets from O to N . Then (O, h) is a branching process of N if ∀e1, e2 ∈
E, (•e1 = •e2 ∧ h(e1) = h(e2)) ⇒ e1 = e2. If, moreover, ∀b ∈ B, |b•| ≤ 1, then
(O, h) is a process of N .

Finally, a process of a reset Petri net is obtained by adding reset arcs to a
process of the underlying Petri net (leading to what we call below a potential
process) and checking that all its events can still be enabled and fired in some
order.



Pomsets and Unfolding of Reset Petri Nets 263

Definition 10 (potential processes of a reset Petri net). Let NR =
(P , T , F ,R,M0) be a reset Petri net and N be its underlying Petri net, let
O = (B,E, FO, RO,MO

0 ) be an occurrence net, and h be an homomorphism
of nets from O to NR. Then (O, h) is a potential process of NR if (1) (O′, h) is
a process of N with O′ = (B,E, FO, ∅,MO

0 ), (2) ∀b ∈ B,∀e ∈ E, (b, e) ∈ RO if
and only if (h(b), h(e)) ∈ R.

Definition 11 (processes of a reset Petri net). Let NR = (P , T , F ,R,M0)
be a reset Petri net, O = (B,E, FO, RO,MO

0 ) be an occurrence net, and h
be an homomorphism of nets from O to NR. Then (O, h) is a process of NR

if (1) (O, h) is a potential process of NR, and (2) if E = {e1, . . . , en} then
∃M1, . . . ,Mn ⊆ B so that MO

0 [ek1〉M1[ek2〉 . . . [ekn
〉Mn with {k1, . . . , kn} =

{1, . . . , n}.
Notice that processes of reset Petri nets and processes of Petri nets do not

exactly have the same properties. In particular, two properties are central in
defining pomset bisimulation for Petri nets and do not hold for reset Petri nets.

Property 1. In any process of a Petri net with set of events E, consider any
sequence of events e1e2 . . . en (1) that contains all the events in E and (2)
such that ∀i, j ∈ [1..n] if ei ≺ ej then i < j. Necessarily, there exist markings
M1, . . . ,Mn so that MO

0 [e1〉M1[e2〉 . . . [en〉Mn.

This property (which, intuitively, expresses that processes are partially
ordered paths) is no longer true for reset Petri nets. Consider for example the
reset Petri net of Fig. 1 (left). Figure 1 (right) is one of its processes (the occur-
rence net with the homomorphism h below). As not e2 ≺ e1, their should exist
markings M1,M2 so that M0[e1〉M1[e2〉M2. However, M0 = {c1, c3} indeed
enables e1, but the marking M1 such that M0[e1〉M1 is {c2}, which does not
enable e2.

Property 2. In a process of a Petri net all the sequences of events e1e2 . . . en
verifying (1) and (2) of Property 1 lead to the same marking (i.e. Mn is always
the same), thus uniquely defining a notion of maximal marking of a process.

This property defines the marking reached by a process. As a corollary of
Property 1 not holding for reset Petri nets, there is no uniquely defined notion
of maximal marking in their processes. Back to the example {c2} is somehow
maximal (no event can be fired from it) as well as {c2, c4}.

To transpose the spirit of Properties 1 and 2 to processes of reset Petri nets,
we define below a notion of maximal markings in such processes.

Definition 12 (maximal markings). Let P = (O, h) be a process with set
of events E = {e1, . . . , en} and initial marking MO

0 of a reset Petri net. The
set Mmax(P) of maximal markings of P contains exactly the markings M
so that ∃M1, . . . ,Mn−1, verifying MO

0 [ek1〉M1[ek2〉 . . . Mn−1[ekn
〉M for some

{k1, . . . , kn} = {1, . . . , n}.
In other words, the maximal markings of a process are all the marking that

are reachable in it using all its events. This, in particular, excludes {c2} in the
above example.
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3.2 Abstracting Processes

We show how processes of labelled reset Petri nets can be abstracted as partially
ordered multisets (pomsets) of labels.

Definition 13 (pomset abstraction of processes). Let (NR, Σ, λ) be
a labelled reset Petri net and (O, h) be a process of NR with O =
(B,E, FO, RO,MO

0 ). Define E′ = {e ∈ E : λ(h(e)) �= ε}. Define λ′ : E′ → Σ
as the function so that ∀e ∈ E′, λ′(e) = λ(h(e)). Define moreover < ⊆ E′ × E′

as the relation so that e1 < e2 if and only if e1 ≺ e2 (e1 is a causal predecessor
of e2 in O). Then, (E′, < , λ′) is the pomset abstraction of (O, h).

This abstraction (E,< , λ′) of a process is called its pomset abstraction
because it can be seen as a multiset of labels (several events may have the same
associated label by λ′) that are partially ordered by the < relation. In order to
compare processes with respect to their pomset abstractions, we also define the
following equivalence relation.

Definition 14 (pomset equivalence). Let (E,< , λ) and (E′, < ′, λ′) be the
pomset abstractions of two processes P and P ′. These processes are pomset
equivalent, noted P ≡ P ′ if and only if there exists a bijection f : E → E′

so that ∀e1, e2 ∈ E: (1) λ(e1) = λ′(f(e1)), and (2) e1 < e2 if and only if
f(e1) < ′f(e2).

Intuitively, two processes are pomset equivalent if their pomset abstractions
define the same pomset: same multisets of labels with same partial orderings.
Finally, we also need to be able to abstract processes as sequences of labels.

Definition 15 (linear abstraction). Let (NR, Σ, λ) be a labelled reset Petri
net, let P = (O, h) be a process of NR with O = (B,E, FO, RO,MO

0 ), and
let M be a reachable marking in O. Define λ′ : E → Σ as the function so
that ∀e ∈ E, λ′(e) = λ(h(e)). The linear abstraction of P with respect to
M is the set lin(M,P) so that a sequence of labels ω is in lin(M,P) if and
only if in O there exist markings M1, . . . ,Mn−1 and events e1, . . . , en so that
MO

0 [e1〉M1[e2〉 . . . Mn−1[en〉M and λ′(e1 . . . en) = ω.

3.3 Pomset Bisimulation

We now define a notion of pomset bisimulation between reset Petri nets, inspired
by [5,12,14]. Intuitively, two reset Petri nets are pomset bisimilar if there exists
a relation between their reachable markings so that the markings that can be
reached by pomset equivalent processes from two markings in relation are them-
selves in relation. This is formalized by the below definition.

Definition 16 (pomset bisimulation for reset nets). Let (NR,1, Σ1, λ1)
and (NR,2, Σ2, λ2) be two labelled reset Petri nets with NR,i =
(P i, T i, F i, Ri,M0,i). They are pomset bisimilar if and only if there exists a
relation ρ ⊆ [NR,1〉 × [NR,2〉 (called a pomset bisimulation) so that:
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1. (M0,1,M0,2) ∈ ρ,
2. if (M1,M2) ∈ ρ, then

(a) for every process P1 of (P 1, T 1, F 1, R1,M1) there exists a process P2 of
(P 2, T 2, F 2, R2, M2) so that P1 ≡ P2 and
– ∀M ′

1 ∈ Mmax(P1),∃M ′
2 ∈ Mmax(P2) so that (M ′

1,M
′
2) ∈ ρ,

– ∀M ′
1 ∈ Mmax(P1),∀M ′

2 ∈ Mmax(P2), (M ′
1,M

′
2) ∈ ρ ⇒

lin(M ′
1,P1) = lin(M ′

2,P2).
(b) the other way around (for every process P2 . . . )

Notice that, in the above definition, taking the processes P1 and P2 bisimilar
(using the standard bisimulation relation for Petri nets) rather than comparing
lin(M ′

1,P1) and lin(M ′
2,P2) would lead to an equivalent definition.

Remark that pomset bisimulation implies bisimulation, as expressed by the
following proposition. The converse is obviously not true.

Proposition 2. Let (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) be two pomset bisimilar
labelled reset Petri nets, then (NR,1, Σ1, λ1) and (NR,2, Σ2, λ2) are bisimilar.

Proof. It suffices to notice that Definition 6 can be obtained from Definition 16 by
restricting the processes considered, taking only those with exactly one transition
whose label is different from ε.

4 Reset Arcs Removal and Pomset Bisimulation

From now on, we consider that (reset) Petri nets are finite, i.e. their sets of places
and transitions are finite.

t1 p2

p1

t2

t3

N pat
R

t1

p1

p1

p2

t2

t3

t3

N pat
str

p0 t1

p1 t3

p2

t2p3

N 0R

b1(p0) b2(p2)

e1(t1) e2 (t3)

b4(p0) b5(p1) b6(p2)

e3 (t2)b3(p3)

b7(p3)F0R

Fig. 3. A remarkable pattern N pat
R and its structural transformation N pat

str , a labelled
reset Petri net N 0R including the pattern NR, and a finite complete prefix F0R of
N 0R . Transition labels are given on transitions.

In this section, we prove that it is, in general, not possible to remove reset
arcs from safe reset Petri nets while preserving their behaviours with respect to
this pomset bisimulation. More precisely, we prove that it is not possible to build
a safe labelled Petri net (while this is out of the scope of this paper, the reader
familiar with Petri nets may notice that this is the case for bounded labelled
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Petri net) without reset arcs which is pomset bisimilar to a given safe labelled
reset Petri net. For that, we exhibit a particular pattern – Fig. 3 (left) – and
show that a reset Petri net including this pattern cannot be pomset bisimilar to
a Petri net without reset arcs.

As a first intuition of this fact, let us consider the following structural trans-
formation that removes reset arcs from a reset Petri net.

Definition 17 (Structural transformation). Let (NR, Σ, λ) be a labelled
reset Petri net such that NR = (P , T , F ,R,M0), its structural trans-
formation is the labelled Petri net (NR,str, Σstr, λstr) where NR,str =
(P str, T str, F str, ∅,M0,str) so that:

P str = P ∪ P with P = {p : p ∈ P ∧ ∃t ∈ T , (p, t) ∈ R},

T str = T ∪ TwithT = {t : t ∈ T ∧ �t �= ∅},
Fstr = F ∪ {(p, t) : t ∈ T , (p, t) ∈ F} ∪ {(t, p) : t ∈ T , (t, p) ∈ F} (1)

∪ {(p, t) : p ∈ P , (t, p) ∈ F} ∪ {(t, p) : p ∈ P , (p, t) ∈ F} (2)

∪ {(p, t) ∈ P × T : (t, p) ∈ F} ∪ {(t, p) ∈ T × P : (p, t) ∈ F} (3)
∪ {(p, t), (p, t), (t, p), (t, p) : (p, t) ∈ R}, (4)

M0,str = M0 ∪ {p ∈ P : p /∈ M0},

and moreover, Σstr = Σ, ∀t ∈ T, λstr(t) = λ(t), and ∀t ∈ T , λstr(t) = λ(t).

Intuitively, in this transformation, for each reset arc (p, t), a copy p of p and
a copy t of t are created. The two places are so that p is marked if and only if
p is not marked, the transition t will perform the reset when p is marked and t
will perform it when p is not marked (i.e. when p is marked). For that, new arcs
are added to F so that: t mimics t (1), the link between p and p is enforced (2,
3), and the resets are either performed by t or t depending of the markings of p
and p (4). This is examplified in Fig. 3 (left and middle left).

Lemma 1. A labelled reset Petri net (NR, Σ, λ) and its structural transforma-
tion (NR,str, Σstr, λstr) as defined in Definition 17 are bisimilar.

Proof. (Sketch) The bisimulation relation is ρ ⊆ [NR,1〉 × [NR,2〉 defined by
(M,Mstruct) ∈ ρ iff ∀p ∈ P,M(p) = Mstruct(p) and ∀p ∈ P such that p ∈ P , we
have Mstruct(p) + Mstruct(p) = 1.

For the transformation of Definition 17, a reset Petri net and its transforma-
tion are bisimilar but not always pomset bisimilar. This can be remarked on any
safe reset Petri net including the pattern N pat

R of Fig. 3. Indeed, this transforma-
tion adds in N pat

str a causality relation between the transition labelled by t1 and
each of the two transitions labelled by t3. From the initial marking of N pat

str , for
any process whose pomset abstraction includes both t1 and t3, these two labels
are causally ordered. While, from the initial marking of N pat

R there is a process
which pomset abstraction includes both t1 and t3 but does not order them. We
now generalize this result.
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Let us consider the labelled reset Petri Net N 0R of Fig. 3 (middle right). It
uses the pattern N pat

R of Fig. 3 in which t1 and t3 can be fired in different order
infinitely often. In this net, the transitions with labels t1 and t3 are not in causal
relation.

Proposition 3. There is no finite safe labelled Petri net (i.e. without reset arc)
which is pomset bisimilar to the labelled reset Petri net N 0R .

Proof. We simply remark that any finite safe labelled Petri net with no reset arcs
which is bisimilar to N 0R has a causal relation between two transitions labelled
by t1 and t3 respectively (Lemma 2). From that, by Proposition 2, we get that
any such labelled Petri net N which would be pomset bisimilar to N 0R would
have a process from its initial marking whose pomset abstraction is such that
some occurrence of t1 and some occurrence of t3 are ordered, while this is never
the case in the processes of N 0R . This prevents N from being pomset bisimilar
to N 0R , and thus leads to a contradiction, proving the proposition.

Lemma 2. Any safe labelled Petri net with no reset arcs which is bisimilar (see
definition 6) to N 0R has a causal relation between two transitions labelled by t1
and t3 respectively.

Proof. (Sketch) The firing of t3 prevents the firing of t2; then t3 and t2 are in
conflict and share an input place which has to be marked again after the firing
of t1. This place generates a causality between t1 and t3.

5 Finite Complete Prefixes of Unfolding of Reset Petri
Nets

In this section, we propose a notion of finite complete prefixes of unfolding of
safe reset Petri nets preserving reachability of markings and pomset behaviour.
As a consequence of the previous section, these finite complete prefixes do have
reset arcs.

The unfolding of a Petri net is a particular branching process (generally
infinite) representing all its reachable markings and ways to reach them. It also
preserves concurrency.

Definition 18 (Unfolding of a Petri net). The unfolding of a net can be
defined as the union of all its branching processes [7] or equivalently its largest
branching process (with respect to inclusion).

In the context of reset Petri nets, no notion of unfolding has been defined
yet. Accordingly to our notion of processes for reset Petri nets and because of
Proposition 4 below we propose Definition 19. In it and the rest of the paper,
nets and labelled nets are identified (each transition is labelled by itself) and
labellings of branching processes are induced by homomorphisms (as for pomset
abstraction).
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Definition 19 (Unfolding of a reset Petri net). Let NR be a safe reset
Petri net and N be its underlying Petri net. Let U be the unfolding of N . The
unfolding of NR is UR, obtained by adding reset arcs to U according to (2) in
Definition 10.

Proposition 4. Any safe (labelled) reset Petri net NR and its unfolding UR

are pomset bisimilar.

Proof. (Sketch) This extends a result of [13], stating that two Petri nets having
the same unfolding (up to isomorphism) are pomset bisimilar (for a notion of
bisimulation coping with our in absence of resets).

Petri nets unfolding is however unpractical for studying Petri nets behaviour
as it is generally an infinite object. In practice, finite complete prefixes of it are
preferred [8,10].

Definition 20 (finite complete prefix, reachable marking preserva-
tion). A finite complete prefix of the unfolding of a safe Petri net N is a finite
branching processes (O, h) of N verifying the following property of reachable
marking preservation: a marking M is reachable in N if and only if there exists
a reachable marking M ′ in O so that M = {h(b) : b ∈ M ′}.

In this section, we propose an algorithm for construction of finite complete
prefixes for safe reset Petri nets. For that, we assume the existence of a black-box
algorithm for building finite complete prefixes of safe Petri nets (without reset
arcs). Notice that such algorithms indeed do exist [8,10].

Because of Proposition 3, we know that such finite prefixes should have reset
arcs to preserve pomset behaviour. We first remark that directly adding reset
arcs to finite complete prefixes of underlying nets would not work.

Proposition 5. Let U be the unfolding of the underlying Petri Net N of a safe
reset Petri net NR, let F be one of its finite and complete prefixes. Let F ′ be the
object obtained by adding reset arcs to F according to (2) in Definition 10. The
reachable marking preservation is in general not verified by F ′ (with respect to
NR).

The proof of this proposition relies on the fact that some reachable markings
of NR are not represented in F ′. This suggests that this prefix is not big enough.
We however know an object that contains, for sure, every reachable marking of
NR along with a way to reach each of them: its structural transformation NR,str

(Definition 17). We thus propose to compute finite prefixes of reset Petri nets
from their structural transformations: in the below algorithm, Fstr is used to
determine the deepness of the prefix (i.e. the length of the longest chain of
causally ordered transitions).

Algorithm 1 (Finite complete prefix construction for reset Petri nets).
Let NR be a safe reset Petri net, (step 1) compute the structural transformation
NR,str of NR, (step 2) compute a finite complete prefix Fstr of NR,str, (step 3)
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compute a finite prefix F of U (the unfolding of the underlying net N ) that
simulates Fstr (a labelled net N 2 simulates a labelled net N 1 if they verify
Definition 6 except for condition 2.b.), (step 4) compute FR by adding reset arcs
from NR to F according to (2) in Definition 10. The output of the algorithm is
FR.

Applying this algorithm to the net N 0R of Fig. 3 (middle right) – using the
algorithm from [8] at step 2 – leads to the reset Petri net F0R of Fig. 3 (right).

Notice that the computation of Fstr – step 1 and 2 – can be done in expo-
nential time and space with respect to the size of NR. The computation of F
from Fstr (step 3) is linear in the size of F . And, the addition of reset arcs (step
4) is at most quadratic in the size of F .

We conclude this section by showing that Algorithm 1 actually builds finite
complete prefixes of reset Petri nets.

Proposition 6. The object FR obtained by Algorithm 1 from a safe reset Petri
net NR is a finite and complete prefix of the unfolding of NR.

Proof. Notice that if NR is safe, then NR,str is safe as well. Thus Fstr is finite
by definition of finite complete prefixes of Petri nets (without reset arcs). Fstr is
finite and has no node in causal relation with itself (i.e. no cycle), hence any net
bisimilar with it is also finite, this is in particular the case of F . Adding reset
arcs to a finite object does not break its finiteness, so FR is finite.

Moreover, Fstr is complete by definition of finite complete prefixes of Petri
nets (without reset arcs). As F simulates Fstr it must also be complete (it
can only do more). The reset arcs addition removes semantically to F only the
unexpected sequences (i.e. the sequence which are possible in F but not in Fstr).
Therefore, FR is complete.

6 Conclusion

Our contribution in this paper is three-fold. First, we proposed a notion of pom-
set bisimulation for reset Petri nets. This notion is, in particular, inspired from
a similar notion that has been defined for Petri nets (without reset arcs) in [5].
Second, we have shown that it is not possible to remove reset arcs from safe reset
Petri nets while preserving their behaviours with respect to this pomset bisimu-
lation. And, third, we proposed a notion of finite complete prefixes of unfolding
of safe reset Petri nets that allows for reachability analysis while preserving
pomset behaviour. As a consequence of the two other contributions, these finite
complete prefixes do have reset arcs.
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Abstract. Semi-Markov processes are Markovian processes in which the
firing time of transitions is modelled by probabilistic distributions over
positive reals interpreted as the probability of firing a transition at a
certain moment in time.

In this paper we consider the trace-based semantics of semi-Markov
processes, and investigate the question of how to compare two semi-
Markov processes with respect to their time-dependent behaviour. To
this end, we introduce the relation of being “faster than” between pro-
cesses and study its algorithmic complexity. Through a connection to
probabilistic automata we obtain hardness results showing in particular
that this relation is undecidable. However, we present an additive approx-
imation algorithm for a time-bounded variant of the faster-than problem
over semi-Markov processes with slow residence-time functions, and a
coNP algorithm for the exact faster-than problem over unambiguous
semi-Markov processes.
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1 Introduction

Semi-Markov processes are Markovian stochastic systems that model the firing
time of transitions as probabilistic distribution over positive reals; thus, one
can encode the probability of firing a certain transition within a certain time
interval. For example, continuous-time Markov processes are particular case of
semi-Markov processes where the timing distributions are always exponential.

Semi-Markov processes have been used extensively to model real-time sys-
tems such as power plants [15] and power supply units [16]. For such real-
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Many of these requirements, such as response time and throughput, depend heav-
ily on the timing behaviour of the system in question. It is therefore natural to
understand and be able to compare the timing behaviour of different systems.

Moller and Tofts [11] proposed the notion of a faster-than relation for systems
with discrete-time in the context of process algebras. Their goal was to be able
to compare processes that are functionally behaviourally equivalent, except that
one process may execute actions faster than the other. This line of study was
continued by Lüttgen and Vogler [10], who moreover considered upper bounds
on time, in order to allow for reasoning about worst-case timing behaviours. For
timed automata, Guha et al. [9] introduced a bisimulation-like faster-than rela-
tion and studied its compositional properties. For continuous-time probabilistic
systems, Baier et al. [3] considered a simulation relation where the timing dis-
tribution on each state is required to stochastically dominate the other. They
introduced both a weak and a strong version of their simulation relation, and
gave a logical characterization of these in terms of the logic CSL.

In the literature, less attention has been drawn to trace-based notions of
faster-than relations although trace equivalence and inclusion are important con-
cepts when considering linear-time properties such as liveness or safety [2]. In
this paper we propose a simple and intuitive notion of trace inclusion for semi-
Markov processes, which we call faster-than relation, that compares the relative
speed of processes with respect to the execution of arbitrary sequences of actions.

Differently from trace inclusion, our relation does not make a step-wise com-
parison of the timing delays for each individual action in a sequence, but over the
overall execution time of the sequence. As an example, consider the semi-Markov
process in Fig. 1. The states s and s′, although performing the same sequences
of actions, are not related by trace inclusion because the first two actions in
any sequence are individually executed at opposite order of speeds (here gov-
erned by exponential-time distributions). Instead, according to our relation, s
is faster-than s′ (but not vice versa) because it executes single-action sequences
at a faster rate than s′, and action sequences of length greater than one at the
same speed — this is due to the fact that the execution time of each action is
governed by random variables that are independent of each other and the sum
of independent random variables is commutative.

Fig. 1. A semi-Markov process where s is faster than s′. The states of the process
are annotated with their timing distributions and each action-labelled transition is
decorated with its probability to be executed.

In this paper we investigate the algorithmic complexity of various problems
regarding the faster-than relation, emphasising their connection with classical
algorithmic problems over Rabin’s probabilistic automata. In particular, we
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prove that the faster-than problem over generic semi-Markov processes is unde-
cidable and that it is Positivity-hard when restricted to processes with only one
action label. The reduction from the Positivity problem is important because it
relates the faster-than problem to the Skolem problem, an important problem in
number theory, whose decidability status has been an open problem for at least
80 years [1,12].

We show that undecidability for the faster-than problem can not be tackled
even by approximation techniques: via the same connection with probabilistic
automata we are able to prove that the faster-than problem can not be approx-
imated up to a multiplicative constant. However, as a positive result, we show
that a time-bounded variant of the faster-than problem, which compares pro-
cesses up to a given finite time bound, although still undecidable, admits approxi-
mated solutions up to an additive constant over semi-Markov processes with slow
residence-time distributions. These include the important cases of uniform and
exponential distributions.

Finally, we present a coNP algorithm for solving the faster-than problem
exactly over unambiguous semi-Markov processes, where a process is unambigu-
ous if every transition to a next state is unambiguously determined by the label
that it outputs.

A full version of the paper with proofs and additional material can be found
in [14].

2 Semi-Markov Processes and Faster-than Relation

For a finite set S we let D(S) denote the set of subdistributions over S, i.e.
functions δ : S → [0, 1] such that

∑
s∈S δ(s) ≤ 1. The subset of total distri-

butions is D=1(S). We let IN denote the natural numbers and IR≥0 denote the
non-negative real numbers. We equip IR≥0 with the Borel σ-algebra B, so that
(IR≥0,B) is a measurable space. Let D(IR≥0) denote the set of (sub)distributions
over (IR≥0,B), i.e. measures μ : B → [0, 1] such that μ(IR≥0) ≤ 1. Throughout
the paper we will write μ(t) for μ([0, t]). To avoid confusion we will refer to μ in
D(IR≥0) as timing distributions, and to δ in D(S) as distributions.

Definition 1 (Semi-Markov process). A semi-Markov process is a tuple
M = (S, Out,Δ, ρ) where

– S is a (finite) set of states,
– Out is a (finite) set of output labels,
– Δ : S → D(S × Out) is a transition function,
– ρ : S → D(IR≥0) is a residence-time function.

The operational behaviour of a semi-Markov process can be described as
follows. In a given state s ∈ S, the process fires a transition within time t with
probability ρ(s)(t), leading to the state s′ ∈ S while outputting the label a ∈ Out
with probability Δ(s)(s′, a).

We aim at defining IPM(s, w, t), the probability that from the state s, the
output of the semi-Markov process M within time t starts with the word w. It
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is important to note here that time is accumulated: we sum together the time
spent in all states along the way, and ask that this total time is less than the
specified bound t.

In order to account for the accumulated time in the probability, we need the
notion of convolution. The convolution of two timing distributions μ and ν is
μ ∗ ν defined, for any Borel set E ⊆ IR≥0, as follows

(μ ∗ ν)(E) =
∫ ∞

0

ν(E − x)μ(dx) .

Convolution is both associative and commutative. Let X and Y be two indepen-
dent random variables with timing distributions μ and ν, i.e. IP(X ∈ E) = μ(E)
and IP(Y ∈ E) = ν(E), then IP(X + Y ∈ E) = (μ ∗ ν)(E).

Definition 2 (Probability). Consider a semi-Markov process M. We define
the timing distribution IPM(s, w) inductively on w, as follows, for any word
w ∈ Out∗, label a ∈ Out, and time t ∈ IR≥0

IPM(s, ε)(t) = 1

IPM(s, aw)(t) =
∑

s′∈S

Δ(s)(s′, a) · (ρ(s) ∗ IPM(s′, w)) (t) .

We will then write IPM(s, w, t) to mean IPM(s, w)(t).

2.1 Timed Comparisons

We introduce the following relation which will be the focus of our paper.

Definition 3 (Faster-than relation). Consider a semi-Markov process M
and two states s and s′. We say that s is faster than s′, denoted s � s′, if
for all words w ∈ Out∗, for all time t ∈ IR≥0,

IPM(s, w, t) ≥ IPM(s′, w, t) .

The algorithmic problem we consider in this paper is the faster-than problem:
given a semi-Markov process and two states s and s′, determine whether s � s′.

2.2 Algorithmic Considerations

The definition we use for semi-Markov processes is very general, because we allow
for any residence-time function. The aim of the paper is to give generic algorith-
mic results which apply to effective classes of timing distributions, a notion we
define now. Recall that a residence-time function associates with each state a
timing distribution. We first give some examples of classical timing distributions.

– The prime example is exponential distributions, defined by the timing distri-
bution μ(t) = 1 − e−λt for some parameter λ > 0 usually called the rate.
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– Another interesting example is piecewise polynomial distributions. Consider
finitely many polynomials P1, . . . , Pn and a finite set of pairwise disjoint inter-
vals I1 ∪ I2 ∪ · · · ∪ In covering [0,∞) such that for every k, Pk is non-negative
over Ik and

∑
k

∫
Ik

Pk = 1. This induces the timing distribution

μ(t) =
∑

k

∫

Ik∩[0,t]

Pk(t) .

– Another important special case of piecewise polynomial distributions are the
uniform distributions with parameters 0 ≤ a < b.

– The simplest example is given by Dirac distributions defined for the parameter
a by μ(E) = 1 if a is in E, and 0 otherwise.

The following definition captures these examples, and more. For a class C of
timing distributions, we let Convex(C) be the smallest class of timing distribu-
tions containing C and closed under convex combinations, and similarly Conv(C)
adding closure under convolutions.

Lemma 4. Let C be a class of timing distributions. Consider a semi-Markov
process M whose residence-time function uses timing distributions from C. Then,
for any state s ∈ M and word w ∈ Out∗, IPM(s, w) ∈ Conv(C).

In the rest of the paper we will consider only distributions that are suitable
for algorithmic manipulation. Clearly, we must be able to give them as input to
a computational device, hence we assume they can be described by finitely many
rational parameters. Moreover, we require that testing inequalities between them
is decidable, since this is essential for determining the faster-than relation. The
next definition formalises this intuition.

Definition 5 (Effective timing distributions). A class C of timing distri-
butions is effective if, for any ε ≥ 0, b ∈ IR≥0 ∪ {∞}, and μ1, μ2 ∈ Conv(C), it
is decidable whether μ1(t) ≥ μ2(t) − ε, for all t ≤ b.

Proposition 6. The following classes of timing distributions are effective: expo-
nential, piecewise polynomial, uniform, and Dirac distributions.

We do not provide in the conference version a full proof of Proposition 6, as
it is mostly folklore but rather tedious. In particular, for exponential and piece-
wise polynomial distributions one relies on decidability results for the existential
theory of the reals [17], implying that the most demanding operations above can
be performed in polynomial space [4].

Although in this paper we give algorithmic results for generic effective classes
of timing distributions, the semi-Markov processes we will focus on have only
finitely many states, and hence can only use finitely many timing distributions
from the same class. For our decidability results we will therefore focus on finite
classes of timing distributions.

Moreover, in our complexity analyses, we will always assume that the oper-
ations on the timing distributions have a unit cost.
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3 Hardness Results

We start the technical part of this article by presenting a series of hardness
results for semi-Markov processes inherited from Markov processes.

A Markov process is a tuple M = (S, Out,Δ) consisting of a (finite) set of
states S, a (finite) set of labels Out, and a transition function Δ : S → D(S×Out).
For a Markov process M we define the probability IPM(s) on Out∗ inductively,
for a ∈ Out and w ∈ Out∗, as follows

IPM(s, ε) = 1 and IPM(s, aw) =
∑

s′∈S

Δ(s)(s′, a) · IPM(s′)(w) .

The faster-than relation � for Markov processes is defined similarly to the case
of semi-Markov processes: s � s′ if, for all words w, IPM(s, w) ≥ IPM(s′, w).

We show that the faster-than problem for Markov processes, and hence also
for semi-Markov processes, is (i) undecidable, (ii) can not be multiplicatively
approximated, and (iii) is Positivity-hard even over the restricted case of Markov
processes with one single output label. These limitations shape and motivate our
positive results, which will be the topic of the remaining sections.

We first explain how hardness results for Markov processes directly imply
hardness results for semi-Markov processes. The following lemma formalises the
two ways semi-Markov processes subsume Markov processes.

Lemma 7. Consider a semi-Markov process M = (S, Out,Δ, ρ) and its induced
Markov process M′ = (S, Out,Δ).

– If ρ is constant, i.e. for all s, s′ we have ρ(s) = ρ(s′), then for all w, for all
t, we have IPM(s, w, t) = IPM′(s, w) · (ρ(s) ∗ · · · ∗ ρ(s)

︸ ︷︷ ︸
|w|times

)(t).

– If for all s, ρ(s) is the Dirac distribution for 0, then for all w, for all t, we
have IPM(s, w, t) = IPM′(s, w).

In particular in both cases, the following holds: for s, s′ two states, we have s � s′

in M if, and only if, s � s′ in M′.

The hardness results of this section will be based on a connection to Rabin’s
probabilistic automata. A probabilistic automaton is given by

A = (Q,A, q0,Δ : Q × A → D=1(Q), F ),

where Q is the set of states, A is the alphabet, q0 is an initial state, Δ is the
transition function, and F is a set of final or accepting states. Any probabilistic
automaton A induces the probability IPA(w) that a run over w ∈ A∗ is accepting,
i.e. starts in q0 and ends in F .

The key property of probabilistic automata that we will exploit is the unde-
cidability of the universality problem, which was proved in [13], see also [8]. The
universality problem is as follows: given a probabilistic automaton A, determine
whether IPA(w) ≥ 1

2 , for all nonempty words w ∈ A+.



Timed Comparisons of Semi-Markov Processes 277

Given a probabilistic automaton A we define the derived Markov process
M(A) as follows. The set of states of M(A) is Q × {	, r} ∪ {�}, where � is a
new state; the set of output labels is A, and the transition function Δ′ is defined
as follows, for p, q ∈ Q and a ∈ Out:

Δ′(p, 	)((q, 	), a) =
1

2|A|Δ(p, a)(q) Δ′(p, 	)(�, a) =
1
2

if p ∈ F

Δ′(p, r)((q, r), a) =
1

2|A|Δ(p, a)(q) Δ′(p, r)(�, a) =
1
2

.

Let s = (q0, 	) and s′ = (q0, r), where q0 is the initial state of A. Then, for the
Markov process M(A), we can then verify the following equalities:

IPM(A)(s, wa) =
1

(2|A|)|w| IPA(w) and IPM(A)(s′, wa) =
1

(2|A|)|w|
1
2

.

Theorem 8. The faster-than problem is undecidable for Markov processes.

We discuss three approaches to recover decidability. A first approach is to look
for structural restrictions on the underlying graph. However, the undecidability
result above for probabilistic automata is quite robust in this respect, as it
already applies when the underlying graph is acyclic, meaning that the only
loops are self-loops. In spite of this, we present in Sect. 5 an algorithm to solve
the faster-than problem for unambiguous semi-Markov processes.

A second approach is to restrict the observations. Interestingly, specialising
the construction above to only one output letter yields a reduction from the Pos-
itivity problem. Formally, the Positivity problem reads: given a linear recurrence
sequence, are all terms of the sequence non-negative? It has been shown that
the universality problem for probabilistic automata with one letter alphabet is
equivalent to the Positivity problem [1]. Thus, using again the derived Markov
process M(A) for a probabilistic automaton A with only one label, we obtain
the following result.

Theorem 9. The faster-than problem is Positivity-hard over Markov processes
with one output label.

A third approach is approximations. However, we can exploit further the con-
nection we made with probabilistic automata, obtaining an impossibility result
for multiplicative approximation. We rely on the following celebrated theorem for
probabilistic automata due to Condon and Lipton [5]. The following formulation
of their theorem is described in detail in [6].

Theorem 10 [5]. Let 0 < α < β < 1 be two constants. There is no algorithm
which, given a probabilistic automaton A,

– if for all w we have IPA(w) ≥ β, returns YES,
– if there exists w such that IPA(w) ≤ α, returns NO.
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Theorem 11. Let 0 < ε < 1
3 be a constant. There is no algorithm which, given

a Markov process M and two states s, s′,

– if for all w we have IPM(s, w) ≥ IPM(s′, w), returns YES,
– if there exists w such that IPM(s, w) ≤ IPM(s′, w) · (1 − ε), returns NO.

From these hardness results for Markov processes together with Lemma 7,
we get the following hardness results for semi-Markov processes.

Corollary 12. The following holds for semi-Markov processes for any class of
timing distributions.

– The faster-than problem is undecidable.
– The faster-than problem with only one output label is Positivity-hard.
– The faster-than problem can not be multiplicatively approximated.

4 Time-Bounded Additive Approximation

Instead of considering multiplicative approximation, we can also consider addi-
tive approximation, meaning that we want to decide whether for all w and t we
have IPM(s, w, t) ≥ IPM(s′, w, t) − ε for some constant ε > 0. In this section,
we present an algorithm to solve the problem of approximating additively the
faster-than relation with two assumptions:

– time-bounded : we only look at the behaviours up to a given bound b in IR≥0,
– slow residence-time functions: each transition takes some time to fire.

As we will show, the combination of these two assumptions imply that the rel-
evant words have bounded length. This is in contrast to the impossibility of
approximating the faster-than relation multiplicatively showed in Sect. 3.

More precisely, we consider the time-bounded variant of the faster-than prob-
lem: given a time bound b ∈ IR≥0, and two states s and s′ in M determine
whether for all t ≤ b and w it holds that IPM(s, w, t) ≥ IPM(s′, w, t).

We first observe that this restriction of the faster-than problem does not
make any of the problems in Sect. 3 easier for semi-Markov processes. Indeed, if
the residence-time functions are all Dirac distributions at 0, then all transitions
are fired instantaneously, and the time-bounded restriction is immaterial. Thus
we focus on distributions that do not fire instantaneously, as made precise by
the following definition.

Definition 13 (Slow distributions). We say that a class C of timing distri-
butions is slow if for all finite subset C0 of C, there exists a computable function
ε : IN× IR≥0 → [0, 1] such that for all n, t, and μ1, . . . , μn ∈ Convex(C0) we have
(μ1 ∗ · · · ∗ μn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0.

Given a slow and effective class C of timing distributions, we can do additive
approximation of the time-bounded faster-than problem in the following way.
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We introduce the following notation. Fix a semi-Markov process M. Let
CM = Convex({ρ(s) | s ∈ S}), and n ∈ IN. We define the timing distribution
FM,n by FM,n(t) = 1 if n = 0 and otherwise

FM,n(t) = sup {(μ1 ∗ · · · ∗ μn)(t) | μ1, . . . , μn ∈ CM} .

Lemma 14. For all s and all w, we have IPM(s, w) ≤ FM,|w|.

Theorem 15. For a constant ε > 0, there exists an algorithm which, given a
semi-Markov process M with slow and effective timing distributions, two states
s, s′, and a bound b ∈ IR≥0, determines whether

∀w,∀t ≤ b, IPM(s, w, t) ≥ IPM(s′, w, t) − ε .

Proof. Let CM = Convex({ρ(s) | s ∈ S}), since S is finite there exists a com-
putable function ε : IN×IR≥0 → [0, 1] such that for all n, t, and μ1, . . . , μn ∈ CM
we have (μ1 ∗ · · · ∗ μn)(t) ≤ ε(n, t) and limn→∞ ε(n, t) = 0. Given ε > 0, there
exists N such that ε(N, b) < ε. For n ≥ N . By assumption (μ1 ∗ · · · ∗ μn)(b) ≤
ε(n, b) ≤ ε(N, b) < ε for all μ1, . . . , μn ∈ CM. Taking the supremum over
μ1, . . . , μn, we then get FM,n(b) < ε, and by Lemma 14, this means that for all
w of length at least N , we have IPM(s′, w, b) < ε. Hence it holds trivially that
for all t ≤ b and w of length at least N , we have IPM(s, w, t) ≥ IPM(s′, w, t)− ε.

Thus the algorithm checks whether for all words of length less than N , for
all t ≤ b, we have IPM(s, w, t) ≥ IPM(s′, w, t) − ε, which is decidable thanks to
the effectiveness of C. �

Next we show that there are interesting classes of timing distributions that
are indeed slow. For this we introduce a class of timing distributions that are not
just slow, but furthermore are guaranteed to converge to zero rapidly. We say
that a timing distribution μ is very slow if there exists a computable function
ε : IR≥0 → [0, 1] such that limt→0

ε(t)
t = 0 and for all t, we have μ(t) ≤ ε(t).

Theorem 16. The following classes of timing distributions are slow: very slow,
uniform, and exponential distributions.

The proof of Theorem 16 depends on closed forms for the n-fold convolution
of exponential distributions and uniform distributions, both of which converge
to 0 as n goes to infinity. For exponential distributions, this closed form is the
well-known Gamma distribution.

5 Unambiguous Semi-Markov Processes

In order to regain decidability of the faster-than relation, we can look at struc-
turally simpler special cases of semi-Markov processes. Here we will focus on
semi-Markov processes such that each output word induces at most one trace of
states. More precisely, we will say that a semi-Markov process is unambiguous if
for every state s and output label a ∈ Out, there exists at most one state s′ such
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that Δ(s)(s′, a) �= 0. A related notion of bounded ambiguity has been utilised to
obtain decidability results in the context of probabilistic automata [7]. We intro-
duce the following notation for unambiguous semi-Markov processes: T (s, w) is
the state reached after emitting w from s.

Example 17. Figure 2 gives an example of an unambiguous semi-Markov process.
For each of the three states, there is at most one state that can be reached by
a given output label. However, there need not be a transition for each output
label from every state. In this example, the state s2 has no b-transition, so for
instance T (s1, ab) = s2, but T (s1, abb) is undefined.

Fig. 2. An example of an unambiguous semi-Markov process.

Theorem 18. The faster-than problem is decidable in coNP over unambiguous
semi-Markov processes for all effective classes of timing distributions.

Theorem 18 follows from the next proposition.

Proposition 19. Consider an unambiguous semi-Markov process M and two
states s, s′. Let L(s, s′) be the set of loops reachable from (s, s′):

{

(p, p′, v) ∈ S2 × Out≤S2
∣
∣
∣
∣ ∃w ∈ Out≤S2

,
T (s, w) = p, T (s′, w) = p′,
T (p, v) = p, T (p′, v) = p′

}

.

We have s � s′ if, and only if

– for all w ∈ Out≤S2
, we have IPM(s, w) ≥ IPM(s′, w), and

– for all (p, p′, v) ∈ L(s, s′), we have IPM(p, v) ≥ IPM(p′, v).

Before going into the proof, we explain how to use Proposition 19 to construct
an algorithm solving the faster-than problem over unambiguous semi-Markov
processes.

1. The first step is to compute L(s, s′), which can be done in polynomial time
using a simple graph analysis,

2. The second step is to check the two properties, which both can be reduced
to exponentially many queries of the form: μ1 ≥ μ2 for μ1, μ2 in Conv(C).
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To obtain a coNP algorithm, in the second step we guess which of the two
properties is not satisfied and a witness of polynomial length, which is either
a word of quadratic length for the first property, or two states and a word of
quadratic length for the second property.

Proof (of Proposition 19). ( =⇒ ) Assume that s is faster than s′ and let (p, p′)
be in L(s, s′). There exist w, v ∈ Out∗ such that T (s, w) = p, T (s′, w) =
p′, T (p, v) = p, T (p′, v) = p′. Let n ∈ IN. Since s is faster than s′, we have
IPM(s, wvn) ≥ IPM(s′, wvn). We have

IPM(s, wvn) = IPM(s, w) ∗ IPM(p, v) ∗ · · · ∗ IPM(p, v)
︸ ︷︷ ︸

n times

IPM(s′, wvn) = IPM(s′, w) ∗ IPM(p′, v) ∗ · · · ∗ IPM(p′, v)
︸ ︷︷ ︸

n times

.

Let Xs,w be the random variable measuring the time elapsed from s emitting w.
Similarly, we define Xp,v, Ys′,w and Yp′,v. We have: for all n ∈ IN, for all t,

IPM(Xs,w + nXp,v ≤ t) ≥ IPM(Ys′,w + nYp′,v ≤ t) ,

Dividing both sides by n yields

IPM

(
Xs,w

n
+ Xp,v ≤ t

n

)

≥ IPM

(
Ys′,w

n
+ Yp′,v ≤ t

n

)

.

We make the change of variables x = t
n : for all n ∈ IN, for all x we have

IPM

(
Xs,w

n
+ Xp,v ≤ x

)

≥ IPM

(
Ys′,w

n
+ Yp′,v ≤ x

)

.

Letting n → ∞, we then obtain, for all x IPM(Xp,v ≤ x) ≥ IPM(Yp′,v ≤ x),
which is equivalent to IPM(p, v) ≥ IPM(p′, v).

( ⇐= ) We prove that for all w, we have IPM(s, w) ≥ IPM(s′, w) by induction
on the length of w. For w of length at most S2, this is ensured by the first
assumption. Let w be a word longer than S2. There exist two states p, p′ such
that p is reached by s and p′ by s′ after emitting i letters of w and again after
emitting j letters of w, with j at most S2. Let w = w1 v w2 where v starts at
position i and ends at position j. By construction (p, p′, v) is in L(s, s′). We have

IPM(s, w) = IPM(s, w1) ∗ IPM(p, v) ∗ IPM(p,w2)
= IPM(s, w1w2) ∗ IPM(p, v)
≥ IPM(s′, w1w2) ∗ IPM(p′, v) (inductive hypothesis)
= IPM(s′, w) .

�
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6 Conclusion and Open Problems

We have introduced a trace-based relation on semi-Markov processes called the
faster-than relation which asks that for any time bound, the probability of out-
putting any word within the time bound is higher in the faster process than in the
slower process. We have shown through a connection to probabilistic automata
that the faster-than relation is highly undecidable. It is undecidable in general,
and remains Positivity-hard even restricting to processes with one output label.
Furthermore, approximating the faster-than relation up to a multiplicative con-
stant is shown to be impossible.

However, we constructed algorithms for special cases of the faster-than prob-
lem. We have shown that if one considers approximating up to an additive con-
stant rather than a multiplicative constant, and if one gives a bound on the time
up to which one is interested in comparing the two processes, then approximation
can be done for timing distributions in which we are sure to spend some amount
of time to take a transition. In addition, we have shown that the faster-than
relation over unambiguous processes is decidable and in coNP.

In this paper, we have focused on the generative model, where the labels
are treated as outputs. An alternative viewpoint would be to consider reactive
models, where the labels are instead treated as inputs [18]. While all the unde-
cidability and hardness results we have shown can also easily be shown to hold
for reactive Markov processes, the same is not true for the algorithms we have
constructed. It is non-trivial to extend these algorithms for the case of reactive
semi-Markov processes: the main obstacle is that for reactive systems, one has
to also handle schedulers, often uncountably many. It is therefore still an open
question whether our decidability results carry over to reactive models.
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10. Lüttgen, G., Vogler, W.: A faster-than relation for asynchronous processes. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 262–276.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 18

11. Moller, F., Tofts, C.: Relating processes with respect to speed. In: Baeten, J.C.M.,
Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 424–438. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54430-5 104

12. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: SODA (2014)

13. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
14. Pedersen, M.R., Fijalkow, N., Bacci, G., Larsen K.G., Mardare, R.: Timed compar-

isons of semi-Markov processes. CoRR (2017). http://arxiv.org/abs/1711.10216
15. Perman, M., Senegacnik, A., Tuma, M.: Semi-Markov models with an application

to power-plant reliability analysis. IEEE Trans. Reliab. 46(4), 526–532 (1997)
16. Pievatolo, A., Tironi, E., Valade, I.: Semi-Markov processes for power system reli-

ability assessment with application to uninterruptible power supply. IEEE Trans.
Power Syst. 19(3), 1326–1333 (2004)

17. Tarski, A.: A decision method for elementary algebra and geometry. University of
California Press, Berkeley (1951)

18. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

https://doi.org/10.1007/978-3-642-31424-7_33
https://doi.org/10.1007/978-3-642-31424-7_33
https://doi.org/10.1007/3-540-44685-0_18
https://doi.org/10.1007/3-540-54430-5_104
http://arxiv.org/abs/1711.10216


Handling Ties Correctly and Efficiently
in Viterbi Training Using the Viterbi

Semiring

Markus Saers(B) and Dekai Wu

Department of Computer Science and Engineering,
Human Language Technology Center,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

{masaers,dekai}@cs.ust.hk

Abstract. The handling of ties between equiprobable derivations during
Viterbi training is often glossed over in research paper, whether they are
broken randomly when they occur, or on an ad-hoc basis decided by the
algorithm or implementation, or whether all equiprobable derivations are
enumerated with the counts uniformly distributed among them, is left
to the readers imagination. The first hurts rarely occurring rules, which
run the risk of being randomly eliminated, the second suffers from algo-
rithmic biases, and the last is correct but potentially very inefficient. We
show that it is possible to Viterbi train correctly without enumerating all
equiprobable best derivations. The method is analogous to expectation
maximization, given that the automatic differentiation view is chosen
over the reverse value/outside probability view, as the latter calculates
the wrong quantity for reestimation under the Viterbi semiring. To get
the automatic differentiation to work we devise an unbiased subderiva-
tive for the max function.

Keywords: Parsing · Viterbi training · Automatic differentiation
Deductive systems · Semiring parsing

1 Introduction

Conventional wisdom has it that expectation maximization is preferable over
Viterbi training for reestimating generative models because all possible config-
urations of the hidden variables (paths through a lattice/trees in a forest) con-
tribute proportionally to the reestimation, but Viterbi training has the potential
of being significantly faster, since only the best paths/trees are needed. Good-
man [6] showed that the necessary quantities for expectation maximization (EM)
can be derived automatically in the form of reverse values, a generalization of
backward/outside probabilities. Eisner et al. [5], Li and Eisner [8], and Smith
[14] showed that automatic differentiation [2] of the sentence probability with
respect to the rule probabilities is equivalent to reverse values, and Eisner [4]
c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 284–295, 2018.
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pointed out that it is all essentially backpropagation as we know it from neural
networks [10]. In this paper we show that the equivalence between reverse values
and derivatives fails to generalize away from the probability semiring, specifically:
applying the two methods to the Viterbi semiring gives very different results. We
further show that the backpropagation approach is indeed as helpful to Viterbi
training as it is to EM training.

Viterbi training (not to be confused with Viterbi decoding: finding the best
path/tree in a lattice/forest) is similar to EM in that the rule probabilities are
iteratively reestimated through counts obtained by reconstructing the hidden
lattice/forest using the model itself. The difference lies in how the counts are
obtained: EM lets the entire lattice/forest contribute proportionally, producing
expected counts, whereas only the best path/tree is counted in Viterbi training.
This makes it attractive because it opens up for more efficient algorithms to be
used.

There is a hidden problem with performing Viterbi training based on Viterbi
decoding, in that a decoder must return either (a) a single path/tree, or (b) enu-
merate all best paths/trees, which harms training of highly ambiguous models.
These models can have a (potentially very) large number of best paths/trees,
making (a) highly approximative, and (b) highly inefficient. It is not difficult to
code around these problems, but as we show in this paper, it is possible to use
automatic differentiation to do it correctly and efficiently with the exact same
code as EM by substituting the probability semiring with the Viterbi semiring,
and differentiating it carefully.

Although this paper is framed in terms of reestimation over parse forests or
lattices, the techniques are equally valid for any model that can be described in
terms of a deductive system (Sect. 2.3).

2 Background

This paper synthesizes expectation maximization and Viterbi training under
deductive systems using automatic differentiation; all of which are known and
established methods that we will briefly review in this section.

2.1 Expectation Maximization

Expectation maximization (EM) is a method for reestimating model parameters
towards a local optimum of the marginal log likelihood of some data when part
of the data is hidden and has to be reconstructed by the model [3]. Rather than
optimizing the likelihood directly, the Q-function—the expectation of the log
likelihood—is optimized iteratively in two steps: the expectation step (E) cal-
culates the Q-function, and the maximization step (M) reestimates the model
parameters to maximize Q:

expectation: Q
(
θ|θ(t)

)
=EZ|X,θ(t) [log L (θ;X,Z)] (1)

maximization: θ(t+1) =argmax
θ

Q
(
θ|θ(t)

)
(2)



286 M. Saers and D. Wu

where X is the observed data, Z is the hidden data, and θ is the model
parameters. Instead of calculating the Q-function explicitly, which is frequently
intractable, the sufficient statistics q needed for the M-step is enough:

expectation: q(t) = EZ

[
log P

(
X,Z|θ(t)

)]
(3)

maximization: θ(t+1) = MLE
(
q(t)

)
(4)

The sufficient statistics for context-free grammars are the fractional rule counts
obtained from inside/forward and outside/backward probabilities which are cal-
culated by integrating out the hidden structure (forest/lattice), and can be gen-
eralized as such:

q
(
A → φ0 · · · φR−1

)
=

p
(
A → φ0 · · · φR−1

) ∑
w0..T ∈D

1

α (S0,T )

∑
0≤i0<iR≤T

β (Ai0,iR)
∑

i0<···<iR

R−1∏
j=0

α
(
φj
ij ,ij+1

)

(5)

where p is the rule probability function, A is a nonterminal, φi is either a non-
terminal or a terminal, and φi

s,t is that same (non-)terminal covering the span
from s to t, R is the number of nonterminals and terminals on the right hand
side of the rule, w0..T = w0w1 · · · wT−1 is a sentence in the data D, α is the
inside/forward probability, β is the backward/outside probability, and S is the
dedicated start symbol of the grammar. Saers and Wu [11] and later Eisner [4]
show that reverse values can be generalized to rules, replacing most of Eq. 5 with
the rule’s reverse value:

q (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

β (r) (6)

2.2 Viterbi Training

Viterbi training consists of iteratively counting the number of times a rule occurs
in the best path/tree of a sentence over the entire training data, and performing
maximum likelihood estimation on those counts. This is guaranteed to approach
a local optimum of the best path probability, at least for hidden Markov models
[7]. Viterbi training is attractive, as it is often faster to derive only the best
path/tree than to derive the entire lattice/forest. Describing it as closely as we
can to EM, we have:

counts: c(t) = argmax
z

log P
(
X,Z = z|θ(t)

)
(7)

maximization: θ(t+1) = MLE
(
c(t)

)
(8)
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with the only difference that rather than integrating over the hidden data, we
choose the hidden data configuration z that maximizes the likelihood.

Many NLP applications contain a best decoding component that provides
the path or tree to collect Viterbi counts from, but there is an inherent problem
hidden in this approach: It typically chooses a single path/tree—either randomly
or worse: systematically—when there are multiple equiprobable paths/trees. For
correct training, the rule counts have to be distributed equally to all equiprobable
best paths/trees. It is possible to enumerate all such paths/trees, but the time
complexity grows exponentially with the ambiguity of the model. In this paper,
we show that it is possible to leverage the lattice/forest created during the for-
ward/inside pass to efficiently and correctly solve this problem using automatic
differentiation and the Viterbi semiring provided an unbiased subderivative of
the max function is used.

Table 1. Common semirings.

Name Domain ⊕ ⊗ 0 1

real R + × 0 1

Boolean {true, false} ∨ ∧ false true

tropical R ∪ ∞ min + ∞ 0

max-plus (“arctic”) R ∪ −∞ max + −∞ 0

probability [0, 1] + × 0 1

Viterbi [0, 1] max × 0 1

log probability [−∞, 0] logadd + −∞ 0

negative log probability (cost) [0, ∞] logadd + ∞ 0

log Viterbi [−∞, 0] max + −∞ 0

negative log Viterbi (min cost) [0, ∞] min + ∞ 0

2.3 Semiring Parsing and Deductive Systems

A deductive system [6,9,12] is a way to specify how a parser uses grammar rules
to construct larger constituents from smaller constituents and the input sentence.
A conclusion b may be reached iff all the I conditions a0, a1, · · · , aI−1 are met.
This is written as an inference rule:

a0, a1, · · · , aI−1

b

Conclusions are items (partial results such as labeled spans), and conditions are
either other conclusions or axioms (grammar rules).

Semirings are best understood as generalizations of addition and multipli-
cation. Formally they are tuples (A,⊕,⊗,0,1), where A is the domain, ⊕ is
a generalization of addition, and ⊗ is a generalization of multiplication, with
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identity elements 0 and 1 respectively. Table 1 shows several semirings with dif-
ferent usages: The real semiring is conventional math, the Boolean is symbolic
logic. The tropical [13] and max-plus [1] semirings are closely related in that
their domains can be though of as the negative logarithms and logarithms of
the real numbers respectively. The probability semiring is the real semiring over
the domain of valid probabilities, and the Viterbi semiring—of interest to this
paper—is the same but with addition replaced with the maxoperator. In practice,
we rarely deal with probabilities in the real domain due to underflow problems,
but instead with (negative) log probabilities that rely on the logadd operator:
logadd(x, y) ≡ logb(bx + by). The corresponding (negative) log Viterbi semiring
replaces the logadd-operator with the (min) max operator. The choice between
raw logarithms and negated logarithms is mostly a matter of taste, but there
is a nice interpretation of negative log probabilities as costs that are higher for
unlikely events and lower for likely events.

Intuitively, deductive systems and semirings can be understood as a gener-
alization of Boolean logic with arbitrary values instead of true/false. We can
use the generalized semiring operators to compute the value α, corresponding to
inside/forward probabilities of a conclusion, as:

α (b) =
⊕

a0,··· ,aI−1
b

I−1⊗
i=0

α (ai) (9)

One advantage with this generalization is that reverse values, βs, correspond-
ing to backward/outside probabilities, can be derived from values:

β (ai)
⊕

a0,··· ,ai,··· ,aI−1
b

β (b) ⊗
I−1⊗
j=0

{
α (aj) if i �= j
1 otherwise (10)

where the reverse value of the goal item is assumed to be 1.

2.4 Viterbi Training with Equiprobable Derivations

Viterbi training relies on finding the best derivation of a deductive system, and
counting each rule used in that derivation once. Finding only the best deriva-
tion is more efficient because more efficient search algorithms can be used, and
because, when operating in log domain (which is typically necessary to avoid
underflow problems), the operations themselves are faster: the logadd procedure
requires calls to log and exp, both relatively heavy functions, whereas max and
min are built-in CPU instructions. One problem with Viterbi training that is
often glossed over is that grammars frequently contain ambiguity, and there is a
real risk of having multiple equiprobable best derivations. In practice, implemen-
tations typically solve this by choosing one to be the best on an ad-hoc basis,
although it is understood that the choice should be random in order to avoid
biasing the training. With enough observations any true ambiguity will be pre-
served by the random selection. This sounds good until you realize that counts
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are integers, and that observing a phenomenon an uneven number of times will
drive likelihood of the unfavored interpretation to zero in the next iteration.

Imagine for example the Swedish noun stegen, which has two interpretations:
steg+en ‘the steps’ and stege+n ‘the ladder’. Suppose that we have a CFG for
noun phrases containing the following eight rules with their associated probabil-
ities initialized to be an informative example:

· · ·
p

(
NP → NNSG DET

)
= 0.05

p
(
NP → NNPL DET

)
= 0.05

p
(
NP → ArtSGNNSG DET

)
= 0.15

p
(
NP → ArtPLNNPL DET

)
= 0.10

p
(
NNSG DET → stegen

)
= 0.03

p
(
NNPL DET → stegen

)
= 0.03

p
(
ArtSG → den

)
= 0.50

p
(
ArtPL → de

)
= 1.00

· · ·

(11)

Suppose also that the grammar is ambiguous, so that p
(
NP → NNSG DET

)
=

p
(
NP → NNPL DET

)
and p

(
NNSG DET → stegen

)
= p

(
NNPL DET → stegen

)
.

Our training data contains many example of noun phrases with articles, but
only one example of a lone noun: stegen. Even if the ties are broken randomly,
we will only ever get counts, and thus nonzero value for either NP → NNSG DET

and NNSG DET → stegen, or NP → NNPL DET and NNPL DET → stegen, not
both; the information that stegen is ambiguous will be lost. Now suppose our
test data contains the noun phrases de stegen ‘those steps’ and den stegen ‘that
ladder’; we will only be able to assign a nonzero probability to one or the other,
depending on whether we trained the grammar to treat stegen as a singular or
plural noun. In this paper we will show that automatic differentiation under
the Viterbi semiring preserves this type of ambiguity provided that an unbiased
subderivative of max is used.

2.5 Automatic Differentiation

As pointed out in Li and Eisner [8] and further explored in Smith [14] it is possible
to view the expectation step in expectation maximization as a case of automatic
differentiation in the reverse mode [2], which makes it essentially identical to
backpropagation [10], but over a lattice/forest rather than a neural network [4].
With this view, reverse values of rules are equivalent to partial derivatives of the
goal value with respect to rule probabilities:

β (r) =
∂α (S0,T )

∂α (r)
(12)

We can use the chain rule to aggregate the derivatives of all consequences that
any one condition can lead to:
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∂α (S0,T )
∂α (ai)

=
∑

e=
a0,··· ,ai,··· ,aI−1

b

∂α (S0,T )
∂α (b)

∂
∑

e′=
a0,··· ,aK−1

b

α (e′)

∂α (e)

∂
I−1∏
j=0

α (aj)

∂α (ai)
(13)

which calculates the same quantity as traditional reverse values, which we get
by substituting sum and product for their generalized place holders in Eq. 10:

β (ai) =
∑

a0,··· ,ai,··· ,aI−1
b

β (b)
I−1∏
j=0

{
α (aj) if i �= j
1 otherwise (14)

The equality in Eq. 12 can be understood by inspecting the summation in Eq. 13
and noting that (a) the first factor is β (b) provided that the equality holds (equal
to the first factor in the summation in Eq. 14), (b) the second factor will always
be 1 since it is the derivative of a sum with respect to one of its terms, and
that (c) the third factor is the derivative of a product with respect to one of its
factors, which is equivalent to the product of all the other factors (equal to the
second factor in the summation in Eq. 14).

Relating this back of EM reestimation, we can reformulate Eq. 6 as:

q (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂α (r)

(15)

3 Reverse Values �= Derivatives

As we saw in Sect. 2.5, both reverse values and automatic differentiation can
be used in EM-training, as they are equivalent under the real semiring; in this
section we show that this equivalence fails to hold for the Viterbi semiring. First,
we observe that values under the Viterbi semiring correspond to the most likely
path/tree leading to a particular conclusion, so the value calculated for the goal
item is the probability of the best path/tree. Next, we construct an expression
for the derivative of a condition under the Viterbi semiring. Following Eq. 13 we
get:

∂α (S0,T )
∂α (ai)

=
∑

e=
a0,··· ,ai,··· ,aI−1

b

∂α (S0,T )
∂α (b)

∂ max
e′=

a0,··· ,aK−1
b

α (e′)

∂α (e)

∂
I−1∏
j=0

α (aj)

∂α (ai)
(16)

Note that only the inner sum is replaced by a max, the outer sum is part of how
derivatives are accumulated and has nothing to do with the semiring operators.
Further note that we use max as an iterated binary operator like sum or product.

If we instead substitute the generalized operators in Eq. 10 with the Viterbi
operators max and product we get:

β (ai) = max
a0,··· ,ai,··· ,aI−1

b

β (b)
I−1∏
j=0

{
α (aj) if i �= j
1 otherwise (17)
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Equartions 16 and 17 have very different forms, and there is no reason to believe
that they would calculate the same quantity. The easiest way to see why they
are different is to note that the second factor in the summation in Eq. 16 allows
the entire term to become zero (whenever there is a competing way to arrive at
b that has higher probability), whereas Eq. 17 is nonzero for all axioms that are
used in the derivation.

4 Viterbi Training with Derivatives

Reverse values are unrelated to the rule counts needed for Viterbi training, but
we show in this section that derivatives can be used to calculate counts for Viterbi
training, and that the mechanism for doing so is the same as for how fractional
counts but in a different semiring.

In the case when there is exactly one best derivation, its probability α (S0,T )
is the product of the probability of all grammar rules used in that derivation.
Designating the rules used in a derivation of sentence w0..T as r0, r1, · · · , rkwe
have:

cw0..T (ri) = p (ri)
1

α (S0,T )
∂α (S0,T )
∂p (ri)

=
p (ri)

k−1∏
j=0

p (rj)

∂
k−1∏
j=0

p (rj)

∂p (ri)
=

p (ri)
p (ri)

= 1

(18)
which is what we would expect: every rule in the best derivation of a single
sentence gets a count of one. More generally, the rule counts have the exact
same form as the fractional counts in EM, but under the Viterbi semiring rather
than the probability semiring:

c (r) = p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂α (r)

(19)

Calculating the derivatives of the max operator does, however, pose a problem
for sentences where there are multiple equiprobable (sub-)derivations because the
derivative of max is undefined for equal arguments. We can get around this by
using the subderivative, which allows us to distribute the results between the
two maximizers. But with the subderivative we have to decide how to distribute
the results between the two maximizers. We can characterize the distribution of
the results with a parameter 0 ≤ λ ≤ 1, and define our subderivative as:

∂ max (x, y)
∂x

=

⎧
⎨
⎩

1 if x > y
λ if x = y
0 if x < y

and
∂ max (x, y)

∂y
=

⎧
⎨
⎩

1 if x > y
1 − λ if x = y
0 if x < y

(20)
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5 Example

Only an unbiased subderivative for max will preserve genuine ambiguity found
in the data, and to show the mechanism, we will return to our example CFG
from 11. We have two derivations for the Swedish noun phrase stegen:

p
(
NNSG DET → stegen

)

NNSG DET
0,1

, p
(
NP → NNSG DET

)

NP0,1
(21)

and
p

(
NNPL DET → stegen

)

NNPL DET
0,1

, p
(
NP → NNPL DET

)

NP0,1
(22)

The value of the noun phrase NP0,1 is:

α (NP0,1) = max
(

p
(
NP → NNSG DET

)
p

(
NNSG DET → stegen

)
,

p
(
NP → NNPL DET

)
p

(
NNPL DET → stegen

)
)

(23)

where both arguments to max are equal, which is the property that we want to
preserve, since the data lacks any evidence for preferring one over the other. We
can work out the counts of a rule r1 = NNSG DET → stegen with its companion
rule r2 = NP → NNSG DET as follows:

c (r1) = p (r1)
1

α (NP0,1)
∂α (NP0,1)

∂p (r1)
(24)

= p (r1)
1

α (NP0,1)
∂α (NP0,1)

∂p (r1) p (r2)
∂p (r1) p (r2)

∂p (r1)
(25)

= p (r1)
1

p (r1) p (r2)
λp (r2) (26)

= λ (27)

conversely for the other rules we have:

c
(
NP → NNSG DET

)
= λ, (28)

c
(
NP → NNPL DET

)
= 1 − λ, (29)

c
(
NNPL DET → stegen

)
= 1 − λ (30)

as we can see, setting λ = 0 or λ = 1 recreates the behavior of choosing one
or the other, whereas setting λ = 0.5 preserves the desired ambiguity. Since
setting λ to anything but 0.5 will cause the winner to be sole maximizer in the
next iteration of training, any value other than 0.5 has the same effect as setting
it to 0 or 1. We call the subderivative that preserve the ambiguity unbiased.
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After one iteration of training, the rules of interest would have their proba-
bilities altered depending on λ such that:

λ = 1 λ = 0.5

p
(
NP → NNSG DET

)
= 0.10 p

(
NP → NNSG DET

)
= 0.05

p
(
NP → NNPL DET

)
= 0.00 p

(
NP → NNPL DET

)
= 0.05

p
(
NNSG DET → stegen

)
= 0.06 p

(
NNSG DET → stegen

)
= 0.03

p
(
NNPL DET → stegen

)
= 0.00 p

(
NNPL DET → stegen

)
= 0.03

Looking at the derivations of our test sentences, the grammar trained with the
unbiased subderivative give non-zero probabilities to both de stegen ‘those steps’:

p
(
ArtPL → de

)

ArtPL
0,1

,
p

(
NNPL DET → stegen

)

NNPL DET
1,2

, p
(
NP → ArtPLNNPL DET

)

NP0,2
(31)

and den stegen ‘that ladder’:

p
(
ArtSG → den

)

ArtSG0,1

,
p

(
NNSG DET → stegen

)

NNSG DET
1,2

, p
(
NP → ArtSGNNSG DET

)

NP0,2
(32)

whereas the biased subderivative assigns zero probability to derivation Eq. 31.
The unbiased subderivative of max has a problem when being generalized

to iterated binary operations. Consider max (a, b, c) where a = b = c. If we
binarize it as max (a,max (b, c)),

∂ max (a,max (b, c))
∂a

= λ �= ∂ max (a,max (b, c))
∂b

= λ (1 − λ) (33)

Luckily, we can generalize the unbiased subderivative to distribute the mass
uniformly to one or more arguments:

∂
K−1
max
k=0

xk

∂xi
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
K−1∑
j=0

{
1 if xj =

K−1
max
k=0

xk

0 otherwise

if xi =
K−1
max
k=0

xk

0 otherwise

(34)

The time complexity for this derivative of max is still linear in K.

6 With Respect to the Entire Data Set

It turns out that the derivatives have another advantage, as we can generalize the
calculation away from individual sentences and apply them to the entire data
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set; specifically, the (fractional) counts are obtained when taking the partial
derivative of rule probabilities with respect to the logarithm of the probability
of the data:

p (r)
∂log

∏
w0..T ∈D

α (S0,T )

∂p (r)
= p (r)

∂
∑

w0..T ∈D
logα (S0,T )

∂p (r)
(35)

= p (r)
∑

w0..T ∈D

∂logα (S0,T )
∂p (r)

(36)

= p (r)
∑

w0..T ∈D

∂logα (S0,T )
∂α (S0,T )

∂α (S0,T )
∂p (r)

(37)

= p (r)
∑

w0..T ∈D

1
α (S0,T )

∂α (S0,T )
∂p (r)

(38)

= c (r) (39)

We get the counts needed for Viterbi training when differentiating under the
Viterbi semiring, and the fractional counts or sufficient statistics needed for
expectation maximization when differentiating under the probability semiring.
This gives an interesting unified view of training as applying maximum likelihood
estimation to “expected rule probability gradient”.

7 Conclusions

We have showed that the equality between a reverse pass and automatic differ-
entiation, which exists for the probability semiring, fails to hold for the Viterbi
semiring, and that automatic differentiation, in contrast to reverse values, gives
the counts needed for Viterbi training. The differentiation approach is the same
for both expectation maximization and Viterbi training except for the semiring
used, opening up great opportunities for code reuse in implementations. We fur-
ther highlighted a problem with the intuitive way of doing Viterbi training, in
that ambiguous models, whose best paths/trees should be counted proportionally
to not loose important information, are hard to count correctly and efficiently;
again, just using automatic differentiation solves the problem, provided that an
unbiased subderivative of max is used.
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Abstract. We show that, given a finite lts, there is a minimal bounded
Petri net over-approximation according to a structural preorder and
present an algorithm to compute this over-approximation. This result
is extended to subclasses of nets, namely pure Petri nets, plain Petri
nets, T-nets, and marked graphs, plus combinations of these properties.
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1 Introduction

When building a system, the behaviour of the desired system is described in a
specification. This specification is then used to actually produce, or synthesise,
a system, preferably automatically. In Petri net synthesis, a specification can be
a labelled transition system (lts) and the system should be a Petri net whose
reachability graph is isomorphic to the given lts.

The basis for Petri net synthesis are regions of the lts, which were introduced
in [8] for elementary nets and later extended to a more general setting of Petri
nets [1]. Besides these general results, there are also specialised algorithms for
the synthesis of certain subclasses of Petri nets, such as [4,5,10]. An overview of
Petri net synthesis can be found in [2,3].

Not all possible behaviours can be generated by Petri nets. For example, if
two sequences of labels differ only in the order of events, then in any Petri net
they must both reach the same marking by the well-known marking equation.
Thus, a specification which requires an action a to be enabled after bc, but
disabled after cb, cannot be solved by a Petri net. A possible way to deal with
unsatisfiable specifications is over-approximation. Instead of solving the input
exactly, some extra behaviour is added, preferably in a minimal way. In the
example, we would also allow action a after cb.

There is a lot of research on over-approximating languages via Petri nets
[6,7,9,12]. In this case, minimality can be understood w.r.t. language inclusion,
i.e. for a given language L, a Petri net N with L ⊆ L(N) is wanted, so that for
all Petri nets N ′ with L ⊆ L(N ′) also L(N) ⊆ L(N ′) holds.

The author is supported by the German Research Foundation (DFG) project ARS
(Algorithms for Reengineering and Synthesis), reference number Be 1267/15-1.

c© Springer International Publishing AG, part of Springer Nature 2018
S. T. Klein et al. (Eds.): LATA 2018, LNCS 10792, pp. 296–307, 2018.
https://doi.org/10.1007/978-3-319-77313-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77313-1_23&domain=pdf
http://orcid.org/0000-0002-5063-025X


Over-Approximative Petri Net Synthesis for Restricted Subclasses of Nets 297

In the present paper, we investigate a structural form of minimal over-
approximation originating from [11], namely two lts A and B satisfy A � B
if there is an edge-preserving homomorphism from the states of A to the states
of B. Additionally, not only general Petri nets are considered, but also some
restricted subclasses. These subclasses are combinations of the properties pure,
plain, T-net and marked graph, which will be defined in Sect. 5.

Petri net synthesis solves so-called separation problems. Our algorithm is
based on this. For a given lts, all unsolvable separation problems are dealt with by
modifying the lts. Since these modifications can cause new unsolvable problems,
they are repeated until no unsolvable separation problems remain.

The investigated problem of structural minimal over-approximation of lts
with Petri net came from our recent result on realising modal transition systems
with Petri nets [11]. There, a brute-force approach was used that can only be
employed for k-bounded Petri nets. The present paper complements this work
with a more efficient approach for over-approximation that is also more general.

Our algorithm can also be used to minimally over-approximate a given lan-
guage with respect to language inclusion by using a so-called limited unfolding
[2] as a pre-processing step and then using our new algorithm on the resulting lts.
While this specific problem is already solved [7,9], this shows that our algorithm
solves a more general problem, using a finer preorder than language inclusion.

The present paper is structured as follows: Sect. 2 introduces the basic con-
cepts and Sect. 3 recapitulates region theory. In Sect. 4, an algorithm to compute
a minimal over-approximation of an lts is presented. Section 5 extends this result
to subclasses of Petri nets and Sect. 6 concludes the paper.

2 Labelled Transition Systems and Petri Nets

In this section we recall some definitions, first for labelled transition systems and
then for Petri nets. Examples for the following definitions are given in Fig. 1.

An lts (labelled transition system with initial state) is a quadruple A =
(S, T, δ, s0), where S is a set of states with s0 ∈ S an initial state, T is the
set of labels with S ∩ T = ∅, and δ ⊆ S × T × S is the edge relation. For states
s, s′ ∈ S and a sequence w = t0t1 . . . tn ∈ T ∗, we write s[w〉s′ if there are states
s1, s2, . . . , sn+1 ∈ S with s1 = s, sn+1 = s′, and (si, ti, si+1) ∈ δ for all 1 ≤ i ≤ n.
Note that s[ε〉s holds for all s ∈ S. When s[w〉s′ holds, we write s[w〉 to express
that a suitable s′ exists.

a

a

b b

a

A1 :
q0

q3

q1

q4

q2

q5

aa

b b

a

A2 :
p0

p1

a

b

N :

Fig. 1. The lts A1 is reachable and finite, while the lts A2 is additionally deterministic.
The relation A1 � A2 holds. The Petri net N solves A2.
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The language of an lts is L(A) = {w ∈ T ∗ | s0[w〉}. A state s ∈ S is reachable
if a sequence w ∈ T ∗ exists so that s0[w〉s. An lts is reachable if all of its states
are reachable. An lts is finite if S and T (and hence also δ) are finite sets. It is
deterministic if s[a〉s′ and s[a〉s′′ implies s′ = s′′ for all a ∈ T and s, s′, s′′ ∈ S.

For two lts A = (SA, TA, δA, s0,A) and B = (SB , TB , δB , s0,B), an lts homo-
morphism from A to B is a function f : SA → SB so that f(s0,A) = s0,B and for
all (s, t, s′) ∈ δA also (f(s), t, f(s′)) ∈ δB. If such an lts homomorphism f exists,
we write A � B (via f). � is reflexive (with the identity homomorphism id) and
transitive (as homomorphisms are closed under composition), so � is a preorder.
A bijection f is an lts isomorphism if both f and f−1 are lts homomorphisms.
In this case we call A and B isomorphic.

Lemma 1. Let A = (SA, T, δA, s0,A) and B = (SB , T, δB , s0,B) be lts so that
A � B via f and A � B via f ′. If A is reachable and B is deterministic, then
f = f ′.

Proof. We proof by induction on the length of words w ∈ L(A) that if s0,A[w〉s,
then f(s) = f ′(s). Since A is reachable, we reach all states of A in this way,
showing that f(s) = f ′(s) for all s ∈ S. The induction basis follows from the
definition of �: f(s0,A) = s0,B = f ′(s0,A).

For the induction step, assume that s0,A[w〉s with f(s) = f ′(s) and con-
sider any edge s[a〉s′. Since A � B via f and f ′, we have f(s)[a〉f(s′) and
f ′(s)[a〉f ′(s′). Because B is deterministic, there cannot be two different states
that are reached from f(s) = f ′(s) via label a. We conclude f(s′) = f ′(s′). 
�
We already argued that � is a preorder. The next lemma shows that this is a
partial order for reachable and deterministic lts.

Lemma 2. Let A and B be reachable and deterministic lts so that A � B via
fA and B � A via fB. Then A and B are isomorphic.

Proof. Consider A � A (via id) and A � B � A via fB ◦ fA. Since Lemma 1
is applicable, we conclude fB ◦ fA = id, making fA injective and fB surjective.
With an analogous argument for fA ◦ fB = id we see that fA and fB are both
bijective homomorphisms with f−1

A = fB , i.e. they are isomorphisms. 
�
A (finite, initially marked, place-transition, arc-weighted, unlabelled) Petri

net is a tuple (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, and
M0 is the initial marking, where a marking is a mapping M : P → N, indicating
the number of tokens in each place. F (p, t) = w > 0 (resp. F (t, p) = w > 0)
means that there is an arc from p to t (resp. from t to p) with arc weight w. A
transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places
p ∈ P , M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M ,
leading to the marking M ′ defined by ∀p ∈ P : M ′(p) = M(p)−F (p, t)+F (t, p)
(notation: M [t〉M ′). The set E(N) of reachable markings is recursively defined
as the least set containing M0 so that when M [t〉M ′ with M ∈ E(N), then also
M ′ ∈ E(N). The reachability graph RG(N) of N , with initial marking M0, is



Over-Approximative Petri Net Synthesis for Restricted Subclasses of Nets 299

the labelled transition system with the set of states E(N) and the set of edges
{(M, t,M ′) | M,M ′ ∈ E(N) ∧ M [t〉M ′}. If RG(N) is finite, N is called bounded.
If an lts A is isomorphic to the reachability graph of a Petri net N , then we will
also say that N solves A.

3 Region Theory

According to [2], a region of an lts A = (S, T, δ, s0) is a triple r = (rS , rB , rF )
where rS : S → N assigns each state s a number of tokens rS(s) and rB (resp.
rF ) are functions T → N assigning each label a backward (resp. forward) weight.
Additionally, for all (s, t, s′) ∈ δ both rS(s) ≥ rB(t) and rS(s′) = rS(s)−rB(t)+
rF (t) must hold. For any region r we will canonically call its components rS , rB ,
resp. rF . A set R of regions of the lts A = (S, T, δ, s0) corresponds to the Petri
net N(R) = (R, T, F,M0) where for each r = (rS , rB , rF ) ∈ R and t ∈ T we have
F (r, t) = rB(t), F (t, r) = rF (t), and M0(r) = rS(s0) by definition. Similarly, for
a Petri net N = (P, T, F,M0), for each place p ∈ P , the extension of p is a
region [[p]] = (rS , rB , rF ) on RG(N) defined by rS(M) = M(p), rB(t) = F (p, t),
and rF (t) = F (t, p).

Thus, a region of A is a potential place of a Petri net N solving A. The
definition of a region ensures that any region of A can be added to such a
Petri net N without preventing an existing edge of A. The two places of the
Petri net N from Fig. 1 correspond to two different regions of the lts A2 in
the same figure. Specifically, when writing a region (rS , rB , rF ) as a tuple of
vectors ((rS(q0), . . . , rS(q5)), (rB(a), rB(b)), (rF (a), rF (b))) then p0 corresponds
to the region ((1, 1, 1, 0, 0, 0), (1, 1), (0, 1)) and p1 corresponds to the region
((2, 1, 0, 2, 1, 0), (0, 1), (0, 0)).

This idea of potential places is formalised in the next lemma.

Lemma 3. Let R be a set of regions of A = (S, T, δ, s0). Then A � RG(N(R)).

Proof. We define a homomorphism f via f(s)(r) = rS(s) for each region r ∈ R.
This means that the state s of A is mapped to the marking M of N(R) where
each place r contains rS(s) tokens. We have f(s0) = M0 by definition of M0.

For each edge (s, t, s′) ∈ δ we have for all r = (rS , rB , rF ) ∈ R that rS(s)(r) ≥
rB(t), which means that no place prevents t in f(s) and we have f(s)[t〉. Let M
be the marking defined by f(s)[t〉M . For each place r = (rS , rB , rF ) ∈ R of N(R)
we have M(r) = f(s)(r)−F (p, t)+F (t, p) = rS(s)−rB(t)+rF (t) = rS(s′) by the
Petri net firing rule and by definition of a region, which means that M = f(s′)
and concludes the proof that f is an lts homomorphism. 
�
Next we show that rS(s0) is enough to fully determine rS in a region.

Lemma 4. Let r and r′ be two regions of a reachable lts A. If rB = rB
′, rF =

rF
′ and rS(s0) = rS

′(s0), where s0 is the initial state of A, then r = r′.

Proof. We will show by induction on the length of w that s0[w〉s implies rS(s) =
rS

′(s). The base case with w = ε and s = s0 holds by assumption.
Assuming s0[w′〉s′[t〉s with t ∈ T and rS(s′) = rS

′(s′), we want to show that
rS(s) = rS

′(s). This holds by rS(s) = rS(s′) − rB(t) + rF (t) = rS
′(s). 
�
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Remember that the goal of Petri net synthesis is to find a Petri net N solving
a given lts A. So far, we defined regions which describe potential places of N .
However, we do not know which regions are needed to construct N .

For an lts A = (S,→, T, s0), a state separation problem (SSP) is a set {s, s′} ⊆
S with s �= s′. An event/state separation problem (ESSP) is a tuple (s, t) ⊆ S×T
so that ¬s[t〉. A region r = (rS , rB , rF ) solves a state separation problem {s, s′}
if rS(s) �= rS(s′), i.e. it will make s and s′ correspond to different markings in
N({r}). It solves an event/state separation problem (s, t) if rS(s) < rB(t), i.e.
it will disable transition t in the marking corresponding to s in N({r}).

Each separation problem needs a solution to solve an lts:

Proposition 5 [2]. For a set of regions R, N(R) solves A if, and only if, each
SSP and ESSP instance of A is solved by a region in R and A is reachable.

The following two properties of regions will be useful later.

Lemma 6. Let A and B be finite lts with A � B via f . If r = (rS , rB , rF ) is a
region of B, then r ◦ f := (rS ◦ f, rB , rF ) is a region of A.

Proof. For an edge s[t〉s′ of A, f(s)[t〉f(s′) is an edge of B. Since r is a region of
B, we now have rS(f(s)) ≥ rB(t). By the same argument we have rS(f(s′)) =
rS(f(s)) − rB(t) + rF (t). Thus, (rS ◦ f, rB , rF ) is a region of A. 
�
Lemma 7. For a region r = (rS , rB , rF ) of a finite lts A = (S, T, δ, s0), there is
a complementary region r = (rS , rB , rF ) and a number k ∈ N with rB = rF and
rF = rB, so that for all s ∈ S we have rS(s) = k − rS(s).

Proof. Most of the region property for r is inherited from r. We just need to find
a suitable k so that rS does not produce negative numbers and for each edge
(s, t, s′) ∈ δ we have rS(s) ≥ rB(t). Since A is finite, we can choose k to be the
minimum value so that r is a region. 
�

4 Computing Minimal Over-Approximations

We want to show that any finite lts has a minimal Petri net over-approximation,
and want to calculate this over-approximation. We begin with the existence:

Theorem 8. For a finite lts A there is a set of regions R so that N(R) is
bounded and for all sets of regions ̂R also RG(N(R)) � RG(N( ̂R)) holds.

Proof. Let R′ be the set of all regions of A. This might be an infinite set, so
N(R′) might not be a (finite) Petri net, but for the moment we lift the restriction
that a Petri net has only finitely many places. RG(N(R′)) is finite, because by
Lemma 7, for each region r, there is a complement region r so that rS(s)+ rS(s)
is constant. The same also holds for the corresponding places: The sum of their
numbers of tokens stays constant when firing transitions. Thus, for each place of
N(R′), there are only finitely many reachable numbers of tokens, which means
that N(R′) is bounded and RG(N(R′)) is finite.
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RG(N(R′)) is solvable by a finite Petri net: Because the lts is finite, it has
only finitely many separation problems. Each separation problem is solvable
by construction: If two markings are different, then some region/place differs
in its number of tokens and thus the corresponding SSP instance is solvable.
If a transition is disabled in a given marking, there is some region/place that
prevents the transition from firing and which thus solves the corresponding ESSP
instance. Since the number of separation problems of a finite lts is finite, there
is a finite set of regions R so that N(R) solves RG(N(R′)) by Proposition 5.

Finally, for any set of regions ̂R of A also RG(N(R)) � RG(N( ̂R)) holds:
Since R′ contains all regions, we have ̂R ⊆ R′. Define f to be the function that
restricts markings of N(R′) to those regions/places present in N( ̂R). f is an
lts homomorphism showing RG(N(R′)) � RG(N( ̂R)). Since RG(N(R′)) and
RG(N(R)) are isomorphic, it follows that RG(N(R)) � RG(N( ̂R)). 
�
To compute this minimal over-approximation, we modify the lts according to its
unsolvable separation problems. If a state separation problem {s, s′} is unsolv-
able, then the states s and s′ must be the same in a Petri net solution. Thus, we
identify these two states. If an event/state separation problem (s, t) is unsolv-
able, this means that in state s transition t cannot be prevented. Thus, we add
an edge with label t going from s to a new state.

To formalise this idea, let A = (S, T, δ, s0) be an lts and define SSPunsol(A)
and ESSPunsol(A) to be its set of unsolvable SSP instances, respectively unsolv-
able ESSP instances. We define s ≡A s′ if, and only if, s = s′ or {s, s′} ∈
SSPunsol(A). This is an equivalence relation.

q

q′

a
b c

b
a

A3 : a b
c

b a

Merge(A3) :

Fig. 2. On the left: An lts A3 with SSPunsol(A3) = {{q, q′}} and ESSPunsol(A3) =
{(q′, c)}. On the right: The lts Merge(A3) where states q and q′ are identified.

This equivalence relation is used to define the state-merged lts Merge(A) =
(S/≡A, T, δ/≡A, [s0]) as follows: A state s is replaced with its equivalence class
[s] = {s′ | s ≡A s′} and an edge (s, t, s′) ∈ δ is replaced with ([s], t, [s′]) ∈ δ/≡A.
An example for this construction is shown in Fig. 2.

The lts Merge(A) handles unsolvable state separation problems. Next, we
handle unsolvable event/state separation problems. For this, let Merge(A) =
(S′, T, δ′, [s0]) and define the expansion Expand(A) of A to be the lts Expand(A)
= (S′ ∪ S′′, T, δ′ ∪ δ′′, [s0]), i.e. some states and edges are added to Merge(A).
Let the set of remaining1 ESSP instances be Λ = {([s], t) ∈ (S/≡A)×T | (s, t) ∈
1 For example, in Fig. 2 the ESSP instance (q′, c) no longer applies to Merge(A).
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qa a

b b

A4 : a a

b bb

Expand(A4) :

Fig. 3. On the left: The lts A4 with SSPunsol(A4) = ∅ and ESSPunsol(A4) = {(q, b)}.
Because there are no unsolvable state separation problems, A4 and Merge(A4) are
isomorphic. On the right: The lts Expand(A4) where a new edge with [q][b〉 was added.

ESSPunsol(A)∧∀s′ ∈ [s] : ¬s′[t〉}. For each missing edge we add a new target state
and an edge, S′′ = {s([s],t) | ([s], t) ∈ Λ} and δ′′ = {([s], t, s([s],t)) | ([s], t) ∈ Λ},
where we assume w.l.o.g. that S′ ∩ S′′ = ∅. Figure 3 shows an example. A
variation of this example can be found in Fig. 1 where Expand(A1) = A2.

In the remainder of this section, we want to show that repeated application
of the Expand-function calculates the minimal over-approximation of a given lts.

Lemma 9. Let A = (S, T, δ, s0) be an lts, then A � Expand(A).

Proof. Let Expand(A) = (S′, T, δ′, [s0]). The canonical homomorphism f : S →
S′ defined via f(s) = [s] is an lts homomorphism: By definition we have f(s0) =
[s0] and for each edge (s, t, s′) ∈ δ, we have ([s], t, [s′]) ∈ δ′ by definition of δ′. 
�
Lemma 10. For a reachable lts A = (S, T, δ, s0), the expansion Expand(A) is
deterministic and reachable.

Proof. First, we show that Merge(A) is deterministic and reachable. Reachability
is easily inherited from A: Any path s0[w〉s in A can inductively be translated
onto [s0][w〉[s] in Merge(A).

For determinism, assume that [s][a〉[s′] and [s][a〉[s′′] in Merge(A). We want
to show that [s′] = [s′′], i.e. s′ ≡A s′′. Since we have the edges [s][a〉[s′] and
[s][a〉[s′′] in Merge(A), there must be edges s[a〉s′ and ŝ[a〉s′′ in A for some state
ŝ with s ≡A ŝ. Let r = (rS , rB , rF ) be an arbitrary region. By s ≡A ŝ we
have rS(s) = rS(ŝ). Thus, by the definition of a region it follows that rS(s′) =
rS(s) − rB(a) + rF (a) = rS(ŝ) − rB(a) + rF (a) = rS(s′′). This means that these
two states cannot be separated and we have s′ ≡A s′′.

For Expand(A), reachability is obviously inherited from Merge(A) since every
new state is reachable from an already-reachable state of Merge(A). Also, the
edges that are added to Merge(A) to construct Expand(A) are constructed such
that no non-determinism is introduced. 
�
Lemma 11. Let A = (S, T, δ, s0) be an lts and N = (P, T, F,M0) a Petri net.
If A � RG(N), then also Expand(A) � RG(N).

Proof. Let f be the homomorphism witnessing A � RG(N). We want to define a
homomorphism f ′ witnessing Expand(A) � RG(N). For this, we first show that
if (s, t) ∈ ESSPunsol(A), then f(s)[t〉 in RG(N), which we do by contraposition.
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Assume that there is a place p of N with f(s)(p) < F (p, t), i.e. p disables
transition t in the marking f(s). We use the extension [[p]] of p and invoke
Lemma 6 to turn this into a region [[p]] ◦ f of A. Let [[p]] ◦ f = (rS , rB , rF ). By
assumption this region satisfies rS(s) < rB(t), i.e. it solves the ESSP instance
(s, t). Thus, (s, t) ∈ ESSPunsol(A) implies f(s)[t〉.

We now define the homomorphism f ′ witnessing Expand(A) � RG(N) via
a case analysis on its argument as f ′([s]) = f(s) and f ′(s([s],t)) = M(s,t), where
M(s,t) is defined by f(s)[t〉M(s,t). Here, M(s,t) must exist since a state s([s],t) is
only created if (s, t) ∈ ESSPunsol(A) and we have just shown that then f(s)[t〉.

We have to show three things so that f ′ is a homomorphism: (1) f ′ is well-
defined and does not depend on the choice of s from the equivalence class [s];
(2) f ′([s0]) = M0; and (3) s[t〉s′ in Expand(A) implies f ′(s)[t〉f ′(s′) in RG(N).

For (1), we use contraposition: We assume two states s and s′ with f(s) �=
f(s′) and show that s �≡A s′. Since f(s) �= f(s′), there is a place p of N with
f(s)(p) �= f(s′)(p). We can now translate its extension [[p]] into a region [[p]] ◦ f
of A that separates the states s and s′. This shows that s �≡A s′.

For (2), observe that by f(s0) = M0 also f ′([s0]) = M0.
For (3), there are again two cases. Assuming an edge ([s], t, s(s,t)), we have

shown above that a marking M(s,t) exists with f(s)[t〉M(s,t). By f ′([s]) = f(s)
and f ′(s([s],t)) = M(s,t) we obtain an edge (f ′([s]), t, f ′(s([s],t))) in RG(N). The
other possible case is an edge ([s], t, [s′]). Here we have directly f ′([s]) = f(s)
and f ′([s′]) = f(s′), (s, t, s′) is an edge in A and since f is an homomorphism,
there is an edge (f(s), t, f(s′)) = (f ′([s]), t, f ′([s′])) in RG(N). 
�
Lemma 6 allows us to turn regions of B into regions of A if A � B holds, i.e.
‘transplant’ them to a smaller lts. The opposite direction, ‘transplanting’ a region
to a larger lts, is not possible in general. For example, in Fig. 1, place p0 of the
Petri net N limits transition a to fire only once. Thus, the corresponding region
of A2 is not valid for an lts B with A2 � B where a can occur twice.

The next lemma shows that ‘transplanting’ a region to a larger lts is possible
in the special case of B = Expand(A).

Lemma 12. Given a reachable lts A and one of its regions r, there is a region
r′ of Expand(A) so that r = r′ ◦ f where f is the canonical homomorphism
f(s) = [s].

Proof. By Lemma 4, a region (rS , rB , rF ) of A is fully determined by rS(s0), rB
and rF . Thus, we can define the region r′ = (rS ′, rB ′, rF ′) of Expand(A) based
on r = (rS , rB , rF ) by rS

′([s0]) = rS(s0), rB
′ = rB and rF

′ = rF . We have to
show that this is indeed a region, i.e. for all edges s[t〉s′ in Expand(A) both (1)
rS

′(s) ≥ rB
′(t) and (2) rS

′(s′) = rS
′(s) − rB

′(t) + rF
′(t) hold.

Let s[t〉s′ be an edge of Expand(A). By definition of Expand(A), there is a
state s′′ of A so that s = [s′′]. There are now two possibilities: Either there is a
state s′′′ of A with s′ = [s′′′], or s′ = s(s,t), i.e. s′ already exists in Merge(A) or
was added in Expand(A).

In the first case we have rS(s′′) ≥ rB(t) in A and by rS
′(s) = rS(s′′) and

rB
′(t) = rB(t) thus also rS

′(s) ≥ rB
′(t). Condition (2) follows similarly.
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In the second case, s[t〉s′ with s = [s′′] and s′ = s(ŝ,t), (ŝ, t) is an unsolvable
ESSP instance of A. This means by definition that no region of A satisfies rS(ŝ) <
rB(t), from which condition (1) follows. In this case, the state s′ of Expand(A)
is not in the image of f where f witnesses A � Expand(A). Thus, the number
of tokens on s′ is defined purely by (2) and this equation holds automatically. 
�
These lemmas can now be used to compute the minimal over-approximation of
an lts A via iterated application of the Expand-function.

Theorem 13. Given a finite and reachable lts A, the chain defined by A0 = A
and Ai+1 = Expand(Ai) reaches a fixed-point A∗ (up to isomorphism), there is
a Petri net N solving A∗, and N is the least Petri net over-approximation of A,
i.e. for all Petri nets N ′ with A � RG(N ′), also A∗ � RG(N ′).

Proof. First we show that the fixed point always exists and then that it is the
minimal Petri net over-approximation.

To show that the fixed point exists, consider an arbitrary lts Ai in the chain
(Ai)i∈N. We want to show that there are only finitely many possibilities for Ai

and thus eventually the chain must reach a fixed-point.
We begin by showing an upper bound on the number of states of Ai. By

Theorem 8, there is a minimal Petri net over-approximation N(R′) of A where
N(R′) is bounded. Let m ∈ N be the number of reachable markings in N(R′).
We have A � Ai � RG(N(R′)) by iterative application of Lemma 9, respectively
Lemma 11. Let n ∈ N be the number of states of Merge(Ai). Since each state-
separation problem in Merge(Ai) and RG(N(R′)) is solvable by definition and
since each region of Merge(Ai) can be transferred to RG(N(R′)) via Lemma 12,
we have n ≤ m, i.e. Merge(Ai) cannot have more states than RG(N(R′)). This
also provides an upper bound on the size of Expand(Ai): It has at most m · (1+
|T |) states, since at most one state is added per state and label.

By Lemma 10, each Ai is deterministic and reachable. Thus, by Lemma 2 the
preorder � is in fact a partial order in this setting. If some element appears
twice in a partially ordered sequence, it must also appear twice consecutively
and thus is a fixed-point of the underlying function. Since there are only finitely
many different lts with an upper bound on the number of states and a fixed
alphabet, at least one lts A′ must appear infinitely often in the chain (Ai)i∈N.
Thus A′ = A∗ is a fixed-point of the Expand-function.

Next we want to show that A∗ can be solved by a Petri net and that it
is the least over-approximation of A. Since Expand(A∗) = A∗ holds, we have
SSPunsol(A) = ∅ = ESSPunsol(A) by definition of the Expand-function. By
Proposition 5, A∗ can thus be solved by a Petri net N(R) for a suitable set R of
regions that solve all separation problems. By iterated application of Lemma11,
we have that for all Petri nets N ′ with A � RG(N ′) also A∗ � RG(N ′). 
�

5 Subclasses of Nets

In this section we will show that the algorithm from the previous section also
works on some subclasses of nets, where a subclass of Petri nets is a restriction
on the Petri nets to consider.
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We begin by introducing some well-known subclasses, for which the following
definitions are needed: For a place p of a Petri net N = (P, T, F,M0), let •p =
{t ∈ T | F (t, p) > 0} be its preset, and p• = {t ∈ T | F (p, t) > 0} its postset.
A Petri net is plain if no weighted arcs exist, i.e. each place p ∈ P of N =
(P, T, F,M0) satisfies F (t, p) ≤ 1 ≥ F (p, t) for all t ∈ T . A Petri net is pure if
there are no side-conditions, i.e. for each p ∈ P and t ∈ T we have F (t, p) =
0∨F (p, t) = 0. A T-net is a Petri net where each place has at most one transition
in its preset and postset, i.e. ∀p ∈ P : |p•| ≤ 1 ≥ |•p|. A marked graph is a
Petri net where each place has exactly one transition its preset and postset, i.e.
∀p ∈ P : |p•| = 1 = |•p|. A Petri net is k-bounded if no place has ever more than
k ∈ N tokens, i.e. each reachable marking M ∈ E(N) satisfies ∀p ∈ P : M(p) ≤ k.
These subclasses can also be combined, e.g. the subclass of plain and pure Petri
nets is the intersection of the sets of all plain and all pure nets.

The goal of this section is to show that the algorithm that was introduced
in the previous section also works for these subclasses. For this, we recapitulate
which lemmas were used as the basis of the proof. For any subclass where these
lemmas hold, Theorem 13 is true, i.e. iteratively applying the Expand-function
results in a minimal Petri net over-approximation of an lts.

– If r is a region of B and A � B via f , then r ◦ f is a region of A (Lemma 6).
– For each region r there is a complement region r with rB = rF and rF = rB

(Lemma 7).
– A region r of A can be translated into a region r′ of Expand(A) (Lemma 12).

Except for k-boundedness, the properties that were previously defined only con-
sider the arcs between transitions and places and not the number of tokens on
a place. For a region (rS , rB , rF ) this means that only the backward weight rB
and the forward weight rF are needed to decide membership of a subclass. Since
the constructions of Lemmas 6 and 12 do not change these functions, member-
ship of a subclass is preserved by the constructions from these lemmas. Also,
these subclasses are symmetric in the sense that the same restrictions are placed
on rB and rF . Thus, Lemma 7, which swaps these two functions, also preserves
membership of these subclasses.

This argument also applies to combinations of these properties.
For k-boundedness, a different argumentation is needed. When two reachable

and deterministic lts satisfy A � B, then any k-bounded region r of B becomes
a k-bounded region r ◦ f of A since (r ◦ f)S , which is the function that assigns
tokens to states, has the same codomain as rS (Lemma 6 holds). Complement
regions (Lemma 7) become easier, since we can directly define rS(s) = k − rS(s)
and do not have to compute a suitable k as in Lemma 7. This construction also
helps in translating regions r of A into regions r′ of Expand(A) (Lemma 12):
If a new edge s[a〉s′ appears in Expand(A), this is due to an unsolvable ESSP
instance. If the number of tokens assigned to s′ by r′ would exceed the value k,
then the complement region r of r would solve the ESSP instance (s, t) which
was assumed to be unsolvable. Thus, the existing construction to produce r′

preserves k-boundedness.
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We can also combine k-boundedness with the other subclasses mentioned
before since the individual argumentations do not interfere with each other: k-
boundedness only considers rS while the arguments for the remaining subclasses
only talk about rB and rF . This shows that all constructions of Sect. 4 preserve
classes and thus all the results also hold for all the subclasses defined above.

a

b

A : a

b

a

b

a

b

A2 :
p

a b
N :

Fig. 4. An lts A, an intermediate result A2 = Expand(Expand(A)) in the computation
of A∗, and the minimal Petri net over-approximation N of A.

An example for a subclass of nets in which the presented construction does
not work are place-output-nonbranching Petri nets. A Petri net N is place-output-
nonbranching if for each place p ∈ P its postset has at most size one: |p•| ≤ 1.
This definition is not symmetric in the sense that no restriction is applied to
the preset of p. Thus, no complementary regions r in the sense of Lemma 7 can
be constructed. This is illustrated by the place p of the Petri net N in Fig. 4,
whose extension [[p]] cannot be complemented. Also, Theorem 8, which showed
that the minimal Petri net over-approximation of a finite lts is a bounded Petri
net, does not hold for this subclass. This is shown by the lts A in Fig. 4. Its
minimal Petri net over-approximation N is an unbounded Petri net. Thus, the
chain Ai+1 = Expand(Ai) does not reach a fixed-point.

6 Conclusion

In this paper we introduced a fixed-point algorithm to compute minimal Petri
net over-approximations of given labelled transition systems. Minimality is here
understood according to an lts homomorphism preorder, which is an edge-
preserving function between states of different lts. This algorithm is also shown
to work for plain, pure, k-bounded Petri nets, T-nets, and marked graphs, and
combinations like plain and pure Petri nets. Existing algorithms solve separation
problems, and fail if one of them is unsolvable. The presented algorithm uses the
set of unsolvable separation problems to modify the lts suitably for the next
iteration. The algorithm was implemented in the APT toolbox2.

An open question regarding this algorithm is its complexity. The approach
from [2] for a similar problem, but only considering general and pure Petri nets,
is based on so-called extremal regions and may need exponential time, since the
number of extremal regions can be exponential in the size of an lts [2]. While
our approach can be used with polynomial algorithms for Petri net synthesis,
e.g. [1], this does not entail that our approach is polynomial, because so far no
upper bound on the number of iterations is known.
2 Available in the overapproximate synthesize-module at https://github.com/CvO-
Theory/apt.

https://github.com/CvO-Theory/apt
https://github.com/CvO-Theory/apt
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However, we conjecture that a polynomial number of iterations suffices and
that the size of the minimal over-approximation is polynomial in the size of the
input. For an acyclic lts over a fixed set of labels T , let n be the length of its
longest path. Each event can be limited to occur at most n times, so that at most
(n + 1)|T | markings are reachable in the minimal over-approximation, which is
computed in at most n iterations. Future work will have to refine this argument
and extend it to lts containing cycles.
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Abstract. We show that the image of a regular tree language under a
linear bimorphism over binary signatures can be computed in linear time
in the size of the input automaton. We do this by transformation into
a novel normal form. Our result applies to the translation and parsing
complexity of a wide range of grammar formalisms used in computational
linguistics, which can now be shown in a uniform way.
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1 Introduction

Languages defined as the image of a regular tree language (RTL) under one or
several tree-homomorphisms play an important role in formal language theory
and computational linguistics. For instance, the translation performed by any
bottom-up finite tree transducer (FTT) can be represented as a bimorphism
[1,13], i.e., an RTL and two tree homorphisms. By interpreting the symbols in the
homomorphic images of a bimorphism as operations over some algebra [5], one
obtains Interpreted Regular Tree Grammars (IRTGs) [9], which can be used to
define languages of and relations between objects from arbitrary algebras. IRTGs
have been used to capture a wide variety of expressive grammar formalisms for
strings, graphs [7], and other objects.

This paper presents a generic method for determining the asymptotic com-
plexity of parsing and translating with IRTGs. IRTG parsers compute the trans-
lation of an RTL – represented as a finite tree automaton (FTA) or regular tree
grammar – under a bimorphism. The size of the regular tree automaton to be
translated depends not only on the input, but also on the specific algebra used
and is therefore hard to analyze generically. But we also have to answer the ques-
tion when and how the translation problem can be solved efficiently. Computing
the translation requires the computation of an inverse homorphism. While it is
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known that RTLs are closed under inverse homomorphism, an FTA representing
an inverse image might be much larger than the input FTA if the homomor-
phism is complex. This issue is especially pressing in computational linguistics,
where certain applications require computing the inverse homomorphism of very
large FTAs with hundreds of millions of rules [7]. For specific classes such as
linear symbol-to-symbol homomorphisms, it is known that inverse homomor-
phisms can be computed in linear time and space [3]. However, IRTGs used in
computational linguistics typically use homomorphisms which are linear but not
symbol-to-symbol [6,11], because they express the complex way in which a word
combines with its arguments in terms of primitive operations of the algebra. It
is therefore an open question whether the bimorphisms used in computational
linguistics allow for efficient computation of inverse images.

In this paper, we show that for any bimorphism using linear homomorphisms
over binary signatures, the most relevant subclass of bimorphisms for compu-
tational linguistics, we can construct an equivalent bimorphism in which each
homomorphic image contains at most one symbol (plus variables). We call this
the Truncated Normal Form (TNF) of the bimorphism. We show that inverse
homomorphisms can be calculated in linear time for bimorphisms in TNF. Thus,
we obtain a general result on the translation complexity of bimorphisms. Because
IRTGs build on bimorphisms, we can show that, as long as only linear homomor-
phisms over binary signatures are used, the computational complexity of IRTGs
can be analyzed purely in terms of the input automata and the homomorphisms
add no further asymptotic complexity. This yields a uniform proof of translation
and parsing complexity for grammar formalisms expressible as IRTGs, including
context-free, tree-adjoining [8] and hyperedge replacement grammars [10].

2 Background

2.1 Notations

Let N denote the set of natural numbers. For i, j ∈ N, [i, j] denotes the set
{k ∈ N | i ≤ k ≤ j}. A signature (or ranked alphabet) is a pair Σ = 〈X, ar〉
where X is a countable set of symbols and ar : X �→ N assigns each symbol a rank.
l ∈ Σ has the meaning of l ∈ X. We say a signature is binary if maxl∈Σ ar(l) ≤
2. We assume the reader is familiar with the concepts of terms and regular
tree languages. Refer to [4] for a formal presentation. We use the words ‘terms’
and ‘trees’ interchangeably. We let T (Σ,V) denote the set of terms over some
signature Σ and a set of variable symbols V s.t. Σ ∩ V = ∅. For x ∈ V, t,
t′ ∈ T (Σ,V), t[t′/x] denotes the term obtained by replacing all occurrences of
x in t with t′. We shorten T (Σ, ∅) to T (Σ) and call a member of such a set
a ground term. We assume (V,≺) to be a fixed countably infinite linear order
x1 ≺ x2 · · · ≺ xn ≺ . . . and write Vn to denote {x1, . . . , xn} the n first elements
of V.

A (top down) FTA is a tuple A = 〈Σ,Q,R, S〉 with Σ the FTA’s signa-
ture, Q the finite set of states, R a finite set of rules and S ∈ Q the single
start state. A rule in R is of the form r = X → r(Y1, . . . , Yar(r)), meaning
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that it allows rewriting the left hand side lhs(r) = X into the right hand
side rhs(r) = r(Y1, . . . , Yar(r)). r is the label of r. We let Σ ∪ N denote the
signature obtained by augmenting Σ with all the symbols of N and assign-
ing these rank 0. For two ground terms t, t′ ∈ T (Σ ∪ N), we let t →r t′

hold whenever replacing one instance of lhs(r) in t with rhs(r) produces t′.
t →(r1;...;rn) t′ means t (→r1 ◦ · · · ◦ →rn) t′. We let t →A t′ hold iff ∃r ∈ R such
that t →r t′. →∗

A denotes the reflexive transitive closure of →A. The language
of A is L(A) = {t ∈ T (Σ) | S →∗

A t}. The size of an FTA |A| is |R|, the cardinal
of its set of rules.

An algebra is a tuple A = 〈ΣA,DA, �·�A〉 with ΣA the algebra’s signature,
DA its domain and �·�A the evaluation mapping assigning each symbol σ of rank
n a function from Dn

A into DA. We naturally extend �·�A’s domain to inductively
evaluate whole terms over ΣA into DA.

2.2 Bimorphisms

Bimorphisms combine tree homomorphisms and FTAs in order to define a lan-
guage of tuples of trees. Let us first state the definition of a tree homomorphism:

Definition 1 (Tree-homomorphism). Let Σ and Λ be two signatures. A tree-
homomorphism (henceforth, homomorphism) h is a mapping Σ �→ T (Λ,V) such
that a symbol l ∈ Σ of rank n is mapped to a term in T (Λ,Vn). A homomorphism
h induces a mapping T (Σ) �→ T (Δ) recursively defined by

h(l(t1, . . . , tn)) = h(l)[h(t1)/x1][h(t2)/x2] . . . [h(tn)/xn].

We focus on linear homomorphisms over binary signatures, which we call
LB homomorphisms. A homomorphism is linear iff the image of any symbol l is
a term with at most one occurrence of each variable symbol in Var(l). h : Σ �→
T (Λ,V) is a homomorphism over binary signatures if both Σ and Λ are binary.

LB homomorphisms are used in grammars and transducers in computational
linguistics because non-binary signatures lead to more complex parsing problems.
Note that if the domain of h, Σ, is a binary signature, then only the variables
x1 and x2 will ever be in the image of any l ∈ Σ.

Definition 2 (Bimorphisms).
H = 〈A, h1, . . . , hn〉 is a generalized bimorphism if A is a finite tree automa-
ton and h1, . . . , hn are homomorphisms from T (Σ) into T (Λ1), . . . , T (Λn). H
defines a language L(H) as:

{〈t1, . . . , tn〉 ∈ T (Λ1) × · · · × T (Λn) | ∃t ∈ L(A) : t1 = h1(t), . . . , tn = hn(t)}

We will call t ∈ L(A) a derivation tree of H. Traditionally ‘bimorphism’
refers to the case n = 2, but we shorten ‘generalized bimorphism’ to just bimor-
phism. A bimorphism H = 〈A, h1, . . . , hn〉, where each h1,. . . , hn is an LB
homomorphism, is called an LB bimorphism.
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The extension of bimorphisms with algebras, called Interpreted Regular Tree
Grammars (IRTGs) [9], defines languages of tuples of objects other than trees.

Definition 3 (IRTG). An IRTG is a tuple G = 〈H,A1, . . . ,An〉 where
H = 〈A, h1, . . . , hn〉 is a bimorphism and the Ai are algebras with domains
D1, . . . , Dn. G defines a language L(G) as:

{〈�t1�A1 , . . . , �tn�An
〉 ∈ D1 × · · · × Dn | 〈t1, . . . , tn〉 ∈ L(H)}

We call two bimorphisms or IRTGs which define the same language equiva-
lent.

Figure 1(a) provides an example bimorphism, which can be extended to an
IRTG by making A1 a string algebra, evaluating leaves to themselves and ∗
nodes as concatenation and by making A2 a tree algebra which evaluates every
tree to itself (Fig. 2). Rules in Fig. 1(a) have unique labels, which we use to refer
to rules.

Fig. 1. (a) Example bimorphism and (b) truncated bimorphism.

Fig. 2. Derivation tree and mappings.

IRTGs generalize grammar formalisms from computational linguistics such
as context-free grammars, tree substitution grammars, tree adjoining grammars,
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hyperedge replacement grammars and their synchronous versions. Hence, under-
standing how efficiently IRTGs and their underlying bimorphisms can be used in
parsing and translation problems is very relevant for computational linguistics.
We now introduce these problems and sketch our contribution.

2.3 The Inverse Homomorphism Problem

We want to know how efficiently the translation problem for an IRTG G =
〈H,A1, . . . ,An〉 can be solved: given an input object o ∈ DAi

compute G(o) =
{〈o1, . . . , on〉 ∈ L(G) | oi = o}. This problem is usually solved by reducing it to
the translation problem for the underlying bimorphism H = 〈A, h1, . . . , hn〉 and
an FTA F , which consists of computing the image of L(F ) through L(H), i.e.,
the set H(F ) = {〈t1, . . . , tn〉 ∈ L(H) | ti ∈ L(F )}.

Solving the translation problem for a bimorphism H = 〈A, h1, . . . , hn〉 on an
input FTA F can be done by computing a parse chart, i.e., an FTA ChartF
recognizing the language of derivation trees t ∈ L(A) such that hi(t) ∈ L(F )
(then, 〈t1, . . . , tn〉 ∈ H(F ) iff there is some t ∈ L(ChartF ) such that for each
i ∈ [1, n], ti = hi(t)). This can be achieved by computing the FTA

ChartF = h−1
i (F ) ∩ A

which requires h−1
i (F ), the invhom automaton for F . The translation problem

for an IRTG G = 〈H,A1, . . . ,An〉 on an input o is therefore solvable when
o is regularly decomposable in Ai, meaning that we can find an FTA Do, the
decomposition automaton for o, recognizing the language �o�−1

Ai
= {t ∈ T (ΣAi

) |
�t�Ai

= o} of terms evaluating to o [9]. Then translation of o through G reduces
to the translation problem for H on Do. Note that this requires computing the
invhom automaton for Do.

Often we are also interested in the parsing problem for IRTGs: with G, o
and H as above, find the set of derivation trees {t ∈ L(A) | �hi(t)� = o}.
This problem reduces to the the translation problem for the irtg G

′ obtained
from G by adding a new identity homomorphism id mapping derivation trees to
themselves and interpreting them in the initial algebra of trees.

For many grammar formalisms, it has been shown that parsing/translation
for a regularly decomposable input o can done in time O(|Do|), but there exists
no generalisation of this fact to arbitrary formalisms encodable as IRTGs. The
problem preventing such a generalization, lies in the fact that arbitrary linear
homomorphisms complicate the analysis of the complexity of computing the
invhom automaton. The invhom automaton can be quadratic in the size of the
input automaton: consider a signature Σ{a} with ∗ of rank 2 and a as a constant
and an FTA F over Σ{a} including the following rules:

Xi → ∗(Y, T ), Y → ∗(Zi, T ), Zi → a (three such rules for each i ∈ [1, n])
T → a.

Consider the one symbol signature Σ = {〈σ, 2〉}, and homomorphism h defined
by h(σ) = ∗(∗(x1, a), x2). The standard construction for h−1(F ) will produce a
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rule P → r(Q1, . . . , Qk) whenever P →∗
F h(r)[Q1/x1] . . . [Qk/xk]. In our exam-

ple, we have Xi →F ∗(Y, T ) →F ∗(∗(Zi, T ), T ) →F ∗(∗(Zi, a), T ) and therefore
add a total of n2 rules Xi → σ(Zj , T ), i, j ∈ [1, n] to h−1(F ), when F has 3n+1
rules.

Fortunately, the translation problem for a class C of bimorphisms can be
reduced to the translation problem for a smaller class C′ of bimorphisms, if any
bimorphism in C has an equivalent in C′. This is interesting if bimorphisms in C′

have an “easy” invhom problem, hence translation problem. We will apply this
strategy to the class C of all LB bimorphisms, and take C′ to be the class of LB
bimorphisms in a normal form which we define next. The translation problem
for bimorphisms in the normal form will be shown to be linear, from which
follows that the translation problem for an IRTG based on any LB bimorphism
is solvable in time linear in the size of the input’s decomposition automaton.

3 Truncated Normal Form

To better understand bimorphisms and their translation problem, we introduce
Truncated Normal Form (TNF) which limits the height of the homomorphisms
used in a bimorphism to 1. We then show that any LB bimorphisms has an
equivalent TNF.

The height of t ∈ T (Σ,V) written height(t) is defined as the maximum num-
ber of non-variable nodes on any path from the root to any leaf. For example
height(∗(x1, x2)) = 1 and height(∗(x1, a)) = 2. This is extended to homomor-
phisms h : Λ → T (Σ,V) by height(h) = maxl∈Λ height(h(l)).

Definition 4 (Truncated Normal Form). A bimorphism 〈A, h1, . . . , hn〉 is
in Truncated Normal Form (TNF) iff maxi∈[1,n] height(hi) ≤ 1.

Note that TNF differs from requiring that all the homomorphisms be symbol-
to-symbol [3], as it allows for height 0 homomorphic images, like h(l) = x1.

The bimorphism in Fig. 1 (a) is not in TNF, since, e.g., r2 has height 2 for
the tree interpretation (h2). However, r2 could be replaced with B → r4(C,D),
C → r5, and D → r6 with h1(r4) = ∗(x1, x2), h1(r5) = a, h1(r6) = b, h2(r4) =
B(x1), h2(r5) = a and h2(r6) evaluating to some random constant, e.g., a.
These replacement rules would conform to TNF and it is possible to use similar
replacements to bring the whole bimorphism into TNF.

Theorem 5 (Truncated Normal Form). Let H = 〈A, h1, . . . , hn〉 be an LB
bimorphism, then there exists an LB bimorphism H ′ = 〈A′, 〈h′

i〉i∈[1,n]〉 in TNF
with L(H) = L(H ′).

To prove Theorem 5 we will describe transformation operations which break
apart the homomorphic images in a bimorphism, while keeping its language
unchanged. We then give a proof of Theorem5 at the end of Sect. 3.1.



314 C. Teichmann et al.

3.1 Transforming Bimorphisms into TNF

Intuition. We will describe truncation, a procedure to transform an LB bimor-
phism H into an equivalent bimorphism in TNF. Truncation is done in steps
where each takes a single rule r in the FTA of the bimorphism and one of the
homomorphisms h – the selected homomorphism – and creates a new bimorphism
Ĥ. r is replaced with three new rules with labels that have homomorphic images
of lower height under a newly constructed homomorphism ĥ. This operation will
ensure that Ĥ is equivalent to H.

Before we give the details of the construction, let us build the intuition behind
it. Assume that the rule to be replaced is X → r(Y,Z) and the homomorphism
to be truncated has h(r) = f(t1, t2). For a concrete example see Fig. 1(b), which
shows the result of applying a single truncation step to the corresponding rule
from Fig. 1(a) and the second homomorphism. If t1 and t2 each have a variable
as leaf, both labeled with distinct variable symbols, as in r1 in Fig. 1(a), we apply
the 2-case, illustrated in Fig. 3 (top). In our illustration we want to truncate h1

for a rule of the form X → r(Y,Z). We replace r with r(1), r(2), r(3) so that our
new FTA will derive r(1)(r(2)(Y ), r(3)(Z)) wherever the old FTA derived r(Y,Z).
We split the homomorphic image h1(r) = f(t1, t2) of r at its root symbol and
distribute t1 and t2 to r(2) and r(3) as shown in Fig. 3 (top). To ensure that the
homomorphic image for ĥ2(r(1)(r(2)(Y ), r(3)(Z))) is the same as before, we let
r(2) and r(3) map to x1 and transfer the image of r to r(1).

Fig. 3. (Top) Truncation in 2-case and (bottom) truncation in the 1-case.
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We cannot apply the 2-case for every rule. Consider r3 in Fig. 1(a). If we split
this rule as in the 2-case, then the x2 reference is moved into the same subtree
as the x1 reference and we can no longer coordinate at the first rule. If only
one or neither of t1 and t2 have a variable as a leaf, we apply the 1-case. Now
we will have r(1)(r(2)(Y,Z), r(3)) whenever the old grammar derived r(Y,Z).
We split the homomorphic image h1(r) = f(t1, t2) of r at its root symbol and
distribute t1 and t2 to r(2) and r(3), as shown in Fig. 3 (bottom). To ensure that
the homomorphic image for ĥ2 is the same as for h2 we simply assign r(1) an
height 0 image under ĥ2, transfer the whole image of r to r(2) and then assign
r(3) some placeholder symbol �. � is arbitrary, as r(3) will be deleted by ĥ2.

If h(r) = f(t1) as for r2 in Fig. 1(a) then the ideas of the 1-case apply. If
h(r) = f or h(r) = x for some constant f or variable x then there is no need for
a truncation step. We now move to define the truncation steps in full generality.

Truncation Step. To ease notational clutter and reduce the number of cases
to distinguish, we let Y denote a sequence of 2 or less state symbols, and use
this notation to denote rules r = X → r(Y) of rank 0, 1 or 2. We refer to Y1

or Y2 only when the context guarantees that the rule has appropriate rank. We
further let for j ∈ {1, 2}, ¬j = 3 − j.

A truncation step takes as arguments an LB bimorphism H = 〈A, h1, . . . , hn〉,
with A = 〈Σ,Q,R, S〉, a rule r = X → r(Y) ∈ R, and i0 ∈ [1, n] indicat-
ing the selected homomorphism. It creates a new bimorphism trunc (H, r, i0) =
〈Â, ĥ0, . . . , ĥn〉 where r has been replaced with three new truncated rules, r(1),
r(2) and r(3). The truncation step is only defined if height(hi0(r)) > 1.

Definition 6 (Truncation Step). With H, r, i0 as above, let trunc (H, r, i0) =
〈Â, ĥ0, . . . , ĥn〉, where Â = 〈Σ̂, Q̂, R̂, S〉 and the following hold:

Σ̂ = Σ ∪ {(r(1), 2), (r(2), k2), (r(3), k3)}
Q̂ = Q ∪ {X(2),X(3)}
R̂ = (R \ {r}) ∪ {r(1), r(2), r(3)}

where X(2),X(3) /∈ Q, r(1), r(2), r(3) /∈ Σ, r(1) = X → r(1)(X(2),X(3)), ∀i ∈
[1, n]∀r′ �= r ∈ R, ĥi(r′) = hi(r′) and

2-case: If hi0(r) = f(t1, t2) for some binary f and ∃j ∈ {1, 2} s.t. xj is a leaf in
t1 and x¬j is one in t2, then r(2) = X(2) → r(2)(Y1), r(3) = X(3) → r(3)(Y2),
k2 = k3 = 1 and

ĥi0(r
(1)) = f(xj , x¬j) ĥi(r(1)) = hi(r)

ĥi0(r
(2)) = tj [x1/x2] ĥi(r(2)) = x1

ĥi0(r
(3)) = t¬j [x1/x2] ĥi(r(3)) = x1

∀i ∈ [1, n], i �= i0.
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1- and 0-cases: If hi0(r) = f(t1, t2) for some binary f where t2 has no variable
symbol as a leaf, i.e., t2 ∈ TΓ with Γ ∩ V = ∅, then r(2) = X(2) → r(2)(Y),
r(3) = X(3) → r(3), k2 = ar(r), k3 = 0 and

ĥi0(r
(1)) = f(x1, x2) ĥi(r(1)) = x1

ĥi0(r
(2)) = t1 ĥi(r(2)) = hi(r)

ĥi0(r
(3)) = t2 ĥi(r(3)) = �.

∀i ∈ [1, n], i �= i0. If hi0(r) = f(t1, t2) and t1 has no variable as a leaf but t2
has a variable xj as a leaf, the above holds exchanging k3, t2, r(3), r(3), X(3)

with, resp., k2, t1, r(2), r(2), X(2) everywhere. If hi0(r) = f(t1) for some unary
f , then we can use the construction with: ĥi0(r

(1)) = f(x1), ĥi0(r
(3)) = �.

Truncation Equivalence. We now prove that a truncation step leaves the
language unchanged by showing that for every derivation tree in the original
bimorphism there is one derivation tree in the new bimorphism which evaluates
to the same values and vice versa.

Let H = 〈A, h1, . . . , hn〉 be an LB bimorphism with A = 〈Σ,Q,R, S〉, r =
X → r(Y) ∈ R, i0 ∈ [1, n] and Ĥ = 〈Â, h1, . . . , hn〉 = trunc (H, i0, r) with
Â = 〈Σ̂, Q̂, R̂, S〉. For ground terms t1, . . . , tn we write t[t1, . . . , tn] as a shorthand
for t[t1/x1] . . . [tn/xn]. For t ∈ T (Σ) and t′ ∈ T (Σ̂) we let t ≡ t′ hold iff ∀i ∈
[1, n], hi(t) = ĥi(t′).

Lemma 7 (Soundness). There exists exactly one term cr ∈ T (Σ̂,Var(r)) s.t.
X →(r(1);r(2);r(3)) cr[Y] and for any sequence1 of equivalent ground terms 〈tYk

≡
t̂Yk

〉k∈[1,ar(r)] it holds that r(tY1 , . . . , tYar(r)) ≡ cr[t̂Y1 , . . . , t̂Yar(r) ].

Proof. This lemma follows from the construction of r(1), r(2) and r(3). For space
reasons, we develop the argument only for the 2 case with x1 occurring in the
left subtree. Assume that r is binary, i.e., r = X → r(Y,Z), and that hi0(r) =
f(t1, t2) for some f , with x1 occuring in t1 and x2 occurring in t2. It suffices
to take cr = r(1)(r(2)(x1), r(3)(x2)). The uniqueness of cr follows because we
chose fresh state symbols. The equivalence follows from our construction and by
computing the homomorphic images of r(1)(r(2)(Y ), r(3)(Z)) and r(Y,Z).

Other cases are analogous. For instance, if r = X → r(Y ) and h2(r) = f(t1)
for some f (instance of 1-case), one must let cr = r(1)(r(2)(x1), r(3)). ��

Theorem 8. For bimorphisms H and Ĥ if Ĥ = trunc (H, r, i0), for some rule
r of the FTA of H and hi0 some homomorphism of H, then L(H) = L(Ĥ).

Proof. To show this we use Lemma 7 to show equivalence back and forth:

– (Forth) ∀P ∈ Q, t ∈ T (Σ) s.t. P →∗
A t, there exists t̂ ∈ T (Σ̂) s.t. t ≡ t̂ and

P →∗
Â

t̂.

1 Recall that ar(r0) ∈ {0, 1, 2}: we use sequences to avoid distinguishing between cases.
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– (Back) ∀P ∈ Q, t̂ ∈ T (Σ̂) s.t. P →∗
Â

t̂, there exists t ∈ T (Σ) s.t. t ≡ t̂ and
P →∗

A t.

Note that we only consider trees that can be derived from the states in the
original state set Q, i.e., we do not consider trees that have r(2) or r(3) at their
root. Both directions can be shown by using Lemma7 in an induction over the
number of rewrite steps involved in →∗

A/→∗
Â
. ��

Using Truncation to Achieve TNF. Let H = 〈A, h1, . . . , hn〉 be an LB
bimorphism. It remains to show that applying successive truncation steps to H
eventually yields TNF. To prove this, we define a quantity Q(H) and show that
it strictly decreases with each truncation step.

Definition 9 (Q). Let Σ be the signature of A. For k ∈ N, let #H(k) = |{(f, i) |
height(hi(f)) = k}| denote the number of homomorphic images of height k in
H. We define Q(H) as the infinite sequence 〈#H(k)〉k∈N, and we let � denote
the well founded partial order on N

N defined as s � s′ iff there exists k0 ∈ N

such that sk0 < s′
k0

and ∀k ∈ N, k > k0 → sk = s′
k.

Lemma 10 (Saturation). If Ĥ = trunc (H, r, i0) is defined, Q(Ĥ) � Q(H).

Proof. Let r = X → r(Y) and assume that Ĥ is defined. This implies that
height(hi0(r)) > 1. #Ĥ(height(hi0(r))) = #H(height(hi0(r))) − 1 since hi(r)
has been truncated, and for k �= height(hi0(r)) we can have #Ĥ(k) �= #H(k)
only if k < height(hi0(r)) since all hi�=i0(r) have been transferred to exactly
one of the new labels, and the only “new” images created are either of height
hi0(r) − 1, 0, or 1. Hence Q(Ĥ) � Q(H). ��

We can now prove Theorem 5:

Proof (Proof of Theorem 5). Since � is well founded, Lemma 10 immediately
entails that only finitely many truncation steps can be applied to a bimorphism.
A truncation step is possible iff H is not in TNF. Since by Theorem8 the lan-
guage is preserved after each step, we have proved Theorem 5. ��
It can furthermore be seen from the truncation operations that the truncation
procedure applied to a LB bimorphism H = 〈A, h1, . . . , hn〉 produces a bimor-
phism H ′ = 〈A′, 〈h′

i〉i∈[1,n]〉 in TNF s.t. |A′| = O
(
|A| ×

(∑
i∈[1,n] height(hi)

))
.

This is linear in |A|, hence the reduction of a LB bimorphism to TNF can be
computed in linear time.

Bimorphisms can be extended to weighted bimorphisms which define a func-
tion from tuples of trees to weights [9] by associating each rule of the underlying
FTA with weights. The arguments we used to show that TNF can be achieved
for any LB bimorphism are almost identical to those that would be used for the
weighted case. We state the following corollary without a proof.

Corollary 11 (Weighted TNF). For a weighted LB bimorphism there is a
weighted LB bimorphism in TNF over the same algebras that defines the same
function from tuples to weights.
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4 Complexity of the Translation Problem

Now that we know how to bring any LB bimorphism into TNF, we turn back
to the program of Sect. 2.3 and use TNF to upper bound the time and space
complexity of the translation problem for bimorphisms, and thereby, for IRTGs.
The key insight is the following lemma:

Lemma 12. The size of the invhom automaton h−1(F ) of an FTA F is linear
in |F | and can be computed in time linear in |F |, if the homomorphism h has
height(h) ≤ 1.

Proof. We only show the construction of h−1(F ). Let Σ be the domain of h and
U be a fresh state. We first add rules to h−1(F ) allowing us to expand U into any
term over Σ, which requires |Σ| distinct rules with only U as parent and child-
states. For any f with h(f) = r(x(1), . . . , x(n)) in Σ, and rule X → r(X1, . . . , Xk)
we add a rule X → f(X(1), . . . , X(ar(f))) to h−1(F ), where X(i) = Xj if x(j) = xi

for some j ∈ [1, ar(σ)] and X(i) = U otherwise. For every f with h(f) = xi and
state X of F we add X → f(X(1), . . . , X(ar(f))) to h−1(F ) with X(i) = X and
all the other X(j) = U .

An immediate corollary bounds the translation complexity for bimorphisms:

Corollary 13. Let H be a bimorphism in TNF. From the translation algorithm
given in Sect. 2.3 and Lemma 12 follows that the time complexity of the transla-
tion problem for H on F is linear in |F |.

Based on Theorem 5, Corollary 13 can be extended to any LB bimorphism:

Theorem 14. Let H be an LB bimorphism. The translation problem for H has
a time complexity linear in the size of the input FTA.

Finally, from the discussion of Sect. 2.3.

Corollary 15. Let H be an LB bimorphism and G = 〈H,A1, . . . ,An〉 an IRTG
based on H. The translation and parsing problems for G on an input o are
solvable in time O(|Do|), where Do is a decomposition automaton for o.

Corollary 15 is of special importance in computational linguistics, where one
uses algebras 〈Ai〉i∈[1,n] for which links between the sizes of the decomposition
automata and the sizes of the input objects are well known. Corollary 15 thus
provides a very general and immediate way to bound the complexity of the trans-
lation problem for any formalism encodable as an IRTG with LB bimorphisms.

Many formalisms used in computational linguistics can be encoded as IRTGs
using linear homomorphisms. However, this may require an underlying grammar
over a non-binary signature. [2] provides a generic binarization procedure which
finds an equivalent IRTG over a binary signature whenever a rule-by-rule bina-
rization is actually possible. Corollary 15 therefore extends to the wider class of
IRTGs on which the procedure of [2] succeeds.

All of the above results can be directly generalized to translation prob-
lems taking multiple FTAs F1, . . . , Fn (for bimorphisms) or objects oi1 ∈
DA11

. . . oin ∈ DAin
as inputs, as well as weighted bimorphisms and IRTGs.
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5 Conclusion

We have described how to transform LB bimorphisms into truncated normal
form and shown that computing the translation of an RTL under an LB bimor-
phism is linear in the size of the input automaton. As a corollary, we obtained a
general result on the translation complexity of any binarizable IRTG: it is linear
in the size of the decomposition automaton. This yields immediate translation
complexity results for any grammar formalism encodable as an IRTG – a class
encompassing a wide variety of formalisms in practical use in computational
linguistics. Bounding complexity in terms of the decomposition automaton is
natural as they are the only algebra specific component of the translation algo-
rithm.

In future research, we will investigate further uses of the TNF. One immediate
application is in grammar induction for IRTGs, i.e. the problem of learning a
weighted IRTG from only observations of input/output tuples (e.g. for mapping
strings to graphs [12]). One reason why this problem is hard in practice is because
the space of IRTGs that need to be considered is huge. The results of this paper
imply that we can restrict this search to IRTGs in TNF in order to effectively
cover all LB grammars. We will also look into new efficient parsing algorithms
for IRTGs which exploit TNF.
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2. Büchse, M., Koller, A., Vogler, H.: Generic binarization for parsing and translation.
In: Proceedings of 51st ACL, pp. 145–154 (2013)

3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
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