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Abstract k-means clustering is one of the popular procedures for multivariate anal-

ysis in which observations are classified into a reduced number of clusters. The

resulting centroid matrix is refereed to capture variables which characterize clus-

ters, but between-clusters contrasts in the centroid matrix are not always clear and

thus difficult to interpret. In this research, we address the problem in interpretation

and propose a new procedure of k-means clustering which produces a sparse and thus

interpretable centroid matrix. The proposed procedure is called SPARK. In SPARK,

the sparseness of the centroid matrix is constrained and therefore it contains a num-

ber of exact zero elements. Because of this, the contrasts between-clusters are high-

lighted and it allows us to interpret clusters easier in comparison with the standard

k-means clustering. A sparsity selection procedure for determining the optimal spar-

sity of the centroid with reduced computational load is also proposed. Behaviors

of the proposed procedure are evaluated by two real data examples, and the results

indicate that SPARK performs well for dealing with real world problems.
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1 Introduction

k-means clustering, known as a non-hierarchical clustering procedure, is widely used

for extracting the homogeneity of observations, by assigning them into a small num-

ber of clusters. Let 𝐗 be an n-obserbations × p-variables matrix, and the k-means

clustering is formulated as a minization of the least squares loss function defined as

f (𝐌,𝐘) =
∑

i,l
mil||𝐱′(i) − 𝐲l||2 = ||𝐗 −𝐌𝐘′||2, (1)
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where 𝐌 = {mil} is an n-observations × p-variables membership matrix and 𝐘 =
{yjl} is a p-variables × k-clusters centroid matrix. 𝐱(i) and 𝐲l denote the ith row vector

and the lth column vector of 𝐗 and 𝐘, respectively.

The centroid matrix is refereed for interpreting what variables characterize the

clusters, and the within- and between-clusters contrasts in the centroid matrix are of

help for the interpretation. These contrasts, however, are not always clearly observed

and therefore the interpretation is difficult, as exemplified in Sect. 4. A typical strat-

egy to discriminate the clusters is to replace the elements close to zero in the centroid

matrix with zeros, by a certain threshold. It is not recommended, however, in that

the threshold totally depends on users’ decision, and it can spoil the reliability of the

interpretation and the following decisions.

In this article, considering the above problem in interpretability of the result-

ing centroid matrix, we propose a new algorithm for clustering which produces an

easily interpreted centroid matrix. We call this algorithm SPARK (abbreviation of

Sparse k-means). In SPARK, the resulting centroid matrix is sparse in that it contains

a number of entries exactly equal to zero. The contrasts of the clusters are there-

fore emphasized, without any subjective threshold, which facilitates the easier and

more coherent interpretation than the existing procedures. Such a centroid matrix is

obtained by minimizing (1) subject to the constraint that 𝐘 has a specific number of

zero elements, namely,

Sp(𝐘) = r (2)

where Sp(𝐘) is the number of zero in 𝐘. The positive integer r is specified

beforehand.

1.1 Related Procedure

Sun et al. (2012) proposed regularized k-means clustering for obtaining such sparse

centroid matrix, which is similar to the proposed method. It is formulated as a min-

imization of (1) subject to the row-wise constraint on 𝐘

||𝐲(j)|| ≤ 𝜆j (j = 1,… , p) (3)

where ||𝐲(j)|| is an L1-norm of the 𝐘’s jth row vector 𝐲(j) and a tuning parameters

𝜆j (j = 1,… , p) control the resulting sparsity of 𝐘. It therefore contains a number

of zero elements, since the L1-norm of rows of 𝐘 is constrained to be less than

𝜆1,… , 𝜆p. This minimization is equivalent to the minimization of the following

function;

f (𝐌,𝐘) +
p∑

j
𝜆j||𝐲(j)||. (4)
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We call this approach as a penalty approach, in that it adds the penalty function∑p
j 𝜆j||𝐲(j)|| to the original loss function (1). The tuning parameters take any positive

integer, which are commonly determined by cross-validation. Similar approaches

can be found in Witten and Tibshirani (2010) and Hastie et al. (2015). Penalty

approach is originally proposed for avoiding over-fitting in clustering. Generaliz-

ability, however, does not always results in the easier interpretability of the clus-

ters, which we focus on in this article. The proposed procedure directly controls the

number of zero elements r in the centroid matrix within a restricted range, without

introducing tuning parameters as in the penalty approaches. Within- and between-

contrasts in the centroid matrix are therefore highlighted, and it allows users to find

what variables manifest the clusters easily. It should be noted that controlling r can-

not consider all possible values of 𝜆1,… , 𝜆p. For interpretation of clusters, however,

inspecting all possible 𝜆s is not necessary, and sparseness of 𝐘 can be determined

by how many elements in 𝐘 are zero and ignorable.

2 Algorithm

The proposed procedure SPARK is formulated as the following constrained mini-

mization problem;

min
𝐌,𝐘

f (𝐌,𝐘) = ||𝐗 −𝐌𝐘′||2 (5)

subject to the sparsity constraint (2) and the membership constraint is imposed on

𝐌 such that

mil ∈ {0, 1} and

∑

l
mil = 1. (6)

The parameter matrices are alternately and iteratively updated in the M-step and

Y-step, respectively, starting from multiple sets of initial values in order to avoid

accepting a local minimum as the final solution. In these steps, the current parameter

matrix is replaced by the one minimizing (1) keeping the other parameter matrix

fixed. The update formulae used in the M-step and Y-step are presented as follows.

M-step The minimization of f (𝐌,𝐘) with fixed 𝐘 subject to (6) is achieved by the

k-means algorithm with the fixed centroid (MacQueen 1967). Therefore, the optimal

𝐌 = {mil} is obtained by

mil =

{
1 (l = arg min

l
f (𝐌,𝐘))

0 (otherwise)
, (7)

for i = 1,… , n.

Y-step Using the matrix 𝐂 = 𝐗′𝐌(𝐌′𝐌)−1, (1) is rewritten as



410 N. Yamashita and K. Adachi

f (𝐌,𝐘) = ||𝐗 −𝐌𝐘′||2

= ||𝐗 −𝐌𝐂′ +𝐌𝐂′ −𝐌𝐘′||2

= ||𝐗 −𝐌𝐂′||2 + ||𝐃1∕2(𝐂 − 𝐘)||2

−tr(𝐗 −𝐌𝐂′)′(𝐌𝐂′ −𝐌𝐘′). (8)

where 𝐃 = diag{d11,… , dll,… , dkk} denotes the k × k diagonal matrix whose lth
diagonal element is equal to the number of the observations classified into the lth
cluster (l = 1,… , k). The third term is proved to be zero as follows;

tr(𝐗 −𝐌𝐂′)′(𝐌𝐂′ −𝐌𝐘′)
= tr𝐗′𝐌(𝐌′𝐌)−1𝐌′𝐗 − tr𝐗′𝐌(𝐌′𝐌)−1𝐌′𝐗 − tr𝐗′𝐌′𝐌 + tr𝐗′𝐌′𝐌
= 0. (9)

Therefore, minimizing the second term in (8), g(𝐘) = ||𝐃1∕2(𝐂 − 𝐘)||2, is equiv-

alent to the minimization of f (𝐌,𝐘) with respect to 𝐘. Further, g(𝐘) is rewritten

as

g(𝐘) =
∑

(j,l)∈Z
d1∕2

ll c2jl +
∑

(j,l)∈Z⊥

d1∕2
ll (cjl − yjl)2 ≥

∑

(j,l)∈Z
d1∕2

ll c2jl (10)

where the Z denotes r pairs of indices (j, l)s indicating the locations of yjls to be

zero. The last equality holds when the second term in (10) is equal to zero, that is,

when yjl with (j, l) ∈ Z⊥

is taken equal to the corresponding cjl. In addition, the limit

∑
(j,l)∈Z d1∕2

ll c2jl is minimal when Z is composed of the indices of the r smallest c2jls
among all squared elements in 𝐂. Therefore, 𝐘 that minimizes g(𝐘) is obtained as

yjl =

{
0 (iff c2jl ≤ c2[r])
cjl (otherwise)

(11)

for l = 1,… , k and j = 1,… , p, where c2[r] denotes the rth smallest value among all

c2jls. The update formulae (7) and (11) are used in the M-step and Y-step, respectively,

and it is guaranteed that function value of f (𝐌,𝐘) monotonically decreases in each

of these steps. As presented in this section, 𝐌 and 𝐘 are alternately updated until the

convergence is reached. In the following real data examples, we used 100 different

initial values for 𝐌 and 𝐘.

3 Sparsity Selection Based on Information Criteria

In the proposed procedure, the number of zeros in 𝐘 has to be specified as a positive

integer r in (2). In this article, the minimum and maximum of r, rmin, rmax, are defined

as
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rmin = 1, rmax = p × (k − 1) (12)

considering that 𝐘 has p non-zero elements when 𝐘 has a perfect cluster structure;

each variable is associated with only one cluster. Selecting the number of zero ele-

ments in 𝐘 can be considered as a model selection problem, since this selection

partially specifies the model part of 𝐌𝐘′
fitted to 𝐗. In this respect, the information

criterion such as AIC and BIC is suitable for specifying r, which controls how sparse

the model is to be fitted to the data. In this section, we propose two criteria in order

to select the “best” r among the interval [rmin, rmax].
Here, let 𝐄 = {eij} be the matrix of errors defined as 𝐄 = 𝐗 −𝐌𝐘′

. Under the

assumption that 𝐗 is generated by 𝐗 = 𝐌𝐘′ + 𝐄 with eij distributed independently

and identically according to N(0, 𝜎2) for all is and js with a specific error variance 𝜎

2
,

it can be shown that the least squares estimation and maximum likelihood estimation

in SPARK are equivalent. The log-likelihood function to be maximized in the ML

estimation is

l(𝐌,𝐘) = −
np
2

log ||𝐗 −𝐌𝐘′||2 (13)

including f (𝐌,𝐘) to be minimized in the least square estimation. With an arbitrary

r, the maximum of l(𝐌,𝐘) is attained as

l(𝐌,𝐘) ≤ −
np
2

log fmin(r). (14)

where fmin(r) denotes the attained function value of (1). By (14), the information

criteria AIC(r) and BIC(r) with the specific r are obtained by

AIC(r) = np × log fmin(r) + 2𝜈(r) (15)

BIC(r) = np × log fmin(r) + log(np) × 𝜈(r) (16)

where 𝜈(r) denotes the number of parameter to be estimated with a certain r;

𝜈(r) = n + kp − r, (17)

Therefore, r can be determined by r = arg min
rmin≤r≤rmax

AIC(r) or BIC(r) in terms of min-

imizing the model selection criteria. This approach is considered to be computation-

ally inefficient, however, as of 100 run of SPARK are required, in order to avoid a

local minimum, for each of all possible rs. When 𝐗 is of a large size, (𝐗 contains

many observations and variables) the resulting centroid matrix is also of a large size,

and thus higher computational cost is required for each run.

In order to find such r with lower computational cost, we propose the following

algorithm.
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Step 1. Set Sinitial and Sdecrease to an integer within the range [0, 1]. Set rt = Sinitial ×
rmax

Step 2. Repeat Step 3 to Step 4 while S > 1.

Step 3. (Forward search) Repeat (a) to (c).

(a) Set r = rt and compute

𝛥AIC(r) = AIC(r + 1) − AIC(r) (18)

or

𝛥BIC(r) = BIC(r + 1) − BIC(r) (19)

(b) If 𝛥AIC(r) or 𝛥BIC(r) is smaller than 0, set rt = rt + S and go back to 2.

Otherwise proceed to (c).

(c) Set S = S × Sdecrease and proceed to the backward search.

Step 4. (Backward search) Repeat (a) to (c).

(a) Set r = rt and compute 𝛥AIC(r) or 𝛥BIC(r).
(b) If 𝛥AIC(r) or 𝛥BIC(r) is greater than 0, set rt = rt − S and go back to 4.

Otherwise proceed to (c).

(c) Set S = S × Sdecrease and proceed to the forward search.

Step 5. If the previous step is Forward search, repeat barkward search with S =
1 until 𝛥AIC(r) or 𝛥BIC(r) is positive; otherwise repeat Forward search
𝛥AIC(r) or 𝛥BIC(r) is negative.

The above algorithm seeks r which minimizes AIC(r) or BIC(r) within the range

[rmin, rmax] by repeating the forward and backward search and reducing the step size

S at each step of the iteration, starting from the initial step size rmax × Sinitial. The rate

of decrement of the step size is controlled by Sdecrease. The total computational cost

is therefore dramatically reduced compared with applying SPARK for computing

AIC(r) or BIC(r) for all rs. In the following simulation and the real data examples,

we set Sinitial = 0.9 and Sdecrease = 0.7 which is empirically confirmed to be well-

performed.

4 Real Data Examples

In this section, we demonstrate that SPARK extracts the sparse centroids underlying

the dataset and facilitates interpretation of the centroid, with keeping the correctness

of classification.
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4.1 Example 1: Fisher’s Iris Data

In the first example, SPARK was applied to Fisher’s Iris data, where 150 samples,

which are originally sampled from three species, were measured with respect to four

variables. In order to find the optimal sparsity, the sparsity selection procedure based

on BIC was used. It suggested that r = 2 was the best, and we also applied the stan-

dard k-means clustering to Iris data for comparison.

The estimated centroids are shown in Table 1 as a heatmap. As found in Table 1,

the contrast between the first (C1) and the second (C2) clusters can be seen in

Sepal.Length and Sepal.Width. In addition, C2 is different from the rest of clus-

ters with respect to Sepal.Width The contingency table of two partitions, the species

of samples and the estimated membership, for SPARK and the one for k-means, are

shown in Table 2. It can be seen that the estimated memberships correspond to the

species, in that (49 + 37 + 42)∕150 = 85.3% of the observations are correctly classi-

fied, while (50 + 39 + 36)∕150 = 89.2% in the k-means. These results indicate that

SPARK appropriately produces sparser and thus easy-to-interpret centroid matrix in

comparison with the exiting method, keeping the accuracy of classification.

Table 1 Estimated centroid matrices by SPARK for Fisher’s iris dataset with r = 2 and k-means

clustering

Sepal.Length Sepal.Width Petal.Length Petal.Width

SPARK C1 1.065 0.966 0.999

C2 −0.928 0.322 0.236

C3 −1.011 0.850 −1.301 −1.251
k-means C1 1.132 0.088 0.993 1.014

C2 0.050 −0.880 0.347 0.281

C3 −1.011 0.850 −1.301 −1.251

Table 2 Contingency table for species versus the estimated partitions by SPARK and k-means

SPARK k-means

C1 C2 C3 C1 C2 C3

Setosa 49 0 0 50 0 0

Versicolor 1 37 8 0 39 14

Virginica 0 13 42 0 11 36
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4.2 Example 2: Vicon Physical Action Dataset

The second example is Vicon Physical Action Dataset (Lichman 2013). A subject’s

walking was recorded by the 3-axis motion sensors attached to the subject’s right and

left wrists, elbows, knees, and ankles. The activity was recorded for approximately

8000 ms with the frequency of 20 Hz. Therefore we have 24 (x-/y-/z-axis sensors of

right and left wrists, elbows, knees and ankles) × 173 (time elapsed) data matrix.

k-means clustering is applied to the data matrix and the resulting centroid matrix is

shown in Fig. 1 as a heatmap. The number of clusters is set to 5 which explains 75%

of the total variance of the dataset.

We can interpret the estimated five clusters by referring the 173 × 5 centroid

matrix as follows. For example, the first (C1) and the second (C2) clusters are well

discriminated against the others; the first cluster is characterized by the lower output

value in the middle phase of records (around 2000–6000 ms) and the higher value

in the latter phase (around 6000–8500 ms), while this variation in the sensor outputs

is shifted for 2000 ms earlier in the second cluster. The third (C3), fourth (C4) and

fifth (C5) clusters are, however, hard to be discriminated mutually, in that the time

evolutions of values are similar to each other especially in the early phase.

Before applying SPARK to the dataset, the sparsity selection procedures were

applied. The AIC- and BIC-based procedures suggested that r = 332 and r = 461
were the best, respectively. We therefore determined to set r = 461 in order to obtain

the sparser centroid matrix. This means that approximately 53.3% of the all elements

of the centroid matrix were estimated as zero. The number of clusters was set at 5,

as in the example of the k-means clustering in Sect. 1.
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Fig. 1 Estimated centroid matrix by SPARK with r = 461 and k-means (absolute transformed) for

Vicon Physical Action Dataset
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Table 3 Estimated membership of 24 sensors; x/y/z-axis senror on the right (R) and left (L) wrist,

elbow, knee and anckle

wrist elbow knee ankle

L R L R L R L R

C1 z z

C2 z z

C3 y/z y y/z y y y y y

C4 x x x x x x x x

C5 z z

The resulting centroid matrix is represented as a heatmap in Fig. 1. The elements

estimated as zero are colored in white. It can be seen that, compared with the stan-

dard k-means clustering, the estimated centroid is sparse enough and the contrasts

between clusters are clearer than in the k-means clustering solution. Based on the

sparse centroid, each cluster can be interpreted as follows; the sensors classified into

the first cluster show the lower values from approximately 2000–5000 ms and the

higher values from 6500 ms to the end of recording, and this variation of sensor

outputs is earlier by 1500 ms in the second cluster. The third cluster is character-

ized by the lower values around 6000 ms, which makes the cluster different from the

other clusters. In the fourth cluster, the lower values and the higher values alternately

appear except in the early phase of recording, while the sensor outputs are almost

stable in the fifth cluster.

The centroids obtained by k-means are less sparse than the centroids for SPARK

and the characteristics of clusters are unclear. As a measure of interpretability,

Lorenzo-Seva (2003) proposed the index of simplicity called LS index in the context

of factor analysis. The LS index ranges from 0 (least simple) to 1 (most simple) and

the values LS index for the centroid matrices were 0.313 in the k-means and 0.590 in

the SPARK, which indicates the sparsely estimated centroids are more simple and

thus more interpretable compared with the existing method.

The sensor classified into each cluster are shown in Table 3. The first cluster is

composed of the z-axis sensors on the right arm, while those on the left arm are

classified into the third cluster. It indicates that the subject’s horizontal movement in

the left and right arms are expressed in the first and the second clusters. The third

cluster is composed of 10 sensors, the y/z-axis sensors on the left arm and the y-

axis sensors on the leg. The x-axis sensor on all parts are classified into the fourth

cluster, and refereeing the sparse centroids in Fig. 1 therefore indicate that the clear

difference between the x-axis and the y-axis movement is observed around 6000 ms.
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5 Concluding Remarks

In this article, we proposed a new procedure of clustering called SPARK, which

produces a sparse centroid matrix The interpretation of the centroid matrix is eas-

ier compared with the ordinal k-means clustering by the sparsity constraint imposed

on the centroid matrix. It is also possible to obtain such sparse centroid by adding a

penalty term to the loss function of k-means clustering, as proposed by some authors.

These procedures mainly aims to improve the robustness of clustering through the

sparse estimation of centroid matrix. In SPARK, on the other hand, we rather focus

on the interpretability of the resulting centroid matrix than robustness. The sparse-

ness of the centroid matrix is therefore controlled by the number of zero elements in

the centroid matrix, which is closely related to its interpretation. The results of the

two real data examples indicate that the estimated sparse centroids surely facilitates

to capture the characteristic of the clusters.
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