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Abstract Assuming a “synthetic population” and imposing strong assumption to

estimate score distributions has been the traditional practice when performing equat-

ing under the nonequivalent groups with anchor tests design (NEAT). In this paper,

we use the concept of partial identification of probability distributions to offer

an alternative to this traditional practice in NEAT equating. Under this approach,

the score probability distributions used to obtain the equating transformation are

bounded on a region where they are identified by the data. The advantages of this

approach are twofold: first, there is no need to define a synthetic population and,

second, no particular assumptions are needed to obtain bounds for the score prob-

ability distributions that are used to build the equating transformation. The results

show that the uncertainty about the score probability distributions, reflected on the

width of the bounds, can be very large, and can thus have a big impact on equating.

Keywords Test equating ⋅ NEAT design ⋅ Partial identifiability ⋅ Ignorability

condition

1 Introduction

Test equating is used to make scores from different test forms comparable. An equat-

ing transformation function is used to map the scores on one scale into their equiva-

lents on the other. Before this score transformation takes place, it is necessary to con-

trol for test takers ability differences, and different data collection designs have been

described in the equating literature for such purpose (von Davier et al. 2004, Chap. 2;

Kolen and Brennan 2014, Sect. 1.4 and González and Wiberg 2017, Sect. 1.3.1).

These equating designs differ in that either common persons or common items are
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used to perform the score transformation. In this paper we will focus the attention

on the nonequivalent groups with anchor test design (NEAT).

The NEAT design is widely used in test equating. Under this design, two groups

of test takers are administered separate test forms with each test form containing a

common subset of items. Because test takers from different populations are assigned

only one test form, missing score data emerge by design rendering some of the score

distributions unavailable. The equating literature has treated this problem from dif-

ferent perspectives all of them making different assumptions in order to estimate the

missing score distributions. In this paper, we offer an alternative view that is free of

these types of assumptions to obtain the score distributions under a NEAT design.

We first argue that, rather than viewing the problem as one of missing data, there

is an inherent identifiability problem underlying the NEAT design. Then, we further

argue that the typical assumptions on the equality of conditional distributions are

nothing more that identifiability restrictions. Because these assumptions might be too

strong, and, moreover, are not empirically testable, we offer an alternative that does

not make use of any assumption and show that the non identified score distributions

are actually partially identified, deriving bounds for them on the partially identified

region.

The rest of this paper is organized as follows. We first briefly revisit the current

view on the NEAT design, including the definition of synthetic population and the

assumptions commonly made to estimate score distributions. Then we introduce our

view on the NEAT design as an identifiability problem and derive bounds where

the non identified score distributions are partially identified. An illustration using

an hypothetical data example appearing in the equating literature is presented. The

paper ends with final remarks and ideas for future work.

2 NEAT Equating: The Current and an Alternative View

2.1 Notation and Preliminaries

Let X ∈  and Y ∈  be the random variables representing test scores from tests

forms X, Y. As mentioned before, the equating function 𝜑 ∶  ↦  defined as

𝜑(x) = F−1
Y (FX(x)) maps the scores on the scale  into their equivalents on the 

scale (González and Wiberg 2017). This definition is established for 𝜑 defined on

a common population where the equating is to be performed (Braun and Holland

1982). Accordingly, the score cumulative distribution functions used to build the

equating transformation, should also be defined on a common population that will

be denoted as T .

When single groups (SG), equivalent groups (EG) or counter balanced groups

(CB) equating designs are considered, defining 𝜑 on a common population does

not constitute a problem as samples of test takers are in fact taken from the same

population. However, this is not the case for the NEAT design where samples of test

takers come from two different populations, called here P and Q. As a consequence,
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score distributions of X and Y are defined in both P and Q and we denote these

distributions here as FXP(x), FYP(y), FXQ(x), and FYQ(x), respectively.

2.2 NEAT Equating: The Current View

To solve the problem of defining the equating transformation on a common popu-

lation, the equating literature has resorted in what is called a synthetic population
(Braun and Holland 1982). This definition conceptualizes a common population as

a weighted combination of P and Q in the form

T = wP + (1 − w)Q, (1)

where w is a weight such that 0 ≤ w ≤ 1. Using this definition, the corresponding

score distributions used to build the equating transformation are obtained as

FXT (x) = wFXP(x) + (1 − w)FXQ(x)
FYT (y) = wFYP(y) + (1 − w)FYQ(y). (2)

A typical representation of the NEAT equating design is shown in Table 1. From

the table, it can be seen that because test takers in P are only administered test

X and those in Q are only administered Y, the corresponding score distributions

FXQ and FYP needed to obtain FXT and FYT in (2) are said to be missing. Addi-

tional assumptions are thus needed to estimate them, and here is where the anchor

test, A, has played a fundamental role. Most commonly, it is assumed that the

conditional score distributions of X and Y given A are the same in both popula-

tion: FXP(x ∣ a) = FXQ(x ∣ a) and FYP(y ∣ a) = FYQ(y ∣ a), with A ∈ . Using these

assumptions, and the fact that marginal distributions of A are indeed observed in

both populations, the score distributions of X and Y in T are obtained by marginal-

izing the joint distributions over A. The obtained score distributions are then used to

build 𝜑(x) = F−1
YT (FXT (x)).

2.3 NEAT Equating: An Alternative View

Rather than facing missing score distribution, what happens in reality is that the

sampling process underlying the NEAT design does not give information on FYP
and FXQ, and thus the target score distributions FXT (x) and FYT (y) are not identified.

Table 1 Schematic representation of the NEAT design

Population Sample X Y A

P 1 ✓ ✓
Q 2 ✓ ✓
Note X and Y are test forms. A is an anchor test
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Moreover, the assumptions on equality of conditional score distributions are actually

identification restrictions.

To introduce these ideas better, let us briefly revisit the definition of identifiabil-

ity. If 𝜃 is a parameter indexing a family of distributions {f (x ∣ 𝜃) ∶ 𝜃 ∈ 𝛩}, then

𝜃 is said to be identified if distinct values of it lead to distinct probability distribu-

tions (Casella and Berger 2002). Equivalently, if the probability distribution can be

uniquely determined by 𝜃, then 𝜃 is identified. If the probability distribution cannot

be uniquely determined (i.e., the model is not identified), putting certain restrictions

on the parameter space can make the model identifiable.

In what follows, we show that the score distributions needed to build the equating

transformation are identified on a bounded region. No assumptions or restrictions

are needed for the derivation of these bounds.

2.3.1 Conditional Score Distributions with No Assumptions

Although the marginal score distributions are of main interest to build the equat-

ing transformation, we start analyzing the conditional score distributions as they are

typically used in NEAT equating.

Let Z be a binary variable such that

Z =
{

1, if test taker is administered X in P;
0, if test taker is administered Y in Q. (3)

Then, by the law of total probability (Kolmogorov 1950), it follows that

(a) P(X ≤ x ∣ A) =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A)+ (4)

P(X ≤ x ∣ A,Z = 0)P(Z = 0 ∣ A),
(b) P(Y ≤ y ∣ A) =P(Y ≤ y ∣ A,Z = 1)P(Z = 1 ∣ A)+

P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A).

The statistical model underlying the NEAT design is accordingly parameterized

by the parameters {P(X ≤ x ∣ A = a),P(Y ≤ y ∣ A = a)}. In order to show that these

parameters are not identified, consider the following comments on (4):

1. P(X ≤ x ∣ A = a,Z = 1) is the conditional score probability of X given A for a

test taker who actually answered form X (i.e., sampled from P) and scored A = a
on the anchor test.

2. P(Z = 1 ∣ A = a) corresponds to the proportion of test takers who were adminis-

tered form X (or equivalently, proportion of people sampled from P) and scored

A = a on the anchor test.

3. P(Z = 0 ∣ A = a) corresponds to the proportion of test takers who were adminis-

tered form Y (or equivalently, proportion of people sampled from Q) and scored

A = a on the anchor test.
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4. P(X ≤ x ∣ A = a,Z = 0) is the conditional score probability of X for a test taker

who was actually administered form Y (or sampled from Q).

Consequently,P(X ≤ x ∣ A = a) corresponds to the probability of scoring x on test

form X as if all test takers with a score A = a were administered test form X. How-

ever, this conditional probability is not identified. As a matter of fact, the data gener-

ating process that underlies the NEAT design only identifies P(X ≤ x ∣ A = a,Z = 1)
and P(Z = z ∣ A) for z ∈ {0, 1}. However, it does not provide any information about

P(X ≤ x ∣ A = a,Z = 0) and therefore the sampling process only reveals that

P(X ≤ x ∣ A = a) =P(X ≤ x ∣ A = a,Z = 1)P(Z = 1 ∣ A = a)+
𝛾 P(Z = 0 ∣ A)

for some unknown probability distribution 𝛾 . Therefore, P(X ≤ x ∣ A = a) cannot be

uniquely determined because 𝛾 can not be uniquely chosen. Consequently, P(X ≤ x ∣
A = a) is not identified. Similar conclusions can be drawn for P(Y ≤ y ∣ A).

In practice, P(X ≤ x ∣ A) and P(Y ≤ y ∣ A) are identified under an hypothesis of

strong ignorability (e.g., Rosenbaum and Rubin 1983), namely

P(X ≤ x ∣ A,Z = 1) =P(X ≤ x ∣ A,Z = 0) = P(X ≤ x ∣ A),
P(Y ≤ y ∣ A,Z = 1) =P(Y ≤ y ∣ A,Z = 0) = P(Y ≤ y ∣ A), (5)

which, in the context of the current application can compactly be defined as

(X,Y) ⟂⟂ Z ∣ A. (6)

As a matter of fact, the strong ignorability condition essentially tells us that 𝛾 is

not unknown, but it coincides with P(X ≤ x ∣ A = a,Z = 1). This implies that P(X ≤

x ∣ A = a) is uniquely determined, and thus identified. It is necessary to emphasize

that the strong ignorability condition cannot empirically be refuted and, therefore, it

should be justified in the context of an application.

2.3.2 Partially Identified Probability Distributions

The strong ignorability condition can be avoided if we find a region where the score

probabilities are actually identified. In this section we show that such region indeed

exists. As a matter of fact, because P(X ≤ x ∣ A,Z = 0) is bounded between 0 and 1,

from (4) it can easily be verified that

Lx ≤ P(X ≤ x ∣ A) ≤ Ux, (7)
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where

Lx =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A) (8)

Ux =P(X ≤ x ∣ A,Z = 1)P(Z = 1 ∣ A) + P(Z = 0 ∣ A)

Analogously for Y it can be verified that

Ly ≤ P(Y ≤ y ∣ A) ≤ Uy, (9)

where

Ly =P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A) (10)

Uy =P(Y ≤ y ∣ A,Z = 0)P(Z = 0 ∣ A) + P(Z = 1 ∣ A)

Thus, the conditional score distributions are partially identified (Tamer 2010)

on regions defined by the derived bounds. Note that the length of the intervals for

P(X ≤ x ∣ A) and P(Y ≤ y ∣ A) are P(Z = 0 ∣ A) and P(Z = 1 ∣ A), respectively, and

as mentioned before they correspond to the proportion of test takers in P and Q,

respectively, for a given score A.

2.3.3 Marginal Distributions with No Assumptions

The equating transformation 𝜑 is built from marginal score distributions defined on

a common population. It is thus of interest to examine if the preceding arguments

are also valid when the conditional distributions are marginalized over the anchor

scores. It is easy to see that marginalizing over A in (4) we obtain

P(X ≤ x) = P(X ≤ x ∣ Z = 1)P(Z = 1) + P(X ≤ x ∣ Z = 0)P(Z = 0). (11)

Note that the identifiability problem still remains in the marginal score distri-

bution as P(X ≤ x ∣ Z = 0) is non identified. However, because this probability is

bounded between 0 and 1, we can show similarly as before that P(X ≤ x) can also be

bounded. In fact,

Lx ≤ P(X ≤ x) ≤ Ux, (12)

where

Lx =P(X ≤ x ∣ Z = 1)P(Z = 1) (13)

Ux =P(X ≤ x ∣ Z = 1)P(Z = 1) + P(Z = 0)

Note that using the definition in (3), Eq. (11) can be rewritten as

FX(x) = wFXP(x) + (1 − w)FXQ(x) (14)
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withw = P(Z = 1). Interestingly, the right hand sides of Eqs. (2) and (14) are visually
identical. This result would indicate that the weights in the definition of a synthetic

population are actually related to the proportion of test takers in the populations and

thus should not be arbitrarily chosen. Moreover, w corresponds to the length of the

interval where the score distribution is partially identified. Analogous results as the

ones shown in (11), (12), (13), and (14) can be derived for P(Y ≤ y).
A natural question at this stage is how FX(x) and FY (y) compare to FXT (x) and

FYT (y), respectively. Such comparison is not possible because the formers distri-

butions are not identified and thus non observable. We have shown that they are

however partially identified on a bounded region so that it is possible to evaluate

the behavior of the bounds and how it relates to the target distributions tradition-

ally obtained in NEAT equating using the definition of synthetic population and the

ignorability condition. This is done in the following section.

Table 2 Bivariate score frequencies (X,A) and (Y ,A)
X A Frequency Y A Frequency

0 0 4 0 0 4

0 1 4 0 1 3

0 2 2 0 2 1

0 3 0 0 3 0

1 0 4 1 0 7

1 1 8 1 1 5

1 2 2 1 2 7

1 3 1 1 3 1

2 0 6 2 0 3

2 1 12 2 1 5

2 2 5 2 2 12

2 3 2 2 3 2

3 0 3 3 0 3

3 1 12 3 1 4

3 2 5 3 2 13

3 3 5 3 3 5

4 0 2 4 0 2

4 1 3 4 1 2

4 2 4 4 2 5

4 3 6 4 3 6

5 0 1 5 0 1

5 1 1 5 1 1

5 2 2 5 2 2

5 3 6 5 3 6
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3 Illustrations

3.1 Data

We use data from an hypothetical example shown in Kolen and Brennan (Kolen and

Brennan (2014), Sect. 5.1.3). In this example forms X and Y each contain 5 items

and 3 common items. The data in Kolen and Brennan (2014) are originally displayed

as joint probabilities fXP(x, a) = P(X = x,A = a) and fYQ(y, a) = P(Y = y,A = a) and

we use this information to create raw data as displayed in Table 2. The table shows

bivariate score frequencies for each test form. From the table, it can be seen that,

for instance, 8 test takes scored X = 1 and A = 1, whereas 13 scored Y = 3 and

A = 2, etc. For the information in the table (frequency), it follows that the sample

size considered is 100 for both populations.

3.2 Results

Figure 1 shows a graphical representation of the bounds derived in (8) for the case

when A = 2. From the figure, it can be seen that the bounds for the conditional dis-

tribution of X given A are wider than the ones for the conditional distribution of Y
given A, when A = 2. Note, however, that this situation could change for other values

of the anchor score. Moreover, the curves are parallel in the sense that the length of

the intervals are constant for all values of scores on the scale, for a given value of A.

Fig. 1 Bounds for

conditional score

distributions

P(X ≤ x ∣ A = 2) and

P(Y ≤ y ∣ A = 2)
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Table 3 Target cumulative distributions for Forms X and Y scores, and derived bounds

Score FXT [Lx,Ux] FYT [Ly,Uy]
0 0.100 [0.050; 0.550] 0.105 [0.040; 0.540]

1 0.250 [0.125; 0.625] 0.320 [0.140; 0.640]

2 0.500 [0.250; 0.750] 0.530 [0.250; 0.750]

3 0.750 [0.375; 0.875] 0.755 [0.375; 0.875]

4 0.900 [0.450; 0.950] 0.900 [0.450; 0.950]

5 1.000 [0.500; 1.000] 1.000 [0.500; 1.000]

Fig. 2 Bounds for

FX(x) = P(X ≤ x) and

FY (y) = P(Y ≤ y), and target

score distributions FXT (x)
and FYT (y) for the case w = 1

This is due to the fact that, as seen at the end of Sect. 2.3.2, the length of the intervals

are defined by P(X ≤ x ∣ A) and P(Y ≤ y ∣ A).
Next, we calculated the bounds derived in Sect. 2.3.3 for each of the marginal

score distributions. Because the real value of FX and FY is unknown, we use the

derived target cumulative distribution functions FXT and FYT as reference for com-

parison. The latter where obtained assuming that w = 1. Table 3 shows the target

cumulative distributions and the corresponding bounds where the marginal score

distributions are partially identified. Figure 2 shows a graphical representation of

these results.

From Table 3 and Fig. 2, it can be seen that all the values of FXT and FYT lie in the

intervals [Lx,Ux] and [Ly,Uy], respectively, as expected. Note also that the intervals

have length equal to 0.5. This is because the sample sizes in both populations is

exactly the same (100 in this case), so that P(Z = 1) = P(Z = 0) = 100
200

= 0.5 (see

comments on Sect. 2.3.3 below Eq. (14)).
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4 Concluding Remarks

In this paper, we have argued that there is an inherent identification problem underly-

ing the NEAT equating design. The assumption on the equality of conditional score

distributions, typically made in NEAT equating and called here an ignorability con-

dition, has been shown to actually be an identification restriction. We offered an

alternative to the ignorability condition and proposed to work with partially identi-

fied probability distributions.

The derived bounds on the partially identified region showed that there is huge

uncertainty about the probability distributions that are to be used for equating. The

actual impact of this method on equating is currently being investigated by the

authors.

The exposition focused on poststratification equating under the NEAT design.

However, the identifiability problem also arises for the case when chained equiper-

centile equating (e.g., Kolen and Brennan 2014) is used to equate score data collected

under the NEAT design. In fact, different assumptions are needed to identify the tar-

get score distributions used to build the equating transformation (see, e.g., von Davier

et al. 2004, Sect. 2.4.1). The derivation of bounds where the score distributions are

partially identified for the case of chained equating is currently being investigated by

the authors.
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