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Abstract. [Context and motivation] Identifying requirements
defects such as ambiguity and incompleteness is an important and chal-
lenging task in requirements engineering (RE). [Question/Problem]
We investigate whether combining humans’ cognitive and analytical
capabilities with automated reasoning is a viable method to sup-
port the identification of requirements quality defects. [Principal
ideas/results] We propose a tool-supported approach for pinpoint-
ing terminological ambiguities between viewpoints as well as missing
requirements. To do so, we blend natural language processing (concep-
tual model extraction and semantic similarity) with information visual-
ization techniques that help interpret the type of defect. [Contribution]
Our approach is a step forward toward the identification of ambiguity
and incompleteness in a set of requirements, still an open issue in RE. A
quasi-experiment with students, aimed to assess whether our tool delivers
higher accuracy than manual inspection, suggests a significantly higher
recall but does not reveal significant differences in precision.
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1 Introduction

Defects in natural language (NL) such as ambiguity, unclarity, inconsistency, and
incompleteness are common issues in requirements engineering (RE) [1–3], and
they can lead to misunderstandings between stakeholders, overlooked require-
ments, and software systems that do not meet the stakeholders’ needs.

The identification of requirements defects is no trivial task. Automated solu-
tions are inhibited by the low maturity of NL processing (NLP) techniques—
unable to gain a deep understanding of text [4]—and the necessary trade-offs
between precision and recall [2,5,6]. On the other hand, manual approaches that
rely on human intelligence and the application of inspection checklists, do not
scale to large specification. Luckily, the two approaches are not incompatible.
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We make a step toward the synergistic use of NLP and human analysis as
part of our research on user stories and agile RE. User stories are semi-structured
notation for user requirements with a simple format [7]: As a student, I want to
receive my grades via e-mail, so that I can quickly check them. We take as input the
terms and relationships that are automatically extracted by our Visual Narrator
tool [8] from a set of user stories. Unfortunately, despite its high extraction accu-
racy, Visual Narrator does not assist analysts to inspect the resulting graphical
model, thereby making our approach impractical for large models.

In this paper, we modularize the models extracted from user story require-
ments by leveraging the viewpoints [9] that user stories natively express through
their format (As a user . . . ; As a developer . . . ). Such approach is embedded in a
Web 2.0 tool that blends NLP and information visualization (InfoVis) techniques
with the aim of identifying potential ambiguities and missing requirements.

We make four concrete contributions:

– We construct a framework that defines potential ambiguity and incomplete-
ness based on the terminology and denotations used in different viewpoints.

– We build an algorithm for identifying (near-)synonyms that orchestrates state-
of-the-art semantic similarity algorithms from the NLP domain.

– To help analysts explore potential defects, we propose a Venn diagram visual-
ization that organizes the extracted terms according to the viewpoint(s), and
emphasizes terminological ambiguity using colors.

– We report on a quasi-experiment that assesses whether pairs of analysts using
the tool on a large interactive screen obtain higher precision and recall in
identifying quality defects than analysts working pen-on-paper.

Organization. We explain our framework for identifying ambiguity and incom-
pleteness starting from viewpoints in Sect. 2, then present the algorithm for
detecting (near)-synonymy ambiguity in Sect. 3. We introduce our Venn diagram
visualization in Sect. 4. We report on the evaluation in Sect. 5, discuss related
work in Sect. 6, draw conclusions and present future directions in Sect. 7.

2 From Viewpoints to Ambiguity and Incompleteness

The different stakeholders of a software system are interested in distinct aspects.
For example, website administrators care about content creation and structuring,
while readers are mostly concerned in accessing existing content. According to
Mullery [10], a viewpoint is a description of one stakeholder’s perception of a
system, and it consists of concepts and inter-relationships between them.

The existence of viewpoints inevitably leads to inconsistencies and conflicts
in stakeholders’ requirements. Recognizing and reconciling these issues are key
tasks in RE [11], and they amount to (i) checking the consistency of the specifica-
tion within one viewpoint (in-viewpoint checks), and (ii) checking the consistency
of the specification among different viewpoints (inter-viewpoint checks) [9].

Viewpoints may also introduce ambiguity problems due to the use of differ-
ent terminology and conceptual systems (how an expert assigns meaning to a
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term [12]). The descriptions of a domain by different experts lead to four types
of relationships that depend on their chosen terminology (bank, car) and the
distinctions (also known as denotations) in the domain that the terms refer to
(a financial institution, a ground alongside a body of water, a road vehicle) [12]:

1. Consensus: same terminology, same distinction. Example: both experts use
the term bank to refer to a financial institution.

2. Correspondence: different terminology, same distinction. Example: when
referring to a road vehicle, one expert uses car and the other uses automobile.

3. Conflict : same terminology, different distinction. Example: both experts use
bank, but one refers to a financial institution, while the other to a ground.

4. Contrast : different terminology, different distinction. Example: one viewpoint
examines road vehicles, the other focuses on financial institutions.

A requirement is ambiguous when it has multiple valid interpretations [13].
We argue that when a collection of requirements contains terms related by corre-
spondence or conflict, there is a possible ambiguity. Furthermore, possible miss-
ing requirements may arise due to contrast. Table 1 formalizes these concepts.

Table 1. Linking viewpoints’ terminological and denotational relations [12] with possi-
ble ambiguity and incompleteness. Let t1, t2 be distinct terms, �t�V1 be the denotation
of term t according to the viewpoint V1 (for simplicity, we assume that denotations
refer to a single entity), and ⊥ indicate absence of a denotation.

Relation [12] Possible defect Defect formalization Example

Consensus - �t1�V1 = �t1�V2 �bank�V1 = financial institution

�bank�V2 = financial institution

Correspondence (Near-)synonymy �t1�V1 = �t2�V2 �car�V1 = road vehicle

leading to ambiguity �automobile�V2 = road vehicle

Conflict Homonymy leading to �t1�V1 �= �t1�V2 �bank�V1 = financial institution

ambiguity �bank�V2 = land alongside river

Contrast Incompleteness �t1�V1 �= ⊥ ∧ �t1�V2 = ⊥ �bank�V1 = financial institution

�bank�V2 = ⊥

Consider now an example: take the following four user stories from the
WebCompany data set [8] (terms are emphasized in serif):

R1. As a visitor, I am able to view the media gallery, so that I can see interesting
photos about the event region.

R2. As an administrator, I am able to edit existing media elements of a particular
gallery, so that I can update the content.

R3. As a user, I am able to add content to the selected profile.
R4. As a visitor, I am able to use the contact form, so that I can contact the

administrator.
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Consensus does not lead to any ambiguity. For example, the term adminis-
trator has the same denotation both in R2 and R4 and it refers to the person
managing the website and its users.

Ambiguity may occur with correspondence: distinct terms refer to the same
denotation. The term media gallery in R1 and the term gallery in R2 do likely (but
not necessarily) refer to the same denotation, a web gallery where photographs
are displayed. The problem is that most synonyms are in fact near-synonyms
(plesionyms), as they refer to similar yet not identical denotations [14].

Ambiguity may also occur in the conflict state: the same term is used for
different denotations. This phenomenon is called homonymy. In R2, the term
content refers specifically to a media element, while in R3 the term content may
refer to either text, descriptions, images, videos or audio fragments.

Incompleteness (missing requirements) may occur in the contrast state, i.e.,
in the case in which one viewpoint refers to concepts that do not appear in
another viewpoint. R4 includes contact form that the visitor uses to get in touch
with the administrator. However, there is no other user story in our short col-
lection that specifies how the administrator can respond to this action.

3 NLP-Powered Identification of (Near)-Synonymy

To detect (near)-synonymy between terms that may lead to ambiguity (the
correspondence relationship in Table 1), we develop an NLP-powered algorithm
that integrates state-of-the-art semantic similarity techniques. This algorithm is
used in Sect. 4 to set the terms’ background color in the InfoVis approach.

Our NLP technique relies on algorithms that calculate the semantic dis-
tance between two terms: a numerical representation of the difference in meaning
between two terms [15]. Current state-of-the-art NLP tools, such as Word2Vec,
establish semantic similarity in the [0.0, 1.0] range via word statistics that com-
pare the contexts in which a term is used [16]. The higher the similarity score,
the higher the chance that the two terms have the same denotation.

In this paper, we invoke the Cortical.io1 tool that employs Semantic Folding
Theory (SFT), a novel method that creates sparse distributed representations
of terms (their semantic fingerprint [17]). Each activated bit of the semantic
fingerprint represents a characteristic of that word. For example, some of the
activated bits for the word dog may denote the concepts fur, barking, omnivore,
while some activated bits for the word moose may represent fur, herbivore, horn.
The higher the number of shared activated bits, the higher the similarity between
two words.

Algorithm 1 takes a set of user story requirements and generates an ambiguity
score for all couples of terms that appear in the use stories. In line 1, the Visual
Narrator tool [8] extracts nouns (e.g., car, dog) and compound nouns (e.g., cable
car, sledge dog) from the set userStories. Then (line 2), all combinations of term
pairs are added to the variable termPairs. The algorithm constructs the context
of each term (lines 3–5), i.e., the set of all user stories that contain such term.
1 http://api.cortical.io/.

http://api.cortical.io/
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The loop of lines 6–12 takes care of computing the ambiguity score for each
pair of terms (t1, t2). The semantic similarity of the two terms is computed in
line 7; we use the Cortical.io algorithm based on semantic folding and finger-
prints. Then, the algorithm builds the context of each term pair: all and only the
user stories where exactly one of the two terms occurs (lines 8–10). We exclude
the user stories where both terms occur because we assume that the analyst
who writes a story purposefully chooses the employed terms, and therefore two
distinct terms in the same story are unlikely to be in a correspondence relation.

The similarity score can now be determined–again, via Cortical.io–for the
contexts of each pair of terms (line 11). Finally, the ambiguity score (line 12) is
computed as a linear combination of term similarity and context similarity. We
currently assign a weight of 2 to former and a weight of 1 to the latter.

Algorithm 1. Computing the (near)-synonymy ambiguity score of term pairs
ComputeAmbigScore(Set〈UserStory〉 userStories)

1 Set〈Term〉 usTerms = VisualNarrator(userStories)
2 (Term,Term) termPairs = (t1, t2). t1, t2 ∈ usTerms ∧ t1 �= t2
3 Set〈US〉 ctxs = ∅
4 for each term ∈ usTerms
5 do ctxs.add(userStories.findStoriesThatContain(term))
6 for each (t1, t2) ∈ termPairs
7 do simt1,t2 = semanticSiml(t1, t2)
8 int i = usTerms.indexOf(t1)
9 int j = usTerms.indexOf(t2)

10 (Set〈US〉, Set〈US〉) pairContext = (ctxs[i] \ ctxs[j], ctxs[j] \ ctxs[i])
11 simct1,t2 = semanticSiml(pairContext)

12 ambigt1,t2 =
2 · simt1,t2 + simct1,t2

3

Illustration. Consider the following set of user stories: {us1 = As a tA, I want
. . . , us2 = As a tA, I want to print tC . . . , us3 = As a tB , I want . . . , us4 = As a
tA, I want to save tC and tB . . . , us5 = As a tB , I want to load tC . . . }. Visual
Narrator (line 1) extracts the terms tA, tB , and tC , while line 2 computes all
pairs: (tA,tB), (tA,tC), and (tB ,tC).

Lines 3–5 build the contexts for each term. For example, the context for tA
is {us1, us2, us4}, i.e., {As a tA, I want . . . , As a tA, I want to print tC . . . , As
a tA, I want to save tC and tB . . . }.

Lines 6–11 calculate the ambiguity score for each pair of terms. Take (tA,tB),
and assume that Cortical.io returns a similarity score between the terms (line 7)
of 0.34. The pair of contexts for those terms (line 10) is ({us1, us2}, {us3, us5}).
The semantic similarity algorithm is now launched between the two elements of
the pair of contexts; assume this results in a context similarity of 0.66 (line 11).
Finally, the ambiguity score is determined in line 12 as (2 ·0.34+0.66)/3 = 0.44.
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3.1 Validation of the Ambiguity Score

We determined the weights for simp and simc based on the outcomes of
exploratory tuning attempts: we have analyzed and discussed the outputs of
different weights on training data sets and examples, and we found such weights
to lead to results we perceived as the most representative for our data sets.

While robust, large-scale experiments are necessary to identify optimal values
for the similarity values, we tested the reliability of ambigp with our weights via
a correlation study between the algorithm and human judgment. The details on
the experimental design and data are available online [18].

We employed the WebCompany data set that consists of 98 user story require-
ments. From this, taking the algorithm’s outputs, we randomly extracted 8 term
pairs with a high ambiguity score (≥0.6), 8 pairs with low ambiguity score (≤0.4),
and 8 pairs with medium ambiguity score (between 0.4 and 0.6).

Eight master’s students in information science participated voluntarily. Each
of them filled in a questionnaire that contained 12 term pairs with their contexts
(4 with low ambiguity, 4 medium, 4 high), with the terms allocated in such a way
that every term pair would obtain the same number of judgments. For each term
pair, the participant had to indicate how likely they perceived the term pair to
be ambiguous, using the scale “Impossible”, “Unlikely”, “Likely”, “Certain” or
“Don’t know”. In total, 24 term pairs were processed by the 8 participants.

A Pearson correlation on the data shows a strong and significant positive
correlation between the scores of the algorithm and by the participants, r =
.806, p = <.001. Although the data is not sufficient to draw definite conclusions
about generality and sensitivity, the results are promising.

4 Pinpointing Ambiguity and Incompleteness via InfoVis

Building on the framework of Table 1, we design a novel InfoVis technique for
analysts to explore multiple viewpoints and for helping them pinpoint possible
ambiguity and incompleteness. Our approach, also thanks to Algorithm 1, helps
identify defects concerning the correspondence (synonyms and near-synonyms)
and contrast relations (missing requirements). The conflict relation (homonyms)
is supported to a more limited extent, as explained in this section.

Our visualization is inspired by our previous work on the automated extrac-
tion of conceptual models from user story requirements (the Visual Narrator
tool) [8]. However, despite the high precision and recall, those models become
quickly too large and models for humans to grasp and analyze. This is especially
true when conducting in-depth analyses such as searching for defects.

To improve the situation, we resort to visualizing viewpoints via a Venn
diagram, which is a suitable means for displaying overlapping elements [19].
Figure 1 provides an example where the terms used from three viewpoints (by
the stakeholders Administrator, User and Visitor) are shown alongside their
overlap.
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Fig. 1. Venn diagram visualization of three viewpoints and ambiguous terms.

Finding (near-)synonymy. The visualization outlines the possibly ambiguous
terms by applying Algorithm1. A term’s background color is set depending on
the highest level of ambiguity that term possesses with respect to another term.
As explained below (details-on-demand), this high-level overview can be refined
for more accurate results.

Missing requirements and homonymy. Our approach helps an analyst explore
the relationships between the terms used by multiple stakeholders. Consider the
Venn diagram in Fig. 2 that includes three viewpoints, and whose intersection
produces 7 areas (A–G)2. There are interesting areas for the analyst to examine:

– Areas A, C, G include terms that appear in a single viewpoint. These are loci
where missing requirements may be discovered, because they contain terms
that appear in a single viewpoint. In Fig. 1, for example, the term Plot appears
only in the User viewpoint, but presumably also the Administrator may have
some requirements about this content type.

– Area E contains the terms that are shared by all three viewpoints, while
areas B, D, F include the terms that appear in exactly two viewpoints. The
instances of every term therein—one or more instances per viewpoint—are
either in consensus (no problem) or conflict (possible homonymy) relation.

2 Using triangular shapes, it is possible to show six viewpoints on a 2D space [20].
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Fig. 2. The 7 areas (A–G) of our visualization applied to three viewpoints.

Determining which one of these two relations applies is up to the analyst,
who should examine the user stories that contain those terms. This can be
done using the details-on-demand zoom explained later in this section.

Filters. Our visualization comes with filters that can be applied to hide unwanted
items from the display. We propose three filter types:

1. Concept state filter removes the concepts in a consensus/conflict state or those
in a correspondence/contrast state from the display, so that the requirements
engineer can focus on a given type of possible defects.

2. Viewpoint filter removes some viewpoints from the display, so that the analyst
can focus on the remaining ones. This helps when more than three viewpoints
exist; although it is possible to show six viewpoints without hiding any inter-
section [20], it is more practical to visualize two or three of them.

3. Ambiguity filter shows the elements within a given ambiguity score range.
This can be useful to better examine the elements with high ambiguity score
or to double check those with low-medium score. This is illustrated in Fig. 3.

Fig. 3. Illustration of the ambiguity filter: on the right-hand side, only terms that are
part of a term pair with an ambiguity score above 0.4 are shown.
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Fig. 4. Illustration of details-on-demand.

Details-on-demand. These are features for retrieving additional details that are
not visible through the main interface:

– Association relationships are the actions that a term refers to in the user
stories. For example, in “As a user, I want to request a password reset”, the
association relationship of the term password reset is the verb request. When
enabled, the association relationship is shown as a small icon next to the
term. Each association relationship of a given term has a different color and is
marked with the first character of the verb. Further details can be inspected
by clicking on the icon, which opens a small pop-up window. Figure 4a shows
the association relationships for nine terms, and provides details for the verb
request of term password reset, and for the verb logout of term system.

– Ambiguity inspection. The ambiguity that a term shares with other terms can
be inspected by clicking on it. Boldface font is applied to the term label and
the background is set to white, while the color of all other terms is changed
based on the ambiguity score they share with the selected term. Figure 4b
shows high ambiguity between profile page and both profile and page.

– User stories. The user stories in which a term appears are shown in a pop-up
window by double clicking on that term. The detailed term is given a black
background, and other terms in those stories are given a blue background.
Figure 4c shows these details for the term gallery.

5 Evaluation

In Sect. 5.1, we show feasibility by describing our implementation of the app-
roach presented in the previous sections. In Sect. 5.2, we report results from our
preliminary evaluation of the tool effectiveness with groups of students.

5.1 Proof-of-Concept Tool

We developed a proof-of-concept Web 2.0 tool that implements the visualization
described in Sect. 4 and the algorithm for ambiguity detection of Sect. 3. The tool
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is built on the Bootstrap framework, relies on the D3.js visualization library, and
calls the REST API of cortical.io to compute semantic similarity.

The tool can be accessed online3. The website provides quick links to two sets
of real-world user stories that showcase the tool’s functionality: besides the Web-
Company data set already mentioned, it is possible to explore the CMS-Company
data set [8] that refers to a content management system. After importing the
data sets, the viewpoints with the highest number of terms are shown.

Fig. 5. Our tool showing an excerpt of the CMS-Company data set.

For example, in the CMS-Company data set, the three viewpoints shown by
default are Editor, System Administrator and Marketeer, while the three less
dense viewpoints are hidden: Developer, Decision Maker and Channel Manager.
Figure 5 shows an excerpt of the CMS-Company data set where the three main
viewpoints are selected, and the analyst focuses on the term Language within
the viewpoint Editor : the tool shows that Environment Language is likely to be
a (near)-synonym of Language, while Language Label is less likely to be so.

The tool is a proof-of-concept. Although most functionalities are imple-
mented, it is not a product. Also, the Venn-inspired visualization currently works
with up to 3 viewpoints, while the functionality to support more than three con-
current viewpoints (through different shapes) has not been implemented yet.

5.2 Quasi-Experiment with Students

We report on a controlled quasi-experiment we conducted with students that
aimed to assess the effectiveness of our approach as implemented by the tool
described in Sect. 5.1. Our report follows Wohlin et al.’s guidelines [21].

Goal Definition and Context Selection. The goal of our evaluation as well as a
description of the context selection are presented in Table 2.
3 http://www.staff.science.uu.nl/∼dalpi001/revv/.

http://www.staff.science.uu.nl/~dalpi001/revv/
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Table 2. Goal definition for our quasi-experiment.

Object of study We study two objects: (i) Our tool-supported approach for
identifying ambiguity and missing requirements supported by a
wide 84” touch screen, and (ii) a manual, pen-on-paper
inspection of the requirements

Purpose Evaluate the relative effectiveness of our approach compared to
the pen-and-paper inspection

Perspective We take the point of view of RE researchers

Quality focus We study the precision and recall of the approach in detecting
ambiguity and incompleteness

Context We involve voluntary master’s students in Information Science
from Utrecht University. We conduct a blocked subject-object
study, for we have two objects and multiple subjects per object.
Since we could not split the participants according to their
background, we are conducting a quasi-experiment. The low
number of students (n = 8) makes the results preliminary

Hypothesis Formulation. We derive four hypothesis by combining the two quali-
ties we are interested in (precision and recall) with the two dependent variables:
ambiguities and missing requirements. Therefore, our hypotheses unfold as fol-
lows: Analysts who use our approach obtain a significantly higher X compared to
analysts using a pen-and-paper inspection, where X is as follows:

– precision in finding ambiguities (H1);
– recall in finding ambiguities (H2);
– precision in finding missing requirements (H3);
– recall in finding missing requirements (H4);

Based on extensive brainstorming among the authors, a pilot test, and the
existing literature, we have constructed the following pragmatic definitions of
missing user stories and ambiguous user stories to use in our quasi-experiment;
these definitions reflect the type of support that our tool intends to deliver:

– A missing user story is one whose absence inhibits the realization of at least
another user story;

– An ambiguity occurs when two user stories contain distinct terms that shares
the same denotations.

Experiment Design and Operation. We divided our 8 participants into four
groups of two members each; two groups used our tool, while two groups used
the pen-and-paper inspection. The participants had to work with a set of user
stories that we assembled from a Software Architecture course, which they had
attended; those user stories were for an event ticketing system.
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The experiment was repeated two times; in each instance, we involved one
group using our tool run on the interactive screen (treatment group) and one
group performing manual inspection (control group). We executed three steps:

1. Briefing (20min): all participants read a 1-page document that described
the experiment’s goals (investigating the effectiveness of a visualization tech-
nique for finding ambiguities and missing user stories), included instructions,
and provided an example. Then, the second author gave a short presenta-
tion about ambiguity and missing requirements. Finally, the members of the
treatment group were given a 5-min demo about our tool.

2. Defect detection session (20min): the two groups were assigned the task of
finding ambiguities and missing user stories from the event ticketing system
specification. They conducted their task in different rooms, with the second
author unobtrusively observing the treatment group.

3. Results evaluation (20min): the groups collaborated toward identifying which
of the identified ambiguities and missing requirements were true.

Validity Evaluation. We discuss the major threats to the validity of our study:

– Internal validity. The selection on participants based on their voluntary help
made us unable to make a selection that evenly represents the entire popu-
lation. While we tried to evenly balance the groups of participants based on
our opinion on their skills and background knowledge, but we did not employ
rigorous criteria to do so. Furthermore, relying on a discussion between group
members to reach agreement on true ambiguities and missing requirements
may suffer from social factors such as predominant personality and persua-
sion. Finally, the presence of an observer in the room with the treatment group
may have affected the behavior exhibited by the participants.

– Construct validity. The pre-operational explication of constructs may have
been unclear: ambiguity and incompleteness are difficult topics and, despite
our attempt to use easily actionable definitions, the participants may have
assigned different interpretations. Also, our treatment was influenced by a
secondary factor, i.e., the use of an extra-large interactive screen, which could
have affected the results. This threat is not extremely severe though, for this
is the setting we designed our tool for. Furthermore, we did not study inde-
pendently the effectiveness of the various features the tool embeds. Finally,
it should be noted that the obtained results rely on the use of user story
requirements; we cannot assess the generality for other notations.

– Conclusion validity. The small sample size implies low statistical power. Also,
our study suffers from random heterogeneity of subjects, for it is likely that
some individuals possessed significantly better analytical skills than others.

– External validity. The major threat in this category is that we chose students
instead of professionals, for convenience reasons.
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Analysis and Interpretation. The quantitative results of our quasi-experiment,
obtained by running independent t-tests for H1–H4 based on the figures in
Table 3, offer some interesting insights:

– Precision (H1, H3): we cannot find any significant difference between the
groups. For ambiguity, t(−1.106) = −1.208, p = .442, and Cohen’s effect size
value (d = 1.1) suggests low practical significance. For missing requirements,
t(−.044) = 1.283, p = .971, and Cohen’s effect size d = 0.04 suggest low
practical significance.

– Recall (H2, H4): we identify a significant difference in support of our hypothe-
ses. For ambiguity, t(−13.088) = 1.459, p = .017, and d = 13.2, denoting high
practical significance. For missing requirements, t(−4.941) = 1.999, p = .039,
and d = 4.999, also suggesting high practical significance.

The results suggest to reject H1 and H3: our approach does not seem to increase
precision in the identification of the stated defects. On the other hand, the results
suggest to retain H2 and H4: our approach seems to lead to significantly higher
recall compared to the pen-and-paper inspection. The validity of these results
needs to be confirmed by replicating our study with more participants.

Table 3. Quantitative results of our quasi-experiment. TP and FP stand for true and
false positives, respectively.

Total TP #TP #FP Precision Recall

Session 1 – ambiguity

Pen & paper 28 8 1 0.888 0.285

Tool 23 4 0.851 0.821

Session 2 – ambiguity

Pen & paper 12 3 4 0.428 0.25

Tool 9 0 1 0.75

Session 1 – incompleteness

Pen & paper 9 4 1 0.8 0.444

Tool 5 2 0.714 0.555

Session 2 – incompleteness

Pen & paper 5 2 2 0.5 0.4

Tool 3 2 0.6 0.6

Qualitative results. We complement the results above with qualitative findings
obtained from observation and via follow-up interviews with the participants:

– Observations. The two groups using the interactive screen behaved differently:
while both members of the first group stood close to the screen and inter-
acted with our tool, the second group had one person interacting with the
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screen and the other one standing at some distance to gain a more holistic
viewpoint. The first group spent less time on identifying defects, perhaps due
to the difficulty of obtaining a bird’s eye view, and they also incurred in some
conflicts, e.g., the tool interpreted as a pinch-to-zoom request the simultane-
ous drag-and-drop actions performed by the participants. In general, all the
participants seemed confident with using either treatment even without an
extensive training.

– Interviews. The participants provided suggestions that may help improve the
tool. In particular, they identified some major missing features, such as a
search field for quickly identifying the terms by name, a close-all button to
hide all pop-up windows, and underlined association names in the details-
on-demand window showing the user stories where a term appears in. Impor-
tantly, they indicated they would like to be able to change the elements in the
visualization (rename and remove elements). They expressed appreciation for
the tool, and found potential in terms of time saving thanks to the organi-
zation of the user stories around the viewpoints and the terms that occur in
the stories.

6 Related Work

InfoVis for RE. A recent systematic literature review [22] classifies existing
approaches along the RE activities they support, the involved stakeholders, and
the focus on the problem or solution domain. According to that framework,
our work supports the requirements verification activity, focuses on the problem
domain (stakeholders’ needs), and is intended for decision-makers.

Among existing visualization approaches, a similar approach to ours is taken
by Savio et al. [23], who propose a 3D pyramidal visualization in which every
face of the pyramid represents one stakeholder/viewpoint, and the pyramid is
sliced along the z-axis to denote different levels of refinement of the require-
ments. Reddivari et al. [24]’s RecVisu+ tool organizes requirements graphically
in clusters based on their similarity, it includes an algorithm for automated clus-
ter label generation, and it supports manipulating the requirements during their
elaboration. Orthogonally, the atomic elements in our approach are the terms
(instead of the requirements), and the analyst can then inspect the corresponding
requirements by requesting details (see Fig. 4c).

In our previous work [25], we proposed a cluster-based visualization of the
terms extracted from user story requirements. Differently, in this paper the terms
are not aggregated via clustering, but they are organized according to viewpoints,
and ambiguity detection algorithms support the identification of possible defects.

Ambiguity in RE. Several studies on ambiguity in RE have been conducted
so far. The seminal contribution of Berry and Kamsties [1] provides an excel-
lent overview of the main categories of ambiguity and their relevant for RE,
including lexical (investigated in this paper), syntactic or structural, seman-
tic, and pragmatic. Since then, researchers have examined anaphoric ambiguity
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(pronouns) [26]; proposed dictionary-based approaches to detect ambiguous and
weak terms [27]; introduced the notion of nocuous ambiguity [28] as opposed
to harmless ambiguity; experimented what combinations of ambiguity metrics is
more effective in practice [29]; and studied pragmatic ambiguity that depends on
the background of the reader [30]. Our work adds another brick to this thread of
research, as our techniques focus on pinpointing near-synonymy and homonymy.

7 Discussion

We have proposed an approach that combines InfoVis and NLP in order to help
analysts identify some classes of ambiguity (near-synonymy and homonymy) and
missing requirements. Our visualization represents the requirements graphically
by highlighting the terms that are used and arranges those terms on a 2D space
according to the viewpoint they belong to. Our preliminary evaluation suggests
that our approach may lead to a significantly better recall than a pen & paper
inspection, while no significant difference in precision could be detected.

Several research challenges need to be overcome. The effectiveness should
be tested at a larger scale and possibly by isolating the effect of the individ-
ual tool functionalities. The algorithm for detecting ambiguity can be improved
and tuned, while avoiding over-fitting. We also wish to study whether domain
ontologies can lead to a deeper understanding of the requirements and their rela-
tionships. We would like to identify visualization mechanisms that avoid heavy
reliance on colors, which are an obstacle for color-blinded people. Finally, we
are interested in the use of InfoVis techniques to ease the transition from RE to
architectural design.

More generally, this paper opens the doors for future work that combines
InfoVis and NLP. While we examined incompleteness and ambiguity in user
stories, other requirements notations and other defect types should be studied.
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